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Summary

The integrity of DNA is crucial for the survival of living cells. However,

DNA in cells is frequently damaged by both exogenous and endogenous agents.

DNA lesions, on the other hand, are also essential steps in cellular process, such

as DNA replication, recombination and conjugations. Both the accidental and

programmed DNA damages have to be repaired efficiently and accurately; left

un-repaired or mis-repaired, DNA damages lead to genome instability, resulting

in oncogenous effects or even cell death. Among several major repair path-

ways, homologous recombination pathway precisely repairs the damaged DNA

by searching and using a homologous DNA sequence in the genome as repairing

template.

The bacterial RecA nucleoprotein filament formed on ssDNA at the broken

DNA ends is the essential player during homologous recombination: it governs the

homologous strand search, invasion and exchange. The formation and stability

of the filament have to be tightly and precisely regulated by a set of accessory

proteins and environmental co-factors; either insufficient or unlimited growth

of the filament is lethal. However, the regulatory mechanisms of the filament

by these accessory proteins remain elusive, partly due to lack of single-filament

resolution studies.

Furthermore, force has been increasingly recognized as an important or even

key determinant in diverse biological processes. Forces ubiquitously present

on DNA, generated by molecular motors or condensation of topologically con-

strained DNA. Moreover, increasing evidences have suggested the existence of

force on damaged DNA during homologous recombination. However, the poten-

tial regulatory role of force on homologous recombination have not been studied

yet.

ix



In this thesis work, I aim to understand the molecular mechanisms of dy-

namics and stability of RecA filament regulated by the accessory proteins and

co-factors at single-filament level, and elucidate the role of mechanical force on

these processes. I firstly developed a platform for single-ssDNA manipulation us-

ing magnetic tweezers, which enables the studies of dynamics and regulation of

individual RecA-ssDNA nucleoprotein filaments with high signal-to-noise ratio.

Then, I systematically investigated the dynamics and stability of RecA filament

regulated by several key accessory proteins including SSB, RecX, RecO, RecR,

and force.

I showed that SSB outcompetes RecA binding to ssDNA, inhibiting the nucle-

ation of RecA filament, and de-stablizes pre-formed RecA filament by occupying

the vacated ssDNA site at low forces, while RecX promotes ATP-hydrolysis-

dependent, step-wise net-depolymerization of RecA filament at low forces. In

addition, I showed that RecO tightly folds ssDNA, while RecOR highly extends

ssDNA. RecOR stabilizes pre-formed RecA filaments against net de-stablization

effect caused by SSB.

Remarkably, I discovered that physiological level forces antagonize the in-

hibitory effects of SSB and RecX, facilitating repolymerization of partially de-

polymerized RecA filament in a 3′-to-5′ direction. These findings demonstrated

important and potentially broad regulatory functions of force during homologous

recombination. Further, theoretical analysis also consistently suggests that force

fine-tunes the formation and stability of RecA filament in a biphasic manner.

Moreover, the work also suggests the existence of bi-directional polymerization

of RecA, in contrast to previously widely accepted 5′-to-3′ unidirectional RecA

polymerization.

In summary, the thesis work establishs a framework of molecular mechanisms

of dynamic and regulation of RecA filament mediated by accessory proteins and

co-factors, and highlights the potential broad regulatory role of force during

RecA-dependent homologous recombinational DNA repair.
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Chapter 1

Introduction

This thesis is mainly focused on the studies on regulatory mechanisms of bacte-

rial homologous recombination proteins, as well as the potential important role

of mechanical force during the process. This chapter is written to introduce the

basic background and frameworks on the subjects covered in my thesis stud-

ies. To begin with, reviews on DNA damage and homologous recombination

pathway are presented to readers in section 1.1, followed by reviews of several

major regulatory proteins involved in DNA recombination repair in section 1.2.

Further, physiological functions of mechanical force in various cellular processes

and its presence during homologous recombination are reviewed in section 1.3.

Next, reviews on micro-bio-mechanics of both double-stranded DNA (dsDNA)

and single-stranded DNA (ssDNA), as well as the general effects of DNA pro-

cessing proteins on DNA micro-mechanics are presented to readers in section

1.4. Finally, the objectives and organization of following chapters are presented

to readers in section 1.5.

1.1 DNA damage and homologous recombination re-

pair

1.1.1 Genome stability and DNA damages

Living species in a chaotic universe relies on a unique ability of cells to store,

retrieve, translate, and maintain the genetic information required to make and

1



maintain a living organism [1, 2]. The genetic information, termed as genes,

is mainly carried in DNA in cells. However, the DNA in cells is frequently

damaged by chemicals and radiation from environment as well as by intracellular

thermal accidents and molecules [1–6]. Left unrepaired or mis-repaired, DNA

lesions caused by damages may lead to oncogenous effects or even cell death [1–

6]. Therefore, robust DNA damage repair systems are essential for life survival.

DNA lesions usually include several types of damages on DNA, such as double

strands breaks (DSB), single-strand gaps (SSG) and inter-strand crosslinks (ICL)

[1, 6–8]. DSB may be induced by certain exogenous agents, such as a variety of

chemical compounds (e.g. methyl methanesulfonate and bleomycin) or ionizing

radiation, as well as endogenous agents, for instance, replication errors and other

metabolites produced in cells [1, 6, 7]. SSGs can appear on one of the newly

synthesized daughter strands during semi-conservative DNA replication when

errors happened [1, 6, 9]. ICL which blocks DNA replication completely by

preventing DNA strand separation is a special class of chemical damage to DNA

[6, 8]. In addition, SSG may be converted into a DSB if the gapped ssDNA

is cleaved; the DSB may also produce some ssDNA tails; the ICL would be

separated into two SSG when incisions take place on the ICL [1, 6, 8, 9].

On the other hand, DNA lesions are not only resulted from damages, but

also essential steps in cellular processes. For example, DSB also occurs in DNA

during meiotic and mitotic recombination, DNA replication, and restriction en-

donucleases or topoisomerases actions. SSG also happens during conjugation and

natural transformation [1, 6, 9].

Importantly, both the accidental or programmed DNA lesions have to be re-

paired efficiently and accurately. Several major repairing pathways have been

evolved to repair DNA damages and maintain genome stability. For SSG, the

other undamaged strand can be used as template for repairing. The major path-

ways for SSG include base excision repair, nucleotide excision repair and mis-

match repair [6]. Furthermore, three major pathways have been evolved to re-

pair the DSB: non-homologous end joining, microhomology-mediated end joining,

and homologous recombination [1, 6, 10]. Significantly, homologous recombina-

tion precisely repairs the damaged DNA by searching and using a homologous
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DNA sequence in the genome as repairing template [1, 6, 10, 11].

1.1.2 Homologous Recombination

Figure 1.1: Current model for RecA-dependent DNA homologous re-
combination

.

Homologous recombination (HR) is one of the most important pathways to

repair DSB and resolve the replication fork collapses, thereby playing essential

roles in genome maintenance [3–7, 10, 11]. Decades of intensive studies have

come up with several working models of bacterial HR (Figure 1.1) [1, 6, 7, 10,

11], which can be in general divided into several steps, namely, 1). initiation

(presynaptic filament formation), 2). strand search and homologous recognition,

and 3). D-loop formation, migration, and strand exchange. To begin with, HR is

in most cases initiated by creation of an ssDNA region by DNA helicase enzymes.

This ssDNA segment is then bound with recombinase protein, RecA in bacteria,

which nucleates and polymerizes on the ssDNA, forming an elongated helical

nucleoprotein filament, i.e. the presynaptic filament. Secondly, the RecA-ssDNA

filament then searches for homologous sequence in an intact dsDNA. Once the
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homologous sequence is recognized, the presynaptic RecA nucleoprotein filament

invades into the homologous duplex, forming a three-stranded loop, i.e. D-loop.

While the D-loop migrates along the duplex, the homologous strand is exchanged.

And finally, the D-loop resolved into two repaired DNA duplexes.

However, the mechanisms by which the RecA mediated homologous recom-

bination are still not fully understood. Moreover, during the whole HR process

including RecA filament formation, strand search and exchange, and D-loop mi-

gration, the RecA filament is complicatedly regulated by an expanding repertoire

of accessory proteins and other environmental factors [10, 11]. For instance, the

ssDNA generated in vivo is in fact firstly covered by ssDNA binding protein

(SSB). Therefore, RecA has to replace the SSB from ssDNA in order to form

presynaptic RecA filament, which is facilitated by RecOR proteins [10, 11]. On

the other hand, some other regulatory proteins, such as RecX, act to destabilize

the RecA filament, hence limit the elongation of RecA filament (More details

on these major regulatory proteins are introduced in next section). Our under-

standing of the mechanisms by which the accessory proteins or environmental

factors take to regulate the RecA filament, however, is still evolving. One of

the main goals of this thesis is to cast light on the mechanisms employed by the

accessory proteins and other environmental factors to regulate the RecA filament

at a single ssDNA level.

1.2 Homologous recombination repair related proteins

A large family of proteins is known to be involved in the homologous recombina-

tion, while new members are still added to the regulatory protein family [10, 11].

Here, I will mainly introduce several major members of the regulatory proteins

in the RecA-dependent bacterial homologous recombination.

1.2.1 RecA protein

RecA is the essential player of the bacterial homologous recombination repair.

The biochemical properties of RecA have been extensively studied and reviewed

previously [6, 10–18]. The E. coli RecA (EcRecA), as the prototype protein, is
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Figure 1.2: Structures of Bacterial RecA. (A). RecA monomer. (B). RecA
monomer. (C). RecA filament. The figures are adapted from previous publication
by Story et al. [12, 13]

a 352-residue polypeptide chain with a molecular weight of 37.8 kDa, with an

intracellular concentration estimated in micro-molar range [10, 11]. The RecA

monomer consists of a large core domain (a motif termed as RecA fold) and
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two smaller domains located at the C and N termini [10–13] (Figure 1.2). RecA

monomer binds to dsDNA or ssDNA with high positive cooperativity, in the

presence of binding co-factors, such as ATP/ ADP / ATPγS as well as Mg2+

and Ca2+, forming an extended nucleoprotein filament. Per turn (18 bp or nt) of

the RecA filament includes ∼6 RecA monomers [10–13]. It is widely believed that

the RecA-ssDNA filament polymerization is a unidirectional process from 5′ to 3′

on ssDNA, although there is a debate whether the 3′ to 5′ reverse polymerization

exists [10, 11, 19].

To date, the assembly and disassembly of RecA filaments have been charac-

terized intensively [10, 11, 19–31]. The growth rate of the filament (5′ to 3′) is

reported to be in the range of 120 to 1200 subunits min −1 [10, 22–24, 30, 31],

while the 5′ dissociation rate is ∼70 monomers minute −1 (on ssDNA) , and up to

120 monomers minute−1(on dsDNA) [19, 22–24, 30]. The assembly and disassem-

bly of the RecA filament are coupled with the ATP binding and ATP-hydrolysis,

respectively, as well as influenced by environmental factors [10, 11, 20, 32]. Fur-

thermore, the dynamics and stability of the RecA filament are also efficiently and

tightly regulated by accessory proteins to avoid either insufficient or unlimited

formation of the RecA filament [10, 11].

1.2.2 SSB

In order to access the genetic information for DNA replication and recombina-

tion, the dsDNA duplex has to be unwound to ssDNA intermediates during the

actions [10, 11, 33]. However, such ssDNA intermediates are vulnerable to the

nucleolytic and chemical attacks which results in ssDNA lesion or degradation.

Therefore, to protect the ssDNA intermediates, a specialized class of SSB has

been evolved and conserved in almost all kingdoms of life. Moreover, besides the

protection role of SSB proteins, they also act as mediator for other proteins to

access the ssDNA [10, 33]. Some prototypes of SSB proteins include the gene

32 protein of bacteriophage T4 [34], the E. coli SSB [35], and the eukaryotic

equivalent heterotrimeric replication protein A (RPA) protein [36]. A featured

DNA binding motif called oligonucleotide/oligosaccharide binding fold (OB fold)

has been shown to be shared among all prokaryotic proteins by structural and
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functional studies [10, 11, 33]. For example, one OB fold is located in a large

amino-terminal domain of the E. coli SSB (18.8 kDa) protein [10, 11, 33].

Figure 1.3: Stereo ribbon diagram construction of the (SSB)65 and
(SSB)35 binding modes. Models of the (SSB)65 (A) and (SSB)35 (B) binding
modes and the SSB binding to longer ssDNA in (SSB)35 modes (C) (stereo rib-
bon diagram). The figures are adapted from previous publication by Srinivasan
Raghunathan et al. [37].

SSB proteins bind to ssDNA nonspecifically with multiple modes and high

affinity (Kd is usually in nano-molar range), depending on various experimental

conditions, and possibly corresponding to various physiological functions [10, 11,

33, 37–41]. For instance, the current understanding of the ssDNA binding of

EcSSB mainly involves three modes (SSB)56, (SSB)65 and (SSB)35 where ∼56

/ ∼65 or ∼ 35 nt of ssDNA is wrapped around SSB subunits [10, 11, 33, 38–

41]. The selection of the SSB binding mode depends on many factors including

monovalent salt, pH, magnesium, and protein concentration [10, 11, 33, 37–41].

The less wrapped (SSB)35 mode is favored at low salt concentrations at high SSB

binding density on ssDNA, while the most wrapped (SSB)65 mode is preferred

7



at higher salt concentrations and lower SSB binding density [10, 11, 33, 37–41]

(Figure 1.3). However, all these previously characterized binding modes were

obtained for DNA in the absence of mechanical force. It can be anticipated that

in the presence of force, the less or even non-wrapping mode would be favoured.

The SSB proteins play complicated and reversal roles in RecA activities. On

the one hand, SSB binds to ssDNA with high affinity prior to RecA binding,

forming a nucleoprotein array scaffold, which inhibits nucleation and polymer-

ization of RecA filament [10, 11, 33]. This inhibitory effect can be relieved by a

set of mediator proteins [10, 11, 33]. On the other hand, in certain conditions,

it can act to remove the secondary structures of ssDNA, facilitating the poly-

merization of RecA along the ssDNA [10, 11, 33]. The regulatory mechanisms of

RecA filament by SSB are influenced by multiple factors, including temperature,

pH, its own concentration, and other regulatory proteins [10, 11, 33].

1.2.3 RecF, RecO, RecR proteins

As aforementioned, in vivo, the ssDNA intermediates produced by DSBs, SSGs or

other damages are immediately coated by SSB, protecting the ssDNA from lesion

or degradation, or self-association. However, this SSB-coated ssDNA nucleopro-

tein array in turn leads to barriers against the nucleation and polymerization

of RecA onto ssDNA. To overcome this SSB array rampart, two major classes

of proteins, including RecO, RecR, and RecF (termed as RecFOR pathway),

or RecB, RecC, and RecD proteins (termed as RecBCD pathway) are evolved

[10, 11]. These specialized classes of mediator proteins facilitate the loading of

RecA onto the SSB-coated ssDNA and the formation of RecA filament. While

the RecBCD pathway is mainly responsible for DSB, and RecFOR pathway is

for SSG, the RecFOR pathway is also critical for the repair of DSBs and other

damages for bacterial species or mutates lacking RecBCD proteins [10, 11].

The most intensively studied prototype of RecFOR mediating pathway is the

E. coli RecO, RecR and RecF proteins. The 40.5 kDa RecF protein binds to

ssDNA with a 1-to-15 nt ratio [10, 11, 42, 43]. It can also bind to dsDNA in the

presence of ATP. ATP hydrolysis results in RecF dissociation from DNA [10, 44,

45]. Although RecF was proposed to direct RecA loading to the boundaries of
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single strand gaps in duplex [46], it was also reported to reduce the stimulation

provided by RecOR [45, 47], resulting in a negative effect on RecA loading in

RecFOR pathway. It is possible that the RecF is involving other specific functions

in the RecA-mediated HR [10, 47].

RecO protein (27.6 kDa) binds to both ssDNA and dsDNA [48–50], without

reported binding or hydrolysis of ATP. It contains three domains: an OB fold,

a helical bundle, and a zinc-finger motif moving from the N- to C-terminus [51,

52]. RecO promotes renaturation of complementary DNA strands in an ATP-

independent manner [52]. This renaturation effect is enhanced by formation of

RecO-SSB complex, and inhibited by formation of RecO-RecR complex [10, 47,

53]. Moreover, since only RecO, rather than RecF or RecR, interacts with SSB,

it is believed to play an essential role in the replacement of SSB from ssDNA,

making access for RecA loading. RecR protein (22 kDa) has no reported DNA

binding or intrinsic enzymatic activities [54]. RecR protein binds to both Reck

and RecO in vitro [10, 11, 47, 53]. Several lines of evidence have shown that the

facilitating effect of RecA loading by RecOR involves the interaction between

RecO and the acidic C-terminal region of SSB [10, 55]. Without C-terminal

in the SSB-∆C mutant, both RecA-loading and DNA annealing mediated by

RecO/RecOR are inhibited [10, 55].

Up to date, a wealth of knowledge of these proteins has been provided by

decades of biochemical, biophysical, and structural studies [10]. However, many

aspects of the molecular mechanism(s) of RecFOR interactions with ssDNA, with

SSB-coated ssDNA, as well as their positive effects on RecA loading onto ssDNA

still remain unclear.

1.2.4 RecX protein

While RecFOR or RecBCD acts to facilitate the formation and/or stabilization

of RecA filament, another class of proteins play their roles by inhibiting the

formation of RecA filaments or de-stabilizing preformed filaments, since unlimited

growth of RecA filament is also lethal in vivo. One well-known example of the

inhibitory proteins is RecX (∼19 KDa) [10, 56–59] (Figure 1.4). The recX gene is

often found located on the same coding strand downstream of the recA or overlap
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with recA in some eubacteria [10, 60, 61]. Over-expression of the recA in recX

mutant leads to deadly effects in many eubacteria [56].

Figure 1.4: Stereo ribbon diagram construction of RecX protein. Rib-
bon draw (A) and Electrostatic plot (B) of RecX protein from Xanthomonas
campestris. The three helix repeats are coloured in blue (R1), green (R2) and
red (R3). The figures are adapted from previous publication by Yang et al. [59].

Biochemistry shows that at substoichiometric concentrations, EcRecX pro-

motes net disassembly of EcRecA filaments on circular DNA [62, 63]. It has

also been shown that both E. coli. and M. tuberculosis RecX inhibites RecA-

promoted DNA strand exchange and ATP hydrolysis in vitro [57, 62, 63]. More

recently, crystallographic analysis of RecX protein has shown that RecX is a

modular protein with three repeated helix motifs, whose arrangement leads to

an elongated and curved shape (Figure 1.4) [59, 64].

1.2.5 Other bacterial regulatory proteins

Besides aforementioned major contributors for the regulation of RecA filament

and homologous recombination, there are other members in the regulatory family.

For instances, the PsiB protein is believed to interact with RecA and block the

formation of RecA filament; the DNA binding protein RdgC was reported to

affect both functions of RecA and RecFOR; the UvrD helicase is known to be

able to dismantle the RecA filament in vitro [10]. Moreover, the network of

regulatory proteins is still expanding across different bacterial species.
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1.2.6 Homologous recombination homologs in eukaryotic sys-

tems

While the eukaryotic cells differ from prokaryotic cells in many aspects, the DNA

repair systems are highly conserved–most of the bacterial DNA repair related

proteins could find their counter-partners in eukaryotic cells. For instance, the

eukaryotic homolog of RecA is Rad51 and DMC1 proteins; the SSB in eukaryotic

cell include replication protein A (RPA), RIM1 and so on. In this thesis work, I

mainly used the bacterial proteins as model system; readers who are also inter-

ested in eukaryotic DNA repair systems are referred to previous researches and

reviews [65–67].

1.3 Physiological relevance and functions of force

Mechanical force has been increasingly recognized as a critical physiological fac-

tor involved in multiple functions in diverse biological processes [68–70]. In vivo,

forces can be generated in the ranges from sub-pN to tens of pN, even cumu-

latively several nN by various cellular machineries [68–70]. For example, the

cytoskeletal protein myosin that mediates cell contraction can produce forces of

several pN by one myosin [71] and cumulate to nN forces by concerted action of

many myosin through stress fiber [68, 70]. In nucleus, individual DNA and RNA

polymerases can exert up to ∼30 pN on DNA during actions [72, 73]. During the

anaphase of cell division, the mitotic spindle can produce forces to the mitotic

chromosomes up to ∼700 pN [74]. In bacteria, the nucleoid is known attached to

the cell wall, which may lead to building up tension in DNA due to DNA com-

paction by nucleoid associated proteins. In general, forces in picoNewton range

can be expected based on ∼ kBT interaction energy between proteins and DNA

with nm scale of interaction distance. Due to the ubiquitous presence of forces

on chromosomal DNA, force may potentially influence and even play crucial role

during various regulatory actions in homologous recombinational DNA repair.

Recently, an in vivo dynamic imaging experiment has shown that during

bacterial homologous recombinational repair of DSB, the two broken ends of

DNA remained in close proximity while they were moving over a large distance
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during the homologous search process [75]. Similar long-distance homologous

searching is also observed in eukaryotic system [76]. These results indicate that

the DNA ends are physically tethered during the whole process. As tension of a

few pN is anticipated in the DNA and additional larger forces may be involved

during this directed active DNA search process, the actions of the DNA damage

proteins may be affected by the force.

However, the potential regulation role of force on homologous recombination

DNA repair processes has been poorly studied. In this thesis work, I system-

atically investigated the effects of force on RecA filament regulated by major

accessory proteins, including SSB, RecX, and RecOR. These studies reveal the

potential universal importance of force in the RecA-dependent homologous re-

combination.

1.4 Micromechaniscs of double-stranded DNA&single-

stranded DNA

The above-introduced DNA repair and recombination, as well as other essential

nucleic processes, such as DNA replication, are mainly carried out by enzymes

(e.g. RecA for HR), and diverse accessory proteins (e.g. SSB, RecOR for HR).

These proteins usually bind to DNA, forming nucleoprotein complexes, or even

motor along the DNA during action (for instance, DNA translocases). The cellu-

lar machineries should, therefore, be considered both biochemically and biome-

chanically. Hence, understanding of the micro-bio-mechanical properties of DNA

is necessary. Decades of intensive studies, along with development of single-

molecular methods, have depicted an insightful picture of the micromechanical

properties of DNA, both theoretically and experimentally [77–82]. In this sec-

tion, I will introduce basic information about the micromechanics of dsDNA and

ssDNA, as well as the effects of protein-binding on their properties.

1.4.1 Micromechanics of double stranded DNA

In cells, the dsDNA at normal conditions (termed as B-DNA) is a regular, right-

handed double helix, consisting of two chains of nucleic-acid polymers wound
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Figure 1.5: Theoretical force responses of dsDNA and ssDNA as well
as nucleoprotein complexes formed on them. (A). Force extension curves
of dsDNA per bp based on Eq. 1.1 with various persistence lengthes (A) and
contour lengthes (CL) [78, 79]. (B). Force extension curves of ssDNA per nt
based on Eq.1.3 (black) [82] or Eq.1.2(red) [81], as well as that of RecA-ssDNA
nucleoprotein filament based on Eq.1.1

around each other. Each of the individual chain contains a series of nucleotides

(nt) that are joined together by single covalent bonds. There are four types

of nucleotides (adenine (A), thymine (T), guanine (G) and cytosine (C)) which

are named after the different bases the nucleotides contain [83, 84]. The sugar-

phosphate backbone of the nucleotide chain has a defined directed chemical struc-

ture, resulting in a defined direction of the base sequence along a single nucleotide

chain (5′-to-3′)[83, 84]. The stability of the dsDNA is accurately regulated by

environmental factors, such as, temperature, salt concentration and forces [79].

While the base-paired dsDNA (> 10 − 30 bp) is normally stable in vivo [79],

a few kBT , which can be provided by enzymes proteins, is enough to gradually

separate the strands.

dsDNA can be viewed as a semi-flexible polymer, the characteristic relation-

ship between the DNA extension zds, and the corresponding applied force, f , has

been demonstrated by single-molecular experiments [77]. An extensible worm-

like-chain (WLC) polymer model [78, 79] fits well with the experimental data

at forces <60 pN. The model is described by following Marko-Siggia formula

[78, 79]:

zds,WLC(f) = L(1−

√
kBT

4Af
+
f

fs
), (1.1)

where, L = N × 0.34 nm is the contour length of dsDNA of N base pairs,

A = 50 nm is the persistence length of B-DNA, describing the bending rigidity
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of dsDNA, and fs = 1400 pN is the force constant describing the backbone

stretching elasticity.

The value of A ∼50 nm means that an energy of ∼ 1 kBT is able to bend

the DNA of ∼50 nm for ∼1 radian. Despite certain local small inhomogene-

ity, this single persistence length description for the dsDNA flexibility has been

proved extremely useful [78, 79]. As a semi-flexible polymer, dsDNA respondes

to stretching by mechanical forces [78, 79] (Figure 1.2 Force responses of dsDNA

experiments and theoretical calculation). For forces < kBT
A ≈ 0.1 pN, the DNA

is coiled due to thermally excited bends which counteract the stretching forces.

At this force range, the extension of DNA, the average of end-to-end distance

along the force direction, is less than 50% of its B-form contour length. When

forces increases from 0.1 pN to 10 pN, the extension increases non-linearly from

50% to 90% of the contour length, due to the suppression of the thermal bending

fluctuation by the free energy contributed by stretching forces. When stretching

forces continue to increase, deformation of the dsDNA helix takes place with a

linear elongation of extension, until the force reaches ∼60 pN.

However, at force slightly above 60 pN, a few pN force increase results in

a dramatic and sharp transition with an extension elongation of ∼1.6-1.7 times

of B-form DNA contour length. This overstretching transition was originally

discovered in experiments using torsion-unconstrained, end-open DNA decades

ago [81, 85]. Since then, the nature of this mysterious overstretching transition

has been debated and only recently solved [81, 82, 85–97]. Three transitions

may involve: i) ‘peeling’ transition to one peeled ssDNA strand under tension

while the other ssDNA strand coils; ii) ‘inside-strand separation’ transition to

two parallel ssDNA strands that share tension (melting bubbles), and ii) ‘B-to-S’

transition to a novel overstretched base-paired dsDNA, termed as S-DNA [92–97].

The selection between each transition depends on DNA sequence, DNA topology,

and environmental factors such as temperature and salt concentration [92–97].

1.4.2 Micromechanics of single stranded DNA

ssDNA intermediates provide gene access for DNA replication, acting as tem-

plates for DNA recombination and repair. The unwanted ssDNA must be re-
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moved or repaired to maintain the genome stability. As a single nucleic-acid

polymer chain, ssDNA, unlike helical structured dsDNA, is a highly flexible poly-

mer with an estimated persistence length of ∼ 1 nm [81, 82, 98–100], thereby,

a higher force is required to extend the coiled chain. Furthermore, the exposed

bases of ssDNA tend to stick to other bases when coiled at low forces, forming

secondary structures within the ssDNA strand [82, 98–100].

The force response of ssDNA are much more complicated and less studied.

The force extension curve of ssDNA at force <10 pN is highly dependent on salt

species and salt concentration. At high salt concentration, the ssDNA at low

forces < 10 pN tends to be condensed, which depends on divalent salt concen-

tration more sensitively than on the mono-valent concentration [100]. The force-

extension curve of ssDNA in mono-valent salt conditions (< 150 mM NaCl) can

be fine fitted by freely joint chain (FJC) model [81]:

zss(f) = Nbss(coth(
2Af

kBT
)− kBT

2Af
)(1 +

f

800
) (1.2)

where bss = 0.56 nm is the contour length of ssDNA per nt, the A = 0.75 nm is

the persistence of ssDNA. However, the above equation cannot describe the salt

effect on ssDNA. A phenomenological polymer formula[82] has been obtained to

describe the monovalent salt effects on DNA:

zss(f) = Nh
a1ln(f/f1)

1 + a3exp(−f/f2 − a2 − f/f3)
(1.3)

where h = 0.34 nm, a1 = 0.21, a2 = 0.34, f1 = 0.0037 pN, f2 = 2.9 pN, and

f3 = 8000 pN. The parameter a3 = 2.1ln (I/0.0025)
ln(0.15/0.0025) − 0.1 is dependent on the

ionic strength I which is the molar concentration of monovalent salt. However,

up to date, there is no model fitting well with the force response of ssDNA in the

presence of divalent cations, especially at low force ranges (< 10 pN) due to the

formation of complex secondary structures.
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1.4.3 Effects of DNA-distortion proteins on the force response

of dsDNA/ssDNA

DNA binding proteins often distort DNA upon interaction with DNA, resulting in

DNA local conformational changes, hence, altering the force responses of DNA

by certain level (Figure 1.5). The effects of DNA-distortion proteins on force

response of DNA have been calculated theoretically [101–103], and demonstrated

experimentally with a great many of proteins [104–113]. Conversely, force can

affect the DNA-protein interactions.

Generally, the resulting protein-DNA complex may increase the local rigidity

of the DNA (termed as stiffening effect), leading to the elongation of the DNA ex-

tension at low force range (∼< 10 pN) compared to naked DNA, or decrease the

local rigidity of DNA (termed as bending/folding effect), resulting in the short-

ening of the DNA extension at low force range. Force in principle should favour

binding of DNA-stiffening proteins while disfavour the DNA-bending/folding pro-

teins.

Since different proteins may have different effects on the force response of

DNA, in principle, different protein-DNA binding can be distinguished based on

analysis of differential effects on forces responses of DNA. Furthermore, the kinet-

ics and dynamics of protein-DNA interactions can also be revealed by analysing

the evolution of DNA extension time trace under forces at a single DNA level.

1.5 Objectives and organization of the thesis

In this thesis, I mainly focus on understanding the mechanisms of the key acces-

sory proteins, including SSB, RecX, RecO, and RecR on regulation of dynamics

and stability of RecA filament. Furthermore, I investigate the potential regula-

tory role of mechanical force on RecA filament in the presence of these accessory

proteins, which reveals a potential broad importance of mechanical force during

homologous recombinational repair process.

In Chapters 2&3, I describe a new platform for studies of ssDNA-processing

proteins on single ssDNA template manipulated by magnetic tweezers. I first

detail the single-molecule magnetic tweezers, including the basic apparatus, force
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generation, control, calibration and extension measurement methods as well as

sample preparations. In addition, I also describe a new disturbance-free rapid

solution exchange method, which is critical for studies of dynamics of protein-

DNA initial interactions.

In Chapters 4-6, as the main focus of this thesis, I present dynamics and

stability of individual RecA-ssDNA nucleoprotein filaments regulated by SSB

(Chapter 4), RecX (Chapter 5) and RecO, RecR (Chapter 6), as well as me-

chanical force. In Chapter 7, I explain the regulatory role of force based on

force-dependent free energy cost and binding affinity of RecA to ssDNA, which

explains the regulating role of force on these protein accessory dynamics and sta-

bility of RecA nucleoprotein filament. , I also present the dynamics and regulation

of formation and stability of RecA nucleoprotein filament formed on dsDNA by

various environmental factors in Chapter 8.

