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SKIRTING AROUND THE NO-GO THEOREM IN

MEASUREMENT-BASED QUANTUM COMPUTATION

by THI HA KYAW

Summary

A cluster state cannot be a unique ground state of a two-body interacting Hamil-

tonian. Here, we propose the creation of a cluster state of logical qubits encoded

in spin-1/2 particles by adiabatically weakening two-body interactions. The

proposal is valid for any spatial dimensional cluster states. Errors induced by

thermal fluctuations and adiabatic evolution within finite time can be eliminated

ensuring fault-tolerant quantum computing schemes.
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Chapter 1

Introduction

“He who sees things grow from the beginning will have the best

view of them”.

— Aristotle

Realization of a practical quantum computer remains a formidable and challeng-

ing task but yet it is an important dream to be pursued, despite evidence that

seems to question its computational power. The current classical computer tech-

nology relies on gates and connecting wires to implement an algorithm. There-

fore, it is natural to extend this model to the analogous quantum model. We now

know that such a paradigm is possible and it is commonly known as the quan-

tum circuit model [1]. In this model, every quantum algorithm is implemented

through a quantum circuit, and the fundamental building blocks of such circuits

are quantum gates, which can be categorized into single-qubit and two-qubit

gates. If a set of quantum gates, be it single-, two-qubit or both, is su�cient

to construct any arbitrary quantum circuit, we say that this set is universal
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Chapter 1. Introduction

for quantum computation. For instance, an important universal set of quan-

tum gates is composed of the controlled-NOT gate and arbitrary single-qubit

quantum gates.

In order to design and build e�cient quantum circuits that yield better perfor-

mance than classical ones, it is crucial to exploit the unique features of quantum

systems that optimize and enhance computations. It has been demonstrated

that entanglement, one of the main pillars of quantum information processing,

provides an important resource for the quantum speed-up over their classical

counterparts [2, 3]. It is also likely that e�cient quantum algorithms require a

minimal amount of entanglement, otherwise the same quantum algorithm can

also be simulated with classical computers. Typically, the input states to a

typical quantum circuit usually take the form |0i ⌦ |0i ⌦ · · · |0i, which are not

entangled. Thus, the entanglement needed for the quantum computation must

be generated within the circuit itself. This means that some of the quantum

gates, implemented with the quantum circuit model, should be able to gener-

ate entanglement necessary for the quantum speed-up. These gates are called

quantum entangling gates. One familiar example is the controlled-NOT gate.

Small-scale realization of quantum circuits in various physical architectures has

been studied extensively. These approaches include the manipulations through

nuclear magnetic resonance [4], via atoms or ions in ion traps [5], via neutral

atoms [6], implementation with cavity quantum electrodynamics [7] or circuit

quantum electrodynamics [8, 9], the optical platform with linear or nonlinear

optical devices [10], the manipulation of electrons or atoms in solid state devices

2



Chapter 1. Introduction

[11], and a “unique” approach to quantum information proposed in the quantum

information roadmap [12]. Regardless of an approach we take, DiVincenzo has

elegantly summarized five important criteria for any practical quantum computer

[13], and each one of them has been carefully examined in the roadmap. To date,

none of these systems is fully capable of realizing a large-scale quantum computer

in the foreseeable future without any glitch. Each system presents its own unique

advantages and challenges. One stumbling obstacle in many of these systems is

that all quantum entangling gates cannot be implemented with high fidelity [14].

Thus, it is desirable to reduce the number of quantum entangling gates needed

for quantum computation to its minimum.

To overcome some of the limitations, researchers have explored alternative path-

ways. Although these other paradigms are equivalent to the quantum circuit

model in terms of computational power, they are very di↵erent in terms of

real physical realization and implementation. Among the promising alternative

paradigms are measurement-based quantum computing (MBQC) [15], topolog-

ical quantum computing (TQC) [16] and adiabatic quantum computing (AQC)

[17]. In this thesis, we mainly focus on the measurement-based quantum comput-

ing model as introduced by Raussendorf and Briegel in 2001 [15]. In particular,

we have proposed a way [18] to skirt around the renowned no-go theorem in the

MBQC, which is also the main theme of this thesis.

3



Chapter 2

The one-way quantum

computation

“Somewhere, something incredible is waiting to be known”.

— Carl Sagan

Measurement-based quantum computation (MBQC) or the one-way quantum

computation [15] is an alternative paradigm, where desired quantum gate op-

erations are obtained through projective measurements on individual physical

qubits. These qubits structure themselves as computationally useful cluster

states or highly entangled resource states. In this chapter, we define cluster

states and show how to obtain single-qubit and two-qubit quantum gates via

local measurements on individual qubits, thus giving rise to the universality of

4



Chapter 2. The one-way quantum computation

MBQC. Lastly, we introduce stabilizers formalism, with exploration towards ex-

perimentally feasible physical systems are then outlined and discussed in the

subsequent chapter.

