
FORMAL ANALYSIS OF WEB SERVICE COMPOSITION

CHEN MANMAN

(B.Sc., Nanjing University, 2011)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2015

Declaration

I hereby declare that the thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the

sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

CHEN MANMAN
29 September 2015

3

Acknowledgements

It would not be possible to complete my thesis without the encouragement and help of

people around me, who give me valuable instructions and assistance during the whole of

my Ph.D. journey.

I would like to express my special appreciation and thanks to my supervisor, Professor

Dong Jin Song, for his supporting, advice and encouragement during these past four years.

Professor Dong is someone you will instantly love and never forget once you meet him.

His advice on both research as well as on my career have been invaluable.

I am also very grateful to to my mentors Dr. Sun Jun, Dr. Liu Yang and Dr. Tan Tian

Huat, who act like friends and co-supervisors in the past four years. I thank them for their

advice and knowledge and many insightful discussions and suggestions that I will benefit

for my whole life. I would also like to thank my committee members, Dr Colin Tan and Dr

Bimlesh Wadhwa for serving as my committee members and many helpful suggestions.

I would like to thank my seniors Dr. Shi Ling, Dr. Liu Yan, Dr. Song Songzheng, Dr.

Gui Lin, Dr. Nguyen Truong Khanh, Dr. Liu Shuang and my fellow students Dr. Bai

Guang Dong, Li Li for for your support and friendships through my Ph.D. study. And I am

grateful to all my colleagues and friends in PAT group for their support and encouragement

throughout, some of whom have already been named.

Lastly, I wish to express my deepest thanks to my parents for their love and support to

help me go through all the difficulties. Their love is the greatest power in my life. Without

them, I can not make it this far.

4

Contents

List of Tables xi

List of Figures xiii

List of Algorithms xvii

1 Introduction 1

1.1 Thesis Overview . 2

1.2 Thesis Outline . 6

1.3 Publications of Our Works . 7

2 Background 9

2.1 Service Oriented Architecture . 9

2.2 Web Service Composition . 11

2.3 Model Checking . 12

3 Automated Synthesis of Local Time Requirement for Service composition 15

3.1 A BPEL Example with Timed Requirements 18

3.2 Overall Approach . 20

3.3 Runtime Refinement of Local Time Requirement 22

3.3.1 Motivation . 22

i

3.3.2 Runtime Adaptation of a BPEL Process 23

3.3.3 Algorithm for Runtime Refinement 24

3.3.4 Satisfiability Checking . 26

3.3.5 Termination and Soundness . 27

3.3.6 Discussion . 29

3.4 Evaluation . 30

3.4.1 Case Studies . 31

3.4.2 Synthesis of Local Time Requirement 33

3.4.3 Runtime Adaptation . 34

3.4.4 Threat to Validity . 38

3.5 Related Work . 39

3.6 Chapter Summary . 41

4 Dynamic Ranking Optimization for QoS-Aware Service Composition 43

4.1 QoS-Aware Compositional Model . 46

4.1.1 QoS Attributes . 47

4.1.2 QoS for Composite Services . 48

4.1.3 Optimality Function . 50

4.1.4 Problem Statement . 52

4.2 Dynamic Ranking Optimization . 53

4.2.1 Service Preprocessing . 54

4.2.2 Service Ranking . 57

4.2.3 Dynamic Service Selection . 60

4.2.4 Solving for Optimal Selection . 64

4.3 Evaluation . 64

4.4 Evaluation . 65

ii

4.4.1 Evaluation with a Synthetic Dataset 69

4.4.2 Evaluation with QWS Dataset . 73

4.5 Related Work . 74

4.6 Chapter Summary . 76

5 Optimizing Selection of Competing Features via Feedback-directed Evolutionary
Algorithms 77

5.1 Background . 80

5.1.1 Software Product Line . 80

5.1.2 Feature Model and its Semantics . 80

5.1.3 Multi-objective Optimization Problem 83

5.2 Feedback-directed Evolutionary Algorithm 84

5.2.1 Preliminaries of Evolutionary Algorithms 85

5.2.2 Preprocessing of Feature Model . 86

5.2.3 Genetic Encoding of the Feature Set 87

5.2.4 Feedback-directed Evolutionary Operators 88

5.3 Related Work . 92

5.4 Conclusion . 95

6 Verification of Functional and Non-functional Requirements of Web Service Com-
position 97

6.1 Motivation Example . 100

6.1.1 Computer Purchasing Services (CPS) 100

6.1.2 BPEL Notations . 102

6.2 QOS-AWARE COMPOSITIONAL MODEL 102

6.2.1 QoS Attributes . 103

6.2.2 QoS for Composite Services . 104

iii

6.2.3 Labeled Transition System . 105

6.3 Verification . 108

6.3.1 Verification of Functional Requirement 108

6.3.2 Integration of Non-Functional Requirement 109

6.3.3 Integration of Availability and Cost 109

6.3.4 Integration of Response Time . 110

6.3.5 Discussion . 114

6.4 Experiment . 114

6.4.1 Computer Purchasing Service (CPS) 114

6.4.2 Loan Service (LS) . 115

6.4.3 Travel Agency Service (TAS) . 116

6.5 Related Work . 117

6.5.1 Verification of Web Service Composition 117

6.5.2 Constraint Synthesis of Web Service Composition 120

6.6 Chapter Summary . 121

7 Tool Implementation: VeriWS 123

7.1 VeriWS . 125

7.1.1 Architecture and Implementation . 125

7.1.2 Aggregator . 127

7.1.3 Verifier . 128

7.1.4 Simulator . 129

7.1.5 Comparison with Existing Tools . 129

7.2 Demonstration . 131

7.2.1 Computer Purchasing Service (CPS) 131

7.2.2 Requirements for Verification . 132

7.3 Chapter Summary . 133

iv

8 Automated Runtime Recovery for QoS-based Service Composition 135

8.1 Motivating Example . 138

8.2 QoS-aware Compositional Model . 140

8.2.1 Labeled Transition System . 141

8.2.2 Example: Transport Booking Service 142

8.2.3 Backward Actions . 143

8.2.4 Monitoring Automata . 144

8.2.5 Recovery Plan . 145

8.3 Service Recovery as a GA Problem . 147

8.3.1 Preliminaries of Genetic Algorithms 147

8.3.2 Architecture . 149

8.3.3 Genetic Encoding of a Recovery Plan 149

8.3.4 Genetic Operators . 151

8.3.5 Calculating the Fitness Value . 153

8.3.6 QoS Optimality . 153

8.3.7 Global Optimality . 156

8.3.8 Fitness Function . 157

8.3.9 Enhanced Initial Population Policy . 158

8.3.10 rGA Algorithm . 161

8.4 Evaluation . 162

8.5 Related Work . 167

8.6 Chapter Summary . 169

9 Conclusion and Future Works 171

9.1 Conclusion . 171

9.2 Future Work . 172

v

Bibliography 175

A Appendix of Chapter 3 187

A.1 A Formal Model for Parametric Composite Services 187

A.1.1 Variables, Clocks, Parameters, and Constraints 188

A.1.2 Syntax of Composite Services . 189

A.1.3 Parametric Composite Services . 190

A.1.4 Bad Activity . 191

A.2 A Formal Semantics for Parametric Composite Services 192

A.2.1 Labeled Transition Systems . 192

A.2.2 Symbolic States . 193

A.2.3 Implicit Clocks . 193

A.2.4 Operational Semantics . 194

A.2.5 Application to an Example . 197

A.3 Synthesis of Design-time LTC . 199

A.3.1 Addressing the Good States . 199

A.3.2 Addressing the Bad States . 200

A.3.3 Synthesis Algorithms . 201

A.3.4 Application to the Running Example 202

A.3.5 Service Selection . 203

A.3.6 Termination and Soundness . 203

A.3.7 Incompleteness of dLTC . 206

B Appendix of Chapter 5 209

B.1 Evaluation for Optimizing Selection of Competing Features 209

B.1.1 Setup . 209

B.1.2 Evaluation with SPLOT . 215

vi

B.1.3 Evaluation with LVAT . 217

B.1.4 Threats to validity . 218

vii

Summary

Web service technologies have emerged as a de-facto standard for integrating disparate

applications and systems using open, XML-based standards. In addition to building Web

service interfaces to existing applications, a number of standards (e.g. WS-BPEL) have

been proposed to compose these Web services together to form a more meaningful business

processes. In this thesis, we focus on the verification and analysis of the composition of

Web services.

We present a fully automated technique for the synthesis of the local time requirement to

help the service composition conform to the time requirement. The approach is implemen-

tation independent, therefore can be applied at the design stage of service composition.

Based on the synthesis requirements, we propose a new approach to select a set of compo-

nent services to compose a composite service such that it could satisfy the non-functional

requirements, and we also extend the work to find a set of features that do not have incon-

sistency or conflict, yet optimize multiple objectives (e.g., minimizing cost and maximizing

number of features), for service-based product lines. To guarantee the requirements of the

service composition at the design time, we propose a method to verify the service com-

position against combined functional and non-functional requirements. We capture the

semantics of Web service composition using labelled transition systems (LTSs) and verify

the Web service composition directly without building intermediate or abstract models

before applying verification approaches. We have also developed a tool to implement

our proposed approach. To help the service composition conform to requirements during

runtime, we propose an automated approach based on a genetic algorithm to generate

the recovery plan. Our approach has been evaluated on real-world case studies, and has

viii

shown promising results.

Key words: Web Service, Web Service Composition, Model Checking, Formal Verifica-

tion

ix

x

List of Tables

2.1 Standards used by Web Services . 10

4.1 Aggregation Function . 51

5.1 Constraints of JCS . 83

6.1 QoS Attribute Values . 103

6.2 Aggregation Function . 105

6.3 Experiment Results . 115

7.1 Aggregation Function . 127

7.2 Web Service Verification Tools . 129

B.1 Brief overview of EAs . 210

B.2 Feature Models . 211

B.3 Evaluation with SPLOT . 214

B.4 Evaluation with LVAT . 215

xi

B.5 Improvement of EAs on SPLOT . 216

B.6 Improvement of EAs on LVAT . 216

xii

List of Figures

1.1 Overall Picture of My Work . 5

3.1 Stock Market Indices Service . 19

3.2 Synthesis of Local Time Requirement . 21

3.3 Service adaptation framework . 23

3.4 Computer Purchasing Service (CPS) . 30

3.5 Travel Booking Service (TBS) . 31

3.6 Experiment results on synthesis . 33

3.7 Synthesized dLTC . 34

3.8 Overhead of runtime monitoring . 35

3.9 Improvement of runtime conformance . 36

4.1 Travel Agency Service (TAS) . 44

4.2 Compositional structure . 48

4.3 TAS Example . 52

xiii

4.4 Dynamic Ranking Optimization (DRO) . 55

4.5 A scenario of dynamic service selection . 58

4.6 Experiment results for synthetic dataset . 65

4.7 Worst-case performance for synthetic dataset 66

4.8 Attributes for synthetic/QWS dataset . 66

4.9 Preprocess results for synthetic dataset . 67

4.10 Preprocess results for QWS dataset . 67

4.11 Experiment results for QWS dataset . 68

5.1 The feature model of JCS . 83

5.2 Typical flow of evolutionary algorithms . 85

5.3 Feedback-directed mutation operator . 90

5.4 Feedback-directed crossover operator . 90

6.1 Computer Purchasing Service . 101

6.2 LTS of CPS . 107

6.3 LTS of CPS with Availability and Cost . 110

6.4 LTS of CPS with Response Time, Availability and Cost 111

7.1 VeriWS Architecture . 126

7.2 WS-BPEL Description for CPS . 131

xiv

8.1 Transport Booking Service (TBS) . 139

8.2 LTS of TBS example . 142

8.3 Monitoring Automata . 145

8.4 Typical Flow of Genetic Algorithms . 147

8.5 Service Monitoring and Recovery Framework 148

8.6 Genetic Encoding of Recovery Plan . 150

8.7 Genetic Operations . 152

8.8 Convergence Rate . 163

8.9 Experiment with rGA . 164

A.1 Syntax of composite service processes . 190

A.2 Activation function . 194

A.3 Idling function . 195

A.4 Set of rules for the transition relation ↪→ . 196

A.5 LTS of service CS . 197

A.6 LTS of composite service CS . 200

A.7 LTS of composite service CS′ . 200

A.8 LTS of the SMIS . 202

A.9 dLTC of SMIS . 203

A.10 dLTC of SMIS after simplication . 203

xv

xvi

List of Algorithms

1 Algorithm rLTC(CS, s) . 25

2 Algorithm CheckSat(LCS, sa, r,TCS) . 26

3 Service Preprocessing (DROPreprocess) . 57

4 Optimization with DRO . 60

5 Dynamic service selection (DROSelect) . 61

6 PrunableFeatures . 87

7 FMutation . 91

8 ErrPos . 92

9 FCrossover . 93

10 Algorithm TagTime(P, x) . 112

11 Algorithm CalculateTime(P) . 113

12 Crossover . 153

13 Mutation . 153

xvii

14 Fitness . 155

15 Initial Population . 159

16 GA Algorithm . 161

17 Algorithm LocalTimeConstraint(CS) . 201

18 Algorithm synConsLTS(s) . 201

xviii

Chapter 1

Introduction

Service Oriented Architecture (SOA) has been an important software design architecture

that aims to enhance the efficiency, agility and productivity of an enterprise. This allows

enterprises to outsource part of their processes to external services, which produces a lower

cost of ownership for the enterprises over time. Services exist as physically independent

software programs and each service has its own distinct functionality.

Web services make use of open standards, such as WSDL [15] and SOAP [92], that enable

the interaction among heterogeneous applications. A Web service that are composed by

other services is called composite services. Services that the composite service makes use

of are called component services. Following the SOA, a composite service contains a set

of abstract services (e.g., a hotel booking service) which have their interfaces defined, and

concrete services (e.g., the Hilton Hotel booking service) are selected to realize the interfaces

of abstract services during runtime. There are two kinds of requirements that are cru-

cial to composite services, i.e., functional requirements and non-functional requirements.

Functional requirements concern about the functionality of the composite service. Non-

functional requirements concern about the quality of the service (QoS), and are usually

1

specified in a contract, called service-level agreements (SLAs).

Service composition is inevitably rich in concurrency and it is not a simple task for program-

mers to utilize concurrency as they have to deal with multi-threads and critical regions.

Therefore, it is desirable to verify Web services with automated verification techniques at

the design time, as the complexity of service composition continues to escalate.

1.1 Thesis Overview

Although during decades of enthusiasm across the research community of analyzing Web

service composition, there are still some research gaps briefly listed as following:

• Given the response time requirement of a composite service, there do not exist any ap-

proaches that could synthesize the response time requirement for component services

that will be used to compose the composite service.

• Non-functional requirements are crucial for Web service composition, and they often

become clauses of service level agreement (SLA) among the service providers and

users. Therefore, it is important to choose a set of component Web services that can

maximize the overall Quality of Service (QoS) of Web service composition and, at the

same time, satisfy all the compositional level constraints specified in the SLA.

• Both functional and non-functional requirements are important to the Web service

composition. However, existing works cannot support verification of combined

functional and non-functional requirements. They usually are just focused on one

aspect. And combined functional and non-functional requirements can be used to

check more complicated properties, e.g., the system can always reply to users within

5 seconds.

2

• The composite service operates in a highly dynamic environment; hence, it can fail

at any time due to the failure of component services. Existing works are required to

explore all state space to generate recovery plans and the generated recovery plans

cannot guarantee the QoS.

However, it is highly non-trivial to solve the problem due to the following challenges.

• Web service composition contains complex timing constructs and control flow struc-

tures such as concurrency. Such a combination of timing constructs, concurrent calls

to external services, and complex control structures makes it a challenge to synthesize

the local time requirement.

• Given a composite service with 10 abstract services executed in a sequential man-

ner, with each abstract service having 10 concrete service candidates, there are 1010

combinations to explore. In fact, it has been shown that the problem is NP-hard [33].

Therefore, it is impossible in practice to exhaustively search through all possible

combinations of concrete services.

• There are many kinds of non-functional requirements of a Web service composition,

and different non-functional requirements might have different aggregation functions

for different compositional structures.

• Web service composition supports compensation mechanism. One of the problems

is that it is uncertain whether the compensation will lead to a system state that could

satisfy the functional properties of the composite service.

In this thesis, we address these challenges on analyzing Web service composition. The

contributions can be summarized as follows:

• Given a composite service, we develop a refinement procedure for the design-time

synthesized local time requirement based on runtime information. In addition, we

3

develop a fully automated tool to evaluate the proposed method and apply it to

real-world case studies.

• We propose a novel approach, called dynamic ranking optimization (DRO) to select

the component services to compose the composite service. Firstly, we introduce a

pruning method called constraint pruning, that could effectively discard the service

candidates that cannot satisfy the global constraints. Secondly, we introduce a ranking

method based on both the overall local optimality and the constraint satisfaction

probability of a service.

• We capture the semantics of Web service composition using Labelled Transition Sys-

tems (LTS) (LTSs) and verify the Web service composition directly. To the best of

our knowledge, we are the first work on verification of combined functional and

non-functional requirements. We also develop a tool that supports verification on

different kinds of combined functional and non-functional properties of Web service

composition.

• We propose a new method (rGA) based on genetic algorithms by making use of

dynamic-length chromosomes to represent the recovery plans. rGA does not require

the generation of full state space beforehand. State space is generated on-the-fly

during recovery plan exploration. And the near-optimal QoS recovery plan would

be selected by rGA.

In the following, we will introduce the overall picture of our work.

Our work focuses on formal analysis of Web service composition as shown in Figure 1.1.

Functional and non-functional requirements are two important kinds of requirements of

Web service composition. Given the requirements of the Web service composition, at the

design time, we synthesize the response time requirement for each component service

by given the response time requirement of the composite service. We propose a new

4

Overview of My Works

Synthesize Selection Verification Recovery

Design Time Run Time

Selection for
Service-Based

SPL

Figure 1.1: Overall Picture of My Work

technique to select a set of component services to compose a composite service such that

it could satisfy the non-functional requirements. However, the two kinds of requirements

are crucial to Web service composition, in order to guarantee both aspects at the same time,

we check the combined functional and non-functional requirements. We extend the work

on service selection to feature selection to select features for service-based product lines

(SPL).

At runtime, component services could behave differently after being modified by service

providers, or could fail due to various reasons such as network problems, software bugs,

hardware failure, etc. Therefore, we propose an automated approach to generate the

recovery plan once detecting the failure.

5

1.2 Thesis Outline

In this section, we briefly present the outline of thesis and the overview for each chapter.

Chapter 2 describes the background of our work. We first introduce the main features of

Web service composition, including the service language and two kinds of requirements.

Then we introduce the main concept of the model checking.

Chapter 3 proposes a novel technique for synthesizing design-time local time constraint

(dLTC) for component services, in the form of a constraint on the local response times, that

guarantees the global response time requirement. Our approach is based on the analysis

of the LTS of a composite service by making use of parameterized timed techniques. Then,

during the runtime of composite service, we propose the usage of the runtime information

to weaken the dLTC, which becomes the runtime local time constraint (rLTC). It has been

implemented and evaluated with real-world case studies.

Chapter 4 addresses the problem of QoS service composition by proposing a new technique,

namely the dynamic ranking optimization (DRO). The technique considerably improves

the current service selection approaches, by considering only a subset of representatives

that are likely to succeed, before exploring a larger search space.

Chapter 5 proposes to incorporate a novel feedback-directed mechanism into evolutionary

algorithms (EAs) to find a set of features that do not have inconsistency or conflict, yet

optimize multiple objectives (e.g., minimizing cost and maximizing number of features)

for service-based product lines.

Chapter 6 proposes an automated approach to verify combined functional and non-

functional requirements directly based on the semantics of Web service composition. Our

approach has been implemented and evaluated on the real-world case studies, which

demonstrate the effectiveness of our method.

6

Chapter 7 presents VeriWS, a tool to verify combined functional and non-functional re-

quirements of Web service composition. VeriWS captures the semantics of Web service

composition and verifies it directly based on the semantics. We also show how to describe

Web service composition and properties using VeriWS.

Chapter 8 proposes an automated approach based on a genetic algorithm to generate the

recovery plan that could guarantee the satisfaction of functional properties of the composite

service after recovery. Given a composite service with large state space, the proposed

method does not require exploring the full state space of the composite service; therefore,

it allows efficient selection of recovery plan. In addition, the selection of recovery plans

is based on their quality of service (QoS). A QoS-optimal recovery plan allows effective

recovery from the state of failure. Our approach has been evaluated on five real-world case

studies, and has shown promising results.

Chapter 9 concludes the thesis and discusses the future work.

1.3 Publications of Our Works

Most of the work presented in this thesis has been published in international conference

proceedings.

• Chapter 3 consists parts of a paper submitted to the IEEE Transaction on Software

Engineering (TSE) [152]. I have made partial contribution to this submission, there-

fore Chapter 3 introduces the work that I have contributed to, and other related parts

are listed in the Appendix A.

• Chapter 4 has been submitted to The 17th International Conference on Formal Engi-

neering Methods (ICFEM 2015) [155].

7

• Chapter 5 has been accepted to International Symposium on Software Testing and

Analysis (ISSTA 2015) [157]. I have made partial contribution to this publication,

therefore Chapter 5 introduces the work that I have contributed to, and other related

parts are listed in the Appendix B.

• Chapter 6 was published at the 15th International Conference on Formal Engineering

Methods (ICFEM 2013) [54].

• Chapter 7 was published at the 36th International Conference on Software Engineer-

ing (ICSE 2014 Demo Track) [53].

• Chapter 8 was published at the 23rd International World Wide Web Conference

(WWW 2014) [154].

8

Chapter 2

Background

2.1 Service Oriented Architecture

Enterprise applications are heterogenous in terms of operating systems, and development

architecture. It is non-trivial to combine these heterogenous application to form a business

process. On the other hand, existing applications are frequently tightly associated with the

existing business processes; therefore, it is infeasible to build a new application starting

from scratch. Service Oriented Architecture (SOA) is introduced to tackle this problem.

SOA represents a popular architectural paradigm for applications, with Web Services as

probably the most visible way. It is a set of design principles for system development and

integration, which establishes an architectural model to enhance the efficiency, agility, and

the productivity of an enterprise.

SOA advocates an approach in which a software component provides its functionality as

a service that can be leveraged by other software components. Services exist as physically

independent software programs with distinct design characteristics. Each service is a piece

of application’s business logic or individual functions that are modularized and presented

9

Composition WS-CDL,WS-BPEL

Description WSDL

Message SOAP

Transmission HTTP, FTP, SMTP

Table 2.1: Standards used by Web Services

to consumer applications. The major advantage of services is their loosely coupled nature,

therefore, services are suitable for invoking by external consumer programs via a published

service contract (much like a traditional API).

Web service technologies are a realization of SOA based on internet protocols. It is for-

mally defined as a software system designed to support interoperable machine-to-machine

interaction over a network [10].

Web services technology is designed to offer a communication bridge between the het-

erogeneous computational environments. This allows organizations to communicate data

without the intimate knowledge of each other’s internal systems. Furthermore, since the

communication between clients and servers is done through the World Wide Web, Web

services could leverage on the ubiquitous internet connectivity for universal reach. To

achieve this goal, Web service technology makes use of a number of protocols based on

open and accepted standards as listed in Figure 2.1. For example, at the transmission level

Web services take advantage of HTTP, which is supported by most Web browsers and

servers. Another enabling technology is Extensible Markup Language (XML) [11]. XML is

a widely accepted standard used to encode all communications to a Web service. Simple

Object Access Protocol (SOAP) [13] and Web Services Description Language (WSDL) [14]

are core standards used by Web services and both of them are specified in XML format.

SOAP is a protocol specification for the information communication of Web services in

computer networks. It relies on standard internet protocols (e.g., HTTP, SMTP). WSDL is

10

an XML-based interface definition language used to specify the syntax of messages that

enter or leave Web services; therefore the consumer applications know the functionality

offered by Web services and how to access them. For example, Paypal SOAP API [7],

Salesforce SOAP API [8] are based on open standards, which include SOAP and WSDL.

However, description level only specifies the syntax of messages, the order of messages

have to be exchanged between services is defined in the composition level. There are

a number of WS-* specifications [6] (e.g., WS-BPEL, WS-Addressing, WS-Security, WS-

Resource) proposed to handle other aspects of Web services (e.g., composition, addressing,

security, resource states). In this thesis, we will focus on formal analysis of Web service

composition. We will discuss Web service composition in the next section.

2.2 Web Service Composition

Composition of Web services has received much interest to support enterprise integration

since it remains a challenge to integrate multiple services for complex interactions when

the technology for creating services and interconnecting them with a point-to-point basis

has achieved a certain degree of maturity. Web service composition makes use of existing

services to form complex services in order to achieve a business goal. The de-facto stan-

dard for Web service composition is Web Services Business Process Execution Language

(WS-BPEL) [102]. WS-BPEL is an XML-based orchestration business process language,

which describes Web service composition by specifying the workflow of actions within

business processes. It provides basic activities such as service invocation, and composi-

tional activities such as sequential and conditional composition to describe composition of

Web services.

There are two kinds of requirements of Web service composition, i.e., functional and non-

functional requirements. Functional requirements focus on the functionalities of the Web

11

service composition, which are described as a set of inputs, the behavior and the output

of the Web service composition. The non-functional requirements are concerned with the

Quality of Service (QoS). They are often recorded in service-level agreements (SLAs), which

is a contract specified between service providers and customers. Typical non-functional

requirements include response time, availability, cost and so on. Nowadays, non-functional

requirements are becoming more and more important as they have played a significant role

in the user experience. Given a booking service, an example of functional requirement is

that finally the booking result will be returned to users. An example of non-functional

requirements is that the service will respond to the user within 3 seconds.

2.3 Model Checking

Testing, deductive reasoning, simulation, and model checking are principle techniques for

formally analysis complex system behaviors. Testing approach tests system outputs with

certain inputs against the expected results. Simulation approach simulates system’s behav-

iors to compare with the expected one. However, both testing and simulation approaches

are very expensive and infeasible for complex systems because most of them have various

unexpected behaviors, and also not complete due to the fact that only a subset of behaviors

are covered. Deductive verification is a manual approach which uses axioms and proof

rules to prove the correctness of the systems. This approach can deal with infinite state

systems, however, it is time consuming since it is manual method.

Model checking [58] is an automatic approach for verifying finite state systems, which

exhaustively explores all possible system states. It is different from other methods in two

crucial aspects, firstly, it does not aim of being fully general; secondly, it is fully algorithmic.

Basics of Model Checking Model checking is an automatic verification technique that

explores all possible system states exhaustively. Given a model of a system, it exhaustively

12

and automatically checks whether this model meets a given specification. The specifications

of the systems are specified as properties in proper logics. An example of logic specifications

is temporal logic, which can assert how the behavior of the system evolves over time.

The process of model checking consists of two tasks. The first one is to abstract the model

accepted by model checking tools from the original system. The second is that the verifi-

cation of the system model against the specifications is generally conducted automatically

by the model checker. The result will be returned with witness traces or counterexamples

if the result is negative. The analysis of the error trace may require modifications to refine

the model and repeat the model checking process.

13

14

Chapter 3

Automated Synthesis of Local Time

Requirement for Service composition

Service-oriented architecture is a paradigm that promotes the building of software applica-

tions by using services as basic components. Services make their functionalities available

through a set of operations accessible over a network infrastructure. To assemble a set of

services to achieve a business goal, service composition languages such as BPEL (Business

Process Execution Language) [26] have been proposed. A service that is composed by other

services is called a composite service, and services that the composite service makes use of

are called component services as presented in [78].

In business where timing is critical, a requirement on the service response time is often

an important clause in service-level agreements (SLAs), which is the contractual basis

between service consumers and service providers on the expected quality of service (QoS)

level. Henceforth, we denote the response time requirement of composite services as

global time requirement; and the set of constraints on the response times of the component

services as local time requirement. The response time of a composite service is highly

15

dependent on that of individual component services. It is therefore important to derive

local time requirements (i.e., requirements on the component services) from the global

time requirement so as to identify component services which could be used to build the

composite service while satisfying the response time requirement.

Consider an example of a stock indices service, which has an SLA with the subscribed

users such that the stock indices would be returned in three seconds upon request. The

stock indices service makes use of several component services, including a paid service,

for requesting stock indices. The stock indices service provider would be interested in

knowing the local time requirement of the component services.

BPEL is a de-facto standard for service composition. It supports control flow structures

that involved complex timing constructs (e.g., < pick > control structure) and concurrent

execution of activities (e.g., < flow > control structure). Such a combination of timing

constructs, concurrent calls to external services, and complex control structures, makes it a

challenge to synthesize the local time requirement.

In this chapter, we present a fully automated technique for the synthesis of the local

time requirement in BPEL. The approach works by performing analysis on the behavior

of the composite service based on its associated labeled transition systems (LTSs), using

techniques on parameter synthesis for real-time systems. For the synthesized local time

requirement to be useful, it needs to be as weak as possible, to avoid discarding any service

candidates that might be a part of a feasible composition. This is particularly important,

as often having a faster service would incur higher cost. Our synthesis approach does not

only avoid bad scenarios in the service composition, but also guarantees the fulfillment of

global time requirement.

In this chapter, the local time requirement of a composite service is represented as a

constraint, which is called the local time constraint (LTC). During design time of a composite

16

service, since it is unknown which execution path will be executed at runtime, the LTC is

synthesized based on all possible execution paths. The LTC of a composite service that is

synthesized during the design time is called the design-time local time constraint (dLTC).

Due to the highly evolving and dynamic environment the composite service is running

in, the design time assumptions for Web service composition, even if they are initially

accurate, may later change at runtime. For example, the execution time of a component

service could violate the dLTC due to reasons such as network congestion. Nevertheless,

this does not necessarily imply that the composite service will not satisfy the global time

requirement. Indeed, the dLTC is synthesized based on all possible execution paths at

design-time, whereas only one path will be executed at runtime. At runtime, some of the

execution paths can be eliminated. Therefore, we can use the runtime information to refine

the dLTC to make it weaker – which results in a more relaxed constraint on the response

times of the component services. We call the dLTC after runtime refinement a runtime

local time constraint (rLTC). The rLTC is then used to decide whether the current composite

service can still satisfy the global time requirement.

My contributions to this chapter are as follows.

1. We introduce a refinement procedure on the dLTC of a composite service based on

runtime information, which results in a more relaxed rLTC. The rLTC can be used

to verify whether the composite service may still eventually satisfy the global time

requirement at runtime.

2. We develop a fully automated tool to evaluate the proposed methods and apply it to

real-world case studies to show the effectiveness of our approach.

The synthesized local time requirement has multiple advantages. First, it allows the se-

lection of feasible services from a large pool of services with similar functionalities but

17

different local response times. Second, the designer can avoid over-approximations on the

local response times. An over-approximation may lead the service provider to purchase a

service at a higher cost, while a service at a lower cost with a slower response time may

be sufficient to guarantee the global time requirement. Third, the local requirements serve

as a safe guideline when component services are to be replaced or new services are to be

introduced.

Outline. The rest of this chapter is structured as follows. Section 3.1 introduces a timed

BPEL running example. Section 3.2 provides an overall picture on our approach. Section 3.3

introduces rLTC, and its usage for runtime adaptation of a service composition. Section 3.4

evaluates our approach using three case studies. Section 3.5 reviews related works. Finally,

Section 3.6 concludes the chapter. The definitions and terminologies are supplemented in

Appendix A.1, the approach to analyze the BPEL process and the synthesis algorithms for

dLTC are supplemented in Appendix A.2 and A.3 respectively for reference.

3.1 A BPEL Example with Timed Requirements

BPEL [26] is an industrial standard for implementing composition of existing Web services

by specifying an executable workflow using predefined activities. In this work, we assume

the composite service is specified using the BPEL language. Basic BPEL activities that

communicate with component Web services are < receive >, < invoke >, and < reply >,

which are used to receive messages, execute component Web services and return values

respectively. We denote them as communication activities. The control flow of the service is

defined using structural activities such as < flow >, < sequence >, < pick >, < if >, etc.

18

Receive User

Sync. Invoke DS

X Reply indices ASync. Invoke FS

OnMessage FS OnAlarm 1 second

X Reply indices ASync. Invoke PS

OnMessage PS OnAlarm 1 second

X Reply indices ×Reply ’Failure’

Indices exist Indices do not exist

Figure 3.1: Stock Market Indices Service

Stock Market Indices Service

In this section, we illustrate a Stock Market Indices Service (SMIS) as a running example.

newsInfoShort is a paid service and its goal is to provide updated stock indices to the

subscribed users. It provides service level agreement (SLA) to the subscribed users stating

that it always responds within three seconds upon request.

SMIS has three component Web services: a database service (DS), a free news feed service

(FS) and a paid news feed service (PS). The strategy of the SMIS is calling the free service

FS before calling the paid service PS in order to minimize the cost. Upon returning the

result to the user, the SMIS would also store the latest results in an external database

service provided by DS (storage of the results is omitted here). The workflow of the SMIS

is sketched in Figure 3.1 in the form of a tree. When a request is received from a subscribed

19

customer (Receive User), it would synchronously invoke (i.e., invoke and wait for reply)

the database service (Sync. Invoke DS) to request for stock indices stored in the past minute.

Upon receiving the response from DS, the process is followed by an< if > branch (denoted

by). If the indices are available (indices exists), then they are returned to the user

(Reply indices). Otherwise, FS is invoked asynchronously (i.e., the system moves on after

the invocation without waiting for the reply). A < pick > construct (denoted by) is used

here to await incoming response (< onMessage >) from previous asynchronous invocation

and timeout (< onAlarm >) if necessary. If the response from FS (OnMessage FS) is received

within one second, then the result is returned to the user (Reply indices). Otherwise,

the timeout occurs (OnAlarm 1 second), and SMIS stops waiting for the result from FS and

calls PS instead (ASync. Invoke PS). Similar to FS, the result from PS is returned to user, if

the response from PS is received within one second. Otherwise, it would notify the user

regarding the failure of getting stock indices (Reply ‘Failure’). The states marked with a

X (resp. ×) represent desired (resp. undesired) end states.

The global time requirement for SMIS is that SMIS should respond within three seconds

upon request. It is of particular interest to know the local time requirements for services

PS, FS, and DS, so as to fulfill the global time requirement. This information could also

help to choose a paid service PS which is both cheap and responds quickly enough.

3.2 Overall Approach

Figure 3.2 illustrates the main steps of our approach on synthesizing local time require-

ments. The required inputs are the specification of the composite service CS, and its global

time requirement. These inputs are used to generate the labeled transition system repre-

senting the behavior of the composite service. The design-time local time constraint (dLTC)

is subsequently generated based on the LTS of the composite service. The details of the LTS

20

c

Composite Service

(CS)

Labeled Transition

System of CS

generates
synthesis

 <bpel>

…

 <bpel>

Design-time

Local Time

Constraint

Global Time Constraint

Figure 3.2: Synthesis of Local Time Requirement

generation are introduced in Appendix A.1 and Appendix A.2, and The details of synthe-

sizing dLTC are given in Appendix A.3. The dLTC is then used to select a set of component

services that collectively satisfy the global time requirement of the composite service. The

component services are selected based on the upper bound of their response time, which

could be specified by their SLA, using techniques from the research on worst-case execu-

tion time (WCET) (e.g., [67]), or based on estimations gathered from their past executions.

We assume upper bounds of the response times of component services are known; how

these values are collected or estimated is out of the scope of this chapter. We denote the

estimated upper bound of a component service, as their stipulated response time. At runtime,

the component service might not conform to its stipulated response time, due to the highly

dynamic nature of the execution environment. If any component service is detected for

violation of their stipulated response time, the runtime LTC (rLTC) is calculated based on

the runtime information, such as the current active state of the LTS, and the total duration

of the composite service. The rLTC, which is weaker than dLTC, is then used to judge

whether the current execution could still satisfy the global time requirement. The details

on rLTC are given in Section 3.3.

21

3.3 Runtime Refinement of Local Time Requirement

3.3.1 Motivation

Let us consider a composite service CS. Assume that we have selected a set of compo-

nent services such that their stipulated response times fulfill the dLTC of CS. Since the

composite service is executed under a highly evolving dynamic environment, the design

time assumptions may evolve at runtime. For example, the response times of component

services might be affected by network congestion – which might prevent some component

services to conform to their stipulated response times. Nevertheless, this does not neces-

sary imply that the composite service will not satisfy the global time requirement. This is

because the dLTC is synthesized at the design time to hold in any execution trace of CS;

whereas at runtime, the runtime information could be used to synthesize a more relaxed

constraint for CS.

More specifically, given a composite service CS, we have two pieces of runtime information

that could help in synthesizing a more relaxed constraint – the execution path that has been

taken by CS, and the elapsed time of CS. The execution path that has been taken by CS

could be used for workflow simplification. This is because in the midst of execution, some of

the execution traces can be disregarded and therefore, a weaker LTC, that includes more

parameter valuations, could be synthesized. In addition, the time elapsed of CS could

be used to instantiate some of the response time parameters with real time constant; this

makes the synthesized LTC contain less uncertainty and be more precise.

For example, consider the SMIS composite service, the LTS of which is depicted in Fig-

ure A.8. At runtime, after invocation of the component service DS, SMIS will be at state

s2 (see Figure A.8). Assume that DS does not conform to its stipulated response time.

Therefore, it is desirable to check whether invoking FS could still satisfy the global time

22

requirement of CS. One can make use of dLTC for this purpose. Nevertheless, a better LTC

could be synthesized at state s2.

The first observation is that from state s2, we can safely ignore the constraints from the

good state s5, since it is not reachable from s2. The second observation is the delay from

state s0 to state s2 (say r seconds, with r ∈ R≥0) is known. For this reason, we can substitute

the delay component of state s2, which is the parametric response time tDS, with the actual

time delay r. This motivates the use of runtime information of BPEL process to refine

the LTC. We refer to the runtime refined LTC as the runtime LTC (denoted by rLTC). By

incorporating the runtime information, the resulting rLTC at state s2 is:

(tFS ≤ 1) =⇒ (r+tFS ≤ 3) ∧

(tFS ≥ 1 ∧ tPS ≤ 1) =⇒ (r+tPS ≤ 2) ∧

¬(tFS ≥ 1 ∧ tPS ≥ 1)

3.3.2 Runtime Adaptation of a BPEL Process

Executed

Actions

Check

Satisfiability

Runtime Engine Module (RE)

<BPEL>

…

<invoke…/>

....

</BPEL>

Service Monitoring Module (SM)

Figure 3.3: Service adaptation framework

23

In this section, we introduce a service adaptation framework to improve the conformance

of global time requirement for a composite service. The framework makes use us of rLTC

and the architecture of the framework is shown in Figure 8.5. There are two modules in

the framework – Runtime Engine Module (RE) and Service Monitoring Module (SM). The

Runtime Engine Module (RE) provides an environment for the execution of a BPEL service;

here, we use ApacheODE [3], an open source BPEL engine.

The Service Monitoring Module (SM) is used to monitor the execution of a BPEL service.

During the deployment of a service CS, SM generates the LTS (Q, s0,Σ, δ) of CS and stores

it in the cache of SM so that it is available when CS is executing.

During the execution of the composite service CS, the executed action ae ∈ Σ from RE is

used to update the active state sa ∈ Q of LTS stored in SM. The action ae is also stored as

part of the current execution run Π. SM also keeps track of the total execution time for

execution run Π as well as the response time for each component service invocation.

Prior to the invocation of a component service S, RE will consult SM to check the satisfia-

bility of rLTC. If the rLTC of sa is satisfiable, then SM will instruct RE to continue invoking

S as usual. Otherwise, some kind of mitigation procedure could be triggered. One of the

possible mitigation procedures is to invoke a backup service of S, Sbak, which has faster

stipulated response time than S (that may come with a cost). An example of CS, S and Sbak,

are services SMIS, FS and PS. We introduce the details of synthesis of rLTC and satisfiability

checking in Section 3.3.3 and Section 3.3.4 respectively.

3.3.3 Algorithm for Runtime Refinement

A way to calculate the rLTC is to run Algorithm 18 from a state s in the LTS. However, this

requires traversing the state-space repeatedly for every calculation of the rLTC. To make

it more efficient, we extend Algorithm 18 by calculating the rLTC for each state s during

24

Algorithm 1: Algorithm rLTC(CS, s)
input : Composite service CS
input : State s in LTS of CS
output: Constraint pair for sub-LTS of CS starting with s

1 cons← ∅;
2 if s is a good state then
3 cons← (s.C⇒ (s.D − d1 + r1 ≤ TG), true);
4 s.rLTC← cons.g ∧ (d1 = s.D);

5 if s is a bad state then
6 cons← (true,¬(s.C));
7 s.rLTC← cons.b;

8 if s is a non-terminal state then
9 SC← {rLTC(CS, s′)|s′ ∈ Enable(s)};

10 a1 ←
∧
{c.g|c ∈ SC} ;

11 a2 ←
∧
{c.b|c ∈ SC} ;

12 cons←(a1, a2);
13 s.rLTC← cons.g ∧ cons.b ∧ (d1 = s.D);

14 return cons;

the synthesis of the LTC at the design time. Therefore, during runtime, we only need to

retrieve the synthesized rLTC of the corresponding state for direct usage.

Algorithm 1 synthesizes the rLTC for each state in the LTS. Given a composite service CS,

and a state in LCS, Algorithm 1 returns a constraint pair cs = (g, b), where g, b ∈ CU. In

this pair, g (resp. b) will be used to denote the constraint associated to a good (resp. bad)

state. Given a constraint pair cs, we use cs.g (resp. cs.b) to refer to the first (resp. second)

component of cs. Variables d1 and r1 are free variables. Given a state s, free variables d1 and

r1 in s.rLTC are to be substituted by the delay component s.D ∈ LU and the actual delay

r ∈ R≥0 from the initial state to the state s respectively.

Given a good state s, s.rLTC is assigned with value cons.g, with free variable d1 substituted

with s.D (line 4). As an illustration, consider the good state s13 in the SMIS example. At

runtime of SMIS, assume the active state is at state s13, and assume that it takes r ∈ R≥0

seconds to execute from the initial state s0 to state s13. Therefore, the previously unknown

25

parametric response time in the delay component of state s13, i.e., tDS + 1 + tPS, can be

substituted with the real value r. To achieve this, at line 3, we subtract away the free variable

d1, which is to be substituted with the response time parameter of state s13, and add back

the free variable r1, which is to be substituted with the real value r. We substitute the free

variable d1 at line 4. For free variable r1, it is only substituted in Algorithm 2 at runtime when

the delay is known. In the case of the SMIS example, the rLTC of state s13 after substituting

free variable r1 with value r (i.e., s13.rLTC∧ (r1 = r)) is ((tPS ≤ 1∧ tFS ≥ 2) =⇒ (r ≤ 3)). The

discussion when s is a bad state is similar.

Given a non-terminal state s, s.rLTC is assigned with the conjunction of a1 and a2, with

free variable d1 substituted with s.D (line 13). Intuitively, the constraint a1 (resp. a2) is

the conjunction of constraints synthesized from good (resp. bad) states. The reason for

conjuncting both of them is to guarantee the reachability of at least one good state, and to

avoid the reachability of all bad states from state s. Also note that the rLTC of the initial

state s0 is the same as its dLTC, i.e., s0.rLTC = dLTC. In fact, one can see Algorithm 1 as a

generalization of Algorithm 17, in the sense that Algorithm 1 can be applied to any state

(not only the initial one), and can benefit from the current partial execution.

3.3.4 Satisfiability Checking

Algorithm 2: Algorithm CheckSat(LCS, sa, r,TCS)
input : The LTS of the composite service CS, LCS = (Q, s0,Σ, δ)
input : The active state sa ∈ Q
input : Elapsed time for composite service, r ∈ R≥0
input : Stipulated response time information, TCS = {(t1, v1), . . . , (tn, vn)}
output: Satisfiability of local time constraint at sa

1 return (
∧

1≤i≤n ti ≤ vi) =⇒ (sa.rLTC ∧ (r1 = r));

In this section, given a composite service CS with n component services C = {c1, c2, . . . , cn},

we introduce how the satisfiability checking is performed prior to the invocation of a

26

component service ci ∈ C. Let {t1, t2, . . . , tn} and {v1, v2, . . . , vn}, where ti ∈ LU and vi ∈ R≥0,

be the set of parametric response times and stipulated response times for component

services in C respectively. We denote by TCS = {(t1, v1), . . . , (tn, vn)} the stipulated response

time information of component services CS. The algorithm to check the satisfiability of

rLTC at state sa ∈ Q is shown in Algorithm 2. With the assumption that all component

services will reply within their stipulated response times (
∧

1≤i≤n ti ≤ vi), it checks whether

rLTC at state sa could be satisfied with free variables r1 substituted with the actual elapsed

time r ∈ R≥0.

3.3.5 Termination and Soundness

In this section, we show the termination and soundness of synthesis of rLTC.

3.3.5.1 Termination

Proposition 1. Let CS be a service model, s be a state in LCS. Then rLTC(CS, s) terminates.

