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Summary

Economic dispatch (ED) is an important problem in power system opera-

tions. The objective of this problem is to minimize the operating cost of all

the generation in the power network with consideration of various system

constraints. With the increasing environmental concerns, the traditional

power system is facing a problem of increasing penetration of distributed en-

ergy resources (DERs). These DERs such as wind turbines and Photovoltaic

panels produce electricity from renewable energy sources which can reduce

the emission and help protect the environment. Nevertheless, these DERs

are heavily relied on stochastic weather conditions, which results in the un-

certainty of the power outputs. Furthermore, the accurate models of these

generators' cost functions are highly non-linear and non-convex, which signif-

icantly increases the computational complexity. Moreover, unlike traditional

grid, DERs are distributively implemented, and the users have �exibility

of installing and uninstalling the generators, which requires high computa-

tional scalability. These problems have raised the di�culty in integrating

DERs into the traditional grid. Thus, the integration of these DERs is a

challenging and important task in modern power system development. In

this thesis, four di�erent approaches are proposed to tackle the ED problem.
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First two approaches present centralized optimization schemes for solving

the ED problem with the consideration of distributed generation. The last

two approaches present distributed optimization schemes for solving the ED

problem with distributed generation.

The thesis starts investigating the ED problem from the micro-grid is-

landing operations by two multi-objective optimization algorithms. This

approach formulates the ED problem as a bi-objective optimization prob-

lem. This approach provides the user with various choices to support the

load demand in a micro-grid islanding operation depending on the user's

minimization objectives preferences.

Furthermore, the thesis investigates the ED problem of the distribution

network with distributed energy resources. This approach minimizes the

operating cost of the whole network with distributed generation and utilize

more renewable energy into the traditional grid.

Additionally, the thesis proposed a novel consensus based algorithm to

solve ED problem in a distributed manner. The distributed algorithm enables

generators to collaboratively learn the mismatch between demand and total

power generation in a distributed environment, and all generators collectively

minimize the total cost while satisfying power balance constraint.

On top of that, the thesis improves the existing distributed ED algorithm

in literature by bringing loss information into consideration. This is a hierar-

chical consensus based algorithm. This approach minimizes total operating

cost with loss consideration while maintaining the power balance constraint

under sparse communication network.
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Chapter 1

Introduction

1.1 Literature Review

Economic dispatch (ED) problem started from the time when there were two

or more generators committed to satisfy the load demand in a power system

where the capacities exceeded the load demand required in early 1920s. The

problem arisen to the operator was how to divide the load demand between

the two units [1, 2]. ED problem was then studied by engineers and scientists.

Before 1930, various solutions such as �the base load method� and �best point

loading� were developed and used in real time control to allocate the total

generation among the units committed to satisfy the load. �The base load

method� utilizes the most e�cient generator unit to its maximum capacity

�rst. After that, the second most e�cient generator unit is loaded. The

process continues until the demand is satis�ed [3]. However, the fuel cost

and the power output have a quadratic relationship. By maximizing the

power output of one generator, the operating cost increases rapidly. Thus this
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approach is not an economic solution. �Best point loading� successively loads

generator units to their lowest heat rate point. The operation begins with

the most e�cient unit, followed by less e�cient units [4]. This approach is

more accurate than �The base load method�. Nevertheless, with the quadratic

cost-power relationship, the heat rate and e�ciency vary with di�erent power

outputs. Therefore this solution is not optimal.

In early 1930, the �equal incremental method� was recognized to produce

the most economic results. This method was established in [5] and [6]. In

these two papers, the principle of �equal incremental method� is stated that

the next increment in load demand should be balanced by the generator

unit with lowest incremental cost. This is a important and fundamental

principle which still applies today. It was also recognized by Steinberg [7]

that this principle would result in equal incremental cost among all generator

units. After that, a formal proof of �equal incremental method� was given

by Steinberg and Smith in 1934 [8]. In this paper, they proved that for

any required load demand (PDem(t) = PS,1(t) + PS,2(t)), the most economic

solution was given by

dCS,1(t)

dP1(t)
=
dCS,2(t)

dP2(t)
. (1.1)

With the publication of Steinberg and Smith's book �Economy Loading of

Power Plants and Electric Systems� [9] in 1943, the equal incremental cost

criteria (EICC) was then widely accepted and applied by operators and re-

searchers. However, it is also noted that Steinberg only considered power

output variables. The transmission network and the corresponding power

loss issues were ignored.
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A lot of research were done under the EICC branch. During early work

of the EICC branch, fuel cost curves were accurately represented with valve-

point e�ect. In [10], the network was assumed to be lossless. The implemen-

tation was carried out by graph or by slide-rule. After that, George [11, 12],

added a model for real power transmission losses to the incremental problem

which led to the classical economic dispatch. The real power losses were ex-

pressed as a quadratic functions and coordination equations were developed

to deal with these losses. This was a breakthrough in computation of trans-

mission losses. Furthermore, Kron published four papers [13�16] in a series

to present concise power network and loss modelling. The �rst two papers

considered single area loss modelling. The latter two papers considered in-

terconnected areas loss modelling. The loss models were well structured and

clearly presented in these papers. Kron's major assumptions were

1. each load current remains constant ratio irrespective of load demand

2. all generators have constant VAR and WATT ratio

3. deviation of generator voltages and angles are small.

Kron proposed the well-known Kron's loss formula, which is also known as

B-matrix loss formula

LP (t) = P T [B]P +BT
0 P +B00, (1.2)

where P = [P1(t), . . . , Pn(t)]T is the vector of all generators' outputs, [B]

is the square matrix, BT
0 is the vector of the same length as P and B00 is

a constant. After that, Kirchmayer applied Kron's work in [17, 18]. With
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the help of computer programs, Kirchmayer improved the loss calculation

procedures. Kirchmayer also derived the classic coordination equations

dCS,i(t)

dPi(t)
+ λ

∂, PLoss(t)

∂, Pi(t)
= λ; i = 1, 2.... (1.3)

The classic coordination equations are the necessary optimization conditions

for the economic dispatch Lagrangian function. From 1.3, Ward [19] further

derived the transmission loss penalty factor to

PFi =
1

1− ∂PLoss(t)
∂Pi(t)

. (1.4)

From 1.4, Tudor [20] found that the system constants could not be easily

changed to accommodate other changes in the transmission system. Thus,

he proposed easily modi�ed approximation for the penalty factor. The errors

incurred by this approximation are relatively small. Van [21] also proposed

improved linear loss models based on di�erential information. The numerical

example show that Van's model can allow more variations in the loads and

reactive power at the generators. These linear models are popular as they can

be easily updated in iterative algorithms. Happ [22] used a Jacobian matrix

to calculate the incremental losses. His simulations on IEEE 118-bus test

system show that this approach converge rapidly compared to classic eco-

nomic dispatch. Shoults [23] made use of the linear relationship between real

and reactive power outputs to compute the loss coe�cient and demonstrated

the computational advantages over classical dispatch techniques. With the

increasing power system size and complexity, Wollengberg [24] realized that
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more comprehensive real time control and dispatch techniques were needed

to be studied. He then reviewed the criteria for the constrained optimiza-

tion practical system and presented security dispatch with reduced set of

variables. Therefore large system problems could be solved in real time. E-

ICC was also used as a subproblem to update nonlinear information at each

iteration. Deo [25] followed Steinberg's development in EICC. From EIC-

C, Deo noticed that incremental cost was piece-wise linear from piece-wise

linear incremental heat rate system. Then he applied linear programming

to solve the economic dispatch problem with simplest expressions to avoid

valve point nonlinearities. The solution is very fast because of the simplicity

of linear programming technique. However, the optimal dispatch using lin-

ear programming tends to provide outputs which were near operating limits.

This leads to increased transmission losses and wasted capacity. Ringlee [26]

proposed dynamic programming to solve the EICC and achieved the mini-

mum fuel cost dispatch. However, dynamic programming is computationally

intensive. The results are provided by close approximation obtained from

stepped incremental method.

After using EICC to solve the problem, researchers started to use linear

approximations to form the search directions to tackle the problem. Those

techniques are grouped as linear sub-problem branch [10]. Lots of work

at that time were based on Carpentier's formulation. Carpentier's major

contribution was in providing solid mathematical foundations for economic

dispatch. Carpentier's work consisted of four parts [27�30]. His work led

to a generalized formulation of the economic dispatch problem based on the

Kuhn-Tucker conditions. The Kuhn-Tucker conditions are the �rst order nec-
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essary conditions for a solution in nonlinear programming to be optimal if

regularity conditions are satis�ed [31]. Carpentier used Gauss-Seidel method

to solve the problem. However, the convergence was proved to be di�cult.

Inspired by Carpentier's generalized reduced gradient method, Peschon [32]

�rstly modi�ed Newton power-�ow to provide the speci�ed area interchange

�ows. After the modi�cation, the problem was in a standard non-linear pro-

gramming format. He then used Generalized Reduced Gradient and Penalty

Function Method to achieve optimal power �ow. Comparisons of the two

methods show similar optimal numerical results. After Peschon's work, Dom-

mel and Tinney [33] extended their load �ow work on Newton's method to

an optimal power �ow. They solved this problem by a combination of the

gradient methods. Their solution is straightforward except for the gradient

updating gain. Small gain causes slow convergence, whereas too high a value

causes instability. They handled the constraints by penalty functions. Cost

function was penalized if there was any violation of constraints. Two other

gradient based applications were also popular during that time. Wu [34] used

two-stage gradient method to solve the dispatch problem. The �rst stage does

the calculation without considering the dependent constraints. The second

stage adds the violated voltage into the objective by penalty functions. This

application is able to handle large system, but it often obtains infeasible val-

ues after calculation. Another application was done by Burchett [35]. He

applied general purpose nonlinear programming to solve the problem. His

algorithm periodically switches between conjugate directions technique and

Dommel and Tinney's steepest descent technique. This algorithm is able to

handle large system calculation and inequality constraints.
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From 1970s, concerns about generators' emission on the environment s-

tarted to attract attention from researchers. Gent [36] modeled the emission

of nitrogen oxide as a polynomial function. Experiments were carried out to

�nd the parameters of the polynomial. After that, Gent compared the results

with standard economic dispatch and found that reduction of emission could

be achieved by systematic scheduling. However, minimum emission dispatch

resulted in higher operating cost. Delson [37] added a equality constraint to

the problem. The emission was converted to price by a cost factor. The pa-

per provides four di�erent problem formulations according to minimum cost

objective, minimum emission objective, minimum cost and emission objec-

tive, and minimum cost with constraints on two types of emissions objective.

These di�erent problem formulations can be readily adopted by system op-

erators.

After the advancement of linear sub-problem branch, researchers moved

their focus to Newton strategy methods [38]. El-Abiad [39] presented a for-

mulation of the dispatch problem based on the Lagrangian multiplier ap-

proach. He used Newton's method to calculate the necessary conditions for

load �ow. All equality constraints were calculated using iterative procedure.

However, the results are oscillatory. Shen [38] used a iterative indirect search

method to tackle the Lagrange-Kuhn-Tucker conditions of optimality. Un-

like direct search algorithm, his method starts with a initial point which

may not satisfy all the constraints. After each iteration, the solution is up-

dated by variation method. The results converge within tolerance limits. In

1973, two researchers proposed quadratic subproblems to drive the non-linear

optimization. Nabon [40] �rstly used the second order approximation to rep-
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resent the power generation cost function with linearized sensitivity function.

Then he employed quadratic programming to solve the second order prob-

lem. This technique requires less computing time compared to non-linear

optimization techniques due to its simplicity and this technique avoids us-

ing penalty function to maintain the constraints. Similarly, Nicholson [41]

used linear programming formulation for estimation the system constraints.

He then used quadratic programming technique to solve the quadratic cost

problem. Reactive power optimal allocation was done by a gradient method

which minimizes the transmission loss. He also applied the optimization unit

for online scheduling with the help of large scienti�c computer. In mid 1970s,

quadratic programming based on Kuhn-Tucker conditions became popular.

Dillon [42] proposed a method for calculating the sensitivity of the economic

dispatch problem. The method can determine which parameters have great

in�uence on the solutions. Thus more accurate measurement techniques or

instruments may be required. The expected system performance deteriora-

tion is calculated to �rst order degree of accuracy. Dillon [43] then applied his

sensitivity analysis in optimal power �ow problem. This method allows fast

re-computation of small variation conditions such as loads or constraints val-

ues. Thus less frequent re-solution of the non-linear programming technique

is needed and schedules can be determined quickly.

Many researchers also applied Newton search method to solve the prob-

lem. These methods are also referred as Lagrangian-Newton methods. The

projected Lagrangian programs for ED problem were proposed from late

1970s to 1980s. Biggs [44] presented constrained minimization technique

based on recursive quadratic programming. Although the algorithm encoun-
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ters di�culties in robustness and rapid convergence, the algorithm obtains

accurate results. He also proposed to reduce the frequency of calculating

Lagrangian multipliers and use Lagrangian penalty function to increase the

calculation speed. Lipowski [45] improved Biggs' algorithm and proposed

a modi�ed recursive quadratic programming technique. This technique is

faster and it converges in less number of iterations than Biggs' method as

it has a more e�cient subprogram for solving the quadratic programming.

Later, Quasi-Newton methods were also introduced with penalty function-

s. An approximation of the Hessian is built by iterative updating formulae

in these methods. Cova [46] found that the second order methods which

generated quadratic programming problems had di�culties when dealing

with large systems. This was caused by the non-compact formulation of

the problem. He then used decomposed technique to construct and update

the Hessian matrices at each iteration. This reduces the dimensions of the

quadratic subproblem. The results shows that this approach is suitable for

large system economic dispatch. Giras [47] used Quasi-Newton method to

tackle the economic dispatch problem. The method is straightforward in

incorporating power �ow constraints. Furthermore, it is robust and it can

converge even with infeasible starting point, and it provides fast convergence.

Talukdar [48] reviewed and compared the algorithms of dispatch techniques,

namely, Dommel-Tinney's methods, Generalized Reduced Gradient methods,

Wu-Gross-Luini-Look methods, and Tarlukda-Giras methods. He concluded

that within 1-5 minutes dispatching time frame and with large number of

constraints, Quasi-Newton methods with elegant constraints handling were

very good choices. Some well-known solvers were also developed. Gradient
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solver [35] was developed by General Electric package. It works well when

carefully tuned. However, it is slow to detect the infeasible solutions and

penalty functions. Quasi-Newton solver [49] was developed in ESCA pack-

age. This solver is fast and robust. The constraints are well handled, and

it can start with infeasible solution. Lagrangian-Newton solver [50] was de-

veloped in PCA package. This method is a direct simultaneous solution for

all the unknowns in the Lagrange function. This method has well known

quadratic convergence properties as it minimizes a quadratic approximation

of the Lagrangian in each iteration.

Contingency-constrained economic dispatch was emerged as a hot topic

in 1980s. It was found that after major disturbance (line fault or generator

outage), it was di�cult to bring the system into normal state. Thus ex-

tra constraints are needed to make sure that the system is kept in normal

state for a long time or it does not stay away from normal state after dis-

turbance. The integration of contingency constraints is an important step

in ED research. Monticelli [51] proposed strategies of rescheduling of con-

trol variables within short-term ramping limits. This technique is �exible

to incorporate existing dispatch methods and it can include more corrective

actions such as line switching, overload rotation, and multi-period reschedul-

ing. Schnyder presented quick networking switching [52, 53] to reach n − 1

security in the conservative sense. The technique uses corrective switching

concept to allow contingencies to be treated as corrective actions. There-

fore contingency conditions are transformed into inequality constraints and

they can be solved by dispatching methods. These strategies take important

considerations into system ED operation and alleviate the tight constraints
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imposed by the system.

With the development of stochastic search algorithm, the evolutionary

computation methods were used to solve the ED problem from 1990s [54]. In

contrast to the conventional ED methods, evolutionary computation meth-

ods do not need the gradient information of the cost functions. Thus the

researchers do not need to di�erentiate the cost functions and constraints.

These methods use probabilistic selection rules to choose solutions which

approach closer to the global optima. These solutions are then used to re-

produce better solutions in an iterative manner. The end of the iterative

process generated a set of solutions which are at or in the neighborhood of

the global optima. Wong [55] used the simulated annealing (SA) to solve the

ED problem. Simulated annealing is the technique of heating up the metal

and cool down the metal in order to increase the size of the crystals and

reduce the number of defects. Researchers develop this technique to a proba-

bilistic method for global optimization. Nevertheless, the SA based algorithm

is di�cult for tuning the parameters of the annealing process and the compu-

tation time required is high. Walter [56] proposed a genetic algorithm (GA)

to solve highly non-linear ED problems considering the valve-point loading

e�ect and other non-convex generators' cost functions. Genetic algorithm

is inspired by the natural evolution. It simulates the inheritance, mutation,

crossover, and selection of the species to �nd the best solution for a opti-

mization problem. The results show that the algorithm is a powerful tool to

solve the economic dispatch problem. It is able to handle non-linearities and

provide solution very near optimal point. However, selecting the right coding

strategy and variation strategies are based on heuristics. Repetitive evalu-
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ation of the �tness function can be computationally expensive. Gaing [57]

proposed a particle swarm optimization (PSO) for solving the ED problem.

Particle swarm optimization comes from the group behavior of bird �ocks

and �sh schools. Their movement mechanism is studied and simpli�ed to

perform optimization tasks. In this paper, Gaing used PSO to perform the

economic dispatch with ramp rate limits and valve-point zones. The results

are compared to GA. It is shown that PSO is more computationally e�cient

and it provides higher quality solutions.

At the same time, multi-objective ED problem was introduced in litera-

ture. Wong [58] formulated the bi-objective problem by using a weighted sum

of the two objectives. He then applied simulated annealing to solve the prob-

lem. The results are represented by a trade-o� curve. However, the trade-o�

curve is based on di�erent weighting factor. Thus it is not a complete multi-

objective solution. Das [59] used a heuristic method which combined genetic

algorithm and simulated annealing to perform a multi-objective optimization

of the economic dispatch problem. The formulation of the problem is truly

multi-objective. The results are represented by pareto-front. The method is

fast in determining near-optimal solution and it was applicable for large sys-

tems. The pareto-front better represent the cost-emission relationship than

weighted trade-o� curve. Chandrasekaran [60] presented an optimal devia-

tion based �re�y algorithm tuned fuzzy membership function to deal with

economic and reliability problem. This paper is important as it considered

reliability as one dispatch objective. However, in his paper, the reliability

is transformed into cost by a penalty factor. Two objectives are reduced

into one. Thus this is not a truly multi-objective problem. Jubril [61] used a
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Semide�nite Programming method for solving ED problem with fuel cost and

transmission losses. It is interesting that he incorporate transmission losses

as another objective. Nevertheless, he used weighted sum to combine the

two objectives. The weighted sum can not provide a uniformly distributed

solutions as the pareto-front. Thus this results are not truly multi-objective.

Recently, with the increasing environmental awareness, renewable energy

sources such as wind and solar energy played a more and more important

role in electricity generation. To make better use of the renewable energy

resources, distributed generation devices like wind turbines and photovoltaic

(PV) panels are used. These devices are grouped to form micro-grids run-

ning in the distribution networks [62]. Thus researchers shifted their focus

to the ED problem of the micro-grids. Hetzer [63] developed a model to

incorporate wind energy into economic dispatch problem. In addition to the

operating cost of wind energy, the overestimation and underestimation of

wind energy are also modeled. With the help of Weibull probability density

function, the dispatch problem is solved. The results demonstrate the re-

lationship between economic solutions and the penalty/reserve cost factors.

Hernandez-Aramburo [64] proposed a cost optimization scheme for a micro-

grid consisting of two reciprocating gas engines, a combined heat and power

plant, a photovoltaic array and a wind generator. The micro-grid system be-

haves di�erently than the traditional grid because a penalty over excess heat

generated is imposed and minimum amount of reserve power can be easily

achieved. The results show that a communication infrastructure is needed to

minimize the fuel cost as the power sharing technique between all generators

are set for all units explicitly. Chen [65] developed a smart energy manage-
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ment system consisting of forecasting module, energy storage module, and

optimization module. A matrix real-coded genetic algorithm is adopted to

achieve optimal results under three di�erent operating policies. The results

show that the management system can reduce the daily costs signi�cantly.

To further assist the power system economic operation and stability, Net-

work recon�guration, load forecasting and weather forecasting were also s-

tudied by researchers. Network recon�guration is to minimize the energy

loss, maintain power balance and isolate faults by changing the states of

sectionalizing and tie switches. Many algorithms have been developed to

solve the recon�guration problem. Civanlar [66] presented a scheme to u-

tilize feeder recon�guration to reduce losses by re-structuring the primary

feeders. This paper simpli�es the load �ow analysis to avoid repetitive cal-

culation. The computation requirements are signi�cantly reduced. This load

�ow based technique is also �exible to be implemented into the existing feed-

er recon�guration strategy. Rao [67] used harmonic search algorithm to �nd

the best con�guration of the radial network. The method improves voltage

pro�le and minimizes the real loss. The results are from simulations on 119-

bus test system and comparisons with other genetic algorithms are carried

out. It is shown that this method converges faster with higher accuracy.

Thus this method can be applied for large systems. Huang [68] presented a

enhanced genetic fuzzy multi-objective algorithm for recon�guring the net-

work. The objectives are maximizing fuzzy satisfaction of minimizing power

loss, violation of constraints, and the number of switchings. The results are

compared to simulated annealing and simple genetic algorithm. Test result-

s demonstrate that the enhanced genetic algorithm could e�ciently search
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the optimal and near-optimal space better than the other two algorithms.

The performance shows that this approach is suitable for actual distribution

system. Wu [69] presented an integer-coded particle swarm optimization to

solve the distribution network recon�guration. The advantage of the integer-

coded technique is that it reduces the number of infeasible solutions signi�-

cantly. Thus the search space is narrowed down to feasible solutions' space.

This method is compared with genetic algorithm, discrete particle swarm

optimization, and modi�ed binary particle swarm optimization. The results

show that this method outperforms other three methods in terms of speed

and accuracy.

Moreover, Gupta [70] presented a stochastic procedure to forecast month-

ly peak load up to three years ahead. He improved the well-known stationary

stochastic time series to address those non-stationary stochastic time series

that could be reduced to stochastic time series by linear transformation. The

results show that the forecasting technique catches almost all turning point

except for a few cases. The amplitude swings are close. Nevertheless, spring

and fall months are a bit o�. Overall, the results are quite good for two

years forecasting. Taylor [71] incorporated weather ensemble prediction in

arti�cial neural network for load forecasting of 10 days lead times. He used

51 ensemble members for temperature, wind speed, and cloud cover to create

51 load scenarios in the arti�cial neural network. The 51 scenarios are im-

portant as they are equivalent of taking the expectation of load probability

density function. The results show that this method can obtain better ac-

curacy than those without weather data and those with traditional weather

forecasts. Elattar [72] proposed a modi�ed version of support vector regres-
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sion for forecasting of electricity demand. The support vector regression's

risk function is modi�ed by the locally weighted regression and weighting

function's bandwidth is improved by the weighted distance algorithm based

on the Mahalanobis distance algorithm. The results are compared with local

support regression and locally weighted regression. The proposed method

outperforms the other two methods by providing more accurate predictions.

Srinivasan [73] combined fuzzy logic and fuzzy set theory with arti�cial neural

network to forecast the load demand of weekdays as well as weekends. The

fuzzy logic is used with special emphasis on weekends and public holidays.

This approach reduces the complexity of the mathematical calculation and

improves the accuracy of prediction. The results are impressive with average

error of 0.62% on weekdays, 0.83% on Saturdays and 1.17% on Sundays and

public holidays.

These papers which have discussed so far are all centralized techniques.

