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Summary
Wireless networks are becoming increasingly popular over the last two decades, and

there is no doubt this trend will continue. The key advantage of wireless networks is

that they utilize radio waves to transmit information over the air, hence allowing related

devices to communicate in a cordless manner. Nevertheless, the open and shared nature

of wireless networks’ communication medium also makes them more vulnerable to

various malicious behavior. These malicious behavior include, but are not limited to,

jamming, spoofing, and sybil attacks.

Sybil attacks refer to the situation in which malicious users dishonestly generate

large numbers of fake identities, and inject them into the network to gain unfair advan-

tage over honest users, or to conduct other hostile activity. Compare with jamming and

spoofing attacks, sybil attacks are relatively new, and are not so well-studied, especially

in the environment of wireless networks. In this thesis, we focus on the topic of how

to effectively thwart sybil attacks in multi-channel wireless networks, and at the same

time tolerate other malicious behavior as well.

We first consider centralized multi-channel wireless networks, in which one central

and trusted base station exists. The problem is to enforce fairness when multiple users

are downloading data from the base station. In particular, without special care, mali-

cious users can commence a sybil attack by simulating many fake identities, and hence

obtain a large and unfair portion of the total bandwidth. To counter such behavior, we

propose a protocol named SYBILCAST. SYBILCAST limits the number of fake identi-

ties, and in doing so, it ensures that each honest user gets at least a constant fraction of

its fair share of the bandwidth. As a result, each honest user can complete his or her data

download in asymptotically optimal time. A key aspect of this protocol is balancing the

rate at which new identities are admitted and the maximum number of fake identities

that can co-exist, while keeping the protocol overhead low.

We then consider a more challenging scenario: ad hoc multi-channel wireless net-

works, where no central base stations exist. The problem in this setting is for each user

to learn the identities of the other users, even though they have no prior knowledge of the

number of other users or their identities. To solve this problem, several new anti-sybil

algorithms are described and analyzed. They guarantee each honest user accepts a set

i



of trusted and unforgeable identities that include all other honest users and a bounded

number of fake identities. The proposed algorithms provide trade-offs between time

complexity and sybil bounds. It is also worth noting that these algorithms solve, as

subroutines, two problems of independent interest in this anonymous wireless setting:

Byzantine consensus and network size estimation.

It is worth noting that all the above mentioned algorithms are randomized algo-

rithms that can only guarantee correctness with high probability. Towards the end of

the thesis, we study if such small chance of error is inevitable. In particular, we fo-

cus on the problem of counting and node discovery, and show that in some adversarial

environments, even without sybil attacks, it is impossible to guarantee to solve these

problems: chance of error may exist, or the algorithm may never terminate.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent decades, the popularity of wireless telecommunication has been ever increas-

ing. Thanks to its cordless nature, wireless telecommunication allows devices to com-

municate with each other without the need for physical wires; it also enables users to

stay in touch even when they are on the move.

The key technology behind the scene that makes wireless communication possible is

that information can be encoded in radio waves and then transmitted. This observation

reveals a key difference between wireless and wired networks: all wireless clients in a

network can communicate over the same medium, while each pair of wired clients in a

network may have to rely on a separate cable to communicate with each other.

Unfortunately, this open and shared nature of wireless telecommunication also

makes wireless networks more vulnerable to various malicious behavior than traditional

wired networks. For example, if an evil user wants to eavesdrop, intercept or disrupt

the communication within a wired network, he or she usually has to obtain physical

access to the network infrastructure. In the wireless setting, however, all such malicious

behavior can be done tens or even hundreds of meters away from where the signal is

emitted or received. Therefore, understanding the attacking strategies a malicious user

may use, and the corresponding countermeasures, is a crucial step to securing wireless

networks.

In this thesis, three types of malicious behavior are considered: jamming, spoofing,

and sybil attacks; with sybil attacks being the focus. Jamming refers to the behavior of
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emitting radio signals to disrupt the normal communication of other wireless devices.

It is an attack on availability, and can potentially render the whole network unable to

serve any request. Moreover, it is easy to implement yet hard to defend against [27].

Spoofing, on the other hand, refers to a situation where a malicious user masquerades

as another, thereby gaining an illegitimate advantage. It is an attack on authenticity.

Compare to jamming and spoofing, sybil attacks [16] is a relatively new security

threat. It refers to the behavior where malicious users dishonestly generate large num-

bers of fake identities (also called sybil identities) and inject them into the network to

gain some benefit or to conduct some hostile activity. Researchers have shown that

sybil attacks can do severe damage to various real world systems [42]. Nevertheless,

how to effectively counter it, especially in the context of wireless networks, is not fully

understood. In this thesis, we focus on the topic of effectively thwarting sybil attacks in

multi-channel wireless networks, while at the same time tolerating jamming and spoof-

ing as well. One point worth noting is that spoofing attacks share some similarities with

sybil attacks as they both are related to masquerading identities. However, fundamental

differences exist between them. In particular, spoofing attacks focus on camouflaging

existing real entities, whereas sybil attacks focus on fabricating new identities that do

not correspond to any existing real entities.

In the reminder of this chapter, we will first introduce several general strategies

that will be used to counter the above mentioned various malicious behavior and the

corresponding challenges when applying or generalizing them. We will then present

the results and contributions. We conclude this chapter by introducing the organization

of the reminder of the thesis.

1.2 Approach and Challenges

Although wireless networks are vulnerable to the above mentioned malicious behavior,

some of its unique characteristics can be leveraged to defend against these threats.

Sybil attacks. The existence of multi-channel wireless networks is one such feature

that can help thwart sybil attacks. Modern wireless telecommunication standards usu-

ally defines multiple communication channels. (For example, the IEEE 802.11 WiFi

standard [1] defines 14 channels around 2.4GHz, and the Bluetooth standard [2] defines
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79 channels.) Wireless devices that are equipped with radio transceivers can access any

of these channels, with respect to the corresponding standard. However, at any given

time, a radio transceiver (usually) can only operate on one channel. If an adversary

controls a limited number of such radio transceivers, then we can take advantage of

this limitation and effectively thwart sybil attacks. More specifically, we make two key

assumptions regarding the power of the adversary: (a) each malicious device that is

controlled by the adversary has a single radio transceiver that can only tune into a sin-

gle channel at a time; and (b) the total number of malicious devices that is controlled by

the adversary is less than the total number of available channels. The first assumption

derives from the idea that the adversary has the same hardware available as the honest

devices (and, notably, hardware similar to standard wireless devices today). The sec-

ond assumption derives from the idea that—as we have previously mentioned—modern

wireless communication standards usually specify multiple communication channels,

and there is every reason to believe future standards will have even more channels avail-

able for use (see, e.g., [26,58]). Given these two assumptions, devices can test potential

identities by requiring them to participate on certain channels at certain times. Because

the adversary is limited in the number of channels she can use concurrently, if these

tests are constructed carefully, they can limit the number of identities the adversary can

convincingly maintain.1

To make the idea clearer, we now give a simple example. Consider a wireless net-

work consisting of two channels and at most one malicious device v. An honest node u

can apply the following method to verify two identities v1 and v2: u first assigns v1 and

v2 to go to different channels; then u asks each identity to send out some information.

Finally, u randomly picks one of the two channels and listens. If the two identities are

each generated by an honest node, then u can always hear something on the channel

chosen by itself. Otherwise, if both v1 and v2 are generated by v (i.e., v1 and v2 are

sybil identities), then v only has a 50% chance to correctly guess which channel u will

listen to, and broadcast on that channel. As a result, there is a 50% chance u will be

able to spot and eliminate one sybil identity. If this test is repeated for sufficiently many

times, all sybil identities can be detected.
1Notice, if there are more malicious devices than channels, then having access to many channels does

not help: the malicious users can access all the channels simultaneously and any advantage is lost (both
for the purposes of avoiding disruption, and for the purpose of sybil avoidance).
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The above illustrated strategy is called radio resource testing [39, 40, 42]. The net-

working community recognizes this approach as practical because most real world wire-

less devices have access to many more channels than they can use simultaneously, and

it does not require any additional information.

Nevertheless, when generalizing the aforementioned simple strategy, many chal-

lenges arise. First and foremost, the process of testing must be implemented efficiently

with limited overhead: there is little benefit to eliminating the sybil identities if a proto-

col for detecting these identities consumes all the bandwidth and/or time. For example,

it does not suffice to test one pair of identities at a time: if there are d identities (many of

which may be sybil identities), it will take Θ(d2) time to test them all. Instead, the run-

ning time should depend on the number of real users (not the number of sybil identities).

Otherwise, the adversary can potentially swamp the system with never-ending tests. In

addition, the adversary may control more than one malicious device and hence can ac-

cess multiple channels simultaneously. Thus, it will be insufficient to test identities on

a per pair basis.

Another challenge that can arise is the continuous nature of some systems. In

many scenarios—such as wireless file servers that are serving data download requests—

clients can arrive continuously over time. As a result, the adversary can also continu-

ously create new sybil identities. In these cases, it is insufficient to simply run a set

of tests and then proceed with a standard protocol. In fact, for some of our proposed

algorithms, a key aspect of the design is to balance the rate at which new users (and

potentially new sybil identities) are admitted to the system and the rate at which sybil

identities can be detected.

Jamming. The existence of multiple communication channels also helps in terms of

jamming resistance. For example, if two honest devices manage to share some se-

crets that are unknown to the adversary with each other (or more simply, they have

pre-distributed shared credentials), then these secrets can be used to generate channel

hopping sequences (via, for example, a pseudorandom number generator [33]). Since

the adversary does not know these channel hopping sequences, the probability that she

can utilize her radio transceivers to disrupt the communication is greatly reduced.

This strategy is called coordinated frequency hopping, in a sense that honest devices
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know a common frequency hopping pattern. In many cases, however, honest devices

do not have shared secrets a prior; and may each follow a different frequency hopping

pattern to mitigate adversarial jamming. This later method is usually called uncoor-

dinated frequency hopping [57]. Compare with coordinated frequency hopping, the

uncoordinated version does not require common knowledge in advance. Nevertheless,

such schemes need to be carefully designed to ensure that honest devices can still meet

sufficiently often, otherwise the participants will not be able to exchange information

efficiently (which would be no better than taking no countermeasures at all).

In this thesis, we use both coordinated and uncoordinated frequency hopping to

mitigate the impact of adversarial jamming.

Spoofing. In the context of network security, spoofing refers to the situation in which

an entity successfully masquerades as another entity and communicates with others on

this stolen identity’s behalf. Spoofing is a well-known security problem and exists in

many scenarios. It is an attack on authenticity, but can target confidentiality, availability,

privacy, etc. In this thesis, we utilize standard cryptography tools such as cryptographi-

cally secure hash functions and asymmetric encryption to prevent spoofing attacks.

1.3 Results and Contributions

In this thesis, we develop algorithms that can effectively thwart sybil attacks (and other

malicious behavior) in centralized and ad hoc settings, respectively. We have also shown

that certain related problems are impossible to solve with probability one. (I.e., no

algorithms can guarantee to solve those problems.)

Sybil resistance in centralized wireless networks. We begin by studying sybil resis-

tance in centralized multi-channel wireless networks in which a central and trusted base

station exists. We consider the problem of fair bandwidth allocation. More specifically,

we assume multiple users are downloading data from a central base station, and these

users can come and leave over time. The base station allocates equal bandwidth to all

users that are currently in the system. Unfortunately, without special care, an adversary

can easily circumvent this fairness mechanism and obtain an unfair share of the total

bandwidth by simulating multiple users (i.e., commence a sybil attack). For example,
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in a wireless network that has ten users, one malicious user can obtain 90% of total

bandwidth (instead of 10%) by simulating 90 fake users.

To thwart such malicious behavior, we develop a new protocol named SYBILCAST.

More specifically, the SYBILCAST protocol provides the following guarantee: in a

single-hop wireless network with at most N real users, among which at most t users

are dishonest, and c > 20t channels, if an honest user p requests a download m of size

|m| ≥ c2 log3N , and if there are at most contention(p,m) concurrently active real

users at any point during the request, then with high probability the download will com-

plete in O(|m| · contention(p,m)) time.2 Here, with high probability means with

probability at least 1 − 1/Nk, for any constant k ≥ 1. This implies that each honest

user will receive an asymptotically fair share of the total bandwidth, even when sybil

attacks are present. We also note here, for smaller requests (i.e., those with size smaller

than c2 log3N ), with high probability SYBILCAST still guarantees all their data will be

delivered, but the time consumption may not be asymptotically optimal.

To the best of our knowledge, SYBILCAST is the first protocol that can provide

(asymptotically) fair bandwidth allocation when sybil attacks are present. It can tol-

erate message spoofing and wireless jamming as well. We believe that the techniques

developed here may be useful in constraining sybil identities in other types of prob-

lems. In particular, the SYBILCAST approach has relatively low overhead, and hence

can integrate well with other protocols.

Sybil resistance in ad hoc wireless networks. We then turn our attention to ad hoc

networks in which no central and trusted base station exist. We consider the problem of

neighbor discovery in unknown and anonymous wireless networks. More specifically,

we assume a group of wireless devices are activated in a single-hop wireless network.

Some of them are honest while others are malicious. The honest devices are provided

with no advance information regarding the size of the network or the identities of the

other devices. The goal is to let each honest device construct a set of trusted and un-

forgeable identities that includes: (a) a unique identity for each honest device, and (b) a

bounded number of sybil identities.

Intuitively, this scenario seems hopeless, as honest devices have no information re-
2The size of m is measured in the number of data packets.
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garding network size or participants, and there is no obvious way to distinguish honest

devices from malicious devices. Thus, malicious devices can commence a sybil attack

and create many fake identities. Nevertheless, we prove—perhaps surprisingly–that this

scenario is not hopeless. We describe and analyze new algorithms that allow honest de-

vices to constrain the number of sybil identities to an asymptotically optimal limit. Our

results answer open questions regarding sybil resistance in ad hoc networks and provide

a general foundation for establishing trusted computing in the increasingly untrustwor-

thy world of wireless networking.

More specifically, we model a single-hop network with n devices, t of which are

malicious, using c channels, where t ≤ min{n, c}/α, for some sufficiently large con-

stant α. We assume the honest devices do not know n or t in advance. We describe

and analyze new anti-sybil algorithms that guarantee, with high probability, each hon-

est device ends up accepting a set of trusted and unforgeable identities that include all

other honest devices and a bounded number of sybil identities. The algorithms provide

trade-offs between time complexity and sybil bounds. In more detail, our first algorithm

terminates in O(n lg2 n) time and guarantees no more than O(t) sybil identities (which

is asymptotically optimal) for the case where c ≥ n. On the other hand, when c < n,

the time bound can grow as large as O(n2 lg2 n) and the sybil bound as large as O(n).

We then describe a slower algorithm that terminates in O(n3 lg2 n) time, but always

guarantees an asymptotically optimal bound of O(t) sybil identities.

We note here, these algorithms solve, as subroutines, two problems of independent

interest in this anonymous wireless setting: Monte Carlo Byzantine consensus and net-

work size estimation.3

Impossibility results. As can be seen from previous discussion, all the proposed al-

gorithms can only guarantee their properties with high probability. This implies, with

certain extremely small (but non-zero) probability, these algorithms will fail to enforce

their guarantees, and the adversary will succeed in conducting various malicious behav-

iors. This observation leads to a nature and important question: is such chance of error

a result of imperfect design (and/or analysis), or simply inherently inevitable (due to the

nature of the problem).
3The consensus protocol maintains its safety properties with high probability, but not necessarily with

probability one.
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To answer this question, we consider two fundamental problems that constantly

arose when we were trying to design the previously discussed algorithms: the neighbor

discovery problem in which each device wants to know the identities of the other devices

that co-exist in the network (i.e., who is around); and the easier counting problem in

which each device wants to know how many devices in total exist in the network (i.e.,

how many devices are around).

We find that even without sybil attacks, the malicious nodes can still render these

problems unsolvable in many settings. In particular, we show that for any finite time

period, no algorithm exists that can guarantee to solve these problems within the given

time period. Moreover, we have also shown that no Las Vegas algorithms exist that can

guarantee to solve these problems. (That is, no randomized algorithms can guarantee to

solve them within a finite expected running time.)

1.4 Organization of the Thesis

The reminder of this thesis consists of five chapters. In Chapter 2, we will give a detailed

literature review on related topics. In Chapter 3, we will discuss more details regarding

sybil resistance in centralized wireless networks, and the SYBILCAST protocol. In

Chapter 4, we will discuss more details regarding sybil resistance in ad hoc wireless

networks, and the various distributed protocols we have proposed. In Chapter 5, we

will present the impossibility results. Finally, we conclude in Chapter 6, and discuss

potential future research directions.

8



Chapter 2

Related Work

This chapter presents a short survey which outlines the state of art defense strategies

for three types of malicious behavior in the context of wireless networks: sybil attacks,

jamming attacks, and spoofing attacks. In the analysis of each of these malicious behav-

iors, we will firstly define the concept of the attack and introduce the problems it may

cause. We will then present the various countermeasures researchers have proposed.

These countermeasures will be divided into different categories, each of which tries to

thwart the specific attack from a different perspective. While analyzing each counter-

measure, we will discuss if it can be applied to other scenarios (e.g., wired networks),

or is unique to wireless networks. We will also highlight the advantages and limitations

of each approach. At the end of the discussion, a short summary is provided to com-

pare and contrast the different countermeasures. We will also point out potential future

research directions whenever possible.

Notice, the focus of this thesis is thwarting sybil attacks, and we include literature

review on jamming and spoofing attacks mainly for the purpose of completeness. We

also note here, spoofing is a well-studied problem in the field of information security,

hence the discussion on it will be short and concise, interested readers can refer to other

survey papers for more details.

2.1 Basic Model

In this section, we introduce some most basic concepts and notations that will be fre-

quently used when describing wireless networks.
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In wireless networks, wireless clients use radio waves to transmit information. Dif-

ferent radio waves have different frequencies, and we usually call a certain frequency

range as one channel.1 In a wireless network, wireless clients can use one or multiple

channels to transmit information. In particular, a wireless client can emit signals on a

channel to send a message, or sense signals to try to receive a message. In most cases,

channels are “orthogonal”, and different clients sending messages on different channels

will not interfere with each other. However, if multiple clients send messages on the

same channel simultaneously, a collision may happen, i.e., different radio signals may

interfere with each other. There are different proposals for modeling collisions. For ex-

ample, some collision models assume all related radio signals are corrupted and hence

no information can be delivered, while other collision models assume one signal “over-

writes” other signals. Under different collision detection models, collisions may or may

not be detected by the communicating parties. Collision modeling also concerns who

can detect collisions and whether recover information from collisions is possible or not.

Similar to wired networks, wireless networks can be divided into single-hop wire-

less networks or multi-hop wireless networks. In a single-hop wireless network, all

wireless clients can directly communicate with each other. By contrast, in a multi-hop

wireless network, information may have to be relayed by several wireless clients before

it can reach the final destination.

Synchronization is another important parameter for wireless networks. We say a

wireless network is synchronized if time can be divided into continuous, equal-sized

units, and each wireless client in the network has same view on the beginning and

ending of each of these time units. Notice, a synchronized network does not necessarily

imply the clients in the network have the same clock. I.e., in a synchronized network,

clients may have different opinions on what the current time is.

2.2 Sybil Attacks

2.2.1 Overview

A sybil attack [16] refers to the situation in which malicious users dishonestly generate

large numbers of fake identities (also called sybil identities, or simply sybils), injecting
1Notice, in wireless telecommunication, there also exist other definitions for “channel”.
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them into the system or network to gain extra benefit or to conduct some other hostile

activity. This name is derived from the title of a book: “Sybil” by Schreiber [50], which

describes a woman with multiple personalities.

Researchers believe sybil attacks can threat many real-world systems, which in-

clude, but are not limited to, reputation systems, peer-to-peer networks, and wireless

networks. In [42], Newsome et al. discuss the various attacks the adversary can per-

form once she has generated enough sybil identities. They summarize the potential

targets of these attacks (particularly in sensor networks) as follows: distributed storage,

routing, data aggregation, voting, fair resource allocation, and misbehavior detection.

For instance, in an attack on a distributed storage system, data may be stored only on

the sybil identities that are generated by a single malicious node, even though the orig-

inal design goal is to replicate or distribute the data across multiple different nodes. (In

fact, when the term sybil attack was first coined by Douceur in [16], the problem he

considered was sybil attacks’ ability to violate the replication property in peer-to-peer

systems.)

To better understand sybil attacks, Newsome et al. [42] divide them into different

categories from three orthogonal dimensions: direct vs indirect communication, fabri-

cated vs stolen identities, and simultaneity. In the first dimension, direct communica-

tion means sybil identities can “directly” exchange messages with honest nodes while

indirect communication means all information exchanged between sybil identities and

honest nodes must be “routed” by malicious nodes. In the second dimension, fabri-

cated identities means the malicious nodes can directly create new sybil identities while

stolen identities means the malicious nodes can only steal legitimate identities (e.g., by

destroying or disabling the targeted honest nodes) and assign them to sybil identities.2

In the last dimension, simultaneous means all the sybil identities can be present in the

network simultaneously, while non-simultaneous means the malicious nodes can only

utilize a limited portion of the sybil identities they have generated at any given time.

Researchers have also proposed many solutions to thwart sybil attacks. Most of

these proposals fall into one of the following three categories: (a) pre-distributing cre-

dentials, (b) social networking, and (c) resource testing. Except for radio resource test-
2Whether identity theft should be counted as a form of sybil attack is an open question as it looks

almost identical to spoofing.
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ing, which belongs to the resource testing category, all other strategies can be directly

applied to scenarios other than wireless networks.

We also note here, aside from the three major approaches mentioned above, there

also exist several papers which takes a less common radio fingerprinting approach. This

approach is specific to wireless networks, and cannot be applied to other scenarios. We

will also briefly discuss it in this thesis for the sake of completeness.

2.2.2 Countermeasures

Pre-distributing Credentials

This approach is the simplest and most straightforward one, and people have been us-

ing such techniques (e.g., passwords, signatures/certificates) to authenticate identities

in similar scenarios for a long time. For example, by using a public key infrastructure

(PKI) [3], we can require each identity in the network to hold a digital certificate that

is signed by a trusted authority. Through careful management of certificate creation,

the adversary cannot fabricate sybil identities easily. Meanwhile, the built-in revoca-

tion mechanism of PKI systems also helps thwart identity theft. Unfortunately though,

such PKI style solutions suffer from two potential shortcomings. Firstly, creation and

revocation of certificates is a relatively slow process if the network is highly dynamic

and rapidly changing. Secondly, asymmetric cryptography is traditionally believed to

be “expensive” in terms of the computational resources required, hence schemes exten-

sively using it may not be suitable for systems like sensor networks which are highly

energy constrained. Nevertheless, we notice that in recent years, there are many at-

tempts to “port” public key encryption to sensor networks in an energy-efficient manner

(e.g., [35, 62]). Moreover, there also exist benchmark results which indicate public key

encryption is actually not as power-consuming (e.g., [44, 61]) as previously believed.

Binding pre-distributed keys with each node’s identity is another possibility. In [42],

the authors propose three such schemes. The first one is called key pool. In this scheme,

each node is given a set of keys (in the key pool) based on its identity. To validate

an identity, the challenger asks the identity to demonstrate it really possesses the keys

it should have owned. The key pool scheme is simple, but suffers a major drawback:

it does not support pairwise authentication as it cannot guarantee each pair of identi-
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ties share at least one common key. This shortcoming motivates a second scheme: the

single-space pairwise key distribution scheme. This second scheme supports pairwise

authentication, but in turn allows the adversary to create arbitrarily many sybil identi-

ties, if the adversary has compromised enough honest nodes. Towards the end of the

paper, the authors combine these two schemes together and propose the multi-space

pairwise key distribution scheme, which can provide the strongest security guarantees.

Although pre-distributing keys can effectively thwart sybil attacks, it has the same

disadvantage as the PKI approach; namely, pre-distributing credentials in advance is

difficult to implement in highly dynamic and rapidly changing wireless networks.

Social Networking

The emergence of social networks has inspired new techniques for detecting sybil iden-

tities. In [28], Hoffman et al. suggest Pretty Good Privacy (PGP) [71], a program which

was originally developed for the purpose of confidential message exchange with guaran-

tees on privacy and authenticity, is also suitable for countering sybil attacks. In contrast

to PKI systems’ centralized and hierarchical approach, PGP can create a decentralized

and flat structure, called a “web of trust”.3 More specifically, PGP binds certificates

(which are not signed by a trusted authority) with usernames and/or E-mail addresses.

Users that trust each other in the real world can also choose to trust each other’s certifi-

cates. In this way, trust relationships can propagate. For example, suppose Alice and

Bob are friends and they trust each other. We further assume Bob trusts Cathy. Then,

Bob can sign Cathy’s certificate with his private key. Later on, when Alice sees Cathy’s

certificate, she may have a higher chance of trusting it since it is signed by Bob, a friend

of hers. Notice, this is different from the PKI approach since Bob is not a universally

trusted authority. For a user that does not trust Bob, Bob’s signature on Cathy’s certifi-

cate does not say much. These properties allow PGP to thwart sybil attacks since each

sybil identity’s certificate will not be signed by many, if any, real identities.

More recently, Yu et al. leverage the unique properties of social networks and pro-

pose two novel protocols named SYBILGUARD [70] and SYBILLIMIT [69]. SYBIL-

LIMIT features many optimizations over SYBILGUARD while the insights behind them

are similar. Hence, we focus our attention on SYBILLIMIT here. Imagine a distributed
3Current version of PGP also supports PKI style approach.
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system D which contains a social network G. G is an undirected graph in which each

node represents an identity and each edge represents a human-established trust rela-

tionship. The honest region of G is the subgraph of G which contains all the honest

nodes and the edges among them. The malicious region is similarly defined. An edge

connecting the honest region and the malicious region is called an attack edge.

The SYBILLIMIT protocol works in the following way: a node u first performs

Θ(
√
m) independent random walks in G each of length O(log n). Here, n is the total

number of honest nodes and m is the total number of edges in the honest region. Define

the tail of a random walk to be the last step in the walk; thus u will have Θ(
√
m) tails.

Now, for any other identity v that has performed the same procedure, u labels v as

“sybil” if and only if they have no common tails. The intuition behind this protocol

is simple. In particular, the speed at which a random walk approaches the stationary

distribution can be measured by a metric called the mixing time. Moreover, random

walks that cross attack edges are likely to have large mixing time. Hence, if the length

of the random walks is set to a relatively small value, then the graph generated by these

random walks should mostly consist of only honest nodes.

Since Yu’s approach is not complex, and can provide good guarantees on sybil

bounds, there exist much follow up research: SYBILINFER [9], GATEKEEPER [59], and

SUMUP [60]. For a more detailed discussion on these proposals, please refer to Yu’s

survey paper [68].

One drawback of the social networking approach is that it may result in privacy

concern, as it requires real world social knowledge. As a result, this approach may not

be practical to all systems.

Resource Testing

The basic idea behind resource testing is to demand a client to prove that it has a suffi-

cient quantity of some resource available. If an adversary wants to simulate two identi-

ties, then she must demonstrate twice as many resources. In this way, a resource con-

strained adversary cannot simulate too many identities. However, as proved by Douceur

in [16], such validation on identities must be carried out simultaneously, otherwise even

a single adversary can still generate an arbitrarily large number of sybil identities. The

resource in question can be computational power, storage, or radio transceivers.
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Computational resource testing (CRT) was first introduced by Dwork et al. [18] to

counter E-mail spam. Later on, it was also used as a defense strategy against denial-

of-service attacks [6]. In 2005, Aspnes et al. [4] proposed to use this technique as a

mechanism for thwarting sybil attacks.

In a computational resource test, a client is required to solve a moderately hard cryp-

tographic problem in a given amount of time. Moreover, the specified problem is only

solvable by brute force calculation. Since an adversary cannot have infinite computa-

tional power, the number of such cryptographic problems, and hence the number of sybil

identities she can create, is limited. Some of the most frequently used cryptographic

puzzles include: hash reversal [29], partial hash collision [6] and time lock [48]. In a

hash reversal test, the identity being challenged is required to calculate the reversal, or

the pre-image, of a hash value. Moreover, most bits of the pre-image are given to the

identity with only a few left blank. The identity being challenged need to perform a

brute force search until the correct answer is found. Both the generation and the vali-

dation of such puzzles are easy, hence it incurs little overhead on the challenger. In a

partial collision test, the identity being challenged is given a random one-time nonce and

is required to find a string of unknown length, such that the first b bits of the hash of the

concatenation of the nonce with that string are 0. The identity being challenged needs

to perform a brute force search until an answer is found. Compared with hash reversal,

partial hash collision is slightly better in terms of performance since the challenger only

needs to create a nonce before it can construct one such puzzle whereas in the hash

reversal test an additional hash calculation is required. One potential problem of this

test, however, is that the computational resource required to solve it is unpredictable

since in theory it may take infinite time to find even one correct answer. In practice,

however, this is not a big concern as the probability of taking a significantly longer time

than the expected value will decrease rapidly toward zero. Lastly, in a time lock test,

the challenger encrypts a nonce with a specially designed cryptographic scheme. The

fastest decryption method is a sequential squaring process. This property forces the

identity being challenged to compute in a tight loop for a predictable amount of time.

Compared with the previous two methods, this approach enforces a fixed amount of

work. However, it consumes more computational resources on the challenger side and

hence may potentially lead to denial-of-service attacks.
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Table 2.1: Comparison of different types of computational resource test.

Hash Reversal Partial Hash Collision Time Lock
Variance probabilistic bounded probabilistic unbounded fixed

Interactivity interactive both interactive
Known Solution yes no yes

Public Auditability yes yes no
Public Trust no no no

In [38], Mónica compares and contrasts these three types of tests by discussing the

properties an ideal computational resource test should have. More specifically, Mónica

enumerates the following five properties: (a) whether the variance on the computational

resource required is low; (b) whether the challenger needs to supply parameters to the

identity being challenged, i.e., whether interactivity is required; (c) whether there is

known solution to the proposed test; (d) whether other nodes can audit the testing pro-

cess; and (e) whether other nodes can trust the result of the test. We summarize the

conclusion of the discussion in [38] in Table 2.1.

Computational resource test can effectively and reliably thwart sybil attacks, pro-

vided that the adversary indeed has a known, limited amount of computational re-

sources. A disadvantage of this type of test, however, is that it requires detailed (i.e.,

fine grained) assumptions on the adversary’s computational power to obtain a bound on

the number of sybil identities she can create. (In fact, in many other situations or sce-

narios, we have made coarse grained assumptions on adversary’s computational power.

For example, when applying encryption algorithms, we usually assume the adversary

cannot decrypt ciphertext without knowing the key.) Another potential disadvantage of

computational resource testing is that it may quickly consume a lot of energy, which

can make it unsuitable for environments such as sensor networks.

Radio resource testing (RRT) is another widely used resource testing technique. As

previously discussed, it relies on two key assumptions: (a) each malicious device that is

controlled by the adversary has a single radio transceiver that can only tune into a single

channel at a time; and (b) the total number of malicious devices that is controlled by the

adversary is less than the total number of available channels.

