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Summary

Shrinkage estimation of large-scale sparse covariance matrix is an im-

portant technique in the exploratory analysis of high-dimensional data sets.

We propose a two-step procedure to estimate large-scale covariance matrix

for one set of variables X with known group information, followed by es-

timation of covariance matrix between X and another set of variables Y,

denoted by ΣXX and ΣXY respectively. The covariance matrix ΣXY is es-

timated as the product of two components, namely ΣXXB. Similar to the

idea of Fan et al. (2013)’s Principal Orthogonal complEment Thresholding

(POET) estimator, ΣXX is decomposed into a systematic factor component

and an idiosyncratic component ΣXX = Σf +Συ in the first step, where the

former explains the variability associated with known groups and the latter

the residual variability in X. B is estimated using the group lasso based on

x



the selected groups from the first step. We present the asymptotic prop-

erties of the two-step estimator with appropriate conditions. We illustrate

the methodology using simulations and the mRNA expression data from

The Cancer Genome Atlas (TCGA), focusing on the covariance structure

between kinases and substrates.
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CHAPTER 1

Introduction

1.1 Motivation

A plethora of statistical methods have been developed for the analysis of

high-dimensional molecular data over the past decade, creating a large body

of statistical methods for sample classification and prediction, multiple

testing correction (Benjamini and Hochberg, 1995; Storey, 2002), and inte-

grative data analysis of multi-platform molecular data sets (Lê Cao et al.,

2009; Sass et al., 2013; Shen et al., 2009, 2013; Troyanskaya et al., 2003).

An important area of application that has received attention of late is the

inference of gene-to-gene association or gene regulatory network inference,

aiming to identify gene modules, which reflect that those molecules within a

module are functionally related in the context of the given molecular study
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(Barabási et al., 2011; Mitra et al., 2013; Oldham et al., 2008; Segal et al.,

2003a,b, 2004; Stuart et al., 2003; Vidal et al., 2011; Zhang and Horvath,

2005). Such methods are applicable to both controlled experiments over

distinct conditions in model systems and population studies of humans, and

the analysis often reveals context-specific gene-gene interactions associated

with relevant biological functions.

In the recent statistics literature, this problem has been formulated as

large-scale covariance matrix estimation under sparsity assumptions. The

premise that the correlation structure is sparse bodes well with the biolog-

ical reality, in which a small number of functionally related molecules leads

to sparse specification of non-zero elements in the covariance matrix. Devel-

opment of this methodology initially started with element-wise shrinkage

estimators in scenarios where the general correlation structure is known

(e.g. banding estimator in time series data (Bickel and Levina, 2008b))

and where such structure is unknown (Rothman et al., 2009). Similar to

the development of the Least Absolute Shrinkage and Selection Operator

(lasso) (Tibshirani, 1996) regression techniques, a more adaptive estimator

has also been developed (Cai and Liu, 2011). The theoretical properties

such as the convergence rates and selection/consistency have been well

established (Bunea et al., 2007; Knight and Fu, 2000). A more relevant

development to our work here was that of the Principal Orthogonal com-

plEment Thresholding (POET) estimator, a shrinkage estimator of large

covariance matrix by thresholding principal orthogonal complements, the

idea of which we extend in our proposal later (Fan et al., 2013).
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A common assumption in the existing shrinkage estimation methods

is that each covariance term, between two molecular features such as two

genes in a microarray experiment, is perceived as an independent unit on

its own and thus element-wise shrinkage can be applied to each element

independently to yield sparsity in the entire covariance matrix. In biolog-

ical applications, however, a large collection of experimentally validated

relational data are now available and their coverage of the entire “interac-

tome” has substantially increased, and therefore the knowledge of protein

complexes, pathways, and even the functional annotations such as gene on-

tology, can be further utilized to better identify groups of more than several

functionally related covariances, i.e. beyond a pair of molecules. Accord-

ingly, it will be a desirable development if the existing group information

can be incorporated into the sparse covariance matrix estimation, which is

expected to guide more precise identification of co-regulated gene modules

that are coherent with current biological literature.

1.2 Cross-covariance Matrix Estimation in

Biological Applications

This thesis is primarily concerned with two-stage estimation of the

large-scale cross-covariance matrix between two sets of variables (molecules)

X and Y, where a part of the estimator consists of full covariance matrix

estimation for X using group information. This formulation is motivated by
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real biological questions where one set of variables X represents upstream

regulatory molecules such as those in the upstream signaling cascade and

the other set of variables Y is their downstream regulatory targets or sub-

strates. In this situation, the covariance between the two variables are

estimated in a way that incorporates the group structure between the el-

ements of X or that of Y. We reformulate the problem into the familiar

regression setup, in which each element of Y is expressed as a linear func-

tion of X and a noise component, and the covariates X are expected to be

highly correlated in the high-dimensional regression.

First stage estimation

When the covariates are correlated, a popular solution in the regression

is to use a class of factor models, where each factor is a weighted linear

combination of elements of X. One example is the principal component re-

gression (Jolliffe, 1982), where the principal components, computed as the

eigenvectors of the sample covariance matrix, are used as regressors. De-

spite great utility as a dimension reduction technique, it is well known that

the practical problem with the principal component regression approach

is that the factors (e.g. principal components) hardly lend themselves to

straightforward interpretation and it involves arbitrary thresholding to as-

sign associated genes to each factor. An ideal scenario is where a major

factor is defined by a fixed set of variables (genes) with known biological

annotation such as pathway or gene functions, yet it is difficult to have
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clear-cut assignment of one gene to one group of variables in complex sys-

tems because individual genes are often involved in more than one functions

in a multifactorial manner.

From a biologist’s point of view, the most informative analysis is to

directly decompose the correlation of X, denoted by ΣXX, into two com-

ponents, one representing the correlation that is attributable to known

biological relationship (or grouping information hereafter), and the other

representing the correlation associated with unknown sources. Borrowing

the definitions from the POET estimator, we shall call them the system-

atic component Σf and the idiosyncratic component Συ, respectively. The

underlying assumption is that the factors associated with known group in-

formation are sparse, and that with the shrinkage estimate of the residual

covariance matrix, the covariance matrix of X can be estimated consis-

tently and the semi-positive definiteness is guaranteed for the final estimate

of ΣXX under mild conditions.

Second stage estimation

Our ultimate goal is to estimate the cross-covariance matrix ΣXY and

to deduce how much of the total variability is attributable to the known

biological relationship and how much is not. The covariance between X

and Y is expressed as ΣXXB, where B is the regression coefficient matrix

and each column bj of B is the regression coefficient of yj ∼ X. Here, the

selected factors from the first stage estimation is utilized as the “groups”
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in the second stage estimation of the regression coefficient matrix B. Since

the group information explicitly specifies which variables in X are associ-

ated with each factor, the selected groups can be used in forming grouped

lasso regression between X and Y, to yield a sparse linear model that

incorporates the known biological grouping information in the covariates

contributing to ΣXX. The outcome of the analysis is the decomposition

of the cross-covariance due to the systematic component ΣfB and the id-

iosyncratic component ΣυB.

1.3 Literature Review

Before we introduce the method, we first review the relevant statistics

literature in the field of shrinkage estimation and large-scale covariance

matrix estimation.

1.3.1 Review of shrinkage methods

Consider a linear regression model, Y = Xβ + ε, where X is a n × p

matrix, Y and ε are vectors of length n, and without loss of generality, let us

assume Y and each column of X has zero mean. An ordinary least squares

(OLS) estimate is obtained by minimizing the residual squared error:

β̂OLS = arg min
β
‖Y −Xβ‖2

2
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In high dimensional data, however, the coefficients are non-zero for all OLS

estimates even when only a small subset of variables are indeed significant

predictors. While the OLS estimates are unbiased, the prediction error will

not be properly minimized if all variables are retained since the variance of

the estimated response will be large with increasing model complexity.

The lasso (Tibshirani, 1996) is a popular method that addresses the

drawback of OLS, which embodies a penalized least squares with L1-penalty.

Instead of minimizing the residual squared error, a penalty is imposed on

the regression coefficients β along with the loss function, i.e.

β̂lasso = arg min
β
‖Y −Xβ‖2

2 + λ ‖β‖1

The entire solution path (varying λ) of the lasso can be either approximated

by the LARS algorithm (Tibshirani et al., 2004), or explicitly obtained

through efficient algorithms such as coordinate descent (Höfling and Tibshirani,

2007). It has a continuous piecewise linear solution path and coefficients are

set to zero as the shrinkage increases. In particular, Knight and Fu (2000)

shows that when the true regression coefficient is zero, its lasso estimate has

a positive probability at zero, which allows for automatic variable selection

and efficient computation of the optimal tuning parameter. However, the

lasso has some limitations itself. As pointed out in Zou and Hastie (2005),

if a group of highly correlated predictor variables exists, it tends to select

only one variable among the group. In addition, the lasso performs variable
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selection for individual predictors, and thus the method is not directly ap-

plicable if there exists a natural grouping in the predictors and such group

structures are desired to be reflected in the selection procedure.

The group lasso (Yuan and Lin, 2006), defined as

β̂grouplasso = arg min
β

∥∥∥∥∥Y −
J∑
j=1

Xjβj

∥∥∥∥∥
2

2

+ λ

J∑
j=1

√
pj ‖βj‖2

was proposed to do group variable selection to address situations where

there exists a natural grouping in the regression coefficients. Unlike the

lasso, the solution path of group lasso is not piecewise linear in general and

therefore finding the optimal tuning parameter requires intensive compu-

tation over a suitably fine grid of values. For a fixed tuning parameter,

Yuan and Lin proposed a block coordinate-wise minimization method to

compute the solutions. Each coordinate descent step is fast, with an ex-

plicit formula yielding the minimum for a coordinate. Theoretical prop-

erties of the group lasso for linear models has been first established in

Nardi and Rinaldo (2008). In addition to the theoretical conditions for

some optimality properties, Nardi and Rinaldo showed that those condi-

tions are valid for the double-asymptotic scenario in which the dimension

of the parameter space grows with the sample size.

We also remark that computational methods for shrinkage methods is a

well-researched topic. Specialized methods such as LARS are efficient, but

cannot be applied when the regression type is changed, for example from

linear model to generalized linear model, or when the penalty function is
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replaced with another. Pathwise coordinate optimization are shown to be

versatile in Höfling and Tibshirani (2007) for various shrinkage methods

and the authors showed by comparing run times of programs for the al-

gorithms, that coordinate-wise descent is very competitive with the LARS

algorithm. The authors later extended their work for general linear models

in Friedman et al. (2010). Our work utilizes the group lasso penalty to

identify significant factors in the predictor variables. We have also used

a block coordinate decent algorithm by Yuan and Lin (2006) to find the

solution path.

