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SUMMARY 

This thesis lays the ground work necessary for the most accurate and detailed 
simulation of liquid bulk water ever undertaken. Despite considerable effort for 
more than a century of intense scientific endeavor, this enigma of a material has 
eluded complete understanding of its properties and behaviour. We examine liquid 
water in Chapter 1 and note it is very special, yet absolutely essential, anomalous 
properties and attempts to date to unravel its mysteries. We finish out the chapter 
considering the specific issues that make modeling water so very difficult and a 
description of what lies ahead in the rest of the thesis. 

Chapter 2 provides the background to all the theoretical methods employed in this 
thesis. They include the many-body treatment of intermolecular interaction 
energies, ab initio quantum mechanical evaluation of the total electronic energies 
for a collection of nuclei and the utilization of multipoles in accurately describing 
interaction energies at moderate to long-range. None of these methods in isolation 
can provide what is needed to accurately simulate bulk water – indeed, we spend 
some time pointing out the deficiencies in applying any one of them. However, if 
these methods could be combined judiciously so as to overcome their inherent 
limitations a route to understanding water may be within reach and this is the 
intention of Chapters 3 and 4. 

In Chapter 3, we focus our attention on the precise details of exactly what is 
necessary to accurately simulate bulk water. We discover a requirement that at 
first sight seems impossibly high – the accurate determination of the total 
electronic energy or interaction energy of a large spherical cluster of water 
molecules. However, we show that with a cunning use of energy-based molecular 
fragmentation the impossible is dragged down to within reach. Nevertheless, 
difficulties still abound and we examine solutions to these in the next chapter. 

While application of the many-body expansion enables accurate evaluation of the 
interaction energy for a large spherical water cluster, its direct implementation is 
essentially intractable in a bulk water simulation. This is due to the crushing 
weight of literally hundreds of thousands to even millions of energy evaluations 
using perturbation theory and multipoles. In Chapter 4 we show that by carefully 
considering which specific three-body interactions are significant, and which are 
not, we are able to remove vast numbers of these energy evaluations without any 
significant loss of accuracy. We show this towards the end of the chapter where 
we develop a simple, yet powerful, criterion for selecting out significant 
interactions. This criterion is not ad hoc, but based soundly in the origins of the 
three-body interaction itself. 

The above research concludes our five-year effort in making an accurate bulk 
water simulation very possible – we leave its practical and detailed 
implementation for future work. In the final chapter of this thesis, we enter the 
realm of pure computational chemistry as we describe our contributions to a 
collaborative endeavor in which the role of aryl-substituents in moderating the 
nature of hydrogen bonds, N-H⋅⋅⋅N versus N-H⋅⋅⋅O, lead to supramolecular chains 
in the crystal structures of N-arylamino 1,2,3-triazole esters.  
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Chapter 1  

Introduction 

1.1 1.1 1.1 1.1  The Importance of WaterThe Importance of WaterThe Importance of WaterThe Importance of Water    and its Anomalous Propertiesand its Anomalous Propertiesand its Anomalous Propertiesand its Anomalous Properties    

Water is ubiquitous on Earth and is the third most abundant molecule in the 

Universe (after H2 and CO). It plays an absolutely central role in living systems 

and is Earth’s natural solvent. By “Earth’s natural solvent” we mean that due to 

the location and size of the planet plus the early chemistry that took place in 

Earth’s 4.6 billion year history liquid water is ubiquitous on the Earth’s surface. 

Consequently virtually all of the chemistry that occurs on the surface in the liquid 

phase involves water as the solvent. The role of water in biology cannot be 

overstated and goes beyond merely a “space filler” between biomolecules. Water 

takes on many active roles in molecular biology1 – being absolutely crucial for the 

existence of, and sustaining life. 

The pivotal role water plays on Earth is not only due to its great abundance on the 

planet. Many properties of water are unique and deemed anomalous, and it is these 

unusual properties that ofttimes bestow essential and favourable behaviour to the 

system in which it is present. For example, water is the only liquid to expand when 

cooled – its density passing through a maximum at around 4 °C under atmospheric 

pressure. This unusual phenomenon in freshwater lakes prevents water from 

freezing from the bottom up in the lake and hence killing all of the organisms in 

it. As the surface water cools and approaches 4 °C its density increases, so sinks 

and is replaced by warmer, less dense, water. This circulation continues and 

potentially transports more oxygenated water to lower depths. Once the lake is 

uniformly cool, any water that is then made cooler than 4 °C will float and 
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eventually freeze, but at the surface of the lake and not the bottom. The process 

also ensures that while liquid water still exists in a frozen-over lake its bottom 

remains at least at 4 °C and unfrozen. 

Water also exhibits unusual non-monotonic behaviour in its isothermal 

compressibility, �� and molar heat capacity. In any liquid, the fractional change 

in volume as pressure is exerted on the liquid at constant temperaturea is tiny, but 

measurable. As the temperature is dropped, the fractional change in volume for 

the same pressure exerted is normally less than that observed at higher 

temperatures. This is expected because from statistical thermodynamics the 

isothermal compressibility is directly related to the fluctuations in the molar 

volume of the liquid which should get smaller as the temperature is dropped. For 

water, however, the isothermal compressibility passes through a minimum at 

around 42 °C (see ref. 2). 

 
Figure 1-1 Isothermal compressibility of liquid water as a function of temperature 

Water exhibits non-monotonic behaviour in its isothermal compressibility as it is cooled3. A 
minimum is observed at around 42 °C. However, a typical liquid (red dashed line), decreases 
monotonically as it is cooled. 

                                                 
a This is the definition is isothermal compressibility, ��  �� �������. 
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More odd behaviour from water is observed in its particularly high boiling point 

for such a simple triatomic and its very large value of dielectric constant. The large 

value of the dielectric constant has profound consequences in electrostatic 

interactions present in the proteins of living systems. Understanding these 

properties, which are atypical compared to other substances of similar size, has 

been ongoing for many decades. As a consequence, although it is one of the most 

studied substances in science, complete understanding of water eludes us despite 

of the extensive work in unravelling its mysteries (see the reviews 4). 

1.2 1.2 1.2 1.2  What What What What MMMMakes akes akes akes WWWWater ater ater ater UUUUnique?nique?nique?nique?    

The unusual properties of bulk water is primarily due to the hydrogen-bonding 

exhibited by water molecules. Additionally, its relatively small size, almost 

spherical shape and large dipole moment also make a significant contribution. The 

notion that water is almost spherical is counter intuitive given its familiar “V” ball-

and-stick structural representation. However, this structure of water is specifically 

referring to the positions of nuclei in the molecule. After all, this is where 

essentially all of the mass is in any molecule. In this regard, water is far from 

spherical, as exhibited clearly by the very different three values of its rotational 

constants (H216O): A = 835.8 GHz, B = 435.4 GHz and C = 278.1 GHz5. 

Nevertheless, the physical extent of the molecule is governed by the surrounding 

electron cloud. This cloud is responsible for the exchange-repulsion interaction as 

any other molecule approaches at close range. The surface that best characterises 

the onset of this exponentially repulsive interaction is the van der Waals surface, 

which can be represented by an isosurface of electron density surrounding the 

nuclei of a molecule with a value of 0.002 a0-3. This surface is depicted in Figure 
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1-2, which well illustrates the almost spherical shape of water. The radius of this 

approximate sphere is 1.5 Å, which is essentially the van der Waals radius of the 

oxygen atom itself. 

 
Figure 1-2 Approximately spherical water 

Panels (A) and (B) illustrate an electron density isosurface (ρ = 0.002 ����), which corresponds to 
the van der Waals surface, around a water molecule. While not exactly spherical it is clear that the 
physical shape of water is very nearly so. 

 
Further evidence of the almost spherical shape of water comes from its dipole-

dipole polarizability. High level theoretical calculations of the vibrationally 

averaged J = 0 principle dipole-dipole polarizabilities6 are 1.47, 1.40, 1.55 Å3 

which results in an isotropic value of 1.47 Å3 – in excellent agreement with 

experimental measurements. The three components of this second rank tensor 

deviate by less than 5% from the isotropic value indicating that, at least as far as 

electron dipole-dipole polarization is concerned, all three directions in water are 

almost the same. A consequence of this is that the induction interaction energy in 

water can be quite accurately described with the isotropic dipole-dipole 

polarizability. 

 
 (A) (B) 
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The polarizability of a single water molecule is not particularly large, nor unusual. 

E.g., the isotropic polarizabilities of the O atom plus H2 molecule (isotropic 

polarizabilities are approximately additive)7 is 1.59 Å3. The polarizabilities of the 

isoelectronic molecules7 CH4, NH3, HF and Ne are 2.45, 2.10, 1.28 and 0.38 Å3 

respectively. We can see that the polarizability of water is nothing out of the 

ordinary and well within the observed trend which follows the increase in effective 

nuclear charge as one moves towards the noble gases – an increased effective 

nuclear charge means that electrons are more tightly bound to nuclei and are 

therefore less able to be polarised by an external field. 

This typical value of molecule polarizability is unrelated to the extremely large 

value of the dielectric constant for water – bulk water is highly polarizable. This 

is largely due to the near spherical shape of water, thus enabling water molecules 

to almost freely be reoriented in solution, and more importantly, the large dipole 

of water. Any applied field subjected to a liquid sample of water, from without or 

within, produces a very large degree of polarization. This occurs because the 

molecules almost freely, on average, reorient and cooperatively counter the field 

with their permanent electrostatic dipoles. 

While the large dipole of water is not unexpected compared with that of say, NH3 

or HF, the fact that a large collection of water molecules (i.e., 1023) under one bar 

pressure and at 25 °C forms a liquid in the first place is unexpected.  The normal 

boiling points of NH3 and HF are −33.3 and 19.5 °C respectively8. Liquid water 

appears to be far more stable than it should be. So as such, no other room 

temperature and pressure liquid possesses the very large value of dielectric 

constant that water does. 
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The reason for its anomalous boiling point and other anomalous properties can 

largely be traced to the unusual close-contact intermolecular interactions taking 

place in water, summarised in the term – hydrogen bonding (or simply H-

bonding). A water molecule can form a maximum of four hydrogen-bonds because 

it can accept two and donate two hydrogen atoms, as illustrated in Figure 1-3. 

However for the interaction to be significant, and it is typically of the order of 20 

kJ mol-1, the O–H···X should be close to linear and the H···X distance should be 

less than the sum of the van der Waals radii of H and X. Thus in an H-bond, the 

hydrogen atom penetrates within the electron cloud of the acceptor atom, but rather 

than give rise to a very large exchange repulsion interaction, there is a substantial 

degree of stabilization that occurs (see panel (B) of Figure 1-3). 

 
Figure 1-3 Maximum hydrogen bonding for water 

Panel (A) shows the hydrogen-bonding that may occur around a single water molecule. The 
maximum number of neighbors is four. Panel (B) is an isosurface (ρ = 0.002 ����) for electron 
density that closely approximates the van der Waals surface. It is of note that hydrogens in the 
hydrogen-bonds penetrate into the van der Waals surface of the acceptor (oxygen) atom. 

 
This type of interaction allows water to approach much more closely to specific 

atoms, and in a specific orientation, than would otherwise be permitted. The 

 
 (A) (B) 
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closeness of this approach produces stronger intermolecular interactions in 

addition to that of the stabilization afforded by the H-bond itself. 

The specific interaction occurring due to H-bonding, plus the large dipole of water 

giving rise to significant induction effects within a collection of water molecules 

makes water notoriously difficult to model accurately in detail. H-bonding, as seen 

in the interpenetration of the electron cloud, is fundamentally quantum mechanical 

in nature. Additionally, the existence of significant induction interactions produces 

substantial non-additive interaction energies. Once the energy of a system contains 

a significant contribution from non-additive effects the computational effort 

required to model it increases substantially because simple pair-wise sums of 

interaction energies no longer accurately reflects the reality of the system. 

Nevertheless, a large number of attempts have been made to accurately model 

water and these attempts are briefly summarised in the next section.  

1.3 1.3 1.3 1.3  Models ofModels ofModels ofModels of    WaterWaterWaterWater    

As mentioned earlier, several excellent reviews already exist that well cover all 

attempts to accurately model water to date4, 9. However, it is important to briefly 

summarise what has been covered in the scientific literature here in order to put 

the work presented in this thesis in its proper context. As pointed out by Ouyang 

and Bettens9, water models can be classified into three categories based upon the 

overall approach taken. Each approach addresses some of the failings of the 

previous, but in doing so increases the complexity of the model and the 

computational expense. 
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The first approach appends a classical pairwise charge-charge interaction potential 

to a Lennard-Jones potential. The charges used are enhancedb point charges placed 

on, or near, the atoms of a water molecule in an attempt to account for induction 

but in an additive (and thus, fundamentally flawed) way. These types of models 

are computationally the least expensive and are intended to be “transferable” in 

the sense that the same water parameters can be used in simulations with solutes 

(also treated in a manner similar to water, i.e., with point charges and Lennard-

Jones potential parameters). The small number of parameters in these models are 

fitted to match as best as possible the bulk properties of water at around 25 – 37 

°C. Such models do perform reasonably well at reproducing the bulk water 

properties at these temperatures, mostly because they have been parameterised to 

do so. Such models fail hopelessly in reproducing detailed geometries and 

interaction energies of a small number of water molecules, e.g., dimer, trimer, 

tetramer etc. or water clustered around some solute. They also fail in accounting 

for the anomalous properties of water over a wide temperature range. Despite these 

failings, these models continue to be utilised today as they do provide a qualitative 

picture of the solvent around large solutes like proteins. The reason being these 

models are currently the only models cheap enough to perform these enormous 

calculations. Examples of such models include the transferable intermolecular 

potential functions (TIPnP) family of models10 and the single point charge (SPC) 

family of models11. 

In the second approach, the complete neglect of non-additive effects encountered 

in the former approach is addressed. Additionally, a substantially improved 

                                                 
b “Enhanced” compared to, say, what would be needed to reproduce the dipole of water. 
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treatment of the electrostatic interaction that occurs between water molecules or 

other solute species is implemented. In this approach, a set of electrostatic 

multipoles (rather than just a small number of monopoles utilised previously), or 

a large set of point charges, are added at various sites within the water molecule. 

The multipoles, usually up to and including quadrupoles, much better reproduce 

the electrostatic potential that surrounds a water molecule. Unfortunately, 

however, a multipole approach is only accurate at moderate to long-range, i.e., 

when two interacting molecules are at least 20 – 50% further away from each other 

than their respective van der Waals surfaces. Close-contact interactions are not 

well reproduced utilizing a multipolar approach. The non-additive interaction 

effects are also handled via multipoles, with the first order treatment requiring 

dipole-dipole polarizabilities. Again, while very accurate at moderate to long-

range, close-contact interactions are not well treated with this approach. For close-

contact interactions, either some type of functional form is implemented or the 

multipoles are “damped” such that numerical instabilities and highly inaccurate 

results are suppressed. Close-contact interactions not present at moderate to long-

range include the H-bonding interaction and short-range exchange-repulsion. 

Furthermore, such models cannot account for purely quantum mechanical 

phenomena like hydrogen atom exchange between waters or proton transfer. 

Examples of this approach include the anisotropic site potential (ASP) family of 

models12, the symmetry adapted perturbation theory (SAPT) family of models13 

and the Thole-Type models (TTM)14. 

The final approach abandons the use of multipoles in describing short range 

interactions due to their failure at such short distances and inevitable messy 

corrections. However, there is currently no theory for obtaining analytic 
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expressions for the detailed form of intermolecular close-contact interactions. As 

such, there is presently no alternative but to assume a flexible functional form for 

the interaction then fit its parameters to very high quality ab initio data. That is, a 

highly accurate potential energy surface (PES) is constructed. The amount of data 

typically required is of the order of 105 energy calculations at structurally 

important water configurations. This approach is by far the most accurate, but 

computationally very expensive, at least in the PES construction phase. 

Additionally, this approach must utilise a many-body expansion in order to 

construct the PESs. There exists a surface for the water monomer (3-dimensional), 

a surface for the two-body, or dimer, interaction energy (12-dimensional), a 

surface for the three-body, or trimer, interaction energy (21-dimensional) etc. Each 

additional body increases the dimensionality of the required PES by nine, thus 

making construction of ever higher body PESs extremely difficult. Despite these 

difficulties, this approach is able to fully account for quantum mechanical effects 

in interactions as well as any chemistry that may take place. The approach is, 

however, only relatively recent and actively and intensively being pursued at 

present. Indeed, much of the work in this thesis is focused on following this type 

of approach. Examples of this approach include the HBB models15, the CC-pol 

models16 and the MB-pol models17. 

1.4 1.4 1.4 1.4  Towards Towards Towards Towards ModelingModelingModelingModeling    Bulk Water from First PrinciplesBulk Water from First PrinciplesBulk Water from First PrinciplesBulk Water from First Principles    

As mentioned in the last section, the work presented in this thesis is largely focused 

upon developing a method to accurately and cheaply obtain the interaction energy 

between water molecules. Ultimately for the implementation in a simulation that, 

once and for all, can account for any and all anomalous properties of this 
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ubiquitous solvent. Inspection of the years published for the references in the last 

approach reviewed in the previous section reveals that most of the published work 

has occurred in the last few years, or even as this thesis is being written. It is 

important to realise that the work presented in this thesis is entirely independent 

of that work in this highly competitive field of intensive research. 

As we saw in section 1.2 many of the anomalous properties of bulk water can be 

traced back to the hydrogen-bond – a close-contact interaction. We also saw in the 

previous section that such interactions cannot possibly be described accurately 

using monopoles of even multipoles and we shall see precisely why that is in the 

next chapter. To understand water from first principles we are left with no choice 

but to adopt a model that accurately reflects the quantum mechanics occurring 

when water molecules are close to one another. The most obvious and simplest 

way to handle this is break the interactions between water molecules down into 

their component monomer, dimer and then trimer etc. contributions – presuming, 

of course, that such contributions converge rapidly. That is, we shall adopt the 

many-body expansion for evaluating the energy of interacting waters (described 

in detail in the next chapter). We saw, however, in the last section that constructing 

PESs for these types of interactions is extremely costly and difficult. Furthermore, 

it is unnecessary when a multipole approach successfully and accurately describes 

interaction energies at moderate and long-range. A natural question arises from 

this statement and that is: “What is moderate-range?” This question is directly 

addressed in Chapter 4. 

The description of interaction energies with multipoles at moderate and long-range 

is only accurate when induction and dispersion are also included along with the 
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electrostatistic interactions. Electrostatic interactions are exactly additive and 

dispersion is very nearly additive to a high degree of accuracy. Unfortunately, the 

induction interaction is highly non-additive and it makes a significant contribution 

to the interaction energy in a cluster of water molecules and hence in bulk water. 

This seriously complicates accurate modeling. For this reason we examine a 

method that potentially could minimise the computations necessary to evaluate 

this induction energy through the use of spherical-shells of water molecules 

around a central water molecule of interest. Our investigations into this method 

are described in Chapter 3. 

Before any considerations of water and the way it interacts with other water 

molecules we firstly describe the theoretical methods employed in this thesis. This 

is done in the following chapter. Finally, Chapter 6 represents a significant 

collaboration on how aryl-substituents moderate the nature of hydrogen bonds, N–

H···N versus N–H···O, leading to supramolecular chains in the crystal structures 

of N-arylamino 1,2,3-triazole esters. We were involved in the computational work 

which helped elucidate the observed diversity in hydrogen bonding found in the 

eight crystal structures.  
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Chapter 2  

Employed Theoretical Methods 

2.1 2.1 2.1 2.1  The Energy of a Collection of MoleculesThe Energy of a Collection of MoleculesThe Energy of a Collection of MoleculesThe Energy of a Collection of Molecules    

The total energy of a system is the sum of all the kinetic and potential energy 

associated with that system. In thermodynamic terms, the energy we are referring 

to is the internal energy of the systemc. The systems of interest in this thesis are 

collections of water molecules. The studies in this work are focused entirely on 

the electronic energy of these collections of water molecules. The electronic 

energy is exclusive of any kinetic energy associated with nuclear motion. That is, 

nuclear translational, vibrational and rotational kinetic energy. Furthermore, we 

do not concern ourselves with any kinetic energy associated with nuclear or 

electronic spin as these energies are extremely small in comparison to the energies 

mentioned thus far. The work presented in this thesis is therefore not concerned 

with the total energy of a collection of water molecules, but rather the electronic 

energy of the same. 

The main reason for focusing only on the electronic energy is that the kinetic 

energy of nuclear motion can readily be obtained through simulation, be it either 

Monte Carlo or molecular dynamics. These simulations potentially provide all the 

information necessary to compare theoretical calculations to experimental bulk 

measurements. These simulations require, first and foremost, an electronic energy 

                                                 
c Despite the fact that the free energy, be it either Gibbs or Helmholtz, or enthalpy possess the same 
units as internal energy, i.e., energy, these latter thermodynamic state functions are not generally 
conserved in any arbitrary thermodynamic process in an isolated system and do not generally 
represent the total kinetic and potential energy of a system except at zero Kelvin. Likewise, in a 
general open or closed system only the internal energy change of the Universe is conserved in a 
process, while that of the Gibbs, Helmholtz and enthalpy are not generally so. 
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of the system of interest for a given set of nuclear positions or coordinates (i.e., 

the potential energy surface or PES). Without the latter the simulations cannot be 

performed. Furthermore without an accurate estimate of the electronic energy of 

the system with respect to nuclear positions the results of the simulations will also 

be void of any accuracy.  

The previous paragraphs have made several tactic assumptions. Firstly, it was 

assumed that the electronic energy of the system can be obtained for a given 

nuclear configuration and/or without specifying the kinetic energy of the nuclei, 

which surely all possess non-zero momenta at any given instant of time. This 

assumption necessarily implies that the electronic energy is independent of the 

kinetic energy of the nuclei. The presumed independence of nuclear and electronic 

motion is the basis of almost all quantum mechanical methods today. This 

assumption is known as the Born-Oppenheimer (BO) approximation. 

The BO approximation is justified on the basis that electrons have a much smaller 

mass than that of the nuclei, hence they move much faster relative to the nuclei for 

a given amount of kinetic energy. For a given amount of kinetic energy in the 

system, there is a tendency for this energy to be spread out over all the possible 

degrees of freedom (the equipartition theorem). As a result, the electrons in any 

given system will adjust their distribution to provide the energetically most 

favourable one for a given set of nuclear positions. To adopt a term from modern 

theatrical parlance, the electrons move in “bullet time” compared to the much 

slower motion of the nuclei and are thus, able to adopt the energetically most 

favourable distribution accordingly. To a very high level of accuracy the electrons 

may be regarded as moving around the fixed and static nuclei, whose distances 
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with respect to one another are fixed, so the kinetic energy of the nuclei can be 

completely separated out from the problem and dealt with in detail once having 

solved for the electronic energy as a function of nuclear positions, i.e., having once 

solved for the PES. 

Another tactic assumption in the first two paragraphs of this section, and indeed 

the title of this section, is that individual water molecules still exist in the 

condensed phase. While this may be patently obvious to the reader that this should 

be the case, it is of note that it was not always so. In fact, it was not until the 19th 

century did scientists generally begin to accept that matter could be composed of 

individual molecules18. Today, there is no doubt that this is true with numerous 

experimental studies, e.g., diffraction experiments, microscopy and even the 

existence of simple Brownian motion, demonstrating the fact. Liquid water is no 

exception; indeed, it would be odd to call the liquid phase of a collection of H and 

O atoms in a ratio of 2:1 liquid water if this were not the case. Nevertheless, water 

molecules may approach each other quite closely so that their identity, or 

individual properties, may begin to be blurred as indicated in Figure 1-3, panel 

(B).  

The existence of individual molecules of water in the liquid phase implies that the 

electronic energy of a collection of such molecules may be separated into two 

parts. The first being the electronic energies associated with the individual 

molecules and the second being an electronic energy associated with the 

interaction of such molecules. A jargon as evolved by considering clusters of water 

molecules in such a manner. The term “water monomer” refers to an individual 

water molecule and “water dimer” refers to a pair of (usually) interacting water 
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molecules. Likewise, the terms “trimer”, “tetramer”, “pentamer”, “hexamer”, etc. 

all refer to different cluster sizes of water molecules. Such clusters possess an 

electronic energy, but it is also possible to define an interaction energy between 

the individual waters within each cluster, which is the topic of the next section. 

2.2 2.2 2.2 2.2  The Interaction Energy of a Collection of MoleculesThe Interaction Energy of a Collection of MoleculesThe Interaction Energy of a Collection of MoleculesThe Interaction Energy of a Collection of Molecules    

Let the electronic energy of a collection of N water molecules be given by ����, 
where X is a 9N dimensional vector of Cartesian coordinates of all 3N nuclei in 

the collection. As discussed in the previous section, we can define this as the 

electronic energy of the system because we are invoking the BO approximation. 

Furthermore, we have already established that we are able to differentiate the 

individual water molecules in this collection, so it also possible to define the 

individual monomer electronic energies of each water in the collection. Let the 

electronic energy of an individual isolated water monomer, i, be ����� where Xi 

is a nine dimensional vector of Cartesian coordinates of the O, H and H atoms in 

water molecule i. Thus it is also possible to define the interaction energy, ����, of 

this collection of water molecules as 

����  ���� −������ 
�!� 	 �1�	

Equation (1) is the definition of the interaction energy and can be seen to be the 

additional electronic energy of the system over and above the sum of the electronic 

energies of the individual monomers. It should also be noted that the structures of 

each monomer may not be identical, so that in general ����� ≠ �$�%&.  
It is instructive to consider for the moment the physical meaning of the energy 

obtained from evaluating equation (1). If a collection of water molecules were 
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behaving as a perfect gas, then for any configuration, X, of the waters, the ���� 
0. Evidently, the very existence of a condensed phase of water means that, at least 

for certain X, ���� < 0. The interaction energy between water molecules in the 

liquid phase must be negative otherwise there would be no reason for the water 

molecules to remain “condensed” – i.e., in the liquid state – and with the addition 

of the nuclear kinetic energy (always a positive energy) the collection of water 

molecules would become unbound and evaporate/boil away. 

When N = 2 the interaction energy given in equation (1) is also known as the “two-

body” interaction energy. For N = 3, it is still possible to define a two-body 

interaction energy, but the system will now contain three possible two-body 

interactions. If we label the monomers 1, 2 and 3, then the three possible two-body 

interactions are between monomers 1,2; 1,3 and 2,3. These two-body interactions 

can be represented as ��,% where ) ≠ * and may be defined in a manner identical to 

equation (1), i.e., 

��,%$��,%&  �$��,%& − ����� − �$�%&	 �2�	
In equation (2), we have explicitly indicated that the two-body interaction energy 

��,% depends only on the coordinates of molecules i and j, i.e., ,�,%. The electronic 

energy �$��,%& is the electronic energy of a dimer formed by extracting the 

coordinates of molecules i and j from the trimer. 

When - ≥ 2 there will in general be a total of �-2�   � ���/!  different two-body 

interactions. The sum of all the possible two-body interactions in a given collection 

of N monomers is known as the two-body energy of the system, mathematically 

represented as 
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��/���� ���,%$��,%& 
�1% 	 �3�	

The symbol ) < * in the above sum actually represents a double summation over 

indices i and j but always ensuring that the index i is less than j. Thus, there will 

be �-2�   � ���/!  terms in the summation. 

These considerations can further be extended to include three-, four-, five-, etc. up 

to N-body interactions. This finite series of interactions is known as the many-body 

expansion, as was mentioned in the first chapter, has played an important role in 

elucidating the significance of various contributions made to the interaction energy 

of a collection of water molecules. The many-body expansion is utilised in the 

work presented in Chapter 4 of this thesis, so we describe this expansion is detail 

in the next section. 

2.3 2.3 2.3 2.3  The ManyThe ManyThe ManyThe Many----body Expansionbody Expansionbody Expansionbody Expansion    

Perhaps a better name for the many-body expansion might be the many-body 

energy decomposition. When the energy of a system can be considered to be made 

up of several “bodies” then that energy can always be decomposed into various 

contributing orders in the many-body expansion. In general, for an N-body system 

one can decompose the energy into a simple sum of 1-body (�������), 2-body 

(��/����), 3-body (�������), … , N-body (�� ����) contributions.  

That is 

���� �������� 
�!� 	 �4�	

The interaction energy of a system, as given in equation (1), can be decomposed 

into the exact same contributions as the energy of the system except the 1-body 
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term is missing as it has already been removed from the total energy of the system. 

That is 

4���  ���� −������ 
�!� �������� 

�!� − ������� �������� 
�!/ 	 �5�	

Here we see that the sum of all the isolated monomer energies is merely the 1-

body energy of the system, or �������  ∑ ��,�� �!� .  

