
Detection and Prevention of Misuse of Software
Components

DAI TING

(B.Eng., TSINGHUA UNIVERSITY)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2015

Acknowledgements

First, I would like to thank my advisers, Professor Zhenkai Liang and Professor Roland H.

C. Yap, for their constant advice and help on my varied research interests in my candidature.

They encourage me on both my work and life since the first year of my study. Without their

guidance, I would never made any steady progress on my research. Most importantly, they

enlighten me with the power of thinking independently, which makes a solid foundation for my

career and will benefit me in the future.

Second, I am grateful to all of my collaborators over the years for their support and sharing

of experiences. Especially, I would like to thank Sai Sathyanarayan, Mingwei Zhang, Behnaz

Hassanshahi and Xiaolei Li. I benefit a lot from working together with them. I would also

like to thank all my labmates for their help on my study and life in campus, especially Utsav

Saraf, Bodhisatta Barman Roy, Hong Hu, Yaoqi Jia, Guangdong Bai, Xinshu Dong, Kailas

Patil, Zheng Leong Chua, Ziqi Yang, Xuhui Liu, Benjamin Thian, Dongyan Zhang, Jiangang

Wang, Yue Chen, Yongzheng Wu, Wei Xia, Liming Lu, Jia Xu, Xuejiao Liu, Chengfang Fang,

Chunwang Zhang, Xiaolu Zhu, Zhaofeng Chen, Loi Luu, Shweta Shinde, Shruti Tople, Enrico

Budianto, Inian Parameshwaran, and Pratik Soni.

Finally, I would like to thank all my family and friends for their help and trust in me. They

encourage me a lot and support me with great effort. I am lucky to have them by my side.

i

ii

Contents

Abstract vii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Our Solutions . 5

1.2 Thesis Organization . 7

2 Background 8

2.1 Windows Binary and Components . 8

2.1.1 ActiveX . 10

2.2 Android . 12

2.2.1 Android Security . 14

2.3 Vulnerability Detection Techniques . 16

2.4 Execution Paths and Attack Paths Analysis 18

3 Detecting Binary Loading Vulnerabilities 20

3.1 Introduction . 20

3.2 Binary Loading . 22

3.2.1 A Motivating Example . 23

3.2.2 Loading Dependencies . 24

3.3 Design . 27

iii

3.3.1 The Loading Dependency Graph . 27

3.3.2 Loading Dependency Graph Generation 29

3.3.3 Loading Dependency Graph Inspection 36

3.4 Exploration Testing . 39

3.4.1 Light-weight Testing . 39

3.4.2 Configuration File Testing . 40

3.5 Experimental Evaluation . 42

3.5.1 Loading Vulnerabilities from Configuration Files 45

3.5.2 Safety of Third Party Binaries . 51

3.5.3 Loading Vulnerabilities from Missing Binaries 51

3.5.4 Comparison of Loading Behaviors . 53

3.5.5 Inspection of Binary Injection . 54

3.6 Related Work . 55

3.7 Summary . 56

4 Detecting API Misuse Vulnerabilities 58

4.1 Introduction . 58

4.2 Problem Definition . 60

4.2.1 A Motivating Example . 60

4.2.2 The Privilege Escalation Problem in Component Interactions 62

4.3 API Misuse Vulnerability Detection . 64

4.3.1 Dynamic Instrumentation . 65

4.3.2 Privilege Reachability Model Representation and Generation 66

4.3.3 API Misuse Vulnerability Identification 70

4.4 Implementation . 71

4.4.1 Building a PRM from Traces . 71

4.4.2 Finding Access Paths . 72

4.4.3 Mitigation of API Misuse Vulnerability in ActiveX Controls 73

4.5 Evaluation . 75

4.5.1 Effectiveness Evaluation . 77

iv

4.5.2 Performance Evaluation . 80

4.6 Related Work . 81

4.7 Summary . 82

5 Preventing the Misuse of Components in Android ICC 84

5.1 Introduction . 84

5.2 Overview . 86

5.2.1 Android Component Interaction . 86

5.2.2 Approach Overview . 87

5.3 Design & Implementation . 90

5.3.1 Adding ICC Provenance . 92

5.3.2 Virtualizing Resource Accesses . 95

5.3.3 Implementation . 98

5.4 Experimental Evaluation . 99

5.4.1 Case Studies . 100

5.4.2 Usability Improvement over Permission Restriction 103

5.4.3 Performance Benchmarks . 104

5.5 Related Work . 105

5.6 Summary . 107

6 Conclusion 108

6.1 Future Work . 109

Bibliography 111

v

vi

Abstract

Software components are building blocks of modern computer systems. Modern computer

systems are complex integrations of software components that encapsulate many sets of soft-

ware functionalities. Moreover, these functionalities are affected by both the interactions of

software components and various system settings. As a result, software components can be-

have in an unexpected way, deviating from the original functionality provided by the software

components. We call such a vulnerability, a component misuse vulnerability.

In this thesis, we propose systematic solutions to detect and prevent the component mis-

use vulnerability. First, binary loading behaviors in software programs can be misused via

manipulating various system settings. We develop an approach to detect such binary loading

vulnerabilities. It explains binary loading behaviors by listing various system settings, bina-

ries and files that can affect the loading behaviors. It detects the unexpected uses of binary

loading by identifying the factors that can be controlled by the attackers. Second, the APIs in

ActiveX controls can be misused via component interactions. We develop a mechanism to de-

tect ActiveX API-misuse vulnerabilities in Internet Explorer (IE), by detecting unexpected uses

of APIs in the component interactions. It also blocks the APIs that can be misused in a fine-

grained manner. The problem of component misuse also manifests itself in other systems. We

propose a solution to mitigate the damage caused by component misuse vulnerability due to the

interactions of software components in the Android platform. In particular, we develop a pre-

vention mechanism of privilege escalation in Android inter-component communication (ICC).

It prevents permission re-delegation in Android ICC which can cause the sender application

(app) to gain additional privileges from the recipient app.

vii

viii

List of Tables

2.1 Binary Search Orders of LoadLibrary . 10

3.1 Loading Factors for Windows . 31

3.2 Overall Result of 34 Software Applications 42

3.3 Loading Behavior Caused by Configuration Files 48

4.1 Privilege Mapping in ActiveX Models . 70

4.2 Number of methods with critical access paths in six ActiveX controls 75

5.1 Category of System Resources . 97

5.2 Resources evaluated with test app on UPPDROID 99

ix

List of Figures

2.1 Android Architecture . 12

3.1 Structure of LDRSCOPE . 26

3.2 A Simple LDG . 28

3.3 Loading Dependency of d:/malicious.exe 30

3.4 Data Dependency Analysis . 33

3.5 System Dependency Analysis . 34

3.6 Loading Behaviors Caused by Configuration Files 46

3.7 Loading Vulnerability Caused by Configuration File in Unsafe Locations . . . 47

3.8 Abridged LDG for firefox vulnerability . 49

3.9 Abridged LDG for PowerPoint 2007 . 50

3.10 Comparison of Loading Behaviors . 52

4.1 Using Microsoft Office Snapshot Viewer ActiveX Control in JavaScript 61

4.2 An Attack on Microsoft Office Snapshot Viewer ActiveX Control in JavaScript 61

4.3 Overview of API Misuse Vulnerability Detection 64

4.4 Privilege Reachability Models for the Shared Components 66

4.5 Two Types of Access Paths in ActiveX PRM 69

4.6 Mitigation of API-misuse in the Web Browser 74

4.7 Indirect Access Path Using Callback Function snapview.c5ad 78

4.8 Call Sequences to Load adodb.stream and wscript.shell 79

5.1 Examples . 88

5.2 Permission re-delegation prevention in UPPDROID 90

x

5.3 Architecture of UPPDROID . 91

5.4 ICC Chain Passing Mechanism in UPPDROID 93

5.5 Virtualizing System Resources . 97

5.6 Runtime Overhead of UPPDROID . 104

xi

Chapter 1

Introduction

Software components are building blocks of software programs. They encapsulate many sets

of software functions to support various software features. On one hand, these components

facilitate code reuse; on the other hand, they also bring complexity into the computer systems.

Modern computer systems are complex integrations of these software components. The

complexity of these systems are further amplified by the interaction of software components

and the system settings. The interactions of the software components add various dependen-

cies to the computer systems. These dependencies further complicate computer systems, which

can result in problems like dependency hell.1 Moreover, various system settings are created to

adjust the functionality of these components. For example, system configurations and environ-

ment variables are created to accommodate software components, but they can also cause an

insecure library loading attack.

In complex computer systems, the subtle interactions among software components can

result in unwanted behaviors or even attacks. For example, the “Microsoft Office Snapshot

Viewer” ActiveX control is designed to view and print snapshots of document files in JavaScript.

The control is protected in the browser sandbox, and provides an API to specify the path of

snapshot files. However, when interacting with the browser components, this API offers im-

plicit functionality to allow JavaScript to write files in the local file system, effectively bypass-

ing the browser sandbox. This can be leveraged by attackers to overwrite files in the local file

1The frustration of users who have installed software packages which have dependencies on specific versions
of other software packages. [70]

1

system. The dependencies from software components on the system settings can also result

in unwanted behaviors. A subtle example is the following Safari “Carpet Bomb” attack [1].

The Safari browser can download files automatically to the desktop directory and the download

directory in Windows without user interactions. Many Windows programs, e.g. Internet Ex-

plorer (IE), load binaries according to system settings, such as “binary search order”. IE can be

leveraged by the attackers to load arbitrary binaries downloaded by Safari, if this binary search

order includes the desktop directory. In this example, neither Safari nor IE alone can cause the

attacks. It is the subtle interaction among the components, and the various system settings that

result in this attack.

Component interactions and system settings of complex systems open up various attack

surfaces [87] of software components. When components are interacting with each other, they

may be susceptible to the attacks shown in the above examples. In these attacks, the soft-

ware components are “misused” by attackers in a way they are not designed for. An API is

misused in the ActiveX example to allow file overwrite instead of showing snapshots. Binary

loading behaviors are misused in the Safari “Carpet Bomb” attack to allow loading of binaries

downloaded arbitrarily. We call such behaviors component misuses in this thesis.

The misuse of software component is a common problem in complex computer systems.

It is not confined to desktop systems as shown in the above examples; the Android platform

also has similar problems. Android has a different component interaction model, where its

components share functionalities using an intent-based mechanism. However, the mechanism

can be misused to allow applications (apps) to escalate their privileges, instead of running with

their designated privileges.

Component misuses are caused by limited understanding of the software components by

programmers and software designers, which is further amplified by the overall complexity of

the computer systems, including complicated dependencies and component interactions. Soft-

ware components are traditionally designed for functionality and flexibility, which may have

inadequate or incomplete consideration of security. It is common that the software functionality

is not always clearly specified in software specifications. Even when the default functionality is

clear, the interactions among components can further hinder the understanding. Furthermore,

2

the system settings and software configurations can affect and alter the original functionality of

the components. The misused component behaviors have dependencies on these settings.

In this thesis, we aim to detect and prevent the misuse of software components. We first

develop solutions for identifying the causes of component misuse, which are the dependen-

cies from component functionalities to system settings and component interactions. Then, we

secure the usage of software components by regulating component interactions to prevent com-

ponent misuses.

The component misuse problem is challenging to solve. First, the misuse arises from the

normal functionality of software components. The designers may not be aware of the subtle

impacts that the normal functionality can bring. One example is the Android inter-component

communication, which is designed to support sharing of functionalities. But it also implic-

itly results in various forms of privilege escalation [49]. Furthermore, although the compo-

nents themselves are not malicious, users of these components can misunderstand the original

functionality and use them in an unexpected way. This implies traditional malware detection

techniques [43, 119] and anti-virus detectors are not applicable on this problem. The misused

components have vulnerabilities at a different level compared to the prevalent software vulner-

abilities, such as memory-corruption errors, buffer overflows and integer overflows addressed

by existing solutions [22, 34, 37, 58, 81, 90]. The vulnerability of component misuse comes

from the logic of the design of the functionalities. This requires us to come up with a different

solution than the existing ones.

Second, the misuse can be caused by the interactions with the system environments and

settings on the software components. This interaction can be viewed as a dependency from

the unexpected component behaviors on the system environment and settings. For example in

the Safari “Carpet Bomb” attack, the system setting “binary search order” affects the loading of

software components. As a result, various dependency analyses [23,26,83,96,100,105,109] can

be applied to this kind of misuse problems. To be specific, backward dependency analysis [26]

can be applied to explain the cause of the misuse in component behaviors. In this way, we can

provide better understanding of component functionalities by showing various dependencies,

so that the misuse can be avoided.

3

Third, the misuse can also be caused by the interactions among the software components

themselves. A component can function safely by itself. But when it is interacting with other

components, unexpected functionalities can be triggered, like the ActiveX example. A com-

plex computer system contains many interactions from components. Although it is difficult to

clearly identify the impact of these interactions on the functionality of components, the impact

can be modeled as a path between the normal entry functionality and the unwanted function-

ality when a misuse happens, when interactions among software components are modeled as a

graph. In the ActiveX example, the API for specifying the snapshot file unintentionally bridges

the gap between the browser component and the native API to write files. This forms a path

that can be analyzed in a way similar to analyzing attack path [92, 115]. However, instead of

infiltrating the system or accessing private information, this path leads to functionalities that

are normally unavailable to software components. Through a reachability analysis, we are able

to detect the vulnerability of misuse caused by component interactions.

The consequence of component misuse is gaining more functionality than needed. For

example, privileges can be gained through interactions in Android inter-component communi-

cations. This requires us to design a solution to limit the functionalities. This solution should

be effective and simple to deploy. One alternative is to directly block the entries to the un-

wanted functionality of software components. This effectively cuts off the path between the

normal functionality and the unexpected behaviors. For example, directly blocking the use of

the vulnerable ActiveX APIs cuts off the path between the normal functionality and the file

overwrite functionality. This solution should also be practical and efficient. It should limit the

functionality of software components and not lose the usability of the components. For exam-

ple, in Android, because of the specific designed functionality sharing mechanisms, blocking

the interactions in a restrictive way [57] can affect the usability of the components when they

are interacting with other components. Another example is in the existing ActiveX security

mechanisms. Due to the coarse-grained design, blocking certain functionalities usually means

losing all the usability of the ActiveX controls. What we need is a practical solution to prevent

component misuses and preserve the usability of the software components at the same time.

4

1.1 Our Solutions

We propose a line of systematic solutions to detect and prevent misuses in software compo-

nents. First, we inspect the individual software component, whose functionalities are affected

by program configurations and system settings. We explain in detail the binary loading behav-

iors in software components and find out the ones that can be controlled by attackers. Second,

with the understanding of individual software components influenced by complex computer

systems, we identify how software components affect each other in the component interactions.

We detect the misuse of dangerous APIs in ActiveX controls. Finally, we propose a solution

to prevent component misuses in the component interactions, and preserve the usability of the

components. We apply the solution on both ActiveX controls and Android components. It

prevents the dangerous ActiveX APIs from being invoked. It also prevents the privilege escala-

tion from the misuse of interactions in Android components, where the component interactions

follow a specified model. More specifically, our solutions are as follows:

Detecting Loading Misuse in Software Components. Loading software component is an

essential step in program execution in most operating systems. Due to the complexity of various

system settings and software configurations in computer systems, the loading behaviors can be

misused, allowing the attackers to misuse the loading behaviors to achieve unintended loading

of binaries into the program, such as the loading behavior in the Safari “Carpet Bomb” attack.

Successful loading of attacker provided binaries can lead to remote code execution or privilege

escalation.

In order to detect such binary loading vulnerabilities, we develop an analysis mechanism

using data dependency and system dependency to explain the binary loading behaviors. We

extract factors, such as system configuration and software specification and various system set-

tings and paths, into a loading dependency graph (LDG) to model the loading behavior. It

describes why and how the loading behaviors happen. With this solution, we provide a better

understanding of the interactions among software components and complex system configura-

tions and settings, so that the vulnerable loading of software components can be detected.

5

Detecting API Misuse in Software Components. As described in the previous ActiveX

example, the functionality of software components can be misused to allow the embedding

application of software components to access the unwanted functionality. We call such vulner-

abilities, API-misuse vulnerabilities.

We present a solution to detect API misuse vulnerabilities in ActiveX controls in Microsoft

Windows. We construct reachability models to identify which ActiveX APIs can reach system

APIs. By applying this solution, we provide an explanation on how component interactions

cause misuses, and a prevention mechanism by cutting off the paths between the components.

With this part of the work, we reason about how component interactions affect the component

behaviors and cause the component misuse.

Preventing Re-delegation Misuse in Software Component. Many software components

rely on interacting with other components to extend their functionality. Such behaviors are very

common in Android platform. An app can request another suitable app to gain system services.

In fact, the suitable app is exercising its own permissions on behalf of the requesting app.

This is called permission re-delegation, where the requesting app indirectly obtains additional

permissions from the suitable app.

We propose a security framework UPPDROID to mitigate permission re-delegation attacks

in Android platform. UPPDROID leverages resource virtualization to allow the accesses to

the system resources that are guarded by Android permissions. It prevents the permission re-

delegation in Android ICC that can allow the sender to gain additional privileges from the

recipient. With the help of resource virtualization, the usability of this prevention mechanism

is enhanced.

In summary, we provide the following main contributions in this thesis:

1. We propose a series of solutions towards detecting and preventing component misuse

vulnerability caused by various aspects of complex computer systems in Windows and

Android platforms.

2. We provide a mechanism to explain how the uses of software components are affected

by different settings of complex computer systems. We detect real world binary loading

6

vulnerabilities in Windows and provide explanations of the causes.

3. We provide a mechanism to explain how software component behaviors are affected by

component interactions from complex computer systems. We detect real world ActiveX

API misuse vulnerabilities in Internet Explorer in Windows.

4. We prevent the misuses in component interactions and preserve the usability in software

components. We apply this idea to prevent privilege escalation in Android platform and

API-misuse attacks in ActiveX controls in Windows.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 gives background knowledge on

Windows and Android platforms. We also show and discuss existing security mechanisms in

Windows binaries, ActiveX and Android component interactions. We further discuss existing

solutions for vulnerability detection and attack path analysis. We present our LDRSCOPE sys-

tem on understanding binary loading behaviors in Chapter 3, which shows how system settings

affect component behaviors. Chapter 4 presents our work on detecting and preventing API-

misuse vulnerabilities, which shows how component interactions affect component behaviors.

Chapter 5 presents our prevention mechanism of component misuses in Android platform. Fi-

nally, we conclude the thesis and discuss the future work in Chapter 6.

7

Chapter 2

Background

In this chapter, we introduce the background for the rest of the thesis. We discuss the design

of the Windows and Android platforms, where our solutions are applied. We introduce the

main security mechanisms on these platforms. We also survey the existing techniques, such

as vulnerability detection and attack path analysis. They are related to our solutions in identi-

fying the misuse of components. In general, the component misuse problem addressed in this

thesis concerns partly the “intentional, non-malicious flaws”, which is caused by functional re-

quirements that are written without regard to security requirements, and partly the “inadvertent,

identification/authentication flaws”, which allows a protected operation to be invoked without

sufficiently checking, based on genesis discussed by Landwehr et al. [79]. In another word, the

functionality of the software component may not contain malicious purpose, but, they are used

in an unsafe way. The component interactions can cause unexpected behaviors by the designers

in the software components.

2.1 Windows Binary and Components

The Windows platform has a number of ways in using software components, especially the

binaries. We present the basics of Windows binaries and components, such as ActiveX controls.

We also discuss how binary loading works for Windows in this section.

Windows Binaries. Windows binaries are the essential units of programs, forming the

basic software components in Windows platform. These binaries are in the format of portable

8

executable (PE). This format is a data structure that contains the information for the loader of

the OS to manage the executable code encapsulated inside. It contains code, dynamic library

references, API import and export tables, thread local storage (TLS) data and resource data.

This format is used for executables, dynamic link libraries (DLLs) and device drivers, etc. The

PE format is a modified version of the Unix common object file format (COFF). Usually, a PE

file comprises of various headers and sections used for mapping the file into the memory by the

dynamic linker. The sections are specified to contain data or code, and can be mapped as either

execute/read/write or not. One of the sections is the import address table, which contains APIs

used by this binary from other binaries.

Binary Loading. Programs commonly load binaries in addition to its own executable.

In Windows, such binaries come in various forms such as DLL, DRV (driver), CPL (control

panel), etc. We classify binary loading behaviors into system loading and program loading.

System loading describes the loading by the operating system to load the program main exe-

cutable and the loader component. Windows loads the loader component, NTDLL.DLL, for

every its programs, as such it is system loading. Program loading describes the loading of

binaries after the system loading. For example, when IE needs an ActiveX control, it loads

the binary dynamically after its main executable and loader is loaded. Different operating sys-

tems have different APIs used for loading binaries. Windows offers the CreateProcess family

of APIs to perform system loading. Programs invoke the LoadLibrary family of APIs to load

binaries, afterwards. In Unix-like systems, programs invoke dlopen and uselib to perform pro-

gram loading. The exec family of functions is used to load executables together with the loader

(ld.so). Many of these APIs support loading binaries with either a full path or a relative path.

When a relative path is used in these APIs, there are mechanisms to locate the full path of the

binary according to the operating system defined order. This is called “binary search order”.

Table 2.1 shows the effect of the safe binary search order of LoadLibrary versus the default

binary search order in Windows. The difference between the orders is that the directory set by

the SetDllDirectory API is searched instead of the current working directory to give a sense of

safety to binary loading.

Other than the search order, various settings can also affect the loading behaviors. In Win-

9

Table 2.1: Binary Search Orders of LoadLibrary

LoadLibrary Safe Order LoadLibrary Default Order
1.main program directory 1.main program directory
2.directory set by SetDllDirectory 2.CWD
3.system and 16-bit system directories 3.system and 16-bit system directories
4.Windows directory 4.Windows directory
5.Environment Variable PATH 5.Environment Variable PATH

dows, there are many factors affecting the binary loading. System settings, such as environment

variables and registry keys, also affect the binary loading behaviors. In program loading behav-

iors, the factors can be quite arbitrary, for example, the program may use file names and paths

from configuration files. We can characterize these factors into four general types:

• system settings, e.g., search order;

• environment settings, e.g., environment variables, registry keys, etc.;

• binaries, e.g., a binary can cause other binaries to load; and

• data used to load binaries which can come from files, e.g., configuration files.

The loading behavior of a binary can be directly or indirectly caused by a factor, e.g. a binary

is loaded because its path is in the search order. For example, a configuration file contains

the name of a binary for a program to load, and the location of this configuration file is stored

in a registry key. The loading behavior then is directly caused by the configuration file, and

indirectly caused by the registry key.

2.1.1 ActiveX

ActiveX is a framework for defining reusable software components in a programming language

independent way in Windows. It was introduced in 1996 by Microsoft and is commonly used

in its Windows operating system. Many Windows applications, such as Internet Explorer (IE),

Microsoft Office, Microsoft Visual Studio, and Windows Media Player, use ActiveX controls to

build their feature-set. They also use these controls to encapsulate their own functionality that

can be embedded into other applications. ActiveX controls are widely used in the web browser

application, such as IE. IE allows embedding ActiveX controls onto web pages to enhance the

10

functionalities from the website. Examples include customized applications for gathering data,

viewing certain kinds of files, and displaying animation.

ActiveX Security. Digital signature is the basic security mechanism in ActiveX itself. Dig-

ital signing tells users where the control came from and verifies that the control has not been

tampered with since its publication. Killbits, which are simple registry flags that instruct the

browser not to load the specified control, is another ActiveX security mechanism. The advan-

tage of killbits is that they can easily be set with a simple registry modification. Implementing

the IObjectSafety interface with Safe for Initialization and Safe for Scripting properties is an

ActiveX security mechanism checked by the browser. Before loading the control, the browser

will verify if the control is safe for initialization and scripting.

IE has an Add-on manager to manage the usage of the ActiveX controls and the safety of

these plugins. This manager controls how an ActiveX functions through custom level settings.

Many more mechanisms are introduced when updating the browser. ActiveX opt-in deactivates

most ActiveX controls by default. When the user encounters a webpage with a disabled Ac-

tiveX control, the user can choose to enable the ActiveX control from the prompt information

bar. Trusted sites let user to set web site where ActiveX controls can be used freely without

any prompt. Per-user ActiveX assures that not only administrator but also common users can

install ActiveX for their own profile. Per-Site ActiveX helps preventing malicious repurposing

of controls, where an information bar appears asking the user whether or not the control should

be permitted to run on the current website.

ActiveX security mechanisms are based on the trust in the controls. These mechanisms do

not guarantee the safe usage of the ActiveX control. Even if the designer claims the safety of

the controls, it may not be safe. Browser settings involve user interactions to specify whether

an ActiveX control is trusted. This pushes the decision making of security to the users, which

is not reliable. In addition, these mechanisms either allow the usage of ActiveX controls with

full trust or completely deny the usage if the trust is not given. In summary, both the ActiveX

control side mechanisms and the browser side mechanisms are based on the user trust and have

a coarse grained granularity of control.

11

Figure 2.1: Android Architecture

2.2 Android

In this section, we introduce the basics of Android platform and its security mechanisms. An-

droid has a heavy use of component interactions, and it has specific rules on how components

interact with each other. We first introduce its architecture, permission model, component types

and component interactions. Most of the discussion in this part is adopted from the official An-

droid resources [2]. Then, we discuss the existing works on Android component interactions.

Android Architecture. As illustrated in Figure 2.1, the Android software stack layout

has four levels, operating system, middleware, application framework and applications (apps).

Android is a Linux kernel-based platform. On top of the kernel is the middleware. It contains

various native libraries written both in C/C++ and Java, and Android runtime, which includes

the Dalvik Virtual Machine (DVM) similar to Java Virtual Machine (JVM). The libraries at

this layer provide various accesses to native functionalities, such as OpenGL and libc, for the

12

upper layer. At the application framework layer, Android provides well-defined interfaces for

Android apps to manager various system resources, such as GPS locations and contact lists. At

the application level, each Android app runs in a separate DVM. Android apps are written in

Java, and some may contain native code, using Java Native Interfaces (JNI).

Android Permission Model. The Android operating system is based on Linux. Each

app is a different user with a unique Linux user ID. The system implements the principle of

least privilege by limiting each app within a sandbox1. The main security feature of Android

platform is provided through the Android permission mechanism. It enforces access controls

on the specific operations that a process can perform, and also enforces per-URI permissions

for access to specific pieces of data. The basic point of the Android security architecture is

that no app has permission to perform operations that can adversely impact other apps. Apps

must explicitly share resources and data by declaring the relevant permissions in a manifest

file. When installing the app, users decide whether to grant the permission in the manifest file,

or deny the request as well as the installation. The enforcement of permissions happens at the

process level, where the system will invoke APIs to check the permissions of the operations.

Android Components. Android apps are made of four types of Android components, with

each also working as an entry point to the app. Each type of the components is designed with

a distinct goal and a life cycle specifying how the component is created and destroyed.

Activities: an activity is a single screen with a user interface to offer a specific functionality

usually requires user interactions. For example, the screen to take photos is a single activity in

a camera app. They can be started individually, and can work together with each other to form

a cohesive user experience.

Services: a service runs in the background to perform long-running operations or to per-

form work for remote processes. It does not have a user interface. It is quite similar with

background service programs in desktop platforms. For example, checking incoming emails in

the background is usually implemented as a background service.

