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We present a simple family of Bell inequalities applicable to a scenario involving arbitrarily many
parties, each of which performs two binary-outcome measurements. We show that these inequalities are
members of the complete set of full-correlation Bell inequalities discovered by Werner-Wolf-Zukowski-
Brukner. For scenarios involving a small number of parties, we further verify that these inequalities are
facet defining for the convex set of Bell-local correlations. Moreover, we show that the amount of quantum
violation of these inequalities naturally manifests the extent to which the underlying system is genuinely
many-body entangled. In other words, our Bell inequalities, when supplemented with the appropriate
quantum bounds, naturally serve as device-independent witnesses for entanglement depth, allowing one to
certify genuine k-partite entanglement in an arbitrary n>k-partite scenario without relying on any
assumption about the measurements being performed, or the dimension of the underlying physical system.
A brief comparison is made between our witnesses and those based on some other Bell inequalities, as well
as quantum Fisher information. A family of witnesses for genuine k-partite nonlocality applicable to an

arbitrary n>k-partite scenario based on our Bell inequalities is also presented.
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One of the most important no-go theorems in physics
concerns the impossibility to reproduce all quantum
mechanical predictions using any locally causal theory
[1], a fact commonly referred to as Bell’s theorem [2]. An
important observation leading to this well-known result is
that measurement statistics allowed by such theories must
satisfy constraints in the form of an inequality, a “Bell
inequality.” Since these inequalities only involve exper-
imentally accessible quantities, their violation—a manifes-
tation of Bell nonlocality [3]—can be, and has been
(modulo some arguably implausible loopholes [4]) empiri-
cally demonstrated (see, e.g., [3—5] and references therein).

Clearly, Bell inequalities played an instrumental role in
the aforementioned discovery. Remarkably, they also
find applications in numerous quantum information and
communication tasks, e.g., in quantum key distribution
involving untrusted devices [6-8], in the reduction of
communication complexity [9], in the expansion of
trusted random numbers [10,11], in certifying the Hilbert
space dimension of physical systems [12,13], in self-testing
[14—18] of quantum devices, and in witnessing [19-21] and
quantifying [22-25] (multipartite) quantum entanglement
using untrusted devices, etc. For a recent review on these
and other applications, see [3].

Identifying interesting or useful Bell inequalities is
nonetheless by no means obvious. For instance, the
approach of solving for the complete set of facet-defining
Bell inequalities for a given experimental scenario—though
useful for the identification of non-Bell-local (hereafter
nonlocal) correlations—typically produces a large number
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of inequalities with no apparent structure (see, however,
[26] for some progress made on classifying Bell inequal-
ities). In contrast, carefully constructed Bell inequalities,
such as the families of two-party Bell inequalities consid-
ered in [27-30], have enabled us to conclude that certain
correlations derived from maximally entangled states do
not admit any local content [31], and that the prediction
of quantum theory cannot be refined even when supple-
mented with hidden variables satisfying certain auxiliary
assumptions [32].

Going beyond the bipartite scenario, the family of
Mermin-Ardehali-Belinskii-Klyshko (MABK) inequalities
[33,34] is a prominent example of an interesting family
of Bell inequalities, giving clear evidence that a macro-
scopic number of physical systems can still give rise
to strongly nonclassical behavior (see also [35,36]).
Moreover, a sufficiently strong violation of the n-partite
MABK inequalities can also be used to certify the presence
of genuine n-partite entanglement in a device-independent
manner, i.e., without relying on any assumption about the
measurement device or the Hilbert space dimension of the
test systems (see, e.g., [19-21,37,38]).

What about the possibility of identifying genuine
k-partite entanglement in an n-partite scenario with n >
k > 27 This is the question of entanglement depth [39], or,
equivalently, non-k producibility [40] (see also [41]), which
both seek to identify the extent to which many-body
entanglement is present in a multipartite quantum system.
It is worth noting that genuine many-body entanglement is
known to be essential, e.g., in achieving extreme spin
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squeezing [39] and high sensitivity in some general metrol-
ogy tasks [42]. For well-calibrated or trusted [43] measure-
ment devices, there exist few criteria [39-42,44-48] to
certify such many-body entanglement. For example, an
entanglement depth larger than 28 was recently demon-
strated [48] using such a witness. However, the possibility
of certifying—in a device-independent manner—genuine
k-partite entanglement in an arbitrary n>k > 2-partite
scenario has so far remained elusive.