2.1 Cluster states

Let us consider a simple lattice L
2

shown in Fig.(2.1). A cluster state of the

lattice structure is, in principle, attained if we position a spin-1/2 particle or

a qubit in a state |+i at each vertex V (L
2

), followed by a controlled-phase

gate (CZ) application to every edge E(L
2

). Physically, the |+i state can be

created by preparing a qubit in its ground state and applying a ⇡/2 pulse such

that it is in equal superposition of the ground |0i and excited states |1i, i.e.,

|+i = 1p
2

(|0i + |1i). To be precise, a cluster state is defined as

|CiL2 =
Y

(c,t)2E(L2)

CZc,t

O
j2V (L2)

|+ij , (2.1)

where the subscripts c and t stand for control and target qubits. For instance,

CZc,t = |0ich0| ⌦ 1t + |1ich1| ⌦ �zt , which means when the control qubit is in

L2

Figure 2.1: A simple two-dimensional square lattice.
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Chapter 2. The one-way quantum computation

state |0i, CZ does not do anything to the target qubit, while the target qubit

is phase-flipped when the control qubit is in state |1i. From here onwards, we

adopt the following notations throughout the thesis, unless otherwise is specified.

1 =

0BB@1 0

0 1

1CCA ; �x =

0BB@0 1

1 0

1CCA ; �y =

0BB@0 �i

i 0

1CCA ; �z =

0BB@1 0

0 �1

1CCA . (2.2)

The above matrices are written in the basis of |0i = (1, 0)T and |1i = (0, 1)T,

where T stands for the transpose.

To grasp the idea of cluster states, we shall investigate its simplest form, a

two-qubit cluster state, as shown in Fig.(2.2) (a). Instead of looking at the

whole square lattice L
2

, let us focus at two sites linked with an edge. From the

definition, Eq.(2.1), we have

|C
2

i = CZ
1,2|+i

1

|+i
2

= CZ
1,2

[|0i
1

|+i
2

+ |1i
1

|+i
2

]p
2

=
1p
2
[|0i

1

|+i
2

+ |1i
1

|�i
2

]. (2.3)

Similarly, if we exchange the control and target qubits in CZ, we have

|C
2

i = CZ
2,1|+i

1

|+i
2

=
1p
2
[|+i

1

|0i
2

+ |�i
1

|1i
2

]. (2.4)

|+i |+i

1 2 

|+i |+i

1 2 

|+i

3 

(a) (b) 

Figure 2.2: (a) Two-qubit cluster state, (b) three-qubit cluster state.
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Chapter 2. The one-way quantum computation

Therefore, |C
2

i is symmetric under the control and target qubits exchange. We

can contiune our analysis by adding an additional third qubit as shown in

Fig.(2.2) (b) and arrive at

|C
3

i = CZ
2,3CZ

2,1|+i
1

|+i
2

|+i
3

=
1p
2
[|+i

1

|0i
2

|+i
3

+ |�i
1

|1i
2

|�i
3

]. (2.5)

We can continue this calculation/analysis in accordance with Eq.(2.1) and get

an exact expression for cluster states of any lattice structure. However, we are

interested in quantum computations done on cluster states, rather than classi-

fication of di↵erent cluster states. Therefore, we shall move on to discuss the

quantum computational aspects of cluster states.

2.2 Universal MBQC

In classical computers, not-AND (NAND) gate is considered as a universal gate

since collection of NAND gates in various combinations can give rise to all the

required classical logic gates for a computing algorithm. Likewise, a universal

quantum computation is achieved if either an arbitrary single-qubit gate opera-

tion and controlled-NOT (CNOT) are realized or a specific single-qubit gate and

an arbitrary two-qubit entangling gate are achieved. Since the former is easier

achieved, we show the universality of MBQC by attaining general one-qubit gate

and two-qubit CNOT gate [1].

7



Chapter 2. The one-way quantum computation

2.2.1 General one-qubit gate

Let us revisit the two-qubit cluster state that we have discussed in the previous

section. It has an equivalent quantum circuit model as shown in Fig.(2.3) (a).

Instead of looking at it as two stationary |+i states under a CZ operation, we

can take it as two |+i states being sent through two di↵erent quantum channels

(black colored straight lines) and they are performed a CZ gate in the middle of

their propagation. A resultant cluster state is then spit out at the channel ends.