Proof: From Lemma 5,LCS is acyclic. Algorithm 17 is obviously acyclic too. Now, Algorithm 18

is recursive (on line 9). However, due to the acyclic nature of LCS, then no state is explored more

than once. This ensures termination. �

3.3.5.2 Soundness

The following theorem formally states the correctness of our runtime refinement algorithm.

It generalizes Theorem 11 to the case of runtime refinement.

Theorem 2. Let CS be a service model. Let s be the current state and r be the current elapsed time.

Let π |= s.rLTC. Let LTS′ = subLTSCS,s. Then:

27

1. No bad activity is reachable in LTS′CS[π],

2. There exists at least one reachable good state (V,Pg,C, d) in LTS′CS[π], and

3. For all good states (V,Pg,C, d) of LTS′CS[π], d ≤ TG.

Proof: The proof is similar to that of Theorem 11. We briefly prove the 3 items.

1. First note that we have conjuncted the bad state starting from s (line 6 and line 11 in

Algorithm 1). Then, we can reuse the same proof as in Theorem 11 (Lemma 8), by using s

instead of the initial state s0.

2. Again, we can reuse the same proof as in Theorem 11 (Lemma 9), since subLTSCS,s can be

seen as a subtree of LCS.

3. Assume s is a terminal state, then it must be a good state (by (1)). We have s.rLTC = (s.C⇒

s.D − d1 + r1 ≤ TG) (Algorithm 1, line 4). In addition, d1 = s.D (by Algorithm 1, line 4)

and r1 = d (by Algorithm 2, line 1), where s.D ∈ LU and d ∈ R≥0 are the parametric delay

and real-value delay from the initial state to the good state s. After simplifying, we have

s.rLTC = (s.C ⇒ d ≤ TG). Hence, for any π |= s.rLTC, we have that π |= (s.C ⇒ d ≤ TG).

Therefore, the result holds. Assume s is a non-terminal state. For any reachable good state

sg = (V,Pg,C, d) from s, the constraint (sg.C ⇒ (sg.D − d1 + r1 ≤ TG)) is included in

Algorithm 1, line 10. And we have d1 = s.D (by Algorithm 1, line 13) and r1 = r (by

Algorithm 2, line 1), where s.D ∈ LU and r ∈ R≥0 are the parametric delay and real-value

delay from the initial state to the non-terminal state s. The parametric delay sg.D − s.D

represents the delay from the state s to the good state sg. In short, D = sg.D − s.D + r

represents the delay from the initial state to the good state sg. Now, for any π |= s.rLTC, we

have that π |= (sg.C⇒ (D ≤ TG)). Hence all reachable good states in subLTSCS[π],s are such

that d ≤ TG.

28

�

3.3.6 Discussion

Termination. Our method is guaranteed to terminate. This is due to the fact that

BPEL composite services do not support recursion, as well as our assumption on the loop

activities such that the upper bound on the number of iterations and the time of execution

is known. We discuss how to enforce such assumption if the loop activities exist. For the

upper bound on the number of iterations, it could be either inferred by using loop bound

analysis tool (e.g., [74]), or otherwise could be provided by the user. In the worst case, an

option is also to set up a bound arbitrary but “large enough”. For the maximum time of

loop executions, this could be enforced by using proper timeout mechanism in BPEL.

Time for internal operations. For simplicity, we do not account for the time taken for the

internal operations of the system. In reality, the time taken by the internal operations might

be significant especially when the process is large. In order to provide a more accurate

synthesis of time constraint, an additional constraint toverhead ≤ b, where toverhead ∈ R≥0 is a

time overhead for an internal operation, and b ∈ R≥0 is a machine dependent upper bound

for toverhead, could be included for more precise analysis. The method in estimation of b is

not the focus of this chapter; interested readers may refer to, e.g., [123].

Completeness of rLTC. rLTC is still incomplete in general, with the same reason for

the incompleteness of dLTC as discussed in Section A.3.7. Nevertheless, it helps to mit-

igate the problem of incompleteness of dLTC with workflow simplification as illustrated

in Section 3.3.1.

Bad Activity. The bad activities are the activities triggered when timeout occurs. For

the running example SMIS, it is a reply activity that reports the user on the timeout of a

composite service. As an additional example, it could also be an invocation activity to log

29

Sync. Invoke
SS

Sync. Invoke
LS

Shipping
workflow

Sync. Invoke
IS

ASync. Invoke
MS

Manufacture
workflow

Sync. Invoke
BS

Billing
workflow

Receive user

X Reply user

Figure 3.4: Computer Purchasing Service (CPS)

the timeout event upon the timeout of a composite service. With the rule of thumb that a

bad activity is always triggered upon the timeout of a composite service, identifying a bad

activity would become an obvious task; techniques for (semi-)automating this task is an

interesting direction of future research. On the other hand, specifying bad activities is not

mandatory. If the user cannot identify a bad activity in the composite service, (s)he has the

option not to specify any.

3.4 Evaluation

We divide the evaluation of our approach into two parts. The first part (Section 3.4.2)

focuses on the evaluation of synthesis of local time requirement at the design time. The

second part (Section 3.4.3) focuses on the evaluation of runtime adaptation of a composite

service. In the following, we first introduce the case studies that are used in the evaluation.

30

ASync. Invoke
FS

OnMessage
FS

OnAlarm
2 seconds

ASync. Invoke
FSbak

OnMessage FSbak

OnAlarm 1 second

res=’false’

Flight request workflow

ASync. Invoke
HS

OnMessage
HS

OnAlarm
2 seconds

ASync. Invoke
HSbak

OnMessage HSbak

OnAlarm 1 second

res=’false’

Hotel request workflow

×Reply ’Failure’X Reply result

res is ’false’res is ’true’

res=’true’

Receive user

Figure 3.5: Travel Booking Service (TBS)

3.4.1 Case Studies

Stock Market Indices Service (SMIS). This is the running example introduced in Sec-

tion 3.1.

Computer Purchasing Services (CPS). The goal of a CPS (e.g., Dell.com) is to allow a

user to purchase a computer system online using credit cards. Our CPS makes use of five

component services, namely Shipping Service (SS), Logistic Service (LS), Inventory Service

(IS), Manufacture Service (MS), and Billing Service (BS). The global time requirement of

the CPS is to respond within three seconds. The workflow of CPS is shown in Figure 3.4. A

< flow > construct (denoted by) is introduced in the workflow for concurrent execution

31

of activities. The CPS starts upon receiving the purchase request from the client with credit

card information, and the CPS spawns three workflows (viz., shipping workflow, manufac-

ture workflow, and billing workflow) concurrently. In the shipping workflow, the shipping

service provider is invoked synchronously for the shipping service on computer systems.

Upon receiving the reply, LS which is a service provided by internal logistic department

is invoked synchronously to record the shipping schedule. In the manufacture workflow,

IS is invoked synchronously to check for the availability of the goods. Subsequently, MS

is invoked asynchronously to update the manufacture department regarding the current

inventory stock. In the billing workflow, the billing service which is offered by a third party

merchant, is invoked synchronously for billing the customer with credit card information.

Upon receiving the reply message from LS and BS, the result of the computer purchasing

will be returned to the user.

Travel Booking Service (TBS). The goal of a travel booking service (TBS) (such as Book-

ing.com) is to provide a combined flight and hotel booking service by integrating two

independent existing services. TBS provides an SLA for its subscribed users, saying that

it must respond within five seconds upon request. The travel booking system has four

component services, Flight Service (FS), Backup Flight Service (FSbak), Hotel Service (HS)

and Backup Hotel Service (HSbak). The workflow of TBS is shown in Figure 8.1a. Upon

receiving the request from users, the variable res is assigned to true. After that, TBS spawns

two workflows (viz., a flight request workflow, and a hotel request workflow) concurrently.

In the flight request workflow, it starts by invoking FS, which is a service provided by a

flight service booking agent. If service FS does not respond within two seconds, then FS is

abandoned, and another backup flight service FSbak is invoked. If FSbak returns within one

second, then the workflow is completed; otherwise the variable res is assigned to false. The

hotel request workflow shares the same process as the flight request workflow, by replacing

FS with HS and FSbak with HSbak. If res is true, the booking result will be returned to the

32

Case studies #states #transitions dLTC (sec.) rLTC (sec.)

SMIS 14 13 0.0076 0.0078

TBS 561 2386 1.004 1.05

CPS 120 119 0.0532 0.0562

Figure 3.6: Experiment results on synthesis

user, otherwise it will inform the user on the failure of travel booking.

3.4.2 Synthesis of Local Time Requirement

We synthesize the dLTC and rLTC for three case studies on a system using Intel Core I5

2410M CPU with 4 GB RAM. The details of the synthesis are shown in Figure 3.6. The #states

and #transitions columns provide the information of number of states and transitions of the

LTS respectively. The dLTC (sec.) and rLTC (sec.) columns provide the time (in seconds)

spent for synthesizing dLTC (for the entire LTS), and rLTC (for each state in the LTS)

respectively. TBS takes a longer time than SMIS and CPS for synthesizing dLTC and

rLTC, as it contains a larger number of states and transitions compared to SMIS and CPS.

Nevertheless, since both dLTC and rLTC are synthesized offline; the time for synthesizing

the constraints (around one second) for TBS is considered to be reasonable.

The synthesized dLTC for SMIS is shown in Figure A.10, and dLTC for CPS and TBS are

shown in Figure 3.7. All the dLTC are simplified and in DNF form. It is worth noticing the

dLTC of CPS can be represented in one line representation after simplification. Note that

tMS does not appear in dLTC for CPS. The reason is that MS is invoked asynchronously

without expecting a response; therefore its response time is irrelevant to the global time

requirement of CPS.

For the synthesized rLTC, they are used for runtime adaptation during runtime. We

evaluate the runtime adaptation of a composite service with rLTC in the next section.

33

(tSS + tLS + tIS + tBS) ≤ 3

(a) Result of CPS

((2 · tHSbak < tFSbak) ∧ (2 · tFSbak < tHSbak) ∧ (tHSbak < 1) ∧ (tFSbak < 1))
∨ ((tHSbak < 1) ∧ (tFSbak < 1) ∧ (tFSbak + tHSbak ≤ 1))
∨ ((tHSbak < 1) ∧ (tFS < 2))
∨ ((tHS < 2) ∧ (tFSbak < 1))
∨ ((tHS < 2) ∧ (tFS < 2))

(b) Result of TBS

Figure 3.7: Synthesized dLTC

3.4.3 Runtime Adaptation

In this section, we conduct two experiment to evaluate the overhead that caused by runtime

adaptation, and the improvement provided by runtime adaptation on the conformance of

the global time requirement.

3.4.3.1 Setup of Experiment

The evaluation was conducted using two different physical machines, which are connected

by a 100 Mbit LAN. One machine is running ApacheODE [3] to host the RE module to

execute the BPEL program, configured with Intel Core I5 2410M CPU with 4GiB RAM. The

other machine is to host the SM module, configured with Intel I7 3520M CPU with 8GiB

RAM.

To test the composite service under controlled situation, we introduce the notion of execution

configuration. An execution configuration defines a particular execution scenario for the

composite service. Formally, an execution configuration E is a tuple (M,R), where M decides

which path to choose for an < if > activity and R is a function that maps a component

service si ∈ SCS to a real value r ∈ R≥0, which represents the response time of service si.

We discuss how an execution configuration E = (M,R) is generated. M is generated by

34

0 2,000 4,000 6,000 8,000 10,000
0

20

40

60

80

Rounds

A
ve

ra
ge

O
ve

rh
ea

d
(m

s)

SMIS
CPS
TBS

Figure 3.8: Overhead of runtime monitoring

choosing one of the branches of an< if > activities uniformly among all possible branches.

Let CS be a composite service, where a component service si ∈ SCS has a stipulated response

time vi ∈ R≥0. Then R(si) will return a response time within the stipulated response time

vi with a probability of pc ∈ R≥0 ∩ [0, 1]. pc is the response time conformance threshold. More

specifically, R(si) will be assigned to a value in [0, vi] uniformly with a probability of pc,

and assigned to a value in (vi, vi + te] uniformly with a probability of 1 − pc. te ∈ R≥0 is

the exceeding threshold; and assume after vi + te seconds, the component service ci will be

automatically timeout by RE to prevent an infinite delay.

Given a composite service CS, and an execution configuration E, a run is denoted by

r(CS,A,E), where the first argument is the composite service CS that is running, the second

argument A ∈ {rr, ∅} is the adaptive mechanism where rr denotes the runtime adaptation,

and ∅ denotes no adaptation. Two runs r(CS,A,E) and r(CS′,A′,E′) are equivalent if

CS = CS′, A = A′ and E = E′. Note that all equivalent runs have the same execution paths

and response times for all service invocations.

35

pc Nse Ne
Improvement

(%)

Avg.
Backup
Service

SMIS

0.9 9441 8976 4.65 0.127

0.8 9211 8374 8.37 0.352

0.7 8109 6965 11.44 0.577

0.6 7593 6348 12.45 0.702

TBS

0.9 10000 9743 2.57 0.384

0.8 10000 9364 6.36 0.779

0.7 10000 8460 15.40 0.948

0.6 10000 7700 23.00 1.05

CPS

0.9 9523 8809 7.14 1.259

0.8 9241 7156 20.85 1.589

0.7 8504 6108 23.96 2.014

0.6 8430 5650 27.80 2.578

Figure 3.9: Improvement of runtime conformance

3.4.3.2 Evaluation Results

We conducted two experiments, and we show the results and findings in the following.

Each experiment goes through 10,000 rounds of simulation, and an execution configuration

E is generated for each round of simulation. Given a composite service CS, we assume

that for each component service ci with a stipulated response time vi, there exists a backup

service c′i , with a stipulated response time vi/2 and a conformance threshold of 1. Suppose

that before the invocation of a component service ci, CS is at active state sa. The satisfaction

of the rLTC at sa will be checked using Algorithm 1 before ci is invoked. If it is satisfiable,

then it will invoke ci as usual. Otherwise, some kind of mitigation procedure will be used.

The mitigation procedure used in the experiment is to invoke the backup service c′i instead.

E1. Given a composite service CS, in order to measure the overhead, we use an execution

configuration E = (M,Q) for an adaptive run r(CS, rr,E), and non-adaptive run r(CS, ∅,E).

36

We have modified the adaptation mechanism for rr such that, if rLTC of the active state

is checked to be unsatisfiable, component service ci will still be used (instead of c′i). The

purpose for this modification is to make r(CS, rr,E) and r(CS, ∅,E) invoke the same set of

component services, so that we can effectively compare the overhead of r(CS, rr,E).

Results. Suppose at round k, the times spent for r(CS, rr,E) and r(CS, ∅,E) are rk
rr ∈ R≥0

time units and rk
∅
∈ R≥0 time units respectively. The overhead Ok at round k is the time

difference between rk
rr and rk

∅
, i.e., Ok = rk

rr−rk
∅
. The average overhead at round k is calculated

using Equation 3.1.

Average overhead = (
k∑

i=1

Oi)/k (3.1)

The main source of overhead for runtime adaptation comes from the satisfiability checking

with Algorithm 2. We make use of the state-of-the-art SMT solver Z3 [63] for this purpose.

Other sources of overhead include update of active state in SM, and communications

between SM and RE.

The experiment results can be found in Figure 3.8. The average overheads of SMIS, CPS

and TBS after 10,000 rounds are 15 ms, 21 ms, and 30 ms respectively. The results convey

to us that the additional operations involved in the runtime adaptation, including the

satisfiability checking, can be done efficiently.

E2. In this experiment, we measure the improvement for the conformance of global

constraints due to rr. Given a composite service CS, an execution configuration E, two runs

r(CS, rr,E) and r(CS, ∅,E) are conducted for each round of simulation. Nse is the number

of executions that satisfy global constraints for composite service with rr, and Ne is the

number of executions that satisfy global constraints for composite service without rr, the

improvement is calculated by Equation 3.2.

Improvement =
Nse −Ne

10000
(3.2)

37

Results. The experiment results can be found in Figure 3.9. The Improvement (%) column

provides the information of improvement (in percentage) that is calculated using Equa-

tion 3.2. The Avg. Backup Service column provides the average number of backup service

used (calculated by summing the number of backup services used for 10,000 rounds, and

divided by 10,000).

The decrement of pc represents the undesired situation where component services have a

higher chance for not conforming to their stipulated response time. This could be due to

situations such as poor network conditions. For each case study, the improvement provided

by the runtime adaptation increases when pc decreases. This shows that runtime adaptation

improves the conformance of global time requirement. In addition, the average backup

services usage increases when pc decreases. This shows the adaptive nature of runtime

adaptation with respect to different pc – more corrective actions are likely to perform when

the chances that component services do not satisfy their stipulated response time increase.

3.4.4 Threat to Validity

There are several threats to validity. The first threat to validity is due to the fact that we

assume uniform distribution of response time for evaluation of runtime adaptation. To

address this issue, more experimentations with real-world services should be performed.

This said, our experiments on real case studies provide a first idea that our assumptions

are realistic.

The second threat to validity is stemmed from our choice to use a few example values

as experimental parameters, that include global constraints and termination thresholds,

in order to cope with the combinatorial explosion of options. To resolve this problem,

it is clear that even more experimentations with different case studies and experimental

parameters should be performed, so that we could further investigate the effects that have

38

not been made obvious by our case studies and experimental parameters.

3.5 Related Work

This work shares common techniques with work for constraint synthesis for scheduling

problems. The use of models such as parametric timed automata (PTAs) [24] and parametric

time Petri nets (PTPNs) [158] for solving such problems has received recent attention. In

particular, in [55, 110, 83], parametric constraints are inferred, guaranteeing the feasibility

of a schedule using PTAs extended with stopwatches (see, e.g., [16]). In [28], we extended

the “inverse method” (see, e.g., [30]) to the synthesis of parameters in a parametric, timed

extension of CSP. Although PTAs or PTPNs might have been used to encode (part of)

the BPEL language, our work is specifically adapted and optimized for synthesizing local

timing constraint in the area of service composition.

Our method is related to using LTSs for analysis purpose in Web services. In [45], the

authors propose an approach to obtain behavioral interfaces in the form of LTSs of external

services by decomposing the global interface specification. It also has been used in model

checking the safety and liveness properties of BPEL services. For example, Foster et al. [80]

transform BPEL process into FSP [113], subsequently using a tool named “WS-Engineer”

for checking safety and liveness properties. Simmonds et al. [142] propose a user-guided

recovery framework for Web services based on LTSs. Our work uses LTSs in synthesizing

local time requirement.

Our method is related to the finding of a suitable quality of service (QoS) for the sys-

tem [168]. The authors of [168] propose two models for the QoS-based service composition

problem: a combinatorial model and a graph model. The combinatorial model defines the

problem as a multidimension multichoice 0-1 knapsack problem. The graph model defines

the problem as a multiconstraint optimal path problem. A heuristic algorithm is proposed

39

for each model: the WS-HEU algorithm for the combinatorial model and the MCSP-K algo-

rithm for the graph model. The authors of [33] model the service composition problem as

a mixed integer linear problem where constraints of global and local component serviced

can be specified. The difference with our work is that, in their work, the local constraint

has been specified, whereas for ours, the local constraint is to be synthesized. An approach

of decomposing the global QoS to local QoS has been proposed in [19]. It uses the mixed

integer programming (MIP) to find optimal decomposition of QoS constraint. However,

the approach only concerns for simplistic sequential composition of Web services method

call, without considering complex control flow and timing requirement.

Our method is related to response time estimation. In [109], the authors propose to use

linear regression method and a maximum likelihood technique for estimating the service

demands of requests based on their response times. [120] has also discussed the impact of

slow services on the overall response time on a transaction that use several services concur-

rently. Our work is focused on decomposing the global requirement to local requirement,

which is orthogonal to these works.

Our method is related to service monitoring. Moser et al. [123] present VieDAME, a

non-intrusive approach to monitoring. VieDAME allows monitoring of BPEL composite

service on quality of service attributes, and existing component services are replaced based

on different replacement strategies. They make use of the aspect-oriented approach (AOP);

therefore the VieDAME engine adapter could be interwoven into the BPEL runtime engine

at runtime. Baresi et al. [38] propose an idea of self-supervising BPEL processes by sup-

porting both service monitoring and recovery for BPEL processes. They propose the use of

Web Service Constraint Language (WSCoL) to specify the monitoring directives to indicate

properties need to be hold during the runtime of composite service. They also make use of

the AOP approach to integrate their monitoring adapters with the BPEL runtime engine.

Our work is orthogonal to the aforementioned works, as we do not assume any particular

40

service monitoring framework for monitoring the composite service, and those methods

can be used to aid the monitoring approach, as discussed in Section 3.3.2.

Our previous work [111] complements with this work by proposing a method on building

LTCs that under-approximate the dLTC of a composite service. The under-approximated

LTCs consisting of independent constraints over components, which can be used to improve

the design, monitoring and repair of component-based systems under time requirements.

3.6 Chapter Summary

We have presented a novel technique for synthesizing local time constraints for the compo-

nent services of a composite service CS, knowing its global time requirement. Our approach

is based on the analysis of the LTS of a composite service by making use of parameterized

timed techniques. The synthesis algorithm utilizes the constraints from the LTS to synthe-

size design-time local time constraint (dLTC) for component services. The dLTC is used to

select a set of component services that could collectively satisfy the global time requirement

in design time. Then, during the runtime of composite service, we propose the usage of the

runtime information to weaken the dLTC, which becomes the runtime local time constraint

(rLTC). The rLTC is used to validate whether the composite service could satisfy the global

time requirement at runtime. We have implemented the approach and applied it to three

case studies.

41

42

Chapter 4

Dynamic Ranking Optimization for

QoS-Aware Service Composition

Web services provide an affordable and adaptable framework that can produce a signifi-

cantly lower cost of ownership for the enterprises over time. Figure 4.1 shows a simple

composite service example, named Travel Agency Service (TAS). If the user requests to

travel by road, the Car Booking Service (CBS) will be invoked to book a car for reaching

the destination. If the user requests to travel by air, the Flight Booking Service (FBS) will

be invoked to book the flight for reaching the nearest airport to the destination. In either

case, the Hotel Booking Service (HBS) will be invoked to book the hotel. Finally, the system

replies to the user with the status of booking.

Quality of Service (QoS) attributes, such as response time, availability, cost, etc., provide

quantitative indicators on non-functional aspects of the composite service. The Service

Level Agreement (SLA) is often used as an agreement between the composite service

providers and the service users; it specifies the expected QoS level of the composite service.

The SLA can be expressed as constraints over the QoS, e.g., the response time must be

43

Flight

Booking Service

(FBS)

Car

Booking Service

(CBS)

Hotel

Booking Service

(HBS)

Reply

User

Request

from User

Travel By

Road

Travel By

Air

Figure 4.1: Travel Agency Service (TAS)

smaller than one second, or the availability must be higher than 99.99%.

Following the SOA, a composite service contains a set of abstract services (e.g., a hotel

booking service) which have their interfaces defined, and concrete services (e.g., the Hilton

Hotel booking service) are selected to realize the interfaces of abstract services during

runtime. A composite service user typically has limited knowledge on the internal structure

of the composite service, and component services that are involved. The service user is

only concerned with the end-to-end QoS of composite service, i.e., the QoS at the composite

service level. Therefore, the objective is to select a set of concrete services that could satisfy

the global constraints on the composite service, while maximizing the end-to-end QoS.

The problem of selecting concrete services while maximizing end-to-end QoS, known as

the optimal selection problem, has received considerable attentions over the last decade [22,

19, 35, 33]. The optimal selection problem becomes increasingly challenging as the number

of concrete services increases. Given a composite service with 10 abstract services executed

in a sequential manner, with each abstract service having 10 concrete service candidates,

there are 1010 combinations to explore. In fact, it has been shown that the problem is NP-

hard [33]. Therefore, it is impossible in practice to exhaustively search through all possible

combinations of concrete services.

To address the scalability problem, approaches based on selecting representative compo-

nent services have been proposed. We denote the optimality of QoS for a concrete compo-

nent service with respect to other functional-equivalent services as local optimality. Existing

44

representative services approaches [22, 19] provide search space reduction based on local

optimality of the services. Although it has been shown to provide good performance for a

large number of candidates with less restrictive global constraints, it suffers from significant

performance degradation when the global constraints become more restrictive because it

requires more iterations of the approach to find the solution. The primary reason is that

they do not take the global constraints into account during service selection.

In this chapter, we propose a novel approach, called dynamic ranking optimization (DRO), to

address this problem. The key idea behind DRO is the use of both global constraints and

local optimality to achieve search space reduction. DRO is divided into three stages, viz.,

service preprocessing stage, service ranking stage, and dynamic service selection stage. In

the service preprocessing stage, the services that are verified impossible to be part of the

optimal selection are pruned from the search space. Subsequently, in the service ranking

stage, services are ranked according to both local optimality value and constraint satisfac-

tion probability. Intuitively, local optimality value and constraint satisfaction probability

of a service quantify the optimality of the service, and the likelihood that the service could

contribute to the conformance of global constraints respectively. Following that, in the

dynamic service selection stage, representative services are selected for the optimal end-

to-end QoS that could satisfy global constraints. The number of representative services

is decided dynamically, based on the constraint satisfaction probability of representative

services.

DRO is a novel technique for optimizing the existing service selection approaches. Our

main contributions are summarized below.

1. We introduce a pruning method called constraint pruning, that could effectively dis-

card the service candidates that cannot satisfy the global constraints.

2. We introduce a ranking method based on both the overall local optimality and the

45

constraint satisfaction probability of a service. The service candidates that are ranked

higher are more likely to be part of the optimal selection. We further propose a method

for selecting the ranked representatives, where the number of representatives to be

chosen is decided dynamically based on the constraint satisfaction probability of a

service.

3. We evaluate the benefits brought by the DRO using a synthetically generated dataset

and a publicly available dataset. The results have shown significant improvement on

accuracy and performance over existing approaches.

Outline. Section 4.1 introduces the QoS compositional model and necessary terminologies.

Section 4.2 presents DRO. Section 4.3 provides the evaluation of our approach. Section 4.5

reviews related works. Finally, Section 4.6 concludes the chapter.

4.1 QoS-Aware Compositional Model

In this section, we define the QoS compositional model used in this chapter. Following

the SOA principles, service providers need to characterize their services to define both the

offered functionalities and the offered quality. An abstract service specifies the functionality

of the service without referring to any concrete service instance. An abstract service can be

defined as a service class S = {s1, . . . , sn}which contains n functionality equivalent concrete

services si that can be used to realize the functionality specified by the abstract service. We

use |S| to denote the total number of concrete services in S. We use the notation Ŝ to denote

an abstract service S′ that is a subset of S, i.e., S′ ⊆ S.

An abstract composite service CSa specifies the compositional workflows using a set of abstract

services CSa = 〈S1, . . . ,Sn〉 for fulfilling the service requests. A concrete composite service CS =

〈s1, . . . , sn〉 is defined as an instantiation of abstract composite service CSa = 〈S1, . . . ,Sn〉,

46

where each abstract service Si is replaced by a concrete service si ∈ Si. We use |CSa| to

denote the total number of abstract services in CSa.

For simplicity of illustration, we only consider the “travel by air” branch of the TAS

example. This results in a composition where services FBS and HBS are running sequen-

tially. We will use the modified TAS example as a running example in this chapter, and

henceforth, simply refer to it as the TAS example. For the TAS example, there are two

abstract services FBS and HBS. Suppose that the concrete services for FBS and HBS are

{ f1, f2, f3, f4} and {h1, h2, h3, h4} respectively. Then the abstract composite service TASa is

〈FBS,HBS〉 = 〈{ f1, f2, f3, f4}, {h1, h2, h3, h4}〉, and a possible concrete composite service of

TASa could be TAS = 〈 f1, h2〉.

4.1.1 QoS Attributes

In this chapter, we deal with non-functional attributes that can be quantitatively measured

using metrics. The values of QoS attributes can be solicited from service providers (e.g.,

cost), from users’ feedback (e.g., reliability), or based on past record of the execution

(e.g., response time). We assume the values of QoS attributes are known; how these

values can be collected or estimated is out of the scope of this chapter. There are two

classes of attributes: positive ones (e.g., availability) and negative ones (e.g., response

time). Positive attributes have positive effects on the QoS, and therefore they need to be

maximized. Conversely, negative attributes need to be minimized. For simplicity, we only

consider negative attributes in this work, since positive attributes can be transformed into

negative attributes by multiplying their values with−1. Given r QoS attributes of a concrete

component service s, we use an attribute vector Qs = 〈q1(s), . . . , qr(s)〉 to represent the QoS

attribute values of service s, where qi(s) is the ith QoS attribute value of s. Similarly, given

a concrete composite service CS, we use the attribute vector QCS = 〈q′1(CS), . . . , q′r(CS)〉 to

represent it, where q′i (CS) is the ith end-to-end QoS attribute value of CS.

47

...
joinfork

...

k

Sequential ParallelLoop

...

Guard 1

Guard 2

Guard n

Conditional

S1 S2 Sn S1

S1

S2

Sn

S1

S2

Sn

十 十

Figure 4.2: Compositional structure

The SLA often specifies a set of constraints on the end-to-end QoS. Such constraints define

the lower bound for positive constraints (e.g., the availability must be higher than 99.99%)

and the upper bound for negative constraint (e.g., the response time must be less than

500 ms). Given a composite service CS with QoS attribute vector QCS = 〈q′1(CS), . . . , q′r(CS)〉,

the global constraints of CS can be represented as a vector CCS = 〈C1, . . . ,Cr〉 where Ci ∈ R

and q′i (CS) ≤ Ci. Without loss of generality, we use Ci = ∞ to denote the situation where

q′i (CS) is unconstrained.

4.1.2 QoS for Composite Services

There are four elementary compositional structures for composing the component services:

sequential, parallel, loop and conditional, as shown in Figure 4.2. Sequential composition

of services {s1, . . . , sn} executes the services sequentially, one after another. Parallel compo-

sition of services {s1, . . . , sn} executes the services concurrently. A loop executes a service

s1 repeatedly up to k iterations. Conditional composition of services {s1, . . . , sn} executes

exactly one of the services according to the evaluation of the guard conditions, where the

guards are mutually exclusive.

The end-to-end QoS is aggregated from the QoS on the component services, based on the

service compositional structures, and the types of QoS attributes. Table 7.1 shows the

aggregation functions of component services with respect to the compositional structures.

We use three QoS attributes, viz., response time, availability, and throughput to demon-

48

strate the aggregation functions. Other common QoS attributes have the similar aggrega-

tion functions as these three QoS attributes. For example, QoS attributes such as reliability,

share the same QoS function as availability. The response time r ∈ R≥0 is the average delay

between sending a request and receiving a response. For the sequential composition, the

response time of the service composition is obtained by summing up the response time of

the component services. For the parallel composition, it is equal to the maximum response

time among the participating component services. For the loop composition, it is calcu-

lated by summing each of the involved component service k times, where k is the maximum

number of loop iterations. For the conditional composition, since the evaluation of guards

is not known at design time, the maximum response time of n services is chosen as the

response time of the composite service. The availability a ∈ R ∩ [0, 1] is the probability of

the service being available. For the sequential composition, this implies that all the services

are available during the sequential execution; therefore, the availability of the composite

composition is the multiplication of the component services’ availability. For other com-

positions, their aggregation functions are similar. The throughput t ∈ R≥0 is the number of

invocations that can be handled by a composite service per second. The throughput of a

composite service is decided by the minimum throughput of the component service, which

is essentially the “bottleneck" of the throughput for the composite service.

Given the aggregation functions in Table 7.1, we define a function agg :N 7→ {sum,mult,min,

max}, where agg(k), k ∈ N returns the type of aggregation functions – either summa-

tion (sum), multiplication (mult), minimum (min), or maximum (max) – for QoS attribute

q′k. For example, suppose the attribute vector of TAS example is in the form of QTAS =

〈q′1(TAS), q′2(TAS)〉, where attribute q′1 provides the value of response time, and attribute q′2

provides the value of availability, then we have agg(1) = sum and agg(2) = mult for TAS.

Given an abstract composite service CSa, a composite service CS′a is a subset of CSa, denoted

by CS′a ⊆ CSa, if CS′a and CSa have the same compositional structure, and every service class

49

of CS′a is a subset of the corresponding service class of CSa. Formally, CS′a ⊆ CSa if CS′a and

CSa share the same compositional structure C, with |CS′a| = |CSa| and ∀Si ∈ CS′a,∀S j ∈ CSa :

(i = j) =⇒ Si ⊆ S j. Given a composite service CSa, a reduced abstract composite service of CSa,

denoted by ĈSa, is used to represent any composite service CS′a ⊆ CSa, e.g., an example of

T̂ASa is 〈{ f1, f2}, {h1, h2, h3}〉.

4.1.3 Optimality Function

Concrete services have multi-dimensional attributes, and we need a methodology to fa-

cilitate their comparison in term of their QoS. In this work, we use a Simple Additive

Weighting (SAW) technique [167] to obtain a score for multi-dimensional attributes. SAW

uses two phases: normalization and weighting, for producing the score. The normalization

stage normalizes the values of QoS attributes so that they are independent of their units and

ranges to allow comparison. The weighting stage allows users to specify their preferences

on different QoS attributes. In the normalization stage, a service compares its QoS at-

tribute values with the maximum and minimum QoS attributes of other service candidates

within a service class. A composite service compares its aggregated QoS attributes with

the maximum and minimum aggregated QoS attributes. The maximum (resp. minimum)

aggregated QoS attributes can be obtained by aggregating maximum (resp. minimum) QoS

attributes from each service class. Formally, we have

Gmin(k) = F(k)
n
i=1(Lmin(i, k))

Gmax(k) = F(k)
n
i=1(Lmax(i, k))

(4.1)

with
Lmin(i, k) = min

∀s∈Si
qk(s)

Lmax(i, k) = max
∀s∈Si

qk(s)
(4.2)

50

QoS Attribute Sequential Parallel Loop Conditional

Response
Time

n∑
i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Availability
n∏

i=1
q(si)

n∏
i=1

q(si) (q(s1))k
n

min
i=1

q(si)

Throughput
n

min
i=1

q(si)
n

min
i=1

q(si) q(s1)
n

min
i=1

q(si)

Table 4.1: Aggregation Function

where Gmin(k) and Gmax(k) are the minimum and maximum aggregated values for the kth

QoS attribute for the composite service, F(k) is the QoS aggregation function for attribute k

which is given in Table 7.1, Lmin(i, k) and Lmax(i, k) are the minimum and maximum aggre-

gated values for the kth QoS attribute for service class i.

Suppose each service has r QoS attributes. The local optimality function Li(s) computes the

local optimality value of a concrete service s within service class Si, where s ∈ Si, as follows.

Li(s) =

r∑
k=1

v(i, k, s) · wk (4.3)

with

v(i, k, s) =


Lmax(i, k)−qk(s)

Lmax(i, k)−Lmin(i, k)
if Lmax(i, k),Lmin(i, k)

1 if Lmax(i, k)=Lmin(i, k)

where wk ∈ R≥0 is the weight of qk and
∑r

k=1 wk = 1.

The global optimality function G(CS) computes the global optimality value of concrete

composite service CS as follows.

G(CS) =

r∑
k=1

v′(k,CS) · wk (4.4)

51

Concrete
Services

Response
Time
(ms)

Availability

f1,h1 100 0.85

f2,h2 300 0.92

f3,h3 500 0.95

f4 600 0.94

h4 600 0.8

(a) Concrete services of TAS

FBS HBS

≤ 600 ms

Min. response

time: 100 ms

(b) Service preprocessing

Figure 4.3: TAS Example

with

v′(k,CS) =


Gmax(k)−q′k(CS)

Gmax(k)−Gmin(k)
if Gmax(k),Gmin(k)

1 if Gmax(k)=Gmin(k)

where wk ∈ R≥0 is the weight of q′k and
∑r

k=1 wk = 1.

4.1.4 Problem Statement

We first define the notions of feasible and optimal selection.

Definition 1. Given an abstract composite service CSa = 〈S1, . . . ,Sn〉, and global QoS constraints

C = 〈C1, . . . ,Cr〉 for CSa, a feasible selection is a selection of concrete services CS, such that

CS contains exactly one service for each service class Si in CSa and CS satisfies the global QoS

constraints C, i.e., q′k(CS) ≤ Ck.

Definition 2. An optimal selection is a feasible selection of concrete services CS that maximizes

the global optimality value G(CS).

Given an abstract composite service CSa, and a set of global constraints C, we are interested

in finding the optimal selection CS. To address this problem, a naive approach is to

exhaustively explore all combinations of concrete services for each service class. However,

52

given n services in sequential composition, with each of them having l candidates, the

total number of combinations is ln. In fact this method can be modeled as an instance

of a combinatorial problem, viz., the multi-dimensional multi-choice knapsack problem

(MMKP) [131], which is NP-hard. To allow real-time QoS-aware service composition, it is

desirable to find a near-optimal selection at an acceptable cost, rather than finding an exact

solution to the optimal selection problem at a very high cost [33].

One way to mitigate this problem is to select a subset of service candidates each time,

instead of working on all services candidates. This is efficient especially when the number

of service candidates is large and hard to be handled. The question that arises is how to

identify a set of representative service candidates that not only satisfy the constraints, but

also contribute to high global optimality value. In this work, our goal is to address the

optimal selection problem efficiently and effectively by progressively exploring subsets of

candidates that are likely to contribute to the optimal or near-optimal selection.

TAS Example. We provide the details of non-functional properties on the TAS example,

which will be used in the following sections. Each of the abstract services of TASa has four

concrete services, where FBS = { f1, f2, f3, f4} and HBS = {h1, h2, h3, h4}. The attribute vector

of TAS example is in the form of QTAS = 〈q′1(TAS), q′2(TAS)〉, where attribute q′1 provides

the value of response time, and attribute q′2 provides the value of availability. The values

of response time and availability of all concrete services are given in Figure 4.3(a). In

addition, the global constraints for response time and availability of TAS are 600 ms and

0.8 respectively.

4.2 Dynamic Ranking Optimization

As discussed in the previous section, given an abstract composite service, our goal is to

search for a set of concrete services, one from each service class, that not only satisfy

53

all global constraints, but also maximize the global optimality value. A way to avoid

exploring all combinations of component services is to select the most promising service

candidates, which are referred to as representative services, from each service class, and to

verify whether there is a feasible selection. One metric we can use for local selection is the

local optimality value of a concrete service. Although the local optimality value provides

an indicator for overall QoS of the concrete service, naively selecting the service with the

highest local optimality value from each service class may not work, since this approach

does not take into consideration of the satisfaction of global constraints. For example,

given a composite service with only a component service with two candidate s1, and s2.

The global QoS constraints for response time, cost, and reliability are 5 seconds, 2 dollars

and 80%. The response time, cost and reliability of services s1 and s2 are 10, 1, 90% and

5, 2, 80%, respectively. Now, even if s1 has the highest local optimality value, however,

the response time of s1 can not satisfy the requirements, s2 should be selected. Therefore,

besides the local optimality value, we also need to consider how likely a concrete service

could contribute to the conformance of the global constraints. We denote this likelihood as

the constraint satisfaction probability. With this observation, we propose in the following a

new method, called dynamic ranking optimization (DRO), which is driven by both the local

optimality value and constraint satisfaction probability to reduce the search space for the

optimal selection. The workflow of DRO is illustrated in Figure 4.4. DRO is divided into

three stages, viz., service preprocessing stage, service ranking stage, and dynamic service

selection stage. The details of each of the stages are introduced in the following sections.

4.2.1 Service Preprocessing

The global constraints play an important role in selecting the services. For example, it

has been shown that the heuristic method proposed in [22] has its performance degraded

when the global constraints become more restrictive. In this section, we show that the

54

Service

Preprocessing

Abstract

composite

 service

Dynamic Service

Selection

Service

Ranking

No feasible selection

Concrete

composite

 service

Figure 4.4: Dynamic Ranking Optimization (DRO)

global constraints could be used as an effective means for pruning service candidates.

Consider the TAS example in Figure 4.3(b) where FBS and HBS are running sequentially,

and the TAS global constraint for response time is 600 ms. We know that the concrete

service that has the fastest response time for HBS is service s′1, which has response time

of 100 ms. Therefore, a service s ∈ FBS must have a response time smaller than 500 ms,

in order to fulfill the global constraint for response time. We refer to a service that may

fulfill the global constraints as a constraint-satisfiable service. Formally, given a composite

service CS = 〈S1, . . . ,Sn〉, and global constraints CCS = 〈C1, . . . ,Cr〉, a service si ∈ Si is a

constraint-satisfiable service if the following condition holds.

∀k : F(k)
j∈{1,...,n}

(v j) ≤ Ck (4.5)

with

v j =


qk(s j) i f j = i

Lmin(j, k) i f j , i

where F(k) is the QoS aggregation function for attribute k. For example if the QoS aggrega-

tion function is a summation, then the condition becomes

∀k : (qk(si) +
∑

j∈{1,...,n}\i

Lmin(j, k)) ≤ Ck

We can safely prune all constraint-unsatisfiable services as they cannot satisfy the global

constraints. For the TAS example, concrete services f4 and h4 are the only concrete-

55

unsatisfiable services, because some of their QoS attributes do not satisfy Condition (4.5).

In particular, it is the response times of f4, h4 and the availability of h4 that do not satisfy

the condition.

In addition to pruning using global constraints, we also include in the service preprocessing

stage the pruning of non-skyline services [22]. Let us first recall the notion of dominance.

Definition 3 (Dominance). Let S be a service class, and s, s′ be two services, where s, s′ ∈ S

and s , s′. Service s dominates service s′, denoted by s ≺ s′, if the service s is at least as good

as service s′ in all QoS parameters and better than service s′ in at least one QoS parameter, i.e.,

∀k ∈ {1, . . . , |QS|}: qk(s) ≤ qk(s′), and ∃k ∈ {1, . . . , |QS|}: qk(s) < qk(s′).

A service s ∈ S is denoted as a skyline service if there does not exist a service in service class

S that dominates s (i.e., ¬∃s′ ∈ S : s′ ≺ s). In other words, a service s ∈ S is a non-skyline

service, if there exists a service s′ ∈ S that dominates s.

It can be shown that we can safely prune non-skyline services in service class CS, without

affecting the result of optimal selection [19]. For our TAS example, concrete service h4 is

the only non-skyline service.

Henceforth, we denote the pruning of constraint-unsatisfiable services and non-skyline

services as constraint pruning and non-skyline pruning respectively. The algorithm of service

preprocessing is shown in Algorithm 3. The abstract composite service CS′a is initialized

with empty service classes (line 1), where ∅i denotes ith empty service class. After that, each

service class of CSa will be undergone constraint pruning (line 3) and non-skyline pruning

(line 4). The service class after pruning will be assigned to CS′a (line 5). Finally, abstract

composite service CS′a which contains the preprocessed service classes will be returned

(line 6). In the TAS example, the composite service TAS′a after service preprocessing stage

is 〈{ f1, f2, f3}, {h1, h2, h3}〉.

56

Algorithm 3: Service Preprocessing (DROPreprocess)
input : Abstract composite service CSa = 〈S1, . . . ,Sn〉

output: Preprocessed abstract composite service CS′a = 〈S′1, . . . ,S
′
n〉

1 CS′a ← 〈∅1, ∅2, . . . , ∅n〉;
2 for i = 1 to n do
3 S′′i = ConstraintPruning(Si);
4 S′i = NonSkylinePruning(S′′i);
5 CS′a[i]← S′i ;

6 return CS′a;

After the initial preprocessing, we propose in the following a ranking based method that

could allow us to limit the selection to a smaller set of services that have higher chance

contributing to the optimal selection.

4.2.2 Service Ranking

The local optimality value of a concrete service could reflect the quality of a service.

Nevertheless, it does not provide a direct indication on how likely the concrete service

can contribute to the conformance of the global constraints. To address this problem, we

propose an estimation on the probability of the constraint satisfaction of a concrete service.

First, we introduce the notion of local constraint, which is the average constraint value that

has to be fulfilled by individual service classes. Given a global constraint Ci, we define the

local constraint ci as follows, where n is the number of service classes.

ci =



Ci/n if agg(i) = sum

C1/n
i if agg(i) = mult ∧ Ci ≥ 0

−|Ci|
1/n if agg(i) = mult ∧ Ci < 0

Ci if agg(i) = min,max

(4.6)

57

s11

s12

...

s1n

s21

s22

...

s2n

s31

s32

...

s3n

Highest Rank

Lowest Rank
S1

r
S2

r
S3

r

Round 1: ááS11ñ, áS21ñ, áS31ññ

Round 2: ááS11, S12ñ,

 áS21,S22ñ,

 áS31,S32ññ

...

Round n: ááS11, S12, …, S1nñ,

 áS21, S22, …, S2nñ,

 áS31, S32, …, S3nññ

Figure 4.5: A scenario of dynamic service selection

Consider again the TAS example: since the global constraints for response time and

availability are 600 ms and 0.8 respectively, the local constraints are 600/2 = 300 ms and

−| − 0.8|1/2 ≈ −0.89 respectively. Recall that we treat all positive QoS attributes as negative

ones by multiplying their attribute values with -1.