1.3.2 Review of Sparse Covariance Matrix Estima-

tion

Element-wise shrinkage of estimates was first proposed in Bickel and Levina

(2008b). In their work, they developed shrinkage estimator of covariance

matrix or precision matrix (inverse) for a specific class of covariance ma-

trices, where the variables are ordered in a way that the true covariance

matrix is a banded matrix (e.g. time series data). The shrinkage estimation

was applied by banding, i.e. penalizing the covariance terms between vari-

ables that are not close enough, or banding the Cholesky decompositions of

the covariance matrix as such. The authors have proven the optimality of

the estimators under the operator norm for a family of covariance matrices

thereafter.
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However, banding of estimates is not applicable to problems where

an ordering is not available. In their follow-up paper, Bickel and Levina

(2008a) also investigated element-wise hard-thresholding estimator in a

more generalized setting. In a similar way, Rothman et al. (2009) pro-

posed a more generalized class of thresholding operators with element-

wise shrinkage based on various penalty functions, and showed that their

method is consistent and “sparsistent”, implying that the locations of zero

and nonzero elements are estimated correctly with probability tending to

1. In their simulations, they demonstrated that, when the matrix is sparse,

thresholding based on the smoothly clipped absolute deviation (SCAD)

(Antoniadis and Fan, 2001) penalty function, i.e.

pλ (z) =



sgn (z) (|z| − λ) when |z| ≤ 2λ

(a−1)z−aλsgn(z)
a−2

when 2λ < |z| ≤ aλ

z otherwise

performed the best in terms of sparsity. More recently, Cai and Liu (2011)

proposed an adaptive version of element-wise shrinkage estimator that takes

into account the variability of the estimate of each entry in the matrix, i.e.

for heteroscedastic problems. In their method, the shrinkage parameter

is tailored for each entry, rendering their thresholding rule non-universal

(or uniform), and the choice of thresholds is completely data-dependent.

Cai and Liu showed that their estimator achieves superior optimal rate of

convergence or a wide class of sparse covariance matrices.

10



Lastly, Fan et al. (2013) proposed the principal orthogonal complement

thresholding (POET) method. The method depends only on the sample

covariance matrix, which is expressed as the sum of systematic component

and idiosyncratic component. The former is first identified by the first K̂

principal components.

Σ̂sam =
K̂∑
i=1

λ̂iξ̂iξ̂
T
i +

p∑
i=K̂+1

λ̂iξ̂iξ̂
T
i

where optimal K̂ can be estimated from the data. A element-wise thresh-

olding procedure is applied to attain regularized residual covariance matrix.

Our proposal for sparse cross-covariance estimator borrows the idea of the

POET estimator. While principal components are the entities being se-

lected in POET, we form explicit groups of variables as factors reflecting

the biological relationship and select significant factors as part of the de-

composition of the covariance matrix into the systematic component. Using

the knowledge of systematic component, we establish the relationship be-

tween the sparse set of variables (with specific biological functions) with

the outcome variables via group lasso.
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CHAPTER 2

The Cancer Genome Atlas

Breast Cancer Data

2.1 Introduction

Integrative analysis of multiple high-throughput data is becoming in-

creasingly popular in clinical studies, best exemplified by The Cancer Genome

Atlas (TCGA) project (http://cancergenome.nih.gov/). Unlike conven-

tional genomic studies relying on a single platform, TCGA is the first

project providing multi-omics data sets across all popular platforms includ-

ing massive parallel sequencing, mRNA expression arrays, DNA methyla-

tion, microRNA expression, reverse-phase protein assay (RPPA), and more
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recently mass spectrometry-based proteomics. In the invasive breast can-

cer cohort (Koboldt et al., 2012), for example, these technologies have been

performed on the tumor samples from >800 patients in four major basic

therapeutic groups previously defined by PAM50 mRNA expression clus-

ters (Parker et al., 2009), including the luminal A and B groups consisting

of estrogen receptor and progesterone positive group, the HER2 enriched

group, and the basal-like group mostly represented by tumors with low

expression of all three hormones. This project provides by far the most

comprehensive molecular landscape of this therapeutically diverse disease.

Integration of multiple data sources can be done in many different

ways, depending on the purpose of study. For example, expression quan-

titative trait loci (eQTL) studies aim to identify local and distant ge-

netic regulation of mRNA transcript expression (Chun and Keles, 2009;

Kendziorski and Wang, 2006; Rockman and Kruglyak, 2006). The most

popular statistical approach in this area is multivariate regression with

shrinkage estimation (L1 penalty) between RNA data (response) and ge-

netic loci (as predictors). On a similar line of methods, Peng et al. (2010)

has developed RemMap, a method for evaluating the dependence of RNA

transcript abundance on the DNA copy numbers in cancer genomics data

via multivariate regression that can incorporate prior kwowledge to avoid

penalization of known regulatory relationships. More recently, the so-called

proteogenomics approaches surfaced in the proteomics literature, investi-

gating the correlation between mRNA transcript and their corresponding

protein abundance, the final gene product of the RNA (Zhang et al., 2014).

13



However, their analysis focuses on RNA-protein correlation within the same

gene and the association between splice variants and protein isoforms rather

than correlation of quantitative data between different genes (Zhang et al.,

2014).

While estimation of invertible, sparse covariance matrix is generally

of primary interest in high-dimensional data analysis, cross-covariance (or

correlation) matrix, which is a subset of the entire variance-covariance ma-

trix, is also a biologically important quantity of interest in integrative data

analysis setting since it represents the association between distinct molec-

ular types. Representative examples are when one molecular type is a

precursor to the other in the central dogma of molecular biology (DNA to

RNA, RNA to protein), or when one data type captures regulatory infor-

mation to the other. For example, DNA methylation data coupled with

mRNA transcriptomics data allows us decipher the transcriptional repres-

sion of the latter by the former. Likewise, expression data for non-coding

RNAs known as microRNAs coupled with proteomics data will also reveal

the degree of post-transcriptional regulation. Hence robust estimation of

the cross-covariance matrices is of great importance in understanding the

dependence between precursors and gene products or functionally active

regulatory information in multi-omics data sets such as TCGA.

Estimators of large-scale sparse covariance matrices have typically been

developed under sparsity assumption, and it is reasonable to expect this

14



condition to hold true in biological applications with high-throughput ex-

perimental data. Hence the major computational approach is to regu-

larize individual elements of the covariance matrix by thresholding, em-

bodying shrinkage estimation techniques. These methods have the obvious

advantage of easy implementation and is known to perform well in numer-

ical simulations, further strengthened by theoretical properties with suf-

ficiently sharp convergence rates (Bickel and Levina, 2008b; Cai and Liu,

2011; Rothman et al., 2009). Despite the technical developments over the

years, it is nevertheless rare to find a case where a shrinkage estimator of

large-scale covariance matrix yielded novel biological insights in a real bio-

logical or clinical problem. Moreover, with a few exceptions, the examples

in the published articles are typically demonstrated with no more than a

few hundreds of genes, which diminishes the applicability to data sets with

typically thousands of features or variables.

One possible way to broaden the applicability of these estimators in

biological problems is to utilize gene group information in the estimation

procedure. We use the terms ‘gene group’ and ‘pathway’ interchangeably

hereafter. To the best of our knowledge, the only development using group

information for shrinkage estimation of large-scale covariance matrix is the

work of Levina et al. (2008) in the case where there is natural ordering

in the variables. In population genomic studies, such intervention based

on curated gene groups will benefit the estimation since we can impose

sparsity at the level of biological functions, not individual genes. This is

an attractive solution given that the pairwise sample covariance terms not

15



only represent the direct outcome of differential regulation of important

biological pathways, but they also reflect the indirect consequences not as-

sociated with the regulation of pathways. In such situations, guiding the

shrinkage estimation procedure by known gene grouping information can

enable decomposition of the non-zero covariances due to the pathway-level

regulation (systematic component) and the residual covariances (idiosyn-

cratic component). This is the main motivation for our proposal to develop

a novel procedure for cross-covariance matrix estimation.

2.2 Approach

As mentioned earlier, we analyze the DNA methylation and mRNA ex-

pression data from the invasive breast cancer cohort (BRCA) of TCGA. The

TCGA-BRCA published in 2012 (Koboldt et al., 2012) has reported signif-

icant heterogeneity within and across different subtypes of breast cancer at

multiple molecular levels. The single nucleotide polymorphism (SNP) ar-

rays and whole exome sequencing revealed three highly common mutation-

harboring genes such as TP53, PIK3CA, and GATA3, and highlighted

numerous subtype-specific mutations. In addition, the availability of mul-

tiple -omics platform data and reverse-phase protein assay allowed them to

discover additional subtypes within the previously defined luminal subtype

(ER+ and PR+) and HER2 enriched subtype.
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Figure 2.1 (A) mRNA transcript expression and (B) DNA methylation
data for kinases and their substrate genes involved in T cell co-stimulation,
which involves T cell receptors and mTORC2 complex. Rows and columns
are ordered according to the hierarchical clustering of the mRNA data.

In our analysis, we aim to identify epigenetic regulation of mRNA tran-

script expression via DNA methylation at the pathway-level. Figure 2.1

shows the heat map of both molecular data for 30 genes in 766 primary

tumor samples that meet two criteria: (i) each gene has to be either a ki-

nase and kinase substrate (227 kinases and 764 non-kinase substrates) and

(ii) it is involved in a particular biological process, T cell co-stimulation in

this case. The diagram clearly shows that these genes are correlated at the

mRNA transcript with a few exceptions (top), and the expression pattern

is negatively correlated with the DNA methylation data (bottom). In other
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words, although there are other mechanisms of transcriptional regulation,

DNA methylation seems to play an influential role in determining mRNA

concentration levels for genes involved in T cell activation within the kinase

signalling network.

To identify pathway-specific regulatory patterns of DNA methylation

and their association with mRNA expression, we build our cross-covariance

matrix between the two molecular data in two stages as follows. In the first

stage, we detect pathway-specific factors in DNA methylation by estimat-

ing the variance-covariance matrix of the data. Following the approach of

POET estimator (Fan et al., 2013), we decompose the matrix as the sum

of a systematic component explained by pathway-specific factors and an id-

iosyncratic component representing the residuals. Both components are es-

timated with group penalty and element-wise penalty respectively, to yield

sparse estimates. In the second stage, the gene group information from

the pathways selected with non-zero factors in the first stage is used again

to estimate the multivariate regression model between DNA methylation

and mRNA expression with group lasso (Yuan and Lin, 2006), where we

slightly modify the estimation procedure to allow overlapping groups. The

two components naturally yield decomposition of the cross-covariance ma-

trix into a systematic and an idiosyncratic one, with the former representing

pathway-specific regulation of mRNA expression via DNA methylation.