Radio resource testing was first proposed by Newsome et al. in [42] as a technique

to thwart sybil attacks in multi-channel wireless sensor networks. In that paper, the

authors propose the following simple scheme: assume a node u wants the verify if
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there are sybil identities among its n neighbors. It can assign each of these n neighbors

to a different channel and then ask them to broadcast a message at the same time. It

can then choose a random channel to listen on. If the neighbor that is assigned to the

chosen channel is an honest node, then u should hear a message. On the contrary, if that

neighbor is a sybil identity, then with some probability it will not be able to broadcast

the message and hence be spotted by u. We say “with some probability” here because

the adversary does not know which channel node u will listen to, hence chances exist

that the adversary will not be able to broadcast on the channel that is chosen by u (due

to the limitation on the number of radio transceivers the adversary has).

The above mentioned scheme, which is quite similar to the one we introduced in

Chapter 1, is just one type of radio resource test. It is called simultaneous sender test

(SST). In [39], Mónica et al. propose another two new types of radio resource tests,

namely, simultaneous receiver test (SRT) and forced collision test (FCT). Simultaneous

receiver test operates in the following way: as in a simultaneous sender test, a node

u assigns the neighbors it wants to verify each to a different channel. Then, instead

of asking them to broadcast a message simultaneously, u asks them to listen on their

respective channel and itself broadcasts a message on a randomly chosen channel. After

that, u will ask the neighbor who should have received the message to repeat it and

labels that neighbor as sybil if it fails to do so. Compared with simultaneous sender

test, simultaneous receiver test significantly decreases the message complexity: at most

one neighbor (that is being challenged) needs to transmit during the test.

The last type of radio resource test—i.e., forced collision test—works in the fol-

lowing way: suppose a node u wants to verify its neighbors. Then, for every pair of

identities in these neighbors, say s1 and s2, u asks s1 to transmit a message m to s2.

Moreover, if s2 indeed receives m, then it must repeat m to u. During the transmis-

sion of m, u can choose either to broadcast noise to cause a collision or to listen on

the channel and checks if s1 and s2 follow the protocol. Now, if s1 and s2 are distinct

identities, then nothing abnormal happens. However, if both s1 and s2 are controlled

by an adversary that is equipped with one single radio transceiver, then the adversary

will have to guess if u caused a collision or not. Unlike the previous two types of tests,

a forced collision test can work in a single-channel scenario. Nevertheless, it suffers

the disadvantage of not being able to tolerate the case where the adversary owns more
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than one radio transceiver. Several algorithms from Klonowski et al. have taken this

approach [25, 31].

Compared with other resource testing techniques, radio resource testing does not

require access to additional information or detailed assumptions on computational ca-

pabilities. Nevertheless, existing anti-sybil protocols that use radio resource tests either:

(a) rely on a central trusted base station; (b) combine radio resource testing with other

resource constraints and/or outside information; or (c) require time complexity that

grows with the number of sybil identities (as they test each potential identity separately),

allowing the malicious devices to potentially swamp the system with never-ending tests.

In this thesis, by contrast, we present both centralized (i.e., central base station exists)

and distributed (i.e., no central base stations) algorithms that can reduce the number of

sybil identities to an asymptotically optimal limit, using only radio resource tests, and

with provable time complexity guarantees that are expressed with respect to the actual

number of devices.

Nowadays, radio resource testing is considered to be practical as most real world

wireless devices have access to many more channels than they can use simultaneously.

In the future, however, the correctness of the assumption that the number of channels the

adversary can simultaneously use is less than the total number of available channels—

which is fundamental to the correctness and effectiveness of radio resource testing—is

not so obvious. In particular, on the one hand, new technologies (e.g., software radios,

which we will discuss more later) are appearing which allows devices to scan a large

chunk of the frequency spectrum at the same time. On the other hand, as we have pre-

viously mentioned, various authorities are continuously releasing new frequency bands

for public use. Therefore, the future fate of radio resource testing is still unclear and

remain to be seen.

Combined approaches exist as well. Computational resource testing and radio re-

source testing each has unique advantages and disadvantages. In particular, radio re-

source testing is more reliable and energy efficient in detecting sybil identities, whereas

computational resource testing is more efficient in terms of time. This means radio re-

source testing has a lower false negative ratio whereas computational resource testing

can identify sybil identities quicker. Having observed this fact, Mónica et al. combine
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these two techniques and propose a new protocol which is able to construct sybil-free

quorums in wireless ad-hoc networks [40]. A shortcoming of their work, though, is

that this paper makes several limiting assumptions (e.g., knowledge of network size and

sender-side collision detection).

Radio Fingerprinting

In this approach, researchers explore methods to extract the “fingerprints” of radio

transceivers, and use these fingerprints to counter sybil attacks. For example, in [11],

the authors use the received signal strength indicator (RSSI) to identify different ra-

dio transceivers and thwart sybil attacks. In [45], the authors leverage the fact that in

a mobile wireless network, identities that always move together are more likely to be

sybil identities. Compare with other anti-sybil strategies, this scheme incurs less time

overhead. However, it can potentially report false positive results.

2.2.3 Summary and Discussion

Many security related protocols in wireless networks and distributed systems rely on the

assumption that there cannot be too many faulty clients in the system. However, sybil

attacks can easily invalidate this assumption and hence finding proper countermeasures

for it is of great importance. Unfortunately, though, sybil attacks are not easy to de-

fend against. One reason is because the adversary can always abandon compromised

sybil identities and generate new sybil identities to try to penetrate the target system

again. In fact, researchers have long realized a sad truth: sybil attacks cannot be totally

prevented [16]; if there are t malicious clients, there is no way we can stop them from

creating t identities. As a result, the above mentioned approaches all focus on how to

thwart sybil attacks, rather than how to prevent them.

One interesting point to note is that although we divide different approaches (for

thwarting sybil attacks) into three major categories, they in fact all belong to “resource

testing” from a certain perspective: the pre-distributed credential approach works be-

cause the adversary has limited certificates or pre-distributed keys; the social network-

ing approach works because the adversary has limited human-established trust relation-

ships. This observation naturally leads to an interesting question: are there any other

generic type of resources we can utilize to counter sybil attacks?
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Secondly, it is also interesting to explore the impact of software radios on radio

resource testing. Software radios, which are different from traditional radio equipment,

can send and receive signals on a wide range of frequency spectrum simultaneously.

Hence, such devices may break the key assumptions which make radio resource testing

useful at all. However, the capability of software radios strongly depends on the pro-

cessing power of the CPU embedded in the device. These devices also tend to consume

more energy then commodity radio hardware. How the adversary can utilize these new

devices to her advantage and what are the corresponding countermeasure we can take

are both interesting and promising future research directions.

2.3 Jamming

2.3.1 Overview

Jamming refers to the behavior of emitting radio signals to disrupt the normal commu-

nications of other wireless devices. It can make a certain frequency band—narrow or

wide—unable to convey any message, hence it is one type of denial-of-service attack.

Jamming can be classified into two major categories, namely, unintentional jamming

(i.e., disruption) and intentional jamming (i.e., jamming attacks).

Unintentional jamming mainly comes from two sources: (a) selfish devices that use

the frequency band without respecting other protocols; and (b) interference from other

related or unrelated devices (e.g., neighboring nodes executing the same protocol, mi-

crowaves) [12]. This type of jamming has long been observed by researchers and many

widely used protocols have incorporated countermeasures. (For example, the IEEE

802.11 wireless network uses CSMA/CA to mitigate such interference [1].) Among

these countermeasures, the most popular technique is backoff. More specifically, in a

backoff protocol, each participating node will transmit its message with a probability

initialized to p where 0 < p < 1. Upon transmission failure due to interference, this

probability will be decreased geometrically, i.e., p/2, p/4, p/8, etc. This process con-

tinues until the message is successfully delivered or the minimum allowed probability is

reached. Although backoff is a simple technique, it has been shown to be quite effective

in both theoretical analysis and real world experiments.

Intentional jamming, or jamming attacks, on the contrary, can cause more severe
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problems to the availability of wireless networks, and it is very hard to defend against

them. In a recent paper by Gummadi et al. [27], the authors find “commodity 802.11

equipment is surprisingly vulnerable to certain patterns of weak or narrow-band inter-

ference”. In particular, the authors are able to “disrupt a link with an interfering signal

whose power is 1000 times weaker than the victim’s 802.11 signals, or to shut down

a multiple AP, multiple channel managed network at a location with a single radio in-

terferer.” Furthermore, simply changing the 802.11 operational parameters such as the

clear channel assessment (CCA) threshold, transmission rate or packet size cannot ef-

fectively mitigate these malicious attacks. Similar findings (and conclusions) have been

observed (and drawn) by other researchers as well [7].

Both the systems and the theory community have devoted significant efforts to

thwarting jamming attacks. In particular, the systems community has developed many

techniques to counter jamming from different perspectives, such as jamming detection,

jamming evasion, and jamming competition. The theory community, on the other hand,

tends to focus on the potential limitations of the adversary and then propose correspond-

ing countermeasures. In particular, they usually assume a malicious user faces one or

more of the following restrictions: (a) a limited energy budget; (b) a limited jamming

rate; and/or (c) a limited number of channels the adversary can jam. We will discuss

each of these approaches in more detail in the following subsection.

In jamming attacks, the adversary may have different capabilities and may utilize

different strategies. Xu et al. [64] summarize four major types of jammers as: constant

jammers, deceptive jammers, random jammers and reactive jammers. A constant jam-

mer continuously emits a radio signal to stop legitimate nodes from using the channel.

A deceptive jammer constantly broadcasts normal packets on the channel, deceiving

the legitimate nodes into the receiving state. A random jammer is similar to a constant

jammer, except that it randomly alternates between the jamming state and the sleeping

state. Lastly, a reactive jammer remains inactive when the channel is idle and emits

noise when it senses channel activity.

Constant jammers and deceptive jammers are more energy consuming than the other

two types of jammers. Reactive jamming has the highest hardware requirement for the

adversary, but it is also the hardest one to detect and defend against. For a more vivid

illustration of these different types of jammers, please refer to Figure 2.1. We note here
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Constant jammer:

Continually emits a radio signal to stop legitimate nodes from using 

the channel.

Random jammer:

Similar to constant jammer, but randomly alternates between 

sleeping and jamming state to save energy.
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Reactive jammer:

Similar to constant jammer, but keeps quiet when the channel is idle 

and jams when it senses channel activity.

Figure 2.1: Different types of jammers [64].

that there also exist other classification mechanisms for jammers. For example, Bayrak-

taroglu et al. [7] propose categorizing jammers according to their capabilities of sensing

and reacting to the wireless medium state (i.e., channel-oblivious vs channel-aware),

and whether they maintain states that dictate their future actions (i.e., memoryless vs

stateful).

2.3.2 Countermeasure

Physical Layer and MAC Layer Approaches

In the systems domain, both physical layer and medium access control (MAC) layer

mechanisms have been proposed to counter jamming attacks.

At the physical layer, the two most popular techniques for evading jamming are

spread spectrum radio encoding [52] and channel hopping [41,57]. In spread spectrum

radio encoding, a radio signal is intentionally spread in the frequency domain, leading

to a signal with wider bandwidth. This technique works because widely spread signals

make the detection of the start of a packet harder, leaving the adversary insufficient

time to jam it. Unfortunately though, the widely deployed 802.11 networks only use a

relatively narrow spreading [1]. Frequency hopping, on the other hand, keeps wireless

devices hopping among different channels according to some pre-defined sequences. As

we have previously discussed, frequency hopping can either be uncoordinated, in which

the senders and the receivers do not share common sequences; or coordinated, in which

the hopping sequence is known to both the senders and the receivers. Coordinated fre-
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quency hopping is very effective in multi-channel setting. (For example, the Bluetooth

standard, which uses coordinated frequency hopping, is less susceptible to jamming

than the IEEE 802.11 WiFi networks.) Nevertheless, a big challenge in applying this

scheme is to establish the shared pseudorandom sequence in a reliable and efficient

manner, and to keep it secret from the attackers. Uncoordinated frequency hopping, on

the other hand, does not require common knowledge among the communicating parties,

but needs to be carefully designed to ensure the effectiveness and efficiency.

There also exist techniques for detecting jamming attacks at the physical layer.

In [66], Xu et al. survey some such possibilities, including signal strength (SS), car-

rier sensing time, packet delivery ratio (PDR), and multimodal approaches. For signal

strength, two natural approaches are: (a) comparing average signal strength with av-

erage ambient noise level; and (b) classifying the shape or pattern of received signal

samples. Unfortunately, experimental results indicate that under some scenarios, the

shape of the RSSI time series for normal traffic is very similar to the one when reac-

tive jammers are present. Hence, both approaches cannot reliably distinguish jamming

from normal traffic. Carrier sensing time is another possibility, as channels might ap-

pear constantly unavailable to a device when it is jammed. The authors explore this

possibility and conclude that it is only suitable when two conditions are met: (a) the

adversary is neither a random jammer nor a reactive jammer; and (b) the underlying

MAC protocol uses a fixed threshold to determine the channel status. Packet delivery

ratio is yet another possible detection technique, as jamming can result in low PDR by

disrupting transmissions. Through experiments, the authors find a threshold on PDR

readings can reliably distinguish jamming from normal network congestion, regardless

of the jammer’s type. However, the authors also find this mechanism can lead to false

positives under some network dynamics, such as device power failure or device moving

out of communication range, as these dynamics will bring sudden PDR drop similar to

the jamming case. Lastly, the authors combine packet deliver ratio and signal strength

and propose a multimodal jamming detection technique. Experimental results show this

approach is effective under various scenarios.

At the MAC layer, researchers have proposed channel surfing and spatial retreat to

evade jamming attacks [34, 63, 65, 67].

Channel surfing [67] is motivated by the physical layer frequency hopping tech-
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nique. However, unlike frequency hopping which operates at the physical layer and

involves continuous changing of frequency, channel surfing operates at the MAC layer

and only changes frequency on demand (e.g., when jamming or collision is detected).

Channel surfing is relatively simple in single-hop networks, but implementing it in

multi-hop networks is quite challenging.

To address this issue, researchers have proposed the coordinated channel switching

scheme [65]. In such a scheme, a node will voluntarily move to a new channel when it

is jammed. Nodes neighboring these jammed nodes, which are called boundary nodes,

will detect this absence and ask the entire network to switch to the new channel. This

scheme may suffer from large latencies as the entire network will have to switch chan-

nels even if only one single node is jammed. One way to alleviate this is to let the

boundary nodes act as relay nodes among different channels.

Spatial retreat, on the other hand, allows jammed nodes with mobility to evacuate

from the jammed region [67]. Nevertheless, simply escaping from the jammed region

is not enough, as a mobile jammer can move around and cause many wireless clients to

relocate. By doing so, the adversary can change the network’s topology or partition the

network. Therefore, spatial retreat strategies need to contain two phases to ensure ro-

bustness against mobile jammers: (a) the escape phase in which jammed nodes “retreat”

from jammed regions while keeping connected to the network; and (b) the reconstruc-

tion phase in which all nodes move around to reconstruct a proper network topology.

For example, in [34], the authors apply the techniques of “virtual forces” and “potential

fields”, which are widely used in robotic systems, to maintain the network topology in

the presence of a mobile jammer.

Lastly, aside from detection and evasion, it is also possible to compete with the

jammers [64]. Nodes being jammed can increase signal strength to overpower the jam-

ming noise, but with the price of higher energy consumption and higher probability of

collision (and unintentional interference). Victims of jamming can also exchange lower

throughput for higher delivery ratio; e.g., by using stronger error correction code (ECC).

In [43], Noubir and Lin investigate and analyze the impact of various coding schemes on

the performance and robustness of wireless networks. However, many open questions

still exist in this direction. For example, can we develop a protocol that can adaptively

adjust the ECC rate based on the detected jamming level? This requires the underlaying
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jamming detection mechanism to possess the ability of differentiating various jamming

threats according to their severity.

Theoretic Analysis

The theory community has devoted much effort to countering jamming attacks as well.

As stated earlier, researchers tend to focus on potential limitations the adversary may

face and then use these limitations to develop corresponding countermeasures. For

each such limitation, we will discuss some proposals. Notice, most works surveyed

here cannot be extended to wired networks. However, exceptions do exist, and we will

discuss these exceptions when relevant papers are presented.

Limitation I: limited jamming rate. In this category, the researchers usually assume

the adversary can jam only a limited fraction of the time or a limited fraction of mes-

sages for every time period of some length. The major challenge is to efficiently detect

and use the non-jammed periods to achieve communication.

For example, in a series of papers, Awerbuch et al. [5] and Richa et al. [46, 47]

study how to thwart adaptive jammers and reactive jammers in single-channel wireless

networks by limiting the jamming rate.4 They first define the notion of (T, 1 − ε)-

bounded adversary: for any time window ω ≥ T , the adversary can jam at most (1 −

ε)ω time steps in that window. The goal is to develop MAC protocols that are O(1)-

competitive against a jammer that is (T, 1 − ε)-bounded for any 0 < ε < 1. Here, a

protocol is called c-competitive if it can utilize at least a c-fraction of the non-jammed

time steps for communication.

The core strategy used by the authors is as follows: assume each node v sends a

message in each time step with probability pv that is initially a small constant. This im-

plies that node v will listen in each time step with probability 1− pv. Now, if v indeed

listens and finds the channel is idle, then it sets pv = (1+δ)pv. Otherwise, if v success-

fully receives a message, then it sets pv = (1− δ)pv. The intuition behind this strategy

is that an idle state of the channel indicates more capacity is available; successful mes-
4Adaptive jammers and reactive jammers are very powerful jammers. They are very hard to defend

against, especially in a single-channel scenario. An adaptive jammer is similar to a reactive jammer in
the sense that they both are allowed to know the protocol and the protocol’s past execution history. What
differentiates them is that a reactive jammer can immediately jam a message when it senses channel activity
while an adaptive jammer does not posses such capability (i.e., it has to decide its action at the beginning
of each time step, in the synchronous setting).

25



sage delivery, on the other hand, indicates channel bandwidth is about to be exhausted.

The elegance of this strategy lies in ignoring all the cases where interference occur, as

such interference may be due to either normal collisions or adversarial jamming.

The problem then comes down to the value of δ. Ideally, the sum of pv of all nodes

should be 1 so that in each non-jammed time step one message can be successfully

delivered with constant probability. This in turn leads to another question: how does

each node know their current pv is “correct” in a sense that the sum of pv will be 1?

It turns out a simple measurement exists: for each node, if the number of idle-

channel time steps observed is approximately the same with the number of successful-

delivery time steps observed, then
∑
pv ≈ 1.

Based on the above observation, the authors propose three protocols. The first two

protocols [5, 46] are constant competitive against an adaptive jammer in single-hop

and multi-hop wireless networks, respectively. The last protocol [47] is e−Θ(1/ε2)-

competitive and can tolerate a stronger reactive jammer. The authors also use simu-

lations to test their protocols. In particular, when compared with the standard 802.11a

MAC protocol, the new protocols show big performance improvement even for small ε.

Limitation II: limited channels can be jammed. Traditionally, radio transceivers

can only operate on a single channel at any given time. If there are multiple channels

available while the number of radio transceivers owned by the adversary is limited, then

it is possible for honest nodes to choose channels that are not jammed by the adversary

to exchange information. This is the key observation that motivates the limited-jammed-

channels approach. The key challenge of this scheme is to design algorithms that ensure

information can be exchanged efficiently.

In a paper by Meier et al. [36], the authors study how can the existence of multiple

channels help resist jamming in solving the neighbor discovery problem. The authors

consider a single-hop, synchronized wireless network that consists of c channels. In

the network, there are two honest devices and one reactive jammer that can jam up to

t channels. The paper analyzes the competitiveness of various discovery algorithms.

Let REF be an optimal algorithm that has complete knowledge of t; let T tREF be

the expected discovery time under REF . Further assume T tALG is the expected dis-

covery time for any given algorithm ALG. Then the competitive ratio is defined as
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max0≤t≤c−1 {T tALG/T tREF }. A smaller competitive ratio corresponds to a better dis-

covery algorithm (in terms of time efficiency).

The authors first study the behavior of the optimal algorithm REF . For t = 0, each

node should choose a pre-defined channel and the expected discovery time is 2. For

1 ≤ t ≤ c/2, each node should choose a channel uniformly at random from the first 2t

channels and the expected discovery time is 8t. Lastly, for all other cases, the optimal

strategy is to choose each channel with probability 1/c, and the expected discovery

time is 2c2/(c− t). The authors then propose a class of algorithms to handle the case in

which t is unknown. In essence, the idea is to guess the value of t and apply the optimal

algorithm REF for the guessed value. The authors prove the proposed algorithm has a

competitive ratio of O(log2 t), which is close to the optimal.

Gossiping is another classical problem in distributed computing and wireless net-

works. It refers to the situation where each process in the network attempts to dissemi-

nate an initial value (or “rumor”) to all other processes. The question in concern is how

long this task will take. In a series of three papers [14,15,20], the authors try to address

the gossiping problem in jamming-prone multi-channel wireless networks.

To begin with, the authors first define the more general (ε, δ)-gossip problem which

requires at least (1− δ)n processes to receive a common set of at least (1− ε)n initial

values, where n is the total number of processes.

In the first paper [14], the authors focus on achieving (ε, t/n)-gossip—or simply ε-

gossip—in single-hop, synchronous wireless networks which contain c channels. Here,

t is the maximum number of channels the adversary may jam. The authors consider

deterministic oblivious algorithms, which fix the behavior of the processes in each round

in advance. The contribution of the paper mainly consists of two parts: (a) the authors

prove the minimum number of rounds required to solve the ε-gossip problem using a

deterministic oblivious algorithm is Ω((1 − ε)n/(εc2)) for the case of t = 1; (b) the

authors propose an algorithm that solves the problem and matches the lower bound.

In the second paper [20], the authors try to solve the (t/n, t/n)-gossip problem

by using deterministic adaptive algorithms. The core tool they use is a combinatorial

construction called a selector [32]. The authors propose a more general concept called

a multi-selector. By using these combinatorial tools, the authors develop algorithms

that can solve the problem in polynomial time when c = Ω(t2). Nevertheless, the time
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consumption grows to exponential when c = t+1, and the authors prove that such high

cost is inevitable in this case.

In [15], the authors close their study on gossiping by considering randomization. In

particular, they develop an algorithm that can solve the (t/n, t/n)-gossip problem in

Θ(n2t2 log n) rounds even when c = t+ 1. This is a significant improvement over the

exponential bounds in [14, 20] for the same scenario.

Limitation III: limited energy budget. Sending/receiving messages and jamming

both consume energy. If the adversary has only a limited energy budget, then the num-

ber of messages or the length of time period she can jam is constrained. Approaches

in this category usually assume an upper bound on the amount of energy the adversary

may have and focus on how to evade the jammer or how to quickly depletes the adver-

sary’s energy. When compared with the previous two categories, this approach gives the

maximum flexibility to the adversary, and may be the closest to the real world situation.

For example, in a paper by Gilbert et al. [21], the authors study the maximum pos-

sible efficiency of the jammers, especially when they are restricted by an energy budget.

They consider a single-hop, single-channel, synchronous wireless network that has two

honest players named Alice and Bob, and a jamming adversary named Collin that can

jam up to β messages. The authors first show that Collin can delay the communication

between Alice and Bob for at least 2β+(log |M |)/2 rounds, whereM is the set of mes-

sages Alice and Bob may exchange. The authors then look into the case where Alice has

a budget of β +∆ and tries to deliver a message to Bob, who does not broadcast. They

show such protocols have a lower bound of 2β+ max {2∆
e |M |

1/(2∆) − 2∆, log |M |
2 } on

message complexity. This bound, as put by the authors, “highlights an inherent trade-

off between Alice’s message complexity and her throughput.” The authors also propose

a protocol which matches this bound.

Towards the end of the paper, the results are generalized to several classical n-player

games via reduction to previous findings. The authors have also considered situations

in which crash failures are present.

More recently, in a series of papers by King et al. [30] and Gilbert et al. [22–24], the

goal is to achieve high a resource competitive ratio in jamming resistance. More specif-

ically, the authors focus on relative cost, which is the energy consumption incurred by
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Table 2.2: Comparison of systems approaches to counter jamming attacks.

Countermeasure Type Stack Layer
Spread Spectrum jamming evasion physical layer
Channel Hopping jamming evasion physical layer

Signal Strength (SS) jamming detection physical layer
Carrier Sensing Time jamming detection physical layer

Packet Delivery Ratio (PDR) jamming detection physical layer
Multimodal (SS and PDR) jamming detection physical layer

Channel Surfing jamming evasion MAC layer
Spatial Retreat jamming evasion MAC layer

Stronger Signal Strength jamming competition N/A
Error Correction Code (ECC) jamming competition N/A

the honest nodes divided by the energy consumption incurred by the adversary. The

goal is to design protocols that can enforce a low relative cost (i.e., force the adversary

to spend a lot more energy than the honest nodes) if the adversary wants to effectively

block the communication.

For example, in [30], the authors look at the case where an honest sender Alice

wants to send a message m to an honest receiver Bob in a single-channel, single-hop,

synchronous network. Sending/receiving messages, jamming, and forging collisions

each costs a certain amount of energy. The authors propose a protocol that can always

transmit the message with an energy consumption of O(T 0.62 + 1), where T is the

total budget the adversary has. At the end of the paper, the authors discuss how their

protocol can be used to counter application level denial-of-service attacks. This is the

only paper which explicitly states the relevant results can be extended to scenarios other

than wireless networks.

Later in [24], the authors extend their results to the 1-to-n broadcast scenario. In

their most recent paper [22], the authors complement their upper bounds with tight or

nearly tight lower bounds. In particular, they prove that any 1-to-1 communication

algorithm with constant probability of success has expected cost Ω(
√
T ). As for 1-to-n

broadcast, some node has to incur cost at least Ω(
√
T/n).

For more detailed discussion on resource competitive analysis, please refer to the

position paper by Gilbert et al. [23].

2.3.3 Summary and Discussion

5In fact, in Chapter 4, we have proposed an augmentation to the SIMPLESYBILSIEVE algorithms so
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Table 2.3: Comparison of theoretic works on thwarting jamming attacks.

Jammer’s
Limitation Topic

Network
Model

Adversary
Model

Collision
Detection

Awerbuch et al. [5]
jamming

rate
constant

competitiveness SH, SC adaptive yes

Richa et al. [46]
jamming

rate
constant

competitiveness MH, SC adaptive yes

Richa et al. [47]
jamming

rate
constant

competitiveness SH, SC reactive yes

Meier et al. [36]
channels
to jam

node
discovery SH, MC reactive no

Dolev et al. [14]
channels
to jam gossiping SH, MC reactive no

Gilbert et al. [20]
channels
to jam gossiping SH, MC reactive no

Dolev et al. [15]
channels
to jam

gossiping,
authenticity SH, MC

reactive,
spoofing no

Gilbert et al. [21]
energy
budget

jammer’s
efficiency SH, SC

reactive,
spoofing yes

King et al. [30]
energy
budget

resource
competitiveness SH, SC reactive yes

Gilbert et al. [24]
energy
budget

resource
competitiveness SH, SC reactive yes

Gilbert et al. [22]
energy
budget

resource
competitiveness SH, SC adaptive yes

SYBILCAST
channels
to jam

sybil
resistance SH, MC adaptive no

SIMPLESYBILSIEVE
channels
to jam

sybil
resistance SH, MC adaptive yes5

SYBILSIEVEOPT
channels
to jam

sybil
resistance SH, MC adaptive yes

Legend: SH, MH, SC, MC represents single-hop, multi-hop, single-channel, multi-channel, respectively.
Note: an adversary is a reactive jammer implies it is also an adaptive jammer.

Table 2.2 and Table 2.3 summarize some key aspects of the research we have surveyed in

this subsection. Notice, for the sake of completeness, we have also included our SYBIL-

CAST and SIMPLESYBILSIEVE/SYBILSIEVEOPT algorithms in this table. Through

this examination, some interesting points which are worth discussion can be identified.

To begin with, all theoretic models assume a synchronized notion of time. Particu-

larly, they all assume fixed-size time slots and assume all devices agree on the beginning

and ending of each slot. In the real world, however, it is unclear whether this property

holds. Some authors already realize this problem, but argue that in some cases the

asynchronous model can be “converted” into a synchronous one with only a constant

factor increase in time complexity, as shown by Roberts [49]. Some other authors, e.g.,

Gilbert et al. [21], explicitly analyze the impact of asynchrony in their papers. We also

that it no longer requires collision detection.
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note here that more research exists on the topic of synchronization, even in the settings

where adversarial behavior is present. (See, e.g., [13] by Dolev et al.)

Second, the channel model seems to have a big impact on the feasibility and effi-

ciency of solving certain tasks. For example, the multi-channel model provides many

possible approaches for thwarting jamming attacks, such as frequency hopping, selec-

tors. In particular, frequency hopping has been shown both theoretically and experi-

mentally to be very effective in jamming evasion. The multi-channel model also relaxes

other restrictions on the adversarial model. For example, research that assumes a multi-

channel model can usually tolerate reactive jammers, which have the strongest jamming

capability; in single-channel scenarios, by contrast, it usually takes a lot more effort to

design and analyze protocols that can provide the same (or lesser) guarantees, as has

been shown in the series of papers from Awerbuch et al. [5] and Richa et al. [46, 47].

Last but not least, there exists a missing step in many of the works we have surveyed,

namely, extension to multi-hop wireless networks. Wireless technology is fast moving,

and soon large scale wireless networks will be deployed covering multiple hops. In [34,

67], the authors show that a multi-hop topology can bring new and challenging problems

that do not exist in the single-hop scenario. The paper from Richa et al. [46] further

demonstrates that even for the same protocol, the corresponding analysis in single-hop

and multi-hop scenarios can be quite different.

2.4 Spoofing and Authentication

As we have previously stated, in the context of network security, spoofing refers to the

situation in which an entity successfully masquerades as another entity and communi-

cates with others on this stolen identity’s behalf. It is an attack on authenticity, but can

target confidentiality, availability, privacy, etc. For example, an adversary can utilize

the stolen identities to access materials that she is not allowed or not supposed to view.

We (once again) emphasize that spoofing attacks share some similarities with sybil

attacks as they both are related to masquerading identities. However, fundamental dif-

ferences exist between them. In particular, spoofing attacks focus on camouflaging

existing entities, whereas sybil attacks focus on fabricating new identities that do not

correspond to any real existing entities.
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To prevent spoofing, mutual authentication must be carried out among the commu-

nicating parties. According to RFC4949 [51], authentication is “the process of verifying

a claim that a system entity or system resource has a certain attribute value.” An au-

thentication process consists of two basic steps: (a) identification, “in which the claimed

attribute value is presented to the authentication subsystem”; and (b) verification, “in

which the authentication information that acts as evidence to prove the binding between

the attribute and that for which it is claimed is presented or generated.”

Richard Smith [53] concludes five elements of an authentication system are: (a)

the entity to be authenticated (e.g., a user, a web server); (b) the authenticator (e.g.,

distinguishing characteristic, token); (c) the proprietor (e.g., system owner, adminis-

trator); (d) the authentication mechanism (e.g., Kerberos [56], X.509 [8]); and (e) the

access control mechanism (e.g., discretionary access control, mandatory access control,

role-based access control [19]).

There are numerous authentication protocols that can be used to counter spoofing.

However, generally speaking, only four major means exist to authenticate an entity’s

identity [55]: (a) something the individual knows (e.g., passwords, personal identi-

fication number); (b) something the individual possesses (e.g., smart cards, physical

keys); (c) static biometrics, i.e., something the individual is (e.g., fingerprint, retina);

and (d) dynamic biometrics, i.e., something the individual does (e.g., voice pattern,

typing rhythm).

