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ABSTRACT

Planning under uncertainty is crucial to the success of many autonomous systems. An
agent interacting in the real-world often has to deal with uncertainty due to unknown
environment, noisy sensor measurements, and imprecise actuation. It also has to con-
tinuously adapt to circumstances as the world unfolds. Partially Observable Markov
Decision Process (POMDP) is an elegant and general framework for modeling plan-
ning under such uncertainties. Unfortunately, solving POMDPs grows computationally
intractable as the size of state, action, and observations space increase. This thesis
examines useful subclasses of POMDPs and algorithms to solve them efficiently.

We look at informative path planning (IPP) problems where an agent seeks a min-
imum cost path to sense the world and gather information. IPP generalizes the well-
known optimal decision tree problem from selecting subset of tests to selecting paths.
We present Recursive Adaptive Identification (RAId), a new polynomial time algorithm
and obtain a polylogarithmic approximation bound for IPP problems without observa-
tion noise.

We also study adaptive stochastic optimization problems, a generalization of IPP
from gathering information to general goals. In adaptive stochastic optimization prob-
lems, an agent minimizes the cost of a sequence of actions to achieve its goal un-
der uncertainty, where its progress towards the goal can be measured by an appropri-
ate function. We propose the marginal likelihood rate bound condition for pointwise
submodular functions as a condition that allows efficient approximation for adaptive
stochastic optimization problems. We develop Recursive Adaptive Coverage (RAC), a
near-optimal polynomial time algorithm that exploits properties of the marginal likeli-
hood rate bound to solve problems that optimize these functions. We further propose
a more general condition, the marginal likelihood bound that contains all finite point-
wise submodular monotone functions. Using a modified version of RAC, we obtain
an approximation bound that depends on a problem specific constant for the marginal
likelihood bound condition.

Finally, scaling up POMDPs is hard when the task takes many actions to com-
plete. We examine the special case of POMDPs that can be well approximated using se-
quences of macro-actions that encapsulate several primitive actions. We give sufficient
conditions for macro actions model to retain good theoretical properties of POMDP.
We introduce Macro-Monte Carlo Value Iteration (Macro-MCVI), an algorithm that en-
ables the use of macro actions in POMDP. Macro-MCVI only needs a generative model
for macro actions, making it easy to specify macro actions for effective approximation.
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Chapter 1

Introduction

Planning is at the core of many intelligent systems. Planning comprises of formulation,

evaluation and selection of sequence of actions to achieve a desired goal. Classical

planning in AI assumes that an agent has complete knowledge of the world state and

actions have precise and deterministic effects. However, these assumptions do not hold

in most real world environments. Real world sensor measurements are often limited

and inaccurate. Actions are seen to have imprecise effects due to lack of perfect physics

model for every matter in the environment. In a dynamic and unstructured environment,

an agent does not have complete information about its world. It needs to reason over its

prior knowledge about the world and its sensor measurements to decide its next action.

Furthermore, the agent has to deal with contingencies and needs to improvise as the

world unfolds.

Consider a household robot tasked to clean up after a dinner. It has to clear the

leftovers, pick up dirty utensils on the dining table, place them in the dishwasher and

wipe the table. This seemingly easy but tedious task for human can be very difficult for

a robot. First, the robot does not have complete information about the clutter; the dining

area may not fit into the field of view of its camera; some utensils may be occluded by

rubbish. Second, the robot has imprecise control when it is manipulating the plates

with varying weight of leftover on it. Moreover, the robot may encounter unexpected

obstacles such as human occupants or other household objects while cleaning up.

State and action uncertainty is inherent in the real world. Even a human cannot

have perfect knowledge of his environment. Instead, a human works around the lack of
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complete knowledge or seeks to acquire information that are critical. How can a robot

plan its actions to tackle such a complex task in face of uncertainties?

The household robot example and many problems in AI can be modeled as Partially

observable Markov decision processes (POMDPs). The POMDP is a mathematically

elegant and general framework for modeling planning under uncertainty. Unfortunately,

solving POMDP is computationally intractable. However, there exist subclasses of

POMDP where it is possible to obtain good approximate solutions. This thesis aims

to identify interesting subclasses of POMDPs with properties that allow efficient ap-

proximate solution.

We begin by examining path planning problems where an agent needs to gather

information efficiently. For example, the household cleaning robot needs to plan a

series of maneuvers around the table to locate the dirty utensils on the dining table.

Such information gathering tasks can be formulated as an informative path planning

(IPP) problems. We are interested in computing an adaptive solution to IPP that selects

actions using both prior information and new knowledge that the agent acquires along

a path.

The second part of this thesis looks at adaptive stochastic optimization, a general-

ization of adaptive informative path planning from information gathering to achieving

general goals under uncertainty, where the goals can be characterized by appropriate

functions. For instance, the amount of leftovers and dirty utensils cleared by the robot

can be modeled as a function that has the maximum value when the dining table is

cleared. However, the robot does not know the exact state of the dining table at first and

the function associated with the state. In other words, it is unsure of the locations of

dishes and how to clear the table. The robot has to plan a series of movement to reveal

the leftovers and clear them.

IPP and adaptive stochastic optimization problems have limited model expressive-

ness to trade-off for increased computational efficiency over POMDPs. One of their

model limitations is the lack of ability to model actions with uncertain effects, such as

plate slipping out of the robot hand while trying to grasp it. Another distincton is that

the same action cannot be repeated in IPP and adaptive stochastic optimization. This

is suitable for the household robot figuring out the positions of leftovers on the dining
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IPP

Adaptive Stochastic
Optimization

POMDP

POSMDP

table as there is no benefit in looking from the same angle twice. However, this model

constraint may not be suitable for other planning problems.

Without sacrificing model expressiveness, POMDPs can be made easier if we con-

sider temporally abstracted macro actions. An example of a macro action for a house-

hold robot is “move from table to kitchen”. Such macro actions can replace long se-

quence of actions to achieve some intermediate goal. The final part of this thesis consid-

ers POMDP problems that can be well approximated by a sequence of macro actions.

Adding macro actions to POMDP gives us a Partially observable semi-Markov decision

process (POSMDP).

We show the relationship between the problems we study in this thesis in the fol-

lowing Venn diagram (fig. 4.1).

1.1 Informative Path Planning

One of the hallmarks of an intelligent agent is its ability to gather information necessary

to complete its task. Informative path planning (IPP) seeks a path for the robot to

sense the world and gain information. IPP is useful in a range of information gathering

applications:

• An unmanned aerial vehicle (UAV) searches a disaster region to pinpoint the

location of survivors (A. Singh, Krause, and Kaiser, 2009).

• An autonomous underwater vehicle inspects the submerged part of a ship hull

3



(Hollinger et al., 2013).

IPP is also an important component in robotic applications where a robot needs to

acquire missing information in order to complete its task. For example, the household

cleaning robot has to move its sensors to locate the dirty dishes before it can place them

in the dishwasher. Also, a mobile manipulator needs to move around and sense an object

with laser range finders (Platt Jr et al., 2011) or tactile sensors (Javdani, Klingensmith,

et al., 2013) in order to estimate the object pose for grasping.

In these tasks, the robot has a set of hypotheses on the underlying state of the

world—the location of survivors, the pose of an object, etc.—and must move to dif-

ferent locations in order to sense and eventually identify the true hypothesis. Each

sensing operation provides new information, which enables the robot to act more effec-

tively in the future. To acquire this information, the robot, however, must move around

and incur movement cost, in addition to sensing cost. A key issue in designing efficient

IPP algorithms is the trade-off between information gain and robot movement cost.

There are two general classes of algorithms for IPP, nonadaptive and adaptive. In

nonadaptive planning, we compute a sequence of sensing operations in advance. A

robot executes these operation in order, regardless of the outcomes of earlier operations.

In adaptive planning, we choose, in each step, new sensing operations conditioned on

the outcomes of earlier sensing operations. For example, the household robot may

change its direction of search for dirty dishes after some initial assessment of the scene.

In this thesis, we examine the adaptive planning case.

IPP contains, as a special case, the well-studied optimal decision tree (ODT) prob-

lem (Chakaravarthy et al., 2007), in which we want to build a decision tree that mini-

mizes the expected number of tests required to identify a hypothesis. ODT is basically

IPP with a single location containing all sensing operations. Thus the costs of all sens-

ing operations are the same. Unfortunately, ODT, even with noiseless sensing, is not

only NP-hard, but also NP-hard to approximate within a factor of ⌦(log n), where n is

the total number of hypotheses (Chakaravarthy et al., 2007).

Nevertheless, there are interesting structures in information gathering that can be ex-

ploited. For example, making more observations at various locations in the environment

has “diminishing returns” in the information gained due to “overlaps” in information.
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These structures allow us to construct efficient algorithm with performance guarantees.

1.2 Adaptive Stochastic Optimization

Many planning and learning problems in AI require an agent to adaptively select actions

based on both prior information and newly acquired knowledge as the agent is executing

its plan. While POMDP is sufficiently general to model these problems, some of these

problems can be modeled using a simpler formulation called the adaptive stochastic

optimization.

Suppose the household cleaning robot knows the exact state of the leftovers on the

dining table, then the problem becomes a deterministic optimization problem where the

actions can be picking up leftovers at a position or sweeping through a region on the

table and the objective function is the amount of leftovers cleared. The robot needs to

pick the minimum cost subset of actions to get the table cleared. However, in reality

the robot does not know the exact state of the leftovers at the start due to limted sensors

range. It needs to find out the positions of leftovers while clearing them at the same

time. Such problems with unknown environment state can be better modeled as an

adaptive stochastic optimization.

In adaptive stochastic optimization, we model the hidden aspects of the agent’s

environment as a random variable whose values are scenarios that the agent could en-

counter, such as the positions of the leftovers on the dining table. The objective function

depends on the actions taken and the true scenario of the world. For instance the use-

fulness of a sweeping action by the household robot depeonds on whether there are

leftovers in the region it is sweeping. The agent can gain information about the scenario

as it takes actions and make observations. The aim of adaptive stochastic optimization

is to adaptively choose a minimum cost sequence of actions to achieve its goal for the

scenario the agent encounters.

Adaptive stochastic optimization can be applied to a range of planning and learn-

ing tasks. When we use adaptive stochastic optimization to do information gathering,

the objective function may be a general measure of information such as Shannon’s en-

tropy. Other planning applications include adaptive viral marketing campaign where

we pick influential members in a social network to offer promotional deals so that they

5



spread the marketing message to other members in the social network. In this case, the

objective function is the total number of individuals the marketing message reached.

Prior works on adaptive stochastic optimization are mostly restricted to set opti-

mization problems where an agent’s action is to select a subset of items and the cost of

each items is fixed. We refer to these problems, which include sensor placement, viral

marketing and active learning problems as adaptive stochastic optimization on subsets.

Our work considers adaptive stochastic optimization on subsets as well as a richer for-

mulation where an agent’s actions form a path in a metric space, and the cost of visiting

a location to gather information depends on the current location of the agent. We call

this latter problem adaptive stochastic optimization on paths.

Adaptive stochastic optimization in general can be computationally intractable (Golovin

and Krause, 2011). In Golovin and Krause (2011), a condition called adaptive submod-

ularity was shown to be sufficient for an efficient greedy algorithm to provide a good

approximation for adaptive stochastic optimization problem on subsets However, it is

unclear if adaptive submodularity is sufficient for an efficient approximation algorithm

to exist for the adaptive stochastic optimization problem on paths.

1.3 Partially observable Markov decision processes

IPP enables us to model the information gathering process in an uncertain environment.

In some robotics task such as estimating the object pose for grasping (Javdani, Klingen-

smith, et al., 2013), we can acquire the necessary information and then plan according

to the acquired information. In spite of that, many complex robotic tasks cannot be

modelled as such a two-stage process. Uncertainties can creep into the environment

continuously if the environment is dynamic. The robot’s actions may also change the

environment with uncertain effects. For instance, the robot in the dining table cleaning

example may accidentally knock into other object and thus changing the object’s posi-

tion. Adaptive stochastic optimization is able to model a range of planning objective

through its stochastic objective function but it is unable to model actions with uncertain

effects.

Partially observable Markov decision process (POMDP) provides a principled and

general framework for planning with imperfect state information. In POMDP planning,
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we represent an agent’s possible states probabilistically as a belief and systematically

reason over the space of all beliefs to derive a policy that is robust under uncertainty.

POMDPs have been successfully applied to a wide range of tasks, for example pedes-

trians avoidance in self-driving vehicle where human intentions are uncertain (Bandy-

opadhyay et al., 2013), collision avoidance systems in unmanned aircraft (Bai, Hsu,

Kochenderfer, et al., 2011), assisting person with dementia during handwashing (Hoey

et al., 2007), and spoken dialog systems (Williams and Young, 2007). Both IPP and

adaptive stochastic optimization are special case of POMDP.

Despite POMDP’s expressive power, its real-world applications are limited due to

its intractability. Computing an optimal policy is PSPACE-complete (Papadimitriou,

C.H and Tsitsiklis, J.N., 1987) while classical planning problems are mostly NP-hard.

Optimal solutions are only possible for tiny problems. The focus in POMDP research

has been on developing scalable approximate algorithms that finds good solutions to

real-world problems.

POMDP planning faces two major computational challenges. The first challenge

is the “curse of dimensionality”. POMDP reasons over a belief space with dimension

equal number of states. A complex planning task involves a large number of states re-

sulting in a extremely high dimensional belief space. The second obstacle is the “curse

of history”. In applications such as robot motion planning, an agent often takes many

actions before reaching the goal, resulting in a long planning horizon. The complexity

of the planning task grows quickly with the horizon due the exponential number of se-

quences of actions and observations to consider. Together, they compound the difficulty

of POMDP planning.

On the other hand, planning for the dinner clean up task is easier for humans because

we are able to abstract a series of coordinated eyes and hand movement to pick up a

plate into a single concept of “pick up that plate”. Humans have pre-learned the action

sequence to pick up a plate from young, we just need to initiate this “lower level” action

plan, monitor and troubleshoot if something goes wrong. Thus, humans make “higher

level” plan in terms of stacking up plates, clearing leftover, carry plates to dishwasher,

etc. Clearly, planning on an abstract level gives us a problem with much shorter horizon.

Individual sub-tasks are decomposed in various components with limited interference
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between them. For example, the number of trips a human makes to the rubbish bin to

clear leftover should not affect the task of putting the dishes in the washer after we have

cleared all rubbish; A human should never have to consider all combinations of action

sequences to clear rubbish and dish washing action sequences.

A straightforward approach to deal with “curse of history” is to exploit temporal

abstraction using macro actions to transform the problem to one with shorter horizon.

Macro actions extend the usual primitive actions to operate over multiple time steps. We

can abstract complex action plans into one macro action, similar to humans’ pre-learned

action plan to pick up a plate. Macro actions isolate and hide the primitive actions it

use internally from the planner. Adding macro actions to a POMDP gives a partially

observable semi-Markov decision process (POSMDP).

However, using macro actions may lead to a sub-optimal solution as there may exist

an optimal solution that cannot be composed from macro actions. This is a reasonable

price to pay for improving computational tractability. We view macro actions as com-

posable sub-policies that work well together most of the time, but sub-optimal in some

uncommon and inconsequential situations.

Temporal abstraction is not a novel concept in computer science. However, using

macro actions is not as straightforward for planning under uncertainty, compared to

using them in classical planning. The second part of this thesis aims to bridge the

gap between temporal abstraction and planning under uncertainty. Our focus is on

developing the theory and algorithm to attack the “curse of dimensionality” using macro

actions in POMDPs.

1.4 Contributions

Chapter 3 describes the Recursive Adaptive Identification (RAId) algorithm. RAId is a

new algorithm to solve a noiseless version of IPP problems in polynomial time with a

polylogarithmic bound on the solution quality when the robot travels in a metric space.

Our experiments suggest that RAId is efficient in practice and provides good approxi-

mate solutions for several distinct robot planning tasks.

Chapter 4 proposes two novel conditions for objective functions of adaptive stochas-

tic optimization problems to be efficiently approximable, the marginal likelihood rate
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bound and the marginal likelihood bound. We further describe the Recursive Adaptive

Coverage (RAC) to compute approximate solutions to problems optimizing these func-

tions. RAC together with the marginal likelihood rate bound and the marginal likelihood

bound conditions extends existing results for adaptive stochastic optimization problems

from subsets to paths and expands the class of objective functions for adaptive stochastic

optimization problems that have polynomial time approximation.

We apply RAC to the IPP problems with noisy observations by optimizing a suitable

objective function. This approach is near-optimal for IPP with noisy observations when

the hypothesis can always be identified. Empirically, we show promising results using

this approach on IPP problems with noisy observations.

Chapter 5 examines theoretical properties of POSMDP where we add macro actions

to POMDP. POSMDP does not retain theoretical properties of POMDP without addi-

tional assumptions. In particular, its value function is not necessarily piecewise linear

and convex. This property is desirable because it means that the value function of the

process can be approximated arbitrarily closely with ↵-vectors, which is a convenient

representation for many analyses and algorithms. We prove that it is sufficient for value

function of the process to retain piecewise linearity and convexity if primitive action

policies within the macro actions do not depend on the belief, although it may depend

on any observed subset of states in the belief. This assumption is still general enough

to represent many useful macro actions.

We extend an existing POMDP planning algorithm to use predefined macro ac-

tions. MCVI is an algorithm to solve POMDPs with very large state or continuous state

space, using Monte-Carlo simulations to evaluate and construct policies. The new al-

gorithm, Macro-MCVI, attained significant performance improvement in simulation of

long horizon robotic tasks. Theoretical bound for MCVI was shown to hold in Macro-

MCVI as long as the POSMDP retains piecewise linearity and convexity of its value

function. Furthermore, Macro-MCVI only needs a generative model for each macro

action, making it easier to define and use macro actions.
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1.5 Outline

This thesis is organized in order of increasing complexity of the problems. Chap-

ter 2 first reviews the background of the planning problems discussed in this thesis,

namely IPP, adaptive stochastic optimization, and POMDP. Chapter 3 studies the first

and simplest problem in this thesis, the IPP problem and proposes RAId to solve IPP

without observation noise. Chapter 4 proposes two novel conditions of objective func-

tions for adaptive stochastic optimization problems and give the RAC algorithm to solve

problems satisfying these conditions. Finally, Chapter 5 looks at the hardest problem,

POMDP. To scale up POMDPs to long horizon task, we extend POMDP by adding

macro actions which gives us a POSMDP. We then propose the Macro-MCVI algorithm

that approximates its solution.

10



Chapter 2

Background

This chapter reviews the IPP, adaptive stochastic optimization, and POMDP problems.

We formally describe each problem, give the scope of our work, and cover the back-

ground necessary for this thesis. IPP, adaptive stochastic optimization, and POMDP are

closely related problems. IPP is a special case of adaptive stochastic optimization and

both IPP and adaptive stochastic optimization are special cases of POMDP. We proceed

from the most specific problem to the most general one.

2.1 Informative Path Planning

This section provides a formal specification of the IPP problem. We discuss our choice

of formulation and its implications. Finally, we highlight a few potential applications

of IPP.

The IPP problem seeks a path for robot to sense the world and gain information.

Formally an IPP problem is specified as a tuple I = (X, d,H, ⇢, O,Z, r). First, X

is a finite set of sensing locations, with associated distance metric d(x, x0) for any two

locations x, x0 2 X . Next, H is a finite set of hypotheses, and ⇢(h) specifies the prior

probability of hypothesis h 2 H occurring. We also have a finite set of observations O

and a set of observation functions Z = {Zx | x 2 X}, with one observation function

Zx for each location location x. For generality, we define the observation functions

probabilistically: Zx(h, o) = p(o|x, h). For noiseless observations, Zx(h, o) is either

1 or 0. Finally, r is the robot’s start location. To simplify the presentation, we assume

r 62 X . Either r provides no useful sensing information or the robot has already visited

11
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Figure 2.1: A policy tree with sensing locations {A,B,C,D}, observations {0, 1},
hypotheses {h

1

, h
2

, . . . , h
5

}. With noiseless observations, every path in a policy tree
from the root to a leaf uniquely identifies a hypothesis. Suppose that a robot follows the
shaded path �. Then a hypothesis h is consistent with all observations received along �
if and only if h belongs to the subtree rooted at the node D, i.e., {h

3

, h
4

}.

r and acquired the information.

We say that a hypothesis h is consistent with an observation o at a sensing location

x if Zx(h, o) = 1. Otherwise, it is inconsistent. If a hypothesis is inconsistent with a

received observation, it clearly is not the true hypothesis and can be eliminated from

further consideration.

In adaptive planning, the solution is a policy ⇡, can be represented as a tree. Each

node of the policy tree is labeled with a sensing location x 2 X , and each edge is

labeled with an observation o 2 O (see Figure 2.1). To execute such a policy, the robot

starts by moving to the location at the root of the policy tree and receives an observation

o. It then follows the edge labeled with o and moves to the next location at the child

node. The process continues until the robot identifies the true hypothesis. Thus every

path in the policy tree of ⇡ uniquely identifies a hypothesis h 2 H . Let C(⇡, h) denote

the total cost of traversing this path. Our goal is to find a policy that identifies the true

hypothesis by taking observations at the chosen locations and minimizes the expected

cost of traveling.

We now state the problem formally:

Problem 1. Given an IPP problem I = (X, d,H, ⇢, O,Z, r), compute an adaptive

policy ⇡ that minimizes the expected cost

C(⇡) = EHC(⇡, h) =
X

h2H
C(⇡, h)⇢(h). (2.1)

We assume without loss of generality that in the worst case, the true hypothesis can be

12
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The long range
sensor detects the
target in the 3 ⇥ 3

area.

The short range
sensor detects the
target in the grid
cell at the current
UAV location.

true target location

c = 10

c = 1

c = 4

Figure 2.2: Search for a stationary target in an 8 ⇥ 8 grid. At the high altitude, the
long-range sensor provides no information in the area shaded in gray, due to occlusion.
The red curve indicates a sample path generated by RAId.

identified by visiting all locations in X .

Example. We now illustrate the definition above with a concrete example. A UAV

searches for a stationary target in an area modeled as an 8 ⇥ 8 grid and must identify

the grid cell that contains the target (Figure 2.2). Initially the target may lie in any of

the cells with equal probabilities.

The UAV can operate at two different altitudes. At the high altitude, it uses a long-

range sensor that determines whether the 3⇥ 3 grid around its current location contains

the target. At the low altitude, the UAV uses a more accurate short-range sensor that

determines whether the current grid cell contains the target. Some grid cells are not

visible from the high altitude because of occlusion, and the UAV must descend to the

low altitude in order to search these cells.

The UAV starts at the low altitude. We use the Manhattan distance between two

grid cells as the basis of calculating the movement cost. The cost of flying between two

adjacent cells at the high altitude is 1. The corresponding cost at the low altitude is 4.

The cost to move between high and low altitudes is 10.

Compared with the high altitude, the low altitude offers more accurate information

over a smaller area and incurs a higher cost. The challenge is then to manage this

trade-off.

In this example, the hypotheses are the grid cells that may contain the target: H =

�

(i, j) | i, j 2 {1, 2, . . . , 8}
 

. The prior probability ⇢ over the hypotheses is the uni-
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form distribution. The sensing locations are the UAV locations at the two altitudes:

X =

�

(i, j, k) | i, j 2 {1, 2, . . . , 8}, k 2 {1, 2}
 

. The metric d is the shortest distance

to move between two grid cells. There are two observation: O = {1, 0}, indicat-

ing whether the target is detected or not. The observation function Zx(h, o) specifies

whether the hypothesis h is consistent with the observation o received at location x. For

example, if the UAV receives observation o = 0 at a low-altitude location x = (2, 2, 1),

a single hypothesis h = (2, 2) is inconsistent and can be eliminated. In comparison, if

the UAV receives o = 0 at the corresponding high-altitude location x = (2, 2, 2), nine

hypotheses corresponding to grid cells adjacent to (2, 2) are inconsistent and can all be

eliminated. ⇤

2.1.1 Alternative Formulation

An alternative formulation of IPP problems allows us to impose a budget on movement

and sensing cost while maximizing the information gathered. Theoretically, we can

apply algorithms designed for one formulation to IPP problem in another formulation

easily. Suppose an algorithm A(✓) computes a policy that minimizes expected cost to

achieve some target quantity of information ✓. To apply algorithm A to maximizing

information gathered given a budget �, we can run a binary search of the value of ✓

such that argmax✓ EH [C(A(✓), h)]  �. We can do binary search in the same way to

algorithms that are designed for the alternative formulation to obtain an algorithm for

our formulation.

However, empirically there are applications that are better modeled by one formu-

lation than the other. Maximizing information gathering given a budget is useful when

a robot has to do environmental sensing in a large area given limited fuel or battery

power. An example of such applications is lake and river monitoring (A. Singh, Krause,

Guestrin, et al., 2009; Low, Dolan, and Khosla, 2009). In these applications, even if we

discretize the state values, it is not practical to model every possible environment state

as a hypothesis because the number of environment states can be exponential in the area

of operation when we represent each discrete unit area as a random variable. We need

further manipulation to practically model these applications using our formulation, such

as sampling environment states as hypothesis.
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On the other hand, minimizing expected cost to gather a certain amount of in-

formation is naturally suitable in robotic tasks where a robot has to reduce its uncer-

tainty about its world before it act. For example, when a robot is searching for an

object (Hollinger et al., 2013) or identifying the pose of an object of interest (Javdani,

Klingensmith, et al., 2013). Battery life is usually not a concern for these applications

and the number of world states is small enough for each state to be modeled as a hy-

pothesis.

2.1.2 Adaptivity

Consider the simple problem of searching for an element in an sorted array of n num-

bers. Linear search is nonadaptive. It chooses each element for comparison in order.

The outcome of a comparison does not affect the next element chosen. In contrast,

the observation received at each step of an adaptive algorithm affects the choice in fu-

ture steps, as in choosing a branch in binary search. Each comparison splits the array

into two halves, and the outcome of the comparison determines which half is processed

further. While linear search requires O(n) comparisons, binary search requires only

O(log n) comparisons. Clearly adaptive planning is more powerful in general.

However, adaptive planning may not be feasible for some robotic scenarios. When

the robot’s onboard computer is not powerful enough to process its sensors measure-

ment in real-time, the robot cannot follow an adaptive plan. In this case, the robot

should follow a nonadaptive plan to ensure it gather all the information it needs by the

time it finishes the path.

2.1.3 IPP Applications

IPP problems are embedded in a range of robotic tasks. Robotic systems frequently have

to move its sensors around to learn about its world before it acting on its assigned task.

Hsiao (2009) modeled grasping an object under uncertainty as a POMDP. Grasping

under uncertainty involves three distinct activities: information gathering to localize

the object, re-orientating the object for reachability, and grasping the object. However,

POMDP can be hard to scale up in general. The first activity that localizes the object

can be modeled as an IPP problem.
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Javdani, Klingensmith, et al. (2013) framed the problem of localizing a door knob as

an adaptive submodular maximization problem. They generate a set of probing actions

for a robot hand with contact sensor at the tip of its finger. After each probing action,

the robot hand has to go back to a home position so that the cost of each action is always

fixed regardless of the previous action for efficient greedy optimization. This problem

can be framed as an IPP problem so that robot hand does not have to go back to a home

position.

In underwater inspection, an autonomous underwater vehicle has to move around

a submerged object to determine its nature. Hollinger et al. (2013) performs an initial

coarse survey of a ship hull and model the uncertainty as a Gaussian Process (Ras-

mussen, 2006). Then in the planning phase, a set of informative location are greedily

selected and a low-cost tour is approximated using the Traveling Salesman Problem.

The planning phase can be modeled as an IPP which combines location selection and

path planning.

2.2 Adaptive Stochastic Optimization

We first introduce the notations and definitions for a general class of adaptive stochastic

optimization problems. We use UAV search and rescue task to illustrate the notations.