Note that we forgo a straightforward element-by-element calculation of

covariance between DNA methylation of one gene and mRNA of another
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gene (including self-to-self). This more cumbersome estimation routine is

motivated by the ability of the two-stage estimation procedure to proac-

tively utilize the existing gene group information to distinguish concerted

regulation of gene expression at the pathway level. This decomposition

will help us to determine how much of the cross covariance structure is a

representation of coordinated biological functions and also to evaluate how

complete or incomplete the existing knowledge of biological functions is.

Moreover, the applicability of the same methodology is quite wide as far

as integration of multiple molecular data is concerned.
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CHAPTER 3

Estimation

Suppose the two sets of variables Xi and Yi, vectors of dimensions

(p× 1) and (q × 1) respectively, are observed for subject i = 1, . . . , n. We

arrange them into their respective matrix form X(n×p) and Y(n×q) where

the rows of the matrices correspond to the data for individual subjects. In

other words,

X =



XT
1

XT
2

...

XT
n


Y =



YT
1

YT
2

...

YT
n


. (3.1)

where the superscript T denotes transpose of a vector of a matrix. We

aim to estimate the cross-covariance matrix ΣXY as the product of two

components, i.e. ΣXXB, and we thus construct the estimator for Σ̂XX and
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B̂ respectively. We assume that the observed data for subject i, denoted

by
(
Xi,Yi

)T
, follows the distribution with mean and variance

µ =

 µX

µY

 and Σ =

 ΣXX ΣXY

ΣYX ΣYY

 , (3.2)

where Xi =
(
X1
i , X

2
i , . . . , X

p
i

)T
and Yi =

(
Y 1
i , Y

2
i , . . . , Y

q
i

)T
. The mean

vectors µX, µY and covariance matrices ΣXX, ΣXY, and ΣYY are defined

as (p × p), (p × q), and (q × q) submatrices of (p + q) × (p + q) variance-

covariance matrix Σ. Further, we let (p×G) matrix A = {a`g} indicating

the group assignment of p variables into G groups, with a`g = 1 if the

variable ` is a member of group g and a`g = 0 otherwise. Since the mean

parameters can be estimated from the data, we assume zero mean hereafter

without loss of generality.

Given that the variable grouping A is known, we assume that the el-

ements of Xi are written as a linear combination of group specific latent

factors {fig}Gg=1, i.e.

Xi =



X1
i

X2
i

...

Xp
i


=



a11 a12 · · · a1G

a21 a22 · · · a2G

...
...

. . .
...

ap1 ap2 · · · apG





fi1

fi2

...

fiG


+



εi1

εi2

...

εip


(3.3)

≡ Afi + υi. (3.4)

Rearranging the data for all subjects i = 1, . . . , n, we can represent the
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entire model for Xi in a vector form:

~X =



X1

X2

...

Xn


=



A 0 · · · 0 0

0 A · · · 0 0

0 0
. . . 0 0

0 0 0 A 0

0 0 0 0 A





f1

f2

...

fn


+



υ1

υ2

...

υn


(3.5)

= Anf + Υ, (3.6)

where 1np is np− dimensional vector of ones, An is the block diagonal ma-

trix consisting of n numbers of (p×G) matrix A, and Υ is np−dimensional

distribution with mean 0 and covariance matrix as the block diagonal ma-

trix of Συ. Then for all i, we can write the variance-covariance matrix of

X as

Var
(
Xi

)
= ΣXX = AΣfA

T + Συ. (3.7)

3.1 Estimation in Stage 1

The first stage estimation is finding a set of random factors f that

minimizes

1
2

∥∥~X−Anf
∥∥2

2
+ 1

2
1

log(np)

∑G
k=1 f2

.k + (np)Pλf

(
f.k
)

(3.8)
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where f.k =
(∑n

i=1 f
2
ik

)1/2
and the penalty term is defined as

Pλf

(
f.k
)

= λf f.k. (3.9)

Solving the above minimization problem with respect to f is equivalent to

minimizing

1
2

∥∥~X−Anf
∥∥2

2
+ 1

2
1

log(np)

{∑G
k=1 f2

.k + 2(np) · log(np) · λf
∑G

k=1 f.k
)}
.

(3.10)

Since typically fewer than G factors will be retained as a result of penalized

regression, we use G0 to denote the number of selected random factors.

After selecting G0 random factors, we reiterate solving the least squares

problem

minimize f

∥∥~X−Anf
∥∥2

2
(3.11)

to get the predictive value f̂ of f to avoid extreme shrinkage and estimate

Σf by the sample covariance matrix of f̂1, f̂2, . . . , f̂n:

Σ̂f =
1

n

n∑
i=1

(
f̂i − f̂

)(
f̂i − f̂

)
. (3.12)

where f̂ is the sample mean of f̂1, f̂2, . . . , f̂n. If the factors are orthogonal,

then Σf = diag
(
τ 2

1 , τ
2
2 , · · · , τ 2

G0

)
, we use diag

(
Σ̂f

)
as an estimator of Σf .

This completes the estimation of the systematic component AΣfA
T of

ΣXX.
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To estimate the idiosyncratic component of Συ, we apply the general-

ized thresholding to the sample covariance matrix of ~X−Anf̂ . Various esti-

mators are proposed in Antoniadis and Fan (2001), Rothman et al. (2009),

and Cai and Liu (2011). In particular, we use the adaptive thresholding

procedure of Cai and Liu (2011) using the sample covariance estimate using

the residuals in the previous step, i.e.

Σ̂υ = sλυ

(
1

n−G0 − 1

n∑
i=1

ξiξ
T
i

)
, (3.13)

where ξi = Xi −Af̂i and sλυ(M) denotes the adaptive shrinkage operator

of matrix M.

3.2 Estimation of B by grouped lasso

The second stage of the estimation is fitting the regression model

Yi = BTXi + ui (3.14)

for i = 1, · · · , n, where Yi and ui are q-dimensional vectors, and B is p× q

matrix of coefficients. Note that, by rearranging {Yi}ni=1 and {ui}ni=1 into

matrices of q columns and {Xi}ni=1 into a matrix of p columns, both row-

wise, we recover the original matrix notations Y, U, and X respectively

and

Y = XB + U. (3.15)
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Here Y is (n × q) matrix where each row is Yi, U is a matrix whose

i−th column is ui following the multivariate distribution with mean 0 and

covariance matrix ΣYY −ΣYXΣXXΣXY.

Although it is known that B = ΣXX
−1ΣXY, here we consider the

grouping information of X in the estimation of B. To achieve this, we

propose to formulate this as a grouped lasso regression (Peng et al., 2010;

Yuan and Lin, 2006). The estimate of B, say B̂, is the solution to

minimize B
1
2

∥∥Y −XB
∥∥2

2
+ P

(
B
)
, (3.16)

where P
(
B
)

is grouped lasso penalty. The group lasso penalty imposed in

this regression comes from the matrix A used in the first stage estimation

of factors, especially for the selected factors. Denote the index set of all

the features of X belonging to a selected factor g by Gg. Then the penalty

term can be written as

P
(
B
)

= λB

q∑
j=1

G∑
g=1

√
pg
∑
`∈Gg

b2
`j (3.17)

where bij denotes the elements of B. Upon obtaining B̂, the final estimate

of ΣXY becomes

Σ̂XY := Σ̂XXB̂. (3.18)
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3.3 Numerical Algorithm

Stage 1: Selection and Estimation of Factors

Without loss of generality, let us assume that each column of X is

centered. Let ρ = 1
log (np)

. The first stage aims to minimize

1

2

∥∥∥~X−Anf
∥∥∥2

2
+

1

2
ρ

G∑
k=1

f2
·k + λf

G∑
k=1

f·k (3.19)

with respect to {fi}ni=1. Following Zou and Hastie (2005), we merge the

ridge penalty into the loss function by augmenting An with a diagonal

matrix and X with a zero vector

∥∥∥~X−Anf
∥∥∥2

2
+ ρ

G∑
k=1

f2
·k =

∥∥∥~X∗ −A∗f
∥∥∥2

2
(3.20)

where

A∗(np+Gn)×Gn =

 An

√
ρIGn

 , (3.21)

~X∗ =

 ~X

0

 . (3.22)
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We can then restate the objective function as

1

2

∥∥∥~X∗ −A∗nf
∥∥∥2

2
+ λf

G∑
k=1

f·k =
1

2

∥∥∥∥∥~X∗ −
G∑
j=1

A∗j f∗,j

∥∥∥∥∥
2

2

+ λf

G∑
k=1

f·k (3.23)

=
1

2

∥∥∥∥∥~X∗ −
G∑
j=1

(
cjA

∗
j

)(f∗,j
cj

)∥∥∥∥∥
2

2

+ λf

G∑
k=1

f·k

(3.24)

where

cj = 1/
√
‖A∗,j‖2

2 + ρ,

f∗,j = (f1j, f2j, . . . , fnj)
T ,

A∗,j is the jth column of A, Aj is the jth column of An, and apply the path-

wise coordinate optimization for the group lasso (Höfling and Tibshirani,

2007; Yuan and Lin, 2006). Define γj = f∗,j/cj. Then we update each γj

by

γj ←
(
‖Sj‖2 − λf

)
+

(
Sj
‖Sj‖2

)
(3.25)

where

Sj = cj
(
A∗j
)T

(
~X∗ −

∑
k 6=j

(ckA
∗
k) γj

)
, (3.26)

cj is set such that (
cjA

∗
j

)T (
cjA

∗
j

)
= 1 (3.27)

for all j = 1, . . . , G. Note that the formula for Sj can be simplified to avoid

the use of A∗ and ~X∗:

Sj = cjA
T
j

(
~X−

∑
k 6=j

(ckAk) γj

)
. (3.28)
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To set the value of λf , we use the Akaike Information Criterion (AIC)

(Akaike, 1973) defined by AIC = 2k − 2 ln(L), where k is the number of

non-zero estimates of the parameters and L is the maximized value of the

likelihood. If we denote the number of selected groups for each gene by Gi

and SSEi is the sum of squared residuals of gene i of the fitted model, then

AIC = 2n

(
p∑
i=1

Gi

)
+ n

p∑
i=1

log (SSEi/n) (3.29)

When all coefficients are zero, γj will remain as zero after the up-

date as shown in (3.25) if ‖Sj‖2 = cj
∥∥AT

j X
∥∥

2
≤ λf . Thus we let λf =

maxj

(
cj
∥∥AT

j X
∥∥

2

)
.

Stage 2: Group lasso with overlapping groups

We first define the loss function and the penalty term as

∥∥Y −XB
∥∥2

2
+ P

(
B
)
≡ L + P. (3.30)

Note here that each row of B is independent of each other in the objective

function, and thus the optimization can be carried out in parallel.

For the group lasso regression in the second stage, we perform pathwise

coordinate gradient descent (Höfling and Tibshirani, 2007). Denote the

matrix created by combining the columns of A selected in Stage 1 as A0.