These techniques required centralized computation and communication. N-

evertheless, with the development of distributed energy resources (DERs),

the power system structures were becoming more distributed [62]. The users

might plug-in or disconnect their DERs such as PV panels and wind tur-

bines without prior notice to the system operators. Additionally, it might

be infeasible for the system operators to have all the generators' committed

information as well as communication channels. Therefore, more and more

researchers have look into the distributed optimization of the ED problem.

The initial distributed optimization of the ED problem was inspired by

the consensus problem. Consensus problem has been studied for more than

two decades. A huge volume of results were available in the literature [74].
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The main issue in a consensus problem was to achieve agreement regard-

ing certain quantities of interest associated with agents in the multi-agent

systems (MAS) by utilizing the local information exchange. The traditional

consensus algorithm was a very simple local coordination rule, which re-

sulted in agreement at the group level, and no centralized task planner or

global information were required by the algorithm. Due to its distributed

implementation, robustness, and scalability, consensus algorithms have been

widely applied in many coordination problems, such as formation, �ocking,

rendezvous, and synchronization.

Researchers were interested in applying consensus algorithm in micro-grid

related problems. A few of noticeable works appear in the literature. In [75],

quadratic convex cost function is assumed. To meet the equal incremental

cost optimization criterion, the incremental cost of each generator was cho-

sen as the consensus variable. The consensus algorithm was applied to drive

all incremental cost to a common value. To satisfy the demand constraint,

the mismatch between demand and total power generated is fed back to the

consensus algorithm such that the incremental cost converged to the optimal

value. The communication among generators were undirected, which meant

the information exchange was bidirectional. This was a restrictive assump-

tion since the communication might not be symmetric in practical situations.

In addition, the algorithm was not completely distributed because a leader a-

gent had to be deployed to collect current power generated by each generator

in order to calculate the total mismatch. [76] took a di�erent approach. The

authors �rst noticed the results in [77], which showed that the total power

generated by all generators was a linear piecewise continuous function of in-
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cremental cost. If the ED problem was solvable, the demand must lie in one

of the linear segments. Once the linear segment was identi�ed, the optimal

incremental cost could be easily obtained by solving an algebraic equation.

The generator constraints are considered in the algorithm. To make the algo-

rithm distributed, a ratio consensus algorithm is proposed in [76]. The ratio

consensus algorithm was applied to learn all the generators constraints and

cost functions parameters, speci�cally, each generator instantiated local es-

timations of other generators' parameters, and when consensus was reached,

the local estimations exactly equaled to the true values of other generators'

parameters. Therefore, each generator could obtain all the information need-

ed by the algorithm in [77] in a distributed fashion. Furthermore, a strongly

connected communication graph was adequate for this algorithm to work.

In [78], motivated by the distributed stochastic approximation theory, a con-

sensus + innovation approach was proposed to solve the ED problem. The

innovation term was synthesized by the di�erence of local power generation

and a �xed local reference, where the local reference was either the total

demand (estimated or actual), or the total load at the current bus. With the

help of vanishing and persistent excitation gains, the algorithm returned the

optimal dispatch asymptotically. The latest advancement in distributed ED

problem was done by Du [79] in 2014. He proposed two learning algorithms

with guaranteed convergence to Nash equilibria and/or optima to solve the

ED problem distributively. This method converted inequality constraints in-

to feasible action sets. After that, it incorporated equality constraints by

penalty functions, which simpli�ed the ED formulation. It also provided

guaranteed convergence.
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1.2 Problem and Motivation

With the increasing environmental concerns, more and more distributed gen-

erators are connected to the traditional grid. These DERs such as wind tur-

bines and PV panels are a�ected by stochastic weather conditions. Thus the

outputs of these DERs are �uctuating. Furthermore, the electricity cost of

distributed generators is higher than the electricity generated by the large

scale generators from traditional grid. This also raises the di�culty in inte-

grating distributed generators into the grid. Moreover, distributed generators

are supposed to be implemented as �plug-and-play� resources, and they are

also supposed to be implemented in a large scale. This signi�cantly increases

the computation and communication burden of the centralized power sys-

tems. Therefore, the integration of distributed generators is a di�cult and

challenging task. It must be carefully studied and investigated.

This thesis is motivated by the increasing economical and environmental

concerns of power system operation. The distributed generators connected

to the grid are very di�erent from the traditional large scale generators.

These DERs are small in scale and �uctuating due to stochastic weather

conditions. Thus the electricity cost of DERs is higher than the electricity

generated by large scale generators. However, these DERs can be installed

by normal households, which means the number of the DERs in a network

can be large and the capacities of the DERs can take up a substantial portion

of the network. These DERs such wind turbines and PV panels make use

of renewable energy which can help protect the environment. Therefore it is

very important to study the environmental and economical impacts of these
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DERs. Especially, we need to investigate in-depth about how to integrate

these DERs into the traditional grid and let these DERs work e�ciently

with traditional generators. Moreover, due to the �exibility of installing

DERs and the number of DER units, traditional centralized management

and control scheme needs to be revised. A more suitable management and

control paradigm must be developed to cater the more distributed network

structure.

1.3 Objectives and Challenges

The objective of this thesis is to investigate the economic impacts as well

as the environmental impacts of incorporating distributed energy resources

into traditional power grid. Economic impacts consist of cost of distributed

power generation cost, penalty and reserve cost, cost of purchasing from

utility grid, and cost of power loss on transmission lines. Environmental

impacts are mainly caused by the emission of thermal generators.

Many challenges have been encountered. DERs are heavily a�ected by

�uctuating weather conditions, which results in uncertainties in power out-

puts. The generators' cost models are highly non-linear and non-convex,

which raises the di�culty in calculation. Moreover, all network users must

be considered instead of micro-grid users. This increases the scope of the

dispatch problem. Furthermore, un�xed network structure and large scale

implementation increase the computation burden and complexity of central-

ized dispatch approaches. Thus, this problem is a challenging and important

task for future power system development.
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1.4 Contributions and Outline

This thesis focuses on centralized and distributed optimization of economic

dispatch problem incorporating distributed generation. The proposed formu-

lations and optimization techniques are to facilitate the economic operations

of the power system. Application examples are conducted on various IEEE

test systems. In this section, the contributions of this thesis are brie�y sum-

marized as below:

• In Chapter 1, detailed literature review, problem statement, and con-

tribution of this thesis are introduced.

• In Chapter 2, investigation of both economic and environment impacts

of thermal generators, wind turbines and PEM fuel cells are conducted.

Penalty and reserve functions are introduced to encourage the usage of

renewable energy. The goal of minimizing operating cost as well as

emission is achieved. Two state-of-the-art multi-objective algorithm

are also investigated in the study. The pareto fronts are obtained from

3 di�erent systems to provide operators a variety of generation choices.

The results show that SPEA2 has a faster convergence when generation

number is small and NSGA-II can perform slightly better for large

number of generations. NSGA-II provides more diverse solutions than

SPEA2.

• In Chapter 3, an integrated technique of network recon�guration and

economic dispatch of power system with distributed generation is pro-

posed. The stochastic nature of wind, PV and load demand is taken
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into consideration by stochastic forecasting modules. Four bio-inspired

optimization techniques are adopted to investigate the problem. The

economic and environment bene�t of the whole network is maximized

by the problem formulation and the techniques. Despite higher price of

renewable energy, the integrated approach can incorporate more renew-

able energy as well as minimizing the operating cost. Thus, distributed

generation resources are more e�ectively connected to the grid.

• In Chapter 4, a novel consensus based algorithm is proposed to solve

ED problem in a distributed manner. Quadratic cost functions are

used to model generators' cost functions. The convergence of our al-

gorithm is proved by eigenvalue perturbation. Sparse communication

is used in the application examples to demonstrate the e�ectiveness

of the algorithm. All the generators can collaboratively minimize the

operating cost as well as keeping power balance constraint. This al-

gorithm can be extended to large scale power networks which allow

�plug-and-play� of distributed generators. Furthermore, comparisons

with centralized Lambda-iteration method and distributed �consensus

+ innovation� method are carried out to demonstrate the advantages

of our algorithm.

• In Chapter 5, a hierarchical consensus algorithm is developed to solve

ED problem with loss consideration. This is the �rst work in distributed

ED with loss consideration. Quadratic cost functions are adopted. The

loss information is represented by B matrix and is handled by the upper

layer of the algorithm. The lower layer of the algorithm makes sure that
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the dispatch is divided economically while satisfying power balance

constraint. This chapter improves on previous studies in literature by

�rst bringing loss information into distributed ED problem.

• Finally, conclusion and future work are stated in Chapter 6.
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Chapter 2

Multi-objective Optimization of

Economic Load Dispatch for

Micro-grids Using Evolutionary

Computation

2.1 Introduction

With the increase of electricity demand and the environmental awareness,

renewable energy sources such as wind and photovoltaic (PV) play a more

and more important role in electricity generation. The wind and PV power

generation are highly a�ected by �uctuating weather conditions [63].

Such �uctuations result in �uctuating generation outputs. These outputs

have brought di�culties in keeping the power generations and load demand

balance. Furthermore, the electricity demand varies from time to time. Be-
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sides meeting the demand and the operating cost, environmental impacts

like emission and storage of excess power must be taken into consideration

[80�85].

In this chapter, the micro-grids are modeled using thermal generators,

wind turbines, and PEM fuel cells. The penalty and reserve functions of wind

turbines are used for encouraging the use of renewable energy and reducing

emission. The �uctuations of wind turbines' power outputs are balanced by

other controllable generators such as thermal generators and fuel cells. A

set of feasible non-dominated solutions are generated by the multi-objective

algorithms. The user can adjust the generators' outputs �exibly in response

to the �uctuating weather conditions. In other words, more thermal and fuel

energy are used when the system is short of wind energy so that the power

balance is maintained in the system.

This chapter is organized into �ve sections. In Section 2.1, the background

knowledge of economic load dispatch problem is introduced. In Section 2.2,

the emission and operating cost of three types of generators are formulated.

In Section 2.3, the algorithms of SPEA2 and NSGA-II are introduced. The

simulation and results are presented in Section 2.4. Finally, the conclusions

are made in Section 2.5.

2.2 Formulation of Load Dispatch

The objective is to minimize the operating cost of all the generators in the

micro-grid OC(t) (PT,i(t), PW,i(t), PF,i(t)) as well as the emission from ther-

mal generators ES,i(t) subject to system constraints.
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As shown in [80, 81], the total operating cost is the summation of all the

thermal generation costs, wind generation with penalty and reserve costs,

and PEM fuel cell generation with thermal load and hydrogen storage costs

OC(t) =
∑

CT,i(t) +
∑

CW,i(t) +
∑

CW,i,p(t) +
∑

CW,i,r(t)

+
∑

CF,i(t) +
∑

CF,i,Th(t) +
∑

CF,i,H(t). (2.1)

The system constraints are expressed in (2.2-2.4). (2.2-2.4) are the physi-

cal constraints of this optimization task. All generators' outputs are bounded

by their manufactured operation ranges to prevent damaging of the equip-

ments. (2.2) states that the thermal generator must operate within its mini-

mum and maximum value. (2.3) ensures that the wind turbine must operate

within 0 and its rated value. (2.4) states that the fuel cell unit must op-

erate within its minimum and maximum value. (2.5) is the power balance

equation, which ensures that the total power generated is equal to the power

demand and the power losses [81�83].

Pmin
T,i (t) ≤ PT,i(t) ≤ Pmax

T,i (t),∀i, (2.2)

0 ≤ PW,i(t) ≤ PW,i,r,∀i, (2.3)

Pmin
F,i (t) ≤ PF,i(t) ≤ Pmax

F,i (t), ∀i, (2.4)
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∑
PT,i(t) +

∑
PW,i(t) +

∑
PF,i(t) = PLoss(t) + PDem(t),∀i. (2.5)

The total loss on all the transmission lines is computed using B coef-

�cients [86]. B coe�cients, also known as Kron's loss formula, was �rst

introduced in the early 1950s as a practical method for loss and incremental

loss calculation. B coe�cients are one of the most important methods for

approximating the total transmission loss as a function of generators' pow-

er. It models the total transmission loss as a second order function. At that

time, automatic dispatching was performed by analog computers and the loss

formula was stored in the analog computers by setting potentiometers. This

method provides reasonably accurate calculation of loss coordination in ED

problem. The matrix form is expressed as:

LP (t) = P T [B]P +BT
0 P +B00. (2.6)

where P = [P1(t), . . . , Pn(t)]T is the vector of all generators' outputs, [B]

is the square matrix, BT
0 is the vector of the same length as P and B00 is a

constant.
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2.2.1 Operating cost and emission of the thermal gen-

erator

2.2.1.1 Fuel cost

Thermal generator has a number of valves that are opened according to the

power output. As the output requirement increases, the generator opens

one more valve to allow more steam to come out. However, when a valve is

opened, the incremental heat rate rises rapidly. This valve-point e�ect results

in non-smooth, non-convex input-output relationship. A recurring recti�ed

sinusoid modeling the valve-point e�ect is added to the traditional quadratic

cost function as shown in (2.7) [85, 87�90]

CT,i(t) =
ai
2
P 2
T,i(t) + biPT,i(t) + ci + |ei sin(fi(P

min
T,i (t)− PT,i(t)))|. (2.7)

2.2.1.2 Environmental cost

Nitrogen-Oxide (NOx) emission represents the environmental impact of ther-

mal generators. The amount of NOx emission is proportional to generator

output as shown by (2.8) [84]

ET,i(t) = θi + βiPT,i(t) + γiP
2
T,i(t) + ζiexp(κiPT,i(t)). (2.8)
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2.2.2 Operating cost of the wind farm

2.2.2.1 Cost function

For wind turbine, when the wind farm is not owned by the system operator,

the system operator needs to pay a constant price for using the power from

wind farm. The cost is linearly proportional to the power output [81, 85] as

shown in (2.9)

CW,i(t) = diPW,i(t). (2.9)

2.2.2.2 Penalty cost

In case the available wind power is more than the amount being generated.

The energy is wasted. A penalty cost related to the amount of energy being

wasted is added. The penalty cost function is shown by (2.10) [81]

CW,i,p(t) = kpi(PW,i,av − PW,i(t))

= kpi

PW,i,r(t)ˆ

PW,i(t)

(w − PW,i(t))fw(w)dw

= kpi
[
0.5P 2

W,i,av

√
πerf(u)− (P 2

W,i,avu− PW,i(t)

PW,i,av + 0.5P 2
W,i,av)e

−u2
]u=PW,i,av

u=PW,i(t)
. (2.10)

2.2.2.3 Reserve cost

In case the available wind power is less than the amount required, the load

must be shed or the energy need to be bought from somewhere else. A re-
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serve cost is imposed as shown by (2.11) [81]

CW,i,r(t) = kri(PW,i(t)− PW,i,av)

= kri

wiˆ

0

(PW,i(t)− w)fw(w)dw

= kri

[
(P 2

W,i,avu− PW,i(t)PW,i,av + 0.5P 2
W,i,av)e

−u2

−0.5P 2
W,i,av

√
πerf(u)

]u=0.5+
PW,i(t)

PW,i,av

u=0.5 . (2.11)

Wind speed distribution is modeled as Weibull probability density func-

tion. The probability density function of wind power output can also be

represented by [85]

fw(w) =
klvi
c

(
(1 + ol)vi

c
)k−1exp(−(

(1 + ol)vi
c

)k), (2.12)

for 0 < w < PW,i,av, and

fw(0) = 1− exp(−(
vi
c

)k) + exp(−(
v0

c
)k), (2.13)

fw(wr) = exp(−(
vr
c

)k)− exp(−(
v0

c
)k), (2.14)

where o = w
PW,i,av

and l = vr−vi
vi

.

51



2.2.3 Operating cost of PEM fuel cell

2.2.3.1 Fuel cost

For PEM fuel cell, the fuel cost is linearly proportional to the sum of the

power generated, the power consumed by auxiliary devices and the power for

hydrogen production as shown by (2.15) [82]

CF,i(t) = Cn(
PF,i(t) + Pa(t) + PH(t)

ηi
). (2.15)

2.2.3.2 Recovered Thermal Energy Calculation

Not only PEM fuel cell produces electrical energy, but also it produces ther-

mal energy. The thermal energy is used to satisfy the thermal load. Thermal

load is caused due to space heating and hot water, thus is a part of the load

along with electric load. The thermal load is satis�ed by utilizing the recov-

ered thermal energy. The electricity-fuel conversion e�ciency is related to

the thermal load ratio as shown in (2.16), (2.17) and [82].

PLR means part load ratio. If the part load ratio is small (PLRi < 0.05),

the e�ciency and the thermal energy to electrical energy ratio can be ex-

pressed in simple terms. If the PLR is not small (PLRi > 0.05), the e�-

ciency and the thermal energy to electrical energy ratio need to be expressed

by polynomial functions, which is more complicated. Non-linear functions

increase the di�culty of computation for traditional gradient methods.

For PLRi < 0.05, the e�ciency is a simple factor given by [82]

ηi = 0.2716. (2.16)
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The thermal energy to electrical energy ratio is given by [82]

γTE,i = 0.6801. (2.17)

For PLRi > 0.05, the e�ciency is represented by a �fth-order polynomial

[82]

ηi = 0.9033PLR5
i − 2.9996PLR4

i + 3.6503PLR3
i

−2.0704PLR2
i + 0.4623PLRi + 0.3747. (2.18)

The thermal energy to electrical energy ratio is given by a fourth order

polynomial [82]

γTE,i = 1.0785PLR4
i − 1.9739PLR3

i

+1.5005PLR2
i − 0.2817PLRi + 0.6838. (2.19)

The thermal power recovered from fuel cell is given by [82]

PF,i,Th(t) = γTE,i(PF,i(t) + Pa(t) + PH(t)). (2.20)

The cost due to thermal load is given by [82]

CF,i,Th(t) = Cn2max(PL,i,Th(t)− PF,i,Th(t), 0). (2.21)
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2.2.3.3 Hydrogen Management Cost

The hydrogen storage cost is proportional to the hydrogen pumping cost.

The hydrogen reservoir is assumed to have 95% storage e�ciency [82]. The

mathematical expression is

CF,i,H(t) = CpumpPH(t)ηst. (2.22)

2.2.4 System structure

The micro-grid system for simulation consists of thermal generators, wind

turbines and PEM fuel cells. The whole structure is shown in Fig. 2.1. The

wind turbines are connected to the common ac bus through AC/DC and

DC/AC inverters. The thermal generators are connected to the common ac

bus through AC/DC and DC/AC inverters. The fuel cells are connected to

the common ac bus through DC/AC inverters. The power generated by these

generators is then transmitted to balance the distributed load.

2.3 Overview of SPEA2 and NSGA-II

Economic load dispatch is a multi-objective optimization problem because

two di�erent objectives: operating cost and emission, are involved [84]. When

multiple objectives are con�icting, we may not be able to �nd a dominated

solution, that is, there does not exist a solution that is strictly better than

other solutions in terms of all objectives. Instead, we may have a set of

non-dominated solutions in which a solution cannot be better than other
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Wind turbines

Diesel generators

Fuel cells

Distributed loads

inverters

Common ac bus

Figure 2.1: The micro-grid system structure

solutions in all objectives. When all solutions are non-dominated, we seek a

pareto front that consists of optimal non-dominated solutions.

2.3.1 SPEA2

Strength pareto evolutionary algorithm 2 (SPEA2) is the state-of-the-art

technique for �nding the pareto-optimal solutions for multi-objective opti-

mization problems [91]. Fig. 2.2 shows the work�ow of SPEA2.

2.3.1.1 Initialization

Randomly generate N number of solutions as initial population P0 and an

empty archive A0
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Initialization

Fitness assignment

Environmental selection

Termination

Mating selection

Variation:

OutputYes

No

Figure 2.2: Work�ow of SPEA2

2.3.1.2 Fitness assignment

Each individual i in the population Pt and archive At is assigned a strength

value S(i). The value is equal to the number of individuals dominated by i

S(i) = |{j|j ∈ Pt ∪ At ∧ i � j}|, (2.23)

where | • | denotes the cardinality of the set. Based on the S values, the raw

�tness R(i) of an individual i is

R(i) =
∑

j∈Pt∪At,j�i

S(j), (2.24)

where R(i) represents the sum of the individual i's dominators' strength

values. The raw �tness is to be minimized. Additionally, the density infor-

mation is introduced. The density is calculated as a function of kth nearest

neighbor
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D(i) =
1

σki + 2
, (2.25)

where k =
√
N +NA. The 2 in the denominator is added to prevent division

by 0 and to keep D(i) < 1.

Thus the �tness of individual i is

f(i) = R(i) +D(i). (2.26)

2.3.1.3 Environmental selection

Firstly, all non-dominated individuals are copied to the archive of next gen-

eration

At+1 = {i|i ∈ Pt ∪ At ∧ f(i) < 1}. (2.27)

If the number of non-dominated individuals �ts exactly into the archive,

namely |At+1| = N , then the environmental selection is �nished. If |At+1| >

N , the archive truncation procedure is called. The individual i is chosen for

removal for which i ≤d j for all j ∈ At+1 with

i ≤d j ⇔ B ∨ (C ∧D), (2.28)

where B : (σki = σkj ,∀0 < k < |At+1|), C : (σli = σlj,∀0 < l < k,∃0 < k <

|At+1|) and D : (σki < σkj ,∃0 < k < |At+1|).

In other words, the individual i with minimum distance to another in-

dividual is chosen for removal. In the case of |At+1| < N , sort the Pt + At
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individuals and copy the best N − |At+1| individuals into At+1.

2.3.1.4 Termination

If maximum number of generations is reached or other criteria is met, output

the set of non-dominated solutions in At+1. Otherwise continue the process.

2.3.1.5 Mating selection

Binary tournament selection is performed on At+1 to �ll the mating pool.

2.3.1.6 Variation

Use recombination and mutation operators to the mating pool and let At+1

equal to the resulting population and go to Fitness assignment.

2.3.2 NSGA-II

Non-dominated sorting genetic algorithm (NSGA-II) with elitism is another

state-of-the-art technique in multi-objective optimization using genetic algo-

rithm [92]. Fig. 2.3 shows the work�ow of NSGA-II.

2.3.2.1 Initialization

A parent population P0 is randomly generated and each individual is assigned

a �tness equal to its dominance rank.

2.3.2.2 Variation

Recombination, mutation and binary tournament selection is performed to

produce a o�spring Q0 of size N . The total population is P0 ∪ Q0. Thus
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Initialization

Variation

Non-dominated sorting

Crowding distance sorting

Termination OutputYes

No

Figure 2.3: Work�ow of NSGA-II

elitism is introduced.

2.3.2.3 Non-dominated sorting

Sort the population P0 ∪ Q0 according to its dominance rank in ascending

order.

2.3.2.4 Crowding distance sorting

After the Non-dominated sorting, all the individuals are ranked according

to their dominance rank. The best individuals F1, also known as the non-

dominated individuals, must be emphasized. If the number of F1 individuals

is less than the population size, all F1 individuals are selected for reproduc-

tion. Additionally, the second best individuals F2 are also considered. The

process repeats until N best individuals are selected.

As shown by Fig. 2.4, F1 and F2 are copied to the next generation popu-

lation Pt+1 because (|F1|+ |F2|) < N . However, F3 cannot be directly copied

into Pt+1 due to its large number of individuals. Thus crowding distance

sorting is performed:
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Qt Pt

F4 F3 F2 F1

F’
3 F2 F1F’

3

rejected

Figure 2.4: Crowding distance sorting

Dis(i) = Dis(i) +

(
I(i+ 1)m − I(i− 1)m

fmaxm − fminm

)
,∀i ∈ I, i 6= 1, l, (2.29)

where Dis(1) = Dis(l) = ∞. After the Crowding distance sorting, the

best (N − |F1| − |F2|) individuals from F3 are copied.

2.3.2.5 Termination

If maximum number of generations is satis�ed or other criteria is met, output

the set of non-dominated solutions in Pt+1. Otherwise continue the process.