We then define adaptive stochastic optimization on paths and on subsets. We also review

submodularity, a property of functions which we will use to define our the marginal

likelihood rate bound and the marginal likelihood bound conditions.

2.2.1 Uncertainty in Environment

Let X be the set of actions, e.g., flying to grid cells at high and low altitude. Let O

be the set of observations, e.g., whether the UAV’s sensor detects the survivor or not.

An agent takes an action x 2 X and receive an observation o 2 O. For example,

the UAV flies to a grid cell and observe whether the sensor detects a survivor. We

denote a scenario � : X ! O as a function mapping from action to observation. Each

scenario corresponds to an environment state initially unknown to the agent, e.g., the

true position of the survivor. If � is the scenario corresponding to the true environment

state, �(x) specifies the observation the agent will receive at after taking action x. For
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instance, the survivor’s position determines whether the UAV receives a positive sensor

reading at every grid cell.

2.2.2 Agent’s knowledge of Environment

We adopt a Bayesian approach to represent an agent’s belief of the environment. We

denote a random scenario as � and use a prior distribution ⇢(�) = P[� = �] over

the scenarios to represent our prior knowledge of the world. In the UAV search and

rescue example, we encode the prior knowledge of likely area to contain the survivor

as a probability distribution over the possible survivor’s positions. The environment

can be viewed as a random scenario drawn from the prior ⇢. After taking a subset

of actions S ✓ X and receiving observations, the agent’s experience forms a his-

tory, which can be written as the set of tuples of actions and the observation received,

 = {(x
1

, o
1

), (x
2

, o
2

), . . . }. The history of the UAV in our example is the set of grid

cells visited and the corresponding sensor readings for instance. The domain of  , de-

noted dom( ), is the set of actions in  . We say that a scenario � is consistent with

a history  when the observations of the scenario never contradict with the history for

all action and observation tuples in the history, i.e. �(x) = o for all (x, o) 2  . That

is, an environment state, such as the survivor’s position has not been ruled out given

the history,i.e., the sensors readings after flying to various grid cells. We denote this

by � ⇠  . We can also say that a history  0 is consistent with another history  if

dom( 0
) � dom( ) and  0

(x) =  (x) for all x 2 dom( ).

2.2.3 Objective Function

An agent’s goal can be characterized by a stochastic set function f : 2

X ⇥ OX !

R. In this thesis, we assume the objective functions are pointwise monotone i.e.,

f(A,�) � f(B,�) for any scenario � and for all subsets A ✓ B ✓= X . Hence,

maxS0✓X f(S0,�) = f(X,�) for all scenarios �. The function f measures progress

toward the goal given the actions taken and the true scenario. The objective function

for UAV search and rescue problem for instance, is the version space function which

is the sum of prior probabilities of potential survivor’s positions eliminated from con-

sideration given the grid cells visited and sensor readings received. Given a scenario,
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the function f becomes a set function f 0
: 2

X ! R. The agent achieves its goal when

the function has maximum value given the actions taken S ✓ X and the scenario �

that corresponds to the true environment state, i.e., f(S,�) = f(X,�). e.g., the UAV

search and rescue is completed when all potential survivor’s positions are eliminated

except the one containing the survivor. We say the agent covers the function f when it

achieves its goal.

2.2.4 Policies

An agent’s strategy for adaptively taking actions can be denoted by a policy ⇡, which is

a mapping from history to the next action. For instance, a ⇡ tells the UAV which grid

cell for to fly to next given the grid cells visited and whether it has a positive sensor

at those cells or not. The policy ⇡ can be represent as a policy tree. Each node of the

policy tree is labeled with an action x 2 X , and each edge is labeled with an observation

o 2 O. To execute such a policy, the agent starts by taking the action at the root node

and receives an observation o. It then follows the edge labeled with o and takes the

action at the child node. This is repeated until the agent reaches a leaf node of the

policy.

2.2.5 Adaptive Stochastic Optimization on Paths

Formally, an adaptive stochastic optimization problem on paths consists of the tuple

(X, d, ⇢, O, r, f). For adaptive stochastic optimization problems on path, the set of

actions X is the set of locations the agent can visit, r is the starting location of the

agent, and d is a metric that gives the distance between any pair of locations x, x0 2 X ,

e.g., the manhattan distance between any two grid cells on high or low altitude.

We say that a policy ⇡ covers the function f when the agent executing ⇡ always

achieves its goal. That is, f(dom( ),�) = f(X,�) for all scenarios � ⇠  , where  is

the history when the agent executes ⇡. For example, an agent executing ⇡ always locate

the survivor if ⇡ covers the function.

The cost of the policy ⇡, C(⇡,�), is the length of the path starting from location r

traversed by the agent until the policy terminates, when presented with scenario �, e.g.,

the distance travelled by UAV executing policy ⇡ for a particular survivor location. In
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adaptive stochastic optimization on paths, we want to find a policy ⇡ that minimizes the

cost of traveling to cover the function, e.g., minimize the distance travelled by UAV to

locate the survivor.

We formally state the problem:

Problem 2. Given an adaptive stochastic optimization problem on paths I = (X, d, ⇢,

O, r, f), compute an adaptive policy that minimizes the expected cost

C(⇡) = E[C(⇡,�)] =
X

�

C(⇡,�)⇢(�). (2.2)

subject to f(dom( ),�0) = f(X,�0), where  is the history encountered when execut-

ing ⇡ on �0, for all �0.

Our formulation of adaptive stochastic optimization problem uses the minimum cost

coverage criteria. The dual form of this is the maximization problem where we are

given a budget on the length of the path and we maximize the value of the stochastic set

function. The dual form can be stated as:

Problem 3. Given an adaptive stochastic maximization problem on paths I = (X, d, ⇢,

O, r, f, B), where B is the budget, compute an adaptive policy that maximizes the func-

tion f subject to C(⇡) < B.

To show the equivalence between these two forms, we can do binary search on the

budget B until we find the smallest B that covers the function f .

2.2.6 Adaptive Stochastic Optimization on Subsets

Adaptive stochastic optimization problems on subsets can be formally defined by a

tuple, (X, c, ⇢, O, f). The set of action X is a set of items that an agent may select.

Instead of a distance metric, the cost of selecting an item is defined by a cost function

c : X ! R and the cost of a policy C(⇡,�) =
P

x2S c(x), where S is the set of items

selected by ⇡ when presented with scenario �.

In this thesis, we will present our algorithm and agruments for adaptive stochas-

tic optimization on paths. The same algorithm and agruments will apply to adaptive

stochastic optimization on subsets as well unless otherwise specified. To see why most
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agruments for problems on paths apply to problems on subsets, we give a transforma-

tion for problems on subsets to problems on paths. We can model distance between

items by a star-shaped graph where all elements are peripheral nodes connected to a

root node. The distance between an item and the root node is half of the cost of select-

ing the item. Hence, selecting an item is represented as traveling to the corresponding

peripheral node and going back the root node in a problem on paths.

2.2.7 Submodularity

We can obtain approximate solution efficiently for deterministic set function optimiza-

tion when the objective function is submodular and monotone. Submodularity means

that adding an item to a smaller set is more beneficial than adding the same item to a

bigger set. This captures a diminishing return effect that is present in many natural

phenomena. For example, adding a new temperature sensor when there are few sen-

sors helps more in mapping temperature in a building than adding one when there are

already many sensors. Submodularity and monotonicity allows a simple greedy heuris-

tic (Nemhauser, Wolsey, and Fisher, 1978) which always add the item that maximally

increase the objective value to perform near-optimally for set function optimization.

Submodularity is relevant to informative path planning and many real world phenom-

ena because it captures the “diminishing return” of selecting a new location as the size

of visited set increases. Information can often be quantified using submodular func-

tions such as mutual information (Caselton and Zidek, 1984) and version space func-

tion (Tong and Koller, 2002).

Submodular Set Function

Given a finite set X and a function on the set of subsets of X , f : 2

X ! R, the function

f is submodular if

f(A) + f(B) � f(A [B) + f(A \B)

for all A,B ✓ X . It is also monotone if f(A)  f(B) for all A ✓ B.

One formulation of submodular set function optimization is the minimum cost cov-

erage problem. The goal is to find a subset A ✓ E such that f(A) = maxB f(B) =
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f(E). We say that a function f is covered when the set of items gives the maximum

value of the function. In this thesis, we focus on minimum cost coverage.

For minimum cost coverage problem, we can achieve near-optimal performance

with a greedy selection policy that always choose the element with highest marginal

gain to cost ratio, i.e. maxx2X\S(f(S [ {x}) � f(S))/c(x), where S is the subset of

elements selected.

Lemma 1. Given a submodular set function f : X ! R, let ⇡G be the greedy selection

policy. We have,

C(⇡G) 
✓

1 + ln

f(X)� f(;)
f(X)� f(ST�1

)

◆

C(⇡⇤)

where the subset ST�1 is the set of elements selected before the last step of the greedy

policy (Wolsey, 1982).

Submodular Orienteering

The goal of submodular orienteering problem is to find a path that maximizes a sub-

modular function given a budget on the movement cost. Given a set of locations X , a

metric d that gives the distance between any pair of locations x, x0 2 X , a starting loca-

tion r, and a submodular function f of the set of locations, the submodular orienteering

problem seeks to find a tour starting from r that covers the function f .

By modeling information gathering as a submodular function and apply the this

procedure for submodular orienteering, we can compute a nonadaptive path for IPP

problems in polynomial time (see Section 3.3.1).

Chekuri and Pal (2005) gives a submodular orienteering algorithm but it runs in

quasi-polynomial time. We give a SUBMODULARORIENTEER procedure that runs in

polynomial time to approximate solution to a submodular orienteering problem. In the

first step, we compute an approximation for distance metric d with a tree (Fakcharoen-

phol, Rao, and Talwar, 2003). Then we run a greedy approximation algorithm (Cali-

nescu and Zelikovsky, 2005) for Polymatroid Steiner tree problem with the submod-

ular function and approximation tree as input. Finally, we apply Christofides’ metric

TSP (Christofides, 1976) to obtain an approximate solution.

21



Lemma 2. Assuming the submodular function f is integer-valued, the SUBMODU-

LARORIENTEER procedure in RAC computes a 2↵-approximation to the Submodular

orienteering tour with ↵ 2 O((log|X|)2+✏ log ⌫) and ⌫ = f(X) for any ✏ > 0.

Proof. The greedy approximation in SUBMODULARORIENTEER computes an↵-approximation

T to the optimal polymatroid Steiner tree T ⇤, with ↵ 2 O((log|X|)2+✏ log ⌫), where ⌫

is the required value (Calinescu and Zelikovsky, 2005). The total edge-weight of an op-

timal polymatroid Steiner tree, w(T ⇤
), must be less than that of an optimal submodular

orienteering tour, W ⇤, as we can remove any edge from a tour and turn it into a tree.

Thus, w(T )  ↵w(T ⇤
)  ↵W ⇤. Applying Christofides’ metric TSP to the vertices

of T produces a tour ⌧ , which has weight w(⌧)  2w(T ), using an argument similar

to that in (Christofides, 1976). It then follows that w(⌧)  2↵W ⇤. In other words,

SUBMODULARORIENTEER obtains a 2↵-approximation to the submodular orienteer-

ing tour.

2.3 Informative Path Planning, Adaptive stochastic optimiza-

tion, and Related Problems

If we ignore robot movement cost, adaptive IPP problems become Bayesian active

learning problems. Bayesian active learning aims to identify the true hypothesis with

high certainty by sequentially choosing and observing the outcomes of a set of tests

where each test has a cost associated with it. Golovin, Krause, and Ray (2010) proposed

a new algorithm to solve noisy Bayesian active learning by optimizing an adaptive sub-

modular objective function and proves that it is competitive with the optimal adaptive

policy. RAC uses the same objective function 4.6 but applies it on paths.

Also closely related to Bayesian active learning, IPP, and adaptive stochastic opti-

mization is pool-based active learning. In pool based active learning, training data are

sequentially chosen and labeled from a pool of unlabeled examples. The objective is

identify a hypothesis that achieves good prediction performance after choosing a small

number examples to label.

Another class of problem related to IPP and adaptive stochastic optimization is the

model-based Bayesian reinforcement learning problem. Model-based Bayesian rein-
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forcement learning generalizes IPP’s action set from robot movement actions to any

finite set of actions with non-deterministic effects and its cost/reward function from

movement cost to arbitrary function of state and action. In model-based Bayesian rein-

forcement learning problem, we maintain a probability distribution over the unknown

parameters of a Markov decision process (MDP) model. The objective is to maximize

its long term cumulative reward. The key challenge in Bayesian reinforcement learning

is to optimize the exploration/exploitation trade off: to decide between sacrificing short

term reward to reduce uncertainty about its unknown model parameter (exploration) or

maximizing short term reward given its current information it has (exploitation). The

unknown MDP parameters are similar to true hypothesis in IPP and scenario in adaptive

stochastic optimization where it can only be unveiled by trying new actions or locations.

Although active localization (Fox, Burgard, and Thrun, 1998) and simultaneous

localization and mapping (SLAM) (Feder, Leonard, and C. Smith, 1999) bear some

similarity to IPP, they are in fact different, because IPP assumes that the robot location

is fully observable. Reducing active localization or SLAM to IPP incurs significant

representational and computational cost.

IPP, as well as other information-gathering tasks mentioned above, can all be mod-

eled as POMDPs (see Section 2.4) which provide a general framework for planning un-

der uncertainty. However, solving large-scale POMDP models near-optimally remains

a challenge, despite the dramatic progress in recent years (Pineau, Gordon, and Thrun,

2003; T. Smith and Simmons, 2005; Kurniawati, Hsu, and Lee, 2008). The underlying

structure of IPP allows simpler and more efficient solutions.

2.4 POMDP

Partially Observable Markov Decision Processes provide a principled and general plan-

ning and decision-making framework for acting optimally in partially observable do-

mains. POMDP was first introduced to the operation research community (Smallwood

and Sondik, 1973) and was brought into the artificial intelligence community by Kael-

bling, Littman, and A. R. Cassandra (1998) as principled way to handle uncertainty.

This section first explains the components and important concepts of POMDPs. Next,

we draw the connections between IPP and POMDP. Finally, we review a few classic ex-
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act solution algorithms to gain an understanding of the challenges involved in POMDP

planning.

2.4.1 Model Description

Formally, a POMDP is specified as a tuple (S,A,O, T, Z,R, �). In practice, each of

the components must be specified by domain expert or learned from data. Here, we

describe the components in details.

State space S

The set of states S models the world. The state s 2 S should contain all information

relevant to the planning task. The number of states can be finite, countably infinite, or

continuous.

Action space A

An agent seeks to maximize its total reward by taking a sequence of actions from the

set A. These are the choices available to the agent to take at every step to achieve its

overall goal. The number of actions may be finite, countably infinite, or continuous.

Transition function T

In each time step, the agent lies in a state s 2 S, takes an action a 2 A, and moves

from a start state s to an end state s0. Due to uncertainty in action effect, the world has a

certain probability of transiting into any state in S. The stochastic action effects is cap-

tured by the transition function T (s, a, s0) = p(s0|s, a), which denotes the probability

of transiting to state s0 when action a is executed in state s.

Observation space O

In POMDP, the agent is not directly aware of its current state. Instead, the agent makes

an observation o 2 O through its sensors after executing an action. Observation space

O denotes the set of possible measurements that the agent’s sensors can perceive from

the world. Note that irrelevant information may be perceptible by the agent.
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Observation function Z

An observation provides information on its new state s0 after taking an action. Due

to the uncertainty in observation, the observation result o 2 O is again modeled as a

conditional probability function Z(s0, a, o) = p(o|s0, a), which denotes the probability

of observing o in state s0 after taking action a.

Reward function R

To elicit desirable agent behavior, we define a suitable reward function R(s, a). In each

step, the agent receives a real-valued reward R(s, a), if it takes action a in state s. The

agent’s goal is to maximize its expected total reward by choosing a suitable sequence

of actions.

Discount factor �

The goal of a decision theoretic agent is to maximize the reward gained over some

number of time-steps. The horizon h is the number of time-steps an agent needs to

plan for. The discount factor � weighs the reward received at different time-step such

that reward at time t is discounted by �t. When the horizon is infinite, we typically

specify a discount factor � 2 (0, 1) so that the total reward is finite and the problem is

well defined. In practice, the discount factor is used to induce an agent to finish its task

as quickly as possible to maximize its discounted reward. This thesis assumes infinite

horizon POMDPs with a discount factor strictly less than 1, unless otherwise stated.

2.4.2 Policies

The solution to a POMDP is an optimal policy that maximizes the expected total dis-

counted reward. A policy is an action strategy that specifies the action an agent should

take at every time step based on information it has. A POMDP agent does not have

complete knowledge of the state. All the information it has is the initial probability

distribution over s, known as initial belief b
0

and sequence of action executed and ob-

servations received, known as history. Roughly speaking, a policy is a mapping from

agent’s information to action. To be more precise, we now introduce the concept of

belief.
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Belief

The information an agent has may be summarized by a probability distribution over s

known as the belief. A belief is a sufficient statistic for a initial belief and history. A

POMDP may be viewed as a special case of MDP over belief -state.

Given current belief b, action a executed by the agent, and observing observation

o, the next belief bao can be computed as a posterior probability distribution using the

Bayes rule as follows:

bao(s
0
) = ⌘Z(s0, a, o)

X

s2S
T (s, a, s0)b(s)

= ⌘
X

s2S
p(s0|s, a)p(o|s0, a)b(s)

where ⌘ is a normalizing constant. Hence, a policy is mapping from belief to action.

Policy Representations

The policy ⇡ for a t-step horizon POMDP can be represented as a policy tree shown in

figure 2.3. Each node in the tree represents a particular history and dictates the action

to take when agent is at the node. An agent with t-steps to go executes the t-step plan

starting from the root node. When the agent is at a node, it executes the action associated

with the node and follows the edge that is labeled by the observation it received to next

policy sub-tree. The agent recursively traverse the policy tree until it has no more step

to go.

Value functions for POMDPs

We now look at the expected discounted reward an agent can earned from executing a

policy ⇡. Consider the case where ⇡ is a one step policy tree (a single root node with

one action), the value of executed it in state s is:

V⇡(s) = R(s, a(⇡))
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Figure 2.3: A t-step policy tree.

where a(⇡) is the action specified by the root node. In the case where ⇡ a t-step policy,

then

V⇡(s) = R(s, a(⇡)) + � · (expected value of future)

= R(s, a(⇡)) + � ·
X

s02S
T (s, a(⇡), s0)

X

o2O
Z(o, s0, a(⇡))Vo(⇡)(s

0
)

where Vo(⇡) gives the t� 1-step policy that is the child node of ⇡ linked by edge o.

Since an agent does not have complete knowledge of its world state but has a belief

state b, the value of executing a policy in belief state b is then:

V⇡(b) =
X

s2S
b(s)V⇡(s) (2.3)

and the optimal t-step value of a starting belief b is the value of executing the best policy

tree such that:

Vt(b) = max

⇡2⇧
b · V⇡(b)

where ⇧ is the finite set of all policy tree.

Representing the value function can be tricky because its domain is |S|� 1 dimen-

sional continuous. Fortunately, an important geometric insight due to Smallwood and

Sondik (1973) allows us to represent value functions in a compact form. Notice from

equation 2.3 that each policy tree ⇡ induces a function that is linear in b. We call this
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linear function together with the first action of the policy tree an ↵-vector. For finite

horizon t, the set of t-step policy tree is finite. Therefore, the optimal value function

can be represented by a finite collection of ↵-vectors. The t-step value function Vt is

the upper surface of this collection. Hence, the value function is piecewise linear and

convex (see Figure 2.4).

V

0

b(s = 1)

1

Figure 2.4: Optimal value function for a t-step 2-state POMDP (states are s=0 and
s=1). Due to simplex constraint, belief for 2 state POMDP can be expressed as a point
on x-axis. Value function is upper envelope of the collection of alpha vectors.

2.4.3 POMDP and its special cases

POMDP contains many important classes of problems as special cases, a few of which

we will discuss in this thesis. Table 2.1 summarizes the key components of these special

cases in terms of a POMDP model. To simplify presentation, we factor the POMDP’s

state variable into observable state variable X and partially observable state variable

Y . Optimal decision tree is the simplest problem out of the special cases we consider.

Its Y states are the hypotheses and actions are tests that reveal information about the

true hypothesis. The cost of each test is a constant; its aim is to minimize sum of cost

of tests to identify the true hypothesis. Both IPP and adaptive stochastic optimization

generalizes optimal decision tree to have locations on a metric as its X state. Their ac-

tions are deterministic movement to each location and cost of each action is the distance

between the current location and the destination location. Adaptive stochastic optimiza-

tion generalizes IPP to cover an objective function that depends on the Y state. Another

special case of POMDP is the Bayesian reinforcement learning. A Bayesian reinforce-

ment learning problem has an unknown underlying MDP model. Its X states are the

MDP states and the Y are the unknown MDP parameters. It has a transition function

of the X state that depends Y . These special cases have one common feature: they all
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have partially observable state that never change; their Y state transition functions are

all identity.

Optimal
Decision
Tree

IPP
Adaptive
stochastic
optimization

Bayesian
reinforcement
learning

POMDP

Reward/Cost Constant Metric Metric MDP R
X Nil Locations Locations MDP X

Y Hypotheses Hypotheses Scenarios
Unknown
MDP
parameters

Y

Action Test Locations Locations MDP A

X Transition Nil Deterministic
movement

Deterministic
movement

Depends on Y
state T (X)

Y Transition Identity T (Y )

Observation Test
Outcome O X State O

Goal Minimize cost to identify
hypothesis

Minimize
cost to cover Maximize Reward

Table 2.1: Relationship between POMDP and its subclass

POMDP formulation of IPP

We now formally represent an IPP problem I as a POMDP problem P . The state

space of the corresponding POMDP P is S = H ⇥ X consisting of all combination

of hypotheses h 2 H and robot location x 2 X . The action space A of P contains

two kinds of actions. The first kind of actions is the set of movement action is X ,

the set of all locations accessible by the robot. The second kind is the set of “submit”

actions that consists of all hypotheses h 2 H . The “submit” action h indicates that it is

ready to declare the true hypothesis as h. The transition function T of P does not the

hypothesis part of the state. T is a deterministic function where the robot always reaches

its intended destination as specified by action and “submit” actions always terminate

the process. The observation space OP of P is X ⇥ OI , where OI is the observation

space of IPP I. The observation function Z is defined such that we always observe the

location of the robot on top of the observations from the sensors. The reward function

R of P returns the movement cost from the current robot location to its destination for

movement actions and a large constant G when the “submit” action that is equal to the

true hypothesis is invoked.
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IPP and adaptive stochastic optimization are easier problems compared to POMDP

because the uncertainty is restricted to the hypothesis state and scenario that never

change in the process. Nevertheless, it captures an interesting aspect of POMDP: the

balance between value of information and the cost to acquire it.

2.4.4 Exact POMDP Algorithms

Finite Horizon Optimal Policy

Exact POMDP algorithms are intractable in general. We briefly reviewed some al-

gorithms here to understand the sources of intractability. The simplest algorithm is

(Monahan, 1982)’s exhaustive enumeration algorithm. It is a dynamic programming

procedure that computes the optimal value function for t + 1 steps to go V t+1 from

optimal value function of t steps to go V t. The Bellman’s equation for POMDP is:

V t+1

(b) = max

a

0

@R(b, a) + �
X

o2O
p(o|a, b)V t

(bao)

1

A (2.4)

Here, R(b, a) =
P

s2S R(s, a)b(s) and p(o|a, b) =
P

s2S p(o|a, s)b(s) are the expec-

tations for reward function and observation function over the state space respectively.

Due to continuous nature of b, it is not feasible to compute V t+1 for every possible b.

However, since the value function is piecewise linear and convex, V t+1 and V t can be

represented as collections of ↵-vectors �t+1 and �t respectively. The idea of Mona-

han’s algorithm is to exhaustively enumerate all possible ↵-vectors at t + 1 step from

�

t. Each ↵-vector in �t corresponds to a t-steps policy tree. A t+1-step policy tree can

be define as a root node and |O| subtrees of t-step policy trees, hence we can enumerate

the ↵-vectors for all t+ 1-step policy tree as follows:

�

t+1

= ra + �
X

o2O
T a,o↵i|a 2 A,↵i 2 �t (2.5)

where ra is the |S| column vector such that ra(i) = R(a, si). T a,o is the |S|⇥ |S| joint

observation and transition matrix such that T a,o
(i, j) = p(sj |si, a)p(z|sj , a).

The optimal value function for t-step POMDP is the upper envelope of the collection
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of ↵-vectors �t. This value function can be expressed as:

V t
(b) = max

↵i2�t
b · ↵i

Note that we need not explicitly store the t-step policy tree associated with the each

↵-vector. The optimal policy for each step is to take the action associated with the

↵-vector that is maximal for the current belief.

This algorithm is intractable due to the exponentially growing number of ↵-vectors

such that |�t+1| = |A||�t||O|. However, very often not all ↵-vectors (and its corre-

sponding policy tree) are useful. There may be ↵-vectors that is not part of the upper

envelope of �t and therefore does not contribute to the value function. Hence, we can

prune dominated ↵-vectors to maintain the parsimonious set of ↵-vectors to represent

V t. Other exact algorithms such as the Sondik’s One pass algorithm (Smallwood and

Sondik, 1973), Littman et al.’s witness algorithm (Kaelbling, Littman, and A. R. Cas-

sandra, 1998), and incremental pruning (A. Cassandra, Littman, and Zhang, 1997) focus

on avoid generating too many ↵-vector and pruning the dominated ↵-vector efficiently.

Infinite Horizon ✏-optimal Policy

So far we have seen that the optimal t-step value function is always piecewise linear and

convex. This is not necessarily true for the infinite-horizon discounted value function.

There may be infinitely many facets. However, we can approximate infinite-horizon

discounted value function arbitrarily closely with finite-horizon value function. The

idea is to iteratively compute a series of t-step discounted value function until the L1

difference between the successive value functions is bound by some �. If � is set to

✏(1 � �)/2�, then the policy is ✏-optimal. Since the last value function computed can

only differ from the optimal one by at most 2��/(1� �) for all belief state.

Policy Iteration

The dynamic programming procedure we seen is known as value iteration as it itera-

tively step through each time step and computing the optimal value function for it. An-

other approach known as policy iteration iteratively improves on a policy through the

dynamic programming backup. Policy iteration was first proposed by Sondik (Small-
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Figure 2.5: Finite State Machine

wood and Sondik, 1973) but was complex and impractical to implement. Sondik’s

algorithm uses mapping from finite number of polyhedral region in the belief space to

action as policy, where the regions are bound by a set of linear inequalities

An improved policy iteration algorithm proposed by Hansen (E. A. Hansen, 1998)

uses finite state controller as its policy representation. Finite state controller is simpler

both conceptually and computationally compared to the policy used in Sondik’s policy

iteration. Here, we skip the original policy iteration and look at the improved version

one.

A finite state controller is directed graph that is similar to the policy tree introduced

in section 2.4.2 but has cycles. A finite state controller is executed in the same way as

the policy tree except that edges may bring it to any node in the graph. Each node in the

graph may be defined as a tuple of action and successor function ha,�i. The successor

function � is a mapping from observation to the next node.

With some initial finite state controller, the policy iteration algorithm alternates be-

tween a policy evaluation step and policy improvement step until it converges to an ✏-

optimal policy. The algorithm terminates when the Bellman residual is less than equal

to ✏(1� �)/� and its resultant policy is ✏-optimal.