Each predictor variable with the same row pattern in A0 are classified
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Figure 3.1 Grouping for stage 2. The 1’s in matrix A represents a group
membership.

as a group. However, predictor variable with a row pattern of all zeros

are regarded as a singleton. Figure 3.1 illustrates the grouping for stage

2. We then partition Xi by its columns according to the gene groups,

and orthonormalize each matrix Xg
i in the resulting set of matrix. The

algorithm in Stage 1 is used to find B. Let Bjg be the elements in group g

in the j-th column of B. Iteratively update the estimate of B with

Bjg ←
(
‖Sjg‖2 − λB

√
pg
)

+

(
Sjg
‖Sjg‖2

)
(3.31)

where

Sjg =
n∑
i=1

Xg
i
′

(
Yi −

∑
k 6=g

Xk
i Bjg

)
(3.32)

for each j. The optimal value of λB is obtained based on the AIC as in

Stage 1.
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CHAPTER 4

Theoretical Properties

In this section, we show that the proposed cross-covariance estimator

Σ̂XY converges to ΣXY in the Frobenius norm and also show that both B̂

and f̂ have consistency in selecting non-zero elements of B and f .

4.1 Notations

We fist introduce necessary notations to be used in the theorems and

their proofs. For easy comparison with the results in the literature, we

rearrange the data X and Y introduced in Section 3 into variable forms of

vectors or matrices wherever it is deemed to facilitate the statement and

proof (especially for the two estimation stages). To begin with, we rewrite
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the model (3.14) for the second stage estimation using the vectorized no-

tation for Y as follows. Denoting `-th column of B by b.`,

~Y =



Y11

Y12

...

Y1q

Y21

Y22

...

Y2q

...

...

Yn1

Yn2

...

Ynq



=



XT
1

XT
1

. . .

XT
1

XT
2

XT
2

. . .

XT
2

. . .

. . .

. . .

. . .

XT
n

XT
n

. . .

XT
n





b.1

b.2

...

b.q


+



u11

u12

...

u1q

u21

u22

...

u2q

...

...

un1

un2

...

unq



≡ X̃β+~u;

(4.1)

where ~Y is (nq) × 1 vector, X̃ is (nq) × (pq) matrix, β is the (pq) × 1

vector of
(
bT

1.,b
T
2., . . . ,b

T
q.

)T
, and ~u =

(
u1, u2, . . . , unq

)T
. In addition to the

expanded form of the matrix X̃, we recall the factor model for X in (3.5),
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which is the form of

~X =



X1

X2

...

Xn


= Anf + Υ, (4.2)

where 1np is a np−dimensional vector of ones, An is the block diagonal

matrix by n numbers of A, and Υ is np−dimensional distribution with

mean 0 and covariance matrix as the block diagonal matrix of Σν .

We next define the set of indexes of groups of variables. First, related

with the regression model (4.1) with true β = β0, we let H0 =
{
g |
∥∥β0

g

∥∥ 6=
0, g = 1, 2, . . . , G

}
and G0 =

∣∣H0

∣∣, which are the index sets of groups with

non-zero coefficients and its cardinality. Elementwise, we let L =
{
j | 1 ≤

j ≤ pq
}

and L0 =
{
j ∈ L

∣∣β0
j 6= 0

}
. For the g−th group, g = 1, 2, . . . , G,

we let Ig be the set of indexes of its elements, dg =
∣∣Ig

∣∣, Jg,h = Ig

⋂
Ih

and dg,h =
∣∣Jg1,g2

∣∣. Using these notations, the grouped lasso penalty is

written as λβ
∑G

g=1 λg
∥∥βg∥∥, where βg the vector of

{
βj, j ∈ Ig

}
and the

tuning parameter was renamed from λB to λβ due to the rearrangement of

regression coefficients into the vector form.

The element-wise index set A introduces X̃A, a submatrix with column

vectors X̃.j for j ∈ A. This defines X̃g for g = 1, 2, . . . , G, and X̃g1,g2 =(
X̃.j, j ∈ Ig1

⋃
Ig2

)
for g1, g2 ∈ {1, 2, . . . , G}. In particular, the set L0

partitions the design matrix X̃ into X̃0 and X̃1, where X̃0 is an (np)×|L0|
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matrix with column vectors X̃.j for j ∈ L0 and X̃1 is an (np)×
(
pq−|L0|

)
matrix with column vectors X̃.j, j ∈ L c

0 .

For the factor model (4.2), we assume that, for j = G0+1, G0+2, . . . , G,

fij are degenerated to 0 for every i = 1, 2, . . . , n. In the same way we defined

L0, we let

J0 =
{
j
∣∣ j = (i− 1) ·G+ k, i = 1, 2, . . . , n, k = 1, 2, . . . , G0

}
, (4.3)

which is the set (of indexes) of non-zero elements. Along with the given

index sets I0, let fi.1 =
(
fi1, fi2, . . . , fiG0

)T
, fi.1+ =

(
fT
i.1,01×(G−G0+1)

)T
, and

f0 be the (np)× 1 random vector whose j-th element is equal to that of f

if j ∈J0 and 0 otherwise. Thus,

Σf =

 Σf .11 0

0 0

 , (4.4)

where Σf .11 is the G0 ×G0 sub-matrix of Σf .
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4.2 Consistency of Σ̂XY

Next, we show the convergence of Σ̂XY to ΣXY in the Frobenius norm.

To show this, we first find

∥∥Σ̂XY − ΣXY

∥∥
F

=
∥∥Σ̂XXB̂−ΣXXB

∥∥
F

≤
∥∥Σ̂XXB̂−ΣXXB̂

∥∥
F

+
∥∥ΣXXB̂−ΣXXB

∥∥
F

≤
∥∥Σ̂XX −ΣXX

∥∥
F

∥∥B̂∥∥
F

+
∥∥ΣXX

∥∥
F

∥∥B̂−B
∥∥

F

≤ p
{∥∥Σ̂XX −ΣXX

∥∥
F

∥∥B̂∥∥∞ +
∥∥ΣXX

∥∥
∞

∥∥B̂−B
∥∥

F

}
≤ p

{∥∥Σ̂XX −ΣXX

∥∥
F

{∥∥B∥∥∞ + op(1)
}

+
∥∥ΣXX

∥∥
∞

∥∥B̂−B
∥∥

F

}
,

where the infinity matrix norm for matrix B = (bij) is defined as
∣∣B∣∣∞ :=

maxij |bij|. Thus, we show the convergence of
∥∥B̂−B

∥∥
F

(Theorem 1) and∥∥Σ̂XX−ΣXX

∥∥
F

(Theorem 2) along with the boundedness assumptions on∣∣B∣∣∞ and
∣∣ΣXX

∣∣
∞.

We first show the convergence of B̂ which is the grouped lasso es-

timator of a multivariate multiple regression in the second stage. The

asymptotic properties of the the grouped lasso estimator are studied by

Nardi and Rinaldo (2008) when the groups are mutually exclusive. Theo-

rem 1 below is a modification of Theorem 4.5 of Nardi and Rinaldo (2008)

for the estimator allowing overlapping variable groups. Its proof mainly

depends on the inequalities from Lemma 1 in the Appendix of Bunea et al.

(2007).
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The assumptions we make for the theorem are as follows. First, we as-

sume ũis are independent and identically distributed from the normal dis-

tribution with mean 0 and variance σ2
u. Second, we assume the restricted

eigenvalue (RE) condition which is known to be necessary for the `2 con-

sistency of the estimator (Bickel et al., 2009). Define a set of sub-vectors

of β which is

C
(
k, α

)
=
{
β ∈ Rpq :

∥∥βSc

∥∥ ≤ α
∥∥βS∥∥, ∀|S| = k

}
. (4.5)

The RE condition states that, for every β ∈ C
(
G0, 3

)
, there exists γ > 0

such that

1

nq
βTX̃TX̃β =

1

nq

∥∥X̃Tβ
∥∥2

2
≥ γ2

∥∥β∥∥2

2
. (4.6)

Along with the RE condition, one additional assumption is needed related

with the overlapping groups. For some constant κ,

max
1≤j≤pq

 ∑
g:j∈Ig

λg

 ≤ κmin
g
λg. (4.7)

The last assumption we make is that

min
g

{
nq

σ2
u

λ2λg − dg
}
− logG→∞, (4.8)

which is the assumption (A) of Nardi and Rinaldo (2008), assuring that

the event

E1 =
⋂
g

{
2
√
nq

∥∥X̃T
g u
∥∥

2
<
√
nq λλg

}
(4.9)
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occurs with probability tending to 1.

Now we state our Theorem 1 on the convergence of B̂ to B.

Theorem 1. Under the four assumptions above,

(1) if E1 satisfies, then

∥∥B̂−B0
∥∥2

F
=
∥∥β̂ − β0

∥∥2

2
≤ 1

γ2

{
16G0κ

2
(

min
g
λ2
g

)}
· λ2, (4.10)

where B0 and β0 are the true values of B and β.

(2) P
(
E1

)
converges to 1, as n→∞.

4.3 Proof of Theorem 1

Proof. The proof of the theorem is an extension of Theorem 4.5 of Nardi and Rinaldo

(2008) to the grouped lasso estimator with overlapping groups. We briefly

summarize their proof and explain the changes induced by allowing the

overlapping groups. The main step of the proof is based on the following

inequalities:

∥∥β̂ − β0
∥∥

2
≤ 1

ming λg

∑
g

λg
∥∥β̂g − β0

g

∥∥
2

≤ 4

ming λg

∑
g∈H0

λg
∥∥β̂g − β0

g

∥∥
2

(4.11)

≤ 4

ming λg

√
G0

√∑
g∈H0

λ2
g

∥∥β̂g − β0
g

∥∥2

2
, (4.12)
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where the last is bounded from the RE condition to η = β̂ − β (shown

later).

The inequality (4.11) is obtained by modifying Lemma 1 of Bunea et al.

(2007) for the grouped lasso penalty. The modified Lemma 1 (which is the

same with Lemma 6.1 of Nardi and Rinaldo (2008)) states that, on the

event E1, for any β ∈ Rpq with H ′ =
{
g | βg 6= 0

}
,

(
1/n
)∥∥X̃β̂ − X̃β0

∥∥2

2
+ λ

∑
g∈H

λg
∥∥β̂g − βg

∥∥
2

≤
(
1/n
)∥∥X̃β − X̃β0

∥∥2

2
+ 4λ

∑
g∈H ′

λg
∥∥β̂g − βg

∥∥
2

(4.13)

The extension to cases with overlapping groups can be achieved by replac-

ing the lasso penalty with the grouped lasso penalty and using the following

fact:

2

nq

nq∑
i=1

ũiX̃i.