Content providers: a content provider manages the set of app data which can be shared

with other components or apps. The data is stored in any form of persistent storage locations

1This is Android-specific sandbox using Android permissions, unlike Unix ones.

13

on the device or on the web. Other components can query and modify the data through the

content provider component with a proper permission. The contact list in the Android phone is

a typical system content provider.

Broadcast receivers: a broadcast receiver responds to system-wide broadcast announce-

ments. These broadcasts can be from the system or the apps. It does not create any user

interface, but can create a status bar notification instead. Usually, these receiver components

work as a “gateway” to other Android components. For example, email managers can register

broadcast receivers to be informed when there are incoming email notifications.

Android Inter-component Communication. Android inter-component communication

(ICC) is a unique component interaction that allows one app to start another app’s component.

For example, suppose a user want to use an SMS app to send a photo. Instead of developing

an activity to capture a photo in the SMS app, the SMS app can simply start the activity in the

camera app for capturing photos. After the photo is captured, it is returned to the SMS app for

sending. From the user’s point of view, it seems that the camera is actually part of the SMS

app. The design goal of the Android ICC is to share system resource and app functionalities.

When the system starts a component, it starts a process for that app (if it’s not already

running) and instantiates the classes needed for the component. Apps do not directly start

another component. The Android system can activate a component in another app instead.

One app must specify an “intent” to start another component sending to the system. Intents

bind individual components to each other at run time. It defines a message to activate either a

specific component (explicitly) or a specific type of component (implicitly).

Unlike the other three types of components, content provider is not activated by intents.

Rather, it is activated when targeted by a request from a ContentResolver. The content resolver

handles all direct transactions with the content provider so that the component that’s performing

transactions with the provider invokes methods on the ContentResolver object.

2.2.1 Android Security

Android platform is a component concentrated environment. Android ICC allows permission

re-delegation, where an Android app requests another suitable app to deal with certain tasks

14

using the permissions from the suitable app on its behalf, e.g. through an intent. Because of

the misuse in these interactions, privilege escalation can happen to affect Android apps or even

the system, when the request handling app gains the privileges (permissions) of the requesting

app.

Permission Re-delegation Analysis and Mitigation. One approach to analyze these prob-

lems is running static analysis. ComDroid [42] uncovers possible unintended consequences

of exposing certain app components. It only detects vulnerabilities within the components.

Woodpecker [65] finds all paths and prunes infeasible paths using reachability analysis. It has

similar limitations as the ComDroid by finding only vulnerabilities within certain components.

CHEX [85] additionally detects cross-component vulnerabilities. SEFA [123] uses provenance

analysis to determine the impact of vendor customizations on security of the Android platform

and cross-app vulnerabilities. It is similar to Woodpecker and CHEX. These static approaches

do not handle dynamic codes in apps, which makes them incomplete in identifying permis-

sion re-delegations. Most of them focus on the problems within the components, ignoring the

interactions among the components.

To mitigate the potential threat caused by permission re-delegation, run-time approaches [36,

51, 57] either check IPC call chains or monitors the run-time communication among apps.

Saint [97] examines the interfaces one app exports to another and extends the Android frame-

work to enforce inter-app security policy at install and run time. Meteor [29] explores the

security of multi-market app ecosystem and proposes a new app installation model to retain

the original single-market security semantics, e.g. kill switches or developer name consistency.

Other approaches use virtualization techniques [24, 80] to solve the problem. These works

will be discussed in Chapter 5. MoCFI [50] implements a control-flow integrity enforcement

framework for apps but on iOS platform.

Permission Usage Analysis. Many approaches attempt to provide a better understanding

of how Android permissions are used. These studies help to identify the Android apps that can

potentially cause privilege escalation. VetDroid [131] uses dynamic taint analysis to check how

Android apps use permissions to access system resources and how these permission sensitive

resources are further used in the apps. Pegasus [41] uses static analysis to build a permission

15

event graph, which shows the permissions needed by an app from one state to another state.

Vidas et al. [116], PScout [25] and Stowaway [56] all study the problem of over-privileged

third party apps and provide permission mappings to the system. Barrera et al. [30] study the

permission usage patterns of third party apps by applying self-organizing maps. There are

works focusing on inferring certain security-related properties about apps based on requested

permissions. Kirin [54] looks for hard-coded dangerous combinations of permissions to warn

the user about potential malware. Sarma et al. [106], Peng et al. [103] and Chakradeo et al. [39]

use machine learning techniques to automatically classify apps as potentially malicious based

on the permissions they seek.

Permission System Enhancement. Many approaches focus on extending the Android per-

mission system to enforce fine-grained control at run-time. These approaches are such as al-

lowing a user to authorize partial permission and revoke granted permissions on demand [93];

enforcing usage control based on system context, e.g. device location [28]; offering a pri-

vacy mode to enable dynamic management of privacy-related permissions [132]. These ap-

proaches [28, 93, 132] generally require the users to have a good understanding of permissions

as well as policies. Other approaches focus on enhancing install-time permission assignment

such as: detecting undesired combination of requested permissions [32]; mapping Android API

to permission labels and detecting permissions over-privilege [33]. However, malicious apps

may request permissions that may not trigger such detection systems. Crussell et al. [45] en-

force control on both install-time permission assignment and run-time permission usage; but it

also imposes on the app developer to specify policies, which requires a large amount of effort

and the policies can be error prone.

2.3 Vulnerability Detection Techniques

Both static and dynamic analyses are applied to vulnerability analysis of software programs.

Static analyses [22,44,58,81] are usually conservative and sound but less precise than dynamic

analyses and testing [90, 94, 111, 117]. Their complementarity is well studied [55, 64], and

they can also be combined [64,66]. Static analyses [22,44,58,81] analyze a program statically

16

without ever executing the program. In contrast, dynamic analyses [38, 62, 63, 73, 90, 94, 111,

117, 128] are typically based on runtime tracing and are precise. Especially, they usually do

not require source code of the analyzed program, and can deal with many dynamic program

features, e.g., dynamic code. In this section, we focus on what has been found to be gener-

ally effective approaches, namely, fuzzing and dynamic program testing. They are related to

our techniques in identifying a component misuse vulnerability. Furthermore, the exploration

testing discussed in Chapter 3 is inspired by these techniques.

Vulnerability detection techniques have been well explored. In general, most of these

approaches focus on detecting buffer overflows, memory corruption errors and integer over-

flows [22, 34, 37, 44, 58, 81, 90]. These approaches are proved to be effective in detecting such

vulnerabilities; yet, they do not focus on the vulnerabilities that are through the normal func-

tionality provided by the software programs, which is a typical cause of the component misuse

problem.

Fuzzing and program testing techniques [60, 114, 127] are widely applied to find security

vulnerabilities in software programs. These techniques can be applied easily to already de-

ployed software [89]. Fuzzing techniques have successfully revealed many severe software

vulnerabilities. The main idea of these techniques is to test the program with specific input

data, or even malformed data, and check whether some behaviors are triggered or if the pro-

gram crashes. Fuzzing and program testing techniques can be applied not only in detecting fault

and defect of program itself, but also in security applications. For example, fuzzing can be used

in intrusion detection systems [72], web application scanning [31, 68] and even analyzing the

configurations of software components [47].

Modern fuzzing and program testing techniques cooperate heavily with other program anal-

ysis techniques to improve the result of the analysis. One direction is to apply symbolic-

execution to make the fuzzing and testing more intelligent. This idea is widely implemented

in a large amount of research work. For instance, DART [62], SAGE [63], and EXE [38] are

based on dynamic symbolic execution. They use symbolic values instead of concrete input data

to produce abstract conditions over program variables that the concrete tests satisfy during the

execution. They have been effectively applied to applications with structured inputs. Godefroid

17

et al. [61] apply a similar technique with input symbolic grammar specification in detecting vul-

nerabilities in many shipped Windows applications. Another direction is to apply taint-analysis

to direct the fuzzing and testing process, which also makes the convergence process of finding

specific input quicker than using simple testing techniques. BuzzFuzz [59] applies taint analy-

sis, which requires program source code. TaintScope [117] is another application of this idea

to detect overflow vulnerabilities in programs, which does not need source code.

Fuzzing techniques not only detect vulnerabilities, but also find and help to recover file

contents and file formats. File formats fuzzing [113] can be applied to improve identification

of configuration files among all the files accessed in a program. Tupni [46] is a tool to reverse-

engineer an input format with a set of information based on the observation that applications

usually process iterative data records in loops. It can identify record sequences and types in

input data, and even detect different types of constraints on the values. Our testing strategy

discussed in Chapter 3 for detecting the binary loading vulnerability is inspired by such ideas.

2.4 Execution Paths and Attack Paths Analysis

In this section, we survey different techniques to detect and analyze hidden software vulner-

abilities. They are related to our detection mechanism discussed in Chapter 4. These works

focus on analyzing program execution paths and attack paths. Analyses in program execution

paths focus more on the completeness of behaviors in program execution, whereas analyses in

attack paths and graphs focus more on the reachability of different parties involved in certain

system interactions.

Analyses in execution paths [92] and code paths [115] provide a more complete picture of

the software actions, and even indicate the specific environmental cause of the vulnerabilities.

These analyses explore multiple execution paths and identify hidden behaviors when certain

conditions are met.

Analysis in attack paths from attack graphs is a generic method to provide security assess-

ment of the computer systems, especially computer networks. One direction is to study the

system state, when analyzing attack graphs. Hierarchical aggregation [95] of elements is con-

18

sidered in these attack graphs. Graph based model checking [108] provides an integral global

view of network, where security is assessed by constructing attack graphs in an automated way.

Reverse reachability analysis [69] is applied for the safety between servers and clients. At-

tack tree models [91] are utilized to describe known attacks and test the security properties of

protocols, where the attackers are emulated by using a fault injector. Another direction is to

study the causality relations between the system conditions in the form of attack dependency

graphs [23, 96, 100]. The research work of MulVAL logical attack graph [100] proposes to

study the logical dependencies among attack goals and configuration information in identify-

ing security vulnerabilities in enterprise networks.

Our detection mechanism in identifying API-misuse vulnerability is inspired by this area of

research, to discover paths on a different level. We focus on detecting attack paths from normal

behaviors of the software components.

19

Chapter 3

Detecting Binary Loading Vulnerabilities

3.1 Introduction

In this chapter, we introduce the problem how various system settings in a complex computer

system affect the behaviors of the software components, which can lead to security problems

such as binary loading attacks. We propose a solution to detect the dependencies in these

component behaviors on the system settings and identify the security impact caused by the

misuse of software components. The component misuse discussed in this chapter is insecure

binary loading, or binary loading attacks.

Binary loading is a basic operating system functionality that is extensively used in software

components. To run a program, the operating system loads the program’s binary components

into memory, preparing them for execution. A running program, can also dynamically load

libraries to extend its functionality. We use binary to refer to the main executable of the program

and any other binaries which it loads. In Windows, binaries are dynamic link libraries (DLL),

drivers, control panel applets, etc.

Binary loading gives flexibility to software developers and the operating system but it also

leads to opportunities for attackers to exploit a program. If attackers can get their malicious bi-

nary to be loaded, they can get arbitrary code execution. Hence, a binary loading vulnerability

is often a critical vulnerability.

Binary loading is affected by many factors in complex computer systems, such as system

20

settings and program configurations. For example, the search path in Windows directly controls

how the absolute path of a dynamic-loadable library (DLL) is resolved. Based on the order of

directories in the search path, Windows searches those directories for the desired DLL. Such

factors are popular targets used by attackers to get an arbitrary code execution exploit. By

the first quarter of 2012, Microsoft published 27 patches [3] for binary loading vulnerabilities.

Furthermore, a third-party advisory [4] identified more than 334 vulnerabilities across 122

vendors in Windows applications. Related problems [48,98,99] are found in Linux and Android

[104].

To prevent malicious binaries from being loaded, one solution is to identify or confine

untrusted binaries [101, 124] but this does not prevent unexpected binary loadings. A better

way is to identify vulnerabilities in binary loading behaviors. Several solutions [76–78] analyze

how a program resolves path names using static or dynamic analysis. They focus on analyzing

the result of path resolution process for each binary loading behavior in the system. However,

path resolution is only one factor affecting binary loading behaviors; these methods can fail

to detect vulnerable loading behaviors relying on other system factors. To better understand

software dependencies, data dependency analysis [26] and dynamic tainting analysis [94] have

been proposed. However, these dependency analyses do not handle the complexity of software

binary loading behaviors. For example, binary loading on Windows is commonly controlled by

a combination of configuration files and registry keys.

In this chapter, we introduce a novel approach, LDRSCOPE, which can comprehensively

explain binary loading behaviors in Windows in a simple fashion. The core of our approach

combines data dependency and system dependency to identify the factors affecting the loading

behaviors. Based on dynamic program behaviors recorded during execution, the combined de-

pendency analysis accurately identifies all the attacker-controllable factors of a binary loading.

LDRSCOPE generates a loading dependency graph (LDG), which clearly identifies the factors

that cause and control binary loading and also flags vulnerabilities detected. What distinguishes

our work is the emphasis on understandable explanations – explaining the interactions of binary

components and system settings that control binary loading. One reason why binary loading

vulnerabilities are common is that software developers do not fully understand the system in-

21

teractions, which can involve more than just their own code. It requires a comprehensive under-

standing of Windows, such as how various types of Windows libraries and third party libraries

work and interact with one another. In addition, configuration files may also result in binary

loading behaviors, which are complex and can be misunderstood by the developers. Our graph

explanations and vulnerability analysis fill this gap.

We evaluated a prototype of LDRSCOPE in Windows on 34 real-world applications finding

24 binary loading vulnerabilities with attempts to load missing binaries. We identify 9 appli-

cations using configuration file unsafely, and 3 of them lead to loading vulnerabilities caused

by configuration files. Among the loading vulnerabilities, LDRSCOPE precisely identifies the

binaries that need to be fixed. We present several use cases of the LDG to help software devel-

opers. Using our approach, we not only provide precise analysis on how software component

behaviors are affected by system settings and other aspects of a complex computer system, but

also help the developers fixing their applications in loading binary components.

3.2 Binary Loading

Loading behaviors are program behaviors that invoke APIs (explicitly or implicitly) to load

binaries. Windows offers the CreateProcess family of APIs to load the executables and

ntdll.dll. Programs invoke the family of LoadLibrary functions to load DLLs. Many

of these APIs support loading binaries with either a full or relative path. When a relative

path is used, there are mechanisms to locate the binary using a set of search paths accord-

ing to OS-defined order, which is called binary search order. For example, in Windows,

LoadLibrary with the default search order searches the following locations: main program

directory, current working directory (CWD), system directories, Windows directory, and direc-

tories in the environment variable PATH. Developers can apply a “safe binary search order”

using SetDllDirectory to change the second location CWD to their directories.

We call the underlying reasons that determine how and why binaries are loaded as loading

factors. Typically, a loading factor comes from the environment that the program runs in. For

example, a string in the executable specifying a DLL can lead to the DLL being loaded; hence,

22

the executable becomes a loading factor. However, the loading might also be caused by data

that comes from the command line or a registry key. Changing the loading factor will affect the

binary loading behavior. We summarize the typical loading factors in Windows (abstractions

of actual operating system objects or entities): file factors are data files; registry factors are

registry keys; binary factors are binaries; and program environment factors (PEB: Program

Environment Block) which is a special data structure in a Windows process. The PEB helps

interface the process with the Windows operating system and includes the current working

directory, main program directory, system directories, environment variables, command-line

inputs and binary search order. A detailed discussion on binary loading and the loading factors

can be found in Section 2.1.

3.2.1 A Motivating Example

The loading behavior of programs can have complex interactions between the loading factors.

We illustrate the problem of binary loading with an example.

IDA Pro is a commercial disassembler and debugger. It loads a graph rendering compo-

nent specified by the GRAPH VISUALIZER option in a default configuration file ida.cfg

to visualize flow charts. This setting can be overridden by an optional user configuration file

idauser.cfg. The ida.cfg configuration file is safe as it is usually not controllable by the

attackers. However, IDA Pro searches and loads the optional user configuration file from the

current working directory. This may result in the following binary loading attack (in version

5.5):

• An attacker sets GRAPH VISUALIZER to a binary payload d:/malicious.exe;

• The attacker places both the configuration file idauser.cfg and the payload in a net-

work shared folder, e.g. d:/ in the victim’s system;

• IDA Pro is started in d:/ by opening a supported file which uses the graph rendering

component;

• The binary malicious.exe is loaded and executed.

23

Here, among others, the critical loading factor is the configuration file idauser.cfg, a

clear identification and understandable explanation of loading factors will show that the soft-

ware has an insecure feature, which will either need to be modified or disabled. It also illustrates

that software developers need to understand software configuration issues. Tools to identify and

explain the issues will lead again to more secure program development.

The example illustrates the complex behaviors, which can lead to complex interactions with

loading factors, and give an idea why such vulnerabilities may be lurking in the codebase. It is

not easy for software developers to even realize that they have binary loading vulnerabilities,

let alone to fix the problem.

3.2.2 Loading Dependencies

From analyzing the above example, we learn that loading factors, e.g. configuration file ida-

user.cfg, determine the loading of the malicious binary malicious.exe. IDA Pro reads

the data (the string GRAPH VISUALIZER=d:/malicious.exe) from the configuration

file to the memory buffer. It parses this memory buffer and calls LoadLibrary to load the

binary. The data is copied from the file (loading factor) to the memory and finally passed to

the loading API as an argument, which we call the loading argument. For example, a typical

loading argument in this example is d:/malicious.exe (a string in the memory) used by

the LoadLibrary API. We can see the loading factors affect the loading behaviors through

propagating data in memory. The copying or passing of data in memory involves instructions,

such as mov. Figure 3.4 gives more details of this example. Here we briefly describe features

of the example:

• The file data is first read to the memory region at 0x008fd620;

• Then, the file data is copied to the memory at the address 0x0089ba8a;

• Finally it is passed in the register eax as the argument of a loading API invocation (call

[API OFFSET]).

Thus, there is a data dependency from the loading argument to the loading factor at the

instruction level. To understand how and why a loading behavior happens, we need to recover

24

this data dependency by tracking back from the result (loading behaviors) to the cause (load-

ing factors). Intuitively, a straightforward solution is to apply some form of data dependency

analysis [26] on the loading argument at the instruction level.

A memory region, such as 0x008fd620, recovered from the data dependency analy-

sis is not a useful explanation of loading behaviors. There exist other dependencies from

the loading behaviors, which cannot be resolved alone by the data dependency analysis. In

the above example, IDA Pro reads a default configuration file for the user configuration file

path d:/idauser.cfg, and from this string, it reads the file into the memory region at

0x008fd620. There is a dependency from the memory region representing the file buffer

of idauser.cfg to the string representing the file path d:/idauser.cfg of idauser-

.cfg. This dependency is not directly through data. Instead, it is at the system level, which

we call “system dependency”. To detect these dependencies, we need a different form of anal-

ysis other than the data dependency analysis. Thus, we introduce system dependency analysis,

which investigates various entities at the operating system level, such as file handles (i.e. Win-

dows equivalent of Unix file descriptors). Direct data dependency analysis can link the loading

argument d:/malicious.exe to a memory region at 0x008fd620. System dependency

analysis then resolves this memory region to a file buffer and links it to a string idauser.cfg

representing the file path in the memory. Subsequent data and system dependency analysis can

recover that this file path is dependent on another default configuration file ida.cfg. Step by

step, all the dependencies of the loading of the binary malicious.exe can be fully recov-

ered by these analyses to find all the loading factors in an execution.

In this chapter, both data dependency and system dependency of the loading behaviors are

called “loading dependencies”. We combine data dependency analysis and system dependency

analysis as “loading dependency analysis”. It provides a more comprehensive explanation of

the loading behavior to the developers, where all the loading factors either directly or indirectly

affecting the loading behaviors are shown. The tool we developed is LDRSCOPE. It has the

following design objectives:

• Comprehensive Explanation of Loading Behaviors. The comprehensiveness in this

chapter does not mean the approach is complete, rather, it describes that our approach

25

Program Test Suite

LDG Generation

System
Dependency

Analysis

Data
Dependency

Analysis
Trace

Program Tracing

LDG

Figure 3.1: Structure of LDRSCOPE

not only detects loading behaviors, but also explains why and how the loading behaviors

happen. The reasons or the factors should be easy to understand as we described in the

previous discussion.

• No Source Code Requirement. Due to the closed source nature of Windows system,

we assume the binaries to be analyzed do not come with any additional information, e.g.

symbol tables. This means no complete source code is provided. Although developers

can use their own source code to analyze their binaries, this is not required for a typical

binary analysis. In summary, given a binary without additional information, LDRSCOPE

can perform dependency analysis correctly. Dynamic analysis is more effective to be

applied to this problem than static analysis. Without source code, static analysis faces

a challenge of correctly disassembling the binaries, which also contains many dynamic

program features, e.g. dynamic code. In Windows, system features such as heavy use of

kernel callbacks further complicate static analysis. This usually leads to either accuracy

problem or effectiveness problem.

• General Usage and Visualization. It should provide general usages for the developers

to understand the loading behaviors. It should also be able to identify the binary loading

vulnerabilities we discussed in the previous sections. It should provide a readable expla-

nation in the form of visualizations showing how the loading behaviors come up in the

system. This is useful for both the developers and security analysts.

26

3.3 Design

We now describe the design of LDRSCOPE, whose goal is to explain binary loading behaviors

and evaluate the security of binary loading in Windows. In the previous discussion, we attribute

the binary loading behaviors to loading dependencies. The key to solve the binary loading prob-

lem is to identify these loading dependencies. We define a loading dependency graph to visual-

ize these loading dependencies. To identify these dependencies, we apply dynamic dependency

analysis of both program data, i.e. memory, and system states in LDRSCOPE. Overall, it con-

tains two stages, program tracing, and loading dependency graph (LDG) generation shown in

Figure 3.1. LDRSCOPE first applies dynamic program tracing on the program where test suites

exercise its normal behaviors. It records the program’s execution and generates an instruction

trace. From the trace, various system information, such as binary loading behaviors and opera-

tions on the system objects, e.g. opening and reading of files, is extracted by identifying system

calls and system APIs. Then, LDRSCOPE applies and combines data dependency analysis and

system dependency analysis on the data collected in the program trace, and outputs LDGs to

visualize the loading dependencies–the dependency from the loading behaviors to the loading

factors. Although the approach in this chapter focuses on Windows, the core design ideas can

be modified for other operating systems. We describe what is an LDG and how the LDG is

generated, and finally show how loading behaviors can be studied through these LDGs.

3.3.1 The Loading Dependency Graph

To provide comprehensive understanding of program loading behaviors, we introduce loading

dependency graphs. It visualizes why and how a loading behavior happens. An LDG is a

directed acyclic graph showing the loading dependencies. We define a loading dependency

graph G as an ordered pair G = (V,E) where

• V is a set of nodes. More specifically, V contains Va and Vf , where Va are nodes repre-

senting the arguments to loading APIs and file pathnames, and Vf is are nodes represent-

ing the loading factors.

• E is a set of edges. More specifically, E contains Ed and Es, where Ed ⊆ Va × Vf , rep-

27

FILE(idauser.cfg)

d:/malicious.exe
(ida.wll->CreateProcessInternalA)

d:/idauser.cfg
(ida.wll->CreateFileW)

(0,15) ida.wll ntdll.dll

Figure 3.2: A Simple LDG

resenting the data dependency, and Es ⊆ Vf × Va, representing the system dependency.

Figure 3.2 shows a simple example of an LDG. The elements of an LDG are as follows:

• Rectangular nodes denote arguments to loading APIs, such as binary pathnames (e.g.

d:/malicious.exe) and file pathnames (e.g. d:/idauser.cfg). The target bi-

nary is the root node (the node at the bottom). The label of rectangular nodes shows

the binary and the API used to access the argument, e.g. label d:/idauser.cfg

(ida.wll→CreateFileW) indicates ida.wll invokes the CreateFileW API

to access the file d:/idauser.cfg. A notation loader→sysload is used to rep-

resent the system loading, where the OS kernel loads the program main executable and

the loader component. For example, the ntdll.dll is loaded this way.

• Oval nodes denote loading factors. The label of oval nodes shows the type and value

of the loading factor, e.g. FILE(idauser.cfg) indicates a loading factor, which is

FILE type loading factor, and the value of it is idauser.cfg.

• Edges with arrows denote the loading dependencies between nodes. The label of an edge

shows which characters of the string in the rectangular node argument are used in the

data dependency and the binaries of which the executed code leads to the data depen-

dency. More specifically, a label (l, h)B indicates values from index l to h of the data is

used through the code in binary B. For example, (0, 15) ida.wll ntdll.dll

shows the string d:/malicious.exe is used through the binaries ida.wll and

ntdll.dll.

28

An IDA Pro Example. A more complicated LDG of the IDA Pro example is shown in

Figure 3.3. To make it easier to understand loading dependencies, we use additional markings

on the LDGs in this chapter. The dash-lined edges form a path from the loading behavior to

a loading factor, indicating the loading behavior is unsafe if this loading factor is controllable

by attackers. The grey color highlighted loading factors that are unsafe and conditionally safe

(discussed later in Section 3.3.3). The binary that contains the code to load the target binary is

also highlighted in grey. There is a box to group binary factors from the same vendor.1 This

LDG shows the loading dependencies of the binary d:/malicious.exe. It also gives some

short form strings used as macros to shorten values in the LDGs in this chapter. By our design

and due to how Windows works, leaf nodes of an LDG can only be BIN, UNK and PEB loading

factors. The loading factors are discussed in Section 3.3.2.

3.3.2 Loading Dependency Graph Generation

To extract loading dependencies, LDRSCOPE applies data dependency and system dependency

analyses exhaustively on the traces from the program tracing stage, until it identifies all the

dependencies for a loading behavior. We call this step, loading dependency analysis.

Data Dependency Analysis

To know how loading factors affect loading behaviors, we apply data dependency analysis

to identify the loading factors directly affecting the loading behaviors in the traces collected

from program tracing. This involves identification of loading arguments and backtracking the

loading arguments from the effect to the cause (loading factors). During the identification of

loading arguments, we first find the invocation of the loading APIs by checking the address

of that API. We extract the loading argument from the point where invocation of the loading

API happens. The loading argument is in the form of a memory region Mt in the trace. Then,

we backtrack through this memory region Mt based on the data dependency. In the trace, an

instruction I can have a source operand s and a target operand t whose effect is that values from

s are written to t. The backtracking first locates the last instruction In whose target tn is Mt.
1Abridged LDGs omit this grouping of binaries and the binary involved in the data dependency on the label of

edges. We use abridged LDGs in the evaluation section to omit the details, where they are not discussed.

29

IDA PRO

d:/malicious.exe
(ida.wll->CreateProcessInternalA)

FILE(idauser.cfg)

(0, 15)
ida.wll
ntdll.dll

PEB:CWD(d:/)

d:/idauser.cfg
(ida.wll->CreateFileW)

(0, 2)
ntdll.dll

FILE(ida.cfg)

(3, 13)
ida.wll
ntdll.dll

c:/PF/ida/ida/cfg/ida.cfg
(ida.wll->CreateFileW)

BIN(ida.wll)

(29, 35)
ida.wll
ntdll.dll

PEB:MDIR(c:/PF/ida/ida/)

(0, 28)
ida.wll
ntdll.dll

c:/PF/ida/ida/ida.wll
(loader->sysload)

BIN(idaw.exe)

(25, 31)
ntdll.dll

PEB:ORDER(…)

(0, 24)
ntdll.dll

Figure 3.3: Loading Dependency of d:/malicious.exe

Then, it searches backwards in the trace for the closest instruction In−1 such that tn−1 equals

sn. The backwards search is repeated recursively until there are no more instructions in the

trace whose data dependency can be followed. And the source memory region Ms is recovered

from the source s1 of the first instruction in this backtracking.