In addition to studies of dynamics and regulation of RecA nucleoprotein fila-

ment formed on both ssDNA and dsDNA, I also present my studies of how me-

chanical force regulates DNA bending in a single specific protein-DNA (IHF-H′)

complex (Chapter 9) and the dynamics of CRISPR RNA-guided DNA bending

and unwinding (Chapter 10). Finally, I briefly summarize and discuss the work

in the thesis in Discussion section (Chapter 11).
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Chapter 2

Methods and materials–A

platform for studies of

ssDNA-processing proteins on

individual ssDNA templates

2.1 Chapter Summary

The rapidly developing single-molecule manipulation technologies have enabled

studies of molecular interactions at a single-molecule level with nanometer reso-

lution in real time. In this chapter, I introduce the single-ssDNA-manipulation

platform to study the dynamic actions of ssDNA processing proteins on individ-

ual ssDNA template using magnetic tweezers. This platform consists of several

key steps, including 1) generating short single ssDNA tether for detecting the

extension with high signal-to-noise ratio from a dsDNA tether, 2) accurate mea-

surement of the force-extension curve of the ssDNA, and 3) anti-drifting technique

for stable long time measurement. Accordingly, in this chapter, I first introduced

the basics of single molecule manipulation using magnetic tweezers, including

force generation, calibration, ssDNA generation and extension measurement with

anti-drift control, followed by flow channel, DNA and protein sample prepara-

tion. Other experimental and analysis methods used in some of the studies will
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be included in the corresponding chapters.

2.2 Single molecule manipulation using magnetic tweez-

ers

As aforementioned, the mechanical properties of DNA (and other molecules) are

not only important themselves, but as useful and quantitative approach to study

the interactions and competitive regulations of various proteins involved with

DNA replication, recombination, repair and organization. Moreover, mechanical

force itself is also a proven or potentially critical regulatory factor in these bio-

logical processes [68–70, 109, 111–114]. Therefore, the ability to effectively and

quantitatively manipulate the DNA at single molecular level is crucial for the

advance of our understanding of the bio-mechanical nature of various cellular ac-

tions. Thanks to scientists′ decades of efforts, several state-of-art single molecular

manipulation techniques have been developed, including atomic force microscopy

(AFM), optical tweezers, magnetic tweezers, microfluidics based manipulation,

micro-needle manipulation and so on [115]. Among them, the magnetic tweezers

are mainly used in this thesis, which is especially useful for short molecule tether

manipulation. This chapter will mainly introduce the basic physical principles of

magnetic tweezers, while readers may find details about other single-molecular

manipulation techniques in recent review [115].

2.2.1 Development of magnetic tweezers

The first demonstration of magnetic tweezers was performed by Crick & Hughes

at 1950s to control magnetic particles in cytoplasm of cells [116]. Later, the

first single-molecule magnetic tweezers experiment was performed by Smith et

al at 1990s [77], In this work, they manipulated individual DNA molecules teth-

ered between a microscopic particle and coverslip surface in a flow channel. In

1998, a highly efficient perpendicular design of magnetic tweezers that is suitable

for high resolution single-molecule studies was published by Strick et al. [117].

Since then, this straightforward method has been extensively used to study the

bio-mechanical and bio-chemical properties of DNA/RNA or proteins, as well as
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Figure 2.1: Vertical magnetic tweezers setup. (A). Basic apparatus of verti-
cal magnetic tweezers. (B). Sketch of a flow channel for vertical magnetic tweez-
ers. (C). Force calibration based on bead fluctuations. (D). Force generation.
(E). Bead position determination and anti-drift method.

DNA-protein, protein-protein interactions by manipulating (stretching/twisting)

individual bimolecular tethers [29, 31, 118–121]. Besides the perpendicular de-

sign, a transverse design was also developed, which applies forces in the focal

plane and the extension is determined by the centroid of bead [122].
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Figure 2.2: Transverse magnetic tweezers setup.

2.2.2 Magnetic tweezers apparatus

A basic single-molecule magnetic tweezers apparatus consists of a pair of magnets

and magnetic micro-particles (Figure 2.1A&2.2). The magnetic particles, usually,

paramagnetic bead (companies) is tethered with one end of single biomolecules

whose another end is attached to coverslip surface. The position of the tethered

bead is recorded and determined by a computer-controlled microscopic objective

with a camera. The force on the paramagnetic bead is tuned by controlling the

pair of magnets.

The two designs have their respective strengths. In the vertical design, the

tethers are formed on large 2-d coverslip surface, suitable for high-throughput

multiplexing experiments [123, 124]. The length of tethers can be shorter than

200 nm, ideal for high signal-to-noise measurements [109, 111, 112, 120]. The
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tweezers can be built on a total internal reflection fluorescence microscope, al-

lowing combination with single-molecule spectroscopy technologies such as single-

molecule Foster Resonance Energy Transfer (smFRET) [125]. In the transverse

design, tethers can be as long as the dimension of the whole view area, ideal

of studies of large DNA condensation by proteins [105, 126]. The tethers are

stretched in the focal plane, allowing direct observation of fluorescence labeled

proteins on DNA. The position of the bead can be determined with nanometer

accuracy with long working distance non-contact objective, making it possible

to control the temperature of the sample independently from the microscope,

convenient for temperature dependent studies [110, 126]. Two different types

of in-house built magnetic tweezers: vertical magnetic tweezers and transverse

magnetic tweezers were used in the studies [120, 122]. The basic setups of the

two types were illustrated in Figure 2.1A&2.2.

In a flow channel for vertical magnetic tweezers, one end of the end-labeled

DNA (or other molecules of interest) can be specifically tethered on the specially

functionized bottom coverslip surface, while another end of the DNA is attached

to the micro-magnetic bead (Figure 2.1A&B). A pair of permanent magnets is

placed along the z-direction with its geometric center aligned with the tether,

generating a magnetic field gradient (z-direction) perpendicular to the coverslip

surface (x-y plane). Hence, the magnets apply a force on the tethered micro-

magnetic bead in the direction towards the magnets. The magnitude of the force

experienced by the magnetic bead is tuned by controlling the distance between

the coverslip surface and the magnets. The illumination from LED light source

is placed under the channel in a z-direction through an underneath microscope

objective which also record the images of the magnetic bead (as well as the

reference bead stuck on the coverslip surface) on its focal plane. The accurate

position of microscope objective is controlled by a pizeo, which acts to antagonize

the drift of the setup (details can be found in [120]). A CCD/CMOS (short for

Charge coupled device/complementary metal oxide semiconductor) camera was

used to collect the images obtained and transfer to a computer for further imaging

analysis.

In contrast, the design for a transverse magnetic tweezers setup is different.
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The end-labeled DNA is tethered between a magnetic micro-bead and the func-

tionized edge of the coverslip (rather than the surface), the pair of magnets is

placed in the x-y plane and aligned along the x-direction. Therefore, the force

generated by the magnets on the tether is in the x-direction towards the magnets.

The illumination is from the top of the channel in z-direction and the images of

the moving bead are collected by the bottom microscopy objective.

2.2.3 Force generation

The pair of magnets is placed along the direction (z-direction as in Figure

2.1C&D) perpendicular to focal plane (x-y- plane), with its geometric center

aligned with the tether, resulting in a magnetic field , ~B, parallel to focal plane

(alone x-direction as in Fig. 1A), and a magnetic field gradient ,d ~Bdz , perpen-

dicular to the focal plane (i.e., z-direction). Therefore, at a given position in

the magnetic field, the tethered micro-magnetic bead is magnetised with a total

magnetic dipole moment, ~M , along the same direction as ~B, resulting a force

F = 5( ~M · ~B), along the direction towards the magnets (z-direction). In nor-

mal magnetic tweezers setup, due to the inherent properties of superparamagnetic

bead and large magnetic fields, the magnetisation of the bead reaches a saturated

value, Mmax, which is magnetic field-independent. Hence, the bead experiences

a force, F = Mmax
dB
dz .

2.2.4 Force control

For a given magnetic bead, i.e., a givenMmax, the magnitude of the force depends

only on dB
dz , which only dependent on the distance (d) between the focal plane

and the magnets, therefore, force control (such as constant force control and force

loading-rate control) can be easily achieved in magnetic tweezers by controlling

d(t) through a computer-controlled, motorized, position-controlling manipulator.

In addition, due to a negligible stiffness of ∼ 10−6 pN nm−1, force on the tethered

bead can be considered as constant even when the molecule moves over µm

distance.
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2.2.5 Force calibration

For single-protein manipulation experiments, the tethered molecules are usually

short (< µm), the force calibration is accomplished by bead fluctuation analysis

at forces < 15 pN, and than extrapolation to larger force ranges up to 200 pN

[120].

The basic principle of bead fluctuation analysis based force calibration can be

understood as a pendulum model (Figure 2.1C&D). In the schematic represen-

tation figure, The movement of the micro bead in the magnetic field is harmonic

oscillation. Hence, we have α = Flateral
(l+r0)tanθ = F sinθ

(l+r0)tanθ , where α is the stiffness in

the lateral direction, r0 is the radius of the micro bead and the l is the end-to-end

distance of the protein (or other tethered polymer). θ in a pendulum is always

very small (� l0), hence, sinθ
tanθ ≈ 1. Therefore, α ≈ F

l+r0
.

Furthermore, according to the equipartition relation, we have 1
2αδ

2
y = 1

2kBT ,

where δ2
y is the y-directional fluctuation of the micro-bead, the kB is the Boltz-

mann constant, and T is the temperature in Kelvin scale. Substituting α ≈ F
l+r0

into the above equation, we have F ≈ kBT
δ2
y

(l + r0). Therefore, by measuring the

δ2
y and l, the force F can be obtained.

The reason why the above bead fluctuation analysis can only calibrated forces

< 15 pN for short protein tethers is explained as follows. To accurately mea-

sure δ2
y in above equation, the sampling rate, fsampling, has to be faster than the

Lorentzian corner frequency, fc = F
2πγ(l+r0) . The drag coefficient of the bead

γ = 6πηr0, where η is the solution visocity and r0 is the radius of the spherical

bead. The sampling rate in normal setup is in the range ∼ 100 Hz. Thereby, a

measurable force is up to ∼ 100 pN for a 10 µm tether with a 1.4 µm-diameter

bead, while the measurable force is less than 15 pN for a 100 nm tether. There-

fore, this force calibration method is not able to accurately measure the higher

forces for short tethers in the range of hundreds of nm.

The larger force range can be obtained by an extrapolation method detailed

in (cites), which utilizes a property that force-distance curves F (d) (typically are

exponential decay functions) between any two paramagnetic beads differ only by

a constant on logarithm scale (i.e., ∆LogF1,2(d) = δ). Therefore, we used long
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DNA (48,502 bp λDNA) molecules, which have a fc < 50 Hz at up to 100 pN, to

obtain a standard curve F ∗(d). In experiments with short tether, we determine

the shift δ from the standard curve for each bead at forces < 15 pN through

LogF (d) = LogF ∗(d) + δ. Then, extrapolation to larger forces up to 100 pN

can be done. This method is valid for any tethers such as DNA or proteins.

Note that, the relative error of forces determined by such extrapolation method

is around 10%, mainly caused by the uncertainty in the bead radius [120].

2.2.6 Torque control

In addition, due to ~M is perpendicular to ~F in normal magnetic tweezers setup,

an external large torque on the bead-tethered molecule can be easily generated

by rotating the pair of magnets. Furthermore, by adjusting the geometry of the

magnets, recently developed free-orbiting tweezers, where the ~M is parallel to ~F ,

enable the tethered bead freely rotate in the focal plane.

2.2.7 Scattered vs back-scattered illumination

The tethered bead is usually illuminated by collimated LED (light emitting

diode). There are usually two illumination methods: 1) scattered-illumination:

the bead is illuminated by light through the gap between the magnets. Well-

defined patterns of the concentric rings of he bead are generated due to the

interference between light scattered off the bead and unscattered light. 2)

backscattered-illumination: the bead is illuminated by the light from the ob-

jective; interference between the backscattered light and the reflection light of

the top-surface generates a another set of well-defined patterns. These patterned

images then are captured on a CCD camera through the objective for further

bead position determination. Since the light for back-scattered illumination is

from the objective, the gap between the magnets can be much smaller; therefore

a much higher force can be generated compared to scattered-illumination. On the

other hand, the back-scattered illumination method can only apply for tethers

< 1 µm, while the scattered-illumination is suitable for tethers in large length

range (e.g. tens of µm).
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2.2.8 Bead position measurement

The 3 dimension (x-, y-, z-) position of the bead is determined based on the

interference-patterned images: the lateral (x-, y-) position of the bead is deter-

mined based on the centroid of the patterned images, while the axial (z-) position

of the bead is determined based on patterned images’ intensity distribution that

is strongly corresponds to the axial (z-) position of the bead to the objective

focus. Therefore, an initial library of the patterned interference images of the

bead at a series of at defocus planes along the axial direction is necessary for

further position determination. This is usually accomplished by recording a set

of images of bead’ patterned interference during moving the objective along the

axial direction using a piezo actuator at the beginning of experiments. During

experiments, the real-time, 3 dimensional motions of the bead are determined

by comparing the current diffraction pattern with the initial calibration library

through correlation function analysis of the power spectrum of Fourier transform

of the bead images [120, 127].

2.2.9 Anti-draft method

However, there is always drift during experiments which would largely affect

the position determination. To reduce the drift artefacts, in magnetic tweez-

ers experiments, a stuck polybead on the bottom surface is used as a reference

bead (Figure 2.1D). By simultaneously tracking (‘locking’) the reference bead on

the surface using an objective pizeo actuator through a low frequency feedback

system such that the stuck bead image has the best correlation with a specific

image store in the library, the tethered bead therefore is correspondingly tracked

with much reduced drift artefacts. Usually, The combination of this active focal

plane locking mechanism and the use of the stuck bead as the reference bead for

height determination of the moving bead enable highly efficient minimization of

mechanical and thermal drift of the setup for long time scale experiments (over

hours) with a spatial resolution of ∼2 nm, and temporal resolution of ∼100 Hz

[120].
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2.2.10 Molecule extension measurement

The above section has reviewed the bead position determination methods, how-

ever, the axial (z-) position determined is in fact the height of the tethered bead

in response of force, Hbead(f), rather than the actual molecule extension, z(f).

This is because that at given d, in addition to force generated by the magnetic

field, there is a torque generated, which would align the bead along the magnetic

field. A change in d, therefore change both the force and alignment of the bead

due to the torque, which causes rotation of the bead. For short tethers (short

DNA or proteins), bead rotations also change the height of bead that cannot be

differentiated from real extension change of the tethered molecule. The contri-

bution from bead rotation has to be eliminated in order to obtain real extension

change of the molecule.

One possible method is based on a property of the paramagnetic bead that the

bead adopts a unique orientation (alignment) that corresponds to a unique height

of bead at a given force. Therefore, at a given force, the extension differences

of a molecule tether before and after interactions or conformational changes are

accurate. Utilizing this property, the force extension curves of a tethered protein

or DNA bound with proteins can be measured [109]. For instance, in order to

measure the force response of a short single-stranded (ss) DNA, one can first

measure the extension differences between the double-stranded (ds) DNA tether

and the ssDNA tether generated by this dsDNA at the same set of forces, thereby

obtain the ∆zss-ds(f); and then obtain the accurate force response of ssDNA,

zss(f) = zWLC(f) + ∆zss-ds(f), by adding back the theoretical dsDNA force-

extension curve based on worm-like-chain polymer model. Similarly, in order

to measure the force response of a short protein peptide-chain, one can measure

measure the extension differences between the folded protein tether and unfolded

peptide-chain at the same set of forces, thereby obtain the ∆zunfold-fold(f); and

then obtain the accurate force response of the chain, zchain(f) = zfold_rigidy(f) +

∆zunfold-fold(f) Furthermore, when proteins bind to the tethered molecule, the

force response can be similarly obtained by further adding the protein binding-

induced extension differences at corresponding force.
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Figure 2.3: ssDNA generation and force-extension measurement.

2.3 Flow channel preparation

The flow channel is made with two pieces of coverslips sticking together by

parafilms/double-side tape (Figure 2.1B). The bottom piece of coverslips was

sinalized with (3-Aminopropyl) triethoxysilane (APTES), and then coated with

sulfo-SMCC for Thiol-labeled DNA, or streptavidin for biotin-labeled DNA. Dur-

ing the preparation, 3 µm polybeads are coated on bottom surface as reference

beads for experiments. A detailed protocol for channel preparation is included

as Appendix A .
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2.4 DNA and proteins synthesis

Labelled-DNA synthesis can be divided into three steps: 1.) DNA frag-

ment PCR–a 576 bp DNA construct (as an example) can be generated by

PCR from bacteriophage λ-DNA with a pair of forward and reverse primers:

5′[Thiol]ATTATACTCGAGAGCATAAGCAGCGCAACA3′ and 5′ATTATAAG

CTTATGACGCAGGCATTATGCT3′ (HindIII cutting site). Tm for PCR this

DNA fragment is 55-58 oC. 2.) HindIII digestion –The DNA is then digested

by restriction enzyme Hind III for ∼2 hours, and then purified. 3.) Biotin la-

belling –The purified DNA is then incubated with 0.1-1 mM Biotin-16-dUTP, 1

mM dATP, 1 mM dGTP, 1 mM dCTP, and 3 µl Vent DNA polymerase in 100

µl reaction volume for ∼ 1.5 hours at 65-72 oC. The DNA product is therefore

labeled with thiol at one end, and biotin at another end of the same strand of the

DNA [109]. Synthesis of the proteins studied in this thesis is performed following

previous protocols indicated in the corresponding chapters.

30



Chapter 3

A disturbance-free rapid solution

exchange method for single

molecule manipulation

experiments

3.1 Chapter Summary

Single-molecule manipulation technologies have been extensively applied to stud-

ies of the structures and interactions of DNA and proteins. An important aspect

of such studies is to obtain the dynamics of interactions; however the initial bind-

ing is often difficult to be obtained due to large mechanical perturbation during

solution introduction. Here, I report a simple disturbance-free rapid solution

exchanging method for magnetic tweezers single-molecule manipulation experi-

ments, which is achieved by tethering the molecules inside microwells (typical

dimensions - diameter (D): 40-50 µm, height (H): 100 µm; H:D∼2:1). Our sim-

ulations and experiments show that the flow speed can be reduced by several

orders of magnitude near the bottom of the microwells from that in the flow

chamber, effectively eliminating the flow disturbance to molecules tethered in

the microwells. We demonstrate a wide scope of applications of this method by

measuring the force dependent DNA structural transitions in response to solution
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condition change, and polymerization dynamics of RecA on ssDNA /SSB-coated

ssDNA/dsDNA of various tether lengths under constant forces ∗.

3.2 Motivation

Most of previous studies using optical tweezers and magnetic tweezers technolo-

gies were conducted after solution flow to avoid mechanical perturbation that

impairs high resolution single-molecule measurements [115]. As a result, data

during solution exchange often could not be recorded, resulting in loss of im-

portant information regarding the initial conformation and binding dynamics in

response to solution condition changes.

Several methods have been developed to probe the initial binding for optical

tweezers by quickly moving the trapped bead and its attached molecule from

one solution condition to another in laminar flow, and the molecular binding is

monitored by fluorescence imaging [128, 129]. More recently, additional method

has been developed to avoid the influence from the flow drag in the laminar flow

by further moving the bead attached molecule from the laminar flow into a flow-

free harbor which is connected to the laminar flow through a thin neck [129, 130].

These rapid solution exchange approaches have enabled optical tweezers to probe

initial binding dynamics of molecules in response to solution condition changes.

However, the above bead-moving and laminar flow based rapid solution ex-

change methods cannot be applied to typical magnetic tweezers experiments, as

magnetic tweezers apply forces to a paramagnetic bead attached to molecules im-

mobilized on coverslips surfaces. Increasing the solution exchange speed would

not solve this problem either, as it would result in large drag force to the bead

that can cause large conformational perturbation to the molecule and cause tether

breakage. The scope of the applications of magnetic tweezers would be greatly

broadened if a rapid disturbance-free solution exchange method could be devel-

oped.

In this section, we report a simple method to achieve rapid disturbance-free

∗Note that main contents detailed in this chapter are included in Disturbance-free rapid
solution exchange for magnetic tweezers single-molecule studies. Le S., Yao M. et al. Nucleic
Acids Reserach, online (2015)
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solution exchange for magnetic tweezers by tethering molecules at the bottom

of microwells (diameter: 20-60 µm; height: 40-100 µm) in a microwell array.

Our results show that complete solution exchange can take place in the order

of seconds, making it possible to obtain early binding dynamics upon solution

exchange at constant forces.

Figure 3.1: Microwell array and flow channel design. (A) Top panel:
Schematic of flow channel with a middle area covered by a thin microwell ar-
ray. z- denotes the force direction, x-y plane denotes the focal plane; Bottom
panel: A part of microwell array (D: 40 µm; H: 100 µm) covered area imaged
using a 20× objective (left panel) and a DNA tethered bead at the bottom of a
microwell imaged using a 100× objective (right panel). (B). Sketches of the cross-
section of the flow channel (top panel) and a tethered molecule at the bottom of
a microwell (bottom panel). A reference bead stuck to the coverslip surface used
to eliminate spatial drift is also shown.
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Figure 3.2: Simulated flow dynamics inside the microwells. (A-C). Flow
dynamics inside microwells with a fixed height of 100 µm and various diameters
from 20 µm to 100 µm (from left to right), with different flow speed scale bars.
In the simulations, the flow speed in the centre of the channel is set at 100 mul/s
(∼16 cm/s). The details of the simulations are described in the methods section.
The simulations were performed by my collaborator on this work, Dr. Artem
Yefremov (MBI).
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Figure 3.3: Experimental test of the performance of the disturbance-
elimination method. (A). Representative extension time traces of dsDNA
molecules with three different contour lengths (top - 576 bp; middle - ∼3.5 kbp;
bottom - ∼48.5 kbp) at the bottom of a microwell (H: 100 µm; D: 40 µm)
before, during and after introduction of a flow with speed of ∼10 cm/s. The
horizontal blue arrows indicate the period of flow. The results show that the
extension fluctuation is not affected by the flow. (B). Representative extension
time traces of a 576 nt ssDNA switched between a low salt concentration (20
mM Tris without other salts) and a higher salt concentration (20 mM Tris with
100 mM NaCl and 5 mM MgCl2), which indicates a time scale of several seconds
needed for complete solution exchange between fluids in the microwell and in the
channel. The blue dash boxes indicate the periods of solution exchange.
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3.3 Fabrication of the microwell array

The microwells were fabricated following the procedures described in [131]. Pos-

itive mould consisting of 40 µm-diameter, 100 mum-height microwells were con-

structed using UV light lithography on a 4 inch silicone wafer with SU8 photo-

resist. The wafer was passivized by silanization and 10:1 PDMS mixture was

casted on the SU8 wafer to form a pillar like negative mould. The PDMS mould

was mounted on a glass slide with the top of the pillar facing the slide surface.

Then UV curable polymer (OFN-134) was added to the side of the mould and

was allowed to completely fill the gap between the PDMS mould and the slide.

The slide was then submerged in DI water cured under 200 W UV for 8 min.

Then the PDMS mould was carefully lifted from the assembly, leaving the cured

polymer microwell membrane on the slide for storage.

3.4 Simulations of the flow dynamics in the microwell

To evaluate flow dynamics inside the experimental chamber, we used SOLID-

WORKS Flow Simulation package to solve the Navier-Stokes equation. In these

calculations we modelled the flow of buffer solution (density 1 g/cm3, dynamic

viscosity 10−3 Pa s) in the central part of the chamber (dimensions: 5× 5× 0.2

mm) containing a single well (e.g. diameter 20 µm, height 40 µm). To esti-

mate the upper bound of the flow velocity at the bottom of the well (where

protein/DNA stretching is performed) in the simulation we considered the ex-

treme case when the buffer solution is pumped into the chamber at a very high

rate (∼ 16 cm/s). The simulation results are shown in Figure 3.2.

We first searched for dimension of the microwell such that it could simulta-

neously achieve disturbance-free and rapid exchange between the solution in the

microwell and that in the channel. The former requires high height-to-diameter

aspect ratio while the latter requires low height of the microwell (Figure 3.1). The

flow dynamics in the microwell in the presence of flow with constant velocity in

the channel was simulated using Flow Simulation package from SOLIDWORKS

(Methods). We found that microwell with a diameter of 20-60 µm and a height
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Solution exchange time scale estimation
Well size (H×D µm) Boundary speed Vc µm/s Critical distance Hc µm Exchange time τc s

100×20 2.8 71 25
100×40 4.9 41 8.4
100×50 6.5 31 4.8
100×60 14 14 1
100×80 50 4 0.1
100×100 200 ∼1 �0.1
150×75 5 40 8
200×100 4 50 13

Table 3.1: Solution exchange time scale estimation

of 40-100 µm could meet our need.

As shown in Figure 3.2, for microwell with a diameter of 20 ∼m and a height

of 40 µm, when a high-speed flow of ∼16 cm/sec was applied in the channel,

flow vortices were developed at the upper level of the microwell, while the flow

speed was drastically reduced by around 106-folds (< 0.1 µm/sec) at the bottom

level (within 15 µm from the bottom). We expected that the low height of the

microwell should allow solution exchange at a time scale of seconds by diffusion

facilitated by the vortices. Microwell array with such dimension can be easily

produced.

3.5 Experimental validation of disturbance elimina-

tion in the microwell

According to the above simulation, the flow velocity is dramatically reduced to

a negligible level near the bottom of the microwell in the presence of high-speed

flow in the channel. We tested this prediction by monitoring the position of a 2.8-

µm-diameter paramagnetic bead attached to one end of a single dsDNA tether

before, during, and after a flow of ∼ 10 cm/s was applied at constant forces gen-

erated by the magnetic field. Figure 3.3 show results obtained from single 576 bp

dsDNA tethers, where the flow in channel has negligible perturbation to the bead

position, consistent with the simulation results. As such, the designed microwell

is suitable for magnetic tweezers single-molecule manipulation experiments with

disturbance-free rapid solution exchange.

37



3.6 Quantification of the solution exchange rate

In order to quantify the exchange rate between solution in the microwell and that

in the channel, we measured the characteristic relaxation time of the ssDNA ex-

tension change in response to salt concentration change. Being a highly charged

flexible polymer, the force-extension curve of ssDNA has been known highly sen-

sitive to salt concentration [99, 100, 109]. At the same force, an ssDNA has a

longer extension in lower salt concentration due to electric repelling and shorter

extension in higher salt concentration due to electric screening. Utilizing this

property, we examined the extension decreasing time course of single 576 nt ss-

DNA tethers after solution switching between low salt (20 mM Tris without other

salts) and higher salt (20 mM Tris with 100 mM NaCl and 5 mM MgCl2) (Fig-

ure 3.3).The results show that it took ∼5 seconds (salt concentration increase) to

∼10 seconds (salt concentration decrease) for the ssDNA to be relaxed to a new

steady extension level upon solution exchange in the channel, indicating that the

microwell is capable of rapid complete solution exchange within several seconds

during high speed solution introduction in the channel, consistent with our the-

oretical estimation (Tabel 3.1). The slightly longer time scale involved in the

salt-decrease induced ssDNA extension elongation than ssDNA extension reduc-

tion during salt increase can be explained by a longer time needed for decreasing

than increasing salt concentration.

In the theoretical estimation, assuming a pure diffusion dependent process,

a time scale of τdiffusion ∼ H2

(2Ddiffusion
can be estimated based on the height of

microwell (H) and the diffusion coefficient (Ddiffusion) of the ligand. The diffusion

coefficient can be estimated by the ligand size (r of a few nm for typical proteins)

through the Einstein relation as Ddiffusion = kBT
6πηr . Further, a characteristic speed

can be defined by the ratio of H and τdiffusion as:Vc = H
τdiffusion

. If the simulated

flow speed V is larger than Vc, the mixing is flow dominated which is a fast

process. For flow speed comparable or smaller than Vc, the mixing is dominated

by slow diffusion, which is the rate-limiting step. Using this criterion, we analyzed

the flow dynamics of microwells of different dimensions, and identify the height

Hc at which V ∼ Vc. The solution exchange time scales for various microwell
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dimensions are then estimated by τc ∼ H2
c

2Ddiffusion
, which are included in Tabel

3.1.

We chose the dimension of the microwells such that the critical height Hc

is longer than the tether extension (typically shorter than 20 µm) to minimize

the flow perturbation. We found a near optimal height-diameter aspect ratio ∼

2:1 of microwells from the simulation, based on which we fabricated microwells

accordingly.

3.7 Representative applications

We demonstrated the applications of this disturbance-free, rapid solution ex-

change method by probing the force dependent DNA structural transitions in

response to solution change, and the polymerization dynamics of RecA on ss-

DNA or SSB-coated ssDNA.

3.7.1 Interconversions between force-dependent DNA struc-

tures induced by salt concentration change

Tensile force of 65 pN can induce a so-called DNA overstretching transition for

torsion-unconstrained DNA, elongating the contour length of B-DNA by about

∼ 1.7 fold [81, 85]. Later studies have revealed three possible overstretched DNA

structures [81, 82, 85–97]: i) ‘peeling’ transition to one peeled ssDNA strand

under tension while the other ssDNA strand coils; ii) ‘inside-strand separation’

transition to two parallel ssDNA strands that share tension (melting bubbles),

and ii) ‘B-to-S’ transition to a novel overstretched base-paired dsDNA, termed as

S-DNA. The selection between each transition depends on DNA sequence, DNA

topology, and environmental factors such as temperature and salt concentration

[92–97]. Therefore, their inter-conversions can be induced by changing these

factors while maintaining a constant force applied to the DNA, as demonstrated

in a recent study through changing salt concentrations [97]. Surprisingly, in

that study, the NaCl concentration decrease induced B-to-S transition took > 40

seconds to finish, which was > 10 times slower than that observed in previously

reported force-induced B-to-S transition at a constant NaCl concentration. We
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reason that this slow salt decrease induced B-to-S transition was caused by the

slow solution exchange (> 5 minutes) that was needed to avoid flow perturbation

in that study. To test it, we used the disturbance-free rapid solution exchange

method to revisit the dynamics of inter-conversions between B-DNA and S-DNA

induced by increasing/decreasing NaCl concentrations under a constant force.

Figure 3.4A shows the extension change of a 600 bp GC-rich torsion-

unconstrained, end-closed DNA, being held at a constant force of ∼ 60 pN at

23o, induced by decreasing/increasing NaCl concentration between 250 mM and

0 mM in 20 mM Tris (pH 7.4). We observed inter-conversion between the B-DNA

at 250 mM with a shorter extension and an overstretched DNA structure at 0

mM NaCl with an elongated extension by ∼ 1.6 fold. Due to the use of the end-

closed (therefore peeling is pre-excluded) GC-rich DNA, the overstretched form

is likely the S-DNA, which could be mixed with some small fraction of internally

melted DNA[92–97].

Such DNA structural interconversion induced by decreasing/increasing NaCl

concentration was highly reproducible, which took place immediately upon solu-

tion exchange and completed within ∼ 3 seconds (during salt decrease) and ∼

0.3 seconds (during salt increase). Given that it takes ∼ 5 seconds for complete

solution exchange in our system, the result indicates that the actual transition

dynamics are faster than the observed time scales. The longer time scale in-

volved in the salt-decrease induced DNA elongation transition than that in the

reverse transition during salt increase can be explained by a longer time needed

for decreasing than increasing salt concentration and/or due to that the criti-

cal salt concentration for the transition might not be in the middle of the two

concentrations we tested.