It is important to realise that the 2-body energy (or the n-body energy for that 

matter), is not the same as the energy of 2 bodies (or the energy of n-bodies). For 

example, the energy of N interacting bodies is ����. When N = 2, ���� is the 

energy of the two bodies and it is given by equation (4) which is not equal to 

��/���� – the 2-body interaction energy – which in the case of N = 2 is simply 

given by equation (1). That is, ���� – the energy of the two bodies – has had 

removed from it ������� – the sum of all the energies of the single bodies that 

make up the pair – to produce ��/���� – the 2-body energy (see equation (7)). 

Higher body interaction energies can be defined in an analogous manner to the 2-

body interaction energy. If we consider N = 3, ���� will be the energy of the three 

bodies. We can remove from it ������� – the sum of all the energies of the single 

bodies that make up the triple and the sum of all the 2-body energies that make up 

the triple (i.e., ��/����) to yield ������� – the 3-body energy (see equation (8)). 

Likewise when N = 4 ���� is the energy of the four bodies. Removing from it 

�������, ��/���� and ������� produces ��7���� – the 4-body energy (see equation 

(9)). We can therefore generally write the following expressions for n-body 

energies in a system composed of N-bodies as: 
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One-body 

4�����  �����	 �6�	
Two-body 

4�,%$��,%&  �$��,%& − � 49��9�9∈;�,%< 	 �7�	
 

Three-body 

4�,%,>$��,%,>&  �$��,%,>& − � 49��9�9∈;�,%,>< − � 49,?$�9,?&9∈;�,%,><1?∈;�,%,><
	 �8�	

Four-body 

4�,%,>,A$��,%,>,A&  �$��,%,>,A& − � 49��9�9∈;�,%,>,A< − � 49,?$�9,?&9∈;�,%,>,A<1?∈;�,%,>,A<− � 49,?,B$�9,?,B&9∈;�,%,>,A<1?∈;�,%,>,A<1BC;�,%,>,A<
	 �9�	

etc., and continuing recursively all the way up to the N-body energy. In the above 

expressions the indices i, j, k and l are unique labels for the bodies (water 

molecules) selected from the set of N bodies (waters) under consideration. 

Equation (4) is the many-body decomposition of the total energy of a collection of 

N water molecules. Equations (6) through (9) represent individual one through 

four-body contributions that are made to the respective ������� through ��7���� 
found in equation (4). For a system composed of N waters there will be a total of 

�-1�  - 1-body energies of the kind represented by equation (6). The will also 

be a total of �-2�   � ���/!  2-body energies of the kind represented by equation 

(7). Similarly there will be �-3�   � ���� �/��!  and �-4�   � ���� �/�� ���7!  
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individual 3- and 4-body energies represented by equations (8) and (9) 

respectively. Generally we have 

4�E���� �4F��F�� E�
F 	 �10�	

Here G represents a unique collection (a set) of n water monomers – there will be 

a total of �-H� different unique ways of selecting n waters from the original cluster 

of size N. We can see that the number of individual interaction energy 

contributions grow very rapidly as roughly -E for H ≪ -. 

An ansatz implicit in the use of the many-body expansion is that the series, 

equation (4), converges rapidly by n = 3 or 4. For many non-polar systems, the 

series is satisfactorily convergent by n = 2, i.e., only two-body interactions need 

to be evaluated in order to accurately estimate the overall interaction energy of the 

system, equation (1). Put another way, for non-polar systems a simple pair-wise 

sum of individual interaction energies between monomers in a cluster of N 

molecules works extremely well.  

Unfortunately, water is polar and possesses significant short-range highly 

anisotropic interactions (H-bonding). These properties of water require that the 3-

body and even 4-body interactions be included in the estimate of the interaction 

energy in order to obtain accurate results. As just seen, the number of such 

interactions scales as -� and -7 respectively, where N is the number of waters 

under consideration. This poor scaling is further exacerbated by the fact that if one 

is interested in accurately simulating bulk water a reasonable size volume of water 

molecules needs to be included in the simulation. For the purposes of illustration, 

if we were considering a spherical volume of water of radius, say, 9 Å then we 
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would only encompass about three hydration shells. For simulating bulk water, a 

reasonable number of water molecules is required and three hydration shells are 

probably not sufficient to accurately quantify all of the anomalous properties of 

water. Nevertheless, there is about 100 water molecules in such a volume. The 

number of three- and four-body interactions for this system are 161,700 and 

3,921,225 respectively. Perhaps a more appropriate size system would be a sphere 

of twice the radius. The doubling of the radius increases the volume eight-fold and 

so is the number of molecules. Now the numbers of three- and four-body 

interactions for this system are about 85 million and 17 billion respectively.  

To place these numbers in context, let us assume that a single four-body energy 

evaluation could be somehow reduced to 1,000 floating point operations (FLOP). 

If the above sample of 800 water molecules was utilised in a Monte Carlo 

simulation, at least 200 million evaluations of all of the above 17 billion four-body 

interactions would be needed to obtain reasonable statistics from the simulation to 

compare with experiment. This computation would require at least 3.4 × 10/� 

FLOP. The fastest supercomputer on the planet in 2014 was the Chinese Tianhe-

2 demonstrably capable of performing 33.86 P FLOP per second, or FLOPS (P = 

peta or 1015).  Even on this machine the simulation would require 10 weeks of 

continuous execution. By comparison, an office desktop PCd would require 

160,000 years to perform the same simulation. 

At this stage it may appear to be madness to pursue a many-body approach in order 

to approximate the interaction energy of a large enough collection of water 

molecules so that meaningful bulk water simulations may be performed. Madness 

                                                 
d A current typical desktop PC, say the Intel Core i7 3770K @ 3.40 GHz runs at around 41 
GFLOPS. 
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given the sheer number of three- and four-body interactions required, but is it true 

that so many interaction energies need to be evaluated? This question is addressed 

in Chapter 4. If pursuing the many-body expansion is madness then what is the 

alternative? Direct computation of ���� for N = 800? As we shall see in the next 

section, it is currently not possible to perform highly accurate calculations on such 

a large system; furthermore this situation will not likely change any time soon. 

2.4 2.4 2.4 2.4  Calculation of the Electronic EnergyCalculation of the Electronic EnergyCalculation of the Electronic EnergyCalculation of the Electronic Energy    

Much of the work presented in this section is a summary of relevant theoretical 

methods taken from the text “Introduction to Computational Chemistry” by F. 

Jensen19. These methods were employed during the course of my PhD candidature. 

2.4.1 2.4.1 2.4.1 2.4.1  Ab Ab Ab Ab IIIInitionitionitionitio    

So far in this chapter we have presumed a method exists to compute ����. Recall 

that we are ultimately interested in explaining the anomalous properties of bulk 

water completely from first principles. The only means by which this can be 

accomplished is through solution of the stationary state Schrödinger equation. 

LMΨ  ����Ψ	 �11�	
As already mentioned, we shall adopt the Born-Oppenheimer approximation and 

neglect any kinetic energy associated with electron and nuclear spin. We seek to 

solve this equation for the ground-state wavefunction, Ψ, for a specified nuclear 

configuration X. The Hamiltonian operator, LM can be readily written down exactly 

and operates directly on Ψ – a mathematical function of the coordinates of the 

electrons present in the system. 
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The Hamiltonian operator itself is a differential operator and is the sum of kinetic 

and potential energy operators. 

LM  	OP +	RP 	 �12�	
The kinetic energy operator OP  is a sum of differential operators: 

OP  −12�S T/TU�/ + T/TV�/ + T/TW�/X
E
� 	 �13�	

Note that we have adopted atomic units in this section, whereby the mass of the 

electron, the electronic charge, ħ and �4Y4���� are all set to unity. The sum in 

equation (13) is over the n electrons present in the system. 

The potential energy operator RP  is the coulomb interaction: 

RP  � Z[Z\|^[ − ^\|
 
[1\ +� 1�_� − _%�

E
�1% −�� Z�|^[ − _�|

E
�!�

 
[!� 	 �14�	

Where, N, now represents the number of nuclei in the system and n the number of 

electrons. The first summation in equation (14) is just a constant and represents 

the nuclear-nuclear repulsion energy – nothing in this term operates on Ψ. The 

second summation operates on the electron coordinates of electrons i and j and 

represents the electron-electron repulsion energy. The final summation is the 

nuclear-electron attraction occurring between nucleus a and electron i. ^[ is the 

position vector of nucleus a and _� is the position vector of electron i. 

2.4.2 2.4.2 2.4.2 2.4.2  Obtaining an Obtaining an Obtaining an Obtaining an AAAApproximate pproximate pproximate pproximate WWWWavefunctionavefunctionavefunctionavefunction    

Having specified the equation we wish to solve (11) and the Hamiltonian (12) – 

(14) we require a means of obtaining Ψ for the ground-state and hence ���� for a 

predefined configuration of nuclei X. In this thesis, we almost exclusively have 
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utilised ab initio molecular orbital theory to achieve this, so a brief description 

follows of the employed ab initio methods. 

The first step in solving equation (11) is to admit that we do not know Ψ at the 

outset. Without knowledge of this function, the only way forward is to make a 

guess. The function we shall choose should be as mathematically convenient as 

possible yet represent as accurately as possible the true and unknown, Ψ. It would 

be best to use a function that can be modified so that it evolves towards the true Ψ 

starting from our initial crude guess at it, i.e., `.e However, since we do not know 

what Ψ is, it does not seem possible to alter the function in any sensible way such 

that it becomes a better approximation to the true Ψ. Fortunately, a theorem exists 

that assists us at improving the guessed function `, and that theorem is the 

variational theorem. 

The variational theorem states that for a time-independent Hamiltonian operator, 

any trial wavefunction will have an energy expectation value that is greater than 

or equal to the true ground state energy corresponding to the true wavefunction of 

the given Hamiltonian. The meaning of “expectation value” is the result of the 

integration 

a`∗LM`cd  e���	 �15�	
where the integral is multidimensional and over all of the coordinates in `. 

Additionally we have assumed that ̀  is normalised. Note in equation (15) we have 

temporarily made a distinction between the exact ground state electronic energy, 

����, and that obtained here from the approximate wavefunction, e���. The 

                                                 
e We shall use the notation, Ψ, for the true wavefunction, and ` for its guess, or approximation. 
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variational theorem states that ���� ≤ e���. By altering the estimated 

wavefunction in such a manner so that the expectation value e��� is minimised, 

we ensure that our estimated wavefunction ` is the best possible function it can 

be within the constraints and/or approximations made to obtain it. 

Armed with the knowledge that we need to perform the multidimensional integral 

(15), we can now begin to construct a suitably flexible and mathematically 

convenient function, `. Note that Ψ is a function of all the electronic coordinates 

in our system. For n electrons it is a 3n dimensional function. Such a highly 

dimensional mathematical function seems hopelessly complex to even estimate. 

Clues as to possible simplifications we may make to this function come from 

examining the Hamiltonian. Equation (13), the kinetic energy operator, shows that 

it is a simple sum of n 3-dimensional operators, each one operating only upon the 

coordinates of a single electron at a time. The potential energy operator is almost 

the same. The nuclear-nuclear repulsion sum is a constant (for a specific X) and 

does not operate on the coordinates of any electron. The nuclear-electron attraction 

operator, like the electron kinetic energy operator, only operates on the coordinates 

of a single electron at a time. The electron-electron repulsion summation is 

problematic. Each term in its sum is a 6-dimensional operator and operates on the 

coordinates of pairs of electrons simultaneously via the distance g�%  �_� − _%�. 
Therefore, the form of the Hamiltonian suggests that we may begin by 

approximating the general 3n dimensional Ψ with a function that is the product of 

n three-dimensional functions – that is by applying an independent particle model. 

Although such a model is still 3n dimensional, the fact that it is made up of a 

product of n three-dimensional functions is certainly mathematically convenient 
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and much simpler than trying to produce a suitably flexible 3n dimensional 

function that incorporates all sorts of coupling terms between the electrons. For 

example, our trial function will not contain any term like g�%, which intimately ties 

together the coordinates of electrons i and j simultaneously. However, the serious 

drawback in using the independent particle model is that we know, at least through 

the electron-electron repulsion operator, that the motion of pairs of electrons must 

be correlated. An independent particle model ignores this correlation. Ultimately 

we need to start somewhere, so we shall utilise this model then correct latter for 

the, now in-built, error associated with its application. Due to the use of this model 

we know that our ` can never be the same as Ψ, so that our energy e��� will 

definitely be larger than ����, at least until we correct for its application. 

At this stage a further complication arises. We cannot simply write ` as a product 

of one-electron functions, h� – in doing so we break a law of nature. Electrons are 

fermions. Fermions have the property that any wavefunction that describes them 

must change its sign if the coordinates of any pair of them are permuted. Any trial 

wavefunction that is just a simple product of one electron functions will not 

possess this fundamental property. It is interesting that even though our 

Hamiltonian does not contain any terms involving spin of the electrons (nor 

nuclei), our wavefunction cannot be missing a mathematical function that includes 

these coordinates. Thus, our trial function now requires the inclusion of electron 

spin functions. Because the Hamiltonian does not contain any spin terms, we can 

simply write each of our single electron functions as a product of a spin function 

i�, a 1-dimensional function, and a 3-dimensional spatial function, h�. The new 

function is called a spin orbital, or spinor, j�  h�i�. To be clear, note that here 

the subscript i is not referring to electron i, but mathematical function i. 
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There are only two types of electron spin functions. The possible functions that i 

may be for any electron are often labeled as G and �. These functions are 

orthonormal, i.e., 

aG∗�cd  a�∗Gcd  0	 �16�	
where the integration is taken over the unspecified spin coordinates, and 

aG∗Gcd  a�∗�cd  1	 �17�	
Maintaining mathematical convenience we also desire that all of the h� be 

orthonormal, i.e., 

ah�∗h%cd  ah%∗h�cd  0	 �18�	
where the three-dimensional integration is taken over all of xyz space, and 

ah�∗h�cd  ah%∗h%cd  1	 �19�	
Constructing the simplest possible ̀  now from the spinors that satisfies the natural 

law for fermions is through the use of a determinant. 

`  1√H! l
j��1�j/�1� ⋯ jE�1�j��2�j/�2� … jE�2�⋮ ⋱ ⋮j��H�j/�H� ⋯ jE�H�l	 �20�	

In quantum chemistry, this determinant is named the Slater determinant. The 

numbers in the parenthesis represent the coordinates of enumerated electrons. The 

subscript to the spinor represents that particular mathematical 4-dimensional 

function. A system consisting of n electrons will have n different spinors (the n 

columns in the determinant). It should be noted from the Slater determinant that 

every electron in the system is placed into every possible spinor (the n rows in the 

determinant), thus truly making the electrons indistinguishable. The factor of 

�H!��qr ensures normalization of the ` because an H × H determinant produces 
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every possible occupancy of electrons amongst the n j�, whereby there are H! of 

these products. Each of the H! products of spinors represents a different possible 

occupancy of electrons amongst the n spinors. The name given to such a product 

of spinors is called a Hartree product. Permuting the coordinates of any two 

electrons has the effect of swapping a pair of rows in the determinant. If two rows 

are swapped in a determinant its value changes sign – consistent with the natural 

law for fermions. Furthermore, the Slater determinant obeys the Pauli Exclusion 

Principle. This principle requires that no two electrons can be described with the 

exact same function. The principle is a consequence of the previously mentioned 

natural law for fermions. If two electrons were placed in the same orbital then this 

would lead to a determinant with two identical columns. Any determinant that 

possess two or more identical columns vanishes.  

It may seem nuts to write the trial function, (20), as a linear combination of H! 
Hartree products. However, because we have ensured that the spinors, j�, are all 

orthonormal when it comes time to perform the integration (15) (discussed in the 

next subsection) vast numbers of integrals will vanish. We are also only concerned 

with closed-shell systems in this thesis, so a further simplification can be made to 

the Slater determinant. We may reuse each spatial function h� once, provided it is 

multiplied by a different spin function which results in a different spinor. Thus, 

we may have j�  h�G and j/  h/�  h��. Here an electron may occupy 

spinor 1 and another electron may occupy spinor 2 without violating the Pauli 

Exclusion Principle. By reusing each spatial function we are in effect doubly 

occupying each spatial orbital, but not spinor as this is strictly forbidden. Thus, we 

only require 
E/ different spatial functions in our `. 
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2.4.3 2.4.3 2.4.3 2.4.3  The The The The ElectronicElectronicElectronicElectronic    EnergyEnergyEnergyEnergy    of a Slater Determinantof a Slater Determinantof a Slater Determinantof a Slater Determinant    

We are now in a position to obtain an expression for e��� through application of 

equation (15) even though we have not yet specified exactly the form of the 

functions h�. To simplify notation we shall write the following: 

RP   � Z[Z\|^[ − ^\|
 
[1\ 	 �21�	

ℎP�  OP� −� Z[|^[ − _�|
 
[!� 	 �22�	

tu�%  1�_� − _%�	 �23�	
where the subscripts now refer to electrons. Equation (21) is the nuclear-nuclear 

repulsion operator and does not operate on any electron coordinates. Equation (22) 

involves only operators that operate on the coordinates of a single electron. 

Equation (23) operates on the coordinates of two electrons simultaneously. The 

Hamiltonian operator in equation (12) now becomes 

LM �ℎP�E
�!� +�tu�%E

�1% + RP  	 �24�	
Additionally we shall use the “bra” and “ket” notation to represent integrals, e.g. 

vj��1�j/�2�|tu�/|j��1�j/�2�w aj�∗�1�j/∗�2� 1�_� − _%� j��1�j/�2�cd	 �25�	
Here electron 1 occupies spinor 1 and electron 2 occupies spinor 2. 

Substituting equation (20) into equation (15) it is possible to show that 

e��� �ℎ�E
�!� +�$x�% − y�%&E

�1% + R  	 �26�	
where R   is obtained by simply evaluating equation (21) because 
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z`�RP  �`{  v`|`wR   R  	 �27�	
The remaining terms in equation (26) are 

ℎ�  zj��)��ℎP��j��)�{	 �28�	
x�%  zj��)�j%�*��tu�%�j��)�j%�*�{	 �29�	
y�%  zj��)�j%�*��tu�%�j%�)�j��*�{	 �30�	

The actual identity of the specific electrons in equations (28) – (30) is arbitrary, 

i.e., electron i could be any of the n electrons, similarly for electron j. The electrons 

need only be different electrons in equations (29) and (30). 

The one-electron integrals, ℎ�, represents the electron-nuclear attraction to all 

nuclei plus the kinetic energy of an electron associated with an electron being in 

orbital i. The two-electron integral, x�% named the Coulomb integral, is the 

electron-electron repulsion associated with an electron being in orbital i and an 

electron in orbital j. The two-electron integral, y�% named the exchange integral, 

has no direct classical analogue. However, it is exactly zero when the electron 

spins are different between spinors i and j. For example, 

zh��)�G��)�h%�*��%�*��tu�%�h%�)��%�)�h��*�G��*�{ zh��)�h%�*��tu�%�h%�)�h��*�{vG��)�|���)�wz�%�*��G��*�{  0	 �31�	
The spin functions can readily be factored out of the integral because tu�% does not 

operate on spin coordinates, but only on the spatial coordinates of electrons i and 

j. Equation (31) is zero because the spin functions are orthogonal (see equations 

(18) and (19)). 

Examination of equation (26) shows that y�% subtracts an energy from the 

Coulomb repulsion energy. This subtraction only occurs when the two spinors 

possess the same spin. A parallel spinning electron pair have their Coulomb 
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repulsion energy reduced. This is a direct consequence of the fact that electrons 

are fermions. Parallel spinning electrons are naturally kept further away from each 

other compared with antiparallel spinning electron pairs, so parallel spinning pairs 

of electrons have their repulsion energy reduced accordingly. This y�% term would 

not be present if the wavefunction was written as a single simple Hartree product 

and the corresponding expectation value of the energy would be considerably 

higher. This is because it represents a poorer approximation to the true 

wavefunction compared to the Slater determinant. While the use of the 

independent particle model in the Slater determinant means that no spatial electron 

correlation is included in its corresponding expectation value of the energy, the 

Slater determinant does include spin correlation which manifests in the appearance 

of y�%. 
2.4.4 2.4.4 2.4.4 2.4.4  Improving the Improving the Improving the Improving the Trial Trial Trial Trial Wavefunction and the HartreeWavefunction and the HartreeWavefunction and the HartreeWavefunction and the Hartree----Fock EnergyFock EnergyFock EnergyFock Energy    

The energy, e���, obtained from equation (26) is not the best possible energy 

estimate we can obtain for ���� using an independent particle model. The spinors, 

also known as molecular orbitals and henceforth we shall refer to them as such, 

have not yet been optimised in any way because we have not applied the 

variational theorem. To apply the variational theorem we need to alter our 

molecular orbitals in such a manner as to minimise the resulting e���. 
Unfortunately, we cannot alter the molecular orbitals arbitrarily. This is because 

as they are changed to lower the expectation value of the energy, they must remain 

orthonormal. If orthogonality was not maintained equation (26) would no longer 

be valid as it was derived under this condition. Thus, we are required to conduct 

our minimization of e��� with respect to changing the molecular orbitals under 

the constraints of orthonormality of the same. 
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Usually minimization of a function is done with respect to changing some 

variables, whether it be under constraints or otherwise. However, in this problem, 

we are minimizing a function with respect to changing other functions – a trickier 

proposition (especially since we have not specified in any way as yet the form of 

those functions!). Nevertheless, a more general version of Lagrange’s 

undetermined multipliers can be brought to bear on the problem. In order to do so, 

we rewrite the energy expression (26) in terms of two new operators 

e��� �zj��)��ℎP��j��)�{E
�!� +�zj%�*��x|� − y}M �j%�*�{E

�1% + R  	 �32�	
where 

x|��j%�*�{  zj��)��tu�%�j��)�{�j%�*�{	 �33�	
yM��j%�*�{  zj��)��tu�%�j%�)�{|j��*�w	 �34�	

In equation (33), the x|� operator is a “multiply by zj��)��tu�%�j��)�{” operator. The 

integral explicitly involves performing ~j��)�� ��_��_�� �j��)��. That is, after the 

integration we are left with a function of 
�_� because we have integrated over the 

coordinates of electron i keeping _% fixed as we do so. We are perfectly permitted 

to do this because each of the molecular orbitals depend only upon the coordinates 

of a single electron – which is our independent particle model we have assumed. 

The function we are left with when we perform the integration zj��)��tu�%�j��)�{ is 

the average field located at the point _% due to an electron in molecular orbital i. A 

second integration zj%�*��x|��j%�*�{ is just x�% as before and is the Coulomb 

electron-electron repulsion felt by an electron in molecular orbital j due to the 

average or mean field of another electron in molecular orbital i. This is why 
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sometimes the independent particle model applied here is also referred to as the 

mean-field approximation. 

Careful inspection of equation (34) shows that yM� is more than just a multiplicative 

operator. Application of this operator onto some molecular orbital, j%�*� say, ends 

up swapping, or exchanging, this molecular orbital into the “multiply by” integral 

and changing the j%�*� into the j��*�. As before (cf. equation (31)), if the spins in 

the two orbitals, j� and j% are different then when yM� operates on j% it will be 

annihilated. 

We are yet to perform the constrained minimization, but after working through the 

required algebra it is found that the following equation must be satisfied in order 

to obtain the best possible set of molecular orbitals. 

�P�j′� �4�%j′%E
%!� 	 �35�	

where the 4�% are the Lagrange’s undetermined multipliers which are simple 

constants that here have the units of energy. The j′� are now the best possible 

molecular orbitals (within the independent particle model), i.e., they are no longer 

the same molecular orbitals that we started with,	j�, because these are the 

functions that were altered in order to perform the energy minimization. The �P� 
are called Fock operators given by 

�P�  ℎP� +�$x|� − y}M &E
%!� 	 �36�	

Without performing the optimization of the orbitals, then equation (35) would not 

be satisfied. In this case, application of �P� on j� would not give a simple linear 

combination of 	j% as shown in equation (35), but a rather complicated mess. The 
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set of n equations given in (35) are called the Hartree-Fock equations. The Hartree-

Fock equations can be further simplified by diagonalizing the H × H matrix of 4�% 
to yield 

�P�j′′�  4�j′′� 	 �37�	
The 4� are identified as the molecular orbital energies. The j′′�, which are simple 

linear combinations of the j′�, are called the canonical molecular orbitals. 

There is one complication that exists before obtaining the best possible energy 

from our `, and that is the fact that in order to solve equation (37) we need the 

Fock operator. The Fock operator, (36), includes the Coulomb and exchange 

operators, (33) and (34), but these operators require knowledge of the canonical 

molecular orbitals in the first place! The only way to solve this is to do it self-

consistently. That is, first guess the molecular orbitals and use them to obtain the 

x|� and yM�. Now solve for the canonical molecular orbitals by satisfying the Hartree-

Fock equations (37). The new set of molecular orbitals just obtained can now be 

used to compute a better set of x|� and yM� operators. Now again solve the Hartree-

Fock equations to obtain an even better set of molecular orbitals. The process 

continues until the molecular orbitals change no further, in which case self-

consistency has been reached and the final total energy truly is as low as it can be. 

The final electronic energy can be obtained from either equation (26), but using 

the final set of canonical molecular orbitals, or utilizing the molecular orbital 

energies, thus 

e��� �4�E
�!� −�$x�% − y�%&E

�1% + R  	 �38�	
Note that the total energy is not a simple sum of molecular orbital energies (the 

first summation). The Fock operator containing x|� and yM� describes the repulsion 
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to all other electrons, so the sum over all the molecular orbital energies therefore 

counts the electron-electron repulsion twice, which must be correct for. 

Of course, all of the above presumes an ability to actually perform integration, but 

how can integration be performed if we do not actually have a mathematical form 

for the j�? As yet we have not specified any form for these orbitals, yet it is 

actually possible to compute all of the required integrals. For very small highly 

symmetric systems, e.g. atoms and diatoms, the Hartree-Fock equations can be 

solved numerically20. This is done by mapping the molecular orbitals onto a set of 

grid points. The calculation is very expensive, but essentially yields the Hartree-

Fock energy, (38), also described as the Hartree-Fock limit. The use of the latter 

term will become clear in the next section. Thus, a numerical solution to the 

Hartree-Fock equations truly yields (for a fine enough grid) the lowest possible 

energy attainable within the independent particle model. In the next section, we 

shall see how to specify an actual form for the molecular orbitals so that much 

larger systems can be studied and all the necessary integrals can be computed 

rapidly and efficiently. Unfortunately, the price for doing so requires us to 

introduce yet another approximation. 

2.4.5 2.4.5 2.4.5 2.4.5  The Basis Set Approximation and The Basis Set Approximation and The Basis Set Approximation and The Basis Set Approximation and thethethethe    RoothaanRoothaanRoothaanRoothaan----Hall EquationsHall EquationsHall EquationsHall Equations    

In order to create functions that may be changed so that the electronic energy of 

the system can be obtained variationally, a basis set approximation is adopted. 

This approximation expresses unknown molecular orbitals in terms of a set of 

known functions. If the basis functions employed formed a complete set of 

functions there would be no approximation because if the set was complete then 

any function could be described in terms of them. Unfortunately, for the problem 
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at hand, a complete set of basis functions requires an infinite number of them. 

Clearly we shall have to make do with something smaller and most definitely 

finite. Because we shall employ a finite set of basis functions we are no longer 

able to solve exactly the Hartree-Fock equations (37). Any electronic energy we 

now obtain variationally possess sources of error due to the independent particle 

model and the use of a finite set of basis functions. 

Of course, it is possible to use a larger and larger set of basis functions, and because 

of the variational theorem we know that as we do so, our computed electronic 

energy will approach (from above) more and more closely the true energy of the 

system. However, we also know that we shall never be able to get any lower in 

energy than the Hartree-Fock energy because the entire method we are currently 

employing is based soundly on the independent particle model. Thus, the best 

(lowest) electronic energy we can obtain variationally using basis sets is 

approached asymptotically with the number of basis functions used (i.e, size of 

basis set) and is the Hartree-Fock energy. This energy is most often referred to as 

the Hartree-Fock limit for the above reasons. 