Policy Evaluation

Analogous to the value function of a policy tree, the value function of a finite state

controller can be represented as the upper envelope of a collection of ↵-vectors. These
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↵-vectors can computed by solving the following system of linear equations:

V n
(s) = Ra(s) + �

X

s02S
p(s0|s, a)

X

o2O
p(o|a, s0)V �(n,o)

(s0) 8s 2 S, 8n 2 �⇡ (2.6)

where n is a node in the finite state controller and �(n, o) gives the successor node of

n given observation o. �⇡ is the set of all nodes in the policy ⇡. Each node in the finite

state controller contributes one ↵-vector to the value function. In each equation, V n
(s)

is the expected total reward for executing the finite state controller starting from node n

in state s, which is also the s component in the ↵-vector corresponding to node n.

Policy Improvement

In the policy improvement step, dynamic programming update (Equation 2.5) is

applied to value function V that was obtained from evaluating policy ⇡, to get a im-

proved value function V 0. Pruning is done on collection of ↵-vectors representing V 0

to keep the representation small. This dynamic programming update can be viewed as

transforming the finite state controller ⇡ to an improved finite state controller ⇡0.

To get the improved finite state controller ⇡0 from V 0, we need to extract a policy

node from each ↵-vector in V 0. For each ↵-vector in V 0, we create a new node with

action corresponding to the action of the ↵-vector and successor function maps each

observation to the node associated with the ↵-vector in V that was used to produce it. If

the new node duplicates an existing node n in ⇡, then node n remains unchanged. If the

↵-vector used to create the new node pointwise dominates an ↵-vector associated an old

node, the action and successor function is replaced by that of the new one. Otherwise,

the new node is simply added to the finite state machine. Existing nodes in ⇡ whose ↵-

vectors is no longer in V 0 (due to pruning) is then removed. We have then transformed

a finite state controller ⇡ to an improved one ⇡0.

Performance Issues

POMDP suffers limited scalability due to two interdependent reasons. The two infa-

mous reasons are the curse of dimensionality (Kaelbling, Littman, and A. R. Cassandra,

1998) and the curse of history. The curse of dimensionality refers to the difficulty the

planner faces in reasoning about belief states in |S|-1 dimensional continuous belief
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space. Even though we can represent the value function over the belief space as a set of

↵-vectors, the length of these ↵-vectors is equal to the number of states. Belief are typi-

cally represented using |S|-1 which gives the probability of the agent being in each state

such that b = hp(s = 0), p(s = 1), . . . , p(s = |S| � 2)i. Due to simplex constraint on

the belief, the probability of the last state is simply p(s = |S|�1) = 1�
P|S|�2

i=0

p(s =

i). For efficient computation, the transition and observation are usually stored as matri-

ces of size |A| ⇥ |S| ⇥ |S| and |A| ⇥ |S| ⇥ |O| respectively. This type of vector and

matrix representation runs into problem when the state space is very large, or even con-

tinuous. Both the space required storing them and time taken to carry out mathematical

operations on them increases with the size of state space and becomes infeasible when

state space is continuous. This also limits the size of the POMDP we can practically

solve. A naive approximation that discretizes the belief space and approximate the val-

ues at each discretization points will have number of discretization point exponential to

the number of states.

The curse of history refers to the exponential growth in the number of distinct

action-observation history with the planning horizon. Its effect can be seen in the ex-

ponential number of ↵-vectors in exact algorithms. Dynamic programming in POMDP

may also be viewed as a breadth-first search in the belief space from some initial be-

lief. A belief state b in the search tree is expanded by simulating all possible action-

observation transition and adding the posterior belief state bao to the search tree. Each

path in the search tree corresponds to a particular action-observation history. In the

worst case, an optimal POMDP solution necessarily has to account for all such paths

regardless of the size of the policy it produce in the end.
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Chapter 3

Noiseless Informative Path

Planning

3.1 Introduction

This chapter describes the Recursive Adaptive Identification (RAId) algorithm. RAId

solves the adaptive informative path planning problem in absence of observation noise.

RAId performs adaptive planning, just as binary search. Each recursive step of binary

search chooses a single most discriminating comparison test that prunes half of all hy-

potheses. RAId shares this basic idea, but is more complex. There are two difficulties.

In binary search, each comparison has the same cost. In IPP, the costs of traveling to

different sensing locations vary, and we must address the key trade-off between infor-

mation gain and movement cost. Further, we cannot choose sensing locations indepen-

dently one at a time, because different locations provide different sensing information

and moving to a location affects future choices. The main idea of RAId is to con-

struct a near-optimal adaptive plan in each recursive step by solving a group Steiner

problem (Calinescu and Zelikovsky, 2005), a generalization of minimum spanning tree

problem. Under the plan, the robot traverses a subset of sensing locations and termi-

nates the traversal when it encounters an “informative” observation, which guarantees

to eliminate a significant fraction of existing hypotheses.

In the following, Section 3.3 gives the RAId algorithm. Section 3.4 shows that

RAId achieves polylogarithmic approximation bound on solution cost. Empirically,
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RAId outperforms greedy heuristic algorithms and nonadaptive IPP algorithm in differ-

ent robotic tasks in simulation (see Section 3.5).

3.2 Related Work

IPP is important to robotics and various related fields. The importance and the diffi-

culty of computing optimal solutions for IPP have attracted significant interest in recent

years. One idea is to choose a set of “informative” sensing locations and then con-

struct a minimum-cost tour to traverse them (Hollinger et al., 2013). The heuristic

algorithm often works in practice, but it does not provide any theoretical performance

guarantee. Another idea is to search for a plan over a finite horizon (Hollinger, Mi-

tra, and Sukhatme, 2011). The guarantee, if any, is limited by the search horizon.

Finite-horizon search can also be combined with sampling-based motion planning to

achieve asymptotic optimality (Hollinger and Sukhatme, 2013). The NAIVE algorithm

replans in each step, using a nonadaptive IPP algorithm, in order to achieve adaptiv-

ity (A. Singh, Krause, and Kaiser, 2009). It guarantees near-optimal performance when

the adaptivity gap is small, in other words, when adaptive planning does not have sig-

nificant advantage over nonadaptive planning. Unfortunately the adaptive gap can be

exponentially large even for very simple problems (Hollinger et al., 2013). This is un-

surprising in light of the well-known benefit of acting adaptively (Dean, Goemans, and

Vondrdk, 2004; Golovin and Krause, 2011). Furthermore, to achieve nontrivial per-

formance bound, NAIVE requires explicit construction of a submodular function with

the locality property (A. Singh, Krause, and Kaiser, 2009). This is not always easy or

possible. A strength of NAIVE is its ability to handle noisy observations. This chapter

makes the assumption of noiseless observations, though we are extending the algorithm

to handle noisy observations (see Section 3.6).

IPP is closely related to the adaptive traveling salesman (ATSP) problem (Gupta,

Nagarajan, and Ravi, 2010). In contrast to the standard TSP, the traveling salesman

here services only a subset of locations with requests, but does not know this subset

initially. When the salesman arrives at a location, he finds out whether there is a request

there. The goal is to find an adaptive strategy for the salesman to service all requests

and minimize the expected cost of traveling. IPP contains ATSP as a special case. Each
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hypothesis represents a subset of locations with requests. Each “sensing” operation

is binary and answers the query whether the current location has a service request or

not. RAId has its root in the isolation algorithm for ATSP (Gupta, Nagarajan, and Ravi,

2010). To provide the theoretical performance bound, the isolation algorithm uses linear

programming in the inner loop to solve the group Steiner problem (see Section 3.3.1).

This is impractical. RAId solves the more general IPP problem, which allows arbitrary

hypothesis space and removes the restriction of binary sensing. To solve the group

Steiner problem, it uses a combinatorial approximation algorithm (Calinescu and Ze-

likovsky, 2005) that is far more effective in practice.

Our IPP algorithm contains three main ingredients: information gathering, robot

movement cost, and adaptivity. It touches on several important research topics, which

contain one or two, but not all three ingredients. If we focus on information gath-

ering only and ignore location-dependent robot movement cost, IPP becomes sensor

placement, view planning, or ODT, which admits efficient solutions through, e.g., sub-

modular optimization, in both non-adaptive (Krause and Guestrin, 2009) and adaptive

settings (Golovin and Krause, 2011; Javdani, Klingensmith, et al., 2013; Javdani, Chen,

et al., 2014). Our work does not rely on adaptive submodularity in either the algorithm

or the proofs. If we account for movement cost, there are several nonadaptive algo-

rithms with performance guarantee, e.g., (Hollinger, S. Singh, et al., 2009; A. Singh,

Krause, Guestrin, et al., 2009).

Although active localization (Fox, Burgard, and Thrun, 1998) and simultaneous

localization and mapping (SLAM) (Feder, Leonard, and C. Smith, 1999) bear some

similarity to IPP, they are in fact different, because IPP assumes that the robot location

is fully observable. Reducing active localization or SLAM to IPP incurs significant

representational and computational cost.

IPP, as well as other information-gathering tasks mentioned above, can all be mod-

eled as partially observable Markov decision processes (POMDPs) (Kaelbling, Littman,

and A. R. Cassandra, 1998), which provide a general framework for planning under

uncertainty. However, solving large-scale POMDP models near-optimally remains a

challenge, despite the dramatic progress in recent years (Pineau, Gordon, and Thrun,

2003; T. Smith and Simmons, 2005; Kurniawati, Hsu, and Lee, 2008). The underlying
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structure of IPP allows simpler and more efficient solutions.

3.3 Algorithm

3.3.1 Preliminaries on Group Steiner Trees

RAId makes critical use of an seemingly unrelated problem, the group Steiner problem,

to trade off information gain and robot movement cost. A group Steiner problem is

defined by two elements. One is an edge-weighted graph G = (V,E,WE). The other is

a collection of groups V = {V
1

, V
2

, . . . , Vm} with corresponding group-weights WV =

{⌫
1

, ⌫
2

, . . . , ⌫m}. Each group Vi contains a subset of vertices in V . A subgraph of G

covers a group Vi ✓ V if the subgraph contains at least one vertex in Vi. In the standard

group Steiner problem, the goal is to find a minimum-edge-weight tree that covers a

sub-collection of groups with total group-weight at least ⌫, for some given constant ⌫.

The group Steiner algorithm used in RAId constructs a tree T in a greedy man-

ner (Calinescu and Zelikovsky, 2005). Define the density of a tree as the ratio of its

total edge-weight over the total group-weight of the groups covered by the tree. Each

step of the greedy algorithm constructs a low-density subtree T 0 and adds it to a partial

solution T being constructed. The greedy step repeats until the total weight of groups

covered by T exceeds the target ⌫. Each subtree T 0 roughly is constructed by recur-

sively applying the greedy algorithm on its children nodes with a series of different

target values ⌫ and then picking the lowest density one among all the subtrees found. It

can be shown that a low-density subtree always exists and can be constructed efficiently.

The algorithm uses a series of technical ideas to limit the number of recursive calls so

that it runs in polynomial time. Furthermore, the union of low-density trees remains a

low-density tree, which provides an approximately optimal solution to the group Steiner

problem.

Theorem 3 (Calinescu and Zelikovsky (2005)). Assume that the group-weights of a

group Steiner problem are represented as non-negative integers. For any constant ✏ >

0, there is a polynomial-time algorithm that computes a near-optimal group Steiner tree

within a factor O(log |V |)2+✏ log ⌫) of the optimal one.

The constant ✏ is a parameter that can be tuned to improve the approximation ratio, but
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at a greater computational cost.

3.3.2 Informative Observations

Let Hx,o ✓ H be the subset of hypotheses consistent with observation o at x:

Hx,o = {h 2 H | Zx(h, o) = 1}.

Let p(Hx,o) be the sum of probabilities of hypotheses in the subset. We consider an

observation o at location x informative if p(Hx,o)  0.5 and define the informative

observation set at x 2 X:

⌦x = {o 2 O | p(Hx,o)  0.5}.

If an observation o is informative, then by definition, Hx,o has small probability (less

than 0.5), and H\Hx,o, the set of hypotheses inconsistent with o, has large probabil-

ity (greater than 0.5). The observation o is informative, because it narrows down the

consistent hypotheses to a small set measured in probability.

Let o⇤x be the most likely observation at x: o⇤x = argmaxo2O p(Hx,o). It is inter-

esting to observe that there are only two possibilities for ⌦x:

⌦x =

8

>

<

>

:

O if p(Hx,o)  0.5 for all o 2 O,

O \ {o⇤x} otherwise.

Consider the UAV search example again. Initially, the observation o = 1 at every

low-altitude location x is informative, as p(Hx,1) = 1/64  0.5. The notion of being

informative is intuitively correct here, because the observation o = 1 at a low-altitude

location identifies the target location exactly. In contrast, the observation o = 0 is not

informative at any low-altitude location x, as p(Hx,0) = 63/64 > 0.5. It eliminates

a single inconsistent hypothesis with probability 1/64 and does not help narrow down

consistent hypotheses significantly.
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Algorithm 1 RAId
1: procedure RAId(X, d,H, ⇢, O,Z, r)
2: if |H| = 1 then
3: return H .
4: else
5: ⌫  min

�

0.5, 1�maxh2H ⇢(h)
�

.
6: ⌧  GROUPSTEINERTOUR(X, X ⇥X, d, {Xh}h2H , ⇢, ⌫),

where ⌧ = (x
0

, x
1

, . . . , xt) and x
0

= xt = r.

7: (H, r) EXECUTEPLAN(⌧, H, r).
8: Renormalize the probability ⇢(h) for all h 2 H so that

P

h2H ⇢(h) = 1.
9: RAId(X, d,H, ⇢, O,Z, r)

10: procedure EXECUTEPLAN(⌧, H, r)
11: i 1.
12: repeat
13: r  xi.
14: Visit location r and receive observation o.
15: Remove from H all hypotheses inconsistent with o.
16: i i+ 1.
17: until o 2 ⌦r or i = t.
18: r  xt.
19: Move to location r.
20: return (H, r).

3.3.3 RAId

RAId is a recursive divide-and-conquer algorithm. Each recursive step constructs a

near-optimal adaptive plan to traverse a subset of sensing locations in X and eliminates

inconsistent hypotheses using the observations received. The traversal terminates when

it reduces the probability of the current hypothesis set H by at least a half. RAId then

recurses on the remaining hypotheses until only one hypothesis remains. A sketch of

the algorithm is shown in Algorithm 1.

The key step in RAId is to construct a traversal that significantly reduces the current

hypothesis set at a low cost. Informative observation helps in eliminating inconsistent

hypotheses. If a traversal encounters an informative observation o at location x, we can

eliminate all hypotheses in H\Hx,o, which has probability greater than 0.5 by defini-

tion, and end the traversal. However, what happens if a traversal does not encounter

any informative observations? To guarantee that each traversal reduces the probability

of the current hypothesis set H by at least a half, RAId constructs and solves a group

Steiner problem.
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The underlying graph for the group Steiner problem is the complete graph over X ,

and the edge-weight between two vertices x and x0 is d(x, x0).

Next, we define one group for every hypothesis h 2 H:

Xh = {x 2 X | Zx(h, o) = 1 for some o 2 ⌦x}, (3.1)

which consists of all locations with informative observations consistent with h. The

group-weight for Xh is simply ⇢(h). Our definition of a group implies that an uninfor-

mative observation o 62 ⌦x must be inconsistent with h at a location x 2 Xh, because

observations are noiseless and there is only one observation consistent with a given

hypothesis. Thus, if a traversal encounters an uninformative observation at a location

x 2 Xh, we can eliminate h.

Finally, we set the target ⌫ = min

�

0.5, 1 �maxh2H ⇢(h)
�

. It would be desirable,

but is not possible to simply set ⌫ = 0.5. If the true hypothesis has high probability,

RAId may not be able to achieve substantial pruning, as the remaining hypotheses have

small total probability.

RAId guarantees that a traversal constructed from the group Steiner problem prunes

inconsistent hypotheses that have total probability at least ⌫. If the robot encounters

an informative observation o at a location x during the traversal, the inconsistent hy-

potheses H\Hx,o have probability greater than 0.5 by definition. Now suppose that the

robot encounters only uninformative observations during the traversal. At each location

x 2 Xh along the way, the robot eliminates the hypothesis h. Each hypothesis has an

associated group in the group Steiner problem. The target value ⌫ ensures that the total

weight of groups covered by the traversal is greater than ⌫. So is the probability of

eliminated hypotheses. The formal proof is given in Lemma 4.

In Algorithm 1, the procedure GROUPSTEINERTOUR(V,E,WE ,V,WV , ⌫) solves

the group Steiner problem defined in Section 3.3.1. However, it computes a group

Steiner tour, i.e., a cycle in a graph-theoretic sense, instead of a tree. GROUPSTEINER-

TOUR consists of two steps. First, it solves for a group Steiner tree T using a greedy ap-

proximation algorithm (Calinescu and Zelikovsky, 2005). Next, it applies Christofides’

metric TSP approximation algorithm (Christofides, 1976) to the vertex set of T and

generates a tour. Both approximation algorithms rely critically on the metric property
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Figure 3.1: An example run of RAId
An example run of RAId with two recursive calls. Shaded edges in color indicate the
two tours planned in the recursive calls. Shaded nodes indicate the locations that the
robot traverses while executing the plans. We assume that observation 0 is informative
and observation 1 is uninformative. (a) RAId’s first recursive call generates the tour
(A,B,D,E). The robot moves to the first location A on the tour and receives observa-
tion 1. (b) Since observation 1 is uninformative, the robot next moves to B and receives
observation 1 again. (c) Upon receiving the first informative observation 0 at D, the
robot ends the traversal. RAId replans in the second recursive call and generates a new
tour (C,F ). (d) The robot moves to C. It receives 0 at C and identifies the hypothesis
h
4

.

of the edge weight d.

RAId is an online algorithm, which interleaves planning and plan execution. In

the planning phase, RAId computes a tour (Algorithm 1, line 6), which is a partial

plan. The robot executes the plan by traversing the locations on the tour (Algorithm 1,

line 7). At each location, the robot prunes all hypotheses inconsistent with the received

observation. If the robot receives an uninformative observation, it moves to the next

location on the tour. If the robot receives an informative observation or exhausts the

tour, it ends the traversal and returns to the start location. RAId then replans a new tour,

and the whole process repeats.

Returning to the start location simplifies the analysis in Section 3.4. However, it

is not required in practice. In our experiments in Section 3.5, the robot starts the new

traversal from its current location without returning. Figure 3.1 shows an example run

of RAId.

3.4 Analysis

The analysis of RAId focuses two main issues:
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• the total probability of hypotheses eliminated in each traversal, and

• the associated travel cost.

We proceed in two main steps. In the first step, we analyze a variant of IPP, called rooted

IPP, in which the robot must return to the start location r in the end. Our main idea is to

show that each group Steiner tour computed enables the robot to either prune inconsis-

tent hypotheses with probability at least 0.5 or identify the true hypothesis (Lemma 4).

Furthermore, the robot traversing such a tour incurs a cost not more than twice the

expected cost of an optimal policy (Lemmas 5 and 6). By bounding the number of

recursive calls to RAId, we then obtain a result on its performance for rooted IPP (The-

orem 8). In the second step, we exploit this result to bound the performance of RAId

for IPP itself (Theorem 10).

We consider only rooted IPP for Lemma 4–7 and Theorem 8.

Lemma 4. Let H 0 ⇢ H be the set of remaining hypotheses after a single recursive call

to RAId. Then, either p(H 0
)  0.5 or |H 0| = 1.

Proof. In each recursive call to RAId, the robot follows a group Steiner tour ⌧ . If it

receives an observation o 2 ⌦x at some location x on ⌧ , then the robot returns to r

immediately (Algorithm 1, line 19) and p(H 0
) = p(Hx,o)  0.5 by definition of ⌦x.

Otherwise, the robot visits every location x on ⌧ and receives at every x an observation

o⇤x 62 ⌦x. Consider x 2 Xh for some x on ⌧ and h 2 H . If the robot receives the

observation o⇤x 62 ⌦x at x, then h is inconsistent with o⇤x by the definition of Xh and is

pruned. Since the target of our group Steiner problem is ⌫, the pruned hypotheses has

probability at least ⌫, and the remaining hypothesis set H 0 has probability at most 1�⌫.

If there is a single hypothesis h⇤ with p(h⇤) � 0.5, then h⇤ must be the only remaining

hypothesis. Otherwise, p(H 0
)  1� ⌫  0.5.

Next, we bound the edge-weight of an optimal group Steiner tour.

Lemma 5. Let ⇡⇤ be an optimal policy for a rooted IPP problem I. Let W ⇤ be the total

edge-weight of an optimal group Steiner tour for I. Then W ⇤  2C(⇡⇤).

Proof. First, we extract a path � from an optimal policy tree ⇡⇤ and use � to construct

a feasible, but not necessarily optimal solution �
r

to the group Steiner problem for I.
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Next, we show that the optimal policy traverses � with probability at least 0.5. This

allows us to bound the total edge-weight of �
r

and thus that of an optimal group Steiner

tour by the cost of the optimal policy.

Let (r, x
1

, x
2

, . . . , r) be a path in the optimal policy tree ⇡⇤ such that every edge

following a node xi in the path is labeled with the most likely observation o⇤xi
=

argmaxo2O p(Hxi,o). For any subpath �, H� = {h 2 H | Zxi(h, o
⇤
xi
) = 1 for all xi in �}

is the set of hypotheses consistent with the observations received at all locations in

�. Let � = (r, x
1

, x
2

, . . . , xs) be the shortest subpath of (r, x
1

, x
2

, . . . , r) such that

p(H�)  1� ⌫, where the length of � is measured in the number of nodes in the path.

We now show that the tour �
r

= (r, x
1

, x
2

. . . , xs, r) is a feasible solution to the

group Steiner tour problem. The key issue is to determine the total group-weight of

X , the collection of groups covered by x
1

, x
2

, . . . , xs. At each location xi on �, the

robot receives an observation o⇤xi
. If a hypothesis h 2 H is inconsistent with o⇤xi

,

then h must be consistent with some o 6= o⇤xi
, i.e., Zxi(h, o) = 1 for o 2 ⌦xi . Then

xi 2 Xh by definition. In other words, xi covers Xh if h is inconsistent with o⇤xi
at xi,

and X = {Xh | Zxi(h, o
⇤
xi
) = 0 for some xi in �}. Since p(H�)  1 � ⌫, the total

group-weight of X must be least ⌫. This proves that �
r

is a feasible group Steiner tour.

Now consider the subpath �0 = (r, x
1

, x
2

, . . . , xs�1

). We have p(H�0
) > 1� ⌫, as

� is the shortest path with p(H�)  1 � ⌫. To bound the expected cost of the optimal

policy ⇡⇤,

C(⇡⇤) =
X

h2H
⇢(h)C(⇡⇤, h) �

X

h2H�0

⇢(h)C(⇡⇤, h).

H�0 can be interpreted as the set of hypotheses that visit x
1

, . . . , xs but not necessarily

receive o⇤xs
at xs. Hence for any h 2 H�0 , the path that leads to h in the optimal policy

tree ⇡⇤ must contain � as a subpath. Thus,

C(⇡⇤) �
X

h2H�0

⇢(h)w(�
r

) � (1� ⌫)w(�
r

) � (1� ⌫)W ⇤,

where w(�
r

) is the total edge-weight of the tour �
r

. Rearranging the inequality above,

we get

W ⇤  1

1� ⌫ · C(⇡⇤)  2C(⇡⇤).
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Lemma 6. If RAId computes an optimal group Steiner tour, then the robot travels a

path with cost at most 2C(⇡⇤) in each recursive step of RAId.

Proof. In each recursive step of RAId, the robot travels a path whose cost is bounded by

the total edge-weight of the group Steiner tour computed. The conclusion then follows

directly from Lemma 5.

Before moving to our first theorem, we need to connect a rooted IPP problem to its

subproblems, as RAId is recursive.

Lemma 7. Suppose that ⇡⇤ is an optimal policy for a rooted IPP problem I with hy-

pothesis set H and prior probability distribution ⇢. Let {H
1

, H
2

, . . . , Hn} be a par-

tition of H , and let ⇡⇤i be an optimal policy for the subproblem Ii with hypothesis set

Hi and prior probability distribution ⇢i, where ⇢i(h) = ⇢(h)/⇢(Hi) for each h 2 Hi.

Then we have
n
X

i=1

⇢(Hi)C(⇡⇤i )  C(⇡⇤).

Proof. For each subproblem Ii, we can construct a feasible policy ⇡i for Ii from the

optimal policy ⇡⇤ for I. Consider the policy tree ⇡⇤. Every path from the root of ⇡⇤ to

a leaf uniquely identifies a hypothesis h 2 H . So we choose the policy tree ⇡i as the

subtree of ⇡⇤ that consists of all the paths leading to hypotheses in Hi. Clearly ⇡i is

feasible, as it identifies all the relevant hypotheses. Then,

n
X

i=1

⇢(Hi)C(⇡⇤i ) 
n
X

i=1

⇢(Hi)C(⇡i)


n
X

i=1

⇢(Hi)
X

h2Hi

⇢(h)

⇢(Hi)
· C(⇡i, h)

=

X

h2H
⇢(h)C(⇡⇤, h) = C(⇡⇤).

We are now ready to bound the performance of RAId for rooted IPP, under an

assumption which we relax later.

Theorem 8. Let ⇡ denote the policy that RAId computes for a rooted IPP problem. If
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RAId computes an optimal group Steiner tour in each step, then

C(⇡)  2 (log (1/�) + 1)C(⇡⇤),

where C(⇡) is the expected cost of RAId and � = minh2H ⇢(h).

Proof. By Lemma 4, if a recursive step of RAId does not terminate, it reduces the

probability of consistent hypotheses by a factor of 1/2. For any h 2 H , the number of

recursive steps required is then at most log(1/�) + 1.

We now complete the proof by induction on the number of recursive calls to RAId.

For the base case of k = 1 call, C(⇡)  2C(⇡⇤) by Lemma 6. Assume that C(⇡) 

2(k�1)C(⇡⇤) when there are at most k�1 recursive calls. Now consider the induction

step of k calls. The first recursive call partitions the hypothesis set H into a collection of

mutually exclusive subsets, H
1

, H
2

, . . . , Hn. Let Ii be the subproblem with hypothesis

set Hi and optimal policy ⇡⇤i , for i = 1, 2, . . . , n. After the first recursive call, it takes

at most k � 1 additional calls for each Ii. In the first call, the robot incurs a cost at

most 2C(⇡⇤) by Lemma 6. For each Ii, the robot incurs a cost at most 2(k � 1)C(⇡⇤i )

in the remaining k � 1 calls, by the induction hypothesis. Putting together this with

Lemma 7, we conclude that the robot incurs a total cost of at most 2kC(⇡⇤) when there

are k calls.

Finally, we use Theorem 8 to analyze the performance of RAId on IPP rather than

rooted IPP. To start, we argue that a rooted IPP solution provides a good approximate

solution for IPP.

Lemma 9. An ↵-approximation algorithm for rooted IPP is a 2↵-approximation algo-

rithm for IPP.

Proof. Let C⇤ and C⇤
r be the expected cost of an optimal policy for an IPP problem I

and for a corresponding rooted IPP problem Ir, respectively. Since any policy for I can

be turned into a policy for Ir by retracing the solution path back to the start location,

we have C⇤
r  2C⇤. An ↵-approximation algorithm for rooted IPP computes a policy

⇡ for Ir with expected cost Cr(⇡)  ↵C⇤
r . It then follows that Cr(⇡)  ↵C⇤

r  2↵C⇤

and this algorithm provides a 2↵-approximation to the optimal solution of I.
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To obtain our main result, we need to address two remaining issues. First, Theo-

rem 8 assumes that RAId computes an optimal group Steiner tour. This is, however, not

achievable in polynomial time under standard assumptions. RAId uses a polynomial-

time greedy algorithm (Calinescu and Zelikovsky, 2005) that computes a group Steiner

tree T with a guaranteed approximation factor. It then applies Christofides’ metric

TSP algorithm (Christofides, 1976) to the vertex set of T and generates a tour, instead

of traversing T directly, because Christofides algorithm provides a guaranteed 3/2-

approximation to the optimal TSP tour. Second, the greedy group Steiner approxima-

tion algorithm assumes integer group-weights. To apply this algorithm and obtain the

approximation bound, we assume that the prior probabilities are coded in non-negative

integers. We remove the renormalization step (Algorithm 1, line 8) and make other mi-

nor changes accordingly. Normalization of probabilities is not necessary for RAId. It

only simplifies presentation.