(
β̂ − β

)
=

2

nq

nq∑
i=1

ũi

pq∑
j=1

Xij

(
β̂j − βj

)
=

pq∑
j=1

2

nq

nq∑
i=1

Xijũi
(
β̂j − βj

)
≤

G∑
g=1

2

nq

∥∥X̃T
g ~u
∥∥

2

∥∥β̂g − βg
∥∥

2
≤ λ

∑
g

λg
∥∥β̂g − βg

∥∥
2
.

In the above equation, the first inequality is due to the followings:

pq∑
j=1

nq∑
i=1

Xijũi
(
β̂j − βj

)
=

G∑
g=1

∑
j∈Hg

1∣∣{g∣∣j ∈Hg

}∣∣ nq∑
i=1

Xijũi
(
β̂j − βj

)

=
G∑
g=1

∑
j∈Hg

a2
j

1/2 ∥∥β̂ − β
∥∥

2
,
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where

∑
j∈Hg

a2
j =

∑
j∈Hg

 1∣∣{g∣∣j ∈Hg

}∣∣2
(

nq∑
i=1

Xijũi

)2
 ≤ ∥∥X̃T

g ~u
∥∥2

2
.

The inequality in Equation (4.13) with β = β0 gives the inequality

(4.11) and also

∑
g∈
(

H0

)c λg∥∥β̂g − βg
∥∥

2
≤ 3

∑
g∈H0

λg
∥∥β̂g − β0

g

∥∥
2
. (4.14)

The inequality (4.12) is obtained by applying Cauchy-Schwartz inequal-

ity to (4.11) and further we have another bound for (4.13) as

(
1/n
)∥∥X̃β̂ − X̃β0

∥∥2

2
+ λ

∑
g

λg
∥∥β̂g − βg

∥∥
2

≤
(
1/n
)∥∥X̃β − X̃β0

∥∥2

2
+ 4λ

√∣∣H ′
∣∣√∑

g∈H ′

λ2
g

∥∥β̂g − βg
∥∥2

2
.

Again by substituting β = β0, we have

(
1/n
)∥∥X̃β̂ − X̃β0

∥∥2

2
≤ 4λ

√
G0

√∑
g∈H0

λ2
g

∥∥β̂g − β0
g

∥∥2

2

≤ 4λ
√
G0κ

(
min
g
λg
)∥∥β̂ − β0

∥∥
2

(4.15)
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which is obtained by noting that

∑
g∈H0

λ2
g

∥∥β̂g − βg
∥∥2

2
≤

( ∑
g∈H0

λ2
g

) ∑
g∈H0

∥∥β̂g − βg
∥∥2

2

≤
( ∑
g∈H0

λg

)2 ∑
g∈H0

∥∥β̂g − βg
∥∥2

2
≤ κ2

(
min
g
λg
)2
∑
g∈H0

∥∥β̂g − βg
∥∥2

2
.

Finally, the inequalities (4.14) and (4.15) and the RE condition for

η = β̂ − β0 provides an upper bound of
∥∥β̂ − β0

∥∥2

2
, which is

1

γ4

{
16G0κ

2
(

min
g
λ2
g

)}
· λ2. (4.16)

This completes the proof.

In showing the convergence of Σ̂XY, we need an additional result for β̂

(or B̂) that is
∥∥β̂ − β0

∥∥
∞ =

∣∣B̂ − B
∣∣
∞ = op(1). This is a byproduct of

Theorem 1 because, on the event E1, we have

∣∣B̂−B
∣∣2
∞ =

∥∥β̂ − β
∥∥2

∞

≤
∥∥β̂ − β

∥∥2

2
=

1

γ4

{
16G0κ

2
(

min
g
λ2
g

)}
· λ2,

which converges to 0.

We next prove the convergence of
∥∥Σ̂XX−ΣXX

∥∥
F
, which is equivalent to

the convergences of
∥∥Σ̂f−Σf

∥∥
F

and
∥∥Σ̂ν−Σν

∥∥
F
. To show the convergence,

we need a few lemmas, which are stated below with proofs provided.
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Recall that we estimate f̂i, i = 1, 2, . . . , n, by solving

1

2

∥∥~X−Anf
∥∥2

2
+

1

2 log(np)

G∑
k=1

f2
.k +

(
np
)
λ

G∑
k=1

f.k, (4.17)

where f.k =
∑n

i=1 f
2
ik. In addition, let f̃ be the solution to the oracle

procedure which is

1

2

∥∥~X−Anf0

∥∥2

2
+

1

2 log(np)

G0∑
k=1

f2
.k. (4.18)

Suppose that we let f̃ =
(
f̃T
1 , f̃

T
2 , . . . , f̃

T
n

)T
and f̃1 =

(
f̃T
1.1, f̃

T
2.1, . . . , f̃

T
n.1

)T
,

where f̃i =
(
f̃i1, f̃i2, . . . , f̃iG

)T
and f̃i.1 =

(
f̃i1, f̃i2, . . . , f̃iG0

)T
. The first

lemma is that the predicted value of f0, particularly f̃1 =
(
f̃T
1.1, f̃

T
2.1, . . . , f̃

T
n.1

)T
.

We show that its sample variance consistently estimate Σf .11 which defines

ΣXX.

Lemma 1. Under the assumption that
(
1/n
)∑n

i=1 XiX
T
i converges in

probability to AΣfA
T + ΣΥ, we have

1

n

n∑
i=1

f̃i.1f̃
T
i.1 and

1

n

n∑
i=1

f̃if̃
T
i → Σf .11 and Σf in probability, (4.19)

respectively.
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Proof of Lemma 1

Proof. Let A0 be the matrix by the first G0 columns of the p × G matrix

A corresponding to fi.1. The proof is simply by noting

f̃i.1 =
(
AT

0 A0 + cnIG0

)−1
AT

0 Xi, (4.20)

where cn = 1
/

log(np). Thus,

1

n

n∑
i=1

f̃i.1f̃
T
i.1 =

(
AT

0 A0 + cnIG0

)−1
AT

0

(
1

n

n∑
i=1

XiX
T
i

)
A0

(
AT

0A0 + cnIG0

)−1

(4.21)

has the limit as

(
AT

0 A0

)−1
AT

0

(
AΣfA

T + Σν

)
A0

(
AT

0 A0

)−1

=
(
AT

0 A0

)−1
AT

0

(
A0Σf .11A

T
0 + Σν

)
A0

(
AT

0 A0

)−1

= Σf .11 +
(
AT

0 A0

)−1
AT

0 ΣνA0

(
AT

0 A0

)−1
,

where
(
AT

0 A0

)−1
AT

0 ΣνA0

(
AT

0 A0

)−1
is the variance of

(
AT

0 A0

)−1
AT

0 ξ. Here,

the term
(
AT

0 A0

)−1
AT

0 ξ converges 0 almost surely as p increases by the

strong law of large numbers. Thus,

1

n

n∑
i=1

f̃i.1f̃
T
i.1

converges to Σf .11 in probability.
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The second lemma is an analogy of Theorem 3 of Fan and Li (2012),

which shows the consistency of f̂ in selecting non-zero random factors from

f.1, f.2, . . . , f.G.

Lemma 2. Under the assumption that:

(i) The smallest and the largest eigenvalues of
(
1/p
)
AT

0 A0 and Σf .11

are bounded from below and above, respectively.

(ii) The grouping matrices A (p×G) and A0 (p×G0) satisfy

∥∥∥∥∥
(

AT
0 A0 +

1

log(np)
IG0

)−1
∥∥∥∥∥
∞

≤
√
n(

np
)1+δ

λ
(4.22)

for δ ∈ (0, 1/2), and

max
G0+1≤k≤G

∥∥∥∥∥aT
.kA0

(
AT

0 A0 +
1

log(np)
IG0

)−1
∥∥∥∥∥

2

< 1, (4.23)

where a.k is the k−th column vector of A.

(iii) As both max
{

diag
(
Σf .11

)}(
np
)δ/√

n and λ2np
/{

G0(log n
)}

increases

to ∞ with n→∞,

we have, with probability tending to 1,

{
j
∣∣j = (i−1)·G+k, f̂ik 6= 0, i = 1, 2, . . . , n, k = 1, 2, . . . , G

}
= J0 (4.24)

and

max
1≤k≤G0

1

n

n∑
i=1

(
f̂ik − f̃ik

)2 ≤ n−δ, (4.25)

for δ defined in the assumption (ii).
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Proof of Lemma 2

Proof. The proof of the lemma is a direct application of Theorem 3 of

Fan and Li (2012). The theorem requires the regularity conditions on (1)

the penalty function, (2) the eigenvalues of the matrices related with the

design matrix A, and (3) the conditions for λ, n, and p. In this section,

we use the grouped lasso regression where its penalty function automati-

cally satisfies (1). Thus, we do not need it. The conditions (i) and (ii) of

our lemma are the simplified version of the condition for An required by

Condition 3 of Fan and Li (2012). The simplification is done using the fact

that An is the Kronecker product of the p × G matrix A and the n × n

identity matrix In
1. Finally, Fan and Li (2012) requires three condition

for the samples sizes (n and p) and λ. With the notations of our problem,

they are (a) max
{

diag
(
Σf .11

)}(
np
)δ/√

n→∞, (b) λ2np
/{

G0(log n
)}
→

and (c) λ2np
/
G0 →∞. Here, (b) implies (c) and the condition (iii) of the

lemma are equivalent to (a) and (b).

1To facilitate the interpretation, we provide matching notations between ours and
Fan and Li (2012). The feft is the notation in Fan and Li and the right is the notation
of ours.

n =

N∑
i=1

ni = np

N = n

ni = p for all i

mn =
N

max
i=1

ni = p

s2n = G0

qn = G.
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As shown in Lemma 2, since the probability of the event

E2 =

{{
j
∣∣f̂j 6= 0, 1 ≤ j ≤ np

}
= J0

}
(4.26)

approaches 1, we restrict our discussion to the event E2 below. In addition,

for notational simplicity, we let G0 = G, A = A0, f̂ = f̃ , f̂i = f̃i = f̃i.1 and

Σf = Σf .11. With this simplified notations, the following lemma (Lemma

3) provides a representation to f̂ which plays a key role in showing the

convergence of ΣXX.

Lemma 3. On the event E2, for i = 1, 2, . . . , n, we have the identity

f̂i−fi =

{(
ATA +

1

log(np)
IG

)−1

ATA− IG

}
fi+

(
ATA +

1

log(np)
IG

)−1

ATξi.