The basis function approximation to a molecular orbital is expressed 

mathematically in terms of the spatial part of the molecular orbital, j�, as 

h�  �������
�!� 	 �39�	

where �� is the �th basis functionf in the basis set of size m. � ≥ E/ (closed-shell 

systems reuse the same spatial molecular orbital as it is doubly occupied with 

opposite spin electrons), but is usually very much larger than 
E/. Individual j� are 

                                                 
f Note that � here is just an index and not a spin function! 
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trivially generated from (39) by simply multiplying by the appropriate spin 

function, j�  h�i�. 
Any functions may be used as basis functions, but those that best reflect physical 

reality are expected to perform best, i.e., require fewer functions to obtain the same 

e���. The functions should decay to zero at long distances from a nucleus in the 

system and, if the solutions to the H atom are any guide, should also possess a cusp 

at a nucleus. However, the functions should also be as simple as possible and be 

computationally efficient to integrate. While simple exponentials placed around 

each nucleus model the physical reality well, they are computationally expensive 

to integrate when integrals involve several nuclei simultaneously. In contrast, 

gaussian functions, while not possessing a cusp at the nucleus like exponentials 

do, are much simpler to integrate. The other issue with using gaussians as basis 

functions is that they head much more rapidly towards zero than exponential 

functions do because gaussians have in their exponents |^[ − _�|/, rather than just 

|^[ − _�|. The effect of the latter is to underestimate electron density at distances 

far from the nucleus. These latter effects can be accounted for and shall be 

discussed in later chapters where specific basis sets are employed.  

If we now substitute equation (39) into equation (37) (factorizing out the spin 

functions) we obtain 

�P��������
�!�  4��������

�!� 	 �40�	
At this stage we note that equation (40) is only approximately true because our 

basis set is incomplete. The equations given by (40) are called the Roothaan-Hall 
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equations for a closed-shell systemsg. They are the Hartree-Fock equations after 

application of the basis set approximation. To proceed further we premultiply both 

sides of the equation by a specific basis function, �F and integrate. 

����z�F��P����{�
�!�  4�����z�F���{�

�!� 	 �41�	
Equation (41) can conveniently be written in matrix notation 

��  ���	 �42�	
where �F�  z�F��P����{ is called the Fock matrix and formally of dimension � ×
�, ���  ��� is the molecular orbital coefficient matrix and formally of dimension 

� × H, �F�  z�F���{ is the overlap matrix and formally of dimension � ×�, 

and finally 4�%  δ�%4� is a diagonal matrix of molecular orbital energies formally 

of dimension H × H. Note that �F� ≠ δF�, unlike the molecular orbitals which 

must remain orthonormal. 

We desire to solve equation (42) by standard techniques, i.e., solve for the � matrix 

such that � is diagonal. This may be accomplished by premultiplying both sides of 

equation (42) by ��qr, and inserting ��qr�qr  � (as � is the identity matrix) between 

� and �. ����/����/� ���/��  ����/��/� ���/�� �	 �43�	
to obtain 

�′�′  �′�	 �44�	
 

                                                 
g Since every spatial molecular orbital is doubly occupied it is most efficient to solve these 
equations for either just the G or the � spinning electrons, as the solution to both sets of molecular 
orbitals will be identical. The Fock operator only needs to be slightly modified to take this 
simplification into account by multiplying the Coulomb operator in equation (36) by 2 and 
summing over 

E/ (only 
E/ unique spatial molecular orbitals are occupied by the n electrons) instead 

of n. For the purposes of brevity and clarity the discussion here ignores this simplification. 
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The meaning of �′ and �′ is obvious by comparing equations (43) and (44). This 

equation appears now as a regular eigenvalue equation except the dimensions of 

the matrices are troublesome. �′ is � ×� dimensional, �′ is � × H and � is H ×
H. The issue is easily resolved by simply diagonalizing �′ and selecting the lowest 

energy n eigenvalues and eigenvectors as the molecular orbital energies and 

columns of �′ respectively. � is then readily obtained by the back transformation 

�  ��qr�′. Note that diagonalization of �′ will also yield an additional � − H 

eigenvalues and vectors known as virtual, or unoccupied, molecular orbitals – but 

these orbitals do not bare much physical significance and should simply be 

regarded as an artifact of the numerical procedure used to obtain the occupied 

molecular orbitals, their corresponding energies and hence the electronic energyh. 

2.4.6 2.4.6 2.4.6 2.4.6  The The The The “Hartree“Hartree“Hartree“Hartree----Fock”Fock”Fock”Fock”    EnergyEnergyEnergyEnergy    

As with solving the Hartree-Fock equations, the Roothaan-Hall equations also 

requires an iterative procedure. This is because obtaining a solution to equation 

(44), requires setting up the Fock matrix. The Fock matrix requires knowledge of 

the Coulomb and exchange operators (x|� and yM� in equation (36)), but in order to 

obtain x|� and yM� one requires the solution to equation (44). Thus, the procedure for 

solving equation (44) is achieved self-consistently and is illustrated in Figure 2-1, 

and this is known as the SCF procedure. 

                                                 
h The reason for the latter is that while the occupied molecular orbital energies are well defined 
and converge to specific energies as m is increased, the virtual orbitals are not well defined. The 
number of the latter increases with m and the energy of the lowest energy unoccupied orbital 
converges to 0 (being made up of the most diffuse functions in the basis set) as m increases. This 
zero energy solution corresponds to a free, or unbound, electron. All virtual orbitals are 
contaminated with such solutions, so cannot reliably be interpreted as “anti-bonding orbitals” or 
anything else physically meaningful. 
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Figure 2-1 The SCF procedure 

The solution to the Roothaan-Hall equations to obtain the electronic energy of a molecule within 
the independent particle model and basis set approximation involves the iterative procedure shown 
here. Once the molecular orbital (MO) coefficients are no longer changing significantly the 
iterations cease. The final electronic energy can be obtained from equation (38). 

 
The bottle-neck in the SCF procedure is the calculation of the integrals, 

specifically the two-electron integrals of the type derived from equations (29) and 

(30). In general, such integrals are required over four completely different basis 

functions. The computational effort scales, therefore, formally scales as ���7�. 
However, many of the integrals are tiny due to negligible overlap between the 

exponentially decaying functions. Intelligent screening techniques are used to 

reduce this computational effort down to as low as ���/�, but usually the scaling 
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is closer to �����. Nevertheless, these calculations can take many days to 

complete for systems containing large numbers of electron, as we shall see in the 

next chapter. 

The title of this subsection has Hartree-Fock in quotes because the electronic 

energy obtained from the SCF procedure described above is not really the Hartree-

Fock energy. The latter can only be obtained by solving the Hartree-Fock 

equations, (37). Nevertheless the basis set approximation is ubiquitous in quantum 

chemistry so much so that it is presumed to be applied and the energy so obtained 

from the SCF procedure simply denoted as the Hartree-Fock energy – it being 

understood that it is not actually this energy, but only an approximation to it. If 

one wishes to be explicit and clear regarding the electronic energy obtained being 

the actual Hartree-Fock energy, then the terminology to use is the Hartree-Fock 

limit mentioned previously. 

2.4.7 2.4.7 2.4.7 2.4.7  Post HartreePost HartreePost HartreePost Hartree----Fock MethodsFock MethodsFock MethodsFock Methods    

Apart from Chapter 6 where hybrid-density function theory was used in the 

computations, no post Hartree-Fock methods were employed in the work 

described in this thesis. This is because the focus of the present research is to 

develop and test novel methods for computing the total electronic energies of a 

large collection of water molecules for use in bulk water simulations. Due to the 

extreme expense associated with computing accurately these energies, much lower 

levels of theory were employed in this thesis, i.e., Hartree-Fock (HF) theory, to 

test the methodologies. The presumption is that if the methodology well 

reproduces the HF energy then there is no reason to expect it to not also well 
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reproduce the post HF energies – such energies being entirely inaccessible for 

large systems, as we shall shortly show. 

In the HF method, the spin-correlation exhibited by parallel spinning electrons is 

fully accounted for by writing the trial wavefunction as a Slater determinant, 

shown in equation (20). Spin-correlation between parallel spinning electrons gives 

rise to the exchange energy, y�%, in equation (30). However, the use of the 

independent particle model specifically neglects the necessarily correlated motion 

of electrons in physical space due to the fact that they repel one another through 

the Coulomb force. 

The HF energy incorporates electron-electron repulsion by allowing electrons to 

move independently of each other around nuclei then computing the electron 

repulsion between the charge on each electron to the average electron field 

produced by the independent motion of all other electrons. This repulsion energy 

must be solved self-consistently, so there is some feed-back embedded in the SCF 

procedure to allow for electrons to react to the average field of all the remaining 

electrons. Nevertheless this “reaction” is always to an average field, which results 

in too large a repulsion energy than there is in reality. Post HF methods seek to 

correct for this embedded error in the HF energy. 

The missing electron correlation energy can be treated with perturbation theory. 

The use of perturbation theory is sound because the vast bulk of the electronic 

energy is accounted for by the HF energy with the small additional effect due to 

the neglect of explicit electron correlation being a perturbation on top of this HF 

energy. Møller-Plesset (MP) perturbation theory is the most commonly employed 

perturbative post Hartree-Fock electron correlation treatment. The first non-zero 
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correction to the HF energy is at second order, designated as MP2. Higher and 

more expensive, but more accurate orders of perturbation theory may also be 

included, i.e., third order MP3, fourth order MP4, or even fifth order MP5 

corrections to the HF energy. Use of perturbation theory is not variational, so the 

corrected energy may overshoot the true energy of the system. Implementation of 

MP perturbation theory is computationally expensive and scales as ���7� to 

����� for MP2, and ���9��� for MPs, where � > 2. MP2 represents the least 

expensive ab initio post Hartree-Fock method. 

Configuration interaction (CI) is another possible way to account for electron 

correlation, with full-CI being the best one can possibly achieve for a given size 

basis set. However, for all but the smallest systems (three, or maybe four atoms), 

full-CI is out-of-the-question as it scales as ���!�. Including CI with single and 

double electron excitations (CISD) produces results of about the same quality as 

MP2 corrections but scales as �����. CISD has the advantage, however its energy 

is variational. CI with single, double, triple and quadruple electron excitations 

scales as ������. CI methods are very expensive and it is unclear that the energies 

obtained from them (except full-CI) are significantly better than MPs corrections. 

The coupled-cluster (CC) implementation of electron correlation is considered the 

most accurate for their cost. With single, double and perturbative triple electron 

excitations taken into account, i.e., CCSD(T), the electron correlation obtained is 

widely accepted as the “gold-standard” for accuracy. If a problem is amenable to 

a CCSD(T) calculation with a large basis set, then the electronic energies are 

expected not to be too far from the true electronic energy of the system and highly 

accurate (within the BO approximation and also the non-relativistic Hamiltonian).  
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CCSD(T) calculations are performed iteratively, with the iterations scaling as 

�����, and the final non-iterative perturbative triples step scaling as �����. 
As an indication of the computational expense involved in these computations, HF 

calculations were performed using the Gaussian 09 suite of programs21 with a 

reasonably large basis set (aug-cc-pVTZ, explained in later chapters) for the water 

tetramer, octamer, 12-mer and 16-mer illustrated in Figure 2-2. The calculations 

were performed on a single core of an IBM HS21XM Bladeserver equipped with 

2 Intel Xeon E5450 3.0GHz quad-core Harpertown CPUs. Each of the 

computations allowed for 2 GB of RAM to be allocated to the job and 20 GB of 

disk space. The CPU timings for these calculations were 16, 194, 659, 1365 

minutes respectively for a single HF energy calculation. The number of basis 

functions were 368, 736, 1,104 and 1,472 respectively. For comparison, MP2 

calculations were performed on the tetramer and octamer which took 33 and 528 

minutes of CPU time respectively. A CCSD(T) calculation on the tetramer took 

1447 minutes (i.e., approximately one day). 

 
Figure 2-2 Water 4n-mers, n = 1 – 4, used for CPU timing tests 

The tetramer (a), octamer (b), 12-mer (c) and 16-mer (d) used in CPU timing tests of HF, MP2 and 
CCSD(T) ab initio methods. See text for details. 
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In section 2.3 we saw that a sample size of about 800 water molecules was perhaps 

necessary for a bulk water simulation – this corresponds to 73,600 basis functions 

needed for a single HF energy. Assuming that enough computational resources 

were available (unlikely), the above computer would roughly take 900 years to 

complete a single HF energy calculation and 35 trillion years (more than 2,500 

times longer than the age of the Universei) for the “gold-standard” CCSD(T) 

calculation. Also recall that of the order of 200 million such energy evaluations 

are necessary for statistical averaging of thermodynamic properties to compare 

with experiment and it should be clear that it is impossible at present as well as 

any time soon to employ ab initio calculations directly in models of bulk water. 

Accurate, efficient and substantially time (and resource) saving methods must be 

developed if there is to be any hope of accurately modeling bulk water. 

Investigating possible methods to achieve this, is the subject of this thesis and 

described in the following chapters. 

Before proceeding to the results chapters of this thesis it is important to point out 

that a method has existed for a long time that is extremely computationally 

efficient and is capable of, near exactly, reproducing ab initio interaction energies 

of a collection of molecules. There is one requirement for this treatment to be 

accurate and that is the molecules need to be far enough from each other so that 

there is no significant wavefunction overlap between them. This important method 

is described in the last section of this chapter because a combination of this 

treatment and some of the methods proposed in this thesis may eventually allow 

for accurate first principles simulation of bulk water. 

                                                 
i Even the Tianhe-2, the current world’s fastest supercomputer, would take 42 million years to 
perform this single energy calculation. 
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2.5 2.5 2.5 2.5  Multipoles Multipoles Multipoles Multipoles and Intermolecular Interactionsand Intermolecular Interactionsand Intermolecular Interactionsand Intermolecular Interactions    

Much of the work presented in this section is a summary of relevant theoretical 

methods taken from the text “The Theory of Intermolecular Forces” by A. J. 

Stone22. These methods were employed during the course of my PhD candidature. 

2.5.1 2.5.1 2.5.1 2.5.1  Multipole Operators and the Interaction HamiltonianMultipole Operators and the Interaction HamiltonianMultipole Operators and the Interaction HamiltonianMultipole Operators and the Interaction Hamiltonian    

We are interested in obtaining an accurate value of the interaction energy, i.e., 

equation (1), between a collection of molecules without having to resort to 

performing an extremely expensive ab initio calculation. To begin with, we shall 

consider just two interacting molecules, A and B. The Hamiltonian corresponding 

to this interaction energy is purely due to the potential energy associated with all 

of the charges in molecule A (nuclei and electrons) interacting with all of the 

charges in molecule B. 

LM� �� �[�\|_\ − _[|\∈�[∈� 	 �45�	
The prime on the Hamiltonian indicates that it is an interaction Hamiltonian. _[ 

and _\ are vectors to the charges �[ and �\ found in molecules A and B 

respectively. All of the intramolecular operator terms found in equations (12) – 

(14), i.e., kinetic energy of the electrons, the intramolecular electron-nuclear 

attraction and intramolecular electron-electron and nuclear-nuclear repulsions 

have been subtracted. Only the potential energy of interaction between the charges 

in A and B remain. To proceed further, a particularly powerful series expansion of 

the inverse distance between two points, |�� − �/|��, is utilised. 
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1|_� − _/|  � � g1Ag�A�� �−1���A,�����,  ���A,���/,  /�
A

�!�A
¡
A!� 	 �46�	

This expansion is written in spherical polar coordinates. Both l and m are integers 

with ¢ ≥ 0 and m ranging over the integers −¢ to ¢, so for a given value of l there 

are 2� + 1 possible values of m. The functions, �A,���,  � are renormalised 

spherical harmonics defined as 

�A,���,  �  � 4Y2¢ + 1�
�/ £A,���,  �	 �47�	

with £A,���,  � being the spherical harmonics themselves. The definition of 

�A,���,  � is chosen such that �A,��0,0�  1. These are functions of the direction 

of a vector only, and not its magnitude, which can generally be non-zero for any 

arbitrary value of l. They do not necessarily get larger, nor smaller, with l. What 

makes the series, (46), converge is the ratio of distances, 
?¤¥?¦¥§q. Most importantly 

this ratio must be less than one by ensuring that the distance g� is always the larger 

of g� and g/, and g1 the lesser for the series to convergej. If this were not so, but 

the other way around, then the ratio of distances in equation (46) would continue 

to grow in size with each successive value of l and the series would diverge. The 

latter is a crucial point that we shall visit again shortly. 

In order to usefully apply the series expansion to the problem at hand, we choose 

an origin for molecules A and B and let them be located at _� and _� respectively. 

Next we assign the position of the charge, �[, relative to the origin of A as a. Thus, 

_[  _� + ¨. We have a similar result for a charge in B, i.e., _\  _� + ©. It is 

                                                 
j It is for this reason that equation (46) cannot be used in place of the electron-electron repulsion 
operator (equation (23)). This condition requires us to distinguish between the indistinguishable 
electrons by ensuring that one electron is always further away from its origin than another electron. 
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important to note that the origins of the molecules depend only on the nuclear 

coordinates in the respective molecules and not on the coordinates of any of the 

electrons in each molecule. Now the two charges �[ and �\ interact via Coulomb’s 

law, as seen in equation (45), across the distance 

|_\ − _[|  |_� + © − _� − ¨|  |_� − _� + © − ¨|  |^ + © − ¨|	 �48�	
where R is the vector from the origin of molecule A to the origin of molecule B 

and is independent of any electron coordinates. We can now write down the 

potential energy of interaction between all of the charges in A and B as: 

LM� �� �[�\|_\ − _[|\∈�[∈� �� �[�\|^ + © − ¨|\∈�[∈� 	 �49�	
To usefully apply the expansion (46) to the interaction Hamiltonian we are forced 

to identify the magnitudes of vectors in (49) with g� and g1. We take g� to be ª 
|^|  _� and g1 to be |¨ − ©|  _/. Having committed to this identification we 

may rewrite the series expansion (46) as 

1|^ + © − ¨|
� � |¨ − ©|AªA�� �−1���A,����^,  ^��A,���¨�©,  ¨�©�A

�!�A
¡
A!� 	 �50�	

and further note that 

«A,��^�  �A,���^,  ^�ªA�� 	 �51�	
and 

ªA,��¨ − ©�  |¨ − ©|A�A,���¨�©,  ¨�©�	 �52�	
The «A,� and ªA,� are irregular and regular spherical harmonics respectively 
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1|^ + © − ¨| � � �−1��«A,���^�ªA,��¨ − ©�A
�!�A

¡
A!� 	 �53�	

The expansion (53) still contains a vector, ¬ − ©, that may involve the coordinates 

of two electrons simultaneously – electrons that reside in different molecules. 

Fortunately, (53) can be simplified further still using another very powerful series 

that is exact and most definitely finite. The series is called the regular spherical 

harmonic addition theorem. 

ª®�¯ + °� � � δAq�Ar,�−1��® ± �2² + 1�!�2¢��! �2¢/�!³
�/

�q�rAqAr× ªAq�q�¯�ªAr�r�°� � ¢� ¢/ ²�� �/ −´�	
�54�	

where � ¢� ¢/ ²�� �/ ´� is a Wigner 3j coefficient – just a simple number. The non-

zero values of the 3j coefficient set the limits in the summations. Application of 

equation (54) to ªA,��¨ − ©� in (53) changes what was a function of the 

coordinates of two particles simultaneously into a product of two functions that 

act only on the coordinates of each particle separately. Upon utilization of this 

addition theorem our expansion (53), now only contains terms that: 

(i) depend on nuclear coordinates, i.e., the «A,��^�, and 

(ii) depend separately of the positions of charged particles in each 

molecule, i.e., ªAq�q�¨� and ªAr�r�©� relative to the origins of those 

molecules. 

Applying the above simplifications to the series expansion (53) and further taking 

into account the fact that the vectors a and b are most conveniently expressed in 

the molecule-fixed axis systems of A and B (rather than the lab-fixed axis system), 

the series can be substituted back into the interaction Hamiltonian (49). Once the 
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substitution has been made the sum over the charged particles in each molecule 

can be performed. Thanks to the factorization effected by equation (54), the 

summations over charged particles appearing in the series expansion of the 

Hamiltonian involve the terms  

��[ªAq�q�¨�[∈�  µPAq�r� 	 �55�	
which are the definitions of multipole operators. E.g., µP���  is the monopole (or 

charge) operator for molecule A, µP��q�  is the dipole moment operator for 

component �� of on A, l = 2 is a quadrupole, l = 3 an octapole, l = 4 a 

hexadecapole, etc. 

After a significant amount of algebra, the interaction Hamiltonian can be written 

very compactly as 

LM� �� µPAq¶q�
¶q¶r µPAr¶r� OAq¶q,Ar¶rAqAr 	 �56�	

Here the operators µPAq¶q�  and µPAr¶r�  are purely real functions and are with respect 

to the molecule fixed axes in each molecule. They are simple linear combinations 

of the generally complex operators µPAq�q�  and µPAr�r� . The OAq¶q,Ar¶r functions are 

purely functions of the relative distance (R) between the two molecules A and B 

and their relative orientations. They do not depend on the coordinates of any 

electrons. All of the relative distance dependence in the OAq¶q,Ar¶r function is 

trivially expressed as ª��Aq�Ar���. For example, a dipole-charge interaction varies 

as ª�/. 

An important caveat in the use of operator (56), is when we assigned R as g� and 

|¨ − ©| as g1, i.e., ª > |¨ − ©| in the series expansion (50). This must hold true 

for all the intermolecular charged particle distances. We shall see later how this 
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condition can be used to define a “divergence sphere” around each molecule in 

order to determine if the multipole expansion of the resulting interaction energy 

will converge. 

Finally, the interaction Hamiltonian, (45), can be readily written down for a set, S, 

of N molecules. 

LM�  � �� �[�\|_\ − _[|\∈�[∈��1�∈· 	 �57�	
Substituting for |_\ − _[|  |^�� + © − ¨| and following the same arguments as 

above we obtain, 

LM�  � �� µPAq¶q�
¶q¶r µPAr¶r� OAq¶q,Ar¶r��

AqAr�1�∈· 	 �58�	
so that the interaction Hamiltonian is simply a pair-wise sum of all the individual 

unique pairs that can be made from all the molecules is the set S. The above caveat 

with regard to the distance still, of course, is required for the multipole series to 

converge for any particular pair. 

2.5.2 2.5.2 2.5.2 2.5.2  Perturbation TheoryPerturbation TheoryPerturbation TheoryPerturbation Theory    

To obtain the interaction energy from the Hamiltonian, we need to solve the 

Schrödinger equation. The interaction energy is only a small fraction of the total 

electronic energy of the collection of molecules. As such perturbation theory is the 

perfect tool that can be applied to the problem at hand. Therefore, the interaction 

Hamiltonian is treated as a perturbing Hamiltonian to the individual isolated 

molecules electronic energy Hamiltonians. 

Again, considering first the interaction of only two molecules, A and B, let ΨE� be 

an exact solution for state n to the electronic energy Schrödinger equation for 

molecule A. The Hamiltonian used is identical to equation (12) but specifically for 
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molecule A in isolation from all else. Likewise for molecule B. Next we introduce 

the condition that molecules A and B are far enough apart such that their 

wavefunctions do not significantly overlap. This condition is entirely consistent 

with the use of the series expansion invoked in the previous subsection. Because 

molecules A and B are at “long-range” we can legitimately use the independent 

particle model to describe the wavefunction for the super system AB. Molecule A 

“owns” its electrons as does molecule “B” – there being no exchange of electrons 

between themk. 

ΨE�  ΨE�Ψ�� 	 �59�	
we shall also write equation (59) as 

|H�w  |ΨE�w|Ψ�� w	 �60�	
where it is understood that the first index, n, is referring to the electronic state of 

molecule A and the second index, m, refers to that of molecule B. Thus, |00w is 

when both A and B are both in their ground-state unperturbed wavefunctions. 

Perturbation theory yields successively better and better approximations to the 

actual interaction energy as one includes higher and higher orders of the theory. 

In the case of long-range intermolecular interactions, only the first order, �̧��  and 

second order, �̧���  energies are necessary to obtain a highly accurate interaction 

energy. Here the number of primes represent the order of perturbation theory and 

the subscripts “00” represent a correction to the ground-state energies of molecules 

                                                 
k Clearly once A and B are close enough this statement will no longer be true. One such case would 
be the formation of an H-bond between two water molecules. Once the molecules are in close-
contact the series expansion of g[\�� used in the previous subsection is invalid, so that the original 
Hamiltonian must be applied. Furthermore, account must be made for the fact the electrons can be 
exchanged between the two molecules. This means that the wavefunction of the super system must 
change sign upon interchange of the coordinates of a pair of electrons found in different molecules. 
The wavefunction (59) clearly does not possess this property. 
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A and B. Application of Rayleigh-Schrödinger perturbation theory yields the 

following expressions for these two energies. 

�̧��  z00�LM��00{	 �61�	
�̧���  −�z00�LM��H�{zH��LM��00{

Ȩ�� − �̧��E� 	 �62�	
In equation (62), n and m cannot both be zero simultaneously, so that the state |00w 
is excluded from this double sum. �̧��  is the zeroth order ground-state energy of 

the AB super system and is just the sum of the two ground-state energies of 

molecules A and B in isolation from each other, i.e., the sum of the two unperturbed 

ground-state energies. Likewise ̧ E��  is the sum of the unperturbed nth excited state 

energy of molecule A and mth for that of molecule B. 

The first order energy, given in equation (61), is the definition of the electrostatic 

interaction energy. It is an energy evaluated using the ground-state unperturbed 

wavefunctions of molecules A and B. Thus, A and B are in the presence of each 

other, but at first order molecule A does not have its electron density altered in any 

way due to the presence of B and vice versa. Because this interaction energy is 

evaluated using the ground-state unperturbed wavefunctions, this interaction is 

always exactly pair-wise additive. 

The second order energy correction does allow for distortion of the electron 

density of each molecule due to the presence of the other. This interaction energy 

includes the induction and dispersion interactions between molecules. These two 

interactions are defined by breaking down the double sum in (62) into three 

separate summations, 
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¹º»¼�  −�z00�LM��H0{zH0�LM��00{
Ȩ� − �̧�E½� 	 �63�	

¹º»¼�  −� z00�LM��0�{z0��LM��00{
�̧� − �̧��½� 	 �64�	

¹¼º¾¿  −� z00�LM��H�{zH��LM��00{
Ȩ� − �̧� + �̧� − �̧�E½��½�

	 �65�	
so that �̧���  ¹º»¼� + ¹º»¼� + ¹¼º¾¿. These interaction energies are always 

attractive, unlike the electrostatic interaction, which for consistency we shall label 

as ¹À¾  �̧�� . Equation (63) is the induction energy of A due to the field at A 

arising from molecule B. Equation (64) is the induction energy of B due to the field 

at B arising from molecule A. Equation (65) is the dispersion interaction. Having 

obtained expressions (61) and (63) – (65) for the interaction energy between two 

molecules via perturbation theory, only the integrals remain to be evaluated. This 

we shall perform in the next subsection. 

2.5.3 2.5.3 2.5.3 2.5.3  Multipoles and the Interaction EnergyMultipoles and the Interaction EnergyMultipoles and the Interaction EnergyMultipoles and the Interaction Energy    

The Electrostatic Energy 

Substitution of equation (56) into equation (61) yields the electrostatic interaction 

energy between molecules A and B. Performing the integration is trivial 

						¹À¾  z00�LM��00{ vΨ��|vΨ��|�� µPAq¶q�
¶q¶r µPAr¶r� OAq¶q,Ar¶rAqAr |Ψ��w|Ψ��w	 	

 �� OAq¶q,Ar¶rzΨ���µPAq¶q� �Ψ��{¶q¶r zΨ���µPAr¶r� �Ψ��{AqAr 	 	
hence 
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¹À¾ �� OAq¶q,Ar¶rµAq¶q� µAr¶r�
¶q¶rAqAr 	 �66�	

where µAq¶q�  zΨ���µPAq¶q� �Ψ��{ and µAr¶r�  zΨ���µPAr¶r� �Ψ��{ and are simply the 

actual permanent multipole moments of the two molecules. Equation (66) is then 

readily evaluated using the interaction functions OAq¶q,Ar¶rconviently listed in 

Appendix F of ref. 22. The electrostatic interaction energy for a collection of 

molecules is simply a pair-wise sum of all the unique pairs of molecules in the 

collection, S. 