Theorem 10. Let I = (X, d,H, ⇢, O,Z, r) be an IPP problem. Assume that the prior

probability distribution ⇢ is represented as non-negative integers with
P

h2H ⇢(h) = P .

Let � = minh2H ⇢(h)/P . For any constant ✏ > 0, RAId computes a policy ⇡ for I in

polynomial time such that C(⇡) 2 O((log|X|)2+✏ logP log(1/�)C(⇡⇤)).

Proof. In the group Steiner problem for I, the vertex set is X . From Theorem 3, the

greedy approximation in RAId computes an ↵-approximation T to the optimal group

Steiner tree T ⇤, with ↵ 2 O((log|X|)2+✏ logP ). The total edge-weight of an optimal

group Steiner tree, w(T ⇤
), must be less than that of an optimal group Steiner tour, W ⇤,

as we can remove any edge from a tour and turn it into a tree. Thus, w(T )  ↵w(T ⇤
) 

↵W ⇤. Applying Christofides’ metric TSP to the vertices of T produces a tour ⌧ , which

has weight w(⌧)  2w(T ), using an argument similar to that in (Christofides, 1976). It

then follows that w(⌧)  2↵W ⇤. In other words, RAId obtains a 2↵-approximation to

the optimal group Steiner tour. Putting this together with Theorem 8 and Lemma 9, we

get the desired approximation bound. The algorithm clearly runs in polynomial time.

The computational bottleneck of RAId lies in the recursive calls to GROUPSTEINERTOUR.

RAId makes at most log 1/� calls to GROUPSTEINERTOUR. The running time of

GROUPSTEINERTOUR is dominated by the greedy group Steiner procedure, which has

running time O((|X|+ |H|)(b · � · logP ·� · log
1+� b)

�
), where � = O

⇣

log |X|
✏ log log |X|

⌘

,
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Table 3.1: The main characteristics of algorithms under comparison.

RAId IG, IG-Cost IG-Cost-2 NAId-Replan

Nonmyopic yes no finite horizon yes
Adaptive yes replanning replanning replanning

� = O(log |X|), 1/� = log |X|, and b = �(1 + 1/�)(1 + �) (Calinescu and Ze-

likovsky, 2005). Clearly RAId runs in polynomial time.

IPP is an NP-hard optimization problem. RAId provides a polylogarithmic approx-

imation algorithm that runs in polynomial time. The computational bottleneck of RAId

lies in the recursive calls to GROUPSTEINERTOUR, which computes an approximate

solution to the group Steiner problem. The running time of GROUPSTEINERTOUR is

roughly linear in the number of hypotheses and the number of locations.

3.5 Experiments in Simulation

3.5.1 Setup

For comparison, we implemented three types of algorithms: greedy algorithms, finite-

horizon lookahead search, and submodular optimization. They represent the classes of

methods available from existing literature we reviewed in Section 3.2. The experiments

focus on performance comparison of two main differentiating characteristics of these

algorithms: planning horizon and adaptivity. See Table 3.1 for a summary and the

subsections below for detailed explanation.

Greedy Algorithms

We first describe two greedy algorithms, which are simple and widely used in practice:

information gain (IG) and information gain with cost (IG-Cost). Let Q denote the

random variable representing the true hypothesis. Suppose that the robot is currently

located at x. If it receives observation o at the next location x0, the information gain

is H(Q) � H(Q|x0, o), where H denotes the Shannon entropy. Entropy measures the

uncertainty in a random variable. Reducing entropy is the same as gaining information.
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IG always chooses the next location x0 to maximize the expected information gain

fIG(x
0
) =

X

h2H

X

o2O

⇣

H(Q)�H(Q | x0, o)
⌘

p(o|x0, h)p(h).

in a greedy manner. When there are only two observations, IG is equivalent to general-

ized binary search (Zheng, Rish, and Beygelzimer, 2005).

To account for robot movement cost, IGC maximizes information gain per unit

movement cost

fIGC(x
0
) =

X

h2H

X

o2O

H(Q)�H(Q | x0, o)
d(x, x0)

p(o|x0, h)p(h),

again in a greedy manner.

Greedy algorithms are myopic: they do not reason over the long term. They achieve

limited adaptivity by replanning in each step.

Finite-Horizon Lookahead Search

To alleviate the weakness in greedy algorithms, one idea is to search over a finite horizon

k for a depth-k policy tree (Figure 2.1) with the best expected heuristic value (Hollinger,

S. Singh, et al., 2009). We use IG-Cost as the heuristic and call the resulting algorithm

IG-Cost-k. The original greedy IG-Cost algorithm corresponds to IG-Cost-1. IG-Cost-

k replans in each step. It performs a lookahead search for the best policy tree, and the

robot executes the first step of the chosen policy. The process then repeats. Since each

policy tree node chooses among |X| sensing locations and branches on |O| observa-

tions, there are O(|X|k|O|k�1

) policy trees of depth k. Clearly, with large |X| and |O|,

k must be kept small for the finite-horizon search to be practical. Some of the tasks

in our experiments can have up to 170 sensing locations and 22 observations at each

location. We had to set k = 2 to keep the total running time reasonable.

The planning horizon IG-Cost-k is longer than that of its greedy counterpart, but is

bounded by the finite constant k a priori. IG-Cost-k achieves limited adaptivity through

replanning, just as the greedy algorithms.
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Submodular Optimization

Submodular optimization is another interesting idea for IPP, e.g., the NAIVE algorithm

(Section 3.2). NAIVE requires a submodular function with the locality property for

guaranteed performance. It is unclear how to construct such functions for the tasks in

our experiments. Instead, we use an expected version space reduction function to search

for a near-optimal path �:

fVSR(�) = 1�
X

h2H

�

p(H�,h)� p(h)
�

p(h),

where H�,h denotes the set of hypotheses with the same observation as h at every loca-

tion on �. Intuitively, maximizing fVSR results in a path that maximally reduces the set

of confounding hypotheses. If a path � always eliminates all confounding hypotheses,

then p(H�,h) = p(h) for all h 2 H , and fVSR(�) = 1. The function fVSR is submodular,

but may not satisfy the locality property required by NAIVE.

Finding a minimum-cost path � such that f
vsr

(�) = 1 is a minimum-cost submodu-

lar coverage problem. To solve it, we use the greedy polymatroid Steiner algorithm (Ca-

linescu and Zelikovsky, 2005). Although both submodular optimization and RAId make

use of the polymatroid Steiner algorithm (group Steiner algorithm is a special case),

they differ in their objectives. Submodular optimization searches for an open-loop plan,

i.e., a path that maximizes fVSR. It does not consider future observations during plan-

ning and is nonadaptive.

There are two ways to execute the computed path. One is to have the robot traverse

every location on the path until the end. Alternatively, NAIVE replans in every step. It

plans a path, but the robot visits only the first location on the path. The process then

repeats. We follow NAIVE’s approach: it is more adaptive, but has a higher computa-

tional cost. We call the resulting algorithm nonadaptive hypothesis identification with

replanning (NAId-Replan).

An alternative way of solving the minimum-cost submodular coverage problem is

the recursive greedy algorithm (Chekuri and Pal, 2005) used in A. Singh, Krause, and

Kaiser (2009). We implemented this algorithm, but found it too slow to be practical for

our tasks.
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In summary, NAId-Replan is nonmyopic. It shares the same basic idea as RAId,

but performs nonadaptive planning. It achieves limited adaptivity through replanning.

NAId-Replan is also related to NAIVE. It performs submodular optimization, but the

submodular function used does not possess the locality property required by NAIVE for

theoretical performance guarantee.

We implemented all algorithms in the Clojure language and compared their perfor-

mance on a set of tasks in simulation. For each task, we ran the algorithms on every

hypothesis in H and calculated the average policy cost weighted by the prior probabili-

ties. The running times were obtained on a computer server with an Intel Xeon 2.4GHz

processor.

3.5.2 Results

Overall, RAId obtains the best or nearly the best policies in all tasks in our experiments,

according to their average policy costs (Table 3.2). The other algorithms may perform

well in some tasks, but very poorly in others. While RAId has performance guarantees,

it will be not surprising for greedy algorithm to outperform RAId on some problems

due to the approximation factors in the performance bound. In general, it is difficult to

tell the effectiveness of an algorithm in advance. As IG-Cost is easy to implement, one

could try it as a first approach for the problem of interest.

While the average policy cost is our main performance measure, we also report

the total planning time for completeness (Table 3.3). RAId is slower that the greedy

algorithms. This is expected, as greedy algorithms perform only short-term planning.

RAId are much faster than IG-Cost-2 and NAId-Replan, which both perform longer-

term planning.

Although our implementation is not optimized as a result of the implementation

language, the running times, which are on the order of seconds for these moderate-scale

tasks, are useful for a range of online robot planning tasks.

2-Star Graph

We start with a simple example to gain some understanding of the key issues. There are

a total of 2n possible hypotheses H = {0, 1, 2, . . . , 2n � 1}, with equal probability of
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Table 3.2: Average cost of a computed policy over all hypotheses.

Cost
RAId IG IG-Cost IG-Cost-2 NAId-Replan

2-Star (d=10, n=5) 19.0 25.3 32.9 33.9 19.0
2-Star (d=10, n=6) 21.0 27.9 22.3 52.5 21.0
2-Star (d=53, n=6) 65.0 102.1 62.0 68.9 78.8
2-Star (d=53, n=7) 66.0 102.4 127.4 118.5 66.0
2-Star (d=53, n=8) 68.0 100.9 257.7 258.7 68.0
Adaptive 2-Star 73.0 84.3 127.8 132.2 136.2
Grasping 562.8 2822.9 839.9 775.1 597.3
UAV Search 83.6 97.2 142.7 133.6 151.4

Table 3.3: Average total planning time, excluding the time for plan execution.

Time (seconds)
RAId IG IG-Cost IG-Cost-2 NAId-Replan

2-Star (d=10, n=5) 0.5 0.0 0.0 1.6 7.8
2-Star (d=10, n=6) 1.4 0.1 0.1 15.3 68.6
2-Star (d=53, n=6) 1.3 0.1 0.8 16.9 1045.4
2-Star (d=53, n=7) 5.2 0.4 5.6 3.3 684.2
2-Star (d=53, n=8) 22.6 1.4 3.4 4305.5 8415.7
Adaptive 2-Star 3.3 0.2 3.4 417.5 10290.6
Grasping 22.9 2.4 4.1 88.7 4523.5
UAV Search 25.5 0.5 2.5 157.4 16753.5
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Figure 3.2: The 2-star graph.
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Figure 3.3: Grasp the cup with a handle. The figure shows the side view (left) and the
top view (right) of the same robot configuration with the robot hand on the right side of
the table.

occurring. Each hypothesis h 2 H is coded in its binary representation.

To identify the true hypothesis, the robot visits the nodes in a graph consisting

of two connected stars (Figure 3.2). One star has center bn and n peripheral nodes

b
0

, b
2

, . . . , bn�1

. The other star has center s
2

n and 2

n peripheral nodes s
0

, s
1

, . . . , s
2

n�1

.

There is an edge connecting the two centers nodes, with edge-weight d. The weight of

an edge between a center and a connected peripheral node is 1. The set X contains only

the peripheral nodes and not the two centers, bn and s
2

n , which serve only the purpose

of connecting the peripheral nodes. The robot is initially located at s
2

n .

At each node bi in X , the robot receives observation 1 if the ith bit of the true

hypothesis h is 1, and receives 0 otherwise. At each node si in X , the robot receives

observation 1 if h = i, and receives 0 otherwise. Clearly the b-nodes provide much more

informative observations than the s-nodes. Visiting b-nodes is similar to binary search,

while visiting s-nodes is similar to linear search. Since the robot starts at s
2

n , the main

issue is to decide whether to pay the high cost of traversing the inter-star edge in order

to benefit from the more informative observations at the b-nodes. Unfortunately, even

in this very simple example, the issue cannot be resolved locally in a greedy manner.

In this experiment, the two nonmyopic algorithms, RAId and NAId-Replan, consis-

tently obtain good policies (Table 3.2).

The greedy algorithms do not perform as well. Curiously IG sometimes outperforms

IG-Cost. This is, however, coincidence. By completely ignoring the movement cost, IG
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naturally moves to the more informative b-nodes. IG-Cost reasons about cost, but it is

unable to decide optimally whether to jump to b-nodes or stay on s-nodes. In the two

instances with d = 10, the optimal policy stays with the s-nodes when n = 5; it jumps

to the b-nodes when n = 6. IG-Cost always moves to the b-nodes, simply because the

movement cost is low. Hence, IG-Cost underperforms when n = 5. In the instances

with d = 53, IG-Cost is again misled by the greedy local analysis and decides to stay

at the s-nodes, because it is cheaper to reach them. This is optimal when n = 6, but

the performance degrades quickly when n = 7 or 8. In fact, IG-Cost’s regret, measured

against the optimal policy, increases exponentially, as n grows.

Compared with the greedy algorithms, IG-Cost-2 has longer planning horizon. Al-

though it takes more computational time, IG-Cost-2 fails to obtain better policies. It

seems that a horizon of 2 is still insufficient for the tasks here.

It is somewhat surprising that the optimal policies for our 2-star graph instances are

in fact nonadaptive. Intuitively the optimal policy would either (i) always stay on the

s-nodes or (ii) jump to the b-nodes and stay there, depending on the d and n values,

until the true hypothesis is identified. The traversal does not depend on the observations

received, and adaptivity is not required. This is confirmed by examining the results

computed by RAId. The nonadaptive optimal policies explain why RAId and NAId-

Replan achieve comparable performance.

Adaptive 2-Star Graph

To better understand the issue of adaptivity, let us now modify the 2-star graph so that

the optimal policy is adaptive. For i = 0, 1, . . . , n� 1, replace each peripheral node bi

in the 2-star graph by m copies, bi,0, bi,1, . . . bi,m�1

, each connected to the center bn by

an edge of weight 1. For each i, only one of the m copies is informative. A function

g(h, i) specifies the index of the informative node for every h 2 H and i 2 [0, n � 1].

At an informative node bi,j , the observation provides two values: the binary value of

the ith bit of h and the index of the informative node for the next bit, g(h, i+ 1). At an

uninformative node, the observation provides no information. With this modification, an

optimal policy must locate the informative b-nodes based on the observation received.

With suitable d and n values, an optimal policy visits b
0,0, b0,1, b0,2, . . . until reach-
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ing the first informative node. It then uses the information from the received observation

to move to the next informative node and so on. This is clearly an adaptive policy. A

nonadaptive policy cannot change its behavior based on the observation received and is

suboptimal.

This example is constructed, but not necessarily artificial. The basic idea is that

each informative node contains a “map” that points to the next location of interest.

In the experiment, d = 53, n = 7, and m = 5. The function g is randomly

generated, but remains fixed for all runs. RAId significantly outperforms all of IG-

Cost, IG-Cost-2, and NAId-Replan. Although NAId-Replan achieves some level of

adaptivity through replanning, it is inadequate.

Grasping a Cup

There are two cups on the table, one with a handle and one without. A robot arm needs

to lift the cup with a handle by grasping on the handle (Figure 3.3). Using an external

camera placed on the left side of the table, the robot can accurately sense the positions

of the two cups. However, due to occlusion, it is uncertain which cup has a handle and

where the handle is.

Each hypothesis (, ✓) has two parameters:  is a binary value that indicates which

cup has a handle, and ✓ is the cup’s orientation, which determines the handle location.

The handle faces away from the external camera. So those hypotheses have higher prior

probabilities.

The robot arm has a single-beam laser range finder mounted at its the wrist. The

range finder reports the (discretized) distance to the nearest object in the direction that

the range finder is facing.

We sample seven wrist positions x
1

, x
2

, . . . , x
7

around the cups (Figure 3.3). At

each position, the robot can pan the range finder in the plane parallel to the tabletop.

Panning by a fixed amount incurs a cost of 4. Moving the wrist from one position to

another incurs a higher cost: the distance between the current position and the target

position, scaled up by a factor of 15. The robot arm starts at wrist position x
1

on the

left side of the table.

RAId achieves the lowest cost in this experiments. Under RAId, the robot moves
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progressively from x
1

to x
7

and pans the range finder at each position to take observa-

tions. This is a good strategy, because it avoids excessive robot arm movement, which

incurs high cost.

IG performs very poorly, because it completely ignores the difference in action

costs and moves the robot arm excessively between the various wrist positions in order

to seek sometimes minor additional information gain. IG-Cost does not perform well

either. Under IG-Cost, the robot moves to x
6

in the first step, because it expects to see

the handle from there with high probability according to the prior. However, with small

probability, the cup is oriented so that the handle is not visible from x
6

. In this case,

the robot must pay a high cost to travel back to the other positions. On the average, the

aggressive move to x
6

does not pay off. This example clearly shows the weakness of

greedy strategies, which do not plan multiple steps ahead.

IG-Cost-2 achieves lower cost than IG-Cost, because of its slightly longer planning

horizon, but it is substantially worse than RAId.

NAId-Replan achieves comparable, but slightly worse result than RAId. NAId-

Replan is nonmyopic. It is also adaptive, to a limited extent. We suspect that similar to

the 2-star graph, adaptivity has limited benefit for this task, but there is no easy way to

verify this.

UAV Search

This is the example described in Section 2.1. One may think that the optimal strategy

is for the UAV to rise to the high altitude, search and locate the target in a 3 ⇥ 3 area,

and finally descend to the low altitude in order to localize the target precisely. RAId,

however, does not always do this, because the cost of descending is high. Figure 2.2

shows a sample run of RAId. After identifying the 3⇥3 area, the UAV stays at the high

altitude. It moves around in the neighborhood and fuses the observations received to

localize the target precisely without descending.

IG-Cost does not perform well, again because it does not plan multiple steps ahead.

It fails to recognize that although the cost of climbing to the high altitude seems high in

one step, the cost can be amortized over many future high-altitude observations, which

are more informative. Under IG-Cost, the UAV always stays on the low altitude and
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does not climb up. The result does not improve much even with 2-step lookahead in

IG-Cost-2. Under IG-Cost-2, the UAV climbs up only occasionally in some instances.

NAId-Replan does not perform well, either. Replanning does not provide sufficient

adaptivity for this task.

3.6 Informative Path Planning with Noisy Observation

We have considered adaptive information path planning with noiseless observations,

i.e.there is only one possible observation outcome given the true hypothesis at each lo-

cation. This formulation is inadequate to model many real-world problems where there

is uncertainty in sensor measurements. When we have noisy observations, there might

be several possible observation outcomes. In this section, we give a simple extension to

RAId to handle noisy observations.

RAId maintains a set of consistent hypotheses and recursively remove hypotheses

that are inconsistent with new observation made when the robot moves to a new sensing

location from this set. As a consequence of having noisy observations, a hypothesis

may have multiple observation outcomes that are consistent with it. Sensing opera-

tions cannot be guaranteed to remove at least one hypothesis from the set of consistent

hypothesis. Hence, we cannot apply RAId directly to IPP with noisy observations.

Instead of working with sets of consistent hypotheses, we need to work with beliefs

that are probability distributions over the hypothesis space. After the robot move to a

sensing location x and receives a new observation o, we can update the probabilities of

hypotheses using Bayes rule:

b(h) ⌘Zx(h, o)b(h) for every h 2 H,

where ⌘ is a normalization constant.

There are works on IPP with noisy observations (Hollinger et al., 2012; Hollinger,

Mitra, and Sukhatme, 2011; A. Singh, Krause, and Kaiser, 2009). However, as dis-

cussed in chapter 3, they are either nonadaptive or they do not provide any theoretical

performance guarantee.
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3.6.1 Sampling Deterministic Instance

We describe a simple extension, Sampled-RAId, to handle noisy observations. Our

strategy is first to create a noiseless IPP problem I 0
= (X, d,H 0, ⇢0, O,Z 0, r) from the

original noisy one I = (X, d,H, ⇢, O,Z, r), by associating a hypothesis with obser-

vations. For noiseless observations, each hypothesis h has a unique observation vector

(o
1

, o
2

, . . . , o|X|), where Zxi(h, oxi) = 1 for each location xi 2 X . This one-to-one re-

lationship allows us to represent a hypothesis by its associated observation vector. The

hypothesis space H is then simply a set of points in O|X|. For noisy observations, the

one-to-one relationship no longer holds, but the intuition of associating hypotheses with

their observation vectors remains valid.

Formally we set H 0
= O|X|. For a hypothesis h0 = (o

1

, o
2

, . . . , o|X|) in H 0, the

prior probability of h0 is the probability of observing h0 if the robot visits all loca-

tions in X: ⇢0(h0) =

P

h2H ⇢(h)
Q|X|

i=1

Zxi(h, oi). Finally, the observation function

Z 0
xi
(h0, o) = 1 if o = oi.

Sampled-RAId applies RAId to I 0 with three changes:

• For computational efficiency, we sample a set of n hypotheses from H 0 in each

recursive step of RAId and use it an approximate representation of H 0.

• Although I is transformed into I 0, our goal is still to acquire information on

the original hypothesis space H . We maintain a probability distribution over H .

Initially, b = ⇢. Because of noise, we cannot use an observation to eliminate a

hypothesis h 2 H , but we can update their probabilities using the Bayes rule.

Suppose that the robot receives a new observation o at location x. We replace

Algorithm 1, line 15 with

b(h) ⌘Zx(h, o)b(h) for every h 2 H,

where ⌘ is a normalization constant.

• Finally, we terminate RAId if the most likely hypothesis h⇤ = argmaxh2H b(h)

has probability greater than a given constant � 2 (0, 1]).

Sampled-RAId is shown in Algorithm 2.
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Algorithm 2 Sampled-RAId
1: procedure Sampled-RAId(X, d,H, ⇢, O,Z, r)
2: h⇤ = argmaxh2H ⇢(h)
3: if ⇢(h⇤) � threshold then
4: return h⇤.
5: else
6: Create a new noiseless IPP problem (X, d,H 0, ⇢0, O,Z 0, r) by sampling n ob-

servation vectors from O|X|

7: ⌫  min

�

0.5, 1�maxh2H0 ⇢0(h)
�

.
8: ⌧  GROUPSTEINERTOUR(X, X ⇥X, d, {Xh}h2H0 , ⇢0, ⌫),

where ⌧ = (x
0

, x
1

, . . . , xt) and x
0

= xt = r.

9: (b, r) EXECUTEPLAN(⌧, ⇢, r). that
P

h2H ⇢(h) = 1.
10: RAId(X, d,H, b,O,Z, r)

11: procedure EXECUTEPLAN(⌧, b, r)
12: i 1.
13: repeat
14: r  xi.
15: Visit location r and receive observation o.
16: b(h)  ⌘Zx(h, o)b(h) for every h 2 H , where ⌘ is a normalization con-

stant.
17: i i+ 1.
18: until o 2 ⌦r or i = t.
19: r  xt.
20: Move to location r.
21: return (b, r).

Table 3.4: The performance of Sampled-RAId on the UAV Search task with noisy ob-
servations. Noise level � means that the high-altitude sensor reports a false observation
with probability �, and n is the number of samples.

Noise Cost
n = 128 n = 192 n = 320

0.01 110.1 104.6 106.1
0.05 131.9 135.5 131.3

Under the assumption of noiseless observations, Noisy RAId reverts back RAId. In

the first change, H 0
= H . We do not need to sample. In the second change, Zx(h, o) is

either 1 or 0. Bayesian update is then equivalent to hypothesis elimination. In the third

change, we set � = 1.

We performed preliminary experiments to evaluate this idea on the UAV Search

task (Section 3.5.2) with two different noise levels for the high-altitude sensor. The

termination condition � was set to 0.99. We evaluated multiple settings with different

numbers of samples. For each setting, we run one trial for every hypothesis h 2 H and

averaged performance statistics. The results, reported in Table 3.4 and Table 3.5, are
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Table 3.5: The average total planning time of Noisy RAId on UAV Search with noisy
observations.

Noise Time (seconds)
n = 128 n = 192 n = 320

0.01 20.8 28.8 40.7
0.05 44.1 52.1 55.7

promising. Although the size of H 0 is 2128, the algorithm identifies the true hypothesis

correctly for every trial with only a few hundred samples in all settings. In other words,

it always identifies the correct hypothesis according to the ground truth. In general, the

robot’s travel cost increases with noisy observations, as expected. With more samples,

we expect the algorithm to compute a better policy with lower cost. However, the trend

in the data is not definitive. Either a small number of samples is sufficient in this case

to produce a near-optimal policy or a much larger number of samples is needed for

significant improvement. Further investigation is required. We provide more detailed

comparison between Sampled-RAId and other algorithms in Section 4.6.3.

While Sampled-RAId show promising results in preliminary evaluation, it is op-

timizing the wrong objective, and therefore it does not have performance guarantee.

Sampled-RAId seeks to identify the sampled noisy observation vector instead of the

true underlying hypothesis that generates it. The set of sensing locations that is good

for differentiating those sampled observation vectors may not be not the same set that is

good for differentiating the true hypothesis. Furthermore, we can only afford to sample

and process a small set of observation vectors compared to the set of possible observa-

tion vectors, which could be exponential in number. Even though this problem can be

partially mitigated by re-sampling them at each recursive step, it could be sub-optimal

because the algorithm is designed to “overfit” to the noise from small amount of train-

ing data (sampled observation vectors). In the next chapter, we to provide an algorithm

that achieves near-optimal performance using the same idea from RAId.

3.7 Conclusion

RAId is a new algorithm for the NP-hard informative path planning problem. We show

that it computes a polylogarithmic approximation to the optimal solution in polynomial

time, when the robot travels in a metric space. Furthermore, our experiments demon-
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strate that RAId is effective in practice and provides good approximate solutions for

several distinct robot planning tasks. We also extend RAId to handle noisy observation

in Sampled-RAId. Unlike RAId, Sampled-RAId does not have any theoretical perfor-

mance guarantee.
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Chapter 4

Adaptive Stochastic Optimization

4.1 Introduction

Combinatorial optimization problems are hard in general. Fortunately, many real world

problems have submodular and monotone objective functions which make them easy

to approximate. Adaptive stochastic optimization extends deterministic combinatorial

optimization to stochastic settings where we model the unknown part of the world as a

random variable. Adaptive submodularity (Golovin and Krause, 2011) elegantly gener-

alizes submodularity to stochastic settings for adaptive stochastic optimization problem

on subsets but it is unclear if adaptive submodularity is sufficient for an efficient approx-

imation algorithm to exist for the adaptive stochastic optimization problem on paths.

We propose a new condition, called the marginal likelihood rate bound condition

for pointwise submodular functions, and propose an algorithm called Recursive Adap-

tive Coverage (RAC) to give near optimal solutions to adaptive stochastic optimization

problems (on both subsets and paths) that optimize these functions. RAC extends RAId

from Chapter 3 from identifying hypothesis to achieving general goals that can be mod-

eled by functions. The marginal likelihood rate bound condition does not imply adaptive

submodularity and vice versa. Even if we restrict our problems to adaptive stochastic

optimization on subsets, the marginal likelihood rate bound enlarges the class of prob-

lems that can be efficiently approximated.

There are natural problems that do not satisfy marginal likelihood rate bound con-

diton and adaptive submodular. We propose a more general condition, the marginal
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likelihood bound condition for these problems. In fact, all discrete finite pointwise

submodular and monotone function can be made to satisfy marginal likelihood bound.

We give a modified version of RAC that efficiently computes an approximation for

all pointwise submodular function, where the quality of approximation depends on a

problem-specific constant used to satisfy marginal likelihood bound. Figure 4.1 shows

the relationship between properties of pointwise submodular functions.