Here, we show that such robust certification in a scenario
involving arbitrarily many parties is indeed possible, e.g.,
by using a novel family of n-partite Bell inequalities as well
as the characterized quantum violation of these inequalities
by quantum states, assuming only k-partite entanglement.
Moreover, we show that, together with the appropriate
bounds, these inequalities can also be used to witness
genuine k-partite nonlocality [49] in an arbitrary n-partite
scenario (with n>k). Since genuine k-partite entanglement
is a prerequisite for the presence of genuine k-partite
quantum nonlocality [50,51], witnesses for such multipar-
tite nonlocality are also witnesses for entanglement depth.
Let us stress, however, that our family of device-indepen-
dent witnesses for entanglement depth does not rely on the
detection of such genuine multipartite nonlocality.

A novel family of n-partite Bell inequalities.—Consider a
Bell-type experiment involving n spatially separated parties
(labeled by i€{1,2, ..., n}), each of them performing two
binary-outcome measurements. We denote the measurement
setting of the ith party by x,€{0, 1}, and the corresponding
measurement outcome by a; = =£1. The correlation between
these measurement outcomes can be summarized succinctly
using the collection of joint conditional probability distri-
butions {P(a|x)} where a= (a,a,,...,a,) and X =
(x1,x,, ..., x,,) are n-component vectors describing, respec-
tively, the combination of measurement outcomes and
measurement settings. In terms of the n-partite full corre-
lators E,(X) = 3", 4. 11j2) @;P(alX), our family of
n-partite Bell inequalities Z,, reads as

7,8, =2 |_, > E)

e{0.1}"

~E,(I)<1 (1)

where 1, = (1,....1) is an n-bit string of ones and £
signifies that the inequality holds for a locally causal theory.
For n = 2, inequality (1) is the Clauser-Horne-Shimony-
Holt Bell inequality [52]; for n = 3, it is equivalent to the
seventh tripartite inequality of [53,54]. For general n, we
show [54] that Z, defines a facet [59] of the n-partite full-
correlation polytope characterized by Werner-Wolf-
Zukowski-Brukner [60,61], thus being a member of the
2%" Bell inequalities discovered therein. For n <8, we
further verify numerically that 7, corresponds to a facet
of the polytope of locally causal correlations—a property
which we conjecture to hold true for general n.

From [60], it thus follows that the maximal quantum
violation of Z,, (denoted by S 2*) is attainable if each party
measures the =1-outcome observables [60] A, _o =
cosac, +sinac, and A, _| = cos(¢; + a) o, + sin(gp; +
a) o, for some judiciously chosen a, ¢;€[0,27z] on the
n-partite Greenberger-Horne-Zeilinger (GHZ) state [62]
|GHZ,) = %(|O>®" +[1)®"). For n <8, we certified
using a converging hierarchy of semidefinite programs
[63,64] that S can be achieved by further setting ¢, =
py=+=¢,=¢, and a = —[(n—1)/2n]¢p, for some
¢,€0, z/2]. Explicitly, this ansatz gives the quantum value

S2(¢,) = 2cos"t! % — cos (n ;— ! qbn), (2a)

where the explicit analytic values of ¢, (for n < 7) leading
to S,,Q'* can be found in [54] (see Table I for the corres-

ponding value of S£*). For larger values of n, the above
observation and further numerical evidence lead us to
conjecture that