¹À¾  � �� OAq¶q,Ar¶r�� µAq¶q� µAr¶r�
¶q¶rAqAr�1�∈· 	 �67�	

The Induction Energy 

After substituting equation (56) and integrating both equations (63) and (64), the 

equation is more involved because the sums are over the excited states of the 

unperturbed molecules. Simplification of the sum-over-states is achieved once the 

definition of polarizability is introduced 

GAqÁ¶qÁ ,AqÁÁ¶qÁÁ�
 �~Ψ��ÂµPAqÁ¶qÁ� ÂΨE�� ~ΨE�ÂµPAqÁÁ¶qÁÁ� ÂΨ��� + ~Ψ��ÂµPAqÁÁ¶qÁÁ� ÂΨE�� ~Ψ��ÂµPAqÁ¶qÁ� ÂΨE��

Ȩ� − �̧�E½�
�68�	

For example, when ¢��  ¢���  1 the polarizability is the familiar dipole-dipole 

polarizability. After substitution for the polarizability, the induction energy of A 

becomes 

¹º»¼�  12�� OAq¶q,Ar¶r∆µAq¶q� µAr¶r�
¶q¶rAqAr 	 �69�	

The factor of ½ is present to eliminate the double counting of the interaction due 

to the symmetrised definition of the polarizability (68). The quantity ΔµAq¶q�  is the 
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induced multipole component ¢�Å� of A due to the fields at A arising from the 

permanent multipoles of B, µAr¶r� . The induced multipole of A is 

∆µAq¶q�  −�GAq¶q,Ar¶r� RAr¶r�
Ar¶r 	 �70�	

where RAr¶r�  is the potential gradient of rank ¢/, component Å/at A due to B. It is 

given by 

RAr¶r�  �OAr¶r,AÆ¶Æ$µAÆ¶Æ� + ∆µAÆ¶Æ� &AÆ¶Æ 	 �71�	
Directly analogous equations to (69) – (71) exist for the induction energy of 

molecule B due to the permanent multipoles of molecule A. The total induction 

energy is then the sum of these, i.e., ¹º»¼  ¹º»¼� + ¹º»¼� . 

Examination of equation (70) reveals that the induced multipole at molecule A 

depends on all of the induced multipoles at B. The same is true for an induced 

multipole at molecule B – it depends on all of the induced multipoles at molecule 

A. Thus, in practice, the only way to determine the induction energy at A is to 

compute it iteratively, i.e., self-consistently. This is one reason why the induction 

energy is not exactly additive if instead of two molecules interacting we have a 

collection of interacting molecules. An additional reason for the non-additivity of 

the induction interaction is that it depends on the square of the permanent 

multipoles on the other molecules. Equation (70) includes the permanent 

multipoles of B. This equation is then substituted into equation (69) and then 

multiplied by the same permanent multipoles of B. This can be understood by 

realizing that OAq¶q,Ar¶rµAr¶r�  contributes to the fieldl at A. This field when 

                                                 
l Strictly speaking, only when ¢/  1 are we talking about an electric field, for ¢/  2 it is an 
electric field gradient, and ¢/  3 it is a gradient of a field gradient, etc. However, for simplicity 
we very loosely use the term “field” here. 
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multiplied by the polarizability produces an induced multipole on A. This induced 

multipole then interacts with the field again to finally give the induction energy. 

However, the most significant effect responsible for the non-additivity of the 

induction interaction is seen when the expression for the induction energy of a 

molecule in a collection of molecules (S) is derived. This expression is 

¹º»¼�  12�� ∆µAq¶q� Ç � OAq¶q,Ar¶r�� µAr¶r�
�½�∈· È¶q¶rAqAr 	 �72�	

combined with 

∆µAq¶q�  −�GAq¶q,Ar¶r� Ç � OAq¶q,Ar¶r�� $µAr¶r� + ∆µAr¶r� &�½�∈· ÈAr¶r 	 �73�	
The term in parenthesis in equation (73), shows that the contribution to the induced 

multipole ¢�Å� due to the field ¢/Å/ at A arises from the sum of all of the fields 

¢/Å/ of all the molecules (apart from A). For example, it is quite plausible that the 

field due to one molecule at A is cancelled by another molecule. In this case, the 

relevant induced multipole is zero and so would be the corresponding induction 

energy. However, if the induction energy was evaluated due to each molecule 

separately it would be non-zero because the induction energy is always attractive. 

Having obtained the induction energy of A, the total induction energy of a 

collection of molecules will just be: 

¹º»¼ �¹º»¼��C· 	 �74�	
The Dispersion Energy 

Equation (65) provides the expression for the dispersion energy. It involves purely 

a sum over excited states of both molecules. Substituting for the multipole series 
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Hamiltonian yields complex expressions which can be ingeniously manipulated to 

finally arrive at 

¹¼º¾¿ − 12Y�� OAq¶q,Ar¶rOAqÁ¶qÁ ,ArÁ¶rÁ a GAq¶q,AqÁ¶qÁ� �)É�GAr¶r,ArÁ¶rÁ� �)É�cÉ¡
�¶q¶rAqAr 	 �75�	

The GA¶,AÁ¶Á�)É� requires some comment. They are dynamic polarizabilities, but at 

imaginary frequencies and are usually viewed as a mathematical constructs rather 

than anything physical. They result by applying a mathematical identity known as 

the Casimir-Polder identity23. Such quantities can be computed using response 

theory available in software suites like Dalton24 (but not Gaussian21). The 

functions look very much like a half-gaussian when plotted versus imaginary 

frequency and are trivial to numerically integrate once obtained. Of note is the 

value of this weird polarizability at )É  0 – it is the regular static polarizabilities 

given in equation (68). 

Equation (75) shows that the interaction involves an integral of a product of two 

separate functions, one for each molecule. The form of this expression is clearly 

additive, unlike the induction expression for the interaction of two molecules. 

When there is a collection of molecules the dispersion interaction simply takes the 

form 

¹¼º¾¿  � ¹¼º¾¿��
�1�∈· 	 �76�	

where ¹¼º¾¿��  is given by (75). Thus at second order, the dispersion interaction is 

purely additive. 

If the perturbation series is extended to third order, however, a three-body 

dispersion term appears. For neutral molecules the first non-zero term involves the 
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dipole operator and is denoted the triple-dipole dispersion interaction. It is a very 

“close-range” interaction meaning it is only significant when all three molecules 

are close to each other. This is because the interaction varies as 

ª����ª����ª����. Because of the close-range distance dependence of the triple-

dipole dispersion interaction it will not contribute significantly where the 

multipole expansion is valid and accurate, so can be safely ignored at long-range. 

The physical origin of the dispersion interaction is embedded solidly in electron-

correlation. For highly accurate work clearly dispersion must be included in the 

overall interaction energy of a collection of molecules. However, it was already 

noted in the first chapter of this thesis that to a good level of approximation water 

is spherical with respect to its electron density and polarizabilities. The first non-

zero second-order dispersion interaction terms obtained from (75) for a water 

dimer only involves a significant contribution from the isotropic term. This term 

is characterised by the �� dispersion constant and varies as ª��. The non-zero 

anisotropic terms depend on the relative orientation of the two waters, but 

contribute negligibly by comparison to the isotropic −��ª�� term. Thus, at long-

range for a cluster of water molecules and in bulk water, the effects of electron 

correlation can very accurately be taken into account though a simple pair-wise 

sum of −��ª����. We conclude that for the purposes of methodology development, 

it is unnecessary to spend CPU time and resources on performing high-level post-

HF calculations because the electron correlation at long range can be accounted 

for trivially. It is for this reason that in the long-range methodology developmental 

work presented in this thesis, no post-HF calculations were performed nor are they 

necessary. 
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2.5.4 2.5.4 2.5.4 2.5.4  Accuracy of the Multipole ExpansionAccuracy of the Multipole ExpansionAccuracy of the Multipole ExpansionAccuracy of the Multipole Expansion    

There are two approximations made in the above treatment of the long-range 

interaction energy. The first involves the use of the multipole expansion 

originating from the infinite series expansion of g�%��, equation (46). By specifying 

that one of two separate distances involved is always greater than the other means 

that where this is not true the series diverges producing ever greater, on average, 

“interactions” with each successive term in the series. It has been shown that the 

multipole expansion fails when molecules approach each other close enough for 

their “divergence spheres” to overlap25. 

A divergence sphere is a sphere that just encompasses all nuclei in the molecule. 

For C2v water this is a particularly small sphere of radius about 0.84 Å. Therefore, 

no two water molecules can be within 1.68 Å or else the multipole expansion will 

fail. Additionally, water-water distances greater than but close to this value will 

produce a series that is very slowly convergent. Nevertheless, the divergence of 

the multipole expansion appears not to be a particularly problematic issue for 

waterm. 

The convergence of the multipole series can be sped up considerably by using a 

distributed multipole approach. That is, instead of placing one set of multipoles at 

the origin of each molecule, a set of multipoles can be placed, say, on the different 

nuclei within the molecule. In doing so, the single divergence sphere around the 

molecule is replaced by a series of divergence spheres at each multipole site within 

the molecule with each sphere having a radius of about half a bond length. 

Distribution of the multipoles out from the origin can be performed using ab initio 

                                                 
m It most certainly is for larger molecules, e.g., π-stacked complexes of aromatics. 



Chapter 2 

62 

 

calculations in either basis set space22, 25a, physical space using the electron 

density26 or a combination of both26. The process by which this is accomplished is 

called distributed multipole analysis, or DMA. The new long-range interaction 

energy expressions given in this section are now only modified by including an 

extra summation over the multipoles on each molecule. The relevant distances are 

site-site distances on different molecules rather than molecule-molecule distances 

between the origins of each molecule. DMA is utilised in this thesis for its 

accuracy and fast convergence properties. 

The second approximation made in obtaining the interaction energy expressions 

in this section was in writing the wavefunction of a collection of molecules as a 

simple product of the individual wavefunctions of the separate molecules. This 

approximation is only valid when the molecules are far enough from each other so 

that there is no significant electron exchange taking place between them. This only 

occurs when there is no significant wavefunction overlap between the molecules. 

When electron exchange does take place, the overall wavefunction for the super 

system needs to take account of the fact that it must change sign upon interchange 

of the coordinates of any two electrons – a product wavefunction does not. 

Additionally, as the wavefunctions overlap, replacing a smeared out charge 

density with a set of multipoles located at a point somewhere inside the charge 

cloud is inaccurate. Here these interpenetration effects reduce the accuracy of the 

multipole expansion which is in addition to the fact that now electrons can be 

exchanged between molecules. 

A natural question therefore arises. At what distance do the wavefunctions of 

separate molecules begin to significantly overlap? By the time one has moved a 
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van der Waals radius away from a nucleus the vast majority of electron density 

has already been accounted for. This density is falling off exponentially as we 

continue to move further away from any nucleus. Thus, as a guide, atom-atom 

distances should be no closer than the sum of the van der Waals radii of the two 

atoms or else significant wavefunction overlap is occurring. The van der Waals 

radii of O and H are 1.5 and 1.2 Å respectively, thus O–O distances should be 

greater than 3.0 Å, O–H distances 2.7 Å and H–H distances 2.4 Å. In the worst 

case, two H atoms could approach each other along their respective O–H bonds. 

In this case, the O–O atom distance should not be closer than 4.2 Å (1.0 Å per O–

H bond plus 2.4 Å for the H-H van der Waals distance). 

A typical H-bonded O–O distance is 3.2 Å, whereas van der Waals overlap begins 

to occur at a distance of about 3.7 Å. There is very clear wavefunction overlap 

occurring in an H-bond, as is evident in Figure 1-3. Therefore, the treatment in this 

section of the long-range interaction cannot be used accurately in H-bonds, nor 

can it be expected to be accurate in close-contact interactions, i.e., in the first 

hydration shell of waters. Waters in the second hydration shell are about 5 Å away 

from the central water. This distance does appear far enough away for a long-range 

treatment to be accurate, hence we shall use this as a working condition to test the 

accuracy of the multipole long-range interaction energy in later chapters. 
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Chapter 3  

Energies of Water Clusters Using  

Spherical Shells 

3.1 3.1 3.1 3.1  IntroductionIntroductionIntroductionIntroduction    

Ultimately we wish to be able to perform an accurate first principles simulation of 

bulk water. Currently such simulations are conducted using either a Metropolis 

Monte Carlo algorithm or classical molecular dynamics. A sample of bulk water 

contains on the order of 1023 water molecules or more. Obviously simulations that 

attempt to reproduce the properties of any bulk material cannot include anywhere 

near this number of particles. The approach currently taken to handle this situation 

is to: 

(i) utilise periodic boundary conditions in the simulation, and 

(ii) to restrict the number of water molecules explicitly interacting with one 

another in a meaningful and physically realistic way. 

It is useful to understand the meaning of periodic boundary conditions and how it 

is utilised in a simulation in order to know just how many water molecules we 

need to be able to explicitly interact with each other. 

Figure 3-1 illustrates periodic conditions in two dimensions. An imaginary box of 

length l is filled with N water molecules. This box is then surrounded by identical 

replicas of itself an infinite number of times in all directions. If, during a 

simulation, a water molecule passes from the box located at (0,0,0) into a 

neighboring box, say at (1,0,0) then its twin must have passed from the box located 
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at (-1,0,0) into box (0,0,0), and another identical copy must have passed from the 

box located at (-2,0,0) into the box (-1,0,0), etc. In fact in this example, every 

replica of the original box will have a water pass out of it to the right and another 

water (an image of itself) pass into it from the left. This symmetry exists because 

all the boxes are identical. 

 
Figure 3-1 A schematic 2D representation of periodic boundary conditions 

An imaginary box is filled with a sample of water molecules. Identical boxes to the original are 
placed around the original box in all directions and out to infinity. Six identical boxes in 2D are 
illustrated above. Water molecules that are explicitly interacted with each other fall within a sphere 
(circles in the 2D case) of radius less than half the imaginary box length. All the water molecules 
within the blue circles above illustrate those waters that are explicitly interacting with a water in 
the center of a box. 

 
Of course a real bulk water sample does not exhibit this repeating unit-cell type 

property. In order to avoid artifacts, for the simulation resulting from this 

unphysical symmetry, an additional condition is required. The size of the box, l, 

must be large enough so that the interaction between a water located at the center 

of the box and a water within distance ½ l or further away must be small. The total 

interaction between the central water and all other waters within a radius of ½ l 

can then be computed explicitly. This sphere (blue) is illustrated in Figure 3-1. 

The interaction between the central water and water molecules further away than 
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½ l is carried out implicitly whereby the waters in this distant region are treated as 

a continuum material. The total energy of the unit cell is then just a simple average 

of the total energies of N spherical water clusters with each sphere centered on 

every water molecule in the box. 

Experiment can be used as a guide to establish what l should be. Figure 3-2 shows 

the experimental radial distribution functions for water at 298 K and under 1 bar 

pressure. Evident in the tÊÊ�g� plot are the first, second and third hydration shells 

around water, with the curve becoming flat at around 9 – 10 Å. Thus, a value of r 

= 10 Å appears to be the smallest appropriate value for explicit water–water 

interactions to be computed. This means g  �/ ¢ ≥ 10 Å so ¢ ≥ 20 Å. Using a 

density of 1 g cm-3, a box of size 20 × 20 × 20 Å3 contains 268 water molecules 

(using r = 15 Å produces a box with 903 waters). A sphere with r = 10 Å contains 

140 water molecules. As a check, the most favourable dipole-dipole electrostatistic 

interaction between two water molecules separated by 10 Å corresponds to an 

interaction energy of −0.412 kJ mol-1 (at r = 15 Å it will be −0.122 kJ mol-1). 

This represents about 5.5% of the kinetic energy in translational and rotational 

motion combined at 298 K, i.e., 5.5% of 7.433 kJ mol-1. 

Having established the smallest reasonable size cluster of water molecules 

necessary for an accurate simulation of bulk water we next need to obtain 

representative samples of such clusters. To this end we adopted a model of the 

type described in section 1.3 whereby TIP4P water was used in conjunction with 

Metropolis Monte Carlo simulation to generate possible water cluster 

configurations. The Monte Carlo simulation was run with a box large enough to 

contain about 400 water molecules. This corresponded to an ¢ ≲ 23	Å, slightly 
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larger than the minimum size necessary as discussed above. The simulation was 

run until equilibrium was established under 1 bar pressure and 298 K NpT 

ensemble conditions. Random samples of water configurations were extracted 

during the course of the simulation while water was at equilibrium. The extracted 

water configurations were then used as a starting point for developing a 

methodology for rapidly obtaining the total electronic energy of the system. 

 
Figure 3-2 Experimental O–O radial distribution function for water 

The experimental radial distribution functions for water under 1 bar and 298 K taken from ref. 27. 
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3.2 3.2 3.2 3.2  Computational Methods andComputational Methods andComputational Methods andComputational Methods and    Basis SetBasis SetBasis SetBasis Set    

All calculations reported in this chapter were performed at the HF level of theory 

as implemented in the Gaussian90 software suite21. The basis set employed was 

the 6-31G*. This basis set consists of a single linear combination of six gaussian 

functions (the “6” in the 6-31G* designation) available for the 1s atomic orbital 

(AO) of the O atom. There are additionally two mathematical functions: one a 

linear combination of three gaussians (the “3” in the 6-31G* designation) and 

another a single primitive gaussian (the “1” in the 6-31G* designation), available 

to describe each of the 2s, 2px, 2py and 2pz AO’s of O. Note that the p gaussian 

functions are multiplied by x, y or z depending on whether the basis function is a 

px, py or pz function respectively. Similarly there are two functions available to 

describe 1s AO on each H atom – a function which is a linear combination of three 

gaussians, and another which is a single primitive gaussian. Finally, the O atom 

also has a set of six Cartesian d functions. Each function is given by the product 

of two Cartesian coordinates (i.e., x2, y2, z2, xy, xz, yz) and a single gaussian. These 

functions are commonly referred to as “polarization” functions and their presence 

in the basis set notation is indicated by the “*” in the 6-31G* designation. Thus, 

each water is represented with a total of 19 basis functions. Such a basis set is 

considered “small”. 

3.3 3.3 3.3 3.3  Selecting Test Spherical Water ClustersSelecting Test Spherical Water ClustersSelecting Test Spherical Water ClustersSelecting Test Spherical Water Clusters    

Five randomly selected spherical water clusters of radius 12 Å were extracted from 

the above Monte Carlo simulations and labeled as A through E. The clusters were 

chosen such that at the center of each sphere was an oxygen of a random water 

molecule. This oxygen was given the origin coordinate (0,0,0). These clusters 
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represent snap-shots of possible water configurations within TIP4P bulk water at 

298 K and 1 bar, i.e., the clusters are not energy minimised in any way. All water 

molecules were rigid and possessed the TIP4P geometry (C2v symmetry) of r(OH) 

= 0.9572 Å and a(HOH) = 104.52°. The five clusters with the number of waters 

in each and total electronic energies are given in Table 3-1. The corresponding 

geometries of the five water clusters can be found in Appendix A. 

Table 3-1 HF/6-31G* Energies of Water Clusters Studied 

Cluster 
No. of 

Waters 
Eh / Hartree 

A 235 −17865.0428203 
B 229 −17408.7295156 
C 234 −17789.0532464 
D 246 −18701.3342562 
E 233 −17713.0565957 

 

3.4 3.4 3.4 3.4  Fragmenting Spherical Water ClustersFragmenting Spherical Water ClustersFragmenting Spherical Water ClustersFragmenting Spherical Water Clusters    

3.4.1 3.4.1 3.4.1 3.4.1  FragmentationFragmentationFragmentationFragmentation    

One alternative means to accurately and efficiently obtaining the total electronic 

energy of a large chemical system not easily amenable to a single ab initio 

calculation is to utilise a fragment-based method. Molecular fragmentation is a 

relatively new field in theoretical and computational chemistry. It is been recently 

well reviewed by Gordon et al.28. The type of fragmentation selected here for 

testing on spherical water clusters was reviewed by Collins et al.29 (specifically 

the precursor to the CFM method described therein), therefore only a brief 

description will be provided below for the relevant features. 

In energy-based fragmentation methods, the total electronic energy of a chemical 

system is a simple linear combination of electronic energies of smaller fragments 

of the whole water cluster.  
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That is, 

���� ≈�Í������� Î
�!� 	 �77�	

where Í� is a fragmentation coefficient – a simple integer often +1 or −1. -Ï is 

the number of fragments and ����� is the electronic energy of fragment i with 

geometry ��. Note that we are now using ������ for the approximate electronic 

energy of the system �� rather than e����� (as should be used based on the 

discussion in Chapter 2) because it is understood at this point that we cannot obtain 

the exact electronic energy of the system. The means of obtaining fragments is, in 

principle, simple and yet systematic. 

Fragments are obtained by first identifying “groups” of atoms within the large 

molecule that will be combined together to form the fragments. In a typical 

valence-bonded system, these groups correspond to the functional groups in 

organic chemistry, e.g., –CH2–, C=C, –OH, –COOH, C=O, etc. In the case of 

water clusters, a “group” might naturally be considered to be a single water 

molecule. In valence-bonded systems, fragments are then formed based on 

valence-bonded connectivity. For water clusters one naturally would consider 

fragments to be built up based on H-bond connectivity. 

The formation of fragment molecules, the �� in equation (77), from the previously 

established groups follows a prescription which is hierarchical and denoted by a 

level. Level 1 fragments are the smallest, i.e., possess the least number of atoms. 

Because the fragments are small their electronic energies can be computed very 

rapidly. However, the error between the energy obtained from equation (77) and 

the actual electronic energy of the system when computed without any 
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fragmentation (we shall call this error hereafter the fragmentation error) is largest. 

Level 2 fragments are larger than level 1 fragments, thus it takes longer to compute 

their electronic energies, but the fragmentation error is smaller than level 1. Level 

3 fragments are larger still, take longer to compute, but produce smaller again 

fragmentation error. The hierarchy can continue to ever higher fragmentation 

levels until a level is reached where the “fragment” is so large it is the same as the 

chemical system being fragmented. 

The prescription followed to obtain the fragments, once a level of fragmentation 

has been chosen, is based on connectivity of the groups. For a water cluster this 

means that the waters (single groups) are formed into fragments based on the H-

bonding taking place in the cluster. In fragmenting a normal valence-bonded 

system, the number of connections between groups is typically quite small. For 

example, in a straight chain fully saturated hydrocarbon each group (–CH2–) is 

only connected to its directly adjacent neighbors. This low degree of connectivity 

makes forming fragments near trivial in many cases with some complications 

arising when cycles of groups exist. Unfortunately, in the case of water clusters 

low connectivity is not something that is at all common with up to four groups 

being connected to a single group. Furthermore, water clusters possess very large 

numbers of interconnecting cyclic and branched H-bonded networks. This 

situation made fragmenting the water clusters at any level other than the highly 

approximate, inaccurate and essentially illustrative level 1, extremely arduous and 

ultimately unsuccessful despite many, many long and trying attempts which shall 

not be expounded upon heren,30. 

                                                 
n It was later discovered that a fairly simple procedure can be followed to generate the secondary 
fragment molecules once the primary fragment molecules have been readily determined from the 
level of fragmentation. The procedure utilises the “inclusion-exclusion” principle of set theory, as 
explained in the work of Gadre (ref. above). Despite this, the approach still neglects important non-
bonded interactions which we shall later see cannot be disregarded.  
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3.4.2 3.4.2 3.4.2 3.4.2  Fragmenting Spherical Water Clusters: Stage 1Fragmenting Spherical Water Clusters: Stage 1Fragmenting Spherical Water Clusters: Stage 1Fragmenting Spherical Water Clusters: Stage 1    

Due to the difficulties encountered in fragmenting water clusters, an alternative 

approach was adopted. Rather than single water molecules forming groups, 

spherical shells of water molecules were defined as groups instead. Each shell of 

water molecules was approximately half a water thick. After some preliminary 

tests, a shell thickness of 1.5 Å was selected and illustrated in Figure 3-3. Thus, a 

12 Å spherical water cluster can readily be divided into eight regions, with a 

central 1.5 Å radius sphere containing a single water molecule, along with seven 

spherical concentric shells 1.5 Å thick which are located around the central water 

molecule (deliberately coloured in yellow, shown on the right in Figure 3-3). 

 
Figure 3-3 Illustration of spherical shells in a water cluster 

A spherical water cluster of 12 Å radius is divided into 7 spherical shells and a small central sphere 
of radius 1.5 Å. Each shell is 1.5 Å thick. Each of these regions can be labeled 0 through 7, with 0 
being the central sphere of radius 1.5 Å and containing a single water molecule. The remaining 
regions are labeled 1 through 7 with progressively greater radii for each consecutive shell. 

 
There are advantages and disadvantages for this choice of groups. The main 

advantage is that a water cluster can now be readily and trivially fragmented, 

which we shall describe shortly. The second advantage is the high symmetry 

associated with the spherical shells tends to result in significant cancellation of 
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interactions between water molecules in outer shells with those in inner shells. The 

main disadvantage of this choice of groups is the quadratic increase in the number 

of water molecules in each group as we move outwards from the central water to 

the outermost shell. Table 3-2 indicates the number of water molecules in each 

spherical shell. This issue can be handled, however, with further fragmentation 

(see next subsection). 

Table 3-2 Number of Waters in Each Shell in Each Cluster 

Cluster Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6 Shell 7 

A 3 7 15 36 37 65 71 
B 4 7 20 25 38 64 70 
C 5 7 16 26 43 65 71 
D 3 9 20 26 49 50 88 
E 3 8 17 29 47 51 77 

 

A water cluster grouped in the above manner is fragmented at level 1 as follows. 

Regions that are adjacent to one another are considered as connected. At level 1, 

the primary fragments are formed from all possible pairs of connected groups. The 

secondary fragments are simply the groups that are double counted. The primary 

and secondary fragments possess fragmentation coefficients of +1 and −1 

respectively. The primary fragments are hence given by groups Ð�Ð���, )  0 − 7 

and the secondary fragments are simply groups 1 – 7. 

The level 2 primary fragments are formed by considering each group and adding 

to it all other groups that are connected to it. The secondary fragments are the 

segments of these fragments that are double counted. The primary and secondary 

fragments possess fragmentation coefficients of +1 and −1 respectively. The 

primary fragments are therefore given by groups Ð���Ð�Ð���, )  1 − 6 and the 

secondary fragments are simply Ð�Ð���, )  1 − 5. 
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The levels 3, 5, 7 etc. primary fragments are generated from the previous odd level 

primary fragments by adding all groups connect to them. Similarly for levels 4, 6, 

8 etc., primary fragments are generated from the previous even level primary 

fragments by adding all groups connect to them. Secondary fragments are always 

formed from segments of the primary fragments that are double counted. The 

primary and secondary fragments possess fragmentation coefficients of +1 and 

−1 respectively. In general the primary fragments at level n is given by 

Ð�Ð���Ð��/…Ð��E, )  0 − �7 − H� and the secondary are given by 

Ð�Ð���Ð��/…Ð��E��, )  1 − �7 − H�. 
3.4.3 3.4.3 3.4.3 3.4.3  Fragmenting Spherical Shell Water Clusters: StageFragmenting Spherical Shell Water Clusters: StageFragmenting Spherical Shell Water Clusters: StageFragmenting Spherical Shell Water Clusters: Stage    2222    

Given that stage one fragmentation can provide an accurate enough total energy at 

a low enough level of fragmentation, then a second and next stage of fragmentation 

is required.  This is necessary in order to handle the quadratically increasing 

number of water molecules as the shell radius is increased. For fragments 

composed of shells with large radii, each of these fragments can be considered a 

new system for which we require an accurate total energy. Fragmentation can be 

applied to these large spherical systems in a second stage of fragmentation. In this 

second stage, groups can be formed by “zones” as illustrated in Figure 3-4. 

Fragments can then be formed from these groups following the same prescription 

as stage one fragmentation. The stage two fragments will be either spherical caps, 

or large zones being composed of several smaller zones.  
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Figure 3-4 Illustration of latitudinal zones in a spherical shell fragment 

A large spherical fragment from stage one fragmentation may be fragmented again. Groups are 
formed using latitudinal zoneso from which a new set of fragments may be generated. This is 
denoted as stage two fragmentation. 
 

3.4.4 3.4.4 3.4.4 3.4.4  Fragmenting Fragmenting Fragmenting Fragmenting Latitudinal ZoneLatitudinal ZoneLatitudinal ZoneLatitudinal Zone    Water Clusters: SWater Clusters: SWater Clusters: SWater Clusters: Stage 3tage 3tage 3tage 3    

Given that stage two fragmentation can provide an accurate enough total energy 

at a low enough level of fragmentation, then a third and final stage of 

fragmentation is required.  This is necessary in order to handle the still quite large 

fragments expected in the equatorial zones. For latitudinal zones containing, or 

close to, the equatorial zone each of these fragments can be considered a new 

system for which we require an accurate total energy. Fragmentation can be 

applied to these large latitudinal zone systems in a third stage of fragmentation. In 

this third stage, groups can be formed by “quadrangles” as illustrated in Figure 

3-5. Fragments then can be formed from these groups following the same 

prescription as stage one fragmentation. The stage three fragments will be large 

quadrangles being composed of several smaller quadrangles. 

                                                 
o Figure taken from http://facweb.bhc.edu/academics/science/harwoodr/GEOG101/Study/LongLat.htm 
(accessed on 12-Feb-2015). 
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Figure 3-5 Illustration of quadrangles in a zonal fragment 

A large latitudinal zone from stage two fragmentation may be fragmented again. Groups are formed 
using quadranglesp from which a new set of fragments may be generated. This is denoted as stage 
three fragmentation. 