We can go one step further from Fig.(2.3) (a) and consider a case when the

qubit 1 is an arbitrary input state |ini = a|0i + b|1i, where a and b are arbitrary

complex numbers, and the qubit-2 remains |+i, such as shown in Fig.(2.3) (b).

Then, we perform CZ gate, followed by a general projective measurement on the

qubit-1,

Ô(') = (cos')�x
1

+ (sin')�y
1

, (2.6)

The operator Ô has eigenvalues ±1 with corresponding eigenvectors |v±i = (|0i±

ei'|1i)/
p

2. Thus, if we perform the projective measurement (Ô) on the qubit-1,

|+i

|+i 1 

2 
(a) 

�
|+i

|+i

(b) 

�
|+i

1 

2 

|ini

|+i

|ini

Figure 2.3: (a) Two-qubit cluster state (left) and its equivalent quantum
circuit (right), (b) an arbitrary input |ini state entangled with a |+i state
undergoes a general projective measurement (left, measurement is denoted by a
dotted box) and its equivalent quantum circuit (right, measurement is denoted

by a solid box).
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Chapter 2. The one-way quantum computation

we expect to have two di↵erent outcomes, depending on measurement outcomes,

the eigenvalues ±1 = (�1)m1 , m
1

2 {0, 1}. Before the measurement, we have,

from Fig.(2.3) (b), the entangled state | i
1,2 = a|0, +i+ b|1, �i. Suppose we get

measurement outcome m
1

= 0. This means the state of qubit-2 becomes

| i
2

= hv
+

| i
1,2 =

1p
2
(h0| + e�i'h1|)

1

(a|0, +i + b|1, �i)
1,2

=
1p
2
(a|+i + be�i'|�i)

2

⇠ e�i'/2(ei'/2a|+i + be�i'/2|�i)

= Hei'�
z/2|ini, (2.7)

where H is the Hadamard gate

H =
1p
2

0BB@1 1

1 �1

1CCA . (2.8)

Similarly, for the outcome m
1

= 1, we have

| i
2

= hv�| i
1,2 =

1p
2
(h0| � e�i'h1|)

1

(a|0, +i + b|1, �i)
1,2

⇠ e�i'/2(ei'/2a|+i � be�i'/2|�i)

= Hei'�
z/2�z|ini. (2.9)

Combining both results, we have | i
2

= (Hei'�
z/2(�z)m1)|ini. In other words,

the input state, which was at location 1, has been teleported to location 2, with

some gate operations done, depending on the measurement outcome, m
1

.

To achieve a general one-qubit gate, we add three additional qubits as shown in

9



Chapter 2. The one-way quantum computation

�

|+i

1 

2 

|ini

|+i

|ini

|+i

|+i

|+i |outi

3 

4 

5 

|+i

|+i

|+i

(a) (b) 

Figure 2.4: (a) Quantum circuit model to attain a general one-qubit unitary
gate. Time flows from left to right. (b) Equivalent setup of the general one-
qubit unitary gate in one-dimensional chain of cluster state. Time flows from

top to bottom.

Fig.(2.4). Output state at location 5 after four projective measurements is given

by

|outi = (Hei'4�z/2(�z)m4)(Hei'3�z/2(�z)m3) ⇥

(Hei'2�z/2(�z)m2)(Hei'1�z/2(�z)m1)|ini = U1|ini, (2.10)

where

U1 = (�z)m1+m3(�x)m2+m4 ⇥ (2.11)

exp
⇣
i(�1)m1+m3

'
4

2
�x
⌘

exp
⇣
i(�1)m2

'
3

2
�z
⌘

exp
⇣
i(�1)m1

'
2

2
�x
⌘

,

is a general one-qubit gate that is able to rotate any vector on the Bloch sphere

to an arbitrary direction. Here, we assume '
1

= 0 and we have made use of the

following identities: H�z = �xH and �x�z = ��z�x.

So far, we have considered a one-dimensional chain cluster states. In oder to

10



Chapter 2. The one-way quantum computation

achieve a two-qubit gate, we need two-dimensional cluster states. The simplest

CNOT gate configuration is shown in Fig.(2.5) and it needs four qubits located

across a two-dimensional lattice.

2.2.2 Controlled-NOT gate

1 

2 3 4 

X X 

ta
rg

et
-o

ut
 

ta
rg

et
-in

 

control-in & out 

Figure 2.5: Controlled-NOT gate. Input and output are located on the same
cluster qubit-1, and two �x (X) measurements are performed on qubit-2 and 3.