Finally, we note that authentication cannot be used to counter sybil attacks. In

particular, authentication cannot stop an adversary from creating sybil identities that do

not correspond to any real existing entities.
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Chapter 3

Thwarting Sybil Attacks in

Centralized Wireless Networks

3.1 Introduction

Imagine a scenario in which 100 scientists sit in an auditorium, listening to a lecture.

Most have a laptop opened in front of them, and many are attempting to download data

from the Internet, perhaps a video of the preceding day’s lecture1. Luckily, the wireless

base station uses a fair version of 802.11, ensuring that each registered user gets an

equal share of the bandwidth2. Unfortunately, one clever attendee is upset with the slow

download speed and finds a way to circumvent this fairness mechanism by simulating

200 distinct users. By doing so, she gets 2/3 of the total available bandwidth. For the

remaining users, their downloads now take three times as long as before. As we have

previously discussed, such behavior is typically referred to as a sybil attack.

In this chapter, we present a new protocol, SYBILCAST, that thwarts this type of

malicious behavior in multi-channel wireless networks. More specifically, our protocol

ensures that each honest participant will receive at least a constant fraction of his or her

fair share of the bandwidth3. This implies that each download of data will complete

in asymptotically optimal time, even in the presence of a sybil attack. In addition, our
1These are very diligent scientists, watching video lectures, rather than surfing Facebook, while ignor-

ing the current speaker.
2Perhaps this is a computer science conference on experimental networking, as most existing 802.11

deployments are not fair; however there is much research related to fairness.
3Note that in this chapter we focus on fairness in downloading data, assuming that data flows from

the base station to the clients tend to dominate the bandwidth usage. Similar techniques would also yield
protocols for uploading data.
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protocol is robust to message spoofing and wireless jamming as well. We also note

here that SYBILCAST is a randomized protocol, and all its guarantees hold with high

probability (w.h.p.); i.e., with probability at least 1 − 1/Nk for any constant k ≥ 1,

where N is the maximum number of nodes that are executing SYBILCAST.

Approach and Challenges. The core strategy we will use to counter sybil attacks is

radio resource testing. More specifically, we use a simultaneous receiver test. Nev-

ertheless, three key challenges exist when generalizing the basic scheme (which was

described in Chapter 1) to our setting: limiting the overhead, integrating newly arrived

users, and coping with message spoofing from malicious users.

First, the process of testing must be implemented efficiently with limited overhead:

there is little benefit to eliminating the sybil identities if the protocol for detecting these

identities consumes all the available bandwidth. In general, the protocol must spend

most of its time delivering data packets, not running tests. For example, it does not

suffice to test one pair of identities at a time: if there are d identities (many of which

may be sybil identities), it will take Θ(d2) time to test them all. Instead, the running

time should depend on the number of real users (not the number of sybil identities). In

addition, the malicious users may be colluding, and may be able to monitor multiple

channels simultaneously; it will be insufficient to test identities on a per pair basis and

assign each of these two identities to different channels.

The second challenge is coping with the continuous nature of the system. Clients

continue to arrive over time, requesting data downloads. Malicious users continue to

register new sybil identities. Thus it is insufficient to simply run a set of tests and then

proceed with a standard data delivery protocol. A key aspect of our design is balancing

the rate at which new users (and potentially new sybil identities) are admitted to the

system and the rate at which sybil identities can be detected (and eliminated). For

example, by reducing the admission rate, we can achieve a tighter bound on the number

of sybils; however, in doing so we risk reducing the throughput of the honest users.

A third challenge is coping with adversarial spoofing which, much like adversar-

ial jamming, can result in a denial-of-service attack. For example, the malicious users

can attempt to spoof messages from the honest clients to the base station, tricking the

base station into thinking that the honest clients are dishonest. By careful use of un-
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coordinated frequency hopping, along with simple techniques like hash chains, we can

overcome this attack.

Results. The SYBILCAST protocol provides the following guarantees. In a system

with at most N real users, among which there are at most t dishonest users, and

c > 20t channels: if an honest user p requests a download m of size |m| ≥ c2 log3N ,

and if there are at most contention(p,m) concurrently active real users at any

point during the request, then with high probability the download will complete in

O(|m| · contention(p,m)) time. This implies that the honest user has received an

asymptotically fair share of the bandwidth. At the same time, we guarantee that there

are at mostO(contention(p,m)) sybil identities, i.e.,O(1) sybil identities for every

real identity, on average. We also note here that for smaller requests (i.e., those with

size smaller than c2 log3N ), with high probability SYBILCAST still guarantees all their

data will be delivered, but the time consumption may not be asymptotically optimal.

Roadmap. In the reminder of the chapter, Section 3.2 formally models the network

environment and the problem we want to solve. Section 3.3 describes the SYBILCAST

protocol. Section 3.4 gives the analysis of the protocol. We conclude this chapter with

summary and discussion.

3.2 Model and Problem Statement

We consider a synchronous wireless network consisting of one base station and a dy-

namically changing set of clients. There are at most N clients, an unknown subset of

which are active at any given time. We call these clients wireless nodes, or just nodes

when there is no confusion. Each node may either be an honest node or a malicious

node. Among these N nodes, up to t are malicious.

Notice that N is an upper bound on the system size, while the actual system size

is unknown in advance. In fact, the number of active nodes may change throughout an

execution. We assume that a polynomial-factor estimation on N (i.e., a constant-factor

approximation of logN ) is known.

Nodes communicate with the base station via a multi-channel radio transceiver con-

sisting of c independent channels. We assume t < c/20 and N > c. Fundamentally,
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we are assuming a reasonably large number of available channels, or a reasonably small

number of colluding attackers. (Bluetooth [2], for example, specifies 79 channels, and

there is every reason to believe that even more channels are technically feasible.)

Every node (including the malicious nodes) and the base station have only one radio

transceiver. Time is divided into rounds, and each node and the base station can access

only one channel in each round. The channels are collision-prone: if two or more nodes

broadcast on the same channel concurrently, there is a collision and all information is

lost. We do not assume collision detection. In particular, nodes and the base station can

not distinguish between collision and no transmission.

A malicious node may: (a) jam channels (by broadcasting noise); (b) spoof mes-

sages (by claiming to be someone she is not); and (c) create sybil identities. Messages

from the base station can be authenticated (by using signatures), but messages from

wireless nodes are unauthenticated: a malicious node can claim to be any other active

node or a new identity.

We assume that devices have access to standard cryptographic tools. The base sta-

tion and the wireless nodes use a pseudorandom number generator (see, e.g., [33]) to

generate sequences of “random” bits from small messages. (A pseudorandom number

generator is a function which takes an input as a key and then generates a long sequence

of pseudorandom bits. Moreover, obtaining the first i bits will not provide any infor-

mation on the (i + 1)st bit.) We also rely on hash functions, which we assume to be

pre-image resistant (i.e., given an output of the hash function, the adversary cannot

find an input which hashes to the given output). As can be seen, we assume “perfect”

versions of these tools, as they are not the focus of this thesis.4

Problem Statement. Nodes may enter the system at any time. When an honest node

enters the system, it initiates a request, attempting to download data from the base

station. No honest node will withdraw its request halfway. An honest node (and its

request) is considered to be active from the point at which it enters the system. A

request is considered complete (and the node becomes inactive) when the node has

received all the requested data.
4In fact, as long as the security properties of these cryptographic tools are sufficiently hard to break,

our algorithm can still enforce the same guarantees. For example, we are only using the hash function for
a polynomial (with respect to N ) number of times. Therefore, as long as the hash function is pre-image
resistant w.h.p., the correctness of SYBILCAST still holds.
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The problem we address is developing an efficient and robust protocol for the base

station to deliver requested data to active honest nodes in a fair manner. We measure

the performance in terms of the time it takes for a node to complete a request. For any

requested data m from a particular honest node p, we define contention(p,m) to

be the maximum number of concurrently active nodes at any point during the request.

(Note that this includes both honest nodes and malicious nodes, but not sybil identities.)

In a perfectly fair system, it will take at least |m| · contention(p,m) time for p to

fetch m, in the worst case, if each node is given a fair share of the total bandwidth.

3.3 Protocol

We now describe the SYBILCAST protocol, which consists of three parts: (a) registra-

tion, where new nodes (and potentially sybil identities) enter the system and request

a download; (b) data delivery, where the base station delivers data to the registered

identities; and (c) verification, where the base station attempts to spot and eliminate

sybil identities. The base station repeatedly executes these three phases, one iteration

of which we call an epoch.

Registration. The goal of the registration phase is to deliver a unique and random

binary string to each new request (and the node which sent it). We call this string a final

seed. Each registered identity (which can represent an honest node or a sybil identity)

can use its final seed as the key for a pseudorandom number generator. The output of

this pseudorandom number generator is a channel hopping sequence that the registered

identity follows during the ensuing data and verification phases. The length of the

sequence is assumed to be sufficiently long so that for every request the corresponding

node needs to register only once.

Notice, each final seed should be known only by the base station and the intended

receiver. Otherwise, if it is known to the malicious nodes, then they can later leverage

the knowledge of the channel hopping sequence to efficiently jam honest nodes.

Data. The data phase is used to transmit data packets and deliver authentication mes-

sages from the base station to the registered identities. In each round of a data phase, the

base station randomly chooses a registered identity, and sends it a packet on the channel

37



ver. phase of 

epoch (i-1) :

x registered 

identities

reg. phase of 

epoch i :

x new identities

data phase of

epoch i :

2x identities in total

ver. phase of 

epoch i :

y registered 

identities

reg. phase of 

epoch (i+1) :

y new identities

…… ……

epoch i

time

)log)(( Ncx )log)(( 2 Ncx  )log)(( 2 Ncx  )log)(( 2 Ncy 

Figure 3.1: Dynamic phase length of SYBILCAST. Note, there are x registered identities when
epoch i begins (i.e., x identities remain in the system after the verification phase of epoch i−1).

specified by its final seed. The base station also includes a one-time random string,

called a nonce, in each packet. The base station will later use these nonces to verify

whether the identities who should have been listening on that channel really were.

Verification. The verification phase allows the base station to detect and eliminate

sybil identities. During the verification phase, each registered identity should transmit

a verification message to the base station containing an encrypted list (using the final

seed as the key) of the nonces received by the identity during the preceding data phase.

(The purpose of encryption is to prevent the malicious nodes from eavesdropping and

learning the nonces.) The base station will receive and verify these messages and re-

move identities that fail to send verification messages or provide an insufficient number

of nonces5.

The length of the three phases in an epoch is dynamically decided at the beginning

of that epoch. Assume there are x registered identities at the beginning of an epoch.

Then each of the three phases has length O
(
(x+ c) log2N

)
. This provides sufficient

time for x new identities to be registered, while preventing the number of sybil identities

from growing too fast. (The phase lengths include an (x+ c) term—instead of just x—

so that x new identities can be registered in one epoch even when x < c.) As we shall

later see, this key design decision well balances the (new identities’) admission rate and

the (sybil identities’) elimination rate. This schedule is illustrated in Figure 3.1.

In the remainder of this chapter, we will use id(i) to denote the total number of

registered identities at the beginning of epoch i, id′(i) to denote the total number of

registered identities at the beginning of the data phase of epoch i, and s(i) to denote the

total number of sybil identities at the beginning of the data phase of epoch i. We now

describe each phase in more detail.
5We will give the precise meaning for “sufficient” and “insufficient” in Section 3.4.
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3.3.1 Registration Phase

For an epoch i, the corresponding registration phase is subdivided into Θ((id(i) +

c) logN) sub-phases each of length Θ(logN). In each sub-phase, nodes compete to

send their requests to the base station. The base station will deliver a partial seed to one

winning node. A partial seed is a unique and random binary string, and if a node has

collected Θ(logN) partial seeds within one registration phase, then its registration is

complete: it generates the final seed via a bit-wise xor of the partial seeds. (Otherwise,

if a node collects fewer than Θ(logN) partial seeds in one registration phase, then it

is not registered, and has to start over again, collecting another Θ(logN) partial seeds

during the next registration phase.) Each honest node will have at most one request and

hence at most one identity at any time. However, malicious nodes may attempt to regis-

ter multiple sybil identities to fulfill multiple requests simultaneously. The registration

protocol is summarized in Figure 3.2. We now discuss it in more detail.

As per our previous description, the length of each registration phase is determined

by the number of registered identities that remain in the system at the beginning of

the epoch. Therefore, during the registration phase, there can be significant contention

among the nodes that are trying to register. For example, if a large number of new

nodes try to join the system during one registration phase, then each may only get a

few partial seeds, with none completing the whole process. To avoid this, in the first

round of each registration sub-phase in epoch i, the base station will send a registration

list which includes requests that have already obtained at least one partial seed in the

current registration phase. When the registration list is full, i.e., is of size id(i), an

honest node will only compete in this sub-phase if its request is already in the list.

Furthermore, to simplify the analysis, we divide each registration phase into two

parts of equal length. During the first half, each unregistered honest node is eligible to

compete for its first partial seed. Once it receives its first partial seed (and hence gets

into the registration list), it remains silent until the halfway point. During the second

half, all honest nodes that have not been added to the registration list remain silent, while

all honest nodes that are already in the registration list become eligible to compete for

more partial seeds (so as to finish their registration process).

The base station will do the following in each sub-phase: (a) In the first round,
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Base Station Registration Phase for an Epoch:
1: Let ep denote epoch number.
2: dict← nil . A dictionary holding requests that have received at least one partial seed
3: list id← ∅ . A list holding the identities of the requests that have received at least one partial seed
4: if (ep = 1) then dict reg ← nil . A dictionary holding requests that have already successfully registered
5: q ← Θ((sys size+ c) logN) . Number of sub-phases; sys size is the number of registered identities
6: for (sp← 1 to q) do
7: sent← false, ch← random(1, c) . random(x, y) returns a random value between x and y
8: key ← randStr() . randStr() returns a random binary string from a sufficiently large space
9: seq ← prng(key) . prng(k) returns a pseudo random sequence with k as the key

10: broadcast(〈REG START, seq, list id, ep, q, sp, sys size〉, ch) . Broadcasts message on channel ch
11: for (r ← 1 to a1 logN ) do . a1 is some sufficiently large constant
12: msg ← listen(seq[r]) . Listen on channel specified by the sequence
13: if (msg.type = REG REQ) then
14: if (sent = true) then continue
15: if (sp < q/2 and |dict| < sys size) then
16: req ← genReq(msg.id) . genReq(x) returns a new request structure with x as the identity
17: pseed← randStr() . randStr() returns a random string; pseed is the partial seed
18: broadcast(〈REG RESP, pseed,msg.id, sp〉, seq[r])
19: sent← true, req.last hash = msg.hash
20: dict[msg.id] = req, list id← list id ∪ {msg.id}
21: else if (sp ≥ q/2 and msg.id ∈ dict) then
22: req ← dict[msg.id]
23: if (hash(sp−msg.lsp)(msg.hash) = req.last hash) then
24: pseed← randStr()
25: broadcast(〈REG RESP, pseed,msg.id, sp〉, seq[r])
26: sent← true, req.last hash = msg.hash
27: req.pseed list← req.pseed list ∪ {msg.last pseed}
28: if (|req.pseed list| ≥ a2 logN ) then dict reg[msg.id]← req . Request is registered

Wireless Nodes Registration Process:
1: k ← 0, req ← genReq(id) . k counts the number of received partial seeds; id is the identity of the node
2: lep← 0 . lep records the epoch number of the last registration phase the node has participated
3: secret← randStr()
4: req.lsp← 0 . req.lsp records the last sub-phase in which a partial seed is received, initially set to 0
5: req.last pseed← nil . req.lsp records the last partial seed the node received
6: while (k < a2 logN + 1) do . a2 is some sufficiently large constant
7: ch← random(1, c)
8: repeat
9: msg ← listen(ch)

10: until msg.type = REG START
11: if (lep 6= msg.ep) then . Start over if cannot collect Θ(logN) partial seeds within one epoch
12: lep← msg.ep, k ← 0, secret← randStr()
13: req.lsp← 0, req.last pseed← nil, req.pseed list← nil

14: if (msg.sp < (msg.q)/2 and req.id ∈ msg.list id) then
15: continue . Try to obtain only one partial seed during the first half
16: if (msg.sp ≥ (msg.q)/2 and req.id /∈ msg.list id) then
17: continue . Active during the second half only if already on the registration list
18: for (r ← 1 to a1 logN ) do
19: if (random(1, 2r−1) = 1) then . Broadcast with probability 1/2r−1

20: broadcast(〈REG REQ, id,hash(msg.q−msg.sp)(secret), req.lsp, req.last pseed〉,msg.seq[r])
21: msg ← listen(msg.seq[r])
22: if (msg.type = REG RESP and msg.id = id) then
23: if (k < a2 logN ) then . Do not record the (Θ(logN) + 1)st partial seed
24: req.lsp← msg.sp, req.last pseed← msg.pseed
25: req.pseed list← req.pseed list ∪ {msg.pseed}
26: k ← k + 1

27: req.seed← xor(req.pseed list) . Generate the final seed by bit-wise xor of partial seeds

Figure 3.2: Registration phase pseudocode of SYBILCAST.

the base station sends out a channel hopping sequence on a randomly chosen channel

instructing each unregistered node that receives the message to use this sequence for the

remainder of this sub-phase. (b) In each of the following Θ(logN) rounds within the
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current sub-phase, the base station will listen to the channel specified by the previous

sequence until a request is received. If multiple nodes send out requests simultaneously,

a collision occurs and all requests are lost. If the base station successfully receives a

request (i.e., if only one node broadcasts and there is no jamming) from a node that is

eligible to receive partial seeds, then it sends back a response containing a partial seed.

It also records which partial seeds are distributed to which request.

In each sub-phase, the base station keeps silent once a partial seed is sent, which

implies the base station will send out at most one partial seed in each sub-phase.

Each honest node that wants to register an identity acts as follows: (a) Initially, it

listens on a randomly chosen channel until a channel hopping sequence (for one reg-

istration sub-phase) is received. (b) If it is eligible to compete for partial seeds in this

sub-phase, then in each of the following Θ(logN) rounds within current sub-phase, it

broadcasts its request with probability 1/2(r−1) on the specified channel, where r is

the round number within the current sub-phase. If the node receives a response which

contains a partial seed for it, it records that partial seed. (c) It repeats (a) and (b) until

Θ(logN) partial seeds are collected or this registration phase is finished.

During the registration phase, the base station needs to determine which partial

seeds are assigned to which requests. To ensure authenticity, each node uses a hash

chain to prove that all of its messages come from the same node, i.e., itself. A hash

chain is a technique which works as follows: before each node enters a registration

phase, it generates a secret which is known only to itself. Each time a node sends

out a request, it also includes hash(q−sp)(secret), where q denotes the total number

of sub-phases in this registration phase, and sp denotes the current sub-phase number6.

Every time the base station receives a request from a node, it iterates the hash function

for an appropriate number of times and verifies that the (recursive) hash of the current

received value matches the last received value. If the result indeed matches, then the

base station can be assured that it is talking to the same node (as secret is only known

to the node itself and we have assumed the hash function is pre-image resistant). Note,

malicious nodes can still create multiple secrets and try to register multiple identities.

Another issue is coping with partial seeds that are lost. If a node does not receive

6hash(i)(msg) means recursively apply hash(. . .) for i times. E.g., hash(2)(msg) =
hash(hash(msg)).
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a partial seed (due to jamming), then the base station learns of this when it receives the

next message from that node (which is authenticated by the hash chain). After receiving

all the required partial seeds, the node participates in one additional registration sub-

phase, ensuring that the base station knows it has received the last partial seed.

Since the malicious users can intercept a partial seed with at most constant prob-

ability in each registration sub-phase, by requiring Θ(logN) partial seeds, we ensure

that even if the malicious users overhear some of the partial seeds, they cannot learn the

final seed of an honest node, with high probability. (If they indeed learn the final seed,

they could jam all communication to this honest node during the coming data phases.)

More precisely, we have:

Lemma 3.1. For every request from an honest node that completes its registration, at

least one of the partial seeds is not intercepted by any malicious user, w.h.p.

Proof. To obtain the partial seed sent out by the base station in any registration sub-

phase, the malicious users must either: (a) know the channel hopping sequence of that

sub-phase; or (b) listen on the channel on which the base station broadcasts the partial

seed. By assumption, the malicious users can listen to at most c/20 channels in any

one round, hence they can only obtain the channel hopping sequence or monitor the

channel on which the partial seed is broadcast each with probability at most 1/20. Since

channel hopping sequences are chosen randomly and independently for each sub-phase,

and since each node has to obtain Θ(logN) partial seeds before it can be registered, we

know the probability that the malicious nodes know the final seed for a particular honest

node is at most (1/20 + 1/20)Θ(logN); i.e., O(1/Nk) for any constant k ≥ 1. Take a

union bound over the O(N) honest nodes and we have the lemma.

3.3.2 Data Phase

For an epoch i, there are Θ((id(i) + c) log2N) rounds in the corresponding data phase.

Data phases serve two purposes. The most important one is to deliver data. In each

round of a data phase, the base station will randomly choose a registered identity and

send a data packet to it. Since the base station knows the channel hopping sequence

(based on the final seed obtained during registration) and the malicious users do not

(with high probability), we can ensure that each data packet for an honest node is deliv-
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Base Station Data Phase for an Epoch:
1: for (every registered request req in dict reg) do
2: req.nonce list← ∅ . nonce list stores the nonces the node should have received
3: for (r ← 1 to a3(sys size+ c) log2N ) do . a3 is some sufficiently large constant
4: req ← randReq() . randReq() returns a randomly chosen registered identity from list reg
5: seq ← prng(req.seed)
6: nonce← randStr()
7: broadcast(〈DATA, req.id, data, nonce〉, seq[r]) . data is a portion of the requested data
8: req.nonce list = req.nonce list ∪ {nonce}
9: for (each registered identity’s request req′ 6= req) do

10: if (prng(req′.seed)[r] = seq[r]) then
11: req′.nonce list = req′.nonce list ∪ {nonce}

Wireless Nodes Data Phase for an Epoch:
1: seq ← prng(req.seed) . req is the node’s own request
2: reg.nonce list← ∅
3: for (r ← 1 to a3(sys size+ c) log2N ) do
4: msg ← listen(seq[r])
5: if (msg.type = DATA) then
6: req.nonce list = req.nonce list ∪ {msg.nonce}
7: if (msg.id = req.id) then
8: store msg.data

Figure 3.3: Data phase pseudocode of SYBILCAST.

ered with constant probability. (The only way in which a packet is lost is if the malicious

users successfully include the channel in the c/20 channels they can jam.)

The second purpose is to transmit nonces to the registered identities. Each data

packet contains a unique, randomly chosen nonce. All the identities listening on the

channel specified by the sequence calculated from their final seeds—whether or not

they are the intended recipient of the packet—should record the nonce. As a result, by

the end of each data phase, each honest node will have many nonces which can later be

used for verification.

The above description is summarized in the pseudocode in Figure 3.3.

3.3.3 Verification Phase

The verification phase is the last key component of SYBILCAST. It is summarized in

the pseudocode in Figure 3.4. The purpose of the verification phase is to let the base

station spot and eliminate sybil identities.

For an epoch i, the verification phase consists of Θ(logN) sub-phases each of

length id(i) + c . Upon entering the verification phase, each honest node that has

registered an identity randomly chooses c rounds in each sub-phase, and sends out a
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verification packet in each of these selected rounds on the channel specified by its final

seed. The verification packet contains all the nonces the node has collected during the

preceding data phase in encrypted form, using the final seed as the key.

Notice, the verification process is on a per-epoch basis. In particular, during the

verification phase of epoch i, verification packets from registered identities contain only

nonces collected during the data phase of epoch i. When the data requested is large,

nodes may need multiple data phases and verification phases to complete their requests.

(Nevertheless, nodes only need to register once for each request.)

On the other hand, the base station’s work during verification is simple. It randomly

chooses a channel in each round and waits for verification packets. Upon receiving

one such packet, it checks if the corresponding identity has provided enough nonces to

prove it is not a sybil identity. If the base station receives no packets from an identity, or

if all received packets from an identity provide insufficient nonces, then the base station

will assume the identity is sybil and eliminate it. The precise meaning of “sufficient”

will be defined in Section 3.4.

We also note here, during the verification phases, the base station will use the nonces

provided by registered identities to identify which data packets have already been suc-

cessfully delivered; the base station will resend undelivered data in future data phases.

To ensure honest nodes cannot fail verification due to jamming or contention during

the verification phase, SYBILCAST guarantees the following property:

Lemma 3.2. Each registered honest node will be successfully verified by the base sta-

tion w.h.p. in every epoch, as long as it has collected sufficient nonces during the pre-

ceding data phase.

Proof. If an honest node p has enough nonces, then the only possible reasons that veri-

fication may fail are: (a) the honest node and the base station choose different channels;

(b) collisions among multiple nodes sending verification messages concurrently; and/or

(c) malicious jamming.

We now calculate the probability that the base station misses all verification mes-

sages from an honest node p during one verification phase. In the following proof, we

call every round in which node p sends a verification message as a slot.

In any epoch i, during the verification phase, there are Θ(logN) sub-phases each
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Base Station Verification Phase for an Epoch:
1: unver list← ∅ . The list of unverified requests
2: for (every req in dict reg) do
3: unver list← unver list ∪ {req.id}
4: for (sp← 1 to a4 logN ) do . a4 is some sufficiently large constant
5: for (r ← 1 to sys size+ c) do
6: msg ← listen(random(1, c))
7: if (msg.type = V ER RESP ) then
8: count← 0
9: for (every nonce in msg) do

10: if (nonce ∈ dict reg[msg.id].nonce list) then
11: count← count+ 1
12: Mark the corresponding portion of the data as delivered
13: if (count is sufficiently large) then
14: unver list← unver list \ {msg.id}
15: for (every identity id in unver list and every identity id that has received all the data) do
16: dict reg[id]← nil . Remove corresponding identity from the system

Wireless Nodes Verification Phase for an Epoch:
1: seq ← prng(req.seed) . req is the node’s own request
2: enc list← encrypt(req.nonce list, req.seed) . encrypt(x, k) encrypts x with k as the key
3: for (sp← 1 to a4 logN ) do
4: rnd list← ∅
5: while (|rnd list| ≤ c) do . Choose c random slots
6: rnd list← rnd list ∪ {random(1, sys size+ c)}
7: for (r ← 1 to sys size+ c) do
8: if (r ∈ rnd list) then
9: round number ← sp · (sys size+ c) + r

10: broadcast(〈V ER RESP, req.id, enc list〉, seq[round number])
11: if (have received all data) then exit

Figure 3.4: Verification phase pseudocode of SYBILCAST.

containing Θ(c) slots. Hence, p has Θ(c logN) slots in total. In each slot, the base

station chooses the same channel with p with probability 1/c. On the other hand, in

each slot, another node may collide with p with probability (c/(id(i) + c)) · (1/c) =

1/(id(i) + c). (For another node p′ to collide with p in a particular slot, p′ must have

chosen the same slot and same channel with p in that sub-phase.) Since there are at

most (id(i) − 1) other nodes, for a given slot, the probability that there is no collision

is (1− 1/(id(i) + c))id(i)−1 ≈ e−(id(i)−1)/(id(i)+c) ≥ 1/e. Lastly, the malicious nodes

may jam each slot with probability at most (1/20) · (1− 1/N) + 1 · (1/N) ≤ 1/19, as

we have shown in Lemma 3.1 that w.h.p. they don’t know any node’s final seed.

Combining these facts, we know in each slot, the verification message from p will

be missed by the base station with probability at most 1 − ((1/e) · (18/19) · (1/c)) =

1 − 18/19ec. Thus, after one verification phase, the verification message from p will

be missed by the base station with probability at most (1 − 18/19ec)Θ(c logN), i.e.,
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O(1/Nk) for any constant k. Take a union bound over the O(N) honest nodes and the

lemma follows.

Finally, we note here that our verification scheme is different from traditional radio

resource testing in the sense that we do not use immediate verification but rather de-

ferred verification. More specifically, instead of asking the nodes that receive a nonce

during a data round to send back an acknowledgment immediately, we defer this pro-

cess to the verification phase. This design may allow sybil identities to remain in the

system longer, but it brings a key benefit: immediate verification suffers from message

spoofing and wireless jamming. Malicious nodes can spoof verification packets or jam

the channels and hence force the base station to incorrectly remove honest nodes. This

is not possible in SYBILCAST.

3.4 Analysis

In this section, we will analyze the total time consumption for an honest node to com-

plete a download request. We will also show that SYBILCAST can constrain the maxi-

mum number of sybil identities and provide asymptotically optimal transmission speed.

We assume an honest node p is requesting datam. We use contention(p,m), or

n∗ for short, to denote the maximum number of active nodes during the entire request.

An active node may be in one of two states: joining the network (i.e., registering), or

downloading data. We use d∗ to denote the maximum number of registered identities

during the entire request. A registered identity can be an honest node or a sybil identity.

Before presenting the detailed analysis, we will first introduce the following two

well-known Chernoff Bounds [37]. They will be constantly used in the proofs.

Theorem 3.3 (Chernoff Bounds [37]). Let X1, X2, · · · , Xn be independent Poisson

trials such that P(Xi) = pi. Let X =
∑n

i=1Xi and µ = E(X). Then the following

Chernoff Bounds hold:

for 0 < δ ≤ 1,P(X ≥ (1 + δ)µ) ≤ e−µδ2/3; (3.1)

for 0 < δ < 1,P(X ≤ (1− δ)µ) ≤ e−µδ2/2. (3.2)
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3.4.1 Total Time Complexity

We first analyze how many rounds it will take for p to register with the base station.

Lemma 3.4. An honest node p completes its registration process with the base station

in O((n∗ + c)c log3N + (d∗ + c) log2N) rounds, w.h.p.

Proof. We begin by proving two claims:

Claim 3.4.1. In a registration sub-phase, assume there are exactly w honest nodes

competing for the partial seed. Then, if w < c, each of these w nodes gets the partial

seed with probability Ω(1/c). Otherwise, if w ≥ c, each of these w nodes gets the

partial seed with probability Ω(1/w).

Proof. We first consider the w < c case. In this case, with at least constant probability,

the w honest nodes will spread on at least w/3 channels. To see this, assume W is the

event that these nodes spread on at most w/3 channels. We have:

P(W ) =
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Hence, with probability Ω(w/c), the base station will broadcast the channel hopping

sequence on a channel where there is at least one honest node. Meanwhile, since the

malicious nodes can listen to or jam at most 1/20 fraction of all channels at any time, we

know with probability 19/20 · Ω(w/c) = Ω(w/c), the channel hopping sequence will

be successfully received by some honest nodes and will be unknown to the malicious

nodes. Conditioned on these two events, assume w′ ≤ w honest nodes receive the

channel hopping sequence; then in one of the following Θ(logN) rounds, there must

exist a round in which each of these w′ nodes sends out its request with probability ps,

where 1/2w′ ≤ ps ≤ 2/w′. In that particular round, with probability at least 19/20

there will be no malicious interference, hence each of these w′ nodes can successfully

obtain the partial seed with probability 19/20 ·ps · (1−ps)w
′−1 ≈ Θ(1/w′) = Ω(1/w).
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Combining these results with the previous condition which happens with probability

Ω(w/c) will immediately lead to the first part of our claim.