 

3.5 3.5 3.5 3.5  StagStagStagStage 1 e 1 e 1 e 1 FragmentationFragmentationFragmentationFragmentation    Energies of Water ClustersEnergies of Water ClustersEnergies of Water ClustersEnergies of Water Clusters    

3.5.1 3.5.1 3.5.1 3.5.1  Fragmentation Energies Fragmentation Energies Fragmentation Energies Fragmentation Energies uuuusingsingsingsing    Isolated FragmentsIsolated FragmentsIsolated FragmentsIsolated Fragments    

Figure 3-6 illustrates the mean absolute deviation (MAD) in µ-Eh per water 

monomer between the fragmentation energies of the spherical water clusters A – 

E and their total electronic energies. Clearly evident is the expected rapid 

convergence to the exact total electronic energy with fragmentation level. Note 

that 1000 µ-Eh per water monomer ≡ 2.625 kJ mol-1. At room temperature, the 

kinetic energy in translation and rotation is 7.433 kJ mol-1. Thus, an error of 1000 

µ-Eh or more is unacceptably high. Much more acceptable are errors 

approximately to a tenth or less than this. 

                                                 
p Figure taken from http://www.mathworks.com/help/map/ref/areaquad.html (accessed on 12-Feb-
2015). 
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Figure 3-6 MAD for isolated spherical shell fragments 

The mean absolute deviation (MAD) between fragmentation energies and total electronic energies 
at stage one fragmentation. The fragment energies are computed and using isolated fragments. 

 
Table 3-3 provides the errors in reproducing the total energies of the individual 

clusters given in Table 3-1. We note from Table 3-3 that an error of 100 µ-Eh per 

water monomer or less does not occur until fragmentation level 4. Unfortunately, 

at level 4 the primary fragments contain five groups with the largest fragment 

being composed of shells (groups) 3 – 7. Referring to Table 3-2, we note that this 

single fragment comprises about 95% of the entire cluster, thanks to the quadratic 

increase in group size as we move further outward from the central water. 

Requiring this level of fragmentation for adequately low errors is unacceptable 

because the systems being fragmented are still essentially fully intact. Therefore, 

further reduction in the error is necessary before proceeding further onto stage two 

and three fragmentation. 
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Table 3-3 Error/µµµµ-Eh per Monomer in the Total Energy of Water Clusters Using Isolated 

Fragments 

Cluster Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

A −2877 −844 −228 −87 −14 1 
B −3118 −1106 −438 −126 −55 −11 
C −2639 −570 −189 −89 −38 −9 
D −2913 −265 −63 −19 −4 7 
E −3127 −669 −174 −48 −5 4 

MAD* 2935 691 219 74 23 6 
* Mean Absolute Deviation. 

 

3.5.2 3.5.2 3.5.2 3.5.2  Fragmentation Energies Fragmentation Energies Fragmentation Energies Fragmentation Energies usingusingusingusing    Fragments Embedded in a Charge Fragments Embedded in a Charge Fragments Embedded in a Charge Fragments Embedded in a Charge 

FieldFieldFieldField    

One of the issues that plagues all fragmentation methods of the type described in 

section 3.4.1 is the fact that each fragment has its total electronic energy computed 

in isolation from the rest of the molecule. Each fragment represents part of a whole 

and for this representation to be authentic the fragment should be embedded in a 

Coulomb polarizable field. Such a field would then mimic the environment that 

the fragment is located in when it is part of a larger molecule. 

One means to crudely approximate the field each fragment is located in is to 

augment the fragmentation prescription by placing simple point charges down 

around each fragment molecule at atomic sites present in the greater system, but 

not present in the fragment. For example, if a system was composed of three 

groups, G1G2G3, which we shall simply write as 123, then its level 1 fragments 

would be 12, 23 and 2. The fragmentation energy of the system is just ��12� +
��23� − ��2�. The fragment 12 is computed in isolation. However, a charge field 

may be introduced into this calculation such that the point charges are placed on 

all the atoms belong to group 3. We will represent this type of fragment as 123Ò, 
where the bar above the “3” means point charges have been placed at the nuclei of 
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the atoms contained within group 3 when computing the electronic energy of 

fragment 12. The fragmentation energy of the whole system is now ��123Ò� +
��1Ò23� − ��1Ò23Ò�. 
Introducing a charge field in this way does not significantly increase the CPU time 

of the electronic structure calculations. Most fragmentation methods described in 

the Gordon review28 (mentioned in section 3.4.1 ) incorporate “embedded 

charged” in the fragment calculations. The approach is highly approximate but it 

has been noted to produce better fragmentation energies. The results have also 

been noted to be fairly robust with respect to which specific type of charges are 

used. As such, for simplicity, we chose the TIP3P charges (TIP3P because the 

charges are located on the O and two H’s) to place on the absent water nuclei in 

each fragment. The TIP3P charges10e are O, −0.834e; H, +0.417e, where e is the 

magnitude of the charge of an electron. 

 
Figure 3-7 MAD for spherical shell fragments in an embedded charge field 

The mean absolute deviation (MAD) between fragmentation energies and total electronic energies 
at stage one fragmentation. The fragment energies are computed using fragments embedded in a 
charge field of waters that are missing from the fragment. 
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Figure 3-7 is similar to Figure 3-6 except the fragments are now all computed in 

the presence of embedded point charges. The difference between the two figures 

is striking. Firstly note the full-scale on the vertical axis in Figure 3-7, which is a 

factor of three smaller than that seen in Figure 3-6. Secondly, convergence to the 

exact result is much more rapid. Level 2 fragmentation is also seen to be in error 

by less than 100 µ-Eh per water monomer. This is clearly illustrated in Table 3-4 

below. 

Table 3-4 Error/µµµµ-Eh per Monomer in the Total Energy of Water Clusters Using 

Fragments in a Charge Field 

Cluster Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

A 857 −65 −15 −7 −1 0 
B 981 −67 −19 −6 −3 0 
C 748 −49 −8 −4 −2 0 
D 1329 −12 −7 −3 0 1 
E 936 −54 −14 −4 −1 0 

MAD* 970 49 13 5 1 0 
* Mean Absolute Deviation. 

Despite the crudeness of representing the Coulomb field due to the rest of the 

cluster missing from a fragment by simple TIP3P point charges, it appears that we 

are able to attain the required accuracy in the total energy by level 2 fragmentation. 

At level 2 the largest spherical-shell fragment contains shells 5-6-7. Referring to 

Table 3-2 we see that this one fragment constitutes, on average, 75% ± 2% of the 

entire cluster. It is very clear that if one wished to pursue this spherical-shell-

fragmentation-method to accurately compute the total energy of a large water 

cluster rapidly and efficiently then stage two and probably stage three 

fragmentation would at least need to be applied to the largest fragments. 

While fragmenting fragments is certainly an option, it is clear that if a method 

could be utilised that avoided stage two and three fragmentation it would be 

beneficial. One possibility is to separate the monomer energies from the total 

energy as indicated in equation (1). Isolated monomer energies can be quickly and 
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easily computed accurately, so that all of the computational effort can be 

transferred to computing the interaction energy. The interaction energy of a cluster 

is the sum of the individual monomer-cluster interaction energies less all 

interactions that are counted more than once. By considering the interaction 

between each monomer individually and their associated spherical clusters about 

them, only the close-contact interactions need to be computed using ab initio 

calculations. This is because multipoles and perturbation theory can be used to 

accurately compute all of the necessary long-range interactions as described in 

section 2.5 In following this approach, we are no longer concerned with the 

individual interactions between waters in outer spherical shells – we are only 

concerned with the interactions between the waters in the outer spherical shells 

and the central water. Thus, a significant speed-up in accurately determining the 

interaction energy of all the water molecules in a unit cell could be achieved if this 

approach were successful. We consider the possibility of accurately determining 

monomer-spherical cluster interaction energies in the next section. 

3.6 3.6 3.6 3.6  Fragmentation Interaction Energies of Water CFragmentation Interaction Energies of Water CFragmentation Interaction Energies of Water CFragmentation Interaction Energies of Water Clusterslusterslusterslusters    

3.6.1 3.6.1 3.6.1 3.6.1  Interaction Energies via FragmentationInteraction Energies via FragmentationInteraction Energies via FragmentationInteraction Energies via Fragmentation    

Equation (77) gives the fragmentation energy of a chemical system. To obtain an 

approximate interaction energy between two chemical systems, A and B one first 

fragments each of these systems separately to obtain approximate total electronic 

energies of each in isolation from the other. That is, 

����� ≈�Í���������� ÎÓ
�!� 	 �78�	

and 
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����� ≈�Í���������� ÎÔ
�!� 	 �79�	

An approximate “two-body” interaction energy (where a “body” is a fragment) 

can we written as 

���� ∪ ��� ≈��Í��Í%���,%���� ∪ �%�� ÎÔ
%!�

 ÎÓ
�!� 	 �80�	

where ��,% is the interaction energy of fragments i in system A and j in system B 

and is just ��,%  �$,�� ∪ ,%�& − �$,��& − �$,%�&.  Equation (80) is not exact as 

it does not include higher body interactions between the fragments, but with large 

enough fragments equation (80) will yield a closer and closer approximation to the 

true interaction energy between systems A and B. 

In the case of our spherical water clusters, we have specifically chosen a water to 

lie at the center of the sphere. When the cluster is broken into spherical shells to 

form the groups, the central water is in the innermost sphere. This inner sphere 

contains only the central water, hence we consider this to be chemical system A. 

As this system contains only a single water molecule, there is no fragmentation to 

be performed on it. Applying equation (80) to determine the interaction energy 

between this single water and the rest of the spherical cluster yields 

�$��%� ∪ ����& ≈�Í���,%����� ∪ ��%�� Î
�!� 	 �81�	

where i is a fragment formed from the spherical shells which does not include the 

central sphere, j. In general, the primary fragments of level n are given by 

Ð�Ð���Ð��/…Ð��E, )  1 − �7 − H� and the secondary are given by 

Ð�Ð���Ð��/…Ð��E��, )  2 − �7 − H�.  These expressions are identical to the 



Chapter 3 

83 

 

total energy fragmentation formulae, except that the index i starts one group 

further outward. An important difference here, however, is that we are interested 

in ��,% given by 

��,%$���� ∪ ��%�&  �$���� ∪ ��%�& − �$����& − �$��%�&	 �82�	
Thus, the interactions between all the waters found in fragment i are irrelevant and 

can be ignored – only the interaction between the central water, j, and the fragment, 

i, is needed. In doing so, it should not be necessary to compute via ab initio 

methods the interaction energy between the central water and fragments at long 

range from it – perturbation theory and multipole methods can be used to compute 

these interactions, as described in section 2.5  

3.6.2 3.6.2 3.6.2 3.6.2  Interaction Energies using Isolated FrInteraction Energies using Isolated FrInteraction Energies using Isolated FrInteraction Energies using Isolated Fragments agments agments agments     

As pointed out in subsection 3.5.1 we consider an acceptable error for a snapshot 

single spherical shell configuration of water to be 100 µ-Eh per monomer. The 

total energy per water monomer for all of the N waters in the periodic box is an 

average of all N spherical shells total energies. Thus, the error in this average total 

energy per water monomer of all N waters in the periodic box will be 100 µ-

Eh/√-. To put this on equal footing with the interaction energy per monomer for 

all the N waters in the periodic box, we first sum up all the interaction energies 

with each water in the periodic box, then we must remove any over counting of 

interactions. Interactions will have at least been double counted, thus our total 

interaction energy must at least be halved.  The total interaction, after having been 

halved, will need to be divided by N to obtain the interaction energy per monomer 

for waters within the periodic box. It is this factor of two that allows our tolerance 
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in the error in an individual interaction energy of a single water molecule with its 

surrounding spherical cluster to be 200 µ-Eh. 

Table 3-5 Error/µµµµ-Eh in the Interaction Energy of a Central Water with the Remaining 

Waters in the Clusters Using Isolated Fragments 

Cluster Level 1 Level 2 Level 3 Level 4 Level 5 

A −6160 −256 −491 46 −5 
B −8892 −3836 −2508 −1527 −557 
C −10461 −2608 −2009 −1850 −804 
D −1172 −1015 −32 420 490 
E −2451 −455 −515 −311 165 

MAD* 5827 1634 1111 831 404 
* Mean Absolute Deviation. 

Table 3-5 shows the errors in the interaction energy between the central water in 

each of the spherical clusters A – E relative to the rest of the water molecules. It is 

very clear from this table and Figure 3-8, which shows the mean absolute deviation 

in the errors, that these errors are completely unacceptable. Even at level 5 the 

MAD is fully a factor of two larger than acceptable. While this is a particularly 

disappointing result, perhaps the inclusion of an embedded charge field about each 

of the fragments may improve matters as occurred with errors in the total energies 

of spherical clusters. Some improvement is certainly expected due to the presence 

of a strong Coulomb field in the vicinity of the central water and spherical shell 

fragments – the influence of which is not included in the calculations given in this 

subsection.  
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Figure 3-8 MAD using isolated fragments in computing interaction energy 

The mean absolute deviation (MAD) between fragmentation interaction energies and actual 
interaction energies. The interaction energy is between a central water and the rest of the spherical 
cluster of water molecules. The fragment interaction energies are computed and using isolated 
fragments. 
 

3.6.3 3.6.3 3.6.3 3.6.3  Interaction Energies using Fragments Embedded in a Charge FieldInteraction Energies using Fragments Embedded in a Charge FieldInteraction Energies using Fragments Embedded in a Charge FieldInteraction Energies using Fragments Embedded in a Charge Field    

Table 3-6 shows the errors in the interaction energy between the central water in 

each of the spherical clusters A – E to the rest of the water molecules. Here each 

of the fragments are embedded in a charge field of water molecules not present in 

the fragment. Examination of Table 3-6 and Figure 3-9 clearly demonstrate an 

approximate ten-fold reduction in the errors in the interaction energies compared 

to errors associated with using isolated fragments found in the last subsection. 

Table 3-6 Error/µµµµ-Eh in the Interaction Energy of a Central Water with the Remaining 

Waters in the Clusters Using Fragments in a Charge Field 

Cluster Level 1 Level 2 Level 3 Level 4 Level 5 

A −595 −3 −107 −4 −2 
B −319 −280 −230 −152 −25 
C −1025 −177 −124 −187 −58 
D −260 −179 −35 60 76 
E −230 −52 −54 −44 1 

MAD* 486 138 110 89 33 
* Mean Absolute Deviation. 
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Even though Figure 3-9 shows that there is a definite downward trend in the errors 

with the level of fragmentation, it is nowhere near as distinct as compared with the 

total energies illustrated in Figure 3-7. This is very probably due to the fact that 

the total energies already contain a significant degree of “noise reduction” due to 

the averaging that is occurring in the total energies over all the water molecules 

within a cluster. Here the reported interaction energies are all only with a single 

water molecule to the rest of the cluster and not an average over such all such 

interactions within a cluster. 

 
Figure 3-9 MAD using fragments in a charge field in the interaction energy 

The mean absolute deviation (MAD) between fragmentation interaction energies and actual 
interaction energies. The interaction energy is between a central water and the rest of the spherical 
cluster of water molecules. The fragment interaction energies are computed and using fragments 
embedded in a charge field. 

 
We note that the errors are now reduced to below 200 µ-Eh at level 2 – a level 

consistent with the conclusions drawn from the total energy results in subsection 

3.5.2 As previously mentioned, the use of multipoles with perturbation theory 

should be able to very accurately reproduce interactions between the central water 

and waters further away than about 3.5 – 4.0 Å. Spherical shell two is located at a 
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distance of 3.0 – 4.5 Å from the oxygen atom of the central water in the spherical 

cluster. At level 2, the fragments which contain shell two are 123, 234 and 23. All 

other fragments, i.e., 345, 456, 567, 34, 45 and 56 lie further than 4.5 Å from the 

central oxygen atom. Thus, these interactions should be readily and accurately 

amenable to computation through the use of multipoles and perturbation theory. 

The largest fragment at level 2 which contains shell two is fragment 234. Referring 

to Table 3-2 we note that on average this fragment possess 54 ± 3 water molecules 

and represents about 23% of an entire spherical cluster. It seems wasteful to have 

to include shells three and four in this fragment. When interacting the central water 

with fragment 234, it seems more efficient to only include shell two (containing 

on average 8 waters) in the ab initio calculation and leaving the interaction of the 

central water with shells 34 to multipoles. Shells three and four together contain, 

on average, 46 water molecules. It should be quite possible to break the interaction 

of the central water with fragment 234 down into an ab initio calculation of the 

interaction with shell two and then use multipoles to compute the interaction with 

shells three and four. In doing so, we would have reduced the accurate calculation 

of the interaction energy for a large spherical cluster to the ab initio calculation of 

many 9-mers, along with large numbers of fast and efficient multipole interaction 

energy calculations.  
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3.7 3.7 3.7 3.7  SummarySummarySummarySummary    

In order to perform an accurate bulk water simulation, the total energy or 

interaction energy of water molecules in a spherical cluster of radius about 12 Å 

needs to be evaluated. Such a spherical cluster contains about 235 water 

molecules, which is entirely too large to be amenable to accurate electronic 

structure methods. In this chapter, we explored the possibility of authentically 

reproducing the total electronic energy of these clusters. For testing purposes, the 

ab initio energy of the clusters were obtained from a highly approximate, yet 

representative, electronic structure computation. In order to authentically 

reproduce this electronic energy, a unique method of fragmenting the cluster was 

devised. The method involved breaking the cluster down into seven disjoint 

spherical shells about a small core sphere enclosing a single water molecule. 

Spherical shell fragments were then constructed from these thinner spherical shells 

and the core sphere. It was found that by dividing the large cluster up in this 

manner we were able to acceptably reproduce the total energy of the clusters, but 

not without having to embed each spherical fragment in a Coulomb field of point 

charges located at atomic sites not present in each fragment. 

Unfortunately, this method of fragmentation generates a distribution of spherical 

shell fragments of quadratically increasing size, with the largest fragment still 

being too large for highly accurate electronic structure methods. To remedy this, 

continued fragmentation of the largest fragments was suggested. Alternatively, the 

interaction energy of the central core water with the rest of the cluster was 

considered. When such an interaction is summed up over all the waters in the 

cluster (taking proper account of multiple counting of interactions) then added to 

the individual isolated water monomer energies, the total energy of the water 

cluster may be recovered. The advantage of focusing on the interaction energy is 
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that interactions between the central water and water molecules at long-range from 

it may be very accurately determined via the use of multipoles and perturbation 

theory. In this case, the quadratic scaling in size of the fragment as one moves out 

from the central water becomes irrelevant because it is the interaction of the central 

water with these outer spherical shell fragments where multipoles may be utilised. 

It was found that the interaction energy between the central water and the rest of 

the spherical cluster could be adequately reproduced, but again, only when the 

interacting waters were embedded in a Coulomb field of point charges. In this 

case, the largest size fragments requiring accurate electronic structure calculations 

were reduced to about 50 – still too large for practical computation. Careful 

examination of the largest fragment revealed that only a small portion of it really 

necessitated the use of an ab initio calculation. It should be possible to reduce the 

necessary 50 water cluster interaction energy to an ab initio calculation involving 

only about 9 waters – a size that is well within the reach of the most accurate 

electronic structure methods. The remaining interaction between the central water 

and rest of the 41 water cluster could be determined via multipoles and 

perturbation theory. 

In fact, we have stated throughout this chapter that the use of multipoles and 

perturbation theory “can” and “should” be able to accurately reproduce interaction 

energies at long-range. We have even provided an estimate of what is meant by 

“long-range” without very much verification or testing. Indeed, the interaction 

energy of a water cluster can be broken down into a series of fragment interaction 

energies denoted as “two-body” (dimer fragments), “three-body” (trimer 

fragments), “four-body” (tetramer fragments), etc., as described in section 2.3 Of 

particular importance is knowing exactly under what conditions multipoles may 
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be used accurately to describe three-body and higher interactions. We note that 

little work has been done in establishing the above conditions. In the following 

chapter, we investigate the ability of perturbation theory with multipoles to 

accurately reproduce interaction energies. Furthermore, we attempt to discover a 

priori criteria for when multipoles should be accurate and, just as importantly, 

when individual interactions will be negligible. 
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Chapter 4  

Energies of Water Clusters Using the 

Many-body Expansion 

4.1 4.1 4.1 4.1  IntroductionIntroductionIntroductionIntroduction    

In the previous chapter, we saw that it is possible to obtain sufficiently accurate 

total and interaction energies of large spherical clusters of water molecules by 

breaking the spheres down into spherical shellsq then constructing spherical 

fragments from them. These spherical fragments, however, still contained too 

many water molecules to be able to accurately determine, i.e., using a high level 

of ab initio theory, their total energies on a practical time scale. We noted that by 

focusing on the individual interaction energies of a central water in a spherical 

cluster with the remaining cluster we could, in principle, eliminate the need to 

directly compute the total energies of the larger spherical clusters. Instead, the 

interactions between the central water and all the waters in a large spherical 

fragment could be computed via perturbation theory and multipoles. 

For smaller spherical fragments, located closer to the central water, there is little 

recourse but to perform ab initio calculations because they are in close-contact 

with the central water.  That is for waters in the first hydration shell. Those water 

molecules that are, say, in the second hydration shell and beyond should be 

sufficiently far enough away from the central water for perturbation theory and 

multipoles to be accurately applied. In this chapter, we will investigate how well 

                                                 
q Provided, or course, that the fragments derived from the shells are embedded in a charge field. 
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the latter treatment can describe these interactions.  To approach this task we shall 

call upon the many-body expansion, described in section 2.3 By breaking down 

interactions into two-, three-, four-body etc. interactions, we immediately limit the 

size of fragments under consideration to dimers, trimer, tetramers, etc. 

Unfortunately, however, this comes at a cost. 

The many-body expansion produces an explosively large number of such tiny 

fragment systems as the number of waters in the fragment is increased from one. 

Even though we may have considerably reduced the number of waters we need to 

consider at any one time, there are still a very large number of higher-body 

interactions we need to account for. For example, consider the largest and furthest 

spherical fragment at level 2. In the last chapter, we noted that sufficient accuracy 

is obtained for the interaction energy at this level of fragmentation. This spherical 

fragment contains shells 5, 6 and 7 and constitutes, on average, about 180 water 

molecules. The number of two-body interactions involving the central water and 

each of the waters in this fragment is 180. The number of three-body interactions 

is 16,110. The number of four-body interactions is 955,860. Obviously we need a 

means of reducing these numbers of calculations. For example, we expect that 

almost all, if not all, of the three and higher body interactions between the central 

water and all 180 waters in this far-away fragment to be negligible, and hence can 

be ignored. This we set out to prove in the sections that follow in which our 

attention is focused on the three-body interactions – the expected next largest and 

most significant interaction occurring in bulk water after two-body interactions. 

Two-body interactions between a central water and the remaining waters are the 

farthest reaching and include all electrostatic, induction and dispersion effects. The 

number of such interactions is the least of all the many-body interactions possibly 

present in the system. In fact, the numbers involved are quite manageable and 
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entirely acceptable since this is the usual way of modeling water at present, i.e., 

include all significant two-body interactions. However, for high accuracy, at the 

very least, three-body interactions are required.  

4.2 4.2 4.2 4.2  Trimers CharacterisTrimers CharacterisTrimers CharacterisTrimers Characterised by Intermolecular Distancesed by Intermolecular Distancesed by Intermolecular Distancesed by Intermolecular Distances    

At a fundamental level, three-body interactions are required to correct for the 

over/under counting of the always attractive two-body induction interactions. In a 

trimer, the sum of the three two-body interactions present sometimes may not be 

stable enough to account for electric field re-enforcement that may be occurring at 

each monomer due to the remaining two monomers. At times, the sum of the three 

two-body interactions present may be too stable due to electric field cancellation 

that may be occurring at each monomer due to the remaining two monomers.  

In order to study three-body interactions, we require a means of classifying them 

so that some classes of interactions can be disregarded as negligible. The most 

obvious approach is to use the terms “close” and “far”, where “close” means the 

waters are separated by a distance too short to be accurately described with 

perturbation theory and multipoles. That is, when two waters are close they are 

considered in “close-contact” and their interactions can only be accurately 

described by directly performing ab initio calculations. For two-body interactions, 

an extensive study on what “close” is, has appeared in the literature30, so we shall 

use the conclusions of this work here. Figure 4-1 illustrates the definition of 

“close”. If two water molecules are not close, they are therefore considered “far” 

from each other. Our definition of “close” is shown in Figure 4-1, illustrates that 

when two molecules are far from each other, no two atoms from each molecule, 

can be closer than 1.5 times the sum of their van der Waals radii. At “far” 

distances, dimer interactions should be nearly exactlyr described with perturbation 

theory and multipoles30. 

                                                 
r “exactly” here means the computed interaction energy using perturbation theory and multipoles 
agrees to within a few µ-Eh of the same interaction energy computed using an ab initio calculation. 
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Figure 4-1 Illustration of the definition of close and far distances 

The left-hand panels are the water configurations for the van der Waals space filling structures 
shown in the right-hand panels. However, the van der Waals radii used in the right-hand panels are 
50% greater than the standard van der Waals radii (i.e., 50% greater than 1.2 and 1.5 Å for hydrogen 
and oxygen respectively). Water molecules are deemed close when the above space-filling models 
overlap (upper right panel), or far otherwise (lower right panel). 

 
Where three-body interactions (or trimer) are concerned, there are three (and not 

one) distances that uniquely specify the configuration of their centers, i.e., r12, r13 

and r23 where we have labeled the three waters as 1, 2 and 3. As we are only 

concerned with close and far distances, i.e., whether rij is close or far, we have a 

total of four possible close/far trimer configurations, as illustrated in Figure 4-2. 

Henceforth we shall assign a close distance between two waters with a “C” and a 

far distance with an “F”. The four possible configurations that may be adopted by 

a trimer are: CCC, CCF, CFF and FFF – as the order of “C” and “F” does not 

matter. In the subsections that follow, we shall consider each type of configuration 

in turn and evaluate how well perturbation theory and multipoles reproduce the ab 

initio three-body interaction energy. 
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Figure 4-2 Different trimer configurations 

The above four panels illustrate all the possible configurations of a trimer with regard to whether 
or not waters are “close” or “far” from one another. See Figure 4-1 for the definition of close and 
far. “C” represents “close” and “F” represents “far” and these designations refer to the three 
possible OO atom distances that exist in a trimer. The order of “C” and “F” is unimportant. 
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4.2.1 4.2.1 4.2.1 4.2.1  Computational DetailsComputational DetailsComputational DetailsComputational Details    

Large sets of trimer configurations were obtained from snapshots of water 

configurations from the same Monte Carlo simulations that were used to obtain 

the sample spherical clusters studied in Chapter 3. Trimers were selected by first 

designating any water in the snapshot as a central water, then choosing any other 

two water molecules that lie within a distance of ½ l (recall that l is the box-length 

in the Monte Carlo simulation) from the central water. Furthermore, the two 

additional waters selected should not be further from each other than ½ l. Trimers 

were selected in this way because it is only these interactions that require explicit 

calculations in any bulk water simulation, and water molecules further apart than 

½ l are considered to interact negligibly in said simulations. Based on the 

classification scheme describe above, each trimer was classified as one of CCC, 

CCF, CFF or FFF types.  

Ab initio calculations were performed at the HF/aug-cc-pVTZ level using the 

MOLPRO suite of programs32. This basis set is considerably larger than that used 

in the previous chapter (6-31G*). The present basis set consists of 4 s gaussian 

type functions, 1 to represent the 1s atomic orbital (AO) of O, and 3 to represent 

the 2s AO. There are also 3 p gaussian type functions to represent each of the px, 

py and pz (AO) of O, 2 d functions for each of the 5 d AO of O, and 1 f-type 

function for each of the f AO of O. For each H atom there are 3 s functions, 2 p 

functions and a set of d functions. Additionally, this basis set is “augmented” (the 

“aug” in the designation of the basis set). This means that on O atom, there are 

additional s, p, d and f functions which are quite “diffuse” (small gaussian 

exponent). For H there are additional s, p and d functions. Thus, the total number 

of basis functions representing each water is now 74. This basis set is considered 
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a larger basis set. Such a basis set provides for a much more realistic representation 

of the polarizability of water. As a consequence, induction plays a much more 

significant role in the three-body interactions than with the 6-31G* basis set (19 

functions per water). 

Three-body interactions computed via HF theory were compared with the same 

computed using perturbation theory and multipoles. The permanent multipoles (to 

rank 5) and polarizabilities (to rank 2) necessary for this comparison were 

generated using A. J. Stone’s distributed multipole analysis24a,25 as implemented 

in the program GDMA33. The perturbative/multipole calculations were performed 

using ORIENT34.  

