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Summary

Knowing the accurate indoor location is often critically important to many mo-

bile applications. However, despite significant progress, an indoor localization

system that can be easily deployed on a large scale remains a challenge. One

important obstacle hindering the large-scale deployment of existing indoor lo-

calization systems is labor-intensive site survey and system maintenance. Many

of these systems involve a dedicated offline calibration stage that builds a radio

map to aid localization. In addition, they also need to be periodically updated to

reflect environmental changes. Another challenge is the lack of systematic per-

formance evaluation approaches. As a result, it is hard to deploy and maintain

fingerprint-based wireless indoor localization systems in practice.

In view of these deployment and evaluation challenges, the focus of the work

described in this thesis is to effectively tackle these challenges by designing

accuracy-aware self-calibrating localization systems. There are three major con-

tributions in this thesis: (1) We design and implement PiLoc, a self-calibrating

active indoor localization system, which infers the indoor maps and outputs ra-

dio maps for localization automatically through merging participatory sensing

input. (2) To enable localization without the explicit cooperation of mobile

devices, we design and implement SpiLoc, which focuses on passive localiza-

tion for mobile devices. SpiLoc automatically bootstraps the passive fingerprint

database for localization through opportunistic received signal strength (RSS)

trace mapping. (3) We propose A2Loc, which introduces accuracy awareness

to fingerprint-based indoor localization systems. A2Loc takes the radio maps

generated from fingerprint-based indoor localization systems as input and out-

puts the estimated accuracy levels for these systems. These three systems are

summarized below:

PiLoc. Unlike other current state-of-the-art systems, PiLoc leverages par-

ticipatory sensing to bootstrap the active localization database while requiring

no prior knowledge of the indoor environment. The key novelty of PiLoc is that

it merges the crowdsourcing input annotated with sensor readings and WiFi

signal strengths to generate the map of the indoor environment and construct

the fingerprint database automatically. This self-calibrating capability makes

ix



PiLoc practical and much easier to deploy and maintain without requiring prior

knowledge of the indoor environment and dedicated site-surveys. The evaluation

shows that PiLoc is able to work in various types of indoor environments and

can achieve localization accuracy comparable to that of systems that require

dedicated calibration, with 80% localization error less than 3 meters.

SpiLoc. SpiLoc is a passive indoor localization system that requires no

collaboration from mobile devices. The key novelty of SpiLoc is that it leverages

the novel RSS trace mapping technique to dynamically map the captured RSS

traces to indoor pathways. The mapping automatically bootstraps the passive

fingerprint database for localization. To the best of our knowledge, SpiLoc is

the first participatory sensing based passive localization system to have the self-

calibrating capability and provide fine-grained passive localization.

A2Loc. A2Loc exploits a Gaussian process based approach that uses as

input the radio map collected and localization algorithm to be evaluated, and

outputs the expected accuracy of the system. In addition, A2Loc provides useful

information such as localization landmarks that can be used to further improve

the localization accuracy. To the best of our knowledge, A2Loc is the first to

achieve accuracy awareness in fingerprint-based localization systems. With this

capability, it has the potential to be integrated into future fingerprint-based

localization systems as a standard component to provide direct feedback about

the accuracy level and guidelines in order to achieve better accuracy.

Overall, for this thesis, we designed and implemented a systematic solution

for self-calibrating indoor localization systems. Of the proposed solutions, PiLoc

and SpiLoc provide fine-grained localization for both active and passive localiza-

tion, and A2Loc further improves the practicability by providing direct accuracy

estimations. The proposed systems advance the current state-of-the-art systems

by incorporating participatory sensing to provide accuracy-aware self-calibrating

indoor localization systems, which significantly reduce calibration and mainte-

nance costs and have the potential for large-scale deployment.

Keywords: Indoor Localization, Self-calibrating, Participatory Sensing, Accu-

racy Awareness
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Chapter 1

Introduction

1.1 Wireless Indoor Localization

Location is one of the most important types of context information in mobile

and ubiquitous computing. Recently, wireless indoor localization has been the

subject of extensive research efforts [86, 76, 63, 10, 78, 79, 81, 50, 19, 11, 74]

due to both the need to support indoor location-based services, and the fact

that GPS does not work well indoors. However, despite significant progress,

developing an indoor localization system that can be easily deployed on a large

scale remains a challenge.

One important obstacle that hinders the large-scale deployment of existing

indoor localization systems is labor-intensive site survey and system mainte-

nance. Many of these systems involve a dedicated offline calibration stage that

builds a radio map to aid localization. This calibration stage involves the manual

association of a location to be localized with its corresponding radio fingerprints.

Furthermore, this radio map needs to be periodically updated to reflect changes

in the environment. The calibration and maintenance effort required makes these

systems tedious and difficult to deploy on a large scale.

Another challenge is the lack of systematic evaluation approaches. The set-

tings of each existing indoor localization system are evaluated with different

physical layouts and environmental effects, making it difficult to understand

their performance and compare different localization systems directly. In par-

ticular, in localization systems where training data is mainly collected through

crowdsourcing, an efficient evaluation approach is required to provide immediate

1



1.2. Participatory Sensing Based Indoor Localization

feedback regarding the accuracy levels.

Facing the challenges and deployment and evaluation, the focus of this thesis

is effectively tackling these issues that affect the practicality of wireless indoor

localization systems. We show that the calibration effort can be significantly re-

duced for both active localization and passive localization systems by exploiting

participatory sensing. By merging the crowdsourcing sensing data, the systems

are able to achieve self-calibrating capability to bootstrap themselves without

dedicated site-surveys. In addition, by modeling the signal strength distribution

using the constructed radio maps, the expected localization error of each in-

door location can be obtained directly, hence achieving accuracy awareness and

enabling systematic evaluation for wireless indoor localization systems.

1.2 Participatory Sensing Based Indoor Localization

Recently, participatory sensing [17] has been proposed as a new computing

paradigm in mobile computing, and has been the subject of many research ef-

forts [18, 41, 42, 43, 55, 64]. The idea of participatory sensing is to exploit the

everyday mobile devices, such as smartphones, to form an interactive and col-

laborative sensing network that enables users to gather, share and analyze local

knowledge [17]. By assigning sensing tasks to the ‘grassroots’ mobile devices,

large-scale sensing systems and complex sensing applications can be enabled,

covering different areas such as environment monitoring [55, 64], transportation

[37], social networking[51], health care[44], etc.

Recognizing the effectiveness of participatory sensing, researchers have re-

cently started to implement this idea in wireless indoor localization. Partici-

patory sensing is used both to improve the localization accuracy [76, 32] and

to reduce the calibration effort [63, 86, 74]. To improve the localization accu-

racy, crowdsourcing sensor data are merged to infer landmarks that are present

in the indoor environment, to reduce localization errors [76]. With more users

participating in this localization process, events involving social contacts such

as encounter events can also be leveraged to reset the localization errors, im-

proving the localization accuracy [32]. On the other hand, as more smartphone

users participate in the data collection process, the input data can be used to

construct the radiomaps that are required for localization, assuming accurate

2



Chapter 1. Introduction

floor plans and reliable landmarks are available [63, 86, 74]. Such approaches

are able to efficiently reduce the calibration effort required, therefore making

indoor localization systems more scalable and deployable.

However, accurate floor plans and sufficient numbers of reliable landmarks are

not always easily available to reduce the calibration effort, and this assumption

is one of the limitations of existing participatory sensing based indoor localiza-

tion systems. In this thesis, we focus on the localization techniques that can

significantly reduce the calibration effort to achieve self-calibration capability,

while minimizing the assumption on the knowledge of the indoor environment.

In addition, to assess the performance of a participatory sensing based indoor

localization system, we also propose a systematic evaluation method to provide

immediate feedback on the accuracy levels, based on current collected input data

from participating users.

1.3 Overview of the Proposed Approaches

The following sections provide an overview of the three proposed systems and

approaches, PiLoc, SpiLoc, and A2Loc, which were designed and implemented

for this work.

1.3.1 PiLoc: Self-calibrating Active Indoor Localization

In active indoor localization, devices actively participate in the localization pro-

cess to provide information obtained locally in order to infer the current indoor

location. Existing active indoor localization systems [12, 88, 26, 20, 47] mostly

rely on the uniqueness of WiFi signal strengths at different indoor locations,

which is also known as WiFi fingerprinting [12], to determine the location of mo-

bile devices. Compared with infrastructure-based localization schemes [62, 81],

WiFi fingerprint-based indoor localization leverages existing infrastructures and

is cheap and cost-effective, which makes it promising for large scale deployment.

However, as many of these systems involve a dedicated offline calibration stage

to build radio maps for the indoor environment, the deployment becomes time

consuming and labor-intensive. To address this problem, participatory sensing

based indoor localization systems [63, 86, 76, 74] have been proposed to exploit

crowdsourcing to reduce the calibration overhead. Despite significant reduction
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in the calibration effort and deployment effort, such systems rely heavily on the

knowledge of the indoor floor, such as that provided by accurate floor plans

[63, 86] and localization landmarks [76, 74], which is usually not easily available

in practice.

On the other hand, PiLoc utilizes opportunistically sensed data contributed

by participating users, while requiring no manual calibration, prior knowledge, or

infrastructure support. The key novelty of PiLoc is that it merges automatically

generated walking trajectories annotated with displacement and signal strength

information from users to derive a map of walking paths annotated with radio

signal strengths. With the generated indoor maps annotated with signal in-

formation, radio maps for localization are built automatically. Unlike previous

systems, PiLoc does not require any knowledge of the indoor environment and

maintains itself automatically, hence achieving self-calibrating capability. As Pi-

Loc requires minimal user effort to calibrate and maintain, it has potential for

large-scale deployment.

We implemented PiLoc and evaluated the system over five different indoor

areas covering 5800 m2 in total. The sizes of these five different floors ranged

from 120 m2 to 3000 m2. The smallest area of 120 m2 was the inside of a research

lab with lots of partitions, which posed a special challenge due to its very short

turns and walk-ways. The evaluation shows that PiLoc was able to work in

different types of indoor environments, and could achieve localization accuracy

that comparable to that of systems that require dedicated calibration, with 80%

localization error less than three meters.

1.3.2 SpiLoc: Self-calibrating Passive Indoor Localization

Passive indoor localization for smartphones enables a new spectrum of appli-

cations such as user tracking, mobility monitoring, social pattern analysis, etc.

Unlike active localization, passive localization does not require the explicit par-

ticipation of humans or devices, and usually relies on the opportunistic over-

hearing of packets transmitted by smartphones [56]. Since WiFi-enabled devices

transmit wireless packets either intentionally for communication or unconsciously

from background services, smartphones become trackable using WiFi monitoring

devices without being connected to any specific WiFi APs or having any mobile
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apps installed. Several passive localization systems have recently been proposed

[56, 82, 83]. However, despite the fact that these existing systems have illus-

trated the feasibility of tracking multiple mobile devices passively, they either

achieve coarse-grained localization accuracy with a localization error of about

70 meters[56], or require expensive infrastructure support [82, 83].

We therefore propose SpiLoc, a self-bootstrapped system for fine-grained

passive indoor localization using non-intrusive WiFi monitors. SpiLoc uses off-

the-shelf access point hardware to opportunistically capture WiFi packets to

infer the location of smartphones in an indoor environment. The key novelty of

SpiLoc lies in the fact that the passive fingerprint database for localization is

automatically constructed and updated without any active participation of WiFi

devices or manual calibration. To achieve this, SpiLoc first identifies passive

landmarks that are present in WiFi received signal strength (RSS) traces. Given

knowledge of the indoor floor plan and the location of WiFi monitors, SpiLoc

statistically maps the collected RSS traces to specific indoor pathways. With

sufficient mapping opportunistically detected, SpiLoc is able to automatically

bootstrap a fine-grained passive fingerprint database for localization without

requiring any additional calibration effort.

By mapping the RSS traces collected between different passive landmarks,

SpiLoc bootstraps the passive fingerprint database for localization. As the fin-

gerprints alleviate the multi-path problem and characterize the RSS property

of each indoor location, SpiLoc achieves a fine-grained localization performance.

We implemented the system and evaluated SpiLoc in a 45× 38m2 testbed. The

evaluation shows that our system achieves an average localization error of 2.76m

with low start-up and maintenance costs. Since SpiLoc requires no dedicated

calibration and adaptively updates itself every time an RSS trace mapping is

performed, it can be easily deployed to dynamic environments for fine-grained

passive localization.

1.3.3 A2Loc: Accuracy Awareness of Wireless Indoor Localiza-

tion

WiFi fingerprint-based indoor localization has been the focus of extensive re-

search efforts [12, 88, 49, 75, 63, 86, 76, 74] due to its potential for deployment
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Figure 1.1: Overview of the works proposed in this thesis

without extensive infrastructure support. However, the accuracies of these dif-

ferent systems vary, and it is difficult to compare and evaluate these systems

systematically. In most participatory sensing based indoor localization systems

[63, 86, 76, 74], the radio maps can be automatically constructed and updated

with significantly reduced calibration effort. However, there is currently no fool-

proof way to measure the quality of the output radio maps directly. Without

efficient approaches to provide direct feedback about the system accuracy, it is

hard to judge the quality of the crowdsourcing data and decide how much data

to use in the localization.

The accuracy awareness enabled by A2Loc provides the ability to directly

estimate the accuracy of the localization system over the area of interest. To

achieve accuracy awareness, in A2Loc we use a Gaussian process based approach

that uses as input the radio map collected and localization algorithm to be eval-

uated, and outputs the expected accuracy of the system. A2Loc is a set of

algorithms to estimate the point-level, region-level and floor-level localization

accuracies given the radio maps and localization algorithms used. In addition,

useful information such as localization landmarks and the minimum number of

sets of wireless access points required are also inferred directly. With efficient

error-estimation algorithms, useful applications such as landmark detection, lo-

calization algorithm selection and access point subset selection are enabled.

In this work, as both PiLoc and SpiLoc leverage participatory sensing to

output WiFi radio maps from the crowdsourcing input, A2Loc acts as a com-

plementary module that provides the accuracy feedback for both systems. As

shown in Figure 1.1 above, the output of both PiLoc and SpiLoc can be directly

6



Chapter 1. Introduction

taken as the input of A2Loc, which is then assessed based on their estimated

accuracy level. Our evaluations show that A2Loc provides efficient accuracy es-

timation and can serve as a useful tool for evaluation and performance tuning

when developing fingerprint-based indoor localization systems.

1.4 Contributions

In summary, we make the following contributions in this thesis:

(1) We demonstrate that participatory sensing can significantly reduce the

calibration effort for wireless indoor localization. By merging the crowdsourc-

ing sensor data, the indoor floor plan can be automatically inferred and the

radio maps required for localization are also built during this process. The self-

calibrating capability of PiLoc enables minimum user effort for the bootstrapping

and maintenance of active indoor localization systems.

(2) We show that fine-grained passive localization is possible using WiFi

monitors with low start-up costs. The passive fingerprint database can be au-

tomatically inferred through crowdsourcing and statistical RSS trace mapping.

Since SpiLoc requires no dedicated calibration and adaptively updates itself ev-

ery time a RSS trace mapping is performed, it can be easily deployed to dynamic

environments for fine-grained passive localization.

(3) We propose the introduction of accuracy awareness of wireless indoor

localization. By taking the radio maps from arbitrary fingerprint-based wireless

indoor localization systems as input, A2Loc outputs the accuracy estimation and

useful information such as landmarks that can be used to further improve the

localization accuracy. A2Loc makes systematic accuracy comparison feasible,

and provides an efficient way for researchers to analyze the quality of the con-

structed radio maps either from dedicated site-surveys or participatory sensing.

This capability makes it an efficient tool for evaluation and performance tuning

for fingerprint-based indoor localization systems.

1.5 Thesis Structure

The rest of this thesis is structured as follows:
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Chapter 2 provides a the literature review of the works that focus on wireless

indoor localization and related research areas.

Chapter 3 presents PiLoc, a participatory sensing based active indoor localiza-

tion system that calibrates itself using crowdsourcing data.

Chapter 4 presents SpiLoc, a passive indoor localization system that leverages

the RSS trace mapping technique to efficiently bootstrap itself and provide fine-

grained passive localization performance.

Chapter 5 describes A2Loc, a set of techniques that gives direct accuracy es-

timations based on the output radio maps from wireless fingerprint-based local-

ization systems.

Chapter 6 concludes this thesis by discussing possible directions for future

work.
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Chapter 2

Literature Review

In this chapter, we give an overview of the background and literature that is

relevant to our work. We mainly cover the following topics: (1) active indoor

localization; (2) passive indoor localization; (3) wireless signal modeling.

2.1 Active Indoor Localization

Smartphone indoor localization has received much attention recently due to the

high demand from the industry and high commercial value of indoor location-

based services (LBS), such as location-based advertisements and retail naviga-

tion. In the past two decades, active indoor localization has been the focus of a

spectrum of research works. In active indoor localization, devices actively par-

ticipate in the localization process to provide local information that can be used

to infer the current location. Generally, these approaches can be categorized into

five categories based on the system requirements and the underlying techniques

used: infrastructure based, fingerprint based, propagation model based, SLAM

based and participatory sensing based.

2.1.1 Infrastructure Based Localization

These systems rely on special-purpose infrastructures deployed to locate the tar-

get device. Early systems utilize short-range infrared [77] or RFID [57] and

perform localization based on proximity. Cricket [62] uses radio and acous-

tic transmission and exploits the Time Difference of Arrival (TDoA) in the

signals. Recent developments employ multiple-input, multiple-output (MIMO)
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techniques using commodity APs and Angle of Arrival (AoA) to provide fine-

grained localization [81]. While these techniques provide centimeter-level accu-

racy [81, 50, 62], the need for special-purpose infrastructure, the high deploy-

ment cost, and the infeasibility of localizing unmodified smartphones hinder their

large-scale deployment.

2.1.2 Fingerprint Based Localization

A significant portion of research works on indoor localization explore the RF sig-

nal fingerprint-based approach. The basic idea is to fingerprint each location of

interest and locate the device using nearest neighbor matching. The underlying

assumption of this approach is that unique signatures can be found to fingerprint

each location. The research for most of these works use WiFi RSS as the finger-

print [12, 88]. More recent works have proposed other forms of fingerprints, such

as FM Radio [19] and physical layer information Channel Frequency Response

[72]. SurroundSense [11] generalizes the concept of the fingerprint and explores

ambient information such as noise, light color, etc. Fingerprint-based techniques

reduce the deployment cost by leveraging the existing infrastructures and can

achieve meter-level accuracy. However, these techniques suffer from high cali-

bration costs, as a labor-intensive site-survey process is typically required in the

offline phase to construct the fingerprint database (radio map) for each known

location. The static radio map is also vulnerable to environmental dynamics,

resulting in high level of maintenance. In this thesis, we aim to eliminate these

overheads.

2.1.3 Propagation Model Based Localization

In trying to reduce the calibration effort, some researchers have proposed the

signal propagation model based technique to estimate the RSS value at a given

location based on the theoretic model instead of manually tagging [20, 48, 47].

One popular model is log-distance path loss (LDPL) [20], which estimates the

RSS value based on the propagation distances. RADAR [12] also provides a

model-based approach to estimate the RSS value based on the AP locations and

floor plans. EZ [20] further improves this approach and only needs to measure

the signal strength at a few locations. Compared with the fingerprint-based
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techniques, model-based techniques typically reduce calibration effort at the cost

of reduced accuracy. For most of these systems, AP locations or accurate floor

plans need to be given.