As shown in Figure 3.4, we illustrate the basic operation of dependency analysis with a sim-

plification of the IDA Pro example in Section 3.2.1. Suppose in the execution, the LoadLibr-

ary API is called with the loading argument d:/malicious.exe. It resides in a memory

region starting from the address 0x001489a2. Each node in the figure uses the following

notation to describe the execution of the instruction extracted in the trace–[ic] pc: instruction:

• ic is the instruction counter

30

Table 3.1: Loading Factors for Windows

Type Description Value Memory Region
FILE files file path name file buffer
REG registry keys key name key value buffer
BIN binaries binary path name binary section
PEB:ORDER binary search order path names name buffer
PEB:MDIR main program directory path name name buffer
PEB:CWD current working directory path name name buffer
PEB:SYSDIR system directories path name name buffer
PEB:ENV environment variables variable pairs variable buffer
PEB:CMD command-line inputs input values string buffer
UNK untracked memory region memory address memory region

• pc is the program counter

• instruction is followed by the details of its arguments. In the node, the bottom lines show

the detail of each operand. The form is type “at” addr[value](access). type indicates

whether the operand is a register or a memory value. addr shows the memory address

of the operand, if it is a memory value, or the name of the register, if it is a register.

value shows the data in the operand. access indicates how the operand is accessed, either

read/write or both.

The value 0064 stands for the Unicode ’d’, which is the first letter in the loading argu-

ment. The bottom node (the 259311580th instruction in the trace) is a mov instruction. It

reads the value 0x64 (‘d’) from the register ax and writes to address 0x001489a2 (whose

original content is 0x4e). Therefore, there is a data dependency to the instruction in the mid-

dle node (the 259311577th instruction), which depends on the upper node (the 259309246th

instruction). Thus, the first letter of the loading argument d:/malicious.exe is traced

back to the rep movsd instruction and the memory region starting from 0x008fd620. The

dependency between the final target (bottom) and original source (top) is shown in Figure 3.5a.

System Dependency Analysis

As discussed in Section 3.2.2, we also need to deal with the indirect dependency from the data

to the binary loading API in a program. The pure data dependency analysis leads us from

a memory region to another region, which does not provide a comprehensive way of loading

31

Algorithm 1 Hybrid Dependency Analysis
1: procedure ADDSOURCEOPERAND(insn)
2: for operand in insn.src do
3: ListAdd(operand, listvar) . listvar stores the operands with data dependency
4: ListAdd(operand.memregindex, listvar) . for table look-up operations
5: end for
6: end procedure
7: procedure DATADEPEND(insntarget) . insntarget contains the target variable
8: AddSourceOperand(insntarget)
9: while GetPrevInsn(trace, insn) = TRUE do

10: for operand in insn.dst do
11: if ListLookup(operand, listvar) = TRUE then
12: ListDelete(operand, listvar)
13: AddSourceOperand(insn)
14: end if
15: end for
16: end while
17: end procedure
18: procedure ADDRELATEDADDR(listvar)
19: for operand in listvar do
20: if IsRootOperand(operand)&&IsMemAddr(operand) then
21: ListAdd(operand, listaddr) . listaddr stores the memory address with data

dependency
22: end if
23: end for
24: end procedure
25: procedure SYSDEPEND(addr, table)
26: obj ← ResolveV irtualObject(addr, table)
27: if obj.name arg = NULL then
28: ListAdd(obj, listfactor) . listfactor contains all the loading factors
29: else
30: ListAdd(obj, listfactor)
31: HybridDepend(obj.name arg, trace)
32: end if
33: end procedure
34: procedure HYBRIDDEPEND(arg, trace)
35: insntarget ← GetArgInsn(arg, trace) . gets the instruction containing memory

variable of the loading argument
36: DataDepend(insntarget)
37: AddRelatedAddr(listvar)
38: for operand in listaddr do
39: SysDepend(operand, table)
40: end for
41: end procedure

32

[259311580] 100df0c9: mov	

 %ax,0xffffffff(%edi)

R@ax[0x00000064](R)
M@0x001489a2[0x0000004e](W)

[259311577] 100df0c1: mov	

 (%ecx),%ax

M@0x0089ba8a[0x00000064](R)
R@ax[0x00000064](W)

 %ax

[259309246] 100f9bf3: rep movsd	

M@0x008fd620[0x003a0064](R)
M@0x0089ba8a[0x6164693c](W)

R@ecx[0x00000004](RW)

 M@0x0089ba8a

Figure 3.4: Data Dependency Analysis

behaviors. We need the system dependency analysis to explain these memory regions as loading

factors and find more links to system settings and configurations.

To understand system dependency, we need a clear definition of loading factors, listed in

Table 3.1 with descriptions. Each loading factor has two properties, a value and a memory

region. The value identifies the system object that the loading factor represents, e.g. an absolute

path name for a file factor. The memory region describes the memory region associated to the

system object in the process, e.g. a file factor (FILE) has regions of memory as file buffers. In

Table 3.1, the untracked factors (UNK) are special factors recovered from the program trace,

which represent memory regions for which the origin is outside the program process being

traced. For example, process p can write to the memory of process q, which is one way of

doing DLL injection using the debugger APIs. From the viewpoint of process q, it will appear

as if certain source memory regions cannot be explained, actually it is due to process p but that

cannot be explained inside q alone.

System dependency analysis involves resolving of memory regions and linking of the load-

ing factors. During the resolving of memory regions, we resolve the memory region to its

33

0064

008fd620

d:/malicious.exe

…

(0, 15)

(a) Result of Data Dependency Analysis

0064

008fd620

d:/malicious.exe

…

File	

	

	

	

	

(0, 15)

d:/idauser.cfg

(b) System Dependency Analysis

Figure 3.5: System Dependency Analysis

loading factor. We extract the system object information from the program trace by investi-

gating the creation of these objects. Suppose in the investigation, we detect that a file with

pathname d:/idauser.cfg is created and loaded into memory ranging from m to m + n.

Then, a memory region ranging from m + i to m + j (0 < i < j < n) is resolved as a file

buffer F of the loading factor FILE d:/idauser.cfg. Note that the pathname (usually

used by the file creation API) stays in another memory region Fname. After that, linking of the

loading factors is applied, which is done by linking the memory region of a loading factor to

its value. Continuing the example, the file buffer F (memory region property) is linked to the

other memory region Fname representing the file pathname (value property). Fname and F do

not have data dependencies. Their relationship can only be identified by the system dependency

analysis. Now, subsequent data dependency analysis can be performed on this Fname to recover

more loading dependencies.

We describe the system dependency analysis with the same example used in data de-

pendency analysis. The loading argument d:/malicious.exe depends on the memory

region at 0x008fd620 shown in Figure 3.5a. Firstly, LDRSCOPE resolves this memory

region to a file loading factor (FILE) idauser.cfg represented as an oval node in Fig-

ure 3.5b. The edge label (0,15) indicates that the characters from offset 0 to 15 of the string

d:/malicious.exe (the whole string) depend on this factor. Secondly, LDRSCOPE links

this memory region to a file pathname d:/idauser.cfg – the value property. The result

of the system dependency analysis shows that the loading argument d:/malicious.exe

34

indirectly depends on a memory region representing the file pathname d:/idauser.cfg.

The loading dependency analysis is illustrated with Algorithm 12. Given a program trace

trace, a system object table table and an argument arg, HybridDepend extracts all the loading

factors that have loading dependency on this arg to a list listfactor. The table input is a mapping

of memory region to system object, e.g. a file object mapped to a memory region as a file buffer.

This table is generated by monitoring the system calls in program tracing. For example, we log

the open and read system calls to extract a file object and map it to the memory regions that are

used as file buffers by the read system call. We apply this for all the system objects3 defined as

loading factors and construct the system object table table. The argument arg can be a loading

argument, or an argument as a system object for system dependency analysis, e.g., a file object

or a registry key object.

More specifically, HybridDepend first identifies the target instruction insntarget using the

helper function GetArgInsn in Line 35. GetArgInsn extracts the instruction4 operating on the

loading argument arg (e.g., d:/malicious.exe), right before arg is used by the Load-

Library API call. Then, HybridDepend invokes the DataDepend procedure in Line 36, which

backtracks from the target instructions insntarget to the source instructions. From Line 7 to Line

17, DataDepend first adds the target instructions into the list listvar using the helper function

AddSourceOperand, which puts all the related source operands in an instruction into listvar.

Then, it compares the source and target operands of two consecutive instructions through the

trace using the while loop. The checking is made such that the listvar always updates itself

to the latest source operands with data dependencies. Note that the trace is only traversed

once from the target instruction to the beginning to extract the data dependencies in this proce-

dure. After that, HybridDepend invokes the helper function AddRelatedAddr in Line 37, which

checks whether the source operands are already loading factors or need further resolution. If

further resolution is needed, these operands are put as memory addresses into a list listaddr,

from Line 18 to Line 24. For each of these memory addresses in listaddr shown in Line 38, Hy-

2This is the pseudo algorithm. The real algorithm includes details on the operations of each byte of the memory
variables. We omit those details.

3We monitor different system calls for different system objects.
4For example, the push eax instruction, which pushes the loading argument onto the stack before calling

the library loading API.

35

bridDepend finally invokes the SysDepend procedure in Line 39 to apply system dependency

analysis. From Line 25 to Line 33, SysDepend invokes ResolveVirtualObject to resolves the

memory address addr to a loading factor by using the mappings in the table table. Line 27

shows the condition, whether the loading factor is final or leads to any other dependencies. In

both cases, SysDepend puts the loading factor into listfactor as a final result. If the loading fac-

tor leads to other dependencies, SysDepend applies a new round of loading dependency analysis

by invoking HybridDepend. Note that the HybridDepend procedure recursively invokes itself

by calling the SysDepend procedure.

The algorithm terminates when all loading factors are retrieved in the list listfactor. Let n

be the size of the trace, and s be the number of the system objects. The space complexity is

O(s+n), since a list of s memory addresses is maintained in memory. The time complexity is

O(sn), since s times5 of traversal from the target instruction to the beginning of the trace are

needed. Note that s is usually several orders of magnitude smaller than n. Given a trace, the

loading dependency generation is optimal since the lower bound of any analysis is to examine

the trace.

3.3.3 Loading Dependency Graph Inspection

An LDG helps to understand binary loading behaviors and identify binary loading vulnerabil-

ities. In the threat model of LDRSCOPE, we assume the attackers do not have direct access

to the victim’s system. Rather attacks6 exploit loading factors to get malicious code load-

ing/execution. The attackers may also convince users to install (implicitly trusted) programs,

which can affect loading behaviors. Based on this model, we classify the loading factors and

loading behaviors by the level of threats: safe, unsafe, and conditionally safe. For example,

a safe loading factor can be a directory that is private and not accessible to attackers under

our threat model, e.g. system directories and default program installation directories. Factors

such as PEB:CWD(c:/system32) and PEB:MainDir(c:/program files) are of

this type. Unsafe loading factors include directories that are public and accessible to attackers,
5The actual implementation of the algorithm traverses the trace only once, but checks the system object table

s times. The time complexity is still the same, but the actual implementation is more efficient.
6Other attack models are also possible, e.g. local attackers with restricted privileges on the system try to gain

the root access.

36

e.g. shared folders. Factors such as PEB:CWD(z:/shared) are considered unsafe. The

attacker can plant arbitrary binaries for a vulnerable program to load from unsafe locations. All

other loading factors are conditionally safe, which means if these factors are modified to be ac-

cessible by the attackers, the factor becomes unsafe. Programmers should be careful about how

they use such locations either in code, data or configuration files. LDRSCOPE highlights the

unsafe loading behaviors and warns for the conditionally safe loading behaviors. The intent is

to alert developers to binary loading vulnerabilities including the possibility that some loading

factors such as directories may be accessible by attackers under certain conditions.

We show a detailed analysis on the motivating example in Figure 3.3. We describe the LDG

from the bottom node to the top nodes step by step in the following discussion.

• The loading behavior of d:/malicious.exe (bottom node) depends on a file factor

with the path name d:/idauser.cfg. This is the user configuration file.

• The configuration file further depends on CWD factor PEB:CWD(d:/) and another file

ida.cfg. This indicates the use of the user configuration file is in current working

directory and is specified by the default configuration file ida.cfg.

• The file ida.cfg depends on the program main directory PEB:MDIR(c:/program

files/ida/ida/) and a binary ida.wll. This indicates that the default configura-

tion file is used in the program’s main directory and is specified by the ida.wll binary

component.

• ida.wll depends on the main program executable idaw.exe and the Windows binary

search order PEB:ORDER. This indicates that the main executable of IDA Pro loads its

component ida.wll by finding it according to the binary search order.

This loading behavior is vulnerable, because the loading factor PEB:CWD(d:/) (high-

lighted) is assumed to be unsafe.7 The dash-lined path indicates the loading behavior can be af-

fected by attackers using configuration file d:/idauser.cfg in the CWD PEB:CWD(d:/).

The vulnerability is caused by an unsafe use of the configuration file in CWD, just as we ana-

lyzed in Section 3.2.

7d:/ is unsafe because in the example setting, this directory is a shared directory that is accessible to attackers.

37

The above example demonstrates a typical usage of LDG to identify vulnerable binary

loading behaviors. Other than that, LDRSCOPE extracts more information into LDGs to provide

various use cases for the developers and analysts. We summarize them as follows:

• Vulnerability Provenance. A loading behavior usually depends on multiple binaries

that can belong to different vendors, e.g. some are shipped with the OS, some are

installed with the program and some are added as plug-ins and extensions. One us-

age of the LDG is to identify which of these vendors cause the loading vulnerabilities.

LDRSCOPE groups the binary factors in the LDG by vendors, and attributes the vulner-

ability to the binaries of these groups. For example, shown in Figure 3.3, the binary

ida.wll invokes CreateProcessInternalA to load the payload, which means

the loading code resides in the binary ida.wll. Another node shows ida.wll also

invokes CreateFileW to access the configuration file. LDRSCOPE highlights both the

binaries that load the payload and access the configuration file. It happens that the two

binaries are the same. Then, LDRSCOPE identifies that the problem is within IDA PRO,

as ida.wll belongs to this vendor.

• Configuration File Inspection. As shown in the IDA Pro example, many loading be-

haviors are exploited from unsafe usage of configuration files. LDRSCOPE can detect

the attempts to use configuration files in software components and find the dependencies

from the loading behaviors to the data in these files.

• Potential Loading Detection. Windows uses the binary search order to locate binaries.

When binaries are not present in the places specified in this order, the binary loading

can be failed. This failed binary loading is called a “loading attempt” in this chapter.

This loading attempt can be leveraged by attackers, where they can plant binaries in the

places specified in this attempt. Next time, the binary loading will succeed by loading the

binary provided by the attackers. LDRSCOPE can detect these loading attempts to warn

the users of the potential loading attacks.

• Loading Behavior Comparison. The LDGs generated by LDRSCOPE can be used to

compare the loading behaviors. For example, they can be used to study the loading

38

behaviors among different versions of the same software or different software sharing

the same components in a software suite.

• In-depth Explanation. LDRSCOPE can explain the reasons of the loading behaviors

with various factors at system level. Not only the loading caused by configuration files,

but also some special loading behaviors caused by injection techniques, e.g. DLL in-

jections. These loading behaviors appear to be misunderstood by the previous solu-

tions [76, 77].

Many of these use cases help the developers to find and fix the problem in their binary

components. Section 3.5 gives more detailed scenarios of our analysis.

3.4 Exploration Testing

In this section, we discuss exploration tests and several testing strategies, which can help to

effectively apply LDRSCOPE on real world applications and find more binary loading attacks.

3.4.1 Light-weight Testing

LDRSCOPE is based on dynamic tracing at the instruction level through instrumentation on

programs using test suites from software developers. As the instruction level tracing is heavy,

we can effectively reduce the times of these tracing, if we know whether there are loading

behaviors in a program and which test suite can lead to the loading. If this information is

acquired, we can directly use the test suite that can trigger the loading behaviors of our interests,

instead of running all the test suites in a heavy instrumentation framework. The objective of this

testing is to filter out test cases to reduce the tracing workload, if tracing is too time consuming.

For this reason, we apply a light-weight testing based on a monitoring mechanism of system

calls. The objectives of the light-weight testing are to detect:

1. whether there are loading attempts inside the program, and if there are;

2. whether the attempt is searching for binaries or configuration files related to binary load-

ing.

39

3. what is the result of the attempt.

The rationale of these tests is based on the observation that programs attempt to check

the existence of certain loading factors, e.g. binaries or the configuration files, before loading

the binaries. Attackers can hijack these attempts of loading the binary or the configuration

file, and substitute the intended binary by their own ones, especially, when the binary or the

configuration files are not existed in a location. There are many places in the system for the

attacker to hijack the loading. The current working directory (CWD) is one of these places that

are easier to exploit than other locations.

We monitor certain system calls related to the loading factors, e.g. file open, memory map-

ping and registry operations. From the return values, we check whether certain locations that

are susceptible to attacks, e.g., CWD, exist. We also place a payload binary in the location

specified in these system calls, and check whether the program loads the payload. The success-

ful loading usually leads to a certain binary loading vulnerability. We can then further run this

test suite with LDRSCOPE.

3.4.2 Configuration File Testing

There are loading behaviors through the using of configuration files. Direct testing by monitor-

ing the binary loading system calls is not enough to identify these cases. We apply a heuristic-

based strategy to identify whether a configuration file affects the loading and how it affects the

loading behaviors. Our assumption of a configuration file is that it is a plain-text file with read

and write file permissions; the content of the file contains the configuration settings in the form

of “option=value”.

First, we search for configuration file candidates. We filter out files with known file types

that are unlikely to be configuration files when monitoring the file open system calls, such as

video or image files. We select the files that can be recognized by the operating system as

configuration file, with a specific file type, such as INI files in Windows.

Second, we test whether a configuration file setting in the form of option=value in these files

affect the loading. To achieve this goal, we construct and test these settings in the configuration

files. To construct a setting, we need to know the option and value. We apply heuristics to

40

select the option base on the observation that a configuration option is usually a string stored

in the data section of the program binary and used between the “open” and “close” event of the

configuration file. We extract the strings meet these requirements as the option to construct a

setting.

Among these option strings, we need to identify whether and which of them is a config-

uration file setting that triggers a loading behavior by specifying a location as the value. We

construct multiple settings using these option strings and the value set to be a fixed location,

where a payload binary is prepared. Then, we apply a testing strategy, shown in Algorithm 2

to locate a certain option string that triggers the loading in the location. The algorithm begins

with the configuration file conf containing all the constructed settings. It runs the program and

checks whether the options in conf can trigger the loading of the payload in Line 2. It splits

conf into conf1 and conf2 if the payload is loaded in Line 6. Each of conf1 and conf2 contains

half of the options from conf. The algorithm continues performing split tests separately for

conf1 and conf2 in Line 7 and 8. In Line 4, the split test ends, finding all the options lead to the

loading of the payload in results.

The algorithm performs log2
(
m
n

)
times of tests to locate m out of n options in the configu-

ration file that affects the loading. If there is only one option which triggers the binary loading,

only log2 n tests are needed instead of testing each option string one by one. Although this is a

simple strategy, it is sufficient to identify the configuration file options in the real world unsafe

binary loadings discussed in Section 3.5.1. There are also many orthogonal fuzzing approaches

discussed in Chapter 2 that can be used to provide more results in practice.

Algorithm 2 Split Testing Strategy
1: procedure SPLITTEST(conf) . configuration file: conf
2: if IsTriggered(conf) then . test to determine whether payload is triggered
3: if SizeOf(conf) = 1 then . only one option in conf
4: results← GetOption(conf) . This option is pushed into result
5: else
6: conf1, conf2← Split(conf) . conf is split into conf1 and conf2
7: SplitTest(conf1) . perform split test on conf1
8: SplitTest(conf2) . perform split test on conf1
9: end if

10: end if
11: end procedure

41

Table 3.2: Overall Result of 34 Software Applications

Software PLB PEB Factors
FILE REG BIN ORDER MDIR CWD SYSDIR ENV CMD All

Web Browser
Internet Explorer 60 0 52 168 2 1 0 45 6 0 274
Opera 28 14 20 101 1 19 1 14 3 0 173
Firefox 67 189 115 284 121 5 0 38 13 0 765
Safari 99 41 265 621 1 83 2 165 10 0 1188
Google Chrome 65 2 44 177 7 34 1 64 10 0 339
PDF Reader
Adobe Reader 46 23 22 126 0 39 6 24 5 0 245
Foxit Reader 53 0 24 125 25 0 0 30 9 0 213
MS Office
PowerPoint 2003 35 0 35 140 1 5 0 23 3 0 207
Word 2003 39 0 40 107 0 0 0 22 2 0 171
Excel 2003 33 0 43 117 1 4 0 22 2 0 189
PowerPoint 2007 42 0 36 157 38 1 1 24 4 0 261
Word 2007 34 2 41 126 0 31 1 11 3 0 215
Excel 2007 39 0 54 132 3 0 1 21 3 0 214
Multimedia Player
Itunes 83 46 53 138 19 2 3 59 18 0 338
Windows Media Player 60 20 19 135 6 2 0 84 1 0 267
QuickTime 69 61 66 177 14 4 0 50 24 0 396
Messenger
Pidgin 130 11 140 298 2 160 4 25 10 0 650
Google Talk 59 2 43 139 15 0 0 42 7 0 248
Yahoo Messenger 95 0 91 202 36 3 0 63 23 0 418
Windows Live Messenger 107 24 169 257 111 5 2 43 11 0 622
Image Viewer
Picasa 3 58 1 25 75 48 4 0 23 7 0 183
Irfan View 16 0 0 33 1 0 0 3 8 0 45
Windows Component
Service Host 37 0 14 90 4 17 0 1 10 0 136
Accessibility Options 24 0 1 32 4 1 0 1 1 2 42
Add/Remove Program 52 0 4 95 4 34 0 2 11 9 159
Winlogon 78 0 78 160 14 67 0 4 24 0 347
SysInternal Software
Process Monitor 34 0 8 66 8 0 0 13 8 0 103
Process Explorer 41 0 11 68 11 1 2 18 4 0 115
DLL Injection Sample
calc.exe 20 0 1 33 4 0 0 1 1 0 40
notepad.exe 21 0 0 41 5 0 0 1 6 0 53
Other Application
Google Earth 62 0 41 106 28 7 10 27 14 0 233
Java VM 63 55 99 254 0 102 1 40 11 21 583
IDA Pro 17 4 4 38 10 6 1 7 1 0 71
Emacs 20 2 1 40 2 2 0 4 8 0 59

3.5 Experimental Evaluation

We prototyped LDRSCOPE on an extension of TEMU [111], which is based on the QEMU vir-

tual machine. Both the instruction trace and the system information are collected. We evaluated

LDRSCOPE on 34 real-world applications in Windows XP SP3. The evaluation is intended to

show the scope of complex binary loading behaviors with many non-trivial LDGs and explain

the usefulness of LDRSCOPE on issues arising from binary loading, including the identification

of vulnerabilities, and point out the responsible software modules which need fixing. We iden-

tified 24 binary loading vulnerabilities using LDRSCOPE. There are 21 vulnerabilities where

42

programs try to load binaries not present in the system, and 3 vulnerabilities where configura-

tion files can be planted to load arbitrary binaries by the vulnerable programs. In all these cases,

a remote attacker can plant either binaries or configuration files in the shared directories of the

victim system and get the malicious code loading/execution. Most of these tested applications

are selected in comparison with the previous approach [76], though not all of previously tested

programs are selected, because of the in-availability of the older version of the software. We

detected all the vulnerable loading programs the previous solution detected, with 3 vulnerabili-

ties using configuration files, which the previous one cannot detect. We also detected and fixed

a DLL injection problem where the previous solution miss to identify. Finally, we detected

loading vulnerabilities through using configuration files, which they cannot detect. The static

approach [78] relies on approximation without source code, which is not accurate dealing with

dynamic loadings. It does not deal with the loadings through using configuration files.

Table 3.2 gives a summary of the binary loading behaviors of these applications. The ratio-

nale for this table is to provide some summary measures of the complexity of binary loading

and the loading factors which are involved together with a potential vulnerability assessment.

The PLB column gives the total number8 of binaries attempted to load by each application. The

columns from FILE to CMD sum up the number of dependencies for each binary, aggregating

the number of loading factors for the corresponding column type. Overall, the table gives a

summary of the complexity of the loading behavior per application. While the aggregate statis-

tics is simply a rough measure, it indicates the potential attack surface of the application as

every loading factor, which is not safe provides an attack chance.

We also use this summary of results to show potential vulnerability assessment. Suppose

we assume the threat model contains the attacker controllable loading factors: binary search

order, CWD, program command line inputs and environment variables. We can sum up the

four columns to get the number of all attacker controllable factors. While the value of these

controllable factors is only indicative of number of ways which a vulnerability can occur, it

may be not an unreasonable way of scoring for potential vulnerabilities. Some applications are

8We run each application once, and count both the loaded binaries and the missing binaries that are intended
to load by the application. These binaries do not include the main executable of the application or ntdll.dll.
For each binary, we only count once.

43

as low as 2 (Word 2003), while others are as high as 134 (Firefox). Next we discuss several

loading factors.

CWD Factor. CWD may be unsafe as it can be set to untrusted locations, i.e. shared

directories. Out of the 34 applications, we identified 14 programs with the CWD loading

factor. Nine of these programs attempt to load binaries missing in the system, which renders

these applications vulnerable. Among the 14 applications, only Adobe Reader sets CWD to its

main program directory, which can be considered safe. The others load binaries unsafely at the

directory where the application associated files are opened.9

PEB Factors. Command line input (PEB:CMD) affects three programs – Java VM uses

many command line arguments; “Accessibility Options” and “Add/Remove Program” are Win-

dows utilities that invoke rundll.exe to load binaries from command line. Most programs

depend on search order (PEB:ORDER), which may be a rich source of attacks. Surprisingly,

Java VM does not rely on PEB:ORDER but has other issues. Note that even if ORDER is

not a loading factor, CWD can still be involved, because we exclude CWD, MDIR and SYS-

DIR when counting the ORDER. Microsoft Word 2003 does not have ORDER and CWD as

loading factors and one could speculate if the code is more carefully written given the long

history of Microsoft software being targeted by attackers. Compared to PE:CMD, PE:ENV

and PE:ORDER are better avenues for attackers to exploit a program, as most of the programs

are affected by these two factors. Especially, PE:ENV is affecting every program. Although it

is affecting more programs than PE:CMD, the effort spent in exploiting environment variables

could be much higher than for command line inputs.

A summary evaluation like this could be an initial checklist for investigating whether a

program is following good security with respect to its use of binaries. This can trigger a more

detailed investigation of whether further problems can exist as shown in the following sub-

sections. As many existing software may not be resistant to binary loading attacks, a tool like

LDRSCOPE will be useful for software developers who we believe are not used to thinking of

the security implications in the use of software modules in binaries.