From the previous prescription, Eq.(2.1), the cluster state corresponding to

Fig.(2.5), can be written as

| i
1,2,3,4 = CZ

4,3CZ
1,3CZ

2,3[(a|0i + b|1i)
1

(c|0i + d|1i)
2

|+i
3

|+i
4

] (2.12)

= a|0i
1

(c|0, +i + d|1, �i)
2,3|0i

4

+ b|1i
1

(c|0, �i + d|1, +i)
2,3|0i

4

+

a|0i
1

(c|0, �i + d|1, +i)
2,3|1i

4

+ b|1i
1

(c|0, +i + d|1, �i)
2,3|1i

4

.

When we perform �x-measurement (X) onto qubits-2 and 3, i.e., projection with

the basis |±i = (|0i ± |1i)/
p

2, we have four di↵erent possbile scenarios, which

are listed in the Table.(2.1), depending on their respective eigenvalues (�1)m2

and (�1)m3 , while m
2

, m
3

2 {0, 1}. For the case A, we have m
2

= 0 and m
3

= 0.

11



Chapter 2. The one-way quantum computation

That means, after the measurements, we have

| i
1,4 =

2,3h+, +| · | i
1,2,3,4

= a|0i
1

(c|0i + d|1i)
4

+ b|1i
1

(c|1i + d|0i)
4

= U2

1,4(a|0i + b|1i)
1

(c|0i + d|1i)
4

, (2.13)

where U2

1,4 is a CNOT gate with the control qubit-1 and the target qubit-4. From

the above simple analysis, we see that the target qubit information which was

originally located at location 2 has just been teleported to location 4, and we

attain the desired CNOT gate, in accordance with the control qubit-1. Similarly,

we have

| i
1,4 = U2

1,4(a|0i + b|1i)
1

(c|1i + d|0i)
4

, (case B) (2.14)

| i
1,4 = U2

1,4(a|0i + b|1i)
1

(c|0i � d|1i)
4

, (case C) (2.15)

| i
1,4 = U2

1,4(a|0i + b|1i)
1

(c|1i � d|0i)
4

. (case D) (2.16)

In general, we can summarize all the four cases as

|outi = U2

c,t(�
x
t )m3(�zt )

m2(a|0i + b|1i)c(c|0i + d|1i)t. (2.17)

m
2

m
3

A 0 0
B 0 1
C 1 0
D 1 1

Table 2.1: Four di↵erent cases A-D are possible, depending on the outcomes
m2 and m3.
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Chapter 2. The one-way quantum computation

2.3 Stabilizers

We have been discussing our computationally useful resource states in the state

vector notation all along. While the former allows us to see explicit structure

of the cluster states, it is rather convenient to adopt an operator formalism,

with which one can write down a system Hamiltonian, useful for experimental

realizations.

A cluster state is defined, from Eq.(2.1), to be a resultant state after series of

controlled-phase (CZ) gate operations between initial states |+i⌦N , where N is

the total number of qubits. Here, we recall some properties of the CZ gate.

CZc,t�
x
c CZ†

c,t = �xc �
z
t , (2.18)

CZc,t�
x
t CZ†

c,t = �xt �
z
c , (2.19)

CZc,t�
z
cCZ†

c,t = �zc , (2.20)

CZc,t�
z
t CZ†

c,t = �zt . (2.21)

Let us revisit the three-qubit cluster state as shown in Fig.(2.6) (a). From the

definition, Eq.(2.1), the cluster state is given by |C
3

i = CZ
1,2CZ

2,3|+, +, +i
1,2,3.

|+i |+i

1 2 

|+i

3 

(a) (b) 

Figure 2.6: (a) Three-qubit cluster state. (b) A simple square lattice.
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Chapter 2. The one-way quantum computation

Since |C
3

i is composed of |+i⌦3, |C
3

i is invariant under �x
2

, which is the first

equality in Eq.(2.22). And, we then invoke an identity operator: 1 = CZ†
2,3CZ

2,3,

giving rise to the third equality. With the aid of Eq.(2.18), we arrive at the

fourth equality. We can continue the same step, and we finally arrive at the final

equality in Eq.(2.22).