Given a composite service CSa = 〈S1, . . . ,Sn〉, and global constraints of CSa as C = 〈C1, . . . ,Cr〉,

the constraint satisfaction probability of a service s ∈ Si, denoted by Pi(s), is calculated as fol-

lows:

Pi(s) = γ
(r∑

k=1

pk(s) · wk

)
(4.7)

where wk ∈ R
+
0 is the weight of pk(s),

∑r
i=1 wk = 1 and γ ∈ R ∩ [0, 1] is the credibility factor

(explained later). The calculation of pk(s) is divided into two cases. When qk(s) > ck, then

pk(s) =


Dmax(i, k)−(qk(s)−ck)

Dmax(i, k)
if agg(k)=sum,mult

1 if agg(k)=min,max
(4.8)

with

Dmax(i, k) = max
∀si∈Si

(qk(si)−ck)

and when qk(s) ≤ ck, pk(s) = 1. In the following, we explain the details of Equation 4.7

and Equation 4.8.

58

In Equation 4.7, Pi(s) is calculated by using the SAW method that is introduced in Sec-

tion 4.1.3, followed by multiplying with the credibility factor γ. The credibility factor γ is

used to adjust the value of Pi(s) based on how much we can trust Pi(s). We set the value

of credibility factor γ to 1/n, where n is the number of service classes. The reason for this

choice is that, with the increment of n, Pi(s) would be more dependent on the choices made

by other service classes. Because when we have more service classes n, we have more

external factors. For example, given two service classes s1, s2, when we are calculating S1,

we only affect by s2. But for s1..., s10, we are affecting by s2 ..., s10, which makes us to have

less certainty for the result we calculated. To estimate the probability more conservatively,

we choose to lower the constraint satisfaction probability, given that the number of service

class n increases.

In Equation 4.8, qk(s) > ck signifies that qk(s) has violated the local constraint (reminded that

negative attributes are assumed here). The value of pk(s) is decided by the value of qk(s). If

qk(s) has a smaller value, it has a higher chance for satisfying the global constraints, hence the

higher value of pk(s). Given a service class Si, Dmax(i, k) calculates the maximum difference

between qk(si) and the local constraint ck. Dmax(i, k) serves the purpose of normalizing the

value of probability pk(s), such that pk(s) ∈ R ∩ [0, 1].

For minimum and maximum aggregations, since the QoS values between each service class

are independent to each other, therefore to be conservative, we set the value pk(s) = 1. For

the case of qk(s) ≤ ck, it indicates the conformance of qk(s) to the local constraint, and we

simply set pk(s) = 1. In TAS, the constraint satisfaction probabilities for concrete services

are P1(f1)=P2(h1)=0.25, P1(f2)=P2(h2)=0.5, and P1(f3)=P2(h3)=0.25.

Given a composite service CSa = 〈S1, . . . ,Sn〉, the service ranking is performed by ordering

the services in each service class Si by the multiplication value of local optimality value and

constraint satisfaction probability of each service s ∈ Si, i.e., Li(s) · Pi(s), in the descending

order. We denote the ranked service class as Sr
i = 〈s1, . . . , sn〉, which is an ordered sequence

59

Algorithm 4: Optimization with DRO
input : Abstract composite service to be solved CSa
input : Termination threshold for constraint-satisfiability ε ∈ R ∩ [0, 1]
output: A feasible selection of concrete composite services CS

1 CS′a ← DROPreprocess(CSa) ;
2 CSr

a ← DRORank(CS′a) ;

3 ĈSr
a ← 〈∅1, ∅2, . . . , ∅n〉 ;

4 round← 1 ;
5 repeat
6 ĈSr

a ← DROSelect(CSr
a, ĈSr

a, ε, round) ;

7 CS← OptimalSelection(ĈSr
a);

8 if CS , ∅ then
9 return CS ;

10 round← round + 1;

11 until ĈSr
a = CSr

a ;
12 return ∅;

of all concrete services si ∈ Si. The ranked composite service containing the ranked services

as CSr
a = 〈Sr

1, . . . ,S
r
n〉. For TAS example, given the composite service TAS′a returned by

service preprocessing, the ranked composite service TASr
a = 〈〈 f2, f1, f3〉, 〈h2, h1, h3〉〉, where

the values of Li(s) ·Pi(s) for concrete services f1(h1), f2(h2), and f3(h3) are 0.125, 0.3, and 0.125

respectively.

4.2.3 Dynamic Service Selection

After obtaining the ranked composite service CSr
a, the next stage is to perform service

selection on CSr
a. We illustrate the dynamic service selection with an example as shown

in Figure 4.5. Consider that CSr
a = 〈Sr

1,S
r
2,S

r
3〉, where the services of each service class Sr

i

can be found in Figure 4.5. The dynamic service selection uses multiple rounds of selection

for selecting the service representatives. At the first round, one service is chosen from each

service class; they form a reduced composite service ĈSr
a = 〈Ŝr

1, Ŝ
r
2, Ŝ

r
3〉, where Ŝr

1 = 〈s11〉,

Ŝr
2 = 〈s21〉, and Ŝr

3 = 〈s31〉. The reduced composite service ĈSr
a is then solved, e.g., by MIP

60

Algorithm 5: Dynamic service selection (DROSelect)
input : Abstract composite service CSr

a = 〈Sr
1, . . . ,S

r
n〉

input : Reduced abstract composite service ĈSr
a = 〈Ŝr

1, . . . , Ŝ
r
n〉

input : Termination threshold for constraint-satisfiability ε ∈ R ∩ [0, 1]
input : Current round, round

output: Abstract composite service ĈSr
a
′

, where ĈSr
a ⊆ ĈSr

a
′

⊆ CSr
a

1 ĈSr
a
′

← 〈∅1, ∅2, . . . , ∅n〉;
2 for i = 1 to n do
3 serviceCount← |Ŝr

i | ;
4 prob← 1 ;
5 for j = |Ŝr

i | to |S
r
i | do

6 prob← prob · (1 − Pi(Sr
i [j]));

7 serviceCount← serviceCount + 1;
8 p← 2round−1;
9 if (1 − prob) ≥ ε1/p then

10 break ;

11 ĈSr
a
′

[i]← {s j ∈ Sr
i | j ∈ [1, serviceCount]} ;

12 return ĈSr
a
′

;

solver, for optimal selection (details will be given in Section 4.2.4). Note that the reduced

composite service ĈSr
a contains less services than CSr

a. Therefore, the optimal selection can

be performed more efficiently. If a solution is found, then the result is returned to the user.

Otherwise, we proceed to next round by selecting more services from each service class.

The process is repeated until a solution is found or until all services in the service classes

have been explored. In the latter case, the selection approach guarantees that it does not

miss out a solution if one exists.

The next problem is how to determine the number of representatives for each service class

Sr
i at each round of selection: the number of services should be large enough for finding a

solution to the service composition, while small enough to allow for efficient computation.

We propose to use constraint satisfaction probability to address the problem. We first

extend the definition of constraint satisfaction probability to a set of services. Given S

61

as a subset of services from service class Si, i.e., S ⊆ Si, we define constraint satisfaction

probability of S, denoted as Pi(S), as the probability that at least one of the services in S

succeed in satisfying the global constraints after composition. Pi(S) is calculated as follows:

Pi(S) = 1 −
∏
s∈S

(1 − Pi(s)) (4.9)

We observe that the reason that the optimal selection cannot produce a solution is due to

global constraint violation. Therefore, the capacity of the set of representatives S should be

large enough, so that Pi(S) can exceed ε, which is a parameter provided by the user on the

intended termination threshold.

Algorithm 4 presents the DRO algorithm, which is the entry algorithm for dynamic selec-

tion. Initially, the input abstract composite service CSa passes through two initial stages of

DRO: service preprocess and service ranking, using functions DROPreprocess and DRORank

respectively (lines 1, 2). Function DROPreprocess has been introduced in Algorithm 3,

and function DRORank sorts the services for each service class Si ∈ CS′a by the value of

Li(s) · Pi(s), where s ∈ Si, in the descending order. The details of DRORank can be found

in Section 4.2.2. The reduced abstract composite service ĈSr
a is initialized with empty ser-

vice classes (line 3), and the current round number round is initialized to value 1 (line 4).

After that, DROSelect (see Algorithm 5) is called to populate each service class of the re-

duced composite function ĈSr
a with the representative services (line 6). Subsequently, it is

passed to the OptimalSelection function (line 7) for optimal selection, where the details will

be introduced in Section 4.2.4. The result of the optimal selection is stored in CS. If the

optimal selection is successful, i.e., when CS is not empty, the result is returned (line 9);

otherwise, we proceed to the next round of DRO. This continues until all concrete services

are explored, i.e., when ĈSr
a = CSr

a (line 11). If the optimal selection could not find a result,

an empty result is returned (line 12).

62

Algorithm 5 presents the dynamic selection algorithm. Initially, the reduced abstract

composite service ĈSr
a
′

is initialized with empty service classes. For each service class

(line 2), the serviceCount is initialized to the number of services in service class Ŝr
i (line 3),

and the accumulated probability prob is initialized with 1 (line 4). Starting from index |Ŝr
i |,

we accumulate the constraint satisfaction probability of service Sr
i [j], until it exceeds the

threshold ε1/p, where p = 2round−1 (lines 5–10). Note that the threshold ε1/p increases with

the number of rounds. The reason is based on the assumption that if there exists an optimal

selection, concrete services in the optimal selection are likely to be ranked higher by the

ranking algorithm in respective services classes. Therefore, at the starting round, choosing

a smaller amount of services that are ranked higher from each service class will decrease the

solving time for the optimal selection. Conversely, the chance of getting a feasible selection

decreases when the number of rounds increases. Hence, choosing a larger amount of

services at later rounds will lead to a faster exploration of all concrete services, especially

in the case where there does not exist a feasible selection.

Afterwards, the respective service classes in ĈSr
a
′

are then populated with the representative

services with the amount equals to serviceCount (line 11). Finally, we return the reduced

composite service ĈSr
a
′

, which contains the newly inserted representatives (line 12).

For TAS, the number of services that are chosen at each round depends on the termination

threshold for constraint-satisfiability ε. If ε = 0.4 , then for the first round, we get the

reduced composite service T̂ASr
a = 〈〈 f2〉, 〈h2〉〉. OptimalSelection(T̂ASr

a) will return a feasible

selection TAS = 〈 f2, h2〉, which is also the optimal selection for TAS example. Since a feasible

selection is found, therefore TAS terminates at the first round of DROSelect. If ε = 0.9, for

the first round, we get T̂ASr
a = 〈〈 f2, f1, f3〉, 〈h2, h1, h3〉〉 = TASr

a. OptimalSelection(T̂ASr
a) will

return the same optimal solution as in the former case where ε = 0.4. However, since

there are more concrete services, it might take longer time to solve for the latter case where

ε = 0.9. We will investigate how different values of ε affect the service selection process

63

in Section 4.3.

4.2.4 Solving for Optimal Selection

In this section, we introduce the use of Mixed Integer Programming (MIP) to realize the

OptimalSelection at line 7 of Algorithm 4. Mixed Integer Programming (MIP) is a technique

for minimization or maximization of an objective function subjected to a set of constraints.

A binary decision variable xi j is used to represent the selection of service candidates si j. If

a service candidate is selected, then xi j is set to 1, and to 0 otherwise. By Equation 4.3 and

Equation 8.2, an MIP model can be specified as a maximization of the objective function

below:
r∑

k=1

Gmax(k) − F(k)
n
j=1

∑|S j|

i=1 qk(si j) · xi j

Gmax(k) − Gmin(k)
· wk (4.10)

subjected to the QoS constraints

(F(k)
n
j=1

∑|S j|

i=1 qk(si j) · xi j) ≤ Ck, 1 ≤ k ≤ r (4.11)

where r and n are the total number of attributes and service classes respectively. In addition,

since we only choose one service per service class, therefore the following constraint must

be hold. ∑|S j|

i=1 xi j = 1, 1 ≤ j ≤ n (4.12)

4.3 Evaluation

There are several tools or libraries that could be used to solve the MIP model, examples are

Gurobi solver [95] and lpsolve solver [43]. Note that to solve the above MIP model requires

the linearization of the objective function and the QoS constraints, we omit the technical

64

500 1,500 2,500 3,500 4,500

100

1000

10000

Service Class Size

C
om

pu
ta

tio
n

Ti
m

e
(m

s)
(a) Synthetic Dataset: Performance

Exact
KMeans

DROSkyline
DRO

500 1,500 2,500 3,500 4,500

90

95

100

Number of Constraints

A
cc

ur
ac

y
(%

)

(b) Synthetic Dataset: Accuracy

Exact
KMeans

DROSkyline
DRO

500 1,500 2,500 3,500 4,500
0

200

400

Service Class Size

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

(c) Synthetic Dataset: Different ST

0.9
0.7
0.3
0.1

500 1,500 2,500 3,500 4,500

0

100

200

300

Service Class Size

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

(d) Synthetic Dataset: Different ST (Worst-case)

0.9
0.7
0.3
0.1

Figure 4.6: Experiment results for synthetic dataset

details here, and refer the readers to [21].

4.4 Evaluation

We conducted experiments to evaluate our approach to service selection using DRO. Specif-

ically, we attempted to answer the following research questions.

RQ1. How is the performance of DRO in comparison to the state-of-the-art?

We analyze how different stages contribute to the performance of DRO. Firstly, we investi-

gate how well service preprocessing performs. In particular, what is the number of services

65

500 1,5002,5003,5004,500

0

5,000

10,000

Service Class Size

C
om

pu
ta

tio
n

Ti
m

e
(m

s) Exact
KMeans

DROSkyline
DRO

Figure 4.7: Worst-case performance for synthetic dataset

Name Agg. Type Name Agg. Type

Response Time Sum - Compliance Mult +

Availability Mult + Best Practices Mult +

Throughput Min + Latency Sum -

Successability Mult + Documentation Mult +

Reliability Mult +

Figure 4.8: Attributes for synthetic/QWS dataset

that are pruned in the service preprocessing stage. Secondly, we also look into the perfor-

mance of DRO algorithm without the constraint pruning preprocessing. The reason is to

facilitate the comparison with the state-of-the-art, as well as to enable us to evaluate how

well the service ranking and dynamic service ranking work without utilizing the constraint

pruning preprocessing. Lastly, we evaluate the performance of DRO as a whole.

RQ2. How is the accuracy of the concrete services that are selected by DRO?

We measure the accuracy using the formula

accuracy =
G(CSheu)
G(CSexact)

(4.13)

where G(CSheu) and G(CSexact) are the global optimality values of concrete services returned

by heuristic method and exact method respectively.

RQ3. How scalable is DRO?

66

Size 1000 2000 3000 4000 5000

NonSkyline (%) 23.1 29.7 34.4 38.0 40.2

Constraint (%) 91.8 91.1 91.0 90.9 90.6

DROPreprocess (%) 92.1 91.5 91.7 91.8 91.6

Figure 4.9: Preprocess results for synthetic dataset

Size 500 1000 1500 2000 2500

NonSkyline (%) 70.2 86.5 88.9 89.6 91.0

Constraint (%) 94.6 94.6 94.4 94.3 93.9

DROPreprocess (%) 96.2 97.0 97.2 97.6 98.0

Figure 4.10: Preprocess results for QWS dataset

To evaluate the scalability of DRO, we use a synthetically generated dataset generated

using a publicly available dataset generator1.

RQ4. How do different termination threshold values ε influence the selection process of

DRO?

The performance of DRO may depend on the threshold value ε. We investigate how DRO

performs under different threshold values.

Implementation. We implemented all algorithms in C#. For solving the mixed integer

programming models, we used the Gurobi solver [95]. The experiments were conducted

on an Intel Core I5 2410M CPU with 4 GB RAM, running on Windows 7.

Experimental Setup. To answer the previous research questions, we evaluate DRO using

a synthetically generated dataset and a real-world dataset. All datasets that are used in the

experiments are publicly available2. We compare our methods with [22] which is the exist-

ing state-of-the-art for the optimal selection of services, to the best of our knowledge. For

effective comparison, we choose to use dataset of anti-correlated distribution, as it presents

1http://pgfoundry.org/projects/randdataset
2http://sites.google.com/site/droselection

67

http://pgfoundry.org/projects/randdataset
http://sites.google.com/site/droselection

500 1,000 1,500 2,000 2,500

10

100

1000

Service Class Size

C
om

pu
ta

tio
n

Ti
m

e
(m

s)
(a) QWS Dataset: Performance

Exact
KMeans

DROSkyline
DRO

500 1,500 2,500

90

95

100

Number of Constraints

A
cc

ur
ac

y
(%

)

(b) QWS Dataset: Accuracy

Exact
KMeans

DROSkyline
DRO

Figure 4.11: Experiment results for QWS dataset

the most challenging dataset for methods that make use of non-skyline pruning [22]. Note

that both [22] and our methods utilize non-skyline pruning in the preprocessing stage. We

compare the efficiency of the following QoS-based composition methods:

Exact The standard global optimization problem for all service candidates represented in

the MIP model.

KMeans The hierarchical k-means clustering method proposed in [22].

DROSkyline Our method described in Section 4.2, with the modification that only non-

skyline pruning is used in the preprocessing stage.

DRO Our method described in Section 4.2.

The reason for adding DROSkyline is because KMeans is also using non-skyline pruning

as their preprocessing method. Using the same preprocessing method will allow both

methods to reduce the same amount of services at the preprocessing stage, therefore enable

us to compare the strength of the service selection algorithms for these two methods.

68

4.4.1 Evaluation with a Synthetic Dataset

We use a synthetic dataset generated using a publicly available dataset generator1.

The synthetic dataset contains 50,000 QoS vectors, with 9 QoS attributes. The details of these

QoS attributes can be found in Figure 4.8. In Figure 4.8, there are three columns. The Name

and Agg. columns provide the name of the QoS attributes and the aggregation functions

(Summation (Sum), Multiplication (Mult), Minimum (Min)) for those attributes. The Type

column shows that whether these attributes are negative (–) or positive (+). We randomly

partition the dataset into 10 service classes and the QoS constraints are set randomly.

We conduct several experiments (E1 – E6) and report our findings in the following. For

experiments E1 to E4, we set the termination threshold at 0.9 and for experiments E1 to E3,

there exists a feasible selection that could satisfy the global constraints.

E1: We record the number of services that have been pruned using non-skyline pruning

(NonSkyline), constraint pruning (Constraint), and the combination of both pruning meth-

ods (DROPreprocess). The numbers reported are the percentage of services that are pruned

with respect to the total number of services. The experiment results can be found in Fig-

ure 4.9.

Results. The non-skyline pruning has achieved 23.1%-40.2% reduction rate. As the dataset

for experiment has anti-correlated distribution, and it is known that the non-skyline prun-

ing does not perform well in such dataset [22], therefore we can expect the method could

perform better for datasets of different distributions (e.g., correlated distribution). For

constraint pruning, it has achieved 90.6%-91.8% reduction rate. The high reduction rate

is due to a seemingly lenient global constraint of composite service could result in a high

expectation of the QoS attribute of component services. For example, the global constraint

of availability is set to 0.1, and since there are 10 service classes, the average availability of

the involved component services that need to fulfill the global constraint is (0.1)1/10
≈ 0.8.

69

Therefore, it results in high reduction rate when combined with the constraint reduction

using response time attribute. Another observation is that, when these two pruning meth-

ods are combined (DROPreprocess), it can achieve a reduction rate that is greater than any

individual pruning method applies alone.

E2: We compare the computation time with respect to the number of services for each

service class, which varies from 500 to 5000. The experiment results can be found in Fig-

ure 4.6(a).

Results. We notice that both DRO and DROSkyline have significant improvement over Exact

and KMeans methods. Since DROSkyline and KMeans are both using the same preprocess-

ing method (non-skyline pruning), therefore, this result suggests that service ranking and

dynamic service selection of DRO have provided faster performance over KMeans. Inter-

estingly, although substantial number of services have been pruned by constraint pruning

for DRO, DRO has only achieved slight improvement of performance over DROSkyline.

This result suggested that the services that are pruned by constraint pruning are ranked

lower by service ranking algorithm, and services that are part of the feasible selection

are ranked higher. Therefore, the dynamic selection algorithm could effectively locate a

feasible selection by using a significant smaller subset of the services in a service class.

E3: We compare the accuracy with respect to the number of services for each service class,

which varies from 500 to 5000. The experiment results can be found in Figure 4.6(b).

Results. We notice that all methods achieve accuracy higher than 90%. For DRO and

DROSkyline, both have outperformed KMeans by achieving almost 100% accuracy. This

result shows that the service ranking algorithm of DRO has accurately ranked the service,

such that the feasible selection that has been chosen by the dynamic service selection

algorithm is near-optimal or optimal selection.

E4: We compare the computation time with respect to the number of services for each

70

service class, which varies from 500 to 5000, in the case where it does not exist a selection

that can satisfy the global constraints. The experiment results can be found in Figure 4.7.

Results. We notice that KMeans has fast-growing computation time. The reason is that

KMeans applies k-means clustering at each round of selection, and it is known that k-means

clustering is NP-hard in the worst case. Therefore, this makes the method sensitive to

the number of services. We also notice that DROSkyline outperforms KMeans significantly.

There are two reasons for this. Firstly, DROSkyline only incurs sorting at the start of the

selection, and it does not incur extra operations between rounds of selection. Secondly,

the number of services that are used for selection increases significantly at each round;

therefore, it could effectively explore all services in the service classes in a few number of

rounds. Hence, DROSkyline has provided significant improvement over KMeans. DROSky-

line is slower than Exact due to the extra time that it spent on multiple rounds of service

selections before all concrete services in the service classes are explored at the final round

– while for Exact, it explores all services from the beginning. We also observe that DRO

outperforms Exact. This is attributed to the constraint pruning preprocessing in DRO, since

most of the services are pruned by constraint pruning due to the strict global constraints

that make no feasible selection, and this let DRO achieve higher performance than Exact.

E5, E6: We compare DRO using different termination thresholds with respect to the number

of services for each service class, which varies from 500 to 5000, in the case where it exists

(E5) and does not exist (E6) a selection that can satisfy the global constraints respectively.

The results of experiments E5 and E6 are shown in Figure 4.6(c) and Figure 4.6(d) respec-

tively.

Results. It suggests that the smaller the value of termination threshold, the faster it tends

to complete. For example, the dynamic selection algorithm with termination threshold of

0.1 tends to complete faster than the other termination thresholds. This result is due to

the fact that the smaller the termination threshold, the fewer elements will be chosen in

71

each round by the dynamic selection algorithm. We illustrate why this could end up in

a faster searching time using an example. Suppose the services that are part of a feasible

selection are all ranked at fifth position in their service classes. Dynamic selection algo-

rithm with termination threshold of 0.1 could choose fewer services (say five services) at a

single round, while dynamic selection algorithm with termination threshold of 0.9 could

choose more services (say ten services) at single round. Although the services selected

by dynamic selection algorithm for termination thresholds 0.1 and 0.9 both contain the

feasible services, but dynamic selection algorithm for termination thresholds 0.1 will be

solved faster by the MIP solver since it contains fewer services. Nevertheless, there is a

disadvantage for choosing a smaller termination threshold. Experiment E6 has shown that

the dynamic selection algorithm with smaller termination threshold tends to finish slower,

since fewer items that are chosen at each round will lead to more rounds to iterate before

all concrete services in each service class are explored. It is therefore a tradeoff to choose a

smaller termination threshold over a larger one.

Answer to Research Questions. To answer the research questions RQ1–RQ3, we can see

that both DRO and DROSkyline outperform KMeans in terms of performance, accuracy and

scalability from experiments E1–E4. Research question RQ4 is answered by the analyses of

experiments E5 and E6.

Threats to Validity. There are several threats to validity. The first threat of validity is

due to the fact that experiment inputs were randomly generated. The second threat of

validity is stemed from our choice to use a few example values as experimental param-

eters, that include global constraints and termination thresholds, in order to cope with

the combinatorial explosion of options. To address these threats, it is clear that more ex-

perimentations with different dataset and experimental parameters are required, so that

we could further investigate the effects that has not been made obvious by our dataset

72

and experimental parameters. To mitigate these threats to validity, we further conduct an

evaluation on real-world Web services in order to confirm the results with the synthetic

dataset.

4.4.2 Evaluation with QWS Dataset

In this evaluation, we use the QWS dataset, which is a public dataset3 collected from pub-

lic registries, search engines and service portals, using a specialized Web crawler. The

dataset contains 2507 Web services and there are a total of 9 QoS attributes measured using

commercial benchmark tools. More details on the dataset can be found at [17, 18]. In our

experiments, there are five service classes, where the concrete services for the service classes

are chosen from the QWS dataset. The QoS constraints are set randomly. The experiments

(E1′ – E3′) that we have conducted are listed as follows. For all experiments, we set the

termination threshold at 0.9 and assume there exists a feasible selection that could satisfy

the global constraints.

E1′: We record the number of services that has been pruned using non-skyline method,

constraint method, and the combination of both pruning methods (DROPreprocess). The

experiment results can be found in Figure 4.10.

Results. The non-skyline pruning offers a better pruning result compare to experiment

E1. This result is expected, as it is known that non-skyline pruning does not work well in

anti-correlated dataset that is used in experiment E1.

E2′, E3′: We compare the computation time and accuracy with respect to the number of

services for each service class, which varies from 500 to 2500. The experiment results can

3http://www.uoguelph.ca/~qmahmoud/qws/

73

http://www.uoguelph.ca/~qmahmoud/qws/

be found in Figure 4.11(a) and Figure 4.11(b) respectively.

Results. We observe similar tendency compared to experiments E2 and E3, where both

DROSkyline and DRO provide better performance and accuracy over KMeans and Exact

methods, and DROSkyline and DRO have similar performance and accuracy.

As a conclusion, the results of the evaluation with real-world Web services conform to the

results with the synthetic dataset.

4.5 Related Work

The problem of QoS-aware Web service selection and composition has received consider-

able attention during recent years. In [170], [171], the authors present an approach that

makes use of global planning to search dynamically for the best concrete services for ser-

vice composition. Their approach involves the use of mixed integer programming (MIP)

techniques to find the optimal selection of component services. Ardagna et al. [35] extend

the MIP methods to include local constraints. Cardellini et al. [49] propose a methodology

to integrate different adaptation mechanisms for combining concrete services to an abstract

service, in order to achieve a greater flexibility in facing different operating environments.

Our work is orthogonal to aforementioned works, as it does not assume particular for-

mulation of the MIP problems. Although the method in aforementioned works efficiently

for small case studies, it suffers from scalability problems when the size of the case stud-

ies becomes larger, since the time required grows exponentially with the size of concrete

services.

Yu et al. [168] propose a heuristic algorithm that could be used to find a near-optimal

solution. The authors propose two QoS compositional models, a combinatorial model and

a graph model. The time complexity for the combinatorial model is polynomial, while the

74

time complexity for the graph model is exponential. However the algorithm does not scale

with the increasing number of Web services. To address this problem, Alrifai et al. [22]

present an approach that prunes the search space using skyline methods, and they make

use of a hierarchical k-means clustering method for representative selection. The work

of Alrifai et al. is the closest to ours. Our approach has several advantages over their

approach. Firstly, their work does not take into account of provided global constraints

for representative selection. Therefore, it does not scale well with respect to the number

of attributes, and the performance can be significantly degraded by providing restrictive

constraints. Secondly, making use of k-means clustering for the purpose of representative

selection can be expensive since the operation is NP-hard in general, while in our work,

the worst-case performance of representative selection is bounded by O(n · log n), where n

is the total number of concrete services.

Dionysis et al. [37] propose a method that allows users to specify their perception of quality

in terms of user-defined quality model. Their method is based on k-means approach to

match the user defined quality model to the search engine’s quality model automatically.

Their work focuses on providing intuitive quality abstraction, and is not related to the

optimal selection of services. Stephan et al. [165] propose a QoS-based service ranking and

selection approach. Their approach ranks the services according to their satisfactory scores

and selects the optimal service that satisfies users’ QoS requirements. Raed et al. [104]

propose a method that makes use of analytical network process (ANP) to calculate the

weight associated with each QoS attribute and rank the service based on users’ satisfaction

degrees. [165] and [104] could only be used to choose for a single optimal service that could

satisfy the users’ QoS requirements. In contrast, our work aims to select a set of services that

are optimal for a service composition. In our previous work [153], we have proposed an

approach to synthesize the local time requirement for component services given the global

time requirement of composite service. For the component services that satisfy the local

75

time requirement, it is guaranteed to satisfy the global time requirement of the composite

services. In contrast, in this work, we focus on the set of component services that could

not only satisfy the global QoS constraint, but also provide the overall optimal QoS for the

composite service.

4.6 Chapter Summary

In this chapter, we have addressed the problem of QoS service composition by proposing

a new technique, namely the dynamic ranking optimization (DRO). The technique consid-

erably improves the current service selection approaches, by considering only a subset of

representatives that are likely to succeed, before exploring a larger search space. The full

search space will be explored only if all the smaller search spaces have failed to produce a

result. The evaluation has shown great improvement over the existing methods.

In future, we consider selecting services in the cloud computing environment, as it is

known that each cloud computing environment has more components involved. Quinton

et al [134] propose to model the cloud computing using Software Product Lines principles

(SPL). Therefore, we propose the work in the next chapter to select a set of competing

features for SPL as a start.

76

Chapter 5

Optimizing Selection of Competing

Features via Feedback-directed

Evolutionary Algorithms

To reduce development costs, shorten development cycles, and improve flexibility and

reusability, industries usually need to develop and maintain a set of similar products in

a systematic and reuse-based way [101]. In software family or Software Product Line

(SPL) [103], feature model is proposed to model commonalities and competing variabilities

among similar yet different products. Based on the feature model, different features are

carefully selected to meet the requirements of customers and to avoid possible conflicts or

compatibility problems [127]. In the era of a thriving market of mobile and serviced-based

applications, vendors are required to continually reconfigure their applications promptly,

to retain and extend their customer base. Therefore, it is desirable to automatically derive

features that could meet the requirements of customers, and avoid all possible conflicts of

77

features.

Feature model provides a representation of software product lines (SPLs), that could be

used to facilitate the reasoning and configuration of SPLs [103]. Common SPLs consist of

hundreds or even thousands of features. For instance, as reported in [140], the Linux X86

kernel contains 6888 features, and 343944 constraints. In addition, the features are usually

associated with quality attributes such as cost and reliability. This complexity provides

challenges for the reasoning and configuration of feature models. It is hard for the vendor

to select a set of features that complies with the feature model, and meanwhile optimizes

the quality attributes according to user preferences. This is called the optimal feature selection

problem [93].

Existing works [93, 138, 136, 137] have adopted the evolutionary algorithms (EAs) for

feature selection with resource constraints and product generation based on the value of

user preferences, respectively. Guo et al. [93] proposed a genetic algorithm (GA) approach

for tackling the optimal feature selection problem. In their work, a repair operator is used

to fix each candidate solution, so that it is fully compatible with the feature model after each

round of crossover and mutation operations. This approach might be non-terminating, and

furthermore, it does not take advantage of the automatic correction that brought by the

GA. In addition, GA combines all objectives into a single fitness function with respective

weights. This only gives users a solution that is specific to the weights used in the objective

formula.

To address this problem, Sayyad et al. [138, 136] proposed an approach that uses EAs

that support multi-objective optimization, and a range of optimal solutions (i.e., a Pareto

front) is returned to the user as a result. They investigated seven EAs and discovered that

the Indicator-Based Evolutionary Algorithm (IBEA) [172] yields the best results among

the seven tested EAs in terms of time, correctness and satisfaction to user preferences.

In [137], they made use of static method to prune features before execution of IBEA for

78

reducing search space. They also introduced a “seeding method" by pre-computing a

correct solution, which was subsequently used by IBEA to generate more correct solutions.

Our work complements existing works by introducing a novel feedback-directed mecha-

nism to existing EAs. In our approach, the feature model is first preprocessed based on SAT

solving to remove the prunable features, before the execution of an EA. We have shown

that we always prune more features compared to pruning method in [137]. During each

round of executing EA, the violated constraints would be analyzed. The analyzed results

are used as feedback to guide evolutionary operators (i.e., crossover and mutation) for

producing offsprings for next round. Our evaluation has shown that our method produces

more promising offsprings (that have less violated constraints), which has led to faster

convergence and resulted in more valid solutions in a significantly shorter amount of time.

We make use of both SPLOT [122] and LVAT [5] repositories to evaluate our work. SPLOT is

a repository of feature models used by many researchers as a benchmark, and LVAT contains

the real-world feature models which have large feature sizes, including the aforementioned

Linux X86 kernel model which contains 6888 features.

My contribution for this Chapter is summarized here. We introduce a feedback-directed

mechanism into existing EAs. In a feedback-directed EA, solutions are analyzed by their

violated constraints. The information is used as feedback for evolutionary operators to

produce offsprings that are more likely to satisfy more constraints.

Outline. Section 5.1 introduces the background of this chapter. Section 5.2 presents our

feedback-directed EA. Section B.1 provides the evaluation of our approach. Section 5.3

reviews related works. Finally, Section 5.4 concludes this chapter.

79

5.1 Background

In this section, we provide the background knowledge on software product line, feature

model, and multi-objective optimization problem.

5.1.1 Software Product Line

Software product line engineering (SPLE) is architecture-centric and feature-oriented, as

SPLE adopts feature-oriented domain analysis [103] for requirements analysis and builds

core assets architecture for reuse [59]. Technically, SPLE is a two-phase approach composed

of domain engineering and application engineering. The task of domain engineering is to

build the software product line (SPL) architecture consisting of a core-asset base and the

variant features, while the application engineering focuses on derivation of new products

by different customizations of variant features applied onto the core-asset base. Thus,

automation of processing and verification of product derivation is a fundamental problem

in SPLE. Exploring an efficient and scalable approach for the optimal feature selection

problem is critical to the success of SPLE.

5.1.2 Feature Model and its Semantics

The concept of feature model in domain engineering is to represent the features within the

product family as well as the structural and semantic (require or exclude) relationships

between those features [103]. Since the proposal of SPL, feature model has even been

characterized as “the greatest contribution of domain engineering to software engineering”

[61].

A feature model is a tree-like hierarchy of features. The structural and semantic relation-

ships between a parent (or compound) feature and its child features (or subfeatures) can

80

be specified as:

• Alternative – If the parent feature is selected, only one among the exclusive subfeatures

should be selected,

• Or – If the parent feature is selected, at least one or at more all subfeatures must be

selected,

• Mandatory – A mandatory feature must be selected if its parent is selected,

• Optional – An optional feature is optional to be selected.

Besides the above structure or parental relationships between features, cross-tree con-

straints (CTCs) are also often adopted to represent the mutual relationship for features

across the feature model. There are three types of common CTCs:

• fa requires fb – The inclusion of feature fa implies the inclusion of feature fb in the

same product.

• fa excludes fb – The inclusion of feature fa implies the exclusion of feature fb in the

same product, and vice versa.

• fa iff fb – The inclusion of feature fa implies the inclusion of feature fb in the same

product, and vice versa.

In Figure 5.1, the feature model of a Java Chat System (JCS) is illustrated. The root feature of

the feature model is Chat, which has a mandatory subfeature (Output) and several optional

subfeatures (e.g., Encryption). Since the feature Output is mandatory, exactly one of its

subfeatures (GUI, CMD, and GUI2) must be selected. In addition, if the Encryption feature

is selected, at least one of its subfeatures (Caesar and Reverse) needs to be selected. There is

81

a CTC for JCS which is of the form fa iff fb – Encryption_OR is selected if and only if Caesar

or Reverse is selected.

The feature model listed in Figure 5.1 can be captured by the constraints that are listed

in Table 5.1. The constraints are specified according to the semantics of feature model.

Constraint c(1) specifies that the root feature must be present, to prevent a trivial feature

model with no selected feature. Constraint c(2) specifies the mandatory feature Output

and constraints c(3) – c(7) specify constraints on the other five optional subfeatures. The

subfeatures of Output are in an Alternative relationship. This is specified using constraints

c(8) – c(11). Constraint c(8) states that Output is selected, if and only if at least one of CMD,

GUI and GUI2 is selected. Constraints c(9) – c(11) specify that at most one feature from

CMD, GUI and GUI2 can be chosen. The subfeatures of Encryption are in Or relationship.

The constraint c(12) denotes if Encryption is selected, then at least one feature from Caesar

and Reverse needs to be selected, and vice versa. The only CTC of JCS is captured in the

constraint c(13). Constraints c(1) – c(12) are called tree constraints, since they are related to

the tree structure of the feature model. Henceforth, given a feature model M, we simply

refer tree constraints and CTCs of the M, as the constraints of M. We denote the conjunction

of constraints of M as conj(M). We use Fea(M) to denote the set of entire features of the

feature model M. For the JCS example, Fea(JCS) = {Chat, . . .} and |Fea(JCS)|=12.

Definition 4 (feasible feature set). Given a feature model M, a feasible feature set for M is a

non-empty feature set F ⊆ Fea(M), such that F satisfies the constraints of M.

We write F |= M if F ⊆ Fea(M) is a feasible feature set of the feature model M.

Example. We use JCS as an example. F = {Chat,Output, GUI} is a feasible feature set of

JCS, i.e., F |= JCS.

82

Figure 5.1: The feature model of JCS

Chat c(1)
Output ⇐⇒ Chat c(2)
Logging =⇒ Chat c(3)
Authorization =⇒ Chat c(4)
Color =⇒ Chat c(5)
Encryption =⇒ Chat c(6)
Encryption_OR =⇒ Chat c(7)
(GUI ∨ CMD ∨ GUI2) ⇐⇒ Output c(8)
¬(GUI ∧ CMD) c(9)
¬(GUI ∧ GUI2) c(10)
¬(CMD ∧ GUI2) c(11)
(Caesar ∨ Reverse) ⇐⇒ Encryption c(12)
Encryption_OR ⇐⇒ (Caesar ∨ Reverse) c(13)

Table 5.1: Constraints of JCS

5.1.3 Multi-objective Optimization Problem

Many real-world problems have multiple objectives that need to be optimized simultane-

ously. However, these objectives usually conflict with each other, which prevents optimiz-

ing all objectives simultaneously. A remedy is to have a set of optimal trade-offs between

the conflicting objectives.

A k-objective optimization problem could be written in the following form:

Minimize Obj(F) = (Obj1(F),Obj2(F), ...,Objk(F))

subject to F |= M
(5.1)

83

where Obj(F) is a k-dimensional objective vector for F and Obji(F) is the value of F for ith

objective.

Given F1,F2 |= M, F1 can be viewed as better than F2 for the minimization problem in Equa-

tion 5.1, if Equation 5.2 holds.

∀i : Obji(F1) ≤ Obji(F2) ∧ ∃ j : Obj j(F1) < Obj j(F2) (5.2)

where i, j ∈ {1, . . . , k}.

In such a case, we say that F1 dominates F2. F1 is called a Pareto-optimal solution if F1 is not

dominated by any other F |= M. We denote all Pareto-optimal solutions as the Pareto front.

Many evolutionary algorithms (e.g., IBEA [172], NSGA-II [64], ssNSGA-II [72], MO-

Cell [126]) are proposed to find a set of non-dominated solutions that approximate the

Pareto front for solving the multi-objective optimization problem. Problem Statement.

Our work addresses the optimal feature selection, which aims at searching for feasible feature

sets that approximate the Pareto front to solve the multi-objective optimization problem.

5.2 Feedback-directed Evolutionary Algorithm

In this section, we elaborate our approach in addressing the optimal feature selection

problem. First, we introduce a preprocessing method to filter out prunable features before

the execution of an EA, in order to reduce the search space. Second, we illustrate feedback-

directed evolutionary operators that are used in this chapter to guide an EA for the optimal

feature selection.

84

Initial population Generation

Selection Crossover

Mutation

noyes

The terminating condition holds

Figure 5.2: Typical flow of evolutionary algorithms

5.2.1 Preliminaries of Evolutionary Algorithms

Evolutionary algorithms (EAs), inspired by the “survival of the fittest" principle of the

Darwinian theory of natural evolution, are stochastic search methods based on principles

of the biological evolution. By applying the EA, a problem is encoded into a simple

chromosome-like data structure, and then evolutionary operators (e.g., selection, crossover,

and mutation) are applied on these data structures to preserve “the fittest" information,

which is analogous to “survival of the fittest" in the natural world. EAs often perform well

in approximating solutions, and therefore EAs are typically suitable for the optimization

problems especially if the search space of the problem is large and complex.

A typical workflow of EAs is described in Figure 8.4. An EA begins with an initial genera-

tion of chromosomes, which we denote as initial population. Typically, the initial population

is generated randomly. Evolutionary operators are then applied on a generation to evolve

into a new generation of chromosomes. Different EAs have different dominating criteria,

which will be introduced in Section B.1.1. The chromosomes that are ranked higher ac-

cording to the dominating criteria of the EA have a higher chance to proceed to the next

generation. The evolutionary process continues until the termination condition is met. An

example of the termination condition might be that the number of generations exceeds a

predefined upper bound n ∈ Z>0.

85

5.2.2 Preprocessing of Feature Model

In the following, we introduce the features that could be pruned from Fea(M) before the

execution of an EA. By doing this, the search space of the EA would be reduced, which

could make the optimal feature selection more efficient.

Our approach of preprocessing is by exploiting the commonalities [46] of the products.

Observed that some features must be present in all products derived from M. For example

in JCS, the feature set {Chat,Output} is shared by all derived products, and we call these

features as common features. Similarly, we call the set of features that must not be used in all

derived products as dead features. Dead features do not present in JCS but they are common

in feature models of real systems (e.g., Linux X86 kernel, FreeBSD operating system and

eCos operating system). Henceforth, we denote common features and dead features as Fc

and Fd respectively, where Fc,Fd ⊆ Fea(M), and Fc ∩ Fd = ∅. The preprocessed features that

are passed to the execution of EAs is Fea(M) \ (Fc ∪ Fd), and we denote Fc ∪ Fd as prunable

features.

The function PrunableFeatures (Algorithm 6) is used to find common and dead features.

Recall that conj(M) represents the conjunction of all tree constraints and CTCs of feature

model M, and SAT is a function that is used to check the satisfiability of the constraints. Note

that SAT function is readily provided by many off-the-shelf SAT solvers (e.g., SAT4J [9]).

We assume that conj(M) is satisfiable, i.e., there exists at least a valid product from the

feature model M. If conj(M) ∧ ¬f is unsatisfiable (line 4), it implies that feature f must exist

in all derived products of M. Therefore, feature f is added to common features Fc (line 5).

This is similar to the detection of dead features in lines 6 and 7.

86

Algorithm 6: PrunableFeatures
input : Feature model M
output: Common features Fc ⊆ Fea(M)
output: Dead features Fd ⊆ Fea(M)

1 Fc ← ∅;
2 Fd ← ∅;
3 foreach f ∈ Fea(M) do
4 if ¬SAT(conj(M) ∧ ¬ f) then
5 Fc = Fc ∪ f ;

6 else if ¬SAT(conj(M) ∧ f) then
7 Fd = Fd ∪ f ;

8 return (Fc,Fd);

5.2.3 Genetic Encoding of the Feature Set

The selected features of a feature model is encoded using an array-based chromosome as

shown in Figure 8.7b. Given a chromosome of length n, array indices are numbered from

0 to n − 1. Each feature is assigned with an array index starting from 0. Each value on the

chromosome ranges over {0, 1}, where 0 (resp. 1) represents the absence (resp. presence) of

the feature. Given a feature model M, we define a function fM : Fea(M)→ {Z,⊥} that maps

each feature f of the feature model M to an array index. fM(f1) = ⊥ denotes that there is

no array index that is assigned for the feature f1. Similarly, we define fM−1 : Z → Fea(M)

as a function that maps a given array index to the feature it represents.

Example. We show how a feature set on the JCS is encoded. Note that features Chat and

Output have been pruned by the preprocessing algorithm in Algorithm 6; therefore, they

are not contained in the chromosome (i.e., fM(Chat) = fM(Output) = ⊥). The features are

indexed level by level, and their indexes have been listed in Figure 8.7b (e.g., fM(Logg-ing) =

0). The chromosome in Figure 8.7b represents the feature set {Encryption,GUI,Caesar,Reverse}.

87

5.2.4 Feedback-directed Evolutionary Operators

The violated constraints of a chromosome Ci provide an important clue on which features

on the chromosome Ci need to be modified. If we focus on these features, we may converge

faster on the optimal feature selection.

We incorporate this feedback into the crossover and mutation operations, which are the

main evolutionary operators common for almost all EAs. The feedback-directed crossover

and mutation operators provide an effective guidance for EAs to perform the optimal

feature selection.

5.2.4.1 Feedback-directed Mutation

The objective of mutation operator is to change some values in a selected chromosome

leading to additional genetic diversity to help the search process escape from local optimal

traps.

We introduce how the feedback-directed mutation operator works. Before the mutation, the

feedback-directed mutation analyzes the selected chromosome on the violated constraints.

We denote the corresponding positions on the chromosomes for the features that are con-

tained in the violated constraints as error positions.

Example. We illustrate the feedback-directed mutation operator, using the JCS example

shown in Figure 8.7b. Given the values of the chromosome as shown in Figure 8.7b, we

can easily check that it violates the constraint c13. The constraint c13 contains three features,

which are Encryption_OR, Caesar, and Reverse. The corresponding array positions of these

three features are shaded on the chromosome in Figure 8.7b. These shaded positions are

the error positions.