2.1.4 SLAM Based Localization

Simultaneous Localization and Mapping (SLAM) techniques have been exten-

sively studied by researchers in the robotic community. SLAM relies on land-

mark detection by camera, laser or other ranging sensors, and accurate controlled

movement of robots. Several systems have been proposed to leverage the idea

of SLAM by combining WiFi and IMU sensors on smartphones. Zee [63] ex-

ploits dead-reckoning and infers location according to the constraints imposed

by the floor plan. However, it requires an accurate floor plan which is normally

not available in practice. Combing user motion, SAIL [53] is able to achieve

localization using a single access point.

2.1.5 Participatory Sensing Based Localization

To reduce the calibration effort, researchers have recently started to exploit par-

ticipatory sensing to construct the fingerprint database in a more automatic way.

The participatory sensing based scheme combines SLAM-based and fingerprints-

based approaches. For example, UnLoc [76] exploits crowdsourcing and dead-

reckoning to learn about indoor landmarks that exist in the environment to aid

localization. However, it requires at least one ground truth location of the land-

mark. LiFS [86] exploits Multidimensional Scaling (MDS) to match fingerprints

with an actual location using walking step information. These systems success-

fully reduce the effort in generating the radio maps, provided accurate indoor

floor plans are given. Kim [36] proposes an autonomous fingerprinting method,

but the method requires the strong assumption that the initial location and di-

rection of the user are known a priori. Walkie-Markie [74] has recently proposed

an algorithm to map pathways using WiFi-Marks. These systems rely either on

accurate indoor floor plans or reliable landmarks that are present in the indoor

environment.
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2.2 Passive Indoor Localization

There is a growing interest in passive localization system, since they require no

active participation of users or their devices. Many innovative applications are

being developed to utilize the capability of passive localization. For example, the

authors in [14] extracted social networks from smartphone probe messages, and

analyzed the properties of the discovered social graphs, such as diameter, clus-

tering coefficient and degree distribution. In [68], the authors propose analysis

methods to extract temporal and spatial features from large sets of network-

collected WiFi traces to better inform facility management and planning. In

general, the passive localization techniques can be categorized as device-free and

device-based.

2.2.1 Device-free Passive Localization

Device-free passive (DfP) localization [90, 70, 92, 83, 82] has been proposed to

track entities without carrying any special devices. Most existing device-free

passive localization systems rely on radio frequency (RF)-based techniques and

the assumption that the existence or movement of human bodies will disturb

the original RF patterns. In the location-based scheme [82], a passive radio

map needs to be constructed in the calibration phase by recording the RSS

measurements when a subject is located in each of the profiled locations. During

the testing phase, the subject stands at any of these locations and the RSS

matching is performed to infer the location of the user. In the link-based scheme

[92, 61], however, the statistical relationship between the RSS measurements

and the existence of the subject in the Line-of-sight (LoS) is measured, and the

location of the user is inferred using geometric approaches.

Similarly, Radio Tomographic Imaging (RTI) based techniques [78, 79] try to

reconstruct the tomographic image, and assume that the relationship between

the location of the subject and the variations in RSS measurements can be

mathematically modeled. Recently, MIMO radar-based techniques [10, 85, 9]

have been proposed to track humans through analysis of body radio reflection.

While these approaches do not require users to carry any device, the ability to

track multiple entities simultaneously is still limited, and the systems are more

vulnerable to multi-subject interferences.
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2.2.2 Device-based Passive Localization

In device-based passive localization, devices attached to users are localized with-

out active collaborations. With the increasing penetration of smartphones in

recent years, users are increasingly carrying their smartphones all the time. Fur-

thermore, with the proliferation of WiFi networks, the use of WiFi transmis-

sions for passive tracking and monitoring of WiFi-enabled devices has recently

gained much popularity [56, 14, 68]. Since each WiFi-enabled device transmits

messages with a globally unique and persistent MAC address [60], smartphones

have become trackable using WiFi monitoring equipment without the need of

being connected to a specific WiFi access point or installing any apps. This is an

important advantage over device-free passive localization, in which the number

and identities of subjects being tracked are both hard to infer. Though smart-

phone manufacturers such as Apple have started to introduce features such as

MAC randomization to smartphones from iOS 8, such features only work when

the smartphones are not connected to the network and are in sleep mode [1].

Even with effective MAC randomization, there are still techniques for monitors

to track the WiFi devices [1].

Several commercial systems are already on the market [6, 2]. Meshlium [6]

detects any smartphone that works with WiFi or Bluetooth interfaces. The idea

is to measure the number of people and cars that are present in a certain location

(such as a shopping mall, an airports or a tourist attraction) at a specific time,

allowing a study of the evolution of the traffic congestion of pedestrians and

vehicles. The authors in [56] propose a passive coarse-grained outdoor tracking

system for unmodified smartphones based on WiFi detection. A probabilistic

trajectory estimation technique and some techniques for increasing the number

of detected phones are described in [56]. However, none of these systems achieve

fine-grained passive localization. In this thesis, we embrace the advantages of

the device-based passive localization scheme, and propose a self-bootstrapped

fine-grained localization system for smartphones. To the best of our knowledge,

SpiLoc proposed here is the first passive indoor localization system that au-

tomatically constructs a passive fingerprint database and provides fine-grained

localization performance.
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System Active/Passive Category Accuracy Remarks

ArrayTrack [81] Active Infrastructure Based < 0.5m
Additional infrastructure, does

not work for smartphones

Ubicarse [39] Active Infrastructure Based < 0.5m
Additional infrastructure, need

to twist the devices
RADAR [12] Active Fingerprint Based 2∼5m Dedicated site survey

Horus [88] Active Fingerprint Based ∼1m Dedicated site survey
Zee [63] Active SLAM Based 1∼3m Requires accurate floor plan

SAIL [53] Active SLAM Based ∼4m Single access point, less accurate

EZ [20] Active Propagation Based 2∼7m No calibration, less accurate
UnLoc [76] Active Participatory Sensing Based 1∼2m Floor plan, seed landmarks
LiFS [86] Active Participatory Sensing Based 3∼7m Floor plan, less accurate

Walkie-Markie
[74]

Active Participatory Sensing Based 1∼3m Sufficient number of landmarks

Nuzzer [70] Passive Device-free ∼2m
Dedicated site-survey, not

suitable for tracking multiple
objects

SCPL [82] Passive Device-free 1∼2m
Dedicated site-survey, up to 4

objects
WiFi Tracking

[56]
Passive Device-based ∼70m

Coarse-grained multi-device
tracking

Table 2.1: State-of-the-art Indoor Localization Systems

2.3 Wireless Signal Modeling

To reduce the calibration effort for fingerprint-based localization systems, sig-

nal propagation models have been proposed in recent research works. A signal

propagation model (e.g., the log-distance path loss (LDPL) [65]) can be used to

predict the signal strength values at different locations in an indoor environment.

RADAR [12] also employs a signal propagation approach to estimate the RSS

value at various location, given the AP locations and the floor plan. [47] uses

a zero-effort localization system that utilizes the RSS measurements made by

APs to construct a model to map RSS to distance. These systems can predict

the RSS value and reduce the calibration effort, but still rely on extending the

capability of current off-the-shelf APs or the knowledge of AP placement, power

settings, or floor plans. EZ [20] further reduces such requirements, and only

needs to measure the signal strength at a few locations. While the proposed

models provide insights into the signal propagation and the capability to predict

the RSS values, the lack of uncertainty measurement makes them unsuitable for

the purpose of accuracy measurement.

While [26, 84] also utilize a Gaussian process in the context of localization,

they focus either on improving the localization performance, or the GP itself.

Unlike all these existing methods, the accuracy awareness proposed in this thesis

requires only the knowledge of the radio map and the localization algorithm used,

and provides a direct assessment of the accuracy of fingerprint-based localization

systems.
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Chapter 3

PiLoc: Self-calibrating Active

Indoor Localization

3.1 Introduction

Location is one of the most important types of context information in mobile

and ubiquitous computing. Recently, indoor localization has been the focus of

extensive research efforts [86, 76, 63, 10, 78, 79, 81, 50, 19, 11, 74, 25, 53, 93,

52, 39], due to both the need for indoor support of location-based services, and

the unavailability of GPS in indoor environments. However, despite significant

research progress, developing an indoor localization system that can be easily

deployed on a large scale remains a challenge.

Two major obstacles hinder the large-scale deployment of such systems: (1)

Labor-intensive site surveys and system maintenance: Many of these systems

involve a dedicated offline calibration stage to build a radio map for the tar-

get location. The calibration requires the manual association of each location

with its corresponding fingerprints, and needs to be repeated for any new loca-

tions. Furthermore, the radio map needs to be periodically updated to reflect the

environmental dynamics. These dedicated and time-consuming calibration and

maintenance efforts thus make these systems less practical for large-scale deploy-

ment. (2) Lack of accurate floor plans: Recent research developments [86, 63]

have shown that the calibration effort can be reduced with the prior knowledge

of accurate floor plans of the places being measured. However, accurate floor

plans are often not easily available.
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In this work, we attempt to answer the following question: can we design an

indoor localization system that can be easily deployed on a large scale? Such a sys-

tem should meet the following design goals. First, the system should not require

specialized infrastructure support or prior knowledge of the environment, such as

floor plans and locations of wireless Access Points (APs). Second, there should

not be a need for an expensive manual-calibration or site-survey stage. Third,

the system should be able to automatically adapt to environmental changes and

require minimal maintenance-effort.

In this chapter, we propose PiLoc, an indoor localization system that cali-

brates itself through user-generated data. PiLoc is based on the following ob-

servations. First, sensor-enhanced smartphones are becoming increasingly per-

vasive. Second, a smartphone can record a user’s movements (distance and

direction), together with the names of APs within range and the associated sig-

nal strengths. Finally, it is possible to merge many walking segments annotated

with displacement and signal strength information from users to derive a map

of walking paths annotated with radio signal strengths. This last observation is

central to the design of PiLoc.

By utilizing opportunistic sensing data contributed by users, PiLoc requires

no prior knowledge about any building or any user intervention in both the

calibration and maintenance stages. It adopts a novel trajectory matching and

floor-plan construction algorithm to automatically cluster, filter, and merge all

user inputs to automatically construct floor plans for different indoor areas. Most

importantly, radio maps required for localization are also automatically built and

updated in this process. PiLoc requires no special-purpose hardware, the only

assumption in its use is the availability of a WiFi infrastructure.

3.2 PiLoc Active Indoor Localization System

3.2.1 Overview of PiLoc

The PiLoc architecture is shown in Figure 3.1 below. PiLoc exploits crowdsourc-

ing to trace user walking trajectories using Inertial Measurement Unit (IMU)

sensors installed in the smartphones. The IMU collects angular velocity and

linear acceleration data, which are utilized as inputs to the system.

16



Chapter 3. PiLoc: Self-calibrating Active Indoor Localization

Clustering

Correlation 
Matching

Floor Plan
Construction

Localization 
Engine

Radio Map L
o

c
a

li
z
a

ti
o

n
 Q

u
e

ry

L
o

c
a

li
z
a

ti
o

n
 R

e
s

u
lt

Location 

Based 

Services

E
v

o
lv

e
m

e
n

t

User Contributed 

Annotated Trajectories

Figure 3.1: Overview of PiLoc

To enable localization, it is required that one or more users carrying smart-

phones with the data-collection application enabled walk on various parts of

the indoor area to be localized, and upload the annotated walking trajectories

collected. An annotated walking trajectory consists of discrete walking steps,

which further consist of displacement vectors (distance and direction) and the

WiFi fingerprints associated with the steps. There is no restriction on the walk-

ing patterns, and each walking trajectory can cover any part of the area. The

limitation is that we can only localize areas that are covered by at least one

walking trajectory, and localization accuracy improves with more trajectories.

These user-contributed walking trajectories are used as inputs to construct or

update the floor plan of the area covered by user movements.

The key challenge in PiLoc is how to combine these user-generated trajec-

tories into a floor plan suitable for localization. There are three main steps

involved. First, a clustering algorithm that uses AP signal strength and move-

ment vectors is used to separate these walking trajectories into disjointed sets

that cover different indoor floors and environments. In the second step, the sys-

tem takes these disjointed segments and finds segments that match them based

on movement vectors and AP signals. The matching is based on measurement

of path and radio signal similarity between two different trajectory segments

within the same cluster. Finally, in the third step, the system merges multiple

trajectories to build floor plans. In the following sections, we present details of
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these three steps.

3.2.2 Data Collection

3.2.2.1 Fingerprint Collection

Data collection does not have to be performed specifically for localization pur-

poses. Instead, users equipped with smartphones walk around the targeted in-

door environment as part of their daily activities. PiLoc opportunistically col-

lects users’ walking trajectories T = {τi, i = 1, 2, ...,m}. Each walking trajectory

τi is determined by two stationary points detected by the phone’s accelerome-

ter. τi = {s1, s2, ..., sn}, in which si is a discrete walking step detected by the

linear accelerations from the corresponding phone accelerometer input. Besides

stride length and heading direction, WiFi RSS fingerprints are also collected be-

tween every two consecutive steps, and are automatically associated with each

step recorded. The heading direction of each step is obtained by converting

the linear acceleration from the phone’s coordinates to the world’s coordinates.

Therefore, each step si = {IDi, xi, yi, fi} consists of four elements, global step

identifier IDi, horizontal displacement xi, vertical displacement yi and (radio)

fingerprints fi. 2D displacements xi and yi are calculated based on the headings

(angle relative to the earth’s North) and stride lengths, to identify the relative

physical 2D position of the current step with respect to the first step s1 in the

same trajectory. For fingerprints fi = {r1, r2, ..., rk} represents the WiFi RSS

measured at step i, where rj is the received signal strength of the detected APj .

After collecting sufficient walking trajectories marked with corresponding

fingerprints, PiLoc is able to construct floor plans and radio maps for the covered

area. The speed of data collection is capped by the typical human walking speed.

If we consider an indoor area with 100 meters of walk way and an average

walking speed of four km/h, we can over one kilometer in 15 minutes or the

entire walkway of 100 meters ten times.

3.2.2.2 Inertial Sensing

Dead-reckoning with smartphones has been explored in several previous works

[26, 86, 76, 74, 63]. One significant challenge associated with dead-reckoning is

the accumulated error over time. Therefore, dead reckoning can only be used
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to track the user for a short period of time, otherwise, errors will need to be

corrected frequently. This problem makes it very challenging to align and merge

different user traces, especially in the construction of floor plans. This is also

a major challenge for PiLoc. Several research works have been conducted to

improve the accuracy of dead-reckoning with arbitrary phone placements [46,

63, 40]. Walking steps can be efficiently detected using a threshold-based sliding

window algorithm [31]. In our experience, step detection is very accurate, and

most of the time we can maintain exact step counts even after several hundred

steps. Heading angles can be inferred by combining linear acceleration, compass,

and gyroscope readings [46]. However, stride length varies for different users.

In order to take this variation into account, we adopted the assumption from

[63] that stride length follows Gaussian distribution, and used the default stride

length with an additional 15% Gaussian noise.

As will be shown later, error in dead-reckoning is corrected in PiLoc by

combining data from many trajectories in the merging process. In addition,

outliers in the data will be filtered out via PiLoc’s merging and filtering process

if these data do not match well with other data collected.

3.2.3 Trajectory Clustering

3.2.3.1 AP Clustering

As data collected from different users cover different parts of different locations,

it is necessary to perform an initial level of data clustering to group the data into

smaller, related groups. The goal of signal clustering is to divide all trajectories

into geographically separated clusters. Each walking trajectory covers a particu-

lar indoor environment, and this clustering finds non-overlapping clusters based

on the AP information. Given an input of n trajectories from all participating

users, the AP clustering finds a clustering with l clusters C = {c1, c2, ..., cl}, such

that:

∀i∀j APSet(ci) ∩APSet(cj) = ∅, 1 ≤ i 6= j ≤ l (3.1)

in which APSet(ci) returns the set of all APs that appear in at least one of the

fingerprints in the trajectories of cluster ci. AP clustering therefore separates

trajectories collected in different indoor environments that have different sets
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of APs into different clusters. As an example, the four trajectories shown in

Figure 3.2 below are separated into three clusters. The APs in each of the three

clusters are {τ1}, {τ2, τ3} and {τ4}. The corresponding set of APs are {AP1},

{AP2, AP3, AP4, AP5} and {AP6, AP7} respectively. As an illustration of the

overall effect, as shown in Figure 3.3, the traces collected in three buildings are

separated into three different clusters after AP clustering. Instead of relying on

the fluctuating signal strength, AP clustering only detects the existence of APs,

and provides a more reliable clustering. Though AP clustering only provides

building-level granularity, this light-weight clustering is still an important tech-

nique to efficiently categorize the big trajectory data once the system is deployed

at scale.

3.2.3.2 Floor Clustering

Floor Transition Detection. The trajectories collected from participating

users cover different floors in different indoor buildings. The AP clustering pro-
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vides an efficient way to distinguish disjointed indoor environments that have

non-overlapping sets of access points.

To achieve floor-level clustering, we further annotate the walking trajectories

with barometer sensor data. A barometer is a sensor that measures the sur-

rounding air pressure. Pressure can in turn be translated into height above sea

level (altitude) using the pressure-height equation [54]:

h = 44330 ∗ (1−
(
p

p0

) 1
5.255

) (3.2)

where h is the altitude in meters, while p and p0 are the measured air pressure

and sea-level reference pressure, respectively, in millibars.

The dense altitude value provides a strong indicator of the floors from which

the trajectories are collected. However, the altitude value calculated using Equa-

tion (3.2) is usually inaccurate without an appropriate sea-level reference from a

nearby weather station. Therefore, we cannot directly use the absolute value of

altitudes to determine the collecting floor of the trajectory. The measured rela-

tive change in height in the same trajectory, on the other hand, is very accurate

[45, 69]. The barometer is sensitive enough to detect even the small change in

height when a user travels from one floor to another.

Existing barometer chips have a noise value of less than a meter, making

floor change detection possible [69]. Using a barometer is advantageous since

it is inherently immune to phone position and usage. In addition, it is suffi-

cient to sample a barometer at a low frequency, making the additional power

consumption only a few milliwatts grater than for normal step detection.

Figure 3.4 below shows how the altitude reported by the barometer changes

when the user takes stairs and an elevator. When the user is walking on the same

floor, the altitude remains stable. However, we can observe a marked change in

height when the user is traveling up and down the stairs and elevator. We use

this observation as the basis for accurate floor-transition detection in PiLoc.

We sample the barometer at a frequency of 1 Hz. To filter out the noise at

the altitude detected by the barometer, we use the low pass filter:

h(t) = α ∗ h(t− 1) + (1− α) ∗ h (3.3)
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Figure 3.4: Altitude behaviors during different floor transition events. Floor
transition separates trajectory τ into different floor segments

where h(t− 1) and h(t) are the smooth altitude at time t− 1 and t respectively,

and h is the reported altitude by the barometer. In this work, α is set to 0.3

empirically. As shown in Figure 3.4, the low pass filter achieves smoothing

altitude measurements while keeping the output responsive to altitude changes.

To detect the floor transition, we maintain a sliding window of altitude values

corresponding to steps taken by the user. For every new step taken by the user,

we sample the barometer height and advance the sliding window by one step. If

the difference in height between the end and start of the sliding window exceeds

a threshold, we mark the event as a floor transition.