CZ
1,2CZ

2,3 = CZ
1,2CZ

2,3�
x
2

= CZ
1,2CZ

2,3�
x
2

CZ†
2,3CZ

2,3

= CZ
1,2�

x
2

�z
3

CZ
2,3 = �x

2

�z
1

�z
3

CZ
1,2CZ

2,3. (2.22)

Intuitively, Eq.(2.22) means that phase-flip errors at qubit-1, qubit-3, and bit-

flip error at qubit-2 do not change the state |C
3

i, i.e., �x
2

�z
1

�z
3

|C
3

i = |C
3

i. Thus,

�x
2

�z
1

�z
3

stabilizes |C
3

i. Likewise, we find {�x
2

�z
1

�z
3

,�x
3

�z
2

,�x
1

�z
2

} is a set of sta-

bilizers for a particular graph of the three-qubit cluster state, Fig.(2.6) (a). In

general, given a graph L,

0@�xu Y
v2nb(u)

�zv

1A |CiL = |CiL, (2.23)

uniquely defines the cluster state, 8u 2 V (L), and nb(u) represents neighbours

of u. An alternative physical interpretation from Eq.(2.23) is that a cluster state

is an eigenvector of the operator
⇣
�xu
Q

v2nb(u) �
z
v

⌘
with an eigenvalue +1. We

also notice that the operators associated with di↵erent vertices commute. For

instance in the three-qubit cluster state, �x
2

�z
1

�z
3

,�x
3

�z
2

, and �x
1

�z
2

commute with

14



Chapter 2. The one-way quantum computation

each other. Hence, if a system Hamiltonian is in the following form

H = �
X
u2V

�xu
Y

v2nb(u)

�zv , (2.24)

then |CiL is the unique ground state of the system H, with an energy gap.

However, such Hamiltonian is, in general, not a two-body interacting system. If

we impose Eq.(2.24) onto the simplest two-dimensional square lattice of Fig.(2.6)

(b), we arrive at a five-body interacting Hamiltonian, which is unfavourable since

it is formidable for an experimental realization.
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Chapter 3

MBQC on two-body

interacting qubits with

adiabatic evolution

“Nothing in life is to be feared, it is only to be understood. Now

is the time to understand more, so that we may fear less”.

— Marie Curie

As we have learned from the previous chapter, the creation of a cluster state or an

appropriate highly entangled resource state [19] is a holy grail of measurement-

based quantum computation [15, 20, 21]. Ideally, we would like to obtain cluster

states by cooling naturally occurring systems down to their unique ground state,

thereby avoiding any entangling gate operation. To recall, one of the resource

states for the MBQC is the ground state of spin-1/2 particles with 5-body in-

teractions [see Fig.(2.6) (b)]. In general, many other configurations with k-body
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Chapter 3. MBQC on two-body interacting qubits with adiabatic evolution

interactions where k � 3 [22, 23] are also possible. However, there exists a no-

go theorem that forbids a unique ground state of a two-body nearest-neighbor

interacting Hamiltonian to be a cluster state [24].

Many proposals exist to overcome this obstacle or at least to skirt around this

no-go theorem. For instance, ground state of two-body interacting Hamiltonian,

such as that of the one-dimensional A✏eck, Kennedy, Lieb and Tasaki (AKLT)

model of spin-1 particles [25, 26] or the two-dimensional AKLT model of spin-3/2

particles, gives rise to cluster state, after suitable projective measurements. One

should bear in mind that the particles interaction in these systems should be

immediately turned o↵ in order to circumvent degradation of quantum correla-

tions, required for the quantum information processing [25–31]. The spontaneous

switching-o↵ is sometimes not needed, when the system evolves with an always-

on periodically driven interactions [32, 33]. Otherwise, an adiabatic switching-o↵

is commenced to isolate the quantum information to the edge states [34].

In this project, we investigate MBQC on systems of two-body interacting spin-

1/2 particles via adiabatic evolution, since such systems, compared to systems

with higher spins and many-body interactions, are generally better suited for

experimental implementation [35]. For example, cluster state of the five-body

interacting Hamiltonian can be approximated with two-body interactions via

weak perturbations [36], which mean a small energy gap between the ground

and first excited states. As a result, such system needs to be cooled down to a

su�ciently low operating temperature, depending on the size of the energy gap.

Here, we concentrate cluster states by adiabatically evolving the ground state

17
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of two-body interacting spin-1/2 particles with a built-in energy gap protection,

which allows us to operate at a higher temperature environment.

3.1 Motivation of cluster state concentration via adi-

abatic weakening

The main motivation of our proposal comes from adiabatic quantum computing

(AQC) [17, 37, 38], but it di↵ers from the standard AQC as follows. A system

in the AQC is initially prepared in the ground state of a simple Hamiltonian.

By adiabatically evolving the Hamiltonian to a target Hamiltonian, the final

desired state is obtained at the end. Moreover, the instantaneous ground states

during the evolution usually need to be protected by a finite energy gap [39].