The algorithm FMutation for feedback-directed mutation are given in Algorithm 7. At line 1,

88

an offspring chromosome C is initialized with values in the chromosome P, and n ∈ Z is

initialized with the length of the chromosome P (line 2). At line 3, Err ∈ P(Z) is assigned

with the set of integers that is returned from ErrPos(C) (which will be introduced later).

The set of integers returned by ErrPos(C) represents the error positions on the chromosome

C. Each position on the chromosome is iterated (line 4). The function rand(a, b) (resp.,

randInt(a, b)), with a > b, chooses a real (resp., integer) number between numbers a and b.

At line 5, if the current position i is an error position, and the random number is less than

the error mutation probablity Pemut, then the value in the ith-position on the chromosome

is mutated by randomly choosing an integer between 0 and 1 (line 7). On the other hand,

if the position does not belong to any error position, and the random number is less than

Pmut (line 6), the value in the ith-position is mutated. Note that the probability Pemut will

be set with a value that is far larger than Pmut, so that the mutation occurs more frequently

on error positions. For Pemut and Pmut, example values could be 1.0 and 0.0000001. Note

that we set Pmut much lower than classic mutation probability (e.g. 0.001-0.05 [144]). This

is because lower Pmut with higher Pemut would lead to faster convergence, since it allows

faster correction of constraint violations by minimizing the changes of non-error positions

and focusing on the changes of error positions. This is demonstrated in Section B.1.3.

We now introduce the ErrPos function described in Algorithm 8. At line 1, ePos is initialized

with an empty set. The valuation function Π : Fea(M) → {true, false} (line 3) maps each

feature f of the feature model M to a Boolean value that denotes whether the corresponding

feature is selected. The mappings in Π are populated according to the values on the

chromosome (line 5). Subsequently, prunable features are added to the mappings in Π

with value true (line 7), since they must belong to any feasible feature set of feature model

M as explained in Section 5.2.2. At line 9, Π 6|= constraint holds iff replacing each feature

f contained in the constraint with Π(f) evaluates to false. In other words, Π 6|= constraint

means that the selection represented by chromosome C violates the constraint constraint.

89

0 1 2 3 4 5 6 7 8 9

´ c(13): Encryption_OR (4) Û Caesar (8) Ú Reserve (9)

0-Logging

1-Authorization

8-Caesar

.

.

.

4-Encryption_OR

5-GUI
.

.

.

9-Reverse

0 0 1 0 10 1 0 0 1

Figure 5.3: Feedback-directed mutation operator

P1 0 0 1 0

0 1 2 3 4 5 6

10 1 0 0 1

7 8 9

0 0 0 0 00 1 0 0 0

0 0 0 0 00 0 0 0 0

C1

P2

P1: ´ c(13): Encryption_OR (4) Û Caesar (8) Ú Reserve (9)

P2: ´ c(8): (GUI (5) Ú CMD (6) Ú GUI2 (7)) Û Output

Figure 5.4: Feedback-directed crossover operator

In such a case, the function getFeatures(c) is used to get the features that are contained in

the constraint c (line 10). For example, given the constraint c(13) in Table 5.1 for JCS as an

input, getFeatures will return {4, 8, 9}. These array indexes that represent the error positions

will be included in ePos.

5.2.4.2 Feedback-directed Crossover

The crossover operation is used to generate offsprings by exchanging values in a pair of

chromosomes chosen from the population, and it happens with a probability Pcross (the

crossover probability). The feedback-directed crossover operator uses values in the non-

error positions to crossover. The objective for using values from non-error positions is to

pass the “good genes" to offsprings.

Example. We demonstrate the feedback-directed crossover operator, using the JCS exam-

ple shown in Figure 8.7a. Suppose the chromosomes P1 and P2 have violated constraints

c(13) and c(8) respectively. The offspring chromosome C1 is first initialized as the same

90

Algorithm 7: FMutation
input : Chromosome P
input : Error mutation probability Pemut
input : Mutation probability Pmut
output: Chromosome C

1 C← P;
2 n← |P|;
3 Err← ErrPos(C);
4 for i = 0 to n − 1 do
5 if (i ∈ Err ∧ rand(0, 1) < Pemut)∨
6 (i < Err ∧ rand(0, 1) < Pmut) then
7 C[i]← randInt(0, 1);

8 return C;

values with the chromosome P1. We now show that how the feedback-directed crossover

is performed. The values from non-error positions of the chromosome P2 are copied to the

chromosome C1 (shown by the arrows). This results in the chromosome C1 that is shown

in Figure 8.7a. Note that, in the given example, chromosome C1 is now representing a

feasible feature selection after the feedback-directed crossover. The production of the chro-

mosome C2 (not shown in the graph) is symmetric to the production of the chromosome

C1.

The algorithm FCrossover of feedback-directed crossover operator is given in Algorithm 12.

The chromosomes C1 and C2 are initialized with the values from chromosomes P1 and P2

respectively (lines 1, 2). If the generated random number is smaller than the crossover

probability Pcross (line 4), then it will perform the crossover operation. First, it verifies

whether there exists any error position in chromosomes P1 and P2, by checking whether

the size of their error positions is greater than 0 (line 5). If it is, then the feedback-

directed crossover will be performed. The algorithm iterates through the chromosome

(line 6), and copies the values of non-error positions from chromosome P1 (resp., P2) to the

corresponding positions in chromosome C2 (resp., C1) (lines 7–10).

91

Algorithm 8: ErrPos
input : Chromosome C
input : A set of constraints constraints
output: A set of integers ePos

1 ePos← ∅;
2 n← |C1|;
3 Π← ∅;
4 for i = 0 to n − 1 do
5 Π← Π ∪ {fM−1(i) 7→ (C[i],0)};

6 foreach feature ∈ Fm do
7 Π← Π ∪ {Fm 7→ true};

8 foreach constraint ∈ constraints do
9 if Π 6|= constraint then

10 ePos← ePos ∪ getFeatures(constraint);

11 return ePos;

Otherwise, if both chromosomes P1 and P2 do not have any error position, the classic single

point crossover operator is applied. First, an array index, crossIndex ∈ {0, . . . ,n − 1}, is

randomly selected. Subsequently, all values starting from position crossIndex are copied

from chromosome P2 (resp., P1) to chromosome C1 (resp., C2) (lines 12–15).

5.3 Related Work

Our work is related to the feasible feature selection. In [162], White et al. reduced the feature

selection problem in SPL to a multidimensional multi-choice knapsack problem (MMKP).

They proposed a polynomial time approximation algorithm, called Filtered Cartesian Flat-

tening (FCF), to derive an optimal feature configuration subject to resource constraints.

Their evaluation showed that FCF can stably achieve the optimality above 90% even when

the number of resources increases up to 91, while the optimality of Constraint Satisfac-

tion Problem (CSP) based Feature Selection in [39] drops down to 30% when there are 91

resources.

92

Algorithm 9: FCrossover
input : Chromosome P1
input : Chromosome P2
input : Crossover probability Pcross
output: Chromosomes C1, C2

1 C1 ← P1;
2 C2 ← P2;
3 n← |P1|;
4 if rand(0, 1) < Pcross then
5 if |ErrPos(P1)| > 0 ∧ |ErrPos(P2)| > 0 then
6 for i = 0 to n − 1 do
7 if i < ErrPos(P1) then
8 C2[i]← P1[i];

9 if i < ErrPos(P2) then
10 C1[i]← P2[i];

11 else
12 crossIndex← randInt(0,n−1);
13 for i = crossIndex to n−1 do
14 C1[i]← P2[i];
15 C2[i]← P1[i];

16 return (C1,C2);

Although FCF in [162] can achieve a highly optimal solution, but it requires significant

computing time. To address the problem of scalability, Guo et al. [93] presented GAFES

(a genetic algorithm based approach). The rationale is that GAs are quite suitable for the

highly constrained problems, such as the feature selection (product derivation) problem.

GAFES integrated a new repair operator for feature selection and also defined a penalty

function for resource constraints. The evaluation showed GAFES may not beat the FCF

and CSP in optimality, but it scaled up to large-scale models with a reasonable optimality.

Genetic algorithm only allows single objective function, and in addition, the method pro-

posed in [93] repairs each solution explicitly, and does not take advantage of the evolution

of GA algorithm for repairing. To address this problem, Sayyad et al. [138] investigated the

use of different types of EAs that support multi-objective function for the optimal feature

93

selection. They adopted 7 types of EAs, such as IBEA, NSGA-II and MOCell, to search

for the optimal product. The results have shown that IBEA performs much better than

other 6 EAs in terms of time, correctness and satisfaction to user preferences. In [136],

Sayyad et al. improved [138] by turning down the crossover probability from 0.9 to 0.1

and mutation probability from 0.05 to 0.01, and they reported HV-mean and spread mean

may increase by 5% to 10% in most cases. In [137], Sayyad et al. proposed the use of EA

with simple heuristic in larger product lines from LVAT repository. They proposed the

use of static analysis to identify prunable features for reducing search space, and the use

of seeded techniques to find more correct products from Linux X86 Kernel. Our method

has improved the method proposed in [138, 136, 137] by incorporating feedback-directed

mechanism for EAs (cf. Section 3.4 for the evaluation). We also show that our method for

finding prunable feature with Algorithm 6 is always not lesser than the method proposed

in [137] (cf. Section B.1.1.3 for the explanation and evaluation).

Our work is relevant to searching valid features for a feature model. In [132], an experiment

for measuring the efficiency of BDD, SAT, and CSP solvers is conducted using feature

models from SPLOT repository. They reported long run times for certain operations,

and certain runs are cancelled if exceeded three hours. They also reported an exponential

runtime increase with the number of features for non-BDD solvers on the “valid" operations.

In [133], the state-of-art solvers, e.g., JavaBDD BDD solver, the JaCoP CSP solver and the

SAT4J SAT solver, were used to answer the questions such as “derive one valid product

from a feature model” and “number of products”. They found that CSP and SAT solvers

have exponential runtime increase as the feature size of feature model increases, and

BDD requires a maximum of 28 seconds to derive a valid product for web-portal, even

without considering the quality of feature attributes. Thus, these automated reasoning

techniques can be precise, but generally not scalable for large feature models. Our work

complements with their work by using feedback-directed evolutionary algorithm that

94

scales well for large feature models. In [94] introduces five novel parallel algorithm for

Multi-Objective Combinatorial Optimization (MOCO) to allow parallel processing. Our

work complements with them by considering feedback-directed mechanism for MOCO

problem using feedback-directed EAs.

Our work is also related to the feedback-directed methods in software engineering. Pacheco

et al. [129] proposed RANDOOP, a feedback-directed mechanism for performing random

test. It uses erroneous results of previous method invocation to generate a better random

test. Clarke et al. [57] proposed CEGAR, which uses spurious counterexamples as a feed-

back to guide the refinement process. Our method is on feedback-directed methods in EAs

for the optimal feature selection.

In addition to the SPL domain, multi-objective evolutionary optimization algorithms

(MEOAs) have also been applied to various software engineering problems. In [99], Har-

man et al. proposed the term Search-Based Software Engineering (SBSE), and reported

that the surveyed and proposed optimization techniques for SE problems by 2001 were all

single-objective based. Seeing the potential of using multi-objective optimization, Harman

[98] discussed about the possible usage of the meta-heuristic search techniques such as:

simulated annealing and genetic algorithm. Harman considered it insensible combination

of multiple metrics into an aggregate fitness in the way of assigning coefficients, and further

suggested to use Pareto optimality rather than aggregate fitness.

5.4 Conclusion

In this work, we have presented a novel technique by introducing a feedback-directed

mechanism into various EAs. Our approach is based on analyzing violated constraints,

and uses the analyzed results as a feedback to guide the process of crossover and mutation

operators. In addition, we also introduce a preprocessing technique to reduce the search

95

space, by filtering away the prunable features in all feasible feature sets. Our evaluation

shows that both the preprocessing technique and the feedback-directed mechanism have

improved over existing unguided EAs on the optimal feature selection. Without com-

promising on running time, the feedback-directed IBEA successfully found 72.33% and

75% more correct solutions for case studies in SPLOT and LVAT repositories, compared to

the unguided IBEA. In addition, with “seeding method" proposed by [137] and feedback-

directed IBEA, we have reduced the running time from about 3.5 – 4 hours to less than 40

seconds for finding 34 correct solutions.

96

Chapter 6

Verification of Functional and

Non-functional Requirements of Web

Service Composition

A real-world business process may contain a set of services. A Web service is a single

autonomous software system with its own thread of control. A fundamental goal of Web

services is to have a collection of network-resident software services, so that it can be ac-

cessed by standardized protocols and integrated into applications or composed to form

complex services which are called composite services. A composite service is constructed

from a set of component services. Component services have their interfaces and function-

alities defined based on their internal structures. The de facto standard for Web service

composition is Web Services Business Process Execution Language (WS-BPEL) [102]. WS-

BPEL is an XML-based orchestration business process language. It provides basic activities

such as service invocation, and compositional activities such as sequential and parallel

composition to describe composition of Web services. BPEL is inevitably rich in concur-

97

rency and it is not a simple task for programmers to utilize concurrency as they have to

deal with multi-threads and critical regions. It is reported that among the common bug

types concurrency bugs are the most difficult to fix correctly, the statistic shows that 39%

of concurrency bugs are fixed incorrectly [166]. Therefore, it is desirable to verify Web

services with automated verification techniques, such as model checking [58].

There are two kinds of requirements of Web service composition, i.e., functional and non-

functional requirements. Functional requirements focus on the functionalities of the Web

service composition. Given a booking service, an example of functional requirement is that

a flight ticket with price higher than $2000 will never be purchased. The non-functional

requirements are concerned with the Quality of Service (QoS). These requirements are

often recorded in service-level agreements (SLAs), which is a contract specified between

service providers and customers. Given a booking service, an example of non-functional

requirements is that the service will respond to the user within 5 ms. Typical non-functional

requirements include response time, availability, cost and so on. However, it is difficult

for service designers to take the full consideration of both functional and non-functional

requirements when writing BPEL programs.

Model checking is an automatic technique for verifying software systems [58], which helps

find counterexamples based on the specification at the design time so that it could detect

errors and increase the reliability of the system at the early stage. Currently, increasing

number of complex service processes and concurrency are developed on Web service com-

position. Hence, model checking is a promising approach to solve this problem. Given

functional and non-functional requirements, existing works [82, 89, 106, 125, 47, 96] only

focus on verification of one aspect, and disregard the other, even though these two aspects

are inseparable. Different non-functional properties might have different aggregation func-

tions for different compositional structures, and this poses a major challenge to integrate

the non-functional properties into the functional verification framework.

98

In this chapter, we propose a method to verify BPEL programs against combined functional

and non-functional requirements. A dedicated model checker is developed to support

the verification. We make use of the labeled transition systems (LTSs) directly from the

semantics of BPEL programs for functional verification. For non-functional properties,

we propose different strategies to integrate different non-functional properties into the

functional verification framework. We focus on three important non-functional properties

in this chapter, i.e., availability, cost and response time. To verify availability and cost, we

calculate them on-the-fly during the generation of LTS, and associate calculated values to

each state in the LTS. Verification of response time requires an additional preprocessing

stage, before the generation of LTS. In the preprocessing stage, response time tag is assigned

to each activity that is participated in the service composition. With such integration, we

are able to support combined functional and non-functional requirements.

The contributions of this chapter are summarized as follows.

1. We support integrated verification of functional and non-functional properties for

Web service composition. To the best of our knowledge, we are the first work on such

integration.

2. We capture the semantics of Web service composition using labeled transition systems

(LTSs) and verify the Web service composition directly without building intermediate

or abstract models, which makes our approach more suitable for general Web service

composition verification.

3. Our approach has been implemented and evaluated on the three real-world case

studies, and this demonstrates the effectiveness of our method.

99

6.1 Motivation Example

In our work, we assume that composite services are specified in the BPEL language. BPEL

is the de facto standard for implementing composition of existing services by specifying

an executable workflow using predefined activities. BPEL is an XML-based orchestration

business process language for the specification of executable and abstract business pro-

cesses. It supports control flow structures such as sequential and concurrency execution.

In the following, we introduce the basic BPEL notations. < receive >, < invoke >, and

< reply > are the basic communication activities which are defined to receive messages,

execute component services and return messages respectively for communicating with

component services. There are two kinds of < invoke > activities, i.e., synchronous and

asynchronous invocation. Synchronous invocation activities are invoked and the process

waits for the reply from the component service before moving on to the next activity.

Asynchronous invocation activities are invoked and moving on to the next activity directly

without waiting for the reply. The control flow of composite services is specified using the

activities like < sequence >, < while >, < if > and < flow >. < sequence > is used to

define the sequential ordering structure, < while > is used to define the loop structure,

< if > is used to define the conditional choice structure, and< flow > is used to implement

concurrency structure.

6.1.1 Computer Purchasing Services (CPS)

In this section, we introduce the computer purchasing service (CPS), which is designed

to allow users to purchase a computer online using credit cards. The workflow of CPS is

illustrated in Figure 6.1. CPS has four component Web services, namely Personal Billing

Service (PBS), Corporate Billing Service (CBS), Manufacture Service (MS), Shipper Service

(SS). CPS is initialized upon receiving the request from the customer (f u) with the infor-

100

Personal Billing
Service (PBS)

Corporate Billing
Service (CBS)

is non-corporate is corporate

Receive from user
(fu)

Manufacture Service
(MS)

Shipper Service
(SS)

Reply user
(ru)

Figure 6.1: Computer Purchasing Service

mation of the customer and the computer that he wishes to purchase for. Subsequently,

an < if > activity (donated by) is used for checking whether the customer is a corpo-

rate customer or non-corporate customer. If it is a corporate customer, CBS is invoked

synchronously to bill the corporate customer, otherwise, PBS is invoked synchronously to

bill the non-corporate customer with credit card information. Upon receiving the reply, a

< flow > activity (donated by) is triggered and MS and SS are invoked concurrently. MS

is invoked synchronously to notify manufacture department for manufacturing the pur-

chased computers. SS is invoked synchronously to schedule shipment for the purchased

computers. Upon receiving the reply message from SS and MS, reply user (ru) is called to

return the result of the computer purchasing to the customer.

We assume a property that CPS must fulfill is that it must invoke reply user (ru) within

5 ms. Notice that this property combines the functional (must invoke reply user (ru)) and

101

non-functional (within 5 ms) requirements.

6.1.2 BPEL Notations

In order to present BPEL syntax compactly, we define a set of BPEL notations below:

• rec(S) and reply(S) are used to denote “receive from” and “reply to” a service S;

• sInv(S) (resp. aInv(S)) is used to denote synchronous (resp. asynchronous) invocation

of a service S;

• P1||P2 is used to denote < flow > activity, i.e., the concurrent execution of BPEL

activities P1 and P2;

• P1 / b . P2 is used to denote < if > activity, where b is a guard condition. Activity P1

is executed if b is evaluated to be true, otherwise activity P2 will be executed;

• P1→P2 is used to denote < sequence > activity, where P1 is executed followed by P2.

We denote activities that contain other activities as composite activities, there are P1||P2,

P1 / b . P2 and P1→P2. For activities that do not contain any other activities, we denote

them as atomic activities, there are rec(S), reply(S), sInv(S) and aInv(S).

6.2 QOS-AWARE COMPOSITIONAL MODEL

In this section, we define the QoS compositional model used in this chapter and briefly

introduce the semantics of BPEL, captured by labeled transition systems (LTSs), and we

introduce some definitions used in the semantic model in the following section.

102

QoS Attribute PSB CSB MS SS

Response
Time(ms)

1 2 3 1

Availability(%) 90 80 80 80

Cost($) 3 2 2 2

Table 6.1: QoS Attribute Values

6.2.1 QoS Attributes

In this chapter, we deal with quantitative attributes that can be quantitatively measured

using metrics. There are two classes of QoS Attributes, positive and negative attributes.

Positive attributes (e.g., availability) have a good effect on the system, and therefore, they

need to be maximized. Availability of the service is the probability of the service being

available. Negative attributes (e.g., response time, cost) need to be minimized as they have

the negative impact on the system. Response time of the service is defined as the delay

between sending a request and receiving the response and cost of the service is defined

as the money spent on the service. In this chapter, we assume the unit of response time,

availability and cost to be millisecond (ms) , percentage (%) and dollar ($). Table 6.1 shows

the information of response time, availability and cost of each component service for CPS

example as described in Section 6.1.1.

Given a component service s with n QoS attributes, we use a vector Qs = 〈q1(s), . . . , qn(s)〉

to represent QoS attributes of the service s , where qi(s) represents the value of ith attribute

of the component service s. Similarly, Q′cs = 〈q1(cs)′, . . . , qn(cs)′〉 is used to denote the

QoS attributes of the composite service cs, where qi(cs)′ represents the ith attribute of the

composite service cs.

103

6.2.2 QoS for Composite Services

A composite service S is constructed using a finite number of component services to reach a

business goal. Let C = 〈s1, s2, . . . , sn〉 be the set of all component services that are used by S.

The QoS of composite services is aggregated from the QoS of the component services, based

on the service internal compositional structure, and the type of QoS attributes. Table 7.1

shows the aggregation functions for each compositional structure. We consider three types

of QoS attributes: response time, availability and cost. For response time, in sequential

composition, the response time of the composite service, is aggregated by summing up the

response time of each component service. As for parallel composition, the response time

of the composite service is the maximum response time among that of each participating

component service. For loop composition, the response time of the composite service is

obtained by summing up the response time of the participating component service for

k times, where k is the number of maximum iteration of the loop. And for conditional

composition, the response time of the composite service is the maximum response time

of n participating component services since it is not known that which guard is satisfied

at the design phase. For availability, in sequential composition, the availability of the

composite service, is the product of that of all component services in the sequence because

it means all component services are available during the sequential execution. It is similar

to parallel and loop composition for aggregation of availability of the composite services.

For conditional availability of the composite service, since one component service will

be chosen at execution, therefore, we denote the availability as the minimum availability

among all component services participated in the conditional composition. For cost, in

sequential composition, the cost of the composite service is decided by the total cost of

component services. For the conditional composition, the cost of the composite service is

the maximum cost of n participating component services. Other common QoS attribute

104

QoS Attribute Sequential Parallel Loop Conditional

Response
Time

n∑
i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Availability
n∏

i=1
q(si)

n∏
i=1

q(si) (q(s1))k
n

min
i=1

q(si)

Cost
n∑

i=1
q(si)

n∑
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Table 6.2: Aggregation Function

types can be aggregated in the similiar way with these three attributes. For example, QoS

attributes like reliability share the same aggregation function with availability.

6.2.3 Labeled Transition System

The QoS-aware composite model in this chapter is defined using labeled transition system

(LTS). In the following we define various terminologies that will be used in this chapter.

Definition 5 (System State). A system state s is a tuple (P,V,Q), where P is the composite service

process and V is a (partial) variable valuation that maps variables to their values, Q is a vector

which represents QoS attributes of the composite service.

Two states are equivalent iff they have the same process P , the same valuation V and the

same QoS vectors Q. Given a system state s = (V,P,Q), Q = 〈r, a, c〉 is a vector with three

elements, where r, a, c ∈ R≥0, and 0 ≤ a ≤ 1. r, a, c represents the response time, availability,

and cost of the state s. The response time, availability, and cost are calculated from the

execution that starts at initial state s0 up to the state s. Henceforth, we use the notation

Q(ResponseTime), Q(Availability) and Q(Cost) to denote the value of r, a, and c of QoS vector

Q respectively.

Definition 6 (Composite Service Model). A composite service modelM is a tuple (Var,P0,V0,F),

105

where Var is a finite set of variables, P0 is the composite service process, and V0 is an initial valuation

that maps each variable to its initial value. F is a function which maps component services to their

QoS attribute vectors.

Given a composite service (Var,P0,V0,F), an example of valuation V is {var1 7→ 1, var2 7→⊥},

where var1,var2 ∈ Var, and var2 7→⊥ is used to denote that var2 is undefined.

Definition 7 (LTS). An LTS is a tuple L = (S, s0,Σ, δ), where

• S is a set of states,

• s0 ∈ S is the initial state,

• Σ is a set of actions,

• δ : S × Σ × S is a transition relation.

For convenience, we use s a
→ s′ to denote (s, a, s′) ∈ δ and we denote the LTS of a

BPEL service M as L(M). Given a composite service model M = (Var,P0,V0,F), L(M)

=(S, (P0,V0,Q0),Σ, δ). Q0 is the QoS attribute vector of the initial state, where the availabil-

ity is 1, cost and response time is equal to 0. Give a state s∈S, Enable(s) is denoted as the set of

states reachable from s by one transition; formally, Enable(s) = {s′|s′ ∈ S∧a ∈ Σ∧ s a
→ s′ ∈ δ}.

An execution π of L is a finite alternating sequence of states and actions 〈 s0, a1, s1, . . . , sn−1,

an, sn 〉, where {s0, . . . , sn} ∈ S and si
ai+1
→ si+1 for all 0 ≤ i < n. We denote the execution π

by s0
a1
→ s1

...
→ sn−1

an
→ sn. A state s is called reachable if there is an execution that ends in

s and starts in an initial state. The LTS of CPS as discussed is shown in Figure 6.2, where

we omit the Receive f rom user(f u), Reply user(ru), all actions a ∈ Σ, and component V in the

state for the reason of brevity. From state s0, conditional activity i1 / b . i2 is enabled. Given

that {b 7→⊥}, either i1 or i2 might be executed, therefore states s1 and s2 are evolved from

state s0. Noted that if guard b is defined, then only one branch is explored in the LTS. From

106

s0:(i1 / b . i2→i3||i4,Q0)

s1:(i3||i4,Q1) s2:(i3||i4,Q2)

s3:(i4,Q3) s4:(i3,Q4) s5:(i4,Q5) s6:(i3,Q6)

s7:(stop,Q7) s8:(stop,Q8)

where i1 is sInv(PBS), i2 is sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

if else

Figure 6.2: LTS of CPS

state s1, the flow activity i3||i4 is enabled, and both activities i3 and i4 are allowed to execute.

This leads to states s3 and s4 respectively. State s3 evolves into state s7 after activity i4 is

executed. stop activity in state s7 is a special activity which does nothing. Other states in

LTS could be reasoned similarly.

Assume a composite service model M = (Var,P0,V0,F) and the LTS of M is L(M) =(S,

s0,Σ, δ). Every action a ∈ Σ is triggered by an atomic activity. The atomic activities used

in this chapter are rec(S), reply(S), sInv(S), and aInv(S), where S is the component service

that the atomic activities are communicated with. For activities rec(S) and sInv(S), they

are required to wait for reply from component service S before continuing, therefore their

availability, cost and response time are equivalent to the availability, cost and response time

of component service S. For activities reply(S) and aInv(S), they are not required to wait

reply from the component service S, therefore they are regarded as internal operations.

We assume the availability, cost and response time for an internal operations as 100%, $0

and 0 ms respectively (see Section 6.3.5 for discussion). Given two states s = (P,V,Q), s′ =

(P′,V′,Q′), where s, s′ ∈ S, s a
→ s′ ∈ δ, and a ∈ Σ, we use the function AtomAct(a) to denote

the atomic activity that triggers the action a. As an example, given s = (sInv(S)→rec(S),V,Q)

and s′ = (rec(S),V,Q), the function AtomAct(a) returns the activity sInv(S). We define the

function ResponseTime(a), Availability(a) and Cost(a) to map the action a to the response time,

availability, and cost of the activity returned by AtomAct(a). Using the previous example,

107

ResponseTime(a) is the response time of activity sInv(S), which is essentially the response

time of component service S.

6.3 Verification

This section is devoted to discuss how to verify combined functional and non-functional

requirements based on the LTS semantics of Web service composition. Current works only

verify one aspect of requirements, either functional or non-functional requirement, how-

ever, these two aspects are inseparable. Some properties such as CPS is required to reply the

user within 2 seconds, involves both functional and non-functional requirements. There-

fore, we propose an approach to combine functional and non-functional requirements. Our

approach is based on the assumption that the LTS is finite and acyclic.

6.3.1 Verification of Functional Requirement

To verify functional requirements of a BPEL program, LTS of the BPEL program is built

from composite service model. We support the verification of deadlock-freeness, reacha-

bility of a state. We also support LTL assertions with fairness assumptions, such as strong

fairness and weak fairness. To verify the LTL formulae, we make use of automata-based

on-the-fly verification algorithm [60], by firstly translating a formula to a Búchi automaton

and then checking emptiness of the product of the system and the automaton. For fair-

ness checking, we utilize the on-the-fly parallel model checking based on Tarjan strongly

connected components (SCC) detection algorithms similar to [149].

108

6.3.2 Integration of Non-Functional Requirement

In this section, we present our approach in integrating the non-functional requirements

into verification framework. Different non-functional properties might have different ag-

gregation functions for different compositional structures, and this poses a major challenge

to integrate the non-functional properties into the functional verification framework. In

the following, we adopt two different strategies in integrating the non-functional require-

ments. We first discuss our approach in integration of availability and cost, and following

that, we discuss the integration of response time.

6.3.3 Integration of Availability and Cost

In this section, we present our approach to integrate the availability and cost to the veri-

fication framework. Given two states s = (P,V,Q), s′ = (P′,V′,Q′), where s, s′ ∈ S, s a
→ s′

∈ δ, and a ∈ Σ, the availability and cost of state s′ is calculated using the following formulae:


s′.Q(availability) = s.Q(availability) ∗ Availability(a)

s′.Q(cost) = s.Q(cost) + Cost(a)
(6.1)

Example. We illustrate the integration using the LTS of CPS as shown in Figure 6.3. In state

s0, it has the initial availability of 1 and initial cost of $0. From state s0, it evolves into state

s1 after invocation of i1. Since i1 has availability of 0.9 and cost of $3 (refer to Table 6.1),

therefore the resulting QoS vector of state s1 is 〈r1, 1 ∗ 0.9, 0 + 3〉 = 〈r1, 0.9, 3〉. From state s1,

it evolves into state s3 after the invocation of i3, and since i3 has availability of 0.8 and cost

of $2, the resulting QoS vector of state s3 is 〈r3, 1 ∗ 0.9 ∗ 0.8, 0 + 3 + 2〉 = 〈r3, 0.72, 5〉. Other

states are calculated similarly. In general, given an execution π = s0
a1
→ s1

...
→ sn−1

an
→ sn in

L(M), where {s0, . . . , sn} ∈ S and si
ai+1
→ si+1 ∈ δ, for all 0 ≤ i < n

109

s0:(i1 / b . i2→i3||i4, 〈0, 1, 0〉)

s1:(i3||i4, 〈r1, 0.9, 3〉) s2:(i3||i4, 〈r2, 0.8, 2〉)

s3:(i4, 〈r3, 0.72, 5〉) s4:(i3, 〈r4, 0.72, 5〉) s5:(i4, 〈r5, 0.64, 4〉) s6:(i3, 〈r6, 0.64, 4〉)

s7:(stop, 〈r7, 0.576, 7〉) s8:(stop, 〈r8, 0.512, 6〉)

where i1 is sInv(PBS), i2 is sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

if else

Figure 6.3: LTS of CPS with Availability and Cost


si+1.Q(availability) = s0.Q(availability)∗

i∏
m=1

Availability(am)

si+1.Q(cost) = s0.Q(cost)+
i∑

m=1
Cost(am)

(6.2)

with s0.Q = 〈0, 1, 0〉.

6.3.4 Integration of Response Time

One might naively think that we can adopt the method of calculating the cost as the method

for calculating the response time. However, this would result in incorrect result. Refer

to Figure 6.3, the value of response times r2, r5, r6, and r8 will be 2 ms, 5 ms, 3 ms, and 6

ms respectively by using the method of calculating the cost in Section 6.3.3. In such case

the value of r8 is incorrect. The reason is that it should be calculated as maximum of value

of r5 and r6, since parallelism allows both i3 and i4 to be executed simultaneously, and the

total time for the response time is decided by the maximum response time of i3 and i4. A

challenge to evaluate the maximum time in state s8 is that the information of parallism in

state s2 (i3||i4) is removed in state s5 and state s6 (only left with i3 or i4). In order to retain

this information, we preprocess the BPEL service model M to associate with a time tag

which will be used to calculate the response time in the LTS generation stage.

Algorithm 17 presents the main algorithm for preprocessing. Given a BPEL process P0,

110

s0:([[[i1]1 / b . [i2]2]2
→[[i3]5

||[i4]3]5]5, 〈0, 1, 0〉)

s1:([[i3]5
||[i4]3]5, 〈2, 0.9, 3〉) s2:([[i3]5

||[i4]3]5, 〈2, 0.8, 2〉)

s3:([[i4]3]5, 〈5, 0.72, 5〉) s4:([[i3]5]5, 〈3, 0.72, 5〉) s5:([[i4]3]5, 〈5, 0.64, 4〉) s6:([[i3]5]5, 〈3, 0.64, 4〉)

s7:(stop, 〈5, 0.576, 7〉) s8:(stop, 〈5, 0.512, 6〉)

where i1 is sInv(PBS), i2 is sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

if else

Figure 6.4: LTS of CPS with Response Time, Availability and Cost

TagTime(P0, x) returns the process P′0 which is the process P0 with its internal activities

associated with time tags. Given each activity Acv ∈ P0, a value timetag ∈ R≥0 is associated

with Acv, denoted as Acv.timetag. Acv.timetag represents the total time delay from the

start of process P0, up to the completion of activity Acv. In the following, we describe the

Algorithm 17. The function TagTime(P0, x) is used to calculate the total time delay from

the start of process P0 up to the completion of activity Acv. Variable x ∈ R≥0 is the the

total time delay from the start of process P0 to the point just before the execution of activity

Acv. Lines 1, 5, 9 and 11 are used to detect the structure of the activities. At line 1, if P is

detected to be a sequential activity, activity A will be tagged with the delay x (line 2) as A

is triggered once P is triggered. Subsequently, activity B will be tagged. Since activity B is

executed after the completion of activity A, therefore the x is set to be the value of A.timetag

(line 3). Finally, the timetag of P is the same as timetag of B, since the completion of activity

B implies the completion of execution of process P (line 4). At line 5, if P is detected to be

a concurrent or conditional activity, activity A and activity B will be tagged with value x

(lines 6 and 7), since A and B are triggered at the same time once P is triggered. At line 8, the

timetag of P is the maximum value of timetag of A and B (refer to Section 6.2.2 for details).

If P is detected to be a synchronous receive activity or invocation activity, the timetag of P

is set to the sum of x and ResponseTime(P) (line 10).

111

Algorithm 10: Algorithm TagTime(P, x)
input : P, the BPEL process
input : x, the delay from the start to execution of process P
output: P’, process P with time tag

1 if P is A→B then
2 TagTime(A, x);
3 TagTime(B,A.timetag);
4 P.timetag← B.timetag ;

5 else if P is A||B or A / b . B then
6 TagTime(A, x);
7 TagTime(B, x);
8 P.timetag← max(A.timetag,B.timetag) ;

9 else if P is rec(S) or sInv(S) then
10 P.timetag← x + ResponseTime(P);

11 else if P is reply(S) or aInv(S) then
12 P.timetag← x;

Example. In the following, we use an example to illustrate how to calculate the re-

sponse time for each state in the LTS. Given initial service process P0 = sInv(PBS) / b .

sInv(CBS)→(sInv(MS)||sInv(SS)) , we denote P′0 = TagTime(P0, 0) and

P′0 = [[[sInv(PBS)]1 / b . [sInv(CBS)]2]2
→[[sInv(MS)]5

||[sInv(SS)]3]5]5

where for each activity A ∈ P, [A]t is used to denote the activity A with A.timetag = t. Next,

in the LTS generation stage, Algorithm 11 is used to calculate the response time for each

state.

Given the process P of some state s ∈ S, CalculateTime(P) in Algorithm 11 returns the total

response time t ∈ R≥0 from the initial state s0 to s′. The value t is assigned to Q(responseTime)

for state s′. Lines 1, 6, 11 are used to detect the structure of the activities. We introduce

a special activity skip to denote the completion of execution of an atomic activity. skip is

used for the purpose of calculating the response time, and it will be removed after the

calculation. At line 1, if P is detected to be a sequential activity, the activity A is then

112

Algorithm 11: Algorithm CalculateTime(P)
input : P, BPEL process with time tagged
output: t ∈ R≥0, the time delay from the start of initial process P0 to the completion

of P

1 if P is A→B then
2 if A is skip then
3 return A.timetag;

4 else
5 return CalculateTime(A);

6 else if P is A||B or A / b . B then
7 if A is skip and B is skip then
8 return P.timetag;

9 else
10 return CalculateTime(PreviousActive(P));

11 else if P is skip then
12 return P.timetag;

checked whether it is a skip activity. If it is (line 2), which implies that activity A has

finished execution, A.timetag is returned (line 3). Otherwise, CalculateTime(A) is invoked in

order to determine the response time (line 5). At line 6, if P is detected to be a concurrent

activity or conditional activity, A and B will be determined whether both are skip activities.

If it is (line 7), which implies that P has finished execution, P.timetag is returned (line 8).

Otherwise, CalculateTime(PreviousActive(P)) is invoked in order to obtain the response time

(line 10) where PreviousActive(P) is used to denote previous execution activity. For example,

given s = (i1||i2,V,Q), s′ = (skip||i2,V′,Q′) , and s a
→ s′ ∈ δ, PreviousActive(skip||i2) will return

AtomAct(a) = i1. At line 11, P is determined to be a skip activity implies that P has finished

execution, therefore, P.timetag is returned (line 12).

Example. In Figure 6.4, given the initial state s0, there are two branches due to the con-

ditional process. If sInv(PBS) is executed, it will evolved into state s1 with process P′1

where

P′1 = [[[skip]1]2
→[[sInv(MS)]5

||[sInv(SS)]3]5]5

113

By running the Algorithm 11 for PBS to get the response time of PBS, it will return the

value 2, therefore state s1 has the response time of 2 ms. After the calculating the response

time, the skip are removed from P′1, which result in process P1 = [[sInv(MS)]5
||[sInv(SS)]3]5

as shown in Figure 6.4. The calculation of other states are similar.

6.3.5 Discussion

If a system is verified that it does not satisfy the requirement that the response time is less

than 5 ms in a state s, it does not necessarily mean that such constraint will be violated in

the state s during the execution. The response time is served as a estimated reference value.

Furthermore, we do not take the response time, cost, and availability of internal operations

into account. In reality, such information can be estimated using runtime monitoring

method [123]. Our method can easily extended with such information if they are available.

6.4 Experiment

We evaluate our approach using three case studies. Each case study is a composite service

represented as a BPEL process. The experiment data was obtained on a system using Intel

Core I7 3520M CPU with 8GB RAM. The experimental results are summarized in Table 6.3.

6.4.1 Computer Purchasing Service (CPS)

As described in Section 6.1.1, CPS is used for allowing users to purchase a computer online

using credit cards. The workflow of CPS is illustrated in Figure 6.1. The property Reach

(replyUser∧ (responseTime>5)) is to verify whether the activity reply user (ru) can be reached

with response time more than 5 ms. The result is invalid as shown in Table 6.3, which

implies that if the reply user (ru) is reached, it will be always be less than 5 ms, which is

114

Services Property Result #S #T Time(s)

CPS

(replyUser ∧ (responseTime>5)) invalid 21 29 0.0087

� responseTime≤5 valid 26 36 0.0089

� availability>0.6 valid 26 36 0.0083

LS
R (replyUser ∧ (responseTime>6)) invalid 106 241 0.0584

� responseTime≤6 valid 242 572 0.1866

TAS

R (replyUser ∧ (responseTime>3)) invalid 128 287 0.0631

� responseTime≤3 valid 264 622 0.0642

R (replyUser ∧ (availability≤0.3)) invalid 128 287 0.0437

Table 6.3: Experiment Results

the intended outcome we need. Properties � reponseTime≤5 and � availability>0.6 are LTL

formulas, which are invariant properties denoted that the CPS’s response time must always

be less than two milliseconds and the CPS’s availability is always larger than 50%. These

two properties are both verified to be valid in the CPS system. The number of visited states,

total transitions and time used for verification are listed in Table 6.3, where #S represents

#State, #T represents #Transition and R represents reachability.

6.4.2 Loan Service (LS)

The goal of a loan services (LS) is to provide users for applying loans. The loan approval

system has several component systems, Loan Record Service (RS), Loan Approval Service

(LAS), Customer Details Service (CDS), Customer Loan History Service (CLHS), Customer

Credit Card History Service (CCHS), Customer Employment Information Service (CES) and

Customer Property Information Service (CPIS). Upon receiving the request from a customer,

CDS will be invoked synchronously. If the requested load amount is less than $10000, CES

is invoked and then RS is invoked to record the customer’s loan information. After that,

loan approval message will be replied to the customer. Otherwise, if the requested amount

115

is not less than $10000, CLHS, CCHS, CES and CPIS are invoked concurrently to obtain

more detailed information about the customer. Upon receiving all replies, LAS is invoked

to determine whether to approve the load request of the customer or not. If the request is

approved, RS is invoked synchronously and then loan approval message will be replied

to the customer, otherwise, loan failure message will be replied to the customer. Two

properties are verified for LS as listed in Table 6.3, we omit the discussion of the properties

as they are similar to properties of CPS.

6.4.3 Travel Agency Service (TAS)

Travel Agency service (TAS) provides a service that helps users to arrange the flight,

hotel, transport, etc., for a trip. Once the request is received from the user, Hotel Booking

Service (HBS), Fight Booking Service (FBS), Local Transport Service (LoTS) and Local

Agent Service (LAS) are triggered to search for available hotel, flight, local transportation

and local travel agent concurrently that fulfill the user’s requirements. If all four services

have returned non-empty results, Record Booking Information Service (RBS) and Notify

Agent Service (NAS) are invoked concurrently to store detailed booking information into

the system and notify the agent about the customer’s details. Finally, TAS replies the

detailed booking information to the user. Otherwise, TAS replies booking failure result to

the user. Three properties are verified for TAS as listed in Table 6.3. Properties Reach (reply

User ∧ (responseTime>3)) and � responseTime≤3 are similar to properties verified in CPS,

therefore we omit discussion of these two properties here. Property Reach (replyUser ∧

(availability≤0.3)) is to verify whether reply user (ru) can be reached with the availability

less than 0.3. The result is invalid as shown in Table 6.3, which implies that if the reply user

(ru) is reached, the availability is always greater than 0.3, which is the intended result we

need.

The experiment shows that our approach can be used to verify the combined functional

116

and non-functional property for real-world BPEL program efficiently.

6.5 Related Work

In this section, previous works will be discussed and compared with verification of web

service composition, constraint synthesis of web service composition.

6.5.1 Verification of Web Service Composition

A number of approaches have been proposed to deal with requirements of web service

composition. These work can be divided into two major directions. One direction is to

transform WS-BPEL processes into intermediate formal models specified in some formal

languages and then verify the functional behaviors of the service composition based on the

formal models.

Xiang Fu et al. [86, 84, 88, 48] propose a two steps approach. First, each BPEL process is

translated to a guarded automaton. Subsequently, these guarded automata are mapped to

Promela. Interactions of composite web service are modeled as conversations, the global

sequence of messages exchanged by the web services. Data used in the conversations

are mainly in XML format. To capture the data semantics, each transition of a guarded

automaton is equipped with a guard that is expressed using an XPath [12] expression.

The use of XPath expressions as guards allows them to express the manipulation of XML

message contents. As communication among web services is asynchronous, each peer is

equipped with a FIFO queue to store incoming messages. It is known that checking the

temporal properties of message sequences for unbounded queues is undecidable [85]. To

mitigate this problem, an abstraction technique called synchronizability [86] is proposed. A

composite web service is synchronizable, if the conversation set remains same when asyn-

117

chronous composition is replaced by synchronous communication. Complete verification

is possible if the composite web services are synchronizable. If the composite web service

cannot be shown to be synchronizable, then only partial verification can be achieved by

fixing the length of input queues. Synchronizability of the web services is checked at the

level of guarded automata before translation into Promela. A tool, Web Service Analysis

Tool (WSAT), has been developed and the details can be found in [88, 47, 44].

Foster et al. [78] proposed a Finite State Processes (FSP) approach. First, they transform

the BPEL process into FSP. Subsequently, the model checker for FSP, Labelled Transition

System Analyzer (LTSA), is used for the verification for the deadlock freeness and temporal

logic properties. If a counterexample is found, it is shown in a message sequence chart

(MSC) for the purpose of intuitive presentation. In [79, 81], they further consider the

conformance checking of BPEL and other specification languages such as WS-CDL and

MSC. The verification of BPEL properties, as well as conformance checking could be done

in the WS-Engineer [80], which has been implemented as an Eclipse plug-in.