We then consider the w ≥ c case. In this case, with at least constant probability,

these w honest nodes will spread on at least c/3 channels. To see this, assume W ′ is the

event that these nodes spread on at most c/3 channels, and thus we have:

P(W ′) =

(
c

c/3

)(
c/3

c

)w
≤
(
ec

c/3

)c/3(1

3

)w
= (3e)c/3

(
1

3

)w
≤ (3e)c/3

(
1

3

)c
=
(e

9

)c/3
≤
(e

9

)1/3

Hence, with at least some constant probability, the base station will broadcast the

channel hopping sequence on a channel where there is at least one honest node. Mean-

while, since the malicious nodes can listen to or jam at most 1/20 fraction of all chan-

nels at any time, we know with probability 19/20 · Ω(1) = Ω(1), the channel hopping

sequence will be successfully received by some honest nodes and will be unknown to the

malicious nodes. Conditioned on these two events, assumew′ ≤ w honest nodes receive

the channel hopping sequence; then in one of the following Θ(logN) rounds, there must

exist a round in which each of these w′ nodes sends out its request with probability ps,

where 1/2w′ ≤ ps ≤ 2/w′. In that particular round, with probability at least 19/20

there will be no malicious interference, hence each of these w′ nodes can successfully

obtain the partial seed with probability 19/20 ·ps · (1−ps)w
′−1 ≈ Θ(1/w′) = Ω(1/w).

Combining these results with the previous condition which happens with probability

Ω(1) will immediately lead to the second part of our claim.

Claim 3.4.2. In any epoch i, if by the halfway point of the registration phase there are

x ≤ id(i) requests from the honest nodes in the registration list, then w.h.p. these x

requests will each obtain Θ(logN) partial seeds by the end of that registration phase,

and the honest nodes that sent them will be able to join the network.

Proof. Let Y = {y1, y2, · · · , yx} denote the set of honest nodes that sent these x re-

quests, and let Yj be a random variable which denotes the number of partial seeds

the jth honest node in Y received during the second half of the registration phase.
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According to Claim 3.4.1, during the second half of the registration phase, in each

sub-phase, each of these x honest nodes gets a partial seed with probability at least

min{Ω(1/c),Ω(1/x)} = Ω(1/(x + c)). Since there are Θ((id(i) + c) logN) in-

dependent sub-phases during the second half of the registration phase, we conclude

that E(Yj) = Θ((id(i) + c) logN) · Ω(1/(x + c)) = Ω(logN). Applying a Cher-

noff Bound where P(Yj ≤ (1 − δ)E(Yj)) ≤ e−E(Yj)δ2/2 with δ = 1/2, we conclude

P(Yj ≤ Ω(logN)) ≤ O(1/Nk) for any constant k. Hence, after the second half of the

registration phase, each of these x requests will have Θ(logN) partial seeds w.h.p.

We now prove the lemma. Claim 3.4.2 implies that in any epoch, if a request from

an honest node is in the registration list by the halfway point of the corresponding

registration phase, then the honest node which sent the request will be registered, w.h.p.,

in that epoch (i.e., within Θ((id(i)+c) log2N) rounds). Recall that d∗ is the maximum

number of registered identities while p is requesting m, which implies id(i) ≤ d∗. We

can thus conclude that once p’s request is in the registration list by the halfway point

of a registration phase, it will be registered after O((d∗ + c) log2N) rounds w.h.p. In

fact, the total number of rounds consumed since the beginning of this last epoch is

O((d∗ + c) log2N) as well.

We now calculate the number of rounds before p is added to the registration list

during the first half of some registration phase.

Assume that after some l epochs denoted as i1 to il, at last in epoch il+1, node p

successfully obtains its first partial seed during the first half of the registration phase.

We also define the following: in the first half of any registration phase, we call a sub-

phase open if the registration list is not full at the beginning of that sub-phase.

By Claim 3.4.1, in an open sub-phase, node p has a probability of Ω(1/c) to be

added to the registration list if there are fewer than c honest nodes competing. If

there are at least c honest nodes competing, then p has a probability of Ω(1/n∗) to

be added to the registration list. Therefore, in expectation, O(n∗ + c) open sub-phases

will elapse before p can successfully obtain its first partial seed. In fact, w.h.p., node p

gets its first partial seed within O((n∗+ c) logN) open sub-phases, as (1−Ω(1/(n∗+

c)))O((n∗+c) logN) ≈ O(1/Nk) for any constant k.

Since each epoch ij , where 1 ≤ j ≤ l, contains at least id(ij) open sub-phases,
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we have
∑l

j=1 id(ij) = O((n∗ + c) logN). As a result, we can conclude that after∑l
j=1O((id(ij) + c) log2N) = log2N ·

∑l
j=1O(id(ij) + c) = log2N · O((n∗ +

c)c logN) = O((n∗+c)c log3N) rounds, w.h.p. p’s request can get into the registration

list during the first half of a registration phase. (Notice, we have ignored the data rounds

and the verification rounds in these l epochs, as for every epoch, the length of the data

phase and the verification phase is asymptotically equal to or less than the length of the

corresponding registration phase.)

To sum up, w.h.p. the total number of rounds consumed before p is registered is:

O((n∗+ c)c log3N) +O((d∗+ c) log2N) = O((n∗+ c)c log3N + (d∗+ c) log2N).

This proves the lemma.

We now analyze the number of rounds consumed while p is downloading data.

Lemma 3.5. After registration, if |m| = Ω(logN), p can finish downloading m in

O(d∗|m|) rounds, w.h.p.

Proof. After p registers, it has to participate in another series of epochs before it can

complete the reception of message m. During these epochs, there are at most d∗ identi-

ties. Moreover, w.h.p. the malicious nodes may jam each data round with probability at

most 1/20. Hence, in each data round, node p receives a data packet with probability at

least (1/d∗) · (1− (1/20) · (1− 1/N)− 1 · (1/N)) = Ω(1/d∗). Since p’s data is of size

|m|, we expect O(d∗|m|) data rounds will elapse before p’s request can be completed.

With the assumption |m| = Ω(logN) and a standard Chernoff Bound (see Equation

3.1), we know p will get all requested data within O(d∗|m|) data rounds w.h.p.

On the other hand, since in any epoch the data phase is (asymptotically) of the

same length as the registration phase and is (asymptotically) longer than the verification

phase, and since the last epoch for downloading m is at most twice as long as the next-

to-last epoch, we can conclude that w.h.p. the total number of rounds consumed while

m is being delivered to p is O(d∗|m|).

3.4.2 Constraining Sybil Identities

Lemma 3.4 and Lemma 3.5 do not guarantee each honest node a fair share of the band-

width, as d∗ includes both real and sybil identities. In this subsection, we show that
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SYBILCAST guarantees an upper bound on the number of sybil identities and hence

can provide asymptotically optimal transmission speed for each honest node.

We first introduce the following definition, which describes the event where a sybil

identity does not get a nonce that it should later report to the base station.

Definition 3.6. For any given sybil identity q, we say a data round is a losing round for

q if in this round: (a) q is assigned to listen on channel b according to its final seed;

(b) the base station broadcasts a data packet (with a nonce in it) on channel b; and (c)

none of the t malicious users listen on channel b.

We now argue that if there are more than 12t registered sybil identities, then all but

12t of them suffer a large number of losing rounds, with high probability. This lemma

implies a lower bound on the length of the data phase (i.e., it has to be long enough to

ensure that the sybil identities suffer enough losses), and it shows the threshold on the

number of losses that the base station will tolerate before indicating a sybil identity.

Lemma 3.7. In any epoch i, if s(i) ≥ 12t and id(i) ≤ N + 12t, then after k data

rounds where k ≥ 225 · (id′(i) + c)/t · ln (1/ε), for sufficiently small ε < 1/(2N13t),

with probability at least 1− 2N13tε, at least s(i)− 12t sybil identities will each suffer

at least id
′(i)+2c
id′(i)·c ·

k
17 losing rounds7.

Proof. We first show that in any data round, if there are 12t ≤ s(i) ≤ c sybil identities,

then with probability at least 0.99, at least s(i)/3 channels will each be assigned at least

one sybil identity by the final seeds.

To see this. Suppose W is the event that at most s(i)/3 channels are each assigned

with at least one sybil identity. With the assumption c ≥ 20t, we know:

P(W ) ≤
(

c

s(i)/3

)(
s(i)/3

c

)s(i)
≤
(

ec

s(i)/3

)s(i)/3(s(i)/3
c

)s(i)
= es(i)/3

(
s(i)/3

c

)2s(i)/3

< es(i)/3
(

1

3

)2s(i)/3

=
(e
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)s(i)/3
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9

)4t

≤
(e

9

)4
<

1

100

7We have made no effort to optimize the constants, focusing on ease of explanation.
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We now prove the lemma. Fix a set S containing exactly (12t + 1) sybil identities

that have finished registration either in the current registration phase, or in some prior

epoch. We will show, with probability at least 1 − 2ε, at least one identity in S suffers

id′(i)+2c
id′(i)·c ·

k
17 losing rounds. We then take a union bound over the O(N13t) possible sets

S of size 12t + 1. From this we conclude, with probability at least 1 − 2N13tε, the

largest set of sybil identities that none of which suffer id′(i)+2c
id′(i)·c ·

k
17 losing rounds is of

size at most 12t.

As already shown, during the k data rounds, in expectation, sybil identities in S will

be assigned to at least |S|/3 ≥ 4t channels in 0.99k rounds. Applying a standard Cher-

noff Bound (see Equation 3.2), we know that when k ≥ 2
0.99δ2

ln (1/ε), with probability

at least 1− ε, sybil identities in S will be assigned to at least |S|/3 ≥ 4t channels in at

least (1− δ)0.99k rounds. Here, 0 < δ < 1. We call these (1− δ)0.99k rounds asR.

Recall id′(i) denotes the number of registered identities at the beginning of the data

phase of epoch i. For each round in R, at least one sybil identity in S will receive

a nonce from the base station with probability at least |S|/id′(i) + (1 − |S|/id′(i)) ·

(4t/c) ≥ 12t/id′(i)+(1−12t/id′(i)) · (4t/c) = 4t · (3/id′(i)+(1−12t/id′(i))/c) =

4t · (id′(i) + 3c− 12t)/(id′(i) · c) > 4t · (id′(i) + 2c)/(id′(i) · c).

Moreover, for each round inR, if some sybil identities in S should receive a nonce

from the base station, the nonce will be missed by the corresponding sybil identities

with probability at least 1/4. To see this, consider an arbitrary round in R. Assume

in that round, the sybil identities in S are assigned to x ≥ |S|/3 ≥ 4t channels. On

the one hand, since w.h.p. the malicious nodes do not know honest nodes’ final seeds,

hence if there exist many honest nodes on these x channels, then the base station will

likely to choose each channel equally likely, resulting the malicious users to lose the

nonce with probability (approximately) at least 1− t/x ≥ 1− t/4t = 3/4. On the other

hand, if there are no honest nodes on these x channels, then any x− t of these channels

will contain at least x− t sybil identities, resulting the malicious users to lose the nonce

with probability at least (x− t)/|S| ≥ (4t− t)/|S| = 3t/(12t+ 1) ≈ 1/4.

Therefore, during data phase, in expectation, sybil identities in S lose at least (1 −

δ)0.99k · 4t · (id′(i) + 2c)/(id′(i) · c) · (1/4) = (1− δ)0.99kt · (id′(i) + 2c)/(id′(i) · c)

nonces. Applying a Chernoff Bound (see Equation 3.2), we know that, with probability

at least (1 − ε)2, sybil identities in S will in total lose at least (1 − δ)2 · 0.99kt ·
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(id′(i) + 2c)/(id′(i) · c) nonces when k ≥ 2
0.99t(1−δ)δ2 ·

id′(i)·c
id′(i)+2c · ln (1/ε). Since

id′(i) + c > (id′(i) · c)/(id′(i) + 2c), we know the above claim holds true for k ≥
2

0.99t(1−δ)δ2 · (id
′(i) + c) · ln (1/ε) as well.

Now, since each lost nonce affects at least one sybil identity in S, we know that

with probability at least (1 − ε)2, at least one sybil identity in S will lose at least

(1 − δ)2 · 0.99kt · (id′(i) + 2c)/(id′(i) · c) · (1/(12t + 1)) ≈ 0.99(1−δ)2
13 · id

′(i)+2c
id′(i)·c · k

nonces when k ≥ 2
0.99t(1−δ)δ2 · (id

′(i) + c) · ln (1/ε). With assignment δ = 1/10,

we can conclude when k ≥ 225 · (id′(i) + c)/t · ln (1/ε), with probability at least

(1 − ε)2 ≥ (1 − 2ε), at least one sybil identity in S will suffer at least id′(i)+2c
id′(i)·c ·

k
17

losing rounds.

Now, consider all possible sets S of size 12t+ 1. We have assumed that there are at

most N + 12t registered identities at the beginning of epoch i. Hence at the end of the

registration phase for epoch i, there are at most 2(N + 12t) identities, and the number

of possible sets S is bounded by
(

2N+24t
12t+1

)
≤ (e(2N + 24t)/(12t + 1))12t+1 ≤ N13t.

Thus, by a union bound, the probability that every set S of size 12t+ 1 has at least one

identity suffer at least id
′(i)+2c
id′(i)·c ·

k
17 losing rounds is at least 1− 2N13tε.

Lemma 3.7 implies that if the malicious users register too many sybil identities, then

over some period of time, most of these sybil identities will lose a significant fraction of

the nonces they should receive. The base station can leverage this fact to eliminate most

of the sybil identities during verification phases. We can also here identify precisely

the threshold for rejecting an identity during the verification phase: if the data phase in

epoch i is of length len(i), then reject an identity as a sybil if it loses at least id
′(i)+2c
id′(i)·c ·

len(i)
17 nonces that were sent to it. This results in the following lemma:

Lemma 3.8. In any epoch, when the verification phase completes, there are at most 12t

remaining sybil identities, w.h.p.

Proof. We proceed by induction over epochs. The base case, epoch one, follows im-

mediately from the fact that no more than 12t identities are admitted in epoch one.

Consider epoch i, and assume that there are at most 12t sybil identities remaining at

the end of epoch i − 1. Since there are at most N honest identities, this implies that

id(i) ≤ N + 12t.

Now, from Lemma 3.7 and our protocol description, we can show that the length
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of the data phase of epoch i, which is denoted as len(i), is sufficiently long so that

w.h.p. all but at most 12t sybil nodes are always rejected during the verification phase.

Notably, for 2N13tε to be polynomially small in N , the number of data rounds we need

is Ω((id′(i) + c)/t · log(2N13t)) = Ω((id′(i) + c) · logN). This always holds true as

id′(i) ≤ 2 · id(i), and the length of the data phase is Θ((id(i) + c) log2N).

With Lemma 3.9, we can now bound the number of sybil identities:

Lemma 3.9. For any honest node p, in every round during its request, the number of

sybil identities in the network is at most O(n∗), w.h.p.

Proof. Lemma 3.8 states that at the end of any verification phase, w.h.p. at most 12t

sybil identities remain in the system. Hence, among the id(i) identities at the beginning

of any epoch i, at most 12t are sybil identities created by the t malicious nodes; and the

remaining id(i)−12t identities are all honest identities each created by an honest node,

i.e., id(i) − 12t ≤ n∗. This further implies id(i) ≤ O(n∗) since n∗ ≥ t. On the other

hand, SYBILCAST allows at most id(i) new identities to register in epoch i. These facts

immediately yields the lemma.

We now turn our attention to the honest nodes. In particular, we want to show that

no honest nodes will be incorrectly removed. To prove this, we first show—even subject

to lost messages due to jamming—an honest identity will not miss too many nonces.

Lemma 3.10. In any epoch i, after k data rounds where k ≥ 4860·(id′(i)+c)·ln(1/ε′),

with probability at least 1− ε′, an honest node p will lose at most id
′(i)+c
id′(i)·c ·

k
18 nonces.

Proof. According to our protocol, in a data round, for an honest node p, it will receive

a nonce with probability at most 1/id′(i) + (1 − 1/id′(i)) · (1/c) = (id′(i) + c −

1)/(id′(i) · c) ≤ (id′(i) + c)/(id′(i) · c). Moreover, when p indeed should receive a

nonce, it will lose that nonce with probability at most 1/20 due to adversarial jamming.

Therefore, in expectation, after k data rounds, pwill lose at most (id′(i)+c)/(id′(i)·

c) · (k/20) nonces. Since each round is independent, apply a Chernoff Bound (see

Equation 3.1), we know when k ≥ 60
δ2
· id′(i)·c
id′(i)+c · ln (1/ε′), with probability at least

1 − ε′, p will lose at most (1 + δ) · (id′(i) + c)/(id′(i) · c) · (k/20) nonces. Since

id′(i) + c > (id′(i) · c)/(id′(i) + c), we know the above claim holds true when k ≥
60
δ2
· (id′(i) + c) · ln (1/ε′) as well. With assignment δ = 1/9, the lemma follows.
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Much as in the proof of Lemma 3.8, one can observe and show that the length

of the data phase for any epoch i is sufficiently long so that w.h.p. honest node p, by

Lemma 3.10, loses at most id
′(i)+c
id′(i)·c ·

len(i)
18 nonces, which is smaller than the threshold

for removing an identity. Taking a union bound over all the O(N) honest nodes, and

combining with Lemma 3.2, the following lemma immediately follows:

Lemma 3.11. No honest nodes will be (incorrectly) removed before its request is com-

pleted, w.h.p.

Lastly, we state our main claim:

Theorem 3.12. If an honest node p requests data m where |m| ≥ c2 log3N , and if

there are at most contention(p,m) concurrently active nodes during the request,

then p can get the data in O(|m| · contention(p,m)) time, w.h.p.8

Proof. First, notice Lemma 3.11 guarantees honest nodes will not be incorrectly re-

moved before their requests are completed. On the other hand, Lemma 3.9 shows that

during the request of m, the number of sybil identities is bounded by O(n∗). As a re-

sult, d∗, the maximum number of registered identities during the request of m, is also

bounded by O(n∗), or O(contention(p,m)). Hence, Lemma 3.4 and Lemma 3.5

immediately imply the theorem.

Theorem 3.12 implies SYBILCAST is asymptotically optimal in transmission speed:

even in an environment where there are no malicious nodes, any fair-share protocol will

in the worst case take Θ(|m| · contention(p,m)) rounds to deliver |m| packets to

an honest node if there are contention(p,m) active nodes in total.

As a note, we believe the constraint on the message size is not far from optimal.

For example, it seems inevitable that for the base station and the client to exchange

even one message with constant probability requires Ω(c) time; to achieve this single

message exchange w.h.p. requires Ω(c logN) time. (See, e.g., [13,36], for a discussion

of lower bounds on simple communication in a jamming-prone wireless network.)
8In fact, one can also easily show the following guarantee which is somewhat stronger: in any round

where the base station is delivering packets, if there are at most contentionr(p,m) active real users in
round r, then a given honest user p receives a data packet with probability Θ(1/contentionr(p,m));
a constant fraction of the rounds are used to deliver data packets to honest users.
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3.5 Summary and Discussion

In this chapter, we propose a new protocol called SYBILCAST that counters sybil attacks

in multi-channel wireless networks. It limits the maximum number of sybil identities

and provides asymptotically optimal transmission speed for honest nodes. It can also

tolerate message spoofing and wireless jamming.

One natural question is whether we can achieve better performance if we limit ma-

licious users’ capabilities. For example, what if the malicious users cannot spoof mes-

sages? Unfortunately, this constraint does not help as much as one might expect, as

the most time consuming part is registration, which cannot be reduced (in either time

or channels) if we want to prevent the malicious users from eavesdropping on the fi-

nal seed. Nevertheless, this constraint does eliminate the need for a hash chain. If the

adversary cannot jam communication or spoof messages, then it may be feasible to re-

duce the length of the registration phase and/or the number of channels needed. This

change might lead to more sybil identities, but the faster registration process may make

it cost-effective.

Another question concerns whether knowing an upper bound on the maximum sys-

tem size, i.e., N , is necessary. Here, we assume that a polynomial estimate of N , i.e.,

a constant-factor estimate of logN , is known (even though the actual number of active

nodes is unknown). Knowledge of logN serves two purposes in SYBILCAST: (a) keep-

ing the nodes and the base station tightly synchronized during an epoch (as it is used

to define the length of the epochs, phases, etc); and (b) ensuring that necessary events

happen with high probability. It seems likely that SYBILCAST can be modified to work

without knowing N , as the base station is always aware of the current system size. In

this case, probabilistic guarantees hold with high probability with respect to the current

system size, not N .

Lastly, can we leverage the real motivations of malicious users to simplify the pro-

tocol? Currently, we assume malicious users can be both selfish (e.g., hog bandwidth)

and adversarial (e.g., disrupt communication). What if they are only selfish and con-

duct attacks only if such behavior can bring them more bandwidth? Is this an easier

attack to prevent? To some extent, in the context of SYBILCAST, the answer seems

to be negative. Both jamming and spoofing can be used for selfish purposes: mali-
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cious users can jam honest users in data phases to stop them from obtaining sufficient

nonces, and they can also spoof exit messages from honest users9. Both behaviors will

result in honest users getting disconnected, and hence more bandwidth is allocated to

the malicious users.

9Our current design assumes no honest nodes will withdraw requests halfway, but one can imagine in a
more realistic implementation, nodes may be allowed to voluntary quit before their requests are completed.
In that case, more bandwidth will be allocated to other remaining requests.
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Chapter 4

Thwarting Sybil Attacks in Ad Hoc

Wireless Networks

4.1 Introduction

Imagine the following scenario: a group of wireless devices are activated in a single

hop wireless network. Some of them are honest while others are malicious. The hon-

est devices are provided with no information regarding the size of the network or the

identities of the other devices. The goal is to solve some standard distributed comput-

ing problem; e.g., the honest devices may need to reach agreement, vote on a proposal,

simulate a shared object, or establish a fair schedule to share a limited resource.

Intuitively, this unknown and anonymous wireless network scenario seems hope-

less. Honest devices are provided with no advance information on network size or

participants, and there is no obvious way to distinguish them from malicious devices.

Thus, malicious devices can commence a sybil attack in which they create many sybil

identities (also called sybils) to bias a given distributed algorithm. For example, when

running a consensus algorithm that depends on a majority vote, the malicious devices

could create enough sybil identities to ensure they control a majority of voters.

In this chapter, we prove—perhaps surprisingly—that this scenario is not hopeless.

We describe and analyze fully distributed algorithms that leverage radio resource test-

ing strategies, so that honest devices can constrain the number of sybil identities to

an asymptotically optimal limit. Our results answer open questions regarding sybil re-

sistance in ad hoc networks and provide a general foundation for establishing trusted
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computing in the increasingly untrustworthy world of wireless networking.

Results. We consider a single hop wireless network consisting of c > 1 channels. We

divide time into synchronous slots and assume that the n devices (or nodes) are activated

simultaneously. At most t ≤ min{n, c}/α of these devices are malicious, where α ≥ 1

is a sufficiently large constant. Honest devices do not know n or t in advance. We

assume standard collision rules: if multiple devices send on the same channel during

the same slot, the messages are lost due to a collision, which can be detected at the

receivers’ end. Collisions further complicate our task as: (a) malicious devices can

intentionally jam (to cause collision); and (b) honest devices must deal with contention

resolution even without knowledge of the network size. We assume the availability of

standard asymmetric cryptographic primitives. This allows devices to generate unique

public/private key pairs and use their public keys as identities. Because devices can sign

their messages with their private keys, these identities are unforgeable. The challenge in

our setting, therefore, is to prevent the malicious devices from creating too many sybil

identities. The algorithms described below are randomized and their guarantees hold

with high probability (i.e., with probability at least 1− 1/nβ for any constant β ≥ 1).

We begin by describing and analyzing a basic algorithm: SIMPLESYBILSIEVE.

This algorithm terminates in O(n lg2 n · max{1, n/c}) time. It provides each honest

node with a set of unforgeable identities that includes all other honest nodes and at

most O(t · max{1, n/c}) sybil identities. Notice, when c is larger than n, the time

complexity is O(n lg2 n) and the number of sybil identities is bounded at an (asymp-

totically) optimal O(t).1 On the other extreme, when c is small compared to n, the

time complexity grows to O(n2 lg2 n) and the sybil bound grows to O(n). In settings

where c is large or O(n) sybils is tolerable, this basic algorithm is sufficient. On the

other hand, in many settings, such as large networks, it might be preferable to obtain an

optimal O(t) bound on the number of sybils, even when c < n.

Motivated by this goal, we next present an augmented algorithm: SYBILSIEVE.

This algorithm offers the same bound on the number of sybil identities as the basic

algorithm, but is a factor of n slower. In exchange for this extra time, however, the

algorithm provides two new strong guarantees: (a) all honest nodes terminate simulta-
1O(t) sybil identities is clearly asymptotically optimal as the malicious nodes could behave honestly.
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neously (hence providing “barrier synchronization”); and (b) all honest nodes agree on

the same estimate of n that is within a constant factor of the actual count.

With SYBILSIEVE in hand, we introduce our strongest algorithm: SYBILSIEVEOPT.

This algorithm builds on the useful guarantees of SYBILSIEVE to reduce the number

of sybil identities to an optimal O(t), even for c < n. Similar to SYBILSIEVE, its run-

ning time is also bounded by O(n2 lg2 n · max{1, n/c}). As can be seen, these three

algorithms provide users with trade-offs between time complexity and sybil resistance.

It is also worth noting that SYBILSIEVEOPT contains a subcomponent that can

solve Monte Carlo Byzantine consensus in sybil-prone environments.2 Both this con-

sensus subroutine, and the synchronous termination and network size estimation imple-

mented by SYBILSIEVE, may be of independent interest, as they simplify the bootstrap-

ping of more advanced protocols in this anonymous wireless setting.

Towards the end of this chapter, we extend SIMPLESYBILSIEVE to the scenario

in which collision detection is not available. The resulting protocol, which is named

SIMPLESYBILSIEVEWCD (i.e., “SIMPLESYBILSIEVE without collection detection”),

can provide same asymptotic bound in terms of running time and maximum number

of sybil identities that may be accepted by honest nodes. Nevertheless, the constants

behind the asymptotic notations are worse. As a result, we believe trade-offs exist

between these two protocols as well.

4.2 Model and Problem Statement

We assume a single hop wireless network (i.e., a complete network) consisting of n

devices (called nodes in the following) and c > 1 communication channels. To simplify

calculations, we assume c is a power of 2. (If not, round down.)

We divide time into synchronous slots and assume all nodes start in the same slot.

In each slot, each node can participate on one of the c available channels. It can then

decide to send or receive. We assume a sending node cannot receive, and vice versa

(i.e., the channel is half-duplex).

When a single node u sends on a channel k during a slot r, all nodes receiving on

channel k during slot r receive u’s message. If multiple nodes send on channel k during
2The consensus protocol maintains its safety properties with high probability, but not with probability

one.
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slot r, then all nodes receiving on channel k detect a collision.

We assume nodes have access to standard asymmetric cryptography primitives;

i.e., they can generate public/private key pairs and use them to encrypt/decrypt, and

sign/verify messages. We assume nodes cannot break the cryptographic system.

Adversary Model. We allow some nodes to suffer Byzantine failure. In particular,

a faulty node can: (a) try to create sybil identities; (b) cause collisions (i.e., jam) on

a channel by broadcasting noise; and/or (c) try to spoof messages (i.e., pretend to be

some other real honest nodes). We assume a bound t on the maximum number of faulty

nodes. More specifically, the algorithms we consider require that t ≤ min{n, c}/α, for

a constant α ≥ 1. We assume that honest nodes do not know n or t, but they know c and

α. The faulty nodes, on the other hand, are aware of all parameters. We also allow the

faulty nodes to collude, and adapt to past execution history. Therefore, we sometimes

refer to them collectively as a single adaptive malicious entity named Eve that can use

up to t channels per time slot.

Problem Statement. The goal of our sybil-thwarting algorithm is for each honest

node to construct a set of trusted and unforgeable identities that includes: (a) a unique

identity for each honest node, and (b) a bounded number of sybil identities. We assume

that each honest node generates a unique public/private key pair at the beginning of an

execution and uses its public key as its identity. Each node can subsequently sign its

messages with its private key, confirming its identity (so that malicious nodes cannot

spoof messages on behalf of an honest node). The challenge, therefore, is to minimize

the number of sybil identities accepted by honest nodes, while simultaneously trying

to minimize the time complexity. In this chapter, we study randomized algorithms and

require that their guarantees hold with high probability (w.h.p.).

4.3 The SIMPLESYBILSIEVE Algorithm

We first present the SIMPLESYBILSIEVE algorithm which introduces our core strategies

for defeating sybil attacks in this unknown and anonymous setting. Notice, throughout

this section, we assume α ≥ 6; and throughout this chapter, we use 0 < δ < 1 to denote

a small constant. (For the ease of presentation, sometimes we will assume δ = 1/100.)
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One point worth clarifying is, as we shall later see, tweaking δ between two small

constants (that are smaller than one) only puts a constant factor change on the running

time of the proposed algorithms. (Therefore, assuming δ = 1/100 is only for ease of

presentation. The number 1/100 is not a special or magic number.)

On the other hand, changing α to a smaller value (which implies the algorithm can

tolerate more malicious nodes) can sometimes be critical and render the protocol unable

to achieve its guarantees. As a result, determining the minimum feasible value of α is

an interesting open question that worth exploring in the future.

4.3.1 Protocol Description

The first issue that needs to be resolved when designing the algorithm is the unknown

number of nodes, and we estimate it in the usual manner: the protocol proceeds in

epochs, where in epoch i, we assume there are ni = 2i nodes in total. In addition, in

epoch i, we use ni/2 channels; if c < ni/2, then we simulate the ni/2 needed channels

using ni/(2c) slots for each “round” of the protocol.

At a high level, nodes have two tasks during each epoch: (a) check whether the

current estimation of n is accurate; and (b) if the estimation is (roughly) correct, then use

the results of uncoordinated radio resource tests to spot honest identities and eliminate

sybil identities. To achieve these goals, in each round, each honest node will broadcast

or listen—each with probability 1/2—on a random channel that is chosen uniformly

from [1, ni/2].

To accomplish the first task, honest nodes count the number of silent rounds in

each epoch to determine the accuracy of the current estimation. If the estimate is too

small, there is nothing Eve can do to make it looks correct, as the honest nodes alone

generate enough contention on each channel to prevent too many silent rounds. Once

the estimate is correct, by contrast, Eve cannot make a good estimate looks bad, because

she can only jam a limited number of channels simultaneously.

Once an honest node believes the current estimate is correct, it will re-examine

the messages it has received during the current epoch to determine which identities to

accept. More specifically, an honest node accepts an identity if it has heard that identity

sufficiently many times in the current epoch. Since the number of radios Eve has is

limited, the number of sybils she can successfully create in one epoch is limited as well.
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Pseudocode of SIMPLESYBILSIEVE executed at node u:
1: Generate asymmetric key pair. Let kup be u’s public key, and kuo be u’s private key.
2: ids← ∅. . Set containing identities that u accepts.
3: for (every epoch i ≥ 1) do
4: ni ← 2i, countlisten ← 0, countsilent ← 0.
5: idscount ← ∅. . idscount is a dictionary structure with value being an integer.
6: for (every round 1 ≤ j ≤ ani lgni) do
7: ch← random(ni/2). . random(x) returns a random value from [1, x].
8: for (every slot 1 ≤ k ≤ max{1, ni/2c}) do . Simulate one round with multiple slots.
9: if (b(ch− 1)/cc = k − 1) then

10: if (random(2) = 1) then . Broadcast with probability 1/2.
11: broadcast(〈kup 〉, ((ch− 1) mod c) + 1). . broadcast(m,h) broadcastsm on h.
12: else . Listen with probability 1/2.
13: countlisten ← countlisten + 1.
14: msg ← listen(((ch− 1) mod c) + 1). . listen(h) listens on channel h.
15: if (msg 6= nil and msg 6= noise) then . Node has heard a message.
16: Let kvp be the public key inside msg.
17: if (kvp /∈ idscount) then
18: idscount[k

v
p ]← 1.