In the following discussion, we introduce the use cases of LDRSCOPE. LDRSCOPE not

9 In Windows, when a program is started by opening associated files, Windows Explorer sets an initial CWD
for the program. However, the location of CWD can be changed by the program afterwards as in Adobe Reader.

44

only identifies the vulnerable loading behaviors, but also provides various information on the

loading behaviors and loading factors that can help developers and analysts to have a better

understanding to secure the binaries.

3.5.1 Loading Vulnerabilities from Configuration Files

Software configuration problems can be difficult to understand and diagnose by the develop-

ers. Here, we focus on configuration files and binary loading vulnerabilities. Out of the 34

applications, 29 of them use configuration files with 27 attempts for programs to load missing

configuration files. Three vulnerabilities are identified in IDA Pro, Google Chrome and the

Oracle Java Virtual Machine.

First, we use the Opera browser as an example in Figure 3.6 to show how LDGs can be

used to inspect the effect of configuration files on loading behaviors. The upper “LDG” in Fig-

ure 3.6 is different as the root node is a configuration file.10 This “LDG” identifies the attempt

to load a missing (presumed) configuration file spellcheck.ini as shown in Figure 3.6a

with the dash-lined node. The intent of the configuration file is that it can be used to spec-

ify a spell checking engine component with the option: Spell check engine. We found

that an optional configuration file with the same name can override this setting. LDRSCOPE

tests this configuration file with the setting: Spell check engine=d:/exploit.dll.

The result of this run is the LDG in Figure 3.6b. It identifies the loading factor of binary

exploit.dll as the configuration file spellcheck.ini and highlights the PEB:ENV

loading factor as conditionally safe based on the chosen safety constraints. A warning is gen-

erated to highlight the PEB:ENV loading factor, if an attacker can place a crafted configuration

in this directory.

Table 3.3 shows experiments on Google Chrome, Java Virtual Machine, IDA Pro and Opera,

with the configuration file options found to load binaries. We now summarize these experi-

ments, highlighting the vulnerable loading factor.

• Google Chrome can load various binaries specified by an optional configuration file

10 LDRSCOPE can generate extended LDGs for any file and not just binaries, extending loading factor to deal
with arbitrary files.

45

OPERA BROWSER

c:/AD/opera/opera/profile/spellcheck.ini
(opera.dll->CreateFileW)

BIN(opera.dll)

(68, 81)
opera.dll
ntdll.dll

PEB:ENV(OPERA_USER_PATH=c:/
AD/opera/opera/profile/)

(0, 67)
opera.dll
ntdll.dll

c:/PF/opera/opera.dll
(opera.exe->LoadLibraryA)

BIN(opera.exe)

(23, 31)
ntdll.dll

PEB:MDIR(c:/PF/opera/)

(0, 22)
kernel32.dll

ntdll.dll

(a) Dependencies of Configuration File Loading Attempt

OPERA BROWSER

c:/AD/opera/opera/profile/spellcheck.ini
(opera.dll->CreateFileW)

BIN(opera.dll)

(68, 81)
opera.dll
ntdll.dll

PEB:ENV(OPERA_USER_PATH=c:/
AD/opera/opera/profile/)

(0, 67)
opera.dll
ntdll.dll

c:/PF/opera/opera.dll
(opera.exe->LoadLibraryA)

BIN(opera.exe)

(23, 31)
ntdll.dll

PEB:MDIR(c:/PF/opera/)

(0, 22)
kernel32.dll

ntdll.dll

FILE(spellcheck.ini)

d:/exploit.dll
(opera.dll->LoadLibraryW)

(0, 13)
opera.dll
ntdll.dll

(b) LDG for Opera

Figure 3.6: Loading Behaviors Caused by Configuration Files

46

GOOGLE CHROME

d:/malicious.dll
(chrome.dll->LoadLibraryExW)

FILE(pkcs11.txt)

(0, 15)
chrome.dll

kernel32.dll
ntdll.dll

d:/pkcs11.txt
(chrome.dll->CreateFileA)

BIN(chrome.dll)

(3, 12)
chrome.dll

ntdll.dll

PEB:CWD(d:/test)

(0, 2)
chrome.exe

ntdll.dll

c:/LSAD/google/chrome/application/14.0.835.202/chrome.dll
(chrome.exe->LoadLibraryExW)

BIN(chrome.exe)

(102, 111)
chrome.exe

ntdll.dll

PEB:MDIR(c:/LSAD/google/chrome/application/14.0.835.202)

(0, 101)
chrome.exe

ntdll.dll

(a) LDG for Google Chrome Vulnerability

ORACLE JAVA

d:/malicious.exe
(java.dll->CreateProcessA)

FILE(.hotspotrc)(0, 15)
msvcr71.dll

jvm.dll
ntdll.dll

d:/.hotspotrc
(jvm.dll->fopen)

BIN(jvm.dll)

(3, 12)
ntdll.dll

PEB:CWD(d:/)

(0, 2)
ntdll.dll

c:/PF/java/jre6/bin/client/jvm.dll
(javaw.exe->LoadLibraryA)

BIN(javaw.exe)

(38, 44)
javaw.exe
ntdll.dll

PEB:MDIR(c:/PF/java/jre6/bin/)

(0, 37)
javaw.exe
ntdll.dll

(b) LDG for Java Virtual Machine Vulnerability

Figure 3.7: Loading Vulnerability Caused by Configuration File in Unsafe Locations

47

Table 3.3: Loading Behavior Caused by Configuration Files

Software Configuration File Option To Load Binaries
Google Chrome 14 pkcs11.txt library
Java VM 6.26 .hotspotrc OnOutofMemoryError
IDA Pro 5.5 idauser.cfg GRAPH VISUALIZER
Opera 9.64 spellcheck.ini Spell check engine

pkcs11.txt. When an https request is first issued in the browser, Google Chrome

searches in the root directory of CWD for this file. The setting library=d:/mali-

cious.dll in the optional configuration file causes Chrome to load malicious.dll.

It turns out that this is a known vulnerability in the Mozilla Network Security Services

(NSS) library, which is statically linked into chrome.dll. Figure 3.7a shows the load-

ing dependency from the payload malicious.dll to the configuration file, marked

by the dash-lined path. The configuration file is located at the root directory (d:/) of

CWD (d:/test). This location, which LDRSCOPE highlights, is a shared directory in

the evaluated Window system, which can be accessed by the attackers to plant malicious

binaries. The LDG shows the binary chrome.dll load both the configuration file and

the malicious payload binary.

• The Oracle Java Virtual Machine (JVM SE 6u26) loads and executes an error han-

dler binary specified by the option OnOutOfMemoryError in the configuration file

.hotspotrc from CWD. To exploit this vulnerability, one can set the option OnOut-

OfMemoryError=d:/malicious.exe. The configuration file is read when JVM

starts. The error handler is loaded when the heap runs out of memory. The LDG in Fig-

ure 3.7b shows malicious.exe depends on the configuration file .hotspotrcwith

CWD as the loading factor. LDRSCOPE highlights the path to the unsafe loading factor

showing CWD and the binary jvm.dll used to load the configuration file. The binary

java.dll invokes CreateProcessA to load the malicious payload. The problem is

in the Oracle Java’s components.

• The IDA Pro configuration vulnerability discussed in Section 3.2.1 is given in Figure 3.3.

It is interesting that the IDA Pro documentation in ida.cfg suggests that the user con-

figuration file idauser.cfg must be placed in a safe location, such as /IDA/cfg/.

48

MICROSOFT SYSTEM
MOZILLA FIREFOX

ORACLE JAVA

c:/PF/mozilla firefox/xul.dll
(loader->sysload)

BIN(firefox.exe)

(33, 39)

PEB:ORDER(...)

(0, 32)

BIN(xul.dll)

REG(HKEY_CURRENT_USER/Software/MozillaPlugins)

HKEY_CURRENT_USER/Software/MozillaPlugins
(xul.dll->RegOpenKeyExA)c:/PF/java/jre6/bin/new_plugin/npjp2.dll

(xul.dll->LoadLibraryA)
(42, 50)

(0, 41)

BIN(kernel32.dll)

(0, 40)

c:/SYS/kernel32.dll
(loader->sysload)

BIN(ntdll.dll)

(0, 31)

d:/malicious.exe
(java.dll->CreateProcessA)

FILE(.hotspotrc)
(0, 15)

d:/.hotspotrc
(jvm.dll->fopen)

PEB:MDIR(c:/PF/java/jre6/bin/)

c:/PF/java/jre6/bin/client/jvm.dll
(npjp2.dll->LoadLibraryA)

(0, 37)

BIN(npjp2.dll)

(38, 44)

BIN(jvm.dll) PEB:CWD(d:/)

(0, 2)(3, 12)

Figure 3.8: Abridged LDG for firefox vulnerability

Our analysis shows that the IDA Pro code does not check for safety as it still attempts to

load idauser.cfg from an unsafe CWD directory.

Besides the above cases, we also found many programs (Google Earth, Pidgin, Yahoo Mes-

senger, Firefox, etc.) attempt to load missing configuration files (search.ini, overri-

de.ini, ymsgr.ini, secmod.db, etc.) with only a relative path. Such behavior can be

susceptible to file planting attacks [5].

Our evaluation shows that weaknesses in how software works with configuration files can

be quite common. Finding and fixing configuration vulnerabilities can be quite challenging.

49

BIN(ppcore.dll)

c:/PF/microsoft office/office12/ppcore.dll
(loader->sysload)

BIN(powerpnt.exe)

(43, 52)

PEB:ORDER(...)

(0, 42)

BIN(mso.dll)

c:/PF/common files/microsoft shared/office12/mso.dll
(ppcore.dll->LoadLibraryW)

d:/mscoree.dll
(mso.dll->LoadLibraryA)

(3, 23)

PEB:CWD(d:/)

(0, 2)

(56, 62)

REG(commonfilesdir)

(0, 55)

software/microsoft/windows/currentversion
(ppcore.dll->RegOpenKeyExW)

(0, 40)

Figure 3.9: Abridged LDG for PowerPoint 2007

50

LDRSCOPE can highlight to developers that they need to pay attention to not only loading

behaviors but also how they handle configuration files.

3.5.2 Safety of Third Party Binaries

Programs using third party libraries can be vulnerable due to the defects in these libraries rather

than in their own code. This is significant because a binary loading vulnerability outside the

application code is not easily remedied, and the developers only control their own code, not

the libraries from other vendors. Programs can be vulnerable due to the use of vulnerable com-

ponents or plug-ins. LDRSCOPE can provide provenance analysis on binary loading behaviors

with LDGs.

We found that Firefox becomes vulnerable due to the use of a vulnerable JVM plug-in,

as shown in Figure 3.8. In order to support Java applets, Firefox loads jvm.dll. However

jvm.dll contains the vulnerability shown in Figure 3.7b. The third-party DLL, jvm.dll

causes the problem (details discussed in the previous section), which is not in the code base of

Mozilla Firefox. Figure 3.8 shows the grouping of binaries involved in the loading behavior of

malicious.exe, the binary causing the problem is grouped to Oracle Java, which clearly

shows the provenance of the problem. Thus, not only do we detect vulnerable loading factors,

we also identify whether the source of the problem is in the application code or due to third-

party code.

3.5.3 Loading Vulnerabilities from Missing Binaries

Binaries that are missing can lead to vulnerabilities if the missing binary can be controlled by

the attacker. LDRSCOPE detects 21 loading vulnerabilities from 12 programs, which attempt

to load a binary that is not present in the system, including Google Earth, Apple Safari, Apple

Itunes, Windows Live Messenger, Yahoo Messenger, Pidgin, Office Word 2003, Office Power-

Point 2007, Excel 2007, Word 2007, Process Explorer and Picasa. A typical LDG for this kind

of vulnerability is shown by Figure 3.9, where the dash-lined node indicates the missing binary

that PowerPoint 2007 attempts to load. Since mscoree.dll is missing, the program looks

for the binary according to the search order, and ultimately will end up looking in CWD with

51

c:/windows/winsxs/x86_microsoft.windows.common-controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83/comctl32.dll
(mso.dll->LoadLibraryW)

BIN(mso.dll)

(18, 112)

PEB:ENV(systemroot=c:/windows)

(0, 9)

BIN(ntdll.dll)

(10, 17)

c:/PF/common files/microsoft shared/office11/mso.dll
(powerpnt.exe->LoadLibraryW)

BIN(powerpnt.exe)

(56, 62)

REG(commonfilesdir)

(0, 55)

software/microsoft/windows/currentversion
(powerpnt.exe->RegOpenKeyExW)

(0, 40)

(a) Abridged LDG for PowerPoint 2003

BIN(shell32.dll)

c:/SYS/shell32.dll
(mso.dll->LoadLibraryA)

c:/SYS/comctl32.dll
(shell32.dll->LoadLibraryW)

(20, 31)

BIN(ntdll.dll)

(0, 19)

BIN(ppcore.dll)

c:/PF/microsoft office/office12/ppcore.dll
(loader->sysload)

BIN(powerpnt.exe)

(43, 52)

PEB:ORDER(...)

(0, 42)

BIN(mso.dll)

(0, 55)

c:/PF/common files/microsoft shared/office12/mso.dll
(ppcore.dll->LoadLibraryW)

(20, 30) (0, 19)

(56, 62)
REG(commonfilesdir)

software/microsoft/windows/currentversion
(ppcore.dll->RegOpenKeyExW)

(0, 40)

(b) Abridged LDG for PowerPoint 2007

Figure 3.10: Comparison of Loading Behaviors

52

the default search order. LDRSCOPE not only detects the loading behaviors that happened, but

also captures the attempts to load binaries. In this way, the binary loading vulnerabilities from

missing binaries can be identified.

Figure 3.9 shows a DLL ppcore.dll, whose loading factor is the binary search order.

There are 36 loading behaviors, which directly or indirectly depend on this DLL. Since this

binary depends on the search order, which may be unsafe, all the loading behaviors relying on

this binary can become vulnerable. We can think of this binary as a “core binary” because many

other binaries depend on it. Therefore, software needs to ensure the safety of core binaries,

since they can affect many other binaries.

Examining Figure 3.9 turns up another discovery on binary sharing. In the figure, mso.dll

attempts to load the missing binary mscoree.dll, which leads to the vulnerability discussed

above. It turns out that mso.dll is shared across all the major Office components in the

system, which propagates the vulnerability to all the programs using it. This means that besides

PowerPoint, Word, Excel and other Office components all have the same vulnerabilities due to

the sharing of the binary mso.dll. So finding a binary loading bug due to a binary in one

software will likely lead to also finding the same vulnerability in other software if the binary is

a binary common to all the software. Leveraging bug discovery across a suite of software leads

to reduced effort in bug fixing. The LDGs generated by LDRSCOPE can be used together to

provide statistics on loading behaviors and bring up new discoveries across different software

components.

3.5.4 Comparison of Loading Behaviors

LDGs can be used to study the evolution of loading behaviors across different versions of a

software. Figure 3.10 shows the loading of the binary comctl32.dll in both PowerPoint

2003 and 2007 on a Windows XP SP3 system. In Figure 3.10b, PowerPoint 2007 first loads

the binary mso.dll, which then loads shell32.dll. comctl32.dll is loaded due to

the loader ntdll.dll and shell.dll32. In Figure 3.10a, PowerPoint 2003 also loads

mso.dll. However, comctl32.dll is loaded due to the loader ntdll.dll, an environ-

ment variable systemroot and this mso.dll.

53

The different loading factors in this example illustrate a Windows feature, side-by-side

assembly [6], which was introduced to allow multiple versions of binaries to exist in the system.

For example, it allows an updated system to be still compatible with older versions of software,

which also depend on older binaries. Although the two different version of PowerPoint use

comctl32.dll with the same name, the versions of the DLL are different. PowerPoint 2003

needs an older version of comctl32.dll. The location of this older version is in the side-

by-side assembly cache shown by the pathname in Figure 3.10a. Use of side-by-side assembly

can introduce more loading factors, which have to be checked if they are vulnerable or not.

In this example, the c:/windows directory is safe. However supporting more versions of a

binary may also increase the number of attack vectors. LDRSCOPE alerts developers to issues

with such features.

3.5.5 Inspection of Binary Injection

Binaries can be injected into target program by other processes. Such injections are considered

as a special kind of binary loading behavior. These behaviors are common for programs that

want to modify the behavior of other programs, e.g. TortoiseSVN injects its DLLs into the

Windows Explorer shell process to enhance the user experience, anti-virus software usually

injects binaries to other programs to function properly, etc.

We observed that previous dynamic approaches [76, 77] do not give a clear explanation

for injected binaries. For example, Google Desktop injects googledesktopcommon.dll

to multiple programs, but as their hooking techniques do not deal with the case of injected

binaries, an accurate explanation is not given. LDRSCOPE tries to detect all loading behaviors

and be complete in the explanation of binary loading with respect to the process being studied.

In Windows, there are a number of DLL injection techniques [7], such as using the registry key

AppInit Dlls and using API call CreateRemoteThread. Table 3.2 gives a summary

of our binary injection using both these techniques on Calculator and Notepad in the

DLL injection sample row. LDRSCOPE accurately attributes the different injection techniques

to registry (REG) and untracked (UNK) loading factors.

When inspecting the LDGs of Calculator, we find that the loading of an injected binary

54

is due to the loading factor REG, a registry key AppInit Dlls set as an absolute pathname

of the injected binary. The LDGs can be used to identify the DLL injection technique using

registry keys. In another experiment, we use an injector program to deliberately inject a binary

into the Notepad program by invoking the CreateRemoteThread API and a series of

other APIs. When inspecting the LDGs, we find the loading of the injected binary is due to an

untracked loading factor. This factor shows an address out of the memory space of Notepad,

but in the memory space of the injector program. Thus, the loading factor is UNK.

3.6 Related Work

A number of research works have been proposed to identify unsafe binary loading behaviors.

Dynamic approaches in [76, 77] are similar to ours in that they analyze the trace from pro-

gram instrumentation/monitoring to identify unsafe dynamic component loading. However

they work by detecting resolution failure and resolution hijacking, which only addresses a sub-

set of binary loading vulnerabilities - mainly those to do with the path resolution process and

do not explain why the loading happens. For example, they fail to detect unsafe loading be-

haviors specified by using an absolute path. In their approach, the loading behavior in the IDA

PRO example would be considered as safe. An alternative is static analysis, [78] analyzes the

call sites of loading APIs and computes the execution slices to figure out the possible loading

behaviors. The slices are emulated to guess the possible binaries that could be loaded. Unfortu-

nately, due to the dynamic features of loading behaviors and the lack of source code in binary,

it cannot analyze sophisticated loading behaviors, e.g. the ones caused by configuration files,

which cannot be determined in advance using static analysis. We differ from these works in

that we focus on understanding the binary loading behavior in a detailed way and producing

a comprehensive explanation in terms of loading factors which is obtained through dynamic

tracing.

In order to extract loading dependencies, we employ dynamic dependency analysis tech-

niques. Dynamic tainting analysis [94] provides forward data dependency analysis using taint

propagation. However, forward dependency analysis makes it more difficult to identify the

55

loading dependencies than the backward dependency analysis we employ. LDRSCOPE utilizes

backward data dependency analysis similar to [26] on the loading behaviors. It also employs

system dependency analysis to avoid the overhead and complexity of tracing the whole oper-

ating system. System dependency graphs are used for slicing the program [83, 109] and appli-

cation debugging [105]. These graphs focus on the programs, while our system dependency

analysis brings in OS level objects.

Protection mechanisms are proposed to enhance the binary safety. Safe Loading [101]

prevents programs from code-oriented exploits, which utilizes the combination of system call

policy and control flow integrity. It takes the application and related libraries into a sandbox,

and applies translation of the application code. However, it does not prevent the binary loading

attacks, because they do not violate control flow integrity. BinInt [124] provides binary in-

tegrity by restricting the execution of software. It limits the binary installation through allowed

channels. It prevents external binaries from executing. However, this security model does not

prevent binary loading attacks leveraging the existing binaries already installed.

Orthogonal approaches can be applied to enhance the exploratory testing for configuration

files and their options. Tupni [46] is a tool to reverse-engineer an input format with a set of

information based on the observation that applications usually process iterative data records in

loops. It can identify record sequences and types in input data, and even detects different types

of constraints on the values. We apply similar ideas to locate the configuration file parsing

logic and test for configuration options. EnCore [130] applies data mining techniques to detect

software misconfigurations. It considers two factors the interactions between the configuration

settings and the executing environment, and the correlations between the configuration entries.

This approach can help detecting configuration options but it also requires configuration file

datasets to get correct results.

3.7 Summary

In this chapter, we develop an approach for accurately understanding binary loading behav-

iors. We focus on Windows where most of the binary loading problems and vulnerabilities

56

occur. Our analysis combines data dependency analysis with system dependency knowledge

to identify the factors affecting the loading behaviors of the program. The end result is a

loading dependency graph, which explains binary loading by showing the dependencies from

loading behaviors to the factors. We evaluated the prototype of our solution on 34 Windows

applications, and found 24 binary loading vulnerabilities; three of them are caused by using

configuration files in an insecure fashion. Our approach precisely identifies the binaries that

cause the vulnerability.

The main motivation of LDRSCOPE is how to help software developers deal with the com-

plicated binary loading behavior involving their code, Windows software components and the

Windows operating system kernel, multiple third party binaries, configuration and data files,

etc. The LDG simplifies these interactions and complexity with an understandable explanation.

We demonstrate several use cases of how to use LDGs to build secure programs.

For the test case generation, we plan to make the testing of configuration file “smarter”.

We can create heuristics from various related analysis [46, 130] to find configuration options

controlling the binary loading behaviors. Currently, the test cases contain the initialization

of programs. We can add more user interactions to the tested programs, so that the dynamic

loading behaviors can be traced, if they can be activated in the interactions. For the program

tracing mechanism, we plan to reduce the size of the traces in the future, as the size of a trace

can be more than 50 gigabytes for a program to initialize itself.

57

Chapter 4

Detecting API Misuse Vulnerabilities

4.1 Introduction

In this chapter, we introduce a problem where component interactions in a complex computer

system can affect the behaviors of software components. In this case, browser components and

browser plugins interact with each other. We propose a solution to detect the interactions that

can allow a component to access the system privilege it is not supposed to access. We also

secure the interaction between these components in a fine-grained manner.

Software systems often employ reusable components. These components often have dif-

ferent privileges or permissions. Some components are written to be general-purpose and not

specifically designed for a particular program or application, thus often provide more function-

ality than what is needed by the applications using them, as well as having more privileges than

an application needs.

When a program is benign, the added functionality and privileges from software compo-

nents are not used. However, when the program is exploited through a vulnerability or is

malicious, the additional functionality and privileges are activated by the interactions among

the components. Thus, the privilege1 carried by the component is effectively re-delegated to

the program through the misuse caused by component interactions, forming an attack. For

example, JavaScript in a web browser is normally restricted from accessing files in the oper-

1The privilege indicates the functionality designed in the software component, but is not meant to be used in
certain environment.

58

ating system by the browser sandbox. In this sandbox, JavaScript is only allowed to perform

web-related actions, instead of the general-purpose programming tasks, e.g. writing files, cre-

ating processes. However, in the Microsoft Internet Explorer (IE) browser, ActiveX controls2

can be leveraged by malicious web pages to allow JavaScript to access files in the local file

system. Due to the complexity of the Windows system, even if users are fully aware of the

functionality of such ActiveX controls, they may not be able to detect the threats from the Ac-

tiveX controls when component interactions are involved. Software components can expose

their functionalities unexpectedly to other components through misuses caused by component

interactions. We call such a vulnerability, an API misuse vulnerability, which is the focus of

this chapter: the privileges of a software component, e.g. an ActiveX control, are exposed to

another software component, through the unexpected use fashion of the component in compo-

nent interactions. The misuse in an ActiveX control is mainly for gaining privileges. The abuse

of APIs in an arbitrary fashion is not the focus of this chapter. API-misuse vulnerabilities can

occur in many different forms, where software components are interacting with each other to

activate the hidden functionalities in them. Some examples are: (i) API misuse problems in Ac-

tiveX components (the main focus of this chapter); and (ii) permission re-delegation problems

in Android components [57] (to be discussed in Chapter 5).

In this chapter, we introduce a solution to detect API misuse vulnerabilities in software

components, focusing on the problem in the context of ActiveX controls in Windows. Our

approach introduces a privilege reachability model (PRM), which describes the interactions of

different software components in a form of access path. The API misuse vulnerabilities are

detected by analyzing the access paths in this model. We also propose a prevention mechanism

to effectively block the attacks leveraging this kind of vulnerabilities in Internet Explorer (IE).

For the rest of the chapter, in Section 4.2 we introduce ActiveX together with a motivating

example of the API misuse vulnerability. We present the detection mechanism of API mis-

use vulnerabilities in Section 4.3. We present a prototype implementation tailored for ActiveX

controls in Section 4.4 and describe a mitigation solution. Section 4.5 gives the discussion

of experimental evaluation results. Section 4.6 discusses the related research works, and Sec-

2A detailed example is in Section 4.2

59

tion 4.7 concludes the whole chapter.

4.2 Problem Definition

In this section, we describe a typical example of an API misuse vulnerability in an ActiveX

control, and define the problem addressed in the whole chapter.

4.2.1 A Motivating Example

Background of ActiveX. ActiveX controls [8] are a mechanism to build reusable software

components on the Microsoft Windows platform. It is widely used by many Windows applica-

tions, including Microsoft Office, Windows Media Player, and Internet Explorer (IE), allowing

applications to use the functionality embedded in ActiveX controls. IE allows methods in Ac-

tiveX controls to be accessed from web pages, through using the JavaScript engine. ActiveX

controls in the browser program are native binaries, thus giving web pages the ability to run

native code in the operating system, e.g. Windows Update ActiveX Control in Windows XP

and Visual Studio (Windows 7) use IE to apply Microsoft updates.

In order to use an ActiveX control in a program, users first install and register it in Windows,

e.g. install an ActiveX control as part of a software through the standard package installer. In

addition, programs like IE can load remote ActiveX controls. Once an ActiveX is available, the

program hosting it can create ActiveX objects, through which the program can invoke methods

in the ActiveX controls. ActiveX methods are exported functions to other applications, which

are similar to the member functions in C++. IE also allows JavaScript and VBScript in a web

page to create ActiveX objects and invoke ActiveX methods in the scriptable interfaces. Fig-

ure 4.1 shows an example code snippet to create an ActiveX object and invokes three methods

of the Office Snapshot Viewer ActiveX Control using JavaScript in IE.