2.4 Application Examples

This section presents the results of 12-generator test system, 33-generator

test system, 54-generator, and 180-generator test system. These case studies

are carried out on an Intel Core2 Duo E8400 with 4 GB memory machine.

Matlab 2009 is used for all the case studies.

The optimal pareto-fronts are formed by running both SPEA2 and NSGA-
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II 20 times. 2000 generations are performed for each time. The 40 sets of

solutions are combined and the non-dominated solutions are selected as the

optimal pareto-front.

Simulations are conducted with various number of generations to inves-

tigate the performance of the algorithms. Both algorithms are run 20 times

for each number of generations. The hyper-volume indicator is calculated for

every run. A hyper-volume indicator measures the the front obtained with

respect to the optimal front reference point. The larger the hyper-volume

indicator is, the closer the front converges towards the optimal front. The

average and standard deviation values of the hyper-volume indicator for each

number of generations are recorded in respective tables.

2.4.1 Case study 1: 12-generator test system

The optimization technique is performed on a 12-generator test system. The

average and standard deviation values of the hyper-volume indicator for each

number of generations are recorded in Table 2.1. As shown in Table 2.1,

when the number of generation is 100, the mean hyper-volume indicator of

SPEA2 is 0.0749 whereas that of the NSGA-II is 0.0594. SPEA2 has faster

convergence performance initially. As the number of generations increases to

700, the mean hyper-volume indicator of SPEA2 is 0.0752 whereas that of

NSGA-II is 0.0761. NSGA-II reaches closely to SPEA2. As the number of

generations increases to 1500 and further, the mean hyper-volume indicator

of SPEA2 is 0.0754 whereas that of NSGA-II is 0.0800. NSGA-II obtains

better results.
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Table 2.1: Mean and standard deviation for di�erent number of generations
by 12-generator system

No. of Mean Deviation Mean Deviation

generations (SPEA2) (SPEA2) (NSGA-II) (NSGA-II)

100 0.0749 0.0096 0.0594 0.0104

300 0.0730 0.0075 0.0678 0.0141

500 0.0734 0.0057 0.0757 0.0087

700 0.0752 0.0098 0.0761 0.0103

900 0.0764 0.0066 0.0783 0.0106

1100 0.0750 0.0070 0.0757 0.0089

1300 0.0756 0.0108 0.0783 0.0111

1500 0.0771 0.0083 0.0790 0.0103

1700 0.0754 0.0077 0.0805 0.0068

1900 0.0754 0.0092 0.0800 0.0099

Figure 2.5 shows four examples of the optimal front and the two fronts

obtained by the both algorithms. It is shown that SPEA2 converges faster

than NSGA-II initially. However, NSGA-II catches up and obtains similarly

good results when the number of generations increases. As shown by the

plots, NSGA-II provides more diverse solutions than SPEA2.

Fig 2.5 are the fronts obtained by SPEA2 and NSGA-II algorithms. The

x-axis of sub-�gures in Fig 2.5 is the operating cost of all the generators. The

y-axis of sub-�gures in Fig 2.5 is the amount of emission by the generators.

Since this problem is a two-objective problem. We cannot �nd a solution

that is best in both objectives. Instead, we can only �nd solutions which are

only better in one objective. These solutions form the �pareto front�. The

solutions on �pareto front� are all feasible and good solutions. It is up to the
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user to decide which solution he will choose. From Fig 2.5, we can see that if

we want to reduce the operating cost of the system, we need to move towards

left-hand-side of the x-axis. However, if we do that, the amount of emission

will go up. This can also be explained by practical case. In reality, renewable

energy is more expensive. If we want to reduce the operating cost, we need

to use more thermal energy instead of renewable energy. Nevertheless, using

more thermal energy means burning more fuel. This results in more emission

into the atmosphere. On the other hand, if we want to reduce emission, we

need to use more renewable energy, which will incur higher operating cost.

The environmental and economical impacts are shown by the �pareto front�.

Therefore, we do not provide a single dominating answer. Instead, we obtain

a set of non-dominated solutions �pareto front�, which contains minimization

of both environmental and economical information, to the user. The user

will then choose the solution based on his preferences.

Both algorithms take similar amount of time to �nish the same num-

ber of generations. It takes 5 seconds for both algorithms to complete 100

generations. The time increases to 40 seconds for the 700 generations. The

algorithms need one minute to �nish 1100 generations. For 1500 generations,

the algorithms need to run one and a half minute.

2.4.2 Case study 2: 33-generator test system

The optimization technique is performed on a 33-generator test system. The

average and standard deviation values of the hyper-volume indicator for each

number of generations are recorded in Table 2.2. As shown in Table 2.2,
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Figure 2.5: Optimal fronts obtained for various number of generations by
12-generator system

when the number of generation is 100, the mean hyper-volume indicator of

SPEA2 is 0.0722 whereas that of the NSGA-II is 0.0367. SPEA2 has faster

convergence performance initially. As the number of generations increases to

1300, the mean hyper-volume indicator of SPEA2 is 0.0822 whereas that of

NSGA-II is 0.0803. NSGA-II reaches closely to SPEA2. As the number of

generations increases to 1500 and further, the mean hyper-volume indicator

of SPEA2 is 0.0800 whereas that of NSGA-II is 0.0868. NSGA-II overtakes

SPEA2 by obtaining better results.

Figure 2.6 shows four examples of the optimal front and the two fronts

obtained by the both algorithms. It is shown that SPEA2 converges faster
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Table 2.2: Mean and standard deviation for di�erent number of generations
by 33-generator system

No. of Mean Deviation Mean Deviation

generations (SPEA2) (SPEA2) (NSGA-II) (NSGA-II)

100 0.0722 0.0094 0.0367 0.0140

300 0.0774 0.0098 0.0603 0.0108

500 0.0769 0.0081 0.0685 0.0137

700 0.0826 0.0080 0.0728 0.0128

900 0.0793 0.0058 0.0691 0.0222

1100 0.0818 0.0061 0.0756 0.0203

1300 0.0822 0.0086 0.0803 0.0198

1500 0.0800 0.0080 0.0840 0.0083

1700 0.0825 0.0079 0.0868 0.0101

1900 0.0827 0.0076 0.0874 0.0116

than NSGA-II initially. However, NSGA-II catches up and obtains similarly

good results when the number of generations increases. As shown by the

plots, NSGA-II provides more diverse solutions than SPEA2.

Both algorithms take similar amount of time to �nish the same number

of generations. It takes 15 seconds to completes 100 generations. The time

increases to 100 seconds for the 700 generations. The algorithms need three

minutes to �nish 1100 generations. For 1500 generations, the algorithms need

to run 5 minutes.
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Figure 2.6: Optimal fronts obtained for various number of generations by
33-generator system

2.4.3 Case study 3: 54-generator test system

The optimization technique is performed on a 54-generator test system. The

average and standard deviation values of the hyper-volume indicator for each

number of generations are recorded in Table 2.3. As shown in Table 2.3,

when the number of generation is 100, the mean hyper-volume indicator of

SPEA2 is 0.0700 whereas that of the NSGA-II is 0.0430. SPEA2 has faster

convergence performance initially. As the number of generations increases to

900, the mean hyper-volume indicator of SPEA2 is 0.0850 whereas that of

NSGA-II is 0.0800. NSGA-II reaches closely to SPEA2. As the number of

generations increases to 1500 and further, the mean hyper-volume indicator

66



of SPEA2 is 0.0841 whereas that of NSGA-II is 0.0875. NSGA-II outperforms

SPEA2 by obtaining closer results.

Table 2.3: Mean and standard deviation for di�erent number of generations
by 54-generator system

No. of Mean Deviation Mean Deviation

generations (SPEA2) (SPEA2) (NSGA-II) (NSGA-II)

100 0.0700 0.0086 0.0430 0.0108

300 0.0802 0.0075 0.0608 0.0095

500 0.0763 0.0111 0.0666 0.0101

700 0.0833 0.0111 0.0657 0.0104

900 0.0850 0.0086 0.0800 0.0082

1100 0.0841 0.0082 0.0847 0.0090

1300 0.0869 0.0089 0.0871 0.0117

1500 0.0841 0.0094 0.0875 0.0110

1700 0.0857 0.0078 0.0882 0.0100

1900 0.0859 0.0072 0.0891 0.0086

Figure 2.7 shows four examples of the optimal front and the two fronts

obtained by the both algorithms. It is shown that SPEA2 converges faster

than NSGA-II initially. However, NSGA-II catches up and obtains better

results when the number of generations increases. As shown by the plots,

NSGA-II provides more diverse solutions than SPEA2.

Both algorithms take similar amount of time to �nish the same number

of generations. It takes 25 seconds to completes 100 generations. The time

increases to three minites for the 700 generations. The algorithms need �ve

minutes to �nish 1100 generations. For 1500 generations, the algorithms need

to run six minutes.
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Figure 2.7: Optimal fronts obtained for various number of generations by
54-generator system

2.4.4 Case study 4: 180-generator test system

The optimization technique is performed on a 180-generator test system.

The average and standard deviation values of the hyper-volume indicator for

each number of generations are recorded in Table 2.4. As shown in Table 2.4,

when the number of generation is 100, the mean hyper-volume indicator of

SPEA2 is 0.0268 whereas that of the NSGA-II is 0.0128. SPEA2 has faster

convergence performance initially. As the number of generations increases to

1500, the mean hyper-volume indicator of SPEA2 is 0.0632 whereas that of

NSGA-II is 0.0634. NSGA-II reaches closely to SPEA2. As the number of

generations increases to 1900, the mean hyper-volume indicator of SPEA2 is
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0.0648 whereas that of NSGA-II is 0.0654. NSGA-II outperforms SPEA2 by

obtaining closer results.

Table 2.4: Mean and standard deviation for di�erent number of generations
by 180-generator system

No. of Mean Deviation Mean Deviation

generations (SPEA2) (SPEA2) (NSGA-II) (NSGA-II)

100 0.0268 0.0048 0.0128 0.0093

300 0.0479 0.0059 0.0332 0.0137

500 0.0539 0.0069 0.0666 0.0227

700 0.0594 0.0086 0.0249 0.0253

900 0.0570 0.0066 0.0443 0.0130

1100 0.0624 0.0084 0.0560 0.0214

1300 0.0618 0.0078 0.0578 0.0088

1500 0.0632 0.0075 0.0634 0.0097

1700 0.0641 0.0076 0.0645 0.0230

1900 0.0648 0.0100 0.0654 0.0319

Figure 2.8 shows four examples of the optimal front and the two fronts

obtained by the both algorithms. It is shown that SPEA2 converges faster

than NSGA-II initially. However, NSGA-II catches up and obtains better

results when the number of generations increases. As shown by the plots,

NSGA-II provides more diverse solutions than SPEA2.
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Figure 2.8: Optimal fronts obtained for various number of generations by
180-generator system

Both algorithms take similar amount of time to �nish the same number

of generations. It takes 33 seconds to completes 100 generations. The time

increases to four minutes for the 700 generations. The algorithms need seven

minutes to �nish 1100 generations. For 1500 generations, the algorithms need

to run eleven minutes.

2.5 Conclusion

In this chapter, we investigate the environmental and economical impacts of

the thermal, wind turbine and PEM fuel cell generators, achieving the goal of
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minimizing operating cost as well as minimizing emission. Furthermore, we

investigate the performance of two state-of-the-art multi-objective optimiza-

tion techniques on this problem. The techniques are performed on 3 di�erent

test systems. The results show that SPEA2 has a faster convergence when

generation number is small and NSGA-II can perform better for large num-

ber of generations. NSGA-II provides more diverse solutions than SPEA2.

It is suggested that SPEA2 is recommended if time is the most important

concern. However, if the accuracy of the results is top priority, NSGA-II is

preferred.
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Chapter 3

Optimization of Distribution

Network Incorporating

Micro-grid: An Integrated

Approach

3.1 Introduction

In 2003, the severe black out that took place in Eastern United States and

Canada a�ected 50 million people. On September 23 of 2003, the network

failure a�ected 2.4 million people in Eastern Denmark and Southern Sweden

[93]. These severe blackouts have shown that the reliability of the power

transmission is important in distribution networks. Furthermore, with the

increase of power demand and environmental awareness, the power loss dur-

ing transmission and the use of renewable energy resources have drawn much
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attention. To address these issues, network recon�guration and forming of

micro-grids are typically used. Thus the integration between the distribution

network and the distributed generators becomes a signi�cant and complex

problem.

The novelty of this work is that it proposes an integrated solution that

takes care of both micro-grid load dispatch and network recon�guration.

The proposed scheme makes use of the power �ow technique to minimize

the total operating cost of a distribution network with multiple micro-grids.

Despite higher renewable energy cost, the proposed integrated approach can

still incorporate more renewable energy into the network by largely reducing

the power losses on transmission lines. The scheme is also able to alter

the network structure in order to handle faults occurred on the distribution

feeders.

This chapter is organized into �ve sections. In Section 3.1, the background

information and the literature reviews are introduced. In Section 3.2, the

network recon�guration, forecasting, system modeling and system constraints

are presented. In Section 3.3, the optimization technique and implementation

are discussed. The application examples are shown in Section 3.5. Finally,

conclusions are made in Section 3.6.

3.2 Problem Formulation

This section discusses about the overall system structure, objective functions

and constraints. After that power �ow formulation and forecasting methods

are introduced. Various models used for di�erent types of generators are also
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discussed.

3.2.1 System structure

The overall system structure is shown in Fig. 3.1. It describes the interactions

between di�erent modules. For distributed generators, the weather history

data and generator data are input to the optimization and support vector

regression to acquire parameters and forecast. After optimization, the system

determines how many nodes are supported by the distributed generators

and how much power each generator provides. For energy storage system,

the state of charge information is the input to optimization module. After

optimization, the system decides how much power the energy storage system

charges or discharges. For utility grid, the market electricity price is the input

to the optimization module. The optimization module decides how much

power the network imports from utility grid. For power demand, history

data are used to do forecasting. The optimization recon�gures the network

and supplies power to meet the demand.

3.2.2 Objective and constraints

The objective is to minimize the operating cost OC(t) of the whole distri-

bution network. The OC(t) consists of cost of micro-grid generators, cost

of power losses on transmission lines, and cost of energy from utility grid as

shown by (3.1)

OC(t) = Closs(t) + Cmg(t) + Cutility(t), (3.1)
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Figure 3.1: System structure of distributed network with network
recon�guration and micro-grid

The cost of micro-grid consists of synchronous generator's fuel and emis-

sion cost, solar energy operating cost, wind turbine operating cost as well as

fuel cell energy cost and hydrogen management cost

Cmg(t) =
∑

(CS,i(t) + Cfactor ∗ ES,i(t)) +
∑

CPV,i(t) +∑
Cw,i(t) +

∑
(CF,i(t) + CF,i,H(t)), (3.2)

subject to the following constrains

3.2.2.1 Power balance equation

The sum of the power purchased from utility grid and the total power gener-

ated by the synchronous generators, wind turbines, PV panels and fuel cells
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in the micro-grid must be balanced by the local demand and the power loss

on the transmission lines

∑
PS,i(t) +

∑
PW,i,ex(t) +

∑
PF,i(t) +∑

PPV,i,ex(t) + Putility(t) = PLoss(t) + PDem(t). (3.3)

3.2.2.2 Spinning reserve

Spinning reserve is the reserved energy generation capacity during operation.

The reserved capacities provide extra security and reliability for the system.

It can be made available through transmission lines within a certain amount

of time. the spinning reserve is considered because this is a large network

consisting micro-grid. It is more di�cult to deal with load or generators'

variations after the recon�guration of the network structure. Some of the

nodes may not be reachable from utility grid after recon�guration. Further-

more, the load demand is high compared to the generators' capacities. Thus

the spinning reserve is needed to ensure that the promised load is supported

constantly even with stochastic weather conditions

∑
Si(t)P

max
i (t) > PDem(t) + PR(t). (3.4)

3.2.2.3 Generation limit

Every generator has its lowest and highest generation limit due to its phys-

ical constraints. The generator cannot operate beyond the physical limit,
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otherwise the generator would be severely damaged

Pmin
i (t) 6 Pi(t) 6 Pmax

i (t). (3.5)

3.2.2.4 Voltage constraint

The nodal voltage cannot be too high or too low. Otherwise it would cause

serious problems to end users. It would cause power apparatus damage or

instability in the power system. Moreover, it would cause unavailability of

power for end user

V min
j (t) ≤ Vj(t) ≤ V max

j (t). (3.6)

3.2.2.5 Power limit

The maximum power magnitude of a branch is limited due to the material

of the transmission line. Excessive power on the line would damage the

transmission element and result in disconnection

MVAfj ≤MVAfmaxj . (3.7)

3.2.3 Power �ow formulation

The recon�guration of a distribution network is a process that modi�es the

states of the sectionalizing switches and tie switches to isolate a fault in the

network or to meet given optimal requirements such as minimizing power

loss of the network, maintaining the power balance equation and reducing

the load of the transformers.
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Since we are using network recon�guration techniques to re-structure the

network, after recon�guration, the network structure is in radial structure.

Thus radial power �ow formulation is used.

Considering a radial network in Fig. 3.2, a set of recursive equations is

used to model the power �ow in the radial network. The equations are shown

as follows [94]

0 i-1 i i+1 n

Pj-1(t),Qj-1(t) Pj (t),Q j(t ) Pj+1(t),Qj+1(t) Pn(t ),Qn(t )P0(t),Q 0(t)

xj+r j xj+1+rj+1 xn+rnxj-1+r j-1x0+r0

Figure 3.2: An example of power �ow in a radial network

The power drawn by branch j+ 1 is equal to the power transmitted from

branch j minus the sum of line loss on branch j and the load on branch j+ 1

Pj+1(t) = Pj(t)− rj
Pj(t)

2 +Qj(t)
2

Vj(t)2
− PLj+1(t), (3.8)

Qj+1(t) = Qj(t)− xj
Pj(t)

2 +Qj(t)
2

Vj(t)2
−QLj+1(t), (3.9)

Vj+1(t)2 = Vj(t)
2 − 2(rjPj(t) + xjQj(t)) +

(r2
j + x2

j)
Pj(t)

2 +Qj(t)
2

Vj(t)2
. (3.10)

It is noticed that the quadratic terms in the (3.8-3.10) are much smaller

than the branch power Pj(t) and Qj(t). Therefore the equations can be
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simpli�ed by dropping quadratic terms

Pj+1(t) = Pj(t)− PLj+1(t), (3.11)

Qj+1(t) = Qj(t)−QLj+1(t), (3.12)

Vj+1(t)2 = Vj(t)
2 − 2(rjPj(t) + xjQj(t)). (3.13)

For the radial network, the branch power can be obtained by the following

terms

Pj+1(t) =
n∑

k=j+2

PLk(t), (3.14)

Qj+1(t) =
n∑

k=j+2

QLk(t), (3.15)

Vj+1(t)2 = Vj(t)
2 − 2(rjPj(t) + xjQj(t)). (3.16)

The power loss on a branch is calculated using

LPj(t) = rj
Pj(t)

2 +Qj(t)
2

Vj(t)2
. (3.17)

Thus, the total power loss on the network is calculated as

PLoss(t) =
n−1∑
j=0

rj
Pj(t)

2 +Qj(t)
2

Vj(t)2
. (3.18)

3.2.4 Forecasting

Due to the stochastic nature of the weather and load demand, forecasting

unit is needed for the system in order to forecast the parameters and load
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values for the next time unit. For the load, with previous eight mean and

standard deviation values, it is able to forecast the mean and standard devi-

ation values for the next time unit. With the forecasted values, it is possible

to calculate the di�erence between the forecasted and actual load based on

the probabilistic model. Together with the forecasted load value, it is able

to obtain the interval that the actual load will fall in. Similarly, it is possible

to forecast the mean and standard deviation parameters for PV generator as

well as shape factors and scale factors for wind turbines. Then it is able to

obtain the expected value of wind and PV generators power outputs based

on the probabilistic models.

Support vector regression is a well-proved machine learning approach for

time series prediction. It is based on statistical learning theory which al-

lows it to generalize well for the unseen data. Given the training data

(x1, y1) . . . , (xi, yi) . . . (xl, yl), where xi are the input vector and yi are the

corresponding output value, the support vector regression solves following

minimization problem [95]

min
1

2
wTw + C

l∑
i=1

(ξi + ξ∗i ) (3.19)

subject to

yi − (wTφ(xi) + b) ≤ ε+ ξ∗i ,

(wTφ(xi) + b)− yi ≤ ε+ ξi,

ξ∗i , ξi ≥ 0, i = 1, . . . , l
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where 1
2
wTw is the regularization term and (ξ∗i , ξi) are the upper and lower

training errors subject to the ε-insensitive tube |y − (wTφ(xi) + b)| ≤ ε as

shown in Fig. 3.3. C is the cost of error that controls the regression quality.

ε is the width of the tube and φ is the kernel mapping function.

ξ*

ξ

ε

Figure 3.3: ε-insensitive band for SVR

The constraints of the objective equation (3.19) indicate that most data,

xi, are put in the tube |y− (wTφ(xi) + b)| ≤ ε. If xi is not in the tube, there

are upper/lower training errors (ξ∗i , ξi) which are going to be minimized in the

objective function. Over�tting and under�tting are mitigated by minimizing

the regularization term 1
2
wTw.

Since xi was transformed using kernel φ into higher dimensional feature

space, it is more convenient to deal with the dual problem 3.20

min
1

2
(α− α∗)TQ(α− α∗) + ε

l∑
i=1

(αi − α∗i ) +
l∑

i=1

yi(αi − α∗i ) (3.20)
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subject to

l∑
i=1

(αi − α∗i ) = 0,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l

where Qij = φ(xi)
Tφ(xj).

Fig. 3.4 shows an example of 2-day load demand forecasting of Singapore

electricity market by support vector regression using data from Energy Mar-

ket Company Pte Ltd (EMC). The load demand of 14 Mar 2011 and 15 Mar

2011 are used in this example. The data are measured every half an hour.

Support vector regression uses previous 8 actual load data to forecast for the

following time unit. Thus the actual data ranges from 1 to 96 whereas the

forecasted data ranges from 9 to 96. The spline kernel function is used. The

mean average percentage error (MAPE) rate of this forecasting is 0.67%.

3.2.5 Models

This sub-section introduces load models and various types of generator mod-

els. Instead of deterministic models, we use stochastic models to represent

the load demand and outputs of the di�erent types of generators.

3.2.5.1 Load

The actual peak load and the forecasted peak load will be di�erent due

to its stochastic nature. Load forecasting uncertainty thus is an important

parameter in economic load dispatch. The di�erence is modeled as a normal
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Figure 3.4: An example of 2-day load forecasting with error rate 0.67%

distribution function [96]

Diff(PDem(t)) =
1

σ
√

2π
e−(PDem(t)−µ)2/2σ2

(3.21)

3.2.5.2 PV

The output power of PV generator proportional to solar irradiance and it is

also a�ected by cell temperature. It is modeled as [97]

PPV,i(t) = PSTC
GING(t)

GSTC

[1 + kPV (Tc(t)− Tr)]. (3.22)

Due to the stochastic nature of the weather, the irradiance probability
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density function is modeled using Log-normal distribution

IPDF (GING(t)) =
1√

2πln(1 + σ(t)2

µ(t)2
)GING(t)

·exp

−1

2

 ln(GING(t))− ln(µ(t)) + 1
2
ln(1 + σ(t)2

µ(t)2
)√

ln(1 + σ(t)2

µ(t)2
)

2 . (3.23)

The expected output power value can be calculated as

PPV,i,ex(t+ 1) =

ˆ ∞
0

PPV,i(GING(t+ 1)) ·

IPDF (GING(t+ 1))dGING(t+ 1). (3.24)

3.2.5.3 Wind turbine

Wind speed pro�le at a given location is modeled using Weibull density

function. The wind speed distribution is further transformed into a wind

power distribution as shown below [81]

fw(PW,i(t), t) =
k(t)lvi(t)

c(t)

(
(1 + ρl)vi(t)

c(t)

)k(t)−1

·exp

(
−
(

(1 + ρl)vi(t)

c(t)

)k(t)
)
, (3.25)

for 0 < PW,i(t) < PW,i,r, and

fw(0, t) = 1− exp

(
−
(
vi(t)

c(t)

)k(t)
)

+ exp

(
−
(
v0(t)

c(t)

)k(t)
)
, (3.26)
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fw(PW,i,r, t) = exp

(
−
(
vr(t)

c(t)

)k(t)
)
− exp

(
−
(
v0(t)

c(t)

)k(t)
)
, (3.27)

where ρ =
PW,i(t)

PW,i,av
and l = vr(t)−vi(t)

vi(t)
.