19: else
20: idscount[k

v
p ]← idscount[k

v
p ] + 1.

21: else if (msg = nil) then . Node has heard a silent round.
22: countsilent ← countsilent + 1.
23: if (countsilent/countlisten ≥ (1− δ)(1− 1/α)e−1/2) then
24: return ids.
25: else if (countsilent/countlisten ≥ (1− δ)(1− 4/α)e−2) then
26: for (every identity kvp in idscount) do
27: if (idscount[k

v
p ] ≥ a(1− δ)(1− 4/α) lgni/(2e

2)) then
28: ids← ids

⋃
{kvp}.

Figure 4.1: Pseudocode of SIMPLESYBILSIEVE.

We now describe each honest node’s behavior in more detail. In epoch i, there are

ani lg ni rounds, where a > 0 is some sufficiently large constant. In each round, every

node will go to a random channel that is chosen uniformly from [1, ni/2]. Then, each

node will broadcast or listen, each with probability 1/2. If a node chooses to broadcast,

it will broadcast its identity (i.e., its public key). If a node chooses to listen, it will record

whether it has heard silence (i.e., nothing), noise, or a packet from another identity.

After each epoch, for every node: if at least γ1 = (1 − δ)(1 − 1/α)e−1/2 = Θ(1)

fraction of rounds were silent, among the rounds that it chose to listen, the node will

terminate (without accepting any new identities). Otherwise, if at least γ2 = (1 −

δ)(1 − 4/α)e−2 = Θ(1) fraction of slots were silent, where γ2 < γ1, then the node

accepts every identity from which it has received at least aγ2(lg ni)/2 messages. This

procedure is summarized in Figure 4.1.
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4.3.2 Analysis

In this subsection, we prove that every honest node will terminate by epoch blg nc +

O(1) and accept all other honest nodes. We will also show that there are at most O(t ·

max{1, n/c}) sybils that are accepted by honest nodes.

Before presenting the detailed analysis, we will first introduce the following two

well-known Chernoff Bounds [37]. They will be constantly used in the proofs.

Theorem 4.1 (Chernoff Bounds [37]). Let X1, X2, · · · , Xn be independent Poisson

trials such that P(Xi) = pi. Let X =
∑n

i=1Xi and µ = E(X). Then the following

Chernoff Bounds hold:

for 0 < δ ≤ 1,P(X ≥ (1 + δ)µ) ≤ e−µδ2/3; (4.1)

for 0 < δ < 1,P(X ≤ (1− δ)µ) ≤ e−µδ2/2. (4.2)

We will now present the detailed analysis.

Termination and Correctness. To begin with, we argue that no honest nodes will

accept any identities or terminate before (or during) epoch lg (n/(g lg n)), where g is a

positive constant. The claim follows via standard coupon collector analysis as, in these

epochs, the number of broadcasting honest nodes exceeds the number of used channels,

creating contention and preventing silent rounds.

Lemma 4.2. For any epoch i where 1 ≤ i ≤ lg (n/(g lg n)), for some constant g > 1:

w.h.p. honest nodes will hear only noisy rounds, and hence will not accept any identities

during epoch i or terminate at the end of epoch i.

Proof. Fix an epoch 1 ≤ i ≤ lg (n/(g lg n)). In expectation, (n − t)/2 = Θ(n)

honest nodes will choose to broadcast in every round in epoch i. Since each honest

node decides whether to broadcast or listen independently, apply a Chernoff bound

(in particular, Equation 4.2) and we know, in a fixed round in epoch i, w.h.p. at least

(1 − δ)(n − t)/2 honest nodes will choose to broadcast. Take a union bound over

all rounds in epoch i, and another union bound over the lg (n/(g lg n)) epochs and

we know, for every round before (and include) epoch lg (n/(g lg n)), w.h.p. at least

(1− δ)(n− t)/2 = Θ(n) honest nodes will choose to broadcast.
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On the other hand, according to the protocol, for every round in every epoch be-

fore (and include) lg (n/(g lg n)), at most n/2g lg n channels will be used or simulated.

Consider a fixed round of a fixed epoch i where 1 ≤ i ≤ lg (n/(g lg n)). Condi-

tioned on the event that at least (1 − δ)(n − t)/2 = Θ(n) honest nodes choose to

broadcast in this round, we know in expectation, each used channel will have at least

g(1 − δ)(n − t) lg n/n = Θ(lg n) broadcasting honest nodes. Since honest nodes

choose which channel to go to randomly, by a Chernoff bound (in particular, Equation

4.2) and a union bound, we know for sufficiently large g, w.h.p. at least two honest

nodes will choose to broadcast on every channel. Take another union bound over all

rounds before (and include) epoch lg (n/(g lg n)), we know w.h.p. at least two honest

nodes will choose to broadcast on every channel in all rounds before (and include) epoch

lg (n/(g lg n)). This means w.h.p. all channels that will be used have no silent rounds

before (and include) epoch lg (n/(g lg n)), and hence we have proved the lemma.

We continue to consider epochs from lg (n/(g lg n)) to epoch blg nc. For these

epochs, we claim that all honest nodes will still not terminate, since they will not hear

enough silent rounds.

Lemma 4.3. For any epoch i where lg (n/(g lg n)) ≤ i ≤ blg nc, w.h.p. no honest

nodes will terminate after epoch i.

Proof. We do an induction on epochs. According to Lemma 4.2, we know w.h.p. no

honest nodes will terminate before (and include) epoch lg (n/(g lg n)). Assume for

every epoch lg (n/(g lg n)) ≤ i < blg nc, w.h.p. all honest nodes decide to continue

after epoch i. We now consider epoch i+ 1.

In epoch i + 1, there are at least ani+1 lg ni+1 = Ω(n) rounds. Since each honest

node chooses to listen with probability 1/2 in every round, we know in expectation, in

epoch i + 1, an honest node will choose to listen in Ω(n) rounds. Since each round is

independent, by a Chernoff bound (in particular, Equation 4.2), we know in epoch i+1,

an honest node will choose to listen in at least Ω(n) rounds, w.h.p. Take a union bound

over the O(n) honest nodes, we know this claim holds true for them as well. Now, fix

an honest node u, we calculate the maximum probability that it hears a silent round in a

round that it decides to listen. For this to happen, first, the other n− t− 1 honest nodes

must not broadcast on the channel chosen by u, which happens with probability at most
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(1−(1/2)(2/ni+1))n−t−1 ≈ e−(n−t)/ni+1 ≤ e−(n−t)/n ≤ e−(1−1/α). Secondly, umust

not choose a channel that is disrupted by Eve, which happens with probability at most 1.

Therefore, in expectation, u will hear at most e−(1−1/α) fraction of silent rounds among

the rounds it chose to listen. Since each round is independent, apply a Chernoff bound

(in particular, Equation 4.1) and we know, w.h.p. u will hear at most (1 + δ)e−(1−1/α)

fraction of silent rounds among the rounds it chose to listen. On the other hand, u will

choose to terminate after epoch i+1 if it has heard at least (1−δ)(1−1/α)e−1/2 fraction

of silent rounds among the rounds it chose to listen. Notice, when α ≥ 5, for sufficiently

small δ (e.g., 1/100), one can easily verify (1 + δ)e−(1−1/α) < (1− δ)(1− 1/α)e−1/2.

Hence, w.h.p. u will not terminate after epoch i+ 1. Take a union bound over the O(n)

honest nodes and we know w.h.p. no honest nodes will terminate after epoch i+ 1.

We then show that every honest node will accept all other honest nodes during epoch

blg nc, i.e., each honest node will hear from all the other honest nodes sufficiently often

in that epoch.

Lemma 4.4. Every honest node will accept all honest nodes in epoch blg nc, w.h.p.

Proof. Fix two honest nodes u and v, we calculate the minimum probability that u hears

v’s identity in a round. For such an event to happen: (a) u must choose to listen, which

happen with probability 1/2; (b) v must choose to broadcast, which happens with prob-

ability 1/2; (c) u and v must choose the same channel, which happens with probability

2/2blgnc; (d) the other n − t − 2 honest nodes do not broadcast on the channel chosen

by u, which happens with probability (1− (1/2)(2/2blgnc))n−t−2 ≈ e−(n−t)/2blgnc
>

e−2(n−t)/n ≥ e−2; and (e) u does not choose a channel that is disrupted by Eve, which

happens with probability at least 1−t/min{2blgnc−1, c} > 1−4/α. Hence, in a round,

u will hear v’s identity with probability at least (1/2) · (1/2) · (2/2blgnc) · (1/e2) · (1−

4/α) = (1 − 4/α)/2e22blgnc. Thus, during epoch blg nc, in expectation, u will hear

v’s identity at least a(1 − 4/α)blg nc/2e2 times. Since each round is independent, ap-

ply a Chernoff bound (in particular, Equation 4.2) and we know, w.h.p. u will hear v’s

identity at least a(1− δ)(1− 4/α)blg nc/2e2 times. Take two union bounds (each over

O(n) honest nodes) and we know, for any two honest nodes u and v, u will hear v’s

identity at least a(1− δ)(1− 4/α)blg nc/2e2 times, w.h.p.

We then show, in epoch blg nc, every honest node will hear at least (1 − δ)(1 −
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4/α)e−2 fraction of silent rounds among the rounds it chose to listen, w.h.p. Fix an

honest node u. Since each node chooses to listen with probability 1/2 in each round,

and since each round is independent, by using a Chernoff bound (in particular, Equation

4.1 and 4.2), we know u will choose to listen in Θ(n lg n) rounds in epoch blg nc,

w.h.p. In each round u chose to listen, it will hear a silent round if: (a) the other

n − t − 1 honest nodes do not broadcast on the channel chosen by u, which happens

with probability (1 − (1/2)(2/2blgnc))n−t−1 ≈ e−(n−t)/2blgnc
> e−2(n−t)/n ≥ e−2;

and (b) u does not choose a channel disrupted by Eve, which happens with probability

1− t/min{2blgnc−1, c} > 1− 4/α. Hence, in each round u chose to listen, it will hear

a silent round with probability at least (1 − 4/α)/e2. Therefore, in expectation, u will

hear at least (1− 4/α)/e2 fraction of silent rounds among the rounds it chose to listen.

Since each round is independent, apply a Chernoff bound (in particular, Equation 4.2)

and we know, u will hear at least (1− δ)(1− 4/α)/e2 fraction of silent rounds among

the rounds it chose to listen, w.h.p. Take a union bound over all honest nodes and we

know, this claim holds true for them as well. By now, we have proved the lemma.

Lastly, we show all honest nodes will terminate at most two epochs later.

Lemma 4.5. All honest nodes will finish executing SIMPLESYBILSIEVE no later than

the end of epoch blg nc+ 2, w.h.p.

Proof. Assume u is an honest node that is still active during epoch blg nc + 2. Since

each node chooses to listen with probability 1/2 in each round, and since each round is

independent, apply a Chernoff bound (in particular, Equation 4.1 and 4.2), we know u

will choose to listen in Θ(n lg n) rounds in epoch blg nc+2, w.h.p. Now, in each round

u chose to listen, it will hear a silent round if: (a) the other at most n − t − 1 honest

nodes do not broadcast on the channel chosen by u, which happens with probability

(1 − (1/2)(2/2blgnc+2))n−t−1 ≈ e−(n−t)/2blgnc+2
> e−(n−t)/2n ≥ e−1/2; and (b) u

does not choose a channel that is disrupted by Eve, which happens with probability at

least 1− t/min{2blgnc+1, c} ≥ 1− 1/α. Hence, in each round u chose to listen, it will

hear a silent round with probability at least (1−1/α)e−1/2. Therefore, in expectation, u

will hear at least (1− 1/α)e−1/2 fraction of silent rounds among the rounds it chose to

listen. Since each round is independent, apply a Chernoff bound (in particular, Equation

4.2) and we know, u will hear at least (1 − δ)(1 − 1/α)e−1/2 fraction of silent rounds
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among the rounds it chose to listen, w.h.p. Take a union bound over all the O(n) honest

nodes and we know, the above claim holds true for every honest node that is active

during epoch blg nc + 2. As a result, according to the protocol, all these honest nodes

will terminate after epoch blg nc+ 2, w.h.p.

Constraining Sybil Identities. In this part, we show SIMPLESYBILSIEVE can ensure

the total number of sybil identities that are accepted by any honest nodes is at mostO(t ·

max{1, n/c}). Firstly, we identify the epochs in which honest nodes can potentially

accept sybil identities.

Lemma 4.6. Honest nodes will accept sybil identities only between epoch blg nc − 1

and epoch blg nc+ 1, w.h.p.

Proof. According to Lemma 4.2, we known w.h.p. no honest nodes will hear silent

rounds during epochs before (and include) lg (n/(g lg n)), hence they will not accept

any sybil identities in these epochs. On the other hand, according to Lemma 4.5, we

know w.h.p. all honest will terminate after epoch blg nc+ 2, hence they will not accept

any sybil identities in epoch blg nc+ 2.

For epochs lg (n/(g lg n)) + 1 to blg nc − 2, according to Lemma 4.3, we know all

honest nodes will be active during these epochs, w.h.p. Fix an honest node u, fix epoch

i where lg (n/(g lg n)) + 1 ≤ i ≤ blg nc− 2, according to our protocol, in expectation,

it will choose to listen in ani lg ni/2 rounds. Since each round is independent, apply a

Chernoff bound (in particular, Equation 4.2), we know u will choose to listen in at least

a(1− δ)ni lg ni/2 = Ω(n) rounds in epoch i, w.h.p. Take two union bounds (one over

the O(n) honest nodes, and another over the O(lg lg n) epochs), we know every honest

node will choose to listen for at least Ω(n) rounds in each of these epochs, w.h.p.

We now consider the maximum probability that an honest node u hears a silent

round in a round that it chooses to listen, in an epoch i where lg (n/(g lg n)) + 1 ≤ i ≤

blg nc − 2. For this to happen: (a) the other n− t− 1 honest nodes must not broadcast

on the channel chosen by u, which happens with probability (1− (1/2)(2/ni))
n−t−1 ≈

e−(n−t)/ni ; and (b) u does not choose a channel that is disrupted by Eve, which happens

with probability at most 1. Hence, in each round (that u chose to listen) in epoch i, u

will hear a silent round with probability at most e−(n−t)/ni . Therefore, in expectation, u

will hear at most e−(n−t)/ni fraction of silent rounds among the rounds it chose to listen.
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Since each round is independent, apply a Chernoff bound (in particular, Equation 4.1)

and we know, in epoch i, w.h.p. u will hear at most (1 + δ)e−(n−t)/ni fraction of silent

rounds among the rounds it chose to listen. Take a union bound over the O(n) honest

nodes and another union bound over the O(lg lg n) epochs, we know for any epoch

lg (n/(g lg n)) + 1 ≤ i ≤ blg nc − 2, honest nodes will hear at most (1 + δ)e−(n−t)/ni

fraction of silent rounds among the rounds they chose to listen, w.h.p.

Notice, for any epoch i where lg (n/(g lg n)) + 1 ≤ i ≤ blg nc − 2, we have

(1 + δ)e−(n−t)/ni ≤ (1 + δ)e−4(n−t)/n. Moreover, when α ≥ 6, for sufficiently small δ

(e.g., 1/100), one can easily verify (1 + δ)e−4(n−t)/n < (1− δ)(1− 4/α)e−2. Hence,

we know no honest nodes will accept any identities between epoch lg (n/(g lg n)) + 1

to blg nc − 2, w.h.p. By now, we have proved the lemma.

At this point, we can summarize honest nodes’ behavior as follows: (a) for every

epoch before and including blg nc, no honest nodes will terminate; (b) during epoch

blg nc− 1 to epoch blg nc+ 1, honest nodes may accept identities, which include other

honest nodes and sybil identities; (c) by the end of epoch blg nc, every honest node must

have accepted all other honest nodes; and (d) some (or all) honest nodes may terminate

after epoch blg nc+ 1, and all remaining will terminate after epoch blg nc+ 2.

In the following key technical lemma, we show for every epoch i where blg nc −

1 ≤ i ≤ blg nc + 1, at most O(t · max{1, n/c}) sybil identities will be accepted by

honest nodes. The intuition is: in each round in these epochs, each honest node will,

in expectation, broadcast its identity Θ(1) times. On the other hand, Eve can broadcast

an identity at most O(t · max{1, n/c}) times in every round, each of which we call

a broadcast round-channel combination. This implies Eve can advocate an identity at

most O(t ·max{1, n/c}) times faster than honest nodes. Since honest nodes’ broadcast

rate allows each of them to be accepted O(1) times (by other honest nodes) in each of

these three epochs, we know Eve can successfully create at most O(t · max{1, n/c})

sybil identities in each of these three epochs. Notice, one tricky point within the proof is

to carefully analyze the (in)dependence relationship between multiple broadcast round-

channel combinations, and then apply Chernoff bounds accordingly.

Lemma 4.7. For epoch i where blg nc−1 ≤ i ≤ blg nc+1, at most 2(1+δ)e2·e−(n−t)/ni

(1−δ)(1−4/α) ·

t·max{1, ni/2c} = O(t·max{1, n/c}) sybil identities will be accepted by honest nodes
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in that epoch, w.h.p.

Proof. To begin with, we introduce the notion of broadcast round-channel combination.

Such a combination refers to Eve broadcasting on behalf of a sybil identity v in a round

on a channel.

We then calculate, for epoch i where blg nc − 1 ≤ i ≤ blg nc + 1, the maximum

probability that an honest node u receives v’s identity in a broadcast round-channel

combination, given that Eve is advocating v in that broadcast round-channel combi-

nation. For this to happen: (a) u must choose to listen in that round, which happens

with probability 1/2; (b) u and Eve must choose the same channel, which happens with

probability 2/ni; and (c) the other (at most) n− t− 1 honest nodes must not broadcast

on the channel chosen by u, which happens with probability (1− (1/2)(2/ni))
n−t−1 ≈

e−(n−t)/ni . Hence, in each broadcast round-channel combination that Eve advocates

v, u will receive v’s identity with probability (1/2)(2/ni)e
−(n−t)/ni = e−(n−t)/ni/ni.

Therefore, according to our protocol, in epoch i, in expectation, Eve must advocate v for

a(1−δ)(1−4/α) lgni/2e
2

e−(n−t)/ni/ni
= (1−δ)(1−4/α)

2e2·e−(n−t)/ni
·ani lg ni broadcast round-channel combinations

before u accepts v.

Now consider all the broadcast round-channel combinations in which Eve advocates

v in an epoch. Let Xj,k be an indicator random variable which denotes whether u

successfully receives v’s identity when Eve broadcasts on channel k in round j.

For any set {Xj1,k1 , Xj2,k2 , · · · , Xjy ,ky}, we claim if {j1, j2, · · · , jy} are different

numbers, then it must be the case that {Xj1,k1 , Xj2,k2 , · · · , Xjy ,ky} is a set of indepen-

dent random variables. (I.e., if Eve advocates v in different rounds each on one channel,

then whether u will hear v in a round is independent of whether u will hear v in other

rounds.) To see this, consider the three conditions (mentioned in previous paragraph)

that are required for Eve to successfully let u hear v in a broadcast round-channel com-

bination. For each of these conditions, between broadcast round-channel combinations

in different rounds, whether it will be satisfied are independent. As a result, we can

conclude {Xj1,k1 , Xj2,k2 , · · · , Xjy ,ky} is a set of independent random variables.

Meanwhile, for any set {Xj,k1 , Xj,k2 , · · · , Xj,ky}, we claim if {k1, k2, · · · , ky} are

different numbers, then {Xj,k1 , Xj,k2 , · · · , Xj,ky}must be a set of negatively-dependent

random variables. (I.e., if Eve advocates v on multiple channels in one round, then

whether u will hear v on one channel negatively depends on whether u has heard v on
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other channels.) According to the definition in [17], we say a set of random variablesXi

(where i ∈ {1, 2, · · · , N}) are negatively-dependent if for all disjoint subsets I,J ⊆

{1, 2, · · · , N} and all non-decreasing functions f and g, the following inequality holds:

E(f(Xi, i ∈ I)g(Xj , j ∈ J )) ≤ E(f(Xi, i ∈ I))E(g(Xj , j ∈ J )). To prove

{Xj,k1 , Xj,k2 , · · · , Xj,ky} is a set of negatively-dependent random variables, assume

f(0, · · · , 0) = h1 and g(0, · · · , 0) = h2. Fix some disjoint set I,J ⊆ {1, · · · , y}.

Notice, if u has heard v in a broadcast round-channel combination in a round, then u

will never hear v again in that round as each honest node can listen on at most one

channel in each round. Therefore, we know E((f(Xj,kl , l ∈ I) − h1)(g(Xj,km ,m ∈

J ) − h2)) = 0 ≤ E(f(Xj,kl , l ∈ I) − h1)E(g(Xj,km ,m ∈ J ) − h2). According to

linearity of expectation, we know E((f(Xj,kl , l ∈ I)−h1)(g(Xj,km ,m ∈ J )−h2)) =

E(f(Xj,kl , l ∈ I)g(Xj,km ,m ∈ J ))− h1 ·E(g(Xj,km ,m ∈ J ))− h2 ·E(f(Xj,kl , l ∈

I)) + h1h2, and E(f(Xj,kl , l ∈ I)− h1)E(g(Xj,km ,m ∈ J )− h2) = E(f(Xj,kl , l ∈

I))E(g(Xj,km ,m ∈ J )) − h1 · E(g(Xj,km ,m ∈ J )) − h2 · E(f(Xj,kl , l ∈ I)) +

h1h2. Hence, we know E(f(Xj,kl , l ∈ I)g(Xj,km ,m ∈ J )) ≤ E(f(Xj,kl , l ∈

I))E(g(Xj,km ,m ∈ J )). As a result, we can conclude {Xj,k1 , Xj,k2 , · · · , Xj,ky} is

a set of negatively-dependent random variables.

Since independence is just a special case of negative dependence (according to the

definition in [17]), we know any set {Xj1,k1 , Xj2,k2 , · · · , Xjy ,ky} is a set of negatively-

dependent random variables. Now, recall we have previously shown that in epoch i, in

expectation, Eve must advocate v for at least (1−δ)(1−4/α)

2e2·e−(n−t)/ni
· ani lg ni broadcast round-

channel combinations before u accepts v. Apply a Chernoff bound under negative

dependence (in particular, Equation 4.1) and we know, in epoch i, w.h.p. Eve must

advocate v for at least (1−δ)(1−4/α)

2(1+δ)e2·e−(n−t)/ni
· ani lg ni broadcast round-channel combina-

tions before u will accept v. Take a union bound over the O(n) honest nodes and we

know, w.h.p. Eve must advocate v for at least (1−δ)(1−4/α)

2(1+δ)e2·e−(n−t)/ni
· ani lg ni broadcast

round-channel combinations before any honest nodes will accept v.

Since Eve has at most t ·max{1, ni/2c} · ani lg ni broadcast round-channel com-

binations in epoch i (recall Eve can broadcast on at most t different channels in each

time slot; each round contains max{1, ni/2c} time slots; and epoch i contains ani lg ni

rounds), we know w.h.p. the number of sybil identities that are accepted by honest nodes

in epoch i is at most:
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t ·max{1, ni/2c} · ani lg ni
(1−δ)(1−4/α)

2(1+δ)e2·e−(n−t)/ni
· ani lg ni

=
2(1 + δ)e2 · e−(n−t)/ni

(1− δ)(1− 4/α)
· t ·max{1, ni/2c}

By now, we have proved the lemma.

Based on the above six lemmas, we can obtain the following theorem which states

the key guarantees provided by SIMPLESYBILSIEVE.

Theorem 4.8. For any t ≤ min{n, c}/α where α ≥ 6, SIMPLESYBILSIEVE finishes

within O(n lg2 n · max{1, n/c}) slots, and guarantees the following, w.h.p.: (a) there

are at most O(t · max{1, n/c}) sybil identities accepted by the honest nodes, collec-

tively; and (b) every honest node accepts all other honest nodes.

4.4 The SYBILSIEVE Algorithm

Our ultimate goal is to build on the foundation provided by SIMPLESYBILSIEVE to get

an optimalO(t) bound on the number of sybil identities for all values of c (not just when

c > n). An obstacle, however, is that nodes executing SIMPLESYBILSIEVE do not nec-

essarily terminate at the same time. This makes it difficult to use SIMPLESYBILSIEVE

in a more involved anti-sybil strategy. To address this issue, we present an improved

version of SIMPLESYBILSIEVE that we call SYBILSIEVE. This new algorithm offers

the same sybil bounds as SIMPLESYBILSIEVE, but is slower. In exchange for the extra

time, it guarantees all nodes terminate at the same time and share a common constant-

factor estimate of n (both of which will prove to be useful for our final algorithm that is

going to be presented in the next section).

At the core of SYBILSIEVE is a consensus primitive that is called SYBILSENSUS.

Nodes execute SYBILSENSUS at the end of each epoch to decide whether or not to

terminate. This ensures nodes stop simultaneously. Nodes then use the epoch number

(when they stop) to derive their common estimate of the network size.

For ease of presentation, we define the following notations: (a) let H denote the

set of honest nodes; (b) for any honest node u, let idsu (or just ids when there is no
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ambiguity) denote the set of identities it has already accepted; and (c) for any protocol,

if all honest nodes start executing it simultaneously, then we say we have a synchronized

execution of it. We also note here, in the reminder of this chapter, we assume α ≥ 256.

4.4.1 SYBILSENSUS: A Consensus Building Block

SYBILSENSUS is a wireless variant of the Byzantine consensus algorithm described

in [54], with sybil attacks taken into consideration. Before presenting it, we first briefly

discuss a broadcast primitive named CONSISTBCST, which is an implementation of the

authenticated broadcast (i.e., Echo Broadcast) algorithm from [54]. CONSISTBCST is

used in SYBILSENSUS.

CONSISTBCST. Consistent broadcast ensures consistency among the messages that

are accepted by honest nodes. In particular, it enforces: (a) if an honest node broadcasts

a message, then all honest nodes will eventually accept that message; (b) if Eve sends

a message on behalf of an honest node (i.e., Eve is spoofing), then no honest nodes will

accept that message; and (c) if an honest node accepts a message, then all honest nodes

will eventually accept that message. When sybil attacks are present, in our context,

consistent broadcast should also guarantee: (d) if Eve sends a message on behalf of a

sybil identity that is not accepted by any honest nodes, then no honest nodes will accept

that message.

CONSISTBCST is an implementation of the Echo Broadcast algorithm described

in [54]: initially, the sender broadcasts the message to everyone; everyone who re-

ceives the message directly from u, or who receives enough “echo” messages, sends an

“echo” message repeating the initial message; finally, everyone who receives enough

total copies of the message accepts it. In our context, we make the following small

changes to the original protocol: (a) a node only processes messages that are prop-

erly signed from other identities that it has already accepted (in an earlier SYBILSIEVE

epoch); (b) the protocol is parametrized to operate based on an estimated network size,

and the guarantees hold only if this estimate is within a constant factor of being correct;

and (c) the guarantees hold only if the number of sybil identities that are accepted by

the honest nodes is not too large.

More specifically, each execution of CONSISTBCST contains multiple phases. For
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an honest node u, the execution of each phase requires four input parameters: (a) the

phase number; (b) estimation of n, denoted as n̂; (c) set of identities that are currently

accepted by u, denoted as idsu; and (d) messages to broadcast (if any). The output of

CONSISTBCST for an honest node u is a set of messages that are accepted by u.

Each phase of CONSISTBCST consists of two steps, and each step contains Θ(n̂ lg n̂)

rounds. (As we shall later see, the existence of multiple rounds is to ensure that mes-

sages broadcast by honest nodes can be heard by all other honest nodes.) In the first

step, if u has any messages to send, it will broadcast an init tuple for each message.

u will also listen and record init tuples that come from other identities in idsu. In the

second step, for every message that is in an init tuple u has heard during the preceding

step, and for every message that has appeared in at least f̂ + 1 different init or echo

tuples (“different” meaning each comes from a different identity in idsu) since the first

phase, u will broadcast an echo tuple for that message. Here, f̂ = bn̂/3c − 1. During

the second step, u will also listen and record echo tuples that come from other identi-

ties in idsu. Lastly, after these two steps, for every message for which u has received at

least n̂− f̂ different init or echo tuples since the first phase, u will accept that message.

These descriptions are summarized in Figure 4.2.

In the following lemma, we state the guarantees CONSISTBCST can provide.

Lemma 4.9. For a synchronized execution of CONSISTBCST which contains l = O(n)

phases, if all honest nodes start execution with the same n̂, then:

• If (a) n/16 ≤ n̂ ≤ n; and (b) ∀u ∈ H we have H ⊆ idsu. Then: if an honest

node sends a message m at the beginning of phase i, then m will be accepted by

all honest nodes after phase i, w.h.p.;

• If |(
⋃
u∈H idsu) \ H| ≤ f̂ . Then: if Eve sends a message m on behalf of an

honest node, then m will not be accepted by any honest nodes, w.h.p.;

• If (a) n/16 ≤ n̂ ≤ n; (b) ∀u ∈ H we have H ⊆ idsu; and (c) |(
⋃
u∈H idsu) \

H| ≤ f̂ . Then: if an honest node accepts a message m by the end of phase i < l,

then m will be accepted by all honest nodes after phase i+ 1, w.h.p.;

• If |(
⋃
u∈H idsu) \H| ≤ f̂ , Then: if Eve sends a message m on behalf of a sybil

identity that is not accepted by any honest nodes, then m will not be accepted by

any honest nodes, w.h.p.
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Pseudocode of phase i of CONSISTBCST executed at node u:
Input: let i be the phase number.
Input: let n̂ be the estimation of network size, and f̂ ← bn̂/3c − 1.
Input: let ids be the identities that u currently accepts.
Input: let msgs be the messages u wants to send in this phase.

1: Let kup be u’s public key, and kuo be u’s private key.
2: if (i=1) then
3: msgsaccpted ← ∅. . Set containing messages that u accepts.
4: echocount ← ∅. . echocount is a dictionary structure with value being a set.
5: echosent ← ∅.
6: pkt← nil, echolist ← ∅. . STEP I.
7: for (every msg ∈ msgs) do
8: tuple← init||msg||i. . “||” denotes concatenation operation.
9: pkt← pkt||〈kup ,sign(kuo , tuple)〉. . sign(k,m) signs m with key k.

10: echocount[msg]← echocount[msg]
⋃
{kup}.

11: for (every round 1 ≤ j ≤ an̂ lg n̂) do
12: ch← random(n̂/2).
13: for (every slot 1 ≤ k ≤ max{1, n̂/2c}) do
14: if (b(ch− 1)/cc = k − 1) then
15: if (random(2) = 1) then
16: broadcast(pkt, ((ch− 1) mod c) + 1).
17: else
18: pkt′ ← listen(((ch− 1) mod c) + 1).
19: if (pkt′ comes from an identity v in ids) then
20: for (every tuple 〈init||msg||i〉 in pkt′ such that msg /∈ echosent) do
21: echolist ← echolist

⋃
{msg}.