3.7.2 The polymerization dynamics of RecA on ssDNA

As introduced in Chapter 1, RecA is a crucial recombinase in bacteria that plays

a critical role in homologous recombinational DNA damage repair. It nucleates

and polymerizes on ssDNA, forming a rigid extended helical nucleoprotein fil-

ament [10, 11]. RecA binds to ssDNA with a high affinity of ∼ 100 nM and

polymerizes with high cooperativity in a preferential 5′-to-3′ direction [10, 11].
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Figure 3.4: Representative applications of the disturbance-free rapid
solution exchange method. (A). Interconversions of a ∼ 600 bp end-closed
GC-rich dsDNA between the B-form and the overstretched S-form DNA struc-
tures induced by salt concentration change at a constant force of ∼ 60 pN. During
cycles of switching between 250 mM and 0 mM NaCl in 20 mM Tris (pH 7.4), the
DNA extension correspondingly switched between a shorter level (B-DNA) in 250
mM NaCl and a longer level (S-DNA) in 0 mM NaCl. The orange dash boxes in-
dicate the time windows during rapid solution exchange. (B). A typical extension
time trace of a 576 nt ssDNA before, during and after 200 nM RecA (with 1 mM
ATP, 1x ATP regeneration system, 50 mM NaCl, 10 mM MgCl2, 20 mM Tris pH
7.4) was introduced at a constant force of ∼ 11 pN. (C) A typical extension time
trace of a 576 nt SSB-coated ssDNA before, during and after solution containing
1 µM RecA and 1 µM SSB (with 1 mM ATP, 1x ATP regeneration system, 50
mM NaCl, 10 mM MgCl2, 20 mM MES pH 6.2) was introduced at a force of ∼
6.5 pN. For B&C, schematics of the RecA polymerization process are shown in
figure panels. (D). A representative extension time trace of a 48.5 kbp λ-DNA
before, during and after 1 µM RecA (with 1 mM ATP, 1x ATP regeneration
system, 50 mM NaCl, 10 mM MgCl2, 20 mM MES pH 6.1) was introduced at a
constant force of ∼ 10 pN. The solution was introduced within 10 seconds at the
beginning of the time trace. The spike at ∼ 240 s is due to transient diffusion of
a polystyrene bead into the view area that affected the bead imaging. Blue dash
boxes in panels B-C indicate the flow periods.

RecA filament can also polymerize on one ssDNA strand inside a double-stranded

DNA [10, 11]. Due to a high nucleation barrier and slowed-down polymerization

rate inside dsDNA, its polymerization was able to be measured from 2 to 20

monomerssec on micrometer sized DNA [10, 22–24, 30, 31]. In contrast to ds-

DNA, due to decreased nucleation barrier and faster polymerization rate, the
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dynamics of RecA polymerization on ssDNA has been difficult to be probed in

previous single-ssDNA stretching experiments. To our knowledge, there was only

one single-ssDNA stretching experiment reporting the polymerization dynamics

of RecA, which was achieved using a long ssDNA (7.3 kb) that allowed a longer

time of observation [23]. Here we show that the RecA nucleation and poly-

merization dynamics can be conveniently recorded on much shorter (∼600 bp)

ssDNA (therefore better signal-to-noise ratio in extension measurements) using

the microwell based disturbance-free rapid solution exchange method.

Figure 3.4B shows a typical time trace of the extension of a 576 nt ssDNA

under a constant force of ∼ 11.5 pN, before, during and after 200 nM RecA

was introduced with a flow speed of ∼ 7 mmsec, in the standard RecA reaction

buffered solution containing 50 mM NaCl, 10 mM MgCl2, 1 mM ATP, 1x ATP

regeneration system, and 20 mM Tris-HCl (pH 7.4), at 23 oC. The polymerization

of RecA began several seconds after the complete solution exchange of RecA

solution. We reason that the several seconds lag time (indicated by the magenta

line) corresponds to the time for RecA nucleation, as it has been known that RecA

polymerization requires a nucleation step [10]. The elongation of the ssDNA

extension is due to formation of the rigid RecA nucleoprotein filament (bending

persistence of RecA filament is ∼ 1000 nm [23]).

The progressive elongation shows an interesting jump-pause-like dynamics of

RecA polymerization (indicated by orange arrows). We reason that the jump

corresponds to a cooperative polymerization from a newly nucleated RecA patch

till the canonical polymerizing end (the 3′ end) [10] reached the end of ssDNA,

or reached the 5′ end of an existing downstream RecA filament. Each pause

can be explained to be the time for formation of a new nucleation site. Overall,

the results are consistent with previously reported cooperative nucleation and

polymerization of RecA on ssDNA [10].

It took about 60 seconds to reach a steady elongated extension with a total

extension increase of ∼ 80 nm. It has been known that in RecA-ssDNA nucleo-

protein filament, a RecA monomer occupies 3 nt of ssDNA. Therefore, our result

of fully polymerization on the 576 nt ssDNA reveals an overall polymerization

rate of 3 ± 1 monomer s−1 in 200 nM RecA solution under our solution con-
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dition. Given that multiple nucleation sites might exist in the 576 nt ssDNA,

the observed overall polymerization rate might be greater than that of a single

filament.

3.7.3 Dynamics of RecA loading onto SSB coated ssDNA

In bacteria, newly generated ssDNA fragment is immediately bound by SSB to

prevent the formation of secondary structure or ssDNA degradation. The nucle-

oprotein array formed on ssDNA by SSB on one hand facilitates RecA loading

onto ssDNA by removal of secondary structure, on the other hand suppresses the

RecA filament formation due to the energy cost to remove the SSB on ssDNA

[10]. The dynamics and kinetics of RecA loading onto SSB coated ssDNA there-

fore are physiologically important. Recently, the RecA loading onto SSB coated

ssDNA was probed using combination of optical traps and fluorescent dynamic

imaging in the presence of laminar flow, which revealed a bi-directional (5′-to-

3′ and 3′-to-5′) loading processes of RecA onto SSB-coated ssDNA [128]. Here,

we demonstrate fluorescence-label-free measurements of the dynamics of RecA

loading onto SSB-ssDNA nucleoprotein array using the disturbance-free rapid

solution exchange method with magnetic tweezers.

In the experiments, a fully covered SSB nucleoprotein array was formed on

ssDNA by incubating the ssDNA tether with 1 ∼M SSB (in standard RecA

reaction solution at pH 6.2) at ∼6 pN. Then, a mixture of 1 ∼M SSB and

1 ∼M RecA was introduced. The extension of ssDNA was recorded before,

during, and after the introduction of the protein solution (Figure 3.4C). After

a lag phase of ∼ 200 seconds (indicated by magenta line) following the protein

introduction, the extension began to gradually increase without apparent pause-

jump-like dynamics observed in the absence of SSB. It took ∼ 400 seconds till

RecA fully covered the ssDNA. From the extension time traces, a loading rate of

∼ 0.5 monomer s−1 was estimated, which is consistent with recent reported speed

of 0.1 - 1 monomer s−1 by fluorescent dynamic imaging using optical tweezers

[128].

43



3.7.4 The polymerization dynamics of RecA on long double-

stranded λ-DNA

To demonstrate that the disturbance-free rapid solution exchange method is also

suitable for longer tethers, we used RecA polymerization dynamics on long λ-

DNA (48,502 bp, ∼ 16 µm) as an example. As shown in Figure 3.4D, after

RecA solution (1 ∼M) was introduced, there was a lag phase of over 200 seconds

before RecA polymerization started. This long lag phase likely corresponds to

nucleation of RecA inside dsDNA. After the nucleation step, RecA began to

polymerize on the dsDNA, indicated by progressive extension increase of the

dsDNA with a rapid growth phase followed by a slowly growing phase after a

transition point (indicated by orange arrow in Figure 3.4D). Together, these

results demonstrate that this method is capable to probe dynamics of DNA and

DNA-protein interactions over a wide range of length scales.
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Chapter 4

ATP-hydrolysis and Force

mediated competitive regulation

of RecA-ssDNA nucleoprotein

filament by SSB

4.1 Chapter summary

As introduced in Chapter 1, the bacterial RecA filament formed on ssDNA is

the essential factor of homologous recombinational DNA damage repair. While

plenty of our understanding of the RecA filament is based on direct binding of

RecA to ssDNA, the SSB protein actually binds to ssDNA prior to RecA in

vivo, and forms a SSB-ssDNA nucleoprotein array, which plays complicated roles

in the RecA filament regulation. However, the molecular mechanisms of the

regulation by SSB are still elusive. In this chapter, based on the distinctly dif-

ferent force-responses of individual single short ssDNA (576-nt) associated with

RecA or SSB proteins, we investigate the mechanisms by which SSB regulates

the RecA filament formation and stability, as well as the affecting factors of the

regulation mechanisms. We find that the SSB protein inhibits RecA nucleation

and polymerization by outcompeting even higher concentrations of RecA, form-

ing SSB-ssDNA nucleoprotein array. Furthermore, in the presence of SSB, the
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pre-formed RecA filaments go through de-polymerization process in an ATP hy-

drolysis dependent manner at low forces (∼3 pN). The net de-polymerization

of RecA filament in the SSB and ATP hydrolysis dependent manner is likely

resulted from that SSB occupies the vacated naked ssDNA due to the RecA

disassociation at 5′ end of the DNA during ATP hydrolysis. Interestingly, at

higher forces (>∼15 pN), re-polymerization of RecA filament occurs, driving

away the SSB on the ssDNA and forming a fully re-polymerized RecA filament.

Importantly, since the 5′-to-3′ direction polymerization has been inhibited by the

occupied SSB array on the ssDNA, the re-polymerization of RecA filament has

to take place at a 3′-to-5′ direction from the remained partial RecA filament.

These force-dependent re-polymerization, therefore, provides evidence of the bi-

directional (5′-to-3′, and 3′-to-5′) polymerization of RecA on ssDNA, which is

contradictory to previous well-known uni-directional (5′-to-3′) polymerization of

RecA filament. Moreover, the study depicts a physical picture of the competi-

tive regulation of the SSB on the scale of entire nucleoprotein SSB array on the

RecA filament formation and stability under mechanical forces, which has broad

biological implications, especially competitive molecular regulations. ∗

4.2 Introduction

The E.coli RecA nucleates and polymerizes on the ssDNA, forming the RecA

nucleoprotein filament which is essential for the homologous recombination, and

DNA repair [10, 11]. The formation of the RecA filament can in general divided

into two kinetically distinct steps: a slow initial nucleation step, and a faster

directional, highly cooperative polymerization step. Both the nucleation and

polymerization of RecA onto ssDNA requires ATP or its analogs, such as dATP,

ATPγS; ATP-hydrolysis leads to disassociation of the RecA from ssDNA [10,

11]. Therefore, the stability of the dynamic RecA filament results from the

competition of polymerization and de-polymerization of RecA on ssDNA.

The formation and stability of active (formed with ATP) RecA nucleoprotein

∗Note that main contents detailed in this chapter have been published in Force and ATP
hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding
protein, Fu, H., Le S. et al., Nucleic Acids Research 41, 924-932 (2013).
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filament have been intensively studied for decades based on bulk biochemical and

biophysical approaches [15, 16, 132]. Recently, advancement of single-molecule

manipulation techniques, such as optical tweezers, magnetic tweezers and single-

molecule FRET experiments [23, 24, 31, 133, 134], have enhanced our under-

standing of the formation and stability of the RecA nucleoprotein filament, by

providing the direct measurements of kinetics of RecA nucleation, polymeriza-

tion, and de-polymerization on ssDNA/dsDNA with high resolutions.

However, in vivo, the ssDNA produced during the DNA replication, recom-

bination, and damage is immediately bound with SSB proteins, forming an SSB-

ssDNA nucleoprotein array, which protects the ssDNA intermediates from degra-

dation and secondary structure [10, 11, 33, 135, 136]. This SSB-ssDNA nucleo-

protein array, at the same time, leads to the energy barrier for the formation of

the RecA-ssDNA nucleoprotein filament. The gaps still persist in understanding

of how the SSB protein and other recombination accessory proteins affect the

formation and stability of RecA nucleoprotein filament.

SSB binds to ssDNA nonspecifically with high affinity and multiple binding

modes [10, 11, 33, 40, 41, 137, 138]. Up to now, the binding modes of SSB to

ssDNA are mainly divided into two groups: 1) more-wrapped modes (SSB)56

and (SSB)56, where each SSB tetramer wrap ∼ 56 or 65 nt of ssDNA, and 2)

the less-wrapped mode (SSB)35, where each SSB tetramer binds ∼ 35 nt of

ssDNA. Many factors including salt, pH, and protein concentration have been

demonstrated to affect the selection of SSB binding modes [10, 11, 33, 40, 41, 137,

138]. According to previous reports, the less-wrapped (SSB)35 mode is favored

at low salt concentrations at high SSB binding density on ssDNA. However,

these SSB binding modes were studied in the absence of force on ssDNA, which

likely regulates the binding modes of SSB on tension mediated ssDNA template

[10, 11, 33, 40, 41, 137, 138].

While RecA and SSB do not interact with each other, they actively competes

the ssDNA binding sites. Although effects of SSB and RecA competition on

ssDNA have been extensively studied [10, 11, 135, 136], how the SSB competes

with RecA on ssDNA and its regulation on the formation of RecA nucleopro-

tein filaments have not yet been studied at single-DNA molecule resolution with
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the presence of mechanical forces which can potentially affect the competition.

Moreover, although individual SSB tetramer has been demonstrated can sliding

on ssDNA [139], since in vivo the SSB tetramers are densely packed on the ss-

DNA as a nucleoprotein array where events of individual tetramers sliding along

ssDNA is unlikely or rare during homologous recombination, the properties of

the tightly coated SSB tetramers array and its impact on the formation of RecA

nucleoprotein filaments has not yet been studied at an entire SSB-ssDNA nucle-

oprotein array scale at single molecular level.

In this chapter, to address the aforementioned unknowns, we investigate

dynamics of ssDNA and pre-formed RecA nucleoprotein filaments on ssDNA

stretched under mechanical forces, in the presence of free SSB protein in so-

lution. The dynamics reveals the competitive regulation of SSB nucleoprotein

array on the formation and stability of RecA nucleoprotein filament.
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Figure 4.1: Force Responses of ssDNA. (A). Force extension curves of a 576-nt
ssDNA in solutions containing 50 mM KCl, with (red) or without (black) 10 mM
MgCl2, 20 mM Tris-pH7.4, at 23oC. The hollow symbols denote force-increasing
scans and the solid symbols denote force-decreasing scans. Blue line is the the-
oretical force response of ssDNA based on Eq. 1.3. (B). Left panel: extension
difference of the ssDNA in the presence or absence of MgCl2; Right panel: ex-
tension difference during force-decreasing scans and force-increasing scans. (C).
Force extension curves of a 576-nt ssDNA in various salt concentrations. Only
force-decreasing curves are plotted in figure for simplicity; Data are plotted in
Log-scale for better presentation of extension differences at low force <15 pN.

4.3 Results

4.3.1 Force-responses of ssDNA in various solution conditions

The studies are largely based on the differences of the ssDNA force responses

bound with SSB, RecA or other proteins, resulting from the conformational re-

arrangement due to the protein-ssDNA complex formation. Therefore, the single

ssDNA tether used has to be short enough to suppress thermal noise from the

longitude conformational fluctuation of the flexible ssDNA, in order to clearly ob-

serve the signals. However, the ssDNA on the other hand has to be long enough

for the formation of stable RecA filament and SSB-ssDNA nucleoprotein array.

As introduced in the Methods and Materials in Chapter 2, a 576 nucleotides ss-

DNA which is short enough to increase the signal-to-noise ratio is constructed in

our experiments. Moreover, the 576-nt DNA tether can form a SSB-ssDNA nu-

cleoprotein array with ∼8-16 SSB tetramers (corresponding to ∼ 16 SSB proteins

in the (SSB)35 binding mode or ∼ 8 SSB proteins in the ((SSB)65 binding mode)

[10, 40, 137] and is much longer than the minimal length of the RecA nucleation
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site (<12 nt), and the minimal length of stable RecA filament (∼35nt) [15, 20].

Figure 4.1 A shows the force-extension curves of a single ssDNA tether

recorded during force-decreasing scans (solid down tri-angles) and force-increasing

scans (open up tri-angles) at ∼23 oC in buffered solutions containing 20 mM Tris

(pH 7.4), 50 mM KCl (black symbols), and 20 mM Tris (pH 7.4), 50 mM KCl

and 10 mM MgCl2 (red symbols). Secondary structures within the coiled ssDNA

can potentially form at low force, leading to hysteresis in the ssDNA extension

between the force-decreasing and force-increasing scans. The ssDNA was hold

at each force for 5 seconds (unless specifically stated). The force decreasing-

increasing cycle scans were repeated for ≥3 times. The extension at each force

was averaged for data recorded for the repeated measurements (the standard de-

viations were smaller or comparable with the symbols size and were not shown

for simplicity). We quantified the hysteresis level of 576-nt ssDNA by plotting

the extension difference at each force during the force-decreasing scan and force-

increasing scan (Figure 4.1 A, bottom panel). The secondary structures formed

with a peak hysteresis value of ∼ 30 nm at ∼ 7 pN.

Furthermore, While the force-extension curve of ssDNA at 50 mM KCl agrees

well with theoretical curves based on Eq.1.3 [82], the one with 10 mM MgCl2

differs from the theoretical values at low force range, likely due to ssDNA con-

densation. To gain more insights on the effects of salt, we further quantified the

effects of various concentrations of KCl (0 mM, 50 mM, 300 mM, and 500 mM)

and MgCl2 (0 mM, 1mM, 5 mM, and 10 mM) on the force response of the 576-nt

ssDNA tether. As Figure 4.1 B shows, the extension of ssDNA monotonically

decreases as KCl concentration is increased (triangles indicated by different col-

ors). At 50 mM KCl concentration, the increase of MgCl2 concentration also

resulted in monotonic decrease in the extension of ssDNA (solid circles indicated

by different colors. Moreover, ssDNA is condensated at high KCl concentration

or high magnesium concentration, which depends on magnesium concentration

more sensitive than on the KCl concentration. The more sensitive dependence on

magnesium concentration than on monovalent cation concentration is consistent

with previous observation that ssDNA tethers tend to collapse at forces lower

than 10 pN in a high NaCl concentration (> 150 mM) and in high magnesium
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concentration (∼ 10 mM) [98, 99].

In summary, the force-response of the 576-nt ssDNA and the effects of mono-

valent and magnesium concentration on it are in consistence with previous stud-

ies of ssDNA force responses [98, 99]. In addition, hereafter, the following

force-extension curves plotted will only show the data obtained during the fore-

decreasing scans unless specifically stated to minimize the additional effects of

secondary structure formation on ssDNA extension.

4.3.2 Distinct force-responses of RecA-ssDNA nucleoprotein

and SSB-ssDNA nucleoprotein array corresponds to their

distinct conformations

Having quantified the force-responses of the naked short ssDNA in various solu-

tions, we further investigate the effects of RecA and SSB proteins on the force-

response of ssDNA when these proteins form complex with ssDNA, by comparing

the force-extension curves of ssDNA in the presence and absence of RecA or SSB.

Next, we measured the force-responses of ssDNA in the presence of 1 pM to

1 µM SSB proteins in various concentrations of KCl (0, 50, 300, 500 mM)and

MgCl2 (0, 5, 10 mM) in the force range of ∼ 3−40 pN(Figure 4.2). We emphasize

that since no free ssDNA was present in solution, SSB is always in excess to

ssDNA. In the absent of KCl and MgCl2 (Figure 4.2 A), the force-extension curves

of SSB bound ssDNA with > 10 pM SSB in solution are always shorter than

that of naked ssDNA, indicating wrapping of ssDNA by SSB. In the presence of

increasing concentration of KCl or MgCl2 (Figure 4.2 B-F), the extension changes

of ssDNA can be roughly divided into three ranges. First, at forces below ∼5-7

pN, and > 100 pM-nM SSB, the extensions of SSB-ssDNA array are longer than

that of naked ssDNA, which is likely caused by removal of secondary structures

within ssDNA and repulsive interactions between adjacent units of SSB bound

to ssDNA, although the ssDNA is wrapped by SSB. Second, in contrast, in the

force range from lower limits of 5-7 pN to up-limits of 15-20 pN, the extensions

of SSB-ssDNA nucleoprotein array are shorter than naked ssDNA, which can be

attributed to wrapping effect of SSB tetramers on ssDNA [40, 41, 137]. Third,

for forces >15-20 pN, the extensions of ssDNA bound by SSB overlap (or are
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Figure 4.2: Force Responses of SSB-ssDNA nucleoprotein array in dif-
ferent salt and SSB concentrations. (A-D). Force extension curves of indi-
vidual 576-nt ssDNAs coated with SSB in 0, 50, 300, 500 mM KCl (panel A-D,
respectively) in the presence of SSB concentration ranging from 1 pM to 1µM
(indicated by colours). (E-F). Force extension curves of individual 576-nt ssD-
NAs coated with SSB in 50 mM KCl with 5 mM (E) or 10 mM (F) MgCl2, in the
presence of SSB concentration ranging from 1 pM to 1µM (indicated by colours).

very slightly shorter than) that of naked ssDNA for all the SSB concentrations

tested. In this force range, either dissociation of SSB proteins from the ssDNA or

binding of SSB on the ssDNA in a non-wrapping mode can explain the overlapped

extensions. To distinguish the two possibilities, we performed ‘force-jumping

cycles’ of the ssDNA extension. As Figure 4.3 shows, the forces on the naked

ssDNA (orange), the same ssDNA in 10 nM SSB (red), and the same ssDNA

in 1 µM SSB (blue) were jumped from a high force (∼41 pN, black) to a series
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Figure 4.3: Extension time traces of SSB-ssDNA nucleoprotein array
in different salt and SSB concentrations during force-jumping. (A-D).
Extension time traces of SSB-ssDNA nucleoprotein array in different salt and
SSB concentrations during force-jumping in the presence of SSB concentrations
of 10 nM and 1µM (indicated by colours) in different salt concentrations.

of lower forces (colors). At each force, the DNA was held for 5 seconds. Since

the force-jumping process takes only ∼ 0.1 second, we can monitor the initial

dynamics of the extension when force was jumped from the high force (where

the extension is almost overlapped with naked ssDNA). In the presence of 10 nM

SSB, immediately after the force jump, the ssDNA extension is longer at <8 pN

and shorter at >8 pN than that of naked ssDNA, consistent with the results in

Figure 3.2B. Considering the quick jumping of ∼ 0.1 second, this result highly

suggests that SSB is still bound with ssDNA in a non-wrapping mode at high

force before force-jumping. Otherwise, immediately after the force-jumping, the

initial ssDNA extension should be close to naked ssDNA extension. Similarly, in

the presence of 1 µM SSB, at lower forces immediately after the force-jumping,

the ssDNA extension is consistent with the force-extension curve in the force-scan

in Figure 3.2B, again suggesting that the SSB is still associated with ssDNA at
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high force. Interestingly, at low forces (6-9 pN in Figure 3.2C), the extensions of

ssDNA in 10 nM SSB dropped from an extension similar to that in 1 µM SSB,

to the shorter extension during the 5 seconds recording. The dynamics of the

extensions may suggest that the SSB-ssDNA nucleoprotein array in the 10 nM

SSB reorganized from a non-wrapping mode to a wrapping mode when jumped

from high force to low force. Therefore, these results demonstrate that force

on ssDNA can switch the SSB-ssDNA nucleoprotein array from more-wrapped

binding mode(s) to less-wrapped or non-wrapped binding mode(s).

Interestingly, we also found that SSB wrapping effects reach the maximum

at SSB concentration of 100-10 nM (for different salt concentration), as revealed

by the maximum extension shortening effects in the medium force range (∼ 5-

20 pN). Below the maximum wrapping-effect SSB concentration, the wrapping

effects of the SSB-ssDNA nucleoprotein array increases as SSB concentration in-

creases, likely due to more SSB binds to ssDNA; In contrast, Above the maximum

wrapping-effect SSB concentration, the wrapping effects of SSB-ssDNA nucleo-

protein array decreases as SSB concentration increases, which likely suggests that

with higher SSB concentration, SSB-ssDNA nucleoprotein array switches from

more-wrapped binding modes to less-wrapped (or non-wrapped) binding modes

to incorporates more SSB onto ssDNA. Particularly, with 1 µM SSB at 5-10 mM

MgC2 concentration, the force-extension curves of the SSB-ssDNA nucleoprotein

arrays seems exist in non-wrapped binding mode. These results demonstrate that

the SSB binding modes on SSB-ssDNA nucleoprotein array are regulated by SSB

concentration. Particularly, at high SSB concentrations (> 100 nM), which is

likely the in vivo SSB concentration, with the presence of force, it is likely in a

less-wrapping or non-wrapping state.

On the other hand, RecA nucleoprotein filament is expected to have dis-

tinctively different force-responses due to its high rigidity. Figure 4.4 A shows

extension dynamics of a 576-nt ssDNA at different forces in the presence of 1

µM RecA in standard solution. At ∼ 9-10 pN, RecA progressively polymer-

ization was observed, indicated by dramatic step-wise increase of extension by

∼150 nm. ssDNA secondary structures are likely formed at lower forces, which

impedes the polymerization of RecA-ssDNA nucleoprotein filament. After fully
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Figure 4.4: Extension dynamics and force-extension curves of RecA-
ssDNA nucleoprotein filament. (A). Extension dynamics of a 576-nt ssDNA
in the presence of 1 µM RecA in standard reaction solution at different forces (in-
dicated by colours). (B) the force-extension curves of the naked ssDNA (squares)
and the RecA nucleoprotein filament (circles) formed on the same ssDNA. (C-D)
Extension dynamics of fully polymerised RecA nucleoprotein filaments formed on
576-nt ssDNA with ATP (C) or ATPγS as binding co-factor, in standard reaction
solution 1 µM free RecA. The red lines are 100-points FFT smooth of the raw
extension (black).

polymerization of RecA-ssDNA nucleoprotein filament, we measured the force-

extension curves of it in the standard RecA reaction solution in the presence of

free RecA with a concentration of 1 µM and 1 mM ATP, 1 ×ATP regeneration

system (circles in Figure 4.4B). The concentration of 1 µM is over saturated for

the fully polymerization of RecA filament on the ssDNA tether, since there is no

free ssDNA presented in solution. In another word, the RecA is always in excess

to ssDNA binding sites.

RecA nucleoprotein filament is known a stiff structure with a bending per-

sistence length larger than 1 µm [21]. Consistent with that, the force-extension

curve of the ssDNA polymerized by RecA is always longer than that of the naked

ssDNA before introduction of RecA at forces up to ∼30 pN(Figure 4.4B). More-

over, the extension of RecA filament is about 150% of the B-form dsDNA of an

equal number of base pairs (Figure 4.4B, inset), which is in accord with previous
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Figure 4.5: SSB inhibits RecA nucleation and polymerization on ssDNA.
(A). force extension curves of a 576-nt ssDNA in the presence of mixture of 100
nM (solid circles) or 1 µM (solid tri-angles) SSB and 1 µM RecA in standard
reaction solution, compared with those with SSB only (hollow symbols). (B-C)
Extension dynamics of the ssDNA in the presence of mixture of SSB and RecA
during jumping between a higher force of ∼37 pN and lower force of ∼3 pN.

studies. Additionally, in the presence of 1 µM free RecA in solution, the RecA-

ssDNA nucleoprotein filament is stable at low force (∼ 3 pN) over long time (>

2000 sec as shown in Figure 4.4C&D) with ATP (panel C) or ATPγS (panel D)

as binding co-factor, the latter is less dynamics due to lacking of ATP-hydrolysis.

Overall, we show differential force responses (extensions) of ssDNA bound

with RecA and SSB, which depend on the applied forces and concentrations

of the accessory proteins. Again, we emphasize that since no free ssDNA was

present in solution, both RecA and SSB proteins are always in excess to ssDNA.

Hence, the force and SSB concentration dependence of ssDNA extension likely

suggests the concentration dependent switch of binding modes with different

binding density of SSB on ssDNA. Besides the known wrapping binding modes

of SSB, such as (SSB)35, (SSB)56, (SSB)65 [10], there is non-wrapping binding

mode of SSB when ssDNA is stretched under larger enough force.
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Figure 4.6: SSB, ATP hydrolysis and force-dependent stability of pre-
formed RecA nucleoprotein filaments. (A). Typical extension dynamics of
de-polymerization of preformed RecA nucleoprotein filaments (ATP as binding
co-factor) at low forces of ∼3 pN, in mixture of 1 µM SSB and 1 µM RecA,
1mM ATP in standard reaction solution. (B) Typical extension dynamics of pre-
formed RecA nucleoprotein filament with ATPγS as binding co-factor, in mixture
of 1 µM SSB and 1 µM RecA, 1 mM ATPγS in standard reaction solution. (C).
force assisted re-polymerization of partially de-polymerized RecA nucleoprotein
filament during cycles of force-jumping between a higher force of ∼30 pN and a
lower force of ∼3 pN.

4.3.3 SSB inhibits nucleation and polymerization of RecA on ss-

DNA by outcompeting RecA on binding to ssDNA binding

sites

Having characterized the force responses of RecA-ssDNA nucleoprotein filament

and SSB-ssDNA nucleoprotein array, next, we investigated how SSB and RecA

proteins compete with each other on ssDNA. The physiological concentration of

SSB is in the range of a few hundred nM [140]. Protein mixtures of 1 µM RecA

together with either 100 nM or 1 µM SSB in standard RecA reaction solution

with 1 mM ATP, 1 ×ATP regeneration system were introduced to a naked ssDNA

tether.

Interestingly, Figure 4.5 shows that in the presence of 100 nM or 1 µM SSB
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and 1 µM RecA, the RecA filament cannot form at any forces. Moreover, The

resulting force-extension curves are almost identical to those in the presence of

only SSB without RecA (Figure 4.5A). Together, these findings indicate that

SSB outcompetes RecA for binding sites on ssDNA. In addition, since force is

known to facilitate the formation of RecA nucleoprotein filament, to determine

whether RecA polymerization can take place in the assistance of large force over

a longer time scale, the tether was held at ∼37 pN for over 80 seconds, but

RecA polymerization did not occur at the high force in our time scale (Figure

4.5B&C). In a word, these results demonstrate that the SSB completely inhibits

the nucleation and polymerization of RecA on ssDNA by outcompeting the RecA

on binding to ssDNA and form SSB-ssDNA nucleoprotein array in our solution

conditions. Note that, we also demonstrated that in a lower pH (pH 6.2) solution,

the RecA is able to nucleate and polymerize on the SSB-ssDNA nucleoprotein

array (Figure 3.4C or 6.4C), which may be resulted from the dimerization of

RecA at low pH [128, 141].