Marginal
likelihood
rate bound

Adaptive
Submodular

Marginal likelihood bound

Figure 4.1: Relationship between properties of pointwise submodular functions

Informally, the marginal likelihood rate bound and the marginal likelihood bound

conditions imply that the worst case objective value should increase when uncertainty

decreases. Marginal likelihood rate bound is a stricter condition that restricts the worst

case value to increase at the same “rate” as uncertainty decreases. We quantify uncer-

tainty using the marginal likelihood of a history, which reflects the uncertainty over the

unknown environment state. At the beginning when the history is empty, all scenarios

are possible and likelihood of the empty history is 1. As we visit new locations and

receive observations, the history grows and its marginal likelihood decreases. At the

same time the scenarios that are inconsistent with the history becomes impossible. The

sum of probabilities of scenarios that are still possible is equal to marginal likelihood of

history. Hence, we reduce the possibilities of scenarios and thus uncertainty when we

decrease the likelihood of history.

The previous chapter left the informative path planning problem with noisy obser-

vations open. We apply results from this chapter and obtain near-optimal solution to it.
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RAC gives promising results on noisy variant of two IPP tasks from Chapter 3 when

evaluated in simulation.

4.2 Related Work

Submodular set function optimization encompasses many hard combinatorial optimiza-

tion problems and has many applications in operation research and decision making. A

simple “greedy” heuristic was shown to give good approximation bound(Nemhauser,

Wolsey, and Fisher, 1978) on submodular monotone set functions. Recent works have

incorporate stochasticity to submodular optimization (Asadpour, Nazerzadeh, and Saberi,

2008; Golovin and Krause, 2011). Submodular optimization has been extend to sub-

modular orienteering in (Calinescu and Zelikovsky, 2005).

Our work build on progress in submodular orienteering to solve the adaptive stochas-

tic optimization problem. Our RAC algorithm has similar structure and analysis as RAId

algorithm in Chapter 3 that is used to solve adaptive informative path planning (IPP)

problems. Adaptive IPP is a special case of adaptive stochastic optimization problems

on paths that satisfies the marginal likelihood rate bound condition. We can derive the

same approximation bounds by apply the results in Section 3.4 directly. Both works are

inspired by the recursive algorithm in (Gupta, Nagarajan, and Ravi, 2010) used to solve

the Adaptive Traveling Salesperson (ATSP) problem. In the ATSP problem, a sales-

person has to service a subset of locations with demand that is not known in advance.

However, the salesperson knows the prior probabilities of the demand at each location

(possibly correlated) and the goal is to find an adaptive policy to service all locations

with demand.

Adaptive submodularity (Golovin and Krause, 2011) generalizes submodularity for

set functions to adaptive policies for stochastic set functions. As in the classic ap-

proximation result for submodular functions (Nemhauser, Wolsey, and Fisher, 1978),

a greedy heuristic was shown to give logarithmic approximation ratio with respect to

the optimal adaptive policy. It was also shown that no polynomial time algorithm can

compute approximate solution of adaptive stochastic optimization problems within a

factor of O(|X|1�✏) unless PH =

Pp
2

, that is the polynomial-time hierarchy collapses

to its second level (Golovin and Krause, 2011). Adaptive submodularity can be seen
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as a way to circumvent the hardness. Many Bayesian active learning problems can be

modeled by suitable adaptive submodular objective functions (Golovin, Krause, and

Ray, 2010; Cuong, Lee, Ye, et al., 2013; Cuong, Lee, and Ye, 2014). However, (Cuong,

Lee, and Ye, 2014) recently proposed a new objective function for active learning with

a general loss function that is not adaptive monotone submodular. This new objective

function satisfies the marginal likelihood bound condition with nontrivial constant G.

Section 4.3 describes marginal likelihood bound and marginal likelihood rate bound

formally and gives the relationship between these conditions.

Asadpour, Nazerzadeh, and Saberi (2008) considers a notion of stochastic set func-

tions where the outcome of selecting each element is independent of others and shows

that the adaptive gap, the ratio between optimal adaptive policy and optimal non-adaptive

policy is at most e
e�1

. An important difference from our work is we allow the outcome

of selecting elements to be correlated. Correlations in outcome is common in many

practical applications such as Bayesian active learning and informative path planning.

Interactive submodular cover (Guillory and Bilmes, 2010; Guillory and Bilmes,

2011) considers the case where one must cover an unknown submodular function from

a family of submodular functions. Instead of receiving random observations from a

posterior probability distribution, the observations are chosen adversarially from a set

of valid observations. They prove logarithmic approximation guarantees for worst-case

policy cost. In contrast, we prove results for average-case policy cost in this work.

4.3 Classes of adaptive stochastic optimization

We now examine the classes of functions covered in this chapter. We restrict ourselves

to pointwise submodular and monotone functions on a finite domain. We introduce

a condition called the marginal likelihood rate bound which allows efficient approx-

imation algorithms for the adaptive stochastic optimization problems. We show that

there are functions that satisfy the marginal likelihood rate bound condition but does

not satisfy the previously studied adaptive submodularity condition (Golovin, Krause,

and Ray, 2010), and vice versa. We also introduce a condition called the marginal like-

lihood bound which is satisfied by all pointwise submodular and monotone stochastic

functions on a finite domain, albeit with different bounding constants. An efficient adap-
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tive stochastic optimization problem algorithm for these classes of function is given in

Section 4.4.

4.3.1 Adaptive Monotonicity and Submodularity

Adaptive submodularity and monotonicity generalize submodularity and monotonicity

to stochastic settings where we receive random observations at each item. We define

the expected marginal value of an item x given a history  ,4(x| ) as:

4(x| ) = E�⇠ [f(dom( ) [ {x},�)� f(dom( ),�)]

A function f : 2

X⇥OX ! R is adaptivity monotone with respect to a prior distribution

p(�) if , for all  such that p[� ⇠  ] > 0 and all x 2 X , it holds that

4(x| ) � 0

i.e. the expected marginal value of any fixed item is nonnegative.

Adaptive submodular and monotonicity is sufficient for a greedy policy to be near-

optimal on the adaptive stochastic maximization problem that maximizes the value of

a stochastic function given a budget. This is a dual form of of the adaptive stochastic

optimization problem where we minimize the cost for covering the function. Strong

adaptive monotonicity, a stricter condition than adaptive monotonicity, is required for

greedy selection to be near-optimal for adaptive stochastic optimization problems. A

function f is strongly adaptive monotone if for any item x and observation o such that

p(o|x, ) > 0,

E�⇠ [f(dom( ),�)]  E�⇠ ,�(x)=o[f(dom( ) [ {x},�)]

Strong adaptive monotonicity means that the expected marginal value of selecting any

fixed item and receiving an observation is nonnegative.

A function f : 2

X ⇥ OX ! R is adaptive submodular with respect to a prior

distribution p(�) if, for all  and  ’ such that  0 ⇠  and for all x 2 X \ dom( 0
), it
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holds that

4(x| ) � 4(x| 0
)

i.e. the expected marginal value of any fixed item does not increase as more items are

visited and observations received.

4.3.2 Marginal likelihood rate bound

We denote ˆf(S, ) = min�⇠ f(S,�) as the worst case value of f given a history.

The marginal likelihood rate bound condition requires a function f such that: For all

 0 ⇠  , if p( 0
)  0.5p( ) then

Q� ˆf(dom( 0
), 0

)  1

K

⇣

Q� ˆf(dom( ), )
⌘

(4.1)

except for scenarios already covered, where K > 1 and Q � max� f(X,�) is a con-

stant upper bound for the maximum value of f for all scenarios.

Intuitively, this condition means that the worst case remaining objective value de-

creases by a constant fraction whenever the marginal likelihood of history decreases by

more than half.

Example The version space reduction function V with arbitrary prior is adaptive sub-

modular and monotone (Golovin and Krause, 2011) satisfies marginal likelihood rate

bound. The version space reduction function V is defined as:

V(S,�) = 1�
X

�0⇠�(S)
⇢(�0) (4.2)

for all scenario �, S ✓ X and �(S) gives the history of visiting locations x in S when

the scenario is �. We present the proof of satisfying the marginal likelihood rate bound

in the Appendix.

Proposition 1 (Version Space Reduction). The version space function V satisfies marginal

likelihood rate bound.

RAId in Chapter 3 is a special case of RAC applied to the function V and prior ⇢H .

Each hypothesis h 2 H in the IPP problem has a corresponding scenario �h that is the
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observation vector �h = (o
1

, o
2

, . . . , o|X|), where Zxi(h, oxi) = 1. The prior ⇢H has

the support set of {�h} for all hypothesis h 2 H and ⇢H(�h) = ⇢(h).

To tease apart the relationship between condition marginal likelihood rate bound

and adaptive monotone submodular problems, we construct a few examples to show the

following relationship:

Proposition 2. Adaptive monotonicity and submodularity does not imply the marginal

likelihood rate bound. Furthermore, the marginal likelihood rate bound does not imply

adaptive monotonicity and submodularity.

4.3.3 Marginal likelihood bound

The marginal likelihood bound condition requires that for some constant G,

f(X,�)� ˆf(dom( ), )  G · p( ), (4.3)

for all scenarios � ⇠  . In other words, the worst remaining objective value must be

less than the marginal likelihood of its history multiplied by some constant G. Our

quality of solution depends on the constant G. The smaller the constant G, the better

the approximation bound.

In fact, we can make any adaptive stochastic optimization problem satisfy the marginal

likelihood bound with a large enough constant G. To trivially ensure the bound of

marginal likelihood bound, let Q = max� f(X,�), we set G = Q · 1/�, where

� = min� ⇢(�). Hence, Q  G · p( ) unless we have visited all locations and covered

the function by definition.

Example The version space reduction function V can be interpreted as the expected

0 � 1 loss of a random scenario �0 ⇠  differing from true scenario �. The loss is

counted as one whenever �0 6= �. For example in the UAV task, a pair of scenarios that

differ in only one sensor has the same loss of 1 as another pair that differs in all sensor

readings. Thus, it can be useful to assign different loss to different pair of scenarios

with a general loss function. Correspondingly, the generalized version space reduction
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function is defined as:

fL(S,�) = E�0
⇥

L(�,�0)1(�(S) 6= �0(S))
⇤

. (4.4)

where L : OX⇥OX ! R�0

is a general loss function that satisfies L(�0,�) = L(�,�0)

and L(�,�0) = 0 if � = �0. (Cuong, Lee, and Ye, 2014) have shown that the generalized

version space reduction function’s average case criterion is not adaptive submodular

with respect to a prior po such that po(h) > 0 for all h. However, the generalized version

space reduction function satisfies marginal likelihood bound with a non-trivial constant

G = max�,�0 L(�,�0). On the other hand, it does not satisfy marginal likelihood rate

bound.

Proposition 3. The generalized version space reduction function fL satisfies marginal

likelihood bound with constant G = max�,�0 L(�,�0).

4.4 Algorithm

Adaptive planning is computationally hard due to the need to consider every possible

observation after each action. RAC assumes that it always receive the most likely obser-

vation to simplify adaptive planning. RAC is a recursive algorithm that partially covers

the function in each step and repeats on the residual function until the entire function is

covered.

In each recursive step, RAC uses the mostly like observation assumption to trans-

form adaptive stochastic optimization problem into a submodular orienteering problem

to generate a tour and traverse it. If the assumption is true throughout the tour, then RAC

achieves the required partial coverage. Otherwise, RAC receives some observation that

has probability less than half (since only the most likely observation has probability at

least half), the marginal likelihood of history decreases by at least half, and the marginal

likelihood rate bound and marginal likelihood bound conditions ensures that substantial

progress is made towards covering the function.

Submodular orienteering takes a submodular function g : X ! R and a metric on

X and gives the minimum cost path ⌧ that covers function g such that g(⌧) = g(X).

We now describe the submodular orienteering problem used in each recursive step.
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Given the current history  , we construct a restricted set of location-observation pairs,

Z = {(x, o) : (x, o) /2  , o is the most likely observation at x given  }. Using ideas

from (Guillory and Bilmes, 2010), we construct a submodular function g⇤⌫ : 2

Z ! R

to be used in the submodular orienteering problem. Upon completion of the recur-

sive step, we would like the function to be either covered or have value at least ⌫

for all scenarios consistent with  [ Z 0 where Z 0 is the selected subset of Z. We

first restrict � to a subset of scenarios  that are consistent with  . To simplify, we

transform the function so that its maximum value for all � is at least ⌫ by defining

f⌫(S,�) = f(S,�) + (⌫ � f(X,�)) whenever f(X,�) < ⌫ and f⌫(S,�) = f(S,�)

otherwise. For Z 0 ✓ Z, we now define g⌫(Z 0,�) = f⌫(dom( [Z 0
),�) if Z 0 is consis-

tent with � and g⌫(Z 0,�) = f⌫(X,�) otherwise. Finally, we construct the submodular

function g⇤⌫(Z 0
) = 1/| |

P

�2 min(⌫, g⌫(Z 0,�)). The constructions have the follow-

ing properties that guarantees the effectiveness of the recursive steps of RAC.

Proposition 4. Let f be a pointwise monotone submodular function. Then g⌫ is point-

wise monotone submodular and g⇤⌫ is monotone submodular. In addition g⇤⌫(Z 0
) � ⌫ if

and only if f is either covered or have value at least ⌫ for all scenarios consistent with

 [ Z 0.

We can replace g⇤⌫ by a simpler function if f satisfy a minimal dependency prop-

erty where the value of function f depends only on the history, i.e. f(dom( ),�0) =

f(dom( ),�) for all �,�0 ⇠  . We define a new submodular set function gm⌫ (Z 0
) =

g⌫(Z 0, Z).

Proposition 5. When f satisfies minimal dependency, gm⌫ (Z 0
) � ⌫ implies g⇤⌫(Z 0

) � ⌫.

RAC needs to guard against committing to costly plan made under the most likely

observation assumption which is bound to be wrong eventually. RAC uses two differ-

ent mechanisms for hedging. For marginal likelihood rate bound, instead of requiring

complete coverage, we solve partial coverage using a submodular path optimization

problem g⇤
(1�1/K)Q so that f(S) � (1 � 1/K)Q for all consistent scenarios under

the most likely observation assumption in each recursive step. For marginal likelihood

bound, we solve submodular orienteering for complete coverage of g⇤Q but also solve

for the version space reduction function with 0.5 as the target, V⇤
0.5, as a hedge against
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over-commitment by the first tour when the function is not well aligned with the prob-

ability of observations. The cheaper tour is then traversed by RAC in each recursive

step.

We define the informative observation set ⌦x for every location x 2 X: ⌦x =

{ o | p(o|x)  0.5}. RAC traverses the tour and adaptively terminates when it encoun-

ters an informative observation. Subsequent recursive calls work on the residual func-

tion f 0 and normalized prior p0. Let  be the history encountered so far just before the

recursive call, for any set S � dom( ) f 0
(S,�) = f(S,�) � f(dom( ),�). Let ⌘ be

any value such that f(S,�) > Q� ⌘ implies f(S,�) = f(X,�) for all S ✓ X and all

scenario �. The recursive step is repeated until the residual value Q0 is less than ⌘. We

give the pseudocode of RAC in Algorithm 5. We give details of SUBMODULARORIEN-

TEER procedure and prove its approximation bound in Appendix.

Algorithm 3 GenerateTour1
GenerateTour1 construct a tour for a function satisfying marginal likelihood bound

1: procedure GenerateTour1(X, d, ⇢, O, r, f,Q, ⌘)
2: ⌧f  SUBMODULARORIENTEER(X, X ⇥X, d, g⇤Q, ⇢)
3: if max� p(�)  0.5 then
4: ⌧vs  SUBMODULARORIENTEER(X, X ⇥X, d, V⇤

0.5, ⇢)
5: ⌧  argmin⌧f ,⌧vs(W (⌧ 0))
6: else
7: ⌧  ⌧f

8: return ⌧ where ⌧ = (x
0

, x
1

, . . . , xt) and x
0

= xt = r

Algorithm 4 GenerateTour2
Generate a tour for a function satisfying marginal likelihood rate bound

1: procedure GenerateTour2(X, d, ⇢, O, r, f,Q, ⌘)
2: ⌧  SUBMODULARORIENTEER(X, X ⇥X, d, g⇤

(1�1/K)Q, ⇢)

3: return ⌧ where ⌧ = (x
0

, x
1

, . . . , xt) and x
0

= xt = r

4.5 Analysis

We first give the performance guarantees of RAC for adaptive stochastic optimization

problem on paths and then specialize these results for adaptive stochastic optimization

problem on subsets. There proofs are provided in Appendix.

Theorem 11. Assume that f is a pointwise integer-valued submodular monotone func-

tion. Let ⌘ be any value such that f(S,�) > f(X,�) � ⌘ implies f(S,�) = f(X,�)

72



Algorithm 5 RAC
1: procedure recurseRAC(X, d, ⇢, O, r, f,Q, ⌘)
2: if max�2{�0|⇢(�0)>0} f(X,�) < ⌘ then
3: return
4: else
5: ⌧  GENERATETOUR(X, d, ⇢, O, r, f,Q, ⌘) . Use an appropriate

GENERATETOUR1 or GENERATETOUR2 procedure for the condition it satisfies
6: ( , r) EXECUTEPLAN(⌧, r)
7: ⇢0  p( |�)p(�)

p( ) , f 0  f(Y,�) � f(⌧,�), Q0  Q � min� f(⌧,�) for all
 ⇠ �

8: recurseRAC(X, d, ⇢0, O, r, f 0, Q0, ⌘)

9: procedure EXECUTEPLAN(⌧ )
10: i 1,   {}
11: repeat
12: Visit location xi and receive observation o.
13:    [ (xi, o), i i+ 1.
14: until o 2 ⌦xi or i = t.
15: Move to location xt = r.
16: return ( , r).

for all S ✓ X and all scenario �. For any constant ✏ > 0 and an instance of adaptive

stochastic optimization problem on path satisfying marginal likelihood rate bound, RAC

computes a policy ⇡ in polynomial time such that

C(⇡) = O((log|X|)2+✏ logQ logK(Q/⌘))C(⇡⇤)),

where Q and K > 1 are constants that satisfies Equation (4.1).

Theorem 12. Assume that the prior probability distribution ⇢ is represented as non-

negative integers with
P

� ⇢(�) = P . Let ⌘ be any value such that f(S,�) > f(X,�)�

⌘ implies f(S,�) = f(X,�) for all S ✓ X and all scenario �. Assume that f is a

pointwise integer-valued submodular monotone function. For any constant ✏ > 0 and

an instance of adaptive stochastic optimization problem on path satisfying marginal

likelihood bound, RAC computes a policy ⇡ for in polynomial time such that

C(⇡) = O((log|X|)2+✏(logP + logQ) log(G/⌘))C(⇡⇤),

where Q = max� f(X,�).

For adaptive stochastic optimization problems on subsets, we achieve tighter ap-
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proximation bounds by replacing the approximation bounds of submodular orienteering

with greedy approximation of submodular set cover.

Theorem 13. For an instance of adaptive stochastic optimization problem on subsets

satisfying marginal likelihood rate bound, assuming f is pointwise integer-valued sub-

modular and monotone, let ⌘ be any value such that f(S,�) > f(X,�) � ⌘ implies

f(S,�) = f(X,�) for all S ✓ X and all scenario �. RAC computes a policy ⇡ in

polynomial time such that

C(⇡) = 4(lnQ+ 1)(logK(Q/⌘) + 1)C(⇡⇤),

where Q and K > 1 are constants that satisfies Equation (4.1).

Theorem 14. For an instance of adaptive stochastic optimization problem on subsets

satisfying the marginal likelihood bound condition, assuming f is pointwise integer-

valued submodular and monotone, let ⌘ be any value such that f(S,�) > f(X,�)� ⌘

implies f(S,�) = f(X,�) for all S ✓ X and all scenario � and � = min� ⇢(�). RAC

computes a policy ⇡ in polynomial time such that

C(⇡) = 4(ln 1/� + lnQ+ 2)(log(G/⌘) + 1)C(⇡⇤)),

where Q = max� f(X,�).

4.6 Application: Noisy IPP

In this section, we apply RAC to solve IPP with noisy observations. First, we reduce

an adaptive noisy IPP problem to an Equivalence Class Determination (ECD) problem.

Then we apply RAC to solve ECD problem near-optimally using an objective func-

tion that satisfies marginal likelihood rate bound condition. Finally, we evaluate our

approach on two IPP tasks with noisy observations.

4.6.1 Equivalence Class Determination Problem

An ECD problem consists of a set of hypotheses H that is partitioned into a set of

equivalence classes {H
1

,H
2

, . . . ,Hm}. The goal of ECD problem is to identify which
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equivalence class the true hypothesis lies in by moving to locations and making observa-

tions while minimizing the expected robot movement cost. ECD problem has been ap-

plied to noisy Bayesian active learning to achieve near-optimal performance (Golovin,

Krause, and Ray, 2010). Noisy adaptive IPP problem can also be reduced to an ECD

instance when it is always possible to identify the true hypothesis in the IPP problem.

The ECD problem may seems to be an easier problem compared to noiseless IPP as

we do not need to determine the true hypothesis. Since we already solve noiseless IPP, a

straightforward extension will be to apply the same algorithm on the ECD instance and

terminate when all consistent hypotheses fall in the same equivalence class. However,

this is not optimal. Consider an instance of ECD that has n hypotheses h
1

, h
2

, . . . , hn

with uniform prior. There are two equivalence classes, H
1

= {h
1

, . . . hn�1

} and H
2

=

{hn}. There are n locations x
1

, x
2

, . . . xn that are directly connected to the root r

with unit cost. Each location xi gives an observation 1 if hi is the true hypothesis and

0 otherwise. The optimal policy only needs to visit location xn but RAId will visit

locations x
1

, x
2

, . . . , xn in turn, resulting in an expected cost n times the optimal one.

To differentiate between the equivalence classes, we use the Gibbs error objective

function (same as edge-cutting function in (Golovin, Krause, and Ray, 2010)). The idea

is to consider the ambiguities between pairs of hypotheses in different equivalence class

es, and to visit locations and make observations to disambiguate between them. The set

of pairs of hypotheses in different classes is E = [
1i<jm{{h0, h00} : h0 2 Hi, h00 2

Hj}. We disambiguate a pair {h0, h00} when we make an observation o at a location x

and either h0 or h00 is inconsistent with the observation, Z 0
x(h

0, o) = 0 or Z 0
x(h

0, o) = 0.

The set of pairs disambiguated by visiting a location x when hypothesis h 2 H 0 is true

is given by Ex(h) = {{h0, h00} : Z 0
x(h, o) = 1, Z 0

x(h
0, o) = 0 or Z 0

x(h
00, o) = 0}. We

define a weight function w : E ! R�0

as w({h0, h00}) = p0(h0) · p0(h00). We can now

define the Gibbs error objective function:

fGE(Y, h) = W ([x2Y Ex(h)), (4.5)

where W (E 0
) =

P

e2E 0 w(e), Y is the set of location visited and h 2 H 0.

Proposition 6. The Gibbs error function fGE is pointwise submodular and monotone.

In addition, it satisfies condition marginal likelihood rate bound with constants Q =
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W (E) = 1 �
Pm

i=1

(p(Hi))
2, the total weight of ambiguous pairs of hypotheses, and

K = 2.

4.6.2 Adaptive IPP with Noisy Observations

The first step to reduce adaptive noisy IPP instance I to ECD instance E is to create

a noiseless IPP problem I 0
= (X, d,H 0, ⇢0, O,Z 0, r) from a noisy IPP instance I =

(X, d,H, ⇢, O,Z, r) using the transformation in section 3.6.1. Each hypothesis h0 2 H 0

is an observation vector h0 = (o
1

, o
2

, . . . , o|X|) and the new hypothesis space H 0 is

H 0
= O|X|. For each hypothesis hi 2 H , we create an equivalence class Hi that

consists of all hypotheses h0 = (o
1

, o
2

, . . . , o|X|) 2 H 0 where the observation vector is

consistent with hi 2 H , such that

Hi =

8

<

:

(o
1

, o
2

, . . . , o|X|)

�

�

�

�

�

�

|X|
Y

j=1

Zxj (hi, oj) > 0

9

=

;

.

When we can always identify the true underlying hypothesis h 2 H , the equiva-

lence classes is a partition on the set H 0, i.e. each observation vector associated with

only one hypothesis h 2 H . After we created the ECD instance E, we apply RAC

to the corresponding Gibbs error function (eq. (4.5)). Hence, we get a near-optimal

algorithm for noisy adaptive IPP problems when we apply RAC since the Gibbs error

function fGE satisfies marginal likelihood rate bound and RAC is near-optimal for such

instances.

4.6.3 Experiment

IPP tasks

We evaluate RAC in simulation on variants of UAV search and rescue task and grasping

task (see Sections 3.5.2 and 3.5.2) where we introduce noisy observations and equiva-

lence classes to them.

In the UAV search and rescue task, we introduce noise to the high altitude sensor

such that it may report a false observation with probability �. There is a safe zone on the

map where the survivor is deemed to be safe. We only need to know the exact location

of the survivor if he is not in the safe zone. The equivalence classes in this task are the
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locations outside of safe zone and the safe zone. The safe zone in this experiment is a 3

by 8 region on the right side of the map.

For grasping a cup task, we add noise to laser readings in the grasping task. Let x be

the true distance and x0 be the value reported by the laser, the probability distribution of

the readings is: p(x = x0) = 0.85, p(|x�x0| = 1) = 0.05, and p(|x�x0| = 2) = 0.025.

Given that we identified the cup that has the handle, the robot gripper is fairly robust

to estimation error of the cup handle’s orientation. For each cup, we partition the cup

handle orientation into regions of 20 degrees each. We only need to know the region

that contains cup handle. The equivalence classes here are the regions.

After introducing noise to the task, it is still possible to for the UAV task to exactly

find the location of survivor because the low altitude sensor is still noiseless. Adaptive

IPP on UAV task can be reduced an ECD problem as the set of equivalence classes is

a partition of the observation vectors. On the other hand, it is not always possible to

identify the true region that contains the cup handle due to observation noise. However,

we can still reduce to ECD problem by associating each observation vector to its most

likely equivalence class.

Setup

We evaluate IG and IG-Cost, Sampled-RAId, and RAC with version space reduction

(RAC-V SR) and Gibbs error (RAC-GE) objectives. Of these algorithms, only RAC-

GE has theoretical performance guarantees for the noisy adaptive IPP problem. Even

though RAC-V SR is guaranteed to perform near-optimally for the version space reduc-

tion function, it is the wrong objective for the adaptive IPP problem.

We set the termination condition of RAC to be ⌘ = 10

�5. The Gibbs error ob-

jective function corresponds to the exponentiated Rényi entropy (order 2) and can be

interpreted as the prediction error of a Gibbs classifier. A Gibbs classifier predicts by

sampling a hypothesis from the prior. For consistency, we set the other algorithms to

terminate when Gibbs error of the prior is less than 10

�5. We run 1000 trials with the

true hypothesis sampled randomly from the prior for the UAV search task and 3000 tri-

als for the grasping task as its variance is higher. For Sampled-RAId, we set the number

of samples to be three times the number of hypothesis. Out of the six algorithms we
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compare, only RAC-GE is near-optimal for an ECD problem.

Results

To compare the performance between the algorithms, we pick a threshold � for Gibbs

error of the equivalence classes and compare the average cost incurred by each algo-

rithm to reduce Gibbs error to below �. We repeat this for 15 different �, starting from

1 ⇥ 10

�
5 and doubling the value each time. We plot the average cost with 95% con-

fidence interval for UAV Search and Rescue task and the grasping task in Figures 4.5

and 4.6 respectively. For the grasping task, there may be trials where the minimum

Gibbs error possible is greater than � especially for small threshold � due to noisy ob-

servations. We omit these trials when we compute the average cost incurred to reach �,

since the threshold � is unreachable for these trials.