Stahl gives the complete transformation from BPEL4WS 1.1 to Petri nets in [145]. Lohmann

extends the work of Stahl, presenting a feature-complete Petri net semantics for WS-BPEL

2.0 [112]. With the semantics, Lohmann presents several analysis: detection of unreachable

activities, detection of multiple simultaneously enabled activities that may consume the

same type of message, detection of cyclic links, and checking for 56 of the 94 WS-BPEL

static analysis goals. Martens [116, 118, 117, 115] introduces three criteria (i.e., usability,

compatibility and consistency between executable and abstract processes) for business

processes and their compositions. A BPEL process is called usable (or controllable) if

there exists an environment with which the process can interact with such that the process

terminates properly. Two BPEL processes are called compatible if their composition is

usable. A BPEL is said to simulate another BPEL process if each environment that makes the

latter usable makes the former usable as well. Two BPEL processes are called equivalent (or

118

consistent) if the one simulates the other and vice versa. Martens also presents algorithms

to check if BPEL processes satisfy these criteria. These algorithms have been implemented

in the tool WOMBAT [119].

Fisteus et al. [36] proposed a tool VERBUS. VERBUS is designed in a modular way. It

proposed an architecture with three layers: the design layer, the formal layer and the

verification layer. The design Layer could potentially accept multiple input languages

(currently it only supports BPEL4WS 1.1), and translates them to a common formal model

in the formal layer. With this formal model, it could make use of different model checkers

in verification layer for verification purpose. Model checkers that are supported currently

are NuSMV, SMV and Spin. Ferrara [76] proposed an approach that translates BPEL4WS

to LOTOS. The specification in LOTOS allowed temporal logic model checking, but also a

simulation and bisimulation analysis. A two-way mapping between between LOTOS and

BPEL4WS is supported, so that the counterexamples that encountered could be expressed

in BPEL. Furthermore, the counterexamples could be mapped back to BPEL4WS for dis-

playing to the user. Koshkina [107, 108] proposed a small language BPE-calculus to capture

a subset of BPEL features. An existing verification tool called the Concurrency Workbench

(CWB) is customized to verify BPE-calculus. The tool provides deadlock-freeness checking,

temporal checking, event preorder checking, and behavior equivalence checking. Salaün

et al. [135] advocates the use of strength of different process algebra to collaborately model

check the web service compositions. In particular, it gives the mapping from BPEL4WS to

CCS, and CWB tool, which supports verification of CCS, could be used to model check it

subsequently.

Hallé et al [96] propose an approach to verify whether Web applications are implemented

following the interface contract that specifies their expected behaviour or not. However,

our work is focused on the verification of combined functional and non-functional require-

ments.

119

Another direction is focused on the non-functional aspect of BPEL processes. In [106],

Koizumi and Koyama propose a performance model to estimate the processing execution

time by integrating a Timed Petri Net model and statistical models. However, it only

focuses on one type of non-functional requirements and does not consider the functional

behaviors. In [89], Fung et al. propose a message tracking model to support QoS end-to-end

management of BPEL processes. This work is based on the run-time data, which needs the

deployment of the services, in addition, it does not consider the functional requirements of

BPEL processes. Our approach verifies both functional and non-functional requirements

at design time, which can detect errors at the early stage. In [163], Xiao et al. propose

a framework to use the simulation technique to verify the non-functional requirements

before the service deployment, which is similar to our work. While their work only focus

on non-functional aspect, our work supports verification of combined functional and non-

functional properties. In [50], Cardoso et al. and Jaeger et al. propose measurement

approaches based on the workflow structures of web service processes, such as parallel,

sequential and so on.

6.5.2 Constraint Synthesis of Web Service Composition

Constraint synthesis of Web Service Composition shares common techniques with work

for constraint synthesis for scheduling problems. The use of models such as Parametric

Timed Automata (PTA) [25] and Parametric Time Petri Nets (TPNs) [159] for solving such

problems has received recent attention. In particular, in [56, 56] parametric constraints are

inferred, guaranteeing the feasibility of a schedule using PTAs with stopwatches. In [29],

we extended the inverse method to the synthesis of parameters in a parametric, timed

extension of CSP. Although PTAs or TPNs might have been used to encode (part of) BPEL

language, our work is specifically adapted and optimized for synthesizing local timing

constraint in the area of servicep composition. The quantitative measure of the robustness

120

of real-time systems has been tackled in different papers (see [114] for a survey). However,

most approaches consider a single dimension : transitions can usually be taken at most ε

(before or after) units of time from their original firing time. This can be seen as a ıball in | U |

dimensions of radius ε. In contrast, our approach quantifies robustness for all parameter

dimensions, in the form of a polyhedron in | U | dimensions. Our method is related to

using LTS for analysis purpose in Web services. In [130], the author proposes an approach

to obtain behavioral interfaces in the form of LTS of external services by decomposing

the global interface specification. It also has been used in the model checking the safety

and liveness properties of BPEL services. For example, Foster et al. [78] transform BPEL

process into FSP, subsequently using a tool named as WS-Engineer for checking safety and

liveness properties. Simmonds et al. [143] proposes a userguided recovery framework for

Web services based on LTS. Our work uses LTS in synthesizing local time requirement

dynamically.

Our method is related to the finding of a suitable quality of service (QoS) for the sys-

tem [169]. The authors of [169] propose two models for the QoS-based service composition

problem [34] model the service composition problem as a mixed integer linear problem

where constraints of global and local component serviced can be specified. The difference

with our work is that, in their work, the local constraint has been specified, whereas for

ours, the local constraints is to be synthesized. An approach of decomposing the global

QoS to local QoS has been proposed in [20]. It uses the mixed integer programming (MIP)

to find optimal decomposition of QoS constraint.

6.6 Chapter Summary

In this chapter, we have illustrated our approach to verify combined functional and non-

functional requirements (i.e., availability, response time and cost) for Web service com-

121

position. Furthermore, our experiments show that our approach can work on real-world

BPEL programs efficiently. In addition, we have implemented our approach into the tool

VeriWs [53], which will be introduced in Chapter 7.

122

Chapter 7

Tool Implementation: VeriWS

Web service technologies enable dynamic inter-operability of heterogeneous and dis-

tributed Web-based platforms. The de facto standard for Web service composition is Web

Services Business Process Execution Language (WS-BPEL) [102], an XML-based orchestra-

tion business process language for describing the behavior of a business process based on

its interactions with its component services. It supports various compositional structures

such as sequence, parallel composition, conditional choice, etc., to facilitate the composi-

tion of Web services. This chapter we use the approach proposed in the previous chapter

(Chapter 6) to implement our tool, which will be presented in this chapter.

There are two crucial classes of requirements for Web service composition, i.e., functional

and non-functional requirements. Functional requirements are related to the conformance

of Web service composition to the requirements on its functionality, whereas non-functional

requirements are related to the quality of service (QoS), e.g., response time, availability,

and cost. Non-functional requirements can determine the success or failure on Web service

composition, as the Web service composition that is functionality correct but with poor

performance is not likely to be adopted by the users. To guarantee the performance of Web

123

service composition, the non-functional requirements are often noted down in service-level

agreements (SLAs), which are a contractual basis between service consumers and service

providers on the expected QoS level. Given a computer purchasing service (CPS), e.g.,

Dell.com, an example of functional requirements is that “the CPS always replies to users

with the purchasing status", whereas an example of non-functional requirements is that

“the CPS always responds within 3 seconds".

Concurrency has been frequently used in Web service composition. Nevertheless, con-

currency often leads to subtle bugs as programmers have to deal with issues like multi-

threads and critical regions. Yin et al. [166] reports 39% of concurrency bugs are not

fixed correctly and concurrency bugs are the most difficult to fix among common bug

types. Thus, it is desirable to apply automatic verification techniques on WS-BPEL, e.g.,

model checking [58]. Existing tools have provided verification for either functional re-

quirements [82], [88], [36], [119], [150] or non-functional requirements [171], however, they

could not support for combined functional and non-functional requirements. An example

of combined functional and non-functional requirements is “CPS will always reply to the

user, and when CPS replies to the user, the delay of CPS will not be larger than 3 seconds

(from the points where it receives the request)".

Although combined functional and non-functional requirements are important for Web

service composition, currently there is no integrated tool support for these two classes of

requirements. To facilitate the checking and improvement of functional and non-functional

aspects of Web service composition, we have developed a toolkit called VeriWS. VeriWS

is a tool designed to verify Web service composition for combined functional and non-

functional requirements, based on the QoS of participated component services. A coun-

terexample will be provided when the violation of a requirement is detected. It also inte-

grates with a simulator component to provide the simulation on behaviors of the composite

service, as well as, to replay the counterexample that is reported.

124

In the following, we present the main features of VeriWS.

• It supports verification on different kinds of combined functional and non-functional

properties of Web service composition, i.e., linear temporal logic (LTL) properties,

reachability properties, and deadlock-freeness properties.

• It supports the simulation of Web service composition models and provides the

counterexample in WS-BPEL, so that developers can easily locate the origin of the

bug and subsequently fix it.

• It is easy to use for Web service modeling, testing and verification.

Our initial experiment was illustrated in [54], it has demonstrated the effectiveness of our

method. To our knowledge, VeriWS is the first tool to provide verification on combined

functional and non-functional requirements of Web service composition.

7.1 VeriWS

7.1.1 Architecture and Implementation

VeriWS is a self-contained toolkit that provides the state-of-the-art verifier for combined

functional and non-functional requirements for Web service composition specific to WS-

BPEL. Given WS-BPEL programs with QoS values for each component service, VeriWS

enables integrated verification of both functional and non-functional requirements. Web

service composition is verified directly based on its operational semantics. We adopt

the formal operational semantics of WS-BPEL described in [78]. With the operational

semantics, a WS-BPEL program can be treated as a transition system, which is subject to

model checking. When the verification is violated, a counterexample in WS-BPEL will be

provided to make developers easier to find and correct problems.

125

BPEL

Service
Functional / Non-Functional

Properties Editor

Verifier

LTL

Verifier

Reachability

Verifier

Deadlock-freeness

 Verifier

Internal

Processes

Collection
Simulator

BA

Cost

Aggregator

Aggregator

Model Checker

Response Time

Aggregator

Properties

Collection

Availability

Aggregator

BPEL Parser
Assertion Parser and Buchi Automata

Translator
Parser

Figure 7.1: VeriWS Architecture

VeriWS is implemented in C# and uses a modular architecture. It provides powerful editor,

simulator, and verifier. Figure 7.1 shows the architecture of VeriWS. To verify the composite

service using WS-BPEL, a user first inputs the WS-BPEL service description and combined

requirements to be verified using the editor. The editor is implemented using the text editor

component of Sharp Develop framework1, which supports multi-documents environment

and is customizable in terms of syntax highlighting, code folding, etc.

Subsequently, the WS-BPEL service description and the combined requirements are parsed

into processes collection and properties collection respectively. The verifier is then used

to check the WS-BPEL service against the combined requirements. The verifier checks the

combined requirements based on the aggregated QoS values obtained from the aggregators.

There are three kinds of verifiers, i.e., LTL verifier, reachability verifier and deadlock-

freeness verifier, which are designed to check LTL properties, reachability and deadlock-

freeness properties respectively. VeriWS offers extensible software architecture, such that

new verifiers and aggregators could be plugged in easily.

1http://www.icsharpcode.net/OpenSource/SD/Default.aspx

126

http://www.icsharpcode.net/OpenSource/SD/Default.aspx

QoS Attribute Sequential Parallel Loop Conditional

Response
Time

n∑
i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Table 7.1: Aggregation Function

The simulator can be used to visualize the behavior of a WS-BPEL service and the combined

requirements. The simulator can also be used to replay the counterexample returned by

the verifier. We illustrate the details of verifier, aggregator and simulator in the following.

7.1.2 Aggregator

Different aggregators are used to aggregate different QoS based on the their aggregation

functions. Table 7.1 shows the aggregation functions that response time aggregator used for

different compositional structures. Response time aggregator sums up the response time of

component services in sequential structure, i.e., the response time of the composite service

is calculated by summing up the response time of the n participated component services.

The response time of the composite service composed by parallel structure is decided

by the maximum response time among the n participated component services. As for

loop structure, the response time of the composite service is obtained by summing up the

response time of the participating component service for k times, where k is the number

of maximum iteration of the loop. While for the conditional composition, the response

time of the composite service is the maximum response time of n participating component

services since at the design phase it is unknown which guard will be satisfied. Cost and

availability aggregators work similarly, where their aggregation functions could be found

in [54].

127

7.1.3 Verifier

The verifier model checks combined functional and non-functional requirements. If a

counterexample is found, it can be replayed using the simulator. Several verifiers are im-

plemented to cater for different kinds of combined requirements. There are three categories

of properties that are currently supported by the verifier: deadlock-freeness, reachability,

and LTL. The verifier integrates the aggregated QoS values from the aggregators, into the

transition system that represents the WS-BPEL process using approaches in [54], and offers

verification for the following properties:

LTL Property. An LTL property checks whether the property specified in LTL holds.

To verify the LTL formulae, we adopt the automata-based on-the-fly verification algo-

rithm [149, 70], i.e., by firstly translating a formula to a Büchi automaton (BA) and then

checking emptiness of the product of the system and the automaton.

Reachability Property. A reachability property asks whether there exists a state that fulfills

a given property. The properties are specified using the constraint on a set of verification

variables. The verification variables are manipulated by the WS-BPEL service using the

extended WS-BPEL attributes [128]. To verify reachability, Depth First Search (DFS) or

Breath First Search (BFS) is applied on the transition system of the WS-BPEL process to

search for a state that fulfilled the given property.

Deadlock-freeness. Checking deadlock-freeness is to check whether a WS-BPEL service

contains a deadlock. The WS-BPEL service starts with receiving the message from the user,

and ends with reply the user with the desired result. A state is deadlocked if it does not

have any outgoing transitions, and the user has not yet been replied. To verify deadlock-

freeness, standard graph traversal algorithm (e.g., DFS or BFS) is applied on the transition

system of the WS-BPEL process to search for a deadlock state.

128

Tool Requirement Input Intermediate

WSEngineer Functional BPEL FSP
WSAT Functional BPEL GFSA

VERBUS Functional BPEL Promela
WOMBAT Functional BPEL Petri nets

AgFlow Non-functional Statecharts –
VeriWS Combined BPEL –

Table 7.2: Web Service Verification Tools

7.1.4 Simulator

The simulator could be used to visualize the behaviors of a WS-BPEL service in the form

of a transition system. The simulator provides various simulation functions for users, e.g.,

complete generation of the transition system – where the user could generate entire state

space of the WS-BPEL program; interactive exploration of the transition system – where

the user could view the subset of the transition system by exploring on the actions of their

interest; random simulation - where an example trace is automatically generated for the

user. This allows users to have an in-depth understanding on the behavior of the WS-

BPEL service through the simulation interface. The simulator is also used to visualize BA

generated from the negation of a LTL property. In addition, the simulator could also allow

the user to replay the counterexample returned by the verifier, when a property is violated,

in order to aid the user on finding out the origin of the problem.

7.1.5 Comparison with Existing Tools

Table 7.2 shows the comparison of VeriWS with existing tools. Existing tools can ei-

ther verify only functional requirements or non-functional requirements as shown in the

Requirement column. Existing functional verification tools (WSEngineer [82], WSAT [88],

VERBUS [36], WOMBAT [119]) takes WS-BPEL as input, and translate WS-BPEL into an in-

termediate formal language (e.g., FSP, Petri nets) and use verification techniques and tools

129

for the intermediate formal language (e.g., LTSA2 tool is used for FSP) for verification. Their

counterexamples are in their respective intermediate formal language (e.g., counterexample

of WSEngineer is in FSP). Existing non-functional verification tool (AgFlow [171]) requires

the user to provide corresponding statecharts [97] as input to provide the non-functional

analysis for the composite service.

In [156, 151], we have developed the tool on verification of computation orchestration

language, nevertheless the tool is only focused on functional requirement of Orc lan-

guage [105]. In [153, 111], we have developed tools in analyzing the time requirement,

which are only focused on the non-functional requirement.

Compared to existing tools, VeriWS is distinguished by several features. First, VeriWS

supports efficient combined functional and non-functional verification which could not be

achieved by any existing tools. In addition, for non-functional verification, AgFlow only

provides for the non-functional analysis for the composite service as a whole, e.g., “the CPS

will always be response within 3 seconds". In contrast, VeriWS could support more “fine-

grained" non-functional requirement such as “when invoking the shipping service, CPS

will not be delayed for more than 3 seconds". Second, VeriWS does not translate WS-BPEL

to an intermediate formal language; therefore it could provide the counterexample in WS-

BPEL language. Another advantage is that, this also provides a more natural handling of

data semantics in XML, where formalism like XPath3 is normally used to retrieve particular

data elements in an XML document. WSAT is the only existing tool that supports on the

XML data manipulation, and to support a single line of XPath operation, it requires to

translate to 56 lines of Promela codes (excluding the comments) [87]. The translated code

is hardly comprehensible. While in our approach, we could directly manipulate the XML

data based on the semantics of XPath operation. This will in turn provide the user with

2www.doc.ic.ac.uk/ltsa/
3www.w3.org/TR/xpath/

130

www.doc.ic.ac.uk/ltsa/
www.w3.org/TR/xpath/

<process xmlns:bpel="http://VeriWS/" ... >
...
<sequence>
<receive ... />
<if>
<condition>$CustomerType = ’Corporate’</condition>
<invoke partnerLink="CBS" ... />
<else>
<invoke partnerLink="PBS" ... />
</else>
</if>
<flow>
<invoke partnerLink="MS" ... />
<invoke partnerLink="SS" ... />
</flow>
<reply ... />
</sequence>
</process>

Figure 7.2: WS-BPEL Description for CPS

a more pleasant experience to understand the behaviors of WS-BPEL services using the

simulation tool.

7.2 Demonstration

The section is to complement with the video demonstration to illustrate the models and

requirements to be verified. We use the Computer Purchasing Service (CPS), a service that

allows users to purchase a computer online using credit cards.

7.2.1 Computer Purchasing Service (CPS)

The WS-BPEL program of CPS is described in Figure 7.2. In the following we illustrate

the workflow of CPS. Upon receiving the request from the customer with his personal

information and the computer he wishes to buy, if the type of the customer is corporate,

Corporate Billing Service (CBS) is invoked synchronously (i.e., waiting for the reply from

CBS before moving on) to bill the customer, otherwise, Personal Billing Service (PBS)

is invoked synchronously to bill the customer. Manufacture Service (MS) and Shipping

131

Service (SS) are triggered concurrently once receiving the billing confirmation message.

MS is invoked synchronously to inform the manufacture department with the purchased

computer. SS is invoked synchronously to arrange the shipment for the customer. Finally,

the purchasing result will be replied to the customer.

7.2.2 Requirements for Verification

We provide verification on five requirements, which are listed as follows:

1. CPS |= deadlockfree

2. CPS |= � (ReplyUser =⇒ ResponseTime ≤ 6)

3. CPS |= � Availability ≥ 0.95

4. CPS |= � Cost≤5

5. CPS |= reach (invokeCBS ∧ Cost<1)

The first property is the deadlock-freeness property which is used to check whether CPS

is deadlock-free. The second property (i.e., � (ReplyUser =⇒ ResponseTime ≤ 6)) is an

LTL property, which is to check whether the CPS always replies to users within 6 seconds.

The third property (i.e., � Availability ≥ 0.95) is an LTL property which is used to check

whether the availability of CPS is always greater or equals to 0.95. The fourth property

(i.e., � Cost≤5) is an LTL property which is used to check whether the cost incurred by CPS

is always less than or equal to 5 dollars. The fifth property is a reachability property (reach

invokeCBS∧Cost<1) is a reachability property, which is used to find out whether there is a

possibility that the accumulated cost is less than 1 dollar at the time when CBS is invoked.

Both the second and fifth properties check the combined functional and non-functional

requirements.

132

7.3 Chapter Summary

For Web service composition, both functional and non-functional requirements are im-

portant. Therefore, it is crucial to verify functional and non-functional requirements of

composite services at design time so that it could detect the problem before deployment.

With VeriWS, we provide a tool to check the satisfiability of combined functional and

non-functional requirements of composite services directly based on their semantics.

At the runtime, component services could behave differently after being modified by

service providers, or could fail due to various reasons such as network problems, software

bugs, hardware failure, etc. Therefore, we propose an automated approach to calculate the

recovery plan once detecting the failure in Chapter 8.

133

134

Chapter 8

Automated Runtime Recovery for

QoS-based Service Composition

Since SOA allows functionalities of the composite services to be distributed to third party

service providers; therefore component services are allowed to evolve freely, independently

of each other. Component services could behave differently after being modified by service

providers, or could fail due to various reasons such as network problems, software bugs,

hardware failure, etc. In addition, a composite service (expressed, e.g., in BPEL) uses late

binding mechanism, where abstract services are used during design time, and the concrete

services would only be decided during runtime. As a result, design-time validation of

composite services, such as through testing or static verification, is insufficient. Therefore,

runtime monitoring of the functional properties, and being able to recover from properties

violations, are essential for the dependability of a composite service.

Composite service languages, such as BPEL, are equipped with constructs to support the

compensation mechanism. The compensation mechanism is an application-specific way to

reverse completed activities. For example, the compensation of making a hotel reservation

135

would be to cancel the reservation. One of the important issues of the current compensation

mechanism is that it is uncertain whether the compensation will lead to a system state that

could satisfy the functional properties of the composite service.

Existing works [142, 143] address this problem by devising a recovery plan that allows

the system to recover from properties violations, based on exploring the state space of the

composite service using planning techniques based on SAT-solvers. This approach suffers

from several disadvantages. First, the full state space needs to be generated for recovery

plans exploration; therefore it might encounter the state explosion problem, especially when

dealing with large-scale service composition (see, e.g., [73]). Second, the QoS aspects (e.g.,

dependability and response time) of the recovery plan are not taken into account explicitly

in this approach. An important aspect of a recovery plan is the QoS. A recovery plan with

poor QoS is not only ineffective, but also it might result in undesired side effects such as

compensation loops, i.e., it leads to failed services and compensate repeatedly. Because a

failed service has low dependability, the recovery plan that involves the invocation of the

failed services will be filtered away in a selection procedure that is QoS-aware.

In this chapter, we address this issue by proposing a technique based on genetic algorithms

(GA) for searching for a recovery plan. GA are computational methods inspired by the

biologic evolution, which have been used to solve a variety of problems (see, e.g., [100]).

Traditional GA use fix-length encodings, called chromosomes. However, using chromo-

somes to encode the recovery plan poses a challenge, as the length of chromosome depends

on the size of the state space, which is unknown beforehand. Therefore, an estimation on

the chromosome length is necessary. Exact calculation of the length of chromosome by

exhaustively exploring all possible states is not feasible, as it obviously leads to the state

space explosion. Furthermore, over-approximating the length of chromosome might ren-

der GA ineffective, whereas under-approximation might result in the incomplete encoding

of recovery plan. In this chapter, we propose rGA (recovery plan GA), to find a near-optimal

136

recovery plan in a large state space. rGA addresses the aforementioned problems by adap-

tively adjusting the length of chromosomes with respect to the size of the state space during

the recovery plan searching. Furthermore, rGA does not require generating the full state

space – it only generates the partial state-space on-the-fly during the exploration. Our

contributions are summarized as follows.

1. Novel representation and operations – We propose rGA, a novel GA making use

of dynamic-length chromosomes to represent the recovery plans, and manipulating

them using genetic operators for evolving new recovery plans.

2. On-the-fly state-space exploration – rGA does not require the generation of full state

space beforehand. State space is generated on-the-fly during recovery plan explo-

ration. Since rGA performs guided exploration on the most promising region of the

search space for the recovery plans, only partial state space is explored in the end.

This improves time and space efficiency.

3. Practical recovery plan generation – rGA adopts an enhanced initial population pol-

icy, and selects a recovery plan with near-optimal QoS; this enables the effective

restoration of correctness for the composite service. Furthermore, rGA utilizes run-

time information (such as variable value before failure) and the structure of composite

service, resulting in a more realistic recovery plan with higher chance of success.

We have evaluated rGA with real-world case studies, which demonstrate the effectiveness

over existing approaches.

Chapter Outline. Section 8.1 presents a running example. Section 8.2 introduces the QoS

compositional model and the necessary terminology. Section 8.3 presents rGA. Section 8.4

provides the evaluation of our approach. Section 8.5 reviews the related work. Finally,

Section 8.6 concludes this chapter.

137

8.1 Motivating Example

BPEL [26] is a de-facto industry standard for implementing composition of existing Web

services by specifying an executable workflow using predefined activities. In this chapter,

we assume that composite services are specified using the BPEL language. Basic BPEL ac-

tivities that communicate with component Web services include < receive >, < invoke >,

and < reply >, which are used to receive messages, execute component Web services and

return values respectively. In addition, a< pick > activity is used to wait for the occurrence

of exactly one message from a set of messages.

The control flow of services is defined using activities such as< sequence >,< while >, and

< if >, to provide sequential ordering, loop, and conditional structure respectively. BPEL

also supports parallel execution of activities by using the < flow > activity. A < scope >

activity is used to contain other activities, and it can be associated with a compensation

handler, which specifies activities for compensating the effects of executing the < scope >

activity. In this chapter, the < while > loops are assumed to be bounded and the loop

bound could be estimated using methods like [74].

We consider here a toy example of a Travel Booking Service (TBS), where the goal is to

help users to book for the transportation for their travel choice. The workflow of this

example is illustrated in Figure 8.1a. Upon receiving the service request from the user

(rec), a < pick > activity (denoted by) is enabled to wait for exactly one message from

two possible messages (airline1, airline2) provided by the user. If airline1 message

is received, a < flow > activity (denoted by) is invoked: two activities ba1 and pi1

are invoked concurrently to book airline 1 and purchase airline 1’s insurance respectively.

Similar workflow applies when airline2 message is received. Subsequently, an < if >

activity (denoted by) is used to check whether the purchased amount is larger than 1000. If

yes, the accumulate travel credit (atc) service is invoked to accumulate the travel credit

138

book
airline 1

(ba1)

purchase
airline 1

insurance
(pi1)

onMessage airline1

book
airline 2

(ba2)

purchase
airline 2

insurance
(pi2)

onMessage airline2

receive from user
(rec)

accumulate
travel credit

(atc)toCredit
amount>1000

reply user
(reply)

/

notToCredit
amount≤1000

(a) Workflow for TBS

<pick ext:isControllable=true … >

 ...

 <invoke operation=”ba2”… >

 <compensationHandler>

 <invoke operation=”cA2" … />

 </compensationHandler>

 </invoke>

 ...

</pick>

(b) Compensation for book car service

Figure 8.1: Transport Booking Service (TBS)

that could be used in the next purchase of the user. In either case, reply user (reply()) is

called to return the result of purchases to the user.

Now, let us consider a scenario where the book airline 2 (ba2) service is unreachable.

Classic recovery strategies may retry it or switch it to an alternating service [38]. We denote

such recovery strategy a point recovery strategy, as it involves retrying or switching of a

particular service. There are cases where such a strategy does not work. For example,

139

ba2 service could be down, therefore retrying would not work. In addition, there might

not exist an alternating service that could be switched directly. In such a case, another

important strategy, which we denote as workflow recovery strategy, could be used. A flow

recovery strategy involves modifying the workflow by backtracking to a previous state,

and finding an alternative path for execution. To implement the flow recovery strategy,

one needs to devise a recovery plan specifying how the compensation should be done, and

which alternative path to choose. A good recovery plan also needs to be QoS-aware. We

give below some of the QoS factors that need to be considered.

1) Cost: What is the cost for compensation, and what is the possible future costs that would

be likely to incur in the recovery plan?

2) Dependability: What is the chance of success of the recovery plan?

3) Response time: What is the expected response time of the recovery plan?

These issues will be addressed in the next sections.

8.2 QoS-aware Compositional Model

In this section, we define the QoS-aware compositional model used in this work. We first

give the formal definition of a composite service.

Definition 8 (Composite Service). A composite serviceM is a tuple (Var,V0,P0), where Var

is a finite set of variables, V0 is an initial valuation that maps each variable to its initial value, and

P0 is the composite service process.

The semantics of composite service is captured using labeled transition systems (LTSs), as

discussed in the following.

140

8.2.1 Labeled Transition System

Definition 9 (Labeled Transition System (LTS)). An LTS is a tuple L = (S, s0,Σ, δ), where S

is a set of states, s0 ∈ S is the initial state, Σ is the universal set of actions, and δ : S × Σ × S is a

transition relation.

In this chapter, a state s is of the form (V,P), where valuation V is a partial function that

maps a variable to its value (in its domain), and process P is a composite service process.

Given a composite service (Var,V0,P0), a sample valuation V is ({var1 7→ 1, var2 7→ ⊥},P0),

where var1, var2 ∈ Var. var2 7→ ⊥ denotes that var2 is undefined.

In this chapter, we assume that an error action Err (resp. an error state sErr) always exists

in Σ (resp. S) of any LTS. The error action Err is used to model the error condition (e.g.,

component service unreachable, functional correctness property violated). The error state

sErr is reachable from any state of S via action Err, i.e., ∀s ∈ S \ {sErr}, (s,Err, sErr) ∈ δ.

Given an LTS L = (S, s0,Σ, δ), we use s a
→ s′ to denote (s, a, s′) ∈ δ. Given a state s ∈ S, we

denote by Enable(s) the set of states reachable from s by one transition; formally, Enable(s) =

{s′|s′ ∈ S ∧ a ∈ Σ ∧ s a
→ s′ ∈ δ}. An execution π of L is a finite alternating sequence of states

and actions 〈s0,a1,s1,. . .,sn−1, an,sn〉, where {s0, . . . , sn} ∈ S and si
ai+1
→ si+1 for all 0 ≤ i < n. We

denote by s0
a1
→ s1

...
→ sn−1

an
→ sn the execution π. The prefix of execution π is a fragment of

π that starts from state s0 and ends with a state si where i ≤ n. A complete execution is an

execution starting in the initial state and ending in a terminal state. A state s ∈ S is terminal

if there does not exist a state s′ ∈ S and an action a ∈ Σ such that s a
→ s′ ∈ δ; otherwise, s is

non-terminal. In addition, we denote the LTS of a BPEL serviceM by L(M).

141

1

2

3 4

5 6 8

Err

7

9

11

10

12

rec/τ

airline1/τ airline2/τ

ba1/cA1 pi1/cI1 pi2/cI2 ba2/cA2

pi1/cI1 ba1/cA1 ba2/cA2 pi2/cI2 Err/τ

notToCredit/τ

reply/τ

toCredit/τ

atc/undoTC

Figure 8.2: LTS of TBS example
8.2.2 Example: Transport Booking Service

The LTS L(TBS) of the TBS example is shown in Figure 8.2. The dashed and dotted arrows

are not part of the semantics and they will be explained later on. The formal semantics

of BPEL activities in this chapter is based on [78]. For example, consider the conditional

activity, Aatc/b.Areply, that is enabled at state s9, where the activity Aatc is executed when the

guard b = (amount > 1000) is evaluated to be true, otherwise the activity Areply is executed.

From state s9 = ({amount 7→ ⊥},Aatc /b .Areply), it has two possible enabled states, which are

s10 = ({amount 7→ ⊥},Aatc), and s11 = ({amount 7→ ⊥},Areply) respectively. This is denoted

in the LTS as a state s9 with two outgoing transitions to states s10 and s11. Noted that

if b is defined, b is either false or true; therefore only one branch is explored in the LTS.

Similarly, pick activities (< pick >) and parallel activities (< flow >) are specified using

two outgoing arrows to denote all possible execution orders of their child activities. For

the sake of readability, the error transitions Err from all states (except state s8) to the error

state sErr are not shown in the LTS.

A state is a migration state if the state provides alternative choices of execution, i.e., it mi-

142

grates from the current execution to another one. Migration states include the states where

the < flow > activity, < pick > activity or non-idempotent service invocation is enabled.

A service invocation is idempotent if any invocation with the same input parameters give

the same result. In Figure 8.2, valid migration states from the state s8 are states s4, s2, and

s1, shown in hatched yellow circles.

8.2.3 Backward Actions

BPEL supports compensation mechanism [26] as an application-specific way to reverse

the activity that has already been completed. The limitation of the default compensation

mechanism is that it is difficult to determine the system state after compensation, and

therefore it is hard to decide whether it would end up in a system state where the functional

properties could be satisfied.

To address this problem, we make an observation that every action of BPEL can make up

to two kinds of changes – internal and external changes. Internal changes modify the val-

uation V of current system state to a different valuation V′, while external changes modify

the state of component services. External changes could only be made by communication

activities, e.g., < receive >, < invoke >, and < reply >, since communication activities

are the only activities communicating with component services.

To undo internal changes, the valuation prior to executing for an action is stored as a

snapshot valuation; therefore during recovery process, internal changes can be undone by

reversing the current valuation V′ to the snapshot valuation V automatically. To allow

undoing of the external changes, users are required to specify a compensation handler

for each communication activity a. For example, in Figure 8.1b, a compensation handler

is specified for ba2 operation, which compensates the external changes made by ba2 by

invoking the cA2 operation to cancel the flight that has been booked. As a consequence, for

143

every action a, we have a corresponding backward action, abak, which “goes back" to the state

prior to execute action a by reversing the internal changes using the snapshot valuation

and external changes with the help of compensation handler. An example of backward

action is s8
cA2
→ s4 in L(TBS), where the composite service compensates from state s8 = (P,V)

to s4 = (P′,V′), by undoing the valuations from V′ to snapshot valuation V and at the same

time canceling the flight that has been booked. We use τ to denote a backward action that

does nothing to compensate. A non-backward action is a forward action; an example is

s4
ba2
→ s8. Given a pair of forward action a f and backward action ab, where s

a f
→ s′ and s′

ab
→ s,

we combine them as single notation s
a f /ab
↔ s′, e.g., s4

ba2/cA2
↔ s8. We use ΣF and ΣB to denote

the set of all possible forward actions and backward actions respectively.

8.2.4 Monitoring Automata

In this section, we introduce how the functional properties are represented and verified.

The functional properties are represented using deterministic finite automata (DFA), called

here monitoring automata. Formally:

Definition 10. A monitoring automatonA is (Q,Q0,Σ, δ,F), where Q is a set of states, Q0 ⊆ Q

is a set of initial states, Σ is the universal set of actions, δ : Q × Σ ×Q is a transition relation, and

F ⊆ Q is a set of accepting states.

We use Σ∗ to denote a set of finite sequences of actions. Given a monitoring automatonA,

a sequence of actions a1a2 . . . an ∈ Σ∗ is accepted byA if there exists a path inA of the form

q0
a1
→ q1

...
→ qn−1

an
→ qn, where q0 ∈ Q0, qn ∈ F, ai ∈ Σ and ∀1 ≤ i ≤ n, (qi−1, ai, qi) ∈ δ. An

execution π = s
a1
→ s1

...
→ sn−1

an
→ sn is accepted by A if the sequence of actions a1a2 . . . an is

accepted by A; otherwise it is rejected by A. We denote the set of accepted sequences of

actions as L(A).

Given a functional property Ps, A(Ps) denotes its monitoring automaton. An execution is

144

q1 q2
Err

Σ/Err Σ

Figure 8.3: Monitoring Automata
accepted byA(Ps) if it violates the property Ps (otherwise it conforms to Ps). For example

given a functional property P1 “Unreachability of component service can never happen

in TBS”, where error action Err is triggered when the component service is unreachable.

The monitoring automata for functional property P1 is shown in Figure 8.3. Given a set

of properties, we define the monitoring automata of a composite service CS as MCS =

〈A(P1), . . . ,A(PN)〉, where Pi is a functional property (for 1 ≤ i ≤ N). Given an execution

π in L(CS), π satisfiesMCS, denoted as π |=MCS, if π is rejected by all automataA ∈ MCS.

Otherwise, π violatesMCS, denoted by π 6|=MCS.

8.2.5 Recovery Plan

Consider again the LTS L(TBS) in Figure 8.2. An execution starts from state s1 to state s8 as

shown using dotted arrow (). At state s4, the ba2 service is invoked and subsequently

evolves into state s8. Since the ba2 service is unreachable and timeout by the BPEL runtime

engine, this could lead the system to the error state sErr. However, the service monitor

discovers the anomalies, and interferes the current process. To recover from the error, a

recovery plan is calculated. A recovery plan is a guideline of execution that is used to

compensate the current error (using backward actions) to a migration state, and choose

an alternative path that could lead to the terminal state (using forward actions). In TBS,

a possible recovery plan r is to compensate from state sErr to migration state s2 using

backward actions, and go forward from state s2 to state s12. The recovery plan of TBS,

denoted by rTBS, is shown using dashed arrow ().

Definition 11. A recovery plan r is an execution sErr
a1
→ s1

a2
→ . . .

am
→ sm

am+1
→ sm+1

am+2
→ . . .

an
→ sn

where sn is a terminal state, sm is a migration state with 0 ≤ m ≤ n, ∀j 6 m, a j ∈ ΣB, and ∀ k > m,

145

ak ∈ ΣF.

A prefix of the recovery plan r is a fragment of execution of r that starts with sErr and ends

with si where i ≤ n. Sometimes, we also use the term partial recovery plan to denote a prefix

of a recovery plan. A suffix of a recovery plan r is the fragment execution of r that starts

with any state in the execution, and ends with terminal state sn.

Controllability of a recovery plan. Consider the recovery plan rTBS for TBS. At migration

state s2, according to the recovery plan rTBS, it needs to proceed to state s3. However, the

semantics of the < pick > activity chooses which branch to execute depending on the

messages (airline1 or airline2) that are received from the user. In such case, it is a

violation of semantics if we follow the recovery plan. Therefore, we extend the < pick >

activity with an attribute isControllable by using BPEL extension attribute [26] feature, so

that users are allowed to specify which activities are controllable by the recovery module. In

our example, the < pick > activity that is activated at state s2 is specified to be controllable,

by setting the isControllable attribute to true (see Figure 8.1b). Since the < pick >

activity is specified as controllable, the activity would follow the recovery plan. Besides

the < pick > activity, the user also needs to specify the controllability of the < flow >

and < if > activities. If the < flow > activity is set to be controllable, then the runtime

engine would disregard the concurrent semantics of the < flow >, and follow the recovery

plan using sequential semantics. If the < if > is set to be controllable, then the runtime

engine would disregard the valuation of guard condition and execute the branches that are

chosen by the recovery plan. Suppose that the isControllable of the < flow > activity

that is enabled at state s3 and the < if > activity that is enabled at state s9 is set to be true

and false respectively. In this case, the recovery process would proceed until state s9. At

state s9, since the < if > activity is uncontrollable, the recovery process ends, and normal

execution proceeds. During normal execution, the < if > activity will decide to enter state

s10 or s11 depending on the value of amount.

146

Initial population Generation

Selection Crossover

Mutation

noyes

The terminating condition holds

Figure 8.4: Typical Flow of Genetic Algorithms

We call the maximal controllable portion of an execution its controllable prefix. For the

case of TBS, the controllable prefix is from state sErr to state s9. We say that state s9 is an

uncontrollable state, which is a state that puts an end to the controllable prefix. Similarly, we

denote the portion of an execution starting from uncontrollable state as its uncontrollable

suffix. Although the uncontrollable suffix (i.e., from state s9 to state s12) is not executed as

part of the recovery process, but it provides an insight on the executions that starts from

uncontrollable state. During the calculation of recovery plan, the uncontrollable suffix

could help to find a recovery plan that ends up in an uncontrollable state that has a better

executions starting from it. Therefore, the composite service has higher chance to conform

with both functional and non-functional requirement when recovery process ends and

normal execution starts.

8.3 Service Recovery as a GA Problem

Our work is based on genetic algorithms (GA) for calculation of the recovery plan.

8.3.1 Preliminaries of Genetic Algorithms

GA [146] are stochastic search methods based on principles of biological evolution, inspired

by the "survival of the fittest" principle of the Darwinian theory of natural evolution. GA

encode a potential solution to a specific problem using a simple chromosome-like data

147

Service Monitoring

and Recovery

Module (SMR)

Service Runtime

Engine (RE)

QoS

Database

actions

recovery

plan

Figure 8.5: Service Monitoring and Recovery Framework

structure, and apply genetic operators to these structures in such a way to preserve critical

information. GA are typically suited for optimization problems where the problem space

is large and complex.

Figure 8.4 introduces a typical workflow of GA. A GA begins with an (typically random)

initial generation of chromosomes, which we call it initial population. Genetic operators,

such as selection, crossover, and mutation, are applied on a generation, to evolve the next

generation of chromosomes. Genetic operators operate based on the fitness of chromosomes

– the highly-fit chromosomes have higher chance to be evolved into the next generation.

The fitness of chromosomes is typically quantified by the fitness value of the chromosome.

The evolution continues until the terminating condition. An example of the terminating

condition could be that the number of generations exceeds a predefined upper bound

n ∈ Z>0.

We name our GA-based approach, rGA. To support on-the-fly partial exploration of state-

space in rGA, the recovery plan is encoded in dynamic-length chromosome, in contrast

to the typical fix-length chromosome. The details of encoding will be provided in Sec-

tion 8.3.3. Subsequently, we introduce the genetics operators that manipulate the chro-

mosomes in Section 8.3.4, and demonstrate how the fitness value of a chromosome is

calculated in Section 8.3.5. To allow fast convergence of rGA, we propose an enhanced

initial population policy, as explained in Section 8.3.9. In the following, we discuss the

architecture of the service monitoring and recovery framework that is used in this chapter.

148

8.3.2 Architecture

The architecture of our work is shown in Figure 8.5. The service runtime engine (RE)

is an environment used to execute the BPEL composite services; here, we are using

ApacheODE [3], an open-source runtime engine for BPEL composite services. The Ser-

vice Monitoring and Recovery Module (SMR) contains the monitoring automata,MCS, of

the composite service CS that is executing in the RE. During the execution of CS, the SMR

intercepts the actions from the RE. The intercepted actions are used to update the states of

all monitoring automata mi ∈ MCS that are stored in the SMR, and these actions will also

be recorded as part of the execution πCS for the composite service CS. In addition, after

the RE communicating with a component service S, the SMR will update the QoS database

with the latest QoS information (e.g., response time and availability) of component service

S.

By checking the status of each monitoring automata mi ∈ MCS, the SMR could detect

whether the functional properties of CS are violated. If so, service recovery is initiated to

calculate the recovery plan. The recovery plan will be calculated based on the executionπCS,

and estimated QoS attributes from QoS database. Subsequently, the recovery plan would

be returned to RE and RE would resume with the recovery according to the recovery plan.

The details of the calculation of recovery plan will be introduced in the rest of this section.

8.3.3 Genetic Encoding of a Recovery Plan

We now introduce the representation of recovery plans as chromosomes. The technical

challenge when developing the representation is that classic GA use fixed-size chromo-

somes, while the recovery plan lying within an LTS has an unknown number of states and

transitions. Providing a unique representation of a recovery plan requires an exhaustive

exploration of the LTS in order to know the chromosome length required to encode the

149

0 1 2 index

b-gene f-genes

2 2 1
3
3

4 5 6 7 8
6 5 7 84

initial expanded

s10s3 s4 s5 s6 s9 s11 s12

0 1 2 3 4 5 6 7 8 index

initial expanded

(a) Chromosome for recovery plan

0 1 2 index

b-gene f-genes

2 2 1
3
3

4 5 6 7 8
6 5 7 84

initial expanded

s10s3 s4 s5 s6 s9 s11 s12

0 1 2 3 4 5 6 7 8 index

initial expanded

(b) Global state array

Figure 8.6: Genetic Encoding of Recovery Plan
recovery plan; this might encounter the infamous state-explosion problem. In order to

address this problem, we propose dynamic-length chromosomes to encode the recovery plan,

where the length of chromosomes is adjusted adaptively during the (partial) exploration

of the LTS for the optimal recovery plan.

We adopt here array-based chromosomes. The chromosome in Figure 8.6a represents the

recovery plan rTBS. Given a chromosome of length n, array indices are numbered from 0 to

n−1. A gene is an element of the array, and the value of a gene ranges over non-negative

integer number. Given a recovery plan, there are two parts: backward execution and

forward execution. The backward execution contains only backward actions, followed by

the forward execution that contains only forward actions. Similarly, the genes are divided

into two parts: a b-gene (backward-gene) and a set of f-genes (forward-genes), to represent

the backward execution and forward execution respectively. The b-gene is located at index

0 of the chromosome, and f-genes are located from indices 1 to n − 1. We demonstrate

genetic encoding of recovery plan using the example shown in Figure 8.2. The value of

b-gene shows the number of backward actions are used to compensate. Assume the value

of the b-gene is 3: compensating three steps from error state sErr would reach the migration

state s2.

150

After compensation, we consider forward actions. The forward execution is encoded

differently from the backward execution. To encode the forward execution, we need to

make use of a global state array (see Figure 8.6b) which is shared by all chromosomes.

Intuitively, the values in f-genes give the priority values of the states in state-array. We

introduce f-genes and state-array using the recovery plan rTBS that has been compensated

to migration state s2 according to the value of b-gene. Initially, f-genes and the state

array are empty. From migration state s2, two states s3 and s4 are enabled, calculated by

EnableStates(s2). Since these two states do not exist in the state array, they are added to the

array at indices 1 and 2 (index 0 is always left empty because of b-gene). At the same time,

assume two values, 2 and 1 are added to f-genes. Details on how these values are decided

will be given in Section 8.3.9. Values in f-genes represent the priority values of the states in

state-array at the same index – states s3 and s4 have priority values of 2 and 1 respectively.