(4.27)

and

∥∥f̂i − fi
∥∥2

2
= Op

(
1

p

)
and

1

n

n∑
i=1

∥∥f̂i − fi
∥∥2

2
= Op

(
1√
np

)
. (4.28)
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Proof of Lemma 3

Proof. The identity (4.27) is straightforward by the definition of f̂i. In

addition, the first term of the identity

{(
ATA +

1

log(np)
IG

)−1

ATA− IG

}
fi

= − 1

log(np)

(
ATA +

1

log(np)
IG

)−1

fi = Op

(
1

log(np) · p

)
,

where the order is obtained by observing 1
p
AT

0 A0 has the limit whose small-

est and the largest eigenvalues are bounded below and the above. The

second term is

(
ATA +

1

log(np)
IG

)−1

ATξi = Op

(
1
√
p

)
,

as n and p increases. The order of the second term is again from the

assumption of the eigenvalues of
(
1/p
)
AT

0 A0 and the central limit theorem

on 1√
p
ATξi. Therefore,

∥∥f̂i − fi
∥∥2

2
= Op

(
1/p
)

and similarly we have

1

n

n∑
i=1

∥∥f̂i − fi
∥∥2

2
= Op

(
1√
np

)
.

The theorem below (Theorem 2) is analogous to Theorem 5 of Fan et al.

(2013), which shows the convergence of Σ̂Υ to ΣΥ in the Frobenius norm.

Recall that Σ̂Υ is the general thresholding (GT) (Rothman et al., 2009) of
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the sample covariance matrix of residuals

ξ̂i = Xi −Af̂i, i = 1, 2, . . . , n.

Theorem 5 of Fan et al. (2013) states that, if the above residuals ξ̂i are close

to ξi in the sense that max1≤j≤G
∑n

i=1

∥∥ξ̂i − ξi
∥∥2

2
= op

(
a2
n

)
with an = o

(
1
)

and max1≤i≤n,1≤j≤G
∣∣ξ̂ij − ξij

∣∣ = op(1), the GT of the sample covariance

matrix, denoted by Σ̂Υ converges to the covariance matrix of ξi, denoted

by ΣΥ, in the spectral norm under regularity conditions on ΣΥ, ξij, and

fij. The theorem below shows that ξ̂i are close enough to ξi to show the

convergence of Σ̂Υ in both the spectral and the Frobenius norm. We remark

that we assume the adaptive thresholding by Cai and Liu (2011), not that

in Fan et al. (2013). As claimed by Fan et al. (2013) , Theorem 5 and

other results in their section 3.2 are still true for the adaptive thresholding

by Cai and Liu (2011). The difference between two are from thresholding

value wn; Cai and Liu (2011) assumes wn =
√

log p
n

, whereas Fan et al.

(2013) uses wn =
√

1
p

+
√

log p
n

. Here, we use the version of Theorem 5 of

Fan et al. (2013) for wn =
√

log p
n

without repeating their proof.

Theorem 2. Suppose we assume that:

(i) The smallest and the largest eigenvalues of Σν is bounded by positive

constants Cmin,ν and Cmax,ν from below and above, respectively.

(ii) The variables εij and fij satisfy the sub-Gaussianality in the sense
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that there are r1, r2 > 0 and b1, b2 > 0 such that

P
(
|εij| > s

)
≤ exp

{
−
(
s
/
b1

)r1} and P
(
|fij| > s

)
≤ exp

{
−(s/b2)r2

}
.

(4.29)

Then, on the event E2, we have

∥∥Σ̂υ − Συ

∥∥2

F
= Op

(
p log p

n
· C2

p

)
, (4.30)

where Cp = max1≤J≤p
∣∣{1 ≤ k ≤ p | cov

(
ξij, ξik

)
6= 0
}∣∣.

Proof of Theorem 2

Proof. The proof of the theorem is mainly same with that of Theorem 5

of Fan et al. (2013). We simply show that ξ̂i are close to ξi. From the

identity in Lemma 3, we have

ξ̂i − ξi = A
(
fi − f̂i

)

and thus

1

n

n∑
i=1

∥∥ξ̂i − ξi
∥∥2

2
≤
∥∥A∥∥2

F

1

n

n∑
i=1

∥∥f̂i − fi
∥∥2

2
= Op

(
1√
n

)
.

On the other hand,

ξ̂ij − ξij = −aj.
(
f̂i − fi

)
,
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where aj. is the j-th row vector of the matrix A. Using the Cauchy-Schwarz

inequality, (
ξ̂ij − ξij

)2 ≤
∥∥aj.∥∥2

2

∥∥f̂i − fi
∥∥2

2

and

max
1≤j≤p

(
ξ̂ij − ξij

)2 ≤
∥∥f̂i − fi

∥∥2

2
max
1≤j≤p

∥∥aj.∥∥2

2
= Op

(
1

p

)
= op(1),

as both n and p increases.

We next find that

∥∥Σ̂ν − Σν

∥∥2

F
=

p∑
j=1

p∑
k=1

(
Σ̂ν(j, k)− Σν(j, k)

)2

≤ p max
1≤j≤p

p∑
k=1

(
Σ̂ν(j, k)− Σν(j, k)

)2
,

which, using the same argument of the proof of Theorem 5 of Fan et al.

(2013), is an order of

Op

(
p · C2

pw
2
n

)
= Op

(
p log p

n
· C2

p

)
.

Finally, in Theorem 3, we prove the convergence of Σ̂XX to ΣXX in the

Frobenius norm. This, together with Theorem 2, show the convergence of

Σ̂XY to ΣXY in the Frobenius norm.

Theorem 3. Under the assumptions of Lemma 2 and Theorem 2, on the
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set E2, we have

∥∥Σ̂XX −ΣXX

∥∥2

F
= Op

(
p log p

n
C2
p

)
. (4.31)

Proof of Theorem 3

Proof. First, we have

∥∥∥∥∥ 1

n

n∑
i=1

fif
T
i −

1

n

n∑
i=1

f̂if̂
T
i

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

n

n∑
i=1

(
fi − f̂i

)
fT
i

∥∥∥∥∥
F

+

∥∥∥∥∥ 1

n

n∑
i=1

f̂i
(
f̂T
i − fT

i

)∥∥∥∥∥
F

≤

(
1

n

n∑
i=1

∥∥∥fi − f̂i

∥∥∥2

2
· 1

n

n∑
i=1

∥∥∥fi∥∥∥2

2

)1/2

+

(
1

n

n∑
i=1

∥∥∥fi − f̂i

∥∥∥2

2
· 1

n

n∑
i=1

∥∥∥f̂i∥∥∥2

2

)1/2

= Op

(
1√
np

)
.

Using the above and Theorem 2, we have

∥∥Σ̂XX −ΣXX

∥∥
F

=

∥∥∥∥∥ 1

n

n∑
i=1

f̂if̂
T
i − Σf + Σ̂ν − Σν

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

n

n∑
i=1

f̂if̂
T
i − Σf

∥∥∥∥∥
F

+
∥∥∥Σ̂ν − Σν

∥∥∥
F

≤

∥∥∥∥∥ 1

n

n∑
i=1

fif
T
i −

1

n

n∑
i=1

f̂if̂
T
i

∥∥∥∥∥
F

+

∥∥∥∥∥ 1

n

n∑
i=1

fif
T
i − Σf

∥∥∥∥∥
F

+
∥∥∥Σ̂ν − Σν

∥∥∥
F

= Op

(
1√
np

+
1√
n

+

√
p log p

n
· Cp

)
= Op

(√
p log p

n
· Cp

)
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and this completes the proof.

4.4 Selection consistency of f̂ and B̂

The consistency of f̂ in selecting degenerated elements in f is shown in

Lemma 2. In this section, we only focus on the selection consistency of B̂.

We make two assumptions to show the result. First, we assume the smallest

and the largest eigenvalues of
(
1/np

)(
X̃T

0 X̃0

)
are bounded below and above

by two positive constants Cmin,X̃0
and Cmax,X̃0

, respectively. Second, we

assume that

max
j∈L c

0

∥∥∥XT
.jX̃0

(
X̃T

0 X̃0

)−1
∥∥∥
∞
<

minj∈L c
0

{∑
g∗:j∈Ig∗

λg∗
}

maxj∈L0

{∑
g∗:j∈Ig∗

λg∗
}(1− ε). (4.32)

Let E3 be the event that there exists a solution β̂ such that
∥∥β̂g∥∥2

> 0

for all g ∈H0 and β̂g = 0 for all g ∈H c
0 .

Theorem 4. Under the above assumptions, P
(
E3

)
converges to 1 as n→

∞.

4.5 Proof of Theorem 4

Proof. The proof of the selection consistency starts with the sub-gradient

of

minimize B `(β) = 1
2

∥∥Y −XB
∥∥2

F
+ P

(
B
)
,
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where P
(
B
)

is grouped lasso penalty. The sub-gradients are

[
∂`
(
β
)

∂βj
, j = 1, 2, 3 . . . , pq

]
=

[
XT
.j

(
~Y − X̃β

)
, j = 1, 2, . . . , pq

]
+ η̂,

where η̂ =
(
η̂1, η̂2, . . . , η̂pq

)T
and

η̂j =


∑

g∗:j∈Ig∗
λg∗

β̂j∥∥β̂g∗
∥∥

2

, j ∈ L0,∑
g∗:j∈Ig∗

λg∗zg∗ , j ∈ L c
0

,

where zg∗ are generic vectors such that
∥∥zg∗∥∥2

≤ 1 for all g∗.

The event E3 holds if and only if

β̂L0 = βL0 +

(
1

np
X̃T

0 X̃0

)−1(
1

np
X̃T

0 ε− η̂L0

)
,

and

λη̂L c
0

=
1

np
XT

1 ε +
1

np
XT

1 X̃0

(
1

np
X̃T

0 X̃0

)−1(
λη̂L0 −

1

np
X̃T

0 ε

)
.

We will show that (a):

lim
n→∞

P
(∥∥∥β̂L0 − β0

L0

∥∥∥
∞
> α

)
= 1

where α = minh∈H0

∥∥βh∥∥∞ and (b): the probability of the event, for every

j ∈ L c
0 , ∥∥∥η̂j∥∥∥ < ∑

h∗:j∈Hh∗

λh∗ . (4.33)
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converges to 1 also as n increases.

First, we show (a):

P
(∥∥β̂L0 − β0

L0

∥∥
∞ > α

)
≤ 1

α
E
∥∥β̂L0 − β0

L0

∥∥
∞

≤ 1

α

(
E
∥∥ZL0

∥∥
∞ + λ

∥∥Σ−1
0 η̂L0

∥∥
∞

)
≤ 1

α

3σ

√
log d0

npCmin,X̃0

+ λ

√∣∣L0

∣∣
Cmin,X̃0

max
g∈H0

dgλg

 ,(4.34)

where ZL0 =
(

1
np

X̃T
0 X̃0

)−1
1
np

X̃T
0 ε and d0 =

∑
g∈H0

dg.