As illustrated by Figure 3.4, the floor transition splits each trajectory τi into

different floor segments {τi1,τi2,...,τik} if k-1 floor transitions are detected. To

generate segments that cover only one single floor, we discard the parts of the

trajectories during which the sliding window reports floor transitions. We do not

know the exact floor from which the floor segments are taken, only that the two

consecutive floor segments are taken from two different floors. For example, if the

floor-transition detection algorithm reports that τi1 has a mean altitude smaller

than τi2, a floor transition constraint τi1 → τi2 is detected, which indicates that

τi2 was collected from a higher floor than that of τi1. Otherwise, the constraint
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becomes τi2 → τi1.

The floor transitions impose constraints on the floor-level clustering process.

We cannot infer the exact floor from which the trajectories are collected based on

the absolute barometer readings, as the absolute value would vary with weather

conditions. We use relative altitude values in PiLoc to detect floor transitions

accurately. The accurate floor transition provides us with information on the

segmentation point between two floors. We will demonstrate in the next section

how we leverage this information to achieve floor-level clustering.

Floor-level Clustering. To cluster the collected trajectories into floor-

based groups, we first need a similarity measurement for different trajectories.

The similarity should be high for those collected from the same floor, and lower

otherwise. Since the trajectories contributed by users are annotated with WiFi

fingerprints during data collection, the floor-level similarity can be measured

using the wireless signals collected. Different floors usually have different sets

of WiFi access points. Even though there might be some overlaps in the AP

sets, their signal strengths vary. The uniqueness of a WiFi fingerprint is also the

fundamental assumption of any fingerprint-based indoor localization system. For

two trajectories τ1 = {s1, s2, ..., sn} and τ2 = {s1, s2, ..., sm}, the floor similarity

Sf (τ1, τ2) is defined as:

Sf (τ1, τ2) =

n∑
i=1

m∑
j=1

Ss(si, sj)/mn (3.4)

where si and sj are annotated steps in τ1 and τ2 respectively, and Ss(si, sj) is

the fingerprint similarity of steps si and sj using the Tanimoto Coefficient [22]:

Ss(si, sj) =
fi · fj

‖fi‖2 + ‖fj‖2 − fi · fj
(3.5)

Here, fi and fj are fingerprints annotated to steps si and sj respectively, as pre-

viously described. The fingerprint similarity between two steps Ss(si, sj) ranges

from 0 to 1. The final output of floor similarity Sf combining all step similarities

becomes the similarity metric between two trajectories and falls between 0 and

1 as well. If two trajectories have high floor similarity, they are more likely to

have been collected from the same floor.

To illustrate the floor-level clustering process, consider a sample AP Cluster
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Figure 3.5: Floor Constrain Update

c = {τ1, τ2, ..., τ10} containing 10 trajectories. We do not know the exact floors

from which they were collected, and trajectories in the same AP cluster might

cover multiple floors. Based on the floor transition detection described in the

previous section, we are able to detect those trajectories containing floor transi-

tions. For example, if we have found a subset of five trajectories c′={τ1, τ2, ..., τ5},

such that each trajectory in c′ contains floor-transition events, the floor transi-

tion detection will segment c′ into {τ11, τ12, τ21, τ22, ..., τ51, τ52} if each trajectory

contains only one floor transition.

Floor segmentation also generates a set of floor constraints FC = {τ11 →

τ12, τ21 → τ22, ..., τ51 → τ52}, if each trajectory is going upstairs in this example.

Replacing the original trajectories in c with the newly generated floor segments,

we obtain a new cluster c′′ = {τ11, τ12, τ21, τ22, ..., τ51, τ52, τ6, ..., τ10}, in which

each trajectory covers only one floor.

With the floor constraints we have, the goal of the floor-level clustering al-

gorithm is to group these trajectories in c′′ that were collected from the same

floors into the corresponding floor clusters. Since the floor similarity between

each pair of trajectories can be measured based on the wireless signal similar-

ities using Equation (3.4), the clustering can be seen as a merging process to

merge trajectories in c′′ and generate disjointed floor clusters. Therefore the
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floor clustering can be modeled as the following optimization problem:


maximize

∑
i

∑
j Sf (τi, τj)

s.t. Sf (τi, τj) > t0,

F loor constrain FC

(3.6)

where τi and τj are trajectories in c′′ that are merged to the same floor cluster.

The merging maximizes the sum of the floor similarities while ensuring that the

floor constraint FC is not violated.

For each merged pair of trajectories, their floor similarity is ensured to be

greater than the minimum similarity threshold t0. t0 can be learned from each

trajectory in c′′ since each trajectory in c′′ was collected from one single floor. To

learn the average floor similarities for trajectories collected from the same floor,

we split each trajectory in c′′ evenly and calculate the average inter-similarity

Algorithm 1: Floor Clustering Algorithm

1 Input: AP cluster c
2 Output: Set of floor clusters Cf = {cf1, cf2, ..., cfk}
3 Generate c′′ with barometer-based floor-transition detection and generate initial

floor constraints FC;
4 Compute floor similarity Sf (τi, τj) for each pair of trajectories τi and τj in c′′

using Equation (3.4);
5 Sort pairs (τi, τj) in descending order based on Sf (τi, τj);
6 for each pair of (τi, τj) do
7 if Sf (τi, τj)¿t0 then
8 if τi → τj /∈ FC && τj → τi /∈ FC then
9 if τi or τi not in Cf then

10 Merge τi and τj to the same floor cluster in Cf ;
11 Update floor constraint FC;

12 end
13 else
14 if Clusters containing τi and τj can be merged based on FC then
15 Merge clusters containing τi and τj ;
16 Update floor constraint FC;

17 end

18 end

19 end

20 end
21 else
22 return Cf ;
23 end

24 end
25 return Cf ;

between them using Equation (3.4). The minimum similarity t0 is taken to be
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the average floor similarity and we reject all those pairs with low similarities in

the merging.

The floor constraints FC represent the knowledge that certain pairs of tra-

jectories belong to distinct floors. Due to the transitivity of the floor constraints,

they need to be updated in the merging process once we merge two trajectories

into the same floor cluster. Consider floor constraints FC = {τ11 → τ12, τ21 →

τ22}. As illustrated by Figure 3.5, if τ12 and τ21 are merged into the same floor

based on their floor similarity in the merging process, the constraints need to

be updated as FC = {τ11 → τ12, τ21 → τ22, τ11 → τ21, τ11 → τ22, τ12 → τ22} due

to their transitivity. The updating process must be performed whenever two

trajectories are merged to the same floor.

The detailed steps of floor clustering algorithm is described in Algorithm 1.

For each AP cluster c, the floor clustering algorithm finds a set of floor clusters

that cover different floors of the indoor environment covered by this AP cluster.

The barometer-based floor-transition detection first detects the floor transitions

that are present in each walking trajectory and segments these trajectories to

form c′′, in which each trajectory only covers one particular floor. The segmen-

tation also generates the initial set of floor constraints FC.

To merge the trajectories in c′′, each pair of trajectories is first sorted by

floor similarities in descending order. Each time, one pair of trajectories is

picked from the top of the list. If their floor similarity is greater than t0 and

they meet the floor constraints, the trajectories become candidates to be merged

to the same floor cluster. If one of these two trajectories does not belong to any

existing floor cluster, both trajectories are merged to the same floor cluster, and

FC is also updated due to the transitivity of the floor constraints. However, if

two trajectories already belong to different floor clusters, we need to ascertain

whether these two clusters can be merged. In PiLoc, if the average floor similarity

of these two clusters is greater than t0 and the merging will not cause any

violation of the floor constraints, they are merged to the same floor cluster.

Otherwise, we continue without updating the exiting floor clusters. The process

is repeated until no such pair of trajectories can be found.

The resultant clusters consist of disjointed groups of trajectories, with each

group covering one particular floor in this indoor environment. In PiLoc, the
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Figure 3.6: Path Segment Clustering

floor clustering algorithm is applied to efficiently generate a fine-grained cluster-

ing on top of each AP cluster.

3.2.3.3 Path Segment Clustering

Within the same floor cluster, we further divide a single trajectory into disjointed

path segments. While path segments can take any form in general, in this work,

we consider only two kinds of path segments, namely turns and long straight

lines. Walking along a straight path and making corner turns are natural walking

patterns in an indoor environment. A given trajectory τ = {s1, s2, ..., sn}, can

be broken into disjointed path segments (consisting of turns and/or straight

lines) S = {sp, sp+1, ..., sq} where 1 ≤ p < q ≤ n. In dividing the trajectory,

we first extract turns with minimum 5 and maximum 15 steps before and after

the turning. After that, straight line paths containing more than 30 steps are

extracted. As an example, consider the cluster consisting of τ2 and τ3 shown in

Figure 3.2. Only three turns, T1, T2 and T3 are extracted. The fourth corner is

not considered since the path before the turn is too short (fewer than five steps).

Similarly, there is only one straight line segment (where AP2 is recorded). All

other straight path segments are too short after the turn segments are removed.

We extract these segments from each trajectory and build third-level clusters

C ′ = {ct, cl} for each floor cluster in Cf based on path segments, where ct is the

cluster for turns and cl is the cluster for long straight line segments. After second

level clustering, each cluster ct and cl contains segments of the same path shape

from the same indoor environment. Each segment S in ct or cl becomes the basic

unit for trajectory matching in the next stage. The overall effect is shown in
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Figure 3.7: CDF of Path Correlation

Figure 3.6.

3.2.4 Trajectory Matching

A key difference between PiLoc and prior systems is that instead of using a WiFi

signal or ambient information as landmarks, we utilize movement displacement

(distance and direction) and the associated signal to match different segments.

We have found that these parameters can provide high discriminative power for

both dead-reckoning error correction and trajectory matching.

3.2.4.1 Path Correlation

Like the clustering component, the trajectory matching algorithm follows a two-

phase scheme. The first phase is based on a simple but effective idea: when

people walk along the same segment (turns or straight lines), the evolutions

of the two trajectories on a 2D plane should be highly correlated. The path

correlation correction can be measured as:

Corrpath = Corrx(S1, S2) + Corry(S1, S2) (3.7)

For two path segments from the same cluster ct or cl, S1 = {s1, s2, ..., sn} and

S2 = {s′1, s′2, ..., s′n} with the same number of steps n, the Pearson correlation
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can be computed as:

Corrx(S1, S2) =
E[(X1 − µX1)(X2 − µX2)]

σX1σX2

(3.8)

where X1 = {x1, x2, ..., xn} and X2 = {x′1, x′2, ..., x′n} are the sequences of hori-

zontal displacement of the steps of S1 and S2, respectively. Similarly, Corry is

the correlation of the vertical displacements of the steps of S1 and S2. These

displacements can be computed given the step distance and direction of move-

ment. Corrpath therefore measures the similarity between two walking paths on

the 2D plane.

Figure 3.7 shows the CDF of the path correlations for traces collected from

both a large indoor floor level covering 3000 m2 and a research lab covering only

120 m2. Since one can walk along the same path in two directions, we computed

the Corrpath in both directions and took the higher of the two as the final path

correlation. In both environments, more than 90% of path correlations for cor-

rect matches (paths with the same evolution trend on a 2D plane) have values

greater than 1.90 (maximum 2). The path correlations are much lower for in-

correct matches, with 90% less than 0.75.
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3.2.4.2 Signal Correlation

Path correlation alone is not sufficient for obtaining accurate matches. When

path segments are collected from parallel corridors in the same building, these

segments may have high path correlations. Another feature exploited in PiLoc

is changes in the RSS signal along the walking path. It has been observed that

an RSS signal changes according to a specific pattern along the same path-way.

This change is due to the signal propagation and other environmental obstacles.

The pattern according to which the RSS signal changes provides another useful

hint to determine matching segments.

One uncertainty about using these signal measurements is the stability of

their trends with respect to changes in phone model and time. Figure 3.9 shows

the stability of WiFi signal trends on the same path across three different phone

models (Samsung Galaxy S3, S4, and Galaxy Nexus). The trends are plotted

with smoothed curves and are stable across different phone models for both APs.

The variation is also relatively stable at different periods of the day. As shown in

Figure 3.10, the RSS trends collected for the same walking path in the morning (9

a.m.), and afternoon (1 p.m.), and at night (10 p.m.) are also similar. Another

observation is that the similarity between APs with higher RSS values tends to

be higher than between those with lower RSS values. As shown in Figure 3.9

and Figure 3.10, the trend detected for AP1 is more stable than that for AP2.

With these observations, we use signal correlation as a metric to further measure

the similarity between two path segments S1 and S2:

Corrsignal =
∑
i

ωi · Corr(Ri1, Ri2) · I(Ri1, R
i
2) (3.9)
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where Ri1 = {r1, r2, ..., rn} and Ri2 = {r′1, r′2, ..., r′n} are the sequences of RSS

values of APi observed in S1 and S2 respectively. ωi is the weight for APi

and we set ωi = 2
|µ

Ri
1
+µ

Ri
2
| . As signal strength values are given in negative

terms (measured in dBm), APs with larger average RSS values will have more

weight. Corr(Ri1, R
i
2) is the Pearson correlation of two RSS sequences for APi.

I(Ri1, R
i
2) is an indicator function used to decide if an APi should be included in

the computation.

I(Ri1, R
i
2) =

{
1, |µRi

1
− µRi

2
| < σRSS (3.10a)

0, otherwise (3.10b)

where σRSS is the maximum acceptable difference between the two mean

RSS values of two path segments. The current value for σRSS is set to 5 dBm,

which has been observed to work well for different environments. As done with

to the path correlation computation, as movement can occur in both directions

on the same path, we calculate the correlation for both the forward and reverse

directions for each pair of segments, using the maximum correlation.

Note that not all APs are included in the computation. First, we exclude

APs that appeared only in one segment and not in the other. Second, we also

remove APs that appeared in fewer than 10 steps in either of the two segments.

In summary, for the signal correlation computation, we only considered APs that

appeared often enough in both segments, and whose average signal strengths are

similar.

In general, the Corrsignal increases as two trajectory segments have more

common APs and the trends of the APs are similar. Figure 3.8 shows the signal

correlation distribution for both the 3000 m2 office floor and the 120 m2 research

lab. In both environments more than 42% of signal correlations for correct

matches (same paths) have values greater than 0.15. The signal correlation is

much lower for incorrect matches, with 98% less than 0.15.

3.2.4.3 Final Matching

PiLoc combines the discriminative power of both path and signal correlations in

the final matching to achieve an accurate match. For each pair of segments in the
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cluster ct or cl, we first align them to have the same step numbers, and the turning

point is used to align turn segments. In this way, PiLoc does not require that the

starting and ending points of the path segments in the matching process be the

same.We use path correlation threshold σpath and signal correlation threshold

σsignal to find matching pairs.

In order to evaluate the accuracy of our matching algorithm, we have to

obtain the ground truth of how the different segments matched through manual

tagging. Figure 3.11 shows the receiver operating characteristic (ROC) curve for

both the large office floor and the small research lab. Both curves show high levels

of matching performance, with a large area under the curve. A good operating

point can be chosen using the y = x line. This operating point provides a guide

for choosing the appropriate thresholds for the path and signal correlation values

to be used for matching.

3.2.5 Floor Plan Construction

3.2.5.1 Algorithm

In PiLoc, the inaccuracy of the IMU and WiFi signal strength measurement

makes it challenging to merge trajectories from different users. PiLoc addresses

this challenge by merging and filtering all users inputs in the floor plan con-

struction algorithm. The trajectory matching algorithm discussed in the pre-

vious section generates matching pairs for all segments from the same indoor

environment. The output of the matching algorithmM = {(S1, S2), ..., (Si, Sj)}

contains pairs of matched path segments and these matching pairs are used as

inputs to the algorithm.
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Algorithm 2: Floor Plan Construction Algorithm

1 Input: Matching result M, Trajectories set T of 1 cluster c
2 Output: Updated displacement matrix Md

3 Initialized displacement matrix Md;
4 for each matching segment pair (Si, Sj) in M do
5 // Collocate and determine displacements of
6 // matching steps
7 Set of collocated steps, Smerge, is initially empty;
8 for each matching step pair (sm, sn) in (Si, Sj) do
9 Place sm, sn into a single location;

10 New displacement of sm and sn are average displacements of sm and sn
to all points in Smerge;

11 Smerge = Smerge

⋃
sn
⋃
sm;

12 end
13 for each step p in T or but not in Smerge do
14 Displacement of p = average displacements of p to all points in Smerge;
15 end
16 Update displacement matrix Md based on all new displacements calculated;

17 end
18 return Md;

Initialization. PiLoc merges and generates floor plans for all trajectories

T collected in the same indoor environment, i.e., the same floor cluster c dis-

cussed in Section 3.2.3.1. In the initialization phase, PiLoc builds a displacement

matrix Md. Given two steps with global ID i and j, each belonging to one of

the two matching segment pairs, the entry Md[i][j] gives the 2D displacement

(x, y) between the positions indicated by the two steps as (xj − xi, yj − yi).

The displacement between two steps can only be measured if there are common

matching path segments that can relate them. The displacement is “undefined”

if the steps are from two different trajectories with no relationship.

Iteration. In the iteration phase, each matching segment pair (Si, Sj) is

taken into account to update the displacement matrix. Recall that matching

segments have the same number of steps. For each pair of matching steps

(sm, sn), we “move” the starting position of these steps so that they start at

the same point. We then compute the new displacements by finding the average

displacements of these steps to those steps whose new displacements have been

determined. The detailed steps of floor plan construction algorithm is described

in Algorithm 2.

As an illustration, consider Figure 3.12. The trajectory consists of five steps

{1, 2, 3, 4, 5}. S1 = {1, 2} and S2 = {5, 4} are the only pair of matching segments

in this example. The algorithm first computes the starting (relative) position of
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4'5'1' 3'2'

d’13 = [d13+d53+ (d’12+d23)+(d’14+d43)]/4

(d) New displacement calculated for 3

Figure 3.12: Example of Motion Vector Merging. dij denotes the current dis-
placement and d′ij denotes the new displacement.

the first matching steps. Figure 3.12(a) shows the original displacements of the

points in the trajectory.

In Figure 3.12(b), the starting points of the first pair of matching steps {1, 5}

are considered to be at the same location (shown as 1′ and 5′ in the figure). In

order to calculate the new displacements for the next pair of matching steps

{2, 4}, which is again assumed to be collocated, the new displacements d′12 and

d′14 are computed as d12+d52+d14+d54
4 , as shown in Figure 3.12(c).

After the new displacements for all matching steps in this segment have been

computed, the displacements of all the other steps are updated. As shown in Fig-

ure 3.12(d), the displacement d′13 is determined by averaging the displacements

of all four matched steps.

Since the matching pair can be either from the same trajectory or different

trajectories, the floor plan construction algorithm works for both intra-graph

merging and inter-graphs merging. As shown in Figure 3.13, the trajectory is

refined internally and merged with itself using the algorithm. The error cumu-

lated in dead-reckoning is corrected using data within the same trajectory. Fig-

ure 3.14 shows the merging of different trajectories collected from the same floor.

Note that since each step carries fingerprint data in the floor plan constructed,

it naturally can serve as the radio map to handle localization queries and decide

the current user location on the map. Since the merging algorithm works for all
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(a) Before (b) After

Figure 3.13: Intra Trajectory Merging

(a) Before (b) After

Figure 3.14: Inter Trajectory Merging

geographically separated clusters, floor plans and radio maps are generated for

all different indoor environments covered by the participating users.