The expected value of power output is

PW,i,ex(t+ 1) =

ˆ PW,i,r

0

PW,i(t+ 1)fw(PW,i(t+ 1),

t+ 1) · dPW,i(t+ 1) + PW,i,r ·

fw(PW,i,r, t+ 1). (3.28)

3.2.5.4 Fuel cell

3.2.5.4.1 Fuel cost For PEM fuel cell, the fuel cost is linearly propor-

tional to the sum of the power generated and the power consumed by the

power for hydrogen production as shown by [82]

CF,i(t) = Cn(
PF,i(t) + PH

ηi
). (3.29)

3.2.5.4.2 Hydrogen Management Cost The hydrogen storage cost

is proportional to the hydrogen pumping cost. The hydrogen reservoir is

assumed to have 95% storage e�ciency. The mathematical expression is [82]

CF,i,H(t) = CpumpPHηst. (3.30)
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3.2.5.5 Synchronous generator

3.2.5.5.1 Fuel cost Synchronous generator has a number of valves that

are opened according to the power output. As the output requirement in-

creases, the generator opens one more valve to allow more steam to come

out. However, when a valve is opened, the incremental heat rate rises rapid-

ly. This valve-point e�ect results in non-smooth, non-convex input-output

relationship. A recurring recti�ed sinusoid modeling the valve-point e�ect is

added to the traditional quadratic cost function as shown in (3.31) [98]

CS,i(t) =
ai
2
PS,i(t)

2 + biPS,i(t) + ci + |ei sin(fi(P
min
S,i − PS,i(t)))|. (3.31)

3.2.5.5.2 Environmental cost Nitrogen-Oxide (NOx) emission repre-

sents the environmental impact of thermal generators. The amount of NOx

emission is proportional to generator output as shown by [84]

ES,i(t) = θi + βiPS,i(t) + γiPS,i(t)
2 + ζiexp(κiPS,i(t)). (3.32)

Thus the cost of the emission would be the product of cost factor and the

amount of emission (Cfactor ∗ ES,i(t)).

3.2.5.6 Battery

Battery is a storage device which can reserve additional energy. Whenev-

er the wind turbine and PV cannot meet the demand, the battery will be
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discharged. The state of charge (SOC) of a battery is limited by

SOCmin,i 6 SOCi(t) 6 SOCmax,i. (3.33)

The cost of the battery is modeled as a constant CB,i per kWh.

3.3 Methodology

This section discusses the parameters acquiring process and optimization

techniques. After that, the parameter settings and encoding strategy is in-

troduced. Then it discusses the overall problem solving work�ow for the

readers to have a better understanding of the whole process.

3.3.1 Acquiring parameters

Since only wind speed and solar irradiance can be measured at a time, it

is necessary to acquire the mean and standard deviation parameters from

these data in order to obtain the distribution information and the expected

values. In this chapter, the Vaccine-enhanced optimization technique is used

to search for the parameters. Fig. 3.5 and Fig. 3.6 show the acquired wind

speed and solar irradiance distribution information from the actual data. The

data are provided by Solar Energy Research Institute of Singapore (SERIS).

The irradiance and wind speed are measured every minute. The data of

every half an hour containing 30 records are used to acquire the parameters

for the probabilistic models. The blocks are the probability histograms of the

actual data. The line with circles represents the acquired probability density
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function. The parameter settings are the same as the optimization module

which is shown in Section 3.5.
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Figure 3.5: An example of wind speed distribution information acquisition
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Figure 3.6: An example of solar irradiance distribution information
acquisition

3.3.2 Optimization techniques

The optimization task of network recon�guration together with economic

load dispatch is a non-convex and highly nonlinear problem. Evolutionary

computation techniques are suitable for solving this problem [69]. This chap-

ter has investigated four di�erent types of evolution computation techniques.

They are Genetic Algorithm (GA) [99], Particle Swarm Optimization (P-

SO) [100], Vaccine-enhanced Arti�cial Immune System (V-AIS) [101], and

Adaptive Vaccine-enhanced Arti�cial Immune System (AV-AIS). The �rst

three algorithms are well-known in literature, but the fourth algorithm is

proposed in this chapter. Thus this sub-section only introduces the adaptive

Vaccine-enhanced Arti�cial Immune System.

The biological immune system has evolved over millions of years. The im-
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mune system defends the body by using multilevel defense (either in parallel

or sequential manner). The invader of the body will either be neutralized or

destroyed by the immune system.

Two white blood cells are the most important cells in this immune pro-

cess. They are T-cells and B-cells. They are both originated from bone

marrow. T-cells are classi�ed into helper T-cells, killer T-cells and suppres-

sor T-cells. Helper T-cells are to activate B-cells. Killer T-cells are to inject

poisonous chemicals to neutralize or kill the antigens. Suppressor T-cells are

responsible for inhibiting the e�ects of other immune cells. Thus they can

prevent allegoric reactions. B-cells are mainly in charge of production and

secretion of antibodies.

3.3.2.1 Immune Network Theory

The immune network theory was proposed by Jern [102]. The theory stated

that the immune system forms a idiotypic network of interconnected B-cells

to recognize antigens. These B-cells both stimulate and suppress each other

to stabilize the network. If the two B-cells a�nity is above certain threshold,

they are interconnected. The higher the a�nity, the stronger the connection

is.

3.3.2.2 Negative Selection mechanism

The purpose of the negative selection mechanism is to protect the self cell-

s. It makes sure that the immune system only reacts to the antigens while

not destroying self cells. When T-cells are made through the genetic rear-

rangement process, they will go through the negative selection process in
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thymus. Those T-cells which bind to the self cells will be destroyed during

this process. Therefore only those cells which do not bind to self cells can

leave the system. Then those T-cells will circulate in the body and perform

the immunologic function [103].

3.3.2.3 Clonal Selection Principle

Clonal selection principle is about how the immune system responses to an

antigen. The new cells reproduced from their parents by mutation with high

rate (hypermutation). When an antibody strongly bind to an antigen, the

corresponding B-cell is stimulated to produce more antibodies. On the other

hand, the immune system will suppress those antibodies carrying self-reactive

receptors. New antibodies will help to explore new search space [104].

3.3.2.4 Vaccination

Vaccination is the injection of an antigen which can stimulate the immune re-

sponse. Injection of infectious agents can create the immunological memories

and let the immune response be more e�ective against the future encounters

with these antigens. The vaccine extraction of a 2 dimensional problem is

shown in Fig. 3.7 and the vaccination algorithm consists of following steps

[105]

1. Divide the N-dimensional search space into D1 ×D2 × . . .×Dn grids.

The width of the grid in kth dimension is

Wk =
xmaxk − xmink

Dk

, k = 1, . . . , n. (3.34)
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Thus the boundary of the grids can be determined by

x0
k = xmink ,

xik = xmink + i×Wk. (3.35)

2. In each grid, generate a random points vik ∈ [xik, x
i+1
k ] for every dimen-

sion by

vik = xik +Rand(0,Wk), i = 0, . . . , Dk. (3.36)

3. Generate vaccines vaccine by combing all the points from step 1 and

step 2. For example

vaccinem = vi1, . . . , v
j
k, . . . , v

l
n, vaccinem ∈ vaccine. (3.37)

4. Calculate the vaccine a�nity dmr between vaccine vaccinem and every

antibody abr in the population using Euclidian distance

dmr = ‖vaccinem − abr‖. (3.38)

If the a�nity is lower than prede�ned threshold σ, the vaccine is sup-

pressed. The remaining are stored in the vaccine set.

5. Inject required number of vaccines into population and carry out the

arti�cial immune optimization.

92



),( 0
2

0
1 vv ),( 0

2
1
1 vv ),( 0

2
2
1 vv ),( 0

2
3
1 vv

),( 1
2

0
1 vv ),( 1

2
1
1 vv ),( 1

2
2
1 vv ),( 1

2
3
1 vv

),( 2
2

0
1 vv ),( 2

2
1
1 vv ),( 2

2
2
1 vv ),( 2

2
3
1 vv

0
1x 1

1x
2
1x 3

1x 4
1x

0
2x

1
2x

2
2x

3
2x

Figure 3.7: Vaccine extraction of a 2 dimensional search space

3.3.2.5 Adaptation

With the increasing number of iterations, the antigens tend to be generated

in a relatively small search space. The vaccines are used to balance the

global search and local search capabilities. Thus a sparse vaccine generation

is needed in the exploration state and a dense vaccine generation is needed

in the exploitation state. The adaptive rule of the vaccine size is proposed

in (3.39)

Dk = floor(
1

0.04 + 0.215e−0.025t
). (3.39)

(3.39) makes sure that the number of grids in each search dimension

increases from 4 to 25, which enforces faster exploration state and a more

detailed exploitation state.
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3.3.2.6 Adaptive vaccine-AIS Algorithm

The detailed algorithm is summarized in the following paragraphs. Fig. 3.8

shows the �owchart of Adaptive Vaccine-AIS algorithm.

1. Extract the vaccines vaccinek from the n-dimensional search space.

2. Initialize the antibodies randomly abr, r = 1, . . . , P .

3. Evaluate the a�nity (�tness) of the antibodies f(abr), r = 1, . . . , P .

4. Carry out the a�nity maturation steps as shown below.

(a) Asexually clone c copies of each antibody in memory set where

c = round(βP ). (3.40)

β is a user speci�ed parameter and round() is the function which

can round the number to the nearest integer. All the antibodies in

set Cr = {ab1
r, ab

2
r, . . . , ab

nc
r } have the same a�nity value because

they are clones.

(b) Hypermutate each daughter in every set Cr. The mutation rate is

inversely proportional to their a�nity value

fr(abr) =
f(abr)

maxf(abr)
, r = 1, . . . , P

α = exp(−ρfr(abr)), r = 1, . . . , P

ab1∗
r = ab1

r

abt∗r = abtr + α· rand(−1, 1), t = 2, . . . , nc;

r = 1, . . . , P. (3.41)
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ρ is a decay constant speci�ed by the user. ab1
r does not go through

mutation process to keep elitism. The other daughters in the set

will mutate according to their a�nity value. As a result, the new

antibody set C∗r = {ab1∗
r , ab

2∗
r , . . . , ab

nc∗
r } is generated.

5. Select the antibodies with the maximum a�nity in each set C∗r =

{ab1∗
r , ab

2∗
r , . . . , ab

nc∗
r }, r = 1, . . . , P and eliminate the other similar an-

tibodies. The new memory antibodies are generated.

6. Calculate the antibody-to-antibody a�nity using Euclidian distance

dri = ‖abr − abi‖, r = 1, . . . , P, i = 1, . . . , P, i 6= r. If the a�nity value

is less than a user de�ned threshold, the antibody with higher value

is retained. The other one is deleted from the memory set. After this

process, R number of antibodies are deleted and P − R number of

antibodies are remained.

7. Adaptively adjust the vaccine grid size according to the adaptation rule

and extract vaccines vaccinek.

8. Inject R number of vaccines. The population in memory set becomes

P again.

9. If the termination criteria is not met, go to step 3. Otherwise, output

the memory set antibodies.

3.3.3 Parametric setting

The parameters of V-AIS are: ρ = 2, β = 0.1, dri = 0.1, generation = 100

and population = 50. The parameters of PSO are: α = 1.9, c1 = 1.49, c2 =
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Figure 3.8: Adaptive vaccine-AIS �owchart

1.49, generation = 100 and population = 50. The parameters of GA are:

ρm = 0.005, ρc = 0.6, generation = 100 and population = 50. The parame-

ters of AV-AIS are: ρ = 2, β = 0.1, generation = 100 and population = 50.

The parameters selected based on breadth search. The parametric space is

searched with a small step size. For each method, the parameters which can

give the best average results are selected. According to the prediction of Sin-

gapore Power and Sustainable Energy Association of Singapore newsletter,

the PV electricity and wind electricity tari� is 15 cents per kWh and the

utility electricity tari� is 20 cents per kWh in Singapore [106].
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3.3.4 Encoding strategy

The encoding strategy of the network recon�guration must make sure that

the network is in radial structure. Fig. 3.9 shows an example of a 3-feeder

network. The network has 16 branches (13 switches and 3 tie switches).

There are 3 loops as shown. To preserve the radial structure of the network

while generating as many feasible solutions as possible, each loop can only

have one switch open at a time. The encoding strategy is to use a number

to represent the opening switch in each loop. For instance, 3|2|3 represents

that the third switch in loop 1, second switch in loop 2, and third switch in

loop 3 are open. Each gene in a antibody (number) is between 1 and the

number of switches in the loop. The advantage of this encoding strategy is

that the percentage of feasible solutions generated are much higher compared

to traditional encoding where each switch is represented by 1 binary bit.
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(15)

(12)
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Branch

Tie switch

Loop 1 Loop 2

Loop 3

Figure 3.9: An example of 3 feeder network

The encoding strategy for the micro-grid is to use a gene to represent the

number of branches to which distributed generators supply power in each

direction. Then, the remaining branches in each direction are taken care by
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the utility grid. For instance, the chromosome 1|3|2 represents 1 branch in

direction A, 3 branches in direction B and 2 branches in direction C are dealt

by distributed generators as shown in Fig. 3.10. The remaining branches are

taken care by utility grid.

DG+
ESS

Node

Branch

Distributed 
generators and 
energy storage 
system

A

B

C

DG+
ESS

Figure 3.10: An example of nodes supported by DG and ESS

3.3.5 Overall work�ow

Fig. 3.11 is the �owchart of the approach. Firstly, the weather and load

history data are collected from measuring equipments. After the collections,

these data are used to acquire the mean and standard deviation parameters

for statistical model building as discussed in Section 3.3.1. Then these data

are used to forecast the wind turbine output, PV output, and load demand

using stochastic models and support vector regression by using the techniques

discussed in Section 3.2.4 and Section 3.2.5. After that, this information is

sent to the optimization module which contains optimization techniques as

discussed in 3.3.2 together with state-of-charge information of energy storage

devices. Then the optimization module takes care of the network encoding
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strategy as part of the optimization procedures. After the calculation, it

determines which nodes are supported by distributed generators and energy

storage devices. It also determines the power output of each distributed

generator. Furthermore, it determines which nodes are supported by utility

grids to achieve overall operating cost minimization.

Weather 
history (wind 

and PV)

Expected power 
generated by 
wind turbines 

and PV

Load history 

Expected load
SOC of energy 

storage 
devices

Optimization technique
Objective: Minimum 

operating cost

Determine the nodes 
supported by 

DG+ESS and the 
power output of each 
distributed generator

Determine the 
nodes 

supported by 
utility grids

Determine the 
amount of energy 
store/extract from 
storage devices

Figure 3.11: Overall system work�ow

3.4 Integrated Approach

The novelty of this chapter is by �rst introducing the integrated formulation

of the economic dispatch as well as the network recon�guration in litera-

ture. This integrated approach has also taken stochastic load and generator
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forecasting into consideration. The integrated approach allows the network

to utilize more renewable energy, while minimizing the operating cost. The

reason why it can achieve that is because the recon�gured network �ow can

signi�cantly reduce the power losses, therefore the overall operating cost can

be minimized by reducing the cost of power losses.

3.5 Application Example

For this application example, IEEE 33-node system [107] as shown in Fig. 3.12

is adopted to validate the method presented. This is a hypothetical system.

This network consists one main feeder, 33 buses, 3 laterals, and 5 tie lines.

The voltage of the transmission is 12.66kV . Branch 33, 34, 35, 36, and 37

are normally open. The system has power demand 3615kW and the initial

system power loss is 202.6kW . Since our calculation time step is half an

hour, we can calculate the initial cost for the IEEE 33-node test system as

(3615 + 202.6) ∗ 0.2 ∗ 0.5 = 381.76 SGD per half an hour. The system in-

side the circle attached to node 15 as shown in Fig. 3.13 denotes distributed

generators and energy storage system. The structure of the micro-grid is

shown in Fig. 3.13 [108] and includes small generators, storage devices, and

local distributed loads, which can operate both, connected to the grid or

autonomously in island mode. The power loss on the transmission line is

converted into part of the operating cost according to the market price.
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Figure 3.12: IEEE 33-node test system
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Figure 3.13: Structure inside the dashed ellipse: a �exible micro-grid
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These following case studies are carried out on an Intel Core2 Duo E8400

with 4 GB memory machine. To be fair for all algorithms, each test is set to

take 400 seconds to �nish.

3.5.1 Case study 1: renewable energy at the same place

Firstly, case studies are conducted by using various renewable power values

and using di�erent optimization algorithms such as Vaccine-Enhanced Arti-

�cial Immune System (V-AIS), Particle Swarm Optimization (PSO), Genetic

Algorithm (GA) and Adaptive Vaccine-enhanced Arti�cial Immune System

(AV-AIS). Each type of the optimization techniques is run 10 times to evalu-

ate the average performance. Table 3.1 shows the operating cost, power loss,

power delivered by DGs and the opened switches under di�erent renewable

power status obtained by AV-AIS. In this case study, we assume that there is

certain amount of renewable energy (ranges from 100 kW to 500 kW ) avail-

able. 50% of the energy is from wind turbine, and another 50% energy is

from PV generator. There are 3 diesel generators and 3 fuel cells working as

thermal distributed generators attached to node 15. Each of the distributed

generators has 30 kW capacity. Table 3.2 shows the operating cost obtained

by 4 di�erent optimization algorithms. The operating cost consists of cost of

power loss, cost of power from utility grid, and cost of distributed generators

as de�ned in (3.1).

As shown by Table 3.1, the operating cost reduces as the renewable ener-

gy power level increases. This is because transmitting electricity from utility

grid to destination node incurs energy loss due to resistance of the transmis-
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Table 3.1: Case study 1: results obtained by AV-AIS providing di�erent
renewable power.

wind/PV total power power delivered
switches opened

(kW ) cost($) loss(kW ) by DGs (wind/PV/
other DERs)(kW )

50/50 365.11 60.14 50/50/20
4-5, 16-17, 13-
14, 8-9, 6-7

100/100 362.37 55.31 100/100/70
4-5, 31-32, 13-
14, 8-9, 6-7

150/150 359.91 57.64 150/150/30
23-24, 31-32, 13-
14, 8-9, 18-19

200/200 357.09 51.94 200/200/80
27-28, 30-31, 13-

14, 8-9, 6-7

250/250 354.69 51.94 215/215/50
27-28, 30-31, 13-

14, 8-9, 6-7

sion lines. The power transmitted from source node to node 15 incurs high

power loss. Using renewable power can be more cost-e�ective by taking power

loss cost into consideration. When there are 50kW wind and 50kW PV ener-

gy available, the system is recon�gured to form a radial structure network by

opening switches 4-5, 16-17, 13-14, 8-9, 6-7. The system power loss is reduced

to 60.14kW . The 50kW wind energy and 50kW PV energy together with

20kW diesel/fuel cell energy are delivered to support node 15 (60kW ) and n-

ode 14 (60kW ). Thus the cost of purchasing energy from utility grid per half

an hour is (3615−120+60.14)∗0.2∗0.5 = 355.514SGD. The cost of purchas-

ing energy from micro-grid per half an hour is 365.11−355.514 = 9.596SGD.

Since micro-grid delivers 120kW power to utility grid, the average energy

price from micro-grid is 9.596/0.5/120 = 0.160SGD/kWh, which is correc-

t with our price assumptions because we also have higher cost diesel/fuel
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cost generators in the micro-grid. The penetration of micro-grid energy is

120/3615 × 100% = 3.3%, and the improvement of the total operating cost

from the initial case is (381.76− 365.11)/381.76× 100% = 4.4%.

As shown by the last row of Table 3.1, when there are 250kW wind

and 250kW PV energy available, the system is recon�gured to form a radi-

al structure network by opening 27-28, 30-31, 13-14, 8-9, 6-7. The system

power loss is further reduced to 51.94kW . The 215kW wind energy and

215kW PV energy together with 50kW diesel/fuel cell energy are delivered

by micro-grid. The cost of purchasing energy from utility grid per half and

hour is (3615−480+51.94)∗0.2∗0.5 = 318.694SGD. The cost of purchasing

energy from micro-grid per half an hour is 354.69 − 318.694 = 35.996SGD.

Since there is 480kW power from micro-grid, the average energy price is

35.996/0.5/480 = 0.150SGD/kWh, which is correct with our price assump-

tions. The penetration of micro-grid energy is 480/3615 × 100% = 13.3%,

and the improvement of the total operating cost from the initial case is

(381.76− 354.69)/381.76× 100% = 7.1%.

On the other hand, the operating cost cannot be further reduced after

500 kW renewable power. This is because the system is restricted by voltage

constraint and power limits. After 500 kW of renewable power, the trans-

mitting power on branch 15-16 and branch 14-15 reach their limits. The

limits are due to their physical material properties. The power �owing out

from micro-grid is thus restricted to protect the transmission lines and e-

quipments. Although more renewable energy is available, the system cannot

fully utilize the renewable energy due to transmission limits.

In general, islanding operation is not allowed. In the case that the renew-
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able power is 100 kW , the micro-grid supplies power to node 15. 100 kW is

more than enough to support node 15 as node 15 consumes 60 kW . However,

it is not enough to support 2 nodes. Thus, the system only supports node 15,

and the excess energy is stored in the battery. In the case that the renewable

energy is less than 60 kW , the micro-grid does not support any node. All

the nodes are supported by utility grid.

Moreover, di�erent scenarios are taken into consideration by this ap-

proach.

Scenario 1: renewable energy is not enough to support any node. In this

case, all nodes are supported by utility grid. The available renewable energy

is stored into battery.

Scenario 2: renewable energy is able to support a few nodes with some ex-

cess energy. Optimization of the whole network is performed to decide which

nodes can be supported by distributed generators to minimize the operating

cost. Then these decided nodes are supported by distributed generators. The

rest are supported by utility grid. The excess energy is stored into battery.

Scenario 3: utility electricity price changes. When market price changes,

optimization of the whole network is performed to decide which nodes can be

supported by distributed generators to minimize the operating cost. Then

these decided nodes are supported by distributed generators. The rest are

supported by utility grid. The excess energy is stored into battery.

As shown in Table 3.2, four types of optimization algorithms are all capa-

ble of completing the task and obtaining convergent results. The results of

the four algorithms are close. The reason is because they are all well estab-

lished stochastic search algorithms and their parameters have been tuned by
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Table 3.2: Case study 1: operating cost obtained by di�erent algorithms.

wind/PV operating cost operating cost operating cost operating cost
(kW ) by AV-AIS($) by PSO($) by GA($) by V-AIS($)

50/50 365.10 365.23 365.25 365.45

100/100 362.34 362.42 362.65 362.68

150/150 359.97 360.13 359.97 360.24

200/200 357.04 357.15 357.44 357.19

250/250 354.68 354.74 354.93 354.86

breath method before the calculation. It is noticed that the results obtained

by AV-AIS are slightly better. This is because AV-AIS is an improved adap-

tive optimization method based on V-AIS. Thus the performance is more

promising.

Secondly, case studies are conducted by using actual weather data to-

gether with IEEE 33-node system to investigate the overall dynamic system

response. In this dynamic experiment shown in Fig. 3.14, actual weather

data of 14 March 2011 are used to investigate how the network responds to

the dynamic weather over one day. In this experiment, there is little renew-

able energy in the early morning. The energy stored in the battery is used

to satisfy load demand and the operating cost of the whole network is high.