22: echocount[msg]← echocount[msg]
⋃
{kvp}.

23: pkt← nil. . STEP II.
24: for (every entry msg in echolist) do
25: echosent ← echosent

⋃
{msg}, pkt← pkt||〈kup ,sign(kuo ,echo||msg||i)〉.

26: for (every entry msg in echocount) do
27: if (msg /∈ echosent and |echocount[msg]| ≥ f̂ + 1) then
28: echosent ← echosent

⋃
{msg}, pkt← pkt||〈kup ,sign(kuo ,echo||msg||(i− 1))〉.

29: for (every round 1 ≤ j ≤ an̂ lg n̂) do
30: ch← random(n̂/2).
31: for (every slot 1 ≤ k ≤ max{1, n̂/2c}) do
32: if (b(ch− 1)/cc = k − 1) then
33: if (random(2) = 1) then
34: broadcast(pkt, ((ch− 1) mod c) + 1).
35: else
36: pkt′ ← listen(((ch− 1) mod c) + 1).
37: if (pkt′ comes from an identity v in ids) then
38: for (every tuple 〈echo||msg||i′〉 in pkt′ such that i′ ≤ i) do
39: echocount[msg]← echocount[msg]

⋃
{kvp}.

40: for (every msg ∈ echocount) do . POST-PROCESSING.
41: if (|echocount[msg]| ≥ n̂− f̂ ) then
42: msgsaccpted ← msgsaccpted

⋃
{msg}.

43: return msgsaccpted.

Figure 4.2: Pseudocode of one phase of CONSISTBCST.

Proof. We first prove the following claim:

Claim 4.9.1. In a synchronized execution of CONSISTBCST, if honest nodes have the

75



same n̂ such that n/16 ≤ n̂ ≤ n, then during the execution, for every init or echo tuple

that comes from an honest node, that tuple will be heard by all honest nodes by the end

of the corresponding step, w.h.p.

Proof. Fix two honest nodes u and v, assume uwants to broadcast a tuple. We calculate

the minimum probability that v hears u’s tuple in a round. To let this event happen: (a)

u must choose to broadcast, which happens with probability 1/2; (b) v must choose to

listen, which happens with probability 1/2; (c) u and v must choose the same channel,

which happens with probability 2/n̂ ≥ 2/n; (d) the other at most n − t − 2 honest

nodes must not broadcast on the channel chosen by u, which happens with probability

at least (1 − (1/2)(2/n̂))n−t−2 ≈ e−(n−t)/n̂ ≥ e−16(n−t)/n ≥ e−16; and (e) u does

not choose a channel that is disrupted by Eve, which happens with probability 1 −

t/min{n̂/2, c} ≥ 1 − 32/α. Hence, in a round, v will hear u’s tuple with probability

at least (1/2) · (1/2) · (2/n) · e−16 · (1− 32/α) = (1− 32/α)/2e16n = Θ(1/n). Since

each round is independent, after one step which consists of Θ(n lg n) rounds, v will

hear u’s tuple w.h.p. Take two union bounds each over O(n) honest nodes, and another

union bound over the O(n) phases, we can have the claim.

We now prove the lemma.

We begin with the first property. If an honest node u sends out an init tuple that

contains message m at the beginning of phase i, then due to Claim 4.9.1, by the end of

step one of phase i, every other honest node must have heard that tuple, w.h.p. Since

every honest node accepts u as an honest identity, we know every honest node will send

an echo tuple for m during step two of phase i. Again, every honest node’s echo tuple

that contains m will be heard by all other honest nodes, w.h.p. As a result, by the end

of phase i, every honest node must have received at least n− t ≥ n̂− f̂ different init or

echo tuples for m, and hence accept m, w.h.p. (Recall we assume n̂ ≤ n.)

We then consider the second property. On one hand, notice w.h.p. Eve cannot spoof

honest nodes’ tuples since they are authenticated by private keys. (Even though Eve

cannot break the asymmetric cryptography system we used, she can always blind guess

honest nodes’ private keys and has a small chance of being correct.) On the other hand,

notice we assume there are at most f̂ sybil identities that are accepted by any honest

nodes. Hence, if Eve spoofsm, then w.h.p. there will be at most f̂ different init or echo
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tuples for m that are accepted by any honest nodes, each from a sybil identity. This is

not enough to trigger honest nodes to broadcast echo tuples for m (as that needs f̂ + 1

different init or echo tuples). Moreover, f̂ ≤ n̂ − f̂ . Hence, w.h.p. m will not be

accepted by any honest nodes.

We continue with the third property. Assume message m from some identity v is

accepted by honest node u by the end of phase i < l, then it must be the case that u

have received at least n̂ − f̂ = n̂ − bn̂/3c + 1 ≥ 2f̂ + 1 different init or echo tuples

for m by the end of phase i. Among these tuples, w.h.p. at least f̂ + 1 must each come

from an honest node. Hence, by the end of phase i, every honest node must have heard

at least f̂ + 1 different init or echo tuples for m, each from an honest node, w.h.p. As a

result, by the end of phase i+ 1, every honest node must have broadcast an echo tuple

for m, w.h.p. Therefore, by the end of phase i+ 1, every honest node must have heard

at least n− t ≥ n̂− f̂ different init or echo tuples for m and hence accepts it, w.h.p.

Lastly, we consider the fourth property. On one hand, notice w.h.p. Eve cannot

spoof honest nodes’ tuples since they are authenticated by private keys. On the other

hand, notice we assume there are at most f̂ sybil identities that are accepted by any

honest nodes. Hence, if Eve broadcasts a message m on behalf of a sybil identity that is

not accepted by any honest nodes, w.h.p. there will be at most f̂ different init or echo

tuples for m that are accepted by honest nodes, each from a sybil identity. This is not

enough to trigger honest nodes to broadcast echo tuples for m (as that needs f̂ + 1

different init or echo tuples). Moreover, f̂ ≤ n̂ − f̂ . Hence, w.h.p. m will not be

accepted by any honest nodes.

SYBILSENSUS. We now describe the SYBILSENSUS protocol, which solves a variant

of consensus in which nodes agree on a set of items (instead of on a single value). No-

tice, initially, in SYBILSIEVE, we only use SYBILSENSUS to solve traditional (binary)

consensus, in which nodes agree on whether or not to terminate; later, in SYBILSIEVEOPT,

we will use the more general version of it to let honest nodes agree on a set of identities.

It operates under the assumption that we have a reasonable network size estimation, and

that there are only a limited number of sybil identities present.

Each execution of SYBILSENSUS at an honest node u requires three parameters:

(a) a set of items, denoted as Iu; (b) an estimation of n, denoted as n̂; and (c) a set of
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identities that is currently accepted by u, denoted as idsu.

When the protocol terminates, each node outputs a new set Su. These sets should

agree: every node should output the same set. The validity condition has two parts.

First, if an item x is in the input set Iu for every honest node u, then x is in the output

set. Second, if an item x is not in the input set Iu for any honest node u, then x is not

in the output set.

An execution of SYBILSENSUS consists of f̂ + 1 phases, where f̂ = bn̂/3c − 1.

During the execution of SYBILSENSUS, nodes will use CONSISTBCST to broadcast

messages. In phase i, an honest node u will decide whether to broadcast messages, and

the contents of the messages, based on the following rules: (a) in phase one, for every

item x in Iu, u will broadcast a message that is a concatenation of its identity and x;

and (b) in any phase i ≥ 2, for every item x that has appeared in at least f̂ + i − 1

different accepted messages before the start of phase i, u will broadcast a message

which is a concatenation of its identity and x. Meanwhile, during each phase, honest

nodes will also record items that have appeared in accepted messages. By the end of

these f̂+1 phases, for every item x that has appeared in at least 2f̂+1 different accepted

messages, u will add it to Su. Finally, SYBILSENSUS returns Su as the return value.

The pseudocode of SYBILSENSUS is summarized in Figure 4.3.

In the following lemma, we show SYBILSENSUS leads to consensus.

Lemma 4.10. If honest nodes perform a synchronized execution of SYBILSENSUS with

same n̂, then SYBILSENSUS guarantees: all honest nodes finish executing SYBILSEN-

SUS simultaneously, and each outputs a set S containing zero or more items. Moreover,

if: (a) n/16 ≤ n̂ ≤ n; (b) |(
⋃
u∈H idsu) \H| ≤ f̂ = bn̂/3c − 1; (c) ∀u ∈ H we have

H ⊆ idsu; and (d) there are at most O(n) differently named items that are initially in

some honest nodes’ sets I . Then, SYBILSENSUS further guarantees:

• (Agreement) Every honest node will output the same set S, w.h.p.

• (Validity) For any item x that is initially in every honest node’s set I , after the

execution of SYBILSENSUS, ∀u ∈ H we have x ∈ Su, w.h.p. Similarly, for

any item x that is initially not in any honest nodes’ I , after the execution of

SYBILSENSUS, ∀u ∈ H we have x /∈ Su, w.h.p.

Proof. If all honest nodes start simultaneously with same n̂, then the first sentence of
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Pseudocode of SYBILSENSUS executed at node u:
Input: let n̂ be the estimation of network size, and f̂ ← bn̂/3c − 1.
Input: let ids be the identities that u currently accepts.
Input: let Iu be a set of items.

1: Let kup be u’s public key, and kuo be u’s private key.
2: Imsgs ← ∅. . Imsgs is a dictionary structure with value being a set.
3: for (every phase 1 ≤ i ≤ f̂ + 1) do
4: msgs← ∅.
5: if (i = 1) then
6: for (every item x in Iu) do msgs← msgs

⋃
{kup ||x}.

7: else
8: for (every entry x in Imsgs such that |Imsgs[x]| ≥ f̂ + i− 1) do
9: msgs← msgs

⋃
{kup ||x}.

10: execute CONSISTBCST with parameter i, n̂, ids, and msgs.
11: Let msgsaccepted be the return value of CONSISTBCST.
12: for (every kvp ||x ∈ msgsaccepted) do
13: if (Imsgs[x] = nil) then
14: Imsgs[x]← {kvp}.
15: else
16: Imsgs[x]← Imsgs[x]

⋃
{kvp}.

17: Su ← ∅.
18: for (every entry x in Imsgs) do
19: if (|Imsgs[x]| ≥ 2f̂ + 1) then
20: Su ← Su

⋃
{x}.

21: return Su.

Figure 4.3: Pseudocode of SYBILSENSUS.

the lemma obviously follows from protocol description.

We then prove the validity property. Consider an item x. If every honest node’s

initial I contains x, then according to the protocol and the first property of Lemma 4.9,

by the end of phase one, every honest node will accept all n− t ≥ 2f̂ +1 honest nodes’

messages that contain x, w.h.p. Thus, when honest nodes finish execution, w.h.p. they

will all include x in S. Take a union bound over all the O(n) items that are initially in

every honest node’s I , and we have the first part of the validity requirement.

On the other hand, if every honest node’s initial I does not contain x, then none of

them will send out messages that contain x, w.h.p. This is because, due to the second

and fourth property of Lemma 4.9, we know by the end of any phase i ≥ 1, w.h.p. each

honest node will accept at most f̂ messages that contain x, each from a sybil identity.

This is not enough to trigger honest nodes to broadcast messages that contain x during

phase i+1, as that requires an honest node to have accepted at least f̂+(i+1)−1 ≥ f̂+1

different messages that contain x. As a result, we know w.h.p. every honest node will

accept less than 2f̂+1 messages that contain x during the execution. Thus, when honest
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nodes finish execution, w.h.p. they will not include x in S. (Notice, we do not need to

take a union bound over different x that are created by Eve and are initially not in any

honest node’s I . In particular, no matter how many of these x Eve has created, as long

as she does not know any honest node’s private key, which happens w.h.p., these x will

not be included in any honest node’s output set S.)

We continue to consider the agreement property. Fix an item x that is initially in

some honest nodes’ I , we show if an honest node u includes x in Su, then all other

honest nodes will include x in their S as well, w.h.p.

Since u includes x in Su, we know it must have accepted at least 2f̂ + 1 messages

that contain x by the end of phase f̂ + 1. Let U denote the set of honest nodes that have

sent messages that contain x. Due to the second and fourth property of Lemma 4.9, we

know |U | ≥ f̂ + 1, w.h.p.

If all honest nodes in U initially include x in their I , then according to the first

property of Lemma 4.9, by the end of phase one, all honest nodes will accept these

|U | honest nodes’ messages that contain x, w.h.p. Then, during step one of phase two,

according to the protocol, every honest node that does not initially include x in their I

will broadcast message that contain x. As a result, we know all honest nodes will accept

at least n− t ≥ 2f̂ + 1 messages that contain x by the end of phase two, w.h.p. Hence,

when honest nodes finish execution, they will all include x in their S, w.h.p.

If some honest nodes in U initially do not contain x in I , then without lose of

generality, assume u′ is one such node. In such case, due to the second property of

Lemma 4.9, w.h.p. u′ must have broadcast a message that contains x during step one of

some phase j, where 2 ≤ j ≤ f̂ + 1. Moreover, this implies it must have accepted at

least f̂ + j−1 messages that contain x before phase j. Due to property three of Lemma

4.9, we know w.h.p. all honest nodes must have accepted these f̂ + j − 1 messages by

the end of phase j as well. Furthermore, since u′ broadcasts a message that contains

x during step one of phase j, due to property one of Lemma 4.9, we know all honest

nodes will accept this message from u′ by the end of phase j, w.h.p. As a result, by

the end of phase j, each honest node must have accepted at least f̂ + j messages that

contain x, w.h.p.

Now, if j = f̂ + 1 (i.e., phase j is the last phase), then according to the protocol, all

honest nodes will include x in S since they each has accepted at least 2f̂ + 1 messages
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that contain x. Otherwise, if 1 ≤ j ≤ f̂ , then in step one of phase j+1, all honest nodes

that have not broadcast a message that contain x yet will do so. Due to property one of

Lemma 4.9, we know each honest node will accept at least n − t ≥ 2f̂ + 1 messages

that contain x by the end of phase j + 1, and hence include x in its S when it finishes

execution, w.h.p.

Take a union bound over all O(n) items, and we have the agreement property.

In the special cases where network size estimation is not accurate and honest nodes

have not accepted each other yet, SYBILSENSUS can still provide “partial” validity for

binary consensus. This property is stated in the lemma below and will later be proved

to be useful for SYBILSIEVE.

Lemma 4.11. If: (a) honest nodes perform a synchronized execution of SYBILSENSUS

with the same n̂; (b) |(
⋃
u∈H idsu) \H| ≤ f̂ = bn̂/3c − 1; and (c) each honest node’s

initial I is an empty set. Then, all honest nodes will finish executing SYBILSENSUS

simultaneously, and each outputs an empty set, w.h.p.

Proof. Since each honest node’s initial I is an empty set, we know any item that can

potentially be added to S must come from the sybil identities that are created by Eve.

Assume x is one such item. We claim no honest nodes will send out messages that

contain x, w.h.p. This is because, due to the second and fourth property of Lemma 4.9,

we know by the end of any phase i ≥ 1, w.h.p. each honest node will accept at most f̂

messages that contain x, each from a sybil identity. This is not enough to trigger honest

nodes to broadcast messages that contain x during phase i+1, as that requires an honest

node to have accepted at least f̂ + (i+ 1)− 1 ≥ f̂ + 1 different messages. As a result,

we know w.h.p. every honest node will accept less than 2f̂ + 1 messages that contain

x during the execution. Thus, when honest nodes finish execution, w.h.p. they will not

include x in S.

We note here, if it is known that there are only a limited number of accepted sybil

identities, then SYBILSENSUS can directly be used as a consensus protocol. Otherwise,

in an unknown and anonymous environment, nodes need to run a sybil-resistant node

discovery protocol (such as SYBILSIEVE) as a preliminary step (in order to limit the

number of accepted sybil identities).
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Pseudocode of SYBILSIEVE executed at node u:
1: n̂← −1. . Node’s estimation on network size.
2: ids← ∅. . Set containing identities that u accepts.
3: for (every epoch i ≥ 1) do
4: n̂← 2i, Iu ← ∅.
5: execute epoch i of the original SIMPLESYBILSIEVE protocol.
6: if (SIMPLESYBILSIEVE decides node should terminate after this epoch) then
7: Iu ← {term}.
8: execute SYBILSENSUS with parameter Iu, n̂/4, and ids.
9: if (term /∈ Su) then

10: i← i+ 1.
11: else
12: return n̂/2 and ids.

Figure 4.4: Pseudocode of SYBILSIEVE.
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Figure 4.5: High-level structure of SYBILSIEVE.

4.4.2 Maintaining Synchrony

With SYBILSENSUS in hand, we can now proceed to present the SYBILSIEVE pro-

tocol. SYBILSIEVE is similar to SIMPLESYBILSIEVE, with the key difference being

termination: at the end of each epoch, nodes run SYBILSENSUS to decide whether to

terminate or not; the input to SYBILSENSUS depends on whether the termination condi-

tion under the SIMPLESYBILSIEVE protocol is met. In particular, an input set contains

a singleton item term if and only if the termination condition is met under the SIM-

PLESYBILSIEVE protocol. A node terminates after the current epoch only if all nodes

have agreed to terminate. The pseudocode of SYBILSIEVE is shown in Figure 4.4, and

the high-level structure of SYBILSIEVE is illustrated in Figure 4.5.

In the following lemma, we show SYBILSIEVE guarantees all honest nodes will ter-

minate after the same epoch (and hence obtain same estimate on network size). The key

intuition behind it is: (a) for every epoch before blg nc, although trusted identities are

not fully established, Lemma 4.11 ensures honest nodes will not incorrectly terminate;

and (b) starting from epoch blg nc, the conditions which allow SYBILSENSUS to act

like a “full” consensus protocol are met, hence all honest nodes will not terminate after

epoch blg nc due to the validity property, and will all terminate simultaneously either

after epoch blg nc+ 1 or blg nc+ 2 due to the agreement (or validity) property.
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Lemma 4.12. All honest nodes will finish executing SYBILSIEVE simultaneously, ei-

ther after epoch blg nc+ 1 or after epoch blg nc+ 2, w.h.p.

Proof. We first consider epochs i < blg nc− 1. Due to Lemma 4.6, we know no honest

nodes will accept any identities during these epochs, w.h.p. Moreover, due to Lemma

4.2 and 4.3, we know all honest nodes’ initial I will not contain term during these

epochs, w.h.p. As a result, we can apply Lemma 4.11 and conclude no honest nodes

will decide to terminate in these epochs, w.h.p.

We then consider epoch i = blg nc − 1. Due to Lemma 4.2 and 4.3, we know all

honest nodes’ initial I will not contain term in this epoch, w.h.p. On the other hand, due

to Lemma 4.7, when α ≥ 256, for sufficiently small δ (e.g., 1/100), we can conclude

that there are less than f̂i = b2i/12c− 1 sybil identities that are accepted by any honest

nodes, w.h.p. Hence, due to Lemma 4.11, we know no honest nodes will terminate after

this epoch, w.h.p.

We continue with epochs blg nc to blg nc + 2. We first show the requirements to

apply Lemma 4.10 are satisfied in these epochs, w.h.p. More specifically, according to

protocol description, the synchronized execution and identical estimation requirements

are met, so is the requirement that n/16 ≤ n̂ ≤ n. Meanwhile, according to Lemma

4.4, requirement (c) of Lemma 4.10 follows, w.h.p. Lastly, according to Lemma 4.7,

when α ≥ 256, for sufficiently small δ (e.g., 1/100), we can easily verify: (1) by the

end of epoch blg nc, there are less than f̂blgnc sybil identities accepted by honest nodes,

w.h.p.; (2) by the end of epoch blg nc + 1, there are less than f̂blgn+1c sybil identities

accepted by honest nodes, w.h.p.; and (3) by the end of epoch blg nc+ 2, there are less

than f̂blgn+2c sybil identities accepted by honest nodes, w.h.p. Hence, requirement (b)

of Lemma 4.10 follows as well, w.h.p.

We now consider honest nodes’ behavior during epoch blg nc to epoch blg nc+2. In

epoch blg nc, due to Lemma 4.3, we know all honest nodes will execute SYBILSENSUS

with empty I , w.h.p. Due to the validity property, all honest nodes will continue into

epoch blg nc + 1, w.h.p. In epoch blg nc + 1, some (or all) honest nodes may execute

SYBILSENSUS with initial I that contains term. Due to the agreement property, w.h.p.

either all honest nodes decide to terminate, or all honest nodes decide to continue. If all

honest nodes decide to continue, then due to Lemma 4.5, in epoch blg nc+ 2, all honest

nodes will execute SYBILSENSUS with initial I that contains term, w.h.p. Due to the
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validity property, in such case, all honest nodes will decide to terminate after epoch

blg nc+ 2, w.h.p. By now, we have proved the lemma.

Combining Lemma 4.12 and our analysis in Subsection 4.3.2, we immediately have

the following theorem which states the key guarantees SYBILSIEVE can provide.

Theorem 4.13. For any t ≤ min{n, c}/α where α ≥ 256, SYBILSIEVE terminates in

O(n2 lg2 n ·max{1, n/c}) slots, and guarantees the following, w.h.p.: (a) there are at

most O(t ·max{1, n/c}) sybil identities accepted by the honest nodes, collectively; (b)

every honest node accepts all other honest nodes; and (c) all honest nodes terminate

simultaneously and have the same estimate of network size which is either 2blgnc or

2blgnc+1.

4.5 The SYBILSIEVEOPT Algorithm

In this section we describe SYBILSIEVEOPT, which provides the strongest bounds on

the number of sybil identities. This algorithm first runs SYBILSIEVE. It takes ad-

vantage of the synchronous termination and network size estimation of SYBILSIEVE

to then run a sybil-reduction phase that guarantees no more than O(t) sybil identities.

The final time complexity is O(n2 lg2 n ·max{1, n/c}), which is n times slower than

SIMPLESYBILSIEVE (but asymptotically identical to SYBILSIEVE).

In more detail, SYBILSIEVEOPT contains three parts. The first part, as mentioned,

executes SYBILSIEVE. The second part executes our consensus algorithm, SYBILSEN-

SUS, so that honest nodes agree on a common set of accepted identities. The third

part uses repeated instances of a variant of our previously developed centralized anti-

sybil algorithm (i.e., a variant of SYBILCAST), rotating who plays the role of base

station, and reduces the number of sybil identities to the (asymptotically) optimal O(t).

This structure is illustrate in Figure 4.6. We now describe the second and third part of

SYBILSIEVEOPT in more detail, and then conclude with our final theorem statement.

4.5.1 Part Two of SYBILSIEVEOPT: Agree on Set of Accepted Identities

After executing SYBILSIEVE, honest nodes may have accepted different sets of sybil

identities. This creates difficulties for the third part of SYBILSIEVEOPT. Hence, honest

nodes first run SYBILSENSUS to reach agreement on which identities to accept.
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Figure 4.6: High-level structure of SYBILSIEVEOPT.

For the reminder of this section, we will refer to the list of identities that an hon-

est node accepts after the execution of SYBILSIEVE as a pre-list; and we refer to the

list of identities that an honest node accepts after the execution of the second part of

SYBILSIEVEOPT as a common-list.

For an honest node u, the second part of SYBILSIEVEOPT is an execution of the

SYBILSENSUS algorithm with an input set containing Θ(n) items: each denotes one

identity that is in u’s pre-list. (In particular, each item’s name is the corresponding

identity’s public key.)

SYBILSENSUS’s input for estimation on network size is n̂u/2, where n̂u—which

is either 2blgnc or 2blgnc+1 due to Theorem 4.13—is the estimation on network size

obtained by u during the first part of SYBILSIEVEOPT.

The return value of SYBILSENSUS is u’s common-list.

The following lemma shows SYBILSENSUS ensures all honest nodes will obtain an

identical common-list, which contains all honest nodes, and O(n) sybil identities.

Lemma 4.14. For the SYBILSIEVEOPT algorithm, after the execution of its second

part, w.h.p. all honest nodes will obtain an identical common-list which contains all

honest nodes and at most 0.0667n = O(n) sybil identities.

Proof. To begin with, we show during part two of SYBILSIEVEOPT, the requirements

for applying Lemma 4.10 are satisfied. Due to Theorem 4.13 and the protocol descrip-

tion, the synchronized execution and identical estimation requirements are met, as are

requirement (c) and the requirement that n/16 ≤ n̂ ≤ n. Moreover, due to Lemma 4.7,

when α ≥ 256, for sufficiently small δ (e.g., 1/100), one can easily verify that by then

end of epoch blg nc + 2, there are less than f̂ sybil identities that are accepted by any

honest nodes, w.h.p. Thus, requirement (b) of Lemma 4.10 follows as well, w.h.p.
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Therefore, due to the agreement property of SYBILSENSUS, we know all honest

nodes will obtain identical common-list, w.h.p.

We then consider why the common-list contains all honest nodes. Due to Theorem

4.13, we know each honest node’s pre-list will contain all honest nodes, w.h.p. Hence,

according to the validity property of SYBILSENSUS, we know all honest nodes will

appear in the common-list, w.h.p.

Lastly, we consider the maximum number of sybil identities in the common-list. Ac-

cording to Lemma 4.7, whenα ≥ 256 and δ = 1/100, after part one of SYBILSIEVEOPT,

there are at most max{2.09t, 0.0021n}+max{5.66t, 0.0111n}+max{9.31t, 0.0364n} ≤

0.0667n sybil identities that are accepted by any honest nodes, w.h.p. Hence, due to the

validity property of SYBILSENSUS, we know at most 0.0667n sybil identities will ap-

pear in the common-list, w.h.p. By now, we have proved the lemma.

We note here, Lemma 4.14 also yields another important corollary: by append-

ing SYBILSENSUS after SYBILSIEVE, honest nodes can reach consensus anonymously

with no prior knowledge of other participants, w.h.p. This effectively solves the Byzan-

tine consensus problem in unknown and anonymous wireless networks, with sybil at-

tacks and other malicious behavior present.

4.5.2 Part Three of SYBILSIEVEOPT: Reduce Number of Sybil Identities

In the last part of the SYBILSIEVEOPT protocol, honest nodes will execute many repe-

titions of a variant of the SYBILCAST protocol which we refer to as SYBILCASTVAR,

and reduce the total number of sybil identities to O(t).

Due to Lemma 4.14, after executing the second part of SYBILSIEVEOPT, all honest

nodes will agree on an identical common-list, which includes all honest nodes andO(n)

sybil identities. At the beginning of the third part of SYBILSIEVEOPT, honest nodes

will sort this common-list according to some pre-defined order (e.g., dictionary order).

After sorting, honest nodes will repeatedly execute SYBILCASTVAR, with identities

in the common-list taking turns (in order) playing the role of “base station.” (Notice, this

is why the honest nodes must accept a common set of identities.) In each repetition, the

“base station” verifies the identities and broadcasts a list which contains the identities it

believes are honest. When all repetitions are done, honest nodes accept identities that
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Pseudocode of the third part of SYBILSIEVEOPT executed at node u:

1: Let n̂ be the estimation on network size. . n̂ ∈ {2blgnc, 2blgnc+1} ⊆ (n/2, 2n].
2: Let ids be the set of identities u accepts after the second part of SYBILSIEVEOPT.
3: idssorted ← sort(ids). . Sort the identities according to some pre-defined rule.
4: count← ∅, idsfinal ← ∅. . count is a dictionary structure with value being a set.
5: for (every kvp ∈ ids) do
6: count[kvp ]← ∅.
7: for (every repitition 1 ≤ i ≤ |idssorted|) do
8: idrep ← idssorted[i].
9: execute SYBILCASTVAR with idrep being the base station.

10: Let idsrep be the set of identities that idrep believes to be honest. . idsrep is the rep-list.
11: for (every kvp ∈ idsrep) do
12: count[kvp ]← count[kvp ]

⋃
{idrep}.

13: for (every kvp ∈ ids) do
14: if (|count[kvp ]| ≥ |ids| − n̂/6) then
15: idsfinal ← idsfinal

⋃
{kvp}.

16: return idsfinal.

Figure 4.7: High-level structure of the third part of SYBILSIEVEOPT.

are considered to be honest in at least a majority of repetitions. This descriptions of the

general structure of part three of SYBILSIEVEOPT is summarized in Figure 4.7.

SYBILCASTVAR. We will now introduce the SYBILCASTVAR algorithm. SYBIL-

CASTVAR is a simplified version of the SYBILCAST algorithm we introduced in last

chapter. In particular, SYBILCASTVAR does not take data dissemination into consider-

ation. Moreover, it also does not need to address the issue that nodes may dynamically

join and leave. Nevertheless, the core ideas for SYBILCAST and SYBILCASTVAR to

identify sybil identities are similar: nodes hop among channels according to seeds which

are generated by the base station, and collect nonces disseminated by the base station.

If there are too many sybil identities in the network, then most of them will lose many

nonces and hence will be identified.

More specifically, each execution of SYBILCASTVAR consists of three phases: the

dissemination phase, the collection phase, and the verification phase. In the dissemina-

tion phase, the “base station” will disseminate different random binary strings, called

seeds, to every other identity in the common-list, which instructs them as to which chan-

nels to listen on. In the collection phase, the base station will broadcast many one-time

random binary strings, called nonces; other nodes, on the other hand, will hop among

channels according to the sequence defined by its seed, and collect nonces. Finally, in

the verification phase, nodes will send the nonces they have collected during the pre-
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ceding collection phase back to the base station. The base station will add identities that

can provide sufficient nonces to its rep-list, and then broadcast the rep-list.

We now describe each phase of SYBILCASTVAR in more detail.

Dissemination Phase. As mentioned above, the goal of the dissemination phase

is to allow the identity that acts as the base station deliver a unique and random binary

string to every other identity in the common-list. We call this string as a seed. Each

identity can use its seed as the key for a pseudorandom number generator (PRNG) [33].

The output of this pseudorandom number generator is a channel hopping sequence that

the identity should follow during the coming collection phase.

To achieve this goal, the dissemination phase contains multiple time slots. In each

time slot, the base station will broadcast the seeds on a randomly selected channel,

while each node will listen on a randomly selected channel and try to receive its seed.

There are two points worth noting. Firstly, to ensure each seed is only known to the

base station and the intended receiver, it is encrypted by the corresponding receiver’s

public key. (Otherwise, Eve can eavesdrop and later jam honest nodes.) Secondly, every

seed is also authenticated by the base station’s private key. (Otherwise, Eve can spoof

seeds on behalf of the base station.)

The pseudocode for the dissemination phase is summarized in Figure 4.8.

Collection Phase. The collection phase is used to deliver authentication messages

from the base station to other identities. In each slot, the base station randomly chooses

a channel and sends a packet on it. Each packet contains a one-time random string,

called a nonce. All identities that should listen on that channel (according to their

seeds) need to record that nonce. The base station will later use these nonces to verify

whether the identities who should have been listening on that channel really were.

The pseudocode for the collection phase is summarized in Figure 4.9.