S = maxS(4,). (2b)

bn

Indeed, for sufficiently large n, this maximum value over ¢,,
is well approximated by setting ¢, = 2x/n, thus giving

max,, S9 (q’)n)n:ooB, i.e., the algebraic maximum of S.
[The algebraic maximum of S, is the maximal value of S,
attainable by all legitimate conditional probability distribu-
tions. As n — oo, the quantum violation (2) is thus as strong
as that allowed by, for instance, signaling correlations.]
Entanglement depth and k producibility.—To see how
T,, or, more precisely, its quantum violation, can witness
entanglement depth, let us now briefly recall the notion of k

producibility [40]: An n-partite pure state |y) = (% lp;) is
j=1

said to be k producible if all of its constituent states |¢p;) are
at most k-partite. Analogously, a mixed state p is said to be
k producible if it can be written as a convex mixture of
k-producible pure states; the set of k-producible quantum
states is, thus, convex. Evidently, the production of a
k-producible state only requires (up to) k-partite entangle-
ment. In the following, we say that a quantum state has an

TABLEI. Summary of the maximal quantum violation and the
critical visibility vf;_“f, i.e., the infimum of v, in Eq. (4) before
the mixture stops violating Z,,. Also included in the table is the

algebraic maximum of Z,, denoted by S;.

n 2 3 4 5 6 7 8 00

S¢* /2 5/3 1.8428 1.9746 2.0777 2.1610 22299 3
vett 1/4/2 3/5 0.5427 0.5064 0.4813 0.4627 0.4485 1/3

n,l
S 2 5/2 27500 2.8750 2.9375 2.9688 2.9844 3
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entanglement depth of k if it is k producible but not (k — 1)
producible.

A family of device-independent witnesses for entangle-
ment depth.—It is well known that the observed Bell-
inequality violation of a quantum state p immediately
implies that p is entangled [50], and, hence, has an
entanglement depth of 2 or higher. Moreover, from the
convexity of the set of k-producible quantum states, we see
that—when there is no restriction on the Hilbert space
dimension—the set of correlations due to k-producible
quantum states is also convex. In particular, since k
producibility implies k' producibility for all k'>k, one
expects that quantum states having a larger entanglement
depth may also lead to a stronger violation of any given
n-partite Bell inequality (e.g., Z,,): This is the central intuition
behind what we call device-independent witnesses for
entanglement depth (DIWED:s), a violation of which implies

some lower bound on the entanglement depth of the under-

Q%
k-pr.

quantum violation of 7, attainable by n-partite quantum
states having an entanglement depth of k. In general, one may
expect S,g;‘r_ to depend on both n and k, but the algebraic
structure of S, cf. Eq. (1), allows us to show otherwise.
Theorem 1: The maximal possible quantum violation

of Z,, by k-producible quantum states, S,g;‘r., is independent

lying state. To this end, let us denote by S;7 the maximal

of n and equals to S,?'*, the maximal possible quantum
violation of Z,.
The full proof of the theorem is provided in [54]. Here,

let us show that 5,%;28,?‘*. Consider n parties sharing the

quantum state |GHZ,;) ® |0)®"* with the first k parties
performing the optimal local measurements leading to S,?'*
while the rest of the parties always measure the trivial
observable 1. It then follows from Eq. (1) and Born’s rule
that the quantum value of S,, becomes SkQ‘*. Since this is
only one particular choice of quantum strategy, we must

have Ska*r >S2*. For instance, it is conceivable that with
nontrivial local measurements on |GHZ,)®?, a stronger
violation of Z, could be obtained. Theorem 1, however,
dictates that this intuition is false. Indeed, the proof of the
theorem [54] suggests that to achieve the strongest quantum
violation of Z,, by k-producible quantum states, we should
employ the above strategy of generating optimal nonlocal
correlation for only k of the parties, while leaving the rest of
the n — k parties with trivial correlations.

The above theorem, together with the respective values
of S,?'* [cf. Eq. (2) and Table I], then provides us with a
family of DIWEDs,

k-producible

Zh: 2 Y0 E®-E(1) < s ()
xe{0,1}"

Since the upper bound SkQ'* holds for all n-pattite,
k-producible quantum states of arbitrary Hilbert space

dimensions and arbitrary binary-outcome measurements
performed by each party, the witness is device independent
in the sense that any observed violation of Z¥ by p implies
that p is at least genuinely (k 4 1)-partite entangled, i.e., it
has an entanglement depth of at least k + 1, regardless of
the details of the measurement devices and the Hilbert
space dimensions. For instance, a measured quantum value
of Z, that is greater than v/2 and % (cf. Table I) immediately
implies, respectively, the presence of genuine tripartite and
quadripartite entanglement, regardless of the total number
of parties n. For the noisy GHZ state

ﬂ on

p(vn) = Un|GHZn><GHZn| + (1 - Un)?’