During time unit 4 to 6 (2:00AM to 3:00AM), there is large amount of wind

energy available. This energy is thus used to satisfy more load demand and

the operating cost of the network becomes lower. After that, from time unit

7 to 9 (3:30AM-4:30AM), there is little wind and PV energy. The operating

cost of the network becomes high again. From time unit 11 to 19 (5:30AM-

9:30AM), there is plenty of PV and some wind energy available. The network
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(d) Response obtained by V-AIS

Figure 3.14: Case study 1: dynamic experiment results

can adjust itself and make use of the renewable energy to reduce the total

operating cost. However, the cost reduction is limited by line constraints and

it cannot be further reduced below 354. Similarly, from time unit 21 to 24

(10:30AM to 12:00PM), the operating cost is lower due to abundant PV and

some wind energy. After time unit 24 (12:00PM), little PV energy is received

due to bad weather condition. The operating cost becomes high again. On

the other hand, for time unit 31 (3:30PM), 39 (7:30PM) and 47 (11:30PM),
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there is small amount of wind energy. The system can adjust itself to lower

the operating cost by making use of the wind energy.

3.5.2 Case study 2: renewable energy at di�erent places

In case study 2, wind and PV energy are at two di�erent places as shown in

Fig. 3.15. We assume that PV generators with another 6 DERs and energy

storage devices are attached to node 15. Wind generators with another 6

DERs and energy storage devices are attached to node 24. In this case

study, we assume that there is certain amount of renewable energy (ranges

from 100 kW to 900 kW ) available. 50% of the energy is from wind turbine,

and another 50% energy is from PV generator. Table 3.3 shows the results

obtained by AV-AIS with di�erent level of renewable power. Table 3.4 shows

the operating cost obtained by 4 di�erent optimization algorithms.
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Figure 3.15: IEEE 33-node test system with renewable energy at di�erent
places

It is observed that, with the increasing penetration of the renewable ener-
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gy, the total operating cost decreases due to reduction of the power loss. As

shown in the �rst row of table 3.3, when there are 50kW wind and 50kW PV

energy available, the system is recon�gured to form a radial structure net-

work by opening switches 37-28, 15-16, 13-14, 8-9, 18-19. The system power

loss is reduced to 55.70kW . The 50kW wind energy together with 70kW

diesel/fuel cell energy are delivered to support node 15 (60kW ) and node 14

(60kW ). Thus the cost of purchasing energy from utility grid per half an

hour is (3615− 120 + 55.70)∗ 0.2∗ 0.5 = 355.07SGD. The cost of purchasing

energy from micro-grid per half an hour is 366.26 − 355.07 = 11.19SGD.

Since micro-grid delivers 120kW power to utility grid, the average energy

price from micro-grid is 11.19/0.5/120 = 0.187SGD/kWh, which is correc-

t with our price assumptions because we also have higher cost diesel/fuel

cost generators in the micro-grid. The penetration of micro-grid energy is

120/3615 × 100% = 3.3%, and the improvement of the total operating cost

from the initial case is (381.76− 366.26)/381.76× 100% = 4.1%.

As shown in the last row of Table 3.3, when there are 450kW wind and

450kW PV energy available, the system is recon�gured to form a radial

structure network by opening 37-28, 30-31, 13-14, 8-9, 6-7. The system

power loss is further reduced to 42.10. The 450kW wind energy together

with 30kW diesel/fuel cell energy are delivered by micro-grid 1. The 420kW

PV power is delivered by micro-grid 2. The cost of purchasing energy from

utility grid per half and hour is (3615 − 480 − 420 + 42.10) ∗ 0.2 ∗ 0.5 =

275.71SGD. The cost of purchasing energy from micro-grid per half an

hour is 344.10 − 275.71 = 68.39SGD. Since there is 900kW power from

micro-grid, the average energy price is 68.39/0.5/900 = 0.152SGD/kWh,
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Table 3.3: Case study 2: results obtained by adaptive AV-AIS providing
di�erent renewable power.

wind/PV total power power delivered
switches opened

(kW ) cost($) loss(kW ) by DGs (wind/other DERs1/
PV/Other DERs2)(kW )

50/50 366.26 56.70 50/70/0/0
37-28, 15-16, 13-
14, 8-9, 18-19

100/100 364.76 56.70 100/20/0/0
37-28, 15-16, 13-
14, 8-9, 18-19

150/150 363.35 54.61 150/30/0/0
37-28, 16-17, 13-
14, 8-9, 18-19

200/200 362.13 52.91 200/70/0/0
37-28, 31-32, 13-

14, 8-9, 6-7

250/250 359.33 44.53 250/20/250/170
37-28, 31-32, 13-

14, 8-9, 6-7

300/300 352.14 42.92 300/30/300/120
37-28, 31-32, 13-

14, 8-9, 6-7

350/350 349.13 42.92 330/0/350/70
37-28, 31-32, 13-

14, 8-9, 6-7

400/400 346.20 42.10 400/80/400/20
37-28, 30-31, 13-

14, 8-9, 6-7

450/450 344.10 42.10 450/30/420/0
37-28, 30-31, 13-

14, 8-9, 6-7
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which is correct with our price assumptions because we also have higher

cost diesel/fuel cost generators in the micro-grid. The penetration of micro-

grid energy is 900/3615× 100% = 24.5%, and the improvement of the total

operating cost from the initial case is (381.76−344.10)/381.76×100% = 9.9%.

Compare with Case study 1, by allocating the PV generators to di�erent

location, the reduction of total operating cost increases from 7.1% to 9.9%,

which is a signi�cant improvement.

It is also noticed that those distributed generators attached to node 24 do

not supply power to network from 50 kW wind power to 200 kW wind power.

The reason is that the node 24 requires 420 kW . The 200 kW wind power

and 180 kW thermal power is not enough to support node 24. Under that

circumstance, the energy are stored into energy storage devices. The node

24 is supported by utility grid. From 250 kW wind power to 450 kW wind

power, the distributed generators attached to node 24 support node 24. Since

node 23 requires 420 kW , those distributed generators can not support two

nodes even if wind power goes to 450kW . After 900kW of renewable power,

the transmitting power on branch 15-16 and branch 14-15 reach their limits.

The limits are due to their physical material properties. Moreover, demand

of node 23 and 24 far exceeds the available distributed energy. The power

�owing out from micro-grid is thus restricted to protect the transmission lines

and equipments. Although more renewable energy is available, the system

cannot fully utilize the renewable energy due to transmission limits.

As shown in Table 3.4, four types of optimization algorithms are all ca-

pable of completing the task and obtaining convergent results. The results

obtained by AV-AIS are slightly better than the other three algorithms. This
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Table 3.4: Operating cost obtained by di�erent algorithms.

wind/PV operating cost operating cost operating cost operating cost
(kW ) by AV-AIS($) by PSO($) by GA($) by V-AIS($)

50/50 366.23 366.52 366.40 366.43

100/100 364.72 365.02 364.90 364.92

150/150 363.32 363.61 363.49 363.51

200/200 362.10 362.39 362.27 362.30

250/250 359.30 359.59 359.47 359.49

300/300 352.10 352.39 352.27 352.30

350/350 349.10 349.38 349.26 349.29

400/400 346.17 346.45 346.33 346.36

450/450 344.07 344.35 344.23 344.26

is because AV-AIS is an improved algorithm from V-AIS. Thus the perfor-

mance is more promising.

Furthermore, case studies are conducted by using actual weather data

together with IEEE 33-node system to investigate the overall dynamic sys-

tem response as shown in Fig. 3.16. In this dynamic experiment shown in

Fig. 3.16, actual weather data of 14 March 2011 are used to investigate how

the network responds to the dynamic weather over one day. In this exper-

iment, there is little renewable energy in the early morning. The energy

stored in the battery is used to satisfy load demand and the operating cost

of the whole network is high. During time unit 4 to 6 (2:00AM to 3:00AM),

there is large amount of wind energy available. This energy is thus used to

satisfy more load demand and the operating cost of the network becomes

lower. After that, from time unit 7 to 9 (3:30AM-4:30AM), there is little

wind and PV energy. The operating cost of the network becomes high again.
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(a) Response obtained by AV-AIS
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Figure 3.16: Case study 2: dynamic experiment results

From time unit 11 to 19 (5:30AM-9:30AM), there is plenty of PV and some

wind energy available. The network can adjust itself and make use of the

renewable energy to reduce the total operating cost. However, the cost re-

duction is limited by line constraints and it cannot be further reduced below

344. Similarly, from time unit 21 to 24 (10:30AM to 12:00PM), the operating

cost is lower due to abundant PV and some wind energy. After time unit

24 (12:00PM), little PV energy is received due to bad weather condition.
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The operating cost becomes high again. On the other hand, for time unit

31 (3:30PM), 39 (7:30PM) and 47 (11:30PM), there is small amount of wind

energy. The system can adjust itself to lower the operating cost by making

use of the wind energy.

3.5.3 Case study 3: fault occurrence

In case study 3, branch 9-10 is assumed to be faulty as shown in Fig. 3.17,

which means branch 9-10 is damaged and disconnected due to various rea-

sons. The system is required to recon�gure itself to bypass the faulty branch

as well as minimizing operating cost. The results are shown in Table 3.5.

As shown in Table 3.5, the operating cost decreases as the renewable energy

level increases. The system can adjust itself to lower the operating cost by

making use of the renewable energy.
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Figure 3.17: IEEE 33-node test system with fault on 9-10

It is observed that, with the increasing penetration of the renewable en-
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Table 3.5: Case study 3: results obtained by AV-AIS providing di�erent
renewable power.

wind/PV total power power delivered by
switches opened

(kW ) cost($) loss(kW ) DGs (wind/other DERs1/
PV/other DERs2)(kW )

50/50 366.26 56.70 50/70/0/0
37-28, 15-16, 13-
14, 9-10, 18-19

100/100 364.76 56.70 100/20/0/0
37-28, 15-16, 13-
14, 9-10, 18-19

150/150 363.36 54.61 150/30/0/0
37-28, 16-17, 12-
13, 9-10, 18-19

200/200 362.13 52.91 200/70/0/0
37-28, 31-32, 13-
14, 9-10, 6-7

250/250 359.33 44.53 250/20/250/170
37-28, 31-32, 13-
14, 9-10, 6-7

300/300 352.13 42.92 300/30/300/120
37-28, 31-32, 13-
14, 9-10, 6-7

350/350 349.13 42.92 330/0/350/70
37-28, 31-32, 13-
14, 9-10, 6-7

400/400 346.19 42.10 400/80/400/20
37-28, 30-31, 13-
14, 9-10, 6-7

450/450 344.10 42.10 450/30/420/0
37-28, 30-31, 13-
14, 9-10, 6-7

ergy, the total operating cost decreases due to reduction of the power loss.

As shown in the �rst row of Table 3.5, when there are 50kW wind and 50kW

PV energy available, the system is recon�gured to form a radial structure

network by opening switches 37-28, 15-16, 13-14, 9-10, 18-19. The system

power loss is reduced to 56.70kW . The 50kW wind energy together with

70kW diesel/fuel cell energy are delivered to support node 15 (60kW ) and

node 14 (60kW ). Thus the cost of purchasing energy from utility grid per half

115



an hour is (3615−120+56.70)∗0.2∗0.5 = 355.17SGD. The cost of purchas-

ing energy from micro-grid per half an hour is 366.26− 355.17 = 11.09SGD.

Since micro-grid delivers 120kW power to utility grid, the average energy

price from micro-grid is 11.09/0.5/120 = 0.185SGD/kWh, which is correc-

t with our price assumptions because we also have higher cost diesel/fuel

cost generators in the micro-grid. The penetration of micro-grid energy is

120/3615 × 100% = 3.3%, and the improvement of the total operating cost

from the initial case is (381.76− 366.26)/381.76× 100% = 4.1%.

As shown in the last row of Table 3.5, when there are 450kW wind and

450kW PV energy available, the system is recon�gured to form a radial

structure network by opening 37-28, 30-31, 13-14, 9-10, 6-7. The system

power loss is further reduced to 42.10. The 450kW wind energy together

with 30kW diesel/fuel cell energy are delivered by micro-grid 1. The 420kW

PV power is delivered by micro-grid 2. The cost of purchasing energy from

utility grid per half and hour is (3615 − 480 − 420 + 42.10) ∗ 0.2 ∗ 0.5 =

275.71SGD. The cost of purchasing energy from micro-grid per half an hour

is 344.10−275.71 = 68.39SGD. Since there is 900kW power from micro-grid,

the average energy price is 68.39/0.5/900 = 0.152SGD/kWh, which is cor-

rect with our price assumptions because we also have higher cost diesel/fuel

cost generators in the micro-grid. The penetration of micro-grid energy is

900/3615× 100% = 24.9%, and the improvement of the total operating cost

from the initial case is (381.76−344.10)/381.76 = 9.9%. Compare with Case

study 2, this case study obtains the same reduction of 9.9%, which shows

that, despite the fault occurrence, the proposed technique can still reduce

the total operating cost signi�cantly.
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The transmitting power on branch 15-16 and branch 14-15 reach their

limits after 900kW renewable energy. The limits are due to their physical

material properties. Moreover, demand of node 23 and 24 far exceeds the

available distributed energy. Furthermore, the system structure is more re-

stricted due to the faulty branch 9-10. The power �owing out from micro-grid

is thus restricted to protect the transmission lines and equipments.

3.5.4 Case study 4: �xed structure

In case study 4, the network is assumed to have a �xed structure as shown

in Fig. 3.18. The purpose of the case study is to show that the proposed

technique is able to bene�t the network users by optimizing the operating

cost even if network recon�guration is not available due to various reasons.
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Figure 3.18: IEEE 33-node test system with �xed structure
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Table 3.6: Case study 4: results obtained by AV-AIS providing di�erent
renewable power.

wind/PV total power power delivered by
switches opened

(kW ) cost($) loss(kW ) DGs wind/other DERs1/
PV/other DERs2(kW )

50/50 375.99 144.90 0/0/0/0
37-28, 31-32, 13-

14, 8-9, 6-7

100/100 371.89 71.10 100/170/0/0
37-28, 31-32, 13-

14, 8-9, 6-7

150/150 366.06 71.10 150/120/0/0
37-28, 31-32, 13-

14, 8-9, 6-7

200/200 363.95 71.10 200/70/0/0
37-28, 31-32, 13-

14, 8-9, 6-7

250/250 361.08 62.09 250/20/250/170
37-28, 31-32, 13-

14, 8-9, 6-7

300/300 353.88 60.45 300/30/300/120
37-28, 31-32, 13-

14, 8-9, 6-7

350/350 350.88 60.45 330/0/350/70
37-28, 31-32, 13-

14, 8-9, 6-7

400/400 349.38 60.45 330/0/400/20
37-28, 31-32, 13-

14, 8-9, 6-7

450/450 348.79 60.45 330/0/420/0
37-28, 31-32, 13-

14, 8-9, 6-7

The results are shown in Table 3.6. Similarly, it is observed that, with

the increasing penetration of the renewable energy, the total operating cost

decreases due to reduction of the power loss. As shown in the �rst row of

Table 3.6, when there are 50kW wind and 50kW PV energy available, the

system power loss is 144.9kW . The system power loss is very high due to no

node is support by the micro-grids. The penetration of micro-grid energy is

0/3615× 100% = 0%, and the improvement of the total operating cost from
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the initial case is (381.76− 375.99)/381.76 = 1.5%.

As shown in the last row of Table 3.6, when there are 450kW wind and

450kW PV energy available, the system power loss is reduced to 60.45. The

330kW wind energy is delivered by micro-grid 1. The 420kW PV energy is

delivered by micro-grid 2. The cost of purchasing energy from utility grid per

half and hour is (3615−480−420+60.45)∗0.2∗0.5 = 292.545SGD. The cost

of purchasing energy from micro-grid per half an hour is 348.79− 292.545 =

56.245SGD. Since there is 750kW power from micro-grid, the average energy

price is 56.245/0.5/750 = 0.150SGD/kWh, which is correct with our price

assumptions. The penetration of micro-grid energy is 750/3615 × 100% =

20.7%, and the improvement of the total operating cost from the initial case

is (381.76− 348.79)/381.76× 100% = 8.6%.

It is also noticed that, compared with Case study 2 and Case study 3, Case

study 4's results have less improvements. This is due to the �xed structure

of the network. The integrated approach cannot recon�gure the network

to further reduce the system power loss. Although there are improvements

on the total operating cost, they are not so good as those in previous case

studies.

3.6 Conclusion

In this chapter, the network recon�guration together with micro-grid eco-

nomic load dispatch are investigated. The stochastic nature of wind, PV

and load is taken into consideration by stochastic distribution models. The

forecasting of the wind, PV and load data and the energy storage system
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is considered. The four bio-inspired optimization techniques are adopted to

solve the problem. Optimization of benchmark-link application problems are

conducted to investigate the e�ects of di�erent weather and load conditions

on the whole network.

This chapter has integrated micro-grid economic load dispatch and net-

work recon�guration together for the bene�t of the whole network. The

results obtained have shown that the four optimization techniques are al-

l capable for this problem. Four techniques are all e�ective for doing the

optimization. It is up to the users preference to choose which technique is

more suitable based on the available computation resources. By using the

integration approach, micro-grid can be incorporated into the network more

e�ectively even with higher cost renewable energy resources. The network

can adjust itself more e�ciently to allow the utilization of the renewable

energy.

The time frame of micro-grid economic load dispatch and network re-

con�guration does not match at the moment. As demonstrated by the case

studies, the proposed technique can also optimize the power �ow and ben-

e�t the network users by reducing the operating cost even if the network

structure is partially limited of completely �xed.
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Chapter 4

Consensus Based Approach for

Economic Dispatch Problem in a

Micro-grid

4.1 Introduction

Economic dispatch (ED) problem is one of the key problems in power system

operation. ED problem is commonly formulated as an centralized optimiza-

tion problem in the literature. Solving ED problem is to �nd a power output

combination of all generators which gives the lowest operating cost while

maintaining system constraints.

However, with the development of DERs, research focus has been shifted

to more distributed solutions on ED problem. Related existing literature [75�

79] on distributed ED methods have been discussed in Chapter 1 under Lit-

erature Review section. In contrast to the existing literature, we still adopt
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the equal incremental cost criterion to achieve the optimal dispatch, which

means the incremental cost is chosen as the consensus variable. Compared

to [76], each generator does not need to know the cost function parameters of

other generators in our work. The novelty of the proposed algorithm is that

it can estimate the mismatch between demand and total power in a collective

sense. Each generator instantiates a local estimation of the mismatch. With

a tactical initialization, the local estimated mismatch may not equal to the

actual mismatch, but the summation of all the local estimated mismatch is

preserved and exactly equal to the actual mismatch. In our case, no leader

agent is required to collect all the power generated by each generator. The

local estimated mismatch is used to adjust the power generation as if they

are the true mismatch. The incremental cost is guaranteed to converge to

the optimal value by the algorithm. In addition, the communication graph is

assumed to be strongly connected, which is far less restrictive than the bidi-

rectional information exchange in [75][78][109]. Furthermore, our proposed

algorithm can be treated as a distributed implementation of the standard

Lambda-Iteration method [110].

This chapter is organized as follows. In Section 4.2, graph theory, ba-

sic consensus results, and equal incremental cost criterion in traditional ED

problem are brie�y introduced. Problem description and main results for

both constrained and unconstrained cases are presented in Section 4.3. A

systematic learning gain design method is developed in Section 4.4. To

demonstrate the e�ectiveness of the proposed algorithms, extensive numer-

ical examples are shown in Section 4.5. Lastly, we conclude the chapter in

Section 4.6.
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4.2 Preliminary

In this Section, the basic graph terminologies, consensus algorithms, and

analytic ED problem solution are introduced.

4.2.1 Graph theory

Let G = (V ,E ,A ) be a weighted directed graph with the set of vertices V =

{1, 2, ..., N}, and the set of edges E ⊆ V × V . A is the adjacency matrix.

Let V also be the index set representing the generators in the micro-grid. A

directed edge from i to j is denoted by an ordered pair (i, j) ∈ E , which means

that generator j can receive information from generator i. The in-neighbors

of the ith generator is denoted by N+
i = {j ∈ V |(j, i) ∈ E }. Similarly, the

out-neighbors of the ith generator is denoted by N−i = {j ∈ V |(i, j) ∈ E }.

Physically, it means a generator can obtain information from its in-neighbors,

and send information to its out-neighbors. Since it is reasonable to assume

that the generator i can obtain its own state information, we de�ne that each

vertex belongs to both its in-neighbor and out-neighbor, i.e., i ∈ N+
i as well

as i ∈ N−i . The in-degree and out-degree of vertex i is de�ned as d+
i = |N+

i |

and d−i = |N−i | respectively, where | · | denotes the cardinality of a set. A

directed graph is said to be strongly connected if there exists a path between

any pair of two vertices with respect to the orientation of edges. It is easy

to conclude that d+
i 6= 0 and d−i 6= 0 in a strongly connected graph.
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4.2.2 Consensus algorithm

Let's de�ne two matrices P, Q ∈ RN×N associated with a strongly connected

graph G = (V ,E ,A ) below,

pi,j =


1
d+i

if j ∈ N+
i

0 otherwise
∀i, j ∈ V ,

similarly,

qi,j =


1
d−j

if i ∈ N−j

0 otherwise
∀i, j ∈ V .

From the de�nition of P and Q, it is not di�cult to verify that P is row

stochastic, and Q is column stochastic. Note that we actually have much

freedom to choose the weights of P and Q, as long as P is row stochastic

and Q is column stochastic, and satisfy the following assignments, pi,j > 0

if j ∈ N+
i , pi,j = 0 otherwise, qi,j > 0 if i ∈ N−j , qi,j = 0 otherwise. The

convergence result of our proposed algorithm is not a�ected by the weights

selections.

Now consider the following two separate discrete-time systems,

ξi(k + 1) =
∑
j∈N+

i

pi,jξj(k), (4.1)

ξ′i(k + 1) =
∑
j∈N+

i

qi,jξ
′
j(k), (4.2)

where ξi(k) and ξ′i(k) are state variables associated with vertex i in graph G

at time step k. Systems (4.1) and (4.2) have the same structure but using

two di�erent sets of weights. They can be written in the following compact
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form,

ξ(k + 1) = Pξ(k), (4.3)

ξ′(k + 1) = Qξ′(k), (4.4)

where ξ(k) and ξ′(k) are the column stack vectors of ξi(k) and ξ′i(k). To

investigate the asymptotic behavior of (4.3) and (4.4), the following theorem

is needed.

Theorem 1 ([111], pp.516). If A ∈ RN×N is a nonnegative and primitive

matrix, then

lim
k→∞

(ρ(A)−1A)k = xy
T > 0

where Ax = ρ(A)x, yTA = ρ(A)yT , x > 0, y > 0, xTy = 1, and ρ(A) denotes

the spectral radius of A.

The symbol `>' denotes that all the entries in a matrix or vector are

greater than zero. Based on the de�nition, both P and Q are nonnegative

and stochastic, so ρ(P ) = ρ(Q) = 1. Since they are derived from a strong-

ly connected graph, and their diagonal entries are positive as well, then

PN−1 > 0 and QN−1 > 0, i.e. P and Q are primitive. From Theorem 1, we

can derive the following two properties. Let 1 denote a vector of length N

with all its elements being 1.

Property 1: limk→∞ P
k = 1ωTwhere ω > 0 and 1Tω = 1.