Existing security mechanisms for ActiveX rely on the trust from end users. Take IE as

an example, only trusted ActiveX controls can be accessed by web pages. Local ActiveX

controls are all trusted, except those blocked by compatibility flags in the registry (killbits [9])

by default. For remote ActiveX controls, users can customize a white list of trusted sites [10]

60

1 <script language='JavaScript'>
2 //Create Activex Object with ProgID
3 var obj = new ActiveXObject("snpvw.Snapshot Viewer Control.1");
4 // invoke method SnapshotPath, CompressedPath, ...
5 obj.SnapshotPath = "c:\\TestSnapshot.snp";
6 obj.CompressedPath = "c:\\TestSnapshot-compressed.snp";
7 obj.PrintSnapshot("True");
8 </script>

Figure 4.1: Using Microsoft Office Snapshot Viewer ActiveX Control in JavaScript

1 <script language='JavaScript'>
2 //Create Activex Object with ProgID
3 var obj = new ActiveXObject("snpvw.Snapshot Viewer Control.1");
4 //download payload
5 obj.SnapshotPath = "http://malicious.com/payload.exe";
6 //save to local file system
7 obj.CompressedPath = "c:\\clickme.exe";
8 obj.PrintSnapshot("True");
9 </script>

Figure 4.2: An Attack on Microsoft Office Snapshot Viewer ActiveX Control in JavaScript

to permit remote ActiveX control usage within the sites. Otherwise, IE prompts the user for

permission to load the control, but users usually don’t know whether the ActiveX control is

safe or not. In order to use the webpage embedding the control, they tend to allow the controls.

In addition, IE only initializes and utilizes the ActiveX interfaces in certain settings, where the

Safe for Initialization and Safe for Scripting properties are implemented – this also requires

trusting the control from users.

An ActiveX Attack Example. As a native shared component running in a low privileged

scripting environment, the ActiveX control can expose higher privileged native access to sys-

tem resources to the software component interacting with it. We show the API misuse prob-

lem with a real-world example. The Microsoft Office Snapshot Viewer ActiveX Control is a

shared component of Microsoft Office Access 2003. This ActiveX control is designed to print

and view snapshot of documents in the web browsers. Figure 4.1 shows a typical usage of

the control. The SnapshotPath and CompressedPath methods specify the paths of the

snapshot file and the compressed version of the file to be displayed in the Snapshot Viewer.

PrintSnapshot prints the snapshot file on the screen.

In IE, browser scripts, such as JavaScript, stay in the sandbox of the browser. The sand-

61

box allows only the web related actions, such as open links and view images, but does not

allows operations, such as native access to the operating system. However, by leveraging on

the ActiveX control, an attacker can bypass the restrictions of the IE sandbox, and allow the

JavaScript to access local file system. A malicious JavaScript program as shown in Figure 4.2

can invoke SnapshotPath with http://malicious.com/payload.exe to silently

download the payload and invoke CompressedPath with c:/clickme.exe to save the

malicious payload to the local file system. This is a drive-by download attack caused by the

shared component with access to privileged APIs in the ActiveX control. These privileged APIs

grant the JavaScript with additional native functionalities, which are normally not allowed.

Such API misuse vulnerabilities are achieved through the unintended exposure of native

privileged operations in software components. One component does not affect the system by

itself; instead, it tries to gain more privilege through interacting with vulnerable software com-

ponent with higher privileges. The interactions cause the misuse of privileged APIs in these

components. Hence, we need a systematic approach to detect API misuse vulnerabilities in

shared software components, such as ActiveX controls.

4.2.2 The Privilege Escalation Problem in Component Interactions

First, we define the abstract problem of privilege escalation as follows. Assume there are two

software components that have different privileges: component C1 with the privilege set P1,

component C2 with the privilege set P2. C1, the client component, can request service from

C2, the service component, through C2’s interface. If through C2, C1 can gain privileges not

in P1, we call this a privilege escalation in component C2.

The cause of the problem is that some software components expose privileged access of

system resources through certain API or interface during component interactions. Without

loss of generality, we consider only two privileges, low (client component) and high (service

component), and it is easy to extend this to more privileges or hierarchies.

In the context of using APIs from a program, as with “local attacks” discussed above, the

usual objective is to gain more privileges. Thus, we focus on misuse which aims at some form

of privilege escalation. In this context, we see that the API misuse vulnerability is one instance

62

of the privilege escalation problem during component interactions. The privilege escalation

happens because the software components are interacting with each other, so that the hidden

functionalities are activated by the interactions.

In the ActiveX example, the JavaScript engine component in a web browser program is a

client component with its input being JavaScript code in a web page. The ActiveX controls are

service components. The privileged APIs, such as saving file to local storage described in the

example, can be accessed through a vulnerable ActiveX control, causing escalated privileges

in the JavaScript engine component.

This vulnerability is not only restricted to ActiveX controls, software components, such as

Android components, can also have the same problem. One example is in the permission re-

delegation problem [57]. This specific Android component interaction feature can be leveraged

by attackers to initiate privilege escalation attacks.

In this chapter, we focus on the detection and prevention of this problem by identifying API

misuse vulnerability in ActiveX controls and blocking the accesses to privileged APIs. For the

Android privilege escalation problems, we treat them in Chapter 5.

We discuss the API misuse problem in ActiveX controls in Windows with following as-

pects:

• No Source Code. Due to the closed source feature of Windows system, binary compo-

nents such as ActiveX controls do not come with any additional information, e.g. symbol

tables. Dynamic analysis is more effective to be applied to the API misuse problem than

static analysis for two reasons. First, we are dealing with pure binaries in Windows with-

out source code. Binaries also pose many more difficult problems for static analysis.

Complete disassembly for static analysis is an undecidable problem [120]. For example,

IDA Pro (which is considered by many to be the best disassembler still in practice) still

suffers from errors [120]. Second, we are dealing with dynamic behaviors in the ActiveX

controls, which are hard to analyze accurately by static analysis. Moreover, the size of

Windows programs, which can have a code base of millions lines of code, makes it even

harder to apply static analysis. Dynamic analysis is more accurate but incomplete. We

make a trade-off to use dynamic analysis in our solution.

63

Model	

Genera+on	

Vulnerability	

Iden+fica+on	

	

PRM
 	

Test	
 Case	

Program	

Service	
 Component	

Report	

Client	
 Component	
 Privilege	
 Info.	

Figure 4.3: Overview of API Misuse Vulnerability Detection

• General Testing. Test cases are usually used in dynamic instrumentation. Testing strate-

gies and heuristics are orthogonal to our approach, in that they can provide intensive

and comprehensive use cases of the ActiveX behaviors that are analyzed. As a general

ActiveX analysis framework, our system accepts user defined test cases and existing use

examples of the ActiveX controls. If none of these test cases is available, our system can

automatically generate default test cases invoking the ActiveX methods. This benefits

from the type libraries3 in ActiveX controls, where the argument types of the ActiveX

methods can be extracted. Knowing the argument types, we can fill in the arguments

according to certain heuristics.

4.3 API Misuse Vulnerability Detection

We now describe an approach for detecting API misuse vulnerabilities, with an overview given

in Figure 4.3. Our approach analyzes a service component to extract a model describing the

reachability of its privileges. Combined with the client components interfaces and privilege

settings, our approach detects the presence of an API misuse vulnerability in the service com-

ponent.

The whole approach consists of two main phases: privilege reachability model generation

and vulnerability identification. To decide the reachability of privileges of the service com-

ponent, we test the service component in a hosting program driven by a set of test cases. It

may be case that we have to find the privileges of the software components as it may not be

explicitly given. To determine reachability, we consider the caller-callee relationship along an

execution path. The paths found can be used to generate a (execution) profile in the model

3A binary file stores information of the ActiveX object’s property and methods that is accessible to other
applications.

64

generation phase. From the profile of the service component, our approach builds an abstract

model to represent the reachability between the component interfaces and its privilege, which

we call the privilege reachability model (PRM). Combining this with knowledge about the

client component privilege, in the vulnerability identification phase, we find potential API mis-

use vulnerabilities. In the rest of this section, we give more details of this steps focusing on

API misuse vulnerabilities in ActiveX controls.

4.3.1 Dynamic Instrumentation

We track the control flow and collect execution paths by using dynamic instrumentation based

on the Intel PIN framework [86]. We create a tracking tool to record the control flow of a

process running in Windows. Tracking control flow between functions is less straightforward

than it might seem because we need to handle non-local control flow, e.g. setjmp/longjmp, ex-

ceptions, kernel callbacks and multi-threaded execution. We found no difficulties with running

the IE browser after the dynamic instrumentation using the tool.

We use test suites, which may come from existing test code of the ActiveX controls or

manually written test programs, to carry out the dynamic instrumentation tests. We addition-

ally develop a test template generator, which automatically generates template test cases that

directly invoking the exported APIs in ActiveX controls. The generator extracts all methods

in the IDispatch interfaces in the ActiveX controls according to the type libraries, and creates

HTML webpages embedding the appropriate JavaScript code to invoke the extracted ActiveX

methods. The ActiveX methods are invoked using fixed values for their argument types stored

in the type libraries. The test cases generated this way are templates, since the arguments of

the methods are filled in by applying heuristics, e.g. using specific values based on their types.

Manual assistance can be applied to adjust these arguments to make the template functioning

like real use cases. Fuzzing techniques [60,114,127] can be incorporated to explore the corner

cases in the usage of ActiveX control. However, the focus of API misuse detection is on the

normal usage of APIs. Even with the basic test cases, we can already find many vulnerabilities

in ActiveX controls. We expect better results and coverage with in-depth testing in the future.

65

Program	
 	

(FILE_READ)	

	

	

	

	

Ac3veX2	
 	

(FILE_WRITE)	

	

	

	

	

Ac3veX1	

(PROCESS_CREATE)	

	

	

	

	

APP1_ACTIVITY1	
 	

(WRITE_CONTACTS)	

	

	

	

	

APP2_SERVICE1	
 	

(INTERNET)	

	

	

	

	

APP1_ACTIVITY2	

(READ_CONTACTS)	

	

	

	

	

ActiveX Control PRM Android Component PRM

Figure 4.4: Privilege Reachability Models for the Shared Components

4.3.2 Privilege Reachability Model Representation and Generation

Model Representation. The privilege reachability model employs a graph representation,

analogous to a call graph. Note that such a call graph may not be readily available even in the

(hidden) source code due to the indirection and the dynamic feature of Windows components.

Every node represents a function invoked during the execution. Every directed edge represents

the invocation from a caller to a callee function. Nodes belonging to the same software com-

ponent are grouped together. The group represents the shared components and shares a same

privilege. The privilege is predefined by specification of the software components. We give

two examples. ActiveX control’s privileges are defined by the system calls it can access to

achieve certain privileged operations in the system, e.g. write a file. The privileges of Android

components are the Android permissions defined in the manifest files. As shown in Figure 4.4,

the ActiveX control model contains a program with FILE READ (read files) privilege interact-

ing with two ActiveX controls with PROCESS CREATE (create processes) and FILE WRITE

(write files) privileges. Similarly, the Android component model contains two Android Activi-

ties with permissions WRITE CONTACTS and READ CONTACTS, and one Android Service

with permission INTERNET.

In order to describe the reachability in the PRM, we introduce the notion of access path

and define various distinguished functions. We start by introducing the functions first, and then

we show how the access path forms from these functions. Privileged APIs are system APIs

that provide privileged access to system resources. For example, the NtWriteFile API in

66

Windows is used to write files in the system, thus, it can be thought of as an interface having file

write privileges. Entry functions are exported functions in the shared components, which are

the interfaces used by clients and also other services. An access path is a path in the graph of

the model from a low privilege component to an entry function of a high privilege component

to a privileged API. Thus, an API misuse vulnerability is an access path in the PRM to the high

privilege component.

Model Generation. To build a PRM, our approach first collects the execution paths from the

interactions between a program and associated service components. There are two typical ap-

proaches for path collection. One is static analysis. However, many of the APIs make heavy use

of indirection and callbacks, which pose difficulties for static analysis. The other choice is dy-

namic analysis, where we can collect execution path information through dynamic monitoring

during program execution. Execution traces of the software components give the control flow

in terms of function calls. We assume that there is knowledge about the service components and

the availability of test cases for performing normal functionalities of the program component.

Such test cases can be obtained from software examples or the software documentation.

The model generation step takes the execution paths as the inputs and builds the PRM

described above. For the ActiveX control, it first recovers the call sequences from the real

execution traces. Then, it groups the functions from the same shared component. Finally, it

adds metadata to the graph, such as, labels showing privileges of the shared component. This

step also supports generating compressed graphs for visualizing the relationship of the function

calls. More details are discussed in Section 4.4.1.

ActiveX PRM. We describe how the above model specifications are applied on the ActiveX

controls. There are four types of nodes in a PRM of an ActiveX control:

• ActiveX methods are entry points of ActiveX controls, which are exported APIs from the

scriptable interfaces, e.g. the SnapshotPath method in the motivating example.

• ActiveX inner functions are functions in the ActiveX control that are not exported. Since

we extract them using the ActiveX binaries, they are usually denoted by their addresses

67

in the binaries. For example, snapview.c5ad is such a function.

• Privileged APIs are system calls in Windows that grant the access to various system

resources. For example, NtWriteFile is a privileged API to write files in Windows.

• Other functions are neither entry functions nor privileged APIs in ActiveX PRM. They

are defined for convenience. They can be any functions in the components other than

ActiveX.

Examples of the various kinds of functions are shown in Figure 4.5a. The dashed boxes in

the figure group these functions into different components.

There are two types of access path in the ActiveX PRM as shown in Figure 4.5:

• A direct access path of ActiveX method m is a path from the root node r (the entry

function of the program, e.g. main) through an ActiveX method m to a privileged API.

There can be ActiveX inner and other functions along the path, such that m is the first

ActiveX methods along the path, and there are no ActiveX inner functions from r to m.

There are two direct access paths in Figure 4.5a: one of them is through edges 1, 2, 3, 4

and the other is through edges 1, 2, 5, 6.

• An indirect access path, on the other hand, is a path from the root node r through an

ActiveX inner function f to the privileged APIs, such that f is the first ActiveX inner

function in the path and there are no ActiveX methods from r to f . In Figure 4.5b, the

path comprises of the edges 1, 4, 5, is an indirect access path.

Intuitively, a direct access path of ActiveX method m describes the API misuse of m in

ActiveX directly. However, there are subtle interactions between the ActiveX controls and the

hosting program, such that there is no direct path that can be identified in the PRM. This subtle

interaction is a use of callback functions. In some ActiveX controls, an ActiveX method m

can first register an ActiveX inner function f as a callback function. When certain conditions

are met in the host program, e.g. a download is finished, the callback function (which is the

ActiveX inner function) is invoked by the host program directly to access the privilege APIs.

More details on using ActiveX callbacks are discussed with the analysis of Snapshot Viewer

68

Host	
 Program	

	

	

	

	

	

	

System	
 Component	

	

	

	

	

	

	

Ac3veX	
 Control	

	

	

	

	

	

	

	

	

	

Prog.main	

Prog.xxxx	

Ax.inner	

Sys.api	

Ax.method	

Sys.xxxx	

1

2

4

5
3

6
7

Ax.inner	

: Other function : Privileged API

: ActiveX method or inner function

(a) Direct Access Path

Host	
 Program	

	

	

	

	

	

	

	

	

	

System	
 Component	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 Ac3veX	
 Control	

	

	

	

	

	

Prog.main	

Prog.xxxx	

Ax.inner	

Sys.api	

Ax.method	

Sys.xxxx	

1

2

4

5

3

6

7

Ax.inner	

: Other function : Privileged API

: ActiveX method or inner function

(b) Indirect Access Path

Figure 4.5: Two Types of Access Paths in ActiveX PRM

69

Table 4.1: Privilege Mapping in ActiveX Models

Privilege set type API
FILE ACCESS NtCreateFile

NtWriteFile
PROCESS CREATE NtCreateProcess

NtCreateProcessEx
LIB LOAD LoadLibrary

LoadLibraryEx

ActiveX control in Section 4.5.1. Thus, an indirect access path captures the use of callbacks,

as the API misuse is caused by m through using f .

In summary, an API misuse vulnerability of an ActiveX method m is described in the PRM

by a direct access path from m, or an indirect access path from an ActiveX inner function f to

the privileged APIs.

4.3.3 API Misuse Vulnerability Identification

Given a service component and a client component, an API misuse vulnerability in the service

component can be detected by determining whether the client component’s privilege has been

increased through the service component. We do this by searching for access paths in the PRM

that lead to privileges not given to the client component. For ActiveX controls, we focus on

the privileged APIs shown in Table 4.1. We have categorized the privileged APIs into three

groups:4 FILE ACCESS (file access), PROCESS CREATE (process creation) and LIB LOAD

(library loading). They present the privileges that are restricted from the JavaScript in the IE

sandbox.

Challenges in ActiveX controls. Although searching for access paths appears to be straight-

forward, there are some non-trivial complications. For ActiveX controls, the challenge is to

identify the ActiveX method, which registers the callback functions in an indirect access path.

There are two reasons why this is challenging. First, by the definition of indirect access path,

every ActiveX method invoked before the ActiveX inner function from the same ActiveX con-

trol in the trace can be the one registering the callback. Second, in the multi-threaded Windows

4More can be easily added and these are the ones used in our experiments

70

environment, there is the possibility of kernel callbacks,5 which also adds to the complexity of

this problem.

We employ a heuristic to identify the ActiveX method registering the callback. First, we

identify every ActiveX method invoked before the ActiveX inner function from the same Ac-

tiveX in the trace. Then, we add a “pseudo edge” from each of these ActiveX methods to

the inner function. These pseudo edges form new paths from the ActiveX method to the inner

functions and the privileged APIs. We call these paths, “pseudo path”. For example, in Fig-

ure 4.5b, such a path comprises of edges 1, 2, 7, 5, and edge 7 is a pseudo edge denoted by the

dash-lined edge. Finally, we identify these pseudo paths just as how we search for the direct

access paths. The ActiveX methods linking the inner functions with pseudo edges are the ones

registering the callback functions in these pseudo paths. Manual analysis can be used to reduce

the number of pseudo paths. Although our heuristic only gives an approximation, we found that

it works well in practice and detects the vulnerability in the Snapshot Viewer ActiveX control,

discussed in Section 4.5.1. Other ActiveX controls use direct calls to access system APIs.

4.4 Implementation

We have prototyped our approach on Microsoft Windows XP SP2. We implemented a detection

tool to identify API misuse vulnerabilities in ActiveX controls, and a mitigation tool to prevent

the privilege escalation attacks from happening in those ActiveX controls. The detection tool

is based on a PIN tool [125] to collect the function call/return control flow together with an

analyzer to construct the privilege reachability model and identify the vulnerabilities. The

mitigation tool contains a proxy to provide access controls of the vulnerable ActiveX methods.

In the following paragraphs, we discuss each of them with respect to the design of our approach.

4.4.1 Building a PRM from Traces

We implement an analyzer to build the privilege reachability model from the instruction traces

collected by the PIN tool. The trace contains only control flow information for each thread.

5Non-local control flow transfers where the Windows kernel calls code in the program, analogous to signals in
Unix but this is not due to exceptions.

71

First, the analyzer needs to recover the function calls by matching the call and return instruc-

tions in the trace as mentioned above. More attention needs to be paid for non-local control

flows, which can cause the call and return not matching in the traces. Second, the functions in

the model are represented by their address offsets in the components, except for the standard

exported functions, which have names for the analyzer to determine which components these

function calls belong to. The analyzer marks all the ActiveX methods among the functions

in the graph, and maps names to them. Note that ActiveX methods are not standard exported

functions; rather, they are virtual functions residing in the ActiveX objects and are initialized

dynamically on object creation (see Section 4.4.3). The name mapping of ActiveX methods

requires using Windows type libraries [11] (analogous to a symbol table). Finally, a privilege

reachability model is generated by recovering the call sequences in the traces. In the PRM,

every ActiveX method is marked with a name and every ActiveX inner function is presented

with an offset in the ActiveX binary.

4.4.2 Finding Access Paths

In order to detect the access paths, the analyzer first marks the privileged APIs in the PRM.

Then, it directly searches for access paths. When encountering an indirect access path, the

analyzer attempts to add a pseudo edge and searches for the ActiveX method registering the

callback functions. A heuristic is used to identify the ActiveX method, which registers callback

functions. In this strategy, only one ActiveX method is invoked in the test case. Based on the

causality between this single ActiveX method and the inner function in the indirect access path

found, it is reasonable to conclude that this ActiveX method registers the inner function. This

strategy can be extended to allow more than one ActiveX method invocations in the test case,

where the assumption becomes more relaxed.

Library Loading Analysis. An ActiveX method from one ActiveX control can expose an-

other ActiveX component to the program, giving the program the complete access to the ex-

posed ActiveX control. This is similar to allowing a program to load an arbitrary library, which

is also a typical threat from an API misuse vulnerability in ActiveX controls. Instead of directly

72

accessing the library loading APIs, the ActiveX methods use the COM library to call them indi-

rectly. This means there is no access path can be directly identified between the privileged APIs

(library loading APIs) and the ActiveX method. To identify this type of API misuse vulnera-

bilities, we first analyze the libraries loaded by the COM library. Then, we attempt to identify

the relationship between the loaded libraries and the arguments of the ActiveX methods. We

extract all the metadata of ActiveX controls in the system from the registry. We compare these

data with the arguments used in the library loading APIs. If we can identify a match, we mark

the ActiveX method to be vulnerable to load libraries. This analysis can have false negatives. A

better way is using data dependency analysis on the loading behaviors, just like what we did on

binary loading problems in Chapter 3. Even using this simple technique, we are able to identify

MS06-014 IE CreateObject vulnerability [12]. Details are discussed in Section 4.5.

4.4.3 Mitigation of API Misuse Vulnerability in ActiveX Controls

There are two directions to mitigate the damage from API misuse vulnerabilities. Isolation

based solutions [57, 102, 126] focus on isolating the host program and the shared components,

or enforce clear isolation among shared components themselves. Access control based solu-

tions [97, 118] focus on enforcing certain policies when accessing privileged resources.

Our prevention mechanism is an access control based solution. Figure 4.6 shows an ex-

ample of the system on the Windows web browser, Internet Explorer (IE). Its core component

is a proxy, which intercepts the ActiveX controls and the COM libraries. Hooks are applied

to monitor the creation and the invocation of the ActiveX controls. The proxy blacklists dan-

gerous ActiveX methods, which are reported by our detection mechanism. Access policies are

predefined by studying the API misuse behavior in the PRM model. The proxy enforces the

policies and determines whether to allow or deny the access to each ActiveX method from the

host program, e.g. Internet Explorer. We also implement a loader based on the standard API

CreateRemoteThread to load the proxy into IE. The loader provides flexible deployment

of the proxy library.

The proxy denies any invocation of vulnerable ActiveX methods in the blacklist. Rejection

of the invocation is through raising an E ACCESSDENIED exception, i.e. General Access

73

Figure 4.6: Mitigation of API-misuse in the Web Browser

Denied exception used in Windows to block access to certain functionality. The advantage of

this exception is that it does not affect the use of other methods in the hosting program, such

as web browsers. The ActiveX controls can still function as long as the vulnerable methods are

not invoked. In this way, the usability of the ActiveX component is preserved in a fine-grained

manner, overcoming the coarse-grained security mechanisms discussed in Section 2.1.1.

ActiveX Hooking. Intuitively, intercepting exported methods is through direct hooking the

exported function table in the shared libraries in Windows. However, this is not applicable for

ActiveX controls, because ActiveX methods are virtual functions in ActiveX objects that are

dynamically invoked. We need to dynamically hook the ActiveX methods when the ActiveX

objects are created.

To invoke a method in an ActiveX control, three steps are needed: (i) creating an ActiveX

object using the COM library API CoGetClassObject or CoCreateInstance; (ii)

getting the object from the IClassFactory interface using the virtual function Create-

Instance; (iii) invoking the method by using the virtual function GetIdsOfNames and

Invoke.

Accordingly, we perform ActiveX hooking following these steps:

• We intercept the standard exported functions CoGetClassObject and CoCreate-

Instance in the COM library. We retrieve the ActiveX object returned by these APIs.

• We extract the inner objects from the ActiveX object and the virtual function table. We

hook the virtual function CreateInstance, and retrieve the IClassFactory in-

terface.

74

Table 4.2: Number of methods with critical access paths in six ActiveX controls

ActiveX Controls Total file library process access
methods operation loading creation paths

MS ADODB Stream 26 2 0 0 2
MS RDS DataSpace 3 0 1 0 1

MS Office Snapshot Viewer 27 2 3 0 3
Chilkat Crypt 159 2 1 0 2

InstallShield Update Service 14 6 3 3 8
Zenturi ProgramChecker 23 9 4 0 9

• We extract GetIdsOfNames and Invoke by identifying their fixed offset in the virtual

function table from the IClassFactory interface. We intercept these functions to

monitor the ActiveX methods invocations from the scriptable interfaces.

The hooks are implemented in a way similar to Microsoft Detours implementation [13]. By

performing ActiveX hooking, we can intercept the method invocations directly and block the

access to privileged APIs.

4.5 Evaluation

We evaluated our approach using real-world ActiveX controls. We perform the experiments

in Windows XP SP2 with Internet Explorer as the hosting program. The ActiveX controls

are MS ADODB Stream (ADODB), MS RDS DataSpace (RDS), MS Office Snapshot Viewer

(Snapshot), Chilkat Crypt (Chilkat), InstallShield Update Service (InstallShield) and Zenturi

ProgramChecker (Zenturi). All controls have proper documented specifications except Install-

Shield and Zenturi. We introduce these controls as follows:

1. MS ADODB Stream ActiveX Control. This control (ADODB.Stream) is provided as part

of the ActiveX Data Objects (ADO), which is installed by default in Windows. It is

designed to manipulate binary streams of data in a file system or an e-mail system.

One method, SaveToFile, presents the ability to save binary data to local file system

silently. SecurityFocus [14] describes this vulnerability as a file installation weakness.

2. MS RDS DataSpace ActiveX Control. This control (RDS.DataSpace) is provided as part

of the ActiveX Data Objects (ADO) and is distributed in Microsoft Data Access Com-

75

ponents, which is installed in Windows by default. This ActiveX is designed to create

client-side proxies to transfer application data across process or machine boundaries.

One of its methods, CreateObject, presents the ability to load arbitrary libraries and

bypass the IE ActiveX loading checks. MS06-014 [12] and CVE2006-0003 [15] de-

scribe this vulnerability as remote code execution.

3. MS Office Snapshot Viewer ActiveX Control. This ActiveX control (snpvw.Snapshot

Viewer Control.1) is a component of MS Office Snapshot Viewer which is installed with

MS Office Access 2003. This ActiveX is designed to view a snapshot report, which is

a print preview, from IE and other applications. There are two methods, Snapshot-

Path and CompressedPath that allow an attacker to download file to local file sys-

tem silently. MS08-041 [16] and CVE2008-2463 [17] describe this vulnerability as

arbitrary file download.

4. Chilkat Crypt ActiveX Component. This ActiveX control (ChilkatCrypt2.ChilkatCrypt-

2.1) is a software component for encrypting and decrypting strings and binary data with

various encryption algorithms. One of the functionality through WriteFile silently

writes file to local file system without user intention. CVE2008-5002 [18] describes

this vulnerability as arbitrary file creation and overwrites.

5. InstallShield Update Service ActiveX Control. This ActiveX control (DWUSWebAgent-

.WebAgent.1) is an optional component for MacroVision InstallShield, which is for soft-

ware vendors to deliver and setup their product on the end-user systems. The control

grants the vendors the ability to notify and install product patches and updates. There

is a method, DownloadAndExecute, which allows attackers to download and exe-

cute arbitrary code. CVE2007-5660 [19] describes this vulnerability as remote code

execution.

6. Zenturi ProgramChecker ActiveX Control. This ActiveX control (SafeAndSoundATL-

.NixonConfigMgrEx.1) grants the end users the ability to control the applications running

on the local system. It grants the applications the trust from the users and delivers real-

time protection to prevent unauthorized programs from executing. These are two meth-

76

ods DownloadFile and NavigateUrl that allow both arbitrary file download and

remote code execution described in CVE2007-2987 [20] and EDB-ID 4050 from

exploit-db [21].