Creation of cluster states via the standard AQC is impossible as we need a target

Hamiltonian whose unique ground state is the cluster state. While a cluster

state is never a unique ground state of any two-body interaction Hamiltonian

(the no-go theorem), it can still be one of the degenerate ground states. By

gradually weakening the interactions of a two-body Hamiltonian, we propose

that the system could finally achieve a cluster state as one of the degenerate

ground states. We also notice the disapperance of the system energy gap at the

end of the adiabatic evolution when a cluster state of logical qubits is obtained

as the target state. Fortunately, thanks to the inherent symmetry of stabilizers,

the desired ground state is protected from the noise due to the finite speed of

evolution even if the energy gap vanishes.
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In our models, we encode an individual qubit of the cluster state with a logical

qubit of several spin-1/2 particles. We then establish the quantum correlations,

i.e., stabilizers, of the cluster state in the initial state, which is also the ground

state with a large energy gap protection. Hence, it tolerates a relatively high

temperature. However, the initial state is not useful for the MBQC, since it

is outside the logical subspace where logical qubits are encoded. We will show

that these cluster-state correlations are protected during the entire adiabatic

evolution, which is the key to our proposal. In this manner, the target or final

state is a cluster state of a logical qubit, which can also be converted into a

cluster state of spin-1/2 particles via single-qubit measurements.

3.2 General protocol

We encode each qubit of the cluster state in n spin-1/2 particles as

|0ij = ⌦n
m=1

| "ij,m, |1ij = ⌦n
m=1

| #ij,m. (3.1)

Here, the jth logical qubit is encoded in spin-1/2 particles {(j, m) : m =

1, 2, . . . , n}, and | "ij,m (| #ij,m) is the eigenstate of the Pauli operator �zj,m

with the eigenvalue +1 (�1). These logical states are stabilized by operators

{�zj,1�zj,m}, i.e., logical states are common eigenstates of these operators with

eigenvalue +1. Pauli operators of the jth logical qubit are

Xj =
nY

m=1

�xj,m and Zj = �zj,1. (3.2)
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This encoding has been used for constructing a perturbative model of the cluster

state [36].

The cluster state is the common eigenstate with eigenvalue +1 of cluster-state

stabilizers [15, 20, 21] Sj = Xj
Q

i2nb(j) Zi =
Qn

m=1

�xj,m
Q

i2nb(j) �
z
i,1, where nb(j)

is the set of nearest neighboring logical qubits of the jth logical qubit. Hence, on

the spin-1/2-particle level, the cluster state is stabilized by {Sj}[{�zj,1�zj,m}. By

noticing that a product of stabilizers is also a stabilizer, cluster-state stabilizers

can be rewritten as S
{m

j,i

}
j = Sj

Q
i2nb(j) �

z
i,1�

z
i,m

j,i

=
Qn

m=1

�xj,m
Q

i2nb(j) �
z
i,m

j,i

,

where {mj,i} is a string of numbers satisfying 1  mj,i  n. If a state is

stabilized by {S
{m

j,i

}
j } [ {�zj,1�zj,m} for any choice of {mj,i}, the state is the

cluster state. This cluster state of logical qubits can be converted into a cluster

state of physical qubits by measuring �x of arbitrary n � 1 physical qubits of

each logical qubit. Therefore, this cluster state of logical qubits is a universal

resource for the MBQC.

To obtain the cluster state via adiabatic cluster-state concentration, we consider

a Hamiltonian of N ⇥ n spin-1/2 particles in the form

H = H
0

+ �V, (3.3)

where H
0

=
PN

j=1

hj with hj = �J
Pn

m=1

�zj,m�
z
j,m+1

, where �zj,n+1

= �zj,1, and

J is the coupling constant of Ising interactions. Here, V denotes some two-body

interactions that satisfy the following conditions:
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1. V commutes with a set of cluster-state stabilizers {S
{m

j,i

}
j } corresponding

to one choice of {mj,i}; and

2. When the interaction strength � is nonzero, degenerate ground states are

split. As the result, H has a unique ground state with a finite energy gap

above it.

Our protocol of cluster-state concentration includes two steps: 1) cooling the

system with a nonzero � to the ground state; 2) adiabatically switching o↵ �.

In the adiabatic limit, the final state is the cluster state of logical qubits up to

some single-particle Pauli operations.

This protocol relies on the set of cluster-state stabilizers {S
{m

j,i

}
j } that are con-

served quantities for any value of �, i.e., [H, S
{m

j,i

}
j ] = 0, 8�. We would like to

remark that H
0

commutes with S
{m

j,i

}
j . Hence, the unique ground state of H for

any nonzero � is the common eigenstate of cluster-state stabilizers. We suppose

corresponding eigenvalues are {s
{m

j,i

}
j }, where s

{m
j,i

}
j = +1 or �1. Therefore,

if the initial state is the ground state with a nonzero �, the final state is still a

common eigenstate of cluster-state stabilizers with the same eigenvalues.