Verification Phase. The verification phase serves two purposes. Firstly, it allows

the base station to detect sybil identities. During the verification phase, each identity

will transmit verification messages back to the base station, containing all the nonces it

has received during the preceding collection phase. The base station will receive and

verify these messages and add identities that can provide sufficient nonces to its rep-
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Base station u’s pseudocode for the dissemination phase:
1: Let kup be u’s public key, kuo be u’s private key, and n̂ be the estimation on network size.
2: Let ids be the common-list.
3: msg ← nil, ĉ← min{c, n̂}.
4: seeds← ∅. . seeds is a dictionary structure with value being a seed.
5: for (every kvp ∈ ids) do
6: Generate seed seed.
7: seeds[kvp ]← seed.
8: msg ← msg||〈kvp ,encrypt(kvp , seed)〉. . encrypt(k,m) encrypts m with key k.

9: for (every slot 1 ≤ i ≤ aĉ lg n̂) do
10: broadcast(kup ||sign(kuo ,msg),random(ĉ)).

Client node u’s pseudocode for the dissemination phase:
1: Let v denote the identity that should be the base station in this repetition.
2: Let n̂ be the estimation on network size.
3: seed← nil, ĉ← min{c, n̂}.
4: for (every slot 1 ≤ i ≤ aĉ lg n̂) do
5: pkt← listen(random(ĉ)).
6: if (pkt comes from v) then
7: Extract seed for u as seed from pkt.

Figure 4.8: Dissemination phase of SYBILCASTVAR.

Base station u’s pseudocode for the collection phase:
1: Let kup be u’s public key, kuo be u’s private key, and n̂ be the estimation on network size.
2: Let ids be the common-list.
3: nonces← ∅, ĉ← min{c, n̂}. . nonces is a dictionary structure with value being a set.
4: for (every slot 1 ≤ i ≤ aĉ lg n̂) do
5: ch← random(ĉ).
6: Generate nonce as nonce.
7: for (every kvp ∈ ids) do
8: if (prng(seeds[kvp ], i) = ch) then . prng(k, i) gives the ith output of PRNG under key k.
9: nonces[kvp ]← nonces[kvp ]

⋃
{nonce}.

10: broadcast(kup ||sign(kuo , nonce), ch).

Client node u’s pseudocode for the collection phase:
1: Let v denote the identity that should be the base station in this repetition.
2: Let n̂ be the estimation on network size.
3: nonce list← ∅, ĉ← min{c, n̂}.
4: for (every slot 1 ≤ i ≤ aĉ lg n̂) do
5: ch← prng(seed, i).
6: pkt← listen(ch).
7: if (pkt comes from v) then
8: Extract nonce as nonce from pkt.
9: nonce list← nonce list

⋃
{nonce}.

Figure 4.9: Collection phase of SYBILCASTVAR.

list. (The precise meaning for “sufficient” is provided in the pseudocode and the later

analysis.) The base station will then broadcast its rep-list to all identities, which is the

second purpose of the verification phase.
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Base station u’s pseudocode for the verification phase:
1: Let kup be u’s public key, kuo be u’s private key, and n̂ be the estimation on network size.
2: Let ids be the common-list.
3: idsrep ← {kup}, ĉ← min{c, n̂}.
4: for (every slot 1 ≤ i ≤ an̂ lg n̂) do
5: msg ← listen(random(ĉ)).
6: if (msg comes from kvp ∈ ids) then
7: Extract nonces as nonce list from msg.
8: if (|nonces[kvp ]− nonce list| ≤ a lg n̂/125) then
9: idsrep ← idsrep

⋃
{kvp}.

10: for (every slot 1 ≤ i ≤ aĉ lg n̂) do
11: broadcast(kup ||sign(kuo , idsrep),random(ĉ)).

Client node u’s pseudocode for the verification phase:
1: Let v denote the identity that should be the base station in this repetition.
2: Let n̂ be the estimation on network size.
3: Let count be the dictionary structure defined in Figure 4.7.
4: msg ← kup ||sign(kuo ,encrypt(kvp , nonce list)), ĉ← min{c, n̂}.
5: for (every slot 1 ≤ i ≤ an̂ lg n̂) do
6: if (random(n̂) ≤ ĉ) then
7: broadcast(msg,random(ĉ)).
8: for (every slot 1 ≤ i ≤ aĉ lg n̂) do
9: pkt← listen(random(ĉ)).

10: if (pkt comes from v) then
11: Extract identities trusted by v as idsrep from pkt.
12: for (every kv

′

p ∈ idsrep) do
13: count[kv

′

p ]← count[kv
′

p ]
⋃
{kvp}.

Figure 4.10: Verification phase of SYBILCASTVAR.

One point worth noting is that all verification messages should be encrypted by the

base station’s public key, as this stops Eve from eavesdropping nonces.

The pseudocode for the verification phase is summarized in Figure 4.10.

Analysis of Part Three of SYBILSIEVEOPT. We now analyze the third part of the

SYBILSIEVEOPT protocol.

To begin with, we show if an honest node is playing the base station, then each hon-

est node can securely and successfully obtain the seed by the end of the corresponding

dissemination phase.

Lemma 4.15. In a repetition where an honest node u is playing the base station, by the

end of the corresponding dissemination phase, every other honest node will obtain its

seed generated by u, w.h.p. Moreover, all these seeds will not be known by Eve, w.h.p.

Proof. Since w.h.p. Eve does not know honest nodes’ private keys (recall Eve can only
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guess honest nodes’ private keys), the confidentiality requirement follows.

We then consider the delivery requirement. Fix a repetition in which an honest node

u is the base station, fix another honest node v. We calculate the minimum probability

that v receives u’s packet (and hence obtains its seed) in a slot during the dissemination

phase. For this to happen: (a) u and v must have chosen the same channel, which

happens with probability 1/ĉ; and (b) u does not choose a channel that is disrupted by

Eve, which happens with probability at least 1 − t/ĉ = 1 − t/min{c, n̂} > 1 − 2/α.

Hence, in each slot, v will obtain its seed with probability at least (1 − 2/α)/ĉ =

Θ(1/ĉ). Since each slot is independent, after the dissemination phase which has aĉ lg n̂

slots, v will obtain its seed w.h.p. Take a union bound over the O(n) honest nodes, and

another union bound over the O(n) repetitions, we can have the lemma.

Similarly, when an honest node is playing the base station, the verification messages

from the honest nodes can be received by the base station; and the base station’s rep-list

will also be received by all honest nodes.

Lemma 4.16. In any repetition in which an honest node u is playing the base station,

during the verification phase, every honest node’s verification message can be received

by u without Eve knowing any nonces inside, w.h.p. Moreover, by the end of the verifi-

cation phase, every honest node will know u’s rep-list, w.h.p.

Proof. Since w.h.p. Eve does not know any honest nodes’ private keys, the confiden-

tiality of the nonces within the verification messages are guaranteed.

We now consider the requirement that every honest node will receive the base sta-

tion’s rep-list. Fix a repetition in which an honest node u is the base station, fix another

honest node v. We calculate the minimum probability that v receives u’s packet (and

hence obtains the rep-list) in a slot during the second part of the verification phase. For

this to happen: (a) u and v must have chosen the same channel, which happens with

probability 1/ĉ; and (b) u does not choose a channel that is disrupted by Eve, which

happens with probability at least 1 − t/ĉ = 1 − t/min{c, n̂} > 1 − 2/α. Hence, in

each slot, v will obtain the rep-list with probability at least (1 − 2/α)/ĉ = Θ(1/ĉ).

Since each slot is independent, after the second part of the verification phase which has

aĉ lg n̂ slots, v will obtain the rep-list w.h.p. Take a union bound over the O(n) honest

nodes, and another union bound over the O(n) repetitions, we have proved the claim.
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We then consider the delivery requirement of the verification messages. Fix a

repetition in which an honest node u is playing the base station, fix another honest

node v. We calculate the minimum probability that u receives v’s verification mes-

sage in a slot during the verification phase. For this to happen: (a) v must choose

to broadcast, which happens with probability ĉ/n̂; (b) u and v must have chosen the

same channel, which happens with probability 1/ĉ; (c) the other n − t − 2 honest

nodes must not broadcast on the channel chosen by u, which happens with probabil-

ity (1 − (ĉ/n̂)(1/ĉ))n−t−2 ≈ e−(n−t)/n̂ > e−2(n−t)/n ≥ e−2; and (d) u does not

choose a channel that is disrupted by Eve, which happens with probability at least

1 − t/ĉ = 1 − t/min{c, n̂} > 1 − 2/α. Hence, in each slot, u will hear v’s veri-

fication message with probability at least (1− 2/α)/(e2n̂) = Θ(1/n̂). Since each slot

is independent, after an̂ lg n̂ slots, u will hear v’s verification messages w.h.p. Take

a union bound over the O(n) honest nodes, and another union bound over the O(n)

repetitions, we can have the lemma.

We then consider how many nonces an honest node can lose when another honest

node is playing the base station.

Lemma 4.17. In any repetition in which an honest node u is playing the base station,

during the collection phase, any other honest node will lose at most a lg n̂/125 nonces

due to adversarial jamming, w.h.p.

Proof. Fix a repetition in which an honest node u is playing the base station, fix another

honest node v.

In a slot during the collection phase, with probability 1/ĉ, u will send a nonce

that v should record. Hence, in expectation, v should record a lg n̂ nonces during the

collection phase. Since each slot is independent, apply a Chernoff bound (in particular,

Equation 4.1) and we know w.h.p. v should record at most (1 + δ)a lg n̂ nonces during

the collection phase.

On the other hand, due to Lemma 4.15, we know w.h.p. Eve does not know u’s

random choices or v’s seed. Conditioned on Eve does not know u’s random choices or

v’s seed, for every nonce v should record, the probability that Eve can jam it is at most

t/ĉ. Hence, in expectation, v will lose at most (t/ĉ) · (1 + δ)a lg n̂ < 2(1 + δ)a lg n̂/α

nonces. Apply a Chernoff bound (in particular, Equation 4.1) and we know, for δ =
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1/100, w.h.p. v will lose at most 2(1 + δ)2a lg n̂/α < a lg n̂/125 nonces.

Take a union bound over the O(n) honest nodes, and another union bound over the

O(n) repetitions, we can have the lemma.

We continue to show: when an honest node is playing the base station, if Eve creates

too many sybil identities, then most of them will lose many nonces.

Lemma 4.18. In any repetition in which an honest node is playing the base station, if

there are s ≥ 12t + 1 sybil identities in the common-list, then at least s − 12t of them

will each lose at least a lg n̂/5 nonces during the collection phase, w.h.p.

Proof. We first show in any slot during the collection phase, if there are s ≥ 12t sybil

identities, then they will spread on at least 4t channel with probability at least 1− δ (for

α ≥ 256 and δ = 1/100). To see this, let w be the event that they spread on at most 4t

channels, we have:

P(w) ≤
(
ĉ

4t

)(
4t

ĉ

)s
≤
(
eĉ

4t

)4t(4t

ĉ

)12t

= e4t

(
4t

ĉ

)8t

≤ e4t

(
1

32

)8t

=
( e

1024

)4t
≤
( e

1024

)4
� δ

We now prove the lemma.

Fix a repetition in which an honest node u is playing the base station. Fix a set

that contains 12t + 1 sybil identities. According to our above claim, in a slot, these

sybil identities will spread on at least 4t channels with probability at least 1− δ. When

such an event happens, with probability at least 4t/ĉ, u will send a nonce to some

of these sybil identities. Moreover, if u indeed sends a nonce to some of these sybil

identities, since Eve can monitor at most t channels simultaneously, we know with

probability at least 3/4, Eve will not be able to record the nonce. Hence, in a slot, Eve

will lose a nonce for at least one of these 12t+1 sybil identities with probability at least

(1− δ) · (4t/ĉ) · (3/4) = (1− δ)3t/ĉ. Since each slot is independent, apply a Chernoff

bound (in particular, Equation 4.2) and we know, during the collection phase, these

12t+1 sybil identities will in total lose at least (1−δ)2 ·3at lg n̂ nonces, with probability

at least 1− n−Θ(t). Since each lost nonce affects at least one sybil identity, we know at
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least one of these 12t+1 sybil identities will lose at least (1−δ)2 ·3at lg n̂/(12t+1) ≥

(1−δ)2 ·3at lg n̂/13t = (1−δ)2 ·3a lg n̂/13 nonces, with probability at least 1−n−Θ(t).

Due to Lemma 4.14, we know w.h.p. there are at most 0.0667n sybil identities in the

common-list. Hence, we can conclude there are at most
(

0.0667n
12t+1

)
≤ (0.0667en/(12t+

1))12t+1 < (en/12t)13t < (en/12)13t = nO(t) different sets of 12t+ 1 sybil identities.

Take a union bound over all these sets and we know, for any set of 12t+1 sybil identities,

w.h.p. at least one of them will lose at least (1− δ)2 · 3a lg n̂/13 > a lg n̂/5 nonces.

Hence, we know if there are s ≥ 12t+1 sybil identities, then at least s−12t of them

will each lose at least a lg n̂/5 nonces, w.h.p. (Otherwise, with probability 1/no(1), we

can find a set of 12t + 1 sybil identities each lose less than a lg n̂/5 nonces, which

contradicts what we have just shown above.)

Take a union bound over the O(n) repetitions and we can have the lemma.

Finally, we show SYBILSIEVEOPT can improve the upper bound on the number of

sybil identities to O(t). The key intuition behind it is: when honest nodes are executing

the last part of SYBILSIEVEOPT, in each repetition in which an honest node is playing

the base station, SYBILCASTVAR ensures there are at most O(t) sybil identities in the

rep-list. On the other hand, Eve is only playing the base station (via her sybil identities)

in at most a small constant fraction of all repetitions. Since honest nodes only accept

an identity if that identity has appeared in the rep-list in a large constant fraction of all

repetitions, we know in total at most O(t) sybil identities will be accepted by honest

nodes.

Theorem 4.19. For any t ≤ min{n, c}/α where α ≥ 256, SYBILSIEVEOPT termi-

nates within O(n2 lg2 n ·max{1, n/c}) slots, and guarantees the following, w.h.p.: (a)

there are at most O(t) sybil identities accepted by the honest nodes, collectively; (b)

every honest node accepts all other honest nodes; and (c) all honest nodes terminate

simultaneously and have same estimation on network size which is either 2blgnc or

2blgnc+1.

Proof. The protocol execution time follows from the protocol description.

Due to Theorem 4.13, we know all honest nodes will have same estimate on network

size which is either 2blgnc or 2blgnc+1, w.h.p.

We now show all honest nodes will be accepted. According to Lemma 4.17 and
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protocol description, when an honest node is acting as the base station, every (other)

honest node will not lose too many nonces to fail the verification, w.h.p. Moreover,

according to Lemma 4.16, the verification packets sent by honest nodes will be received

by the base station, w.h.p. Hence, in each such repetition, the base station will accept

all honest nodes (including itself according to the protocol), and the base station’s rep-

list will be known by all honest nodes, w.h.p. On the other hand, due to Lemma 4.14,

when α ≥ 256, there are at most 0.0667n repetitions in which a sybil identity is acting

as the base station, w.h.p. Hence, each honest node will appear in at least n − t ≥

(n − t) + 0.0667n − n/12 ≥ |idslist| − n̂/6 different rep-lists, w.h.p. As a result,

according to the protocol, by the end of SYBILSIEVEOPT, every honest node will accept

all honest nodes, w.h.p.

Lastly, we prove the upper bound on the number of sybil identities. According to

Lemma 4.14, after the second part of SYBILSIEVEOPT, w.h.p. all honest nodes will

agree on a list of identities which contains all n − t honest nodes and q sybil identi-

ties, where 0 ≤ q ≤ 0.0667n. Let l = (n − t) + q denote the length of this list.

According to our protocol, to let an honest node accept a sybil identity v by the end

of SYBILSIEVEOPT, that honest node must have seen v in at least l − n̂/6 different

rep-lists. This implies in at least l − n̂/6 − q = (n − t) − n̂/6 repetitions in which an

honest node is acting as the base station, the corresponding base station accepts v by

the end of the corresponding verification phase. Due to Lemma 4.18, we know when

an honest node is acting as the base station, it will accept at most 12t sybil identities

by the end of the corresponding verification phase, w.h.p. Therefore, we know by the

end of SYBILSIEVEOPT, there are at most 12t · (n − t)/((n − t) − n̂/6) ≤ 12t(n −

t)/((n− t)−n/3) = 12t(1+(n/3)/((n− t)−n/3)) = 12t(1+(n/3)/(2n/3− t)) ≤

12t(1 + (n/3)/(2n/3− n/256)) < 19t sybil identities that are accepted by any honest

nodes, w.h.p. (As, there are n− t repetitions in which honest nodes play as base station,

and in each such repetition, at most 12t sybil identities will be in the corresponding rep-

list. Since each sybil identities needs to appear in at least (n−t)−n̂/6 different rep-lists

which are sent by honest nodes, we know the total number of sybil identities that will

eventually be accepted by at least one honest node is at most 12t·(n−t)/((n−t)−n̂/6).)

By now, we have proved the theorem.
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4.6 Extending SIMPLESYBILSIEVE to Other Model

The current version of SIMPLESYBILSIEVE relies on the availability of a collision

detection mechanism (as nodes need to be able to distinguish between collision and

silence to accurately count the number of silent rounds). We believe, however, that

even without this assumption, our goal can still be achieved. In particular, in this sec-

tion, we will describe and analyze a protocol named SIMPLESYBILSIEVEWCD (i.e.,

“SIMPLESYBILSIEVE” without collection detection), which is a variant of SIMPLESY-

BILSIEVE that does not rely on collision detection. When compared with SIMPLESY-

BILSIEVE, the SIMPLESYBILSIEVEWCD algorithm can provide the same asymptotic

bounds in terms of running time and number of sybil identities accepted. Nevertheless,

if we take the constants behind the asymptotic notations into consideration, SIMPLESY-

BILSIEVEWCD’s performance is worse than SIMPLESYBILSIEVE. Towards the end of

this section, we will discuss how these differences on constants can affect SIMPLESY-

BILSIEVEWCD’s potential of being integrated with other algorithms (such as combing

SIMPLESYBILSIEVEWCD with SYBILSENSUS and SYBILCASTVAR to form a more

advanced protocol, just as we did with SIMPLESYBILSIEVE in previous section).

We will first describe the SIMPLESYBILSIEVEWCD algorithm, and then proceed

to analysis and discussion. Notice, throughout this section, we assume α ≥ 10, and

assume nodes cannot tell the difference between collision and silence. (Other aspects

of the network model remain unchanged.)

4.6.1 Protocol Description

The general structure of SIMPLESYBILSIEVEWCD is identical to SIMPLESYBILSIEVE:

the protocol proceeds in epochs, where in epoch i, nodes assume there are ni = 2i nodes

in total. In addition, in epoch i, nodes use ni/2 channels; and if c < ni/2, then nodes

simulate the ni/2 needed channels using ni/(2c) slots for each “round” of the protocol.

Similar to SIMPLESYBILSIEVE, nodes have two tasks during each epoch: (a) check

whether the current estimate of n is accurate; and (b) if the estimate is (roughly) correct,

then use the results of uncoordinated radio resource tests to spot honest identities and

eliminate sybil identities. To achieve these goals, in each round, each honest node’s

behavior is to broadcast or listen—each with probability 1/2—on a random channel
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that is chosen uniformly from [1, ni/2].

The key difference between SIMPLESYBILSIEVE and SIMPLESYBILSIEVEWCD

is the mechanism employed by honest nodes to determine the accuracy of the current

estimate of n: in SIMPLESYBILSIEVEWCD, nodes rely on the fraction of clear mes-

sage rounds (i.e., rounds in which they receive a message) they heard to decide whether

their guess of n is correct or not. In particular, as we will later show, when the estimate

is near n, the fraction of clear message rounds will reach a certain peak value. Notice,

the malicious nodes cannot have big impact on this fractional value: when the estimate

is too small, there is nothing Eve can do to make it looks correct, as the honest nodes

alone generate enough contention on each channel to prevent too many clear message

rounds; on the other hand, once the estimate becomes too large, Eve cannot fool the

honest nodes as well since the number of channels that will be used is large yet Eve can

only broadcast messages on a limited fraction of them simultaneously.

Once the honest nodes believe the current estimate of n is roughly correct, they

will apply the same technique that is used in SIMPLESYBILSIEVE to distinguish honest

identities and sybil identities: each node will re-examine the messages it has received

during the current epoch and only accepts an identity if it has heard that identity suffi-

ciently often in current epoch.

We now describe each honest node’s behavior in more detail. In epoch i, there are

ani lg ni rounds, where a > 0 is some sufficiently large constant. In each round, every

node will go to a random channel that is chosen uniformly from [1, ni/2]. Then, each

node will broadcast or listen, each with probability 1/2. If a node chooses to broadcast,

it will broadcast its identity (i.e., its public key). If a node chooses to listen, it will record

whether it has heard nothing or a packet from another identity. Notice, since collision

detection is not available, a silent round may occur when nothing is being transmitted

(on that channel) or a collision has happened (on that channel).

After each epoch, each node will calculate the fraction of clear message rounds it

has heard. When this value reaches γ = 2(1− δ)(1− 4/α)e−2 for the first time, nodes

will start accepting identities (in this and later epochs). Later, when this value falls

below γ, nodes will terminate, without accepting any identities in that last epoch. In

each epoch in which a node decides to accept identities, an identity will be accepted by

that node if it has heard that identity for at least a(1− δ)(1− 4/α) lg ni/(2e
2) times.
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Pseudocode of SIMPLESYBILSIEVEWCD executed at node u:
1: Generate asymmetric key pair. Let kup be u’s public key, and kuo be u’s private key.
2: ids← ∅. . Set containing identities that u accepts.
3: flag ← false. . Boolean variable indicating whether to accept identities in current epoch.
4: for (every epoch i ≥ 1) do
5: ni ← 2i, countlisten ← 0, countmsg ← 0.
6: idscount ← ∅. . idscount is a dictionary structure with value being an integer.
7: for (every round 1 ≤ j ≤ ani lg ni) do
8: ch← random(ni/2).
9: for (every slot 1 ≤ k ≤ max{1, ni/2c}) do

10: if (b(ch− 1)/cc = k − 1) then
11: if (random(2) = 1) then . Broadcast with probability 1/2.
12: broadcast(〈kup 〉, ((ch− 1) mod c) + 1).
13: else . Listen with probability 1/2.
14: countlisten ← countlisten + 1.
15: msg ← listen(((ch− 1) mod c) + 1).
16: if (msg 6= nil) then . Node has heard a message.
17: Let kvp be the public key inside msg.
18: if (kvp /∈ idscount) then
19: idscount[k

v
p ]← 1.

20: else
21: idscount[k

v
p ]← idscount[k

v
p ] + 1.

22: countmsg ← countmsg + 1.
23: if (countmsg/countlisten < 2(1− δ)(1− 4/α)e−2 and flag = true) then
24: return ids.
25: else if (countmsg/countlisten ≥ 2(1− δ)(1− 4/α)e−2 and flag = false) then
26: flag ← true.
27: if (flag = true) then
28: for (every identity kvp in idscount) do
29: if (idscount[kvp ] ≥ a(1− δ)(1− 4/α) lg ni/(2e

2)) then
30: ids← ids

⋃
{kvp}.

Figure 4.11: Pseudocode of SIMPLESYBILSIEVEWCD.

The above description is summarized in the pseudocode in Figure 4.11.

4.6.2 Analysis

In this subsection, we show SIMPLESYBILSIEVEWCD can provide similar guaran-

tees when compared to SIMPLESYBILSIEVE: all honest nodes will terminate at epoch

blg nc + O(1), accept all other honest identities and at most O(t ·max{1, n/c}) sybil

identities.

Termination and Correctness. To begin with, we argue that no honest nodes will

accept any identities or terminate before (or during) epoch lg (n/(g lg n)), where g is a

positive constant. This claim follows from the proof of Lemma 4.2: in these epochs, the

number of broadcasting honest nodes exceeds the number of used channels, creating
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contention and preventing clear message rounds.

We then consider epochs from lg (n/(g lg n)) to epoch blg nc−2. For these epochs,

we claim that all honest nodes will still not accept any identities or terminate, since they

will not hear enough clear message rounds.

Lemma 4.20. For any epoch i where lg (n/(g lg n)) ≤ i ≤ blg nc−2, w.h.p. no honest

nodes will accept identities during epoch i or terminate after epoch i.

Proof. We do an induction on epochs. According to Lemma 4.2, we know w.h.p.

no honest nodes will accept any identities or terminate before (and include) epoch

lg (n/(g lg n)). Assume for every epoch lg (n/(g lg n)) ≤ i − 1 < blg nc − 2, w.h.p.

all honest nodes decide not to accept any identities during epoch i − 1, and decide to

continue after epoch i− 1. We now consider epoch i.

In epoch i, there are at least ani lg ni = Ω(n) rounds. Since each node chooses

to listen with probability 1/2 in every round, and since each round is independent, by

using a Chernoff bound (in particular, Equation 4.2) and a union bound, we know every

honest node will choose to listen in at least Ω(n) rounds, w.h.p.

Fix an honest node u, we calculate the maximum probability that it hears a message

from another node in a round that it decides to listen. To calculate this probability, we

fix another node v, and consider the maximum probability u hears a message from v.

In case v is a malicious node, for u to hear v’s message: (a) u and v must choose the

same channel, which happens with probability at most 1/min{c, ni/2}; (b) the other

n− t− 1 honest nodes must not broadcast on the channel chosen by u, which happens

with probability (1 − (1/2) · (2/ni))n−t−1 = (1 − 1/ni)
n−t−1 ≈ e−(n−t)/ni ; and

(c) the other t − 1 malicious nodes must not broadcast on the channel chosen by u,

which happens with probability at most one. Since there are at most t malicious nodes,

the maximum probability that u hears a message from a malicious node in a round is

t · (1/min{c, ni/2}) · e−(n−t)/ni ≤ t · (2/ni) · e−(n−t)/ni = (2t/ni) · e−(n−t)/ni .

Otherwise, in case v is an honest node, to let u hears v’s message: (a) u and v must

choose the same channel, which happens with probability 2/ni; (b) v must choose to

broadcast, which happens with probability 1/2; (c) the other n−t−1 honest nodes must

not broadcast on the channel chosen by u, which happens with probability (1− (1/2) ·

(2/ni))
n−t−1 = (1− 1/ni)

n−t−1 ≈ e−(n−t)/ni ; and (d) the channel chosen by u is not
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disrupted by malicious nodes, which happens with probability at most one. Since there

are n − t − 1 honest nodes, the maximum probability that u hears a message from an

honest node in a round is (n−t−1)·(2/ni)·(1/2)·e−(n−t)/ni ≈ ((n−t)/ni)·e−(n−t)/ni .

Therefore, in a round that u chooses to listen, it will hear a message with probability

at most ((n+ t)/ni) · e−(n−t)/ni ≤ 4(n+ t)/n · e−4(n−t)/n = 4(1 + 1/α) · e−4(1−1/α).

Since we have previously shown that u will choose to listen in at least Ω(n) rounds, by

a Chernoff bound (in particular, Equation 4.1), we know the fraction of clear message

rounds u will hear is at most 4(1 + δ)(1 + 1/α) · e−4(1−1/α), w.h.p. Take a union bound

over all honest nodes, we know this claim holds true for every honest node. Recall the

protocol requires at least 2(1−δ)(1−4/α)e−2 fraction of clear message rounds to start

accepting identities. When α ≥ 10, for sufficiently small δ (e.g., 1/100), one can easily

verify 4(1+ δ)(1+1/α) ·e−4(1−1/α) < 2(1− δ)(1−4/α)e−2. As a result, we know in

epoch i, no honest nodes will accept identities during this epoch or terminate after this

epoch, w.h.p. By now, we have proved the lemma.

Starting from epoch blg nc−1, nodes may start to accept identities. In the following

lemma, we show every honest node will accept all other honest identities by the end of

epoch blg nc. Notice, this lemma, together with Lemma 4.2 and Lemma 4.20, also

implies no honest nodes will terminate before the end of epoch blg nc.

Lemma 4.21. Every honest node will accept all other honest nodes during epoch

blg nc, w.h.p.

Proof. Due to Lemma 4.2 and Lemma 4.20, we know no honest nodes will accept

identities or terminate during epoch one to epoch blg nc − 2, w.h.p. Hence, for epoch

blg nc, if we show every honest node will hear at least 2(1−δ)(1−2/α)e−2 fraction of

clear message rounds among the rounds it chooses to listen, we know honest nodes will

accept identities during epoch blg nc, and will not terminate after epoch blg nc, w.h.p.

To prove this, firstly, notice every honest node will choose to listen in at least Ω(n)

rounds in epoch blg nc, w.h.p. Then, consider a round in which an honest node u

chooses to listen, fix another honest node v, we calculate the minimum probability

that u hears v’s message in that round. To let this event happen: (a) v must choose

to broadcast, which happens with probability 1/2; (b) u and v must choose the same

channel, which happens with probability 1/2blgnc−1; (c) the other at most n − t − 1
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honest nodes must not broadcast on the channel u choose to listen, which happens

with probability at least (1 − (1/2)(1/2blgnc−1))n−t−1 ≈ e−(n−t)/2blgnc
; and (d) the

channel chosen by u is not disrupted by Eve, which happens with probability at least

1− t/max{c, 2blgnc−1} ≥ 1− 4/α. Since there are n− t− 1 honest nodes in total, we

know in a round that u chooses to listen, it will hear a message from another honest node

with probability at least (n− t− 1) · (1/2) · (1/2blgnc−1) · e−(n−t)/2blgnc · (1− 4/α) ≈

(1−4/α)((n−t)/2blgnc)e−(n−t)/2blgnc ≥ (1−4/α)·min{((n−t)/n)e−(n−t)/n, (2(n−

t)/n)e−2(n−t)/n} ≥ (1− 4/α) ·min{(1− 1/α)e−(1−1/α), 2e−2} ≥ (1− 4/α) · 2e−2.

Since we have previously shown that w.h.p. u will choose to listen in at least Ω(n)

rounds, apply a Chernoff bound (in particular, Equation 4.2) and we know, u will hear

at least 2(1 − δ)(1 − 4/α)e−2 fraction of clear message rounds, w.h.p. Take a union

bound over all honest nodes, we know this claim holds true for them as well. By now,

we have shown that all honest nodes will accept identities during epoch blg nc, and will

not terminate before the end of epoch blg nc, w.h.p.

We then prove every honest node will accept all other honest nodes during epoch

blg nc. To see this, fix two honest nodes u and v, we calculate the minimum probability

that u hears v’s identity in a round. To let such an event happen: (a) u must choose to

listen, which happen with probability 1/2; (b) v must choose to broadcast, which hap-

pens with probability 1/2; (c) u and v must choose the same channel, which happens

with probability 2/2blgnc; (d) the other n−t−2 honest nodes must not broadcast on the

channel chosen by u, which happens with probability (1 − (1/2)(2/2blgnc))n−t−2 ≈

e−(n−t)/2blgnc
> e−2(n−t)/n ≥ e−2; and (e) u must not choose a channel that is dis-

rupted by Eve, which happens with probability at least 1 − t/min{2blgnc−1, c} >

1 − 4/α. Hence, in a round, u will hear v’s identity with probability at least (1/2) ·

(1/2) · (2/2blgnc) · (1/e2) · (1 − 4/α) = (1 − 4/α)/2e22blgnc. Thus, during epoch

blg nc, in expectation, u will hear v’s identity at least a(1 − 4/α)blg nc/2e2 times.

Since each round is independent, apply a Chernoff bound (in particular, Equation 4.2)

and we know, w.h.p. u will hear v’s identity at least a(1−δ)(1−4/α)blg nc/2e2 times.