RAC-GE has the lowest average cost for both tasks at almost every threshold of

Gibbs error. RAC-V SR has the second lowest average for the UAV search task but its

confidence interval is outside of RAC-GE. On the other hand, RAC-GE has average

cost much lower than RAC-V for every threshold level. The other algorithms, Sampled-

RAId, IG-Cost and IG do not perform as well for both the UAV search and grasping

task.

We plot the graphs again using Shannon’s entropy of the partitions as threshold in

Figures 4.2 and 4.3. We pick 10 threshold levels � starting from 0.001 and doubling it

every step. The experiment results reflect that of Gibbs error. RAC-GE achieves the

best result for both UAV search and grasping task. It is worth noting that RAC-GE does

not explicitly use Shannon’s entropy as an optimization criteria, yet it perform the best

in terms of Shannon’s entropy.

4.7 Conclusion

We study approximation algorithms for adaptive stochastic optimization problem on

paths and subsets. We give two conditions on pointwise monotone submodular func-

tions that are useful for understanding the performance of approximation algorithms on

these problems: the marginal likelihood bound condition and the marginal likelihood

rate bound condition. Our algorithm, RAC, runs in polynomial time with an approx-
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Figure 4.2: UAV Search and Rescue: Average cost vs Gibbs error
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Figure 4.3: Grasping: Average cost vs Gibbs error. We zoom in on the top two algo-
rithms in Figure 4.4
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Figure 4.4: Grasping: Average cost vs Gibbs error for RAC-V and RAC-GE
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Figure 4.5: UAV Search and Rescue: Average cost vs Shannon’s entropy
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Figure 4.6: Grasping: Average cost vs Shannon’s entropy. We zoom in on the top two
algorithms in Figure 4.7
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Figure 4.7: Grasping: Average cost vs Shannon’s entropy for RAC-V and RAC-GE
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imation ratio that depends on the constants characterizing these two conditions. The

results extend known results for adaptive stochastic optimization on subsets to paths,

and enlarges the class of functions known to be efficiently approximable for both prob-

lems. We apply the algorithm to two adaptive informative path planning applications

with promising results.
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Chapter 5

POMDP with Macro Actions

A robot operating in an uncertain environment needs to act appropriately given all the

information available and to gather new information that is necessary to complete the

assigned task. Chapters 3 and 4 gave algorithms to deal with the information gathering

part of the problem. It may be tempting to assume that the robot can plan without

uncertainty in mind after it has gathered the necessary information. This may work

for simple tasks such as estimating the poses of an object and grasping it. However,

many complex tasks and dynamic environments require the robot to interleave between

acting towards achieving the goal and acting to gather information or even to do both

simultaneously. Dynamic environment and uncertain actions’ effects require the robot

to constantly monitor its environment while trying to achieve its objective. POMDPs

provides a framework to model planning under uncertainty for these complex tasks.

Despite recent successes with large state space POMDPs using point-based algo-

rithms (see Section 5.1.1), long horizon POMDPs are still hard to solve. Heuristics may

help to reduce the effective search space to mitigate effects of long horizon but they are

unlikely to work well for general problems. The curse of history remains an outstanding

issue in scaling up POMDP algorithms. One way to tackle issues with long horizon is

to reduce its planning horizon by making use of macro actions that span more than one

time step and able to do more within its duration. Macro action can be as simple as a

fixed sequence of primitive actions or a complex conditional plan described by a policy

or finite state controller.

However, theoretical properties of point-based algorithms do not necessarily carry
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over to POMDP with macro actions. We give sufficient conditions for the good the-

oretical properties to be retained, transforming POMDPs into a particular type of par-

tially observable semi-Markov decision processes (POSMDPs) in which the lengths of

macro-actions are not observable.

The final part of this thesis considers POMDPs that can be well approximated by

sequence of macro actions. We extend Monte-Carlo value iteration (MCVI) algo-

rithm (Bai, Hsu, Lee, et al., 2010) to use macro actions. A major advantage of the

new algorithm is its ability to abstract away the lengths of macro-actions in planning

and reduce the effect of long planning horizons. Furthermore, it does not require ex-

plicit probabilistic models for macro-actions and treats them just like primitive actions

in MCVI. This simplifies macro-action construction and is a major benefit in practice.

Macro-MCVI can also be used to construct a hierarchy of macro-actions for planning

large spaces. Experiments show that the algorithm is effective with suitably designed

macro-actions.

5.1 Related Works

This section reviews prior literature for approximate POMDP algorithms. Section 5.1.1

looks at a few approaches to solve POMDPs approximately. Some of these algorithms

have been successful in tackling the “curse of dimensionality” but they are mostly inad-

equately for long horizon POMDPs. Section 5.1.2 considers temporal abstraction and

studies a few POMDP algorithms that explicitly tackle the “curse of history” via macro

actions.

5.1.1 Approximate POMDP Algorithms

A number of approaches had been proposed to obtain practical working action strate-

gies for POMDPs. This section reviews simple heuristics that can be useful for some

POMDPs as well as more sophisticated approximation and policy search algorithms.

These algorithms tackle intractability at various places where they arise. State-of-the-

art POMDP solvers are often a combination of approaches that address various difficul-

ties. This section reviews the key ideas behind some successful POMDP algorithms. At

the end of this section, we summarize these approaches and draw connections between
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them.

MDP Heuristic

A simple yet powerful way to approximate POMDP value function is to assume full ob-

servability of all states and take the value of the maximum Q-function action as follows:

ˆV (b) = max

a2A

X

s2S
b(s)Q⇤

MDP (s),

where

Q⇤
MDP (s, a) = R(s, a) + �

X

s02S
p(s0|s, a)V ⇤MDP (s0)

and V ⇤
MDP is the optimal value function for fully observable version of the POMDP.

The QMDP approximation ˆV is piecewise linear and convex with |A| vectors, each

corresponding to one action. It is an upper bound of the optimal value function as it

assumes more information than it has.

QMDP value function may be used directly for control and it performs well for

problems that do not require many explicit exploratory actions (i.e. going off the optimal

MDP path to gather information). It is an important approximation because it works

well for many real world problems and is also used as heuristic for other approximation

techniques shown in the subsequent sub-section. However, the QMDP heuristic only

consider uncertainty of one step and is unable to do long term information gathering

beyond that.

Point-based Value Iteration

As we seen in equation 2.5, the number of ↵-vectors required to represent the exact

value function can be potentially exponential. However, it is not necessary to know the

exact value function for every belief state if we know the agent starts its operation from

some initial belief state. We only care about values of belief states that are reachable

from the initial belief state. Based on this insight, point-based value iteration algorithms

approximate the value function by iteratively updating the value function at a small

representative set of belief points. The resulting solution is a policy that is optimal

for the sampled belief points. One algorithm that applies point-based backup on a set
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of belief points is the Point-based Value Iteration(PBVI) (Pineau, Gordon, and Thrun,

2003).

A point-based backup at belief state b can be done as follows:

1. Construct new ↵-vector for each action a and each belief b in the representative

set B.

�

a
b = ra + �

X

o2O
argmax

↵2V t
T a,o↵ · b (5.1)

2. Pick the best ↵-vector for each belief b in the set B

V t+1

= argmax

�

a
b ,8a2A

(�

a
b · b), 8b 2 B (5.2)

The point-based backup (5.1) differs from (2.5) in that is it only consider the cross-

sum with the projected ↵-vector that is maximal for belief point b, argmax↵2V t T a,o↵ ·

b, instead of all projected ↵-vectors, T a,o↵, 8↵ 2 V t. Out of these |A||B| new ↵-

vectors, the procedure admits only the maximal ↵-vector for each belief point b to the

value function V t+1. The number of ↵-vector is constant throughout the iterations.

Hence, the point-based backup operation is quadratic instead of exponential compared

a full backup.

An important implication of point-based backup is that the value function do not

necessarily generalizes well for belief points outside the representative set. The value

gradient produced by point-based backup may help generalization to beliefs close to the

representative set. Hence, it is crucial to get a good representative set that is relevant to

the agent’s operations.

Belief Space Sampling Strategies The sampling strategy of point-based algorithms

directly affects both the quality of value function approximate and its computational ef-

ficiency. Hence, it has been the focus of a number of works to produce a superior sam-

pling strategy. (For e.g SARSOP(Kurniawati, Hsu, and Lee, 2008), HSVI(T. Smith and

Simmons, 2004), HSVI2(T. Smith and Simmons, 2005), GapMin(Poupart, K. E. Kim,

and D. Kim, 2011), FSVI(Shani, Brafman, and Shimony, 2007), and Perseus(Spaan and

Vlassis, 2005)).

The sampling strategy used by PBVI first initialize representative set with the initial
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belief. It then randomly simulates a one-step action for each action on each belief points

in the set and add the new belief for each original point that is furthest away (Euclidean)

from the closest point in the set to the set. The idea behind this expansion strategy is to

cover as large portion of the reachable belief space as possible.

Heuristic Search Value Iteration (HSVI) (T. Smith and Simmons, 2004) maintains

both an upper bound and lower bound of the value function to guide the sampling pro-

cess. Upper bound of the value function can be computed using optimistic heuristics

such as the QMDP. HSVI keeps a belief search tree with initial belief as the root, using

a depth-first search it expand a belief by simulating the action having the highest upper

bound, and choosing the observation whose resulting belief has the largest gap between

the upper and lower bound. HSVI also employed a trial-based asynchronous (Gauss-

Seidel) updates to update the values of belief along its path in the depth-first traversal

of the belief tree. With these key ingredients, HSVI was able to significant outperform

PBVI.

SARSOP (Kurniawati, Hsu, and Lee, 2008) pushes the idea of sampling reachable

belief space further by sampling reachable belief space under optimal policy. Since an

agent executing an optimal policy it will never encounter any beliefs outside of opti-

mal sequence of actions, it is reasonable to approximate the value function using a set

of optimally reachable belief points. The reachable belief space under optimal policy

is also believed to be much smaller than the reachable belief space. As the optimal

policy is not unknown in advance, SARSOP approximate the optimal reachable belief

space by using machine learning techniques to predict the value of beliefs and using

the prediction to guide its sampling. Through successive sampling and removing belief

points found to be suboptimal, SARSOP iteratively converges to the optimal reachable

belief space. SARSOP also aggressively prunes ↵-vectors that are dominated over the

sampled optimally reachable belief points to keep the set of ↵-vectors small.

In a recent survey study of point-based algorithms by Shani et al. (Shani, Pineau,

and Kaplow, 2012), they found that different sampling strategies are suited for different

type of environments. The stochasticity of actions, noisiness observation, and amount of

exploratory actions needed are among the factors that affect performance of a particular

sampling strategy. Also, the size of the problem domain is not a good indicator of the
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difficulty of the problem.

Through point-based value backup and advanced sampling of the reachable belief

space, it appears that the dimensionality of the belief space does not matter anymore

since we do not backup over the entire belief. The size of state space is no longer a

reliable indicator of difficulty of POMDP when using point-based algorithms. (Hsu,

Lee, and Rong, 2007) has shown that approximate optimal POMDP solution can be

computed in time polynomial in the covering number of reachable belief space.

Monte-Carlo Methods

To tackle very large, infinite, or continuous state space, one approach is to approximate

the belief b by a set of state samples x[1], x[2], . . . , x[M ] known as the particles. This set

of particles may be updated by the particle filter algorithm to obtain a set of particles

that approximates the next belief bao after executing action a and receiving observation

o. The particle filter algorithm requires a simulative model that when given a state and

action stochastically returns a next state. An important advantage for this representation

is that it can approximate arbitrary state space.

MC-POMDP (Thrun, 2000) uses particle sets to represent beliefs. The algorithm

maintains a set of particle sets and it gives a value function that is represented as values

of this set of particle sets. The value for a new particle set is calculated using nearest

neighbor interpolation over known sets.

Monte Carlo Value Iteration (MCVI) (Bai, Hsu, Lee, et al., 2010) also uses particle

belief representation. It samples both an agent’s state space and the corresponding belief

space simultaneously, thus avoiding the prohibitive computational cost of unnecessarily

processing these spaces in their entirety. It uses Monte Carlo sampling in conjunction

with dynamic programming to compute a policy represented as a finite state controller.

The finite state controller gives the value of the policy over the entire belief space with-

out the need of interpolating values over belief points in MC-POMDP.

Both theoretical analysis and experiments on several robotic motion planning tasks

indicate that MCVI is a promising approach for planning under uncertainty with very

large state spaces, and it has already been applied successfully to compute the threat res-

olution logic for aircraft collision avoidance systems in 3-D space (Bai, Hsu, Kochen-

88



derfer, et al., 2011).

As policy evaluation is done using Monte-Carlo sampling, we only get the value of a

policy node on sampled belief points without value gradient. There is no way to know if

a policy node dominates another node over the belief space. Using pointwise dominance

as a condition to prune to too aggressive and may remove many useful nodes. Therefore,

the size of the MCVI’s policy grows quickly with horizon. It is actually possible to

get the ↵-vectors for the policy by solving the system of linear equations 2.6. But this

defeats the purpose of doing Monte-Carlo sampling to handle very large and continuous

state spaces as the length of ↵-vectors does not scales. Also due to the lack of value

gradient, it is unable to quickly generalize value for belief never encountered before

during policy computation.

Policy Search Using Scenarios

While the size of an optimal POMDP policy may be exponential in horizon, for many

real world problems, there may exist small yet useful policies. By searching over a

space of bounded size policy, we may find a policy that is good for the problem, if it

exists.

Ng and Jordan shown that by transforming any POMDP (or MDP) into one that

has only deterministic transition, we can turn the stochastic optimization problem into

a deterministic one and apply standard search techniques to find a good policy within a

class of policy.

A POMDP M can be transform into a deterministic POMDP M 0 by augmenting

the state with an infinite sequence of random real numbers such that a state is now

(s, p
1

, p
2

, . . .). When we take an action a in state (s, p
1

, p
2

, . . .), we consuming one

random number from the sequence (p
1

, p
2

, . . .) to generate s0 according to the transition

distribution. If p
1

⇠ Uniform[0, 1], then distribution of s0 is the same as the original

POMDP.

A initial state (s
0

, p
1

, p
2

, . . .) of transformed POMDP M 0 defines a “scenario” can

be interpreted as a “fixed” Monte Carlo trajectory. Thus, the value of a particular policy

can be approximated by averaging over the value executing the policy in m scenarios.

Since the value of m scenarios is a deterministic function, any standard optimization
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method may be used. It was shown this is a uniformly good approximation with “sample

complexity” bounds that have polynomial dependence on horizon time.

Using expert knowledge to design the form of policies, the solver applying this

approach (PEGASUS) was able find a policy that can autonomously fly a helicopter

with complex maneuvers (Ng et al., 2003).

Bounded Finite State Controller Policy Iteration

When the form of policy for a problem is not known, one simple and general class of

policy to consider is the finite state controller with fixed bounded number of nodes.

Gradient ascent methods (Aberdeen and Baxter, 2002) may be used to search for a

bounded finite state controller, but they tend to get stuck in local optima easily.

Poupart and Boutilier (2003) proposed bounded policy iteration algorithm that mono-

tonically improves a finite state controller while keeping the number of nodes fixed. The

monotonic improvement is made possible by having a finite state controller whose suc-

cessor node function is stochastic.

In usual policy iteration, dynamic programming creates new nodes, and an old node

is removed when it is pointwise-dominated by a new node. Its incoming edges are

redirected to the dominating new node. When an old node is pointwise-dominated by

a group of nodes (see Figure 5.1), it cannot be removed. Since removing it means

that its incoming edges to have to be redirected to different nodes depending on the

belief. However, if we allow stochastic successor function and we stochastically redirect

incoming edges to the convex combination of the dominating group of nodes, then we

get an improved controller (may not be as good as the usual policy iteration) even though

we remove the old node.

Summary

This section reviewed several existing approaches to POMDP solution. Point-based

value iteration algorithms reduce the amount of computation by doing dynamic pro-

gramming updates only on the representative set of belief points instead of the entire

belief space. The resultant ↵-vectors set can be deliberately kept small by pruning for

computational efficiency. Point-based methods can be further improved by having bet-
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ter sampling strategies using heuristics such as QMDP to sample a set of belief points

that better approximate optimally reachable belief space. Given what we learned from

point-based algorithms, the size of state space is no longer a reliable indicator for “hard-

ness” of a problem. It may seem that the “curse of dimensionality” has been broken by

sampling the belief space. The limitation is now the space required to represent the ↵-

vectors and transition and observation matrices. By exploiting factored representation

of POMDPs, much computational and space efficiency can be gained by processing the

factored vectors and matrices. To handle even larger or continuous state space, point-

based algorithms can be extended to use simulative POMDP models and Monte-Carlo

sampling to sample the state space.

Another class of practical POMDP algorithms is policy search within space of fi-

nite size policy. The key idea is to restrict policy search to a small policy space and

hope that a good policy can be found there. Ng and Jordan has shown POMDP can be

approximated by transforming the original stochastic optimization into a deterministic

one so that standard optimization tools can be applied to search within some policy

space. Poupart et al.proposed a policy iteration algorithm that iteratively improves a

finite-state-controller of a fixed size. Ng and Jordan’s algorithm are able to benefit from

using simulative models to represent the POMDP model, while Poupart’s bounded pol-

icy iteration can only make use of factored representation of the POMDP model.

However, general POMDP approaches do not automatically generalize well for long

horizon problems. Despite the huge recent advances, point-based algorithms are still

susceptible to the curse of history. In general, the number of belief points needed to

approximate the reachable belief space closely grows with the horizon. Long horizon
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problems tend to require large policy due long action sequences required and policy

search methods may not find a good policy if there are too little nodes in the controller.

Policy search algorithms are also vulnerable to local optima, they may not synthesize the

correct long sequence of actions required typically in long horizon problems. Specific

approaches are required to address issues arising from long horizon.

5.1.2 POMDPs with Macro Actions

Macro-actions have long been used to speed up planning and learning algorithms for

MDPs (see, e.g., (Hauskrecht et al., 1998; Sutton, Precup, and S. Singh, 1999; Barto and

Mahadevan, 2003)). There are two types of macro actions (also known as options) in

MDP literature, Markov options and Semi-Markov options. Markov option has partial

policy that solely depends on the state of the MDP; Semi-Markov option’s policy is

allowed to depend on the action-state partial history since the option is initiated. Semi-

Markov options are more flexible, it allows policy such as those that terminates after

some predefined number of time steps. Adding options to MDP turns the process into

a Semi-Markov decision process (SMDP). Our work can be viewed as an extension

of options to POMDP case. However, since states are partially observable, Markov

options are inapplicable in POMDP case. We show in later section that even if we treat

belief state as state, Markov options whose policy depends on the belief state can be

problematic.

Similarly, macro actions have been used in offline policy computation for POMDPs.

Theocharous and Kaelbling (2003) used macro actions in conjunction with Monte Carlo

update to speed up computation of Q-value on a grid-based approximation of the belief

space. Macro-actions allow the algorithm to experience a smaller part of the belief

space resulting in faster backup making it possible to process at higher grid resolution

leading to better performance.

Kurniawati, Du, et al. (2010)’s algorithm uses sequences of action and observa-

tions (similar to macro action) to sample the belief space more sparsely to cover more

space while keeping the number of sampled points low. Macro actions are only used

to sample belief spaces but not actually used in the actual policy execution. Dynamic

programming backup are done using the primitive actions. Macro-actions can be com-
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posed hierarchically to further improve scalability (Dietterich, 2000; Pineau, Roy, and

Thrun, 2001). These earlier works rely on vector representations for beliefs and value

functions, making it difficult to scale up to large state spaces.

Macro-actions have also been used in online search algorithms for POMDPs. In He,

Brunskill, and Roy (2010), open-loop sequences of actions that try to reach high reward

or high information state are being constructed on-the-fly and used during the search

to help sample values further down in planning horizon. Similar to Kurniawati et al.’s

algorithm, macro actions are not used in actual policy execution. Instead only the first

action of the best sequence of actions is taken, and then the planner searches again from

the posterior belief given the observation.

Macro-MCVI is related to E. Hansen and Zhou (2003) where they use programmer-

defined task hierarchy to constrain space of their policy. The earlier work uses finite

state controllers for policy representation and policy iteration for policy computation,

but it has not yet been shown to work on large state spaces.

5.2 Planning with Macro Action

We would like to generalize POMDPs to handle macro-actions. Ideally, the general-

ization should retain properties of POMDPs such as piecewise linear and convex finite

horizon value functions. We would also like the approximation bounds for MCVI (Bai,

Hsu, Lee, et al., 2010) to hold with macro-actions.

We would like to allow our macro-actions to be as powerful as possible. A very

powerful representation for a macro-action would be to allow it to be an arbitrary map-

ping from belief to action that will run until some termination condition is met. Un-

fortunately, the value function of a process with such macro-actions need not even be

continuous. Consider the following simple finite horizon example, with horizon one.

Assume that there are two primitive actions, both with constant rewards, regardless of

state. Consider two macro-actions, one which selects the poorer primitive action all the

time while the other which selects the better primitive action for some beliefs. Clearly,

the second macro-action dominates the first macro-action over the entire belief space.

The reward for the second macro-action takes two possible values depending on which

action is selected for the belief. The reward function also forms the optimal value func-
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tion of the process and need not even be continuous as the macro-action can be an

arbitrary mapping from belief to action.

Next, we give sufficient conditions for the process to retain piecewise linearity and

convexity of the value function. We do this by constructing a type of partially observable

semi-Markov decision process (POSMDP) with the desired property. The POSMDP

does not need to have the length of the macro-action observed, a property that can be

practically very useful as it allows the branching factor for search to be significantly

smaller. Furthermore, the process is a strict generalization of a POMDP as it reduces to

a POMDP when all the macro-actions have length one.

5.3 Partially Observable Semi-Markov Decision Process

Finite-horizon (undiscounted) POSMDP were studied in White (1976). Here, we focus

on a type of infinite-horizon discounted POSMDPs whose transition intervals are not

observable. Our POSMDP is formally defined as a tuple (S,A,O,T,R, �), where S

is a state space, A is a macro-action space, O is a macro-observation space, T is a joint

transition and observation function, R is a reward function, and � 2 (0, 1) is a discount

factor. If we apply a macro-action a with start state si, T = p(sj , o, k|si, a) encodes the

joint conditional probability of the end state sj , macro-observation o, and the number

of time steps k that it takes for a to reach sj from si. We could decompose T into a

state-transition function and an observation function, but avoid doing so here to remain

general and simplify the notation. The reward function R gives the discounted cumu-

lative reward for a macro-action a that starts at state s: R(s, a) =

P1
t=0

�tE(rt|s, a),

where E(rt|s, a) is the expected reward at step t. Here we assume that the reward is 0

once a macro-action terminates.

For convenience, we will work with reweighted beliefs, instead of beliefs. Assum-

ing that the number of states is n, a reweighted belief (like a belief) is a vector of n

non-negative numbers that sums to one. By assuming that the POSMDP process will

stop with probability 1 � � at each time step, we can interpret the reweighted belief

as the conditional probability of a state given that the process has not stopped. This

gives an interpretation of the reweighted belief in terms of the discount factor. Given

a reweighted belief, we compute the next reweighted belief given macro action a and
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observation o, b0 = ⌧(b, a, o), as follows:

b0(s) =
P1

k=1

�k�1

Pn
i=1

p(s, o, k|si, a)b(si)
P1

k=1

�k�1

Pn
j=0

Pn
i=1

p(sj , o, k|si, a)b(si)
. (5.3)

We will simply refer to the reweighted belief as a belief from here on. We denote the

denominator
P1

k=1

�k�1

Pn
j=0

Pn
i=1

p(sj , o, k|si, a)b(si) by p�(o|a, b). The value of

�p�(o|a, b) can be interpreted as the probability that observation o is received and the

POSMDP has not stopped. Note that
P

o p�(o|a, b) may sum to less than 1 due to

discounting.

A policy ⇡ is a mapping from a belief to a macro-action. Let R(b, a) =
P

s b(s)R(s, a).

The value of a policy ⇡ can be defined recursively as

V⇡(b) = R(b,⇡(b)) + �
X

o
p�(o|⇡(b), b)V⇡(⌧(b,⇡(b), o)).

Note that the policy operates on the belief and may not know the number of steps taken

by the macro-actions. If knowledge of the number of steps is important, it can be added

into the observation function in the modeling process.

We now define the backup operator H that operates on a value function Vm and

returns Vm+1

HV (b) = max

a

�

R(b, a) + �
X

o2O
p�(o|a, b)V (⌧(b, a, o))

�

. (5.4)

The backup operator is a contractive mapping1.

Lemma 15 (Contraction). Given value functions U and V , ||HU �HV ||1  �||U �

V ||1.

Let the value of an optimal policy, ⇡⇤, be V ⇤. The following theorem is a conse-

quence of the Banach fixed point theorem and Lemma 15.

Theorem 16. V ⇤ is the unique fixed point of H and satisfies the Bellman equation

V ⇤
= HV ⇤.

We call a policy an m-step policy if the number of times the macro-actions is applied

is m. For m-step policies, V ⇤ can be approximated by a finite set of linear functions;
1Proofs of the results in this section are in appendix

95



the weight vectors of these linear functions are called the ↵-vectors.

Theorem 17 (Piecewise Linearity and Convex). The value function for an m-step policy

is piecewise linear and convex and can be represented as

Vm(b) = max

↵2�m

X

s2S
↵(s)b(s) (5.5)

where �m is a finite collection of ↵-vectors.

As Vm is convex and converges to V ⇤, V ⇤ is also convex.

5.3.1 Macro-action Construction

We would like to construct macro-actions from primitive actions of a POMDP in order

to use temporal abstraction to help solve difficult POMDP problems. A partially observ-

able Markov decision process (POMDP) is defined by finite state space S, finite action

space A, a reward function R(s, a), an observation space O, and a discount � 2 (0, 1).

We discuss some of the issues here. They are further illustrated in the Section 5.5

where we show how the use of appropriately constructed macro-actions can improve

the performance of MCVI.

In our POSMDP, the probability function p(sj , o, k|si, a) for a macro-action must

be independent of the history given the current state si; hence the selection of primi-

tive actions and termination conditions within the macro-action cannot depend on the

belief. We examine some allowable dependencies here. Due to partial observability, it

is often not possible to allow the primitive action and the termination condition to be

functions of the initial state. Dependence on the portion of history that occurs after the

macro-action has started is, however, allowed. In some POMDPs, a subset of the state

variables is always observed and can be used to decide the next action. In fact, we may

sometimes explicitly construct observed variables to remember relevant parts of the

history prior to the start of macro-action (see Section 5.5); these can be considered as

parameters that are passed on to the macro-action. Hence, one way to construct the next

action in a macro-action is to make it a function of the history since the macro-action

started, xk, ak, ok+1

, . . . , xt�1

, at�1

, ot, xt, where xi is the fully observable subset of

state variables at time i, and k is the starting time of the macro-action.
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Similarly, when the termination criterion and the observation function of the macro-

action depends only on the history xk, ak, ok+1

, . . . , xt�1

, at�1

, ot, xt, the macro-action

can retain a transition function that is independent of the history given the initial state.

Note that the observation to be passed on to the POSMDP to create the POSMDP ob-

servation space, O, is part of the design trade off - usually it is desirable to reduce the

number of observations in order to reduce complexity without degrading the value of

the POSMDP too much. In particular, we may not wish to include the execution length

of the macro-action if it does not contribute much towards obtaining a good policy.

5.4 Monte Carlo Value Iteration with Macro-Actions

We have shown that if the action space A and the observation space O of a POSMDP

are discrete, then the optimal value function V ⇤ can be approximated arbitrarily closely

by a piecewise-linear, convex function. Unfortunately, when S is very high-dimensional

(or continuous), a vector representation is no longer effective. In this section, we show

how the Monte Carlo Value Iteration (MCVI) algorithm (Bai, Hsu, Lee, et al., 2010),

which has been designed for POMDPs with very large or infinite state spaces, can be

extended to POSMDP.