4.3.4 Dynamics of de-polymerization and re-polymerization of

pre-formed RecA nucleoprotein filament regulated by

ATP-hydrolysis, SSB and force

Having demonstrated that SSB-ssDNA nucleoprotein array formed during com-

petitive binding of SSB and RecA to ssDNA inhibits the nucleation and polymer-

ization of RecA nucleoprotein filament, in this section, we further to investigate

that how the SSB affect the stability of pre-formed RecA nucleoprotein filament

(Figure 4.6).

To begin with, a fully polymerized RecA-ssDNA nucleoprotein filament was

formed by holding an ssDNA tether in the presence of 1 µM RecA and 1 mM

ATP, 1 × ATP regeneration system at ∼30 pN. Then, a mixture of 1 µM RecA, 1

µM SSB, and 1 mM ATP, 1 × ATP regeneration system was introduced. Subse-

quently, the force was decreased to ∼2.8 pN (blue in Figure 4.6A). An initial lag

phase of ∼ 600 seconds was observed. Within the lag phase, the filament exten-

sion fluctuated around a constant average of ∼ 290 nm, indicating that the RecA

nucleoprotein filament stays in a nearly steady state. Remarkably, dynamic de-
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polymerization of RecA filament indicated by a rapid extension decreasing phase

where the extension of ssDNA tether decreased ∼70 nm within ∼200 seconds

was observed after the lag phase. Since RecA nucleoprotein filament in the same

solution without SSB protein is stable at such forces, the de-polymerization of

RecA filament is dependent on the presence of SSB. Repeating experiments on

different ssDNA tethers on the SSB dependent RecA filament de-polymerization

were performed (for instance, orange in Figure 4.6A). Similarly, a rapid exten-

sion decreasing phase following a lag phase was observed. However, the two

steps might be highly stochastic, suggested by that both the duration of the lag

phase and the speed of de-polymerization in the extension decreasing phase were

significantly different from each other. In addition, similar SSB-dependent de-

polymerization of pre-formed RecA nucleoprotein filament was also observed at

the lower SSB concentration of 100 nM [109].

Next, we examine the role of ATP hydrolysis in the SSB dependent RecA nu-

cleoprotein filament de-polymerization. Similar experiments with 1 mM ATPγS

ascertaining the role of ATP-hydrolysis in the formation of RecA nucleopro-

tein filament were performed. A mixture of 1 µM RecA, 1 mM ATPγS, and 1

µM SSB was subsequently introduced to a pre-formed fully polymerized RecA-

ssDNA nucleoprotein filament tether formed with ATPγS. Then, the extension

of the filament was monitored for > 2000 seconds at a force of ∼ 2.8 pN (Figure

4.6B). Over the time, no extension decrease was observed, indicating that the

de-polymerization of RecA nucleoprotein filament at low force also depends on

ATP hydrolysis besides the presence of SSB.

Furthermore, an interesting question is that whether a higher force can lead

to the re-polymerization of the partially de-polymerized RecA filament, since

force is known to play a positive role on the formation of RecA nucleoprotein

filament. To test it, the partially de-polymerized RecA nucleoprotein filament

(which is the same ssDNA tether as shown in blue in Figure 4.6A), cycles of force-

jumping between a high force (∼ 30 pN) and a low force (∼ 2.8 pN) were repeated

multiple times (Figure 4.6C). The tether was held for 5 seconds at each force.

Clearly, the ssDNA at low force became longer after each high-force-holding in

most of the cycles, demonstrating that a partially de-polymerized RecA filament
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at low force are able to re-polymerized at higher forces. In summary, the data

in this section demonstrate that a pre-formed RecA nucleoprotein filament de-

polymerizes at low force in a SSB and ATP-hydrolysis dependent manner; the

partially de-polymerized RecA filament can re-polymerize assisted by high force,

even in the presence of SSB.
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4.4 Discussion

In this chapter, we studied the regulatory effects of the formation and stability

of RecA-ssDNA nucleoprotein filament by SSB, ATP hydrolysis and mechanical

force. Based on the data, we proposed a model for this force, ATP-hydrolysis

and SSB dependent regulation of RecA nucleoprotein filament (Figure 4.7). In

this model, at pH 7.4 and 24 oC, in solution with >100 nM SSB concentra-

tions and 1 µM RecA, SSB tetramers outcompete RecA binding to ssDNA, and

form SSB-ssDNA nucleoprotein array. This tightly packed nucleoprotein array

inhibits the nucleation and polymerization of RecA on ssDNA, by imposing an

energy barrier. At the same environmental condition (pH 7.4 and 24 oC, with

>100 nM SSB concentrations and 1 µM RecA in solution), a pre-formed RecA

nucleoprotein filament de-polymerizes in an ATP-hydrolysis and SSB dependent

manner at low force of ∼3 pN. Moreover, the partially de-polymerized RecA fil-

ament re-polymerizes at high force >∼20 pN, which is in physiological range.

Hence, the study provides important mechanistic insights how RecA nucleation

and polymerization might take place and the regulation of the stability of RecA

nucleoprotein filament by SSB and mechanical force.

Firstly, we show that > 100 nM SSB outcompetes RecA for binding sites

on ssDNA, inhibiting the formation of RecA nucleoprotein filament. The initial

step of the formation of RecA nucleoprotein filament involves the formation of a

stable RecA nucleation site which comprises ∼ 3-5 RecA monomers, correspond-

ing to ∼ 9-18 nt ssDNA [10]. Since there is no evidence for direct interaction

between RecA and SSB, a reasonable speculation is that the high concentration

SSB proteins bind to ssDNA much faster than RecA and occupy the binding

site, therefore, depletes the naked ssDNA for RecA nucleation. Secondly, a pre-

formed RecA nucleoprotein filament de-polymerized at low forces in the presence

of >100 nM SSB, 1 µM RecA and ATP-hydrolysis. Previous studies demon-

strated that ATP in RecA nucleoprotein filament hydrolyzes primarily as a wave

in the 5′-to-3′ on ssDNA [19]. Since the RecA filament bound with ADP is unsta-

ble, the directional ATP-hydrolysis causes the dissociation of RecA from ssDNA

from the 5′ end, thereby vacating areas of naked ssDNA for SSB binding [19].
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The binding of SSB at the naked area from 5′ end blocks re-polymerization of

RecA at low force, therefore leading to net de-polymerization of RecA filament.

Consistently, without ATP-hydrolysis or without SSB, the RecA nucleoprotein

filament is stable at low force.

On the other hand, interpretations of the re-polymerization of RecA fila-

ment assisted by high force seem to be complicated. Three possibilities are

proposed and discussed: The first possibility is that RecA is able to invade and

nucleate into the SSB-ssDNA nucleoprotein array at high force, leading to new

polymerization in the 5′-to-3′ direction. However, this possibility has been dis-

proved by our results that SSB-ssDNA nucleoprotein array completely inhibit

the nucleation of RecA onto ssDNA at the both low and high force ranges in

our experimental conditions. Therefore, the re-polymerization of RecA filament

requires a pre-existing nucleation site (i.e., the partially de-polymerized RecA

filament). Consistently, an earlier study reported that a pre-formed RecA nu-

cleation cluster is able to displace a single SSB bound to poly-dT ssDNA [24].

The second possibility is that initially RecA filament de-polymerizes from the 3’

end, hence the re-polymerization of RecA filament still takes place in the 5′-to-

3′ direction. However, extensive previous studies have demonstrated that RecA

filament de-polymerizes occurs at the 5′ end corresponding to 5′-to-3′ directional

ATP-hydrolysis wave [10, 19].

The most likely possibility is that RecA filament de-polymerizes primarily

occurs at the 5′ end, whereas the re-polymerization takes place from the 5′ end

of the remaining partially RecA filament in a direction of 3′ to 5′. Although

this third interpretation is conflicted the widely accepted unidirectional poly-

merization of RecA in a 5′ to 3′ direction, there is no experiments disproved

the existence of 3′ to 5′ polymerization. While only 5′ to 3′ polymerization of

RecA has been observed in most previous experiments, it is likely that the or-

thodox 5′ to 3′ direction polymerization occurs much faster than the reverse 3′

to 5′ polymerization so that 3′ to 5′ polymerization was not able to be detected.

Consistently, in our experimental condition, the 5′-to-3′ polymerization has been

blocked by the SSB-ssDNA array at the 5′ end area of ssDNA, the slower 3′ to

5′ polymerization therefore takes place. In addition, this interpretation is also
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consistent with two previous experiments based on single-molecule fluorescence

resonance energy transfer (FRET) assay of the RecA dynamics at the 5′ end

and the measurements of the lifetime of synaptic intermediates during homol-

ogous searching [24, 142]. Moreover, a contemporaneous microscopy imaging

study using fluorescence labeled RecA and SSB demonstrated that RecA is able

to slowly nucleate and polymerize on SSB bound long ssDNA from both 5′ to

3′ and 3′-to-5′ directions at pH 6.5 [128]. In that study, higher pH (pH 7.5 or

8.0) highly repressed the nucleation and polymerization. These observations are

also consistent with our results. In our study (pH 7.4), the re-polymerization of

RecA filament is assisted by high force. Studies have demonstrated that force

can facilitate the formation of RecA filament and slow down dissociation of RecA

from the filament in the absence of SSB.

Although it is still unclear about the mechanisms of RecA polymerization

facilitated by large force, it can be quantitatively while preliminarily understood

based on mechanical differences between the RecA nucleoprotein filaments and

SSB tetramers nucleoprotein array. The ssDNA within the RecA nucleoprotein

filament is stretched and elongated compared to both naked ssDNA and SSB

nucleoprotein filament, thereby the work done by force pre-positions the ssDNA

for RecA polymerization. The polymerization energy of RecA combines with the

energy supplied by force, which may exceed the energy needed to displace SSB

tetramers from ssDNA. Moreover, force on ssDNA reduces the dissociation rate

of RecA from ssDNA which also adds to stabilize the RecA filament at high force.

To sum up, our results in this chapter elucidates how formation (nucleation,

polymerization) and stability of RecA nucleoprotein filaments are regulated by

SSB and ATP-hydrolysis and force. Our work underscores in the importance

of SSB nucleoprotein array and mechanical force on the competitive regulatory

mechanisms.
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Figure 4.7: Sketch of SSB, ATP-hydrolysis, and force dependent dy-
namics of RecA-ssDNA nucleoprotein filament. (A). More than 100 nM
SSB outcompetes RecA (1µM) at pH 7.4, resulting in the formation of a pure
SSB-ssDNA nucleoprotein array, which inhibits nucleation and polymerization
of RecA nucleoprotein filament. (B) In >100 nM SSB and 1 µM RecA, net de-
polymerization of a pre-formed RecA nucleoprotein filament occurs at low force
in an ATP hydrolysis- and SSB-dependent manner. Increasing force results in
re-polymerization of RecA nucleoprotein filament likely with the direction from
3′ to 5′ of the ssDNA. Note that the geometric objects indicating ssDNA, RecA
and SSB do not represent their real conformations.
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Chapter 5

Antagonizing effect of

machanical force on the

inhibitory actions of RecX on

RecA nucleoprotein filaments

stability in M. tuberculosis

5.1 Chapter summary

RecA nucleoprotein filament formed on ssDNA produced during bacterial re-

combinational DNA repair requires tightly regulated assembly and disassembly,

which involves a variety of mediating proteins. Among them, the RecX protein

plays a crucial inhibitory role in the formation and stability of RecA nucleopro-

tein filaments. Furthermore, RecA nucleoprotein filaments are likely subject to

tension, as during homologous searching, the two broken DNA ends are teth-

ered. However, the interplay between RecX and force on formation and stability

of RecA nucleoprotein filaments has not yet been investigated. In this chapter,

using the new platform for studies of ssDNA-processing proteins on single ss-

DNA by magnetic tweezers, we found that M. tuberculosis (Mt) RecX catalyzes

stepwise net de-polymerization of preformed MtRecA filament in the presence of
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ATP-hydrolysis at low forces ( < 7 pN), which can be reasonably explained by a

3′-capping model previously proposed. However, interestingly, larger forces ap-

plied on ssDNA can antagonize the inhibitory actions of MtRecX on RecA nucle-

oprotein filament; with the assistance of larger force, a partially de-polymerized

MtRecA filament could re-polymerize in the presence of MtRecX, which cannot

be explained by any previous models. As the forces that can antagonize the

inhibitory actions of RecX are in a physiological range; our findings highlight a

broad potential mechanosensitive regulation during homologous recombination.∗

5.2 Introduction

DNA damages, which severely affect the stability and integrity of the genome,

have to be repaired efficiently in vivo. In eubacteria, the RecA protein plays

an essential role in homologous recominational DNA repair, by forming a right

handed RecA filament on single stranded DNA (ssDNA) to promote the homol-

ogous pairing and exchange of DNA strands in the presence of ATP or ATP-

analogues and other co-factors [10, 11]. The stability of the RecA filament is

dynamically regulated by polymerization and de-polymerization in the presence

of ATP-hydrolysis [10, 11].

As introduced in Chapter 1, various proteins are involved in the regulation of

the polymerization and de-polymerization of RecA to avoid either insufficient or

unlimited formation of the RecA filament [10, 11]. Among the mediating proteins,

RecX protein strongly inhibits RecA filament nucleation and polymerization [10],

however, much less is understood about the regulatory mechanisms of RecX on

RecA nucleoprotein filament.

E.coli (Ec) RecX was shown to promote EcRecA nucleoprotein filaments dis-

assembly from circular DNA in an ATP-hydrolysis dependent manner at substoi-

chiometric concentrations. A 3′ capping model where EcRecX blocks the growing

end (3′ end) of the EcRecA filament, resulting in net EcRecA disassembly were

proposed to explained the observations [62]. Later it was showed that higher con-

∗Note that main contents detailed in this chapter have been published in Mechanical force
antagonizes the inhibitory effects of RecX on RecA filaments formation in M. tuberculosis. Le
S. et al., Nucleic Acids Research 42 (19): 11992-11999 (2014).
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centrations of EcRecX resulted in faster de-polymerization of EcRecA filament

[64]. Besides, EcRecX is found to bind within the major helical groove in the

monomer-monomer interface along the length of the active RecA-ssDNA filament

by electron microscopic and X-ray crystallographic studies [58, 64, 143]. There-

fore, an additional internal-nicking mechanism where RecX can generate nicks

inside the EcRecA filament, resulting in more de-polymerization ends, was sug-

gested [64]. In addition, another additional model that RecX may facilitate RecA

filament end de-polymerization can also explain the observation of RecX concen-

tration dependent RecA filament de-polymerization [144]. While aforementioned

studies have been focused on RecX promoted RecA de-polymerization, much

fewer attentions have been paid to the antagonizing factors of RecX inhibitory

effects.

As introduced in Chapter 1, recent in vivo studies show that DNA during

humongous recombinational repair is likely subject to tension [75, 76]. Further-

more, considering the markedly different force responses between the soft ssDNA

and the rigid RecA nucleoprotein filament [21, 81, 109], one can intuitively antic-

ipate the potential regulatory effect on RecA filament stability. However, it has

yet remained poorly investigated of the potential regulatory role of force and its

interplay with other cellular factors on the regulation of RecA filament.

In this Chapter, aiming to understand the effect of force on the RecX-

mediated regulation of RecA filament stability, I directly observed and quantified

RecX-mediated dynamics of individual MtRecA filaments regulated by mechan-

ical forces within physiological ranges, using the new platform introduced in

Chapter 2.

5.3 Results

5.3.1 Force-response of MtRecA nucleoprotein filament formed

on ssDNA

As introduced in Chapter 1, ssDNA is a very flexible polymer, whose bending

persistence is estimated to be ∼1 nm [81]. In distinct contract, the RecA nu-

cleoprotein filament formed on ssDNA is very rigid with a bending persistence
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Figure 5.1: Distinct Force Responses of ssDNA and MtRecA-ssDNA
nucleoprotein filament. (A).Schematic of the experiment. A short ssDNA
tethered between a cover glass surface and a paramagnetic bead is subject to
forces applied to the bead in the upward direction (left panel). Middle and right
panels show a coiled ssDNA (red), and a rigid, extended RecA filament (orange).
The effects of MtRecX were explored by the changes in extension of preformed
MtRecA filament after induction of MtRecX. (B). Typical force-extension curves
of a naked 576 nt ssDNA (red circles: experimental data; blue line: cubic spline
interpolation of data) in the standard assay buffer and a fully formed MtRecA
filament (orange tri-angles: experimental data; magenta line: WLC fitting) on
the same ssDNA with 1 µM MtRecA in solution. Inset shows the mea- sured
extension of fully formed MtRecA filament divided by the theoretical extension
of a B-form dsDNA of equal number of base pairs (576-bp). The error bars are
standard deviations (s.d.) obtained from repeating measure- ments (>3 times) of
the same DNA tether under each condition. (C). Long time trace of the extension
of a preformed MtRecA filament (the same filament as in (B)) recorded at ∼3.2
pN with 1 µM MtRecA in solution.

length of ∼ 1000 nm [21]. This distinctive difference of bending rigidity leads to

distinctive force responses, which can be used as a quantitative tool for investigat-

ing the dynamics and stability of the RecA nucleoprotein filaments regulated by

mediating proteins in single-DNA stretching experiments as sketched in Figure

5.1A.

Figure 5.1B shows force-extension curves of a naked ssDNA (576-nt) and

MtRecA nucleoprotein filament formed on this ssDNA in our standard RecA

reaction solution: 20 mM Tris (pH 7.4), 50 mM KCl, 10 mM MgCl2, 1 mM ATP

and 1×ATP regenerating system at 23 oC. The extension and error bar at each
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force were averaged mean value and standard deviations (s.d.) from multiple

(>3) cycles of force-increasing and force-decreasing scans. The DNA was held

for 5-seconds at each force during the scans.

Due to the distinct micro-mechanical properties of ssDNA and MtRecA fil-

ament [21, 81], the extension of MtRecA nucleoprotein filament is longer than

that of the naked ssDNA for forces <∼ 30 pN, with larger difference at smaller

forces. At forces > 30 pN, the ssDNA is much more stretched and exceeds the

extension of MtRecA filament. In addition, the extension of MtRecA filament

is ∼ 1.5-1.6 times of that of dsDNA with the same bases (Figure 4.2B inset).

Furthermore, MtRecA nucleoprotein filaments are stable in the presence of 1 µM

MtRecA in solution over a wide force range: no significant net de-polymerization

of MtRecA filament was observed over > 1000 sec in forces from 1-90 pN (Figure

5.1C is a typical example of the extension time course of MtRecA filament at ∼

3 pN).

5.3.2 MtRecX catalyzes net stepwise de-polymerization of MtRecA

filament in an ATP-hydrolysis dependent manner at low

forces

To investigate how MtRecX regulates the dynamics of individual MtRecA nucle-

oprotein filament, we introduced mixtures of 1 µM RecA and 80-1000 nM RecX

in standard reaction solution to pre-formed MtRecA filament at low forces ∼3

pN (Figure 5.2). At low concentrations of MtRecX (80 nM), MtRecX catalyzes

a slow progressive net de-polymerization of MtRecA filament, indicated by net

DNA extension reductions with an speed of 0.038 (mean) ± 0.019 (s.d.) nm/s

(Figure 5.2A). Occasional MtRecA re-assembly events (arrows, Figure 2A) were

also observed in addition to the dominant de-polymerization process. Besides,

the disassembly process, although noisy, appeared stepwise overall.

As shown in Figure 5.2B&C, similar stepwise MtRecX catalyzed de-polymerizations

of MtRecA filaments were observed at higher concentrations (400 nM or 1 µM) of

MtRecX with faster overall de-polymerization speeds (0.15 ± 0.075 nm/s for 400

nM and 0.27±0.31 nm/s for 1 µM). In addition, obvious large-step re-assembly

event was absent.

69



Figure 5.2: De-polymerization of preformed MtRecA filaments at differ-
ent MtRecX concentrations. (A). Time traces of the extension obtained on
three independent preformed MtRecA filaments formed on three ssDNA tethers
(indicated by different colors) after addition of 80 nM MtRecX at forces of 2-4
pN. Inset shows steps in zoom-in time traces. (B-C) show extension time traces
of three independent preformed MtRecA filaments at 400 nM MtRecX (B) and
1 µM MtRecX (C) at forces of 2-4 pN. The red lines in (A-C) show stepwise
de-polymerization and re-polymerization obtained from a step finding algorithm.
(D) A long extension time trace of a preformed MtRecA in 1 µM MtRecX, 1
µM MtRecA, 1 mM ATPγS (other conditions remained the same), where no net
de-polymerization of MtRecA filament occurs over the experimental time scale.

Importantly, when we replaced ATP with its non-hydrolysable homologue,

ATPγS, while other conditions remained unchanged, MtRecA nucleoprotein

filament was stable in the presence of MtRecX over a long period of time

(>2000 seconds) (Figure 5.2D). This result indicates that MtRecX mediated

de-polymerization of MtRecA filament is also dependent on ATP hydrolysis. In

addition, a lower pH (6.1) significantly slowed down (0.053 ± 0.015 nm/s) the

overall MtRecX-mediated de-polymerization speed of MtRecA filament compared

to that at a higher pH (7.4), ( 0.27 ± 0.31 nm/s). It can be expalined by the

fact that lower pH stabilizes RecA filaments, likely due to dimerization of RecA

at lower pH [128].
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5.3.3 Kinetics of MtRecX mediated net de-polymerization of

preformed MtRecA filaments

Figure 5.3: Step sizes and rates of de-polymerization or re-
polymerization of MtRecA filaments in different concentrations of
MtRecX.. (A) Extension difference of MtRecA filament and ssDNA. The black
circles are estimated by theoretical models, using naked ssDNA force response
with 50 mM KCl and MtRecA filament force response based on the WLC model
with a bending persistence length of 1 µm and an estimated contour length of
0.51 nm/nt. The blue tri-angles are data measured in experiments in 50 mM KCl
and 10 mM MgCl2. The data are averaged from multiple experiments (N = 3).
In the force range of 2-4 pN, extension change is ∼0.3 nm/nt based on theoret-
ical estimation and ∼0.4 nm/nt based on experimental data. The difference is
likely due to the effect of magnesium, which is not considered in the theoreti-
cal formula of naked ssDNA force-response. (B) Step sizes of de-polymerization
(red down-triangles) and re-polymerization (blue up-triangles). (C) Rates of de-
polymerization (red down-triangles) and re-polymerization (blue up-triangles).
The error bars with wider and narrower caps indicate standard deviations (s.d.)
and standard errors (s.e.) obtained from multiple (>3) independent experiments,
respectively. Insets in (C) show the ratio of the rates of de-polymerization and
re-polymerization, error bars were obtained from the standard deviations and
standard errors of the rates of re-polymerization and de-polymerization through
error propagation.

In addition, in multiple, independent experiments using the same MtRecX

concentrations, different speeds of de-polymerizations were observed (Figure

5.2A-C). Though there are several possible explanations for this variation, we

speculate that it is due to the stochastic nature of the de-polymerization and re-

polymerization processes from a single de-polymerizing end, which is supported

by kinetics simulations

We analyzed the de-polymerization and re-polymerization steps in each time

trace. A step finding algorithm was employed to extract negative steps (de-

polymerization) and positive steps (re-polymerization) from the data. Detec-

tion of such stepwise signal was automated by detecting abrupt decreases or

increases in extension using a method similar to that developed by Cui et al.

71



[118] (Methods–Step finding algorithm). Red lines in the Figure5.2A-C show the

stepwise time traces identified by this algorithm. Note as this method cannot

detect steps smaller than the noise level, the numbers of potential steps as well

as the transition rates are likely underestimated.

In the absence of MtRecX, ∼2 nm steps were detected for ATP-dependent

MtRecA dissociation and re-association, which are larger than the expected

monomer dissociation and re-association steps. Note a RecA monomer is known

to associate three consecutive nucleotides of ssDNA, corresponding to ∼ 0.9-1.2

nm ssDNA extension changes at 2-4 pN per MtRecA monomer dissociation or re-

association (Figure 5.3A). Such small steps are below the noise level (∼ 2 nm for

smoothed data) of the extension fluctuation; therefore they cannot be detected.

The averages, standard deviations, and standard errors of the step sizes and the

rates of de-polymerization and re-polymerization are shown in Figure 5.3B&C.

In the presence of MtRecX in the range of 80 nM to 1 ∼M and force range of

2-4 pN, the average step sizes for both de-polymerization and re-polymerization

are around 4 nm, roughly corresponds to release of 9 nt of ssDNA, or equivalently

simultaneous dissociation of three RecA monomers (i.e., half helical turn of RecA

filament) (Figure 5.3A). Although the causes of this step wise de-polymerization

is unclear, it may be related to cooperative ATP hydrolysis in the RecA fila-

ment reported [19]. Over the range of MtRecX concentrations, the step sizes do

not depend on the MtRecX concentration. In contrast, the kinetics of the de-

polymerization is dependent on the MtRecX concentration. From 80 nM to 1 µM

MtRecX, the average de-polymerization rate increases by ∼3-folds, and the ratio

of de-polymerization rate over the re-polymerization rate increases by > 2-folds

(Figure 5.3., inset). These results suggest that MtRecX facilitates the rate of

de-polymerization in addition to 3′ capping [62]. The large standard deviations

suggest a highly stochastic process of de-polymerization.
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Figure 5.4: Simulated extension evolutions of MtRecA filaments in the
presence of MtRecX.(A-C). The simulated extension time traces of MtRecA
filaments using the kinetics simulation algorithm based on the average values
of rates and step sizes of de-polymerization or re-polymerization in Figure S4.
Black lines, simulated extension time traces. Gaussian noises with a standard
deviation of 4 nm (close to the global standard deviation of the raw time traces
in our experiments) are added to each line to mimic the experimental time traces.
Five independent simulations at each condition were plotted.

5.3.4 Large variations in MtRecA de-polymerization speeds

can be explained by stochastic de-polymerization and re-

polymerization kinetics

In multiple, independent experiments using the same MtRecX concentrations,

we observed different speeds of de-polymerizations (Figure 5.2). Though there

are several possible explanations for this variation, we reason it is likely due to

the stochastic nature of the de-polymerization and re-polymerization processes.

Each extension time trace can be understood by a one-dimensional random walk

process, with an average de-polymerization rate of koff and step size loff, as well

as a re-polymerization rate of kon and step size of lon. These parameters were

estimated in experiments for each MtRecX concentration (Figure 5.3). Based on

the averages of these parameters, we simulated the extension evolution of a pre-

formed MtRecX filament using kinetics simulation algorithm (Methods–kinetics
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simulation).

Using the averaged values of the kinetic and step size parameters estimated,

five independent simulated time traces were generated for each corresponding

MtRecX concentration over similar time scales (Figure 5.4). These stepwise time

traces were superimposed with Gaussian noise using a standard deviation of ∼

4 nm, which is similar to the noise level of the raw time traces obtained in our

experiments. We found that the simulated time traces were consistent with the

corresponding experimental time traces. The simulated and experimental traces

exhibit similar overall net de-polymerization speeds and large variations from one

experiment to another. Hence, the simulation results support our hypothesis that

the variations of the extension time traces for multiple, independent experiments

using the same MtRecX concentration can be explained by the stochastic nature

of MtRecA de-polymerization and re-polymerization steps of a single filament.

RecA polymerization is intrinsically stochastic, as it involves diffusion of free

RecA proteins to the filament. De-polymerization is facilitated by ATP hydrolysis

mainly taking place at the 5′ end. ATP turnover is a stochastic process, and

spontaneous dissociation of RecA after ATP hydrolysis should also be a stochastic

process. All these may potentially contribute to the stochastic nature of MtRecA

de-polymerization process as observed in experiments and simulation. These

results do not exclude the possibility that MtRecX may create limited nicks

inside the MtRecA filament.

5.3.5 5′-to-3′ polymerization of MtRecA filament revealed by

its re-polymerization on MtSSB bound ssDNA assisted

by force

3′-to-5′ reverse polymerization of RecA in E.coli. has been demonstrated by

several groups including my previous study detailed in Chapter 4 [24, 109, 128,

142]. Here, the possible existence of the 3′-to-5′ reverse polymerization of RecA

in M. tuberculosis was examined. In reaction solution containing 20 mM Tris (pH

7.4), 50 mM KCl, 10 mM MgCl2, 1 mM ATP, at 23oC (the same environmental

condition as in main text), an MtSSB protein array was formed on ssDNA in

the MtSSB concentration from 0.25 nM to 250 nM. In this concentration range,

74



Figure 5.5: Force assisted re-polymerization of MtRecA filament in the
presence MtSSB. (A) Force extension curves of ssDNA with different con-
centrations of MtSSB (0.25 nM & 250 nM), or mixture of MtSSB and MtRecA,
indicated by different colors. Symbols and error bars represent the average values
and standard deviations of multiple (>3) repeating force scans at each condition.
(B) De-polymerization of two preformed MtRecA filaments after a mixture of 250
nM MtSSB and 1 µM MtRecA was introduced at low forces <3 pN. (C) Exten-
sion evolution of a partially de-polymerized MtRecA filament during cycles of
force-jumping between a low force of ∼1 pN and a high force of ∼15 pN.

MtSSB binding resulted in slight extension reduction in a moderate force range

of 5-15 pN, which is expected from ssDNA wrapping around MtSSB tetramers.

A mixture of 250 nM MtSSB and 1 µM MtRecA was then introduced in the same

buffer solution. The force-extension curve remained nearly unchanged, indicating

that MtRecA could not nucleate and polymerize on the MtSSB coated ssDNA

under this solution condition (Figure 5.5A).

When an MtRecA filament was pre-formed on ssDNA followed by introduc-

tion of the mixture of 250 nM MtSSB and 1 µM MtRecA, net de-polymerization

of the MtRecA filament was observed, indicated by progressive extension re-

duction at a few pN forces (Figure 5.5B). This can be explained by binding of

MtSSB to vacated ssDNA at the 5′ end of the MtRecA filament due to ATP-

hydrolysis mediated MtRecA disassociation, resulting in net de-polymerization.
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Such MtSSB dependent de-polymerization of preformed MtRecA filament should

lead to a partition of the ssDNA into MtSSB array at the 5′ side of the ssDNA

and the remaining MtRecA filament at the 3′ side of ssDNA.

Before the MtRecA filament was completely de-polymerized, upon switching

to high forces, re-polymerization of the MtRecA filament was observed, revealed

by extension re-elongation at low forces. One example is shown in Figure 5.5C

- switching force between a low force (1 pN) and a high force (15 pN) on a

partially de-polymerized MtRecA filament resulted in progressive elongation of

the ssDNA extension at 1 pN. As this experiment began with a pre-formed fully

polymerized MtRecA filament, there was no space left at the 3′ end for the

canonical 5′-to-3′ directional polymerization. The only space on ssDNA available

for MtRecA re-polymerization was at the 5′ side which was however occupied by

MtSSB. Therefore, we conclude that the force-assisted re-polymerization should

take place from the 5′ end of remained MtRecA filament in a reversed 3′-to-5′

direction.

5.3.6 Force facilitates re-polymerization of MtRecA filament,

antagonizing the inhibitory effects of MtRecX

We have directly monitored and quantified the dynamics of MtRecX mediated

de-polymerization of individual MtRecA filaments at low forces (∼2-3 pN). These

results are overall consistent with that previously reported bulk-biochemistry ex-

periments with RecX from across several bacterial species [62, 64, 144]. Next, we

explore the potential regulatory roles of force on the MtRecX mediated dynamics

of MtRecA filament.