Additionally, after considerable effort, it was realised that the three-body energies 

needed to have the effects of BSSE removed from them in order to provide useful 

comparisons to predictions of the three-body energies obtained from perturbation 

theory and multipoles. BSSE, or the basis set superposition error, arises because 

the wavefunction describing each monomer is not complete, i.e., at the Hartree-

Fock limit. As such when an interaction energy is computed via equation (1), the 

energy of the complex is “contaminated” because some of the basis functions on 

each monomer in the complex are utilised in the electronic description of other 

monomers in the complex, rather than purely being used to describe the interaction 

between each monomer in the complex. The result is that the energies of the 

monomers in the complex are more stable than they would otherwise be when in 

isolation. Thus, BSSE leads to too stable interaction energies. The effect can 

largely be compensated for through the use of error cancellation. “Ghost” basis 

functions are purposefully added at the locations of missing monomers when the 
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monomer energies are computed and used in equation (1). This approach is known 

as the “counterpoise correction”35. It can be extended when computing a three 

body interaction. The three-body interaction for system ABC can be written in 

terms of the electronic energies of the trimer, dimers and monomers as 

��,�,�  ��Ö×�� − ��Ö×� − ��Ö�� − ��×�� + ��Ö� + ��×� + ����	 �83�	
 
However to remove the effects of BSSE, the energy of a dimer needs to be 

computed in the presence of ghost basis functions located at the position of the 

monomer present in the timer, but not present in the dimer. Similarly, the energies 

of the monomers need to be computed in the presence of ghost basis functions 

located at the positions of the two other missing monomers. Without correcting 

for the effects of BSSE it was found the ab initio computed three-body interaction 

energies were wildly in error. 

 

4.2.2 4.2.2 4.2.2 4.2.2  CCC ConfiguCCC ConfiguCCC ConfiguCCC Configurationsrationsrationsrations    

As indicated in Figure 4-2, these configurations are the very definition of “close-

contact”. As such, there is no possibility of a multipole description of the 

interaction to be accurate. Therefore, we did not compute these three-body 

interactions nor did we compare them to what would be estimated from a 

perturbative/multipole description. Such configurations occur between the central 

water and waters in the first hydration shell. In evaluating the interaction energy 

of a central water with the remaining waters in a spherical clusters, there is little 

recourse for these types of interactions but to compute them via ab initio 

calculations. 
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4.2.3 4.2.3 4.2.3 4.2.3  CCF ConfigurationsCCF ConfigurationsCCF ConfigurationsCCF Configurations    

Figure 4-2 also shows a typical configuration of this type. This configuration 

should also probably be considered as “close-contact” because it represents an 

approximate linear string of three monomers. Thus, the central monomer is close 

to the two terminal monomers (the CC in CCF) in the string, with only the two 

terminal monomers far from each other. When computing the three-body 

interaction with multipoles, we notice from equation (8) that two of the three two-

body interactions involve a distance between pairs of monomers that are close. 

The computed two-body interactions from these close pairs are not expected to be 

accurate, and as such the three-body interactions is likely to be the least accurate 

of all the configuration types studied here. 

 
Figure 4-3 Histogram of errors for CCF configurations 

Distribution of errors between counterpoise correct HF/aug-cc-pVTZ three-body interaction 
energies and that predicted using distributed multipoles (to rank 5) and central polarizabilities (to 
rank 2) including terms in the multipole expansion interaction energy up to R-6. The vertical axis 
is the number of configurations observed with the corresponding error indicated on the horizontal 
axis. The total number of configurations studied was 1437. 

 

This is illustrated in Figure 4-3 and Table 4-1. The ratio of the standard deviations 

of the three-body interaction energy to the error in the prediction of the interaction 
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energy is only 2.4, which implies that we are almost 95% confident at being able 

to predict the interaction at all. The discrepancy between the actual interaction and 

the prediction is too large. We conclude that along with the CCC configurations, 

the CCF configurations should also be considered as close-contact and be 

computed directly with ab initio calculations. 

Table 4-1 Mean Absolute Interaction Energy and Deviation for Different Three-body 

Configurations 

 CCF / 

µµµµ-Eh 

CFF / 

µµµµ-Eh 

FFF / 

µµµµ-Eh 

Mean Absolute Interaction Energy 246 105 38 ØÙÚÛÜ 205 89 29 
Mean Absolute Deviation 80 26 3 ØÙÚÝ 86 26 2 
Number in sample 1437 1024 293 

 

4.2.4 4.2.4 4.2.4 4.2.4  CFF ConfigurationsCFF ConfigurationsCFF ConfigurationsCFF Configurations    

CFF configurations necessarily require one monomer to be located far from a 

close-contact dimer, as shown in Figure 4-2. The existence of the close-contact 

dimer means that the two-body interaction computed for it using perturbation 

theory and multipoles will not be particularly accurate. However, the remaining 

two two-body interactions should be well predicted. Of course, in the three-body 

interaction itself there exists a close-contact pair so there will be some error 

cancellation when applying equation (8), which should be more effective than in 

the CCF configurations. All considered we expect that errors in the predicted 

three-body interaction to be smaller than that of the CCF configurations. 
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Figure 4-4 Histogram of errors for CFF configurations 

Distribution of errors between counterpoise correct HF/aug-cc-pVTZ three-body interaction 
energies and that predicted using distributed multipoles (to rank 5) and central polarizabilities (to 
rank 2) including terms in the multipole expansion interaction energy up to R-6. The vertical axis 
is the number of configurations observed with the corresponding error indicated on the horizontal 
axis. The total number of configurations studied was 1024. 

 
The distribution of errors is indicated in Figure 4-4, and when considered in 

combination with the results in Table 4-1, it is clear that significantly better 

predictions can be made of the three-body interaction compared to CCF. The ratio 

of the standard deviations of the three-body interaction energy to the error in the 

prediction of the interaction energy now is 3.4 clearly indicating a statistically 

significant improvement in the three-body interaction energy prediction. While 

better predicted than CCF configurations, the errors here are still somewhat large 

with a MAD of 25 µ-Eh. 

4.2.5 4.2.5 4.2.5 4.2.5  FFF ConfigurationsFFF ConfigurationsFFF ConfigurationsFFF Configurations    

No pair of water molecules in this configuration are close. Perturbation theory plus 

multipoles are expected to predict very well the three-body interaction energy, and 

the results do not disappoint. Figure 4-5 shows what is essentially a delta function 

centered at zero error. The MAD is a mere 3 µ-Eh, as indicated in Table 4-1. The 
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ratio of the standard deviations of the three-body interaction energy to the error in 

the prediction of the interaction energy is 14.5 indicating complete reliability of 

the predicted interaction energies. The prediction are so accurate, in fact, that they 

are essentially exact. There is a tiny systematic error in the predicted interactions 

because the counterpoise correction tends to slightly over compensate for BSSE. 

Only a relatively small number of FFF configurations (293) were studied in 

comparison to the CFF (1024) and CCF (1437) configurations because it became 

very clear during the calculations that perturbation theory plus multipoles were 

fully capable to predicting the interactions with high accuracy. 

 
Figure 4-5 Histogram of errors for FFF configurations 

Distribution of errors between counterpoise correct HF/aug-cc-pVTZ three-body interaction 
energies and that predicted using distributed multipoles (to rank 5) and central polarizabilities (to 
rank 2) including terms in the multipole expansion interaction energy up to R-6. The vertical axis 
is the number of configurations observed with the corresponding error indicated on the horizontal 
axis. The total number of configurations studied was 293. Unlike the previous two figures, 
individual data points are not shown due to their high density. 

 

4.3 4.3 4.3 4.3  Trimers ChTrimers ChTrimers ChTrimers Characterisaracterisaracterisaracterised with Shell Sumsed with Shell Sumsed with Shell Sumsed with Shell Sums    

During the course of this work a paper appeared in the literature in which water 

dimers through to the pentamer, 13-mer and 17-mer were studied using hybrid 
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DFT. While such works are not at all unusual, in this particular study the authors 

suggested using “shell sums” as a means of characterizing three-body 

interactions36. Their original suggestion was to determine all three O–O atom 

distances in a trimer and then select the shortest two. A “shell” is assigned to each 

of these distances then these “shells” are added. If an O–O distance was less than 

3.1 Å (the approximate first hydration shell), then the distance was assigned 

“shell” 1. If the distance was longer than 3.1 Å then it was assigned “shell” 2. The 

authors considered timers with a shell sum (SS) of 2 to be close-contact. This 

designation is identical to both our CCC and CCF configurations in the previous 

section if we had of used an O–O atom distance criterion of 3.1 Å. Indeed, 

inspection of Figure 4-1 and Figure 4-2 shows that each monomer can be 

essentially represented by a single sphere of radius 50% larger than the van der 

Waals radius of oxygen, which is 2.25 Å. A designation of “C” was given if the 

spheres of two monomers overlapped, i.e., if the O–O atom distance was < 4.5 Å. 

A SS of 3 corresponds to our CFF configurations and a SS of 4, an FFF 

configuration. 

Rather than use the above SS definition which is essentially identical to our close-

far designations except that a considerably smaller distance criterion was used, we 

decided to assign a distance between monomers to a specific hydration shell and 

then sum these. Thus, shells can be any number from 1 to infinity (rather than just 

1 or 2), and the SS can be anything from 2 to infinity. The distances we choose for 

the assignment were: O–O atom distances ≤ 3.50 Å, shell 1. Then for every 2.25 

Å further distant an additional shell was added. We note here that while the SS 

does allow examining three-body interactions as a function of SS beyond 4, it is 
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not as selective for the particular interactions as the CCC, CCF, CFF and FFF 

designation. 

In light of this alternative characterization of the three-body interactions, the data 

set of the previous section was reanalyzed and distances between oxygen atoms 

used to classify an interaction according to its SS value. Note that we did not 

perform any calculations on CCC trimers because there is no chance that 

multipoles can accurately describe these interactions. Thus for our SS = 2 all CCC 

configurations were excluded, and only CCF were considered. The results for the 

root-mean-square (RMS) three-body interaction energy (counterpoise corrected) 

as a function of SS is given in Figure 4-6, while the RMS deviation (RMSD) 

between the ab initio and multipole computed three-body interaction energies are 

presented in Table 4-2. 

 
Figure 4-6 RMS three-body interaction energy versus shell sum 

The root-mean-square (RMS) ab initio three-body interaction energy versus shell sum (SS). Note 
that SS = 2 does not include any CCC configurations, but only CCF configurations. 
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Table 4-2 RMS Interaction Energy and Deviation for Different Shell Sums 

SS N 
RMSI / 
µ-Eh 

RMSD / 
µ-Eh 

2 1091 353 132 
3 1232 157 45 
4 431 59 7 

 
It is apparent from Table 4-2 that a perturbative and multipole treatment for SS 

greater than or equal to 4 is essentially exact. Errors are slightly higher due to the 

shorter distances used in the SS treatment compared to the C/F treatment of the 

previous section. Nevertheless, our overall conclusions are that they are fairly 

similar. SS = 2 requires ab initio evaluation. SS = 3, due to the closer distances 

involved here are also too high, so a longer distance would be necessary in order 

to ensure sufficient accuracy in the multipole treatment. At SS = 4 and beyond, the 

three-body interaction energies are reproduced almost exactly. 

 

As an aside, which does deserve mentioning at this point, we thought it was 

prudent to test the convergence of the three-body interaction as a function of basis 

set size. While we expected that the aug-cc-pVTZ basis set to most definitely have 

reached convergence in this interaction energy (i.e., we are essentially at the 

Hartree-Fock limit, cf. section 2.4.5 ), it is interesting to see whether a smaller 

basis set (and therefore less expensive) could have also yielded similar results. To 

this end we examined the RMS three-body interaction as a function of SS for 

different basis sets ranging from the smallest, STO-3G, or minimal basis set (7 

basis functions per water), to the very expensive, aug-cc-pVQZ (172 basis 

functions per water). The results are shown in Figure 4-7. 
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Figure 4-7 Effect of basis set on the three-body interactions  

Basis sets, from the smallest possible (STO-3G, top of legend), to the very large and expensive 
(aug-cc-pVQZ, bottom of legend) were used to compute the same set of three-body interaction 
energies as a function of shell sum. This was performed to test for convergence in the three-body 
interaction as a function of basis set. See text for details. 

 

It is noted that the RMS three-body interaction settles down to a consistent result 

using the aug-cc-pVDZ (41 basis functions per water) or the “triple zeta” basis set 

6-311++G(2d,2p) (47 basis functions per water). We also note that at SS ≥ 5 the 

RMS three-body interaction is extremely small and can effectively be considered 

negligible. 

4.4 4.4 4.4 4.4  Trimers CharacterisTrimers CharacterisTrimers CharacterisTrimers Characterised by a Single Distance Measureed by a Single Distance Measureed by a Single Distance Measureed by a Single Distance Measure    

We have shown in the previous two sections that a perturbation/multipole 

treatment can provide virtually exact three-body interaction energies compared to 

an ab initio calculation provided the waters are far enough from each other. Is 

there a more rigorous condition that we can use to establish just when a three-body 

interaction is significant? It turns out that it is possible, by considering the 

expressions for the induction interaction found in equations (69) to (71). We shall 

consider specifically: 
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(i) only the first order (and therefore most significant) induction energy, 

(ii) only the dipole-dipole polarizability, 

(iii) only the permanent dipoles on molecules A and B which we shall take 

as equilibrium water so that 

(iv) the only non-zero component of the dipole is µ�� which we shall 

represent as Þ. 

(v) Finally, we note that for equilibrium water in its usual axis system, the 

polarizability tensor is diagonal, and we shall approximate it with an 

isotropic G. 

In this case, the first order induction energy at water A due to water B is 

¹º»¼�����  −G2�R�¶� �×�R�¶� �×�¶ 	 �84�	
Here R�¶� �×� means component Å of the gradient of the electrostatic potential at 

water A due to water B. 

Upon introducing a third water molecule, C, the potential gradient at A now due 

to B and C is 

R�¶� �×, ��  R�¶� �×� + R�¶� ���	 �85�	
which we can directly substitute into equation (84) to obtain the first order 

induction energy at A due to waters B and C 

¹º»¼����;�,�<  −G2�ßR�¶� �×� + R�¶� ���àßR�¶� �×� + R�¶� ���à¶ 	 �86�	
Because we are interested in the three-body interaction, we notice upon expanding 

equation (86) we have the additional terms, 
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−G�R�¶� �×�R�¶� ���¶ 	 �87�	
over and above the two-body terms, ¹º»¼����� and ¹º»¼����� . These additional terms, 

must literally be the first order three-body interaction energy. 

As we note from equation (71), the potential gradient at A due to any water X is 

R�¶� �á�  O�¶��� �á�Þ	 �88�	
which possess a distance dependence between A and X of 

R�¶� �á�  O′�¶��� �á�Þª�â� 	 �89�	
Upon substitution of equation (89) into (87) we find the three-body interaction 

energy at A due to B and C to be 

− GÞ/ª��� ª��� �O′�¶��� �×�O′�¶��� ���¶ 	 �90�	
Directly analogous expressions exist for the three-body induction energy at water 

B due to waters A and C and at water C due to waters A and B. 

The largest in magnitude value of the three-body interaction energy here is when 

all three dipoles are aligned along their respective ^��, ^�� and ^��  vectors. In 

this case, O��¶��� �á�, O��¶��� �á� and O��¶��� �á� are all equal to 2. Thus the 

maximum absolute three-body interaction between waters A, B and C is 

���,�,���	
  4GÞ/ ± 1ª��� ª��� + 1ª��� ª��� + 1ª��� ª��� ³	 �91�	
or 

���,�,���	
  12GÞ/²� 	 �92�	
where, L, is given by 
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²  3�/� ± 1ª��� ª��� + 1ª��� ª��� + 1ª��� ª��� ³
��/�	 �93�	

The factor of 3�/� is present simply to ensure that when all the ª�% distances are 

equal, ²  ª�%. With this definition of L, ���,�,���	
 ∝ ²��, and we note that small 

values of L indicate that a three-body interaction could be very significant, whereas 

configurations with large values of L are expected to produce tiny three-body 

interactions.  

In order to test this analysis, we extracted all possible trimers from a 57-mer water 

cluster published in ref. 37. There was a total of �573 �  29,260 such 

configurations. We computed all three-body interactions at the HF/aug-cc-pVDZ 

level of theory using the Gaussian09 suite of programs21. The cluster possesses 

slightly different geometries for each water monomer, so the G and Þ used in the 

above analysis were for the equilibrium structure of water at this level of theory. 

The optimised parameters are given in Table 4-3. No counterpoise correction was 

applied to the computed three-body energies, so as such there is expected to be 

significant BSSE present in close-contact configurations. 

Table 4-3 Equilibrium Water Properties at the HF/aug-cc-pVDZ Level 

Parameter Value 

rOH / Å 0.9437 
∠HOH / deg 105.99 G / Å3 1.18 Þ / D 1.96 
E / Eh −76.0418435 

Rather than use distances measured between O atoms, we chose to measure 

distances between the nuclear centres of charge for each monomer as this is the 

default origin in the ab initio calculations at which all central multipoles and 

polarizabilities are computed. The location of the nuclear centre-of-charge is 
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slightly displaced off the O nucleus in the direction of the two hydrogens, but 

makes little difference to our definitions of close-contact discussed in section 4.2 

If we choose a 4.5 Å centre-of-charge separation between two monomers as 

“close” then the number of CCC, CCF, CFF and FFF configurations found in the 

57-mer is summarised in Table 4-4. 

 Table 4-4 Summary of Configurations Found in the 57-mer 

Configuration Number 
Total 3B / 

m-Eh 

CCC 356 −36.1 
CCF 1,218 −51.1 
CFF 10,576 −6.5 
FFF 17,110 2.0 
Total 29,260 −91.7 

 

We can see from Table 4-4 that there are 1,574 close-contact configurations (CCC 

and CCF configurations) in the 57-mer, for which perturbation theory and 

multipoles have no chance of predicting the three-body interaction energy 

accurately. This constitutes only 5.4% of the total number of three-body 

configurations, yet apparently accounts for the bulk of the three-body interaction 

energy. Of course, we do expect that the close-contact configurations to possess 

the most significant three-body interactions, but caution should be followed in 

placing too much weight on just how significant that is, based on the above 

numbers, because BSSE does play a significant role in these particular interaction 

energies. BSSE will not substantially contribute to the three-body interaction 

energy of the more distant CFF configurations, and it will make virtually no 

contribution at all in the FFF configurations. 

Figure 4-8 illustrates all the 29,260 three-body interactions present in the 57-mer 

as a function of L. Note that the interaction energy units are in µ-Eh. Included in 
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the figure are all the close-contact configurations. The orange curves are derived 

from equation (92), i.e., no point should lie above the positive going curve, nor 

should any point be below the negative going curve (which is just the negative of 

���,�,���	
). Evidently there are such points, but this is entirely due to the fact that 

these recalcitrant configurations are close-contact and their interaction energies 

are contaminated by BSSE. Re-plotting Figure 4-8 but with only CFF and FFF 

configurations and changing the scale appropriately produces Figure 4-9. 

 
Figure 4-8 All 3B interactions in the 57-mer as a function of L 

Each point in the above figure is one of the 29,260 three-body interactions present in the 57-mer. 
The orange curves were obtained from equation (92) – no points should lie above the positive going 
curve nor any point below the negative going curve. Evidently some points do, but for good reason. 
See the text for the discussion. 

Examination of Figure 4-9 immediately reveals that not a single three-body 

interaction in all of the 27,686 CFF and FFF configurations exceeds ���,�,���	
 or 

is less than −���,�,���	
. Additionally, the data Figure 4-8 and Figure 4-9 can be 

re-expressed as plots of ���,�,�� versus ���,�,���	
. These graphs are shown in 

Figure 4-10 and Figure 4-11 respectively. Again, after removing the close-contact 

configurations, Figure 4-11 illustrates just how well ���,�,���	
 can be used as a 
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criterion to eliminate with absolute certainty three-body, FFF and CFF interactions 

which can at the very most only contribute ���,�,���	
 to the total three-body 

interaction energy. 

 
Figure 4-9 CFF and FFF 3B interactions in the 57-mer as a function of L 

Each point in the above figure is one of the 27,686 CFF and FFF three-body interactions present 
in the 57-mer. The orange curves were obtained from equation (92) – no points should lie above 
the positive going curve nor any point below the negative going curve. Note also that no CFF nor 
FFF configuration contributes more than 100 µ-Eh to a three-body configuration. 

 

 
Figure 4-10 All 3B interactions in the 57-mer as a function of �åæ,ç,è�é¨¯ 

Each point in the above figure is one of the 29,260 three-body interactions present in the 57-mer. 
The orange line was obtained from equation (92) – no points should lie above it. Evidently some 
points do, but for good reason. See the text for the discussion. 
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Figure 4-11 CFF and FFF 3B interactions in the 57-mer as a function of �åæ,ç,è�é¨¯ 

Each point in the above figure is one of the 27,686 CFF and FFF three-body interactions present 
in the 57-mer. The orange line was obtained from equation (92) – no points should lie above it. 
Note also that no CFF nor FFF configuration contributes more than 100 µ-Eh to a three-body 
configuration. 

 
To this end, Table 4-5 illustrates the error per monomer associated with ignoring 

small three-body energy contributions based on equation (92). We can see that, 

while there is a fortuitous cancellation of opposite going on in the three-body 

interactions at an excluded energy of <200 µ-Eh, excluding all three-body 

contributions with ���,�,���	
 predicted to be less than 50 µ-Eh which removes 

22,421 three-body evaluations without introducing significant error. The 

remaining configurations are close-contact and 5,265 CFF and FFF (mostly CFF) 

configurations that may be evaluated efficiently and rapidly using perturbation 

theory coupled with multipoles, as described in the previous sections. Thus we 

have achieved all the three-body interactions (excluding CCF) without any 

significant loss in accuracy, by eliminating to evaluate 77% of the numerous 

22,421 configurations. 
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Table 4-5 Summary of Error Incurred when Excluding Various Three-body Interactions 

Exclude 3B <  

/ µµµµ-Eh 

åêë 
/ m-Eh 

Error per 

monomer 

/ µµµµ-Eh 

N excluded N included 

0.1 −91.73 0 0 29,260 
1 −91.73 0 296 28,964 

10 −91.83 −2 11,709 17,551 
20 −91.98 −5 16,564 12,696 
40 −93.09 −24 21,090 8,170 
50 −93.10 −24 22,421 6,839 

100 −91.73 −56 25,493 3,767 
200 −91.73 0 27,463 1,797 
400 −88.56 56 28,451 809 
500 −87.70 71 28,604 656 

1000 −43.45 847 29,034 226 
2000 0.03 1610 29,257 3 
4000 0.00 1609 29,260 0 

    

4.5 4.5 4.5 4.5  SummarySummarySummarySummary    

In this chapter, we have shown that three-body interactions can be divided into 

two categories, close-contact, which must be evaluated directly via ab initio 

calculations, and interactions that may be evaluated with reasonable accuracy 

using perturbation theory and multipoles. We further categorised the latter 

interactions into configurations labeled as CFF (or shell sum 3) or FFF (shell sum 

4+). CFF configurations were of the kind depicted in Figure 4-2 and posed the 

most challenge for perturbation theory and multipoles at accurate prediction. We 

showed that for the FFF configurations, the three-body interaction energies can 

essentially be exactly reproduced. An alternative approach to using perturbation 

theory and multipoles for evaluating the CFF three-body interaction is to treat the 

interaction as a pseudo-two-body interaction, i.e., an interaction of a dimer, 

computed via ab initio calculations, and a monomer. Because the monomer is 

located far from the dimer, perturbation theory and multipoles should essentially 
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be able to reproduce this interaction exactly. However, this possibility remains 

open for further study. 

In the last section of the chapter, we developed a simple treatment that can be used 

as a criterion to determine precisely whether a three-body interaction could be 

important. While simple, the approach proved to be particularly powerful whereby 

in the study of a 57-mer water cluster we were able to eliminate 77% of all three-

body interaction evaluations, i.e., some 22,421 of them, without any significant 

loss in accuracy. In a larger cluster, like those studied in Chapter 3, even more 

significant savings could be obtained because vast numbers of three-body 

interactions involve small FFF configuration interactions. Lastly we note for 

future work that the simple theoretical treatment developed here to obtain an 

expression for ���,�,���	
 could readily be extended to four and perhaps higher 

body interactions. 
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Chapter 5  

Conclusion and Future Work 

In the first part of this thesis, we examined what was necessary to produce a highly 

accurate and computationally efficient model of bulk water from first principles. 

We saw that such models utilise periodic boundary conditions, which require a 

central box containing water to be at least several hydration spheres in size. We 

estimated that such a box would need to have the physical dimensions of around 

20 Å in length on each side. In models of bulk water using this cube under periodic 

boundary conditions, explicit water interactions need to be computed between all 

waters within the central box. Thus we need to be able to determine accurately and 

efficiently the total energy, or interaction energy, of all waters within a spherical 

cluster of radius g ≈ /�/  10 Å. 

A spherical cluster of radius 10 Å in a sample of bulk water at 25°C contains about 

140 water molecules. Such a water cluster is considered huge from the point-of-

view of modern ab initio calculations. Put plainly, it is simply impossible now and 

in the near (or even distant) future to be able to compute the energy of such a 

cluster with the “gold standard” ab initio computational method, i.e., 

CCSD(T)/aug-cc-pVTZ. Nevertheless, we have undertaken in this thesis ways of 

obtaining accurate approximations to the ab initio total energies, or interaction 

energies, of such large clusters within a practical time-frame. 

In Chapter 3, we applied the method of energy-based molecular fragmentation in 

order to estimate both the total energy and interaction energy of large water 

clusters. This method has the advantage of being a linear-scaling technique so, in 
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principle, fragmenting into smaller systems can be utilised to overcome the steep 

scaling in computational expense with system size when high level ab initio 

calculations are required. However, in this work we deviated from the more usual 

approach to the fragmentation methodology and fragmented the spherical water 

cluster into spherical shells. We found that once we incorporated a charge-field 

into the calculations of the fragment shells, we were able to achieve highly 

satisfactory agreement between the ab initio energy, or interaction energy, of the 

full cluster, and the same but using the fragmentation energy formula. 

Unfortunately, the number of molecules within a spherical-shell fragment 

increases quadratically with distance from the centre of the cluster. The 

consequence of this is that for spherical fragments involving the outer spherical 

shells far too many water molecules are contained within the fragment. That is, 

these large fragments are still too large for high-level ab initio calculations. To 

remedy this issue, we proposed a three-stage fragmentation of the spherical 

cluster, with the first stage being fragmentation into spherical shells. The second 

stage involves fragmentation of the spherical shells into latitudinal zones, and the 

final stage involves fragmentation of the largest of these zones into quadrangles. 

This three-stage fragmentation potentially solves the large fragment issue, but we 

left its detailed testing for future work. 

In Chapter 4, we examined an alternative approach to spherical-shell 

fragmentation. In this chapter, we considered utilisation of the many-body 

expansion in determining accurately the total energy, or interaction energy, of a 

spherical water cluster. The main drawback with applying the many-body 

expansion is that the system does not have to be particularly large before the 
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number of required, but small, calculations necessary becomes overwhelming. To 

help alleviate this issue, we focused in on which of the vast numbers of three-body 

interactions do we expect to be important (i.e., significant). 

We considered two approaches to determine which three-body interactions are 

important. First of all, we classified water-water distances into “close” and “far” 

regimes. In a three-body interaction, or trimer, there are only three possible water-

water distances, so any particular configuration of water can be classified as one 

and only one of the following types: (a) close-close-close (CCC), (b) close-close-

far (CCF), (c) close-far-far and (CFF), and (d) far-far-far (FFF). These 

designations proved useful in determining whether perturbation theory plus a 

multipolar treatment (PTM) of three-body interactions could accurately reproduce 

the full ab initio three-body BSSE corrected interaction energy. The later point is 

important because if a PTM treatment can replace an ab initio calculation we have 

achieved a tremendous speed-up in computer time needed to eventually determine 

the total energy of the entire spherical cluster. 

We found that only a relatively small number of calculations involved 

configurations of the type CCC and CCF. For these configurations a PTM 

treatment failed at accurately reproducing the three-body interaction. As such we 

considered these configurations to be “close-contact”, and there is no alternative 

but to compute these three-body interactions using ab initio theory. On the other 

hand, the vast majority of three-body interactions arose from the CFF and FFF 

configurations. Here, PTM satisfactorily reproduced the three-body interactions. 

Secondly, we considered in establishing which three-body interactions were 

significant, which can be readily generalised to four- and higher body interactions. 
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The above classification scheme using the “close” and “far” designations is 

appropriate for three-body interactions – only three inter-water distances exist. 