(4)
where 1,. is the identity operator acting on C?", such
quantum violations then translate to the critical visibility of
v, > v = SP7/SP*  required for the  device-
independent certification of genuine (k + 1)-partite entan-
glement via Z¥ (Table I).

Let us emphasize again that the certification of genuine
(k + 1)-partite entanglement via ZX does not rely on the
detection of genuine (k + 1)-partite nonlocality [49,51].
Indeed, as we show in [54], the witnesses for genuine
multipartite nonlocality [49] corresponding to Z, read as

- NS,
TN 2 S B - E(1) <3-2% 0 (5)

x€{0,1}"

where N'S,, ; signifies that the inequality holds for arbitrary
n-partite correlations that are k producible [S1] (when
assuming only nonsignaling [65,66] resources within each
group). Interestingly, as with quantum entanglement, the
right-hand side of inequality (5) is simply the algebraic
maximum of 7, which is achievable by a general k-partite
nonsignaling correlation. [Since S, only involves a linear
combination of full correlators, inequality (3) also holds true
even if we consider, instead, k-producible Svetlichny [67]
(signaling) correlations; see [51].] For n <8, the explicit
values of these algebraic maxima (S =3 —2>") are
clearly higher than the corresponding quantum bounds
(see Table I). Thus, witnessing genuine k-partite entangle-
ment via Z¥ does not rely on the detection of genuine
k-partite nonlocality.

Comparison with some other witnesses for entanglement
depth.—Given the intimate connection [40] between k
producibility and m separability, one expects that
DIWEDs can also be constructed from other multipartite
Bell inequalities whose m-separability properties are well
studied. (A pure state is m separable if it can be written as
the tensor product of m constituent pure states.
The definition for mixed states proceeds analogously.
Thus, an m-separable state is also k producible for
some k>[n/m].) Indeed, investigations [34,68] on the
MABK inequalities have culminated in the following
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characterization [37,69]: The maximal possible quantum
violation of the n-partite MABK inequality by n-partite,
m-separable states (m < n) consisting of L unentangled
subsystems is [37,69] 2("+£=2m+1)/2 Hence, for n < 5, the
MABK inequalities give the following DIWEDs [54]:

ME: 20=m/2 E cos F(l —n+ ZX)]
N 4
xe{0,1}"
k-producible

x E(X) < 20-D/2) (6)

where x = ) ,x; and we have made use of the compact
representation of the MABK inequality obtained in [36].
Unfortunately, for n>6, except fork =2 and k = n — 1, the
inequality given in Eq. (6) generally does not hold for
k-producible states [54].

To compare the strength of Z¥ and MY in witnessing
entanglement depth, we numerically optimized the quan-
tum violation of these witnesses for the GHZ state |GHZ,),
the n-partite W state [70] |W,) = (1/4/n)(]100...0)+
|010...0) + - - - +]000...1)), as well as the n-partite one-
dimensional cluster states [71] |C,;) = [[=) CZ; iy |+)®"
and |C9) = CZ, "*|C;) where CZ; ; = diag(1,1,1,-1) is
the controlled Z gate acting on the ith and the jth qubit, and
0; j is the Kronecker delta. A comparison between the best
quantum violations found [54] and the respective bounds
associated with the witnesses, cf. Eq. (3) and Eq. (6), then
allows us to obtain a lower bound for the entanglement
depth of these states (see Table II). [Note that all these states
are known have an entanglement depth of n (see, e.g.,
[72,73]).] Interestingly, the entanglement depth of |W,) is
better witnessed by MZ¥, whereas that of |CY) is better
witnessed by ZX. Moreover, for |C), the lower bounds
originating from both DIWEDs even outperform those

TABLE II. Lower bounds on entanglement depth certifiable
by the violation of DIWEDs ZX, MY and quantum Fisher
information (QFI) [74]. Integers in the top row give n (the
number of parties), whereas all integers underneath are the
respective lower bounds on entanglement depth for the quantum
state given in the leftmost column, using the witness(es) indicated
in the second column. A tight lower bound is marked with
an asterisk ().