The maps generated are relative maps, i.e., the locations in the map are not

associated with the absolute location yet. To map the floor plan to the real

locations in the indoor environment, PiLoc only requires that at least one point

be associated with a GPS coordinate. This point becomes a global reference

point, and all the locations of rest of the points in the maps can be fixed.

3.2.5.2 Floor Plan Filtering

Filtering is required to remove the noisy samples and trajectories in the floor

plan construction process. Trajectories that have no matching segments are first

filtered out after the matching process. Therefore the outlier trajectories will not

be reflected in the final results. To further smooth the constructed floor plans,

we adopt a grid-based filtering scheme. The generated floor plans are divided

into 1× 1m2 grids. We observed that most grids that contained correct walking

trajectories have more steps than the average number of steps over all grids

in the floor plans generated by the trajectory merging algorithm. In the final

floor plan constructed, all grids with numbers of steps less than the averaged

are removed. To smooth the floor plan constructed, morphological operators

dilation and erosion [5] are used, and the extracted contours from the erosion
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(a) 10min (Raw) (b) 20min (Raw) (c) 30min (Raw)

(d) 10min (Smooth) (e) 20min (Smooth) (f) 30min (Smooth)

Figure 3.15: Floor Plan Evolution

(a) Research Lab (b) Office Floor (c) Library

Figure 3.16: Floor Plan Construction for Various Indoor Environments

result are used as the smoothed walking paths.

3.2.5.3 Floor Plan Evolution

To reflect the environmental changes and new user inputs, the floor plan gener-

ated needs to be periodically updated. One important feature of PiLoc is that

the floor plans will keep evolving with continuous incoming user inputs. The

evolution is also fully automatic. In PiLoc, the floor plan is updated every 10

minutes to handle the new user input. All new data will be clustered into the

existing clusters, or new clusters (e.g., new floors) may be generated. As shown

in Figure 3.15, the floor plan is updated every 10 minutes to generate an evolv-

ing indoor map. The radio maps are also updated during the same process to

maintain an up-to-date localization database.

3.2.5.4 PiLoc Localization

PiLoc adopts a fingerprint-based approach for indoor localization. The radio

maps are automatically built and updated by merging user-contributed walking

data. In this way, PiLoc is able to handle localization queries and return the
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user location using the radio map and input fingerprints. Previous systems such

as RADAR [12] utilize the fingerprint database by using the nearest neighbors

from the query point to the reference points in the database as the similarity

metric.

Such an approach works relatively well for indoor areas with sparse AP de-

ployments (In RADAR, only three APs are presented). However, during our

data collection we observed that many indoor environments have very dense AP

deployments (more than 100 on one floor). Nearest neighbor matching works

poorly at the dense AP environment, because at each location, smartphones can

observe a long list of remote APs with RSS ranging from -80dbm to -90dbm.

The RSS fluctuations of large numbers of these remote APs overwhelm the small

set of nearby APs in calculating the similarity. However, nearby APs are more

important in deciding the current location of the user since high RSS values only

cover a small area for each AP. Based on this observation, PiLoc uses the simple

but more effective weighted maximum similarity as the metric:

WMS =
n∑
i=1

ω′i ·
1

max{|ri − r′i|, 1}
(3.11)

where n is the total number of APs, and ω′i = 1/|µi| is the weight of the ith AP

and is inverse to the absolute of its mean value. Therefore, nearby APs with

higher average RSS values will have higher weights. ri is the input RSS of APi

and r′i is from the radio map. WMS will have a higher value if the input point

and reference have more common APs and the RSS differences for nearby APs

are smaller. The location will be determined by the maximum WMS matching

in the radio map. The PiLoc localization provides better accuracy than the

conventional approach, especially in a dense AP environment.

3.2.6 Energy Management

3.2.6.1 WiFi Scanning Modes

Collection Mode. During data collection, it is important to increase the col-

lected fingerprint density when users are walking indoors. To increase the finger-

print sampling rate, we only scan Channel 1 (2412MHz), 6 (2437MHz), and, 11

(2462MHz) during data collection. These channels do not overlap with the com-
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Figure 3.17: WiFi Signal Graph

monly deployed 802.11 b/g/n [59] network. As shown in Figure 3.17, these three

channels covered most of the deployed APs in the environment we measured.

In our scan, we also include one channel (5240MHz) from the less commonly

deployed 802.11a network. By reducing the number of channels scanned and im-

proving the efficiency of the code, we significantly increase the sampling rate. On

average, around three radio fingerprints can be collected every second, compared

with using the Android WifiManager which can only collect one sample every

two to three seconds. The average number of fingerprints per step is computed

by combining all fingerprints collected between two consecutive steps. However,

the aggressive sampling also increases the energy consumption, and so needs to

be performed as little as possible. We will discuss the sensor-triggered WiFi

scanning scheme in Section 3.2.6.2.

Localization Mode. During online localization, the system becomes less

sensitive to the WiFi sampling speed, and a two-to-three second WiFi refresh-

ing rate is normally sufficient for most applications to achieve the ’real-time’

localization. As a result, it is no longer necessary to sacrifice energy to WiFi

sampling speed, and so we use the normal Android WiFiManager scanning for

online localization.

3.2.6.2 Sensor-triggered WiFi Scanning

To further reduce the power consumption of WiFi scanning, we exploit smart-

phone sensors to differentiate between different system states to switch the scan-
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Figure 3.18: Sensor-triggered WiFi Scanning

ning mode dynamically. As shown in Figure 3.18. PiLoc runs in three scanning

states: COL, LOC, and IDLE. In the COL state, PiLoc performs data collection

and uses the fast scanning described in Section 3.2.6.1 to collect fingerprints as

fast as possible. In the LOC state, PiLoc performs localizations tasks and uses

the normal Android WiFiManager scanning to reduce the sampling cost. In the

IDLE state, PiLoc only samples the low-cost IMU sensors and stops all WiFi

scanning to save energy.

Stationary Detection. During opportunistic data collection, as there is

no control on participants’ walking patterns, they may stop occasionally. And

when this occurs WiFi scanning will obtain duplicated fingerprints for the same

location. Similarly, during localization, it becomes unnecessary to refresh the

locations when users are staying at the same locations. To save power, it is

important to reduce the WiFi sampling rate or stop WiFi scanning to avoid col-

lecting redundant fingerprints for the same location. To detect when smartphone

users are stationary, much research has been conducted to exploit the IMU sen-

sors in phones [16, 35]. In PiLoc, as the system detects walking steps, the user is

deemed stationary if the step counter is not updated for a given amount of time.

In PiLoc, this period is set as 10 seconds. Users are determined to be stationary

if no steps are detected within the waiting period.

Heading Noise Detection. PiLoc exploits opportunistic sensing to col-

lect WiFi-annotated walking trajectories. Heading angle estimation using IMU

sensors can be noisy [67] and the noise of heading angles calculated using smart-

phone IMU sensors constitutes a major error source of the system. In addition,

users might put their phones in different places during data collection, for ex-
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Figure 3.19: Heading Noise Detection

ample holding the phones in their hands, or putting them in pockets or back-

packs. Although the trajectory merging process provides error correction for

dead-reckoning as described in Section 3.2.5, it is important to filter out noisy

compass readings before uploading them for merging. As shown in Figure 3.19,

putting phones inside loose pockets or backpacks introduces more heading-angle

fluctuations than when users are holding the phones in their hands during data

collection. Detecting such noisy traces not only avoids adding additional noise to

the trajectory merging process, but also provides important hints to the smart-

phones to switch to a low-power state to save energy.

In PiLoc, we opportunistically capture traces with smooth heading estima-

tions and discard the rest. We measure the smoothness of the heading angles

using the Hodrick-Prescott filter[29] to detect the level of fluctuation of the head-

ing angles when walking:

Smoothness =
n∑
i=3

(αi − 2αi−1 + αi−2)
2 (3.12)

where αi is the heading angle sampled at the ith step. To keep detection real-

time and robust, we maintain n as 10 steps and report heading noise when it

exceeds an empirical threshold. The heading noise detection also triggers the

smartphone to switch from the COL state to the IDLE state to save power.

Triggered Scanning. Figure 3.18 summarizes the state transition of Pi-

Loc sensor-trigged WiFi scanning. During data collection, the smartphone will

transit from the IDLE state to the COL state when the user is walking and the

compass readings are not fluctuating, and will switch back to the IDLE state ei-

ther when the user is detected to be stationary, or when noisy heading angles are
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detected. Similarly, during localization the phone will switch to the LOC state

from the IDLE state when the user is walking normally, and switch back to the

IDLE state when the user stops walking. The detailed energy consumption of

different states and the final triggered scanning scheme are evaluated in Section

3.3.3.5.

3.3 Performance Evaluation of PiLoc

3.3.1 Implementation

PiLoc has both client and server components. The client performs two functions:

data collection and issues localization query. For data collection, the client runs

an Android smartphone service in the background to opportunistically collect

walking trajectories and radio fingerprints. For localization, the client issues

queries to the server to localize the phone. The server collects user uploaded

trajectory and fingerprint data. It uses the data collected to construct and

update the floor plans periodically for all indoor environments it has data for.

For each localization query, the server first determines the correct radio map to

use based on the AP clustering result. The weighted maximum similarity match

is then used to find the best matching location of the phone.

3.3.2 Data

The experimental data was collected over a one month period from five different

areas which covered about 5800 m2 in total. The layouts are shown in Figures

5.5 and 3.16. The sizes of these five different floors ranged from 120 m2 to 3000

m2. The smallest area of 120 m2 involved the inside of a research lab with lots of

partitions, which posed a special challenge due to its very short turns and walk

ways. Three different phone models are used: Google Galaxy Nexus, Samsung

S3 and Samsung S4. All phones run the Android OS. An average of 37 APs are

detected in each of the five areas. In total, 700 user trajectories are recorded,

containing about 100,000 steps, with each step is associated with direction as

well as WiFi fingerprints. In terms of time, these data corresponds to about 850

min of data collection.
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3.3.3 Performance

3.3.3.1 Evaluation Metrics

We evaluate the overall performance of PiLoc by looking at the quality of the

floor plan constructed and the localization accuracy. Two major metrics are

used in the measurement for floor plan construction and localization:

• Step Mapping Error (SME). The floor plan constructed maps steps

of walking trajectories into the real floor plan. The step mapping error

measures how accurately the trajectories fit the real floor plan. Since fin-

gerprints are associated with each step, a lower step mapping error results

in higher fingerprint mapping accuracy, which directly affects the localiza-

tion accuracy. The SME is defined as:

SME = ‖L(s)− L(s′)‖ (3.13)

where L(s), L(s′) are the mapped location of the step and the ground truth

location of the step respectively. A smaller SME reflects better matching

of the constructed floor plan to the real one. To establish the ground

truth, the locations where each step is taken in the reference floor plan

are manually tagged. Since each step has a globally unique identifier, the

location of one particular step in the constructed floor plan can be obtained

by querying the ID, and SMEs are measured by calculating the differences

between the estimated step locations and their respective ground truth

locations.

• Localization Error (LLE). LLE measures how well the location given

by the localization server matches the ground truth location of the phone.

LLE = ‖L(p)− L(p′)‖ (3.14)

where L(p) is the estimated location and L(p′) is the real location of the

phone. The smaller the Euclidean distance, the better the localization

quality.
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Morning Afternoon Evening

Precision 100% 100% 96%

Recall 97.5% 98% 98%

Table 3.1: Performance of Barometer-based Floor-Transition Detection When
Using Stairs

Morning Afternoon Evening

Precision 89% 97% 91%

Recall 90% 89% 89%

Table 3.2: Performance of Barometer-based Floor-Transition Detection When
Using Elevators

3.3.3.2 Trajectory Clustering

The clustering algorithms in PiLoc group user contributed data into smaller

groups for higher efficiency in the later stage of floor plan construction process.

Since the major uncertainty in the whole clustering process lies in the floor

clustering process, we focus on the evaluation of floor clustering here.

Tables 3.1 and 3.2 show the measurement for the sliding-window-based floor-

transition detection. The ground truth is input by the user whenever a floor

transition occurs when the user is taking stairs or elevators. The collected time

is also recorded for comparison. We group our data into different time period.

We note that even when the barometer is sampled at a low sampling rate (1Hz),

the floor transition can be accurately detected in all datasets. Since we use the

relative altitude value instead of the absolute value for floor-transition detection

in PiLoc, the accuracy remains high in all scenarios although the data were

collected in different time periods. Floor transitions via stairs have above 96%

precision, and above 97% recall. Similarly, for floor transitions via elevators,

the average detection precision is 92% with average recall 90%. The relative

altitude-based floor-transition detection in PiLoc makes it possible for robust

detection from large quantities of input data that are collected from different

users on different days.

To evaluate the floor clustering performance, we evaluate the quality of all

generated floor clusters. If two trajectories clustered to the same floor cluster

are actually from the same floor, this results in a true positive (TP), otherwise,

it will be a false positive (FP). If the clustering algorithm groups two trajectories

from the same floor into different floor clusters, will be a false negative (FN);
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Figure 3.20: Multi-floor Floor Plan Construction

Precision Recall Accuracy

95.2% 88.9% 97.1%

Table 3.3: Floor Clustering Performance

if not, a true negative (TN). In this way, we have precison = TP/(TP + FP ),

recall = TP/(TP +FN) and accuracy = (TP +TN)/(TP +FP +TN +FN).

As shown in Table 3.3, the floor clustering algorithm using floor similarity

and floor constraints can efficiently cluster trajectories into floor-based groups.

The floor-clustering accuracy achieves an average precision of 95.2%, recall of

88.9%, and final accuracy of 97.1%. Since each floor cluster contains trajectories

from a single floor, the floor plan construction algorithms can be applied to

each individual cluster to generate a floor plan for that floor. By looking at the

relative floor constraints obtained from all clusters, the relationships between

each pair of floors can be obtained, resulting a multi-floor floor plan as shown in

Figure 3.20.

3.3.3.3 Floor Plan Construction

To measure SME, each step associated with fingerprints is assigned a global ID.

We tagged the ground truth localization for each collected step and measure the

SME in the constructed floor plan. We plot the CDF for both the mid-sized

(900 m2) office floor and the 120 m2 research lab.

Figures 3.21 and 3.22 show three different CDF curves for the office floor

and research lab respectively. Each CDF curve corresponds to a different time

period of data collection, ranging from 10min to 30min. For the mid-sized office

area shown in Figure 3.21, PiLoc achieves an average SME of 1.65m, 1.47m and

1.27m for 10min, 20min and 30min of data collection respectively.
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Figure 3.21: CDF of SME (900m2 Office Floor)
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Figure 3.22: CDF of SME (120 m2 Research Lab)

For the research lab, PiLoc achieves an average SME of 0.54m, 0.6m and

0.46m for 10min, 20min and 30min of data collection respectively. Surprisingly,

the accuracy for the research lab is better, probably because the step counting

mechanism used incurs much less error for short distances.

3.3.3.4 Localization

Localization evaluation is performed for the large office floor (3000 m2) and

research lab. As shown in Figure 3.24, PiLoc achieves an average LLE of 1.37m

for the research lab, with 80% of the errors less than 2.3m.

For the large office floor, the average LLE is 1.58m with 80% of the errors

less than 3m.

Table 3.4 provides a brief summary of and qualitative comparison between

PiLoc and other localization systems. As the evaluations are performed in differ-

ent settings, the localization errors listed (obtained from the respective papers)
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System Average LLE Effort

RADAR [12] 2∼ 5m Site survey

Horus [88] ∼ 1m Site survey

Zee [63] 1∼ 3m Floor plan

UnLoc [76] 1∼ 2m Floor plan, seed landmark

LiFS [86] 3∼ 7m Floor plan, less accurate

Walkie-Markie [74] 1∼3m Sufficient number of landmarks

PiLoc 1∼ 3m

Does not rely on prior
knowledge of indoor

environment or landmarks,
self-calibrating

Table 3.4: Listing of related localization systems

can only provide a high-level guide to the relative performances of the various

systems. Even though PiLoc does not require manual calibration and landmarks,

it can achieve localization accuracy that is comparable with that of the other

localization schemes.

3.3.3.5 Power consumption

To evaluate the energy consumption, we use a Monsoon Power monitor to profile

the power cost of PiLoc in three states. The one-minute snapshots for the

different states are shown in Figure 3.23. We keep the display off for accurate

measurement of all the three states. As shown in Table 3.5, the average power

consumptions of the three WiFi scanning modes are 74.8 mW, 714.7 mW, and

852.2 mW. As shown in Figure 3.23, the COL state is the most power-hungry

and incurs an additional 137.5 mW on top of the normal WiFi scanning used

in the LOC state. Running PiLoc in both the COL state and LOC state incur

roughly, additional power consumption of 700 mW more than in the IDLE state,

when only IMU sensors are sampled, which indicates that we should switch to the

IDLE state whenever possible. We simulate the state transitions of the sensor-

triggered scanning scheme by looking at the step patterns and heading angles in

the uploaded walking trajectories and measuring the final power consumption

based on the percentage of time the system was in each state. As shown in

Table 3.5, the sensor-triggered scanning reduces the average power consumption

to 462mW, which corresponds to a battery lifetime of approximately 20 hours.
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Figure 3.23: Power Profile of PiLoc in Different States

IDLE LOC COL Tri-Scan

Power 74.8mW 714.7mW 852.2mW 462mW

Table 3.5: Power Consumption Measurement

3.4 Discussions

3.4.1 Applications

Indoor localization plays a very important role in many real world applica-

tions. For example, location-based services and location-based advertisements

have gained popularity. However, deploying and maintaining current indoor lo-

calization schemes requires too much effort, which hinders the development of

location-based applications. By opportunistically collecting walking trajectories

from causal users whose roles are not dedicated to localization, a localization sys-

tem can be easily built and updated with PiLoc. For example, the movements

of security guards or any other users can contribute traces for constructing the

indoor floor plan of any given indoor environment. PiLoc provides an efficient

way to leverage daily human movements for localization, and has the potential

to be deployed on a large scale.
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Figure 3.24: CDF of LLE
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3.4.2 Limitations

PiLoc currently extracts turn segments and line segments for matching. Extend-

ing the system to more complicated layouts containing curve shapes requires the

extracting of additional curve segments. In PiLoc, path correlation and signal

correlation are used for trajectory matching to construct pathway floor plans. In

open spaces where people may not walk along distinct walkways, path correla-

tion and signal correlation may fail to differentiate intersecting or parallel aisles

that are not separated by sufficiently large distances. This is one limitation of

PiLoc. However, in practice walking paths inside buildings are often separated

by walls or other obstacles. This will result in differences in signal correlations

that can be distinguished by PiLoc.

3.4.3 Extensions

3.4.3.1 Diverse Floor Plans

In PiLoc, path segments are extracted and clustered for efficient matching. These

path segments reflect the physical layouts of the floor plans. Although most

indoor floor plans have rectangular layouts, some indoor layouts may contain

curved walking paths. While a curved walking path may be captured as a series

of straight lines and turns, the inaccuracy introduced can be substantial. Hence,

to achieve a higher accuracy for these types of floor plans, we may have to include

additional types of walking paths. Conceptually, adding additional path segment

shapes in PiLoc is straight-forward, although the actual process of extracting

these new shapes may be much more complex. Nevertheless, once the new paths

are extracted, there is no change in the rest of the algorithms. The current

architecture is thus highly extensible to diverse floor plans.