Property 2: limk→∞Q
k = µ1T where µ > 0 and 1Tµ = 1.
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By using Property 1 and 2, we can get limk→∞ξi(k) = ωTξ(0) in system (4.1),

and limk→∞ξ
′
i(k) = µi

∑N
i=1 ξ

′
i(0), where µi is the ith element of µ. In system

(4.1), all state variables converge to a common value, which depends on the

communication topology and initial state values. The algorithm in system

(4.1) is the well known consensus algorithm for the �rst order discrete-time

system. In system (4.2), the state variables do not converge to a common

value in general, but the summation of all state variable is preserved, i.e.,∑N
i=1 ξ

′
i(k) =

∑N
i=1 ξ

′
i(0),∀k.

These interesting properties will be utilized in the proposed algorithm

design in Section 4.3.

4.2.3 Analytic solution to ED problem

A micro-grid usually consists of multiple power generators. Let us assume

there are N power generators. The cost function of power generation is given

by the following quadratic form

Ci(xi) =
(xi − αi)2

2βi
+ γi, (4.5)

where xi is the power generated by generator i, αi ≤ 0, βi > 0, and γi ≤ 0.

The traditional ED problem is to minimize the total generation cost

min
N∑
i=1

Ci(xi), (4.6)

subject to the following two constraints,
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Generator constraint:

xi ≤ xi ≤ xi, (4.7)

where xi and xi are the lower and upper bounds of the generator capability.

Demand constraint:
N∑
i=1

xi = D, (4.8)

where D is the total demand satisfying
∑N

i=1 xi < D <
∑N

i=1 xi, i.e., the

problem is solvable.

The incremental cost for the generator i is dCi(xi)
d xi

= xi−αi

βi
. The well

known solution to traditional ED problem is the equal incremental cost cri-

terion [110]. 
xi−αi

βi
= λ∗ for xi < xi < xi

xi−αi

βi
< λ∗ for xi = xi

xi−αi

βi
> λ∗ for xi = xi

, (4.9)

where λ∗ is the optimal incremental cost.

Note that the parameter γi in the cost function does not a�ect the incre-

mental cost.

Remark 1. The cost function in (4.5) is slightly di�erent from the one in

(4.10), which is commonly used by power engineers.

Ci(xi) = aix
2
i + bixi + ci. (4.10)

In fact, cost functions (4.5) and (4.10) are equivalent. It is not di�cult

to convert (4.5) to (4.10). Straightforward manipulation shows by setting

αi = − bi
2ai

, βi = 1
2ai

, and γi = ci − b2i
4ai

, (4.5) and (4.10) are identical. The
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main motivation of using (4.5) is for notational simplicity in the next section.

4.3 Main Results

Let the communication topology among generators be the strongly connected

graph G described in Section 4.2 Part A. Assume there is a command vertex

which distributes the total demand D to a subset of V . Denote the command

vertex by vertex 0, and its out-neighbor set N−0 . Recall that N−0 is the

vertices set which can receive information from vertex 0. For simplicity,

let the command vertex distribute the total demand equally among all the

generators in N−0 . By assumption, 1 ≤ |N−0 | ≤ N . In this Section, we �rstly

ignore the power generation constraints, and develop a linear distributed

algorithm to solve the traditional ED problem. Later, we add in the power

generation constraints.

4.3.1 Algorithm design without power generation con-

straints

Assume all generators have no generation constraints. According to the in-

cremental cost criterion (4.9), when all generators operate at the optimal

con�guration, incremental costs are equal to the optimal value, that is

x∗i − αi
βi

= λ∗, ∀i ∈ V . (4.11)
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Hence, the optimal power generation for each individual generator can be

calculated if the optimal incremental cost λ∗ is known, i.e.,

x∗i = βiλ
∗ + αi, ∀i ∈ V . (4.12)

(4.11) and (4.12) motivate us to propose the following algorithm. Denote

λi(k) the estimation of optimal incremental cost by generator i, xi(k) the

corresponding power generation which is an estimation of optimal power

generation, yi(k) the local estimation of the mismatch between demand and

total power generation.

Initializations:



λi(0) = any �xed admissible value

xi(0) = any �xed admissible value

yi(0) =


D
|N−

0 |
− xi(0) if i ∈ N−0

−xi(0) otherwise

,∀i ∈ V .

We are ready to state the main algorithm.

λi(k + 1) =
∑
j∈N+

i

pi,jλj(k) + εyi(k) (4.13a)

xi(k + 1) = βiλi(k + 1) + αi (4.13b)

yi(k + 1) =
∑
j∈N+

i

qi,jyj(k)− (xi(k + 1)− xi(k)) (4.13c)

where ε is a su�ciently small positive constant.

Remark 2. The iterative updating algorithm (4.13) only requires the local
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information. Speci�cally, the updating rule for generator i only requires the

information received from its in-neighbor set N+
i . Hence, this updating rule

is a complete distributed algorithm.

Remark 3. In [78], the estimated incremental cost is updated by

λq(t+ 1) = λq(t)− βt
∑
r∈ωq

(λq(t)− λr(t))− αt(PGq(t)− PLq)︸ ︷︷ ︸
Innovation Term

, (4.14)

where t is the time step, αt is the control gain, PGq(t) is the power generation

at the bus q, and PLq is the local load at bus q.

The proposed algorithm (4.13) is quite distinct from (4.14). On one hand,

the learning gain αt is vanishing in (4.14), whereas, the learning gain ε in

(4.13a) is �xed. If αt is �xed, the method in [78] returns a suboptimal solu-

tion. On the other hand, the innovation term in (4.14) is calculated by the

solo e�ort of bus q since both PGq(t) and PLq are locally available. However,

the feedback term yi(k) in (4.13a) is obtained by collaborative e�orts of all

agents in the neighborhood of generator i, see (4.13c).

Furthermore, the method is [78] is fully distributed, but a command ver-

tex 0 is required in the algorithm (4.13). However, this requirement can be

relaxed by a di�erent initialization process that achieves fully distributed im-

plementation, see subsection 4.3.3 for detailed discussion.

To analyze the properties and convergence of algorithm (4.13), rewrite it
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in the following matrix form

λ(k + 1) = Pλ(k) + εy(k) (4.15a)

x(k + 1) = Bλ(k + 1) +α (4.15b)

y(k + 1) = Qy(k)− (x(k + 1)− x(k)) (4.15c)

where x,y,α,λ are the column stack vector of xi, yi, αi, λi respectively, and

B = diag([β1, β2, . . . , βN ]).

(4.15c) preserves the summation of xi(k)+yi(k) over V . It can be veri�ed

by premultiplying both sides of (4.15c) by 1T , and noticing that Q is column

stochastic, we have

1Ty(k + 1) = 1TQy(k)− 1T (x(k + 1)− x(k)),

= 1Ty(k)− 1T (x(k + 1)− x(k)),

⇒ 1T (y(k + 1) + x(k + 1)) = 1T (y(k) + x(k)).

1T (y(k)+x(k)) is a constant for all k. Notice the initialization of xi(0) and

yi(0), we can obtain
∑

i∈V xi(0) + yi(0) = D. Hence, 1Ty(k) = D − 1Tx(k)

is the actual mismatch between demand and total power generation. The

mismatch is obtained via a collective e�ort from all individual generators

rather than a centralized method. The �rst term in the right hand side of

(4.15a) is the consensus part, it drives all λi(k) to a common value. The

second term εy(k) provides a feedback mechanism to ensure λi(k) converges

to the optimal value λ∗. (4.15b) just updates the estimated power generation

xi(k) to the newest one.
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Theorem 2. In algorithm (4.13), if the positive constant ε is su�ciently

small, then the algorithm is stable, and all the variables converge to the so-

lution to the traditional ED problem, i.e.,

λi(k)→ λ∗, xi(k)→ x∗i , yi(k)→ 0, as k →∞,∀i ∈ V .

Proof. We use the eigenvalue perturbation approach [112][113] to analyze the

convergence properties. Replace x in (4.15c) with λ by using (4.15a)(4.15b),

we have

y(k + 1) = (Q− εB)y(k) +B(I − P )λ(k), (4.16)

where I is the identity matrix of appropriate dimension.

Write (4.15a) and (4.16) in matrix form, we get the following composite

system,  λ(k + 1)

y(k + 1)

 =

 P εI

B(I − P ) Q− εB


 λ(k)

y(k)

 (4.17)

De�ne M ,

 P 0

B(I − P ) Q

 and E ,

 0 I

0 −B

.
The system matrix of (4.17) can be regarded as M perturbed by εE. M

is a lower block triangular matrix, the eigenvalues of M is the union of the

eigenvalues of P and Q. So M has two eigenvalues θ1 = θ2 = 1, and the rest

eigenvalues lie in the open unit disk on the complex plane. Construct vectors
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u1, u2 and v
T
1 , v

T
2 as below.

U = [u1,u2] =

 0 1

µ −ηµ

 , (4.18)

where η =
∑N

i=1 βi, and

V T =

 vT1

vT2

 =

 1TB 1T

ωT 0T

 , (4.19)

which are the two linearly independent right and left eigenvectors of M .

Furthermore, V TU = I.

When ε is small, the variation of θ1 and θ2 perturbed by εE can be

quanti�ed by the eigenvalues of V TEU , and

V TEU =

 0 0

ωTµ −ηωTµ

 .
The eigenvalues of V TEU are 0 and −ηωTµ < 0. Thus d θ1

d ε
= 0 and d θ2

d ε
=

−ηωTµ < 0. That means θ1 does not change against ε, and when ε > 0,

θ2 becomes smaller. Let δ1 be the upper bound of ε such that when ε < δ1,

|θ2| < 1. Since eigenvalues continuously depend on the entries of a matrix,

in our particular case, the rest of eigenvalues ofM + εE continuously depend

on ε. Therefore, there exists an upper bound δ2 such that when ε < δ2, |θj| <

1, j = 3, 4, . . . , 2N. Hence, if we choose ε < min(δ1, δ2), we can guarantee

that the eigenvalue θ1 = 1 is simple, and all the rest eigenvalues lie in the

open unit disk.
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It can be veri�ed

 1

0

 is the eigenvector of system matrix in (4.17)

associated with θ1 = 1. Since all the rest eigenvalues are within the open

unit disk,  λ(k)

y(k)

 converges to span

 1

0


as k → ∞. That is yi(k) → 0. From (4.15c), we can derive 1Tx(k) = D,

i.e., the demand constraint is satis�ed. From (4.15a), λi(k) converges to a

common value, i.e., the incremental cost criterion is satis�ed. Therefore, we

can conclude Theorem 2.

4.3.2 Generalization to constrained case

In order to take account of power generation constraints, de�ne the following

projection operators.

φi(λi) =


xi if λi > λi

βiλi + αi if λi ≤ λi ≤ λi

xi if λi < λi

∀i ∈ V ,

where λi =
xi−αi

βi
and λi = xi−αi

βi
. Now the distributed algorithm becomes

λ(k + 1) = Pλ(k) + εy(k) (4.20a)

x(k + 1) = φ(λ(k + 1)) (4.20b)

y(k + 1) = Qy(k)− (x(k + 1)− x(k)) (4.20c)
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where φ(λ(k + 1)) = [φ1(λ1(k + 1)), φ2(λ2(k + 1)), . . . , φN(λN(k + 1))]T .

The initial value of λi(0) and xi(0) can be set to any admissible value.

For simplicity, the initial value can be set as follows.

Initializations:



λi(0) = λi

xi(0) = xi

yi(0) =


D
|N−

0 |
− xi if i ∈ N−0

−xi otherwise

,∀i ∈ V .

Theorem 3. In algorithm (4.20), if the positive constant ε is su�ciently

small, then the algorithm is stable, and all the variables converge to the so-

lution to the traditional ED problem.

Proof. By assumption the total demand
∑N

i=1 xi < D <
∑N

i=1 xi, that means

at least one generator is not saturated when the demand constraint is satis-

�ed. If the micro-grid operates in the linear region only, the rest proof follows

the proof of Theorem 2 exactly. So we only consider the saturated case here.

The nonnegative matrix P in (4.20a) tends to map λ(k) to the span{1}.

Premultiply 1T from both sides of (4.20a), we have

∑
i

λi(k + 1) =
∑
i,j

pi,jλj(k) + εe(k), (4.21)

where e(k) = D−
∑

i xi(k) is the mismatch between demand and total power

generation, and ε can be treated as a proportional feedback gain. Without

loss of generality, assume e(k) > 0, the overall level λi(k) will increase and

it approaches to the same value, and notice that the total power generation
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is a monotonically increasing function of incremental cost. Thus, the total

power generation will increase. Therefore, the feedback mechanism in (4.21)

will reduce the mismatch e(k). In this process, some of the generator may

reach its maximum capability. After some su�ciently long time K, if xi(K)

is saturated, then xi(k) is always saturated for k > K. To investigate the

transient behavior for k > K, algorithm (4.20) can be written in the following

composite system.

 λ(k + 1)

y(k + 1)

 =

 P εI

B̃(I − P ) Q− εB̃


 λ(k)

y(k)

 , (4.22)

where B̃ = diag([β̃1, β̃2, . . . , β̃N ]), and

β̃i =

 0 if xi(k) is saturated,

βi otherwise.

Based on our assumption, there is at least one β̃i is nonzero. Follow the sim-

ilar eigenvalue perturbation analysis, when ε is su�ciently small, the above

system is stable. In addition, λ(k) → span{1}, y(k) → 0, i.e., solves the

traditional ED problem.

4.3.3 Fully distributed implementation

In the previous two subsections, a command vertex 0 is designed to distribute

the total demand into the network, which requires the global information D.

Notice that the role of vertex 0 is only activated at the initialization stage,

in this subsection a modi�cation of the initialization process is developed to
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achieve the fully distributed implementation, and the vertex 0 is no longer

required, i.e., the total demand D is not needed.

Let Di be the local demand associated with generator i at the bus i.

Initialize the algorithm with the following method.

Initializations:



xi(0) =


xi if xi < Di

Di if xi ≤ Di ≤ xi

xi if Di < xi

λi(0) = xi(0)−αi

βi

yi(0) = Di − xi(0)

,∀i ∈ V .

If the bus i contains load only, then xi = xi = 0. The above initializa-

tion is fully distributed since no global demand is required in the calcula-

tion. Summing up yi(0) over i, we have
∑

i∈V yi(0) =
∑

i∈V (Di − xi(0)) =

D −
∑

i∈V xi(0), which is the actual mismatch between demand and total

power generation. In addition, the equality
∑

i∈V yi(k) = D −
∑

i∈V xi(k)

is preserved over time k by (4.20c). Hence, with the new initialization, the

result in Theorem 3 still holds under the algorithm (4.20).

4.4 Learning gain design

Theorems 2 and 3 provide su�cient conditions for the proposed algorithms

to work. However, they do not o�er constructive methods to design the

learning ε. Therefore, we present a systematic design method to select the

appropriate learning gain in this section.
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Note that the learning gain for all generators are the same in (4.13a).

Indeed, the learning gains are not restricted to be identical. All the results

in Section 4.3 are still valid when the learning gains are di�erent from each

other. Let the generators have distinct learning gains εi, then (4.13a) becomes

λi(k + 1) =
∑
j∈N+

i

pi,jλj(k) + εiyi(k).

Follow the similar procedure, we can obtain the composite system below

 λ(k + 1)

y(k + 1)

 =

 P Ω

B(I − P ) Q− ΩB


 λ(k)

y(k)

 , (4.23)

where Ω = diag([ε1, ε2, · · · , εN ]). Denote the system matrix of (4.23) by H,

that is

H =

 P Ω

B(I − P ) Q− ΩB

 .
Based on the our previous analysis, H has an eigenvalue of 1 associated with

eigenvector π1 =

 1

0

. If the moduli of the rest eigenvalues are less than

1, system (4.23) is stable, and solves the ED problem. Thus, our ultimate

task now is to �nd out a suitable Ω such that H is stable.

By using Gram-Schmidt orthonormalization process [111, pp.15], together

with π1, we can generate a set of 2N−1 orthonormal bases {π2,π3, · · · ,π2N},

where πj ∈ R2N , j = 2, 3, · · · , 2N . Then, we can construct a 2N × (2N − 1)
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projection matrix

Π =

 Π1

Π2

 = [π2,π3, · · · ,π2N ],

where Π1,Π2 ∈ RN×(2N−1). Applying the following projection, we have

H̃ = ΠTHΠ.

Hence, H̃ has the same set of eigenvalues as H except the eigenvalue 1.

Therefore, our task is to �nd an Ω such that ρ(H̃) < 1. This kind of problem

is rather di�cult to solve by analytic method. From matrix analysis [111], it

is well known that

ρ(H̃) ≤ inf
S
‖SH̃S−1‖2,

where S is a non-singular matrix. Hence, if we could �nd out an Ω so that

infS ‖SH̃S−1‖2 < 1, then it is guaranteed that ρ(H̃) < 1. Inspired by D-K

iteration method in robust control literature [114], we develop the following

algorithm that determines an Ω that minimizes infS ‖SH̃S−1‖2, which is the

greatest lower bound of ρ(H̃).

Step 1: Initialize Ω, e.g., Ω = 0;

Step 2: Find S that minimizes ‖SH̃S−1‖2 by given Ω;

Step 3: Find new Ω that minimizes ‖SH̃S−1‖2, where S is obtained from

Step 2. Then, goto Step 2.

The above algorithm is essentially an iterative numerical method which
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mimics the D-K iteration method. As remarked in [114], up to now, it is

not possible to prove the convergence of D-K iteration method. However, in

practical applications, it takes only a few iterations to �nd a solution that is

nearly optimal.

The minimization problem in Step 2 is equivalent to the generalized eigen-

value problem below in the �eld of linear matrix inequality (LMI),

minimize
S

t

subject to 0 ≺ STS,

H̃TSTSH̃ ≺ tSTS.

The problem in Step 3 can be converted to the following LMI problem by

using Schur Complement,

minimize
Ω

r

subject to

 −rSTS ?

S(Hl + ΠT
1 ΩΠ2 − ΠT

2 ΩBΠ2) −I

 ≺ 0,

where Hl = ΠT
1 PΠ1 + ΠT

2B(I − P )Π1 + ΠT
2QΠ2, and ? represents the corre-

sponding symmetric component in the matrix.

These two LMI problems can be e�ectively handled by numerical software

packages, for instance, MATLAB LMI control toolbox.

Remark 4. To design an appropriate learning gain Ω that ensures conver-

gence, the proposed design method requires the detailed information of com-

munication P,Q, as well as the generator parameter B. P, Q, B are �xed
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values, and they can be obtained by o�ine methods. Once the learning gain is

calculated, P,Q,B are no longer needed in the implementation. Whereas, a

generator only requires the power generation information from its neighbors

at the implementation stage. The time-varying global information, such as

total power generation, is not required.

4.5 Application Examples

This section �rst presents two case studies to verify the proposed scheme,

namely, the constrained and unconstrained cases. Next, we test the ro-

bustness on the variations on command vertex connections, as well as the

scalability when new generator unit is added into the micro-grid. Then, the

algorithm is slightly modi�ed to accommodate time-varying demand. Nex-

t, the relation between learning gain and convergence speed is investigated.

Then, we compare the proposed algorithm with Lambda-Iteration method.

The fully distributed implementation is applied to the IEEE 14-bus test sys-

tems. Lastly, we compare our technique with other distributed optimization

technique.

In our case studies the case study 8 and case study 9, we adopt the

generator examples from the classic book by Wood and Wollenberg [110,

pp.31-32]. Three types of generators are available, namely, Type A (Coal-

�red steam unit), Type B (Oil-�red steam unit), and Type C (Oil-�red steam

unit). The cost function parameters and generation capabilities are given in

Table. 4.1. The cost function parameters are speci�ed in terms of a− b− c,

which are commonly used by power engineers. Then, they are converted to
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α− β − γ used by our algorithm.

The communication topology is shown in Fig. 4.1. We assume that there

are four generators in this micro-grid, labeled as vertices 1, 2, 3, and 4. The

four generators are selected from the three types of generators in Table. 4.1.

Vertices 1 and 2 are Type A generators, vertex 3 is a Type B generator,

and vertex 4 is a Type C generator. The communication among the four

generators are denoted by solid lines, which is a strongly connected graph.

Vertex 0 is the command vertex. The dashed line represents the communi-

cation between command vertex and power generators, that is the command

vertex can send information to power generators 1 and 3. Based on Fig. 4.1,

matrices P and Q can be de�ned as

P =



1
2

0 0 1
2

1
3

1
3

1
3

0

0 0 1
2

1
2

0 1
2

0 1
2


, Q =



1
2
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2

1
2

1
2
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2

1
3
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2

0 1
3


respectively.

The initial values in case studies 1− 4 are given in Table. 4.2, and total

demand D = 1500MW . For simplicity, the learning gains for all generators

are set to be identical. We apply the design method in Section 4.4, and the

iterative method converges in 5 iterations by using MATLAB with initial

guess ε = 0. The calculated learning gain ε = 7.026e−4. Hence, we adopt the

obtained learning gain throughout the case studies unless otherwise speci�ed.
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1 2

3 4

0

Figure 4.1: Communication topology among generators and command
vertex in the network.

Table 4.1: Generator parameters

Generator Type A (Coal-�red) B (Oil-�red) C (Oil-�red)
Range (MW ) [150, 600] [100, 400] [50, 200]
a ($/MW 2h) 0.00142 0.00194 0.00482
b ($/MWh) 7.2 7.85 7.97
c ($/h) 510 310 78
α (MW ) -2535.2 -2023.2 -826.8
β (MW 2h/$) 352.1 257.7 103.7
γ ($/h) -8616.8 -7631.0 -3216.7

4.5.1 Case study 1: without generator constraints

In this case study, the generators' constraints are not imposed. The collective

estimated mismatch yi, generators output xi, incremental cost λi and total

power generated are shown in Fig. 4.2. yi goes to zero after 20 iterations.

This means that the mismatch between demand and total power generated

goes to zero. This result can be further veri�ed by power balance subplot.

More importantly, the incremental costs λi of all generators converge to a
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Table 4.2: Initializations

Variables i = 1 i = 2 i = 3 i = 4
x(0) (MW ) 150 150 100 50
y(0) (MW ) 600 -150 650 -50

λ(0) ($/MWh) 7.63 7.63 8.24 8.42

common value. Hence, the optimization goal is ful�lled. Based on the result-

s, λ∗ = 8.84$/MWh, x∗1 = 577.35MW , x∗2 = 577.35MW , x∗3 = 255.07MW ,

and x∗4 = 90.22MW . All the �nal outputs are within the generators' op-

erational ranges. Careful examination on the plots shows that the fourth

generator goes below 50MW during the transient response since the gener-

ation constraints are not imposed. This is not desirable. We will investigate

the results with generator constraints in the next case study.

4.5.2 Case study 2: with generator constraints

In this case study, the generators' constraints are imposed to illustrate a more

practical scenario. The results are shown in Fig. 4.3. The collective estimated

mismatch yi goes to zero after 20 iterations. Finally, the estimated incremen-

tal costs of all generators converge to the same value while meeting the power

balance constraint. From the transient response, we notice that generator 4

gets saturated in the �rst 4 iterations, and it gradually increases to the �-

nal output as the incremental costs are increasing. Based on the results,

λ∗ = 8.84$/MWh, x∗1 = 577.35MW , x∗2 = 577.35MW , x∗3 = 255.07MW ,

and x∗4 = 90.22MW . The results are the same as those obtained from case s-

tudy 1. All the power generations are within the generation ranges. No power

generators exceed the operation ranges even in the transient responses.
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Figure 4.2: Results obtained without generator constraints.

4.5.3 Case study 3: robustness of command node con-

nections

Our proposed algorithm only requires that the communication between gen-

erators is strongly connected. If the command vertex has at least one edge

to any one of the generators, the algorithm works when the learning gain is

appropriately chosen. This is a very �exible communication condition. In

the previous two case studies, the command vertex is connected to generators

1 and 3. Now, change the command vertex connection to generators 2 and 4.