4.5.1 Effectiveness Evaluation

Our evaluation uses test cases from the ActiveX documentation, and test templates described in

Section 4.3.1 if no documentation is available. (For the third party ActiveX controls evaluated,

no documentation is available.) Privileged APIs belong to the three privilege sets in Table 4.1.

ActiveX inner functions are presented as library.offset. For example, snapview.c5ad

denotes the function at offset c5ad in the Snapshot Viewer ActiveX control.

Table 4.2 shows the overall results of the API misuse vulnerabilities detected. For each

control, we list the total number of the exposed methods and number of the exposed methods

that have access paths found. The access paths are further broken down according to whether

they involve file access, library loading or process creation APIs. Some methods are counted in

multiple privilege sets, so the total number of access paths in the three categories may exceed

sum of the number of methods with access paths. Some ActiveX can provide much more

methods than others, e.g. Chilkat Crypt provides 159 methods, and RDS DataSpace only has

3 methods. Five ActiveX controls have access paths to file system calls. And these paths are

the majority of all the access paths. This indicates that file system access is usually included

when designing an ActiveX control. Library loading privileges are also commonly provided in

these ActiveX controls. Only the InstallShield ActiveX control can access the process creation

API to execute the update downloaded. In summary, we identified 25 access paths in total, and

seven indirect access paths. All documented vulnerabilities in the six controls are detected by

our approach.

We now describe three representative ActiveX controls among them.

Snapshot Viewer ActiveX Control. This ActiveX control has 27 methods that are avail-

able to the hosting program. The generated model has 4963 nodes. We found three meth-

ods have access paths to the privileged APIs. The SnapshotPath and CompressedPath

methods specify the path to the snapshot file to be displayed in the Snapshot Viewer. We

77

found both of them have access paths to NtCreateFile and NtWriteFile. With a local

URL as the argument, CompressedPath has a direct access path to NtCreateFile and

NtWriteFile. With a remote URL as the argument, SnapshotPath has indirect access

path to the same APIs. PrintSnapshot together with the above two methods have a direct

access path to LoadLibraryExW.

IE.main	

snapview.77f5	

SnapshotPath	

NtWriteFile	

CompressedPath	

snapview.c5ad	
 urlmon.BindToStorage	

urlmon.OnDataAvailable	

1

2

4

5

3

6

8

7

Figure 4.7: Indirect Access Path Using Callback Function snapview.c5ad

When searching the access paths in the model, we identify the ActiveX inner function

snapview.c5ad as the callback function in an indirect access path (edges 6, 7, 8) shown

in Figure 4.7. The PRM in Figure 4.7 only shows important functions. We illustrate how the

attack in the motivating example works as follows:

• SnapshotPath calls snapview.77f5, which registers the callback function snap-

view.c5ad through urlmon.BindToStorage. (edges 1, 2, 3)

• CompressedPath calls snapview.77f5 to record the path to write the payload.

(edges 4, 5)

• When the payload is downloaded, urlmon.OnDataAvailable signals the download

finished event resulting in the callback function snapview.c5ad invoked to write the

payload to the local file system. (edges 6, 7, 8)

Together with the vulnerable ActiveX methods, we identified the callback function snap-

view.c5ad and the whole control flow, to understand how the misuse happens.

78

ADODB Stream ActiveX control. We use test cases in the documentation to manipulate

the Stream object in this ActiveX control. We identify 2 out of 26 methods having access paths

directly to NtCreateFile. The SaveToFile method is to save the binary content of a

Stream object to a file. The LoadFromFile method is to load the contents of an existing file

into a Stream object. Further inspection on the access path and SaveToFile shows that this

method first invokes NtCreateFile to create a file with the FileName argument. Then,

it invokes NtWriteFile to write the data inside Stream object into the file. The Save-

Options argument can be set to arbitrarily overwrite an existing file silently.

RDS DataSpace ActiveX Control. We found that one of the three methods in this ActiveX

control has an access path to the privileged APIs. The CreateObject method is to create

various business objects either in a remote server or in a local process. It can load any library

and create the object registered in the local system. We found it has access paths to Load-

LibraryExW for loading libraries, including other ActiveX controls. This vulnerability is

described in MS06-014 [12], which allows arbitrary library loading and bypasses the killbit

checking of Internet Explorer on ActiveX controls.

msado15.#unnamedImageEntryPoint	

iexplore.#unnamedImageEntryPoint	

msadco.#CreateObject	

ole32.#CoCreateInstance	

kernel32.#LoadLibraryExW	

wshom.#unnamedImageEntryPoint	

iexplore.#unnamedImageEntryPoint	

msadco.#CreateObject	

ole32.#CoCreateInstance	

kernel32.#LoadLibraryExW	

Figure 4.8: Call Sequences to Load adodb.stream and wscript.shell

In a sample attack exploiting this vulnerability, CreateObject is used to create objects

from disabled vulnerable ActiveX controls in IE. The newly created object can be further lever-

aged to achieve remote code execution. We observe that ole32.CoCreateInstance loads

libraries through invoking LoadLibraryExW and then creates the objects. CreateObject

79

creates ADODB.Stream and WScript.Shell by loading binaries, msado15.dll and

wshom.ocx. These objects are, by default, disabled ActiveX controls in IE, but the use of

CreateObject bypasses the restriction. ADODB.Stream is used to write the arbitrary file

to the local storage, and WScript.Shell can execute the payload. Figure 4.8 shows the im-

portant functions in the call sequences where library loading API loads the two objects. Both

the sequences starts from the main function of IE, via the CreateObject method, library

loading API LoadLibraryExW, to the entry points of the binaries.

Effectiveness of the Mitigation. We evaluate the effectiveness of the proxy in the prevention

mechanism. The blacklist consists of 11 methods from the six ActiveX controls described

above. All of them have API misuse vulnerabilities. By running the test cases we find that all

methods in the blacklist are successfully blocked, while other methods in the ActiveX controls

are still functioning. We preserve the normal functionality while blocking only the potentially

vulnerable ActiveX methods in the prevention mechanism.

4.5.2 Performance Evaluation

To evaluate the performance of the detection approach, we selected 27 test cases from Office

Snapshot Viewer ActiveX control. Each method is tested separately in a new IE process. The

total time for instrumentation is 1174 seconds (43.5 seconds/test case). The total time for

building the model and searching of access paths is 264 seconds (9.8 seconds/test case). Our

implementation is only a prototype and is not optimized. The time to find vulnerabilities is still

reasonable.

To evaluate the overhead of the prevention mechanism, we selected 12 test cases from three

ActiveX controls, and tested them separately in a new IE process. We tested ActiveX methods

that are both in and not in the blacklist. The overheads range from 0.01-1.7%. This show that

the access control based proxy is efficient with negligible overhead.

80

4.6 Related Work

Existing ActiveX security mechanisms in Windows is mainly based on trust. Internet Explorer

trusts ActiveX controls installed locally in the Windows system except those blocked by com-

patibility flags in the registry (killbits). For remote ActiveX controls, the user provides a white

list of trusted sites and permit remote ActiveX controls from the white list. For untrusted Ac-

tiveX controls, IE asks the user for permission to use the control. These security mechanisms

rely on the trust from the users, however, the users usually do not know whether the ActiveX

controls are safe or not. Once vulnerability in an ActiveX control is known, the typical solution

is to completely block it but that means that all the functionality performed by the control in IE

is lost.

Research works in ActiveX security mainly focus on memory vulnerabilities. Dromann

and Plakosh [52] propose an automated fuzzing system to detect security flaws in ActiveX

controls. Its target is memory-related vulnerabilities, instead of API misuse vulnerabilities.

Song et al. [110] propose an approach to detect malicious exploitation of vulnerable ActiveX

controls to prevent drive-by download attacks. The prototype prevention is integrated into IE

with ActiveX hooking, using similar techniques as our proxy to block dangerous methods in

ActiveX controls.

The reachability analysis in our approach is related to approaches using model checking

and system graph analysis. Schneider [107] proposes security automata for defining security

properties and preventing the illegal actions in the system. MOPS [40] detects attacks by

checking the reachability of a state that violates the desired security goal in a model. Both

Sheyner et al. [108] and Jha et al. [71] construct attack graphs for model checking to detect

safety violation in the system. The attack graphs make use of network traffic. Backtracker [75]

identifies the files or processes that cause an attack through dependencies between these files

and processes in a system-level dependency graph. As another example, Martignoni et al. [88]

perform data-flow analysis to identify high-level actions from system calls.

To address the privilege escalation problem in Android, many solutions are proposed. Com-

Droid [42] uncovers possible unintended consequences of exposing certain components of An-

droid applications (apps). It only detects vulnerabilities within the component. CHEX [85] ap-

81

plies the similar idea, but also detects cross-component vulnerabilities in addition. SEFA [123]

applies provenance analysis to determine the impact of vendor customizations on the Android

component security. It can find in-component, cross-component, and cross-app vulnerabili-

ties. Woodpecker [65] is a prototype system to detect capability leaks in Android-based smart-

phones. The prototype performs static analysis on the specific control-flow graph for each

capability, which includes possible path identification and infeasible path pruning. All these

solutions are based on static analysis, which may not provide complete results when applying

on systems with a large amount of dynamical invocations.

Mitigation of privilege escalation among software components relies on enforcement of

access control policies or application of strong isolation constructed among the shared compo-

nents. Codejail [126] provides isolation between untrusted library components and the main

program at the memory level. Addroid [102] proposes an advertising library separation frame-

work to isolate the untrusted advertising library using newly introduced APIs. IPC inspec-

tion [57] isolates the Android components using processes in the OS. It reduces the program’s

permission after receiving the request from a low privileged program. Saint [97] examines the

exported interfaces and extends the Android framework to enforce inter-application security

policy both at install time and runtime. Compac [118] provides a fine-grained access control

at component level in Android. It extends the Android framework to enforce and check these

component level permissions.

4.7 Summary

In this chapter, we present a system to detect and prevent API misuse vulnerabilities in shared

components, focusing on the problems with ActiveX controls in Windows. We detect vulner-

able ActiveX methods in ActiveX controls by using a reachability analysis. We believe that

our system can be adapted to other systems using shared components, such as Android. We

provide an access control based mitigation solution to block vulnerable ActiveX methods in the

hosting programs. We are able to identify API misuse vulnerabilities in six real-world ActiveX

controls. The cost of the detection is reasonable and the overhead of the mitigation is negligi-

82

ble. By applying our solution in this chapter, we explain the interactions among the software

components with a model to avoid the misunderstanding that causes component misuses. This

solution also provides an effective mitigation of component misuses and preserves the usability

of the normal functionalities.

We plan to track various forms of data flows as we did in detecting binary loading vulnera-

bilities. With the data flow tracking, we attempt to detect more forms of ActiveX API misuses,

e.g. the library loading misuse discussed in Section 4.4.2. With just a simple form of data

dependency analysis, we can identify how the IE ActiveX blocking mechanism is bypassed by

leveraging the library loading APIs. We also plan to support automatic test case generation in

ActiveX API misuse tracking mechanism. Currently, the test cases are generated for JavaScript

in the IE browser. We plan to support more scripts, such as VBScript, and more Windows

programs, such as Office programs, as hosting programs for ActiveX controls.

83

Chapter 5

Preventing the Misuse of Components in

Android ICC

5.1 Introduction

After having a better understanding on the causes of the component misuse problem in the pre-

vious chapters, we propose a solution to secure the interactions between software components.

We target the Android platform where the misuse of components are common and cannot be

prevent using a blocking mechanism as we did in preventing API misuse. Instead, we pro-

pose a different mechanism to both prevent component misuse and preserve the usability of the

software components.

Android protects applications (apps) using a permission-based system. Each app is assigned

a set of permissions at the installation time. They are isolated from each other and can only

access the resources guarded by the assigned permissions at run time. To support app interac-

tions, Android provides several inter-component communication (ICC) mechanisms, providing

extended functionalities to an app through communicating with another app. The Intent is the

main mechanism used in Android ICC, which provides specific structured messages across the

Android system.

An app (the sender) can send an intent to another app (the recipient) to request access to

services offered by the recipient. The sender does not need to possess the permissions required

84

by the recipient to complete the service. Rather, the recipient exercises its own permissions on

behalf of the sender. This results in a form of privilege escalation [49], called permission re-

delegation, which is a component misuse problem in the Android component communication

model, caused by complicated interactions among software components. In Android, preven-

tion of permission re-delegation relies on the effort of app developers, e.g. they may ask the

sender to provide proper permissions in the ICC, but no system-wide mechanisms are given.

Existing solutions [51, 57, 93] are proposed to prevent permission re-delegation by enforcing

tightened permissions. However, the tightened permissions can break the functionality of the

recipient, which unnecessarily renders these prevention mechanisms less usable.

We propose a framework, called UPPDROID, to prevent permission re-delegation while at

the same time maintaining the usability of Android ICCs. Our approach differs from existing

solutions: instead of enforcing tightened permissions, we allow access of a virtual resource. We

enhance Android ICCs with provenance which is used to determine the resource access rights

of the recipient. Resources for which privilege escalation can occur in the sender are virtualized

so that the recipient uses those virtualized resources. In order to do this, our virtualization needs

to be aware of the specific ICC context and also maintain consistency of the resource data with

respect to operations performed on the resource. As virtualized resources can be accessed by

the recipient, the advantage of UPPDROID is that it provides better usability in that the apps

continue to work albeit with virtual resources. This is an improvement over existing solutions

that tend to break apps, e.g., causing them to crash due to lack of permissions. Moreover, the

security of UPPDROID can be configured with a trade-off between the security and the usability.

The contributions of UPPDROID are in the following aspects:

• We prevent the component misuse caused by complicated component interactions in a

specific communication model in Android, namely, permission re-delegation in Android

ICC.

• We focus on preventing usability problem due to the security mechanism causing prob-

lem to the apps, e.g., crashing.

• We provide a mechanism to enhance the Android ICC to carry ICC contexts and various

information between apps.

85

In the following sections, we discuss the basic Android ICC with permission re-delegation

in Section 5.2. We describe the design and implementation of UPPDROID in Section 5.3. We

show the performance overhead and the case studies in Section 5.4. Finally, we discuss the

related work and conclude the chapter in Section 5.5 and 5.6.

5.2 Overview

5.2.1 Android Component Interaction

Android Components and ICC. Recall from Chapter 2, Android apps are comprised of four

types of components, designed with specific purposes. The Activity component interacts with

other components through a GUI, e.g., touchscreen. In an app, each displayed screen is usually

an activity. Only one activity is active at a time. The Service component provides background

processing and supports remote procedure calls and callbacks. The Broadcast Receiver compo-

nent receives system-wide broadcast announcements that are sent by both the system and apps.

It supports asynchronous event notifications to other apps. The Content Provider component

provides access to database of Android apps with SQL-like APIs.

Android ICC provides apps with extended functionality to allow apps to make use of other

apps that provide extra functionality. An intent is a message that serves as an abstract de-

scription of actions for the recipient to carry out during an ICC. More specifically, intents are

used to start and interact with Android components using corresponding APIs, e.g., startActiv-

ity(Intent) which is used to start and interact with an activity. Intents can be utilized either in

an explicit or implicit way. Explicitly, an intent can specify the recipient by name. Implicitly,

the Android platform decides which apps can receive the intent.

Resources and Permissions. Android protects its resources with a permission-based mech-

anism. Each app explicitly claims its permissions to access various system resources in a man-

ifest file at the install time. When resources are accessed by the app, Android checks whether

the app has the corresponding permissions. Within an app, all components share the same per-

missions. There are over 150 permissions guarding various Android resources since Android

4. These resources are from the framework level and kernel level. At the framework level,

86

Android provides device-specific system services, such as telephony, location and camera, as

well as various content providers, such as contacts, call logs, and SMS. At the kernel level, sys-

tem resources managed with the Linux security mechanism include the file system and network

sockets. For example, sdcard is a resource managed at this level.

Permission Re-delegation in Android ICC. In Android ICC, the recipient can exercise its

own permissions on behalf of the sender, which makes the sender gain additional privileges.

This is called permission re-delegation, where the sender indirectly obtains the permissions

from the recipient. This can be caused by intentional functionality of the recipient app, by ac-

cidental exposure of internal functionality to another app, or even by incorrect implementation

by the developers. Permission re-delegation is very common in Android ICC.

For example, an image-processing app A (without the permission WRITE EXTERNAL STO-

RAGE) requests a file manager app B (with the WRITE EXTERNAL STORAGE permission) to

process a photo on the sdcard, through public APIs, such as ReadFile and WriteFile. This

is a typical manifestation of permission re-delegation, where A gains privilege of accessing

sdcard from B. Note that users can be involved in this ICC, e.g., opening the file manager

from the image-processing app by clicking a certain button. Consider a malicious app also

without the WRITE EXTERNAL STORAGE permission. It wants to gather private data and ex-

ecute malicious payloads. By using the file manager app, private data on the sdcard can be

gathered, and malicious payloads can be generated and saved to the sdcard. Thus, the permis-

sion re-delegation in this example leads to sensitive data leakage and malicious code execution.

Many such problems have been identified. For example, Felt et al. [57] found 15 permission

re-delegation problems in 5 system apps in 2011. Grace et al. [65] found 8 phone images in-

cluding 11 permissions have similar privilege escalation problem. Not only the malicious code

can be executed in this way, but also the sensitive private information can be leaked through

permission re-delegation.

5.2.2 Approach Overview

We show the overview of UPPDROID and discuss the privilege escalation problem in permis-

sion re-delegation and the drawbacks of existing solutions with examples.

87

App A App B Sdcard:/

App A App B Sdcard:/

App A App B Sdcard:/

(a) Original Android

App A App B Sdcard:/ X X

(b) Existing Solutions

App A App B Sdcard:/

App A App B Sdcard:/

App A App B Sdcard:/

(c) UPPDROID

Figure 5.1: Examples

In Figure 5.1, the same image-processing app A (without the permission WRITE EXTER-

NAL STORAGE) requests a file manager app B (with the WRITE EXTERNAL STORAGE per-

mission) to process a photo on the sdcard. In the original Android system (Figure 5.1a), this

ICC is allowed by design, so B accesses the sdcard on behalf of A. However, this permission

re-delegation allows A to indirectly access the sdcard, as if it has the WRITE EXTERNAL STO-

RAGE permission. If A is acting maliciously, it can erase sdcard through the permission re-

delegation, if B provides file deletion.

Existing solutions [51, 57, 93] based on the principle of least privilege are proposed to pre-

vent privilege escalation caused by permission re-delegation. They can completely block the

ICC by not starting B (left side arrow in Figure 5.1b). Alternatively, they run B with the

removal of permissions (right side arrow in Figure 5.1b), which results in B being run with

the intersection of permissions from both A and B, e.g., the WRITE EXTERNAL STORAGE

permission is removed from B. With the removal of the permission, A cannot gain additional

privileges from this ICC. However, forcing B to run without the WRITE EXTERNAL STO-

RAGE permission may crash B. In practice, this is quite likely to occur as an exception will

occur. Thus, the functionality of B is lost. In this chapter, we call such solutions, “denial-

based” solutions. They are less reliable [74], especially, when the recipient is also servicing

other apps, as they break the assumption that the permissions in the Android app manifest can

always be granted. The developers may not have considered handling the exceptions caused by

permission removal in the first place. The consequences of the crash in these solutions affect

88

the system in many ways, especially, (i). the crash is usually the whole app, including all its

activities. These activities can be interacting with other apps. The data or the program states

can be damaged due to the app crash; (ii). recovering from the crash can be demanding. The

usual way is to restart the whole app from crashes. This can not only consume many system

resources and power on a mobile device, but also require many user interactions to reach the

state before the crash happens.

Our goal in this chapter is to prevent privilege escalation in Android ICC while still making

the app usable by avoiding the app crashes due to the permission removal. We propose UP-

PDROID, which employs dynamic resource virtualization on the system resources guarded by

permissions that are limited or removed in the “denial-based” solutions. It allows the Android

ICC by creating virtualized resources for the recipient to access based on the permissions of

the apps involved in the Android ICC. The system resources are virtualized in a way that no

privileges are leaked to the sender. Since no permission is removed from the recipient, the

functionality is preserved and no crash is caused by removing the permissions. As shown in

Figure 5.1c, UPPDROID determines that the system resource sdcard is to be virtualized because

the intersection of permissions from A and B does not contain WRITE EXTERNAL STORA-

GE. UPPDROID creates a virtualized sdcard for B to access on behalf of A. A does not gain

any privilege from this ICC since the sdcard is not the real sdcard.

UPPDROID aims to prevent the privilege escalation caused by permission re-delegation

in Android ICC. If the sender has more permissions or at least the same permissions as the

recipient, the ICC is allowed since no privilege escalation is caused. UPPDROID also supports

security level customization. If the user intends to use certain Android ICC, UPPDROID can

be set to allow this ICC as well as informing the user of potential privilege escalation risks.

UPPDROID focuses on protecting the resources guarded by the default Android permissions.

Although customized permissions in third party apps are not the main focus, UPPDROID can

be extended to cover them.

89

App A
{p1, p2}

App B
{p2, p3} Resource

r’3

Resource
r3 {p3}

Figure 5.2: Permission re-delegation prevention in UPPDROID

5.3 Design & Implementation

We now describe the design of UPPDROID. The basic idea of how UPPDROID prevents priv-

ilege escalation is shown in Figure 5.2. Suppose App A with permission set {p1, p2} sends

an intent to access a resource r3 which can be met by App B with permission set {p2, p3}.

The “denial-based” solutions block this access shown in Figure 5.2 (dashed arrow), as after the

intersection of the permissions (p2) is applied on App B, App B only has p2 and thus cannot ac-

cess r3. In UPPDROID, we still run App B with its original permission set as if p3 is “granted”.

However, instead of accessing r3 directly, we virtualize it as r′3 as shown in Figure 5.2 (dashed

rounded box). App A gains no additional privilege from this Android ICC even though the

permission p3 is granted during our virtualization of r′3.

We define following rules in UPPDROID for our permission re-delegation prevention mech-

anism. We let Pt(A) denote the set of permissions held by App A at time t, R(Pt(A)) denote the

resources guarded by those permissions and RVt(A) denote the resources that are virtualized

at time t. We have the following rules:

• Initial state: RVt(A) = ∅, Pt(A) = Poriginal(A). When App A starts, it has the original

permissions of A as granted by the user. No resources are virtualized.

• Resource virtualization for recipient: In an ICC from A to B at the time t, then RVt(B) =

R(Pt−1(B) − Pt−1(A) ∩ Pt−1(B)). We virtualize the resources which are guarded by

the current permissions of receiver B but which are not in the intersection of current

permissions from the sender A and the receiver B. The resources which are virtualized

are a subset of the resources an app originally has access to.

• Sender’s and receiver’s permissions remain unchanged: In an ICC from A to B, we have

Pt(A) = Pt−1(A) and Pt(B) = Pt−1(B), thus permissions of the apps are unchanged.

90

Android
Application

APP A APP C APP B

Android
Kernel

System
Calls

Kernel Resource
Manager

Android
Framework

Activity
Manager

Resource
Manager

System
Services

Figure 5.3: Architecture of UPPDROID

However in cases where resources are not easily virtualizable, then Pt(B) = Pt−1(A) ∩

Pt−1(B).

The implication of enforcing the above rules is that in order to maintain the functionality

of the recipient app, its original permissions are used as much as possible. These rules are

enforced in UPPDROID by default. If users want an Android ICC to happen as the original

Android system, where privilege escalation can happen, UPPDROID also can alert the user of

potential risks in this ICC and allows the ICC ensuring the intention from the users, e.g. a

pop-up for approval. Moreover, the resource virtualization can also be customized to relax the

default rules. We discuss these features in Section 5.3.2.

Figure 5.3 shows how UPPDROID works when an ICC happens, e.g. App B delegates the

access to resource r on behalf of App A. In the diagram, arrows denote the individual step that

happens when an ICC is issued. We create a ResourceManager and a Kernel ResourceManager

to manage the resource accesses at the framework level and the kernel level. Steps 1, 2 and 3

describe the ICC to access system resources, whereas steps 1, 2 and 4 describe the access

to kernel level resources. In step 1, App A creates an intent i which will eventually cause

resource r to be accessed by app 2 and intent i is passed to ActivityManager. In step 2, the

ActivityManager starts App B1, which provides the access to r. The ActivityManager also

passes the ICC information from App A in the intent i to App B, and records this information
1In original Android, when App A calls startActivity to start App B, App B is not aware of App A. The ICC is

transparently handled by the ActivityManager.

91

in our Kernel ResourceManager. In step 3, in order to access r, App B invokes a system

service manager, e.g. LocationManager. It passes the ICC information in i to the system

service manager. To access a resource managed by kernel, step 4 shows where App B makes

system calls to the kernel, e.g. to access the file system. In step 5, the system service manager

interacts with the ResourceManager to decide the virtualization which is dependent on the ICC

information. In step 6, when App B accesses resources at the kernel level, the intercepted

system calls interacts with our Kernel ResourceManager to virtualize the kernel resources.

In summary, UPPDROID achieves the goal with the following features:

• transparent ICC provenance: the ICC information is generated and handled at system

level to provide ICC provenance. The information is protected in the Android system

which is not accessible by the apps.

• customizable resource virtualization: the resource virtualization can be customized. Be-

sides the rules discussed previously, which enforce intersections of permissions, the re-

source virtualization supports choices of users to always allow certain Android ICC or

relax the restrictions to certain extent.

We describe them with details in the following discussion.

5.3.1 Adding ICC Provenance

We first describe the notion of an Android ICC chain. In App A, a component can start another

component in App B through an intent. We denote this by the notation A → B. In the same

fashion, App B can start another component in App C, represented by A → B → C. We call

A1 → A2 → . . .→ An an ICC chain where Ai are apps. In fact, they are the components in Ai

which are involved (invoked) in the ICC but a component can always be mapped to an app, i.e.

a1 → a2 → . . .→ an where ai is a component in Ai. Notice that an ICC chain is always finite;

it may have repetition in Ai corresponding to a form of recursion. For example, if a component

a1 in App A calls a2 in App A, and a2 calls b1 in App B which calls c1 in App C, the ICC chain

for the interactions is A → A → B → C. The launcher app which is a system app to start

other apps through the GUI is usually the first component in the ICC chain. As it is a privileged

92

1

3
Com1

Activity Manager

Intent i1

Intent i2

System Services

KRM
ICC Chain

Com2
 Intent i2

4

2 1

Figure 5.4: ICC Chain Passing Mechanism in UPPDROID

system app, permission re-delegation is not an issue. In UPPDROID, we exclude the launcher

app from the constructed ICC chain.

In Android, no ICC provenance information is maintained due to the indirection and mes-

sage dispatching. The recipient is not aware of the sender’s identity through startActivity API.

Only explicit usage of startActivityforResult can provide the recipient with the notion of the

caller, however it is not always used, and it relies on the recipient to take actions, e.g. prevent-

ing permission re-delegation. We design an ICC provenance mechanism to carry ICC chains as

contexts for virtualization. Although there are existing solutions providing ICC provenance in

Android like Quire [51] and Scippa [27], our mechanism provides a transparent ICC handling

and interacts with the resource virtualization mechanisms to prevent permission re-delegation.