For each logical qubit, |0ij and |1ij are degenerate ground states of hj . The

ground-state subspace of H
0

is 2N -fold degenerate, which coincides with the

subspace encoding logical qubits. During the adiabatic evolution, the state al-

ways remains in the ground state of the instantaneous Hamiltonian [17]. Thus,

the final state is in the ground-state subspace of H
0

, i.e. in the logical subspace.
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Any state in the logical subspace is stabilized by {�zj,1�zj,m}. Therefore, the fi-

nal state is the common eigenstate of {S
{m

j,i

}
j } and {�zj,1�zj,m} with eigenvalues

{s
{m

j,i

}
j } and {+1}, respectively. By performing single-particle Pauli operations

[(1 + s
{m

j,i

}
j )1 + (1 � s

{m
j,i

}
j )�zj,1]/2, the final state can be transformed into the

cluster state of logical qubits.

When � adiabatically approaches zero , the energy gap between the ground state

and first-excited state vanishes, which usually implies one has to slow down the

rate of change of � to avoid any inadvertent excitation. Fortunately, in the de-

generate subspace, i.e., the logical subspace, the cluster state is the only state

with eigenvalues {s
{m

j,i

}
j }. Similarly, the ground state is the only state with

eigenvalues {s
{m

j,i

}
j } in all states split from the degenerate subspace. Therefore,

the transitions between the ground states and other states split from the degen-

erate subspace are forbidden; i.e., one does not have to slow down the rate of

change of �, according to the vanishing energy gap, when � ! 0.

In the following, we show that this generalized protocol is applied to three dif-

ferent models towards universal MBQC with fault-tolerant error correction in

mind. We then focus on finding the energy gap of each model to prove that by

cooling down the system unique, a ground state is feasible and that indeed our

cluster-state concentration works as proposed.
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3.3 1D Kitaev model

As discussed in the previous chapter, one-dimensional cluster state is not a re-

source state for universal MBQC. However, it helps to generate an arbitrary

single-qubit gate [15, 20, 21], or can it be regarded as a quantum wire [40].

Our one-dimensional model inspires from the celebrated Kitaev’s honeycomb

model [41]. With closed boundary conditions, we arrive at the one-dimensional

Kitaev model as shown in Fig.(3.1), and the system Hamiltonian is given by

H1D = H1D

0

+ �V 1D, where

H1D

0

= �J
X
j

�zj,1�
z
j,2, (3.4)

V 1D = �
X
j

(�xj,1�
x
j�2,2 + �yj,1�

y
j�1,2). (3.5)

Here, each logical qubit, a grey oval shape in Fig.(3.1), is composed of a pair of

spin-1/2 particles. The ground state is nondegenerate with a finite energy gap

when 0 < � < J/2 [41]. We note that, for each plaquette j [see Fig.(3.1)], there

Figure 3.1: One-dimensional Kitaev model, where black circles represent
spin-1/2 particles, red bonds denote �x�x, blue bonds denote �y�y, and green
bonds are �z�z two nearest neighbored interactions. j, l, and j, r label two

physical qubits belonged to the logical qubit j (the grey oval shape).
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is a conserved quantity

Wj = �xj,1�
x
j,2�

z
j�1,2�

z
j+1,1, (3.6)

i.e., [H1D, Wj ] = 0. The conserved quantity is given by Wj = S
{m

j,i

}
j with

mj,j�1

= 2 and mj,j+1

= 1. Therefore, the Hamiltonian H1D satisfies the form

Eq.(3.3). Since Wj ’s commute with each other, they can be diagonalized simulta-

neously with eigenvalues wj = ±1, thus allowing us to partition the total Hilbert

space into invariant subspaces of H1D. We proceed to show that H1D has the

unique ground state locating in the subspace with wj = +1, 8j.