[y) Witness(es) 2 3 4 5 6 7
|GHZ,) Tk Mk QFT 2¢ 3* 4 5 6 T*
W,) Tt 2 3 2 2 2 2
W) MEQFT 2 3 3 3 3 3
IC;) Tt Mk * 3 2 2 2 2
Ic;) QFI 2 3 2 3 2 3
ca) T 2 3 2 2 2 2
|C9) Mk 3 2 1 1 1
|C9) QFI 2" 3* 1 1 1 1

obtained from the non-device-independent witnesses based
on quantum Fisher information [42].

Discussion.—Obviously, for any given n and k, the results
of Table II highlight the fact that the set of correlations
arising from k-producible quantum states cannot be fully
characterized by any single DIWED, as one would expect
from the studies of conventional, non-device-independent
entanglement witnesses. (In general, each of these sets can
only be fully characterized by an infinite number of such
linear witnesses [51].) Nonetheless, one may ask if there
exists a better DIWED, e.g., one that witnesses the actual
entanglement depth of |C9). To answer this, or, more
generally, the question of whether some observed correlation
{P(a|x)} could have come from a k-producible quantum
state, the hierarchy of semidefinite programs proposed in
[24] turns out to be well suited. For completeness, we include
the explicit form of these semidefinite programs in [54].
Using this technique, it was found in [75] that all the 23 306
quadripartite Bell-like inequalities obtained therein are also
legitimate DIWEDs for an entanglement depth of 2, and
some even for an entanglement depth of 3. Moreover, our
numerical optimizations show that some of these inequalities
can further be used to certify, device independently, the
genuine 4-partite entanglement present in |W,), |C;), and
|C4). Is it then always possible to find an appropriate
DIWED to certify the entanglement depth of any pure
entangled quantum state? Given the strong connection
between nonlocality and pure entangled states (see, e.g.,
[76-79]), we are optimistic that the answer to the above
question is positive.

Let us now comment on some other possibilities for
future work. Naturally, a question that stems from our
results is the typicality of Bell inequalities that are naturally
suited for witnessing entanglement depth, in the sense of
Theorem 1. To this end, we show [54] that the family of
DIWEDs given in Eq. (3) actually belongs to an even more
general family of DIWEDs, ZX(y), such that ZX(2) gives
Eq. (3). The usefulness of this more general family of
DIWEDs, however, remains to be investigated. Note, also,
that apart from y =2, none of the Bell inequalities
corresponding to Z¥(y) define a facet of the local polytope
for general n. In contrast, as we show here, the combination
of full correlators given by S, cf. Eq. (1), are natural both
in the characterization of the set of locally causal corre-
lations as well as the set of correlations allowed by
k-producible quantum states, for arbitrary k > 1.

On the other hand, since the DIWEDs of Eq. (3) involve
the expectation value of 2" different combinations of
measurement settings, measuring these expectation values
using only local measurement is already experimentally
challenging for moderate values of n (although this scaling
is still favorable compared with doing a full-state tomog-
raphy of an n-qubit state). Hence, to maintain the pos-
sibility of witnessing entanglement depth in a robust
manner (e.g., without being susceptible to intrinsic
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systematic uncertainties [43]), it is worth looking for other
(families of) Bell inequalities where the corresponding
DIWEDs only involve few expectation values but which
may still share features of Z, given in Theorem 1. The
families of Bell-like inequalities presented in [21,80,81] are
some possible starting points for such an investigation, and
the numerical techniques detailed in [54] will be useful for
this purpose. Note also that for any given positive integer &,
Theorem 2 of [51] allows us to extend any given witness for
n>k parties to one for arbitrarily many parties while
preserving the number of expectation values that need to
be measured experimentally. From an experimental per-
spective, it will also be highly desirable to identify
DIWEDs that only involve few-body correlators (cf. Bell
inequalities given in [82]), a problem that we leave for
future research.
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