Take two union bounds (each overO(n) honest nodes) and we know, for any two honest

nodes u and v, u will hear v’s identity at least a(1− δ)(1− 4/α)blg nc/2e2 times, and

hence accept v as a non-sybil identity, w.h.p. By now, we have proved the lemma.

101



Lastly, we show all honest nodes will terminate at most four epochs later.

Lemma 4.22. All honest nodes will terminate no later than the end of epoch blg nc+4,

w.h.p.

Proof. Since we have shown in Lemma 4.21 that every honest node will accept identi-

ties during epoch blg nc, we only need to show that all honest nodes will hear less than

2(1 − δ)(1 − 4/α)e−2 fraction of clear messages rounds during epoch blg nc + 4 to

prove that all honest nodes will terminate after epoch blg nc+ 4.

To prove this, fix an honest node u that is still active during epoch i = blg nc + 4,

we calculate the maximum probability that it hears a message from another node in a

round that it decides to listen. To calculate this probability, we fix another node v, and

consider the maximum probability that u hears a message from v in a round.

In case v is a malicious node, to let u hears v’s message: (a) u and v must choose

the same channel, which happens with probability at most 1/min{c, ni/2}; (b) the

other honest nodes must not broadcast on the channel chosen by u, which happens

with probability at most one (as there might have no other honest nodes at all); and

(c) the other t − 1 malicious nodes must not broadcast on the channel chosen by u,

which happens with probability at most one. Since there are at most t malicious nodes,

the maximum probability that u hears a message from a malicious node in a round is

t · (1/min{c, ni/2}) ≤ 2t/ni.

Otherwise, in case v is an honest node, to let u hears v’s message: (a) u and v must

choose the same channel, which happens with probability 2/ni; (b) v must choose to

broadcast, which happens with probability 1/2; (c) the other honest nodes must not

broadcast on the channel chosen by u, which happens with probability at most one

(as there might have no other honest nodes); and (d) the channel chosen by u is not

disrupted by malicious nodes, which happens with probability at most one. Since there

are at most n− t− 1 honest nodes (beside u), the maximum probability that u hears a

message from an honest node in a round is (n− t− 1) · (2/ni) · (1/2) ≈ (n− t)/ni.

Therefore, in a round that u chooses to listen, it will hear a message with probability

at most (n+ t)/ni ≤ (n+ t)/(8n) ≤ (1+1/α)/8. Since we know w.h.p. u will choose

to listen in at least Ω(n) rounds during epoch blg nc + 4, by a Chernoff bound (in

particular, Equation 4.1), we know the fraction of clear message rounds u will hear

102



is at most (1 + δ)(1 + 1/α)/8, w.h.p. Take a union bound over all honest nodes,

we know this claim holds true for every honest node that is still active during epoch

blg nc + 4. Notice, when α ≥ 10, for sufficiently small δ (e.g., 1/100), one can easily

verify (1 + δ)(1 + 1/α)/8 < 2(1− δ)(1− 4/α)e−2. Since honest node needs at least

2(1−δ)(1−4/α)e−2 fraction of clear message rounds to continue into epoch blg nc+5,

we know all honest nodes will terminate after epoch blg nc+ 4, w.h.p.

Constraining Sybil Identities. In this part, we show SIMPLESYBILSIEVEWCD can

ensure the total number of sybil identities that are accepted by any honest nodes is at

most O(t ·max{1, n/c}), which is (asymptotically) identical to SIMPLESYBILSIEVE.

To prove this, firstly, notice according to Lemma 4.2, Lemma 4.20, Lemma 4.21,

and Lemma 4.22, we can summarize honest nodes’ behavior as follows: (a) for every

epoch before and including blg nc, no honest nodes will terminate; (b) during epoch

blg nc− 1 to epoch blg nc+ 3, honest nodes may accept identities, which include other

honest nodes and sybil identities; (c) by the end of epoch blg nc, every honest node must

have accepted all other honest nodes; and (d) starting from epoch blg nc + 1, (some or

all) honest nodes may decide to terminate after the corresponding epoch, and by the end

of epoch blg nc+ 4, all honest nodes must have terminated.

Then, by a proof that is almost identical to the one for Lemma 4.7, we can obtain the

following lemma, which states Eve can successfully create at most O(t ·max{1, n/c})

sybil identities in each epoch from epoch blg nc − 1 to epoch blg nc+ 3.

Lemma 4.23. For epoch iwhere blg nc−1 ≤ i ≤ blg nc+3, at most 2(1+δ)e2·e−(n−t)/ni

(1−δ)(1−4/α) ·

t·max{1, ni/2c} = O(t·max{1, n/c}) sybil identities will be accepted by honest nodes

in that epoch, w.h.p.

Combine these aforementioned lemmas, we can obtain the following theorem which

states the guarantees that are provided by SIMPLESYBILSIEVEWCD.

Theorem 4.24. For any t ≤ min{n, c}/α where α ≥ 10, SIMPLESYBILSIEVEWCD

finishes within O(n lg2 n · max{1, n/c}) slots, and guarantees the following, w.h.p.:

(a) there are at most O(t ·max{1, n/c}) sybil identities accepted by the honest nodes,

collectively; and (b) every honest node accepts all other honest nodes.
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4.6.3 Comparison and Discussion

As can be seen from Theorem 4.24, both the SIMPLESYBILSIEVE algorithm and the

SIMPLESYBILSIEVEWCD algorithm can guarantee correctness (i.e., all honest nodes

are correctly accepted); and the bounds they provide in terms of running time and max-

imum number of sybil identities (that are incorrectly accepted) are also asymptotically

identical. In fact, these two protocols also share other similarities: they do not guarantee

honest nodes will accept same sets of identities, or terminate simultaneously. Hence,

from this point of view, one may infer SIMPLESYBILSIEVEWCD is better than SIM-

PLESYBILSIEVE, as it does not assume the availability of any collision detection mech-

anism.

Nevertheless, if we take the constants behind the asymptotic notations into con-

sideration, SIMPLESYBILSIEVEWCD’s performance becomes worse than SIMPLESY-

BILSIEVE. For example, SIMPLESYBILSIEVEWCD’s restriction on the value of α

is stronger. More importantly, in SIMPLESYBILSIEVEWCD, the range of epochs in

which honest nodes can accept identities is wider, which in turn leads to the result that

more sybil identities can potentially be accepted by honest nodes.

The impacts of these differences (on constants) are not limited to the scenario in

which SIMPLESYBILSIEVEWCD is executed alone. More critically, they degrade

SIMPLESYBILSIEVEWCD’s potential to be integrated into other protocols. For ex-

ample, one may want to composite SIMPLESYBILSIEVEWCD with SYBILSENSUS

and SYBILCASTVAR to form a protocol that is similar to SYBILSIEVEOPT without the

need for collision detection. Unfortunately though, several barriers exist to realize this

plan: (a) SIMPLESYBILSIEVEWCD allows more sybil identities to be accepted (when

compared with SIMPLESYBILSIEVE), which may exceed the threshold SYBILSENSUS

can tolerate; and (b) SIMPLESYBILSIEVEWCD has a wider range in terms of epochs in

which honest nodes may terminate, which may affect the correctness of SYBILSENSUS

as it requires a relatively accurate estimation of n (recall, e.g., Lemma 4.10) to work. To

overcome these obstacles, two possible solutions are: (a) modify/improve related proto-

cols (e.g., SYBILSENSUS); and/or (b) further strengthen restrictions on α (i.e., α needs

to be larger) when executing SIMPLESYBILSIEVEWCD, so that the range of epochs in

which honest nodes may accept sybil identities or terminate is smaller.
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Table 4.1: Comparison of the SYBILSIEVE family of protocols.

Time Complexity Sybil Bound
Sync. Term. and
Same Estimate

SIMPLESYBILSIEVE and
SIMPLESYBILSIEVEWCD

O(n lg2 n ·max{1, n/c}) O(t ·max{1, n/c}) no

SYBILSIEVE O(n2 lg2 n ·max{1, n/c}) O(t ·max{1, n/c}) yes
SYBILSIEVEOPT O(n2 lg2 n ·max{1, n/c}) O(t) yes

To sum up, it seems SIMPLESYBILSIEVEWCD is not a perfect replacement for

SIMPLESYBILSIEVE. Instead, trade-offs exist between them (just like SIMPLESY-

BILSIEVE, SYBILSIEVE, and SYBILSIEVEOPT). In different scenarios, different al-

gorithm may be the most appropriate one.

4.7 Summary and Discussion

In this chapter, we develop new algorithms that can effectively thwart sybil attacks in

multi-channel ad hoc wireless networks. They allows wireless devices to securely and

reliably establish identities in unknown and anonymous environment. These protocols

can also serve as building blocks for other protocols. A comparison of these protocols

are shown in Table 4.1.

One interesting point worth noting is, although our algorithm can only achieve con-

sensus in unknown and anonymous networks with high probability, we suspect it is

impossible to solve this problem with probability one. For deterministic algorithms, in

a recent paper by Delporte-Gallet et al. [10], the authors show that synchronous Byzan-

tine agreement is unsolvable if the number of distinct identifiers is less than 3t, where

t is the number of Byzantine nodes. Since it is hard for deterministic algorithms to

break symmetry in our setting, this seems to imply consensus is impossible, here, for

deterministic algorithms. As for randomized algorithms, with certain small probability,

nodes may end up with same coins and hence fail to generate sufficient identities. In

fact, under our model, even if nodes indeed generate unique identities, the fact that Eve

can potentially keep jamming one honest node (with some small probability) and isolate

it from the remaining honest nodes also seems to imply that consensus cannot always be

guaranteed. We will discuss more details regarding these potential impossibility results

in the next chapter.
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Chapter 5

Some Impossibility Results in Noisy

Wireless Networks

In previous chapters, we have developed several algorithms that can effectively thwart

sybil attacks, jamming attacks, and spoofing attacks in many settings. Nevertheless,

all of them suffer one drawback: these algorithms can only enforce their guarantees

with high probability. This implies, with certain small but non-zero probability, the

adversary can still successfully bypass these protocols and conduct various malicious

behaviors thereafter. As a result, one natural and important question to ask is: is such

chance of error artificial (due to imperfect design and/or analysis), or simply inherently

inevitable (due to the nature of the problem).

To answer this question, in this chapter, we will focus on two problems—the neigh-

bor discovery problem and the counting problem—and explore whether algorithms exist

that can guarantee to solve them when malicious users are present. Consider a wireless

network in which there are multiple users, each of which does not know the existence

of others. In the counting problem, the goal is to let each user know how many users are

there in total in the network. To solve the more difficult neighbor discovery problem,

however, each user must know the identities of the other users.

Both of these two problems are important and fundamental. For example, the neigh-

bor discovery process is a common bootstrap procedure for many advanced protocols,

such as voting, leader election, and fair resource allocation. Knowing the size of the sys-

tem (i.e., solving the counting problem), on the other hand, may help users determine

key parameters that are crucial to the correctness and/or efficiency of the protocols that
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will be executed. For instance, our SYBILSIEVE family of protocols rely on relatively

accurate estimate of system size to work correctly.

These two problems are also closely related to the malicious behaviors we men-

tioned above. In particular, by creating sybil identities, an adversary can easily prevent

honest users from knowing the correct system size. Similarly, by jamming messages,

an adversary can prevent honest users from sending out identities. In this chapter, we

will discuss only the impact of jamming on neighbor discovery and counting.

Results. We consider a single hop wireless network consisting of c ≥ 1 channels.

We divide time into synchronous slots and assume that n ≥ 2 users (called nodes

in the following) are activated simultaneously. We assume standard collision rules:

if multiple nodes send on the same channel during the same slot, a collision occurs

on that channel. However, in order to extend the range of scenarios our results can

apply, several different collision detection/recovery models are considered. We assume

each node has a pseudorandom number generator. Aside from these n honest nodes,

we assume there also exist t ≥ 1 malicious nodes which may collude. Again, we

have considered different capabilities the adversary may posses (from the perspective

of generating interference) to maximize the applicability of our results.1

We first show the fact that the counting problem is no harder than the neighbor

discovery problem. This allows any impossibility results that are proved with respect to

the counting problem to be applicable to the neighbor discovery problem as well.

We then present our impossibility results. In particular, our first impossibility result

shows that when a jamming adversary is present, in most cases, no algorithm can guar-

antee solving the counting problem (and hence the neighbor discovery problem) within

a finite period of time. Then, based on this finding, we further show that in many cases,

no Las Vegas algorithm exists that can guarantee solving the counting problem (and

hence the neighbor discovery problem) within a finite expected running time.

5.1 Model and Problem Statement

In this section, we will describe the model, and the problem we are interested in. As

mentioned earlier, for flexibility, when introducing some aspects of the model, we will
1In fact, as we shall see in later sections, many other aspects of the model are flexible as well.

107



discuss several different possible settings. Nevertheless, later when we are claiming

lemmas or theorems, we will clarify which of these settings we are referring to.

We consider a single hop wireless network which contains c ≥ 1 channels (i.e., the

network may be single-channel or multi-channel). Time is divided into synchronous

slots. In the network, there are n honest nodes, each of which has a unique identity.

However, we assume these honest nodes do not know the value of n. We assume honest

nodes join the network and start execution simultaneously.

Each honest node has one radio transceiver, each radio transceiver can access all c

channels. However, at any given time, a radio transceiver can only operate (i.e., broad-

cast or listen) on one channel. If no transceivers broadcast on a channel, then all nodes

listing on that channel will hear silence. If only one transceiver broadcasts a message on

a channel, then all nodes listing on that channel will hear that message. If two or more

transceivers broadcast simultaneously on a channel, there is a collision. Depending on

the collision detection model, honest nodes listing on that channel may hear a collision

(which is distinguishable from silence and single message transmission), or just silence,

or one of the message that is being transferred (which may be picked by an adversary

or just at random).

Aside from honest nodes, there are t ≥ 0 malicious nodes. Each of them also has

one radio transceiver. We assume malicious nodes can collude with each other, hence

we sometimes refer to them collectively as one adversary that has t radios, and we name

her as Eve. Eve may be oblivious or adaptive. In particular, if she is oblivious, then at

any time point, she does not know honest nodes’ past protocol execution history. Oth-

erwise, if Eve is adaptive, she is allowed to know honest nodes’ past protocol execution

history. Notice, when proving lower bounds or impossibility results, allowing Eve to be

oblivious (instead of adaptive) makes the claim stronger.

Each malicious node’s radio can also operate on only one channel at any given

time. However, these radio’s broadcasting capabilities may be different from the honest

nodes’ ones. In particular, for a “jamming radio”, it can only broadcast noise that

looks like a collision, and cannot transmit ordinary messages. (I.e., even if honest

nodes can detect collisions, they cannot tell if a collision originates from jamming or a

real collision.) On the other hand, for an “overwrite radio”, whenever it broadcasts a

message on a channel, it “overwrites” all messages that are currently being transferred
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on that channel. I.e., nodes that are listening on that channel at that time will only

receive the malicious node’s message, even if there are other messages from honest

nodes being transferred. Last but not least, a malicious node’s radio may also just be an

ordinary radio that is identical to honest nodes’ ones.

We assume each honest node has a pseudorandom number generator that can gener-

ate pseudorandom bits. Each node’s generator is “private” to itself, which means other

nodes and Eve do not know the output of this generator, unless the node itself explicitly

reveal them. Nevertheless, when Eve is adaptive, she is allowed to know the bits that

are generated in the past.

For simplicity, in later discussion, we will useN (c, t, cd, eve, radio) to specify the

model we are considering. In particular: (a) c denotes the number of channels; (b) t

denotes the number of malicious nodes; (c) cd denotes the collision detection model,

which can be
√

—honest nodes can detect collision, ∅—honest nodes will only detect

silence, or ?—honest nodes will accept a message specified by Eve; (d) eve denotes

the type of the adversary, which can be ob—Eve is an oblivious adversary, or ad—

Eve is an adaptive adversary; (e) radio denotes Eve’s radios’ broadcasting capabilities,

which can be jam—jamming radio, ow—overwrite radio, or common—ordinary radio

which is identical to the honest nodes’ ones. Notice, when a parameter is specified by

∗, it means we do not restrict that aspect of the model (i.e., it can be any of the potential

settings). Moreover, for a parameter, we may also use notations like “∪,∩, \” to express

“or, and, not” of different settings.2

Problem Statement. We are interested in two problems: the counting problem, and

the neighbor discovery problem. To solve the counting problem, each honest node needs

to know the exact value of n. On the other hand, to solve the (harder) node discovery

problem, each honest node needs to know the identities of all other honest nodes.

For a distributed algorithmA (that is executed at each honest node), we say it guar-

antees that it solves the counting problem if: when all honest nodes finish executing A

(as they may terminate at different time), each honest node always correctly outputs the

value of n (i.e., there is no chance of error). Similarly, we say a distributed algorithmA
2For example, N (c ≥ 1, t = 1, cd = ∗ \ {?}, eve = {ad}, radio = {jam}) specifies a network

which contains at least one channel. The collision detection model can either be collision is detectable or
collision is not detectable. (However, whenever a collision happens, all information is lost and no message
will be delivered.) The adversary is adaptive; she controls one radio that is capable of jamming.
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guarantees that it solves the neighbor discovery problem if: when all honest nodes finish

executing A, each honest node always correctly outputs all honest nodes’ identities.

Notice, an algorithm A can either be deterministic or randomized. We say A is

deterministic if nodes do not need to invoke their pseudorandom number generators

before or while executing A. Otherwise, the algorithm is randomized.

Lastly, we assume Eve knows the algorithm that is executed by the honest nodes.

5.2 Impossibility Results

In this section, we will present our impossibility results, showing that in most cases,

no efficient algorithms exist that can guarantee solving the counting problem or the

neighbor discovery problem.

To begin with, we show the fact that the neighbor problem is no easier than the

counting problem; this allows impossibility results that are proven with respect to the

counting problem to be applicable to the neighbor discovery problem as well.

Lemma 5.1. For any algorithm A, if it can solve the neighbor discovery problem in

time T with probability p, then there must exist another algorithm A′ which can solve

the counting problem in time T with probability p, where T ≥ 0 and 0 ≤ p ≤ 1.

Proof. According to the definition of the neighbor discovery problem, if an algorithm

A can solve the neighbor discovery problem in time T with probability p, then by the

end of time slot T , each honest node must have known all honest nodes’ identities with

probability p. Therefore, one can construct an algorithm A′, which first runs A; and

by the end of time slot T , by counting the number of identities, honest nodes running

A′ can correctly know the total number of honest nodes that are in the network, with

probability p.

We then show our first impossibility result, stating that in most cases, if a jamming

adversary is present, then no algorithm exists that can guarantee solving the counting

problem within a finite time period. According to Lemma 5.1, this also implies no

algorithm exists than can guarantee solving the neighbor discovery problem within a

finite time period. The key observation which leads to the proof is: with some non-

zero probability, Eve can successfully isolate some nodes by blocking communication

110



between these nodes and the remaining nodes. This effectively “blinds” these honest

nodes and makes them unable to count correctly.

Theorem 5.2. Under theN (c ≥ 1, t ≥ 1, cd = {
√
, ∅}, eve = ∗, radio = {jam,ow})

model, for any given finite time period T > 0, no algorithm exists that can finish within

T and guarantee solving the counting problem (or the neighbor discovery problem).

Proof. We prove our claim by contradiction: assume algorithmA can guarantee solving

the counting problem within a finite time period T . Consider two scenarios, in one

scenario there are n nodes in total; and in another scenario, there are an additional

n2 nodes (and hence n + n2 nodes in total). We call these two scenarios E and E ′,

respectively. We focus on t honest nodes that appear in both scenarios.

Firstly, we consider scenario E .

If algorithm A is deterministic, before the protocol execution, Eve can correctly

predict the t honest nodes’ behavior within the given period of time. Therefore, for

each of these t honest nodes, she can assign one radio. Moreover, during protocol

execution, assume Eve uses the strategy that whenever one of these t honest nodes

listens on a channel, she lets the corresponding radio (controlled by her) broadcast noise

(or a message that overwrites other messages). As a result, during protocol execution,

the t honest nodes will not be able to receive any information from other honest nodes.

If algorithm A is randomized, notice once honest nodes’ random bits have been

generated, the corresponding algorithm becomes a deterministic one (for this execu-

tion). Moreover, notice algorithm A’s execution time is bounded by a finite value T .

Hence, before the protocol execution, Eve can always try to guess the outcomes of the

pseudorandom number generators, and with certain non-zero probability (which can be

extremely small), she will correctly guess all outcomes. In such case, she can use the

same strategy as discussed in the previous paragraph to stop the t honest nodes from

receiving information from other honest nodes.

By now, we can conclude, for scenario E , during protocol execution, with some

non-zero probability, Eve can stop the t honest nodes from receiving information from

other honest nodes. Assume this (unfortunate) event indeed happens. In such case,

since algorithm A grantees solving the counting problem, we know all honest nodes

will still get count n.
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We then consider scenario E ′.

By an analysis that is identical to the above, we know that during protocol execu-

tion, with some non-zero probability, Eve can stop the t honest nodes from receiving

information from other honest nodes. Assume this (unfortunate) event indeed happens.

In such case, E and E ′ looks identical to these t honest nodes. As a result, by the end

of E ′, they must have gotten n as the count, just like what they did in E . However, this

count is incorrect, as there are in fact n+ n2 honest nodes in total.

As a result, we have proved the claim by contradiction.

Next, we present our second impossibility result, which concerns Las Vegas algo-

rithms. Las Vegas algorithms are randomized algorithms which guarantee correctness.

However, the running time of the algorithm may vary, depending on the input and the

random choices the algorithm has made.

In the following theorem, we prove that no Las Vegas algorithm exists that can

guarantee solving the counting problem (and hence the neighbor discovery problem)

within a finite expected running time, given that a jamming adversary is present. The

core of the proof is showing that any algorithm with a finite expected running time will

inevitably results in chance of error.

Theorem 5.3. Under theN (c ≥ 1, t ≥ 1, cd = {
√
, ∅}, eve = ∗, radio = {jam,ow})

model, for any Las Vegas algorithm A, if its expected running time T is a finite num-

ber, then it cannot guarantee solving the counting problem (or the neighbor discovery

problem).

Proof. Consider the case in which there are two users (i.e., n = 2): Alice and Bob.

For ease of presentation, we divide each time slot into two steps: the communication

step and the processing step. In the first step, nodes can send messages (on a particular

channel) if they choose to broadcast; otherwise, nodes can listen (on a particular chan-

nel) if they choose to listen. Notice, nodes can also do nothing during the first step. We

assume by the end of the first step, all messages that can be successfully delivered in

this slot (i.e., sender and receiver are on the same channel and there is no interference)

are received by the correspond receivers. In the second step, nodes do local computing,

such as process received messages, generate random bits. By the end of the second step,

each node has decided what action to take during the next time slot.
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Consider a randomized algorithmAwhich can guarantee solving the counting prob-

lem (i.e., A is a Las Vegas algorithm). We model all possible executions of algorithm

A (on all nodes as a whole) as a forest, which consists of one or multiple trees. In

particular, for each tree, each level represents a time slot, and time goes from top level

to bottom level. Each root node (of a tree) is at level one. For any level i, a node (of a

tree) at that level represents the communication step in time slot i. (I.e., for each level

i node of a tree, it represents one possible execution—according to the random choices

wireless nodes have made—of the communication step of time slot i.) The link con-

necting a node in level i and a node in level i+ 1 represents the processing step in time

slot i. (I.e., for each edge connecting a level i node of a tree and a level i + 1 node of

a tree, it represents one possible execution—according to the random choices wireless

nodes have made—of the processing step of time slot i.) Notice, since algorithm A

utilizes randomization and may require initial processing before sending out any mes-

sages in time slot one, the forest may contain multiple (but finite) trees. Similarly, due

to randomization, each node in the tree may have multiple (but finite) children.

Notice, for the sake of simplicity, the processing step of the last time slot (during

protocol execution) is omitted in the forest (so that the leaf nodes of the trees do not

have “tail” links that link to nothing).

In the reminder of this proof, to distinguish a node that is executing the protocol and

a node in the tree, we call the prior (i.e., a node that is executing the protocol) a user.

We now prove the claim by contradiction. Without lose of generality, assume

randomized algorithm A can solve the problem with a finite expected running time.

Let forest F denote all possible executions of A. Due to the definition of expec-

tation, we know there must exist a tree T in F which contains a finite length path

P from T ’s root to one of T ’s leaf node. (To see this, notice the expected running

time of A can be expressed as
∑

i (pi · |Pi|), where Pi is a path in a tree in the for-

est, and pi is the probability that Pi is the actual execution. If every |Pi| is infinite,

then without lose of generality, assume |P̂| is the smallest among them. We know∑
i (pi · |Pi|) ≥

∑
i (pi · |P̂|) ≥ |P̂| ·

∑
i pi = |P̂|. I.e., if every |Pi| is infinite, then

the expected running time ofA will be infinite too. Hence, if the expected running time

of A is finite, there must exist some finite length path in the forest.)

We argue the last node on P can be removed, and the resulting new algorithm A′
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can still solve the problem with a finite expected running time. To see this, assume

the contrary: if the last node on P is removed, then in that particular execution, Alice

(and/or Bob) will incorrectly terminate (after |P| − 1 time slots since the beginning of

protocol execution) with an incorrect count, or Alice (and/or Bob) will never terminate.

If it is the case that removing the last node on P will result in some user incorrectly

terminating without knowing the correct count, then without lose of generality, assume

Bob is one victim. In such a scenario, it must be the case that in the last time slot, Al-

ice has sent a message to Bob, and Bob can only correctly terminate upon successfully

receiving this message. Notice, however, that Alice cannot tell if this last message has

been successfully delivered or not—as Eve can potentially jam or overwrite this mes-

sage with non-zero probability—and will always terminate after sending this message.

Hence, for algorithm A, chances exist that Bob may incorrectly terminate. This con-

tradicts with the assumption that A can always correctly solve the problem. Thus, the

assumption that the last node on P cannot be removed is incorrect.

On the other hand, if it is the case that removing the last node on P will result in

some user never terminating, then without lose of generality, assume Bob is one victim.

In such scenario, again, it must be the case that in the last time slot, Alice has sent

a message to Bob, and Bob can only correctly terminate upon successfully receiving

this message. By an argument that is identical to the one described in the previous

paragraph, we know in this case, the assumption that the last node on P cannot be

removed is incorrect as well.

At this point, we have shown the last node on P can be removed, and the resulting

new algorithm A′ can still solve the problem with a finite expected running time. By a

similar argument, we can further show that A′′, which is obtained from A by removing

the last two nodes on P , will solve the problem with finite expected running time as

well. Since |P| is finite, in the end, we can show that the execution which has no nodes

at all will solve the problem as well. However, this is clearly not true, as Alice and Bob

must each send at least one message.

By now, we have proved our claim by contradiction.
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5.3 Summary and Discussion

In this chapter, we have briefly explored some impossibility results a jamming adver-

sary can bring in. In particular, we have shown that in many cases, when a jamming

adversary is present, no algorithm can guarantee solving the counting problem or the

neighbor discovery problem within a finite time period. Moreover, the same claim holds

true for Las Vegas algorithms (with a finite expected running time) as well.

These impossibility results delineate the border of what an algorithm can achieve

when solving counting or neighbor discovery in a noisy wireless network. They also

suggest our algorithms which are proposed in previous chapters are near optimal in

terms of correctness.
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Chapter 6

Conclusion

Nowadays, wireless telecommunication is being widely used in people’s daily life, and

in the foreseeable future, there is no doubt this trend will continue. As a result, providing

security guarantees for various wireless networks is of great importance.

In this thesis, we consider three security threats that may exist in wireless networks:

jamming attacks, spoofing attacks, and sybil attacks. While examining related work,

we find that existing solutions suffer several drawbacks, which is especially true in the

case of sybil attacks.

Motivated by this finding, we propose several randomized algorithms that can ef-

fectively thwart sybil attacks in multi-channel wireless networks. The core of these

algorithms is a simply strategy called radio resource testing, yet as we have seen, gen-

eralizing it to practical scenarios is not easy. The proposed algorithms can work in

both centralized and ad hoc wireless networks, and can guarantee correctness with high

probability. These algorithms can usually provide asymptotically optimal bound on the

number of sybil identities. Nevertheless, for some of them, trade-offs do exist between

sybil bound and time complexity (e.g., SIMPLESYBILSIEVE and SYBILSIEVEOPT).

These algorithms can also tolerate jamming attacks and spoofing attacks.

To the best of our knowledge, these algorithms are the first ones that can effectively

thwart sybil attacks in multi-channel wireless networks with provable time and correct-

ness guarantees that are expressed with respect to the actual number of users (instead

of the number of identities, which may include a lot of sybils). Another notable contri-

bution of this thesis is several useful subroutines which may be of independent interest

(e.g., network size estimation, consensus in sybil-prone environment).
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We have also briefly explored how jamming may affect the solvability of the count-

ing problem and the neighbor discovery problem. Unfortunately, the results indicate

that even when a simple jamming adversary is present, no algorithm exists that can

guarantee to solve these two problems within a finite (expected) running time.

In terms of future research direction, we believe several avenues are available.

For the sybil resistance algorithms, notice, most existing proposals (including the

ones proposed in this thesis) only work in single-hop networks. Therefore, a natural

and immediate next step is to develop anti-sybil algorithms that can work in multi-hop

wireless networks. However, we should note that the multi-hop topology can bring

issues that one would not meet in the single-hop scenario. For example, in some areas

of a multi-hop wireless networks, the malicious nodes may take a dominate portion.

Hence, how can identities be correctly identified (as honest or sybil), and how can

such identification outcomes be reliably (e.g., not changed by the malicious nodes)

disseminated to the other parts of the network, is a particularly challenging problem.

On the other hand, following the impossibility results which we have shown in

Chapter 5, one immediate and interesting next step is to develop lower bounds—for

solving the counting problem and the neighbor discovery problem—in terms of time

complexity which are expressed with respect to certain correctness probability. An-

other related direction worth exploring is the impact of sybil attacks regarding these

two problem; e.g., how accurate can the solution be when sybil attacks are present, and

what would be the minimum time consumption to get such accuracy.

It would also be interesting to see how the proposed algorithms actually perform in

practical settings. In particular, in theoretical analysis, we usually ignore the constants

behind the asymptotic notation. In real world, unfortunately, these hidden constants

can be too large, and may have serious negative impact on the performance, especially

when the system size is small. On the other hand, however, these constants—which are

derived from theoretical analysis—can deviate from the real figure, due to, e.g., imper-

fections in the analysis process. As a result, implementing the various protocols in this

thesis can be rewarding for both evaluation purposes and further theoretical analysis.

Last but not least, as we have previously discussed in Chapter 2, the impact of new

hardware to our protocols is also an interesting future work direction. For example,

software defined radios are usually capable of scanning a wide frequency band at the
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same time, potentially violating the key assumption that the adversary cannot monitor

all channels simultaneously, which is critical to the effectiveness of radio resource test-

ing and the correctness of our algorithms. On the other hand, however, the good news

is that the “scanning” power of software defined radios is highly dependent on the pro-

cessing power of the embedded CPU, and more and more frequency bands are being

released for public use. Notice, fundamentally, the ultimate goal of defense is to let

the attacker gains (significantly) less than what he or she pays during the process of an

attack. Therefore, even if new hardware can favor adversary, it would still be valuable

to find and develop “cost-effective” defense strategies.
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