Second, we show (b): For j ∈ L c
0 ,

∣∣∣η̂j∣∣∣ =

∣∣∣∣∣ 1

np
XT
.jε +

1

np
XT
.jX̃0

(
1

np
X̃T

0 X̃0

)−1(
λη̂L0 −

1

np
X̃T

0 ε

)∣∣∣∣∣
≤

∣∣∣∣∣ 1nXT
.jX̃0

(
1

n
X̃T

0 X̃0

)−1

η̂L0

∣∣∣∣∣
+

∣∣∣∣∣XT
.j

[
I− X̃0

(
1

n
X̃T

0 X̃0

)−1

X̃T
0

]
1

n
ε

∣∣∣∣∣ . (4.35)

In the above, the former

max
j∈L c

0

∣∣∣∣∣ 1nXT
.jX̃0

(
1

n
X̃T

0 X̃0

)−1

η̂L0

∣∣∣∣∣ ≤ max
j∈L c

0

∥∥∥∥∥ 1

n
XT
.jX̃0

(
1

n
X̃T

0 X̃0

)−1
∥∥∥∥∥
∞

‖η̂L0‖∞ ,

(4.36)
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where

‖η̂L0‖∞ = max
j∈L0

∣∣∣∣∣∣
∑

g∗:j∈Hg∗

λg∗
β̂j∥∥β̂g∗∥∥2

∣∣∣∣∣∣
≤ max

j∈L0

 ∑
g∗:j∈Hg∗

λg∗

∣∣β̂j∣∣∥∥β̂g∗∥∥2


≤ max

j∈L0

 ∑
g∗:j∈Hg∗

λg∗

 .

Therefore, the RHS of (4.36) is smaller than

max
j∈L c

0

∥∥∥∥∥ 1

n
XT
.jX̃0

(
1

n
X̃T

0 X̃0

)−1
∥∥∥∥∥
∞

max
j∈L0

 ∑
g∗:j∈Hg∗

λg∗


≤ min

j∈L c
0

 ∑
g∗:j∈Hg∗

λg∗

 · (1− ε)
by using the second assumption.

In the second term in (4.36), let W =
(
W1,W2, . . . ,W∣∣L c

0

∣∣)T
, where

Wj = XT
.j

[
I− X̃0

(
1

n
X̃T

0 X̃0

)−1

X̃T
0

]
1

n
ε.

Then, using the same arguments in Nardi and Rinaldo (2008), we have

E
∥∥W∥∥

∞ ≤ 3σε

√
log d

np
max
j∈L c

0

∥∥X.j

∥∥
2
,
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and

P

 1

minj∈Hg

{∑
g∗:j∈Hg∗

λg∗
}∥∥∥W∥∥∥

∞
>
ε

2


≤ 6σε

εminj∈Hg

{∑
g∗:j∈Hg∗

λg∗
}√ log d

np
max
j∈L c

0

∥∥X.j

∥∥
2
,

which converges to 0 as n increases. This concludes the proof.
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CHAPTER 5

Simulation Studies

5.1 Data generation

We first conducted extensive simulation studies to evaluate the perfor-

mance of the method. We generated the data based on Equations (3.5) and

(3.14) with n = 1000, p = 110, G = 10, with two distinct group matrix A

of different degrees of overlap between the groups. The first group matrix

corresponds to a structure with significant overlapping between groups and

the other an almost mutually exclusive grouping structure. We call these

two group matrices A(1) and A(2) respectively. Specifically, we set

A
(1)
`,g =


1 if ` ∈ [10(g − 1) + 1, 10 (g + 1)]

0 otherwise

(5.1)
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and

A
(2)
`,g =



1 if g = 1, ` ≤ 14

1 if g = 10, ` ≥ 95

1 if 1 < g < 10, ` ∈ [10 (g − 1) + 4, 10 (g + 1)− 5]

0 otherwise

(5.2)

Group structure

A(1) A(2)

Figure 5.1 The group structure in A(1) and A(2) (large overlap between
groups).

Note that most p elements of X belong to 2 groups in both cases. Next,

we randomly selected 5 groups of variables to be associated with non-zero

factors, and simulated their factors independently from

fi,g ∼ N (0, 1) independently 6 ≤ g ≤ 10,∀i. (5.3)
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Lastly, we added the noise component for ε`i from Normal distribution

εi` ∼ N
(
0, σ2

)
(5.4)

independently for i = 1, . . . , n and ` = 1, . . . , p, where σ is the noise pa-

rameter for Stage 1 estimation.

For the simulation of the response variables Y, we used a univariate

response (q = 1) for the simplicity of simulation. Hence the regression

matrix B has a dimension of p× 1 and we simulated Y from

Yi = XT
i B + ui. (5.5)

where

B` =


1 for 100 ≤ ` ≤ 110

0 otherwise.

(5.6)

We simulated ui from Normal distribution

ui` ∼ N
(
0, τ 2

)
, (5.7)

for i = 1, . . . , n and all `, where τ is therefore the noise parameter for

Stage 2 estimation. For the two grouping structures as described above,

we have generated 100 simulation data sets for the following four pairs of

stage-specific noise levels in X and Y: (σ, τ) = (1, 1), (1, 2), (2, 1), (2, 2).

Using these data sets, we will evaluate our method comparatively with soft

thresholding in terms of two key asymptotic properties of the our estimator,
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namely sparsistency and consistency.

5.2 Result

Since the data was generated by emulating the systematic component

for the Stage 1 model, we used the sensitivity and specificity in the detection

of non-zero elements in Σ̂0
XX := AΣ̂fA

′
and Σ̂0

XY := AΣ̂fA
′
B. For the

Stage 1 evaluation, we calculated:

Sensitivity =
number of factors correctly estimated to be non-zero

number of factors that are non-zero

Specificity =
number of factors correctly estimated to be zero

number of factors that are zero
.

Likewise for Stage 2 evaluation, we calculated

Sensitivity =
number of elements in Σ̂0

XY correctly estimated to be non-zero

number of elements that are non-zero

Specificity =
number of elements in Σ̂0

XY correctly estimated to be zero

number of elements that are zero
.

Across all simulation settings, accounting for large and small overlap be-

tween groups and variable degree of noise, the proposed method that incor-

porated the true group structure achieved significantly better results than

element-wise shrinkage estimator with soft-thresholding operator in terms

of sensitivity and specificity. First, Figures 5.2, 5.3,5.6 and 5.7 showed that

Stage 1 estimation identified non-zero and zero factors with high sensitiv-

ity and specificity. The results shown is for the case with the highest noise
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levels (σ, τ) = (2, 2) and grouping structure with a high degree of overlap

A(2), and the performance improved as we lowered the level of noise and

groups sharing fewer genes (A(1)). Figures 5.4, 5.5, 5.8, 5.9 is showing

the sensitivity and specificity for detecting non-zero elements in the final

estimate of Σ̂0
XY, in which the Stage 2 estimation of the proposed esti-

mator outperforms the element-wise shrinkage estimator at all degrees of

shrinkage represented by the Frobenius norm of the difference between the

true cross-covariance matrix and the estimated matrix. Overall, the simu-

lations under all parameter settings indicated that the proposed estimator

recovers the non-zero factors of f and non-zero elements in the systematic

component of cross-covariance matrix ΣXY .
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Group structure A(1)
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Figure 5.2 Sensitivity as a function of the tuning parameter in Stage 1
estimation under four scenarios: (σ, τ) = (1, 1), (σ, τ) = (1, 2), (σ, τ) =
(2, 1), (σ, τ) = (2, 2).
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Figure 5.3 Specificity as a function of the tuning parameter in Stage 1.
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Figure 5.4 Specificity of the overall estimate as a function of the Frobe-
nius norm of the estimated cross covariance matrix.
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Figure 5.5 Specificity of the overall estimate as a function of the Frobe-
nius norm of the estimated cross covariance matrix.
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Group structure A(2)
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Figure 5.6 Sensitivity as a function of the tuning parameter in Stage 1
estimation under four scenarios: (σ, τ) = (1, 1), (σ, τ) = (1, 2), (σ, τ) =
(2, 1), (σ, τ) = (2, 2).
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Figure 5.7 Specificity as a function of the tuning parameter in Stage 1.
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Figure 5.8 Specificity of the overall estimate as a function of the Frobe-
nius norm of the estimated cross covariance matrix.
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Figure 5.9 Specificity of the overall estimate as a function of the Frobe-
nius norm of the estimated cross covariance matrix.
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CHAPTER 6

Analysis of DNA methylation

and mRNA expression in

TCGA data

We applied the proposed method to the integrative analysis of DNA

methylation and mRNA transcript expression data in TCGA-BRCA co-

hort. We used Gene Ontology terms (Ashburner et al., 2000) as gene group

information, especially the set of GO terms containing 10 to 50 genes in the

definition. The choice of GO terms is deliberate since GO is a relational

database with hierarchical structure: each GO term has a parent term that

is larger in size and less specific in definition. By limiting the GO term size

in this range, we can reduce the number of shared genes between the GO

terms, which has to be controlled to a degree to meet the minimal overlap
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requirement for the estimators in both stages. To focus on the biological

functions implicated in different tumor subtypes, we further reduced the

data to the genes involved in the kinase signalling networks, consisting of

227 kinases and 764 non-kinase substrates that are experimentally validated

and appear in the iRefIndex database (Razick et al., 2008). All 991 genes

were present in the mRNA data (RNA-seq), and 958 genes were present in

the DNA methylation data (microarray) for 766 subjects in total.
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Figure 6.1 Model selection via AIC for the first stage estimation in the
K2S analysis. (A) AIC versus shrinkage parameter. (B) The number of
selected groups at the corresponding shrinkage parameter.