3.4.3.2 Enriching Constructed Floor Plans

While the localization system introduced in this work offers fast pathway floor

plan construction and localization, this still does not constitute a complete indoor

floor map. A complete indoor floor map should not only contain such a first-level

skeleton structure, but should also contain an abundant number of elements that

can be annotated into the path way floor plan. Such second-level elements can
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be doors, stairs, escalators, elevators, or printers – items commonly encountered

in an office building.

Such annotated elements can improve the indoor map in two ways. First,

an enriched floor plan gives the user a better experience navigating through the

area, via recognizing such human-oriented landmarks. Second, such elements

also help to improve the localization accuracy of the indoor map. For instance,

doors are important indoor indicators of changes in space, for example, entering

one room from another. As important features in multi-floor buildings, stairs,

escalators, and elevators are also useful in indoor navigation. Knowledge of their

locations can therefore help a user decide a preferable direction and path to guide

him to his destination.

3.4.3.3 Multiple Fingerprints

PiLoc utilizes WiFi fingerprints for localization. However, WiFi fingerprints are

not tightly bound to our systems. Different fingerprints, such as FM radio signals

[19] or even ambient noise [11], can be associated with each step and used in the

localization phase. Also, to improve the performance, other fingerprints such as

indoor magnetic fingerprints can also be added to the system to provide more

information.

3.5 Summary

In this chapter we propose and evaluate PiLoc, an active indoor localization

scheme that takes user walking trajectories as input and automatically builds

and updates the indoor floor plan. By incorporating radio fingerprints, the

indoor radio map is also automatically managed by PiLoc. PiLoc requires no

human intervention and can achieve high localization accuracy with an average

error of 1.5 meters. As PiLoc only requires minimal user effort for calibration

and maintenance, it has the potential for large scale deployment.
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Chapter 4

SpiLoc: Self-calibrating

Passive Indoor Localization

4.1 Introduction

Indoor Localization systems such as PiLoc, as proposed in the previous chapter,

achieve localization by relying on the cooperation of devices, and are usually

referred to as active localization. Active localization is required by many ap-

plications such as user navigation, where users are willing to participate in the

localization process. Recently, a new spectrum of applications that try to localize

users without requiring their devices to cooperate explicitly have been developed.

These applications include passive user tracking, customer-flow analysis, etc.

Recognizing these requirements, the research community has recently started

to investigate passive localization techniques [56, 83, 14]. Compared with active

localization, passive localization does not require the explicit participation of

human or devices, and usually relies on the opportunistic overhearing of pack-

ets transmitted by smartphones [56]. Smartphones with WiFi interfaces enabled

periodically send out messages even when they are not associated with any WiFi

and even when the smartphone screens are off. This provides opportunities for

WiFi monitoring devices to capture these transmissions and passively estimate

the locations of the devices. Some previous work [56] has leveraged this idea

by using WiFi monitors to track unmodified smartphones in an outdoor setting.

While such work [56] illustrates the feasibility of passive tracking multiple smart-

phones, such tracking only achieves coarse-grained passive outdoor localization
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Scheme Category
Representative

Systems
Remarks

Active

Infrastructure
based

ArrayTrack [81],Ubicarse
[39], COIN-GPS [58] Requires explicit cooper-

ation of device and re-
lies on device informa-
tion such as local WiFi
scanning results and mo-
tion sensor data

Fingerprint
based

RADAR [12], Horus [88]

Propagation
model based

EZ [20], Zero[47]

SLAM and
crowdsourc-

ing
based

Zee [63], SAIL [53],
UnLoc [76], LiFS [86],

Walkie-Markie [74],
MapCraft [80], PiLoc

Passive

Device-free Nuzzer [70], SCPL [82]
Infeasible to track multiple

objects simultaneously

Device-based
WiFi Tracking [56]

Coarse-grained localization
performance

SpiLoc
Goal: self-bootstrapping

fine-grained passive
localization

Table 4.1: Landscape of Indoor Localization Research

with a localization error of about 70 meters.

In this section, we present our efforts to achieve fine-grained passive localiza-

tion through self-bootstrapped passive fingerprinting using WiFi monitors. Unlike

with the RSS modeling used in [56], we choose to adopt the fingerprint-based

approach due to the complexity of the RSS behavior caused by the multi-path

effect [83] in an indoor environment. We propose SpiLoc, a self-bootstrapping

passive indoor localization system that calibrates itself and provides fine-grained

localization for smartphones. This system’s design was mainly based on the fol-

lowing observations. (1) With the knowledge of the indoor floor plan and the

location of WiFi monitors, it is possible to opportunistically capture RSS traces

that can be statistically mapped to specific indoor pathways. The mapping can

be done even when smartphone transmissions are sparse. (2) By mapping the

collected RSS traces from WiFi monitors to the walking paths, it is possible to

bootstrap a passive fingerprint database for localization and achieve fine-grained

localization performance.

Table 4.1 summarizes the current state-of-the-art indoor localization systems.

Most of these systems belong to the active category, which requires the explicit

cooperation of mobile devices. On the other hand, SpiLoc falls into the passive

category, and has the following key differences:

• Unlike the active fingerprint based approaches [12, 88], SpiLoc relies on

passive fingerprints. Instead of scanning WiFi beacons from mobile devices
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actively, SpiLoc uses the signal strength measurement from deployed WiFi

monitors when the signal-emitting devices are located at different indoor

locations.

• SpiLoc has no control over the mobile devices and it is not possible to ob-

tain local information such as inertial sensor data and local WiFi scanning

results from the phone. Instead, the only information available is the RSS

traces collected by WiFi monitors.

Due to these essential differences, SpiLoc has unique challenges:

• As there is no feedback from the mobile devices, motion related sensor data

which is essential in active SLAM-based crowdsourcing solutions such as

Zee [63], UnLoc [76], LiFS[86], Walkie-Markie [74], and PiLoc [52], is not

available.

• Transmission rates from WiFi devices can differ widely, and the move-

ments of these devices can also be highly irregular. Such behaviors further

complicate the task of passive WiFi fingerprint crowdsourcing.

In SpiLoc, we use WiFi monitors to capture RSS traces from smartphones.

Whenever two consecutive passive landmarks are identified from the RSS traces,

we exploit the maximum likelihood based route inference technique to map the

RSS traces to one walking path that connects the landmarks. After sufficient

mappings are performed opportunistically, the passive fingerprint database is

bootstrapped and the fine-grained locations of smartphones can be obtained in

real-time.

4.2 SpiLoc Passive Indoor Localization System

4.2.1 Overview

4.2.1.1 System Architecture

The system architecture of SpiLoc is shown in Figure 4.1. At the beginning,

the only knowledge the system has is the indoor floor plan and the locations

of deployed WiFi monitors, which are typically available after system deploy-

ment [86]. The deployed WiFi monitors continuously collect the received sig-

nal strength (RSS) of WiFi transmissions from all smartphones that are in the

vicinity. The RSS traces are then uploaded to a central server for both system
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Figure 4.1: System Architecture

bootstrapping and real-time localization.

Passive landmarks are first detected from the RSS traces, which provide

important information about a smartphone’s location at a given timestamp.

Central to SpiLoc is the opportunistic trace mapping component, which oppor-

tunistically maps the collected RSS traces to one specific indoor pathway. For

a particular user, once two consecutive passive landmarks are detected, the Spi-

Loc server performs the route inference to infer the most likely walking path

that the smartphone user travels along, connecting these two landmarks. After

the walking trajectory is estimated, SpiLoc maps the collected RSS from this

user between these two landmarks to each of the locations in-between based on

the data collection timestamps. After sufficient RSS traces are collected, the

whole floor will be covered by the mapped RSS. Subsequently, all the mapped

RSS measurements form the passive fingerprint database for this floor. Unlike

the RF propagation model-based estimation, the constructed passive fingerprint

database directly characterizes the RSS property at each indoor location and

thus achieves fine-grained localization performance. With the bootstrapped fin-

gerprint database, SpiLoc is able to handle online localization queries and achieve

real-time localization given the RSS input from WiFi monitors, which is based

on maximum likelihood estimation.

In SpiLoc, the passive fingerprint database updates periodically whenever a

new trace mapping is successfully performed. The system therefore maintains

an evolving RSS database of the floor and adapts to the environmental changes.
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4.2.1.2 Opportunistic Data Collection

The WiFi monitors opportunistically overhear transmissions that are emitted

by smartphones. It is known that smartphones periodically scan WiFi access

points when they are not connected to the access points, which usually involves

probe message transmissions [56]. When smartphones are connected to APs and

have some ongoing tasks such as video streaming, they continuously send WiFi

packets. Even when the smartphone screens are off, background services may

also trigger wireless transmissions. All these transmissions from different smart-

phones are associated with their WiFi MAC addresses, allowing WiFi monitors

to track the transmission traces of any individual smartphone that appears in

the environment.

Let n denote the number of WiFi monitors that are deployed in an indoor

environment. Assume a smartphone user is mobile. Each WiFi monitor cap-

tures the RSS of each transmission from the smartphone and generates traces

τ = {(t1, r1), (t2, r2), ..., (tk, rk)} for this phone, where rk is the RSS value mea-

sured by the WiFi monitor at time tk. Each (t, r) pair is recorded whenever

a WiFi monitor captures one transmission from the smartphone. In SpiLoc,

the distributed WiFi monitors in an area are synchronized, so timestamps can

be used to merge the signal strength measurements from all monitors. Let

{τ1, τ2, ..., τn} represent the RSS traces continuously captured by these n WiFi

monitors from the smartphone during a specific time period.

In the bootstrapping phase, after collecting enough RSS traces from all smart-

phones, SpiLoc opportunistically detects segments of traces that can be mapped

to certain pathways to construct the passive fingerprint database. In the local-

ization phase, RSS traces are used as inputs to localize smartphones in real-time,

and these traces can also be used to update the passive fingerprint database. The

core components of SpiLoc will be detailed in the following sections.

4.2.2 Passive Landmarks

4.2.2.1 Passive Landmarks: Concept

When bootstrapping the passive fingerprint database for localization, one key

challenge is to associate the RSS traces captured by WiFi monitors with the
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Figure 4.2: Passive RSS Trend

physical locations on the map. Previous work on WiFi-based localization [74]

has used the RSS trends as WiFi-Marks to identify unique indoor locations.

The key insight is that the WiFi RSS trends observed by walking users are

normally stable for the same path, and the RSS tipping points in the trends can

be identified as unique features of different locations.

This observation remains useful in the context of passive localization. As

shown in Figure 4.2, as the smartphone user is walking past the WiFi monitor,

the RSS of the smartphone transmissions captured by the WiFi monitor goes

through an increasing phase, followed by a decreasing phase. Theoretically,

the RSS tipping point corresponds to the closest location on the pathway in

terms of signal propagation [74]. While RSS tipping points can be passively

detected by WiFi monitors, similar tipping points can be detected when users

are walking along different paths (e.g., parallel paths), which makes it unfeasible

to uniquely determine the location of the user using the RSS trend alone. To

address this problem, smartphone walking directions captured by IMU sensors

are used to differentiate different RSS tipping points in [74]. In the context of

passive localization, however, smartphone sensor reading is not available in the

system.

To tackle this challenge, in SpiLoc, we combine the RSS trend with RSS

distribution to opportunistically detect instances when users pass a location that

is closest to the WiFi monitor. The RSS distribution is built over time for each

WiFi monitor to uniquely characterize the signal strength distribution when

users are in different indoor locations. Once RSS tipping points are detected from

the trend and the RSS value falls in the highest part of the RSS distribution, the

user can be traced to the location in the map that is closest to the WiFi monitor.

SpiLoc uses such opportunistic detection to identify passive landmarks.

56



Chapter 4. SpiLoc: Self-calibrating Passive Indoor Localization

4.2.2.2 Passive Landmarks: Identification
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Figure 4.3: Passive Landmarks

Figure 4.3(a) shows the CDF distribution of RSS values detected from one

WiFi monitor. The distribution captures the RSS property of all detected smart-

phone transmissions over time for this WiFi monitor, which is updated period-

ically to enable the system to gradually adapt to the environment. Since the

majority of the RSS values are usually composed of transmissions when the

smartphones are nearby, the RSS values outside the k-quantile of the CDF dis-

tribution are considered the RSS landmark region. For instance, the 95% quantile

captures the top 5% of the RSS values.

As the WiFi monitoring is continuously recording the signal strength of

smartphone transmissions, the RSS evolution trends can be measured directly.

As shown in Figure 4.3(b), two RSS peaks are detected as the smartphone user is

walking along the route shown in Figure 4.4. To validate the landmark, we pick

the RSS values from each peak and see if they fall into the RSS landmark region.

A passive landmark is detected only when both a clear RSS trend and high RSS

values are observed, otherwise, the location of the peak cannot be determined,

and the peak is marked as a false peak.

The detected passive landmarks provide important information that the

smartphone users are located in the location closest to the WiFi monitor when

an RSS peak is observed. In SpiLoc, we reset the location of the smartphone

user whenever one passive landmark is opportunistically detected from the RSS

traces, and use the detected landmarks in the trace mapping step.
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Figure 4.4: Different RSS Peaks
When Walking Indoors

Figure 4.5: Route Generation Be-
tween Two Landmarks

4.2.3 Trace Mapping

4.2.3.1 Walking Route Inference

When sufficient landmarks are detected, it is possible to map the RSS traces

collected between landmarks to the indoor pathways and construct the finger-

print map. Consider the example shown in Figure 4.5. Three WiFi monitors

are deployed to record the RSS traces of smartphones continuously. From time

t0 to t5, each WiFi monitor records the RSS trace {(t0, r0), (t1, r1), ..., (t5, r5)}.

Assume two passive landmarks are detected at time t0 and t5 when users are

walking past Monitor 1 and Monitor 3. If we can infer the correct walking route

(either Route A or Route B in Figure 4.5) the user travels between two land-

marks, we are able to map the RSS signals (r0 ∼ r5) to the selected pathway

based on their timestamps (t0 ∼ t5), assuming the user travels at a consistent

walking speed. Since there might be walking speed variations, we handle this

problem through the variation detection technique that will be discussed later.

Here we focus on the key challenge of accurate walking route inference, which

maps the RSS traces to pathways.

For every two consecutive landmarks detected, the goal of trace mapping is

to infer the correct walking route and map the RSS traces in-between to the

inferred pathway. With the knowledge of the floor plan, SpiLoc first generates a

set of candidate indoor walking routes. If the time taken to travel between two

passive landmarks is relatively short, users usually tend to take the most direct

walking route, which is usually contained in the k-shortest paths connecting these

two landmarks. Therefore, in SpiLoc we use the k-shortest path algorithm [87]

to generate the candidate route set R = {R1, R2, ..., Rk}. Note that there is

still a chance that the correct walking route is not included in the generated
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candidate set, e.g., if it is cyclic route. Instead of trying to enumerate the

infinite possibilities, SpiLoc exploits opportunistic mapping and handles the error

introduced by false mappings with the noise filtering techniques discussed in

Section 4.2.3.3.

To infer the most likely route that the user travels from the candidate route

set R, SpiLoc leverages the trend of wireless signal cues. As the RSS is generally

affected by the signal propagation distance, it is normally modeled with the

log-distance path loss (LDPL) model [20]:

RSSij = p0 − 10γilogdij + ε (4.1)

where RSSij is the measured RSS value of smartphone i by WiFi monitor j. p0

is the RSS from smartphone i at a distance of one meter. γi is the rate of fall

of the RSS, dij is the distance between the smartphone and the WiFi monitor,

and ε is a random variable to capture the variations of the RSS measurements.

Although the LDPL model is a theoretical model and the parameters need to be

carefully trained to be accurate, the LDPL model provides important insights

that we can leverage for the route inference. In SpiLoc, we do not rely on

accurate RSS estimations from the model, but only leverage the relative RSS

evolution trends revealed by the model. Figure 4.6 below compares the real RSS

traces recorded by WiFi Monitor 2 with the theoretical RSS values calculated

by the LDPL model, assuming users take different routes. It can be observed

that even though the absolute value of the RSS calculated by the LDPL model

is unreliable, the RSS evolution trend reflected by the model provides important

hints about the route the user is traveling. In this case, the evolution trend of

the real RSS trace matches the trend of Route A, and we therefore infer that

Route A is the route taken by the user between the two landmarks.

To illustrate the route inference, consider the RSS trace {τ1, τ2, τ3} col-

lected by three WiFi monitors, as shown in Figure 4.5. Between two pas-

sive landmarks, each of the WiFi monitors captures six signal timestamp pairs

{(t0, r0), (t1, r1), ..., (t5, r5)}. To evaluate the likelihood of each candidate route

Rj , we characterize the signal evolution trend of the real RSS measurements of

monitor i using the RSS evolution vector Vij = (v01, v02, v03, ..., vmn), where vmn

is a binary value describing the change of RSS values between different times-
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tamps tm and tn. Here, vmn = 1 if rn − rm > 0, and vmn = 0 otherwise. To

address the fluctuations of signal strength in RSS measurements in order to es-

timate the trend correctly, we use the smoothed RSS values instead of directly

using the raw RSS values captured from the WiFi monitor. Here, tm and tn are

not necessary to be consecutive timestamps (i.e., n−m ≥ 1). When timestamps

tm and tn are farther apart, the physical distance between two RSS measure-

ments in an indoor environment is usually larger, making the RSS change more

obvious and useful in measuring the RSS evolution trend along the route. Vij de-

scribes the signal increase/decrease patterns for each pair of different timestamps

and is used as the ground truth RSS evolution pattern.

After the RSS signals are mapped to each of the locations along route Rj

based on their collection timestamps, the theoretical RSS changes for monitor

i can be modeled using the model evolution vector V ′ij = (v′01, v
′
02, v

′
03, ..., v

′
mn),

where v′mn = 1 if the RSS values calculated by the LDPL model increase from

timestamp tm to tn and vice versa. One advantage of comparing the relative

RSS trends instead of the absolute RSS values using LDPL model is that the

trends are parameter-free, and are only determined by the relative distances.

The differences between two vectors Vij and V ′ij measure how the real RSS

evolution measurement from monitor i matches the theoretical trend if the user

is traveling along the selected candidate route Rj . For WiFi monitor i and its

RSS traces τi, we use the normalized distance between two vectors to measure

the likelihood of the candidate route Rj :

p(Rj |τi) =
‖Vij‖ −H(Vij , V

′
ij)

‖Vij‖
(4.2)

where H(Vij , V
′
ij) is the Hamming Distance between two vectors and ‖Vij‖ is
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the number of elements in vector Vij . The likelihood p(Rj |τi) for the selected

route increases as the distance between the two vectors becomes smaller. Since

we have n WiFi monitors (n=3 in this example), our objective is to find the

route that maximizes the likelihood for all WiFi monitors. Therefore the route

inference problem can be formulated as:

arg max
j

n∏
i=1

p(Rj |τi) (4.3)

The route inference in SpiLoc finds the route Rj from the candidate route set R

that has the most consistent RSS evolution pattern with the theoretical model

and maximizes the likelihood for all WiFi monitors.