To investigate the regulatory role of force, we monitored the extension evolu-

tions of partially de-polymerized MtRecA filaments in the presence of mixture of

MtRecX and MtRecA, during jumps between lower forces (∼2.0 pN) and higher

forces (>17 pN) (Figure 5.2A-B). At each force, the DNA was held for 5 seconds.

Interestingly, the extensions of the DNA returned to that when it is coated with

fully polymeriezed MtRecA filament DNA after several cycles of force jumping,

indicating that the partially de-polymerized MtRecA filaments re-polymerized at

higher forces in the presence of MtRecX with all concentrations we tested (80
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Figure 5.6: Force assisted re-polymerization of MtRecA filament in the
presence of MtRecX.. (A) Extension evolution of a partially de- polymerized
MtRecA filament (the same tether as that indicated by blue color in Figure 5.2B)
during quick jumps between two forces of ∼17.6 pN and ∼2.0 pN with 400 nM
MtRecX, 1 ∼M MtRecA and 1 mM ATP. (B) Extension evolution of a partially
de-polymerized MtRecA filament (the same tether as that indicated by blue in
Figure 5.2C) during quick jumps between two forces of ∼27.4 pN and ∼2.0 pN
with 1 µM MtRecX, 1 µM MtRecA and 1 mM ATP. In both A and B the
partially de-polymerized MtRecA filaments re-polymerized at higher forces (>17
pN) after several force-jump cycles, indicated by the elongated extension when
force was jump back to lower forces. Black arrows indicate ‘locked’ conformation
of MtRecA filament with shorter extension. (C) A long extension time trace
obtained at ∼7 pN with 1 µM MtRecX, 1 µM MtRecA and 1 mM ATP, showing
nearly balanced de-polymerization and re-polymerization > 30, 000 s.

nM -1 µM) (cites).

Furthermore, we also determined the critical force to be ∼7 pN for the bal-

ance of de-polymerization and re-polymerization of the MtRecA filament is nearly

reached (Figure 5.2C). In addition, MtRecX also induces EcRecA filament de-

polymerization at low forces ∼3 pN, which is also antagonized by higher forces

applied on the filament (Figure 5.7A&B). These results suggest that the reg-

ulatory effect of force on the RecX mediated dynamics of RecA nucleoprotein

filament is likely conserved across bacterial species.

Additionally, we found that the partially de-polymerized MtRecA nucleopro-
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Figure 5.7: Force dependence of MtRecX mediated EcRecA filament
dynamics. (A). MtRecX (1 µM) promotes net de-polymerization of EcRecA fil-
aments (200 nM and 1 µM tested) at low forces of ∼3 pN. (B). Higher forces assist
re-polymerization of partially de-polymerized EcRecA filament in the presence
of MtRecX.

tein filaments were sometimes mechanically stably ‘locked’ at a short-extension

state at low forces. These locked states could withstand higher forces for sev-

eral seconds (arrows in Figure 5.2A-B) and then unlocked with sudden extension

jumps. While it is unclear about the nature of the locked conformations, we spec-

ulated that it might be the bridging between the vacated naked ssDNA region

and the remained partial MtRecA filament region through MtRecA secondary

binding sites [10].

5.4 Discussion

In this chapter, we investigate the MtRecX-mediated dynamics of MtRecA nucle-

oprotein filament, and the regulatory role of force on the dynamics. We show that

MtRecX catalyzes ATP-hydrolysis dependent, stepwise net de-polymerization of

MtRecA filaments at low forces (<7 pN) at single RecA filaments level. These

results are consistent with previous ensemble biochemical experiments reporting

RecX-mediated net RecA disassembly [62, 64, 144]. Furthermore, we discovered

that higher forces can antagonize the inhibitory actions of MtRecX on MtRecA

filaments and facilitating re-polymerization of the MtRecX-induced partially de-

polymerized MtRecA filament (Figure 5.8). Importantly, this force-facilitated

re-polymerization of MtRecA filament in the presence of MtRecX has never been

previously reported, and it cannot be explained by previous proposed models.

Hence, besides directly probing the dynamics of individual RecA nucleoprotein
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Figure 5.8: Mechanistic model of the effects of force on MtRecX depen-
dent MtRecA filament dynamics. A pre-formed MtRecA flament (orange)
on ssDNA (red) is capped by MtRecX (blue) at its 3′ end (based on the 3′ capping
model proposed by Dress et.al (11)), and are bound with MtRecX at the filament
grooves (based on electronic microscopy reconstruction (14)). At low forces (<7
pN according to our measurement), MtRecA dissociates from the ssDNA at the
5′ end that requires ATP hydrolysis, resulting in net de-polymerization. Any
potential new nucleation sites formed on the vacated ssDNA are not stable since
MtRecX caps them at the 3′ end. At higher forces (>7 pN), due to the stabiliz-
ing effect of force on RecA filament, a partially de-polymerized MtRecA filament
may re-polymerize from the 5′ end of the remained filament and/or from the new
nucleation sites in a force assisted 3′-to-5′ reverse direction.

filaments, these results have uncoverd important new insights regarding how

microenvironment such as mechanical force may regulate the actions of RecX-

mediated RecA filaments. Previously, a 3′ growing-end capping by RecX model

was proposed to explain EcRecX-mediated disassembly of EcRecA filament [62].

In this model, RecX capped the 3′ growing-end of RecA filament, therefore in-

hibiting polymerization of RecA filament. In addition, the capping of RecX at 3′

end also inhibits formation of stable nucleation of RecA on vacated ssDNA due to
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ATP-hydrolysis induced RecA disassembly. The combination of the two effects

of 3′-end capping is able to explain the net de-polymerization of RecA filament

at the 5′ end induced by RecX from E. coli. [64], Neisseria Gonorrhoeae [144]

and M. tuberculosis. Together, these results suggest that RecX 3′ capping mech-

anism is likely a universal dominating factor that regulates dynamics of RecA

nucleoprotein filament by RecX proteins across bacterial species.

The stochastic variations of the dynamics of RecA filament de-polymerization/re-

polymerization processes can also be explained by the 3′ capping mechanism. In

our experimental assays, for each RecA filament, it began with a fully polymer-

ized RecA filament, presumably capped by a RecX at the 3′ end accordingly,

resulting in the 5′ end, the only end, for RecA de-polymerization due to ATP

hydrolysis. During the net de-polymerization process, the position of the 5′

end is governed by ATP-hydrolysis induced RecA de-polymerization and RecA

reverse re-polymerization from the 5′ end. The balance of the two competitive

processes determined the dynamics of RecA filament. Since both ATP-hydrolysis

and spontaneous RecA association/dissociation are stochastic [19], the movement

of the de-polymerizing 5′ end can be understood as a one-dimensional random

walk along the track of ssDNA template. Consistently, the kinetics simulation

predicted extension evolutions of a pre-formed MtRecX filament well mimic that

observed in experiments.

Importantly, we found that higher forces (> 7 pN) can antagonize the in-

hibitory effect of MtRecX on MtRecA filament, and resulting re-polymerization

of a partially de-polymerized MtRecA filament in the presence of MtRecX (80

nM to 1 µM). This new finding is unexpected and interesting, since it seems

to suggest that the dominating 3′ capping mechanism at low forces cannot ap-

ply to the situation when sufficiently large force is applied on MtRecA filament.

Mechanosensitive factors have to be considered in order to explain this force-

assisted re-polymerization effect. While there are several possibilities, a likely

explanation is a potential force-facilitated reversed (3′-to-5′) re-polymerization

of partially de-polymerized MtRecA filament.

In this force-assisted reverse polymerization of RecA filament scenario, al-

though MtRecX caps the 3′ growing end of RecA filament, the 5′ end of the
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filament can still polymerize in a reverse (3′-to-5′) direction, which is assisted

by force and outcompetes de-polymerization rate at 5′ end (see sketch in Fig-

ure 5.8). While a canonical 5′-to-3′ polymerization of RecA filament has been

widely known, our previous studies (detailed in Chapter 3), as well as some other

studies [24, 109, 128, 142], have demonstrated the existence of reversed 3′-to-5′

polymerization of RecA filament. This reverse polymerization of RecA filament

is likely promoted by force, and starts from the end of a partially de-polymerized

filament and/or from potential new RecA nucleation sites whose 3′ end is capped

by RecX on vacated ssDNA. Besides, we note that if the 3′ capping capability

of MtRecX is reduced by mechanical force the canonical 5′-to-3′ polymerization

might also take place from new nucleation sites on vacated ssDNA.

To sum up, together with previous results obtained from EcRecX and NgRecX

[62, 64, 144], our results advanced our understanding of the functions of RecX

across bacterial species. Particularly, we highlight the importance of mechani-

cal force, which antagonizes the inhibitory effects of MtRecX on the stability of

MtRecA filament. Furthermore, due to the ubiquitous presence of force in vivo,

and as the effect of force for RecA filament regulation is likely resulted from the

distinct micromechanics between naked ssDNA and RecA filament, we under-

score a need to further explore the mechanosenstive regulation of homologous

recombination reaction and other cellular processes.

5.5 Methods and Materials

Experimental setup and materials–The experiments were performed on the single-

ssDNA manipulation platform detailed in Chapter 2. MtRecX and MtRecA

proteins were purified as described [57, 145]. The standard assay buffered solution

containing 20 mM Tris (pH 7.4), 50 mM KCl, 10 mM MgCl2, 1 mM ATP and

1×ATP regenerating system (note that 1 mM ATP and 1×ATP regenerating

system were included to maintain 1mM ATP in solution. In the main text and

figures, it is referred as 1 mM ATP for simplicity). All experiments were done at

23 oC.

Step finding algorithm–A step finding algorithm similar to that developed by
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Figure 5.9: Steps detected from the extension time trace of MtRecA fil-
ament in the presence of MtRecX. (A). The raw data (black) were smoothed
by the Savitzky-Golay method within 0.2 sec time window (blue). Trial steps are
detected when δ0.1s(t) ≥ 2σ = 3.58 (orange lines). Only steps with the Student′s
T-value greater than 7 were accepted as de-polymerization or re-polymerization
steps, and the corresponding stepwise time trace was plotted in red. (B) show
the zoom-in of (A) from 70-120 second.

Cui et al. [118] was used to estimate the steps sizes and kinetics of MtRecA

filament dynamics. First, the raw data were smoothed by the Savitzky-Golay

method within 0.2 sec time window. Then a local extension difference δ0.1s(t),

which is the extension measured at time t minus the extension measured at

t − 0.1s, is calculated throughout the whole time trace, and a global standard

deviation, σ, is obtained. Trial steps are detected when δ0.1s(t) exceeds 2σ.

Typical noise levels in our experiments are in the range of 2σ ∼ 2-4 nm for

partially de-polymerized MtRecA filaments depending on the amount of vacated

flexible ssDNA during de-polymerization. Only steps with the Student’s T-value

greater than 7 were accepted as de-polymerization or re-polymerization steps,

and the corresponding step size and the time point of the accepted stepwise

extension changes were recorded. A typical step finding process was plotted as

Figure 5.9.

Kinetics simulation–In the Kinetics simulation, a small time step ∆t = 0.01

s (corresponding to the experimental temporal resolution 100 Hz) was chosen,

within which the probabilities for de-polymerization, re-polymerization, and nei-

ther de-polymerization nor re-polymerization to occur are poff(∆t) = koff∆t,

pon(∆t) = kon∆t, and pnone(∆t) = 1− (poff(∆t) + pon(∆t)), respectively. A uni-

formly distributed random number 0 < r < 1 was generated, which is compared
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to the above probabilities: de-polymerization is selected if 0 < r < poff(∆t);

re-polymerization is selected if poff(∆t) < r < poff(∆t) + pon(∆t); and neither

de-polymerization nor re-polymerization is selected if poff(∆t)+pon(∆t) < r < 1.
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Chapter 6

Dynamics and Regulation of

RecA-ssDNA filament by SSB,

RecO, and RecR

6.1 Chapter summary

SSB, RecO and RecR are crucial mediator proteins regulating RecA-ssDNA nu-

cleoprotein filament in eubacteria. However, the ssDNA binding properties of

each individual protein and the heteroprotein complexes (RecOR, RecO-SSB,

RecOR-SSB), as well as their influence on RecA filament formation and stability

are still elusive. In this work, we addressed these questions by single-ssDNA

manipulation by the new platform using magnetic tweezers. We show that RecO

tightly folds ssDNA, RecOR highly extends ssDNA, and SSB/RecO-SSB/RecOR-

SSB complexes wrap ssDNA at different levels. Under condition that RecA

is not able to nucleate and polymerize on SSB coated ssDNA, neither RecO

nor RecOR can facilitate RecA nucleation. However, under the same condition

RecOR rather than RecO alone stabilizes a pre-formed RecA filament against net

de-polymerization caused by the presence of SSB. Further, mechanical forces and

solution conditions regulate the conformations of these nucleoprotein complexes

sensitively. Based on these findings, we proposed a model that highlights the

potential role of mechanical properties of the nucleoprotein complexes formed by
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these mediator proteins on RecA nucleation, polymerization, and stability.∗

6.2 Introduction

As introduced in Chapter 1, in bacteria, the essential player of the HR is the

nucleoprotein filament formed by RecA on ssDNA [10, 11]. The formation and

stability of RecA filament is elaborately regulated by environmental factors such

as temperature, pH, salt concentration, and mechanical force, as well as by a

set of mediator proteins such as SSB, RecO, and RecR that are targets of this

research [10, 11].

In vivo, the ssDNA intermediates produced during DNA damage repair are

first coated by SSB, protecting the ssDNA from degradation, or formation of sec-

ondary structures. However, this SSB-coated ssDNA nucleoprotein array imposes

a significant physical barrier for the nucleation and polymerization of RecA onto

ssDNA [10, 11, 33]. Further, as shown in Chapter 3, SSB destabilizes pre-formed

RecA filaments by occupying the vacated ssDNA sites from ATP-hydrolysis de-

pendent RecA dissociation at the 5′ end [109]. A specialized class of mediator

proteins involved in the RecFOR pathway is evolved to overcome the strong in-

hibitory effect of SSB on RecA filament formation [10, 11, 47]. Among them,

RecO and RecR work together to facilitate formation of RecA filament on SSB-

coated ssDNA, while RecF has been proposed to be involved in other functions

in RecA-mediated HR [10, 11, 47].

E.coli RecO protein (27.6 kDa) promotes renaturation of complementary

DNA strands in an ATP-independent manner [10, 11, 146]. This function is

enhanced by formation of RecO-SSB complex while is inhibited by formation of

RecO-RecR complex [10, 146]. RecO interacts with both ssDNA and SSB while

RecR (22 kDa) has so far no reported ssDNA or SSB binding activities [10, 146].

Therefore, it is believed that in the RecFOR pathway RecO plays an essential

role in the replacement of SSB from ssDNA, making access for RecA loading,

while RecR plays its roles through direct interaction with RecO [10, 146].

∗Note that main contents detailed in this chapter are included in Dynamics and Regulation
of RecA-ssDNA filament by SSB, RecO, and RecR. Le S. et al., manuscript in preparation
(2015).
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Although a wealth of knowledge of these proteins have been obtained from

decades of imaging and bulk biochemical biophysical studies, their ssDNA bind-

ing properties and concerted interplay to regulate RecA filament nucleation, poly-

merization, and stability on individual single ssDNA templates remain largely

unexplored. In this work, using E.coli as a model system, we systematically

studied the conformations of nucleoprotein complexes formed by SSB, RecO,

RecOR, and SSB-RecOR, as well as their effects on RecA filament dynamics and

stability, on single ssDNA molecules manipulated by magnetic tweezers.

6.3 Results

6.3.1 RecO induces folding of ssDNA, while RecOR highly ex-

tends ssDNA

The ssDNA binding property of RecO and the conformations of the resulting

RecO-ssDNA complex still remain unclear, which is addressed in this section.

We investigated the effects of a wide concentration range (1 nM-1 µM) of RecO

on the force-extension curves of a short ssDNA tether (576-nt) in solutions con-

taining 50 mM NaCl, 20 mM Tris-pH 7.4, with/without 10 mM MgCl2. We note

that EcRecA and EcSSB are purchased, EcRecO and EcRecR are expressed and

purified by our collaborator Dr. Korolev Lab (Saint Louis University).

In 50 mM NaCl, the force extension curves of ssDNA recorded with ∼ 300

nM RecO do not have significant hysteresis and are nearly overlapped with that

of naked ssDNA, indicating low level of RecO binding to ssDNA (Figure 6.1A).

When concentration of RecO was increased to 600 nM or higher, significant ex-

tension reductions and hysteresis between force-decrease and force-increase scans

were observed, suggesting that ssDNA is highly folded by high concentrations of

RecO (∼600 nM). Furthermore, the folded RecO-ssDNA complex is stable un-

der moderate force range (<10 pN). The unfolding trajectories under higher

constant forces exhibit irregular extension increase pattern, indicating that the

folded complexes are likely lacking of a regular nucleoprotein structure.

MgCl2 (a concentration of ∼ 1-10 mM) is believed to be presented during

RecA-mediated homologous recombination in vivo. Therefore, we next studied
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Figure 6.1: Force responses of ssDNA bound with RecO, RecOR,
RecOR-SSB. (A-B). Force extension curves of 576-nt ssDNA bound with RecO,
or RecOR in solutions containing 50 mM KCl, without (A) or with (B) 10 mM
MgCl2, with RecO concentration various from 100 nM to 1 µM, and 5 µM RecR
at pH 7.4, 23oC. (C). Force-extension curves of ssDNA bound with RecO, RecO-
SSB, or RecOR-SSB with 50 mM KCl. (D). Force-extension curves of ssDNA
bound with RecO, RecO-SSB, or RecOR-SSB with 50 mM KCl and 10 mM
MgCl2. The orange data show the force-extension curves after 1 µM RecA was
introduced to RecOR-SSB bound ssDNA. In these experiments, RecO was first
introduced to ssDNA tethers.

how RecO binds to ssDNA in the presence of 50 mM NaCl, and 10 mM MgCl2.

For concentrations of RecO <300 nM, no obvious effects of RecO on ssDNA was

observed in our force range; at a concentration of 1 µM, slightly extension changes

at low forces (<8 pN) was observed (Figure 6.1B). However, it does not neces-

sarily suggest that RecO-ssDNA complex presents a non-folding conformation,

since high concentration of MgCl2 (10 mM) is known able to condense ssDNA

at low force [109]. It is likely that the folding level of RecO-ssDNA complex is

similar to that of ssDNA in the presence of high MgCl2.

RecR is known to form dimer and bind to RecO with a monomer ratio of

2:1, while has no reported binding to ssDNA [10]. To ensure sufficient RecR

for formation of RecOR complex, the concentration of RecR in our experiments

was kept as 5 µM when the RecO concentration was 1 µM. In 50 mM NaCl,
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when a mixture of RecR and RecO was introduced to the RecO-ssDNA folded

complex or naked ssDNA, the force-extension curve of ssDNA became much

more stiffening than the naked ssDNA, presumably due to the formation of much

extended structure of the RecOR-ssDNA complex (Figure 6.1A). In the presence

of 10 mM MgCl2, the RecOR-ssDNA complex is also more extended than ssDNA

(Figure 6.1B). These results indicate that RecR relieves the folded RecO-ssDNA

complex to an extended RecOR-ssDNA nucleoprotein complex.

Figure 6.2: Force responses of ssDNA bound with SSB, SSB-RecO,
SSB-RecOR. (A-B). Force extension curves of 576-nt ssDNA bound with SSB,
SSB-RecO, or SSB-RecOR in solutions containing 50 mM KCl, without (A &B)
or with (C) 10 mM MgCl2. In these experiments, SSB was first introduced to
the naked ssDNA tethers.

6.3.2 Neither RecO or RecOR complex removes SSB from ss-

DNA

Next, we examined how RecO and SSB interact (corporately or competitively)

with each other upon binding to ssDNA. We first introduced 1 µM RecO to

ssDNA tether in 50 mM NaCl solution in the absence of MgCl2 to form a RecO-

ssDNA folded complex (Figure 6.1C). Then a mixture of 1 µM RecO and 1 µM

SSB was introduced to this RecO bound ssDNA tether, the force response of

89



Figure 6.3: Neither RecO, nor RecOR is able to facilitate RecA poly-
merization on SSB coated ssDNA at pH 7.4, 23 oC. (A-B). Force extension
curves of SSB coated ssDNA after mixture of SSB, RecO, and RecA (A) or SSB,
RecOR, and RecA was introduced.

ssDNA became much less folded (Figure 6.1C) (Note that the force-response in

the RecO and SSB mixture is still more folded compared to that of SSB-ssDNA

complex), which likely suggests formation of an SSB-RecO-ssDNA complex. On

the other hand, when 1 µM SSB was introduced in the first place to the naked

ssDNA in the same buffered solution, forming a SSB-ssDNA array in the less

wraping mode (Figure 6.2A). Then the mixture of 1 µM RecO and 1 µM SSB was

introduced to this SSB pre-bound ssDNA tether, the force response of ssDNA

became slightly more folded then that of SSB along, which is consistent with

the formation of a SSB-RecO-ssDNA complex. Together, this SSB-RecO-ssDNA

complex (or RecO-SSB-ssDNA complex) is mildly more folded than SSB-ssDNA

complex and much more unfolded then RecO-ssDNA complex.

When 10 mM MgCl2 is presented in the solution, the SSB coated ssDNA is

overall more stiffened than naked ssDNA in the force range, which suggests that

SSB binds to ssDNA in a less wrapping mode [109]. After the introduction of

a mixture of 1 µM RecO and 1 µM SSB, the force-response of ssDNA remains

almost overlapped with the one coated with SSB in the presence of 1 µM SSB

alone (Figure 6.2B). This result suggests that either RecO is not able to bind

to SSB-ssDNA complex in the presence of 10 mM MgCl2, or RecO binds to

SSB-ssDNA and forms a RecO-SSB-ssDNA complex which has similar the force

response as SSB-ssDNA complex.

To sum up, RecO (1 µM) alone fold the ssDNA which reduce the force re-

sponse of ssDNA, SSB (1 µM) alone binds to ssDNA in a less- or non-wrapping
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mode which extended the force response of ssDNA, SSB relieves some level of

the folding effects of RecO when forming the RecO-SSB-ssDNA complex. RecR

(5 µM) further relieve the folding effects and even extended the architecture by

forming the RecOR-ssDNA nucleoprotein array or RecOR-SSB-ssDNA nucleo-

protein array.

Figure 6.4: RecOR stabilizes pre-formed RecA filament in the presence
of SSB. (A-B). Extension time traces of a pre-formed RecA filament in solutions
containing 1 µM RecA, 1 µM SSB, 1 µM RecO, 5 µM RecR with 50 mM KCl,10
mM MgCl2, 20 mM Tris-pH7.4, at 23oC, at 3 pN (A) or 6 pN (B). (C). Force
extension curves of ssDNA bound with SSB (red) or RecA (blue) at pH 6.1. (D).
Extension time traces of SSB-coated ssDNA after introduction of mixture of 1
µM RecA, 1 µM SSB, 1 µM RecO, 5 µM RecR at 31 oC. We note that the
solution introduction was performed at a force of ∼ 20 pN for ∼ 1 min, during
which RecA polymerizes on the SSB coated ssDNA.

6.3.3 Neither RecO alone or RecOR complex is able to assists

RecA loading on SSB-bound ssDNA at pH 7.4 and 23 oC

Having examined the effects of SSB, RecO and RecOR on ssDNA alone or com-

bined, we further investigated how RecA load onto SSB coated ssDNA in the

presence of these mediator proteins. We first tested whether RecO alone or

RecOR are able to facilitate RecA loading onto SSB coated ssDNA. A fully

91



coated SSB-ssDNA tether was formed with 1 µM SSB in standard RecA reaction

solution, followed by sequential introduction of a mixture of 1 µM SSB and 1

µM RecO, and a mixture of 1 µM SSB, 1 µM RecO, and 1 µM RecA (Figure

6.2B). Note that 1 mM ATP and 1x ATP regeneration system were presented

when RecA was included in the protein mixture. The resulting force responses

were overlapped with that with the SSB alone; suggesting that RecO alone is not

able to promote the loading of RecA onto SSB bound ssDNA at pH 7.4 and 22

oC.

Next, we repeated the experiments with additional 5 µM RecR in the protein

mixture. The resulting force-response of ssDNA in the mixture of SSB, RecO,

RecR and RecA overlapped with that in the mixture of SSB, RecO, and RecR,

suggesting that RecOR is also not able to facilitate loading of RecA onto SSB

bound ssDNA at this environmental condition (pH 7.4, 23 oC) (Figure 6.3A&B).

In contrast, in the event of the RecO (RecOR) is pre-bound with ssDNA,

followed by the mixture of SSB, RecO, and RecR, and the mixture of SSB,

RecO, RecR, and RecA, the RecA polymerized on ssDNA and formed a stable

RecA filament even in the presence of SSB (Figure 6.1D). These results suggest

that the barrier step is the rearrangement of RecOR and SSB on the ssDNA,

consistent with previous biochemical studies [10].

6.3.4 The inhibitory effect of SSB on RecA filament formation

is antagnized by lower pH or higher temperature

RecA filament has been reported to be more stable at low pH or high temper-

ature in physiological range. Hence, we further tested whether these favorable

environments are able to reverse the inhibitory effect of SSB on RecA filament

formation with/without presence of RecOR complex. To begin with, we formed a

SSB-ssDNA nucleoprotein array with 1 µM SSB in 50 mM NaCl, 10 mM MgCl2,

at pH 6.1 and 23oC. Then, a mixture of SSB and RecA at the same buffered

solution was introduced. Interestingly, the extension of ssDNA elongated imme-

diately after introduction of the protein mixture, and reached an extended steady

state, suggesting the formation of a stable RecA filament. This result indicates

that RecA are able to nucleate and polymerize on SSB bound ssDNA at pH 6.1,
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even without the assistance of RecOR, which may related to the dimerization

of RecA at low pH [141]. Next, the effect of higher temperature was examined.

An SSB-ssDNA nucleoprotein array was preformed with 1 µM SSB in 50 mM

NaCl, 10 mM MgCl2, at pH 7.4, 23 oC. Then the temperature was increased to

31 oC, followed by introduction of a mixture of SSB, RecO, RecR, and RecA.

The resulting 50% elongated extension (compared to B-form dsDNA) indicat-

ing the formation of RecA filament at 31 oC (Figure 6.3E). The highly dynamic

extension time trace at low force may suggest the competition of the inhibitory

effect of SSB, the stabilizing effect of RecOR and the polymerization-impulsion

of the remained RecA filament.

6.3.5 RecOR stabilizes the pre-formed RecA filament in the

presence of SSB

As we previous reported, a pre-formed RecA filament would de-polymerize due

to binding of SSB to the vacated ssDNA during ATP-hydrolysis mediated RecA

disassociation at low forces (∼3 pN). An interesting question is that what is the

role of RecOR on a pre-formed RecA filament when SSB is presented. Hence,

we preformed a RecA filament in the presence of 1 µM RecA at pH 7.4 and 23

oC, and then introduced the protein mixture of RecA, RecO, RecR, and SSB

into the tethered RecA filament. No net de-polymerization of RecA filament

was observed within our measuring time (>6000 s), indicating that the RecOR

complex stabilizes the RecA filament in the presence of SSB (Figure 6.4A-C).

Together with previous sections, these results suggest that RecOR is able to

facilitate polymerization rather than nucleation of RecA on SSB-coated ssDNA

at pH 7.4 and 23 oC, while lower pH or higher temperature in physiological range

promotes the nucleation of RecA on SSB-coated ssDNA.

6.4 Discussion

In this work, we studied the ssDNA binding properties of RecO and the hetero-

protein complexes (RecOR, RecO-SSB, RecOR-SSB), as well as their influence on

RecA filament formation and stability. We show that RecO tightly folds ssDNA,
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RecOR highly extends ssDNA, and SSB/RecO-SSB/RecOR-SSB complexes wrap

ssDNA at different levels. Under conditions that RecA is not able to nucleate and

polymerize on SSB coated ssDNA, neither RecO nor RecOR can facilitate RecA

nucleation. However, under the same condition RecOR rather than RecO alone

stabilizes a pre-formed RecA filament against net de-polymerization caused by

the presence of SSB. Further, mechanical forces and solution conditions regulate

the conformations of these nucleoprotein complexes sensitively. Based on these

findings, we proposed a model that highlights the potential role of mechanical

properties of the nucleoprotein complexes formed by these mediator proteins on

RecA nucleation, polymerization, and stability.

We showed that RecO binds to ssDNA, resulting in highly folded RecO-

ssDNA nucleoprotein structure. RecO is known to mediate DNA strand-

annealing, which is likely mediated by ssDNA folding by RecO. RecO-SSB-ssDNA

nucleoprotein complex is also relatively more folded compared to SSB-ssDNA

nucleoprotein array. in vivo, SSB first binds to ssDNA and facilitates DNA an-

nealing by removing/preventing the secondary structures on ssDNA, although

adding energy cost to access ssDNA. RecO later binds to SSB-ssDNA array and

forms RecO-SSB-ssDNA complex, on which RecO and SSB rearrange their bind-

ing modes on ssDNA and accomplish DNA annealing together. RecOR, on the

other hand, relieves the folding effect of RecO and extends ssDNA into an fila-

mentous RecOR-ssDNA or RecOR-SSB-ssDNA nucleoprotein structures. RecOR

is known to facilitate RecA loading onto SSB-coated ssDNA in RecF pathway.

Together, distinctive micro-mechanical properties of folded RecO-ssDNA and ex-

tended RecORssDNA conformations likely guided the selection of DNA strand

annealing or RecA-dependent homologous recombination.

Although RecOR has been shown to facilitate RecA-loading onto SSB-coated

ssDNA under certain conditions (<pH 6.8) [128], we showed that under condi-

tions that RecA is not able to nucleate and polymerize on SSB coated ssDNA

(pH 7.4, 23 oC), neither RecO nor RecOR can facilitate RecA nucleation and

polymerization. At the same environmental conditions, however, RecOR, rather

than RecO alone, can stabilize pre-formed RecA nucleoprotein filament, antag-

onizing the de-polymerization effect of SSB. These results likely suggest that at
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these conditions, RecOR is able to stabilize the existing RecA nucleation sites,

rather than facilitating formation of new nucleation sites. From the existing nu-

cleation sites, RecA therefore can polymerize in both directions. In addition,

at higher temperature or lower pH within physiological range, RecA is able to

spontaneously nucleate and polymerize on SSB-coated ssDNA, RecOR at these

conditions, while is not essential, can enhance the polymerization speed of RecA

[128].
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Chapter 7

Theoretical analysis of force

effect on dynamics and stability

of RecA-ssDNA filament

7.1 Chapter summary

In previous chapters, we have investigated the dynamics and regulation of RecA

nucleoprotein filament formed on ssDNA by various mediating proteins and envi-

ronmental factors. Interestingly, an mechanosensitive regulation of RecA nucle-

oprotein filament is identified and is likely universal exist during RecA-mediated

homologous recombinational DNA repair as well as other nucleic acids reactions.