Since state s3 has higher priority than state s4 (2 > 1), state s3 is chosen to be the next state

in the recovery plan. This process goes until state s6. At this point, both the state array and

chromosome are dynamically expanded to contain additional states and their priority values.

8.3.4 Genetic Operators

GA make use of crossover and mutation to create new chromosomes for the next generation

of a population. We introduce these two operators, adapted from [90].

Crossover. We make use in rGA of a position-based crossover operator. Two new chromo-

somes are produced from each crossover operation. The algorithm of crossover operator

is shown in Algorithm 12. At line 2, rand(0, 1) randomly chooses a real number between 0

and 1. If the number is less than Pcross then it performs the positional crossover pCrossOver

(line 2) on chromosomes P1 and P2.

We illustrate the positional crossover pCrossOver, using an example shown in Figure 8.7a.

151

P1

 C1

 P2

0 3 1 2 6 4 5

0 6 1 3 2 4 5

1 6 5 3 1 2 4

0 1 2 3 4 5 6

(a) Crossover

P’

1 3 1 2 6 4 5

2 3 4 2 6 1 5

P

0 1 2 3 4 5 6

(b) Mutation

Figure 8.7: Genetic Operations

In Figure 8.7a, a new chromosome C1 is produced by applying positional crossover

pCrossOver to chromosomes P1 and P2. The b-gene of C1 is created by choosing the b-

gene from P1 or P2 randomly. The f-genes of C1 are produced by taking some f-genes

from P1 at random positions; in the example, we take f-genes at positions 2, 5, and 6 from

P1. Subsequently, the empty positions of C1, viz., positions 1, 3, and 4, are filled up by

performing left-to-right scan on P2, and the unused numbers will be used to fill in the

empty positions. The production of another new chromosome C2 (not shown in the graph)

is symmetric to the production of C1. For the b-gene, the crossover operator chooses from

P2, as P1 has been chosen by C1. Subsequently, it takes the f-genes positions 2, 5, and 6 from

P2, and fills in the empty position by performing left-to-right scan on P1. The resulting

chromosome of C2 is 〈1, 3, 5, 1, 6, 2, 4〉.

If the number is greater than Pcross, it simply returns the chromosomes P1, and P2 at line 3.

Mutation. The swap-based mutation operator is used for the mutation operation. The

algorithm of mutation operator is given in Algorithm 13. At line 4, getBackwardSteps()

returns the set of numbers for b-gene that could lead to a migration state, and the rand

function chooses one of them randomly. At line 7, the value of the gene at position i is

randomly swapped with a gene from position 1 to n − 1.

Figure 8.7b shows how a new chromosome P’ is produced by applying the mutation

operator to chromosome P. The b-gene is mutated by randomly picking a number that

152

Algorithm 12: Crossover
input : Chromosomes P1, P2
output: Chromosomes C1, C2

1 C1 ← P1 ; C2 ← P2;
2 if rand(0, 1) ≤ Pcross then 〈C1,C2〉 ← pCrossOver(C1,C2);
3 return 〈C1,C2〉;

Algorithm 13: Mutation
input : Chromosome P
output: Chromosome C

1 C← P;
2 n← |P|;
3 if rand(0, 1) ≤ Pmut then
4 C[0]← rand(getBackwardSteps()); // for b-gene

5 for i = 1 to n − 1 do
6 if rand(0, 1) ≤ Pmut then
7 swap(C[i],C[randInt(1,n − 1)]); // for f-genes

8 return C;

could compensate to a migration state. For f-genes, two genes are chosen randomly and

their values are swapped.

8.3.5 Calculating the Fitness Value

8.3.6 QoS Optimality

In this chapter, we focus on quantitative QoS attributes that can be quantitatively measured

using metrics. There are two classes of attributes, namely positive ones (e.g., availability)

and negative ones (e.g., response time). Positive attributes have a positive effect on the QoS,

and therefore need to be maximized. Conversely, negative attributes need to be minimized.

For simplicity, we only consider negative attributes in this chapter, since positive attributes

can be transformed into negative attributes by multiplying their value with −1. Given n

153

QoS attributes of a service s, we use an attribute vector Qs = 〈q1(s), . . . , qr(s)〉 to represent it,

where qi(s) is the ith QoS attributes of Qs.

A composite service S makes use of a finite number of component services to accomplish

a task. Let C = {s1, . . . , sn} be the set of all component services that are used by S. The com-

posite service communicates with component services using the communication activities,

which includes < invoke > and < onMessage > activities. Given an action a belonging

to the communication activity, S(a) denotes the component service the communication

activities communicates with.

Given an execution π = s0
a1
→ s1

a2
→ . . .

an
→ sn, we use a vector Q′π = 〈q′1(π), . . . , q′n(π)〉 to

represent its aggregated QoS attributes, where q′k(π) is the kth aggregated QoS attributes.

q′k(π) is calculated as follows:

q′k(e) = Fk
a∈R

(
qk

(
S(a)

))
, (8.1)

with R = {ai | i ∈ {1, . . . ,n} ∧ ai is an action belonging to synchronous communication

activity} and Fk is the QoS aggregation function for attribute k, defined below:

Response time Availability Throughput
n∑

i=1
q(si)

n∏
i=1

q(si)
n

min
i=1

q(si)

Other QoS attributes share the similar aggregation functions, e.g, the cost attribute has the

same aggregation function as the response time attribute. Component services have multi-

dimensional attributes, and we need a methodology to facilitate their comparison in term of

their QoS. In this work, we use a simple additive weighting (SAW) technique [167] to obtain

a score for multi-dimensional attributes. This simple additive weighting technique uses two

stages for producing the score. The normalization stage normalizes the QoS attribute values

so that they are independent of their units and range to allow comparison. The weighting

stage allows users to specify their preferences on different QoS attributes. Normalization of

aggregated QoS of an execution π is done by comparing with the maximum and minimum

154

Algorithm 14: Fitness
input : Population popul, chromosome csome
output: Fitness value of csome

1 Exec← ∅ ; state← failure state;
// for b-gene

2 for int i = 1 to ind[0] do
3 Exec← Exec _ state; state← compensate(state);

4 Exec← Exec _ state;
// for f-genes

5 states← EnableStates(state);
6 while true do
7 foreach s ∈ states do
8 if s.id = ∅ then
9 currId← currId + 1;

10 if currId ≥ chromo_size then
11 eArr← createNewGenes(csome, stateArr);
12 foreach csome ∈ popul do
13 csome← csome _ eArr;

14 s.id← currId;

15 state← arg maxs∈states(csome[s.id]);
16 Exec← Exec _ state; states← EnableStates(state);

17 feasible← verify(M,Exec); ncState← getNcState(Exec);
18 ncState.execs.add(getNcExec(Exec));
19 if feasible then
20 return 0.5 + 0.5 ∗ (G(getCExec(Exec)) + G(ncState));
21 else
22 return 0.5 ∗ (G(getCExec(Exec)) + G(ncState));

aggregated QoS. The maximum (resp. minimum) aggregated QoS can be obtained by

aggregating maximum (resp. minimum) QoS attribute values. Formally: Qmin(k) = Fm
i=1Kmin

and Qmax(k) = Fm
i=1Kmax with Kmin = mins∈cs qk(s) and Kmax = maxs∈cs qk(s), where Qmin(k)

and Qmax(k) are the minimum and maximum aggregated values for kth QoS attribute of

execution π, m is the number of states in the longest execution of a composite service, and

CS is the set of all component services that are used by the composite service. m can be

easily obtained with static analysis on the composite service.

Suppose each service has r QoS attributes; the QoS optimality of the execution π, Q(π), is

155

calculated as follows using SAW:

Q(π) =


r∑

k=1

Qmax(k) − q′k(π)

Qmax(k) −Qmin(k)
· wk if Qmax(k) , Qmin(k)

1 otherwise

(8.2)

where wk ∈ R
+ is the weight of qk and

∑r
k=1 wk = 1.

Given an uncontrollable state s, the QoS optimality of the state s, Q(s), is the average value of

the QoS optimality of execution that starts from the state s, i.e.:

Q(s) =
1
|E|

∑
e∈E

Q(e) (8.3)

where E is the set of execution that starts from state s and ends in a terminal state. Given

Er a controllable prefix of recovery plan r, and Sr an uncontrollable state of r, the QoS

optimality of r, Q(r), is:

Q(r) = Q(Er) + Q(Sr) (8.4)

where Q(Er) and Q(Sr) are calculated using Equation 8.2 and Equation 8.3 respectively.

8.3.7 Global Optimality

The global optimality of a recovery plan concerns both the QoS optimality and whether the

recover plan satisfies the functional requirements. The global optimality G(r) of a recovery

plan r is:

G(r) =


0.5 + 0.5 ·Q(r) if r |=M

0.5 ·Q(r) otherwise.
(8.5)

The global optimality for a recovery plan such that r |= M (resp. r 6|= M) has its value

ranging from 0.5 to 1 (resp. 0 to 0.5). Therefore, it can be guaranteed that a recovery

156

plan satisfying the functional requirements has a higher global optimality value than any

recovery plan violating the functional requirements.

Definition 12. Given a composite service CS, and the set of all feasible recovery plans R f , the

optimal recovery plan rm is the feasible recovery plan with the maximal optimal value, i.e., rm =

arg maxr∈R f
(G(r)).

In the following, we present a heuristic method rGA, used to find the optimal recovery

plan.

8.3.8 Fitness Function

Given a chromosome, we need a metric to decide its worthiness as a candidate solution.

The fitness function, denoted as Fitness, is used to provide the evaluation, and returns a

value called fitness value that represents the worthiness of the candidate solution. The

fitness value is typically used by the selector to decide which pair of chromosome instances

will be chosen for mating. Highly fit chromosomes relative to the whole population will

have higher chance of being selected for mating, whereas less fit chromosomes have a

correspondingly low probability of being selected. Some chromosomes generated by the

crossover and mutation operations might be infeasible, i.e., they do not satisfy the functional

properties of the composite service. We do not simply discard infeasible chromosomes as

they might provide candidates that are essential for the optimal solution. Therefore, the

strategy is to allow infeasible chromosomes to stay in the population, but with a lower

fitness value compared to any feasible chromosome. The fitness value of the chromosome

Cr is the global optimality of the recovery plan r that it represents, i.e., Fitness(Cr) = G(r).

The fitness function is computed using Algorithm 14. Lines 7-14 are the procedure dis-

cussed in Section 8.3.3 for the purpose of associating states in LTS with f-genes on the

chromosome. At line 8, s.id is the index of f-gene on the chromosome that state s has

157

been associated with. At line 11, if the current size of the chromosome is insufficient for

encoding the recovery plan, an extension array eArr is created, populated with unused and

unique priority values. The new states that are encountered will be added to the global

state array stateArr at the same time. Subsequently, all chromosomes in the population are

extended with eArr (line 13). At line 15, the enabled state with maximal priority value is

chosen as the next state. At line 17, verify checks whether the execution could satisfyM

using approach discussed in Section 8.2.4; then, getNcState gets the uncontrollable state of

the execution. At line 18, getNcExec gets the part of execution Exec that starts from the un-

controllable state, and is added to ncState.execs, which is a set of uncontrollable suffixes that

are associated with the ncState. At lines 20 and 22, getCExec gets the controllable prefix of

the execution. The calculation of fitness value in lines 19 to 22 is according to Equation 8.5.

For the calculation of Q(s) for uncontrollable state s using Equation 8.3, since we may not

have exact set E due to the partial exploration of the state space, the set E is approximated

using the set of execution starts from s that we have explored so far, which is the set s.execs

(calculated in line 18).

8.3.9 Enhanced Initial Population Policy

We propose an Enhanced Initial Population Policy (EIPP) to overcome shortcomings result-

ing from randomness of genetic algorithm, such as slow convergence and great variance

among the running results. The idea behind is that, by adding the chromosomes likely

to contribute to high fitness values to the initial population, we have a higher chance to

converge faster to an optimal value.

We introduce the EIPP using the recovery plan rTBS. Suppose we now have value 3 in the

b-gene, and the recovery plan would go from state sErr to state s2. At state s2, there are

two enabled states – states s3 and s4. Assume states s3 and s4 do not have their priority

values assigned yet. EIPP decides the priority values based on the global optimality values

158

Algorithm 15: Initial Population
input : n (population size), l (chromosome size)
output: An initial population P

1 P← 〈c1, c2, . . . , cn〉; stateArr← 〈∅1, ∅2, . . . , ∅l〉 ;
2 foreach ci ∈ P do
3 ci ← 〈01, 02, . . . , 0l〉; len← |stateArr|;
4 ci[0]← rand(1, len) ;
5 ci[1 . . . len] = shuffle({1, . . . , len});
6 S← EnableStates(R(c)) ;
7 if rand(0, 1) ≤ PEIPP then
8 Sr

← rankWithFitness(R[c],S \ stateArr);
9 foreach s ∈ Sr do

10 stateArr.Add(s); len← |stateArr|;
11 ci[len]← len;

12 else
13 stateArr.AddAll(S \ stateArr);
14 ci[len . . . |stateArr|]← shuffle({len, . . . , |stateArr|});

of the partial recovery plans. In particular, we compare the global optimality values of

partial recovery plan rp from error state sErr to states s3 and s4 respectively. The global

optimality values of partial recovery plan rp, G(rp), is calculated using Equation 8.5 with

Q(rp) calculated using Equation 8.2.

Note that assigning priority values according to G(rp) does not always provide the optimal

recovery plan. Suppose the partial recovery plan from state sErr to s3 and s4 is r3
p and r4

p

respectively. Assume G(r4
p) > G(r3

p); in such a case, it would always require invoking the

ba2 from state s4 or from state s7. However, ba2 has a low availability value, since it was

previously unresponsive. Therefore, we would end up in getting a recovery plan of low

global optimality value; we denote this as the locality problem.

To address this problem, the priority values are assigned based on the global optimality

value of the partial recovery plan with a probability, denoted as EIPP probability PEIPP ∈

R ∩ (0.5, 1]. The value EIPP of the probability PEIPP is strictly larger than 0.5 to make the

EIPP in favor of assigning the priority values for f-genes based on the global optimality

159

values of partial recovery plans. Suppose that PEIPP = 0.7 and G(r4
p) > G(r3

p), given a

population of 20 chromosomes, on average 6 chromosomes would choose to evolve to state

s4 from state s2, which would lead to a recovery plan with better global optimality value.

During the evolution, the poor recovery plans that choose state s4 from state s2 would be

eliminated and the good recovery plans that choose state s3 from state s2 would be kept.

Therefore, the EIPP probability could effectively mitigate the locality problem.

The algorithm for initializing the population with EIPP is provided in Algorithm 15. Line 1

initializes the population with n chromosomes, which have length l with values of genes

set to 0 (line 3). The state array stateArr is also initialized to length l, where ∅i denotes an

uninitialized value for the ith position. The function rand(1, len) returns a random number

n ∈ Z ∩ [1, len] and assigns it to the b-gene (located at index 0) of chromosome ci (line 3).

Subsequently, we shuffle the numbers of the set {1, . . . , len} randomly, and assign them to

the f-genes from index 1 to len (line 5). Subsequently, we get the enable states of partial

recovery plan that represented by c, denoted as R(c), and assign them to variable S (line 6).

If the random number r ∈ R∩ [0, 1] is not larger than PEIPP (line 7), then the rankWithFitness

function sorts the enabled states S not in the state array stateArr by their fitness values in

ascending order, and assigns them to variable Sr. Sr is an ordered sequence of states ranked

by the fitness values of their partial recovery plans (line 8). We add each state s to the state

array, and assign the corresponding f-genes with value |stateArr| just after adding s – this

will effectively allow us to assign the priority values in the same order as their fitness values

(lines 9–11). Otherwise, all the enable states that are not in state array stateArr are added to

stateArr. Subsequently, we shuffle the numbers of the set {len, . . . , |stateArr|} randomly, and

assign them to the f-genes from index len to |stateArr| (lines 13–14).

160

Algorithm 16: GA Algorithm
input : Abstract LTS LTS
output: Recovery plan Rmax with the best global optimality value over all generations

1 popul← init_popul(pop_size, chromo_size);
2 gen← 1 ; Rmax ← ∅ ;
3 repeat
4 newPopul← max_ind(popul);
5 if fit(max_ind(popul)) > fit(Rmax) then
6 Rmax ← max_ind(popul);

7 foreach 〈P1,P2〉 ∈ sample(popul, pop_size/2) do
8 〈C′1,C

′

2〉 ← crossover(P1,P2);
9 〈C1,C2〉 ← 〈mutation(C′1),mutation(C′2)〉;

10 newPopul← newPopul ∪ {C1,C2};

11 popul← newPopul;
12 gen← gen + 1;
13 until gen > max_gen;
14 return Rmax

8.3.10 rGA Algorithm

The rGA algorithm is given in Algorithm 16. At line 1, the initial population is initialized

using the EIPP given in Algorithm 15 with the default population size pop_size and the

default chromosome size chromo_size. At line 4, the next population newPopul is extended

with the chromosome with maximal fitness value in the current population max_ind(popul),

due to the elitist selection adopted. At lines 5–6, the recovery plan with maximal fitness

value so far is assigned to Rmax. At line 7, pop_size/2 pairs of chromosomes (P1,P2) are

sampled using the selection operator discussed in Section 8.3.4. At lines 8 and 9, crossover

and mutation operations are applied to (P1,P2), and added to the population of the new

generation newPopul. This process repeats until it has gone through the maximum number

of generations specified by max_gen.

Soundness. For rGA to work correctly, we need to ensure that every chromosome uniquely

represents a recovery plan (unique encoding property), and there does not exist any recov-

ery plans that rGA avoid exploring (non-blocking property). We show rGA satisfies these

161

two properties in the following.

Lemma 3 (Unique encoding). Given any state in LTS as a starting state, the proposed chromosome

uniquely encodes a recovery plan.

Proof. For the backward execution, given that the graph is acyclic and the compensation is

deterministic (since there is a deterministic execution from the initial state to the error state

sErr where the failure occurs), the value of the b-gene uniquely determines the migration

state. For the forward execution, once a state is added to the state array, it remains in its

position in the state array. Therefore, starting from the migration state, we could choose an

execution deterministically based on the priority values in f-genes. Combining both, we

show that the chromosome can uniquely determine an abstract recovery execution. �

Lemma 4 (Acyclicity). Given any state in LTS as a starting state, rGA does not avoid the

exploration of any recovery plan.

Proof. This holds due to the fact that there are no recursive activities in BPEL, and due to the

assumption on the loop activities for which the upper bound on the number of iterations

is known. �

8.4 Evaluation

We conducted experiments to evaluate our rGA approach. Specifically, we attempted to

answer the following research questions.

RQ1. How does the performance of rGA compare with the state-of-the-art? We analyze

how long rGA takes to calculate a recovery plan, and compare the performance with the

state-of-the-art.

162

0 5 10 15 20

0.6

0.8

1

Number of Generations

G
lo

ba
lO

pt
im

al
Va

lu
es

FV
FC
TAS

TBS(2)
TBS(200)
LSS(200)

Figure 8.8: Convergence Rate

RQ2. How is the quality of recovery plan that is selected by rGA? We measure the quality

using the formula

quality =
G(r)

G(rexact)
(8.6)

where G(r) and G(rexact) are the global optimality values of recovery plan returned by

the rGA method and the exact method (i.e., the method exhaustively enumerating every

possible recovery plans), respectively.

RQ3. How scalable is rGA? To evaluate the scalability of rGA, we use the parameterized

Large Scale Service (LSS), and Travel Booking Service (TBS) that contain the combinatorial

explosion of recovery plans given large values for parameters. In such cases, it is impractical

to solve by enumerating all recovery plans.

Experimental Setup. The experiments were conducted on an Intel Core I5 2410M CPU

with 4 GiB RAM, running on Windows 7. The mutation and crossover rates for rGA are set

to 0.01% and 0.9% respectively. In addition, the population size is set to 20, the number of

generations is set to 20, and PEIPP is set to 0.7. The algorithm rGA could terminate earlier if

it discovers that the fitness value does not improve for over 6 generations. To evaluate rGA,

we explicitly construct an execution that violates the functional properties and leads to the

error state sErr, and explore the recovery plan from the error state sErr using rGA. Since rGA

could perform differently for each experiment, we took the average of 50 experiments for

163

rGA SAT

case study time (s) quality gen. length time (s)

FV 0.7 1 10 42 3.12

FC 0.12 1 6 20 1.38

TAS 0.22 1 6 13 0.27

TBS(2) 0.47 1 6 N/A N/A

TBS(30) 0.54 1 8 N/A N/A

TBS(60) 0.87 1 8 N/A N/A

TBS(120) 1.24 1 10 N/A N/A

TBS(200) 1.97 1 10 N/A N/A

LSS(30) 0.85 0.97 7 N/A N/A

LSS(60) 0.96 0.97 7 N/A N/A

LSS(80) 1.42 0.96 8 N/A N/A

LSS(120) 1.92 0.95 8 N/A N/A

LSS(200) 2.57 0.94 8 N/A N/A

Figure 8.9: Experiment with rGA

each case. In addition, after the fitness value is calculated for a chromosome, we cache the

fitness value of the chromosome, so that the fitness value for the same chromosome does

not need to be recalculated. We now introduce the case studies used for the experiments. To

answer the previous research questions, we evaluate rGA using five case studies described

in the following.

Flickr [4] is a Web application allowing users to upload and share their photos on the Web.

Two known vulnerabilities in the Flickr Web application [52], namely Flickr Visibility (FV)

and Flickr Comment (FC), are used to evaluate the effectiveness of our approach. Both FV

and FC have been translated to a BPEL model (see [141]).

Flickr Visibility (FV). The options for the photos’ visibility are public, family and private;

users can set the visibility through the setPerms() function. There is a reported issue [1]

on this function to fail on changing the visibility to family, after uploading the photos

with an initial private visibility. The BPEL model contains 28 activities and 8 with explicit

compensation; its LTS consists of 36 states and 86 transitions. The functional property to

164

be monitored for FV is “Flickr guarantees the photos to have the visibility set by the user”.

Flickr Comment (FC). Flickr allows authorized users to add comments to private and

family photos; for public photos, all users are allowed to comment. There is a reported

issue [2] on the failing sequence of a single call to addComment() immediately after an

upload() operation. The BPEL model contains 16 activities and 6 activities with explicit

compensation; its LTS consists of 21 states and 51 transitions. The functional property to

be monitored for FC is “if a user adds comments to a public photo, the comments should

be added successfully into the photo’s comments”.

Trip Advisor System (TAS). This case study is introduced in [142]. The objective of TAS is to

schedule the trip for user. It consists of 25 states and 34 transitions. The functional property

to be monitored for TAS is “the user cannot book both a limousine and an expensive flight”.

Travel Booking Service (TBS). This is the example used throughout the chapter. In the

case study it involves two< onMessage > for two airline services. We parameterize the case

study using n of < onMessage > that for n distinct airline services, each of them involving

airline and insurance booking. We denote TBS with k < onMessage > activities by TBS(k).

For example, the example used in this chapter has k = 2. TBS consists of 7 + 3k states and

8 + 5k transitions. The functional property to be monitored for TBS is “the service always

replies to the user”. TBS contains a non-responsive airline booking service ba2, invoking

ba2would lead to the error state sErr, which violates the functional property.

Large Scale Service (LSS). To better evaluate the scalability of our approach, we built a

BPEL example with a sequence of k < pick > activities. Each < pick > activity consists of

two < onMessage > activities, where one has a good QoS, while the other has a bad QoS.

The optimal recovery plan in such a scenario will always consist of the activities with good

QoS. We denote LSS with k < pick > activities by LSS(k). LSS(k) contains at least 2k states

and 2k unique candidate recovery plans. The functional property to be monitored for LSS

165

is “the service always replies to the user”.

Results. We report the results of evaluating the case studies in Figure 8.8 and Figure 8.9.

Figure 8.8 shows the global optimal values of the case studies by varying the number

of generations, and we could observe the convergence rate for different case studies. It

demonstrates the fast convergence rate for all case studies.

Figure 8.9 shows the details of evaluation for the cases studies. The “time (s)” column

reports the time in seconds for rGA to produce the recovery plan. The “quality” column

reports the quality of the recovery plan found by rGA calculated using Equation 8.6. The

“gen.” column reports the number of generations that are used to search for recovery

plans. We compare the results with [142], which we call SAT, since their approach uses a

SAT solver to find the best recovery plan. The objective of SAT is to find a set of recovery

plans that are functionality correct, and the user is responsible for selecting recovery path

manually. In addition, Their method is required to specify the maximum length k for

the recovery plan, i.e., only the recovery plans less than k and fulfilling the functional

requirements are returned. The “length” column contains the value for k. In contrast, in

our approach, all recovery plans are explored, and functionality correct recovery plan is

chosen automatically in term of their QoS before returning to the user. We compare our

results with theirs using their results on three case studies – FV, FC, and TAS they have

reported in [142]. For other case studies, their results are unavailable (denoted by N/A).

Our method searches the entire state space for optimal recovery plan, without restricting

the length of the recovery plan. Therefore, to facilitate fair comparison, we only compare

with SAT, using the largest k values for the case studies that have been reported in [142].

Our results have shown to outperform theirs for all case studies. In addition, most recovery

plans that returned by rGA are optimal, i.e., quality=1, except in the LSS case study, which

has suboptimal quality, i.e., with quality closed to 1. In addition, we observe that although

LSS(80) and LSS(200) used the same number of generation, but LSS(200) spent more time

166

than LSS(80). This is because LSS(200) contains more states than LSS(80), which results

in longer chromosome and slower processing time. The same observation can be applied,

e.g., to TBS(120) and TBS(200).

Answer to Research Questions. For research questions RQ1–RQ3, the results in Figure 8.8

and Figure 8.9 show that rGA is efficient to offer a recovery plan of good quality, and it is

scalable to large composite service.

8.5 Related Work

This work is related to fixing software faults using genetic algorithm. Weimer et al. [161]

and Arcuri et al. [32] investigate genetic programming as a way to automatically fix soft-

ware faults. Their approach assumes the existence of test cases to test for the functional

correctness of chromosomes. In contrast, our method generates a recovery plan, and the

functional correctness is checked using the monitoring automata; this is a more lightweight

procedure, and it is shown to be suitable for executing it online (see Section 8.4).

This work is related to research on fault-tolerant for service composition. Dodson [68]

transforms the original BPEL process into a fault-tolerant one at compiling time, by con-

sidering common fault tolerance patterns. This approach introduces redundant behavior

to BPEL programs, which may slow down the performance. In contrast, our service mon-

itoring executes at BPEL runtime, which avoids such redundancy. Carzaniga et al. [51]

propose the use of workaround by considering the equivalent sequences of faulty action

in order to provide a temporary solution to mask the effects of the faults on applications.

The approach generates all possible recovery plans, without prioritizing them. In contrast,

our method filters out infeasible recovery plans; as for the feasible ones, they are ranked

by QoS of involved component services.

167

This work is related to automated recovery for service composition. Baresi et al. [38]

propose an idea of self-supervising BPEL processes by supporting both service monitoring

and recovery for BPEL processes. They propose a backward strategy, which is to restore the

system to a previously correct state. However, the strategy does not consider the potential

satisfaction of functional properties, and neither is it QoS-aware. Simmonds et al. [142]

propose an approach to divide a recovery plan to compensate the failures, and guide the

application towards a desired behavior. This work is the closest to ours, and our approach

has several advantages over theirs. Firstly, the method in [142] requires the exhaustive

LTS exploration for the BPEL process by using a SAT solver for calculating the recovery

plan. Our approach only requires a partial exploration of the LTS. Also, their method does

not take into account the QoS of component services explicitly. Our approach accounts for

various QoS aspects of a component service explicitly, and allows users to weight them

according to their preferences.

This work is related to self-adaptation of service composition. In [124], Mukhija and Glinz

propose an approach to adapt an application by recomposing its components dynami-

cally, which is implemented by providing alternative component compositions for different

states of the execution environment. Ghezzi et al. [91] describe an ADAM model-driven

framework for adaptation by choosing a path that could maximize system’s non-functional

properties. Denaro et al. [65, 66] propose a self-adaptive approach for Web services to adapt

the client application dynamically, based on a mechanism for revealing possible runtime

mismatches between requested and provided services. These works are orthogonal to our

work, as they are related to providing runtime adaptation for normal execution based on

the runtime and contextual information, while our work is related to failure recovery.

In [153], we propose an automatic approach to synthesize local time requirement based

on the given global time requirement of Web service composition. In [54], we propose an

approach to verify the functional and non-functional requirements of Web service compo-

168

sition. Different from our previous works, this work is focused on automatic synthesis of

recovery plan.

8.6 Chapter Summary

In this chapter, we address the problem of service recovery by proposing a new method

(rGA) based on genetic algorithms. The method improves the efficiency of existing methods

in flow-based recovery strategy by allowing partial exploration of the LTS for near-optimal

recovery plan. In addition, the recovery plan selection is QoS-aware; therefore, it allows

effective recovery from the failure state.

169

170

Chapter 9

Conclusion and Future Works

9.1 Conclusion

This thesis studies formal analysis of Web service composition. It is focused on two impor-

tant kinds of requirements of Web service composition, i.e., functional and non-functional

requirements. This thesis is concerned with two stages of Web service composition, i.e.,

design time and run time.

Chapter 3, Chapter 4 and Chapter 6 are focused on the design stage. In Chapter 3 , given

the global time requirement we have illustrated our approach to synthesis the local time

requirement for component services of a composite service. Our approach is based on

parameter synthesis techniques for real-time systems. Component services are selected

based on the synthesized result to compose the Web service composition. Then, we need

to guarantee the new Web service composition satisfy both of the functional and non-

functional requirements. Given the non-functional requirement of the composite service,

it is also required to select component services. Chapter 4 proposes a new technique,

namely the dynamic ranking optimization (DRO) to address the problem by considering

171

only a subset of representatives that are likely to succeed, before exploring a larger search

space. Then, we need to guarantee the new Web service composition satisfy both of the

functional and non-functional requirements. Therefore, in Chapter 6, we have proposed

an automated approach to verify combined functional and non-functional requirements

of Web service composition based on the semantics directly. We use LTS to capture the

semantics. We have also developed a tool VeriWS to implement our approach in Chapter 7.

As we are planning to extend the selection to the cloud computing environment, while the

cloud computing services can be modeled using SPL, therefore, Chapter 5 proposes feature

selection on service-based product lines.

At runtime, component services could behave differently after being modified by service

providers, or could fail due to various reasons such as network problems, software bugs.

Therefore, we propose an automated approach (rGA) based on a genetic algorithm to

calculate the recovery plan that could guarantee the satisfaction of functional properties of

the composite service after recovery in Chapter 8.

9.2 Future Work

Possible future work will be introduced in this section.

Chapter 3 has presented a novel technique for synthesizing local time constraints for the

component services of a composite service CS, knowing its global time requirement. We

plan to further improve and develop the technique presented in this paper. First, we will

investigate the possibilities to reduce the number of states and transitions, e.g., in the line

of reduction of equivalent states [28] or using convex state merging [27].

Chapter 4 has addressed the problem of QoS service composition by proposing a new

technique, namely the dynamic ranking optimization (DRO). For future work, we plan to

172

investigate how DRO can work with other service selection approaches, such as differential

evolution [147], for solving the QoS-aware service composition problem.

Chapter 6 has illustrated our approach to verify combined functional and non-functional

requirements (i.e., availability, response time and cost) for Web service composition. Fur-

thermore, our experiments show that our approach can work on real-world BPEL programs

efficiently. We plan to further improve and develop the technique. Firstly, we will con-

sider various heuristics that could be used to reduce the number of states and transitions.

Secondly, we will investigate applying state reduction techniques, such as partial order re-

duction [77], to improve the efficiency of our approach. Lastly, our work could be extended

to other domains such as sensor networks.

Chapter 8 has addressed the problem of service recovery by proposing a new method (rGA)

based on genetic algorithms. As future work, we plan to investigate how to combine rGA

with other techniques, such as differential evolution [147].

In future, we would investigate the extension our works to other domains, such as Web

security [160] and semantic Web services [75, 69]. For example, we could verify whether

there are vulnerabilities on the implementation of Web services, either in the functional or

non-functional aspects, that allow an attacker to exploit.

173

174

Bibliography

[1] http://www.flickr.com/help/forum/46985/. 8.4

[2] http://www.flickr.com/help/forum/15259/. 8.4

[3] Apache ODE. http://ode.apache.org/. 3.3.2, 3.4.3.1, 8.3.2

[4] Flickr. http://www.flickr.com/. 8.4

[5] Linux variability analysis tools (lvat) repository. https://code.google.com/p/linux-variability-
analysis-tools/source/browse/?repo=formulas. 5, B.1.1.3

[6] OASIS Standards. http://www.oasis-open.org/standards. 2.1

[7] PayPal SOAP API Reference. https://developer.paypal.com/docs/classic/api/ PayPalSOAPA-
PIArchitecture. 2.1

[8] Salesforce SOAP API Reference. http://nordicapis.com/rest-vs-soap-nordic- apis-infographic-
comparison. 2.1

[9] Sat4j – the boolean satisfaction and optimization library in java. http://www.sat4j.org/. 5.2.2

[10] Web Services Glossary. http://www.w3.org/TR/ws-gloss/. 2.1

[11] World WideWeb Consortium. Extensible markup language (XML). http://www.w3c.org/XML.
2.1

[12] XML Path Language (XPath) Version 1.0, 1999. http://www.w3.org/TR/xpath. 6.5.1

[13] Simple Object Access Protocol (SOAP) 1.1. Technical report, May 2000.
http://www.w3.org/TR/SOAP/. 2.1

[14] Web Services Description Language (WSDL) 1.1. Technical report, March 2001.
http://www.w3.org/TR/wsdl. 2.1

[15] Web Service Semantics (WSDL-S) 1.0, 2005. http://www.w3.org/Submission/WSDL-S/. 1

[16] Y. Adbeddaïm and O. Maler. Preemptive job-shop scheduling using stopwatch automata.
In TACAS, volume 2280 of Lecture Notes in Computer Science, pages 113–126. Springer-Verlag,
2002. 3.5

175

http://www.flickr.com/help/forum/46985/
http://www.flickr.com/help/forum/15259/
http://ode.apache.org/
http://www.flickr.com/

[17] E. Al-Masri and Q. H. Mahmoud. Discovering the best Web service. In WWW, pages 1257–
1258, 2007. 4.4.2

[18] E. Al-Masri and Q. H. Mahmoud. Qos-based discovery and ranking of Web services. In
ICCCN, pages 529–534. IEEE, 2007. 4.4.2

[19] M. Alrifai and T. Risse. Combining global optimization with local selection for efficient
qos-aware service composition. In WWW, pages 881–890. ACM, 2009. 3.5, 4, 4.2.1

[20] M. Alrifai and T. Risse. Combining global optimization with local selection for efficient qos-
aware service composition. In Proceedings of the 18th international conference on World wide web,
WWW, pages 881–890. ACM, 2009. 6.5.2

[21] M. Alrifai, T. Risse, and W. Nejdl. A hybrid approach for efficient web service composition
with end-to-end qos constraints. TWEB, 6(2):7, 2012. 4.3

[22] M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline services for QoS-based Web service
composition. In WWW, pages 11–20. ACM, 2010. 4, 4.2.1, 4.2.1, 4.4, 4.4.1, 4.5

[23] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 126(2):183–
235, 1994. A.2.3

[24] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In STOC, pages
592–601. ACM, 1993. 3.5

[25] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In IN PROCEED-
INGS OF THE 25TH ANNUAL SYMPOSIUM ON THEORY OF COMPUTING, pages 592–601.
ACM Press, 1993. 6.5.2

[26] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A. Guízar,
N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin, IBM, V. Mehta, S. Thatte, D. van der Rijn,
P. Yendluri, and A. Yiu. Web Services Business Process Execution Language Version, version 2.0.
April 2007. 3, 3.1, 8.1, 8.2.3, 8.2.5

[27] É. André, L. Fribourg, and R. Soulat. Merge and conquer: State merging in parametric timed
automata. In ATVA, volume 8172 of Lecture Notes in Computer Science, pages 381–396. Springer,
2013. 9.2

[28] É. André, Y. Liu, J. Sun, and J.-S. Dong. Parameter synthesis for hierarchical concurrent real-
time systems. In ICECCS, pages 253–262. IEEE Computer Society, 2012. 3.5, 9.2, A.2, A.2.3,
A.2.3.1, A.2.3.2

[29] E. Andre, Y. Liu, J. Sun, and J.-S. Dong. Parameter synthesis for hierarchical concurrent
real-time systems. Engineering of Complex Computer Systems, IEEE International Conference on,
0:253–262, 2012. 6.5.2

[30] É. André and R. Soulat. The Inverse Method. ISTE Ltd and John Wiley & Sons Inc., 2013. 3.5

[31] A. Arcuri and L. C. Briand. A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In ICSE, pages 1–10, 2011. B.1.1.7

176

[32] A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software bug fixing. In
IEEE Congress on Evolutionary Computation, pages 162–168. IEEE, 2008. 8.5

[33] D. Ardagna and B. Pernici. Global and local QoS guarantee in Web service selection. In BPM
Workshops, 2005. 1.1, 3.5, 4, 4.1.4

[34] D. Ardagna and B. Pernici. Global and local qos guarantee in web service selection. In
Proceedings of the Third international conference on Business Process Management, BPM’05, pages
32–46, 2006. 6.5.2

[35] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE Transac-
tions on Software Engineering, 33(6):369–384, 2007. 4, 4.5

[36] J. Arias-Fisteus, L. S. Fernández, and C. D. Kloos. Formal verification of bpel4ws business
collaborations. In EC-Web, pages 76–85, 2004. 6.5.1, 7, 7.1.5

[37] D. Athanasopoulos, A. Zarras, and P. Vassiliadis. Service selection for happy users: making
user-intuitive quality abstractions. In SIGSOFT FSE, pages 32–35, 2012. 4.5

[38] L. Baresi and S. Guinea. Self-supervising BPEL processes. IEEE Transactions on Software
Engineering, 37(2):247–263, 2011. 3.5, 8.1, 8.5

[39] D. Benavides, P. T. Martín-Arroyo, and A. R. Cortés. Automated reasoning on feature models.
In CAiSE, pages 491–503, 2005. 5.3

[40] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In Lectures on
Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 87–124.
Springer, 2003. A.2.3

[41] T. Berger, S. She, R. Lotufo, K. Czarnecki, T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability modeling in the systems software domain. Technical report, Uni-
versity of Waterloo, 2012. B.1.1.3

[42] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Feature-to-code mapping in two
large product lines. Technical report, University of Waterloo, 2010. B.1.1.3

[43] M. Berkelaar, K. Eikland, and P. Notebaert. Open source (mixed-integer) linear programming
system. http://lpsolve.sourceforge.net/. 4.3

[44] A. Betin-Can, T. Bultan, and X. Fu. Design for verification for asynchronously communicating
web services. In Proceedings of the 14th international conference on World Wide Web, WWW 2005,
Chiba, Japan, May 10-14, 2005, pages 750–759, 2005. 6.5.1

[45] D. Bianculli, D. Giannakopoulou, and C. S. Pasareanu. Interface decomposition for service
compositions. In ICSE, pages 501–510, 2011. 3.5

[46] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink, and K. Pohl. Variability issues in
software product lines. In PFE, 2001. 5.2.2

177

http://lpsolve.sourceforge.net/

[47] T. Bultan, X. Fu, and J. Su. Tools for automated verification of web services. In Automated
Technology for Verification and Analysis: Second International Conference, ATVA 2004, Taipei,
Taiwan, ROC, October 31-November 3, 2004. Proceedings, pages 8–10, 2004. 6, 6.5.1

[48] T. Bultan, J. Su, and X. Fu. Analyzing conversations of web services. IEEE Internet Computing,
10(1):18–25, 2006. 6.5.1

[49] V. Cardellini, E. Casalicchio, V. Grassi, F. L. Presti, and R. Mirandola. Qos-driven runtime
adaptation of service oriented architectures. In ESEC/SIGSOFT FSE, pages 131–140, 2009. 4.5

[50] J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Quality of service for workflows and web service
processes. Journal of Web Semantics, 1:281–308, 2004. 6.5.1

[51] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic workarounds for web applica-
tions. In SIGSOFT FSE, pages 237–246. ACM, 2010. 8.5

[52] A. Carzaniga, A. Gorla, and M. Pezzè. Healing web applications through automatic
workarounds. International Journal on Software Tools for Technology Transfer, 10(6):493–502,
2008. 8.4

[53] M. Chen, T. H. Tan, J. Sun, Y. Liu, and J. S. Dong. Veriws: a tool for verification of combined
functional and non-functional requirements of web service composition. In ICSE Companion,
pages 564–567, 2014. 1.3, 6.6

[54] M. Chen, T. H. Tan, J. Sun, Y. Liu, J. Pang, and X. Li. Verification of functional and non-
functional requirements of web service composition. In ICFEM, pages 313–328, 2013. 1.3, 7,
7.1.2, 7.1.3, 8.5

[55] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of schedulability regions
using parametric timed automata. In RTSS, pages 80–89. IEEE Computer Society, 2008. 3.5

[56] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of schedulability regions
using parametric timed automata. In Proceedings of the 2008 Real-Time Systems Symposium,
RTSS ’08, pages 80–89, Washington, DC, USA, 2008. IEEE Computer Society. 6.5.2

[57] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In CAV, pages 154–169, 2000. 5.3

[58] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000. 2.3, 6, 7

[59] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley
Professional, 3rd edition, Aug. 2001. 5.1.1

[60] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms for
the verification of temporal properties. Form. Methods Syst. Des., 1(2-3):275–288, Oct. 1992.
6.3.1

[61] K. Czarnecki and U. W. Eisenecker. Generative programming - methods, tools and applications.
Addison-Wesley, 2000. 5.1.2

178

[62] C. Daws and S. Yovine. Reducing the number of clock variables of timed automata. In RTSS,
pages 73–81. IEEE Computer Society, 1996. A.2.3

[63] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, pages 337–340, 2008.
3.4.3.2, A.3.4, B.1.3

[64] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-II. IEEE Trans. Evolutionary Computation, 6(2):182–197, 2002. 5.1.3, 2, B.1.1.2

[65] G. Denaro, M. Pezzè, and D. Tosi. Designing self-adaptive service-oriented applications. In
Fourth International Conference on Autonomic Computing (ICAC’07), Jacksonville, Florida, USA,
June 11-15, 2007, page 16, 2007. 8.5

[66] G. Denaro, M. Pezzè, and D. Tosi. SHIWS: A self-healing integrator for web services. In 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26,
2007, Companion Volume, pages 55–56, 2007. 8.5

[67] J.-F. Deverge and I. Puaut. Safe measurement-based WCET estimation. In WCET, 2005. 3.2

[68] G. Dobson. Using WS-BPEL to implement software fault tolerance for Web services. In
EUROMICRO-SEAA, pages 126–133. IEEE, 2006. 8.5

[69] J. S. Dong, Y. Li, and H. H. Wang. TCOZ approach to semantic web services design. In
Proceedings of the 13th international conference on World Wide Web - Alternate Track Papers &
Posters, WWW 2004, New York, NY, USA, May 17-20, 2004, pages 442–443, 2004. 9.2

[70] J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Towards verification of computation orchestration.
Formal Asp. Comput., 26(4):729–759, 2014. 7.1.3

[71] J. J. Durillo and A. J. Nebro. jmetal: A java framework for multi-objective optimization.
Advances in Engineering Software, 42(10):760–771, 2011. B.1.1.1

[72] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba. On the effect of the steady-state selection
scheme in multi-objective genetic algorithms. In EMO, pages 183–197, 2009. 5.1.3, 3

[73] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid service orchestration
using the business process execution language (BPEL). Journal of Grid Computing, 3(3-4):283–
304, 2005. 8

[74] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound analysis based
on a combination of program slicing, abstract interpretation, and invariant analysis. In WCET,
2007. 3.3.6, 8.1

[75] S. Ferndriger, A. Bernstein, J. S. Dong, Y. Feng, Y. Li, and J. Hunter. Enhancing semantic web
services with inheritance. In The Semantic Web - ISWC 2008, 7th International Semantic Web
Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings, pages 162–177,
2008. 9.2

[76] A. Ferrara. Web services: a process algebra approach. In ICSOC, pages 242–251, 2004. 6.5.1

179

[77] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
SIGPLAN Not., 40(1):110–121, 2005. 9.2

[78] H. Foster. A rigorous approach to engineering Web service compositions. PhD thesis, Citeseer,
2006. 3, 6.5.1, 6.5.2, 7.1.1, 8.2.2

[79] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web service
compositions. In ASE, pages 152–163, 2003. 6.5.1

[80] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for model-based verification
of web service compositions and choreography. In ICSE, pages 771–774, 2006. 3.5, 6.5.1

[81] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based analysis of obligations in web
service choreography. In AICT/ICIW, page 149, 2006. 6.5.1