4.2.3.2 Fingerprint Database Bootstrapping

Once the route connecting two passive landmarks is inferred, the RSS traces

collected by each WiFi monitor are mapped to the corresponding locations along

the route based on their timestamps, in order to bootstrap the passive fingerprint

database. For example, in Figure 4.5, if Route A is inferred as the correct route

and the time differences between all consecutive timestamps from t0 to t5 are

the same, r0 ∼ r5 will be evenly spread along the route with equal distances in-

between, as shown in Figure 4.5. After sufficient trace mappings are performed,

each indoor location will be covered by real RSS measurements. The mapped

RSS measurements form the passive fingerprint for each location and the passive

fingerprint database is bootstrapped for localization.

Since each WiFi monitor records RSS measurements from smartphones in-

dependently, all the mapped RSS values need to be merged to generate the

fingerprint database. In SpiLoc, all WiFi monitors are synchronized by the Net-

work Time Protocol (NTP), which provides millisecond time synchronization.

Once an RSS trace between two passive landmarks is mapped to an inferred

walking route, all signal timestamp pairs (t, r) in the RSS trace are combined

based on their timestamps. For instance, (t1, r1) recorded by Monitor 1 and

(t2, r2) by Monitor 2 are combined to generate an RSS vector (r1, r2) with the

combined timestamp (t1 + t2)/2 if the difference between t1 and t2 is smaller

than one second. After the traces from all WiFi monitors are merged, the fi-
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nal RSS vector becomes (r1, r2, ..., rn) for n WiFi monitors, and rn is set to

Nil if Monitor n does not detect the smartphone during this period. The final

combined RSS measurements (r1, r2, ..., rn) become the passive fingerprints, and

are mapped along the route based on their combined timestamps. The finger-

prints are then associated with their mapped locations and stored in the passive

fingerprint database.

4.2.3.3 Noise Filtering

While the trace mapping in SpiLoc automatically bootstraps the passive finger-

print database for localization, false mappings inevitably introduce noise to the

constructed fingerprint database. Noise filtering therefore becomes important in

order to improve the quality of the fingerprint and the final localization accu-

racy. In SpiLoc, we leverage both RSS trace filtering and fingerprint filtering to

improve system performance.

(1) RSS Trace Filtering

Temporal Filtering. Since the uncertainty of the route connected by two

consecutive landmarks increases as their detection time difference increases, trace

mapping becomes error-prone for those traces with large time differences between

consecutive landmarks. To reduce uncertainty in the route inference process and

avoid large amount of noise in the final constructed fingerprint database, it is

desirable to filter out the RSS traces with large time differences before the route

inference. In the implementation of SpiLoc, we only admit RSS traces for map-

ping if the time difference between two landmarks is less than one minute.

Walking Speed Variation Filtering. When mapping the RSS values onto

the inferred walking route based on their timestamps, one important assump-

tion is that users usually walk at constant speeds between two indoor landmarks.

Although humans tend to walk regularly when they are walking continuously in-

doors, there are scenarios when the walking speed can significantly vary. For

example, the walking speed will suddenly become zero when users meet their

friends and stand still to have a conversation. The speed variation will signifi-

cantly affect the fingerprint quality since RSS measurements are spread along the
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selected route based on their timestamps, assuming a constant walking speed.

To address this problem, SpiLoc detects and filters out RSS traces with

walking-speed variations by looking at the their RSS patterns. One important

intuition here is, if the user slows down or stands still, the RSS signals ob-

served from all WiFi monitors usually stay similar for a period of time. Such

an observation is an important indicator that the user is currently experiencing

walking speed variation. To measure the RSS similarity, we maintain a window

of ten RSS readings for all WiFi monitors. We measure the RSS divergence with∑n
i=1Div(i)/n, where Div(i) is the standard derivation of RSS signals within

the window of the WiFi monitor i. As shown in Figure 4.7, the RSS divergence

becomes smaller when a user stands still, and increases accordingly as the user

resumes walking normally. In SpiLoc, the RSS divergence is exploited to detect

and filter out RSS traces with walking speed variations.

(2) Fingerprint Filtering

The route inference process in SpiLoc finds the most likely walking route in

terms of RSS evolution trends. Although the mapping accuracy remains high,

as we will show in the evaluation section, the false mappings introduce noise to

the constructed fingerprint database. However, as the indoor floor is covered by

dense mapped passive fingerprints, it becomes feasible to statistically filter out

fingerprint noises that are present in the database to improve the quality of the

fingerprints.

We treat each fingerprint FP as a multivariate random variable with n el-

ements, where n is the number of WiFi monitors. To detect the fingerprint

outliers, we evaluate the distance between one given fingerprint to the distri-

bution of all nearby fingerprints. As each fingerprint is mapped to one physical
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location in the indoor floor, all nearby fingerprints form a fingerprint distribution

that characterizes the RSS properties of that region. In SpiLoc, we group all fin-

gerprints within a distance of one meter to construct the fingerprint distribution.

To measure the multivariate distance from one fingerprint to the distribution,

we use Mahalanobis distance [23], which measures the distance from one finger-

print to the centroid of the distribution in multivariate space. The Mahalanobis

distance MD(FP ) is calculated as follows:

MD(FP ) =
√

(FP − µ)Σ−1(FP − µ)T (4.4)

where µ is the mean vector and Σ is the covariance matrix. The distances

are asymptotically chi-square distributed with n degrees of freedom (χ2
n) [23].

Therefore, a multivariate fingerprint outlier can be determined if it has a large

Mahalanobis distance. As a result, fingerprints that are a long distance from the

centroid of the distribution in the multivariate space are filtered out as noise.

4.2.3.4 SpiLoc Localization

The filtered passive fingerprints are stored in the final fingerprint database for

localization. For each sampled fingerprint FP = (r1, r2, ..., rn) from n WiFi

monitors in the localization phase, the goal of localization is to find the location

x such that:

arg max
x

p(FP |x) (4.5)

Since the collected fingerprints are already mapped to different locations in the

database, p(FP |x) can be easily obtained by approximating a parametric distri-

bution, such as a Gaussian Distribution, by combining all fingerprints at location

x [89]. Since there might not be sufficient fingerprints at each location at the

beginning, when the mapped RSS traces are sparse, we similarly combine all

fingerprints within a one meter area at each location to approximate the finger-

print distribution at that region, in order to perform the final location inference

using Equation (4.5).
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Figure 4.8: WiFi Monitor

4.3 Performance Evaluation of SpiLoc

4.3.1 System Implementation

The SpiLoc implementation consists of two components, frontend WiFi monitors

and a backend server. As shown in Figure 4.8, each WiFi monitor consists of a

Raspberry Pi, a D-Link wireless adapter (DWA-125) and a TPLink TL-WN821N

wireless adapter. The DWA-125 is set to monitor mode to capture transmissions

from all smartphones, and the TL-WN821N is set to managed mode to trans-

mit real-time RSS traces to the backend server for system bootstrapping and

real-time passive localization. The Raspberry Pi serves as a coordinator to con-

trol the RSS trace collection and backend transmissions, and also periodically

synchronizes the local time with the network time using NTP.

The backend server receives all RSS traces and groups the RSS readings for

each unique smartphone MAC address. As each WiFi monitor is synchronized

with NTP, the time stamps in the RSS traces can be used directly on the server.

The server keeps track of all wireless devices via their unique MAC addresses.

4.3.2 Evaluation

4.3.2.1 Experiment Design

Testbed. We performed our experiment on a 1710 m2 indoor office floor. The

layout of the floor is shown in Figure 4.9. In total, eight WiFi monitors are de-

ployed. The location of each WiFi monitor is labeled in Figure 4.9. Each passive

fingerprint therefore consists of eight elements, each of which corresponds to the

RSS readings of the relevant WiFi monitor. The layout of the floor consists of 12

different turns, users walking around on the floor have different routes to travel
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Figure 4.9: Layout of the Testbed

between each pair of WiFi monitors.

Data. To collect the data, we asked the participating users to walk randomly

with smartphones on the floor. We collected RSS traces from all WiFi monitors

as the smartphone users were walking. In total, about 300 minutes of RSS traces

were collected. There was no restriction on the smartphone statuses: users could

keep the phones in the idle state or perform background tasks when they were

walking. To establish the ground truth, we asked the users to manually tap their

locations on the map periodically. As the smartphones were synchronized as

well, the time stamps and locations entered provided ground truth information

about the routes they were traveling, and their physical locations. Since the

walking speed would affect the mapping accuracy, we also asked the users to

enter whether they walked at a fairly constant speed or undertook speed variation

(such as standing still for a few seconds) during trace collection. We selected

half of these traces for trace mapping evaluation and to bootstrap the fingerprint

database, and used the other half to measure the final localization performance.

4.3.2.2 RSS Trace Mapping Performance

To test the RSS trace mapping performance, we extracted RSS traces between

all consecutive landmarks detected. We performed route inference for each of

the traces and evaluated the mapping accuracy by verifying the selected routes

against the ground truth routes that the users traveled. To compare the mapping

performance for different landmark pairs, we show the mapping accuracy for six

different landmark pairs in Figure 4.11.
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(a) Trace Mapping (10min) (b) Trace Mapping (15min) (c) Trace Mapping (30min)

(d) RSS Distribution Re-
construction For Monitor 1
(10min)

(e) RSS Distribution Re-
construction For Monitor 1
(15min)

(f) RSS Distribution Re-
construction For Monitor 1
(30min)

Figure 4.10: Trace Mapping and Fingerprint Database Bootstrapping

As shown in Figure 4.11, landmark pairs (1,0), (3,6), and (6,4) have the

highest mapping accuracies for RSS traces without speed variation. Traces con-

necting these three landmark pairs are mapped to correct walking paths on the

floor with more than 97% accuracy. The result indicates that if landmarks in

each of these three pairs are detected consecutively, the route inference is able to

infer the correct route with high accuracy. For these pairs, as the two landmarks

are relatively close, in most cases the users traveled the shortest routes connect-

ing the two landmarks. Otherwise, if the time taken between two landmarks is

too long, there would have been a probability that the trace would have been

filtered out in the temporal filtering process. Since the signal evolution patterns

of all WiFi monitors for the short direct route appear unique compared with

other longer routes, the accuracy remains high. For landmark pairs that are far-

ther apart, e.g., (3,7) and (4,1), the mapping accuracies is relatively lower, with

both about 70%. Overall, the route selection algorithm is able to efficiently map

traces to the correct route if there is no speed variation in the traces. Figure

4.12 shows the CDF of the mapping accuracies of all landmark pairs, the aver-

age mapping accuracy for all different landmark pairs is 85.7% for the collected

traces.

Figure 4.10 illustrates the evolution of indoor fingerprint coverage as different

amounts of traces are collected. To demonstrate the evolution process of passive

fingerprint mapping, we only show the trace mapping for the first 30 minutes
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Figure 4.11: Trace Mapping Performance For Traces Without Walking Speed
Variation
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Figure 4.12: CDF of Mapping Accuracy For All Landmark Pairs

of collected RSS traces here. As shown in Figure 4.10(a), for only 10 minutes

of data collected from smartphones, about half of the floor is covered by the

mapped passive fingerprints. As the opportunistic RSS trace mapping goes on,

at 30 minutes, almost every location on the floor is covered by at least one passive

fingerprint as shown in Figure 4.10(c).

Since the passive fingerprints characterize the RSS property of each physical

location on the floor, the RSS distributions can be directly visualized after the

fingerprints are mapped. Figure 4.10(d), (e), and (f) show the RSS distribution

evolution of WiFi monitor 1 at time 10 minutes, 15 minutes and 30 minutes. The

darker color represents higher RSS values. We can see that with more trace map-

pings being performed, the RSS distribution of the whole floor becomes more and

more complete from 10 to 30 minutes. In Figure 4.10(f), the RSS distribution

of WiFi monitor 1 is almost completed for the whole floor at 30 minutes. The

reconstructed RSS distribution from the trace mappings shows that the highest

RSS values are observed when the smartphones are near Monitor 1, and that

the RSS measurements become smaller when the smartphones are farther away,

which is consistent with the theoretical wireless signal propagations. Unlike the
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Figure 4.13: Impact of Sparsity of Detection

model-based RSS estimation, the reconstructed RSS distribution unveils the real

RSS property at each mapped location, which helps to provide the fine-grained

localization performance. The RSS distributions for all WiFi monitors are rep-

resented by the mapped passive fingerprints that are stored in the constructed

database, which are then used to achieve real-time localization in the localization

phase.

4.3.2.3 Impact of Sparsity of Transmission Detections

One concern about trace mapping is the density of transmissions that can be

detected from WiFi monitors when smartphone users are moving indoors. Intu-

itively, denser detections provide more information to the signal evolution pat-

terns between two landmarks, and will help to infer the correct route in-between.

However, if there are very few detections, the system might not be able to infer

the correct walking routes. To understand the impact of the sparsity of trans-

mission detections on the trace mapping, we analyze the mapping accuracy with

different level of transmission sparsity.

On average the transmission detection rate for the original RSS traces is

about one detection per second. We vary the detection rate by randomly drop-

ping detections from the traces with different probabilities. As shown in Figure

4.13, a 0.5 detection rate is approximated by dropping each detection from the

trace with 50% probability, resulting an average detection rate of about 0.5 de-

tections per second. We can see that the transmission detection rate does affect

the mapping performance, and the mapping performance increases as the de-

tection rate increases. However, even with the 0.5 detection rate, the mapping
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Figure 4.14: Trace Mapping For Traces with Speed Variations
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Figure 4.15: Performance of Variation Filtering

accuracy remains as high as 80%. In the worst case with a 0.1 detection rate,

the mapping accuracy is around 66%. The results show that the mapping per-

formance remains high even when the detection rate significantly is reduced, and

that RSS trace mapping can therefore be performed in dynamic environments

when smartphone detections are sparse.

4.3.2.4 Impact of Variations in the Walking Speed

To understand the impact of variations in the walking speed, we use the traces

annotated with speed variations of users to perform trace mapping. As the

walking route inference assumes a stable walking speed, the speed variation

degrades the final mapping performance. As shown in Figure 4.14, the mapping

accuracy decreases for all landmark pairs, compared with the traces without

speed variation shown in Figure 4.11. The average mapping accuracy drops

to 53.1% for all landmark pairs. The results indicate that the speed variation

filtering is necessary to avoid introducing large false mappings.

SpiLoc filters traces with speed variation by looking at the RSS divergence

in the traces. As shown in Figure 4.14, variation filtering using RSS divergence
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Figure 4.16: Localization Performance

improves the mapping performances for all landmark pairs. Figure 4.15 shows

the mapping performance in the presence of different fraction of variation traces.

As the fraction of traces with variation increases, the mapping accuracy drops

from 85% to 53.1% without variation filtering. The variation filtering successfully

improves the mapping accuracy by about 10% for all cases. If 20% of the collected

traces have speed variation, the final mapping accuracy is still close to 80% after

filtering. Even if the variation fraction raises to 50%, the final mapping accuracy

remains as high as 70% after variation filtering. The results show that variation

filtering in SpiLoc is important to keep the trace mapping robust in practice.

4.3.2.5 Localization Performance

We evaluate the final localization using the constructed passive fingerprint

database. For each ground truth location entered by the user, we extract the RSS

readings with the same timestamp from all WiFi monitor traces as input and

calculate the location using Equation (4.5). The error is obtained by comparing

the Euclidean distances between the ground truth locations and the estimated

locations.

Figure 4.16 shows the CDF of the localization error. Without noise filtering

for the bootstrapped passive fingerprint database, localization in SpiLoc achieves

a 2.94m localization error on average. More than 70% of the errors are within

3 meters. Compared with the model-based passive localization scheme used in

[56], SpiLoc leverages the bootstrapped fingerprint database and achieves a much

more fine-grained localization result. As false trace mappings introduce noise to

the fingerprint database, the noise filtering further improves the localization ac-
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Figure 4.17: Localization Error with Different Input Data

System Category Localization Error Effort
RADAR [13] Active 2∼5m Time consuming site survey
Horus [89] Active 1∼2m Time consuming site survey

Zee [63] Active 1∼ 3m Require accurate floor plan
PiLoc Active 1∼ 3m Dynamically bootstrapped

WiFi Tracking [56] Passive ∼70m Coarse-grained passive localization
SpiLoc Passive 2∼3m Dynamically bootstrapped

Table 4.2: Comparison with Different Localization Schemes

curacy. With noise filtering using Mahalanobis distance based outlier detection,

the final localization error is reduced to around 2.7m. As shown in Figure 4.16,

large errors introduced by the fingerprint noise are reduced after noise filtering.

As SpiLoc exploits a crowdsourcing scheme to opportunistically bootstrap

the localization database, the number of input RSS traces also has an impact

on the final localization accuracy. Figure 4.17 shows the localization error with

different input trace sizes. With only 10 minutes of RSS traces from all WiFi

monitors, the system achieves a 3.5m localization error. After 30 minutes of

signal traces are collected, the localization error is gradually reduced to around

2.8 meters after noise filtering. Note that the training speed would have become

greater as more smartphones contribute data in the bootstrapping phrase. As

more RSS traces are collected to update the fingerprint database, the system will

gradually adapt to the environmental changes, and provide stable localization

performance over time. The final localization error for all testing data settles

2.76 meters.

Table 4.2 summarizes the differences between SpiLoc and other localization

schemes. Unlike active localization schemes, SpiLoc as proposed in this work

requires no active cooperation of the smartphones to infer their locations. Al-

though SpiLoc exploits the opportunistic scheme to automatically bootstraps it-
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self for passive localization, it achieves performance comparable to that of active

localization schemes, which either require time-consuming site surveys or heavily

rely on the cooperation of smartphones. The passive tracking for smartphones

proposed in [56] aims at achieving coarse-grained tracking for smartphone. Spi-

Loc, on the other hand, achieves a fine-grained localization performance while

requiring no additional costs.

4.4 Discussion

4.4.1 Dedicated Site Surveys

As with the site-survey process in active localization, it is possible to perform

dedicated site surveys to construct the passive fingerprint database manually.

However, such dedicated site surveys are labor-intensive and time-consuming,

which makes the system hard to deploy on a large scale. In addition, the site-

survey approach builds static fingerprint databases, which are vulnerable to en-

vironmental changes. In SpiLoc, on the other hand, we exploit the opportunis-

tic trace mapping approach to automatically build and update the fingerprint

database, which significantly reduces the start-up costs and maintenance efforts,

making the system scalable and adaptive.

4.4.2 Prompting Extra Transmissions

As the performance of trace mapping is affected by the sparsity of transmission

detections, the density of transmission detections has an assignable impact on

the quality of the constructed fingerprint database and the final localization

accuracy. Although the route inference approach proposed in SpiLoc works

with sparse transmission detections, maximizing the number of detections is

important to further improve the performance of the system.

Several techniques have been proposed in the literature. For example, one

useful technique proposed in [56] is to let the WiFi monitors emulate popular

SSIDs as the smartphones will automatically connect to these popular WiFi

hotspots. For example, when popular SSIDs such as “attwif”or “tmobile” are

advertised in the U.S., phones will likely send association requests [56]. Other

useful techniques such as sending RTS to trigger CTS responses [56] will also
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increase the detection chances.

All these techniques can be seamlessly integrated into SpiLoc as an addi-

tional component to prompt more transmissions from smartphones to increase

the mapping performance and final localization accuracy.

4.4.3 Open Area

The RSS trace mapping in SpiLoc works in the office environments in which

walking routes connecting landmarks follow indoor walking paths. In indoor

open areas, however, users have no walking paths to follow, and it becomes less

feasible to infer the routes users travel purely based on the RSS measurements.