Instead of ↵-vectors, MCVI uses an alternative policy representation called a policy

graph G. A policy graph is a directed graph with labeled nodes and edges. Each node of

G is labeled with a macro-action a and each edge of G is labeled with an observation o.

To execute a policy ⇡G, it is treated as a finite state controller whose states are the nodes

of G. Given an initial belief b, a starting node v of G is selected and its associated

macro-action av is performed. The controller then transitions from v to a new node v0

by following the edge (v, v0) labeled with the observation received, o. The process then

repeats with the new controller node v0.

Let ⇡G,v denote a policy represented by G, when the controller always starts in node

v of G. We define the value ↵v(s) to be the expected total reward of executing ⇡G,v with

initial state s. Hence

VG(b) = max

v2G

X

s2S
↵v(s)b(s). (5.6)

VG is completely determined by the ↵-functions associated with the nodes of G.
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Algorithm 6 MC-Backup of a policy graph G at a belief b 2 B with N samples.
MC-BACKUP(G, b,N)

1: For each action a 2 A, Ra  0.
2: For each action a 2 A, each observation o 2 O, and each node v 2 G, Va,o,v  0.
3: for each action a 2 A do
4: for i = 1 to N do
5: Sample a state si with probability b(si).
6: Simulate taking macro-action a in state si. Generate a new state s0i, observation oi,

and discounted reward R0
(si, a) by sampling from p(sj , o, k|si, a).

7: Ra  Ra +R0
(si, a).

8: for each node v 2 G do
9: Set V 0 to be the expected total reward of simulating the policy represented by

G, with initial controller state v and initial state s0i.
10: Va,oi,v  Va,oi,v + V 0.
11: for each observation o 2 O do
12: Va,o  maxv2G Va,o,v .
13: va,o  argmaxv2GVa,o,v .
14: Va  (Ra + �

P

o2O Va,o)/N .
15: V ⇤  maxa2A Va.
16: a⇤  argmaxa2AVa.
17: Create a new policy graph G0 by adding a new node u to G. Label u with a⇤. For each

o 2 O, add the edge (u, va⇤,o) and label it with o. return G0.

5.4.1 MC-Backup

One way to approximate the value function is to repeatedly run the backup operator H

starting from an arbitrary value function until it is close to convergence. This algorithm

is called value iteration (VI). Value iteration can be carried out on policy graphs as

well, as it provides an implicit representation of a value function. Let VG be the value

function for a policy graph G. Substituting (5.6) into (5.4), we get

HVG(b) = max

a2A

n

X

s2S
R(s, a)b(s) +

X

o2O
p�(o|a, b)max

v2G

X

s2S
↵v(s)b

0
(s)

o

. (5.7)

It is possible to then evaluate the right-hand side of (5.7) via sampling and Monte

Carlo simulation at a belief b. The outcome is a new policy graph G0 with value function

ˆHbVG. This is called MC-backup of G at b (Algorithm 6) (Bai, Hsu, Lee, et al., 2010).

There are |A||G||O| possible ways to generate a new policy graph G0 which has one

new node compared to the old policy graph node. Algorithm 6 computes an estimate of

the best new policy graph at b using only N |A||G| samples. Furthermore, we can show

that MC-backup approximates the standard VI backup (equation (5.7)) well at b, with

error decreasing at the rate O(1/
p
N). Let R

max

be the largest absolute value of the
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reward, |rt|, at any time step.

Theorem 18. Given a policy graph G and a point b 2 B, MC-BACKUP(G, b,N)

produces an improved policy graph such that

| ˆHbVG(b)�HVG(b)| 
2R

max

1� �

s

2

�

|O| ln |G|+ ln(2|A|) + ln(1/⌧)
�

N
,

with probability at least 1� ⌧ .

The proof uses Hoeffding bound together with union bound. Details can be found

in (Bai, Hsu, Lee, et al., 2010).

MC-backup can be combined with point-based POMDP planning, which samples

the belief space B. Point-based POMDP algorithms use a set B of points sampled from

B as an approximate representation of B. In contrast to the standard VI backup operator

H , which performs backup at every point in B, the operator ˆHB applies MC-BACKUP(Gm, b,N)

on a policy graph Gm at every point in B. This results in |B| new policy graph nodes.

ˆHB then produces a new policy graph Gm+1

by adding the new policy graph nodes to

the previous policy graph Gm.

Let �B = supb2B minb02B kb� b0k
1

be the maximum L
1

distance from any point in

B to the closest point in B. Let V
0

be value function for some initial policy graph and

Vm+1

=

ˆHBVm. The theorem below bounds the approximation error between Vm and

the optimal value function V ⇤.

Theorem 19. For every b 2 B,

|V ⇤
(b)�Vm(b)|  2R

max

(1� �)2

s

2

�

|O| ln(|B|m) + ln(2|A|) + ln(|B|m/⌧)
�

N
+

2R
max

(1� �)2 �B+
2�mR

max

(1� �) ,

with probability at least 1� ⌧ .

The proof requires the contraction property and a Lipschitz property that can be

derived from the piece-wise linearity of the value function. Having established those

results in Section 5.3, the rest of the proof follows from the proof in (Bai, Hsu, Lee, et

al., 2010). The first term in the bound in Theorem 19 comes from Theorem 18, showing

that the error from sampling decays at the rate O(1/
p
N) and can be reduced by taking

a large enough sample size. The second term depends on how well the set B covers B
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and can be reduced by sampling a larger number of beliefs. The last term depends on

the number of MC-backup iterations and decays exponentially with m.

5.4.2 Algorithm

Theorem 19 bounds the performance of the algorithm when given a set of beliefs.

Macro-MCVI, like MCVI, samples beliefs incrementally in practice and performs backup

at the sampled beliefs. Branch and bound is used to avoid sampling unimportant parts

of the belief space. See (Bai, Hsu, Lee, et al., 2010) for details.

The other important component in a practical algorithm is the generation of next be-

lief; Macro-MCVI uses a particle filter for that. Given the macro-action construction as

described in Section 5.3.1 a simple particle filter is easily implemented to approximate

the next belief function in equation (5.3): sample a set of states from the current belief;

from each sampled state, simulate the current macro-action until termination, keeping

track of its path length, t; if the observation at termination matches the desired obser-

vation, keep the particle; the set of particles that are kept are weighted by �t and then

renormalized to form the next belief2. Similarly, MC-backup is performed by simply

running simulations of the macro-actions - there is no need to store additional transition

and observation matrices, allowing the method to run for very large state spaces.

We give a short description of the algorithm for completeness.

Let R ✓ B be a subset of beliefs reachable from a given initial belief b
0

2 B under

arbitrary sequences of macro-actions and observations. MCVI samples from this set

rather than the whole space to get a more relevant set of beliefs. The sampled beliefs

can be structured as a tree TR, where the root of TR is the initial belief b
0

. If b is a node

of TR and b0 is a child of b in TR, then b0 = ⌧(b, a, o) for some a 2 A and o 2 O.

MCVI maintains both upper and lower bounds on V ⇤
(b) each node b of TR. To

sample a new belief, it starts from the root of TR and traverse a single path down until

reaching a leaf of TR. At a node b along the path, it chooses the action a with the

highest upper bound and the observation o that has the largest weighted gap between

the upper and lower bounds. New beliefs are constructed using particle filtering and

sampling terminates when the gap between the upper and lower bounds is sufficiently

2More sophisticated approximation of the belief can be constructed but may require more knowledge
of the underlying POMDP and more computation.
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small. MC-backup is then performed on all the nodes along this path to improve the

lower bound estimate. At the same time, a sampled approximation of (5.4) is used to

improve the upper bounds of the same nodes. This is repeated until the gap between

upper and lower bounds at the root of TR reaches the desired value.

To initialize, G is given a set of fixed macro-action policies representing prior

knowledge of the problem; if no knowledge is available, each macro-actions A may

be used to create a simple policy for the initial set by by looping back to itself after

every observation. For upper bound, a heuristic upper bound is used to initialize new

beliefs; if no knowledge is available R
max

/(1� �) can be used.

5.5 Experiments

We now illustrate the use of macro-actions for temporal abstraction in three POMDPs

of varying complexity. Their state spaces range from relatively small to very large.

Correspondingly, the macro-actions range from relatively simple ones to much more

complex ones forming a hierarchy.

5.5.1 Underwater Navigation:

The underwater navigation task was introduced in Kurniawati, Hsu, and Lee (2008).

In this task, an autonomous underwater vehicle (AUV) navigates in an environment

modeled as 51 x 52 grid map (see Figure 5.2). The AUV needs to move from the left

border to the right border while avoiding the rocks scattered near its destination. The

AUV has six actions: move north, move south, move east, move north-east, move south-

east or stay in the same location. Due to poor visibility, the AUV can only localize itself

along the top or bottom borders where there are beacon signals.

This problem has several interesting characteristics. First, the relatively small state

space size of 2653 means that solvers that use ↵-vectors, such as SARSOP (Kurniawati,

Hsu, and Lee, 2008) can be used. Second, the dynamics of the robot is actually noise-

less; hence the main difficulty is actually localization from the robot’s initially unknown

location.

We use 5 macro-actions that move in a direction (north, south, east, north-east, or

south-east) until either a beacon signal or the destination is reached. We also define an
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Figure 5.2: Underwater Navigation: A reduced map with a 11 ⇥ 12 grid is shown with
“S” marking the possible initial positions, “D” marking the destinations, “R” marking
the rocks and “O” marking the locations where the robot can localize completely.

Figure 5.3: Collaborative search and capture: Two robotic agents catching 12 escaped
crocodiles in a 21 ⇥ 21 grid.

Figure 5.4: Vehicular ad-hoc networking: An UAV maintains ad-hoc network over four
ground vehicles in a 10 ⇥ 10 grid with “B” marking the base and “D” the destinations.
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additional macro-action that: navigates to the nearest goal location if the AUV position

is known, or simply stays in the same location if the AUV position is not known. To

enable proper behavior of the last macro-action, we augment the state space with a

fully observable state variable that indicates the current AUV location. The variable

is initialized to a value denoting “unknown” but takes the value of the current AUV

location after the beacon signal is received. This gives a simple example where the

original state space is augmented with a fully observable state variable to allow more

sophisticated macro-action behavior.

5.5.2 Collaborative Search and Capture:

In this problem, a group of crocodiles had escaped from its enclosure into the environ-

ment and two robotic agents have to collaborate to hunt down and capture the crocodiles

(see Figure 5.3). Both agents are centrally controlled and each agent can make a one

step move in one of the four directions (north, south, east and west) or stay still at each

time instance. There are twelve crocodiles in the environment. At every time instance,

each crocodile moves to a location furthest from the agent that is nearest to it with a

probability 1 � p (p = 0.05 in the experiments). With a probability p, the crocodile

moves randomly. A crocodile is captured when it is at the same location as an agent.

The agents do not know the exact location of the crocodiles, but each agent knows the

number of crocodiles in the top left, top right, bottom left and bottom right quadrants

around itself from the noise made by the crocodiles. Each captured crocodile gives a

reward of 10, while movement is free.

We define twenty-five macro actions where each agent moves (north, south, east,

west, or stay) along a passage way until one of them reaches an intersection. In addition,

the macro-actions only return the observation it makes at the point when the macro-

action terminates, reducing the complexity of the problem, possibly at a cost of some

suboptimality. In this problem, the macro-actions are simple, but the state space is

extremely large (approximately 179

14).
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5.5.3 Vehicular Ad-hoc Network:

In a post disaster search and rescue scenario, a group of rescue vehicles are deployed

for operation work in an area where communication infrastructure has been destroyed.

The rescue units need high-bandwidth network to relay images of ground situations.

An Unmanned Aerial Vehicle (UAV) can be deployed to maintain WiFi network com-

munication between the ground units. The UAV needs to visit each vehicle as often as

possible to pick up and deliver data packets (Sivakumar and Tan, 2010) (see Figure 5.4).

In this task, 4 rescue vehicles and 1 UAV navigates in a terrain modeled as a 10 x

10 grid map. There are obstacles on the terrain that are impassable to ground vehicle

but passable to UAV. The UAV can move in one of the four directions (north, south,

east, and west) or stay in the same location at every time step. The vehicles set off

from the same base and move along some predefined path towards their pre-assigned

destinations where they will start their operations, randomly stopping along the way.

Upon reaching its destination, the vehicle may roam around the environment randomly

while carrying out its mission. The UAV knows its own location on the map and can

observe the location of a vehicle if they are in the same grid square. To elicit a policy

with low network latency, there is a penalty of �0.1⇥ number of time steps since last

visit of a vehicle for each time step for each vehicle. There is a reward of 10 for each

time a vehicle is visited by the UAV. The state space consists of the vehicles’ locations,

UAV location in the grid map and the number of time steps since each vehicle is last

seen (for computing the reward).

We abstract the movements of UAV to search and visit a single vehicle as macro ac-

tions. There are two kinds of search macro actions for each vehicle: search for a vehicle

along its predefined path and search for a vehicle that has started to roam randomly.

To enable the macro-actions to work effectively, the state space is also augmented with

the previous seen location of each vehicle. Each macro-action is in turn hierarchically

constructed by solving the simplified POMDP task of searching for a single vehicle on

the same map using basic actions and some simple macro-actions that move along the

paths. This problem has both complex hierarchically constructed macro-actions and

very large state space.
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5.5.4 Experimental setup

We applied Macro-MCVI to the above tasks and compared its performance with the

original MCVI algorithm. We also compared with a state-of-the-art off-line POMDP

solver, SARSOP (Kurniawati, Hsu, and Lee, 2008), on the underwater navigation task.

SARSOP could not run on the other two tasks, due to their large state space sizes.

For each task, we ran Macro-MCVI until the average total reward stabilized. We then

ran the competing algorithms for at least the same amount of time. The exact running

times are difficult to control because of our implementation limitations. To confirm

the comparison results, we also ran the competing algorithms 100 times longer when

possible. All experiments were conducted on a 16 core Intel Xeon 2.4Ghz computer

server.

Neither MCVI nor SARSOP uses macro-actions. We are not aware of other effi-

cient off-line macro-action POMDP solvers that have been demonstrated on very large

state space problems. Some online search algorithms, such as PUMA (He, Brunskill,

and Roy, 2010), use macro-actions and have shown strong results. Online search algo-

rithms do not generate a policy, making a fair comparison difficult. Despite that, they are

useful as baseline references; we implement a variant of PUMA as a one such reference.

In our experiments, we simply gave the online search algorithms as much or more time

than Macro-MCVI and report the results here. PUMA uses open-loop macro-actions.

As a baseline reference for online solvers with closed-loop macro-actions, we also cre-

ated an online search variant of Macro-MCVI by removing the MC-backup component.

We refer to this variant as Online-Macro. It is similar to other recent online POMDP

algorithms (Ross et al., 2008), but uses the same closed-loop macro-actions as MCVI

does.

5.5.5 Results

The performance of the different algorithms is shown in Figure 5.1 with 95% confidence

intervals.

The underwater navigation task consists of two phases: the localization phase and

navigate to goal phase. Macro-MCVI’s policy takes one macro-action, “moving north-

east until reaching the border”, to localize and another macro-action, “navigating to the
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Table 5.1: Performance comparison.

Reward Time(s)
Underwater Navigation
Macro-MCVI 749.30 ± 0.28 1
MCVI 678.05 ± 0.48 4

725.28 ± 0.38 100
SARSOP 710.71 ± 4.52 1

730.83 ± 0.75 100
PUMA 697.47 ± 4.58 1
Online-Macro 746.10 ± 2.37 1
Collaborative Search & Capture
Macro-MCVI 17.04 ± 0.03 120
MCVI 13.14 ± 0.04 120

16.38 ± 0.05 12000
PUMA 1.04 ± 0.91 144
Online-Macro 0 3657
Vehicular Ad-Hoc Network
Macro-MCVI -323.55 ± 3.79 29255
MCVI -1232.57 ± 2.24 29300
Greedy -422.26 ± 3.98 28800

goal”, to reach the goal. In contrast, both MCVI and SARSOP fail to match the perfor-

mance of Macro-MCVI even when they are run 100 times longer. Online-Macro does

well, as the planning horizon is short with the use of macro-actions. PUMA, however,

does not do as well, as it uses the less powerful open-loop macro-actions, which move

in the same direction for a fixed number of time steps.

For the collaborative search & capture task, MCVI fails to match the performance

of Macro-MCVI even when it is run for 100 times longer. PUMA and Online-Macro

do badly as they fail to search deep enough and do not have the benefit of reusing sub-

policies obtained from the backup operation. To confirm that it is the backup operation

and not the shorter per macro-action time that is responsible for the performance differ-

ence, we ran Online-Macro for a much longer time and found the result unchanged.

The vehicular ad-hoc network task was solved hierarchically in two stages. We

first used Macro-MCVI to solve for the policy that finds a single vehicle. This stage

took roughly 8 hours of computation time. We then used the single-vehicle policy as a

macro-action and solved for the higher-level policy that plans over the macro-actions.

Although it took substantial computation time, Macro-MCVI generated a reasonable

policy in the end. In contrast, MCVI, without macro-actions, fails badly for this task.
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Due to the long running time involved, we did not run MCVI 100 times longer. To con-

firm that that the policy computed by Macro-MCVI at the higher level of the hierarchy

is also effective, we manually crafted a greedy policy over the single-vehicle macro-

actions. This greedy policy always searches for the vehicle that has not been visited

for the longest duration. The experimental results indicate that the higher-level policy

computed by Macro-MCVI is more effective than the greedy policy. We did not apply

online algorithms to this task, as we are not aware of any simple way to hierarchically

construct macro-actions online.

5.6 Conclusion

We have successfully extended MCVI, an algorithm for solving very large state space

POMDPs, to include macro-actions. This allows MCVI to use temporal abstraction

to help solve difficult POMDP problems. The method inherits the good theoretical

properties of MCVI and is easy to apply in practice. Experiments show that it can

substantially improve the performance of MCVI when used with appropriately chosen

macro-actions.
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Chapter 6

Conclusion

Partially observable Markov decision process (POMDP) is sufficiently general for a

wide range of problems that require planning under uncertainty. However, it is hard to

obtain useful approximate solution to POMDPs except for very small problems. This

thesis identifies a few subclasses of POMDPs and proposes efficient approximation

algorithms to solve them.

6.1 Informative Path Planning

The IPP problem optimizes a path for a robot to move around to sense and gather infor-

mation. While it is a subclass of POMDPs, it captures the information gathering aspect

of POMDPs where the state information of interest is static.

Recursive Adaptive Identification is a new polynomial time algorithm that solves

the adaptive IPP problem with polylogarithmic approximation bound when the obser-

vations are noiseless and the robot move in metric spaces. The key strategy of this

algorithm is to construct tour of “informative” locations such that at least half the of

probability of hypotheses is eliminated by the end of the tour. This is repeated recur-

sively on the remaining hypotheses until only one hypothesis is left. RAId makes use

approximate group Steiner tree algorithm to trade off movement cost with information

gain in polynomial time. RAId was shown to work well on a few information gathering

tasks in simulation.

We also give a simple extension, Sampled-RAId to allow RAId to work on IPP

problems with noisy observations. Sampled-RAId transform a noisy IPP problem to
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a noiseless one by sampling the vector of “realized” observations at every location as

hypotheses in the noiseless IPP problem. Sampled-RAId then applies RAId to solve

the transformed problem. Sampled-RAId gives satisfactory results in experiments but it

lacks theoretical guarantees. Although this may work in practice, there is no theoretical

guarantee for Sampled-RAId because it is optimizing the wrong objective. It seeks to

differentiate the sampled observation vector.

6.2 Adaptive Stochastic Optimization

We propose two novel conditions, the marginal likelihood bound and the marginal

likelihood rate bound conditions for pointwise submodular monotone functions. The

marginal likelihood bound and the marginal likelihood rate bound tie marginal likeli-

hood a history to the worst case objective value of the function. While adaptive stochas-

tic optimization is NP-hard in general, these conditions characterize classes of adaptive

stochastic optimization where there can be efficient approximate solution

Our algorithm, Recursive Adaptive Coverage (RAC), runs in polynomial time with

an approximation ratio that depends on the constants characterizing these two condi-

tions. The results extend known results for adaptive stochastic optimization prbolems

on subsets to adaptive stochastic optimization problems on paths, and enlarges the class

of functions known to be efficiently approximable for both type of problems.

We use RAC to solve the noisy adaptive IPP problem. We first reduce the IPP

problem to equivalence class determination problem and then apply RAC to a Gibbs

error objective function to solve the ECD problem near-optimally. The Gibbs error

function satisfies marginal likelihood rate bound and hence it is near-optimal for noisy

adaptive IPP problem. Empirically, RAC with Gibbs error function gives good results

when evaluated on two noisy IPP tasks in simulation.

6.3 Temporal Abstraction with Macro Actions

A POMDP model can optimize a plan that is robust to effect uncertainty and imperfect

state information. Despite recent advances in POMDP algorithms, it remains hard to

scale up due to “curse of dimensionality” and “curse of history”.
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Macro actions are temporally extended actions that can take more than one time

step. We develop theoretical understanding of macro actions and apply it to a practical

algorithm to tackle the “curse of history” of POMDPs.

Adding macro actions to POMDP results in a Partially Observable Semi-Markov

Decision Process. In general, good theoretical properties of POMDP such as piecewise

linearity and convexity of its finite horizon value function do not carry over to POSMDP.

We give sufficient conditions for macro actions to retain these properties.

Macro Monte-Carlo Value Iteration is a new algorithm that exploits temporal ab-

straction in POMDPs using macro actions. Macro-MCVI extends Monte-Carlo Value

Iteration, a point-based POMDP algorithm that can scale up to large and continuous

state spaces to use macro actions. Macro-MCVI only needs a generative model for

macro actions, making it easy to specify macro actions. Using suitably constructed

macro actions that satisfies our sufficient conditions, Macro-MCVI retains the perfor-

mance guarantees of MCVI. Experiment shows significant performance improvement

over MCVI. We also demonstrated hierarchical composing of macro actions in one ex-

periment, where the macro actions are policies obtained using Macro-MCVI.

6.4 Future Work

The work in this thesis can be expanded in a few directions. First, we can expand the

applications of the algorithms developed in this thesis. As marginal likelihood bound

and marginal likelihood rate bound are novel conditions, we need to discover new ap-

plications where their objective functions satisfy the conditions and apply RAC to ap-

proximate them. We also intend to apply RAId and RAC to real data from robot sensors

to evaluate its performance in real world systems.

Second, the algorithms developed in this thesis can be extended to new problem do-

mains such as Bayesian reinforcement learning. In Bayesian reinforcement learning, an

agent explores a world modeled by an unknown MDP and aims to act optimally given

its knowledge of the world. Assuming the model parameters are discrete, Bayesian re-

inforcement learning can be cast as a noisy IPP problem where each parameter value is

a hypothesis and there is a prior over them. We further transform MDP into a determin-

istic process by assuming a state will always transit to its most likely next state. This
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is similar to the mostly likely outcome assumption used in RAC to simplify adaptive

planning. Exploration is implicit in this method. If the state transits to some state other

than the most likely one, then the agent learns more about the true MDP model in the

same way as the agent eliminates more than half of probabilities of hypotheses when it

receives an informative observation in an IPP problem. With some mild assumptions,

we can try to prove that applying RAC strategy results in a Bayesian reinforcement

learning policy that has cost competitive with an optimal exploration policy.

Finally, we aim to develop new algorithms using the algorithmic structure of RAId

and RAC for other stochastic partially observable problems. The algorithmic struc-

ture of RAId and RAC: planning using the most likely outcome assumption, exploit-

ing information gain if the most likely outcome does not occur, and hedging against

over-commitment, is general enough to be applicable to a large range of learning and

planning applications. We can discover new conditions that work well with the most

likely outcome assumption and exploit them for theoretical guarantees.
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Appendix A

Proofs

A.1 Adaptive Stochastic Optimization

A.1.1 Proofs for examples of adaptive stochastic optimization problem

Proposition 1 (Version Space Reduction). The version space function V satisfies marginal

likelihood rate bound.

Proof. We need to show

Q� min

�0⇠ 0 V(dom( 0
),�0)  0.5

✓

Q�min

�⇠ 
(V(dom( ),�))

◆

, (A.1)

for any pair of history  0, such that  0 ⇠  and p( 0
)  0.5p( ). The relationship

becomes obvious when we observe that Equation (4.2) can be written as V(S,�) =

1�
P

�0⇠�(S) ⇢(�
0
) = 1� p( ), for all � ⇠  and choosing Q = 1. Hence,

LHS = 1� min

�0⇠ 0

�

1� p( 0
)

�

= p( 0
)

 0.5p( )

= RHS

Proposition 3. The generalized version space reduction function fL satisfies marginal

likelihood bound with constant G = max�,�0 L(�,�0).
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Proof. The generalized version space reduction can be written as:

fL(S,�) =
X

�0
⇢(�0)L(�,�0)�

X

�0⇠�(S)
⇢(�0)L(�,�0).

We also have

fL(X,�) =
X

�0
⇢(�0)L(�,�0)

Let G = max�,�0 L(�,�0). For any history  ,

fL(X,�)� fL(dom( ),�) =
X

�0⇠�(dom( ))

⇢(�0)L(�,�0)


X

�0⇠�(dom( ))

p(�0) ·G

 G · p( )

and hence satisfies condition of marginal likelihood bound with constant G = max�,�0 L(�,�0).

Proposition 6. The Gibbs error function fGE is pointwise submodular and monotone.

In addition, it satisfies condition marginal likelihood rate bound with constants Q =

W (E) = 1 �
Pm

i=1

(p(Hi))
2, the total weight of ambiguous pairs of hypotheses, and

K = 2.

Proof. First, we show fGE is pointwise submodular and monotone. For a fixed hy-

pothesis h 2 H 0, the function fGE is monotone because it is the total weight of disam-

biguated pairs of hypotheses and the weight of a pair of hypotheses is nonnegative.

For a fixed hypothesis h 2 H 0, sets of location A,B, a location y /2 B, and A ✓ B,

fGE(A [ {y}, h)� fGE(A, h) = W ([x2AEx(h) [ Ey(h))�W ([x2AEx(h))

= W (Ey(h) \ [x2AEx(h))

�W (Ey(h) \ [x2BEx(h))

= fGE(B [ {y}, h)� fGE(B, h)

Hence fGE is submodular.
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Now, we note that Q�fGE(dom( ), h) = p( )2�
P

i p( ,Hi)
2. Given p( ), the

largest value for
P

i p( ,Hi)
2 occurs when there are only two equal valued probabili-

ties p( ,H
1

) = p( ,H
2

) = p( )/2 giving the value of
P

i p( ,Hi)
2

= p( )2/2 and

Q� fGE(dom( ), h) � p( )2/2. When p( 0
)  p( )/2, we have p( 0

)

2  p( )2/4

and Q � fGE(dom( 0
), h)  p( )2/4. Hence Q � fGE(dom( 0

), h)  p( )2/4 

(Q� fGE(dom( ), h))/2 giving K = 2.

Proposition 2. Adaptive monotonicity and submodularity does not imply the marginal

likelihood rate bound. Furthermore, the marginal likelihood rate bound does not imply

adaptive monotonicity and submodularity.

Proof. We prove the proposition using two counter examples.

Example 1. Consider an adaptive stochastic optimization problem with two items X =

{a, b} and two observations O = {0, 1}. There are four possible scenarios where both

observations are possible at both locations and the prior over them is uniform. The

function f is defined such that f(S,�) = |S \ {a}| for all scenarios �. This example is

trivially adaptive monotone submodular as f does not depend on the scenario.

However, it is does not satisfy marginal likelihood rate bound. Let history  = {}

and  0
= {(b, 1)}. Hence, p( 0

)  0.5p( ). But ˆf(dom( ), ) = ˆf(dom( 0
), 0

) =

0. Hence, there is no constant fraction K > 1 that fulfil Equation (4.1).

Example 2. Consider an adaptive stochastic optimization problem with two items X =

{a, b} and two observations O = {0, 1}, and maximum value Q = 1. The prior and

function f is defined in Table A.1 This problem is pointwise monotone submodular.