However, the underlining mechanisms of these mechanosensitive regulations are

still elusive. In this chapter, we theoretically analyze the effects of force on

protein-DNA binding kinetics and conformational free energies of naked ssDNA

and RecA nucleoprotein filament. Both the theoretical analysis and experimental

results consistently suggest that mechanical force is capable to sensitively regulate

formation and stability of RecA filament, which provides a possible mechanism

for the observation in previous chapters.
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7.2 Force-free equilibrium binding and unbinding of

protein

We first reviewed equilibrium binding/unbinding of protein based on equilibrium

statistics physics. Assuming a solution of total volume of V contains N molecules

(proteins), each protein occupies a unit volume of ν. The number density and

molar density of the protein are defined as cN = N
V , cA = N/NA

V = c
NA

, where

NA ≈ 6.02×1023 is the Avogadro’s number. The total volume can be discretised

into M lattices by M = V
ν . The lattice occupancy fraction (also termed as

volume fraction) is therefore defined as θ = N
M = Nν

V = cν. Based on the number

of available states (Ω), the entropy is defined as S = kBlnΩ = −kBN lnθ for

diluted solution (i.e., θ � 1). Hence, each protein carries an entropy of −kBlnθ.

When a protein is unbound ‘off’ or bound ‘on’ with a substrate (DNA), the

free energy of the system is: Goff = −TSN = NkBT lnθ, Gon = −ε − TSN-1 =

−ε− (N − 1)kBT lnθ Hence, the free energy cost of binding for the protein is :

∆Gon-off = Gon −Goff = −ε− kBT lnθ = −ε− kBT ln(cν) (7.1)

Next, we denote the probabilities of the bound and unbound states as pon

and poff, respectively. At equilibrium, pon and poff should follow the Boltzmann

distribution:

pon =
e−β∆Gon-off

1 + e−β∆Gon-off
(7.2a)

poff =
1

1 + e−β∆Gon-off
(7.2b)

where β = 1
kBT

. Since for a protein, ∆Gon-off = −ε − kBlnθ, the two terms

control the probability of binding: ε > 0 leads to a negative energy cost, which

favours protein-substrate binding; θ is always < 1, hence kBlnθ always < 0,

leads to a positive energy cost, thereby unfair protein-substrate binding, which is

purely an entropic effect. In addition, the more diluted the protein concentration,

the smaller the θ, thereby the higher the energy cost for binding.
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Further, the ratio of binding and unbinding probabilities is:

pon
poff

= e−β∆Gon-off =
θ

e−βε
=

θ

θ∗
=
cν

θ∗
=

c

kD
(7.3)

where θ∗ = e−βε is the critical occupancy fraction where pon = poff. kD = θ∗

ν is

often referred as dissociation constant (with the same unit as c). The binding

energy ε therefore can be calculated from kD through:

ε = −kBT lnθ∗ = −kBT ln(kDν) (7.4)

7.3 Effects of force on equilibrium binding and unbind-

ing of proteins

Now we consider the situation that an external force F is applied to the substrate

(DNA). The F introduces a force-dependent conformational free energy to the

bound state and unbound state:

Φi(F ) = −
∫ F

0
xi(f

′)df ′, i = on,off. (7.5)

The total free energies of the two states therefore are:

gFoff = Φoff(F ) (7.6a)

gFon = Φon(F ) + µ (7.6b)

where µ = −ε − kBT lnθ = −ε − kBT ln(cν) is the binding energy at zero force,

here we assume that force does not affect ε.

At equilibrium, the binding and unbinding probabilities in the presence of

force, pFon, and pFoff are determined by Boltzmann distribution:

pFoff =
1

ZF
e
− gFoff
kBT (7.7a)
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pFon =
1

ZF
e
− gFon
kBT (7.7b)

where ZF = e
− gFoff
kBT + e

− gFon
kBT is the partition function.

Further, the ratio of binding and unbinding probabilities becomes:

pFon
pFoff

=
e−βg

F
on

e−βg
F
off

=
θeβεe−βΦon(F )

e−βΦoff(F )
=

θ

e−βε
e−β(Φon(F )−Φoff(F )) =

θ

e−βε
e−β∆Φon-off(F )

(7.8)

The critical occupancy fraction θ∗ becomes θ∗ = e−βεeβ∆Φon-off(F ). Therefore, we

can re-define a force-dependent dissociation constant kD(F ) as:

kD(F ) =
θ∗

ν
= ν-1e−βεeβ∆Φon-off(F ) = k0De

β∆Φon-off(F ) (7.9)

7.4 Effect of force on de-polymerization and re-polymerization

of RecA filament

The stability of RecA filament results from the competition between RecA poly-

merization and de-polymerization. When a tensile force F is applied to the

ssDNA, the probability ratio of RecA polymerization and de-polymerization de-

pends on the total free energy cost of polymerization, ∆G(F, ξ), by the Boltz-

mann distribution: pon
poff

= e
∆G(F,ξ)
kBT , where a parameter vector ξ describes the

solution conditions such as temperature, salt concentration and pH. ∆G(F, ξ)

consists of a force-independent term, ∆G0(ξ), from the physical interaction be-

tween RecA and ssDNA, and a force-dependent term, ∆Φ(F, ξ), which is the con-

formational free energy difference between RecA filament and ssDNA:∆Φ(F, ξ) =

ΦRecA(F, ξ)− ΦssDNA(F, ξ). Therefore, at forces when ∆Φ(F, ξ) < 0, RecA fila-

ment formation is promoted by the decreased conformational free energy during

polymerization.

The force dependent conformational free energies of RecA filament and ss-

DNA, ΦRecA(F, ξ) and ΦssDNA(F, ξ), respectively, can be calculated from their

respective force-extension curves xRecA(F, ξ) and xssDNA(f, ξ), through relations:
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ΦRecA(F, ξ) =

∫ F

0
xRecA(f ′, ξ)df ′ (7.10a)

ΦssDNA(F, ξ) =

∫ F

0
xssDNA(f ′, ξ)df ′ (7.10b)

xRecA(F, ξ) and xssDNA(f, ξ) were directly measured in our buffered reaction

solution conditions. The calculated ∆Φ(F, ξ)RecA-ssDNA per RecA monomer is

negative up to 90 pN, force in this range facilitates RecA polymerization by

reducing the free energy cost for polymerization and is optimized in force range

of 20-25 pN (Figure 7.1A). Further, we calculated the effect of force on binding

affinity of RecA on ssDNA. Based on kD(F ) = k0De
β∆ΦRecA-ssDNA(F ), we found that

force effectively reduce the kD in the force range up to ∼90 pN (Figure 7.1B). The

Figure 7.1: Force dependent free energy difference and dissociation con-
stant. (A). Force dependent free energy difference between RecA nucleoprotein
filament and ssDNA per RecA monomer. (B). Force dependent dissociation con-
stant of RecA binding to ssDNA per RecA monomer. Black and blue lines are
calculated based on worm-like chain mode (Eq. 1.2 with A = 1000 nm and
L = 0.52 nm) for RecA, and free-joint chain model (Eq. 1.2) or an analyti-
cal polymer model (Eq.1.3) for ssDNA, respectively (Figure 1.5). Red lines are
calculated based on experimental data (Figure 5.1).

equilibrium between RecA polymerization and de-polymerization depends on the

rates of polymerization and de-polymerization, kon and koff, respectively, through
pon
poff

= kon
koff

. Therefore, the effect of force on shifting the equilibrium must be

through either increasing kon, or decreasing koff, or both of the RecA filament.To

investigate the effects of force on the on-rate, we recorded the extension change

of the ssDNA right after 200 nM MtRecA was introduced at different forces

in 50 mM KCl, 10 mM MgCl2, 20 mM Tris (pH 7.4), with 1 mM ATP, at 23
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oC. Similarly, the force-dependent off-rate was measured for a fully polymerized

MtRecA filament after removal of free RecA in the channel at different forces.

Our results show that force facilitates polymerization while it suppresses de-

polymerization, with maximal effects around 20 pN (Figure 4 in reference [112]).
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Chapter 8

Dynamics and stability of RecA

nucleoprotein filament formed on

dsDNA

8.1 Chapter summary

In previous chapters, we mainly focus on the regulation of RecA nucleoprotein

filament formed on ssDNA. RecA filament formed on dsDNA has also been pro-

posed to be an important functional state during homologous recombinational

DNA repair in vivo. The nucleation, polymerization and de-polymerization of

RecA-dsDNA nucleoprotein filament are dynamically regulated by various phys-

iological factors. Nevertheless, up to date, there is still lacking a comprehensive

understanding of the regulatory mechanisms employed by these factors. Here, in

this chapter, using the single-DNA manipulation platform by magnetic tweezers,

we systematically investigate dynamics of individual EcRecA filaments polymer-

ization and de-polymerization regulated by a set of physiological factors including

temperature, pH, DNA topology and mechanical forces. We identified the op-

timal conditions that favors spontaneous RecA nucleation and polymerization

of RecA filament, as well as conditions that maintain RecA filament stability.

Furthermore, nano-meter spatial resolution examination of the striking dynamic

saw-tooth pattern fluctuation of DNA extension uncovers dynamic competition

between RecA filament stochastic catastrophic de-polymerization and slow re-

103



polymerization. In addition, our data also demonstrated that the S-DNA (a

stretched base-paired form of DNA) is not, although it was previous proposed to

be, a nucleation substrate for RecA filament. Overall, our studies resolved several

previous single-molecule studies that reported seemly contradictory and incon-

sistent results on RecA nucleation, polymerization and stability. Furthermore,

our findings also cast lights on the molecular nature of RecA-dsDNA filament

formation and stability in vivo. ∗

8.2 Introduction

As introduced and discussed in previous chapters, the bacterial RecA filament

formed on ssDNA, which is dynamically regulated by various factors, is critical

in homologous recombinational DNA repair. In each RecA monomer, there are

two distinct (primary and secondary) DNA binding sites [10, 11]. While RecA-

ssDNA filament formation is through the primary binding sites, the secondary

binding sites of RecA filament weekly interact with dsDNA during homologous

search and strand exchange [10, 11, 147].

Studies have reported that RecA can aslo nucleate and polymerize on ds-

DNA besides its primary form of RecA-ssDNA nucleoprotein filament [10, 11,

18, 22, 29, 30, 147–150]. Importantly, the RecA-dsDNA nucleoprotein filament

possibly exists as a functional state during DNA strand exchange [147]. Hence,

a comprehensive understanding of the properties of RecA-dsDNA filament in

physiologically relevant conditions, and the regulatory factors, ultimately the

nature of dynamics of RecA-dsDNA nucleoprotein filament may provide insights

for homologous recombination.

Previously, plenty of single-molecule manipulation experiments studying

the polymerization/de-polymerization dynamics of RecA nucleoprotein filament

formed on dsDNA [18, 22, 29, 30, 149]. While some of them demonstrated that

RecA fails to nucleate and polymerize on dsDNA at low force (several pN), and a

pre-formed RecA-dsDNA filament is unstable, leading to a net de-polymerization

∗Note that main contents detailed in this chapter have been published in Dynamics and
Regulation of RecA polymerization and de-polymerization on double-stranded DNA. Fu H., Le
S. et al., PLoS ONE 8(6): e66712 (2013).

104



[149], while some others have shown spontaneous polymerization of RecA on ds-

DNA at low mechanical forces, leading to a stable RecA-dsDNA nucleoprotein

filament [18, 22, 29, 30]. Furthermore, in studies reporting net RecA polymer-

ization at low force, while some reported spontaneous nucleation at low force

[22, 30], an initial large force (∼65 pN) for DNA overstretching transition was

often required to promote the initial RecA nucleation [18, 29, 149]. Up to now,

it is still unclear about the causes of the above contradictions.

In addition, the nature of RecA polymerization assisted by DNA overstretch-

ing is also unclear. Since the torsion-unconstraint DNA overstretching transition

at ∼ 65 pN involves two DNA structural transitions: strand-pealing transition

which produces two ssDNAs, and B-to-S transitions resulting in a base-paired

extended DNA structure now normally termed as the S-DNA. [92–97] While

the ssDNA is a known binding substrate for RecA nucleation, the elongated S-

DNA has also been proposed for RecA nucleation and polymerization[18, 89, 92].

Hence, an interesting question is whether one or both of the structural transitions

assist the nucleation of RecA.

To understand the nature of dynamics of RecA-ssDNA filament, firstly, it

is important to resolve the conflicting observations. A possible cause of the

contradictions might be the different experimental conditions employed in those

previously studies, since microenvironmental factors, such as pH, temperature,

salt concentration and force affect various cellular processes. Therefore, we first

systematically examined this premise by investigating the dynamic competition

between RecA-dsDNA filament polymerization and de-polymerization regulated

by temperature, pH, salt, tensile force, and dsDNA topology. We indentified the

optimal conditions that favour spontaneous RecA nucleation and polymerization

of RecA filament, as well as conditions that maintain RecA filament stability,

and resolved the contradictory observations. Moreover, previous experiments

were performed with long DNA molecules (usually >10 µm), which leads to

missing the detailed dynamics of RecA-dsDNA filament. Hence, we then moni-

tored the detailed real-time dynamics of the competition between RecA filament

polymerization and de-polymerization using much shorter DNA (∼200 nm) which

enables nano-meter scale resolution. Furthermore, based on the different dynam-
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ics of RecA filament formed on differently designed dsDNA, we proposed a RecA

filament end-capping model, which explains the molecular natures of formation

and stability of RecA-dsDNA nucleoprotein filament.

8.3 Results

8.3.1 Balance between RecA polymerization and de-polymerization

regulated by temperature and pH within physiological

range

To begin with, in this section, we investigated the effects of temperature, pH and

force on dynamics of RecA-dsDNA filament, since these factors were different in

several previous studies [18, 22, 29, 30, 149, 150]. At 24oC in 20 mM Tris (pH 7.4),

1 µM RecA, 50 mM KCl, 10 mM MgCl2, 1 mM ATP and 1∼ ATP regeneration

system, no RecA polymerizes on dsDNA over a wide force ranges up to 48.9

pN, indicated by the constant DNA extensions at corresponding forces, without

extension elongation at corresponding DNA holding time (Figure 8.1A). To test

whether at this reaction condition, DNA overstretching transition can assist the

nucleation and polymerization of RecA, we applied a large force of ∼72.8pN, at

which, DNA went through overstretching transition, as indicated by the initial

extension elongation of ∼1.7-fold (red in the figure panel of Fig. 1A). With the

assist of DNA overstretching at this force, RecA starts to polymerize along DNA,

indicated by the shortening of DNA extension afterwards. The observed DNA

extension shortening is due to extension difference of a RecA-dsDNA filament

and an overstretched DNA, with contour length of ∼ 1.5 times [18, 22, 149] and

∼ 1.7 times [81, 85] compared to that of B-DNA, respectively. Roughly, the

extension difference between them is ∼ 0.07 nm/bp ((1.7− 1.5)× 0.34 nm/bp).

Therefore, during holding DNA for ∼ 80 sec at ∼ 72.8 pN, ∼ 4,286 bp of dsDNA

is covered by RecA filaments with DNA extension reduced ∼300 nm.

To test whether the partially polymerized RecA-dsDNA filament is able to

continue polymerization at low force, we decreased the force to ∼6.2 pN. The ini-

tial extension after force drop is ∼777 nm longer than B-DNA, which is consistent

with that RecA is partially polymerized on DNA at high force. An estimation
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of ∼4,571 bp RecA-dsDNA filaments agrees well with that estimated at higher

force (∼10 % relative error).

However, the partial RecA-dsDNA filament went through progressive de-

polymerization and returned to B-DNA at this force, indicated by the correspond-

ing DNA extension shortening. These observation of unstable RecA-dsDNA fil-

ament at low forces are fully consistent with that observed by Feinstein et al.

[149] in similar reaction solutions.

We repeated the experiments at 37 oC with other conditions remain un-

changed. After the initial force-assisted nucleation of RecA at ∼ 58.8 pN (the

onset force of DNA overstretching transition at this temperature), progressive

RecA polymerization continues when force was decreased to ∼ 6.2 pN (Figure

8.1B). The DNA extension elongated to about 21 µm (∼1.3 times of the B-DNA)

in the first 600 second, followed by a slower growing to nearly steady state in

the following 1,200 seconds. In addition, we note that at this temperature, spon-

taneous nucleation and polymerization of RecA on dsDNA can also tack place

without facilitation of force-induced DNA overstretching transition as shown in

inset of Figure 8.1B. This higher temperature assisted spontaneous RecA fila-

ment polymerization is consistent with the study by Shivashankar et al. [22].

Additionally, in experiments, same DNA tether can be re-used by utilizing the

fact that RecA-dsDNA filaments quickly and fully de-polymerize and return to

B-DNA when ATP is replaced with ADP in the absence of free RecA in solution

(Fig. 8.1C).

Next, we repeated the experiments with a low pH (pH 6.1) while remaining

the temperature at 24oC. As shown in Figure 8.1D, during introduction of the

proteins, spontaneous RecA nucleation and polymerization took place at low

force. The polymerized RecA filament then rapidly de-polymerized when pH

was changed to 7.4 (Figure 8.1E).

Together the results depicted in Figure 8.1A-E, in this section, we demon-

strated that the dynamics of RecA-dsDNA filaments is sensitively governed by

temperature and pH. At low forces, RecA can polymerize at higher temperature

and/or lower pH values and the resulting RecA-dsDNA filament is stable; On the

other hand, RecA is not able to nucleate and polymerized at lower temperature
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and higher pH, where a pre-existing RecA-dsDNA filament is unstable and goes

through net de-polymerization until return to B-DNA.
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Figure 8.1: Effects of temperature and pH on the formation and sta-
bility of RecA filament. (A) Time trace of RecA polymerization and de-
polymerization in a λ-DNA in 1 µM RecA, 50 mM KCl, 10 mM MgCl2, 1 mM
ATP, 1× ATP regeneration system, pH 7.4, and 24o C, at different forces indi-
cated by different colors. Progressive polymerization was observed at ∼72.8 pN
after DNA overstretching indicated by shortening in DNA extension (red allow),
while de-polymerization was observed when force was decreased to ∼ 6.2 pN
(blue arrow). (B) Following the complete de-polymerization in (A), time trace
was obtained on the same DNA at 37 oC (other conditions remained unchanged).
Progressive polymerization was observed at∼6.2 pN (blue data points) after initi-
ation with DNA overstretching transition by ∼58.8 pN for a short time duration
(red arrow). (C) Time trace of de-polymerization of the RecA nucleoprotein
filament formed in (B) after introduction of 1 mM mixture of ATP and ADP
(ATP : ADP = 1 : 5) (other conditions remained unchanged) at ∼6.2 pN. (D)
Time trace of spontaneous RecA polymerization on a different λ-DNA at pH 6.2,
24 oC, and 9.5 pN without initiation by DNA overstretching. (E) Time trace
of de-polymerization of RecA nucleoprotein filament formed in (D) after pH was
changed to 7.4 with 1 mM ATP (blue and dark grey data at different forces) and
with 1 mM ADP (green data). The noisy data in (C-E) in the shadowed areas
were recorded during buffer exchanging.
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8.3.2 Nano-meter scale, detailed dynamics of RecA-dsDNA fil-

ament polymerization and de-polymerization

Figure 8.2: Detailed dynamics of short RecA filaments in different KCl
concentrations. (A-B) Time traces of polymerization and de-polymerization
of RecA nucleoprotein filament on a 595 bp dsDNA in 1 µM RecA 1 mM ATP,
1× ATP regeneration system, 24 oC, pH 7.4, with 50 mM KCl (A) first then
150 mM KCl (B) next. Data in the left panels were recorded at different forces
indicated by different colors. Right panels show dynamics of the competition
between polymerization and de-polymerization under a constant force of ∼34.1
pN. Inset shows the sketch of the 595 bp DNA containing one closed end and
one open end.

In previous section, we have systematically shown that temperature and pH gov-

erned the balance of polymerization and de-polymerization dynamics of RecA-

dsDNA filament. However, due to the use of long DNA (∼16 µm) template

in the experiments, the detailed competition dynamics were buried in the large

noise due to DNA longitude fluctuation. Hence, in following sections, we ex-

amine the nano-meter scale dynamics of competitive dynamics of RecA-dsDNA

filament polymerization and de-polymerization using much shorter DNA (∼600

bp). We note that, for short dsDNA tethers, we only focus on extension changes
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at constant forces, which reveals the dynamics of RecA-dsDNA nucleoprotein

filament.

As shown in Figure 8.2A-B, we first examined the detailed dynamics of the

RecA nucleoprotein filament formed on the 595 bp dsDNA, whose end is topo-

logically closed to avoid potential strand-dissociation due to DNA overstretching,

in reaction solutions containing 10 mM MgCl2, 20 mM Tris-HCl (pH 7.4), 1 uM

RecA, 1mM ATP, 1×ATP regeneration system, and 50 mM (A) or 150 mM (B)

KCl, at 24 oC. At this temperature, RecA polymerization was initiated with

assistance of DNA overstretching transition, and indicated by the extension de-

crease at ∼ 60 pN. After the DNA is nearly fully polymerized with RecA, we

decreased the forces to lower value and monitored the extension dynamics over

long time.

Figure 8.2A, left panel shows the time course of the experiment from over-

stretching assisted polymerization to de-polymerization at lower force values.

RecA was fully polymerized at force greater than 63.3 pN. The right panel shows

the extension dynamics at a constant force of ∼34.1 pN over ∼ 380 seconds.

Interestingly, with 50 mM KCl, we observed a dynamic saw-tooth pattern of

the DNA extension with stochastic abrupt extension drops (step sizes up to ∼30

nm) and a followed slow extension elongation at the decreased constant forces

(Figure 8.2A). We reason that the saw-tooth dynamic pattern is due to that

at this force range, RecA de-polymerization processes (indicated by the abrupt

drops of extension) only slightly out-competed RecA re-polymerization processes

(indicated by slow extension elongation). Consistently, it took a longer time of >

300 seconds for the RecA-dsDNA filament de-polymerize for ∼ 100 nm, from ∼

280 nm to ∼ 190 nm, compared to lower forces, where RecA fully de-polymerized

from DNA which thereby returned to B-DNA.

Since dsDNA stability is sensitive to salt concentration, we hypothesize that

the saw-tooth dynamics pattern due to the balance of RecA polymerization/de-

polymerization may also sensitive to salt concentration. To test it, we repeat

the experiments with higher KCl concentration of 150 mM while other condi-

tions remain the same (Figure 8.2B). Consistent with the hypothesis, stochastic

abrupt extension drops due to dynamic RecA de-polymerization were still ob-
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served, however, the followed slow re-polymerization processes were much less

often compared to that with 50 mM KCl. Moreover, a plateau of DNA extension

was often observed between two continuous RecA de-polymerization events. The

overall net de-polymerization process was much faster (it took ∼100 seconds for

∼ 100 nm extension drop) compared to that with lower salt concentration, which

also demonstrated a predominated RecA de-polymerization dynamics at higher

salt concentrations.

Figure 8.3: Effects of temperature on short RecA filaments. (A-B) Time
traces of polymerization and de-polymerization of RecA nucleoprotein filament
on another 595 bp dsDNA tether in 1 µMRecA 1 mM ATP, 1× ATP regeneration
system, 50 mM KCl, 10 mM MgCl2, pH 7.4, at 37 oC (A) first then 24 oC (B)
next. Different colors indicate data at different forces. The results revealed stable
RecA nucleoprotein filament at 37 oC and unstable RecA nucleoprotein filament
at 24 oC at low force, consistent with results obtained on large λ-DNA (Figure
8.2A-B).

Further, we examine the detailed dynamics of RecA-dsDNA nucleoprotein

filament affected by temperature. At a high temperature of 37 oC with 50 mM

KCl, 10 mM MgCl2 (Figure 8.3A), the detailed saw-tooth dynamics were also

observed at ∼ 40 pN. However, no net de-polymerization of RecA filament was

observed over the experimental time scale, which is consistent with that higher

temperature facilitates polymerization of RecA-dsDNA filament therefore shifts

the balance and maintain the stability of RecA-dsDNA filament. Next, we further

reduced the force to ∼ 3 pN, the saw-tooth fluctuation of RecA-dsDNA filament

sustained with an extension of 1.5 times that of B-DNA, indicating a fully poly-

merized RecA-dsDNA with dynamic de-polymerization and re-polymerization.

Next, we repeat the experiment at 24oC (with other conditions unchanged)

on the same DNA tether(Figure 8.3). The resulting saw-tooth DNA extension
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dynamics at ∼ 40 pN and net RecA de-polymerization at low forces are consistent

with findings shown in Figure 8.1A and Figure 8.2A. In addition, the pH effects

on the dynamics of RecA-dsDNA filament is also re-examined with short DNA

tether and consistent observations were obtained.

In summary, in this section, by examining the detailed dynamic of RecA-

dsDNA filament at nano-meter resolution, we found a saw-tooth polymerization/de-

polymerization dynamics pattern of RecA-dsDNA filament. These results in-

dicate that RecA-dsDNA filament de-polymerization process involves highly

stochastic, abrupt, stepwise events with extension reduction step size of ∼5-40

nm, corresponding to ∼ 10-80 bp DNA at per de-polymerization event. In other

word, each RecA de-polymerization event is a highly cooperative, stochastic pro-

cess involving ∼ 10- 80 bp DNA patches covered by 3-20 RecA monomers. In

contrast, RecA re-polymerization on dsDNA seems to be much slower with no

clear steps determinable by our experimental approach.

8.3.3 The elongated S-DNA is not the binding template for

RecA nucleoprotein filament

As introduced previously, DNA overstretching transition at ∼ 65 pN is usually

utilized to assist initial RecA nucleation and/or polymerization afterwards on

dsDNA. However, the facilitation mechanism is still unclear. Since the DNA

overstretching transition at ∼ 65 pN of torsion-unconstrained DNA in fact in-

volves two different structural changes: 1) ‘strand-peeling’ by which one strand is

peeled-off and coiled while another strand remains under force; 2) ‘B-to-S’ tran-

sition, which produce a elongated, base-paired dsDNA, now normally termed

as S-DNA [92–97]. Note that, another overstretching form termed as ‘melting

bubble’, or ‘inside-strand-separation’ of dsDNA where the two strands of ssDNA

parallelly shared the force is not considered in our experiments since the designed

DNA ensures it is not the case in our experimental condition [92–96]. Further,

in physiological conditions at forces of ∼65 pN, strand-peeling and B-to-S tran-

sitions may co-exsist, whose selection is tuned by base-pair stability difference

due to salt-concentration, temperature, and GC percentage [92–96]. B-to-S tran-

sition out-competes the other transition under conditions of higher base-pair
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stability [92–95]. While ssDNA is known binding template for RecA filament,

the elongated S-DNA is also proposed to be a suitable template for RecA fila-

ment [18, 89, 92]. Hence, the question remaining unclear is that whether S-DNA

is the binding template for RecA nucleation and polymerization.

To test this hypothesis, we examined the potential RecA binding on pure

S-DNA after B-to-S transition at ∼ 65 pN (Figure 8.4). The two DNA are

specially designed to ensure B-to-S transition by using GC-rich handles or closed-

ends, both of which prevents strand-peeling and resulted in pure S-DNA, which

lacks extension hysteresis between force increasing scan and force decreasing scan

(Figure 8.4A) [92–96].

Figure 8.4: The S-DNA produced in the B-to-S transition does not
promote RecA nucleoprotein filament formation. (A) Time traces of the
extension of an 876 bp DNA tether with two GC-rich ends recorded during B-
to-S transition in force-increase scan and the reverse S-to-B transition in the
subsequent force-decrease scan in 50 mM KCl, 10 mM MgCl2, pH 7.4, at 24
oC. The transitions are completely reversible, indicated by the same extensions
recorded at the same forces during the force-increase and force-decrease scans.
Inset on the top shows a sketch of the 876 bp DNA; (B-C) Results identical to
those in (A) were obtained when the same experiments were repeated on the
same DNA tether in 1 µM RecA and 1 mM ATP, 1× ATP regeneration system
(B) or in 1 µM RecA and 1 mM ATPγS (C), indicating no RecA filaments formed
on the S-DNA produced by the B-to-S transition within the experimental time
scale.

Next, we introduced 1 µM RecA with ATP (B) or ATPγS (C) to the DNA,

and monitored the extension dynamics of the DNA during and after B-to-S tran-

sition (Figure 8.4B&C). The resulting extension in the presence of RecA were

identical with that in the absence of RecA, indicating that RecA did not nucle-
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ated and polymerized during and after B-to-S transition. Since RecA was always

start to nucleate and polymerize within seconds during DNA overtretching in

identical solutions as shown in previous sections, it is safe to conclude that S-

DNA is not a preferable binding template for RecA nucleoprotein filament. In

other words, the often used DNA overstretching facilitated RecA nucleation is

mainly through RecA binding to ssDNA produced during the transition.

8.3.4 The molecular nature of RecA nucleoprotein filament on

dsDNA

Figure 8.5: Effects of ssDNA 5′ overhangs on the formation of RecA
nucleoprotein filaments. (A) Time traces of the extension of one end-closed
595 bp DNA with a 12 nt 5′ ssDNA tail in 1 µM RecA, 1 mM ATP, 1×ATP re-
generation system , 50 mM KCl, 10 mM MgCl2, pH 7.4, at 37 oC. A stable RecA
nucleoprotein filament was formed after a spontaneous RecA polymerization at
∼5 pN. (B) Time traces of a DNA with the same structure as the DNA in (A)
at 24 oC (other conditions remained unchanged). A stable RecA nucleoprotein
filament was also observed for over 5000 second, after a spontaneous RecA poly-
merization at ∼3 pN. The shadowed area represents the process of solution flow
with RecA.(C). Force responses of a 595 bp one-end closed DNA with a 12 nt 5′

ssDNA (Black), and the same DNA with RecA filament formed (Red). The ex-
tension of the DNA formed with RecA filament is about 50% longer than that of
naked DNA before RecA was introduced. After remove the RecA by exchanging
to pure buffered solution, the RecA filament de-polymerized and resulting DNA
extension (blue) overlaps with naked DNA extension.

A prediction from the foregoing conclusion is that a pre-existing ssDNA-overhang

would facilitate spontaneous nucleation polymerization of RecA at low forces
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under conditions favoring net RecA polymerization. In addition, it has been

widely accepted that RecA polymerize on DNA predominately in 5′-to-3′ direc-

tion. Therefore, we tested it by monitoring the extension dynamics of a short

dsDNA (595-bp) containing a 12-nt 5′ ssDNA-overhang in standard reaction so-

lution at 37oC. Note that the selection of 12 nt is because that a minimal biding

site for initial RecA nucleation has been demonstrated to ∼9 nt [19].

Figure 8.6: Time traces of the extension of a 595 bp DNA with a 12
nt 3′ ssDNA tail and another end sealed (A) Time traces of the extension
of the DNA in 1 µM RecA, 50 mM KCl, 10 mM MgCl2, 1 mM ATP, 1×ATP
regeneration system, pH 7.4, and 37 oC. Within the experimental time scale of
1600 seconds, the DNA extension remained at the B-DNA extension, indicat-
ing that 3′ ssDNA overhang did not promote RecA filament formation at low
force. (B) Time trace of the same DNA in the same solution and temperature
condition, when the force was subsequently increased to > 60 pN where DNA
overstretching transition occurred, the RecA polymerization immediately started
and the resulting RecA filament was stable. When the force was reduced to 6.4
pN, the DNA extension was still ∼120 nm longer than the B-DNA before RecA
polymerization, indicating a stable RecA filament at low force.