[82] H. Foster, S. Uchitel, J. Magee, and J. Kramer. WS-Engineer: A model-based approach to
engineering web service compositions and choreography. In Test and Analysis of Web Services,
pages 87–119. 2007. 6, 7, 7.1.5

[83] L. Fribourg, D. Lesens, P. Moro, and R. Soulat. Robustness analysis for scheduling problems
using the inverse method. In TIME, pages 73–80. IEEE Computer Society Press, 2012. 3.5

[84] X. Fu. Formal Specifcation and Verification of Asynchronously Communicating Web Services. PhD
thesis, University Of California, Santa Barbara, 2004. 6.5.1

[85] X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification and
verification of reactive electronic services. In CIAA, pages 188–200, 2003. 6.5.1

[86] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In WWW, pages 621–630,
2004. 6.5.1

[87] X. Fu, T. Bultan, and J. Su. Model checking xml manipulating software. In ISSTA, pages
252–262, 2004. 7.1.5

[88] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of web services. In CAV, pages
510–514, 2004. 6.5.1, 7, 7.1.5

[89] C. K. Fung, P. C. K. Hung, G. Wang, R. C. Linger, and G. H. Walton. A study of service
composition with qos management. In Proceedings of the IEEE International Conference on Web
Services, ICWS ’05, pages 717–724. IEEE Computer Society, 2005. 6, 6.5.1

[90] M. Gen, R. Cheng, and D. Wang. Genetic algorithms for solving shortest path problems. In
Evolutionary Computation, pages 401–406. IEEE, 1997. 8.3.4

[91] C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli. Managing non-functional uncertainty
via model-driven adaptivity. In ICSE, pages 33–42, 2013. 8.5

[92] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and Y. Lafon.
Simple object access protocol (SOAP) version 1.2. http://www.w3.org/TR/soap12/. 1

180

http://www.w3.org/TR/soap12/

[93] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algorithm for optimized feature
selection with resource constraints in software product lines. Journal of Systems and Software,
84(12):2208–2221, 2011. 5, 5.3

[94] J. Guo, E. Zulkoski, R. Olaechea, D. Rayside, K. Czarnecki, S. Apel, and J. M. Atlee. Scaling
exact multi-objective combinatorial optimization by parallelization. In ASE, 2014. 5.3

[95] I. Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com. 4.3,
4.4

[96] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire. Runtime verification of web
service interface contracts. IEEE Computer, 43(3):59–66, 2010. 6, 6.5.1

[97] D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Transactions on
Software Engineering and Methodology, 5(4):293–333, 1996. 7.1.5

[98] M. Harman. The current state and future of search based software engineering. In FOSE,
pages 342–357, 2007. 5.3

[99] M. Harman and B. F. Jones. Search-based software engineering. Information & Software
Technology, 43(14):833–839, 2001. 5.3

[100] G. P. Inc. 36 human-competitive results produced by genetic programming. http://www.
genetic-programming.com/, 2012. 8

[101] I. Jacobson, M. L. Griss, and P. Jonsson. Software reuse - architecture, process and organization for
business. Addison-Wesley-Longman, 1997. 5

[102] D. Jordan and J. Evdemon. Web Services Business Process Execution Language Version 2.0.
http://www.oasis-open.org/specs/#wsbpelv2.0, Apr 2007. 2.2, 6, 7

[103] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented do-
main analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21, Carnegie Mellon
University, November 1990. 5, 5.1.1, 5.1.2

[104] R. Karim, C. Ding, and C.-H. Chi. An enhanced promethee model for qos-based web service
selection. In SCC, pages 536–543, 2011. 4.5

[105] D. Kitchin, A. Quark, W. Cook, and J. Misra. The Orc programming language. In FMOODS/-
FORTE, pages 1–25, 2009. 7.1.5

[106] S. Koizumi and K. Koyama. Workload-aware business process simulation with statistical
service analysis and timed petri net. In ICWS ’07, pages 70–77. IEEE CS, 2007. 6, 6.5.1

[107] M. Koshkina. Verification of Business Processes for Web Services. Master’s thesis, York
University, Toronto, Ontario, 2003. 6.5.1

[108] M. Koshkina and F. van Breugel. Modelling and verifying web service orchestration by means
of the concurrency workbench. ACM SIGSOFT Software Engineering Notes, 29(5):1–10, 2004.
6.5.1

181

http://www.gurobi.com
http://www.genetic-programming.com/
http://www.genetic-programming.com/

[109] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson. Estimating service resource con-
sumption from response time measurements. In VALUETOOLS, page 48, 2009. 3.5

[110] T. T. H. Le, L. Palopoli, R. Passerone, Y. Ramadian, and A. Cimatti. Parametric analysis of
distributed firm real-time systems: A case study. In ETFA, pages 1–8, 2010. 3.5

[111] Y. Li, T. H. Tan, and M. Chechik. Management of time requirements in component-based
systems. In FM, pages 399–415, 2014. 3.5, 7.1.5

[112] N. Lohmann. A feature-complete petri net semantics for ws-bpel 2.0. In WS-FM, pages 77–91,
2007. 6.5.1

[113] J. Magee and J. Kramer. Concurrency - state models and Java programs (2. ed.). Wiley, 2006. 3.5

[114] N. Markey. Robustness in real-time systems. 6.5.2

[115] A. Martens. On usability of web services. In Proceedings of 4th International Conference on Web
Information Systems Engineering Workshops, pages 182–190. IEEE, 2003. 6.5.1

[116] A. Martens. Analyzing web service based business processes. In FASE, pages 19–33, 2005.
6.5.1

[117] A. Martens. Consistency between executable and abstract processes. In EEE, pages 60–67,
2005. 6.5.1

[118] A. Martens. On compatibility of web services. In Petri Net Newsletter, pages 65:12–20. October
2003. 6.5.1

[119] A. Martens and S. Moser. Diagnosing sca components using wombat. In Business Process
Management, pages 378–388, 2006. 6.5.1, 7, 7.1.5

[120] D. A. Menascé. Response-time analysis of composite Web services. IEEE Internet Computing,
8(1):90–92, 2004. 3.5

[121] M. Mendonça, T. T. Bartolomei, and D. D. Cowan. Decision-making coordination in collabo-
rative product configuration. In SAC, pages 108–113, 2008. B.1.1.3

[122] M. Mendonça, M. Branco, and D. D. Cowan. S.P.L.O.T.: software product lines online tools.
In OOPSLA Companion, pages 761–762, 2009. 5, B.1.1.3, B.1.2

[123] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service adaptation for
WS-BPEL. In WWW 2008, pages 815–824, 2008. 3.3.6, 3.5, 6.3.5

[124] A. Mukhija and M. Glinz. Runtime adaptation of applications through dynamic recomposition
of components. In ARCS, pages 124–138, 2005. 8.5

[125] S. Nakajima. Lightweight formal analysis of web service flows. Progress in Informatics, 2:57–76,
2005. 6

[126] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Mocell: A cellular genetic
algorithm for multiobjective optimization. Int. J. Intell. Syst., 24(7):726–746, 2009. 5.1.3, 4

182

[127] A. Nöhrer and A. Egyed. Conflict resolution strategies during product configuration. In
Fourth International Workshop on Variability Modelling of Software-Intensive Systems, Linz, Austria,
January 27-29, 2010. Proceedings, pages 107–114, 2010. 5

[128] OASIS Web Services Business Process Execution Language (WSBPEL) Technical Committee.
Web services business process execution language version 2.0, Apr. 2007. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. 7.1.3

[129] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test generation.
In ICSE, pages 75–84. IEEE Computer Society, 2007. 5.3

[130] C. Pasareanu, D. Giannakopoulou, and D. Bianculli. Interface decomposition for service
compositions. 2011. 6.5.2

[131] D. Pisinger. Algorithms for knapsack problems. PhD thesis, University of Copenhagen, 1995.
4.1.4

[132] R. Pohl, K. Lauenroth, and K. Pohl. A performance comparison of contemporary algorithmic
approaches for automated analysis operations on feature models. In ASE, pages 313–322,
2011. 5.3

[133] R. Pohl, V. Stricker, and K. Pohl. Measuring the structural complexity of feature models. In
ASE, pages 454–464, 2013. 5.3

[134] C. Quinton, D. Romero, and L. Duchien. Automated selection and configuration of cloud
environments using software product lines principles. In 2014 IEEE 7th International Conference
on Cloud Computing, Anchorage, AK, USA, June 27 - July 2, 2014, pages 144–151, 2014. 4.6

[135] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web services using
process algebra. In ICWS, pages 43–, 2004. 6.5.1

[136] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Optimum feature selection in software
product lines: Let your model and valuesguide your search. In CMSBSE, pages 22–27, 2013.
5, 5.3, B.1.1.1, 3, B.1.1.7

[137] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line configuration: A
straw to break the camel’s back. In ASE, 2013. 5, 5.3, 5.4, B.1.1.3, 2, B.1.3

[138] A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in search-based
software engineering: a case study in software product lines. In ICSE, pages 492–501, 2013.
5, 5.3, B.1.1.1, B.1.1.3, B.1.1.4, 3, B.1.2

[139] A. Schrijver. Theory of linear and integer programming. John Wiley and Sons, 1986. A.1.1

[140] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering feature
models. In ICSE, pages 461–470, 2011. 5, B.1.1.3

[141] J. Simmonds. Dynamic Analysis of Web Services. PhD thesis, University of Toronto, 2011. 8.4

183

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[142] J. Simmonds, S. Ben-David, and M. Chechik. Guided recovery for Web service applications.
In SIGSOFT FSE, pages 247–256, 2010. 3.5, 8, 8.4, 8.5

[143] J. Simmonds and M. Chechik. Rumor: monitoring and recovery for BPEL applications. In
ASE, pages 345–346, 2010. 6.5.2, 8

[144] M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mutation in genetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 24(4):656–667, 1994. 5.2.4.1

[145] C. Stahl. Transformation von BPEL4WS in Petrinetze. PhD thesis, Humboldt-Universität zu
Berlin, 2006. 6.5.1

[146] F. Stephanie. Genetic algorithms – Principles of natural selection applied to computation.
Science, 261(5123):872–878, 1993. 8.3.1

[147] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for global opti-
mization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997. 9.2

[148] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and É. André. Modeling and verifying hierarchical
real-time systems using Stateful Timed CSP. ACM Transactions on Software Engineering and
Methodology, 22(1):3.1–3.29, 2013. A.2, A.2.3, A.2.3.1, A.2.3.2

[149] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness. In
CAV 2009, pages 702–708, Grenoble, France, June 2009. 6.3.1, 7.1.3

[150] J. Sun, Y. Liu, J. S. Dong, G. Pu, and T. H. Tan. Model-based methods for linking web service
choreography and orchestration. In APSEC, pages 166–175, 2010. 7

[151] T. H. Tan. Towards verification of a service orchestration language. In Fourth International
Conference on Secure Software Integration and Reliability Improvement, SSIRI 2010, Singapore, June
9-11, 2010 - Companion Volume, pages 36–37, 2010. 7.1.5

[152] T. H. Tan, É. André, M. Chen, J. Sun, Y. Liu, J. S. Dong, and L. Yuan. Automated synthesis of
local time requirement for service composition. Submitted to TSE. 1.3

[153] T. H. Tan, É. André, J. Sun, Y. Liu, J. S. Dong, and M. Chen. Dynamic synthesis of local time
requirement for service composition. In ICSE, pages 542–551, 2013. 4.5, 7.1.5, 8.5

[154] T. H. Tan, M. Chen, É. André, J. Sun, Y. Liu, and J. S. Dong. Automated runtime recovery for
qos-based service composition. In WWW, pages 563–574, 2014. 1.3

[155] T. H. Tan, M. Chen, J. Sun, Y. Liu, and J. S. Dong. Dynamic ranking optimization for qos-aware
service composition. Submitted to ICFEM. 1.3

[156] T. H. Tan, Y. Liu, J. Sun, and J. S. Dong. Verification of orchestration systems using composi-
tional partial order reduction. In ICFEM, 2011. 7.1.5

[157] T. H. Tan, Y. Xue, M. Chen, J. Sun, Y. Liu, and J. S. Dong. Optimizing selection of competing
features via feedback-directed evolutionary algorithms. Accepted to ISSTA 2015. 1.3

184

[158] L.-M. Traonouez, D. Lime, and O. H. Roux. Parametric model-checking of stopwatch Petri
nets. Journal of Universal Computer Science, 15(17):3273–3304, 2009. 3.5

[159] L.-M. Traonouez, D. Lime, and O. H. Roux. Parametric model-checking of stopwatch petri
nets. 15(17):3273–3304, 2009. 6.5.2

[160] J. Wang, Y. Xue, Y. Liu, and T. H. Tan. JSDC: A hybrid approach for javascript malware
detection and classification. In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015, pages 109–120, 2015.
9.2

[161] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically Finding Patches Using
Genetic Programming. In ICSE, pages 364–374. IEEE, 2009. 8.5

[162] J. White, B. Dougherty, and D. C. Schmidt. Selecting highly optimal architectural feature sets
with filtered cartesian flattening. Journal of Systems and Software, 82(8):1268–1284, 2009. 5.3

[163] H. Xiao, B. Chan, Y. Zou, J. W. Benayon, B. O’Farrell, E. Litani, and J. Hawkins. A framework
for verifying sla compliance in composed services. ICWS ’08, pages 457–464, Washington,
DC, USA, 2008. IEEE Computer Society. 6.5.1

[164] Y. Xue, Z. Xing, and S. Jarzabek. Understanding feature evolution in a family of product
variants. In WCRE, pages 109–118, 2010. B.1.1.3

[165] S. S. Yau and Y. Yin. Qos-based service ranking and selection for service-based systems. In
IEEE SCC, pages 56–63, 2011. 4.5

[166] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How do fixes become bugs?
In ESEC/FSE ’11, pages 26–36. ACM, 2011. 6, 7

[167] K. Yoon and C. Hwang. Multiple attribute decision making: An introduction. Sage Publications,
Incorporated, 1995. 4.1.3, 22

[168] T. Yu, Y. Zhang, and K. Lin. Efficient algorithms for Web services selection with end-to-end
QoS constraints. TWEB, 1(1):6, 2007. 3.5, 4.5

[169] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services selection with end-to-end
qos constraints. ACM Trans. Web, 1(1), May 2007. 6.5.2

[170] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven Web
services composition. In WWW, pages 411–421, 2003. 4.5

[171] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware middle-
ware for Web services composition. Software Engineering, IEEE Transactions on, 30(5):311–327,
2004. 4.5, 7, 7.1.5

[172] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In PPSN, pages
832–842, 2004. 5, 5.1.3, 1

185

[173] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE Trans. Evolutionary Computation, 3(4):257–271, 1999.
B.1.1.2

186

Appendix A

Appendix of Chapter 3

This chapter introduces the necessary definitions and terminologies, the formal model for
parametric composite services and the synthesis algorithms for dLTC, which are comple-
mentary for Chapter 3.

A.1 A Formal Model for Parametric Composite Services

A composite service CS makes use of a finite number of component services to accomplish
a task. Let C = {s1, . . . , sn} be the set of all component services that are used by CS. The
response time of a composite service is largely reflected on the time spending on the
communication activities. In this work, we assume that the response time of a composite
service is the sum of the time spent on individual communication activities, and the time
incurred by internal operations of the composite service is negligible (See Section 6.3.5 for
discussion on time incurred for internal operations).

For example, assume that the only communication activity that communicates with com-
ponent service S is the synchronous invocation activity sInv(S). Upon invoking of service
S, the activity sInv(S) waits for the reply. The response time of S is equivalent to the waiting
time in sInv(S). Therefore, by analyzing the time spent in sInv(S), we can get the response
time of component service S. Given a composite service CS, let ti ∈ R≥0 be the response
time of component service Si for i ∈ {1, . . . ,n}, and let Ct = {t1, . . . , tn} be a set of component
service response times that fulfill the global time requirement of service CS. Because ti, for
i ∈ {1, . . . ,n}, is a real number, there are infinitely many possible values, even in a bounded

187

interval (and even if one restricts to rational numbers). A method to tackle this problem
is to reason parametrically, by considering these response times as unknown constants,
or parameters. Let ui ∈ R≥0 be the parametric response time of component service Si for
i ∈ {1, . . . ,n}, and let Cu = {u1, . . . ,un} be the set of component service parametric response
times. Using constraints on Cu, we can represent an infinite number of possible response
times symbolically. The local time requirement of composite service CS is specified as a
constraint over Cu. An example of local time requirement is (u1 ≤ 6) ∧ (u2 ≤ 5). This
local time requirement specifies that, in order for CS to satisfy the global time requirement,
service S1 needs to respond within 6 time units, and service S2 needs to respond within
5 time units. The local time requirement could contain dependency between parametric
response times, an example is (u2 ≤ u1 =⇒ u1 + u2 ≤ 6) ∧ (u1 ≤ u2 =⇒ u1 ≤ 6). The
example requires that if service S2 responses not slower than service S1, then the summa-
tion of response times of services S1 and S2 are required to be within 6 seconds; if service
S1 responses not slower than service S2, then service S1 is required to response within 6
seconds.

In the following subsection, we introduce notations used throughout the paper.

A.1.1 Variables, Clocks, Parameters, and Constraints

We assume a finite setVar of finite-domain variables. Given Var ⊂ Var, a variable valuation
for Var is a function assigning to each variable a value in its domain. We denote byV(Var)
the set of all variable valuations.

Clocks are variables (disjoint withVar) with values in the set of non-negative real numbers
R≥0. A clock is used to record the time passing of activities. All clocks are progressing at
the same rate. X is defined as a universal set of clocks. Let X = {x1, . . . , xH} ⊂ X (for some
integer H) be a finite set of clocks. A clock valuation is a function w : X→ R≥0, that assigns
a non-negative real value to each clock.

A parameter is an unknown constant. LetU denote the universal set of parameters, disjoint
with X and Var. Given a finite set of parameters U = {u1, . . . ,um} ⊂ U (for some integer
m), a parameter valuation is a function π : U → R≥0 assigning a non-negative real value to
each parameter. We can identify a valuation π with the point (π(u1), . . . , π(um)).

A linear term over X ∪U is an expression of the form
∑

1≤i≤N αizi + d for some N ∈ N, with
zi ∈ X∪U, αi ∈ R≥0 for 1 ≤ i ≤ N, and d ∈ R≥0. We denote byLX∪U the set of all linear terms

188

over X and U respectively. Similarly, we define LX and LU. Given X ⊂ X and U ⊂ U, an
inequality over X and U is e ≺ e′ with ≺∈ {<,≤}, where e, e′ ∈ LX∪U.

A convex constraint (or constraint) is a conjunction of inequalities. We denote by CX∪U be the
set of all convex constraints over X and U respectively. Similarly, we define CX and CU. A
non-necessarily convex constraint (or NNCC) is a conjunction of disjunction of inequalities1.
Note that the negation of an inequality remains an inequality; however, the negation of
a convex constraint becomes (in the general case) an NNCC. We denote by NCU the set
of all NNCCs over U. Henceforth, we use w (resp. π) to denote a clock (resp. parameter)
valuation. Let C ∈ NCU, C[π] denotes the constraint over X obtained by replacing each
u ∈ U with π(u) in C. We write π |= C, if C[π] evaluates to true. C is empty, if there does
not exist a parameter valuation π, such that π |= C; otherwise C is non-empty. We define
C↑ = {x + d|x ∈ C∧ d ∈ R≥0}, as time elapsing of C, i.e., the constraint over X and U obtained
from C by delaying an arbitrary amount of time d. Given two constraints C1,C2 ∈ NCU,
C1 is included in C2, denoted by C1 ⊆ C2, if ∀π : π |= C1 ⇒ π |= C2. Similarly, C1 is strictly
included in C2, denoted by C1 ⊂ C2, if C1 ⊆ C2 and C1 , C2. Given C ∈ CX∪U and X′ ⊆ X, we
denote by pruneX′(C) the constraint in CX∪U that is obtained from C by pruning the clocks
in X′; this can be achieved using variable elimination techniques such as Fourier-Motzkin
(see, e.g., [139]).

A.1.2 Syntax of Composite Services

Composite services are expressed using processes. We define a formal syntax definition in
Figure A.1, where S is a component service, P and Q are composite service processes, b is
a Boolean expression, and a ∈ R>0 is a non-negative real number.

We informally describe the BPEL syntax notations below:

• rec(S) and reply(S) are used to denote “receive from” and “reply to” a service S,
respectively;

• sInv(S) (resp. aInv(S)) denotes the synchronous (resp. asynchronous) invocation of a
component service S;

• P||Q denotes the concurrent composition of BPEL activities P and Q;

1Without loss of generality, we assume here that all NNCCs are in conjunctive normal form (CNF).

189

P := rec(S) receive activity
| reply(S) reply activity
| sInv(S) synchronous invocation
| aInv(S) asynchronous invocation
| P||Q concurrent activity
| P ; Q sequential activity
| P / b .Q conditional activity
| pick(S⇒P, alrm(a)⇒Q) pick activity

Figure A.1: Syntax of composite service processes

• P ; Q denotes the sequential composition of BPEL activities P and Q;

• P / b . Q denotes the conditional composition, where b is a guard condition. If b is
evaluated as true, BPEL activity P is executed, otherwise activity Q is executed;

• pick(S⇒P, alrm(a)⇒Q) denotes the BPEL pick composition, which contains two branches
of activities: onMessage activity and onAlarm activity, where either branch of the ac-
tivity will be executed. onMessage activity is activated when the message from service
S arrives within a seconds, where a ∈ R>0, and BPEL activity P is subsequently exe-
cuted; onAlarm activity is activated at a seconds, and BPEL activity Q is subsequently
executed. If the message arrives at exactly a seconds, then P or Q executes non-
deterministically. Given a pick activity P, we use P.onMessage and P.onAlarm to denote
the onMessage and onAlarm branches of P respectively.

A structural activity is an activity that contains other activities. Concurrent, sequential,
conditional, and pick activities are examples of structural activity. An activity that does
not contain other activities is called an atomic activity, which includes receive, reply, syn-
chronous invocation and asynchronous invocation activities.

A.1.3 Parametric Composite Services

Definition 13 (Composite Service Model). A composite service model CS is a tuple (Var,V0,N0),
where Var is a finite set of variables, V0 is an initial valuation that maps each variable to its initial
value, and N0 is the composite service process.

We now extend the definitions of services, composite service processes and composite
service model to the parametric case. That is, the response time of a parametric service i is

190

now a parameter ui ∈ U. Then, a parametric composite service process is a service process
whose services (“S” in Figure A.1) are parametric services. We denote by P the set of all
possible parametric composite service processes. We can now extend composite service
models to the parametric case, by replacing composite service processes with parametric
composite service processes.

Definition 14 (Parametric Composite Service Model). A parametric composite service
model CS is a tuple (Var,V0,U,P0,C0), where Var is a finite set of variables; V0 ∈ V(Var) is
an initial valuation that maps each variable to its initial value; U is a finite set of parameters;
P0 ∈ P is the parametric composite service process; and C0 ∈ CU is the initial (convex) parametric
constraint.

Given a service model CS with a parameter set U = {u1, . . . ,um}, and given a parameter
valuation (π(u1), . . . , π(um)), CS[π] denotes the valuation of CS with π, viz., the model
(Var,V0,U,P0,C), where C is C0 ∧

∧m
i=1(ui = π(ui)). Note that CS[π] can be seen as a

non-parametric service model (Var,V0,P0[π]), where P0[π] corresponds to P0 where each
occurrence of a parameter ui in a service has been replaced with its valuation π(ui).

A.1.4 Bad Activity

Given a BPEL service CS, we define a bad activity as an atomic activity such that its execution
signaling that the composite service CS has violated the global time requirement. In the
case of the SMIS example, it is the reply activity that is triggered once after the component
service PS fails to respond within one second.

An activity (include both atomic and structural activities) that is not a bad activity is called a
good activity. To distinguish the bad activities, we allow the user to annotate a BPEL activity
A as a bad activity, denoted by [A]bad. The annotation can be achieved, for example, by
using extension attribute of BPEL activities. The execution of activity [A]bad will result the
LTS of CS to end in an undesired terminal state, which we denote as a bad state. A terminal
state which is not a bad state is called a good state. The synthesized local time requirement
needs to guarantee the avoidance of all bad states and the reachability of at least one good
state.

191

A.2 A Formal Semantics for Parametric Composite Services

In this section, we provide our parametric composite service model with a formal semantics,
given in the form of a labeled transition system (LTS). The semantics we use is inspired
by the one proposed for (parametric) stateful timed Communicating Sequential Processes
(CSP) [148, 28], that makes use of implicit clocks.

We first recall LTS (Section A.2.1) and define symbolic states (Section A.2.2). Following
that, we define implicit clocks and the associated functions, i.e., activation and idling
(Section A.2.3). We then introduce our formal semantics (Section A.2.4), and give an
application to an example (Section A.2.5).

A.2.1 Labeled Transition Systems

Definition 15 (Labeled Transition System (LTS)). A labeled transition system (LTS) of a
composite service CS is a tuple LCS = (Q, s0,Σ, δ), where

• Q is a set of states;

• s0 ∈ Q is the initial state;

• Σ is the universal set of actions;

• δ ⊆ Q × Σ ×Q is a transition relation.

Given an LTS of a composite service CS, LCS = (Q, s0,Σ, δ), a state s ∈ Q is a terminal state
if there does not exist a state s′ ∈ Q and an action a ∈ Σ such that (s, a, s′) ∈ δ; otherwise, s
is said to be a non-terminal state. There is a run from a state s to state s′, where s, s′ ∈ Q, if
there exist a set of states {s1, . . . , sn} ⊆ Q and a set of actions {a1, . . . , an} ⊆ Σ such that s1 = s,
sn = s′, and ∀i ∈ {1, . . . ,n − 1}, (si, ai, si+1) ∈ δ. A complete run is a run that starts in the initial
state s0 and ends in a terminal state. Given a state s ∈ Q, we use succ(s) to denote the set
of states reachable from s; formally, succ(s) = {s′|∃a ∈ Σ : s′ ∈ Q ∧ (s, a, s′) ∈ δ}. A sub-LTS
of LCS is an LTS that starts from a state s ∈ Q. We denote the sub-LTS that starts from the
state s ∈ Q of a composite service CS as subLTSCS,s.

Definition 16 (sub-LTS). subLTSCS,s = (Q′, s,Σ′, δ′), where Q′ ⊆ Q is the set of states that are
reachable from s ∈ Q in LCS. For δ′ ⊆ δ, it is the transition relation that satisfies the following
condition: s1

a
↪→ s2 ∈ δ′ if s1, s2 ∈ Q′ and s1

a
↪→ s2 ∈ δ. Σ′ ⊆ Σ is the set of all actions that are used

in δ′.

192

A.2.2 Symbolic States

We define here a symbolic state for a parametric composite service model.

Definition 17 (State). A state s ∈ Q is a tuple (V,P,C,D), where V is a valuation of the variables
(i.e., a function that maps a variable name to its value), and we write v = ⊥ to denote a variable
v ∈ Var that is uninitialized; P is a composite service process; C is a constraint over CX∪U; and
D ∈ LU is the (parametric) duration from the initial state s0 to the beginning of the state s.

Given a state s = (V,P,C,D), we use the notation s.V to denote the component V of s,
and similarly for s.P, s.C and s.D. When a parametric composite service model CS has no
variable, we denote each state s ∈ Q as (P,C,D) for the sake of brevity. Given the initial
state s0 of a composite service CS, we denote s0.P as the initial activity.

A.2.3 Implicit Clocks

In order to analyze the LTS with real-time semantics, we use clocks to record the elapsing
of time. Clocks are used to record the time elapsing in several formalisms, in particular
in timed automata (TA) [23]. In TAs, the clocks are defined as part of the models and
state space. It is known that the state space of the system could grow exponentially
with the number of clocks and that the fewer clocks, the more efficient real-time model
checking is [40]. In timed automata, it is then possible to dynamically reduce the number
of clocks [62]. An alternative approach is to define a semantics that creates clocks on
the fly when necessary, and prunes them when no longer needed. This approach was
initially proposed for (parametric) stateful timed Communicating Sequential Processes
(CSP) [148, 28]. This allows smaller state space compared to the explicit clock approach; we
refer to this second approach as the implicit clock approach. We use here the implicit clock
approach.

A.2.3.1 Clock Activation

Clocks are implicitly associated with timed processes. For instance, given a communication
activity sInv(S), a clock starts ticking once the activity becomes activated. To introduce
clocks on the fly, we define an activation function Act in Fig. A.2, similar to the one defined
in [148, 28]. Given a process P, we denote by Px the corresponding process that has been

193

Act(A(S), x) = A(S)x A1
Act(mpick, x) = mpickx A2
Act(A(S)x′ , x) = A(S)x′ A3
Act(mpickx′ , x) = mpickx′ A4
Act(P ⊕Q, x) = Act(P, x) ⊕ Act(Q, x) A5
Act(P ; Q, x) = Act(P, x) ; Q A6

where A ∈ {rec, sInv, aInv, reply}, ⊕ ∈ {|||, /b.},
and mpick = pick(S⇒Pt, alrm(a)⇒Pa).

Figure A.2: Activation function

associated with clock x. The activation function will be called when a new state s is reached
to assign a new clock for each newly activated communication activity. Rules A1 and
A2 state that a new clock is associated with BPEL communication activity if it is newly
activated. Rules A3 and A4 state that if a BPEL communication activity has already been
assigned a clock, it will not be reassigned. Rules A5 and A6 state that function Act is
applied recursively for activated child activities for BPEL structural activities.

Given a process P, we denote by cl(P) the set of active clocks associated with P. For instance,
the set of active clocks associated with process P = rec(S)x||rec(S1)x′ contains x and x′.

A.2.3.2 Idling Function

In Fig. A.3, we define the function idle that, given a state s, returns a constraint that
specifies how long an activity can idle at state s. The result is a constraint over X ∪U. This
function is inspired by its counterpart in [148, 28]. Rule I1 considers the situation when the
communication requires waiting for the response of a component service S, and the value
of clock x must not be larger than the response time parameter tS of the service. Rule I2
considers the situation when no waiting is required. Rules I3 to I5 state that the function
idle is applied recursively for activated child activities of a BPEL structural activity.

A.2.4 Operational Semantics

We now define the semantics of a parametric composite service model in the form of an
LTS. Let Y =< x0, x1, · · · > be a sequence of clocks.

Definition 18. Let CS = (Var,V0,U,P0,C0) be a parametric composite service model. The se-

194

idle(A(S)x) = x ≤ tS I1
idle(B(S)x) = (x = 0) I2
idle(P ⊕Q) = idle(P) ∧ idle(Q) I3
idle(P ; Q) = idle(P) I4
idle(mpickx) = x ≤ tS ∧ x ≤ a I5

where A∈{rec, sInv}, B∈{aInv, reply}, ⊕∈{|||, /b.},
mpick=pick(S⇒Pt, alrm(a)⇒Pa), and tS is the
parametric response time of service S.

Figure A.3: Idling function

mantics of CS, represented by LCS, is an LTS (Q, s0,Σ, δ) where

Q = {(V,P,C,D) ∈ V(Var) × P × CX∪U × LU},

s0 = (V0,P0,C0, 0)

and the transition relation δ is the smallest transition relation satisfying the following. For all
(V,P,C,D) ∈ Q, if x is the first clock in the sequence Y which is not in cl(P), and (V,Act(P, x),C∧x =

0,D) a
↪→ (V′,P′,C′,D′) where C′ is satisfiable, then we have:(

(V,P,C,D), a, (V′,P′, pruneX\cl(P′)(C
′),D′)

)
∈ δ.

The transition relation ↪→ is specified by a set of rules, given in Fig. A.4. Let us first explain
some of these rules.

• Rule rSInv states that a state s = (V, sInv(S)x,C,D) may evolve into the state s′ =

(V′,Stop, x = tS ∧ C↑,D + tS) via action e ∈ Σ, where Stop is the activity that does
nothing, and tS is the parametric response time of component service S. Note that,
from Definition 18, the condition x = tS ∧ C↑ is necessarily satisfied (otherwise this
evolution is not possible). The resulting constraint is obtained from C by applying
time elapsing and intersection with the equality x = tS; furthermore, the parametric
duration from the initial state (D) is augmented with tS. Rules rSInv, rReply and rAInv
are similar.

• Rule rPick1 encodes the transition that takes place due to an onMessage activity. Let
us explain the constraint (x = tS) ∧ idle(mpickx) ∧ C↑. First, after the transition, the
current clock x needs to be equal to the parametric response time of service S, i.e.,
x = tS. Second, the constraint idle(mpickx) is added to ensure that x remains smaller
or equal to the maximum duration of the mpickx activity. Third, the constraint C↑

represents the time elapsing of C. Rule rPick2 is similar.

195

T. H. TAN, É. ANDRÉ, M. M. CHEN, J. SUN, Y. LIU, J. S. DONG AND L. YUAN 8

[rSInv]

(V, sInv(S)x,C,D)
e
↪→ (V′, Stop, x = tS ∧ C↑,D + tS)

[rRec]

(V, rec(S)x,C,D)
e
↪→ (V′, Stop, x = tS ∧ C↑,D + tS)

[rReply]

(V, reply(S)x,C,D)
e
↪→ (V′, Stop, x = 0 ∧ C↑,D)

[rAInv]

(V, aInv(S)x,C,D)
e
↪→ (V′, Stop, x = 0 ∧ C↑,D)

let mpick=pick(S⇒Pt, alrm(a)⇒Pa)

[rPick1]

(V,mpickx,C,D)
e
↪→ (V′,Pt, (x = tS)

∧ idle(mpickx) ∧ C↑,D + tS)

[rPick2]

(V,mpickx,C,D)
e
↪→ (V′,Pa, (x = a)

∧ idle(mpickx) ∧ C↑,D + a)

V(b) = ⊥
[rCond1]

(V,ACbBB,C,D)
e
↪→ (V′,A,C,D)

V(b) = ⊥
[rCond2]

(V,ACbBB,C,D)
e
↪→ (V′,B,C,D)

V(b) = true
[rCond3]

(V,ACbBB,C,D)
e
↪→ (V′,A,C,D)

V(b) = false
[rCond4]

(V,ACbBB,C,D)
e
↪→ (V′,B,C,D)

(V,A,C,D)
e
↪→ (V′,A′,C′,D′),A′ 6= Stop

[rSeq1]

(V,A ; B,C,D)
e
↪→ (V′,A′ ; B,C′,D′)

(V,A,C,D)
e
↪→ (V′, Stop,C′,D′)

[rSeq2]

(V,A ; B,C,D)
τ
↪→ (V′,B,C′,D′)

(V,A,C,D)
e
↪→ (V′,A′,C′,D′)

[rFlow1]

(V,A ||| B,C,D)
e
↪→ (V′,A′ ||| B,C′ ∧ idle(B),D′)

(V,B,C,D)
e
↪→ (V′,B′,C′,D′)

[rFlow2]

(V,A ||| B,C,D)
e
↪→ (V′,A ||| B′,C′ ∧ idle(A),D′)

Fig. 6: Set of rules for the transition relation ↪→

s0:(mpick, true, 0)

sx
0:(mpickx, x = 0, 0)

s′1:(rgood, x = tps ∧ x ≤ 1, tps) s′2:(rbad, x = 1 ∧ x ≤ tps, 1)

s1:(rgood, tps ≤ 1, tps) s2:(rbad, tps ≥ 1, 1)

sx
1:((rgood)x, tps ≤ 1 ∧ x = 0, tps) sx

2:((rbad)x, tps ≥ 1 ∧ x = 0, 1)

s′3:(Stop, tps ≤ 1 ∧ x = 0, tps) s′4:(Stop, tps ≥ 1 ∧ x = 0, 1)

s3:(Stop, tps ≤ 1, tps)X s4:(Stop, tps ≥ 1, 1)×

where i1 is sInv(PBS), i2 is sInv(CBS), i3 is
sInv(MS) and i4 is sInv(SS)

Fig. 7: LTS of service CS

4.5 Application to an Example
Consider a composite service CS (which is a part of
the SMIS example), the LTS of CS is shown in Fig. 7.
Since CS has no variable, V = ∅ from all states;
therefore, we omit the component V from all states
for the sake of brevity.
• At state s0, the activation function assigns clock

x to record time elapsing of pick activity mpick,
with x initialized to zero. The tuple becomes the

intermediate state sx
0 = (mpickx, x = 0, 0).

• From intermediate state sx
0, it could evolve into

the intermediate state s′1 by applying the rule
rPick1, if the constraint c1 = (x = tPS ∧
idle(mpickx) ∧ (x = 0)↑), where idle(mpickx) =
(x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is
satisfiable. Intuitively, c1 denotes the constraint
where tPS time units elapsed since clock x has
started. In fact, c1 is satisfiable (for example with
tPS = 0.5 and x = 0.5). Therefore, it could evolve
into the intermediate state s′1 = (rgood, x = tPS ∧
idle(mpickx) ∧ (x = 0)↑, tPS) = (rgood, x = tPS ∧
x ≤ 1, tPS). Since clock x is not used anymore in
s′1.P which is rgood, it is pruned. After pruning of
clock variable x and simplification of the expres-
sion, the intermediate state s′1 becomes the state
s1 = (rgood, tPS ≤ 1, tPS).

• From intermediate state sx
0, it could evolve into

the intermediate state s′2, by applying the rule
rPick2, if the constraint c2 = (x = 1 ∧
idle(mpickx) ∧ (x = 0)↑), where idle(mpickx) =
(x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is
satisfiable. It is easy to see that c2 is satisfiable;
therefore, it could evolve into the intermediate
state s′2 = (rbad, x = 1 ∧ x ≤ tPS, 1). After clock
pruning from intermediate state s′2, it becomes
state s2 = (rbad, tPS ≥ 1, 1).

• From state s1, activation function assigns clock x

T. H. TAN, É. ANDRÉ, M. M. CHEN, J. SUN, Y. LIU, J. S. DONG AND L. YUAN 8

[rSInv]

(V, sInv(S)x,C,D)
e
↪→ (V′, Stop, x = tS ∧ C↑,D + tS)

[rRec]

(V, rec(S)x,C,D)
e
↪→ (V′, Stop, x = tS ∧ C↑,D + tS)

[rReply]

(V, reply(S)x,C,D)
e
↪→ (V′, Stop, x = 0 ∧ C↑,D)

[rAInv]

(V, aInv(S)x,C,D)
e
↪→ (V′, Stop, x = 0 ∧ C↑,D)

let mpick=pick(S⇒Pt, alrm(a)⇒Pa)

[rPick1]

(V,mpickx,C,D)
e
↪→ (V′,Pt, (x = tS)

∧ idle(mpickx) ∧ C↑,D + tS)

[rPick2]

(V,mpickx,C,D)
e
↪→ (V′,Pa, (x = a)

∧ idle(mpickx) ∧ C↑,D + a)

V(b) = ⊥
[rCond1]

(V,ACbBB,C,D)
e
↪→ (V′,A,C,D)

V(b) = ⊥
[rCond2]

(V,ACbBB,C,D)
e
↪→ (V′,B,C,D)

V(b) = true
[rCond3]

(V,ACbBB,C,D)
e
↪→ (V′,A,C,D)

V(b) = false
[rCond4]

(V,ACbBB,C,D)
e
↪→ (V′,B,C,D)

(V,A,C,D)
e
↪→ (V′,A′,C′,D′),A′ 6= Stop

[rSeq1]

(V,A ; B,C,D)
e
↪→ (V′,A′ ; B,C′,D′)

(V,A,C,D)
e
↪→ (V′, Stop,C′,D′)

[rSeq2]

(V,A ; B,C,D)
τ
↪→ (V′,B,C′,D′)

(V,A,C,D)
e
↪→ (V′,A′,C′,D′)

[rFlow1]

(V,A ||| B,C,D)
e
↪→ (V′,A′ ||| B,C′ ∧ idle(B),D′)

(V,B,C,D)
e
↪→ (V′,B′,C′,D′)

[rFlow2]

(V,A ||| B,C,D)
e
↪→ (V′,A ||| B′,C′ ∧ idle(A),D′)

Fig. 6: Set of rules for the transition relation ↪→

s0:(mpick, true, 0)

sx
0:(mpickx, x = 0, 0)

s′1:(rgood, x = tps ∧ x ≤ 1, tps) s′2:(rbad, x = 1 ∧ x ≤ tps, 1)

s1:(rgood, tps ≤ 1, tps) s2:(rbad, tps ≥ 1, 1)

sx
1:((rgood)x, tps ≤ 1 ∧ x = 0, tps) sx

2:((rbad)x, tps ≥ 1 ∧ x = 0, 1)

s′3:(Stop, tps ≤ 1 ∧ x = 0, tps) s′4:(Stop, tps ≥ 1 ∧ x = 0, 1)

s3:(Stop, tps ≤ 1, tps)X s4:(Stop, tps ≥ 1, 1)×

where i1 is sInv(PBS), i2 is sInv(CBS), i3 is
sInv(MS) and i4 is sInv(SS)

Fig. 7: LTS of service CS

4.5 Application to an Example
Consider a composite service CS (which is a part of
the SMIS example), the LTS of CS is shown in Fig. 7.
Since CS has no variable, V = ∅ from all states;
therefore, we omit the component V from all states
for the sake of brevity.
• At state s0, the activation function assigns clock

x to record time elapsing of pick activity mpick,
with x initialized to zero. The tuple becomes the

intermediate state sx
0 = (mpickx, x = 0, 0).

• From intermediate state sx
0, it could evolve into

the intermediate state s′1 by applying the rule
rPick1, if the constraint c1 = (x = tPS ∧
idle(mpickx) ∧ (x = 0)↑), where idle(mpickx) =
(x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is
satisfiable. Intuitively, c1 denotes the constraint
where tPS time units elapsed since clock x has
started. In fact, c1 is satisfiable (for example with
tPS = 0.5 and x = 0.5). Therefore, it could evolve
into the intermediate state s′1 = (rgood, x = tPS ∧
idle(mpickx) ∧ (x = 0)↑, tPS) = (rgood, x = tPS ∧
x ≤ 1, tPS). Since clock x is not used anymore in
s′1.P which is rgood, it is pruned. After pruning of
clock variable x and simplification of the expres-
sion, the intermediate state s′1 becomes the state
s1 = (rgood, tPS ≤ 1, tPS).

• From intermediate state sx
0, it could evolve into

the intermediate state s′2, by applying the rule
rPick2, if the constraint c2 = (x = 1 ∧
idle(mpickx) ∧ (x = 0)↑), where idle(mpickx) =
(x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is
satisfiable. It is easy to see that c2 is satisfiable;
therefore, it could evolve into the intermediate
state s′2 = (rbad, x = 1 ∧ x ≤ tPS, 1). After clock
pruning from intermediate state s′2, it becomes
state s2 = (rbad, tPS ≥ 1, 1).

• From state s1, activation function assigns clock x

Figure A.4: Set of rules for the transition relation ↪→

• Given a conditional composition A / b . B, we denote by V(b) ∈ {true, f alse,⊥} the
evaluation of the guard condition b. We have that V(b) = ⊥ when the evaluation of
b is unknown, due to the fact that there may be uninitialized variables in b. Since b
might be evaluated to either true or false at certain stages during runtime, we explore
both activities A and B when V(b) = ⊥ so as to reason about all possible scenarios.
The case of V(b) = ⊥ is captured by rules rCond1 and rCond2, and the cases where
V(b) ∈ {true, f alse} are captured by rules rCond3 and rCond4.

• rSeq1 states that if activity A′ is not a Stop activity (i.e., activity A′ has not finished its
execution), then a state containing activity A→B could evolve into a state containing
activity A′→B. Otherwise, if A is a Stop activity (i.e., activity A has finished its
execution), then a state containing activity A→B could discharge activity A and
evolve into a state containing B. This is captured by rSeq2.

• For concurrent activity A||B, either activity A or activity B can be executed. This is
captured by rFlow1 and rFlow2 respectively. rFlow1 states that if state (V,A,C,D) can
evolve into (V′,A′,C′,D′) via action e ∈ Σ, then a state containing A||B can evolve
into a state containing A′||B via action e ∈ Σ, if C′ ∧ idle(B) holds. That is, the clock
constraints in C′ could not exceed the duration where activity B can last for. Rule
rFlow2 is similar.

196

s0:(mpick, true, 0)

sx
0:(mpickx, x = 0, 0)

s′1:(rgood, x = tps ∧ x ≤ 1, tps) s′2:(rbad, x = 1 ∧ x ≤ tps, 1)

s1:(rgood, tps ≤ 1, tps) s2:(rbad, tps ≥ 1, 1)

sx
1:((rgood)x, tps ≤ 1 ∧ x = 0, tps) sx

2:((rbad)x, tps ≥ 1 ∧ x = 0, 1)

s′3:(Stop, tps ≤ 1 ∧ x = 0, tps) s′4:(Stop, tps ≥ 1 ∧ x = 0, 1)

s3:(Stop, tps ≤ 1, tps)X s4:(Stop, tps ≥ 1, 1)×

where i1 is sInv(PBS), i2 is sInv(CBS), i3 is sInv(MS) and i4 is
sInv(SS)

Figure A.5: LTS of service CS

Let us now explain Definition 18. Starting from the initial state s0 = (P0,C0, 0), we iteratively
construct successor states as follows. Given a state (V,P,C,D), a fresh clock x which is not
currently associated with P is picked from Y. The state (V,P,C,D) is transformed into
(V,Act(P, x),C ∧ x = 0,D), i.e., timed processes which just become activated are associated
with x and C is conjuncted with x = 0. Then, a firing rule is applied to get a target state
(V′,P′,C′,D′). Lastly, clocks which do not appear within P′ are pruned from C′. Observe
that one clock is introduced and zero or more clocks may be pruned during a transition. In
practice, a clock is introduced only if necessary; if the activation function does not activate
any subprocess, this new clock is not created.