However for a four-body system, there now exists six possible inter-water 

distances. The number of such distances increasing quadratically with the number 

of waters under consideration. This makes n-body classification of significant 

configurations awkward. Furthermore, this classification does not differentiate 

amongst the different configurations within a particular classification, e.g., in 

which of the several FFF configurations are expected to be significant, compared 

with the other FFF configurations. Thus we introduced the use of the “L” single 

distance parameter in determining whether a three-body interaction could be 

significant. We found that after taking account of close-contact configurations, the 

L parameter well predicated potentially significant three-body interactions. These 

results enabled us to further reduce the computational effort involved in accurately 

reproducing an ab initio total energy, or interaction energy, of a large spherical 

water cluster by removing many PTM evaluations predicted to be insignificant. 

Future work in this particular line of research would involve extension of the “L” 

parameter to four-body interactions and then its evaluation and testing. 

Thus, overall, we found that the one serious bottle-neck to obtaining the total three-

body interaction energy for a spherical water cluster is the evaluation of the three-

body interactions for the close-contact configurations. Although not investigated 

in this thesis, future work should involve obtaining accurate three-body interaction 

surfaces for close-contact water trimers. One possible approach here would be to 

use the method of Shepard interpolation to accurately describe this 21-dimensional 

surface. In doing so, the need to perform an ab initio calculations during a 

simulation can be completely removed. With this achieved, an accurate bulk water 
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simulation could be performed with results equal in quality to the “gold-standard” 

of ab initio calculations. 
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Chapter 6  

A Collaboration Investigating H-bonding in 

Crystals 

In this final chapter, we describe our contribution to the collaborative work 

published as ref. 38 entitled “Aryl-substituents moderate the nature of hydrogen 

bonds, N–H⋅⋅⋅N versus N–H⋅⋅⋅O, leading to supramolecular chains in the crystal 

structures of N-arylamino 1,2,3-triazole esters”. The full publication can be found 

in the Supporting Publication in this thesis. Apart from the first four paragraphs of 

the introduction, which introduces supramolecular chemistry, much of the 

remainder of the chapter is extracted from the above cited work – work originally 

conducted by us.  

6.1 6.1 6.1 6.1  IntroductionIntroductionIntroductionIntroduction    

Supramolecular chemistry is the “chemistry beyond the molecule” and is the study 

of non-covalent interactions which is crucial to understanding many biological 

processes and systems. While traditional chemistry focuses on the bonds that hold 

atoms together in a molecule, supramolecular chemistry examines the weaker 

interactions that hold groups of molecules together. Important concepts that have 

been demonstrated by supramolecular chemistry include molecular self-assembly, 

folding, molecular recognition, host-guest chemistry, mechanically-interlocked 

molecular architectures and dynamic covalent chemistry. 

The importance of supramolecular chemistry was underscored by the 1987 Nobel 

Prize for Chemistry, which was awarded to Donald J. Cram, Jean-Marie Lehn and 
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Charles J. Pedersen in recognition for their development and use of molecules with 

structure-specific interactions of high selectivitys. 

In 1978, Jean-Marie Lehn introduced the term “supramolecular chemistry” to 

generalise the early developments and layout future concepts and visions that 

resulted from an enhanced understanding and application of the non-covalent 

bond. He defined supramolecular chemistry as the chemistry beyond the molecule, 

bearing on the organised entities of higher complexity that result from the 

association of two or more chemical species held together by intermolecular 

forces. Today, a large fraction of papers (≈30%) published in the leading general 

chemistry journals such as Angew. Chem., Chem. Comm., Chem. Eur. J., or J. Am. 

Chem. Soc. report on the practical realization of the concepts and visions in 

supramolecular chemistry which span from the core of chemistry to the interfaces 

of biology, physics, advanced materials and nanosciences. The impact on journals 

in the areas of advanced materials and nanomaterials is indeed larger. 

The past decade has seen dramatic developments in the field, with supramolecular 

chemistry leaving its roots in classical host guest chemistry and expanding into 

exciting areas of materials chemistry and nanoscience with many real and potential 

applications. Supramolecular findings are evolving our understanding of the way 

chemical concepts at the molecular level build up into materials and systems with 

fascinating, emergent properties on the nanoscale. 

The robust and directional nature of hydrogen bonding interactions makes these 

favourite supramolecular synthons prominent in the crystal engineer’s toolbox. 

                                                 
s “The Nobel Prize in Chemistry 1987”. Nobelprize.org. Nobel Media AB 2014. 
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/  (accessed on 2-Feb-2015). 
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However, not all molecular systems have hydrogen bonding functionality or, even 

if they do, hydrogen bonding may not extend in three dimensions. In these 

circumstances, weak intermolecular interactions naturally come to the fore, e.g., 

π· · ·π, C–H···π, halogen bonding, etc. Such considerations make it imperative to 

study and understand these “second tier” supramolecular synthons to enable their 

control for supramolecular assembly. Desiraju identifies the study of 

intermolecular interactions as the “what” of crystal engineering and the first stage 

of the continuum leading to evaluating the influence of rational changes in 

molecular packing upon functional crystalline materials (the “why”)39.  Clearly, in 

order to determine the importance and prevalence of specific supramolecular 

synthons, systematic structural studies of closely related chemical species are 

required. Herein, an evaluation of a series of closely related structures is made 

(Figure 6-1 and Figure 6-2). Specifically, the influence of differences in the nature 

of the aryl-bound substituents upon intermolecular hydrogen bonding patterns is 

evaluated. 

 
Figure 6-1 The structures studied in this chapter 

The structures studied in this work is when X is replaced with H (1), F (2), Cl (3), Br (4) and I (5), 
O–CH3 (6) and NO2 (7). In addition, the structure found in Figure 6-2 was also studied. 
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Figure 6-2 Final structure studied in this chapter 

In addition to the structures given in Figure 6-1, the above structure (8) was also studied in this 
work. 

 
Early success in rationalizing supramolecular interactions based on systematic 

variation of the electronic profile of the substituents was found during the 

investigation of the quandary of how carboxylic acids associate in the solid-state 

– dimer versus catemer40. Here, catemer formation was shown to be favored when 

a proximate C–H group was sufficiently activated, by judicious substitution at 

adjacent sites, to form an intramolecular C–H···O interaction40. 

Substituent effects based on steric considerations have also proven vital in the 

control of the manner by which aromatic rings interact, e.g., edge-to-face, in the 

condensed phase41. Other studies have revealed varying conclusions. For example, 

having electron-donating or -withdrawing substituents directly influenced the 

conformation observed in diarylacetone derivatives and, hence, supramolecular 

synthon formation42. In another study, the systematic variation of halides in benzyl 

derivatives exerted little influence upon the crystal structure43. It was in this 

context and in continuation of related studies44, that a series of seven closely 

related N-arylamino-1,2,3-triazoles (differing only in the nature of the substituent 

in the 4-position of the aryl ring), as well as an eighth derivative with di-
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substitution in the ring, have been investigated by crystallographic and 

computational methods (Figure 6-1 and Figure 6-2). The influence of substitution 

is shown to be marked in terms of the ways in which the molecules aggregate to 

form supramolecular chains, i.e. via N–H···O or N–H···N hydrogen bonds. 

In molecules 1 – 8 (Figure 6-1 and Figure 6-2), there are three likely acceptor sites 

for the acidic N–H atom (atom N4), with either of the two formally doubly bonded 

nitrogen atoms or the carbonyl-O as the acceptor atom. Our contribution to this 

collaboration was to perform hybrid DFT/ab initio calculation on these molecules 

and analyze the Mulliken and Natural charges localised on each nuclei. This 

assisted in the interpretation of the observed supramolecular synthon formation. 

6.2 6.2 6.2 6.2  Computational MethodComputational MethodComputational MethodComputational Method    

Structures 1 – 8 were investigated employing B3LYP using the 6-311+G(d,p) 

basis set and the gaussian suite of programs21. Crystal structures were obtained 

from our collaborators (see Supporting Publication) and single-point energy 

calculations performed. Additionally all structures were optimised, starting from 

the crystal structures and the resulting equilibrium geometries can be found in 

Appendix B. A frequency calculation confirmed that each optimised structure was 

a true minimum. 

6.3 6.3 6.3 6.3  Results and DiscussionResults and DiscussionResults and DiscussionResults and Discussion    

As anticipated from their molecular compositions, significant hydrogen bonding 

exists in the crystal structures of 1 – 8 with three distinct motifs being evident, 

based on the presence of N–H⋅⋅⋅N hydrogen bonding only, N–H⋅⋅⋅O interactions 
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only or having both N–H⋅⋅N and N–H⋅⋅⋅O. Figure 6-3 collects representative 

diagrams of the three motifs, I to III, observed. 

A qualitative explanation for the diversity in the hydrogen bonding in 1 – 8 is 

based on electronegativity arguments. In those structures with the least 

electronegative substituents, i.e., H (1), Cl (3), Br (4), I (5) and OMe (6), hydrogen 

bonding involves the amine–H interacting with the ring N3 atom. When the most 

electronegative substituent is present, i.e., NO2 in 7, the hydrogen bonding occurs 

via the amine–H and carbonyl-O1 atoms exclusively. When the electronegativity 

of the substituents lies between these extremes, i.e., F in 2 and 2 × Cl in 8, both 

N–H⋅⋅⋅N and N–H⋅⋅⋅O hydrogen bonding occurs. 

Support for this explanation is found by comparing the hydrogen bonding patterns 

in 3 and 8, which differ by an additional Cl in the ring in 8. The result of increasing 

the electronegativity by having two Cl substituents in 8 as opposed to one Cl in 3 

is the formation of both N–H⋅⋅⋅N and N–H⋅⋅⋅O hydrogen bonds (8) rather than N–

H⋅⋅⋅N hydrogen bonding alone (3), suggesting that the energy of stabilization of 

each type of interaction is similar and is finely tuned to electronic effects. The 

implication of the foregoing is that increasing the electronegativity reduces the 

hydrogen bonding ability of the N3 atom, thereby promoting the formation of N–

H⋅⋅⋅O hydrogen bonds with the carbonyl–O1 atom. To determine the validity of 

this qualitative argument, an evaluation of the Natural Population Analysis (NPA), 

calculated for the geometry optimised molecular structures, was undertaken. 
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Figure 6-3 The three distinct motifs of H-bonding observed 

Exemplars of supramolecular chains found in the crystal structures of 1 – 8. (a) chain mediated by 
N–H⋅⋅⋅N hydrogen bonding, motif I. (b) Chain sustained by a combination of N–H⋅⋅⋅N (blue dashed 
lines) and N–H⋅⋅⋅O (orange dashed lines) hydrogen bonding, motif II and (c) chain mediated N–
H⋅⋅⋅O hydrogen bonding, motif III. 
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Table 6-1 Natural Charges of Molecules 1 – 8 

Molecule Motif O1 N1 N2 N3 N4 

1 I −0.576 −0.202 −0.070 −0.047 −0.441 
3 I −0.578 −0.200 −0.070 −0.049 −0.440 
4 I −0.578 −0.200 −0.070 −0.049 −0.439 
5 I −0.578 −0.200 −0.069 −0.050 −0.438 
6 I −0.578 −0.205 −0.075 −0.044 −0.437 
2 II −0.576 −0.201 −0.072 −0.048 −0.442 
8 II −0.577 −0.196 −0.066 −0.053 −0.435 
7 III −0.578 −0.195 −0.067 −0.054 −0.429 

 

We examined the Mulliken and natural charges on all nuclei for geometries 

corresponding to the crystal and equilibrium structures. Natural population 

analysis was developed to calculate atomic charges and orbital populations of the 

molecular wave functions in a general atomic orbital basis sets. The natural 

analysis is an alternative to the conventional Mulliken population analysis and 

exhibits improved numerical stability so as to better describe the electron 

distribution in compounds of high ionic character, such as those containing metal 

atoms. Relevant natural charges can be found in Table 6-1. For a full list of 

charges, see Appendix B. 

No significant differences in the NPA charges were ascertained for the O1 atom, 

but systematic variations were noted in the charges for the nitrogen atoms. Leaving 

the structure of the F derivative (2) to one side, the populations fall in two classes. 

In 7 and 8, the charges on the ring–N1, –N2 and –N3 atoms are marginally but 

systematically less negative, less negative and more negative, respectively, than 

those on the equivalent atoms in the remaining structures. Further, the charge on 

the N4 atom in 7 is less negative than in the remaining structures, with a similar 

but less pronounced trend for 8. These observations are not consistent with the 

qualitative arguments above, as the NPA indicates that the basic character of the 

N3 atom is enhanced with increasing electronegativity of the substituent(s) in the 
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aryl ring. The analysis of the NPA charges calculated for 2 correlates closely with 

those structures exhibiting N–H…O hydrogen bonding only. Calculations were 

also performed on the experimentally determined structures, i.e., without 

geometry optimization. The NPA analysis, summarised in Appendix B, mirrors 

that for the geometry optimised structures. 

A consideration of the Hammett values45, σp, which take into account both 

inductive and resonance contributions, i.e., σp = 0.78 (NO2), 0.23 (Cl and Br), 0.06 

(F), 0.00 (H) and −0.27 (OMe), does not assist in formulating a correlation 

between electronic effects and the observed hydrogen bonding. However, it is 

worth reiterating that the changes in the NPA are minimal and it may not be 

worthwhile seeking strict correlations, in consideration of the fact that the 

molecular structures are subject to the requirements of global crystal packing. 

In summary, while a simple interpretation of the experimental observations is not 

forthcoming from the NPA, it is perhaps not surprising that this is the case given 

the highly qualitative nature of these quantities and the fact that they are computed 

for isolated molecules in a vacuum. 
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Structural analysis reveals the presence of supramolecular chains in a series of eight N-arylamino 1,2,3-

triazole esters, which differ only in the nature of the substituent (Y) of the terminal aryl ring. In each of 1 (Y

= 4-H), 3 (4-Cl), 4 (4-Br), 5 (4-I) and 6 (4-OMe), the chains are sustained by N–H…N hydrogen bonding. In 2

(Y = 4-F) and 8 (Y = 2,5-Cl2), the chains are mediated by alternating N–H…N and N–H…O hydrogen

bonding, whereas in 7 (Y = 4-NO2) the chain is sustained by N–H…O hydrogen bonding only. While the

differences in the adopted supramolecular motifs are qualitatively correlated with the electronegativity of

the Y substituents, no quantitative correlations could be made with the electronic structures of the

theoretical gas-phase molecules. Two distinct patterns of crystal packing are observed, with the first of

these being based on the inter-digitation of layers, comprised of supramolecular chains and connections of

the type C–X…p(aryl) between them for 3–5 and 8; only weak off-set edge-to-edge p
…
p interactions were

noted in the case of 1. A common feature of the zigzag chains in these crystal structures was a syn-

disposition of successive aryl rings along the axis of propagation. The remaining structures adopted three-

dimensional architectures where the Y substituents of the anti-disposed aryl rings participated in F…H (2)

or C–H…O (6 and 7) interactions. A detailed analysis of the Hirshfeld surfaces and fingerprint plots for 1–8

enabled a comparison of the intermolecular interactions involved in constructing the disparate

supramolecular architectures. In the structures featuring N–H…N hydrogen bonding leading to the

supramolecular chain, the maximum contribution to the overall crystal packing was less than 20%. This

increased to over 25% in the case where there was exclusive N–H…O hydrogen bonding in the chain.

Introduction

The robust and directional nature of hydrogen bonding
interactions makes these favourite supramolecular synthons
present in the crystal engineer’s toolbox. However, not all
molecular systems have hydrogen bonding functionality or,
even if they do, hydrogen bonding may not extend in three
dimensions. In these circumstances weak intermolecular
interactions naturally come to the fore, e.g. p

…
p, C–H…

p,
halogen bonding, etc. Such considerations make it imperative
to study and understand these ‘‘second tier’’ supramolecular
synthons to enable their control for supramolecular assembly.
Desiraju identifies the study of intermolecular interactions as
the ‘‘what’’ of crystal engineering and the first stage of the
continuum leading to evaluating the influence of rational
changes in molecular packing upon functional crystalline
materials (the ‘‘why’’).1 Clearly, in order to determine the
importance and prevalence of specific supramolecular syn-
thons, systematic structural studies of closely related chemical
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species are required. Herein, an evaluation of a series of
closely related structures is made (Scheme 1). Specifically, the
influence of differences in the nature of the aryl-bound
substituents upon hydrogen bonding patterns is evaluated.

Early success in rationalising supramolecular interactions
based on systematic variation of the electronic profile of the
substituents was found during the investigation of the
quandary of how carboxylic acids associate in the solid-state
– dimer versus catemer.2 Here, catemer formation was shown
to be favoured when a proximate C–H group was sufficiently
activated, by judicious substitution at adjacent sites, to form
an intramolecular C–H…O interaction.2 Substituent effects
based on steric considerations have also proven vital in the
control of the manner by which aromatic rings interact, e.g.
edge-to-face, in the condensed phase.3 Other studies have
revealed varying conclusions. For example, having electron-
donating or -withdrawing substituents directly influenced the
conformation observed in diarylacetone derivatives and,
hence, supramolecular synthon formation.4 In another study,
the systematic variation of halides in benzyl derivatives exerted
little influence upon the crystal structure.5 It was in this
context, and in continuation of related studies,6 that a series of
seven closely related N-arylamino-1,2,3-triazoles, differing only
in the nature of the substituent in the 4-position of the aryl
ring, as well as an eighth derivative with di-substitution in the
ring, have been investigated by crystallographic and computa-
tional methods (Scheme 1). The influence of substitution is
shown to be marked in terms of the ways in which the
molecules aggregate to form supramolecular chains, i.e. via N–
H…O or N–H…N hydrogen bonds.

Molecules 1–8 became available as a consequence of an
anti-cantagalo virus replication study.7a 1,2,3-Triazoles are
known to exhibit a wide range of biological activities ranging
from cytostatic,8a anti-neoplastic,8b anti-HIV8c and anti-micro-

bial8d to anti-inflammatory agents,8e and they are potassium
channel activators.8f Over the past decade, Ferreira et al. have
evaluated various biological applications of triazoles,7 during
which time the basic 1,2,3-triazole structure has been
embellished to include an amino group.7a

The novelty of the molecules reported herein is borne out
by the observation that there is only one crystal structure
determination7a included in the Cambridge Crystallographic
Database (CSD)9 of a neutral molecule containing the C–N(H)–
N3 sequence, with the terminal three nitrogen atoms within a
ring. This is a hydrazine derivative whereby the –C(LO)OEt
group in 2, Scheme 1, is replaced by –NHNH2.

7a A very recent
report describes related structures whereby the –C(LO)OEt
group in 1, 2 and 3 is substituted by –CH2OH.10 In 1–8, there
are three likely acceptor sites for the acidic N–H atom, with
either of the two formally doubly bonded nitrogen atoms or
the carbonyl–O as the acceptor atom. Herein, supramolecular
chains are formed for all eight structures based on N–H
hydrogen bonds involving the nitrogen atom indicated with an
asterisk in Scheme 1 or, less frequently, involving the
carbonyl–O atom. Intriguingly, structures 2 and 8 exhibit both
types of hydrogen bonding interactions within a single chain.

Results and discussion

The structural analyses of seven p-substituted derivatives of
ethyl 1-(arylamino)-5-methyl-1H-[1,2,3]-triazole-4-carboxylate
(1–7) along with a 2,5-disubstituted analogue (8) have been
accomplished (Scheme 1). The availability of eight closely
related structures has enabled an investigation of the
influence of systematic substitution in the aryl ring upon
supramolecular aggregation patterns based on hydrogen
bonding.

Molecular structures

Owing to the presence of two molecules in the asymmetric unit
in each of 1, 2, 5, 7 and 8, there are a total of 13 distinct
molecules in the present series; molecular structures and
overlay diagrams are illustrated in the ESI,3 Fig. S(1)–S(8). In
each of 1 and 2 the two independent molecules are related by a
pseudo centre of inversion, whereas the two molecules are
approximately super-imposable in the cases of 5, 7 and 8. Each
molecular structure comprises a central five-membered 1,2,3-
triazole ring connected via an N–N bond to a secondary amine
that carries an aryl ring, and via a C–C bond to the ester
functionality; salient geometric parameters are collected in
Table 1. As seen from the overlay diagram in Fig. 1, the ester–
carbonyl atom is oriented away from the ring-bound methyl
group and is almost co-planar with the five-membered ring in
all structures, as seen in the range of N(3,7)–C–C–O(1,3)
torsion angles of 0.7(3)u in 4 to 7.4(3)u in 2. The terminal ester
group has considerably more flexibility, with the C(4,14)–O–C–
C(6,18) torsion angles indicating that dispositions range from
co-planar, e.g. 2176.4(2)u in 1, to orthogonal, e.g. 286.7(2)u in

Scheme 1 The chemical structures of the N-arylamino-1,2,3-triazole derivatives
(1–8) investigated herein. These are grouped in accordance with the
supramolecular motif they adopt. For species 1, 2, 5 and 8, in which two
molecules comprise the crystallographic asymmetric unit, the second molecule is
labelled so that N1 becomes N5, N2 becomes N6, O1 becomes O3, etc. For 7,
which also has two independent molecules, the N6–N10 atoms correspond to
the N1–N4 atoms.
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2. Similarly, the aryl groups occupy a range of positions,
approximately orthogonal to the five-membered ring, with the
N(2,6)–N–N–C(7,19) torsion angles lying in the range 55.7(2) (3)
to 299.1(3)u (8), presumably to minimise interactions between
the ring-methyl and aryl rings. The aryl ring is also twisted
with respect to the N(amine)–C(ipso) bond, as seen in the
N(1,5)–N–C–C(8,20) torsion angles, which range from 9.3(3) (2)
to 146.72(17)u (4).

The molecular structures of 1–8 were also investigated
employing B3LYP theory using the 6-311+G(d,p) basis set
within Gaussian09.11 From Fig. 2 it is evident that the great
disparity observed in the experimental structures (Fig. 1) no
longer persists in the geometry optimised structures. This
observation is borne out by the narrower ranges of torsion
angles. For example, the maximum deviation of the carbonyl
group from co-planarity with the ring is less than 2.2u (for 2).
The terminal ethyl groups adopt two conformations, i.e. co-
planar with the CO2 residue (torsion angles: 178.3 to 180u) or
approximately normal (85.3 and 85.6u for 1 and 2, respec-
tively). The aryl ring is close to being perpendicular to the

triazole ring in all cases, with the range of N–N–N(amine)–C
torsion angles being 74.7u (8) to 80.2u (6). Finally, the twist of
the aryl ring from the N–N(amine) bond is less pronounced,
with the range of N–N(amine)–C–C torsion angles being
narrow at 5.6u (6) to 17.5u (7).

From the foregoing, there is no systematic influence upon
the molecular structure that can be correlated to the nature of
the aryl-bound substituents.

Supramolecular structures based on
hydrogen bonding

As anticipated from their molecular compositions, significant
hydrogen bonding exists in the crystal structures of 1–8 with
three distinct motifs being evident, based on the presence of
N–H…N hydrogen bonding only, N–H…O interactions only or
having both N–H…N and N–H…O. Fig. 3 collects representative
diagrams of the three motifs and Table 2 collates their
geometric data. No evidence was found for bifurcated
interactions despite the syn relationship of the putative
hydrogen bonding acceptors N3 and O1, and they being
separated by only two carbon atoms. For example, in 1, where

Table 1 Selected geometric parameters (Å, u) for 1–8

Parameter 1 2 3 4 5 6 7 8

N3–C2–C4–O1 4.0(4) 20.8(3) 0.9(3) 0.7(3) 5.7(8) 23.8(3) 6.0(4) 24.5(4)
C4–O2–C5–C6 286.8(3) 286.7(2) 2171.53(18) 172.61(17) 169.1(5) 2176.25(16) 169.6(2) 2173.2(3)
N7–C14–C15–O3 23.1(4) 7.4(3) — — 20.6(8) — 2.0(4)a 0.8(4)
C16–O4–C17–C18 2176.4(2) 2170.55(19) — — 170.8(5) — 89.6(3) 88.4(3)
N2–N1–N4–C7 273.8(3) 69.5(3) 55.7(2) 257.0(2) 268.0(6) 281.3(2) 269.5(4) 78.1(3)
N6–N5–N8–C19 74.5(3) 290.5(2) — — 260.6(7) — 264.2(4)b 299.1(3)
N1–N4–C7–C8 213.6(3) 20.7(3) 36.7(3) 146.72(17) 147.2(5) 210.7(3) 212.9(4) 2159.6(2)
N5–N8–C19–C20 13.6(3) 9.3(3) — — 149.3(5) — 222.9(4)c 177.8(2)
Motifd I II I I I I III II
Graph set symbol C(5) C(5)C(7) C(5) C(5) C(5) C(5) C(7) C(5)C(7)
Pitche 110 104 125 125 120 103 136(O) 109

106 92(O) — — 125 — 122(O) 106(O)
Repeat distancef 10.4 10.1 11.1 11.1 11.0 (62) 9.9 10.2 11.2

a The torsion angle is N8–C14–C15–O5. b The torsion angle is N7–N6–N9–C19. c The torsion angle is N6–N9–C19–C20. d The motif refers to
the supramolecular chain. e The pitch refers to the angle subtended at the N(O) atom by the adjacent atoms participating in the hydrogen
bonding, i.e. N…N(H)…N for motif I. f The repeat distance is the distance between successive molecules comprising the chain.

Fig. 1 Overlay diagrams highlighting the relative orientations of the terminal
substituents with respect to the central and superimposed 1,2,3-triazole ring in
the experimental structures of 1–8. Colour codes: first independent molecule of
1, red; second independent molecule of 1 (inverted), green; first independent
molecule of 2, blue; second independent molecule of 2 (inverted), pink; 3, light-
blue; 4, yellow; first independent molecule of 5, grey; second independent
molecule of 5, black; 6, brown; first independent molecule of 7, purple; second
independent molecule of 7, dark-grey; first independent molecule of 8, orange;
second independent molecule of 8, dark-green.

Fig. 2 Overlay diagrams highlighting the relative orientations of the terminal
substituents with respect to the central and superimposed 1,2,3-triazole ring in
the theoretical structures of 1–8. Colour codes: 1, red; 2, green; 3, blue; 4, pink;
5, light-blue; 6, yellow; 7, grey; and 8, black.
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N–H…N hydrogen bonding is observed, the two H…O separa-
tions are 2.66 and 2.73 Å, respectively, and the two N–H…O
angles are 110 and 111u, respectively. In 7, with N–H…O
hydrogen bonding only, the H…N separations are 2.63 and
2.98 Å, respectively, and the N–H…N angles are 119 and 123u,
respectively.

In 1, the two independent molecules comprising the
asymmetric unit associate into a zigzag supramolecular chain
sustained by N–H…N hydrogen bonds, Fig. 3a, and it has
Graph Set symbol C(5).12 This motif, i.e. I, is adopted by the
majority of the structures, see ESI,3 Fig. S(9), although the
topologies of the chains vary. In each of 3, 4 and 5, the
topology of the chain is zigzag, being propagated by glide
symmetry, but in 6, the chain is helical, being propagated by 21
screw symmetry along the b-axis; in 5 each of the independent

molecules self-associates into a zigzag chain. The second
motif, II, is found for both 2, Fig. 3b, and 8 (for the latter
intramolecular N–H…Cl hydrogen bonding is also noted,
Table 2). In each of 2 and 8, the two independent molecules
comprising the asymmetric unit are connected into a zigzag
supramolecular chain via alternating N–H…N and N–H…O
hydrogen bonds, i.e. with Graph Set symbol C(5)C(7). The third
motif, III, is found in one example only, namely 7, Fig. 3c.
Here, a helical chain propagated by 21 screw symmetry along
the b-axis and with a repeat unit of two molecular entities is
sustained solely by N–H…O hydrogen bonding, with Graph Set
symbol C(7). Despite the different modes of association
between the molecules comprising the supramolecular chains
in 1–8, no systematic correlations describing the nature of the
chains, e.g. topology, pitch and repeat distance (Table 1), are
evident.

A qualitative explanation for the diversity in the hydrogen
bonding in 1–8 is based on electronegativity arguments. In
those structures with the least electronegative substituents, i.e.
H (1), Cl (3), Br (4), I (5) and OMe (6), hydrogen bonding

Fig. 3 Exemplars of supramolecular chains found in the crystal structures of 1–8:
(a) chain mediated by N–H…N hydrogen bonding exclusively in 1. (b) Chain
sustained by a combination of N–H…N (blue dashed lines) and N–H…O (orange
dashed lines) hydrogen bonding in 2. (c) Chain mediated by N–H…O hydrogen
bonding exclusively in 7.