This is one limitation of SpiLoc. However, if the WiFi monitors are dense enough

and we can determine the straight walking routes connecting landmarks directly,

we can map the whole floor even in open spaces. One possible way to detect

straight walking routes is using strict temporal filters to filter out non-direct

routes. We leave this open problem as a possible subject of future research.

4.4.4 Privacy Risks

As the passive localization scheme requires no active participation of smart-

phones, smartphone locations may be unintentionally revealed to third parties.

Since the applications of passive tracking, such as passive counting or customer

flow analysis, usually do not require specific MAC addresses, one simple but effec-

tive approach to avoid privacy risks is to anonymize or replace the smartphones’

MAC addresses at the server side. Although there might be more sophisticated

approaches to address the privacy problem, these are beyond the scope of this

work.

4.5 Summary

In this chapter, we propose SpiLoc, a passive localization system that auto-

matically detects landmarks that appear in the RSS traces captured by WiFi

monitors, and infers the most likely walking routes that connect these land-

marks. By mapping the traces collected between landmarks, SpiLoc bootstraps

the passive fingerprint database for localization. As the fingerprints alleviate
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the multi-path problem and characterize the RSS property of each indoor lo-

cation, SpiLoc can achieve fine-grained localization with a mean error of 2.76

meters. Since SpiLoc requires no dedicated calibration and adaptively updates

itself every time an RSS trace mapping is performed, it can be easily deployed

to dynamic environments for fine-grained passive localization.
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Chapter 5

A2Loc: Accuracy Awareness of

Wireless Indoor Localization

5.1 Introduction

State-of-the-art research on fingerprint-based indoor localization focuses on ei-

ther improving the accuracy of the location estimation [88, 49, 75], or reducing

the time and effort taken to construct the fingerprint database [86, 76, 74]. Par-

ticipatory sensing based indoor localization systems such as PiLoc and SpiLoc

automatically generate radio maps for localization. However, as there is no effi-

cient way to assess the quality of the output radio maps, it is hard to get direct

feedback about the performance of the system. An efficient approach to estimate

the localization accuracy based on radio maps will therefore be very useful in un-

derstanding the performance of any fingerprint-based indoor localization system.

In view of this, the major objectives of our work described in this section are (1)

designing an efficient approach to get direct fine-grained localization accuracy

estimation using only the constructed radiomaps as input; (2) developing an ap-

proach to extract useful information, such as localization landmarks that exist

in the system; (3) providing guidelines for localization algorithm selection and

parameter tuning, such as the subset selection of WiFi access points in practice.

The main idea of this work is as follows: given a set of radio signal finger-

prints collected, a Gaussian process (GP) [66] approach is used to model the

signal distribution of access points that covers the area of interest. Using the

signal distribution model derived, random sampling is performed to simulate
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the collection of fingerprint values collected at each location of interest during

localization. Given a particular localization algorithm, the mapped location in

the system can be determined. The average localization error of each location in

the area of interest can then be estimated even though the original set of data

collected as input may not have been sufficient for localization purposes on its

own.

By decoupling radio map construction and localization, and with the ability

to estimate the accuracy of the localization system over the area of interest,

our system can achieve the following: (1) It is now possible to systematically

compare different localization algorithms under different environmental settings.

(2) Landmarks, or locations with high localization confidence, can be easily

identified and used to further improve the accuracy. (3) The set of APs that

can provide better accuracy for the entire area of interest can be identified, as

opposed to using all APs available or a set of APs that may be good locally but

not for the entire area.

Though several systems have been proposed in the literature that deal with

wireless signal modeling and fingerprint-based localization accuracy analysis

[26, 84, 91, 38, 71, 15, 30], all of them focus on improving the performance

of localization algorithms by modeling signal properties [26, 84, 91, 71, 30], de-

signing optimal AP placements [15], or modeling localization uncertainties [38].

To the best of our knowledge, this work is the first systematic study to provides

a direct quality assessment of radio maps and give fine-grained performance es-

timations to fingerprint-based localization systems. We believe that it has the

potential to be integrated into future fingerprint-based localization systems to

provide direct feedback about the accuracy levels of the system in use, and useful

guidelines to achieve better accuracy.

To validate our approach, we evaluate the system in two different indoor

environments covering more than 300 m2. In both environments, point-level,

region-level and floor-level error estimation are evaluated with three different

localization metrics and more than 20,000 testing data points. For point level

accuracy, the evaluation results show that the difference between GP estima-

tion and ground truth is small, demonstrating that accuracy awareness provides

an accurate and practical method of assessing fingerprint-based localization sys-

78



Chapter 5. A2Loc: Accuracy Awareness of Wireless Indoor Localization

tems. In addition, we are able to successfully identify five landmarks with high

localization confidence in the area localized, and find the minimum AP subsets

that should have been selected to achieve better accuracy.

5.2 Accuracy Awareness

5.2.1 Preliminaries

The RSS of the wireless access point at each location has been characterized in

the literature as a Gaussian distribution [28, 88, 33, 26]. On the other hand,

to model the signal strength propagation continuously over the whole field,

Gaussian process is used to capture the spatial correlation that exists in signal

strength distribution [27, 26, 84]. A Gaussian Process (GP) [66] is a Bayesian

non-parametric model that performs non-linear regression on the training data

D = {(xi, yi)|i = 1, ..., n} to estimate the distribution over functions f that

generate the data. That is,

yi = f(xi) + ε (5.1)

where xi ∈ Rd is a d dimensional input value, yi is the observation value, and ε

is a zero-mean noise term with known covariance σ2n. Gaussian processes allow

spatial correlation between measurements and are fully specified by GP priors.

Therefore, function f ∼ GP(µ(x), k(x,x′)) is a GP with mean function µ(x) and

covariance function, or kernel, k(x,x′), where:

µ(x) = E[f(x)] (5.2)

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] (5.3)

The choices of the kernel function characterize the property of GPs, and the

most widely used kernel is the squared exponential function [26]:

k(x,x′) = σ2fexp(−
1

2l2
|x− x′|2) (5.4)

where σ2f is the variance of observation value and l is the length scale that decides

how strongly the correlation between different points drops off [26]. Assuming

additive independent identically distributed Gaussian noise ε and noise covari-
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ance σ2n [66], the covariance between observations becomes:

cov(f(x), f(x′)) = k(x,x′) + σ2nδx,x′ (5.5)

Here δx,x′ = 1 if x and x′ are the same point, and 0 otherwise. After the prior

is specified, the Gaussian process posterior is obtained from the training data

D. Therefore with GP priors and training data, prediction of the unobserved

function value at any arbitrary location x∗ can be made [84]:

µx∗|D = µx∗ + Σx∗DΣ−1DD(yD − µD) (5.6)

Here µx∗ , µD are the mean values of the data points and are specified by the

GP prior µ(x). Σx∗D is the 1 × n vector of covariance between x∗ and the n

training data D, and Σ−1DD is the n × n covariance matrix of the training data.

Both Σx∗D and Σ−1DD are calculated using Equation (5.5). With this formulation,

the observation value at any arbitrary location in the field can be predicted

conditionally on the training data.

To model the signal strength distribution of the access points covering a

certain area, input x = (xh, xv) is a two dimensional vector specifying the hor-

izontal and vertical coordinates of the location. The observation value yi is the

signal strength received at the given location. Note that the input data D here

can be obtained from the fingerprint database, or radio map, which is generally

required and constructed by any fingerprint-based localization systems in the

offline calibration phase in order to perform localization.

The radio map contains a sequence of records (x, fp), which associates wire-

less fingerprints fp to each location x. Each fingerprint fp = (BSSIDi, ri|i =

1, ..., k) consists of signal strength readings r of all k WiFi BSSIDs (MAC ad-

dresses of access points) observable. Hence for each BSSID in the system, the

training data D = {(xi, ri)|i = 1, ..., n} is available. With the availability of

the training data, Gaussian processes can be applied to characterize the signal

strength distribution of the whole area.

The squared exponential kernel in Equation (5.4) assumes the same length

scale in all input dimensions. However, in practice the effect of horizontal or

vertical dimensions to signal strength can be different due to the physical set-
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Figure 5.1: Mean Prediction (µx∗|D)

Figure 5.2: Variance Prediction (σ2x∗|D)

tings. For example, there could be a wall in the horizontal dimension, resulting

in the fast decay of signal strength in only this dimension. To model this effect,

we use separate length scales lh and lv in each dimension on modeling the signal

strength:

k(x,x′) = σ2fexp[−
1

2
(
(xh − x′h)2

l2h
+

(xv − x′v)2

l2v
)] (5.7)

The mean function and covariance function characterize the signal strength

model. To handle the mean shift problem, we set mean function µ(x) = −100,

so that those locations that are not able to receive any signal strength from

certain access points will converge to mean -100dbm in its model. The covariance

function contains four parameters θ =< σn, σf , lh, lv >.

One advantage of the GP is that it is a non-parametric model, and therefore

no parameters need to be specified beforehand, all parameters are learned from

the training data by maximizing the log likelihood using the conjugate gradient
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Figure 5.3: Gaussian Process Sampling

Figure 5.4: Ground Truth Phone Sampling

decent algorithm [27]. Figure 5.1 shows the GP estimation of the mean signal

strength value for one access point covering a 20× 12m2 indoor area. Note that

even though the GP also provides uncertainty measurement for Equation (5.6)

(e.g., the variance of the predicted µx∗|D [27]), it only measures the “spatial

uncertainty” of the predicted mean. This uncertainty is different from the “tem-

poral uncertainty”, which is the variance of signal strength at each location at

various times. The temporal uncertainty provides the likelihood measurement

for the signal strength. To model temporal uncertainty, we treat variance as the

second variable and train a second GP for the same access point, using mean

function µ(x) = 0 and the same covariance function (5.7) from input data D.

Figure 5.2 shows the RSS variance estimate σ2x∗|D at each location x∗ for the

access point. With µx∗|D and σ2x∗|D, we are now able to obtain the likelihood of

each signal strength value at an arbitrary location for each access point.

5.2.2 Accuracy Awareness

In this section, we study the accuracy awareness of fingerprint-based localization

systems and applications enabled in three different granularities based on the GP

signal strength model.
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5.2.2.1 Point-level Accuracy

Point-level accuracy is commonly used in most localization systems to measure

performance. Such accuracy depends on the ability of fingerprints to uniquely

identify a particular location. Hence, the fingerprints at different locations should

display sufficient location diversity. In our work, signal strength models of access

points derived from the training data D (radio map) provide the mean signal

strength value µx∗|D and variance σ2x∗|D of each access point at each location x∗.

We can then use this information to get the likelihood estimate for fingerprints

and simulate fingerprint sampling at each location during localization to get the

error estimate.

(1) Error Estimation

Errors in fingerprint-based localization come from the fact that sampled sig-

nal strengths of access points fluctuate and can be different from the fingerprints

in the radio map. By chance, they will be mapped to different locations. To

characterize the average localization error E(x) at one location x = (xh, xv):

Algorithm 3: Fingerprint Sampling Algorithm

1 Input: Location x, mean µx|D, variance σ2
x|D, k

2 Output: Sampled fingerprint fp

3 for i = 1:k do
4 If ri hasn’t been assigned, with probability pi set ri = rand(µx|D, σ2

x|D),
otherwise set ri = -100;

5 For all j > i, set rj = ri if Sij < τ ;

6 end

E(x) =
∑
x′

pL(x′|x)· d(x,x′) (5.8)

where x′ is the reported location by the localization algorithm L, and pL(x′|x)

is the probability that the localization algorithm L reports x′ when users are

actually in x, and d(x,x′) is the Euclidean distance between two locations on

the 2D plane in meters.

For evaluation purposes, the area of interest is discretized into a number of

locations. By taking the average of all possible locations, the expected error

of each location can be obtained. pL(x′|x) is determined by the localization
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algorithm L and property of fingerprints fp collected at these locations:

pL(x′|x) =
∑
fp

p(fp|x)· δfp (5.9)

Here p(fp|x) is the possibility that fingerprint fp can be sampled at location x.

δfp = 1 if L(fp) = x′, that is, the localization algorithm maps fp to location x′

and δfp = 0 otherwise. The mapping of L is deterministic once the fingerprint is

given and the localization algorithm is chosen. The localization error E(x) hence

depends on the fingerprint characteristics and the algorithms used. To get the

error estimate from (5.8) and (5.9), fingerprints need to be traversed. Although

we already have the likelihood estimate for each fingerprint using Gaussian pro-

cesses, consider a floor with k access points, with each access point having q

different signal strength readings, we have qk different fingerprints.

(2) Fingerprint Sampling

It is not feasible to traverse the fingerprint space in practice when k can easily

exceeds 100 and q = 71 when signal strength ranges from [-100,-30]. Instead, we

use Monte Carlo sampling approach [34] to simulate fingerprint based localization

and get the error estimate for each location.

To model the real fingerprint readings, each access point is generally consid-

ered to be independent [33, 27, 26]. This assumption is made based on the fact

that access points are physically separate. However, modern access points allow

multiple BSSID beacon settings, which make the access points able to broadcast

multiple BSSID addresses [3]. Therefore, different signal strength readings of

different BSSIDs can belong to the same access point, resulting in the readings

of these BSSIDs to be mostly identical. These duplicated BSSIDs are recorded

by the sampling devices such as smartphones in the radio map during the cal-

ibration phase and are used to perform localization during the online phase as

long as they can be received at the location. It is therefore not correct to assume

independence between these BSSIDs. We use the following metric to detect these

duplicated BSSIDs:

Sij =

m∑
i=1
|ri − rj |

m· |rmin|
(5.10)
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where m is the total number of fingerprints collected in D, and ri and rj are the

signal strength of two BSSIDs, and are set to −100 if the BSSIDs are not detected

in this fingerprint. rmin = −100 is the minimum signal strength observable. Sij

should be small if these two BSSIDs are broadcast by the same access point. In

the sampling, BSSIDs with Sij less than the threshold τ are set to have the same

signal strength. For this work τ is set to 0.005. At each location, the probability

pi that one BSSID can be received can also be learned from the training data D.

As shown in Algorithm 3, for a fingerprint fp containing k BSSIDs, the signal

strength r of each BSSID is sampled randomly from the mean µx∗|D and variance

σ2x∗|D learned from the Gaussian processes with probability pi. Otherwise it is

set to -100, indicating that the BSSID is not observed in this fingerprint.

Figure 5.3 shows the fingerprints sampled by the sampling algorithm for 304

BSSIDs at one floor in one randomly selected location. Figure 5.4 shows the

ground truth fingerprints sampled by smartphones at the same location. We

can see that the GP-based sampling algorithm follows actual fingerprint samples

fairly well and provides a “smoother” distribution. With the sampling algorithm,

we are now able to simulate fingerprinting at arbitrary locations on this floor to

get the error estimate.

(3) Sample Size Determination

Each fingerprint fp sampled by Algorithm 3 provides one error estimate e(x)

for the location x:

e(x) = d(x,L(fp)) (5.11)

To estimate the average error E(x) with random sampling, we need to decide

the minimum sample size ne to achieve confidence interval α. From statistical

theories [24]:
e(x)− E(x)

S/
√
ne

∼ t(ne − 1) (5.12)

where e(x) is the mean of all ne estimates of e(x), S is the standard derivation of

the ne samples, and t(ne−1) is the t-distribution with (ne−1) degrees of freedom

[24]. The confidence interval [− S√
ne
· tα/2(ne − 1), S√

ne
· tα/2(ne − 1)] ensures the

error estimation with α confidence. We set α = 99% here.
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(a) µx∗|D of AP1 (b) µx∗|D of AP2 (c) µx∗|D of AP3

(d) Region error with AP1 (e) Region error with AP1 and
AP2

(f) Region error with three
APs

Figure 5.5: Region Error Evolution

To make the average error estimate less than ε:

2
S
√
ne
· tα/2(ne − 1) < ε (5.13)

with this, the minimal sample size ne can be calculated. ε is the maximum

estimation error and is set to 0.1m. Algorithm 4 is the final algorithm for the

average localization error at each location x. n0 is the initial sample size and is

set to 100. After that the sample size keeps increasing until it meets the con-

straint set by Equation (5.13). The average error E(x) is then obtained from

the sampling algorithm.

Algorithm 4: Error Estimation Algorithm

1 Input: Location x, localization algorithm L
2 Output: Average localization error E(x)

3 while Size of e(x) list < n0 or Equation (5.13) not met do
4 Sample another fp using Algorithm 3;
5 Calculate e(x) using (5.11);
6 Add e(x) to the sampled error list;

7 end
8 Return the mean of all sampled e(x) as E(x);

(4) Landmark Detection

While the error estimation algorithm provides a new way to analyze the er-

ror characteristics of all locations, it also provides opportunities to extract other

useful information to enhance the performance of conventional fingerprint-based

localization systems. The concept of landmark is widely used in localization

systems. However, how to identify landmarks automatically is less discussed. A
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landmark is a place in which, once a user is localized to it, the system should have

high confidence that the user is indeed there. Landmarks are widely exploited in

various localization systems to improve their performance. For example, land-

marks are used to reset the dead reckoning error [76], or simply to increase the

localization accuracy [20]. With the ability to estimate the point-level localiza-

tion error, we are also able to detect landmarks that are present in the system.

At each given location x, the confidence that the user is actually in x when

the mapped location from the localization algorithm L is x′ is pL(x|x′). pL(x|x′)

can be obtained using Bayes’ theorem:

pL(x|x′) =
pL(x)· pL(x′|x)

pL(x′)
(5.14)

Here pL(x) is the probability that the user is in location x of the indoor environ-

ment. We assume all locations are equally likely, namely that, the probability of

the user being in each location is the same. Then pL(x) = 1/nl, where nl is the

total number of discrete locations on the radio map. For example, if we have 100

candidate locations on the radio map, pL(x) = 0.01 for each location x. pL(x′|x)

is the probability that the reported location by the localization algorithm is x′

when the user is actually in x. After running the point-level error-estimation

algorithm, we are able to obtain the number of samples nx′ that fall into location

x′ out of the total number of samples ne in location x. Also, pL(x′|x) = nx′/ne.

pL(x′) is the probability that the mapped location is x′ when fingerprint-based

localization is performed on this indoor floor. Similarly, pL(x′) can also be easily

calculated from the result of the error-estimation algorithm, in the same way as

pL(x′|x).

In this way, the confidence pL(x|x′) is obtained for all the possibilities of

location x. We are especially interested in finding the confidence when x and x′

are the same location. If the confidence is high enough, the location becomes a

landmark, and can be further exploited by localization systems. We provide our

evaluation of landmark detection in Section 5.3.

5.2.2.2 Region-level Accuracy

While the point-level accuracy provides the error characteristics of each location

in an indoor environment, viewing it at a coarse granularity gives a different
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perspective of the system behavior. In this section, we analyze the error charac-

teristics at the region-level.

A region here consists of those nearby locations with similar localization er-

rors. The region-level error summarizes the region error distribution and can

help to identify blind spots for the localization system. By identifying these re-

gions, we have opportunities to improve these regions accordingly. For example,

one possible way to improve the poor region performance in fingerprint-based

indoor localization system is to place another access point in this region. Placing

additional access points will increase the “uniqueness” of the fingerprints in this

region and hence reduce the localization error for the whole region. Figure 5.5

illustrates the idea and shows the region error evolution when more access points

are added.

For this figure, an indoor 20× 12m2 indoor environment is measured. Three

access points located at three different indoor locations are added one by one

to the large error region. Figure 5.5(a), Figure 5.5(b), and Figure 5.5(c) show

the mean RSS value distribution of these three access points, which reflect their

relative locations on this floor. For example, AP1 is located at the bottom and

AP2 at the top left corner. Errors are obtained from Algorithm 4.