A.2.5 Application to an Example

Consider a composite service CS (which is a part of the SMIS example), the LTS of CS is
shown in Figure A.5. Since CS has no variable, V = ∅ from all states; therefore, we omit the
component V from all states for the sake of brevity.

• At state s0, the activation function assigns clock x to record time elapsing of pick
activity mpick, with x initialized to zero. The tuple becomes the intermediate state
sx

0 = (mpickx, x = 0, 0).

197

• From intermediate state sx
0, it could evolve into the intermediate state s′1 by apply-

ing the rule rPick1, if the constraint c1 = (x = tPS ∧ idle(mpickx) ∧ (x = 0)↑), where
idle(mpickx) = (x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is satisfiable. Intuitively, c1

denotes the constraint where tPS time units elapsed since clock x has started. In fact,
c1 is satisfiable (for example with tPS = 0.5 and x = 0.5). Therefore, it could evolve into
the intermediate state s′1 = (rgood, x = tPS∧ idle(mpickx)∧ (x = 0)↑, tPS) = (rgood, x = tPS∧

x ≤ 1, tPS). Since clock x is not used anymore in s′1.P which is rgood, it is pruned. After
pruning of clock variable x and simplification of the expression, the intermediate
state s′1 becomes the state s1 = (rgood, tPS ≤ 1, tPS).

• From intermediate state sx
0, it could evolve into the intermediate state s′2, by apply-

ing the rule rPick2, if the constraint c2 = (x = 1 ∧ idle(mpickx) ∧ (x = 0)↑), where
idle(mpickx) = (x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is satisfiable. It is easy
to see that c2 is satisfiable; therefore, it could evolve into the intermediate state
s′2 = (rbad, x = 1 ∧ x ≤ tPS, 1). After clock pruning from intermediate state s′2, it
becomes state s2 = (rbad, tPS ≥ 1, 1).

• From state s1, activation function assigns clock x for reply activity rgood, and it evolves
into intermediate state sx

1. From intermediate state sx
1, it could evolve into intermediate

state s′3 by applying rule rReply, if the constraint c3 = (x = 0∧ (tPS ≤ 1)↑) is satisfiable,
where (tPS ≤ 1)↑ = tPS ≤ 1. In fact it is, and therefore it evolves into state s′3 =

(Stop, tPS ≤ 1∧x = 0, tPS). After pruning of the used clock, it evolves into the terminal
state s3 = (Stop, tPS ≤ 1, tPS). Since the terminal state is not caused by a bad activity,
s3 is considered as a good state, denoted by X in Figure A.5.

• From state s2, it could also evolve into terminal state s4 = (Stop, tPS≥1, 1) with similar
reason as above. Since the terminal state is caused by a bad activity, it is considered
as a bad state, denoted by × in Figure A.5.

Note that all states sx
i and s′j, where i, j ∈N and 0 ≤ i ≤ 4, are intermediate states. State sx

i is
the state si after clock assignment operations are applied. State s′j is the state s j before clock
pruning operations are applied. These intermediate states are for illustrative purpose.
They are not kept for the state space of composite service CS for space efficiency.

198

A.3 Synthesis of Design-time LTC

Given CS = (Var,U,P0,C0), the global time requirement for CS requires that, for every state
(V,P,C,D) reachable from the initial state (V0,P0,C0, 0) in the LTS, the constraint D ≤ TG

is satisfied, where TG ∈ R≥0 is the global time constraint. The local time requirement requires
that if the response times of all component services of CS satisfy the local time constraint
(LTC) CL ∈ CU, then the service CS satisfies the global time requirement.

In this section, given a global time constraint TG for a service CS, we present an approach
to synthesize design-time LTC (dLTC) CL based on the LTS. The dLTC will be given in the
form of an NNCC over U. We show that if the response times of all component services of
CS satisfy the local time requirement, the service CS would end in a good state within TG

time units.

A.3.1 Addressing the Good States

We assume a composite service CS and its LTS LCS = (Q, s0,Σ, δ); let Qgood be the set of
all good states of service LCS. In this section, we assume there are no bad states; we will
discuss bad states in Section A.3.2.

Given LCS, our goal is to synthesize the local time requirement for service CS. We make
two observations here. First, a good state sg = (Vg,Pg,Cg,Dg) ∈ Qgood is reachable from
the initial state s0 iff Cg is satisfiable. Second, whenever the good state sg is reached, we
require that the total delay from initial state s0 to state sg must be no larger than the global
time constraint TG, i.e., Dg ≤ TG. To sum up, given a good state sg = (Vg,Pg,Cg,Dg) where
sg ∈ Qgood, we require the constraint (Cg =⇒ (Dg ≤ TG)) to hold. The constraint means
that whenever state sg is reachable from initial state s0, the total (parametric) delay from
initial state s0 to state sg must be less than the global time constraint TG. The synthesized
dLTC for CS is the conjunction of such constraints for each good state sg ∈ Qgood, i.e.,∧

(Vg,Pg,Cg,Dg)∈Qgood
(Cg =⇒ (Dg ≤ TG)).

Example

Let us consider a composite service CS whose process component is pick(FS⇒i1, alrm(1)⇒i2)
(henceforth referred to as mpick). Suppose the global time requirement of the composite

199

s0:(mpick, true, 0)
OMsg_FS

s1:(i1, tFS≤1, tFS)
i1

s3:(Stop, tFS≤1, tFS+t1)X

OAlrm_1
s2:(i2, tFS≥1, 1)

i2
s4:(Stop, tFS≥1, 1+t2)X

Figure A.6: LTS of composite service CS

s0:(mpick′, true, 0)
OMsg_FS

s1:(i1, tFS≤1, tFS)
i1

s3:(Stop, tFS≤1, tFS+t1)X

OAlrm_1
s2:([i2]bad, tFS≥1, 1)

[i2]bad

s4:(Stop, tFS≥1, 1+t2)×

Figure A.7: LTS of composite service CS′

service CS is to response within five seconds. Figure A.6 shows the LTS of CS, where i j

denotes sInv(S j), such that S j is a component service with parametric response time t j, for
j ∈ {1, 2}.

For composite service CS in Figure A.6, we have two good states (states s3 and s4), and the
synthesized local time requirement for composite service CS is:

(tFS ≤ 1) =⇒ (tFS + t1 ≤ 5) ∧ (tFS ≥ 1) =⇒ (1 + t2 ≤ 5)

A.3.2 Addressing the Bad States

Consider a variant of the example in Figure A.6, where i2 is replaced with [i2]bad. That
is, the composite service becomes a composite service CS′ whose process component is
pick(FS⇒i1, alrm(1)⇒[i2]bad) (henceforth referred to as mpick′). This service results in the
LTS shown in Figure A.7, where state s4 is a bad state. We use this example to provide the
intuition how to modify the synthesized NNCC to avoid reaching bad states. Note that the
constraint s4.C = tFS ≥ 1 is introduced by the pick activity. A way to avoid the reachability
of s4 is to prevent the transition OAlrm_1 from firing. An effective way to achieve this is by
adding the negation ¬s4.C to the synthesized NNCC. Therefore, the local time requirement
for composite service CS′ would be (s3.C =⇒ (s3.D ≤ TG))∧¬s4.C. This NNCC can ensure
the reachability of at least one of the good states and avoid the reachability of all bad states.
(This will be proved in Section A.3.6.)

200

Algorithm 17: Algorithm LocalTimeConstraint(CS)
input : Composite service model CS with initial state s0
output: The dLTC CL ∈ NCU

1 Cons← synConsLTS(s0);
2 return Cons ∧ Kbad;

Algorithm 18: Algorithm synConsLTS(s)
input : State s of LTS
output: The constraint for LTS that starts at s

1 if s is good state then
2 return (s.C =⇒ (s.D ≤ TG));

3 if s is bad state then
4 Kbad = Kbad ∧ ¬(s.C);
5 return true;

6 if s is non-terminal state then
7 SC← {synConsLTS(s′)|s′ ∈ succ(s)};
8 return

∧
{C|C ∈ SC};

A.3.3 Synthesis Algorithms

Algorithm 17 presents the entry algorithm for synthesizing the dLTC for a given service
CS, by traversing the LTS = (Q, s0,Σ, δ) of CS.

This algorithm makes use of a second algorithm synConsLTS(s) shown in Algorithm 18.
Given a state s = (V,P,C,D) in the LTS of service CS, synConsLTS(s) returns a constraint
C ∈ CU. If state s is a good state (line 1), then it returns the constraint s.C =⇒ (s.D ≤ TG)
(line 2), where TG is the given global time constraint of the service CS. Kbad ∈ CU is a static
variable that is used to collect the negation of the constraint associated to states that are
marked with a bad status. If state s is a bad state (line 3), then Kbad is conjuncted with
negation of s.C (line 4), and returns true as the constraint (line 5). The reason for returning
true is to ensure that the returned constraint does not subsequently modify the constraint
returned by synConsLTS(s0), since true ∧ C′ = C′, for any C′ ∈ CU. If s is a non-terminal
state (line 6), SC ∈ CU is populated with the result of synConsLTS(s′), for each enabled
state s′ from non-terminal state s (line 7). Given A = {C1, . . . ,Cn} ⊂ CU, we denote by

∧
A

the conjunction of constraints in A, i.e., C1 ∧ . . . ∧ Cn. In line 8, the conjunction of all the
elements in SC is returned as the constraint.

201

s0:(S, true, 0)

s1:(rgood / b . A1, true, tDS)

s2:(A1, true, tDS) s3:(rgood, true, tDS)

s4:(P1, true, tDS)

s5:(Stop, true, tDS)X

s6:(A2, tFS≥1, tDS+1) s7:(rgood, tFS≤1, tDS+tFS)

s8:(P2, tFS≥1, tDS+1)

s9:(Stop, tFS≤1, tDS+tFS)X

s10:(rbad, tPS≥1∧tFS≥1, tDS+2) s11:(rgood, tPS≤1∧tFS≥1, tDS+1+tPS)

s12:(Stop, tPS≥1∧tFS≥1, tDS+2) s13:(Stop, tPS≤1∧tFS≥1, tDS+1+tPS)

sInv_DS [i f]

[else]

AInv_FS

reply_User

OAlrm_1

OMsg_FS

AInv_PS

reply_User

OAlrm_1

OMsg_PS

reply_Failure reply_User

× X

S=(sInv(DS) ; rgood/b.A1),A1=(aInv(FS) ; P1),P1=(pick(FS⇒rgood,
alrm(1)⇒A2)),A2=(aInv(PS) ; P2),P2=(pick(PS⇒rgood, alrm(1)⇒rbad)),
rgood=(reply(User)), rbad=([reply(User)]bad)

Figure A.8: LTS of the SMIS

Let us now return to the description of Algorithm 17. Upon getting the constraint of
Cons = synConsLTS(s0) (line 1), the synthesized dLTC of service CS, which is Cons∧Kbad, is
returned as the final result (line 2).

A.3.4 Application to the Running Example

Figure A.8 shows the LTS of the running example introduced in Section 3.1. Algorithm
synConsLTS(s) is used to synthesize the local time requirement for SMIS based on the LTS.
The dLTC of the running example is shown in Figure A.9. After simplification2 using
Z3 [63], it becomes dLTC shown in Figure A.10.

This result provides us useful information on how the component services collectively
satisfy the global time constraint. That is useful in selecting component services. For the

2For readability, we give the constraint as output in disjunctive normal form (DNF), instead of the usual
conjunctive normal form (CNF).

202

(tDS ≤ 3) ∧
(tFS ≤ 1) =⇒ (tDS+tFS ≤ 3) ∧
(tFS ≥ 1 ∧ tPS ≤ 1) =⇒ (tDS+tPS ≤ 2) ∧
¬(tFS ≥ 1 ∧ tPS ≥ 1)

Figure A.9: dLTC of SMIS

(tFS < 1 ∧ tDS + tFS ≤ 3) ∨
(tFS < 1 ∧ tDS + tPS ≤ 2) ∨
(tPS < 1 ∧ tFS > 1 ∧ tDS + tPS ≤ 2) ∨
(tDS + tFS < 3 ∧ tDS + tPS ≤ 2)

Figure A.10: dLTC of SMIS after simplication

case of SMIS, one way to fulfill the global time requirement of SMIS is to select component
service FS with response time that is less than 1 second, and component services DS and
FS where the summation of their response times should be less than or equal to 3 seconds.

A.3.5 Service Selection

Recall that the stipulated response time of a component service S denotes the upper bound on
its response time with respect to the synthesized constraint. dLTC could be used to select
a set of services that could collectively satisfy the global time requirement of a composite
service. Given a composite service CS with n component services C = {c1, c2, . . . , cn}. Let
{t1, t2, . . . , tn} and {v1, v2, . . . , vn}, where ti ∈ LU and vi ∈ R≥0, be the set of parametric
response times and stipulated response times for component services in C respectively.
One can check that whether the component services could collectively satisfy the dLTC of
the composite service CS, by checking the satisfiability of the formula (

∧
1≤i≤n ti ≤ vi) =⇒

dLTC(CS).

For SMIS example, we have (tFS ≤ 1.5∧ tPS ≤ 1.5∧ tDS ≤ 0.5) =⇒ dLTC(SMIS). This means
that if we could select component services FS, PS, and DS that respond within 1.5 seconds,
1.5 seconds, 0.5 seconds respectively, we could always guarantee the dLTC of SMIS.

A.3.6 Termination and Soundness

We show the termination and soundness of synthesis of dLTC.

203

A.3.6.1 Termination

We first make the following assumption.

Assumption 1. All loops have a bound on the number of iterations and the execution time.

This assumption, which is necessary for termination, is reasonable in pratice (see Sec-
tion 6.3.5 for a discussion).

Lemma 5. Let CS be a service model. Then LCS is acyclic and finite.

Proof: This holds due to the assumption on the loop activities, such that the upper bound on the
number of iterations and the time of execution, is known, and there are no recursive activities in
BPEL. �

Proposition 6. Let CS be a service model. Then LocalTimeConstraint(CS) terminates.

Proof: From Lemma 5,LCS is acyclic. Algorithm 17 is obviously acyclic too. Now, Algorithm 18
is recursive (on Line 7). However, due to the acyclic nature of LCS, then no state is explored more
than once. This ensures termination. �

A.3.6.2 Soundness

In this section, we prove Theorem 11 that will show that for any parameter valuation
satisfying the output of LocalTimeConstraint, then no bad activity is reachable, at least one
good activity is reachable, and all reachable good activities are reachable within the global
delay TG.

First, we introduce the notion of deadlockable LTS. Given a parameter valuation π, a state
in a non-parametric service model CS[π] is said to be an intermediate (resp. final) state if it
is a non-terminal (resp. terminal) state in parametric service model CS. The LTS of CS[π] is
deadlockable if and only if there exists an intermediate state s in the LTS of CS[π] such that
succ(s) = ∅. This happens because π 6|= s′.C, for each s′ ∈ succ(s) in the LTS of parametric
service model CS. We show that CS[π] is not deadlockable in the next lemma.

Lemma 7. Let CS be a service model, let π |= LocalTimeConstraint(CS). Then LCS[π] is non-
deadlockable. Given a service model CS, there do not exist a non-empty constraint C and a parameter
valuation π |= C, such that the LTS of CS[π] is deadlockable.

204

Proof: Consider the LTS,LCS = (Q, s0,Σ, δ), of a composite service CS. The constraint of initial
state is true, i.e., s0.C = true, therefore it is always satisfiable. Given a state s, and a state s′ such that
s′ ∈ succ(s), the situation where π |= s.C and π 6|= s′.C could only happen when if s′.C is stronger
than s.C, i.e., s′.C ⊂ s.C. In such a case, the additional constraints in s′.C could only be introduced
by pick or flow activity using the idle function (cf. Figure A.4), for the purpose of constraining the
relative speed of the services. Assume the pick construct as mpick = pick(S⇒P, alrm(a)⇒Q), where
S is a service with parameter response time tS, a ∈ R≥0 and P,Q are composite service activities. For
the activity P to be enabled, the satisfaction of constraint tS ≤ a is required, while for the activity Q
to be enabled, the satisfaction of constraint tS ≥ a is required. Since given any parameter valuation
π, mpick will be able to execute either of the branches, therefore it cannot be deadlocked. Assume
the concurrent activity as conc = P||Q, where P,Q are composite service activities. If P (resp. Q)
is a reply or asynchronous invocation activity, then P (resp. Q) is always executable, since it takes
no time. If P and Q are synchronous invocation activity or receive activity, which takes parameter
response time tP and tQ respectively, then activity P is executable, if tP ≤ tQ, and activity Q is
executable if tQ ≤ tP. Since given any parameter valuation π, either of the branches in conc is
executable, therefore it cannot be deadlocked. �

The following lemmas will be used to prove Theorem 11.

Lemma 8. Let CS be a service model. Let π |= LocalTimeConstraint(CS). Then no bad activity is
reachable in LCS[π].

Proof: Kbad contains the negated constraints from each of the bad states associated with all the
bad activities, i.e., Kbad = {

∧
(¬sb.Ci)|sb ∈ sbad}. Hence, the bad activities are unreachable for any

π |= Kbad. Now, since the result K of LocalTimeConstraint(CS) is Cons ∧ Kbad, then bad activities
are unreachable for any π |= Cons ∧ Kbad, hence for any π |= LocalTimeConstraint(CS). �

Lemma 9. Let CS be a service model. Let π |= LocalTimeConstraint(CS). Then there exists at least
one reachable good state (V,Pg,C, d) in LCS[π] = (Q, s0,Σ, δ).

Proof: First, note that the initial state s0 is reachable in LCS[π] (since s0.C = true). If the initial
state is the only state, then from Lemma 8, it is also not a bad state; hence it is a good state. Now,
if it is not the only state, from the absence of deadlocks (Lemma 7), from the finiteness of the LTS
(Lemma 5) and from the absence of bad states (Lemma 8), then at least one good state is reachable. �

Lemma 10. Let CS be a service model. Let π |= LocalTimeConstraint(CS). Then for all good state
(V,Pg,C, d) of LCS[π], d ≤ TG.

205

Proof: Let sg = (V,Pg,C,D) be a reachable state in LCS such that Pg is a good activity. From
Definition 18, C is satisfiable. Since Pg is a good activity, Algorithm synConsLTS adds a constraint
C =⇒ D ≤ TG to the result. Hence, LocalTimeConstraint(CS) ⊆ (C =⇒ D ≤ TG). Now, for
any π |= LocalTimeConstraint(CS), we have that π |= (C =⇒ D ≤ TG), and hence all reachable
states in LCS[π] are such that d ≤ TG. �

We can now formally state the soundness of LocalTimeConstraint.

Theorem 11. Let CS be a service model. Let π |= LocalTimeConstraint(CS). Then:

1. No bad activity is reachable in LCS[π],

2. There exists at least one reachable good state (V,Pg,C, d) in LCS[π],

3. For all good state (V,Pg,C, d) of LCS[π], d ≤ TG.

Proof: From Lemmas 8, 9, and 10. �

Given a composite service CS, and assume Sg = {s1, . . . , sn} be the set of all good states
in LCS[π] with π |= LocalTimeConstraint(CS). In the following proposition, we show that
π necessarily satisfies (at least) one of the good states’ constraints, i.e., π |= si.C for some
si ∈ Sg.

Proposition 12. Let CS be a service model, and Qgood be the set of all good states in the LCS[π]
with π |= LocalTimeConstraint(CS). Assume LocalTimeConstraint(CS) = (Cg ∧ Kbad), where
Cg =

∧
(Pi,Ci,Di)∈Qgood

(Ci =⇒ (Di ≤ TG)), and TG be the global time constraint. Given the
constraint Cg as non-empty, there does not exist a parameter valuation π such that π |= Cg and
π 6|= sg.Ci for all sg ∈ Qgood.

Proof: Assume there exists such a parameter valuationπ. According to Theorem 11, at least a good
state is reachable inLCS[π]. Without loss of generality, assume that a good state (Pi,Ci,Di) ∈ Qgood

is reachable, which implies that π |= Ci. This contradicts the assumption. �

A.3.7 Incompleteness of dLTC

A limitation of dLTC is that it is incomplete, i.e., it does not include all parameter val-
uations that could give a solution to the problem of the local time requirement. Given

206

an expression A/a=1.B, since a might be unknown during design time; we explore both
branches (activities A and B) for synthesizing dLTC. Nevertheless, only exactly one of the
activities will be executed during runtime. Including constraints from activities A and B
will make the constraints stricter than necessary; therefore some of the feasible parameter
valuations are excluded – this makes the synthesis of dLTC incomplete. This can be seen
as a tradeoff of making the synthesized local time requirement more general, i.e., to hold in
any composite service instances. In Section 3.3, we will introduce a method that leverages
on runtime information to mitigate this problem.

207

208

Appendix B

Appendix of Chapter 5

This chapter provides the evaluation of the approach introduced in Chapter 5.

B.1 Evaluation for Optimizing Selection of Competing Features

We conducted experiments to evaluate our approach. Specifically, we attempted to answer
the following questions:

RQ1. How is the improvement of the solutions that found by our method compared to the
existing state-of-the-art methods in terms of the correctness of the solutions?

RQ2. What is the runtime of our method compared to the existing state-of-the-art methods?

RQ3. Can our method be generalized to different EAs?

RQ4. How scalable is our method in terms of the size of feature models?

B.1.1 Setup

209

Algorithm Population Operators
Criteria for
Domination

Objective of the
Criteria

IBEA
Main and
Archive

Crossover,
Mutation,

Environmental
Selection

The amount of
domination are

calculated based on
quality indicator, e.g.,

hypervolume.

Favors user
preferences.

NSGA-
II

Main

Crossover,
Mutation,

Tournament
Selection

Distances to closest
point of each objective
are calculated. Favors
the point with greater

distance from other
objectives.

Favors more spread
out solutions and

absolute domination.

ssNSGA-
II

Main

Crossover,
Mutation,

Tournament
Selection

Similar to NSGA, with
the exception that only

one new individual
inserted into

population at a time.

Favors more spread
out solutions and

absolute domination.

MOCell
Main and
Archive

Crossover,
Mutation,

Tournament
Selection,
Random
Feedback

Similar to NSGA, a
ranking and a

crowding distance
estimator is used, but
bigger distance values

are favored.

Favors more spread
out solutions and

absolute domination.

Table B.1: Brief overview of EAs
B.1.1.1 Implementation

We have implemented our approach based on jMetal [71], which is a Java-based open source
framework that supports multi-objective optimization with EAs. Sayyad et.al [138, 136]
have made an extensive experiments to test how different EAs implemented on jMetal could
contribute to the optimal feature selection. We use the EAs that are reported to work well in
their experiments, and evaluate how the preprocessing and feedback-directed mechanisms
affect these EAs. The EAs we are using for the evaluation are:

1. IBEA: Indicator-Based Evolutionary Algorithm [172]

2. NSGA-II: Nondominated Sorting Genetic Algorithm [64]

3. ssNSGA-II: Steady-state NSGA-II [72]

4. MOCell: A Cellular Genetic Algorithm for Multi-objective Optimization [126]

A brief overview of these EAs are provided in Table B.1.

210

Repo. Model Fea. Cons. Fp F′p
– JCS 12 13 2 –

SPLOT
Web Portal 43 36 4 –

E-Shop 290 186 28 –

LVAT

eCos 1244 3146 54 19

FreeBSD 1396 62183 41 3

uClinux 1850 2468 1244 1244

Linux X86 6888 343944 156 94

Table B.2: Feature Models

B.1.1.2 Quality Indicators

To measure the quality of Pareto front, we make use of two indicators in this chapter:
hypervolume [173] and spread [64].

a) Hypervolume (HV): Hypervolume of the solution set S = (x1, . . . , xn) is the volume of the
region that is dominated by S in the objective space. In jMetal, although all objectives
are minimized, but the Pareto front is inverted before the hypervolume is calculated.
Therefore, the preferred Pareto front would be with the most hypervolume.

b) Percentage of Correctness (%Correct): There might be solutions that violate some
constraints in the Pareto front, since the correctness is an optimization objective that
evolves over time. Solutions that are correct (i.e., without violating any constraint)
are more useful to the user; therefore we are interested in the percentage of solutions
that are correct in the Pareto front.

B.1.1.3 Feature Models and Attributes

The details of feature models used in the experiment are summarized in Table B.2, with
the repository information (Repo.), number of features (Fea.), number of constraints (Cons.),
number of prunable features with the preprocessing method in Algorithm 6 (Fp), number
of prunable features with the preprocessing method in [137] (F′p), and literatures (Ref.)
associated with each feature model.

JCS feature model is the feature model that we have used throughout the paper. Two feature
models Web Portal and E-Shop are from SPLOT respository [122], which is a repository

211

used by many researchers as a benchmark. The Web Portal [121] model captures the
configurations of Web portal product line, and the E-Shop [164] model, which is one of
the largest feature models in SPLOT, captures a B2C system with fixed priced products.
These two models are chosen to facilitate the comparison with [138]. To further evaluate
the scalability of our methods, we make use of feature models from the Linux Variability
Analysis Tools (LVAT) feature model repository [5]. The models in LVAT were reversed-
engineered by making use of source code, comments and documentations of big projects
such as eCos [140, 164] operating system, FreeBSD [140, 42], uClinux [41] and Linux X86 [140,
42] operating system. Compared to the feature models in SPLOT, the feature models in
LVAT contain a significant larger number of features and constraints, and have higher
branching factors, but they have lower ratios of feature groups, and hence shallower tree
structures in general.

Note that Fp always contains more features than F′p – this shows that our preprocessing
method with Algorithm 6 has found more prunable features than [137]. In [137], their
preprocessing method is based on static analysis. In particular, they detect disjunctions
(rules) with only one feature, which means the feature is either a common feature or a dead
feature. In addition, they investigate the disjunctions (rules) that include two features, if
one of them is prunable in the first round, and the other one could be prunable as well. It
is easy to see that our method based on SAT solving could detect all features that could be
found by preprocessing method in [137], and it can be shown that Fp is always not lesser
than F′p.

B.1.1.4 Feature Attribute

Each feature in the feature models has the following attributes, which are the same as the
attributes used in [138]:

1. Cost ∈ R, records the number of cost incurred to use the feature. For each feature, the
Cost value is assigned with a real number that is normally distributed between 5.0
and 15.0.

2. Used_Before ∈ {true, f alse}, indicates whether this feature was used before. The value of
Used_Before is true if the feature has been used before, otherwise it is false. For each
feature, the Used_Before value is assigned with a Boolean value that is distributed
uniformly.

212

3. Defects ∈ Z, records the number of defects known in the feature. For each feature, the
Defects value is assigned with an integer number that is normally distributed between
0 and 10. However, if the feature has not been used before, the Defects value is set to
0.

B.1.1.5 Optimization Objectives

We introduce the five optimization objectives that we use in the experiment in the following.
Note that since jMetal requires minimization of the objectives; all objectives listed here are
objectives to be minimized.

Obj1. Correctness: minimize the number of violated constraints of the feature model.

Obj2. Richness of features: minimize the number of features that are not selected.

Obj3. Cost: minimize the total cost.

Obj4. Feature used before: minimize the number of features that have not been used before.

Obj5. Defects: minimize the number of known defects.

We specify correctness as an objective, rather than a constraint. The reason is that this allows
EA to nudge the search towards feature models that contain lesser violated constraints,
which eventually lead to valid feature models that do not contain violated constraints.
Furthermore, note that some objectives are conflicting, e.g., Obj2 and Obj3, because the
richness of features would imply a higher cost, but at the same time the cost needs to be
minimized.

B.1.1.6 Configurations of EAs

Given an EA, we introduce the configurations for comparison.

1. F+P: This is the EA that makes use of feedback-directed crossover and mutation (Sec-
tion 5.2.4) and preprocessing (Section 5.2.2) is applied before the execution of the
feedback-directed EA.

2. U+P: The unguided version of EA with preprocessing (Section 5.2.2) applied before the
execution of the unguided EA. We have demonstrated that, our method has found

213

Model
IBEA NSGAII ssNSGAII MOCell

F+P U+P U F+P U+P U F+P U+P U F+P U+P U

E-shop

Time (ms) 6994 6369 7401 1906 2150 2548 15214 16863 17541 2822 3964 4463

HV 0.3 0.18 0.19 0.26 0.2 0.17 0.24 0.22 0.22 0.24 0.19 0.22

%Correct 100.0 0.0 0.0 12.0 0.0 0.0 15.0 0.0 0.0 14 0.0 0.0

Web Portal

Time (ms) 5678 4596 4646 433 483 546 8309 8315 8221 1033 1793 1857

HV 0.32 0.2 0.23 0.3 0.24 0.21 0.3 0.21 0.24 0.31 0.21 0.22

%Correct 100.0 1.0 0.0 28.0 0.0 0.0 20.0 1.0 0.0 41 0.0 0.0

JCS

Time (ms) 4681 4318 4735 271 269 301 7289 6834 6890 271 432 595

HV 0.31 0.3 0.28 0.3 0.29 0.28 0.29 0.29 0.29 0.33 0.31 0.3

%Correct 96.0 78.0 54.0 27.0 22.0 16.0 31.0 24.0 14.0 34.0 21.0 18.0

Table B.3: Evaluation with SPLOT

more prunable features than the preprocessing method of [137] in Section B.1.1.3;
therefore, U+P can be seen as an improved version of [137] with smaller search space.

3. U: The unguided version of EA without preprocessing, which is used by [138, 136].

B.1.1.7 Parameter Settings

For U, the same as [136], single-point crossover and bit-flip mutation are used as crossover
and mutation operators, with crossover and mutation probabilities set to 0.1 and 0.01
respectively. These operators and probabilities also apply to U + P. For F + P, the feedback-
directed crossover (Algorithm 12) and feedback-directed mutation (Algorithm 7) operators
are used. The error mutation probability Pemut, mutation probability Pmut, and crossover
probability Pcross are set to 1.0, 0.0000001, and 0.1 respectively. All other parameter settings
for each EA are default settings of jMetal (e.g., population size is set to 100), and therefore
are omitted here.

For SPLOT case study, we make use of 25000 evaluations using four EAs (IBEA, NSGAII,
ssNSGAII, and MoCell). For the larger LVAT case study, we make use of 1000000 evalua-
tions using IBEA. For both case studies, we generate 10 sets of attributes. For each set of
attributes, we run each EA repeatedly for 30 times, and report the medium values of the
metrics. The evaluation results for SPLOT and LVAT are reported in Table B.3 and Table B.4
respectively.

We make use of Mann Whitney U-test [31] to test the statistical significant of %Correct
indicator. We highlight the %Correct in bold for F + P, if the confidence level exceeds 95%
when comparing F + P and U + P.

214

Model
IBEA

F+P F’+P U+P

eCos

Time (ms) 33245 51279 58561

HV 0.25 0.21 0.18

%Correct 100 61.45 0.0

E50 6300 62400 –

FreeBSD

Time (ms) 64042 82087 85750

HV 0.33 0.33 0.35

%Correct 100 100 0.0

E50 1500 1600 –

uClinux

Time (ms) 50668 43876 46986

HV 0.31 0.29 0.28

%Correct 100 100 0.0

E50 600 2100 –

Linux X86

Time (ms) 32758 31396 37472

HV 0.2 0.2 0.22

%Correct 0.0 0.0 0.0

E50 – – –

Table B.4: Evaluation with LVAT

The experiments were conducted on an Intel Core I7 4600U CPU with 8 GB RAM, running
on Windows 7.

B.1.2 Evaluation with SPLOT

Table B.3 demonstrates our results with SPLOT case study, where Time(ms), HV, and
%Correct represent execution time in milliseconds, hypervolume and percentage of correct
solutions in the Pareto front.

RQ1: We notice that the IBEA has outperformed other methods on the percentage of
correctness. This is conformed to the observation in [138]. According to [138], this is because
all EAs used in this case study (other than IBEA) use diversity-based selection criteria,
which favor higher distances between solutions. For this reason, non-IBEA methods tend
to remove solutions that crowded towards the zero-violation point, thus achieving lower
scores on the percentage of correctness measure.

We also notice that for each EA, the configuration U+P outperforms the configuration U on
the percentage of correctness. This is because the preprocessing method has filtered away

215

Time (ms) HV %Correct

IBEA -690 0.08 72.33%
NSGA-II 97.33 0.05 15%

ssNSGA-II 400 0.04 13.67%
MOCell 687.67 0.06 22.67%

Table B.5: Improvement of EAs on SPLOT

Time (ms) HV %Correct

IBEA 9718 0.015 75%

Table B.6: Improvement of EAs on LVAT

the prunable features, which makes the search space smaller. Hence EAs are more effective
in the optimal feature selection. We also observe that F + P outperforms U + P constantly
on the percentage of correctness. This is attributed to the feedback-directed crossover
and mutation, which have effectively guided EAs to explore more promising region of
the solution space for locating the optimal feature selection. The average improvement
for the configuration F + P over U + P is summarized in Table B.5, where the values are
calculated by summing up the differences of %Correct between F + P and U for all tested
EAs, and divided by four (the number of tested EAs). Positive values mean improvements,
while negative value mean the opposite. This has shown that our methods have provided
an improvement on the percentage of correctness for all case studies using different EAs,
especially in IBEA which has 72.33% improvement of correctness. These results answer
research question RQ1.

RQ2: The runtime of configurations F + P, U + P, and U are comparable. There does not
exist a configuration that has a clear advantage over the others in terms of the runtime.
The reason is that all configurations go through the same number of evaluations. One
might think that the configuration F + P requires an extra calculation of the error position
using Algorithm 8. In fact, the constraints also need to be enumerated for configurations
U + P and U during each round of evolution, in order to calculate the number of violated
constraints. Therefore, the extra operation of F + P is only the getFeatures function that
is used in line 10 of Algorithm 8, which has a low complexity. On the other hand, F + P
and U + P have shorter chromosome than U due to the preprocessing. However, these
does not reflect much on the results, because the selection, mutation, and crossover for
chromosomes could be done efficiently. These results answer research question RQ2.

RQ3: To answer research question RQ3, we notice that the percentage of correctness of

216

all tested EAs (IBEA, NSGA-II, ssNSGA-II and MOCell) have been improved by using
F + P. These results convey to us that, the preprocessing method and feedback-directed
crossover and mutation have provided an advantage on the percentage of correctness
and HV, regardless of the underlying EAs. The reason is that the preprocessing method
effectively prunes the search space, and the feedback-directed crossover and mutation
allow underlying EAs to use the feedback for faster finding of valid solutions. This also
shows that the preprocessing method and feedback-directed crossover and mutation are
general methods that could be applied for different EAs.

RQ4: To answer the research question RQ4, we make use of the E-shop model. E-shop
model contains one of the largest set of features in the SPLOT repository [122]. The results
show that, with U + P and U, none of the EAs could locate a correct solution. On the
other hand, with F + P, IBEA has achieved 100% of correctness, while NSGA-II, ssNSGA-II
and MOCell have achieved 12–14% of correctness. We have also further evaluated for 50
millions rounds of evolution for U + P for IBEA. It has only achieved 46% of correctness
after 50 millions rounds which takes 3.25 hours. In contrast, the configuration F + P has
achieved 100% of correctness by just 6.9 seconds.

To confirm the scalability of feedback-directed IBEA, we conduct the evaluation using
LVAT in the next section.

B.1.3 Evaluation with LVAT

Table B.4 demonstrates our results with LVAT case study with IBEA, where E50 represents
the number of executions required to obtain 50% of correct solutions in the Pareto front.
Configuration F′ + P is the same as F + P, with the exception that the mutation probability
Pmut is set to 0.01 (for F + P, Pmut = 0.0000001). The average improvement for the configu-
ration F + P over U + P is summarized in Table B.6. We notice that for eCos, freeBSD, and
uClinux, F + P achieves 100% correctness for all cases, while U + P does not find any correct
solution after 100000 executions. Although F + P achieves overall better runtime, it does
not has clear advantage over U + P for all models. These results have confirmed for the
better percentage of correctness (RQ1) and comparable runtime (RQ2) of F + P over U + P.
For Linux X86 which contains 6888 features, none of the methods (F + P, U + P, and U) have
found a correct solution. Therefore, we resort to the “seeding method" proposed by [137].

In [137], the authors make use of two methods, i.e., SMT solver and IBEA of two objectives,
for finding a correct solution (the “seed"), and plant the seed in the initial population of

217

IBEA with the hope to find more valid solutions. We run two seeding methods proposed
by [137] with F+P, and compare the results with the improved version of method proposed
by [137], i.e., U + P.

First, Microsoft Z3 SMT solver [63] is used to find a seed. In our case, Z3 successfully finds a
valid solution in around three seconds (we repeat for 30 times, and medium of the number
of selected features is 1455). With the seed, F + P successfully find 34 correct solutions
using no longer than 30 seconds. In contrast, U + P does not find any new solution after 30
minutes.

Second, IBEA with two objectives is used to generate the seed. In our case, F + P uses less
than 40 seconds to get 36 correct solutions. While for U + P, it spends a total of 3.5 hours of
execution time for 30 correct solutions and 4 hours of execution time for 36 correct solutions.
F + P has shorten the search time of U + P for more than 200 times. In particular, U + P
spends 3 hours to generate the seed, and spends half an hour to obtain 30 correct solutions.
And given another half an hour, U + P finally obtains 36 correct solutions.

These results have shown that F + P outperformed U + P given both seeding methods
in [137]. Note that the seed generated by IBEA with two objectives, is better than the seed
generated by the Z3 SMT solver. Both F + P and U + P find more solutions using seed
generated from IBEA with two objectives. This is conformed to the observation in [137].
According to [137], it is because the seed generated by IBEA with two objectives has more
selected features, and the “feature-rich" seed allows the effective search of other valid
solutions.

We also compare how the mutation parameter Pmut affects feedback-directed IBEA. Out of
five models, F′ + P only performs poorer than F + P in eCos. To better observe the effect,
we make us of E50. It shows that F + P obtained 50% of correct solutions in Pareto front
in a smaller number of evaluations for all models, except LinuxX86. The results show that
smaller Pmut leads to faster convergence of correct solutions in Pareto front. This is because
smaller Pmut minimizes the modification of non-error positions; therefore, it allows IBEA
to focus more on the correction of constraint violations.

B.1.4 Threats to validity

There are several threats to validity. The first threat of validity is due to the fact that values
for the feature attributes (i.e., Cost, Defects, and Used_Before) were randomly generated. This

218

is due to difficulty in obtaining the attributes that are associated with real-world products
since many of them are proprietary. To mitigate the effect of randomness, we generate 10
set of attributes for each case study. Furthermore, for each set of attributes, we run each EA
repeatedly for 30 times, and report the medium values of the metrics. Future work should
involve the use of real data for the evaluation.

The second threat of validity stems from our choice of using an exemplar parameter set (e.g.,
for crossover and mutation probability), which comes with the default setting of jMetal,
in order to cope with the combinatorial explosion of options. To address these threats,
it is clear that more experimentations with different feature models and experimental
parameters are required, so that we could investigate effects that have not been made
explicit by our dataset and experimental parameters.

219

	List of Tables
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Thesis Overview
	1.2 Thesis Outline
	1.3 Publications of Our Works

	2 Background
	2.1 Service Oriented Architecture
	2.2 Web Service Composition
	2.3 Model Checking

	3 Automated Synthesis of Local Time Requirement for Service composition
	3.1 A BPEL Example with Timed Requirements
	3.2 Overall Approach
	3.3 Runtime Refinement of Local Time Requirement
	3.3.1 Motivation
	3.3.2 Runtime Adaptation of a BPEL Process
	3.3.3 Algorithm for Runtime Refinement
	3.3.4 Satisfiability Checking
	3.3.5 Termination and Soundness
	3.3.6 Discussion

	3.4 Evaluation
	3.4.1 Case Studies
	3.4.2 Synthesis of Local Time Requirement
	3.4.3 Runtime Adaptation
	3.4.4 Threat to Validity

	3.5 Related Work
	3.6 Chapter Summary

	4 Dynamic Ranking Optimization for QoS-Aware Service Composition
	4.1 QoS-Aware Compositional Model
	4.1.1 QoS Attributes
	4.1.2 QoS for Composite Services
	4.1.3 Optimality Function
	4.1.4 Problem Statement

	4.2 Dynamic Ranking Optimization
	4.2.1 Service Preprocessing
	4.2.2 Service Ranking
	4.2.3 Dynamic Service Selection
	4.2.4 Solving for Optimal Selection

	4.3 Evaluation
	4.4 Evaluation
	4.4.1 Evaluation with a Synthetic Dataset
	4.4.2 Evaluation with QWS Dataset

	4.5 Related Work
	4.6 Chapter Summary

	5 Optimizing Selection of Competing Features via Feedback-directed Evolutionary Algorithms
	5.1 Background
	5.1.1 Software Product Line
	5.1.2 Feature Model and its Semantics
	5.1.3 Multi-objective Optimization Problem

	5.2 Feedback-directed Evolutionary Algorithm
	5.2.1 Preliminaries of Evolutionary Algorithms
	5.2.2 Preprocessing of Feature Model
	5.2.3 Genetic Encoding of the Feature Set
	5.2.4 Feedback-directed Evolutionary Operators

	5.3 Related Work
	5.4 Conclusion

	6 Verification of Functional and Non-functional Requirements of Web Service Composition
	6.1 Motivation Example
	6.1.1 Computer Purchasing Services (CPS)
	6.1.2 BPEL Notations

	6.2 QOS-AWARE COMPOSITIONAL MODEL
	6.2.1 QoS Attributes
	6.2.2 QoS for Composite Services
	6.2.3 Labeled Transition System

	6.3 Verification
	6.3.1 Verification of Functional Requirement
	6.3.2 Integration of Non-Functional Requirement
	6.3.3 Integration of Availability and Cost
	6.3.4 Integration of Response Time
	6.3.5 Discussion

	6.4 Experiment
	6.4.1 Computer Purchasing Service (CPS)
	6.4.2 Loan Service (LS)
	6.4.3 Travel Agency Service (TAS)

	6.5 Related Work
	6.5.1 Verification of Web Service Composition
	6.5.2 Constraint Synthesis of Web Service Composition

	6.6 Chapter Summary

	7 Tool Implementation: VeriWS
	7.1 VeriWS
	7.1.1 Architecture and Implementation
	7.1.2 Aggregator
	7.1.3 Verifier
	7.1.4 Simulator
	7.1.5 Comparison with Existing Tools

	7.2 Demonstration
	7.2.1 Computer Purchasing Service (CPS)
	7.2.2 Requirements for Verification

	7.3 Chapter Summary

	8 Automated Runtime Recovery for QoS-based Service Composition
	8.1 Motivating Example
	8.2 QoS-aware Compositional Model
	8.2.1 Labeled Transition System
	8.2.2 Example: Transport Booking Service
	8.2.3 Backward Actions
	8.2.4 Monitoring Automata
	8.2.5 Recovery Plan

	8.3 Service Recovery as a GA Problem
	8.3.1 Preliminaries of Genetic Algorithms
	8.3.2 Architecture
	8.3.3 Genetic Encoding of a Recovery Plan
	8.3.4 Genetic Operators
	8.3.5 Calculating the Fitness Value
	8.3.6 QoS Optimality
	8.3.7 Global Optimality
	8.3.8 Fitness Function
	8.3.9 Enhanced Initial Population Policy
	8.3.10 rGA Algorithm

	8.4 Evaluation
	8.5 Related Work
	8.6 Chapter Summary

	9 Conclusion and Future Works
	9.1 Conclusion
	9.2 Future Work

	Bibliography
	A Appendix of Chapter 3
	A.1 A Formal Model for Parametric Composite Services
	A.1.1 Variables, Clocks, Parameters, and Constraints
	A.1.2 Syntax of Composite Services
	A.1.3 Parametric Composite Services
	A.1.4 Bad Activity

	A.2 A Formal Semantics for Parametric Composite Services
	A.2.1 Labeled Transition Systems
	A.2.2 Symbolic States
	A.2.3 Implicit Clocks
	A.2.4 Operational Semantics
	A.2.5 Application to an Example

	A.3 Synthesis of Design-time LTC
	A.3.1 Addressing the Good States
	A.3.2 Addressing the Bad States
	A.3.3 Synthesis Algorithms
	A.3.4 Application to the Running Example
	A.3.5 Service Selection
	A.3.6 Termination and Soundness
	A.3.7 Incompleteness of dLTC

	B Appendix of Chapter 5
	B.1 Evaluation for Optimizing Selection of Competing Features
	B.1.1 Setup
	B.1.2 Evaluation with SPLOT
	B.1.3 Evaluation with LVAT
	B.1.4 Threats to validity