It maintains and passes the ICC chain across component boundaries and to the resource man-

agers. We discuss how this is achieved in the following discussion.

Passing Across Component Boundaries. Android components, such as activities, ser-

vices and broadcast receivers use the Android intent to pass data across component boundaries.

Naturally, our ICC mechanism extends the standard Android intent class to pass ICC chains.

In Android, ICCs and component life cycle are managed by the ActivityManager. We

modify the ActivityManager to pass the ICC chains together with the intents. Figure 5.4 shows

how ICC chains are passed using intents from component 1 to component 2. In this example,

intent ij denotes the intent that starts the component comj . In step 1, com1 sends the intent i2

to the ActivityManager. The ActivityManager retrieves intent i1 from com1, and extracts the

ICC chain in i1 and stores it in i2. In step 2, the ActivityManager decides to start com2 which

is designated to handle i2. The ActivityManager appends the app information which contains

93

com2 to the ICC chain in i2. In this fashion, The ICC chain information is generated and passed

across component boundaries.

There is a special type of intents, called pending intents, to let a component request another

component to start a third component on behalf of the first component. By sending a pending

intent to another component, the sender grants the recipient the right to perform the operation

in the intent as if the receiver was the pending intent sender itself (with the same permissions

and identity). For example, a component a allows component b to start component c on behalf

of a using a pending intent. Component b is using a’s permission to start c. For cases like this,

we treat the ICC chain as from the original pending intent sender to the final component that is

started by the recipient, e.g. a → c in the previous example. The ICC chain information can

also be passed and maintained using the intents, with modifications on both ActivityManager

and the pending intent class.

Content Providers are Android components that do not rely on the intent mechanism for

ICC. Rather, public APIs are directly used to access the Content Provider. To pass ICC chains to

a Content Provider, the corresponding Content Provider APIs are intercepted. We also modified

the ContentResolver class in the application context to enable the ResourceManager to pass

ICC chains.

Passing to Resource Providers. In UPPDROID, we define system services (e.g. Location-

Manager), content providers (e.g. contacts) and kernel resources (e.g. sdcard) as three types

of resource providers. When the recipient in an ICC is accessing these resource providers on

behalf of the sender, the correct ICC chains need to be passed to determine how the resources

are to be accessed. We describe how ICC chains are passed to system services and kernel

resources, since passing to content providers are discussed above.

System services guarded by Android permissions are managed by various service managers

at the framework level. In order to access these resources, apps first retrieve the service man-

agers from the application context. Then, they invoke the APIs offered in these managers to

access the resources. For example, location service is managed by the LocationManager which

offers APIs such as getLastKnownLocation. As shown in Figure 5.4, we modify the application

context to pass the ICC chains in the intent to these service managers in step 3. The APIs in

94

the service managers are also modified so that the ICC chains can factor in how to access the

resources.

Kernel resources such as file system and network sockets are managed by the underlying

Linux kernel. Our Kernel ResourceManager manages resource accesses at the kernel level. It

maintains a separate copy of ICC chains with the help of ActivityManager, when an ICC occurs

at the framework level. As shown in Figure 5.4, in step 4, right after ActivityManager appends

the ICC chains in the intent i2, it makes a system call to Kernel ResourceManager to pass the

ICC chain.

5.3.2 Virtualizing Resource Accesses

UPPDROID uses a novel form of resource virtualization which is different from most existing

uses of virtualization [24, 80, 82, 122]. In order to support app usability while preventing privi-

lege escalation, we aim to design the system to be similar to what the app expects in the original

Android. Our resource virtualization has the following features:

• dynamic: the resources are virtualized dynamically based on the ICC chains discussed in

the previous rules. Rather than a system wide virtualization, the resources are virtualized

on demand in a lightweight fashion. For example, rather than fully virtualize the whole

sdcard, we can only virtualize a directory based on the ICC chain.

• consistent: the virtualized resources are uniquely associated with an ICC chain. We

maintain the operations on the virtualized resources transparently so that in all intents

with the same ICC, the previous resource is being used. We call this resource consistency

in the same spirit as consistency in databases. For example, there can be two different

virtualized sdcard, associated with A→ C and B → C respectively. Next time the ICCs

happen, A and B can each access the associated sdcard, which provides a consistent

environment with past ICC usage. For example, in the virtual environment associated

with A→ C, file fA could be created initially and then subsequent intents could write to

fA but fA would not be visible in the virtual environment associated with B → C.

95

• flexible: the resource virtualization can be customized to trade off security with usability.

First, the ICC chain used in the virtualization can be changed. Rather than using the

entire ICC chain, we can use part of the chain, e.g. we can apply the intersections of

permissions on the last two components along a particular ICC chain. By doing so, we

relax the prevention of permission re-delegation allowing some re-delegation to enhance

the usability or compatibility of the ICC with specific apps. Second, the resource can be

virtualized in many ways. The virtualized resource can range from having an arbitrary

value to one partially based on the real value to the real value itself which can have noise

applied, e.g. the location resource can be a fake one or a coarse-grained value derived

from the actual location with some noise added. The virtualized file system (or database)

can be an exact shadow copy of the real file system (or database), a partial copy, or a

copy with the same metadata without any actual data, or be just empty. The access on

the file system can also be customized. For example, write access can be downgraded to

read access or even no access. These customization can provide some usability in certain

cases, like the coarse-grained values.

• transparent: the resource virtualization is transparent to both sender and recipient. The

modifications on the virtualized resources do not affect the real resources. The recipient

in an ICC can access the virtualized resources seamlessly.

We group Android resources into two categories, simple resources and environment re-

sources, shown in Table 5.1. Simple resources are usually system services, which provide

either a function or a result. They are accessed by either gaining the functionality or acquir-

ing the result, e.g. gaining network connections and acquiring GPS locations. Environment

resources are content providers and the file system, which provide operations, such as updating

the database and modifying a document, on data and files. Not all the resources can be effec-

tively virtualized, e.g. some simple resources do not return a value as results, such as camera

and Internet. Either the accessing app gets the functionality or it does not. As it is not feasible to

virtualize them, we deny the permissions to prevent privilege escalation as in the denial-based

mechanisms.

96

Table 5.1: Category of System Resources

Simple Resource Environment Resource
Activity Window Layout inflater Applications Calender
Alarm Power Notification Contacts Download

Keyguard Search Sensor Media PartnerBookmarks
Location Storage Vibrator Telephony Themes

Audio Connectivity WiFi UserDictionary SDcard
Media router Telephony Input method

UI mode Download

App A App B LocationManager

RM Virtualized Location

(a) Accessing Simple Resources

RM

Virtualized
Contacts

App A App B

KRM

Syscall

Context

Virtualized
SDcard

(b) Accessing Environment Resources

Figure 5.5: Virtualizing System Resources

Virtualizing Simple Resources. For simple resources, we virtualize the values with several

choices. The virtualized value can be a fake value (i.e. an artificially invented value which can

be pre-defined or created based on the semantics of the simple resource) or a modification of

the original value with some random noise. In the second case, the amount of noise can be

specified for the ICC chain. A special case, is just a coarsening of the original value (can be

thought of as the coarser value is obtained through the noise adjustment). These values are

uniquely generated based on properties of the ICC chain, e.g. using ICC chain as hashes to

generate virtualized values or noise, so that the recipient from the same ICC chain can always

access the same value or approximate value (in the case of noisy values). Figure 5.5a shows

how App B (with ACCESS FINE LOCATION permission) accesses location services on behalf

of App A (without location permission) using virtualization. When App B invokes APIs in

the LocationManager, the LocationManager queries the ResourceManager. Based on the ICC

chain, the ResourceManager instructs the LocationManager to return a virtualized location,

e.g. a fixed fake location.

97

Virtualizing Environment Resources. We virtualize the environment resource by creating

a shadow database or a shadow file system respectively. Each shadow database or file system

is uniquely generated and associated with an ICC chain identifier. The shadow database or file

system can be empty or a partial copy or a full copy of the real resource, depending on the

desired security policy and guarantee. By default, UPPDROID uses the empty copy to provide

the greatest security against permission re-delegation. Since the shadow copy is maintained

with the ICC chain, the recipient with the same ICC chain can access the copy in a consistent

fashion.

Figure 5.5b shows how App B with WRITE EXTERNAL STORAGE and READ CONTA-

CTS permissions is accessing the contact list and sdcard on behalf of App A without any

permission. When App B requests the contact list, the application context interacts with the

ResourceManager. The ResourceManager generates a shadow contact list, e.g. an empty list,

with a unique identifier of the ICC chain and instructs the application context to redirect the

access to virtualized contact list. When App B accesses the sdcard through system calls, the

system calls are intercepted by the Kernel ResourceManager. As ICC chains are passed to

the Kernel ResourceManager by the ActivityManager, the Kernel ResourceManager creates a

shadow sdcard, e.g. an empty sdcard, and redirects the system calls to the virtualized sdcard.

5.3.3 Implementation

We implement UPPDROID on Android 4.4. To support passing additional data through intent,

we extended the original intent class to support new fields. These data are transparent to An-

droid apps but available to the framework modules, such as ActivityManager. The pending

intent class is also modified to support the ICC chain passing. We copy the data in a separate

place once they reach the new Android component in an Android ICC. To pass data to Con-

tent Provider, we intercepted primary methods that handle the access to the Content Provider

in application context, e.g., query, insert, update, delete, getType, etc. To generate and pass

ICC chains in other Android components, we modified APIs, such as startActivity, bindSer-

vice, sendBroadcast, with respect to each kind of components in ActivityManager. To pass

ICC chains to system resources, we modified both the getSystemServices API in the applica-

98

Table 5.2: Resources evaluated with test app on UPPDROID

Resources Functionalities
Microphone record sound, media recording services
UserAccount view and retrieve user accounts

SMS send and receive SMS
PhoneCall make telephone call

Camera capture images
PhoneState view various phone info, e.g device id
Location get locations services
SDcard access files on sdcard

Contacts view and edit contacts on device
Other Contents access other resources, e.g., call log, browser history

tion context and each system service manager, so that the system services can accept the ICC

chains. We added a new system service ResourceManager to manage the resource virtualiza-

tion at the framework level. We intercepted each service manager APIs accessing the resources,

so that they cooperate with the ResourceManager to provide virtualization on the system re-

sources. We modified the Content Provider class, so that the ResourceManager can generate

new empty databases.

We added a kernel driver as the Kernel ResourceManager to manage the file system. To

pass ICC chains to the Kernel ResourceManager, we provide new system calls to the driver. At

the framework level, the ActivityManager uses these system calls to update the ICC chains to

the Kernel ResourceManager. We created private folders on the real sdcard accessible to the

Kernel ResourceManager to act as a shadow file system. We intercepted system calls that are

related to file system access, such as open, mkdir, to support file system virtualization. They

are redirected to access the virtualized file system.

5.4 Experimental Evaluation

We evaluated UPPDROID in a number of ways. Our evaluation was conducted on Android 4.4

KitKat. We first applied basic tests on resources using our own test app on the resources given

in Table 5.2 to confirm that UPPDROID provides the expected functionality. We then tested

with real app case studies, popular Android apps and performance benchmarks.

99

5.4.1 Case Studies

We now use three case studies to show why existing denial-based solutions result in loss of

functionality or usability, for example, lead to an app crash. Our solution, on the other hand, at-

tempts to preserve usability but still provides security through the use of resource virtualization.

Naturally, there is no usability issue in the original Android since permission re-delegation is

always allowed, however, there may be security breach due to the privilege escalation.

The resources tested in the case studies include file system (sdcard), system service (lo-

cation) and content provider (contacts). These resources are guarded by the most frequently

used dangerous permissions identified in the study by Wei et al. [121], such as WRITE EX-

TERNAL STORAGE, ACCESS FINE LOCATION and READ CONTACTS. In each case, UP-

PDROID preserves app usability while preventing the privilege escalation problem, whereas

denying the escalated permission does not.

We used a driver app (Myapptest) to start and interact with the tested apps in the case

studies. This driver app can be configured to have various permission sets and request services

from the tested apps. We run the tests in three environments:

• original Android – a clean Android 4.4;

• Android enhanced to deny elevated permissions through permission re-delegation, which

we call a permission reduction approach [57] – Android 4.4 modified to simulate a per-

mission reduction approach by reducing the permissions and applying the intersection of

permissions in the request handling app when ICC happens; and

• UPPDROID– Android 4.4 with our modifications for UPPDROID.

File Manager App. ES File Explorer File Manager (com.estrongs.android.pop) is a

file manager app which supports various file management functionalities, such as viewing and

editing files and directories on the device. The normal scenario for using this file manager is to

let an app request the file manager to view and edit the files in the sdcard.

In our test scenario, the driver app does not have the WRITE EXTERNAL STORAGE per-

mission. It requests to edit a file test.txt in the sdcard using the file manager app. In

100

original Android, the driver app can read and write the file test.txt causing permission

re-delegation.

In a permission reduction simulation, the WRITE EXTERNAL STORAGE permission is re-

moved, resulting in the file manager app becoming unstable. The recipient first displays the

sdcard to be empty, due to the lack of the WRITE EXTERNAL STORAGE permission, which

has been removed to prevent privilege escalation. Any subsequent interactions on the file

manager crash the app in unexpected ways without throwing any system exception messages.

Sometimes, it can also crash immediately after being started by the driver app. By examin-

ing the system logs, we can see that there is a java security exception from a file system call

open needing the WRITE EXTERNAL STORAGE permission. The result shows that denying

the WRITE EXTERNAL STORAGE permission causes problems for the ES file manager app,

which loses its functionalities servicing other apps on the system. For example, first we use

another app B (We give these apps tags to help reading) to interact with this file manager app

C to create directories and edit text files. Then the driver app A interacts with app C, caus-

ing a switch to a new activity of app C. When this new activity crashes due to the permission

removal, the whole app C crashes and app B loses its unsaved data interacting with another

activity of this file manager app C.

In UPPDROID, based on the rules we defined in the Section 5.3, sdcard is virtualized.

The file manager app is redirected to access the virtual sdcard. For this test case, UPPDROID

creates a virtualized sdcard where there are empty copies of files from the real sdcard.2 The

file test.txt is an empty file. When the file manager writes to the file, UPPDROID saves

the updated copy to a private folder associated with the ICC chain myapptest → com.estro-

ngs.android.pop. Thus, there is no data leak from the file test.txt. When the file manager

edits the virtualized file, the changes do not affect the original test.txt. Similarly, we use

another app B to interact with the file manager app C. Then, we use the driver app A to interact

with app C. In this case, the interaction between A and C does not affect the interaction between

B and C. The data is kept separately from each other. The file manager app C does not crash

and the driver app A does not gain any extra privileges from this ICC.

2 The copies are lazily created when needed. Note that having shadow files is a configuration option in UPP-
DROID.

101

GPS Location. GPS Coordinates GPS Location (gps.coordinates.share.sms.email)

is a location service app which offers basic location services, such as providing coordinates of

the current location, and sharing the coordinates through SMS or emails. It requires the ACC-

ESS FINE LOCATION permission. The normal usage of this GPS service app is to return GPS

coordinates.

We configure the driver app to remove its ACCESS FINE LOCATION permission. The

driver app is run to interact with the GPS service app to show the current GPS coordinates.

Original Android allows this interaction, providing the current coordinates (37.422005, -122.08-

4095) (simulated values set on the device for testing).

In the permission reduction simulation, the location service app crashes with a security

exception showing that the permission is needed for the proper operation. In fact, exception

handling shows a pop-up window, indicating the GPS-coordinates have stopped. While we only

used a test driver app, a real app may be using another app providing GPS and other services

in a number of ways. If the GPS service app crashes, it could cause significant impairment of

functionality.

In UPPDROID, the location resource is virtualized based on the call chain and the virtu-

alization rule, R(P (GPSserviceapp) − P (Mytestapp) ∩ P (GPSserviceapp)). The virtual

coordinates have been set as (0, 0), though other options are also possible, e.g., a coarse-grained

location. The result is that the GPS service app can still function with fake coordinates. With

a completely fake value, there is no privilege escalation of the location resource in the driver

app.

Phone Book Contacts. Phone Book ConTacTs (com.brainworks.contacts) is a phone

book app which provides basic services to view and edit contacts and call logs. The READ CO-

NTACTS and READ CALL LOG permissions are required to access contacts and call logs.

We configure the driver app to remove its READ CONTACTS permission. In original An-

droid, it can start the contacts app freely. The phone contacts can be edited freely in the contacts

app afterwards.

In the permission reduction simulation, the contacts app crashes when the READ CONTA-

CTS permission is revoked. The Android system catches this security exception, as the per-

102

mission is not presented when accessing the contacts content provider on device. A pop-up

window shows that the ConTacTs app has stopped.

In UPPDROID, the contact list is virtualized according to the rule R(P (PhoneBookCon-

TacTs)−P (Mytestapp)∩P (PhoneBookConTacTs)). An empty contact list is created and

provided to the Phone Book ConTacTs app. The contacts app shows the empty contact list on

behalf of the driver app. Alternatively, we can also make it show fake contacts. Again there is

no privilege escalation since the original resource access is prevented, but now the contacts app

works properly without any exceptions.

UPPDROID works properly with the three virtualized resources from both simple and en-

vironment types. In fact, there are more than 250 similar apps3 from each of their resource

types which can suffer from this kind of problem when interacting with another app. Most

of these apps require WRITE EXTERNAL STORAGE, READ CONTACTS and ACCESS FIN-

E LOCATION permissions to function properly.

5.4.2 Usability Improvement over Permission Restriction

To evaluate the usability improved by UPPDROID, we select 60 popular apps (20 for each

category) that are location-related, contacts-related, storage-related apps. To compare the per-

mission reduction simulation and our solution, we run these apps where the corresponding

permissions are disabled. All of them crash due to the missing permissions when we tested

using the monkey tool4 and manual tests. We then ran them in UPPDROID with the exact same

set of UI events in both automatic and manual tests. As expected, the apps no longer crash. UP-

PDROID supports the primary functionality for all the tested apps and correctly creates virtual

resources for permission re-delegation in ICCs. Compared to the simple permission reduc-

tion simulation which leads to crashes in all tested apps, thus, making all these apps unusable,

we see that UPPDROID significantly improves the user experience while preventing privilege

escalation in the Android platform.

3 Google Play only shows the most related 250 apps when searching for the three types of the apps. The actual
number can be more.

4The tool that runs on the emulator generates pseudo-random streams of user events such as clicks, touches, or
gestures, also a number of system-level events.

103

1.64%Antutu

1.73%Geekbench

1.69%Quadrant

2.12%Vellamo Mobile

4.98%SQLite

0% 5%

Figure 5.6: Runtime Overhead of UPPDROID

5.4.3 Performance Benchmarks

We used five of the most popular benchmarks, Antutu, Geekbench, Quadrant Standard, Vellamo

Mobile and SQLite on Google Play to benchmark UPPDROID. The benchmarks were run with

our prototype implementation on a Nexus 7 WiFi 2012 Android 4.4 device. The benchmarks

test CPU, memory usage, I/O, and database accesses in Android. We use these benchmarks

to evaluate the impact of UPPDROID on a real Android device under typical usage scenarios

exercised by the benchmarks. The benchmarks do not specifically focus on ICC but still do

exercise ICCs. As our prototype implementation involves changes at the Android framework

and the Linux kernel level, these benchmarks also exercise these aspects. It is not feasible to

test the numerous apps available on Android and many apps are infeasible to benchmark as

they require GUI interaction.

We compare UPPDROID on Android 4.4 KitKat against original Android 4.4. Figure 5.6

gives the additional overhead relative to the original Android for the various benchmarks which

is either the run-time or a benchmark score. The runtime overhead for UPPDROID is quite small

for all the benchmarks. In the SQLite benchmark, which focuses on the database operations

in the Content Provider, it is below 5%. In all other benchmarks it is below 2.2% which is

quite negligible. Our Content Provider implementation currently does not rely on the general

ICC chain passing mechanism; rather, it utilizes various hooks in the Content Provider APIs

themselves. We expect that the small increase in overhead in the SQLite benchmark is because

it focuses on Content Provider I/O which exercises our hooks more. However, real apps are

usually less database intensive.

104

5.5 Related Work

Permission Re-delegation Detection and Mitigation. ComDroid [42], Woodpecker [65],

CHEX [85] and SEFA [123] apply similar static analyses, e.g., reachability analysis, to de-

tect in-component, cross-component, and cross-app vulnerabilities. However, static approaches

may not identify all the possible permission re-delegation at the framework level. Prevention

mechanisms are needed against privilege escalation from permission re-delegation. Quire [51]

provides ICC provenance on Android to prevent a confused deputy attack (permission re-

delegation). It tracks the call chain of IPCs, which allows reducing the privileges of the callee

and acting on the callee’s behalf. Scippa [27] provides a system-centric IPC provenance to

Android. It modified both the framework and the kernel level IPC handling system. It pro-

vides a new system API for the apps to query the callers. UPPDROID provides a lightweight

ICC provenance, where the ICC information is kept away from the apps. The usage of ICC

provenance is to aid the virtualization of resources by not limiting the permissions themselves.

IPC inspection [57] deals with permission re-delegation by reducing the permissions of the

recipients. When dealing with the singleton apps, it completely revoke the permissions of the

recipients, which can result in crashes affecting the usability of these apps. UPPDROID pre-

serves the usability of the recipients with the proper security guarantee in the Android ICC to

prevent permission re-delegation. Bugiel et al. [36] extend Xmandroid [35] to detect confused

deputy and collusion attacks by monitoring the runtime ICCs. It performs framework level

monitoring and enforces kernel level mandatory access control. However, it relies on the poli-

cies specified by users and designers to block the interactions without proper permissions. It

does not focus the usability problem as UPPDROID does.

Permission System Enhancement. Apex [93] allows a user to authorize partial permis-

sions and revoke granted permissions on demand. Saint [97] examines the interfaces one app

exported to another and extends the Android framework to enforce inter-app security policy

(at the install time and runtime). ConUCON [28] enforces usage control based on system con-

text (e.g., device location). COMPAC [118] provides a fine-grained access control at the java

component level and enables the developers to assign permissions to the components within

apps. DNADroid [45] enforces control on both install-time permission assignment and runtime

105

permission usage. However, these approaches require the users to have a good understanding

of permissions as well as policies and focus on a single app. In contrast, UPPDROID focuses

on Android ICC which does not require user interactions but can integrate these policy-based

approaches to extend its functionality.

Resource Virtualization. On the desktop platforms, resource virtualization ideas [84,112,

129] are widely used to provide isolation. On the mobile platforms, L4Android [80] utilizes

a micro-kernel to support multiple independent Android system virtual machines. However,

the overhead of L4Android renders it impractical for mobile devices with limited resources.

Cells [24] supports multiple virtual phone (VP) environment through light-weight OS virtual-

ization. Users can switch through these VPs. AirBag [122] uses a light-weight OS virtualiza-

tion to isolate untrusted mobile apps, with a restricted environment to run untrusted Android

apps. RVDroid [82] provides virtualization by virtualizing resources to different virtual views,

thus, confining apps to those views. UPPDROID builds on the primitives provided by RVDroid.

Unlike RVDroid, which uses a full system virtualization into virtual views, we enhance Android

ICC with a novel lightweight dynamic virtualization whose context is based on ICC chains and

provides virtual resource consistency. While these approaches focus on regulating a single app,

UPPDROID focuses on solving the permission re-delegation problem between multiple apps.

Data and Resource Protection. TISSA [132] implements a privacy mode on Android

allowing users to control the access to personal information at runtime. It uses fake data to

block the untrusted app from stealing the private information. TaintDroid [53] employs dy-

namic information flow tracking technique to detect whether sensitive data has been sent out

through the network interfaces. AppFence [67] builds upon TaintDroid to prevent data leak-

age through network APIs. It applies data shadowing on primitive data with fixed values and

content providers with an empty set. MockDroid [32] detects undesired permission requests

and returns a resource reported as empty or unavailable if the permission is blocked by the user

at run-time. Although most of these solutions employ the idea of using fake data, they do not

virtualize the resources in a comprehensive way as UPPDROID, and focus data protection of

individual app.

106

5.6 Summary

In this chapter, we propose a solution to prevent privilege escalation attacks on Android caused

by permission re-delegation in the Android inter-component communication. Compared to

existing solutions which are primarily based on reducing permissions to prevent the privilege

escalation, we instead virtualize the resources. This still prevents privilege escalation but allows

for better usability since operations in the recipients are not prevented nor do they fail. We also

allow a larger range of security options by relaxing how virtualization is done. We show in case

studies that indeed usability is enhanced as the permission denial approach causes app crashes

while we do not. Our evaluation also shows that our solution has little overhead.

107

Chapter 6

Conclusion

Software components are designed for code reuse. They are the foundation of modern com-

puter systems that encapsulate many sets of software functionalities. The complexity of these

systems, together with the interactions among the software components and various system

settings, can affect the software components and result in a component misuse vulnerability

that alters the original functionalities provided by the software components, leading to security

problems.

In this thesis, we aim to detect and prevent the misuse of software components. Motivated

by a large amount of exploits in the wild and the limited security provided by existing solutions,

we propose a number of solutions to detect the component misuse vulnerability and provide

enhanced protection into the system.

We study how the misuse of components is caused by various system settings in complex

computer systems. We develop a detection mechanism of binary loading vulnerabilities, which

combines data dependency analysis with system dependency knowledge to identify the factors

affecting the loading behaviors of the programs. We propose a loading dependency graph to

explain binary loading by showing the dependencies from loading behaviors to the factors. It

detects the unexpected uses of the loading behaviors based on the threat model discussed. We

evaluate the approach with real world programs and identify 24 binary loading vulnerabilities.

Our approach precisely identifies the vulnerable binaries.

We study how the misuse of components is caused by component interactions in complex

108

computer systems. We develop a detection and prevention mechanism of ActiveX API misuse

vulnerabilities in Internet Explorer, using a reachability analysis. It provides an access control

based mitigation solution to block vulnerable ActiveX methods in the browser programs. Our

approach is able to identify misuses of APIs caused by component interactions in six real-world

ActiveX controls. It also provides good efficiency with low overhead. With this approach, we

prevent the API misuse from complex component interactions.

After studying the causes of the component misuse vulnerability, we propose a solution to

mitigate the damage caused by the misuse in the interactions of software components. We de-

velop a mechanism to mitigate the privilege escalation problem in Android ICC. It prevents the

permission re-delegation in Android ICC that can allow the sender to gain additional privileges

from the recipient. With the help of resource virtualization, the usability of this prevention is

enhanced. We conduct case studies with real-world Android apps and perform performance

evaluation with various benchmarks. The approach is proved to be effective and has a low

overhead.

With these solutions, we detect the component misuse vulnerability in a systematic way

and prevent the component misuse vulnerability with enhanced usability in complex computer

systems.

6.1 Future Work

Enhancing Dynamic Tracking Mechanisms. The dynamic tracing mechanism introduced

in detecting misuses of ActiveX controls focuses on tracking the function calls in the programs.

We plan to track various forms of data flows as we did in detecting binary loading vulnerabili-

ties. With current heuristics, we can already identify how the IE ActiveX blocking mechanism

is bypassed by leveraging the library loading APIs, discussed in Section 4.4.2.

The program tracing mechanism to detect binary loading vulnerabilities is a prototype im-

plementation, which directly logs all the instructions in the virtual machine. It generates in-

struction traces with a size of more than 10 gigabytes for a single program to initialize itself.