As shown in Figure 8.5A, at ∼5.6 pN, when RecA was introduced to the

DNA with 5′-ssDNA handle, RecA spontaneously and rapidly polymerized on

the DNA, resulting in a steady fully polymerized RecA filament within ∼40 sec-

onds, indicated by ∼120 nm longer (∼50% to B-DNA) extension compared to

that before protein introduction. Further, the fully polymerized RecA-dsDNA fil-

ament also underwent large rapid dynamics while the overall extension remained

that of a fully polymerized RecA filament over a long time (∼ 600 seconds tested).

In addition, we repeat similar experiments with the DNA construct with a

12nt 3′-ssDNA-overhang at the same solution conditions. No spontaneous RecA

nucleation and polymerization was observed over 1500 seconds tested at low
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force of ∼ 6.4 pN (Fig. S7A). Besides, the much less dynamic fluctuation of the

DNA extension (∼ 4 nm standard variance) compared to that with RecA-dsDNA

filament (18 nm standard variance) also consistently suggests that RecA did not

polymerize/de-polymerize on this DNA structure at this condition. Future, we

facilitated the nucleation and polymerization of RecA on this DNA by increasing

force to > 60 pN, consistently, RecA started to polymerize and results in stable

RecA filament on dsDNA (Figure 8.6). The results further support that a 5′-to-3′

direction polymerization of RecA along ssDNA is pre-dominated.

Surprisingly, rapid spontaneous RecA polymerizationwith on DNA contain-

ing 12-nt 5′-ssDNA at 24oC in the same solution condition was observed (Figure

8.5B). The resulting fully polymerized RecA filament (∼ 110 nm longer (∼ 50%)

than B-DNA (Figure 8.5B&C) also underwent rapid large dynamics while main-

taining an overall constant averaged extension over ∼5000 seconds tested (Figure

8.5B). In addition, after washing away RecA and ATP in solution, bound RecA

de-polymerized and the DNA returned to B-DNA (Figure 8.5C).

This result is interesting because that RecA was not able to nucleate and

polymerize spontaneously on blunted-ends DNA at the same solution condition as

shown in Figures 8.1A, 8.2A, and 8.3B. More importantly, at the same condition,

a pre-existing fully polymerized RecA filament on blunted-ends DNA is unstable

with a step-wise net de-polymerization. These inconsistencies of the dynamics

of recA filament formed on ssDNA-tailed-DNA and blunted-ends DNA highlight

the importance of the ssDNA tail on the stability of RecA filament. The tail

role can be understood as following: RecA nucleates and polymerized on the

5′ ssDNA tail, forming a stable RecA-ssDNA filament at the 5′ end region; the

filament is able to outcompetes the re-annealing of DNA pairing a pre-formed

stable RecA-ssDNA filament on the 5′ end outcompetes the re-annealing of DNA

pairing by hydrogen bonds to a complementary sequence, thereby continuously

invading into dsDNA region along 5′ to 3′ direction and forming a stable RecA-

dsDNA.
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8.4 Discussion

In this chapter, we systematically investigated how physiological factors such as

temperature, pH, force and ionic strength, as well as the topology of DNA gov-

ern the RecA filament polymerization/de-polymerization dynamics on individual

dsDNA at nano-meter scales. We showed that the balance of the competition

between polymerization and de-polymerization of RecA filament is delicately reg-

ulated by these factors over wide physiological ranges, which reconciled a large

set of previous results with apparently discrepancy. We summarized the effects

of these factors in Table 8.1 and Figure 8.7. Furthermore, the molecular nature

of dynamics and stability of RecA filament is uncovered based on the findings,

which will be detailed below.

We note that there are still many other regulatory factors on the dynamics of

RecA-dsDNA nucleoprotein filaments, such as the nucleotide types (ADP, ATP,

ATPγS, etc) and concentrations, divalent salts (CaCl2, MgCl2), torques on DNA

[28, 29, 147]. Also, RecA from different bacterial species may have different

kinetics and stability when they form filaments on dsDNA. These additional

factors will be further investigated in our future studies.

We found that the ssDNA generated due to ssDNA stand-separation dur-

ing DNA overstretching transition is the binding template for RecA nucleation,

therefore, alleviates the energy barrier. This is further supported by the finding

that RecA can spontaneously nucleate and polymerize onto dsDNA with a 5′

ssDNA overhang. Further, these findings suggest that RecA-dsDNA nucleopro-

tein filament formation is likely started from an initial nucleation on one ssDNA

strand of the dsDNA and then invaded via this ssDNA strand into dsDNA and

polymerizes along the same stran in a 5′-to-3′ direction, while another strand

interacting with the RecA on the leading strand through secondary binding sites

on RecA, resulting in a polymerized RecA nucleoprotein filament on dsDNA.

This culminates in formation ssDNA-RecA-ssDNA co-filament, consistent with

the model proposed by Pugh and Cox [147]. Note that in this study, we still refer

this filament as RecA-dsDNA filament.

Moreover, the dynamics and stability of a RecA-dsDNA nucleoprotein fila-
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Summary of major results of RecA nucleation, polymerization on dsDNA and its stability
Experimental Conditions DNA structures RecA nucleation, polymerization, and stability

24 oC, pH 7.4

DNA with blunt ends: 1.Nucleation requires force-induced DNA strand-peeling transition;
48,502 bp λ-DNA; 2. Polymerization requires high force (> 40 pN);
or 595 bp one-end-sealed DNA 3. Pre-formed RecA filament is unstable at forces of several pN;

24 oC, pH 7.4
DNA with 5′ssDNA 12-nt tail 1. Spontaneous nucleation and polymerization without assistance of DNA strand-peeling;

2. Pre-formed RecA filament is stable at forces of several pN;

24 oC, pH 7.4 876 bp DNA with two GC rich handles; Nucleation and polymerization do not occur during DNA B-to-S transition;
or 600 bp GC rich end-closed DNA

37 oC, pH 7.4

DNA with blunt ends: 1.Nucleation requires requires force-induced DNA strand-peeling transition;
48,502 bp λ-DNA; 2. Progressive polymerization occurs at forces of several pN;
or 595 bp one-end-sealed DNA 3. Pre-formed RecA filament is stable forces of several pN;

37 oC, pH 7.4
DNA with 5′ ssDNA 12-nt tail 1. Spontaneous nucleation and polymerization without assistance of DNA strand-peeling;

2. Pre-formed RecA filament is stable at forces of several pN;

24 oC, pH 6.2

DNA with blunt ends: 1.Spontaneous nucleation and polymerization at forces of several pN;
48,502 bp λ-DNA; 2. Pre-formed RecA filament is stable at forces of several pN;
or 595 bp one-end-sealed DNA

Table 8.1: Summary of major results of RecA nucleation, polymerization on
dsDNA and its stability

ment is in fact governed by three main factors: 1) nucleation and polymerization

of RecA on the leading ssDNA strand, 2) de-polymerization of RecA on the

leading ssDNA strand due to ATP hydrolysis, 3) base-pair stability of dsDNA/

re-annealing of base paired strands. The environmental factors, including pH,

temperature, force and salt concentration, as well as DNA topology are in factor

selectively tuning one or all off these three pre-dominate factors. For instance,

lower pH facilitates dimerization of RecA, and hence assists nucleation and poly-

merization of RecA on the leading ssDNA strand. Higher temperature and higher

force lower the stability of dsDNA, at the same time facilitate polymerization of

RecA along the leading ssDNA strand and reduce de-polymerization of RecA

from the leading ssDNA strand. A 5′-end ssDNA tail ensures RecA nucleation

and polymerization along the tailed ssDNA strand, furthermore, due to lacking

a complementary ssDNA strand to base pair the tail, the resulting RecA-dsDNA

filament is stablly capped by a RecA-ssDNA filament at the tail region. In addi-

tion, RecA cannot nucleate and polymerize on elongated base-paired S-DNA is

consistently due to the increased stability of dsDNA in S form state.
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Figure 8.7: Mechanistic models of the stability of RecA filaments formed
on dsDNA. (A) On dsDNA with blunt ends, at 37 oC and pH 7.4 or 24 oC and
pH 6.2, polymerization of a partially formed RecA filament outcompetes DNA re-
hybridization, leading to a net extension of the RecA filament into a stable fully
coated RecA filament. In contrast, at 24 oC and pH 7.4, DNA re-hybridization
outcompetes RecA polymerization, leading to a net de-polymerization of the
RecA filament into a stable B-form DNA. (B) On dsDNA with a 5′ ssDNA over-
hang that provides sites to initial RecA nucleation and polymerization, invasion
of the RecA filament formed on the ssDNA overhang into the dsDNA region
occurred in 24-37 oC and pH 7.4, leading to stable fully coated RecA filament
explained by the end-capping mechanism discussed in the text.

In summary, our findings based on systematic examination of the dynamics

and stability of RecA-dsDNA nucleoprotein filament regulated by a set of environ-

mental physiological factors, including pH, force, temperature, DNA overhangs,

not only reconcile previous conflicting results from separated studies, but also

advanced our understanding of the molecular nature of dynamics and stability

of RecA nucleoprotein filament formed on dsDNA in various physiological mi-

croenvironments, which further provide new insights to RecA activities during

homologous recombination in vivo.
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Chapter 9

Other studies

I–Mechanosensitive regulation of

single specific protein-DNA

(IHF-H′) complex

9.1 Chapter summary

Force has been recognized as one of the critical determinants in many crucial

biological processes. In previous chapters, we have demonstrated its potential

critical role in dynamics and regulation of RecA nucleoprotein filament during

DNA repair and recombination. Due to the ubiquitous presence of force in vivo,

mechanical force also likely affects gene regulation. To test this possibility, we

systematically examined how force may affect the binding dynamics of E. coli

integration host factor (IHF), an important transcription factor, to its specific

binding sequence at a single protein-DNA complex level in real time. We found

that, pico-Newton force drastically re-defined the stability of this specific protein-

DNA complex. These results indicate that force is likely one of the critical

physiological factors for transcription regulation. In addition, we demonstrated

the first time that single short DNA manipulation using magnetic tweezers can

resolve single site specific protein-DNA binding dynamics and can be further
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used to quantify DNA bending angle by a single protein. Overall, this study

has broad implications for site-specific DNA distorting proteins regarding their

mechanosensitivity. ∗

9.2 Introduction

DNA in cells is the main bank storing the genetic information that can be ac-

cessed by gene transcription. Gene transcription is tightly governed by various

protein-DNA interactions. Particularly, site-specific DNA-protein binding plays

crucial role in the regulation of gene transcription. For instance, to initiate gene

transcription, RNA polymerase is recruited to some specific promoter sequences

where a variety of transcription factors binds to as well to regulate transcription

level [151, 152]. An estimation of ∼400 transcription factors that bind to DNA in

E. coli has been reported previously [152, 153]. Furthermore, Site-specific DNA

binding by proteins is also key factors in many other cellular processes such as

DNA replications, site-specific recombination [154, 155]. Hence, detailed infor-

mation of these site-specific DNA binding by proteins as well as their regulatory

factors will enhance our understanding of their cellular functions. It has been

well known that various cellular proteins and environmental factors including

pH, temperature and salt osmolarity sensitively regulate the activities of these

site-specific DNA-protein complexes [152]. For decades, these microenvironmen-

tal factors have been extensively studied by biochemical, biophysical approaches

[152].

However, a gap still waits to be bridged due to lack of investigation on the

potential regulatory roles of force in site-specific DNA-protein interactions during

DNA transactions. As introduced in Chapter 1, mechanical force has now been

established to be a key dominates in diverse cellular processes. Force in vivo can

be generated by various cellular machineries. Particularly, in nucleus, forces up to

∼ 30 pN on DNA can be exerted by DNA/RNA polymerases [72, 73]. In addition,

due to the attachment of the nucleoid and the cell wall [6], tension in DNA is

∗Note that main contents detailed in this chapter have been published in Mechanosensing of
DNA bending in a single specific protein-DNA complex. Le S. et al., Scientific Reports 3-3508
(2013).
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likely built up during DNA packaging. Furthermore, forces of pN are expected

based on∼ kBT range interaction energy in nm scale interaction distance between

protein and DNA. Considering the ubiquitous presence of forces on chromosomal

DNA, force is expected to influence the site-specific DNA-protein interactions.

To test it, we systematically probed the effects of force on a specific DNA binding

by E. coli integration host factor (IHF), an important gene transcription factor

[152–154].

Discovered decades ago as an essential factor in site-specific recombination of

phage λ gene into E. coli genome [154], IHF is now known to also regulate gene

transcriptions in E. coli [156] and S. typhimurium [157]. The capability of IHF

to sharply bend several specific sequences plays major roles for its functions [158,

159]. By inducing sharp bending of these sequences, it bridges remote sequences,

thereby promotes long-distance interactions. A so-called H′ sequence (34-bp) has

the highest binding affinity to IHF with a dissociation constant reported to be

in a range of 2-20 nM based on ensemble biochemical measurement [155, 160],

and < 1 nM reported by stop flow measurements [161]. Furthermore, the sharp

bending angle of H′ by IHF binding has also been determined with a value of

∼160o (X-ray crystallization [158]), or > 120o (atomic force microscopy (AFM)

imaging [162–164]).

IHF-H′ specific binding has been intensively studied by various approaches

including isothermal titration calorimetry (ITC) [165], tethered particle motion

[166], electrophoretic mobility shift assays (EMSAs) and footprinting [154–156],

fluorescence resonance energy transfer (FRET) [161], stop-flow fluorimetry [159]

and temperature jump [167]. These studies have revealed that both specific and

non-specific H′ binding modes may occur; the selection of the two modes depends

on protein concentration and salt concentration: high protein concentration and

low salt concentration favor non-specific binding mode, while low protein concen-

tration or high salt concentration favors another [165]. Additionally, intermediate

binding modes are also been proposed based on recent time-resolved FRET [161]

and stop-flow fluorimetry [159] experiments.

However, these experiments were performed in the absent of force applied

on DNA; hence, the potential role of physiological force on regulation of specific
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IHF-H′ nucleoprotein interaction remains unexplored. To address this remained

unknown, we systematically investigated the effects of force on dynamics and

stability of IHF-H′ interactions in different temperature, salt and IHF concen-

trations at a single H′ DNA level. Additionally, we determined the value of H′

DNA bending angle induced by IHF binding in physiological solution.

9.3 Results

9.3.1 Force-sensitive two-state conformational fluctuation of

IHF-H′ complex

The experimental principle is that when an IHF protein binds to and bends a

H′ sequence in DNA tether under force, the DNA extension would reduced by

certain level Figure 9.1A. Due to thermal noise from longitude fluctuation of

DNA, the DNA has to be short enough to increase the signal-to-noise, in order

to monitor the extension changes induced by IHF binding. In the experiments,

based on theoretical calculation, we designed a 455 bp DNA (contour length of

∼ 150 nm) with a single H′ sequence in the middle, while other parts of the DNA

contain no known high-affinity IHF-binding sequences. Parallel experiments on

the same length DNA lacking the H′ sequence were performed as a negative

control. Dynamics of DNA extension were monitored by magnetic tweezers [120]

introduced in Chapter 2.

Figure 9.1B shows a set of representative DNA extension time traces in the

presence of 10 nM IHF in solutions containing 50 mM KCl, 2.5 mM MgCl2, 10

mM Tris (pH 7.4) at 21 ± 1 oC with forces applied on DNA in the range of 0.5-1

pN. We observed clear two-state fluctuations of DNA extension between a shorter

extension (refer as bent DNA), and longer extension (refer as unbent DNA).

The raw extension dynamics can be well digitized (red) using a noise-beating

step-finding algorithm (see methods). The two-state extension fluctuations were

neither observed before introduction of IHF nor with the control DNA lacking

the H′ sequence in the presence of IHF, we therefore, conclude that these two-

state fluctuations are both IHF and H′ sequence specific. Additionally, as another

negative control, we measured the force extension curves of a much longer DNA
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Figure 9.1: Two-state fluctuation of DNA-IHF interaction. (A). A sketch
of the principle of the measurement. The H′ DNA bending by IHF binding
reduces the DNA extension, which is detected by the resulting change of the
height of the bead. (B). Dynamic fluctuations between two extensions in 10 nM
IHF, 50 mM KCl, 2.5 mM MgCl2, 10 mM Tris (pH 7.4), and 21 oC at different
forces (0.5-1 pN) indicated by different colors. The red line represents extension
steps detected a noise-beating step-finding algorithm (introduced in Chapter 4).
(C). The probability densities of the two extension states, which were produced
by the double Gaussian fitting of the normalized histogram of smoothed data at
different forces (0.4-1 pN, represented by different colors) using a bin size of 1
nm. A statistics of 40 distributions gave a step size of 17.34 ± 0.08 (mean ±
s.d.) nm and R2 = 0.96 ± 0.022 (mean ± s.d.). Note, only 13 fitting lines from
5 DNA molecules were shown in figure for clarity. (D). Distribution of extension
increasedecrease steps detected by noise-beating step-finding algorithm.

(48,502 bp λ-DNA, ∼16 mm in contour length) in the absence and presence of 10

nM IHF protein at the same solution condition, the resulting extension curves are

indistinguishable from each other, indicating that non-specific binding of IHF to

other DNA sequence has no observable effect in this condition (Figure S3 in Ref.

[111]). We note that there are four known high affinity consensus sits on λ-DNA

[154, 160], whose contribution to force response of the vast DNA is negligible

[101].

We then analyzed the normalized histogram of apparent bimodal extension

distributions by fitting with double Gaussian distribution (Figure 9.1C). Cal-

culating the peak-to-peak distance of the fitted histograms from >40 extension
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distributions at the force range, the extension difference of these two conforma-

tional states of DNA (bent and unbent, respectively) is determined to be 17.34 ±

0.08 nm (mean ± s.d.). Remarkably, sub-pN force change dramatically switched

the balance of the two conformational state of DNA, suggesting that the IHF-H′

specific interaction is fined-tuned by pN scale forces. We note that, in addition

to the obvious two-state fluctuation, Detailed extension analysis show several

minor sub-steps, which might related to transient intermediated binding states

of IHF-H′ complex (Figure 9.1D).

9.3.2 Force-sensitive stability of IHF-H′ interaction regulated by

temperature, KCl concentration and IHF concentration

Further, the probability of bent-DNA state, Pbent, is the function of force and is

related to free energy difference between the two conformational states through

Boltzmann distribution:

Pbent =
e

∆G−∆z×f
kBT

1 + e
∆G−∆z×f

kBT

(9.1)

In above equation, Pbent can be calculated based on the relative area ratio

of the bimodal extension distribution, ∆z is the extension difference between

the two conformational state, f is applied force, ∆G is the zero-force Gibbs free

energy difference between the two conformational state of DNA. The intrinsic

stability of IHF-H′ interaction can be described by a protein concentration inde-

pendent quantity, the dissociation constant, Kd. The lower the Kd, the stronger

the interaction. Kd is related to ∆G through: Kd = C × e
− ∆G
kBT . Therefore,

Eq.9.1 becomes:

Pbent =

C
Kd
× e

∆G−∆z×f
kBT

1 + C
Kd
× e

∆G−∆z×f
kBT

(9.2)

The above equation explicitly shows that Pbent depends on force, dissociation

constant, and protein concentrations. C and f were experimental parameters,

and Pbent and ∆z were measured; hence the free parameterKd can be determined

by fitting the experimental data to Eq.9.2. We note that, in our fitting the
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narrowly distributed ∆z in our narrow force range is set to be a constant (the

average value) for simplicity.

Based on above equations, we then analyzed the effects of force, temperature,

salt concentration and protein concentration on the stability of IHF-H′ interaction

through calculating the value change of Kd (Figure 9.2). First, temperature

increases from 21 ± 1 oC (dark gray) to 31 ± 1 oC (red) in 50 mM KCl, resulting

in an increase of Kd from 0.44 ± 0.06 nM to 1.54 ± 0.08 nM, indicating that

higher temperature destabilizes the bent DNA state.

Next, we examined the effect of salt concentration on the stability of IHF-H′

complex. However, we found that the two-state conformational fluctuation was

absence at an increased KCl concentration of 200 mM at 21 oC (while other

conditions remain unchanged. This is likely due to decreased binding affinity at

increased salt concentration. To test it, we further increase the concentration of

IHF to 100, 500 and 1000 nM. Consistent with the hypothesis, the two-state fluc-

tuations were observed at higher protein concentration. Further, we calculated

the force-dependent Pbent (symbols, Figure 9.2) and Kd from fitting based on

Eq. 9.2 (lines, Figure 9.2). The three Kd values estimated at 200 mM KCl with

100, 500 and 1000 nM IHF protein were overall consistent with a value of 28.5 ±

3.9 nM (mean ± s.d.). Additionally, Pbent at 10 nM IHF, 200 mM KCl in the

force range of 0.5-1 pN therefore, can be predicted based on the estimated Kd, to

be <5%. This low probability consistently explained why on obvious two-state

fluctuation was observed in 10 nM IHF at 200 mM KCl.

Interestingly, when the free IHF in solution was removed, the two-state fluc-

tuation was still sustained for a long time (over hundreds of seconds, Figure 9.3).

This is consistent with previously suggested possible unbent intermediate con-

formational states [159, 161]. Further, this result also consistent with the much

slow-downed dissociation of proteins from DNA when no free protein in solution

[168].
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Figure 9.2: Stability of IHF-H′ complex affected by temperature, KCl
concentration and IHF concentration. The bending probability as a func-
tion of force in 2.5 mM MgCl2, 10 mM Tris (pH 7.4), at 10 nM IHF, 50 mM KCl,
21 oC (dark gray symbols), 10 nM IHF, 50 mM KCl, 31 oC (red symbols), 100
nM IHF, 200 mM KCl, 21 oC (blue symbols), 500 nM IHF, 200 mM KCl, 21 oC
(orange symbols), and 1000 nM IHF, 200 mM KCl, 21 oC (wine symbols). Data
for each solution condition were obtained from multiple (≥3) independent DNA
molecules. Error bars for each data points (symbols) were standard deviations
from multiple (≥3) repeating measurements for the same DNA molecules. The
bending probabilities were calculated by the relative area of the two species in
the bimodal extension distribution. Under each solution condition, data obtained
were fitted by the two-state model (Eq. 9.2) to obtain Kd and the standard error
ofKd (fitting error), which are indicated in figure panels by corresponding colors.
The goodness of the fitting (R2) are 0.84, 0.98, 0.94, 0.93, 0.99, respectively.
The purple dot line is the theoretical calculation of the bending probability in 10
nM IHF, 200 mM KCl, 2.5 mM MgCl2, based on the two-state model with an
averaged Kd of 28.5 nM.

9.3.3 Theoretical prediction of the effect of bending angle and

force on the extension of short DNA

X-ray crystallization structure of the specific IHF-H′ complex shows that an IHF

hetero-dimer bent the 34-bp H′DNA over an angle of ∼160o [158], while the AFM

images of H′-IHF complex estimated the bending angle to be >120o [162–164].

However, the two methods determined the angle based on static IHF-H′ complex

conformations. Moreover, certain specific solution conditions are usually required
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Figure 9.3: Two-state fluctuation of IHF-H′ complex in the absence of
free IHF in solution. (A&B). The two-state extension fluctuation of an IHF-H′

complex in IHF-free solution after removal of free IHF by 40X or 60X channel
volume solution flow.

for both methods. Here, we show that the bending angle can be estimated based

on the dynamic two-state conformational fluctuations, where the IHF-H′ complex

is in physiological solution conditions.

As a semi-flexible polymer, DNA can be well described by WLC model with

a DNA bending persistence length, A ∼ 50 nm [78, 79]. Based on WLC model,

DNA is a chain of N segments with a segment length of b = L/NA, where L

is the contour length of the DNA. The bending energy cost of one segment (in

units of kBT ) is Ei(t̂i, t̂i+1) = 1
2
A
b (t̂i−~ti+1)2, where t̂i and t̂i+1 denote the tangent

vector of the ith and (i+1)th segment respectively. Therefore, The total bending

energy cost is E =
∑N−1

i=1 Ei(t̂i, t̂i+1), i.e., the sum of all the bending energies
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cost of the segments.

The ∼150 nm DNA used in our experiments contains one H′ site for IHF

specific binding. To estimate the effect of the bending of H′ site when associ-

ated with an IHF protein on the overall DNA extension reduction, the DNA

is segmentized with b = 1 nm, and the IHF associated H′ site is modeled as

a point-like site (located at the middle of the DNA) with a preferred bending

angle described by a parameter γ: θ = cos−1γ. Therefore, while the rest of DNA

remaining in naked DNA state, the bending energy cost of kink site is modified

as Ekink(t̂, t̂
′
) = a

2 (t̂ · t̂′ − γ)2 [101, 103, 148], where t̂ and t̂′ denote the two tan-

gent vectors of the two successive kink-involved segments; a is the dimensionless

parameter used to describe the deformability of the kink. A large value of a = 50

is chosen to ensure the high rigidity of the kink in the calculation. Note that the

resulting force dependent extension reduction profiles were not sensitive to the

value of a as shown in Figure 9.4D).

Next, we calculated the DNA force-extension curves with a set of values of θ

[0−180o] at the kinked H′ site using transfer-matrix method [101, 103, 148](Figure

9.4A), and compared these curves with that of naked DNA lacking the kink

defect. Four representative resulting force-dependent extension reduction ∆z

are plotted in Figure 9.4B, Note that the values of θ [0 − 180o] are converted

from by θ = cos−1γ with γ in the range of [−1, 0]. The extension reduction

∆z in our experiments is ∼17.34 nm in the force range of ∼0.4-1 pN where we

observed the two-state DNA conformational fluctuations. By Comparing the

force and extension reduction with the theoretical calculations, we can estimate

a preferred bending angle of 140-180o for H′ sequence associated with an IHF

protein. By an approximate analytical formula derived by Kulić et al [169].: ∆z =

4(1 − cos θ4)
√

kBTA
f , we can also estimate the bending angle at the same range

Figure 9.4C. We note that this approximate formula is only valid when forces

� kBT
A ∼ 0.08 pN where the entropic DNA conformational fluctuation, which

is not considered in the formula, is suppressed. The bending angle estimated

based on force dependent DNA extension dynamics agrees with that observed in

previous AFM imaging and X-ray crystallization experiments [158, 162–164].
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Figure 9.4: Theoretical prediction of the effect of bending angle and
force on the extension of short DNA. (A-B). Theoretical prediction of the
extension (A) and the extension reduction (∆z) (B) of a DNA with a contour
length of 150 nm induced by a kink placed at the middle as a function of force
and bending angles of 90 o (gray dotted line), 143 o (gray solid line), 162 o (black
dotted line), 180 o (black solid line). The shadow area represents the rough force
range and ∆z range measured in experiments. (C). The force and bending angle
dependent extension reduction calculated by an approximate analytical formula
derived by Kulić et al [169] (dash lines), compared with data in panel B (solid
lines). (D). Representative curves of the force and bending angle dependent
extension reduction calculated with different value of a = 25, 50, 100 for θ =
143 or 180o.

9.4 Discussion

In this chapter, we demonstrated that dynamics and stability of single specific

DNA-protein interactions can be probed by single short DNA manipulation. Pre-

viously, the DNA used in single-DNA stretching experiments was usually ∼ mi-

crons or above [115, 170, 171]. To detect effects of protein-DNA interactions

in these experiments, the protein density on DNA has to be high enough. For

instance, an obvious force-extension curves shift can only be observed with at

least ∼ one protein per 100 nm distance for proteins which bent DNA by ∼

90o [101]. This is mainly due to the large conformational fluctuation of DNA
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with long contour length, which lower the signal-to-noise ratio. Hence, those

previous single-DNA stretching experiments were mainly focus on non-specific

DNA-protein interactions where high protein concentrations were used to ensure

sufficient protein binding density.

On the other hand, specific DNA-protein interactions were previously of-

ten studied by biochemistry methods [154–156, 159, 165, 167]. Comparing to

these methods, single short DNA manipulation has unique advantages to di-

rectly probe the dynamics of single protein-DNA interactions. Next, compared

to other single-molecule fluorescence methods such as FRET [161], single short

DNA manipulation is capable to monitor the interaction dynamics over longer

time and distance scales while does not requires fluorescence labelling. Thirdly,

compared to the tethered particle motion methods [166], single short DNA ma-

nipulation has unique advantages of well controlled force on DNA, which enables

the study of potential role of force on the protein-DNA interactions. Overall, we

demonstrated that single short DNA manipulation can be a powerful approach

for studies of single protein-DNA specific interactions regulated by environmen-

tal factors including mechanical forces. This is a good complimentary to other

biophysical and biochemistry methods.

The in vivo IHF concentration is estimated to be 12-55 µM [172] during

different state, which is much higher than that required for specific interaction

functions. Therefore, non-specific IHF-DNA interaction may also occurs in vivo.

However, for non-specific IHF-DNA binding, each protein occupies less base pairs

of DNA (∼10 bp) [165], and induces much smaller bending (<30o) of DNA [105],

which is distinctively different to that of site-specific IHF-H′ interaction.

Despite that it might have difference between in vitro and in vivo dynamics

and stability of protein-DNA interactions due to much-complicated environments

in vivo, our finding of ultra force sensititivity of the IHF-H′ specific interaction

demonstrated potential importance of of force in gene transcription regulation.

Forces may be generated on DNA both actively by cellular machinaries or pas-

sively due to DNA packaging and other DNA distortion interactions [173]. Hence,

the force sensitive interactions of IHF-H′ probably as well as other DNA binding

transcription factors is likely physiologically important.
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We showed that Pbent is over 95% at zero force in 50 mM KCl, 2.5 mM MgCl2

and 21 oC, which agrees well with the reported stable IHF-H′ complex in previous

experiments without force [155, 159, 164, 166]. A slight increase of force to ∼1

pN switches IHF induced DNA bending to be minority. Such ultra sensitivity

of force-dependence in fact can be expected based on the large DNA conforma-

tional changes induced by protein binding: the large conformational change of

DNA ( ∼17 nm in extension in our experiments) implies that perturbing this

protein-DNA interaction only require a force of ∼ kBT
17nm ≈ 0.2 pN which is consis-

tent with the sub-pN force sensitivity discovered in experiments. Furthermore,

as large DNA conformational changes are involved in many site-specific tran-

scription factors and other proteins, and play key roles for their functions, such

as sharp DNA bending or DNA looping [168, 173, 174], our findings generally

suggest that force in pN physiological ranges on DNA may potentially regulate

a broad class of protein-DNA interactions in vivo.