The purpose of this case study is to demonstrate that the proposed algorithm

works regardless of the command node connections. Fig. 4.4 shows the nu-
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Figure 4.3: Results obtained with generator constraints.

merical results. The mismatch information is collectively minimized by all the

generators after 20 iterations. The incremental costs also reach consensus af-

ter 20 iterations. As shown in the fourth sub-�gure, the total demand and to-

tal power are balanced. The initial conditions for xi(0) are still the same as in

Table. 4.2. The initial conditions for yi(0) are changed to y1(0) = −150MW ,

y2(0) = 600MW , y3(0) = −100MW , and y4(0) = 700MW , and the �-

nal outcomes are λ∗ = 8.84$/MWh, x∗1 = 577.35MW , x∗2 = 577.35MW ,

x∗3 = 255.07MW , and x∗4 = 90.22MW . The results are identical to Case

study 2, which indicates the command vertex connection does not a�ect the

�nal convergence results.
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Figure 4.4: Robustness test when the command vertex is connected to
generators 2 and 4.

4.5.4 Case study 4: plug and play test

One of the most important features of a micro-grid is its plug and play

adaptability. In this case study, the four generators have already reached the

optimal states before plugging in the �fth generator. The �fth generator is

plugged in at time step k = 50. The �fth generator is a Type B generator.

The initializations of the generators are the same as in Case 2. The new

communication topology is shown in Fig. 4.5. Thus matrices P and Q are
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changed to

P =


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respectively. After plugging in the �fth generator at k = 50, the output of

generator 5 is set to x5(50) = 100MW , y5(50) = −100MW , and λ5(50) =

8.24$/MWh. From the results in Fig. 4.6, we can observe that the local

estimated mismatch yi goes to zero after a short disturbance. The other three

generators reduce their outputs in order to accommodate the �fth generator

output. Therefore, the incremental cost drops due to lower average output.

Finally, the estimated incremental costs of all generators converge to the

same value while meeting the power balance constraint. Based on the results,

λ∗ = 8.647$/MWh, x∗1 = 509.49MW , x∗2 = 509.49MW , x∗3 = 205.40MW ,

and x∗4 = 70.22MW , and x∗5 = 205.40MW . All the power outputs are within

the generation range. The optimization goal is ful�lled and the �fth generator

is well adapted into the system.

4.5.5 Case study 5: time-varying demand

In this case study, the generators' setup is the same as in Case 2. In a

practical situation, it is very likely that the demand is not a constant over

time. Slight modi�cation of our proposed algorithm can handle the demand
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Figure 4.5: Communication topology with the �fth generator.

change e�ectively. Let the initial demand be D = 1500MW as usual, we

purposely change it to D′ = 1000MW at time step k = 50. The demand

change is only known to generators 1 and 3 since they are connected to the

command vertex. Thus, the algorithm needs to modify the local estimated

mismatch at k = 50 before continuing updating the variables. Keep y2, y4

unchanged at k = 50, and update y1, y3 as follows at k = 50 before proceeding

to the next updating iteration.

y1(50) = y1(50) +
D′ −D
m

,

y3(50) = y3(50) +
D′ −D
m

.

Fig. 4.7 shows the results. After the demand changes from 1500MW to

1000MW at k = 50, the algorithm responds to the change of demand quick-

ly. The mismatch information is obtained at k = 50, and the generators

minimize the mismatch information collectively. The new incremental cost

consensus is reached at k = 65. The algorithm asymptomatically converges
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Figure 4.6: Results obtained with the �fth generator.

to the new optimal solution at iteration k = 65, i.e., λ∗ = 8.3617$/MWh,

x∗1 = 409.06MW , x∗2 = 409.06MW , x∗3 = 131.89MW , and x∗4 = 50.00MW .

Compared to Case 2 results, all the outputs decrease since the demand is

reduced. The new power balance is also reached at k = 65.

4.5.6 Case study 6: relation between convergence speed

and learning gain

The learning gain is the only design parameter that we can manipulate, and

it plays a signi�cant role in convergence speed and also the performance. If

the learning gain is not properly selected, the results may oscillate, or even
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Figure 4.7: Results obtained with time-varying demand.

diverge. Thus, it is important to investigate the relation between conver-

gence properties and learning gain. We select four sets of learning gains, i.e.,

ε = 0.5e−3, 1.0e−3, 1.5e−3, and 2.0e−3, and study the performances of the

learning gains. Let the initial conditions be the ones speci�ed in Table. 4.2.

The mismatch between demand and total power generation is depicted in

Fig. 4.8. In general, when the learning gain is small, the convergence speed

is relatively slow, and the transient response is smooth. A large gain learn-

ing results in a faster convergence speed. However, the performance may

become oscillatory. In addition, if the learning goes beyond certain limit, the

algorithm diverges as in the experiment with ε = 2.0e−3.
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Figure 4.8: Relation between convergence speed and learning gain.

4.5.7 Case study 7: comparison with Lambda-Iteration

method

In the Lambda-Iteration method [110], there is an independent system op-

erator (ISO) that broadcasts the current estimate of the optimal increment

cost λ to all the generators, and then collects the power generations from

all power generators at the current cost λ. Next, the ISO calculates the

mismatch between demand and total power generation. Based on the mis-

match, the ISO broadcast a new estimate of the optimal increment cost to

all generators. Such a mechanism repeats until the optimal incremental cost

is obtained.

There are three di�erences between Lambda-Iteration method and our
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proposed method. (1) The role of ISO and command vertex are distinc-

t. In Lambda-Iteration method, the ISO is responsible for all calculations.

Whereas, the command vertex is only responsible for setting the demand

references for a subset of generators, and all computations are done by indi-

vidual generators at local level. (2) Information requirements are di�erent.

The total power generated by all generators and the estimate of λ are both

global information in the Lambda-Iteration method. The ISO needs to col-

lect the power generation from each generator, and also broadcast λ to each

generator. However, in our method, generator parameters and communica-

tion graph are only required in the design phase. Once the learning gain

is obtained, they are no longer needed. No global information is needed in

the implementation phase, speci�cally, both the optimal incremental cost,

and mismatch between demand and total power generation are estimated

by each generator through local interactions. (3) Communication topolo-

gies are di�erent. In Lambda-Iteration method, the graph should be a star,

i.e. bidirectional communication between ISO and all individual generators.

No communication is involved among generators. This would increase the

communication burden for ISO. In contrast, any strongly connected graph is

su�cient in our method. The command vertex only connects to a subset of

the generators. The communication burden is spread among all generators.

This is one of the advantages of the distributed algorithms.

To see how Lambda-Iteration method performs, let the ISO update λ by
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the following feedback rule,

λ(k + 1) = λ(k) + θ(D −
N∑
i=1

xi(k)),

where θ is a positive learning gain, and xi(k) is the power generation by the

ith generator. Set the problem formulation the same to Case 2, with the

initial guess λ(0) = 5, learning gain θ = 7e−4, total demand D = 1500MW .

Fig. 4.9 shows the performance of Lambda-Iteration method. The algorithm

converges very fast since global information is available to the ISO. In con-

trast, our results in Case 2 are identical to the results in Fig. 4.9. It shows

that our distributed method can obtain exactly the same results even without

global information.

Remark 5. In the proposed algorithms, the learning gain should be su�cient-

ly small in order to stabilize the whole system. The upper bound of ε depends

on both the communication topology and the cost function parameters. In

our proposed design method, the learning gain is calculated by solving a LMI

problem, which requires complete information of communication and genera-

tor parameters. To achieve better robustness and scalability of the distributed

solution to the traditional ED problem, the choice of learning gain should be

independent of the communication topology and generator parameters. This

is our ongoing research work.

154



0 5 10 15 20 25 30 35 40 45 50
4

6

8

10
Incremental cost

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800
Generator output

 

 
Generator 1
Generator 2
Generator 3
Generator 4

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

Power balance

 

 

Total power generated
Total demand

Figure 4.9: Results obtained by Lambda-Iteration method.

4.5.8 Case study 8: fully Distributed Implementation

with IEEE 14-Bus Test Systems

This case study demonstrates the fully distributed implementation of the

proposed methods to IEEE 14-bus test systems. This test system represents

a portion of the American Electric Power System which is located in the

Midwestern US as of February in 1962. This system has 14 buses, 5 gen-

erators and 11 loads [115]. The generator parameters are adopted from the

examples in [78], which are restated in Table. 4.3.

Notice that Buses 1, 2, 3, 6, and 8 contain generators. When a bus

contains load only, the power generation at that bus is set to zero. The
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Table 4.3: IEEE 14-bus test systems generator parameters

Bus a ($/MW 2h) b ($/MWh) c ($/h) Range (MW )
1 0.04 2.0 0 [0, 80]
2 0.03 3.0 0 [0, 90]
3 0.035 4.0 0 [0, 70]
6 0.03 4.0 0 [0, 70]
8 0.04 2.5 0 [0, 80]

initial local demands at each buses are given as D1 = 0MW , D2 = 21.7MW ,

D3 = 66.2MW , D4 = 47.8MW , D5 = 7.6MW , D6 = 11.2MW , D7 =

0MW , D8 = 0MW , D9 = 29.5MW , D10 = 9.0MW , D11 = 3.5MW , D12 =

6.1MW , D13 = 13.5MW , and D14 = 14.9MW . It is easy to calculate that

the total demand is D = 231MW , and it is not required by the algorithm.

The communication among buses can be independent from the actual

bus connections. Consider each bus as a vertex, and a vertex only sends

information to the next two vertices, i.e., the edge set is E = {(i, i+1), (i, i+

2)|1 ≤ i ≤ 12}
⋃
{(13, 14), (13, 1), (14, 1), (14, 2)}.

Now increase the demand by 10%, and the new total demand is D′ =

D ∗ (1 + 10%) = 254.1MW . Initialize x(0) and z(0) with the previous

optimal dispatch (historical data). The estimated mismatch is initialized as

below

yi(0) = Di ∗ 10%, ∀i ∈ V ,

which is the fully distributed implementation.

By using the proposed algorithm (4.20) with learning gain ε = 5e−3, the

numerical results are presented in Fig. 4.10. The generators outputs are

con�ned within the operation ranges. The collective estimated mismatches

converge to zero. Total power generated by the micro-grid converges to the
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target demand, and all the incremental costs converge to the same value, i.e.,

the ED problem is solved. In this particular case, the optimal incremental

cost is λ∗ = 6.6665$/MWh, generator outputs are x∗1 = 58.33MW , x∗2 =

61.11MW , x∗3 = 38.09MW , x∗6 = 44.44MW , and x∗8 = 52.08MW .
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Figure 4.10: Results obtained with IEEE 14-bus test systems.
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4.5.9 Case study 9: comparison with Kar's Work

Based on the (25) in Kar's work [78], the incremental cost is updated as

below

λq(t+ 1) = λq(t)− βt
∑
r∈ωq

(λq(t)− λr(t))︸ ︷︷ ︸
Consensus Part

−αt(PGq(t)− PLq)︸ ︷︷ ︸
Innovation Term

, (4.24)

where αt is the vanishing gain, PGq(t) is the power generation at the bus

q, and PLq is the local load at bus q. The innovation term is calculated by

the solo e�ort of bus q since both PGq(t) and PLq are locally available.

In our work, the incremental cost is updated by the following equation,

λi(k + 1) =
∑
j∈N+

i

pi,jλj(k)

︸ ︷︷ ︸
Consensus Part

+ εyi(k)︸ ︷︷ ︸
Feedback Term

, (4.25)

where ε is a �xed learning gain, and yi(k) is the estimate of mismatch

between total demand and total power generation in the whole network by

generator i. Notice that yi(k) cannot be calculated by the solo e�ort of

generator i, instead it is calculated from

yi(k + 1) =
∑
j∈N+

i

qi,jyj(k)− (xi(k + 1)− xi(k)), (4.26)

which is the collaborative e�ort of all agents in the neighborhood of generator

i.

Furthermore, the innovation term in (4.24) is obtained by algebraic ma-
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nipulation, whereas, the feedback term in (4.25) is obtained by the dynamic

(4.26).

A fully distributed implementation of our method is detailed in sub-

section 4.5.8, and the total demand is not required at all. While control

performance is still preserved.

The parameters setup in 4.5.8 is very close to Kar's paper. The maximum

degree of a vertex is 3 in Kar's work, i.e., a vertex sends information to at most

3 vertices. To be comparable to Kar's work, we design the communication

graph in a way such that a vertex sends information to 2 vertices. Therefore,

the actual number of edges is 14 ∗ 2 = 28, and maximum possible number

of edges is 14 ∗ 14 = 196, thus, the density of the graph is 28/196 = 0.143,

which is quite sparse.

Based on the convergence criteria, ‖λ(k)− λ∗1‖ ≤ 0.03, the convergence

is achieved in 300 steps in Kar's work as shown in Fig 4.11. Whereas, it is

achieved in 142 steps by our approach, more than 50% improvement.
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Figure 4.11: (a) Power output from generators and (b) λ over iterations
with no generator reaching its limit and strong network connections

4.5.10 Case study 10: Application in large micro-grid

This case study demonstrates the scalability of the proposed algorithm to

large micro-grids. Consider that there are 100 generators in the micro-grid.

The communication is de�ned as below. Let the out-neighbor of generator i

be N−i = { mod (i+ k, 100) | k = 0, 1, . . . , 20}, i.e., the communication is a

circular graph, which is strongly connected. In the case study, the learning

gain ε = 1.0e − 4. The initialization of xi(0), λi(0), yi(0) are determined by

the method in Theorem 3. The target demand D = 25, 000kW . Fig. 4.12

shows the numerical results. The generators outputs are con�ned within

the operation ranges. The collective estimated mismatches converge to zero.

Total power generated by the micro-grid converges to the target demand,

and all the incremental costs converge to the same value. In this particular

case, the optimal incremental cost is λ∗ = 8.5074$/kWh, Type 1 generator
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outputs are x1 = 460.36kW , Type 2 generator outputs are x2 = 169.44kW ,

and Type 3 generator outputs are x3 = 55.75kW .
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Figure 4.12: Results obtained with 100 generators.

4.6 Conclusion

In this chapter, a novel consensus based algorithm is proposed to solve ED

problem in a distributed manner. The quadratic convex cost function models

are used in the problem formulation, and strongly connected communication

is su�cient for the information exchange. By the proposed scheme, the

distributed algorithm enables generators to collectively learn the mismatch

between demand and total power generation. The estimated mismatch is

used to adjust current power generation by each generator. All generators

are able to collectively minimize the total cost while satisfying power bal-

ance constraints. In addition, a design method is developed to calculate
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the appropriate learning gains. Furthermore, the proposed algorithm can be

implemented in a fully distributed fashion with a modi�ed initialization. Nu-

merous examples are presented to illustrate the e�ectiveness of the proposed

algorithm. Comparisons with centralized Lambda-Iteration method as well

as distributed ED method �consensus + innovation� method are also carried

out in the application examples. These comparisons also demonstrate that

our technique requires less restrictive communication networks and provides

better convergence results.
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Chapter 5

Hierarchical Consensus Based

Approach with Loss

Consideration for Economic

Dispatch Problem under

Micro-grid Context

5.1 Introduction

Economic dispatch (ED) problem is one of the important problems in power

system operation. Climate change and rising fuel costs have changed the

mindset of power system stakeholders. It is hoped that the distributed and

renewable energy resources are going to play a more important role in reduc-

ing the emissions. With the increasing demand for renewable and distributed
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energy resources, the grid also needs improved controlling and monitoring of

existing networks. To better integrate the distributed energy resources, the

system operators need to operate the system actively using local resources.

This indicates a shift from traditional control strategy to distributed control

paradigm [116].

In all the existing related works, the power line loss is not considered.

However, the power line loss a�ects the actual optimal power dispatch. To

design a power network that operates in optimal condition, the power line

loss has to be carefully taken care of.

In this work, we no longer adopt the incremental cost criteria as consen-

sus variable because we take power line loss calculation into account. The

consensus variable is chosen as the product of the penalty factor and the

incremental cost. Our approach is designed to have two levels of algorithms.

The upper level constructs a set of distributed linear loss functions based on

the previous �optimal power combination�, which are supplied to the lower

level algorithm. The lower level makes sure the consensus variable is driv-

en to reach agreement among all agents while satisfying system constraints

with the linear loss function, and generate a new �optimal power combina-

tion�. Then, the new �optimal power combination� is fed back to the upper

level algorithm. The whole process repeats until the �optimal power combi-

nation� converges. It turns out that the limit is the actual optimal power

combination with loss consideration. Furthermore, each generator does not

need to know the cost function parameters of other generators in our work.

The novelty of the proposed algorithm is that it can estimate the mismatch

between demand, loss and total generated power in a collective sense. The
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local estimated mismatch may not equal to the actual mismatch in the be-

ginning, but the summation of all the local estimated mismatch is preserved

and exactly equal to the actual mismatch. The local estimated mismatch

is used to adjust the power generation as if they are the true mismatch.

The consensus variable is guaranteed to converge to the optimal value by

the algorithm. In addition, in order to demonstrate that our proposed tech-

nique can work under weak communication environment, the communication

graph is assumed to be strongly connected, which is less restrictive than the

bidirectional information exchange in [75][109].

This chapter is organized as follows. In Section 5.2, graph theory, ba-

sic consensus results, and equal incremental cost criterion in ED problem are

brie�y introduced. Problem description and main results for both constrained

and unconstrained cases are presented in Section 5.3. To demonstrate the

e�ectiveness of the proposed algorithms, numerical example is shown in Sec-

tion 5.4. Lastly, we conclude the chapter in Section 5.5.

5.2 Preliminary

The basic graph terminologies and consensus algorithms are introduced in

Chapter 4. Thus, in this section, only analytic ED problem solution is intro-

duced.
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5.2.1 Analytic solution to ED problem with loss calcu-

lation

A micro-grid usually consists of multiple power generators. Let's assume

there are N power generators. The operating cost function of power genera-

tion is given by the following quadratic form

Ci(xi) =
(xi − αi)2

2βi
+ γi, (5.1)

where xi is the power generated by generator i, αi ≤ 0, βi > 0, and γi ≤ 0.

The ED problem is to minimize the total generation cost

min
N∑
i=1

Ci(xi), (5.2)

subject to the following two constraints,

Generator constraint:

xi ≤ xi ≤ xi, (5.3)

where xi and xi are the lower and upper bounds of the generator capability.

Demand constraint:
N∑
i=1

xi = D + L, (5.4)

where D is the total demand and L is the total loss on the transmission lines

satisfying
∑N

i=1 xi < D + L <
∑N

i=1 xi, i.e., the problem is solvable.

The incremental cost for the generator i is dCi(xi)
d xi

= xi−αi

βi
. The solution
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to ED problem with loss calculation is [110].


PFi

xi−αi

βi
= λ∗ for xi < xi < xi

PFi
xi−αi

βi
< λ∗ for xi = xi

PFi
xi−αi

βi
> λ∗ for xi = xi

, (5.5)

where λ∗ is the consensus variable and PFi is the penalty factor of unit i

given by

PFi =
1

1− ∂L
∂xi

(5.6)

and ∂L
∂xi

is unit i incremental loss. The penalty factors are computed from

losses represented using B coe�cients [86]:

L = XT [B]X +BT
0 X +B00 (5.7)

where X = [x1, . . . , xN ]T is the vector of all generators' outputs, [B] is the

square matrix, BT
0 is the vector of the same length as X and B00 is a constant.

Note that the parameter γi in the cost function does not a�ect the incre-

mental cost.

Remark 6. The cost function in (5.1) is slightly di�erent from the one in

(5.8), which is commonly used by power engineers.

Ci(xi) = aix
2
i + bixi + ci. (5.8)

In fact, cost functions (5.1) and (5.8) are equivalent. It is not di�cult to

convert (5.8) to (5.1). Straightforward manipulation shows by setting αi =
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− bi
2ai

, βi = 1
2ai

, and γi = ci − b2i
4ai

, (5.1) and (5.8) are identical. The main

motivation of using (5.1) is for notational simplicity in the next section.

5.3 Main Results

Assume there is a command vertex which distributes the total demand D to

a subset of V . Denote the command vertex by vertex 0, and its out-neighbor

set N−0 . Recall that N
−
0 is the vertices set which can receive information from

vertex 0. For simplicity, let the command vertex distribute the total demand

equally among all the generators in N−0 . By assumption, 1 ≤ |N−0 | ≤ N .

In this Section, we propose a two-level consensus algorithm that solves the

economic dispatch problem distributively with loss consideration. The upper

level algorithm estimates the power loss on the transmission lines and send

the loss information to the lower level algorithm. The lower level algorithm

then learns and eliminates the mismatch information between power output,

demand and power loss in a distributed manner. After that, the results of

the lower level computation are fed back to the upper level. This process

repeats until there is no discrepancy between two latest iterations.

5.3.1 Upper level: estimating the power loss

The loss on the transmission lines is computed using B coe�cients [86]:

L(X) = XT [B]X +BT
0 X +B00. (5.9)

Note that the loss is in quadratic form of X. It is di�cult to directly
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incorporate the nonlinear loss function to design a distributed algorithm that

solves the ED problem. The task of upper level algorithm is to generate a set

of distributed linear loss functions. To achieve the target, we approximate

the loss function with �rst order Taylor approximation.

The gradient of L(X) is

g = [g1, g2, . . . , gN ] =
∂L

∂X

∣∣∣∣
X=Xnew

= (2BXnew +B0)T ,

where Xnew is the current �optimal power combination" estimation obtained

from lower level algorithm.

The distributed linear loss function for generator i is

Li(xi) = gixi + d,

where gi is the ith component of g, and

d =
L(Xnew)− gXnew

N
.

The loss function Li(xi) depends only on xi, and

N∑
i=1

Li(X
i
new) = L(Xnew),

where X i
new is the ith component of Xnew. It implies that when each gener-

ator works at the operation point X i
new, the linear loss function is a perfect

estimator of the quadratic loss function.
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Then, the linear loss function is passed to the lower level algorithm, and

the lower level algorithm would return a power combination Xlower. We

update the new �optimal power combination" by the following equation,

Xnew = wXold + (1− w)Xlower, (5.10)

where w is the weighted value that determines how fast Xnew is moving away

from the Xold. If Xnew converges, that is Xnew = Xold = Xlower, then Xnew is

the actual optimal power combination with loss consideration, provided that

all the constraints are satis�ed.

With the linear loss function, the penalty factor in (5.6) becomes,

PFi =
1

1− gi
.

5.3.2 Lower level: solving economic dispatch distribu-

tively

According to the incremental cost criterion (5.5), when all generators operate

at the optimal con�guration, equal incremental costs equal to the optimal

value, that is

PFi
x∗i − αi
βi

= λ∗, ∀i ∈ V . (5.11)

Hence, the optimal power generation for each individual generator can be

calculated if the optimal incremental cost λ∗ is known, i.e.,

x∗i =
βiλ
∗

PFi
+ αi, ∀i ∈ V . (5.12)
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(5.11) and (5.12) motivate us the following algorithm. Let λi(k) be the esti-

mation of optimal incremental cost by generator i, xi(k) be the corresponding

power generation which is an estimation of optimal power generation, li(k)

be the corresponding loss information, and yi(k) be the collective estimation

of the mismatch between demand and total power generation.

Initializations:

λi(0) = any �xed admissible value

xi(0) = any �xed admissible value

li(0) = 0

yi(0) =


D
|N−

0 |
− (xi(0)− li(0)) if i ∈ N−0

−(xi(0)− li(0)) otherwise

,∀i ∈ V .

We are ready to state the main algorithm.

λi(k + 1) =
∑
j∈N+

i

pi,jλj(k) + εyi(k) (5.13a)

xi(k + 1) =
βiλi(k + 1)

PFi
+ αi (5.13b)

li(k + 1) = gixi(k + 1) + d (5.13c)

yi(k + 1) =
∑
j∈N+

i

qi,jyj(k) + (li(k + 1)− li(k))

− (xi(k + 1)− xi(k)) (5.13d)

where ε is a su�ciently small positive constant.