We plan to reduce the size of the traces in the future. For example, we can remove certain

109

information for a simple instruction, which is not involved in the data dependency propagation.

The trace format can also be optimized to further shrink the size of the trace.

Enriching the Test Cases. The dynamic tracking mechanisms rely on test cases. More test

cases can help in identifying misuses in software components if they contain the misused behav-

iors. We plan to support more form of test case generations in the ActiveX API misuse tracking

mechanism. Currently, the test cases are only generated for JavaScript in the IE browser. We

plan to support more scripts, such as VBScript, and more Windows programs, such as Office

programs.

For the test cases in the binary loading detection, we plan to make the testing of configu-

ration file “smarter”. We plan to create heuristics from various orthogonal analyses [46, 130]

to find configuration options controlling the binary loading behaviors. LDRSCOPE is designed

for the component designers, who can use their own test cases in the software components.

Extending the Prevention Mechanisms. The current prevention mechanism of API misuse

vulnerabilities in ActiveX controls discussed in Section 4.4.3 is based on blacklisting. We plan

to extend the mechanism by adding more customizations and still preserve its fine-grained con-

trol over the ActiveX methods. The extension can involve using security policies and creating

various whitelists based on system knowledge.

For prevention mechanism of privilege escalation problem in Android ICC, we discussed

the customization of security levels in Section 5.3. We plan to integrate security policies [36,97]

discussed in orthogonal solutions into our approach, so that the Android ICC can be monitored

and secured in a fine-grained manner.

110

Bibliography

[1] http://www.oreillynet.com/onlamp/blog/2008/05/safari_

carpet_bomb.html.

[2] http://developer.android.com/guide/components/

fundamentals.html.

[3] http://technet.microsoft.com/en-us/security/advisory/

2269637.

[4] http://secunia.com/advisories/windows_insecure_library_

loading/.

[5] http://blog.acrossecurity.com/2011/07/binary-planting-

goes-any-file-type.html.

[6] http://http://msdn.microsoft.com/en-us/library/windows/

desktop/

ff951640(v=vs.85).aspx.

[7] http://en.wikipedia.org/wiki/DLL_injection.

[8] http://www.microsoft.com/security/resources/activex-

whatis.aspx.

[9] http://technet.microsoft.com/en-us/security/dn535768.aspx.

[10] http://windows.microsoft.com/en-sg/windows/security-zones-

adding-removing-websites#1TC=windows-7.

111

http://www.oreillynet.com/onlamp/blog/2008/05/safari_carpet_bomb.html
http://www.oreillynet.com/onlamp/blog/2008/05/safari_carpet_bomb.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://technet.microsoft.com/en-us/security/advisory/2269637
http://technet.microsoft.com/en-us/security/advisory/2269637
http://secunia.com/advisories/windows_insecure_library_loading/
http://secunia.com/advisories/windows_insecure_library_loading/
http://blog.acrossecurity.com/2011/07/binary-planting-goes-any-file-type.html
http://blog.acrossecurity.com/2011/07/binary-planting-goes-any-file-type.html
http://http://msdn.microsoft.com/en-us/library/windows/desktop/
http://http://msdn.microsoft.com/en-us/library/windows/desktop/
ff951640(v=vs.85).aspx
http://en.wikipedia.org/wiki/DLL_injection
http://www.microsoft.com/security/resources/activex-whatis.aspx
http://www.microsoft.com/security/resources/activex-whatis.aspx
http://technet.microsoft.com/en-us/security/dn535768.aspx
http://windows.microsoft.com/en-sg/windows/security-zones-adding-removing-websites#1TC=windows-7
http://windows.microsoft.com/en-sg/windows/security-zones-adding-removing-websites#1TC=windows-7

[11] http://msdn.microsoft.com/en-us/library/windows/desktop/

aa367061(v=vs.85).aspx.

[12] https://technet.microsoft.com/en-us/library/security/ms06-

014.aspx.

[13] http://research.microsoft.com/en-us/projects/detours/.

[14] http://www.securityfocus.com/bid/10514.

[15] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-

0003.

[16] http://support.microsoft.com/kb/955617.

[17] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-

2463.

[18] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-

5002.

[19] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-

5660.

[20] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-

5660.

[21] http://www.exploit-db.com/exploits/4050/.

[22] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error

exploits with wit. In Proceedings of IEEE Symposium on Security and Privacy, pages

263–277. IEEE, 2008.

[23] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vulnerability

analysis. In Proceedings of the 9th ACM conference on Computer and communications

security, pages 217–224. ACM, 2002.

112

http://msdn.microsoft.com/en-us/library/windows/desktop/aa367061(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa367061(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/security/ms06-014.aspx
https://technet.microsoft.com/en-us/library/security/ms06-014.aspx
http://research.microsoft.com/en-us/projects/detours/
http://www.securityfocus.com/bid/10514
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0003
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0003
http://support.microsoft.com/kb/955617
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2463
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2463
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5002
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5002
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5660
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5660
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5660
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5660
http://www.exploit-db.com/exploits/4050/

[24] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh.

Cells: a virtual mobile smartphone architecture. In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles, pages 173–187. ACM, 2011.

[25] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing

the android permission specification. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 217–228. ACM, 2012.

[26] Todd M Austin and Gurindar S Sohi. Dynamic dependency analysis of ordinary pro-

grams. In ACM SIGARCH Computer Architecture News, volume 20, pages 342–351.

ACM, 1992.

[27] Michael Backes, Sven Bugiel, and Sebastian Gerling. Scippa: system-centric ipc prove-

nance on android. In Proceedings of the 30th Annual Computer Security Applications

Conference, 2014.

[28] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen. Context-aware

usage control for android. In Proceedings of Security and Privacy in Communication

Networks, pages 326–343, 2010.

[29] David Barrera, William Enck, and Paul C Van Oorschot. Meteor: Seeding a security-

enhancing infrastructure for multi-market application ecosystems. In IEEE MoST: Mo-

bile Security Technologies Workshop, 2012.

[30] David Barrera, H Güneş Kayacik, Paul C van Oorschot, and Anil Somayaji. A method-

ology for empirical analysis of permission-based security models and its application to

android. In Proceedings of the 17th ACM conference on Computer and communications

security, pages 73–84. ACM, 2010.

[31] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated black-box

web application vulnerability testing. In Proceedings of IEEE Symposium on Security

and Privacy, pages 332–345. IEEE, 2010.

113

[32] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mockdroid:

trading privacy for application functionality on smartphones. In Proceedings of the 12th

Workshop on Mobile Computing Systems and Applications, pages 49–54. ACM, 2011.

[33] Theodore Book, Adam Pridgen, and Dan S. Wallach. Longitudinal analysis of android

ad library permissions. Computing Research Repository, abs/1303.0857, 2013.

[34] David Brumley, Dawn Xiaodong Song, Tzi-cker Chiueh, Rob Johnson, and Huijia Lin.

RICH: automatically protecting against integer-based vulnerabilities. In Proceedings

of the Network and Distributed System Security Symposium, NDSS 2007, San Diego,

California, USA, 28th February - 2nd March 2007, 2007.

[35] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.R. Sadeghi. Xmandroid: A new

android evolution to mitigate privilege escalation attacks. Technical report, Technical

Report TR-2011-04, Technische Universität Darmstadt, 2011.

[36] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.R. Sadeghi, and B. Shastry. Towards

taming privilege-escalation attacks on android. In Proceedings of the 19th Annual Sym-

posium on Network and Distributed System Security, 2012.

[37] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX

conference on Operating systems design and implementation, pages 209–224, 2008.

[38] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler. Exe: automatically

generating inputs of death. ACM Transactions on Information and System Security,

12(2):10, 2008.

[39] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck. Mast: triage

for market-scale mobile malware analysis. In Proceedings of the sixth ACM conference

on Security and privacy in wireless and mobile networks, pages 13–24. ACM, 2013.

[40] H. Chen and D. Wagner. MOPS: an Infrastructure for Examining Security Properties of

Software. In Proceedings of ACM Conf. on Computer and Communications Security,

pages 235–244, 2002.

114

[41] Kevin Zhijie Chen, Noah M Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara,

Thomas R Magrino, Edward XueJun Wu, Martin Rinard, and Dawn Xiaodong Song.

Contextual policy enforcement in android applications with permission event graphs. In

Proceedings of the Network and Distributed System Security Symposium, 2013.

[42] E. Chin, A.P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application com-

munication in android. In Proceedings of the 9th international conference on Mobile

systems, applications, and services, pages 239–252. ACM, 2011.

[43] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and R.E. Bryant. Semantics-aware

malware detection. In Proceedings of Symposium on Security and Privacy, pages 32–

46. IEEE, 2005.

[44] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of vulnerabilities

in x86 executables. In Proceedings of 22nd Annual Computer Security Applications

Conference, pages 269–278. IEEE, 2006.

[45] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: Detecting cloned

applications on android markets. In Proceedings of 17th European Symposium on Re-

search in Computer Security, pages 37–54, 2012.

[46] W. Cui, M. Peinado, K. Chen, H.J. Wang, and L. Irun-Briz. Tupni: Automatic reverse

engineering of input formats. In Proceedings of the 15th ACM conference on Computer

and communications security, pages 391–402. ACM, 2008.

[47] H. Dai, C. Murphy, and G. Kaiser. Configuration fuzzing for software vulnerability de-

tection. In Proceedings of ARES’10 International Conference on Availability, Reliability,

and Security, pages 525–530. IEEE, 2010.

[48] V Danen. CVE-2011-1658: ld.so ORIGIN expansion combined with RPATH. https:

//bugzilla.redhat.com/showbug.cgi?id=CVE-2011-1658.

[49] L. Davi, A. Dmitrienko, A.R. Sadeghi, and M. Winandy. Privilege escalation attacks on

android. Information Security, pages 346–360, 2011.

115

https://bugzilla.redhat.com/show bug.cgi?id=CVE-2011-1658
https://bugzilla.redhat.com/show bug.cgi?id=CVE-2011-1658

[50] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf

Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. Mocfi: A framework to mitigate

control-flow attacks on smartphones. In Proceedings of Network and Distributed System

Security Symposium, 2012.

[51] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wallach. Quire: Lightweight prove-

nance for smart phone operating systems. In Proceedings of the 20th USENIX Security

Symposium, 2011.

[52] W. Dormann and D. Plakosh. Vulnerability Detection in ActiveX Controls through Auto-

mated Fuzz Testing, 2008. http://www.cert.org/archive/pdf/dranzer.

pdf.

[53] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick

McDaniel, and Anmol Sheth. Taintdroid: An information-flow tracking system for real-

time privacy monitoring on smartphones. In Proceedings of the 9th USENIX Symposium

on Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Van-

couver, BC, Canada, Proceedings, pages 393–407, 2010.

[54] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone

application certification. In Proceedings of the 16th ACM conference on Computer and

communications security, pages 235–245. ACM, 2009.

[55] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:

ICSE Workshop on Dynamic Analysis, 2003.

[56] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android

permissions demystified. In Proceedings of the 18th ACM conference on Computer and

communications security, pages 627–638. ACM, 2011.

[57] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and Erika

Chin. Permission re-delegation: Attacks and defenses. In Proceedings of the 20th

USENIX Security Symposium, 2011.

116

http://www.cert.org/archive/pdf/dranzer.pdf
http://www.cert.org/archive/pdf/dranzer.pdf

[58] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer overrun detection us-

ing linear programming and static analysis. In Proceedings of the 10th ACM conference

on Computer and communications security, pages 345–354. ACM, 2003.

[59] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox fuzzing. In Pro-

ceedings of the 31st International Conference on Software Engineering, pages 474–484.

IEEE, 2009.

[60] P. Godefroid. Random testing for security: blackbox vs. whitebox fuzzing. In Proceed-

ings of the 2nd international workshop on Random testing: co-located with the 22nd

IEEE/ACM International Conference on Automated Software Engineering, pages 1–1.

ACM, 2007.

[61] P. Godefroid, A. Kiezun, and M.Y. Levin. Grammar-based whitebox fuzzing. In Pro-

ceedings of ACM SIGPLAN Notices, volume 43, pages 206–215. ACM, 2008.

[62] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. In

Proceedings of ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

[63] P. Godefroid, M.Y. Levin, D. Molnar, et al. Automated whitebox fuzz testing. In Pro-

ceedings of the Network and Distributed System Security Symposium, 2008.

[64] Patrice Godefroid and Nils Klarlund. Software model checking: Searching for compu-

tations in the abstract or the concrete. In Integrated Formal Methods, 2005.

[65] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability leaks in

stock android smartphones. In Proceedings of the 19th Annual Symposium on Network

and Distributed System Security, 2012.

[66] Bhargav S Gulavani, Thomas A Henzinger, Yamini Kannan, Aditya V Nori, and Sri-

ram K Rajamani. Synergy: a new algorithm for property checking. In Proceedings of

the 14th ACM SIGSOFT international symposium on Foundations of software engineer-

ing, 2006.

117

[67] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-

all. These aren’t the droids you’re looking for: retrofitting android to protect data from

imperious applications. In Proceedings of the 18th ACM conference on Computer and

communications security, pages 639–652. ACM, 2011.

[68] Y.W. Huang, S.K. Huang, T.P. Lin, and C.H. Tsai. Web application security assessment

by fault injection and behavior monitoring. In Proceedings of the 12th international

conference on World Wide Web, pages 148–159. New York, NY, USA, 2003.

[69] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling modern network

attacks and countermeasures using attack graphs. In Proceedings of Computer Security

Applications Conference, pages 117–126. IEEE, 2009.

[70] Michael Jang. Linux Annoyances for Geeks: Getting the Most Flexible System in the

World Just the Way You Want It. ” O’Reilly Media, Inc.”, 2006.

[71] S. Jha, O. Sheyner, and J. Wing. Two Formal Analyses of Attack Graphs. In Proceedings

of IEEE Computer Security Foundations Workshop, pages 49–63, 2002.

[72] L. Juranić. Using fuzzing to detect security vulnerabilities. Technical report, Infingo IS,

2006.

[73] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: A hidden code extrac-

tor for packed executables. In Proceedings of the 2007 ACM workshop on Recurring

malcode, 2007.

[74] Kristen Kennedy, Eric Gustafson, and Hao Chen. Quantifying the effects of remov-

ing permissions from android applications. In Proceedings of the Workshop on Mobile

Security Technologies (MoST), 2013.

[75] S.T. King and P.M. Chen. Backtracking Intrusions. ACM Transactions on Computer

Systems, 23(1):51–76, 2005.

118

[76] T. Kwon and Z. Su. Automatic detection of unsafe component loadings. In Proceedings

of the 19th international symposium on Software testing and analysis, pages 107–118.

ACM, 2010.

[77] T. Kwon and Z. Su. Automatic detection of unsafe dynamic component loadings. IEEE

Transactions on Software Engineering, 38(2):293–313, 2012.

[78] T. Kwon and Z. Su. Static detection of unsafe component loadings. Compiler Construc-

tion, pages 122–143, 2012.

[79] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A taxonomy

of computer program security flaws. ACM Computing Surveys (CSUR), 26(3):211–254,

1994.

[80] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and Michael

Peter. L4android: a generic operating system framework for secure smartphones. In Pro-

ceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile

devices, pages 39–50. ACM, 2011.

[81] D. Larochelle, D. Evans, et al. Statically detecting likely buffer overflow vulnerabilities.

In Proceedings of the 10th USENIX Security Symposium, volume 10, 2001.

[82] Xiaolei Li, Guangdong Bai, Zhenkai Liang, and Heng Yin. A software environment

for confining malicious android applications via resource virtualization. In Proceed-

ings of the 18th International Conference on Engineering of Complex Computer Systems

(ICECCS). IEEE, 2013.

[83] Donglin Liang and Mary Jean Harrold. Slicing objects using system dependence graphs.

In Proceedings of the International Conference on Software Maintenance, pages 358–

367. IEEE, 1998.

[84] Z. Liang, V. Venkatakrishnan, and R. Sekar. Isolated program execution: An applica-

tion transparent approach for executing untrusted programs. In Proceedings of the 19th

Annual Computer Security Applications Conference, pages 182–191. IEEE, 2003.

119

[85] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically vet-

ting android apps for component hijacking vulnerabilities. In Proceedings of the 2012

ACM conference on Computer and communications security, pages 229–240. ACM,

2012.

[86] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi,

and K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic

Instrumentation. In Proceedings of ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 190–200, 2005.

[87] Pratyusa K Manadhata and Jeannette M Wing. An attack surface metric. IEEE Transac-

tions on Software Engineering, 37(3):371–386, 2011.

[88] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. Mitchell. A Layered Architec-

ture for Detecting Malicious Behaviors. In Proceedings of Recent Advances in Intrusion

Detection, pages 78–97. Springer, 2008. LNCS 5230.

[89] Charlie Miller and Zachary NJ Peterson. Analysis of mutation and generation-based

fuzzing. White Paper, Independent Security Evaluators, Baltimore, Maryland (securi-

tyevaluators.com/files/papers/analysisfuzzing.pdf), 2007.

[90] D. Molnar, X.C. Li, and D.A. Wagner. Dynamic test generation to find integer bugs in

x86 binary linux programs. In Proceedings of the 18th conference on USENIX security

symposium, pages 67–82. USENIX Association, 2009.

[91] A. Morais, E. Martins, A. Cavalli, and W. Jimenez. Security protocol testing using

attack trees. In Proceedings of International Conference on Computational Science and

Engineering, volume 2, pages 690–697. IEEE, 2009.

[92] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware

analysis. In Proceedings of IEEE Symposium on Security and Privacy, pages 231–245.

IEEE, 2007.

[93] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending android per-

mission model and enforcement with user-defined runtime constraints. In Proceedings

120

of the 5th ACM Symposium on Information, Computer and Communications Security,

pages 328–332. ACM, 2010.

[94] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, anal-

ysis, and signature generation of exploits on commodity software. In Proceedings of the

Network and Distributed System Security Symposium, 2005.

[95] S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchi-

cal aggregation. In Proceedings of the 2004 ACM workshop on Visualization and data

mining for computer security, pages 109–118. ACM, 2004.

[96] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network hard-

ening via exploit dependency graphs. In Proceedings of Computer Security Applications

Conference, pages 86–95. IEEE, 2003.

[97] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. Se-

mantically rich application-centric security in android. Security and Communication

Networks, 5(6):658–673, 2012.

[98] T Ormandy. CVE-2010-3847: GNU C library dynamic linker $ORIGIN expansion vul-

nerability. http://www.exploit-db.com/exploits/15274/.

[99] T Ormandy. CVE-2011-1658: ld.so ORIGIN expansion combined with RPATH. http:

//www.exploit-db.com/exploits/15304/.

[100] X. Ou, W.F. Boyer, and M.A. McQueen. A scalable approach to attack graph generation.

In Proceedings of the 13th ACM conference on Computer and communications security,

pages 336–345. ACM, 2006.

[101] M. Payer, T. Hartmann, and T.R. Gross. Safe loading-a foundation for secure execution

of untrusted programs. In Proceedings of IEEE Symposium on Security and Privacy,

pages 18–32. IEEE, 2012.

[102] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid: Priv-

ilege separation for applications and advertisers in android. In Proceedings of the 7th

121

http://www.exploit-db.com/exploits/15274/.
http://www.exploit-db.com/exploits/15304/.
http://www.exploit-db.com/exploits/15304/.

ACM Symposium on Information, Computer and Communications Security, pages 71–

72. ACM, 2012.

[103] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju, Cristina

Nita-Rotaru, and Ian Molloy. Using probabilistic generative models for ranking risks of

android apps. In Proceedings of the 2012 ACM conference on Computer and communi-

cations security, pages 241–252. ACM, 2012.

[104] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Execute this! analyz-

ing unsafe and malicious dynamic code loading in android applications. In Proceedings

of the Network and Distributed System Security Symposium, 2014.

[105] Filippo Ricca and Paolo Tonella. Construction of the system dependence graph for

web application slicing. In Proceedings of the Second IEEE International Workshop on

Source Code Analysis and Manipulation, pages 123–132. IEEE, 2002.

[106] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-Rotaru,

and Ian Molloy. Android permissions: a perspective combining risks and benefits. In

Proceedings of the 17th ACM symposium on Access Control Models and Technologies,

pages 13–22. ACM, 2012.

[107] F.B. Schneider. Enforceable Security Policies. ACM Transactions on Information and

System Security, 3(1):30–50, 2000.

[108] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated generation and

analysis of attack graphs. In Proceedings of IEEE Symposium on Security and Privacy,

pages 273–284. IEEE, 2002.

[109] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-graph-

based slicing of programs with arbitrary interprocedural control flow. In Proceedings of

the International Conference on Software Engineering, pages 432–441. IEEE, 1999.

[110] C. Song, J. Zhuge, X. Han, and Z. Ye. Preventing Drive-by Download via Inter-Module

Communication Monitoring. In Proceedings of ACM Symposium on Information, Com-

puter and Communications Security, pages 124–134, 2010.

122

[111] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. Newsome,

P. Poosankam, and P. Saxena. Bitblaze: A new approach to computer security via binary

analysis. Information systems security, pages 1–25, 2008.

[112] Weiqing Sun, Zhenkai Liang, VN Venkatakrishnan, and R Sekar. One-way isolation:

An effective approach for realizing safe execution environments. In Proceedings of the

Network and Distributed System Security Symposium, 2005.

[113] M. Sutton and A. Greene. The art of file format fuzzing. In Proceedings of Blackhat

USA Conference, 2005.

[114] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability

discovery. Pearson Education, 2007.

[115] H.H. Thompson, J.A. Whittaker, and F.E. Mottay. Software security vulnerability test-

ing in hostile environments. In Proceedings of the 2002 ACM symposium on Applied

computing, pages 260–264. ACM, 2002.

[116] Timothy Vidas, Nicolas Christin, and Lorrie Cranor. Curbing android permission creep.

In Proceedings of the 2011 Web 2.0 Security and Privacy Workshop, volume 2, 2011.

[117] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware directed fuzzing

tool for automatic software vulnerability detection. In Proceedings of IEEE Symposium

on Security and Privacy (SP), pages 497–512. IEEE, 2010.

[118] Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du. Compac:

Enforce component-level access control in android. In Proceedings of the 4th ACM

conference on Data and application security and privacy. ACM, 2014.

[119] Y.M. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski. Detecting stealth software

with strider ghostbuster. In Proceedings of the International Conference on Dependable

Systems and Networks, pages 368–377. IEEE, 2005.

123

[120] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and Bhavani Thu-

raisingham. Differentiating code from data in x86 binaries. In Machine Learning and

Knowledge Discovery in Databases. 2011.

[121] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Permission evo-

lution in the android ecosystem. In Proceedings of the 28th Annual Computer Security

Applications Conference, pages 31–40. ACM, 2012.

[122] Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang. Airbag:

Boosting smartphone resistance to malware infection. In Proceedings of the 21th An-

nual Network and Distributed System Security Symposium, 2014.

[123] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact of

vendor customizations on android security. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, pages 623–634. ACM, 2013.

[124] Y. Wu and R.H.C. Yap. Towards a binary integrity system for windows. In Proceedings

of the 6th ACM Symposium on Information, Computer and Communications Security,

pages 503–507. ACM, 2011.

[125] Y. Wu, R.H.C. Yap, and R. Ramnath. Comprehending Module Dependencies and Shar-

ing. In Proceedings of ACM/IEEE International Conference on Software Engineering,

pages 89–98, 2010.

[126] Yongzheng Wu, Sai Sathyanarayan, Roland H. C. Yap, and Zhenkai Liang. Codejail:

Application-transparent isolation of libraries with tight program interactions. In Pro-

ceedings of the 17th European Symposium on Research in Computer Security, pages

859–876, 2012.

[127] Z. Wu, J.W. Atwood, and X. Zhu. A new fuzzing technique for software vulnerability

mining. In Proceedings of the IEEE CONSEG 09: International Conference on Software

Engineering, 9, 2009.

[128] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

Panorama: capturing system-wide information flow for malware detection and analysis.

124

In Proceedings of the 14th ACM conference on Computer and communications security,

2007.

[129] Yang Yu, Fanglu Guo, Susanta Nanda, Lap-chung Lam, and Tzi-cker Chiueh. A feather-

weight virtual machine for windows applications. In Proceedings of the 2nd interna-

tional conference on Virtual execution environments, pages 24–34. ACM, 2006.

[130] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth

Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: exploiting system environment and

correlation information for misconfiguration detection. In Proceedings of the 19th inter-

national conference on Architectural support for programming languages and operating

systems, pages 687–700. ACM, 2014.

[131] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X Sean

Wang, and Binyu Zang. Vetting undesirable behaviors in android apps with permission

use analysis. In Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security, pages 611–622. ACM, 2013.

[132] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W Freeh. Taming information-

stealing smartphone applications (on android). In Trust and Trustworthy Computing,

pages 93–107. Springer, 2011.

125

	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Our Solutions
	1.2 Thesis Organization

	2 Background
	2.1 Windows Binary and Components
	2.1.1 ActiveX

	2.2 Android
	2.2.1 Android Security

	2.3 Vulnerability Detection Techniques
	2.4 Execution Paths and Attack Paths Analysis

	3 Detecting Binary Loading Vulnerabilities
	3.1 Introduction
	3.2 Binary Loading
	3.2.1 A Motivating Example
	3.2.2 Loading Dependencies

	3.3 Design
	3.3.1 The Loading Dependency Graph
	3.3.2 Loading Dependency Graph Generation
	3.3.3 Loading Dependency Graph Inspection

	3.4 Exploration Testing
	3.4.1 Light-weight Testing
	3.4.2 Configuration File Testing

	3.5 Experimental Evaluation
	3.5.1 Loading Vulnerabilities from Configuration Files
	3.5.2 Safety of Third Party Binaries
	3.5.3 Loading Vulnerabilities from Missing Binaries
	3.5.4 Comparison of Loading Behaviors
	3.5.5 Inspection of Binary Injection

	3.6 Related Work
	3.7 Summary

	4 Detecting API Misuse Vulnerabilities
	4.1 Introduction
	4.2 Problem Definition
	4.2.1 A Motivating Example
	4.2.2 The Privilege Escalation Problem in Component Interactions

	4.3 API Misuse Vulnerability Detection
	4.3.1 Dynamic Instrumentation
	4.3.2 Privilege Reachability Model Representation and Generation
	4.3.3 API Misuse Vulnerability Identification

	4.4 Implementation
	4.4.1 Building a PRM from Traces
	4.4.2 Finding Access Paths
	4.4.3 Mitigation of API Misuse Vulnerability in ActiveX Controls

	4.5 Evaluation
	4.5.1 Effectiveness Evaluation
	4.5.2 Performance Evaluation

	4.6 Related Work
	4.7 Summary

	5 Preventing the Misuse of Components in Android ICC
	5.1 Introduction
	5.2 Overview
	5.2.1 Android Component Interaction
	5.2.2 Approach Overview

	5.3 Design & Implementation
	5.3.1 Adding ICC Provenance
	5.3.2 Virtualizing Resource Accesses
	5.3.3 Implementation

	5.4 Experimental Evaluation
	5.4.1 Case Studies
	5.4.2 Usability Improvement over Permission Restriction
	5.4.3 Performance Benchmarks

	5.5 Related Work
	5.6 Summary

	6 Conclusion
	6.1 Future Work

	Bibliography