While the lower-extension state of DNA is induced by sharply bending of H′

sequence bound with an IHF protein, the longer-extension state might have two

alternative possibilities: the IHF disassociates from DNA, or an intermediate

state of IHF-H′ complex in which the H′ is in a non-bent conformation. The

consistent values of Kd determined in our experiments with 10-1000 nM IHF

protein in solution and previous ensemble biochemical experiments [155, 159]

suggest that the observed two states are likely dominated by association and

dissociation of an IHF to the H′ sequence. However, in the absence of free IHF in

solution, the bound IHF on H′ can remain associated for a long time, fluctuating

between bent and unbent states. This is consistent with previously suggested

possible unbent intermediate conformational states [159, 161]. Further, this result

also consistent with the much slow-downed dissociation of proteins from DNA

when no free protein in solution [168].

Our results also show that the distortion level of a DNA (bending angle)

induced by single site-specific protein binding can be estimated by analyzing

protein binding/unbinding induced DNA extension fluctuations based polymer

physics. The bending angle of H′ sequence induced by an IHF binding estimated

by this approach (140-180o) is within 15% difference with that determined by
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X-ray crystallization (∼160o) [155]. While the resolution is lower, this approach

has a unique advantage that it is not limited to specific solution conditions and

can probe the dynamics of bending angle.
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Chapter 10

Other studies II–Mechanics and

dynamics of CRISPR

RNA-guided DNA bending and

unwinding

10.1 Chapter summary

Clustered regularly interspaced short palindromic repeats (CRISPRs) are the

molecular memory of an adaptive immune system that protects bacteria and ar-

chaea from invading viruses and plasmids. In Escherichia coli., short CRISPR-

derived RNA (crRNA) in a multi-subunit surveillance complex called Cascade

(CRISPR-associated complex for antiviral defense) contains a 32-nt guide se-

quence that is essential for recognition of an invading DNA target. Here we

use single-molecule manipulation and FRET methods to measure the mechanics

and dynamics of DNA conformational changes upon target binding by Cascade.

We show that hybridization of the Cascade-crRNA with complementary double-

stranded DNA results in target bending of >100 degrees, target unwinding of 34

degree per bp, and stabilization of the displaced strand in an extended confor-

mation. Interactions between Cascade and a DNA target are irreversible within

our experimental time scale (>1000 seconds). Together these results provide new
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insights into crRNA-guided strand invasion and R-loop formation. ∗

10.2 Introduction

Prokaryotes have evolved nucleic acid based adaptive immune systems that de-

tect and destroy invading foreign nucleic acids [175–184]. These defense systems

rely on clustered regularly interspaced short palindromic repeats (CRISPRs) and

a diverse set of CRISPR-associated (cas) genes. Upon viral or plasmid challenge,

short fragments of foreign nucleic acids, termed protospacers, are selectively in-

tegrated into the host CRISPR loci [176, 177, 185]. The selection of foreign

protospacers for integration into the host CRISPR is performed by two con-

served Cas proteins (Cas1 and Cas2) and relies on the detection of a short di- or

tri-nucleotide motif called a protospacer adjacent motif (PAM) [186, 187]. The

CRISPR locus is transcribed and the primary transcript is processed into short

CRISPR RNAs (crRNAs) that each contains a unique guide sequence derived

from a previously encountered foreign genetic element. The crRNAs are bound

by Cas proteins to form crRNA-guided surveillance complexes. Some crRNA-

guided surveillance systems identify foreign targets through recognition of the

PAM sequence prior to complementary base pairing of the crRNA-guide to the

DNA target [188]. Bound protospacer targets are then degraded by dedicated

nucleases [175–184].

The crRNA-guided search and target binding steps are crucial in CRISPR-

mediated adaptive immunity. Structures of the crRNA-guided surveillance com-

plex from Escherichia coli have been determined using electron microscopy, and

X-ray crystallography [189, 190]. The cryo-EM and X-ray structures reveal a con-

formational change in Cascade upon DNA binding, and atomic force microscopy

(AFM) experiments indicate that Cascade bends the target DNA in a broad range

of angles [191, 192]. Recent studies have revealed that crRNA-guided dsDNA tar-

get recognition results in a crRNA-ssDNA hybrid and a displaced ssDNA R-loop

[189, 191–193]. Direct evidence of R-loop formation on single DNA molecules has

been demonstrated by Szczelkun et al [119], in which they quantified the dynam-

∗Note that main contents detailed in this chapter are included in Mechanics and dynamics
of CRISPR RNA-guided DNA bending and unwinding. Le S. et al., to be submitted (2015).
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ics of torque-dependent R-loop formation by both Cascade and Cas9 complexes.

They show that the stability of the R-loop increases as torque decreases. These

results are consistent with DNA unwinding during R-loop formation; however,

important information regarding how the DNA bending is related to R-loop for-

mation and the dynamics of DNA bending remains unaddressed.

Here we measure the dynamics of DNA bending and its correlation with

R-loop formation, the level of DNA unwinding during R-loop formation, and

the micromechanics of the R-loop structure. In contrast to the previous single-

molecule DNA stretching study where the DNA linking number (the number

of times the two DNA strands wind around each other) was constrained, we

used torsion-unconstrained DNA, which allows simultaneous detection of DNA

extension dynamics and twist angle fluctuations during Cascade invasion. We

show that Cascade rapidly (∼0.4 sec) reduces the extension of the DNA target

by 15-20 nm at ∼ 1 pN force, which corresponds to bending of the DNA target

by more than 100o. By measuring rotation angles between the two ends of a

DNA tether, we observed protospacer DNA unwinding by 34o per base pair (bp).

10.3 Results

10.3.1 Cascade induced DNA bending

A broad range of DNA bending by Cascade has been reported using AFM imag-

ing (Figure 10.1) [191, 192]; however, DNA binding has not been quantified in

solution by analyzing DNA bending dynamics. DNA bending reduces the end-

to-end distance of DNA (i.e., DNA extension) when DNA is held under weak

forces [101, 103, 111, 148]. To measure the dynamics of bending, we stretched

a single 509-bp fragment of DNA using magnetic tweezers and then added Cas-

cade (Figure 10.2A and Methods). The addition of Cascade resulted in a rapid

decrease in the extension by 15-20 nm at ∼1 pN of force, corresponding to Cas-

cade induced DNA bending of over 100o (Figure 10.2B&C) [101, 103, 111, 148].

The decrease in DNA extension was only observed when Cascade was added to a

DNA target that contains a protospacer sequence and a PAM (Data not shown).

Cascade-induced DNA bending takes 0.43 ±0.21 seconds to complete after the
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Figure 10.1: AFM imaging of cascade induced DNA bending. (A).
Cascade-DNA complex. (B). DNA without Cascade. (C). a large area view
of AFM images of Cascade-DNA complex. (D). Bending angle distribution of
Cascade-DNA complex.

initiation of DNA bending (Methods - relaxation time scales). After bending,

unbound Cascade was washed out of the chamber and the bent molecules were

monitored for >1000 seconds. We monitored six single molecules for more than

1000 seconds and none of these ever returned to the relaxed state. These results

suggest that the DNA-bound complex is highly-stable over long periods of time.

10.3.2 Cascade induced DNA unwinding

To directly probe the DNA unwinding dynamics caused by Cascade binding,

we measured DNA backbone rotation in real time, using free orbiting magnetic

tweezers (Figure 10.3A&B). Three independent experiments at three different

forces, revealed a total DNA unwinding (i.e. negative DNA backbone rotation)

angle of 1098.8 ±39.6o (mean ± s.d.) that took 38.7 ±21.7 seconds to complete
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Figure 10.2: Cascade induced DNA bending. (A). A schematic of Cascade
(gray), with the 32-nt crRNA-guide sequence (orange) base paired to a com-
plementary target sequence (red). The displaced strand of the target is shown
in purple. A DNA target, containing a protospacer (32-bp) and PAM (3-bp),
is tethered between a 1-µm-diameter paramagnetic bead and coverslip surfaces.
Extension changes due to Cascade binding, ∆z, are traced. (B). A representative
DNA extension time trace over the course of an experiment. (C). DNA exten-
sion time traces reveal a rapid stepwise extension drop of 15-20 nm (indicated by
arrows) at ∼ 1 pN, seconds to minutes after introduction of Cascade (100 nM).

(Figure 10.3C). The slower rate of apparent DNA unwinding as compared to DNA

bending is likely caused by a slower bead rotation relaxation (see Discussion).

The total unwinding angle corresponds to unwinding of 34.3 ± 1.2o per bp, which

was estimated by dividing the unwinding angle by 32-bp of the protospacer DNA.

This value is close to the twist angle per bp in B-form DNA (∼34o per bp) [83].

The unwinding angle corresponds to complete unlinking (i.e. linking number

= 0) of the two strands over the length of the 32-bp protospacer, which is con-

sistent with the -2.81 turns of shift in the twist-extension curve observed in the

recently reported supercoiling assay [119]. In other words, the two ssDNA strands

are positioned in such a way that they are topologically invariant to two parallel

strands . These results reveal that Cascade is rigidly linked to both strands of

the DNA target, such that the Cascade induced unwinding of the protospacer
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DNA could generate sufficient torsion stress in the DNA to drive the observed

bead rotation.

Target binding by Cascade bends the DNA and produces an R-loop [119, 189].

However, the location and conformational flexibility of the displaced DNA strand

has not been established. To determine the conformational flexibility of the

displaced strand we used the free orbiting magnetic tweezers to measure the

rotational fluctuation of the DNA tether before and after unwinding. The overall

twist stiffness of the DNA tether calculated from the rotational fluctuations did

not show significant change upon Cascade binding (Figure 10.4). This result

confirms that a majority of the displaced strand is tightly bound to the Cascade

complex, thereby restricting the rotational freedom of the two DNA strands in

the Cascade complex.

Figure 10.3: Cascade induced DNA unwinding. (A). Schematics of exper-
iments using free orbiting magnetic tweezers. A 750-bp DNA (containing the
same protospacer and PAM sequence used in Fig.1) between two ∼600-bp DNA
handles tethered between the coverslip surface and streptavidin coated paramag-
netic bead. DNA unwinding is traced by the bead rotation. (B). Extension and
backbone rotation dynamics of naked DNA at two different forces, both fluctu-
ate around constant values. (C). Three representative DNA extension and DNA
backbone rotation time traces after the introduction of 100 nM Cascade. In each
time trace, a single step DNA extension drop and DNA unwinding (1098.8 ±
39.6o) are observed after the introduction of Cascade.
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Figure 10.4: Conformational state of the displaced strand of the DNA
target. (A). Schematic representation of: 1) an immobilized displaced strand
(purple) in a rigid Cascade-protospacer DNA complex, and 2) an unbound dis-
placed strand resulting in a torsional flexible joint between the two DNA han-
dles. (B-C). Two typical distributions of DNA angular fluctuation before and
after Cascade induced DNA unwinding. Blue lines are double-Gaussian fitting of
the distribution histogram with R2 > 0.98. The corresponding two-peak angular
distance, standard deviation (σ) and the twist stiffness k = (kBT )

σ2 are indicated
in figures.

Figure 10.5: Schematics of the topology of protospacer DNA before and
after Cascade binding. The 32-bp protospacer B-DNA has a linking number of
3 before Cascade binding (left panel). After R-loop formation, the DNA unwound
by ∼ 3 turns resulting in a linking number around zero, indicating that the two
DNA strands are unlinked (right panel).

10.4 Discussion

Efficient target recognition by Cascade and recruitment of the trans-acting

CRISPR-associated nuclease 3 (Cas3) are critical to crRNA-guided adaptive im-

munity in E. coli. Target recognition relies on R-loop formation, which involves

formation of the hybrid of crRNA-ssDNA with a displaced strand. In this work

we directly probed the dynamics of R-loop formation by monitoring DNA defor-

mation during Cascade binding to a single target molecule. We show that R-loop

141



formation involves sharp DNA bending (>100o) and unwinding of DNA back-

bone by ∼34o per bp, where the displaced strand is stretched and rotationally

restricted. This binding mechanism results in a rotation of the displaced strand

relative to the complementary strand during crRNA-ssDNA hybridization.

After DNA bending and unwinding induced by Cascade binding, spontaneous

bending or twist relaxation was never observed in our experimental time scale (∼

1000 s), even after removal of free Cascade from solution. This result indicates

that the Cascade-DNA complex in the bent and unwound conformation is a

highly stable structure. Such a highly stable complex is consistent with the

‘locking’ mechanism recently proposed by Szczelkun et al. [119] where a stable

R-loop structure may provide a robust template for recruitment of Cas3.

The apparent bead rotation resulted from DNA unwinding took ∼ 30 seconds

to complete, which is much longer than the < 1 second time involved in the

bending step. However, the observed differences in deformation time scales do not

imply that Cascade induced DNA bending and unwinding are two independent

processes. This is because the translational and rotational bead motions caused

by the corresponding DNA bending and unwinding are associated with very

different relaxation time scales. It only takes 10-3 seconds for the bead to diffuse

to a new equilibrium position 20 nm away during DNA bending, while it takes

∼ 10 seconds for the bead to relax to a new equilibrium angular position during

DNA unwinding (Supplementary Information: Text S3 - relaxation time scales).

Therefore, a likely scenario is that R-loop formation is synchronized with DNA

bending, which takes a time of ∼0.4 seconds, followed by a much slower rotational

relaxation of the bead to the new equilibrium angular position. However, our

result does not exclude the alternative possibility that DNA bending occurs prior

to R-loop formation, which may actually have a benefit to destabilize DNA duplex

to facilitate strand invasion. Indeed, a pre-destabilized DNA target generated by

applying negative torque promotes Cascade binding [119] .

We did not observe Cascade induced DNA deformations on control DNA

lacking the target sequence. This result indicates that non-protospacer binding,

should it occur, would not cause a stable association that could be detected using

our single-DNA assay. Overall, the results are consistent with previous biochem-
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ical and imaging experiments that reported transient unstable non-protospacer

sequence binding [194, 195].

The crystal structure of Cascade bound to an ssDNA target reveals that the

target strand forms a bent ribbon-like hybrid that is stretched and underwound.

Our results suggest the displaced strand in the R-loop structure is also stabilized

by Cascade in a stretched and conformationally restricted in a way that results in

unlinking of the two DNA strands from the original B-DNA duplex. This unique

organization of the crRNA-ssDNA hybrid and the displaced strand in the R-loop

structure may form the physical basis for recruitment of downstream factors such

as Cas3.

10.5 Materials and Methods

DNA synthesis –Two dsDNA targets (509-bp and 2033-bp) containing a 32-bp

protospacer and a 3-bp PAM (underlined) (5′-GACAGCCCACATGGC ATTC-

CACTT ATCACTGGCAT-3′) were generated by PCR amplification. The 509-

bp DNA was generated with a thiol labeled forward primer and a biotin labeled

reverse primer using lambda phage DNA as template. The 2033-bp PCR product

was produced using Mega-PCR (184) with a multiple dig labeled forward primer

and a multiple biotin labeled reverse primer. A control 576-bp DNA containing

3-bp PAM sequences (5′-CAT-3′), but no protospacer sequence was generated as

previously described [109, 112].

Protein expression and purification–The protein subunits of the E. coli Cas-

cade complex were co-expressed with a synthetic CRISPR containing four identi-

cal J3-spacers targeting the J-gene in λ-phage [196]. Cascade was purified using

previously described methods [189, 197, 198].

Magnetic tweezers and measurements–A vertical magnetic tweezers setup with

a sampling rate of 100 Hz and spatial resolution of∼2 nm [120] was used to stretch

the 509 bp DNA tethered between coverslips and a 1-µm-diameter paramagnetic

bead, with a maximum force of ∼10 pN. A free-orbiting magnetic tweezers setup

was used to stretch the multiple dig and biotin labeled 2,033-bp DNA tether.

In these experiments, one end of each DNA strand is fixed to a coverslip while
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the other end is attached to a paramagnetic bead. The free orbiting magnetic

tweezers apply a magnetic field in the same direction of force [199], which allows

unconstrained bead rotation around an axis along the magnetic field, allowing

measurement of DNA winding or unwinding by monitoring the rotation of the

bead. The trade-off of this system is that it can only apply forces up to 4 pN,

and causes larger extension noise due to increased rotational fluctuation of the

bead compared to traditional magnetic tweezers. The single-molecule stretching

experiments were performed at 23oC in solution containing 50 mM KCl, 2.5 mM

MgCl2, and 20 mM Tris pH 7.4, in the absence or presence of Cascade. During

solution exchange (∼10 sec), the DNA tethers were held at higher forces (∼4

pN for free-orbiting or ∼10 pN for traditional magnetic tweezers) to avoid bead-

surface interaction due to the drag force of the solution flow. The force was

immediately reduced to ∼1-pN after solution exchange. Detailed methods for

the single-molecule stretching experiments can be found in Chapter 2.

relaxation time scales–The relaxation time (trot) for the bead to relax to a new

equilibrium rotational position, is dependent on the twist stiffness of DNA, k,

and the rotational friction coefficient of the bead, υ, through relation trot = Υ/k .

υ depends on the radius of the bead, rbead, and the bead rotational radius, rcircle

through relation υ ≈ 8πηr3
bead

1−(1/8)D3 +
6πηr2

beadrcircle
1−(9/16)D+(1/8)D3 , where the η is the viscosity

of the fluid, which is ∼ 10−3 kg m−1 s−1 for aqueous buffer. D = rbead/S,

where S is the distance of bead to surface. In the experiments, rbead ≈ 500 nm,

rcircle ≈ 600 nm, 1/2 < D < 1, trot is therefore estimated to be ∼ 11− 13 s. The

estimated trot is in the same scale of the measured bead rotation time due to

Cascade induced DNA unwinding; therefore, the actual Cascade induced DNA

unwinding process can be much faster than the observed bead rotation time.

In contrast, for DNA bending signal, the translational relaxation time (ttrans)

for the bead to relax to a new equilibrium position,ttrans ≈ ∆z2

2D , where the

diffusion constant D = kBT
6πηrbead

, and ∆zis the measured extension change. For

∆z = 20 nm, ttrans ≈ 10−3 s, which is over two orders of magnitude smaller than

the observed DNA bending time (∼0.4 s). Therefore, the observed DNA bending

time reflects the real time involved in the Cascade induced DNA bending.

Cascade induced DNA topology change –The right-handed DNA double helix
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has a helical pitch of h = 3.6 nm, containing 10.5 bp with two DNA strands

winding over each other once per helical turn. The number of the times the

two strands wind each other is defined as the linking number and a torsion-

unconstrained DNA with N base pairs and a contour length L would have a

relaxed linking number, Lk32bp-dsDNA, calculated by: total twist angle/360o, or

N/10.5, or L/h. For the 32 bp of the protospacer DNA, the relaxed linking

number is: Lk32bp-dsDNA = 32/10.5 ∼ 3, as shown in supplementary Figure 10.5.

After Cascade invasion, the DNA tether unwound by total ∼1098o, indicating

a linking number change of ∆Lk = −1098/360 ∼ −3, which results in a new

linking number of Lkcascade-bound ∼ 0 for the Cascade bound protospacer DNA

segment. In other words, in the R-loop structure, the crRNA bound ssDNA

strand and the displaced ssDNA strand are in a conformation that is topologically

invariant to two parallel strands (i.e, by smooth continuous deformation the two

strands can become parallel to each other without any entanglement between the

two strands).

The relative locations of the two strands in the R-loop should be spatially

immobilized inside the complex. This is because any significant relative mo-

tion would decrease the local torsion stiffness and result in increased level of

rotational fluctuation of the DNA tether, which was not observed in our ex-

periments. The crRNA is also immobilized in the complex, since it is hybridized

with complementary ssDNA strand. Together, our results suggest that the whole

Cascade-protospacer DNA complex is a rigid body with fixed relative positions

of the crRNA-ssDNA hybrid and the displaced ssDNA strand, in which the two

ssDNA strands has a topology that is invariant to two parallel ssDNA strands.

This suggests a unique spatial organization of the displaced strand relative to

the complementary strand, whose detailed structure has yet to be determined.
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Chapter 11

Conclusion and Discussion

In this thesis work, I developed a new platform for single ssDNA manipulation

using state-of-art magnetic-tweezers, combined with a disturbance-free rapid so-

lution exchange method (Chapter 2). With the platform, I systematically in-

vestigated several key accessory proteins including SSB, RecX, RecO, RecR on

regulation of the formation and stability of RecA nucleoprotein filament, and the

regulatory function of force on these protein-mediated dynamics and stability of

RecA nucleoprotein filament (Chapters-3-5).

I investigated the salt concentration, protein concentration and force de-

pendent DNA binding properties of SSB and identified a force-dependent non-

wrapping binding mode of SSB. I showed that SSB outcompetes RecA binding

to ssDNA, inhibiting the nucleation and polymerization of RecA filament, and

de-stablizes pre-formed RecA filament by occupying the vacated ssDNA site due

to RecA dissociation due to ATP-hydrolysis at low forces (several pN). Remark-

ably, I demonstrated that higher forces (> 15 pN) facilitate repolymerization of

partially depolymerized RecA filament in a 3′-to-5′ reverse direction, which not

only highlights a potentially important regulatory role of force, but also point out

the existence of bi-directional polymerization of RecA [24, 128, 142], in contrast

to previously widely accepted 5′-to-3′ unidirectional RecA polymerization [10].

I showed RecX promotes ATP-hydrolysis-dependent, step-wise net-depolymerization

of RecA filament at low forces. Moreover, I demonstrated that the inhibitory

effect of RecX is antagonized by higher forces, which cannot be explained by

previous models of RecX-mediated RecA filament activities, and again empha-
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sizes mechanosensitive regulation of RecA filament. Further, I showed that RecO

tightly folds ssDNA, which is likely related to its ssDNA strand annealing func-

tion; RecOR highly extends ssDNA, which is likely related to its role of promoting

RecA filament formation; RecOR stabilizes pre-formed RecA filaments against

net de-stablization effect caused by SSB, while at the same condition, RecOR

cannot facilitate RecA nucleation on SSB coated ssDNA.

To understand the underlining mechanisms of the mechanosensitive regula-

tions on RecA filament, I theoretically analyzed the effects of force on confor-

mational free energies of naked ssDNA and RecA nucleoprotein filament, which

shows that force can increase the binding affinity of RecA to ssDNA over 10

times, consistently suggesting that formation and stability of RecA filament can

be fine tuned by mechanical force.

In addition, I showed that the dynamics and stability of RecA filament formed

on dsDNA is a competitive balance of polymerization/depolymerization of RecA

on the one of the ssDNA strand (the leading ssDNA strand) and re-annealing

of the complementary strand. As a result, RecA filament is stable on dsDNA

with a 5′ ssDNA overhang which acts as a ‘cap’ of the filament. Moreover, I

demonstrated that RecA can not bind to S-DNA, a previously proposed binding

substrate of RecA.

These studies establish a framework of molecular mechanisms of dynamic

and regulation of RecA nucleoprotein filament mediated by accessory proteins

and co-factors, and highlight the potentially broad regulatory role of force over

physiological range in RecA-dependent homologous recombinational DNA repair,

as well as other nucleic acid-protein interactions. Future efforts will be directed

to studies of force regulatory role on other proteins involved in DNA replication,

repair and recombination in both prokaryotic and eukaryotic systems.

Besides the studies on dynamics and regulations of RecA nucleoprotein fil-

aments, I also studied site-specific single protein-DNA bindings. In Chapter 8,

I systematically examined how force may affect the binding dynamics of E. coli

IHF, a well-known DNA bending protein, to its specific binding sequence at a

single protein-DNA complex level in real time. I showed that the stability of

the specific IHF-DNA complex is fine-tuned by sub-pN forces. Furthermore, I
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demonstrated for the first time that single short DNA manipulation using mag-

netic tweezers can resolve single site specific DNA binding dynamics and can be

further used to quantify DNA bending angle by a single protein. Overall, this

study has broad implications for site-specific DNA distorting proteins regarding

their mechanosensitivity.

In Chapter 9, I show that hybridization of the Cascade-crRNA with comple-

mentary double-stranded DNA results in target bending of >100 degrees, target

unwinding of 34 degree per bp, and stabilization of the displaced strand in an

extended conformation. Interactions between Cascade and a DNA target are

irreversible within our experimental time scale (>1000 seconds). Together these

results provide new insights into crRNA-guided strand invasion and R-loop for-

mation.
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Appendix A

Protocols of flow channel preparation, DNA synthesis

and ssDNA extension measurement

1. Coverslip cleaning and surface functionalization

1.1. Place bottom coverslips (#1.5, 22 mm × 32 mm) and top coverslips

(#1.5, 20 mm × 20 mm) into coverglass staining jars (each jar can

hold 7 pieces of coverslips, the volume is∼ 20 mL); Rinse the coverslips

in the jars by distilled (DI) water 2-5 times.

1.2. Add ∼20 mL of 5%-40% detergent solution into each jar, and then

place in ultrasonic cleaning bath for 30 min; Rinse with DI water for

>10 times to remove the detergent.

1.3. Add ∼ 20 mL of acetone (CAUTION, toxic/flammable) into each

jar and place in ultrasonic cleaning bath for 5 min; Pour the waste

acetone into the waste bottle for acetone; Rinse the jars with DI water

for >10 times to remove the acetone; Perform this step in fume hood

for flammable chemicals.

1.4. Dry the coverslips in the jars in oven (∼150 oC; CAUTION, hot), or

by N2 gas; Store the dried top coverslips in dry cabinet.

1.5. Use plasma (O2 gas) to clean the coverslips in the jar for 10 min; Dur-

ing the 10 min, prepare 20 mL of 1% (3-Aminopropyl)triethoxysilane

(APTES) solution in Methanol (CAUTION, toxic/flammable); Imme-

diately after the plasma cleaning, add the 1% APTES solution into the

jars and incubate for 1 hour; Pour the waste into waste bottle specific

for 1% APTES Methanol; Perform the methanol-related steps in fume
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hood for flammable chemicals); Rinse the jars for > 10 times with DI

water, and then dry by oven (∼150 oC; CAUTION, hot); Store the

APTES-coated bottom coverslips in dry cabinet if not in-use for up

to two weeks.

2. Assemble the flow channel

2.1. Prepare two pieces of spacer–parafilm or double-side tape (∼ 4 mm ×

20 mm) for each channel; Place the two pieces of spacer on a bottom

coverslip along the long-edge; Place a top coverslip on the spacer,

forming a flow cell in between (∼ 10 mm × 20 mm area).

2.2. If parafilm is used as spacer, place the flow channel on a heater (60 -

120 oC; CAUTION, hot) for ∼ 5 -10 sec while gently press the sides

of top coverslip to stick the two coverslip together by parafilm. The

resulting flow channel has a height of ∼ 100 µm, thereby the volume

of the channel is ∼ 20 µL.

2.3. Seal the long edge of the channel with silicone glue to avoid leakage;

Use silicone glue to make a small sink-like structure at each open edge

of the flow channel, which serve as entry and exit of solution. The

entry and exit can also be made by other ways, e.g., by adhering

small plastic rings using wax.

3. Tether DNA onto the bottom surface of the flow channel

3.1. Prepare amino-coated polystyrene beads (diameter: 3.00 µm) in DI

water; Vortex the bead solution and then flow into channels; Incubate

the bead solution in channels for ∼30 minutes - 2 hours depending

on the bead concentration; Remove unstuck beads by washing with

DI water for 200 µL. Adjust the incubation time to achieve surface

density of 1-5 bead per 50 mm × 50 mm area. The channels deposited

with the reference beads can be stored up to 3 days.

3.2. Dilute sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-

1-carboxylate) powder into 1X PBS (phosphate buffered saline) so-

lution (0.1-1 mg/mL); Vortex the solution and then flow into the

channel; Incubate the SMCC solution in channel for 30 min; Remove

SMCC solution by washing with large amount (1 mL, ∼ 50 times of
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the channel volume) of 1X PBS solution.

3.3. DNA tethering: Dilute thiol-biotin labeled DNA into 1X PBS, with

a resulting DNA concentration of ∼0.3 nM; Gently pipette-mix the

solution, flow the DNA solution into the SMCC-coated channel and

incubate for 30 min; Gently wash away free DNA by 200 µL of block-

ing solution that contains 1X PBS with 2-4% BSA, and 0.01% 2-

Mercaptoethanol.

3.4. Block the channel surfaces by incubating the channel in blocking solu-

tion for 2 hours; after this step, the channel is ready for experiments;

The prepared channel can be kept at 4 oC for ∼1 day.

4. Labeled-DNA synthesis

4.1. A 576 bp DNA construct is generated by PCR from bacteriophage λ-

DNA with primers: 5′-[Thiol]ATTATACTCGAGAGCATAAGCAGCG

CAACA-3′ and 5′-ATTATAAGCTTATGACGCAGGCATTATGCT-

3′ (underlined sequences: HindIII cutting site). The DNA is then

digested by Hind III restriction enzyme for 2 hours.

4.2. Purified DNA product is incubated with 0.1-1 mM Biotin-16-dUTP,

1 mM dATP, 1 mM dGTP, 1 mM dCTP, and 3 µL Vent DNA poly-

merase in 100 µL reaction volume for 1.5 hours at 65-72 oC; The re-

sulting DNA is labeled with thiol at one end, and biotin at the other

end on the same strand of the DNA; Store the labeled DNA in -20 oC.

5. Identify single dsDNA tether

5.1. Tether formation: Flow in properly diluted paramagnetic beads in

standard RecA reaction solution (50 mM NaCl, 10 mM MgCl2, 20

mM Tris-pH 7.4) into a channel; Incubate for 10 min to allow beads

to bind to biotin-labeled DNA molecules immobilized on the SMCC-

coated surface through the thiol labeled end; Gently wash away un-

tethered beads using 200 µL standard reaction solution.

5.2. Mount the channel onto the microscope stage; Search for beads on

bottom surface using 100X oil immersion objective.

5.3. Select a reference bead on surface and a moving tethered bead; Build

the initial image libraries of both the reference bead and the tethered
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bead at different defocus planes.

5.4. Determine whether the tether is a single dsDNA molecule by applying

65 pN forces. A single dsDNA molecule is determined if the tether

undergoes the characteristic DNA overstretching transition. Repeat

the process until a single dsDNA thether is found.

5.5. Record the x-,y-,z- positions of the dsDNA tethered bead in a force

range of 1 to 50 pN. At each force, the bead is held for 5 sec to

obtain the average values of the positions. The z-position is denoted

by HdsDNA(f).

6. Generate ssDNA tether

6.1. The identified dsDNA tether is converted to ssDNA tether by applying

> 65 pN forces in low salt concentration (< 50 mM NaCl, 0 mM

MgCl2) through the force-induced strand peeling transition.

6.2. Record the x-,y-,z- positions of the ssDNA tethered bead in a force

range up to 70 pN. At each force, the bead is held for 5 sec to obtain

the average values of the bead positions. The z-position is denoted by

HssDNA(f).

7. Extension measurement

7.1. The force-extension curve of the ssDNA is recovered through the

equation:zssDNA(f) = ∆zss-ds(f) + zds,WLC(f), where the extension

difference, ∆zss-ds(f) = HssDNA(f) − HdsDNA(f), zds,WLC(f) is the

theoretical force-extension curve of dsDNA based on the worm-like-

chain (WLC) polymer model of dsDNA with a persistence length of

50 nm.

7.2. After proteins, such as SSB, RecA, etc, bind to the ssDNA, the force-

extension curves of the resulting nucleoprotein complexes are similarly

obtained by: zssDNA,p(f) = ∆zss,p-ds(f) + zds,WLC(f).
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