After AP1 is added to the system, regions with errors of less than four meters

and greater than four meters are identified, and are shown in Figure 5.5(d). To

improve the region with larger errors, we place another AP2 into the system

and the result is shown in Figure 5.5(e). We can see that parts of the regions

with larger errors are successfully converted to regions with errors of less than

four meters and region with errors greater than 8 meters are eliminated with

only two access points. Adding AP3 to the poor regions further improves the

performance, and converts some of those poorer regions into regions with smaller

errors.

With error-estimation algorithm and region-level analysis, the error distri-

bution of the indoor floor is visualized and the impact of each access point on

the whole system also becomes easily observable. This capability is useful in

identifying poor performance regions, and deciding where to place new access

points, or deciding which APs should be included in the fingerprint database.
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5.2.2.3 Floor-level Accuracy

The overall performance of a localization system depends on many factors, such

as the localization algorithm L used, and the deployment of access points. The

average error of the whole floor Ef is an important metric that is widely used

in the literature to characterize the localization performance. Here,

Ef =

nl∑
i=1

E(xi)/nl (5.15)

is the average point-level error of all nl locations on the same floor. We focus on

the floor-level accuracy and study the factors that affect the overall accuracy in

this section.

(1) Localization Algorithm Selection

As discussed in Section 5.2.2.1, a fingerprint-based localization algorithm L

maps a fingerprint fp to a location x′. Many localization algorithms have been

proposed in the past decades [12, 88, 52], these algorithms have different reported

accuracies and might be suitable for various environmental settings. However,

there is no efficient way to compare them and choose which algorithm to use in a

given environment to get the best accuracy. For example, simple nearest neigh-

bor mapping algorithm [12] (NN1) is widely used due to its simplicity. However,

in certain environments the top-3 nearest neighbor mapping (NN3) or top-5

nearest neighbor mapping (NN5) might give better accuracy. The accuracy of

mapping depends on both the fingerprint characteristics and the mapping algo-

rithm. While the GP-based sampling and estimation algorithm discussed in the

previous section provides an error estimate, the error is also largely dependent

on the localization algorithm L. The different floor-level accuracies Ef obtained

by varying L provide a direct comparison of localization algorithms. This capa-

bility provides guidance for choosing the most suitable localization algorithms.

We provide our evaluation of algorithm selection in Section 5.3.

(2) Subset Selection

The advantage of wireless fingerprint-based localization is that it leverages

existing wireless infrastructures. With regard to the received signal strength of
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all access points, a natural question to ask is whether it is optimal to use all

RSS values collected for localization, or to use only a selected subset of them.

What is the best possible accuracy we can achieve with these already deployed

access points? Also, in certain cases, users might want to reduce the size of the

fingerprints to reduce networking costs or storage costs by including only a subset

of BSSIDs into the fingerprints. What is the minimum number of BSSIDs we

can use to achieve a certain accuracy? To the best of our knowledge, no existing

works in the literature provide answers to these questions. In this section, we

therefore discuss the BSSID subset selection problem to address all the above

questions.

These questions can be answered if the following optimization problem can

be solved: 
minimize Ef

subject to ||SB|| ≤ k
(5.16)

where SB is the subset of BSSIDs selected from all BSSIDs to be used in the

localization. k is the number constraint, which is usually the total number of

BSSIDs we have in the indoor environment. The subset that minimizes the

floor-level error Ef is the subset we should use in the localization, and the

corresponding error is the minimum error we can achieve with all the deployed

access points in the environment. We can also find out the minimum number

of BSSIDs that can achieve a certain accuracy by increasing the value of k from

1. If the minimum error meets the requirements, it represents the minimum

number of BSSIDs we need to use to achieve the required accuracy.

Algorithm 5: Subset Selection Algorithm

1 Input: Total BSSID set Sall, number constrain k
2 Output: Selected subset SB, Minimum floor-level error Emin

3 Initialize St to be an empty set.
4 while ||St|| < k do
5 Add another not duplicated BSSID with most uniqueness to St;
6 Calculate Ef using current subset St;
7 if Ef < Emin then
8 Emin = Ef ;
9 SB = St;

10 end

11 end

Once the subset SB is selected, the corresponding error Ef can be obtained

90



Chapter 5. A2Loc: Accuracy Awareness of Wireless Indoor Localization

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

E
rr

o
r 

(m
)

BSSID Number

GP Estimation
Ground Truth

(a) Random BSSID Selection

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

E
rr

or
 (

m
)

BSSID Number

GP Estimation
Ground Truth

(b) Heuristic-based BSSID Selection

Figure 5.6: BSSID Selection (240m2 Open Area)
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Figure 5.7: BSSID Selection (72m2 Office Room)

easily with the error-estimation algorithm. For any BSSID subset, we can con-

struct fingerprints fp using Algorithm 3 with only the selected BSSIDs. Point-

level error can be estimated using Algorithm 4 for all locations x. Hence, the

floor-level error Ef is also known. By comparing the floor-level error Ef , we

can get the best BSSID subset with the minimum Ef . However, even though

Ef can be obtained easily for each selected subset, solving the subset selection

problem is NP-hard and it is impossible to enumerate all 2k subsets when k can

easily exceed 100. Instead, we use a heuristic-based method to approximate the

optimal solution.

One heuristic that can be determined by the discussions in Section 5.2.2.2

is that adding access points to the poor performance region will increase the

uniqueness of the fingerprints in the whole area, thereby reducing the overall

error. Therefore, one can identify the poor regions and add access points with

the most uniqueness to these regions. The uniqueness of BSSIDi in these regions

is defined by the range of average signal strengths specified by Equation (5.6).

If the range is larger, more possibilities of fingerprint values are added to these

regions, and hence the fingerprint diversity improves. Here, we set all regions

with errors greater than 1.5 meters as regions to be improved.

Algorithm 5 illustrates the subset selection algorithm. Each time, an unse-

lected BSSID that is not similar to any selected BSSIDs and the most uniqueness
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is added until the number constraint is reached. The minimum error is stored

in Ef and the selected subset in SB. The algorithm provides O(n) complexity

and provides approximated solutions to the subset optimization problem.

5.3 Performance Evaluation of A2Loc

The accuracy awareness based on the Gaussian process provides a direct assess-

ment of different fingerprint-based localization systems. Two key concerns are

how well the error estimation results fit the ground truth and how useful and

the derived guideline information is. We discuss the evaluation results in this

section.

5.3.1 Data

To evaluate the accuracy-awareness algorithms proposed, we collected data over

a two-week period from a big 20× 12m2 indoor open area and a smaller 8× 9m2

office room. Three different phone models (Google Nexus 5, Samsung S3 and

Samsung S4) were used to collect the WiFi radio map and the testing data. Each

indoor environment was divided into 1×1m2 grids and each grid was sampled for

one minute to construct the radio map. The radio map was used as the training

data D to train the GP models for all access points. To collect the ground truth

data, more than 20,000 phone fingerprint readings at random locations were

collected as testing data to evaluate the performance.
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Figure 5.8: CDF of Point-level Error
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5.3.2 Performance

5.3.2.1 Error Estimation

Figure 5.8 shows the CDF distribution of the point-level localization error in

both indoor environments. The GP estimations are obtained with Algorithm 4

using the GP trained from the radio map. The ground truth error is measured

using the testing data. In both cases, the localization algorithm L is the same

nearest neighbor matching (NN1). The CDF graphs in Figure 5.8 show the

error characteristics of the indoor environment predicted by the GP-based error

estimation algorithm and the ground truth. In both environments, the predicted

CDF fit the ground truth error distribution very well, which means the predicted

floor-level errors for both indoor environments are also very close to the ground

truth. The GP-based estimation algorithm provide a smoother result, while

the error distribution of the ground truth is more scattered, due to the noise

in the fingerprints collected from the real phone readings. Figure 5.8 shows

that the GP-based fingerprint sampling algorithm and the error estimation can

successfully fit the error characteristics of the indoor environment and provide a

close estimation of the localization error.

5.3.2.2 Landmark Detection

Landmark detection is a useful application enabled by the accuracy awareness.

Locations with high localization confidence can be set to be landmarks to im-

prove the system performance. Figure 5.9 shows the localization confidence

distribution of all locations in the office room. The confidence is calculated us-

ing Equation 5.14. The threshold used for landmark detection is decided by

different applications. If we set the threshold to be 0.7, five landmarks can be

detected, as shown in Figure 5.9(a) (L1∼L5). Once the localization algorithm

has mapped the fingerprints to these locations, we should have high confidence

that the mapping result is correct. Figure 5.9(b) shows the ground truth com-

parison for these five landmarks. The ground truth confidence is obtained using

the testing data. The confidence of each location is the percentage of correct

mappings when the localization algorithm maps the fingerprints to this location.

The results show that the predicted confidence fit the ground truth well.
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(a) Detected Landmarks
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Figure 5.9: Landmark Detection
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Figure 5.10: Localization Algorithm Selection

5.3.2.3 BSSID Subset Selection

Figure 5.6 and Figure 5.7 show the results of BSSID subset selection in the

two different indoor environments. In total, 304 BSSIDs can be received in

the open area, and 170 BSSIDs can be received in the office room. For the

random selection, each BSSID is added sequentially, based on its address to the

subset and the floor-level error is calculated using the selected subset. For the

heuristic-based subset selection, the duplicated BSSIDs are eliminated, reducing

the subset size by about half. The error rate decreases much faster that the

random selection, which makes it much more efficient than the random selection

algorithm if we want to achieve a floor-level error of less than three meters,

the heuristic-based selection uses only 10 BSSIDs, 80% fewer than the random

selection in the big open area, which requires 50 BSSIDs. In the office room, the

heuristic-based selection needs only three BSSIDs, 67% percent fewer than the

random selection, which needs nine BSSIDs to achieve the required accuracy.

In both environments, the number of errors decreases at a slower rate as

more BSSIDs are used, indicating that the impact of individual BSSIDs on the

accuracy becomes smaller as more BSSIDs are used. In addition, it might not

always be better to use all the BSSIDs, as adding more BSSIDs can sometimes

confuse the system. For example, in the smaller office room using fewer BSSIDs
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can achieve an error of less than 1.7 meters, which is the error when all BSSIDs

are used. In both Figure 5.6 and Figure 5.7, the GP-based error estimation

provides a close estimate of the ground truth localization errors, and the selection

algorithms can efficiently characterize the error behavior to help us understand

the error using different subsets, and to help select the minimum BSSIDs required

to achieve a certain accuracy.

5.3.2.4 Localization Algorithm Selection

The other application of accuracy awareness is the selection of localization al-

gorithms. A localization algorithm determines the mapping from fingerprint to

physical locations, and can significantly affect the final localization error. In the

past, it is hard to compare different localization algorithms or metrics directly.

With accuracy-awareness, the localization error can be easily estimated by vary-

ing different localization algorithms, and therefore the most accurate algorithm

for an environment can thus be chosen accordingly. Figure 5.10 shows the error

comparison of three different localization algorithms in two indoor environments.

Three algorithms (NN1, NN3, NN5) are measured, which take the average of the

top 1, 3 and 5 locations rated by Euclidean distance as the final inferred location

respectively. In both environments, NN3 gives the best accuracy for both the GP

estimation and the ground truth measurement, which suggests that NN3 should

be the best choice for these two environments. Although the error reduction

(∼0.1m) is not significant in this particular example when NN1 is replaced with

NN3, the capability of error estimation provides us with an efficient method of

algorithm selection and localization accuracy improvement.

5.4 Summary

In this work, we propose and evaluate accuracy awareness for fingerprint-based

indoor localization systems. Gaussian processes learned from the radio map are

used to characterize the fingerprints in an entire indoor environment. Based

on the GP models built, fingerprint sampling and error estimation algorithm

are used to estimate the localization errors. Concepts and applications of three

granularities ( point-level, region-level and floor-level) are discussed. The evalu-

ation shows that the accuracy awareness proposed provides a close estimate of
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the error behaviors of the localization systems, and useful applications such as

landmark detection, localization algorithm selection and subset selection are en-

abled. As the accuracy awareness enables direct assessment of fingerprint-based

localization systems and has many useful applications, it has the potential to be

applied as a standard component in the development of future fingerprint-based

localization systems.
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Conclusion and Future Work

As one of the most important types of context information, location connects

the physical world with the cyber world, and there are many useful location-

based applications [14, 68, 21, 73]. With the rise of smartphones, many users

now carry smartphones daily. Locating smartphones and other mobile devices

(e.g., tablets, smart watches, etc.) accurately and cost-effectively has therefore

become more and more important, and has thus become the subject of rapidly

increasing interest from both academics [56, 39, 93, 53] and various industries

[8, 7, 4].

In this thesis, we investigate, design, and validate indoor localization systems

that can provide accurate localization to mobile devices, while minimizing the

start-up and maintenance costs. To address the existing challenges in system

deployment, maintenance, and performance evaluation, we propose a systematic

solution for both active and passive indoor localization, and the use of accuracy

awareness to provide direct quality assessment of these systems. We design,

implement and evaluate PiLoc and SpiLoc, which exploit participatory sensing

and have a self-calibrating capability that results in lower start-up costs and

adaptability to environmental changes. They provide accurate localization in

terms of both active and passive indoor localization. To provide accuracy es-

timation to the radio maps dynamically bootstrapped from crowdsourcing, we

propose A2Loc, which takes the radio maps as input and generates accuracy

estimation to provide feedback to systems such as PiLoc and SpiLoc. Together

with the proposed PiLoc and SpiLoc, A2Loc constitutes a systematic solution

that advances the current state-of-the-art wireless indoor localization.
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In the following sections, we provide a summary of our main research contri-

butions discuss possible future work.

6.1 Research Contributions

6.1.1 PiLoc: Self-calibrating Active Indoor Localization

Unlike the current state-of-the-art systems, PiLoc leverages participatory sensing

to bootstrap the active localization database while requiring no prior knowledge

of an indoor environment. PiLoc adopts the WiFi fingerprint-based localization

scheme, its key novelty being that it merges the crowdsourcing input annotated

with sensor readings and WiFi signal strengths to generate a map of the indoor

environment, and construct the fingerprint database automatically. Unlike in

previous systems, the self-calibrating capability makes PiLoc practical, and much

easier to deploy and maintain without requiring prior knowledge of the indoor

environment and dedicated site-surveys.

The evaluation shows that PiLoc is able to work in various types of indoor

environments and can achieve localization accuracy comparable to that of sys-

tems that require dedicated calibration, with a localization error of 80% over

less than three meters.

6.1.2 SpiLoc: Self-calibrating Passive Indoor Localization

SpiLoc does not require any collaboration from mobile devices. The key nov-

elty of SpiLoc is that it leverages the novel RSS trace mapping technique to

dynamically map the captured RSS traces to indoor pathways. The mapping

automatically bootstraps the passive fingerprint database for localization. To

the best of our knowledge, SpiLoc is the first participatory sensing based passive

localization system that has self-calibrating capability and provides fine-grained

passive localization.

The evaluation result shows that SpiLoc achieves an average localization

error of 2.76m with low start-up and maintenance costs. Since SpiLoc requires

no dedicated calibration and adapts to the environment, it can be easily deployed

in dynamic environments for fine-grained passive localization.
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6.1.3 A2Loc: Accuracy Awareness of Fingerprint-based Wireless

Indoor Localization

A2Loc exploits a GP-based approach that uses as input the radio map collected

and localization algorithm to be evaluated, and outputs the expected accuracy of

the system. In addition, A2Loc provides useful information, such as localization

landmarks that can be used to further improve the localization accuracy. To the

best of our knowledge, A2Loc is the first systematic system to achieve accuracy

awareness for fingerprint-based localization systems. It has the potential to

be integrated into future fingerprint-based localization systems as a standard

component to provide direct feedback about the accuracy level, and provide

guidelines to achieve better accuracy.

6.2 Future Work

The following are some of the possible extensions of our work.

Self-calibrating in Open Areas. PiLoc leverages WiFi spectrum matching

to merge WiFi-annotated walking trajectories and constructs the map of indoor

walking paths. In open areas where people may not walk along distinct walk-

ways, using signal spectrum information alone may fail to differentiate parallel

walking paths that are not separated by sufficiently large distances. This is one

limitation of PiLoc. Similarly, the opportunistic RSS trace mapping in SpiLoc

works in environments where walking routes connecting landmarks follow indoor

walking paths. In open areas, it becomes less feasible to infer the route users

travel to perform RSS trace mapping purely based on the RSS measurements.

Due to such challenges, to the best of our knowledge none of the existing partic-

ipatory sensing based indoor localization systems have the self-calibration capa-

bility in open areas. We leave this as an open problem for future work to explore.

Enriching Self-constructed Floor Plans. By merging crowdsourcing input,

PiLoc constructs indoor floor maps automatically. To improve the localization

accuracy, it is useful to automatically annotate indoor floor maps with rich in-

formation such as stairs, escalators, elevators, doors, etc. Such information can
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be directly extracted from smartphone sensor readings and treated as indoor

landmarks to further correct localization errors and improve the final localiza-

tion accuracy.

Continuous Passive Tracking. SpiLoc leverages WiFi monitors to capture

transmissions from smartphones and determines the locations of the smartphones

based on the self-bootstrapped passive fingerprint database. While smartphones

emit wireless transmissions during WiFi communications, the transmissions can

become sparse when the phones enter the sleep state. We have shown in this

thesis that while the sparsity of transmission detections affects the RSS trace

mapping accuracy in the bootstrapping phase, the RSS trace mapping remains

robust even when the smartphone detections are sparse. The detection spar-

sity does not affect the instant localization as locations are determined every

time the transmissions are detected. However, if the applications require the

continuous tracking of smartphones, the sparsity of detection will result in poor

tracking performance. Several techniques have been proposed in the literature

to prompt additional phone transmissions. For example, one useful technique

proposed in [56] is to let the WiFi monitors emulate popular SSIDs, and other

useful techniques include sending RTS to trigger CTS responses [56]. Prompt-

ing additional transmissions from smartphones will increase both the RSS trace

mapping performance and passive tracking accuracy. We leave this improvement

as a possible follow-up to our work.

Extending to Multiple Fingerprints. Although PiLoc and SpiLoc are de-

signed for active localization and passive localization respectively, both of them

rely on WiFi fingerprinting. However, WiFi fingerprints are not tightly bound to

our systems. Different fingerprints, such as FM radio signals [19] or even ambient

noise [11] can be integrated seamlessly into our systems as additional fingerprints

and used in the localization phase. Similarly, other fingerprints, such as indoor

magnetic information, can be added to the system to form more discriminative

fingerprints that can be used to achieve better localization accuracy.

Novel Location-based Services. The localization systems proposed in
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this dissertation, PiLoc, SpiLoc and A2Loc provide a systematic solution for

accuracy-aware self-calibrating indoor localization. Many novel location-based

services can be built on top of the proposed systems. For example, with pas-

sive localization, it is possible to extract the interaction patterns of the mobile

devices. By looking at the mobility patterns captured by continuous passive lo-

calization, it is possible to analyze the customer flows of some particular public

places. Finally, as an important service, localization privacy can also be inte-

grated as a middleware to anonymize or randomize the MAC addresses of mobile

devices during tracking. All these novel services can be added to the existing

systems proposed in this thesis. We leave them as the subjects of future research.
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