Table 2 Summary of hydrogen bonding interactions (A–H…B; Å, u) operating in
the crystal structures of 1–8a

A H B A–H H…B A…B A–H…B
Symmetry
operation

1

N4 H4n N7 0.88(2) 2.16(2) 3.035(3) 177(2) 1 2 x,
1 2 y, K + z

N8 H8n N3 0.88(2) 2.10(2) 2.984(3) 178(2) 1 2 x,
2y, 2K + z

2

N4 H4n O3 0.88(2) 2.07(2) 2.915(3) 161(2) x, K 2 y,
K + z

N8 H8n N3 0.880(15) 2.177(18) 3.031(3) 163(2) 1 + x, K 2 y,
2K + z

3

N4 H4n N3 0.881(17) 2.10(2) 2.931(2) 157.9(17) x, 2K 2 y,
2K + z

4

N4 H4n N3 0.871(17) 2.12(2) 2.945(2) 156.9(17) x, K 2 y,
2K + z

5

N4 H4n N3 0.88(4) 2.15(4) 2.989(6) 158(4) 2K + x,
1 2 y, z

N8 H8n N7 0.88(4) 2.13(5) 2.918(6) 149(5) K + x,
2y, z

6

N4 H4n N3 0.92(2) 2.19(2) 3.072(3) 160.5(19) 2 2 x, K + y,
1K 2 z

7

N4 H4n O5 0.89(3) 2.05(3) 2.900(3) 162(3) 1 + x, y,
1 + z

N9 H9n O1 0.89(2) 1.98(3) 2.822(3) 159(3) x, y,
21 + z

8

N4 H4n N7 0.88(2) 2.22(2) 3.081(3) 166(2) x, y, z
N8 H8n O1 0.88(2) 2.29(3) 2.921(3) 129(2) x, 1 + y, z
N4 H4n Cl1 0.88(2) 2.61(3) 2.983(2) 107(2) x, y, z
N8 H8n Cl3 0.88(2) 2.63(3) 2.939(2) 102(2) x, y, z

a For each of 1, 2, 5 and 8, having two molecules in the asymmetric
unit, the N3 atom of the first independent molecule corresponds to
the N7 atom of the second, N4 with N8, and the O3 atom to the O1
atom. For 7, also with two independent molecules, the N4
corresponds to N9 atom, and O1 with O5.

4920 | CrystEngComm, 2013, 15, 4917–4929 This journal is ß The Royal Society of Chemistry 2013

Paper CrystEngComm



 

134 

 

 

 

involves the amine–H interacting with the ring N3 atom. When
the most electronegative substituent is present, i.e. NO2 in 7,
the hydrogen bonding occurs via the amine–H and carbonyl–
O1 atoms exclusively. When the electronegativity of the
substituents lies between these extremes, i.e. F in 2 and 2 6
Cl in 8, both N–H…N and N–H…O hydrogen bonding occurs.
Support for this explanation is found by comparing the
hydrogen bonding patterns in 3 and 8, which differ by an
additional Cl in the ring in 8. The result of increasing the
electronegativity by having two Cl substituents in 8 as opposed
to one Cl in 3 is the formation of both N–H…N and N–H…O
hydrogen bonds (8) rather than N–H…N hydrogen bonding
alone (3), suggesting that the energy of stabilisation of each
type of interaction is similar and is finely tuned to electronic
effects. The implication of the foregoing is that increasing the
electronegativity reduces the hydrogen bonding ability of the
N3 atom, thereby promoting the formation of N–H…O
hydrogen bonds with the carbonyl–O1 atom. To determine
the validity of this qualitative argument, an evaluation of the
Natural Population Analysis (NPA), calculated for the geometry
optimised molecular structures, was undertaken.

Table 3 collates the NPA charges for the oxygen and
nitrogen atoms in 1–8. No significant differences were
ascertained for the O1 atom but systematic variations were
noted in the charges for the nitrogen atoms. Leaving the
structure of the F derivative (2) to one side, the populations fall
in two classes. In 7 and 8, the charges on the ring-N1, -N2 and
-N3 atoms are marginally but systematically less negative, less
negative and more negative, respectively, than those on the
equivalent atoms in the remaining structures. Further, the
charge on the N4 atom in 7 is less negative than in the
remaining structures, with a similar but less pronounced
trend for 8. These observations are not consistent with the
qualitative arguments above, as the NPA indicates that the
basic character of the N3 atom is enhanced with increasing
electronegativity of the substituent(s) in the aryl ring. The
analysis of the NPA charges calculated for 2 correlates closely
with those structures exhibiting N–H…O hydrogen bonding
only. Calculations were also performed on the experimentally
determined structures, i.e. without geometry optimisation. The
NPA analysis, summarised in ESI,3 Table S(1), mirrors that for
the geometry optimised structures.

A consideration of the Hammett values,13 sp, which take
into account both inductive and resonance contributions, i.e.
sp = 0.78 (NO2), 0.23 (Cl and Br), 0.06 (F), 0.00 (H) and 20.27
(OMe), does not assist in formulating a correlation between
electronic effects and the observed hydrogen bonding.
However, it is worth reiterating that the changes in the NPA
are minimal and it may not be worthwhile seeking strict
correlations, in consideration of the fact that the molecular
structures are subject to the requirements of global crystal
packing.

In summary, while a simple interpretation of the experi-
mental observations is not forthcoming from the NPA, it is
perhaps not surprising that this is the case given the highly
qualitative nature of these quantities and the fact that they are
computed for isolated molecules in a vacuum.

Crystal packing

The ensuing description of the crystal packing patterns in 1–8

is based on the standard significance criteria established in
PLATON.14 The common feature of the crystal structures is the
arrangement of supramolecular chains into layers, with or
without specific interactions between the adjacent chains,
and, with the exception of 1, they are connected into a three-
dimensional architecture by interactions of varying types but
always involving the Y substituents. Geometric parameters
describing these and other intermolecular interactions dis-
cussed in this section are listed in ESI,3 Table S(2).

The exceptional supramolecular architecture is found in 1,
where chains are linked into layers in the bc-plane by C–H…

p

[occurring between the methyl– and methylene–H hydrogen
atoms and aryl rings] interactions, which are classified as type
III and type I interactions, following Malone et al.15 As shown
in Fig. 4a, the layers, having aryl rings on either side, inter-
digitate along the a-axis with no specific interactions between
them. The closest approach of the rings derived from
neighbouring layers are off-set edge-to-edge contacts with the
shortest separation between these being 3.605(3) Å for
C11…C20 with a dihedral angle of 14.48(7)u between the rings
(symmetry operation K + x, 1 2 y, z). From the foregoing, it is
apparent that the carbonyl–O atoms do not participate in the
stabilisation of the crystal structure. However, they do provide
stability to the supramolecular chain by the apparent forma-
tion of CLO…p(C2N3) interactions (as detailed in ESI,3 Table
S(2)). Increasingly, O…p interactions, first recognised in
macromolecular crystallography,16a are being recognised as
being important in stabilizing crystal structures.16b–d In the
case of the O1 atom, the contact appears to be semi-
localised,17 being directed towards the C1–N1 bond with
separations of 2.922(3) and 2.934(3) Å, respectively, with the
other contacts ranging from 3.455(3) (C4) to 3.756(6) Å (N3)
(symmetry operation 1 2 x, 2y, K + z). Under these
circumstances, the interactions with the five-membered ring
are best represented as CLO…p(C–N). A similar situation
pertains for the second carbonyl–O atom (ESI,3 Table S(2)).

Table 3 Selected values from the Natural Population Analysis data for 1–8
arranged in order of the supramolecular motif they adopt

Compound Motif O1 N1 N2 N3 N4

1 I 20.576 20.202 20.070 20.047 20.441
3 I 20.578 20.200 20.070 20.049 20.440
4 I 20.578 20.200 20.070 20.049 20.439
5 I 20.578 20.200 20.069 20.050 20.438
6 I 20.578 20.205 20.075 20.044 20.447
2 II 20.576 20.201 20.072 20.048 20.442
8 II 20.577 20.196 20.066 20.053 20.435
7 III 20.578 20.195 20.067 20.054 20.429
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Very similar crystal packing is found in each of isostructural 3
and 4, in 5, and in disubstituted 8.

In 3, the layers are consolidated by C–H…O [where the
bifurcated carbonyl–O1 atom accepts interactions from ring-
methyl– and aryl–H] and C–H…N [methylene–H…central N2
atom of the ring] interactions. Further stabilisation to the layer
is provided by semi-localised CLO…p(C–N) interactions. In the
case of the Y = Br (4) derivative, the intra-layer interactions are
based on C–H…O (aryl–H…O(carbonyl)) and semi-localised
CLO…p(C–N) interactions to the C1–N1 bond. In 5, with two
independent molecules, the layers are stabilised by type III15

C–H…
p(C2N3) (involving methylene–H from each independent

molecule) and semi-localised CLO…p(C–N) interactions. As for
1, the layers in 2–5 inter-digitate along the stacking axis but
differ in that there are connections between the layers, of the
type X…p(aryl), as exemplified in Fig. 4b for the structure of 5
(ESI,3 Fig. S(10) includes the other packing diagrams). On-
going research into X…p(aryl) interactions, which have been
known for some time18a–c and are known to be to be
directional in their mode of interaction,18d continues to
illustrate the importance of these in crystal engineering.18e–g

Despite the presence of O–H…O hydrogen bonding, the
crystal structure of 8 closely resembles the foregoing. Here,

supramolecular chains are stabilised by C–H…O (ring-methyl–
H…O1) and CLO…p(C–N) interactions and connected into a
somewhat jagged layer by type V15 methyl–C–H…

p(aryl)
contacts. The layers stack along the c-axis, being connected
by Cl…p(aryl) interactions (ESI,3 Fig. S(10)).

The remaining crystal structures feature specific intermo-
lecular interactions leading to three-dimensional architec-
tures, with each of the Y substituents playing a key role. In 2,
layers may be discerned in the ac-plane that are stabilised by a
network of C–H…O (bifurcated carbonyl–O1 atom accepts
interactions from ring-methyl– and aryl–H), C–H…N (where
the N3 atom of the second independent molecule not involved
in hydrogen bonding forms an interaction with aryl–H, and
the central N2 atom of the same ring interacts with
methylene–H) and type V15 aryl–C–H…

p(C2N3) contacts. The
layers are connected by C–H…F interactions, Fig. 5.

The consolidation of the supramolecular chains in 6 is
dominated by type V15 C–H…

p(C2N3) (involving methylene–H)
and methoxy–C–H…

p(aryl) interactions (ESI,3 Fig. S(10)).
Finally, the description of the crystal structure of 7 can be
simplified by considering it in terms of arbitrary layers. Thus,
layers comprising supramolecular chains are formed through
the agency of C–H…O (involving methylene–, ring-methyl– and
methyl–H interacting with carbonyl– and nitro–O) and C–H…N
(involving methylene– and aryl–H interacting with the N2 and
N3 atoms of one ring) interactions. Layers are connected along
the b-axis by C–H…O (methylene–H and aryl–H interacting
with nitro–O atoms derived from both independent molecules)
and delocalised nitro–O…p(C2N3) interactions;

16 see ESI,3 Fig.
S(10). It is noteworthy that the N3 atom of the second
independent molecule does not participate in a significant

Fig. 5 (a) View in projection down the a-axis of the unit cell contents of 2
highlighting the C–F…H interactions (pink dashed lines) that serve to link layers
along the b-axis. The C–H…O and C–F…N interactions are shown as brown and
green dashed lines, respectively.

Fig. 4 (a) View in projection down the b-axis of the unit cell contents of 1,
highlighting the inter-digitation of layers. C–H…p interactions are shown as
purple dashed lines. (b) View in projection down the a-axis of the unit cell
contents of 5, highlighting the inter-digitation of layers and the I…p(aryl)
interactions (pink dashed lines) connecting them.
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intramolecular interaction, arguably owing to the close
approach of the aforementioned nitro–O atom.

To a first approximation, the crystal structures of 1–8 fall in
two classes. Those of 1, 3–5 and 8 comprise layers of zigzag
supramolecular chains with minimal (1) or C–X…p(aryl) (3–5
and 8) interactions between the inter-digitating layers. Such
modes of interaction require a syn-disposition of adjacent aryl
rings and this is indeed borne out in the end-on view of the
supramolecular chain for 1, as shown in Fig. 6a (see ESI,3 Fig.
S(9) for analogous views for 3–5 and 8). By contrast, the three
remaining crystal structures do not feature C–X…p(aryl)
interactions and achieve a three-dimensional architecture via

different interactions involving the Y substituents, i.e. F…H in
2 and C–H…O in the cases of 6 (C–H donor) and 7 (C–H
acceptor), occurring between arbitrarily defined layers. In 2, 6
and 7, successive aryl rings within the chain are anti-, as seen
from Fig. 6b–d. There is no correlation between the motif of
the supramolecular chain and crystal packing, as both N–H…N
hydrogen bonding (1, 3–5 and 8) and N–H…N and N–H…O
hydrogen bonding (8) are found in the layered crystal
structures. For the second type of crystal packing, all three
motifs are represented. With these considerations in mind, it
is apparent that no systematic correlation of supramolecular
chain motif with crystal structure is found in 1–8.

Hirshfeld surfaces

The Hirshfeld surfaces19–21 of 1–8 are illustrated in Fig. 7,
showing surfaces that have been mapped over a dnorm range of
20.5 to 1.5 Å. Since compounds 1, 2, 5, 7 and 8 have two

independent molecules in the asymmetric unit, the individual
molecules have been designated by A and B. Referring to
Fig. 7, the dominant interactions between amine N–H with
triazole–N atoms and/or carbonyl O atoms in 1–8 can be seen
in the Hirshfeld surfaces as the bright-red areas marked with
encircled ‘a’ and ‘b’, respectively. The light-red spots are due to
C–H…O interactions and other visible spots on the dnorm
surfaces correspond to H…H contacts. The small extents of
visible area and very light-coloured regions on the surfaces
indicate weaker and longer contacts other than hydrogen
bonds. The dominant N–H…N and N–H…O hydrogen bonding
interactions appear as two distinct spikes in the two-dimen-
sional fingerprint plots,22 shown in Fig. 8, labelled as N…H/
H…N and O…H/H…O.

For the N…H/H…N interactions, complementary regions
are visible in the fingerprint plots where one molecule acts as a
donor (de . di) and the other as an acceptor (de , di).
Prominent pairs of sharp spikes of nearly equal lengths in the
region 1.962 Å , (de + di) , 2.623 Å are characteristic of nearly
equal N(donor)…N(acceptor) distances (2.99 ¡ 0.09 Å). The
upper spikes correspond to the donor spike (amine–H
interacting with triazole–N atoms), with the lower spike being
an acceptor spike (triazole–N atoms interacting with the H
atoms of amine groups). Compound 7 does not feature N–
H…N interactions but it does exhibit intermolecular C–H…N
interactions, which have a clear signature in the Hirshfeld
surface as the light-red spots marked with an encircled ‘c’ in
Fig. S(11) in the ESI.3 The Hirshfeld surface does not show
similar proportions of N…H interactions for each molecule,
ranging from 15.4% in moiety 5A to 19.1% in 2B, where the
proportions of N…H interactions have more variety than its

Fig. 6 End-on views of the supramolecular chains in (a) 1, (b) 2, (c) 6 and (c) 7. The chain illustrated for 1 is representative of 3–5 and 8.
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H…N, i.e. from 6.8% in 2A to 8.8% in 2B. The decomposition
of fingerprint plots, which enables the separation of contribu-
tions from N…H/H…N interactions, is depicted in Fig. S(12) in
the ESI.3

The N–H…O hydrogen bonds also appear as two distinct
spikes in the two-dimensional fingerprint plots (Fig. 8). The
spikes in the region 1.848 Å , (de + di) , 2.568 Å are
characteristic of a nearly equal N(donor)…O(acceptor) distance
(2.96 ¡ 0.07 Å). The upper spike denotes that the amine–H
atoms are interacting with the carbonyl–O atoms and the lower
spikes indicate that the O atoms are interacting with the
H-atoms of NH groups. The decomposition of the fingerprint
plot due to O…H contributions is depicted in Fig. S(12) in the
ESI,3 which clearly shows that compounds 1 and 3–6 do not
exhibit dominant N–H…O hydrogen bonding. The O…H/H…O
contribution to the total Hirshfeld surface varies from 8.5% in
8A to 32.2% in 7A.

The aryl-substituents in 1, 2, 5, 6 and 8 provide geometric
conditions to enable C–H…

p interactions in their crystal
structures. These C–H…

p contacts are represented by each de
surface showing a significant bright orange spot (ESI,3 Fig.
S(13)), which is also viewed by a distinct pattern of a pair of
‘‘wings’’ in the two-dimensional fingerprint plots (Fig. 8). At
the top left and bottom right of the plots, these ‘‘wings’’
illustrate the characteristic features of C–H…

p interac-
tions.20a,23 The shape of the ‘‘wings’’ in the breakdown of
the fingerprint plot, Fig. S(12), ESI,3 and the sums of de and di
highlight the importance of these interactions. The decom-
position of the fingerprint plots shows that C…H/H…C contact
comprises 21.7, 20.9, 12.8, 12.8, 15.0, 16.5 and 13.1% for 1A,

1B, 2B, 5A, 5B, 6 and 8B, respectively. No significant C–H…
p

interactions were observed for 2A, 3, 4, 7A, 7B and 8A, with
C…H close contacts varying from 11.7% in 4 to 15.2% in 2A.
These C–H contacts are mainly due to C–H…N/C–H…O
interactions. A significant difference between the molecular
interactions in 1–8 in terms of H…H contacts is reflected in the
distribution of scattered points in the fingerprint plots, which
are di = de = 1.192 Å in 1A, 1.197 Å in 1B, 1.124 Å in 2A, 1.121 Å
in 2B, 1.128 Å in 3, 1.151 Å in 4, 1.015 Å in 5A, 1.011 Å in 5B,
1.132 Å in 6, 1.106 Å in 7A, 1.087 Å in 7B, 1.111 Å in 8A and
1.197 Å in 8B, and which contributes 47.8%, 48.8%, 37.4%,
39.4%, 37.4%, 36.8%, 37.0%, 31.6%, 45.9%, 30.0%, 31.9%,
26.7% and 24.9% of the total Hirshfeld surface area. The
relative contributions for the variety of contacts calculated by
Hirshfeld surface analysis are summarised in Fig. 9. The
contribution of N–H…N versus N–H…O hydrogen bonding has
been attributed to the electronegativity of the aryl-bound
substituents, which in turn facilitate the formation of different
supramolecular chains, leading to diverse crystal packing
arrangements.

Conclusions

Supramolecular chains are formed in each of 1–8 that are
sustained by N–H…N hydrogen bonding only (1 and 3–6), a
combination of N–H…N and N–H…O hydrogen bonding (2 and
8) and N–H…O hydrogen bonding only (7). The crystal packing
falls in two distinct classes, an observation correlated with the
syn-disposition of successive aryl rings in the supramolecular

Fig. 7 Hirshfeld surfaces mapped with dnorm for compounds 1–8. For compounds that have two moieties in the asymmetric unit these are denoted by ‘A’ and ‘B’.
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chain when viewed down the propagating axis (1, 3–5 and 8),
by contrast to an anti-disposition (2, 6 and 7). The former
disposition allows for the inter-digitation of layers comprising
supramolecular chains and connections of the type C–
X…p(aryl) between them for 3–5 and 8. Layers can be discerned
in the remaining crystal structures and connections between
them also involving the anti-disposed Y substituents, i.e. F…H
in 2 and C–H…O in each of 6 and 7. No correlation between
the supramolecular chain motif and crystal packing is evident.

While no quantitative correlations could be made between
the adopted supramolecular motif (i.e. sustained by either N–
H…N or N–H…O interactions or a combination of these) and
the theoretical electronic structures of the optimised gas-
phase molecules, a qualitative trend based on the relative
electronegativity of the Y substituent was found in that N–
H…N hydrogen bonding was found exclusively for structures
having the least electronegative substituents and N–H…O

Fig. 8 Two dimensional fingerprint plots of compounds 1–8. For compounds that have two moieties in the asymmetric unit these are denoted by ‘A’ and ‘B’.
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hydrogen bonding occurred once the electronegativity of Y
increased.

Experimental

Synthesis

The compounds were obtained from reactions of substituted
phenylhydrazines and ethyl 2-diazoacetoacetate, as previously
reported.7a For the structural study, the compounds were re-
crystallized from their respective EtOH solutions.

X-ray crystallography

Data for 1, 3 and 4 were measured at 120 K on a Bruker-Nonius
FR591 diffractometer equipped with a 95 mm CCD camera on
a k-goniostat, employing Mo Ka radiation (l = 0.71073 Å) at the
EPSRC National crystallographic service at the University of
Southampton, UK.24 Data collection, data processing and cell
refinement and absorption correction were accomplished with
COLLECT,25a the COLLECT and DENZO software combina-
tion,25b and SADABS,25c respectively. Intensity data for 2 (l =
0.6911 Å), 5 and 8 (l = 0.6893 Å) were also collected at 120 K
but on a Bruker SMART APEX2 CCD using synchrotron
radiation. The data sets were reduced using standard
methods,25a,b and corrected for absorption in the case of 5

based on multiple scans.25c Intensity data for 6 and 7 were
measured at 98 K on a Rigaku AFC12/Saturn724 CCD fitted
with Mo Ka radiation. Data processing and absorption
correction were accomplished with Crystal Clear26a and
ABSCOR,26b respectively. The structures were solved by
direct-methods with SHELXS-9727a and refinement (anisotro-
pic displacement parameters, hydrogen atoms in the riding

model approximation and a weighting scheme of the form w =
1/[s2(Fo

2) + (aP)2 + bP] for P = (Fo
2 + 2Fc

2)/3) was on F2 by means
of SHELXL-97.27a In the refinement of 2, three reflections were
omitted from the final refinement, i.e. (214), (516) and (2012),
owing to poor agreement. In the refinement of 4, two
reflections apparently affected by the beam-stop, i.e. (100)
and (110), were removed from the final refinement. The
absolute structure of 1 could not be determined and, hence,
2525 Friedel pairs included in the data set were merged in the
final refinement. The absolute structure of 5 was determined
on the basis of differences in 2449 Friedel pairs included in
the data set (Flack parameter27b = 0.10(3)). Crystallographic
data and final refinement details are given in Table 4. Fig.
S(1)–S(8), ESI,3 were drawn with ORTEP-3 for Windows27c at
the 50% probability level, overlap diagrams were generated
with QMol27d and the remaining crystallographic figures were
drawn with DIAMOND using arbitrary spheres.27e Data
manipulation and interpretation were with WinGX27c and
PLATON.14

Computational study

Geometry optimisation was performed starting from the
experimentally determined fractional atomic coordinates
using Gaussian09.11 A frequency calculation confirmed that
each optimised structure was a true minimum. A combination
of Becke’s three parameters exchange functional (B3)28a with
the exchange functional (LYP)28b makes up the B3LYP hybrid
density functional theory (DFT) method employed in this
study. The 6-311+G(d,p) basis set was employed.28c

Hirshfeld surface analysis

Molecular Hirshfeld surfaces19–21 in a crystal structure are
constructed based on the electron distribution calculated as

Fig. 9 The relative contributions of various intermolecular interactions to the Hirshfeld surface area in compounds 1–8.
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the sum of spherical atom electron densities.29 For a given
crystal structure and set of spherical atomic electron densities,
the Hirshfeld surface is unique.30 The normalized contact
distance (dnorm) based on both de and di, and the van der
Waals radii of the atom, given by eqn (1) enables identification
of the regions of particular importance to intermolecular

interactions.19 The value of the dnorm is negative or positive
when intermolecular contacts are shorter or longer than van
der Waals separations, respectively. The combination of de and
di in the form of a two dimensional fingerprint plot22 provides
a summary of the intermolecular contacts in the crystal.19 The
Hirshfeld surfaces, mapped with dnorm, and two-dimensional

Table 4 Crystallographic data and refinement details for 1–8

Compound 1 2 3 4

Formula C12H14N4O2 C12H13FN4O2 C12H13ClN4O2 C12H13BrN4O2

Formula weight 246.27 264.26 280.71 325.17
Temperature/K 120 120 120 120
Crystal colour Brown Colourless Colourless Light-brown
Crystal size/mm3 0.20 6 0.40 6 0.70 0.05 6 0.10 6 0.15 0.18 6 0.25 6 0.40 0.14 6 0.30 6 0.36
Crystal system Orthorhombic Monoclinic Monoclinic Monoclinic
Space group Pca21 P21/c P21/c P21/c
a/Å 22.1366(6) 10.057(3) 12.6207(7) 12.7435(3)
b/Å 10.4274(3) 17.510(4) 9.8187(5) 9.9927(2)
c/Å 10.7186(3) 14.102(4) 11.0587(7) 11.1150(3)
a (u) 90 90 90 90
b (u) 90 95.722(3) 105.846(3) 105.3049(13)
c (u) 90 90 90 90
V/Å3 2474.14(12) 2471.0(12) 1318.31(13) 1365.17(6)
Z 8 8 4 4
Dc/g cm23 1.322 1.421 1.414 1.582
F(000) 1040 1104 584 656
m(Mo Ka)/mm21 0.094 0.065 0.294 3.015
Measured data 19 967 21 852 14 912 20 395
h range (u) 3.3–27.5 2.6–27.5 3.0–27.5 2.8–27.5
Unique data 2976 6059 3031 3126
Observed data (I ¢ 2.0s(I)) 2461 4711 2127 2583
No. parameters 335 353 177 177
R, obs. data; all data 0.039; 0.054 0.064; 0.081 0.047; 0.080 0.028; 0.041
a; b in weighting scheme 0.050; 0.289 0.094; 1.369 0.071; 0.270 0.036; 0.669
GoF 1.04 1.11 1.03 1.02
Rw, obs. data; all data 0.085; 0.092 0.174; 0.187 0.117; 0.134 0.066; 0.071
Range of residual electron density peaks/e Å23

20.25–0.18 20.25–0.36 20.41–0.23 20.54–0.28

Compound 5 6 7 8

Formula C12H13IN4O2 C13H16N4O3 C12H13N5O4 C12H12Cl2N4O2

Formula weight 372.16 276.30 291.27 315.16
Temperature/K 120 98 98 120
Crystal colour Colourless Orange Yellow Colourless
Crystal size/mm3 0.02 6 0.03 6 0.04 0.02 6 0.18 6 0.20 0.02 6 0.06 6 0.30 0.01 6 0.02 6 0.02
Crystal system Orthorhombic Monoclinic Monoclinic Triclinic
Space group Pca21 P21/c P21/c P1̄
a/Å 11.033(2) 8.965(4) 10.1622(19) 7.2818(11)
b/Å 10.411(2) 9.911(4) 17.127(3) 11.242(3)
c/Å 24.957(5) 15.067(7) 15.487(3) 16.916(4)
a (u) 90 90 90 87.87(2)
b (u) 90 96.587(14) 92.476(7) 88.86(4)
c (u) 90 90 90 88.29(2)
V/Å3 2866.7(10) 1329.9(10) 2693.0(9) 1383.0(5)
Z 8 4 8 4
Dc/g cm23 1.725 1.380 1.437 1.514
F(000) 1456 584 1216 648
m(Mo Ka)/mm21 2.238 0.101 0.111 0.476
Measured data 20 053 13 169 21 138 11 827
h range (u) 2.5–24.2 2.3–26.5 2.0–25.0 2.2–26.5
Unique data 5041 2753 4750 6043
No. parameters 353 187 389 371
Observed data (I ¢ 2.0s(I)) 4113 2427 3964 5182
R, obs. data; all data 0.036; 0.050 0.056; 0.066 0.070; 0.088 0.051; 0.059
a; b in weighting scheme 0.028; 2.972 0.047; 0.743 0.064; 1.643 0.039; 1.856
GoF 1.01 1.17 1.18 1.11
Rw, obs. data; all data 0.074; 0.079 0. 123; 0.129 0.150; 0.159 0.131; 0.136
Range of residual electron density peaks/e Å23

20.52–0.55 20.23–0.24 20.27–0.27 20.30–0.47
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fingerprint plots presented in this paper were generated using
CrystalExplorer 2.1.31
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Appendix A 

Geometry of Water Clusters 

The geometries of water clusters A – E studied in Chapter 3 can be found in the CD 

accompanying this thesis. The file is entitled “Appendix A.docx”, and consists of 41 

pages. 
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Appendix B 

Charges and Geometries of N-arylamino 

Compounds 

The optimised geometries, Mulliken charges and natural charges of the N-arylamino 

1,2,3-triazole esters studied in Chapter 6, i.e., compounds 1 – 8 illustrated in Figure 6-1 

and Figure 6-2 can be found on the CD accompanying this thesis contained in the file 

entitled “Appendix B.docx”. 
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