To analyze the properties and convergence of algorithm (5.13), rewrite it
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in the following matrix form

λ(k + 1) = Pλ(k) + εy(k) (5.14a)

x(k + 1) = PFβλ(k + 1) +α (5.14b)

l(k + 1) = Gx(k + 1) + d (5.14c)

y(k + 1) = Qy(k) + (l(k + 1)− l(k))

− (x(k + 1)− x(k)) (5.14d)

where x,y, l,α,λ are the column stack vector of xi, yi, li, αi, λi respective-

ly, PF = diag([1/PF1, 1/PF2, . . . , 1/PFN ]), G = diag([g1, g2, . . . , gN ]), and

β = diag([β1, β2, . . . , βN ]).

(5.14d) preserves the summation of xi(k) + yi(k) + li(k) over V . It can

be veri�ed by premultiply both sides of (5.14d) by 1T , and noticing that Q

is column stochastic, we have

1Ty(k + 1) = 1TQy(k) + 1T (l(k + 1)− l(k))

−1T (x(k + 1)− x(k)),

1Ty(k + 1) = 1Ty(k) + 1T (l(k + 1)− l(k))

−1T (x(k + 1)− x(k)),

1T (y(k + 1) + x(k + 1)) = 1T (l(k + 1)− l(k))

+1T (y(k) + x(k)).

Notice the initialization of xi(0), yi(0) and li(0), we can obtain
∑

i∈V xi(0)+

yi(0) = D + L(0). The terms
∑

i∈V (li(k + 1)− li(k)) estimate the loss L(k)
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on the transmission lines. Hence, 1Ty(k) = D+L(k)− 1Tx(k) is the actual

mismatch between sum of demand and loss and total power generation. The

mismatch is obtained via a collective e�ort from all individual generators

rather than a centralized method. That is the reason why yi(k) is called

collective estimation of the mismatch. The �rst term in the right hand side

of (5.14a) is the consensus part, it drives all λi(k) to a common value. The

second term εy(k) provides a feedback mechanism to ensure λi(k) converges

to the optimal value λ∗. (5.14b) just updates the estimated power generation

xi(k) to the newest one.

Theorem 4. In algorithm (5.13), if the positive constant ε is su�ciently

small, then the algorithm is stable, and all the variables converge to the so-

lution to the ED problem, i.e.,

λi(k)→ λ∗, xi(k)→ x∗i , yi(k)→ 0, as k →∞,∀i ∈ V .

Proof. We use the eigenvalue perturbation [111] approach to analyze the

convergence properties. Replace x in (5.14c) with λ by using (5.14a)(5.14b),

we have

y(k + 1) = (Q− εPFβ + εGPFβ)y(k) +

(I −G)PFβ(I − P )λ(k), (5.15)

where I is the identity matrix of appropriate dimension.

Write (5.14a) and (5.15) in matrix form, we get the following composite
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system,

 λ(k + 1)

y(k + 1)

 =

 P εI

(I −G)PFβ(I − P ) Q− εPFβ + εGPFβ


 λ(k)

y(k)

 (5.16)

De�neM ,

 P 0

(I −G)PFβ(I − P ) Q

 and E ,

 0 I

0 −PFβ +GPFβ

.
The system matrix of (5.16) can be regarded as M perturbed by εE. M

is a lower block triangular matrix, the eigenvalues of M is the union of the

eigenvalues of P and Q. So M has two eigenvalues equal to 1, and the rest

eigenvalues lie in the open unit disk on the complex plane. Denote the two

values by θ1 = θ2 = 1. It is easy to verify that u1, u2 and v
T
1 , v

T
2 are the two

linearly independent right and left eigenvectors of M .

U = [u1,u2] =

 0 1

µ −ηµ

 , (5.17)

where η = [
∑N

i=1(1− ai)][
∑N

i=1 βi].

V T =

 vT1

vT2

 =

 1T (I −G)PFβ 1T

ωT 0T

 . (5.18)

Furthermore, V TU = I.

When ε is small, the variation of θ1 and θ2 perturbed by εE can be
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quanti�ed by the eigenvalues of V TEU .

V TEU =

 0 0

ωTµ −ηωTµ

 .
The eigenvalues of V TEU are 0 and −ηωTµ < 0. So d θ1

d ε
= 0 and d θ2

d ε
=

−ηωTµ < 0. That means θ1 does not change against ε, and when ε > 0,

θ2 becomes smaller. Let δ1 be the upper bound of ε such that when ε < δ1,

|θ2| < 1. Since eigenvalues continuously depend on the entries of a matrix,

in our particular case, the rest of eigenvalues ofM + εE continuously depend

on ε. Therefore, there exists an upper bound δ2 such that when ε < δ2, |θj| <

1, j = 3, 4, . . . , 2N. Hence, if we choose ε < min(δ1, δ2), we can guarantee

that the eigenvalue θ1 = 1 is simple, and all the rest eigenvalues lie in the

open unit disk.

It can be veri�ed

 1

0

 is the eigenvector of system matrix in (5.16)

association with θ1 = 1. Since all the rest eigenvalues are within the open

unit disk,  λ(k)

y(k)

 converges to span

 1

0


as k → ∞. That is yi(k) → 0. From (5.14c), we can derive 1Tx(k) = D,

i.e., the demand constraint is satis�ed. From (5.14a), λi(k) converges to a

common value, i.e., the incremental cost criterion is satis�ed. Therefore, we

can conclude Theorem 2.
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5.4 Application Examples

The communication topology is shown in Fig. 5.1. We assume that there

are four generators in this micro-grid, labeled as vertex 1, 2, 3, and 4. The

four generators are selected from the three types of generators in Table. 5.1.

Vertices 1 and 2 are Type A generators, vertex 3 is a Type B generator,

and vertex 4 is a Type C generator [110]. The communication among the

four generators are denoted by solid lines, which is a strongly connected

graph. Vertex 0 is the command vertex. The dashed line represents the

communication between command vertex and power generators, that is the

command vertex can send information to power generator 1 and 3. Based on

Fig. 5.1, matrices P and Q can be de�ned as

P =



1
2

0 0 1
2

1
3

1
3

1
3

0

0 0 1
2

1
2

0 1
2

0 1
2


, Q =



1
2

0 0 1
3

1
2

1
2

1
2

0

0 0 1
2

1
3

0 1
2

0 1
3


respectively. The power lines loss matrix is de�ned as [110]

B =



0.00676 0.00953 −0.00507 0.00211

0.00953 0.0521 0.00901 0.00394

−0.00507 0.00901 0.0294 0.00156

0.00211 0.00394 0.00156 0.00545


,
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B0 =



−0.0766

−0.00342

0.0189

0.0173


, B00 = 0.0595.

The initial values in case studies 1− 3 are given in Table. 5.2 [110], w is

chosen to be 0.8, and total demand D = 1300MW .

1 2

3 4

0

Figure 5.1: Communication topology among generators and command
vertex in the network.

Table 5.1: Generator parameters

Generator Type A (Coal-�red) B (Oil-�red) C (Oil-�red)
Range (MW ) [150, 600] [100, 400] [50, 200]
a ($/MW 2h) 0.00142 0.00194 0.00482
b ($/MWh) 7.2 7.85 7.97
c ($/h) 510 310 78
α (MW ) -2535.2 -2023.2 -826.8
β (MW 2h/$) 352.1 257.7 103.7
γ ($/h) -8616.8 -7631.0 -3216.7
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Table 5.2: Initializations

Variables i = 1 i = 2 i = 3 i = 4
x(0) (MW ) 150 150 100 50
y(0) (MW ) 600 -150 650 -50
l(0)(MW) 0 0 0 0
λ(0) 736.29 957.38 906.46 871.24

5.4.1 Case study 1: convergence test

In this case study, we want to verify the convergence property. The results are

shown in Fig. 5.2. The sub-�gure on the top shows the estimated power loss

and actual power loss calculated by the upper level. The estimated power

loss reaches a steady state and the value is equal to the actual calculated

loss after 14 iterations. This demonstrates the convergence of the upper level

algorithm. The other four sub-�gures at the bottom show the dynamics of the

lower level algorithm. The collective estimated mismatch yi goes to zero after

30 iterations. The estimated λ of all generators converge to the same value

while meeting the power balance constraint. From the transient response, we

notice that generator 1, 3, and 4 are saturated after the �rst 25 iterations,

and they gradually increase to the �nal output as the λ is increasing. Based

on the results, L = 76.02MW , λ∗ = 1246.3, x∗1 = 600MW , x∗2 = 176.01MW ,

x∗3 = 400MW , and x∗4 = 200MW . All the power generations are within the

generation ranges. No power generators exceed the operation ranges even in

the transient responses.
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Figure 5.2: Results obtained with generator constraints.

5.4.2 Case study 2: robustness of command node con-

nections

Our proposed algorithm only requires that the communication between gen-

erators is strongly connected. If the command vertex has at least one edge

to any one of the generators, the algorithm works when the learning gain is

appropriately chosen. This is a very �exible communication condition. In

the previous case study, the command vertex is connected to generators 1

and 3. Now, change the command vertex connection to generators 2 and 4.

179



The purpose of this case study is to demonstrate that the proposed algorith-

m works regardless of the command node connections. Fig. 5.3 shows the

numerical results. The top sub-�gure shows the upper level of the algorithm.

The estimated loss matches the actual loss information after 14 iterations.

The four sub-�gures below show the lower level of the algorithm. The mis-

match information is collectively minimized by all the generators after 30

iterations. The incremental costs also reach consensus after 30 iterations.

As shown in the fourth sub-�gure, the total demand and loss are balanced

by total power. The initial conditions for xi(0) are still the same as in Ta-

ble. 5.2. The initial conditions for yi(0) are changed to y1(0) = −150MW ,

y2(0) = 500MW , y3(0) = −100MW , and y4(0) = 600MW , and the �nal

outcomes are L = 76.02MW , λ∗ = 1246.3, x∗1 = 600MW , x∗2 = 176.01MW ,

x∗3 = 400MW , and x∗4 = 200MW . The results are identical to Case study

1, which indicates the command vertex connection does not a�ect the �nal

convergence results.

5.4.3 Case study 3: plug and play test

One of the most important features of a micro-grid is its plug and play

adaptability. In this case study, the four generators have already reached the

optimal states before plugging in the �fth generator. The four generators

steady states are the same as shown in case study 1. The �fth generator is

plugged in at time step k = 20. The �fth generator is a Type B generator.

The initializations of the generators are the same as in case study 1. The

new communication topology is shown in Fig. 5.4. Thus matrices P and Q
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Figure 5.3: Robustness test when the command vertex is connected to
generators 2 and 4.

are changed to

P =



1
2

0 0 1
2

0

1
3

1
3

1
3

0 0

0 0 1
2

1
2

0

0 1
3

0 1
3

1
3

0 1
2

0 0 1
2


, Q =



1
2

0 0 1
3

0

1
2

1
3

1
2

0 0

0 0 1
2

1
3

0

0 1
3

0 1
3

1
2

0 1
3

0 0 1
2


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respectively. After plugging in the �fth generator at k = 20, the output

of generator 5 is set to x5(20) = 100MW and y5(20) = −100MW . From

the results in Fig. 5.5, we can observe that the local estimated mismatch yi

goes to zero after a short disturbance. The other three generators reduce

their outputs in order to accommodate the �fth generator output. There-

fore, the incremental cost drops due to lower average output and lower loss

on the transmission lines. Finally, the estimated incremental costs of all

generators converge to the same value while meeting the power balance con-

straint. Based on the results, L = 37.27MW , λ∗ = 950.68, x∗1 = 600MW ,

x∗2 = 150MW , x∗3 = 178.94MW , and x∗4 = 86.80MW , and x∗5 = 321.53MW .

All the power generations are within the generation range. The optimization

goal is ful�lled and the �fth generator is well adapted into the system.

1 2

3 4

0 5

Figure 5.4: Communication topology with the �fth generator.
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Figure 5.5: Results obtained with the �fth generator.

5.4.4 Case study 4: time-varying demand

In this case study, the generators' setup is the same as in case study 1. In

a practical situation, it is very likely that the demand is not a constant

over time. Slight modi�cation of our proposed algorithm can handle the

demand change e�ectively. Let the initial demand D = 1300MW as usual,

we purposely change it to D′ = 800MW at upper loop time step k = 20.

The demand change is only known to generators 1 and 3 since they are

connected to the command vertex. Thus, the algorithm needs to modify the

local estimated mismatch at k = 20 before continuing updating the variables.
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Keep y2, y4 unchanged at k = 20, and update y1, y3 as follows at k = 20

before proceeding to the next updating iteration.

y1(20) = y1(20) +
D′ −D
m

,

y3(20) = y3(20) +
D′ −D
m

.

Fig. 5.6 shows the results. After the demand changes from 1300MW to

800MW at k = 20, the algorithm quickly responds to the change of demand.

The top sub-�gure shows the upper level algorithm. The estimated loss

match actual loss at upper level iteration k = 30. The four sub-�gures

below show the lower level algorithm. The mismatch information is obtained,

and the generators minimize the mismatch information collectively. The

new incremental cost consensus is reached at lower level iteration k = 20.

The algorithm asymptomatically converges to the new optimal solution at

iteration lower level iteration k = 20, i.e., λ∗ = 875.89, x∗1 = 510.32MW ,

x∗2 = 150MW , x∗3 = 104.66MW , x∗4 = 50.00MW , and L = 14.98MW .

Compared to case study 1 results, all the outputs decrease since the demand

is reduced.

5.4.5 Case study 5: relation between convergence speed

and learning gain

The learning gain is the only design parameter that we can manipulate, and

it plays a signi�cant role in convergence speed and also the performance. If

the learning gain is not properly selected, the results may oscillate, or even
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Figure 5.6: Results obtained with time-varying demand.

diverge. Thus, it is important to investigate the relation between conver-

gence properties and learning gain. We select four sets of learning gains, i.e.,

ε = 20, 50, 80, and 110, and study the performances of the learning gains.

Let the initial conditions be the ones speci�ed in Table. 5.2. The mismatch

between demand and total power generation is depicted in Fig. 5.7. In gener-

al, when the learning gain is small, the convergence speed is relatively slow,

and the transient response is smooth. A large gain learning results in a faster

convergence speed. However, the performance may become oscillatory. In

185



addition, if the learning goes beyond certain limit, the algorithm diverges as

in the experiment with ε = 110.
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Figure 5.7: Relation between convergence speed and learning gain.

5.4.6 Case study 6: IEEE 14-bus system test

This case study demonstrates the fully distributed implementation of the

proposed methods to IEEE 14-bus test systems. This test system represents

a portion of the American Electric Power System which is located in the

Midwestern US as of February in 1962. This system has 14 buses, 5 gen-

erators and 11 loads [115]. The parameters of the generators are listed in

Table. 5.3 [78].

Notice that Buses 1, 2, 3, 6, and 8 contain generators. When a bus

contains load only, the power generation at that bus is set to zero. The

initial local demands at each buses are given as D1 = 0MW , D2 = 21.7MW ,

D3 = 66.2MW , D4 = 47.8MW , D5 = 7.6MW , D6 = 11.2MW , D7 =

0MW , D8 = 0MW , D9 = 29.5MW , D10 = 9.0MW , D11 = 3.5MW , D12 =
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Table 5.3: IEEE 14-bus test system generator parameters

Bus a ($/MW 2h) b ($/MWh) c ($/h) Range (MW )
1 0.04 2.0 0 [0, 80]
2 0.03 3.0 0 [0, 90]
3 0.035 4.0 0 [0, 70]
6 0.03 4.0 0 [0, 70]
8 0.04 2.5 0 [0, 80]

6.1MW , D13 = 13.5MW , and D14 = 14.9MW . Thus the total demand is

D = 231MW ..

The communication among buses can be independent from the actual

bus connections. Consider each bus as a vertex, and a vertex only sends

information to the next two vertices, i.e., the edge set is E = {(i, i+1), (i, i+

2)|1 ≤ i ≤ 12}
⋃
{(13, 14), (13, 1), (14, 1), (14, 2)}. The graph is strongly

connected, and the total number of edges is |E | = 28. The maximum possible

number of edges is |V | · |V | = 196. So the density of the graph is 42/196 =

0.214, which is quite sparse.

By using the proposed algorithm with learning gain ε = 5e−3, the numer-

ical results are presented in Fig. 5.8. The generators outputs are con�ned

within the operation ranges. The collective estimated mismatches converge

to zero. Total power generated by the micro-grid converges to the target de-

mand, and all the λ converge to the same value, i.e., the ED problem is solved.

In this particular case, the consensus variable is λ∗ = 8.15, generator outputs

are x∗1 = 68.43MW , x∗2 = 70.32MW , x∗3 = 31.88MW , x∗6 = 38.42MW , and

x∗8 = 43.20MW .
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Figure 5.8: Results obtained with IEEE 14-bus test system.

5.4.7 Case study 7: IEEE 57-bus system test

The IEEE 57-bus test system represents a portion of the American Electric

Power System in the early 1960s. This system has 57 buses, 7 generators and

42 loads [117].

This case study demonstrates the scalability of proposed algorithm on

large systems with low level of connectivity. The communication among bus-

es can be independent from the actual bus connections. Consider each bus as

a vertex, and a vertex only sends information to the next two vertices, i.e., the

edge set is E = {(i, i+1), (i, i+2)|1 ≤ i ≤ 55}
⋃
{(56, 57), (56, 1), (57, 1), (57, 2)}.

The graph is strongly connected, and the total number of edges is |E | = 114.
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The maximum possible number of edges is |V | · |V | = 3249. So the density

of the graph is 171/3249 = 0.0526, which is quite sparse.

The results of the proposed algorithm are presented in Fig. 5.9. The

generators outputs are con�ned within the operation ranges. The collective

estimated mismatches converge to zero. Total power generated by the micro-

grid converges to the target demand, and all the λ converge to the same value,

i.e., the ED problem is solved. In this particular case, the consensus variable

is λ∗ = 25.1840, generator outputs are x∗1 = 137.13MW , x∗2 = 100MW ,

x∗3 = 44.11MW , x∗6 = 100MW , x∗8 = 485.27MW , x∗9 = 100MW , and x12∗ =

328.92MW .
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Figure 5.9: Results obtained with IEEE 57-bus test system.
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5.4.8 Case study 8: Application in large micro-grid

This case study demonstrates the scalability of the proposed algorithm to

very large networks. Consider that there are 100 generators in the micro-grid.

The communication is de�ned as below. Let the out-neighbor of generator

i be N−i = { mod (i + k, 100) | k = 0, 1, . . . , 20}, i.e., the communication

is strongly connected. Let the learning gain ε = 2. The initialization of

xi(0), λi(0), yi(0) are determined by the method in Theorem 3. The target

demand D = 25000kW . Fig. 5.10 shows the numerical results. The gener-

ators outputs are con�ned within the operation ranges. The collective esti-

mated mismatches converge to zero. Total power generated by the micro-grid

converges to the target demand, and all the incremental costs converge to

the same value, the EDP is solved. In this particular case, the optimal incre-

mental cost is λ∗ = 878.89, Type 1 generator outputs are near x1 = 480kW ,

Type 2 generator outputs are x2 = 180kW , and Type 3 generator outputs

are x3 = 62kW .
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Figure 5.10: Results obtained with 100 generators.

5.5 Conclusion

In this work, a hierarchical consensus based algorithm is proposed to solve e-

conomic dispatch problem with loss calculation. The operating cost functions

are modeled as quadratic functions. The loss information on the transmission

lines is modeled using B coe�cients. The upper level algorithm estimates

the loss information and distribute to the lower level. The lower level algo-

rithm drives the product of penalty factor and incremental cost to reach an
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agreement among all agents. Sparse communication networks are adopted

to demonstrate the convergence speed of the proposed algorithm. The case

studies have shown that the total operating cost can be minimized while

maintaining the power balance constraint. The proposed technique can also

take care of demand variations and generator variations. In addition, the

scalability of our technique is demonstrated by solving the large network

problem.
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Chapter 6

Conclusion and Future Work

ED problem has been discussed in literature more than 90 years. Various

aspects of the problem such as security, reliability, and economy were inves-

tigated by previous researchers. Recently, with the increasing penetration of

distributed generation, renewable energy plays a more and more important

role in power network. To integrate the DERs into traditional grid, the eco-

nomic issues such as uncertain power generation due to stochastic weather

conditions and higher price renewable energy due to smaller generator scale

must be carefully solved. This thesis addresses the economic dispatch issues

of integrating renewable energy sources from two di�erent aspects. The �rst

part of the work presents two centralized approaches to solve the problem.

Furthermore, the second part of the work proposes two distributed techniques

to tackle the problem.

In Chapter 2, an economic load dispatch method for micro-grid using

multi-objective optimization algorithms is presented. The emission and valve-

point loading fuel cost of thermal generators are considered. The penalty and
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reserve cost of the wind turbines are used to encourage the usage of renewable

energy. The fuel cost and hydrogen management cost of PEM fuel cell gen-

erators are adopted. The objectives are minimizing operating cost as well as

minimizing emission. Two state-of-the-art multi-objective optimization tech-

niques are applied on this problem. Pareto fronts are obtained from three

di�erent systems to provide the operator a variety of choices. The results

show that SPEA2 has a faster convergence when generation number is small

and NSGA-II can perform slightly better for large number of generations.

NSGA-II provides more diverse solutions than SPEA2.

In Chapter 3, an integrated approach which considers both recon�gura-

tion of network and economic load dispatch is presented. The stochastic

nature of wind, PV and load is taken into consideration by stochastic gen-

eration models. The forecasting of the wind, PV and load data and the

energy storage system is considered to facilitate the dispatch process. The

four bio-inspired optimization techniques are adopted to solve the problem.

Optimization of benchmark-link application problems are conducted to in-

vestigate the e�ects of di�erent weather and load conditions on the whole

network. By using the integration approach, micro-grid can be incorporated

into the network more e�ectively. Higher price renewable energy can be in-

troduced into the grid to minimize the operating cost by reducing the power

losses signi�cantly. The network can adjust itself more e�ciently to allow

the utilization of the renewable energy.

In Chapter 4, a novel consensus based algorithm is proposed to solve

ED problem in a distributed manner. Quadratic cost functions and strongly

connected communication graph are used in the problem formulation. By
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the proposed scheme, the distributed algorithm enables generators to col-

lectively learn the mismatch between demand and total power generation.

The estimated mismatch is used to adjust current power generation by each

generator. All generators are able to collectively minimize the total cost

while satisfying power balance constraints through the sparse communica-

tion channels. Comparisons with centralized Lambda-Iteration method as

well as distributed ED method �consensus + innovation� method are also

carried out in the application examples. These comparisons also demon-

strate that our technique requires less restrictive communication networks

and provides better convergence results.

In Chapter 5, the problem of considering power loss on transmission lines

is �rst introduced into distributed optimization. In this Chapter, a hier-

archical consensus based algorithm is proposed to solve economic dispatch

problem with loss calculation. The quadratic cost functions are used to model

the generators' operating costs. The B matrix is used to model the trans-

mission losses. The upper level algorithm estimates the loss information and

distribute to the lower level. The lower level algorithm drives the product of

penalty factor and incremental cost to reach an agreement among all agents.

Sparse communication networks are adopted to demonstrate the convergence

speed of the proposed algorithm. The case studies have shown that the to-

tal operating cost can be minimized while maintaining the power balance

constraint. The proposed technique can also take care of demand variation-

s and generator variations. In addition, the scalability of our technique is

demonstrated by solving the large network problem.

For future work, we notice that the distributed optimization of the ED
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problem is a emerging area in power system research. The research work on

this �eld is still at its starting phase. The B matrix may not be an accurate

representation of the power �ow analysis. Thus, the future work will focus on

bringing in more comprehensive power �ow analysis and more realistic power

system constraints. Furthermore, from our literature studies, we �nd that

load shedding and load recovering can be addressed in distributed manner.

We will also consider these problems in our future work.
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