Figure 6.1 shows the AIC curve and the number of selected groups with

non-zero factors in the stage 1 estimation. We selected the optimal thresh-

old λ = 15 where the curve became flat, which yielded 33 non-zero factors

reported in Table 6.1. As we focused on the genes involved in the kinase

signalling network, the selected groups included many phosphorylation-

mediated gene expression regulation terms for signal transduction as well

as other functions such as immune response, inflammatory response, an-

giogenesis that are commonly implicated in genomic studies of tumors. In-

terestingly, estimated factors f̂i were mostly positively correlated with the
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GO ID GO term name

GO:0001525 Angiogenesis
GO:0001934 positive regulation of protein phosphorylation
GO:0002576 platelet degranulation
GO:0004872 receptor activity
GO:0005102 receptor binding

GO:0005200 structural constituent of cytoskeleton
GO:0005768 endosome
GO:0005783 endoplasmic reticulum

GO:0005882 intermediate filament

GO:0006919
activation of cystein-type endopeptidase activity
involved in apoptotic process

GO:0006954 inflammatory response
GO:0006955 immune response
GO:0007155 cell adhesion
GO:0007169 transmembrane receptor protein tyrosine kinase signaling
GO:0007264 small GTPase mediated signal transduction
GO:0007267 cell-cell signaling
GO:0007268 synaptic transmission
GO:0007568 aging
GO:0007611 learning or memory
GO:0008083 growth factor activity
GO:0009897 external side of plasma membrane
GO:0009967 positive regulation of signal transduction
GO:0010628 positive regulation of gene expression
GO:0016021 integral component of membrane
GO:0016324 apical plasma membrane
GO:0016477 cell migration
GO:0019904 protein domain specific binding
GO:0030335 positive regulation of cell migration

GO:0031295 T cell costimulation
GO:0034220 ion transmembrane transport

GO:0042110 T cell activation
GO:0043410 positive regulation of MAPK cane
GO:0051092 positive regulation of NF-kappaB transcription factor activity

Table 6.1 The selected factors (GO terms) in the first stage of the kinase-
to-substrate analysis. The GO terms in bold are the ones in which the
estimated factors from DNA methylation data were clearly negatively cor-
related with average mRNA expression data.

average DNA methylation patterns, but not in all GO terms. As shown in

some panels of Figure 6.2A, the estimated factors did not exactly match

the average DNA methylation profiles in all GO terms, especially in the

GO terms that share many genes with at least one other term(s), e.g. T
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Figure 6.2 (A) Average DNA methylation levels versus estimated fac-
tors representing four GO terms, which are positively correlated as ex-
pected. (B) Average mRNA expression levels versus estimated factors rep-
resenting the GO terms. (C) Average mRNA data versus average DNA
methylation data for the same GO terms.

cell activation and T cell co-stimulation sharing many member genes with

immune response term. In these cases, the factors tend to be shrunken

toward zero compared to the average methylation levels, but the correla-

tion with the average mRNA expression within the same term tended to

be more negative, as we shall discuss later.

As mentioned above, the proposed method allows us to express the

variance-covariance matrix of DNA methylation data as the sum of a sys-

tematic and an idiosyncratic component. Figures 6.3A and 6.3B show the
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A B 

C D 

Figure 6.3 (A) Sample covariance matrix of DNA methylation data,
indicating largely positive correlation between different genes. (B) Esti-
mated covariance matrix Σ̂XX in Stage 1. (C) The systematic component
AΣ̂fA

T in Stage 1 estimation. (D) The same matrix in (C) after hierar-
chical clustering.

sample covariance matrix and the one obtained by the two-stage estima-

tion, respectively. Note that the matrix shown in Figure 6.3B is the sum of

the two matrices, the systematic component associated with 33 GO terms

shown in Figure 6.3C and the residual component (not shown, Figure 6.3D

is the same matrix after hierarchical clustering). A striking realization in

this decomposition is the sparsity of the systematic component shown in

the last two panels, suggesting that the GO terms we used as grouping
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F 

Figure 6.4 (A) Sample cross-covariance matrix between DNA methyla-
tion data and mRNA expression data. (B) Cross-covariance matrix Σ̂XY

with a soft-thresholding estimator. (C) Cross-covariance estimated by the

two-stage estimator Σ̂XXB̂. (D) The systematic component AΣ̂fA
TB̂

of the cross-covariance matrix. (E) The residual cross-covariance matrix
Σ̂υ.(F) The systematic component in (D) after hierarchical clustering.

information explain a relatively small proportion of total variability in the

DNA methylation data. Although indeed there does not exist a concerted

regulatory program of DNA methylation at the pathway level, another

plausible explanation is that the GO terms used in this analysis does not

capture all functional clusters of genes due to lack of discoveries or incom-

pleteness of the database. Moreover, as shown in the example diagram of

T cell co-stimulation in Figure 2.1, it may be difficult to expect all 10 to

50 genes in a pathway to be co-regulated to be represented by a common

factor. Hence a more careful curation of co-regulated gene groups from

the GO terms can improve the proportion of variability explained by the

systematic component.
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The ultimate goal of our analysis was to identify the pathways in which

DNA methylation is the major driver of mRNA expression regulation mech-

anism, i.e. the cross-covariance matrix estimation. Figures 6.4A, 6.4B, 6.4C

are the sample cross-covariance matrix with no shrinkage, with shrinkage

by soft-thresholding operator with cross validation-based tuning parameter

selection, and the estimate from the proposed two-stage estimator, respec-

tively. The real advantage of the proposed method is the decomposition

Σ̂XY = AΣ̂fA
TB̂ + Σ̂υB̂, where the former is shown in Figure 6.4D and

6.4F before and after hierarchical clustering respectively and the latter is

shown in Figure 6.4E. The upper left corner (blue) of Figure 6.4F represents

the groups of genes in which DNA methylation was negatively correlated

with mRNA expression amongst themselves, indicating that DNA methy-

lation played a significant regulatory role on the mRNA expression in those

genes at the pathway level. The upper right corner (red) represents two dif-

ferent gene sets for which DNA methylation of one set of genes is positively

correlated with mRNA levels of the other set of genes, which carries no

biologically meaningful covariances with respect to methylation-mediated

RNA expression.

With regard to the GO terms selected in Stage 1, the scatter plot of

estimated factors against average mRNA expression patterns in those GO

terms (Figure 6.2B) indicates negative correlation with the mRNA data,

suggesting the repressive role of methylation on the transcript output. In-

terestingly, the comparison between Figure 6.2B and Figure 6.2C suggests

that the estimated factors are much better correlated with the average

68



methylation levels, and this verifies that the shrunken estimates of factor

components are able to reveal the regulatory structure with improved clar-

ity. These findings are also corroborated by previous breast cancer oncoge-

nomic reports, such as methylation-driven intermediate filament dynam-

ics (Noetzel et al., 2010) and cytoskeletal component (Ulirsch et al., 2013),

and T lymphocyte infiltration of the breast tumors (Dedeurwaerder et al.,

2011).
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CHAPTER 7

Discussion

In this work, we have developed a two-stage estimator of cross-covariance

matrix, which takes advantage of existing group information between the

variables. Despite the detour we take in obtaining shrunken estimates, the

advantage of our method lies in its ability to tease out biologically relevant

signals from the residual effects, thereby facilitating meaningful interpre-

tation of data. In addition, we have provided theoretical properties such

as estimation consistency and model selection consistency on both stages

with appropriate conditions, using slight modifications of existing work.

Our extensive simulation studies have demonstrated that these properties

are valid even when the group information is incomplete, since the residual

component captures the rest of the variability unexplained by the grouped

variables (factors in the systematic components). Compared to the POET

estimator, the major difference in the first stage estimator was that the
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factors are defined by the previously defined gene grouping information, as

opposed to numerically derived linear combinations of variables, i.e. the

first K principal components in their method. The second stage estima-

tor of multivariate linear regression model is a modification of group lasso

allowing overlap of group membership (Jacob et al., 2009; Li et al., 2015;

Simon et al., 2013), which has been previously proposed. We have formally

specified the restrictions on group overlap (in Equation 4.7). Our method

handles overlapping by reducing such groups to a set of non overlapping

groups. This approach is different from the method in Li et al. (2015),

where their algorithm directly accounts for the group overlaps.

Our analysis of the human kinase network in TCGA BRCA data recov-

ered previously known hypermethylation activities in the cancer genomes

that were validated in independent study populations outside TCGA, sug-

gesting the validity of our approach and increased opportunity of further

discoveries of gene expression regulation activities through multi-omics data

sets. This can be achieved through application of our method to broader

gene sets (e.g. outside kinase signaling networks), or analysis of different

data sources such as microRNA paired with protein expression data. We

have also illustrated that element-wise shrinkage estimation, in spite of the

ease of implementation and numerical optimality of estimation procedures,

is likely to capture indirect correlations that are not biologically relevant in

the context of joint analysis of DNA methylation and mRNA expression.

As biological systems are operated by densely connected networks of molec-

ular machineries, i.e. biological functions or pathways, utilizing previously
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characterized gene group information is expected to improve the biological

relevance of selected covariance terms.

The proposed method is far from flawless nonetheless, which warrants

further improvement. First, we assumed that the factors {f·g}Gg=1 represent

the common effects shared by all members of the individual groups, and

this assumption can be rigid when the group size is large since there can be

subgroups of genes that are regulated differently within the group. This is

best exemplified in the PI3K-AKT1-mTORC2 complex genes included in

Figure 2.1, located in the middle rows of the two heat maps, which clearly

indicate those genes violate our common factor assumption. In addition,

the factors can be un-estimable as the group definitions share too many

common genes between one another. Therefore it is crucial to screen the

gene group definition before fitting the group lasso.

Second, although the simulation studies showed that the systematic

component can be estimated consistently, our TCGA data analysis showed

that the proportion of cross-covariance explained by the systematic compo-

nent was small. The main reasons for this outcome can be two-fold. Since

the proposed estimation in the first stage is sequential, first applied to the

factors and subsequently applied to the residuals, it is possible that the fac-

tors could have been underestimated because it was estimated by shrinkage

first without simultaneously estimating penalizing residuals. In addition,

it is possible that the AIC was suboptimal for model selection, especially
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when the AIC curves tended to be monotone decreasing (rather than U-

shaped) as the shrinkage parameter increased. This observation likely has

to do with the fact that the number of factor terms increases along with

the sample size, and thus it may be necessary to devise a new model se-

lection criteria for this type of problems. Besides using the AIC for model

selection, we have also tried using the Bayesian information criterion (BIC)

(Schwarz, 1978) and Cp statistic (Mallows, 1973) for model selection but

the results are not shown here. Neither of this two performed reasonably

in the simulation studies. In most cases, either all or none of the features

were selected. The cause of such failures might be worth investigating in

future work.

Lastly, our current penalty structure yields either all zero or all non-

zero estimates in each gene group. However, it is possible that further

shrinkage on the factor estimates {f·g}Gg=1 for some subjects but not all,

e.g. L1 penalty on the factors of each individual, can be imposed and it

can provide more interpretable results. For example, DNA methylation-

mediated mRNA regulation is neither the only mechanism nor universal in

every individual in a study such as TCGA, which profiles tumor samples

of various molecular types and thus one type of gene expression regulation

mechanism is turned on or off in a subset of tumor specimens only. How-

ever, we consider these potential refinements beyond the scope of this work

and leave them to future research.

73



Bibliography

H. Akaike. Information theory and an extension of the maximum likeli-

hood principle. In B. N. Petrov and F. Csaki, editors, Second Inter-

national Symposium on Information Theory, pages 267–281, Budapest,

1973. Akadémiai Kiado. 3.3

Anestis Antoniadis and Jianqing Fan. Regularization of wavelet approx-

imations. Journal of the American Statistical Association, 96(455):pp.

939–955, 2001. ISSN 01621459. URL http://www.jstor.org/stable/

2670237. 1.3.2, 3.1

M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry,

A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill,

L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson,

M. Ringwald, G.M. Rubin, and G. Sherlock. Gene ontology: tool for the

74

http://www.jstor.org/stable/2670237
http://www.jstor.org/stable/2670237


unification of biology. the Gene Ontology Consortium. Nature Genetics,

25(1):25–29, 2000. 6
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