Table A.1: ⇢ and f for Example 2

⇢ (�) � {} {a} {b} {a, b}
0.6 (a,1) (b,0) 0 1 0 1
0.4 (a,0) (b,0) 0 0.5 1 1

There are two pair of histories where p( 0
)  0.5p( ) and they are  0

= {(a, 0)}, =

{} and  0
= {(a, 0), (b, 0)}, = {(b, 0)}. For both pair histories, we can verify that

they satisfy eq. (4.1) with upperbound Q = 1 and K = 2. Hence, this problem satisfies

marginal likelihood rate bound. On the other hand, 0.4 = 4(b|{}) < 4(b|{(a, 0)}) =

0.5, it is not adaptive submodular.
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We now give the proofs for performance guarantees of RAC. For clarity, we refer

to adaptive stochastic optimization problem on paths simply as adaptive stochastic op-

timization problem. Our proofs hold for both adaptive stochastic optimization problem

on paths and on subsets unless we specifically specialize it to subsets at the end.

Proposition 4. Let f be a pointwise monotone submodular function. Then g⌫ is point-

wise monotone submodular and g⇤⌫ is monotone submodular. In addition g⇤⌫(Z 0
) � ⌫ if

and only if f is either covered or have value at least ⌫ for all scenarios consistent with

 [ Z 0.

Proof. First note that the operations of adding a constant to a monotone submodular

function, adding together one or more monotone submodular function and setting a

ceiling to a monotone submodular function (taking the minimum of a function and a

constant) all result in monotone submodular functions. Similarly, if f⌫(S,�) is mono-

tone submodular for X , modifying it by setting f⌫(S,�) = f⌫(X,�) if S contains

x 2 X preserves monotonicity and submodularity. To see this, note that f⌫(X,�) is the

maximum value of the function and setting the function to its maximum later has less

gain for a monotone function.

Note that min(⌫, g⌫(Z 0,�)), g⇤⌫(Z 0
) � ⌫ if and only if g⌫(Z 0,�) � ⌫ for all �.

Finally, note that g⌫(Z 0,�) � ⌫ exactly when Z 0 is inconsistent with �, or when it is

consistent and f(dom( [ Z 0
),�) is covered, or when it is consistent and f(dom( [

Z 0
),�) � ⌫ as required.

Proposition 5. When f satisfies minimal dependency, gm⌫ (Z 0
) � ⌫ implies g⇤⌫(Z 0

) � ⌫.

Proof. By definition, gm⌫ (Z 0
) = g⌫(Z 0, Z). As f satisfies minimal dependency, g⌫ also

satisfies minimal dependency. Hence, if g⌫(Z 0, Z) � ⌫, we also have g⌫(Z 0,�) � ⌫ for

all �, implying g⇤⌫(Z 0
) � ⌫
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A.1.2 Adaptive Stochastic Optimization on Paths

We begin by analyzing a variant of adaptive stochastic optimization problem where the

agent has to return to the starting location r in the end. We assume that we can com-

pute an optimal submodular orienteering solution, and then relax this assumption to use

polynomial time approximation later. This subsection can be divided into three parts.

First, we analyze RAC on problems satisfying the marginal likelihood bound condition

(Lemma 20 to Lemma 25). Next, we complete the analysis for problems satisfying

condition the marginal likelihood rate bound condition (Lemma 26 to Lemma 28). Fi-

nally, we relax the assumptions of computing optimal submodular orienteering solution

and of going back to the starting location. We derive the final approximation bounds

for the non-rooted adaptive stochastic optimization problems satisfying the marginal

likelihood bound condition and for those satisfying the marginal likelihood rate bound

condition (Lemma 29 to Theorem 11).

The main strategy of this analysis is to establish the post conditions upon termina-

tion of the adaptive plan in each recursive step. There are two components to prove in

the post conditions; progress made in covering the function and distance traveled by the

agent.

In the following (Lemmas 20 and 21), we show that each adaptive plan reduce

likelihood of history by half except when it is the last recursive step where it completes

the coverage.

Lemma 20. Let ⌧ be the solution to a submodular orienteering problem g⇤⌫ in GENER-

ATETOUR1. Let  be the history experienced by the agent after we call EXECUTEPLAN

with tour ⌧ . Either p( ) < 0.5 or g⇤⌫( ) = ⌫.

Proof. During the execution of EXECUTEPLAN, if the agent receives an observation

o0 2 ⌦x at some location x0 on ⌧ , then the agent returns to r immediately with history

 = ((x
1

, o
1

), . . . , (x0, o0)). The probability of this history is p( ) =
Q

(x,o)2 p(o|x) 

p(o0|x0). From the definition of ⌦x0 , we have p( )  p(o0|x0) < 0.5.

Otherwise, the agent visits every location x on ⌧ and receives at every x an obser-

vation o⇤x 62 ⌦x and has history  =  ⇤
(⌧), i.e. the agent always receive the most likely

observation throughout the tour and g⇤⌫( ) = ⌫.
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Lemma 21. Let  be the history after a recursive call of RAC. After each recursive

call, either likelihood of history is reduced by half, p( ) < 0.5 or we have completely

covered the function f .

Proof. RAC calls EXECUTEPLAN with either ⌧f or ⌧vs, which solves the submodular

orienteering problem g⇤Q and V⇤
0.5 respectively. If RAC uses ⌧f , Lemma 20 tells us that

EXECUTEPLAN either reduces the likelihood of history by at least half or completely

covers the function g⇤Q, which implies that we have completely covered the function f .

Otherwise, RAC uses ⌧vs and reduces the version space (and equivalently p( )) by

at least a half.

Finally, we prove the lemma by combining the outcomes from using ⌧f or ⌧vs.

We want to bound the distance traveled in each recursive call by comparing the

length of the submodular orienteering tour to a path in the optimal policy. This path

always exist and is traversed with probability more than half by the optimal policy.

Hence, we can bound the length of our tour by twice the expected cost of optimal

policy.

Lemma 22. Let ⇡⇤ be an optimal policy tree for a rooted adaptive stochastic optimiza-

tion problem I. There is a subpath �0 of ⇡⇤ such that ⇡⇤ traverses �0 with probability

at least 0.5. Furthermore, one of the following conditions must hold: (1) the proba-

bility of most likely history on this path p( ⇤
(�0)) � 0.5 and  ⇤

(�0) covers f , or (2)

p( ⇤
(�0)) < 0.5 and p( ⇤

(�0�1

)) � 0.5, where  ⇤
(�0�1

) is the most likely history

without the final observation.

Proof. We give the construction for such a subpath �0. First, we extracts a path �

from an optimal policy ⇡⇤ tree by following the most likely observation edge from the

root. Let � = (r, x
1

, x
2

, . . . , xs, r) be a path in the optimal policy tree ⇡⇤ such that

every edge following a node xi in the path is labeled with the most likely observation

o⇤xi
= argmaxo2O p(o|x) up to the last node xs and then return to the root r. Thus, the

history from traversing � is  ⇤
(�).

Next, we need to ensure that ⇡⇤ traverses its subpath �0 with probability at least 0.5.

Let p(�i|⇡⇤) be the probability of reaching the node xi on the path � under the optimal

policy ⇡⇤. It is equal the probability of traversing the path � and observing the most
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likely observation at every location in � up to xi�1

and go on to xi (without making an

observation at xi) i.e.

p(�i|⇡⇤) = p((r, (x
1

, o⇤x1
), . . . , (xi�1

, o⇤xi�1
), xi))

= p( ⇤
(�i�1

))

If p(�s|⇡⇤) < 0.5, we truncate the path �s from the end at a location xq such that

p(�q|⇡⇤) > 0.5. In other words, �q is the longest subpath of � where p(�q|⇡⇤) > 0.5.

We set �0 = (�q, r). That is, we return to the root r after traversing �q. Otherwise

p(�s|⇡⇤) � 0.5, and we simply set �0 = (�s, r) = �.

⇡⇤ traverses �0 with probability at least 0.5 by construction. If �0 = �, it is a

complete path along the most likely outcome branch from the root to the leaf of the

optimal policy ⇡⇤. Thus, f(�0,�) = f(X,�) for all scenarios � ⇠  ⇤
(�0).

Otherwise, it is the truncated path �0 = (�q, r). After receiving the most likely

observation o⇤xq
at xq, we get p((r, (x

1

, o⇤x1
), . . . , (xq, o⇤xq

)))  0.5 because �q is the

longest subpath that is p(�q|⇡⇤) � 0.5. Thus, p( ⇤
(�q))  0.5.

Lemma 23. Assuming we compute the optimal solution to the submodular orienteering

problems, the agent travels at most 2C(⇡⇤) for each recursive step of RAC.

Proof. Using Lemma 22, we show that there is a subpath �0 from the optimal policy ⇡⇤

that is a feasible solution to either the submodular orienteering problem g⇤Q or V⇤
0.5.

Let �0 a subpath from Lemma 22. If the first case of Lemma 22 is true , then �0 is

a feasible solution to the submodular orienteering problem g⇤Q. Otherwise the second

case p( ⇤
(�0)) < 0.5 and p( ⇤

(�0�1

)) � 0.5, is true. Then �0 is feasible solution to the

problem of V⇤
0.5 because V

0.5(�0,�) = min(0.5, 1 � p( ⇤
(�0)) < 0.5 for all scenario

� 2 ��0 .

Let W ⇤
f and W ⇤

vs be the total edge-weight of optimal submodular orienteering tour

⌧f and ⌧vs respectively. Let the total edge-weight of the tour used in each recursive step

be W ⇤
= min(W ⇤

f ,W
⇤
vs). If it is the first case, then W ⇤  W ⇤

f  W (�0). Otherwise,
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W ⇤ W ⇤
vs W (�0). As �0 is traversed with probability at least 0.5,

C(⇡⇤) �
X

�⇠ ⇤
(�)

⇢(�)w(�0)

� 0.5w(�0) � 0.5W ⇤

W ⇤  2C(⇡⇤),

where w(�0) is the total edge-weight of tour �0.

In EXECUTEPLAN, the agent travels on a path bounded by W ⇤. Hence, the agent

travels at most 2C(⇡⇤).

Lemma 24. Suppose that ⇡⇤ is an optimal policy for a rooted adaptive stochastic op-

timization problem I with prior probability distribution ⇢. Let {�
1

,�
2

, . . . ,�n} be a

partition of the scenarios OX , and let ⇡⇤i be an optimal policy for the subproblem Ii

with prior probability distribution ⇢i:

⇢i(�) =

8

>

<

>

:

⇢(�)/⇢(�i) if � 2 �i

0 otherwise

where ⇢(�i) =
P

�2�i
p(�) Then we have

n
X

i=1

⇢(�i)C(⇡⇤i )  C(⇡⇤).

Proof. For each subproblem Ii, we can construct a feasible policy ⇡i for Ii from the

optimal policy ⇡⇤ for I. Consider the policy tree ⇡⇤. Every scenario � must has a

path � from root to the leaf in the optimal tree ⇡⇤ that covers the scenario because the

optimal policy covers all scenarios. So we choose the policy tree ⇡i as the subtree of ⇡⇤

that consists of all the paths that cover scenarios in �i. Clearly ⇡i is feasible, as every
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scenario in �i has a path in ⇡i that covers it. Then,

n
X

i=1

⇢(�i)C(⇡⇤i ) 
n
X

i=1

⇢(�i)C(⇡i)


n
X

i=1

⇢(�i)
X

�2�i

⇢(�)

⇢(�i)
· C(⇡i,�)

=

X

�2�i

⇢(�)C(⇡⇤,�) = C(⇡⇤).

For functions satisfying the marginal likelihood bound, the remaining objective

value to cover is bounded by marginal likelihood of history multiplied by G. Every

recursive call either reduces marginal likelihood of history by half or completely cov-

ers the function f and thus bounding the remaining function to cover at the same time.

The algorithms is repeated at most a logarithmic number of times and we can obtain an

approximation bound.

Lemma 25. Let ⇡ denote the policy that RAC computes for a rooted adaptive stochastic

optimization problem on paths. Let ⌘ be any value such that f(S,�) > f(X,�) � ⌘

implies f(S,�) = f(X,�). If RAC computes an optimal submodular coverage tour in

each step, then for an instance of adaptive stochastic optimization satisfying marginal

likelihood bound

C(⇡)  2 (log(G/⌘) + 1)C(⇡⇤),

where C(⇡) is the expected cost of RAC.

Proof. Let  be the entire history experienced by the agent from the start of RAC.

If a recursive call picks tour ⌧f , traverses the entire tour, and receive most likely ob-

servation throughout the tour, then f(dom( ),�) = f(X,�) for all scenario � ⇠  

and we have fully covered f . Otherwise, we repeat the recursive call until f(X,�) �

f(dom( ),�) < ⌘, for all � ⇠  . The marginal likelihood bound condition gives us

f(X,�)� f(dom( ), )  G · p( ) for all � ⇠  . Hence, we derive from Lemma 21

the number of recursive steps required for any scenario is at most log
⇣

G
⌘

⌘

+ 1.

We now complete the proof by induction on the number of recursive calls to RAC.

For the base case of k = 1 call, C(⇡)  2C(⇡⇤) by Lemma 23. Assume that C(⇡) 

127



2(k�1)C(⇡⇤) when there are at most k�1 recursive calls. Now consider the induction

step of k calls. The first recursive call partitions the scearios into a collection of mutually

exclusive subsets, �
1

,�
2

, . . . ,�n. Let Ii be the subproblem with scenario set �i and

optimal policy ⇡⇤i , for i = 1, 2, . . . , n. After the first recursive call, it takes at most

k � 1 additional calls for each Ii. In the first call, the agent incurs a cost at most

2C(⇡⇤) by Lemma 23. For each Ii, the agent incurs a cost at most 2(k � 1)C(⇡⇤i )

in the remaining k � 1 calls, by the induction hypothesis. Putting together this with

Lemma 24, we conclude that the agent incurs a total cost of at most 2kC(⇡⇤) when

there are k calls.

The marginal likelihood rate bound condition (Equation (4.1)) tells us that we re-

duce the remaining function to cover by a fraction whenever the remaining version

space is halved. Next, we show that the remaining function to cover is reduced by a

fraction upon termination of each adaptive plan.

Lemma 26. Let ⌧ be the tour generated in a recursive and  be the history after

a recursive call of RAC. By the end of each recursive call, for each scenario � ⇠

 , f(dom( ),�) � (1 � 1/K)Q unless f(X,�) < (1 � 1/K)Q. In that case,

f(dom( ),�) = f(X,�).

Proof. The procedure EXECUTEPLAN is called with tour ⌧ that is a solution to sub-

modular orienteering problem g⇤
(1�1/K)Q. From Lemma 20, if EXECUTEPLAN termi-

nates with p( )  0.5, we know from marginal likelihood rate bound (Equation (4.1))

that f(dom( ),�) � (1 � 1/K)Q for all � ⇠  . Otherwise, EXECUTEPLAN ter-

minates with g⇤
(1�1/K)Q(⌧, ) = (1 � 1/K)Q. In that case, from Proposition 4,

f(dom( ),�) � (1 � 1/K)Q or f(X,�) < (1 � 1/K)Q and f is already covered

for �.

Lemma 27. Assuming we compute the optimal solution to the submodular orienteering

problems, the agent travels at most 2C(⇡⇤) for each recursive step of RAC.

Proof. From Lemma 22 and marginal likelihood rate bound, the subpath �0 is feasible

solution to the submodular orienteering problem of g⇤
(1�1/K)Q. Let W ⇤ be the total
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edge-weight of the tour used in a recursive call of RAC. Then, W ⇤  W (�0) because

W ⇤ is the value of an optimal solution. Since �0 is traversed with probability at least

0.5,

C(⇡⇤) �
X

�⇠ ⇤
(�)

⇢(�)w(�0)

� 0.5w(�0) � 0.5W ⇤

W ⇤  2C(⇡⇤),

where w(�0) is the total edge-weight of tour �0.

In EXECUTEPLAN, the agent travels on a path bounded by W ⇤. Hence, the agent

travels at most 2C(⇡⇤).

Lemma 28. Let ⇡ denote the policy that RAC computes for a rooted adaptive stochastic

optimization problem on paths. Let ⌘ be any value such that f(S,�) > f(X,�) � ⌘

implies f(S,�) = f(X,�). If RAC computes an optimal submodular coverage tour in

each step, then for an instance of adaptive stochastic optimization satisfying marginal

likelihood rate bound

C(⇡)  2 (logK(Q/⌘) + 1)C(⇡⇤),

where C(⇡) is the expected cost of RAC, and K > 1 and Q � max� f(X,�) are the

constants that satisfy Equation (4.1).

Proof. We need to repeat the recursive call until f(X,�) � f(dom( ),�)  ⌘ for all

� ⇠  . From marginal likelihood rate bound and Lemma 26, the number of recursive

steps required for any scenario is at most logK
⇣

Q
⌘

⌘

+ 1.

We now complete the proof by induction on the number of recursive calls to RAC.

For the base case of k = 1 call, C(⇡)  2C(⇡⇤) by Lemma 27. Assume that

C(⇡)  2(k� 1)C(⇡⇤) when there are at most k� 1 recursive calls. Now consider the

induction step of k calls. The first recursive call partitions the scenarios into a collection

of mutually exclusive subsets, �
1

,�
2

, . . . ,�n. Let Ii be the subproblem with scenario

set �i and optimal policy ⇡⇤i , for i = 1, 2, . . . , n. After the first recursive call, it takes

at most k � 1 additional calls for each Ii. In the first call, the agent incurs a cost at
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most 2C(⇡⇤) by Lemma 27. For each Ii, the agent incurs a cost at most 2(k� 1)C(⇡⇤i )

in the remaining k � 1 calls, by the induction hypothesis. Putting together this with

Lemma 24, we conclude that the agent incurs a total cost of at most 2kC(⇡⇤) when

there are k calls. Hence, we obtain our approximation bounds.

Now, we relax the optimal submodular orienteering assumption and replace it with

our polynomial time approximation procedure.

Lemma 29. An ↵-approximation algorithm for rooted adaptive stochastic optimization

problem on paths is a 2↵-approximation algorithm for adaptive stochastic optimization.

Proof. Let C⇤ and C⇤
r be the expected cost of an optimal policy for an adaptive stochas-

tic optimization problem and for a corresponding rooted adaptive stochastic optimiza-

tion problem, respectively. As any policy for non-rooted problem can be turned into a

policy for the root version by retracing the solution path back to the start location, we

have C⇤
r  2C⇤. An ↵-approximation algorithm for rooted adaptive stochastic opti-

mization computes a policy ⇡ for Ir with expected cost Cr(⇡)  ↵C⇤
r . It then follows

that Cr(⇡)  ↵C⇤
r  2↵C⇤ and this algorithm provides a 2↵-approximation to the

optimal solution of the non-rooted problem.

Theorem 11. Assume that f is a pointwise integer-valued submodular monotone func-

tion. Let ⌘ be any value such that f(S,�) > f(X,�) � ⌘ implies f(S,�) = f(X,�)

for all S ✓ X and all scenario �. For any constant ✏ > 0 and an instance of adaptive

stochastic optimization problem on path satisfying marginal likelihood rate bound, RAC

computes a policy ⇡ in polynomial time such that

C(⇡) = O((log|X|)2+✏ logQ logK(Q/⌘))C(⇡⇤)),

where Q and K > 1 are constants that satisfies Equation (4.1).

Proof. The distance traveled in each recursive step is at most ↵W ⇤  O(↵)C(⇡⇤).

From Lemma 2 , the approximation factor for the submodular orienteering problem

solved in RAC is

↵ = O((log|X|)2+✏ logQ). Putting this together with Lemma 28 and Lemma 29,
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we get the desired approximation bound. The algorithm clearly runs in polynomial

time.

Theorem 12. Assume that the prior probability distribution ⇢ is represented as non-

negative integers with
P

� ⇢(�) = P . Let ⌘ be any value such that f(S,�) > f(X,�)�

⌘ implies f(S,�) = f(X,�) for all S ✓ X and all scenario �. Assume that f is a

pointwise integer-valued submodular monotone function. For any constant ✏ > 0 and

an instance of adaptive stochastic optimization problem on path satisfying marginal

likelihood bound, RAC computes a policy ⇡ for in polynomial time such that

C(⇡) = O((log|X|)2+✏(logP + logQ) log(G/⌘))C(⇡⇤),

where Q = max� f(X,�).

Proof. Let ↵
1

and ↵
2

be the approximation factors when we compute the submodular

orienteering tours ⌧f and ⌧V S respectively in one recursive call of RAC. Let the length

of the tour chosen be W , Let the length of the tour chosen be W ,

W = min(↵
1

W ⇤
f ,↵2

W ⇤
V S)

 (↵
1

+ ↵
2

)W ⇤

 2(↵f + ↵V S)C(⇡⇤)

The last inequality is due to Lemma 23. Hence, the distance traveled in each recursive

step is at most 2(↵f + ↵V S)C(⇡⇤). Lemma 2 tells us that ↵
1

2 O((log|X|)2+✏ logQ)

and ↵
2

2 O((log|X|)2+✏ logP ). Putting this together with Lemma 25 and Lemma 29,

we get the desired approximation bound. The algorithm clearly runs in polynomial

time.

A.1.3 Adaptive Stochastic Optimization on Sets

Adaptive stochastic minimum cost cover on sets (without path constraints) is a special

case where the metric is a star graph where all elements are connected to a root node. In

the special case of sets, the submodular orienteering problems that RAC solves become

submodular set coverage problems. At the same time, the submodular orienteering pro-
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cedure in RAC becomes a greedy selection policy where we always choose the element

with highest value to cost ratio, i.e.maxx2X\dom( )
4(x| )
c(x) .

Lemma 30. Given a submodular set function g : X ! R, let ⇡G be the greedy selection

policy. We have,

C(⇡G) 
✓

1 + ln

f(X)� f(;)
f(X)� f(ST�1

)

◆

C(⇡⇤)

where the subset ST�1 is the set of elements selected before the last step of the greedy

policy (Wolsey, 1982).

Using Lemma 30, we can get tighter approximation bounds for stochastic sets func-

tions and drop the integer representation assumption on the prior ⇢.

Theorem 13. For an instance of adaptive stochastic optimization problem on subsets

satisfying marginal likelihood rate bound, assuming f is pointwise integer-valued sub-

modular and monotone, let ⌘ be any value such that f(S,�) > f(X,�) � ⌘ implies

f(S,�) = f(X,�) for all S ✓ X and all scenario �. RAC computes a policy ⇡ in

polynomial time such that

C(⇡) = 4(lnQ+ 1)(logK(Q/⌘) + 1)C(⇡⇤),

where Q and K > 1 are constants that satisfies Equation (4.1).

Proof. The distance traveled in each recursive step is at most ↵W ⇤  4↵C(⇡⇤). From

Lemma 30, the approximation factor for the submodular set cover problem solved in

RAC is ↵ = logQ. Putting this together with Lemma 28 and Lemma 29, we get the

desired approximation bound. The algorithm clearly runs in polynomial time.

Theorem 14. For an instance of adaptive stochastic optimization problem on subsets

satisfying the marginal likelihood bound condition, assuming f is pointwise integer-

valued submodular and monotone, let ⌘ be any value such that f(S,�) > f(X,�)� ⌘

implies f(S,�) = f(X,�) for all S ✓ X and all scenario � and � = min� ⇢(�). RAC

computes a policy ⇡ in polynomial time such that

C(⇡) = 4(ln 1/� + lnQ+ 2)(log(G/⌘) + 1)C(⇡⇤)),
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where Q = max� f(X,�).

Proof. Let ↵
1

,↵
2

be the approximation factors when we compute the submodular set

cover ⌧f and ⌧V S respectively. Let the cost of the set of elements chosen be W ,

W = min(↵
1

W ⇤
f ,↵2

W ⇤
V S)

 (↵
1

+ ↵
2

)W ⇤

 2(↵f + ↵V S)C(⇡⇤)

The last inequality is due to Lemma 23. Hence, the distance traveled in each recursive

step is at most 4(↵f +↵V S)C(⇡⇤). From Lemma 30, the approximation factors for the

submodular set cover problems are ↵
1

= ln 1/� + 1 and ↵
2

= lnQ + 1. Putting this

together with Lemma 25 and Lemma 29, we get the desired approximation bound. The

algorithm clearly runs in polynomial time.

A.2 POMDP with Macro Actions

Lemma 15 (Contraction). Given value functions U and V , ||HU �HV ||1  �||U �

V ||1.

Proof. Let b be an arbitrary belief and assume that HV (b)  HU(b) holds. Let a⇤ be

the optimal macro action for HU(b). Then

0  HU(b)�HV (b)

 R(b, a⇤) + �
X

o2O
p�(o|a⇤, b)U(⌧(b, o, a⇤))�R(b, a⇤)� �

X

o2O
p�(o|a⇤, b)V (⌧(b, o, a⇤))

= �
X

o2O
p�(o|a⇤, b)[U(⌧(b, o, a⇤)� V (⌧(b, o, a⇤))]

 �
X

o2O
p�(o|a⇤, b)||U � V ||1

 �||U � V ||1.

Since || · ||1 is symmetrical, the result is the same for the case of HU(b)  HV (b).
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By taking || · ||1 over all weighted belief, we get

||HU �HV ||1  �||U � V ||1.

Thus, H is a contractive mapping.

Theorem 17 (Piecewise Linearity and Convex). The value function for an m-step policy

is piecewise linear and convex and can be represented as

Vm(b) = max

↵2�m

X

s2S
↵(s)b(s) (5.5)

where �m is a finite collection of ↵-vectors.

Proof. We prove this property by induction. When m = 1, the initial value function V
1

is the best expected reward and can be written as

V
1

(b) = max

a
R(b, a) = max

a

X

s2S
R(s, a)b(s).

This has the same form as Vm(b) = max↵m2�m
P

s2S ↵m(s)b(s) where there is one

linear ↵-vector for each macro action. V
1

(b) can therefore be represented as a finite

collection of ↵-vectors.

Assuming the optimal value function for any bi�1

is represented using a finite set of

↵-vector �i�1

= {↵0

i�1

,↵1

i�1

, ...} and

Vi�1

(bi�1

) = max

↵i�12�i�1

X

s2S
bi�1

(s)↵i�1

(s) (A.2)

Substituting

bi�1

(s) =
1
X

j=1

�j�1

X

s0
p(s, o, j|s0, a)bi(s0)/p�(o|a, bi)

into (A.2), we get

Vi�1

(bi�1

) = max

↵i�12�i�1

X

s2S

P1
j=1

�j�1

P

s0 p(s, o, j|s0, a)bi(s0)
p�(o|a, bi)

↵i�1

(s).
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Substituting it into the backup equation gives

Vi(bi) = max

a

�

R(bi, a) + �
X

o2O
p�(o|a, bi) max

↵i�12�i�1

X

s2S

P1
j=1

�j�1

P

s0 p(s, o, j|s0, a)bi(s0)
p�(o|a, bi)

↵i�1

(s)
�

= max

a

�

R(bi, a) + �
X

o2O
max

↵i�12�i�1

X

s2S

1
X

j=1

�j�1

X

s0
p(s, o, j|s0, a)bi(s0)↵i�1

(s)
�

= max

a
max

↵1
i�12�i�1,...,↵

|O|
i�1

X

s02S
bi(s

0
)

2

4R(s0, a) + �
X

o2O

X

s2S

1
X

j=1

�j�1p(s, o, j|s0, a)↵o
i�1

(s)

3

5

The expression in the square bracket can evaluate to |A||�i�1

||O| different vectors.

We can rewrite Vi(bi) as:

Vi(bi) = max

↵i2�i

X

s2S
↵i(s)bi(s).

Hence Vi(bi) can be represented by a finite set of ↵-vector.
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