Using the Jordan-Wigner transformation:

�+ij = 2

24Y
j0<j

Y
i0

�zi0j0

35"Y
i0<i

�zi0j

#
c†ij , (3.7)

�zij = 2c†ijcij � 1, (3.8)

we arrive at

H1D =�
X

x-bonds

(c† � c)r(c
† + c)l � �

X
y-bonds

(c† + c)l(c
† � c)r

� J
X

z-bonds

(2c†c � 1)l(2c†c � 1)r. (3.9)

Let us introduce the Majorana fermions

Ar = (c � c†)r/i, Br = (c + c†)r (3.10)
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for the right sites and

Bl = (c � c†)l/i, Al = (c + c†)l (3.11)

for the lefts. By substituting them back into H1D, we have

H1D = �i

24 X
x-bonds

�ArAl �
X

y-bonds

�AlAr

35� iJ
X

z-bonds

↵AlAr, (3.12)

where

↵ = iBlBr, (3.13)

which is a conserved quantity [42] along the z-bond. We now relabel the Hamil-

tonian such that the summation over x, y and z-bonds becomes the summation

over jth sites as follow.

H1D = �i
NX
j=1

[�Aj�1,rAj+1,l � �Aj,lAj�1,r + J↵Aj,lAj,r] , (3.14)

where N is the total number of lattices or z-bonds. To diagonalize this Hamil-

tonian and find the ground state, we introduce a fermion in each z-bond by:

dj = (Aj,r + iAj,l)/2, d†j = (Aj,r � iAj,l)/2, (3.15)

where Ar and Al are the Majorana fermions on the right and left sites of a z-bond

respectively. We substitute

Aj,r = dj + d†j , Aj,l = (dj � d†j)/i, (3.16)
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into the Eq(3.14). We arrive at

H1D = �
X
j

(d†j�1

+ dj�1

)(d†j+1

� dj+1

) + �
X
j

(d†j�1

+ dj�1

)(d†j � dj)

+J
X
j

↵(2d†jdj � 1). (3.17)

The ground state for the fermions has ↵ = 1 everywhere [41]. For the bulk

system, the exact solution for ground state is obtained by the Fourier transfor-

mation

dj =
1p
N

X
q

dqe
iqR

j , (3.18)

dj+1

=
1p
N

X
q0

dq0e
iq0(R

j

+a), (3.19)

dj�1

=
1p
N

X
q00

dq00e
iq00(R

j

�a), (3.20)

where a is the lattice parameter and Rj is the position coordinate of the jth

z-bond. We split H into three components to find its Fourier counterparts. For

the x-component, we have

�
X
j

(d†j�1

+ dj�1

)(d†j+1

� dj+1

)

=�/N
X
j

24X
q0,q00

h
e�i(q00+q0)R

jei(q
00�q0)ad†q00d

†
q0 � e�i(q00�q0)R

jei(q
00
+q0)ad†q00dq0

+ e�i(q0�q00)R
je�i(q00+q0)adq00d

†
q0 � e�i(�q00�q0)R

jei(�q00+q0)adq00dq0
ii

=�
X
q

h
e2iqad†qd

†
�q � e2iqad†qdq + e�2iqadqd

†
q � e�2iqadqd�q

i
. (3.21)
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Similarly, for the y-component, we have

�
X
j

(d†j�1

+ dj�1

)(d†j � dj)

=�
X
q

h
eiqad†qd

†
�q � eiqad†qdq + e�iqadqd

†
q � e�iqadqd�q

i
. (3.22)

The z-component is

J
X
j

(2d†jdj � 1) = J
X
q

(2d†qdq � 1). (3.23)

By putting all the three pieces together, we have our final Hamiltonian as

H1D =
X
q


✏qd

†
qdq +

i�q

2
(d†qd

†
�q + H.c.)

�
, (3.24)

where

✏q = 2J � 4� cos(2qa), (3.25)

�q = 4� sin(2qa). (3.26)

After the Bogoliubov transformation, the Hamiltonian is diagonalized and the

quasi-particle excitation is obtained and given by

Eq =
q
✏2 + �2

q . (3.27)

For the case when |Jz| > |Jx| + |Jy| > 0, we can clearly see that ✏q = �q 6= 0

and thus Eq 6= 0. Hence, the system is gapped.
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Since Wj ’s are conserved quantities, the evolution is restricted to the wj = +1

subspace. Therefore, the energy gap that protects the adiabatic evolution is

always nonzero. The excitation spectrum is obtained by mapping [43] the original

Hamiltonian H1D into p-wave Fermi superfluid representation, where the energy

gap between the ground state and the first excited state is �E1D = 2J�4�. With

this energy gap, we first cool our system down to its ground state with nonzero

� as elaborated in the general protocol section. We then adiabatically switch o↵

� so that the final state is in the ground-state subspace of H1D

0

, stabilized by

Wj = XjZj�1

Zj+1

, Eq.(3.6), yielding our 1D cluster state.

3.4 2D Kitaev-like model

To qualify for a resource state of the universal MBQC, we need a two-dimensional

resource state, to accommodate for the single- and two-qubit gates. Following the

one-dimensional cluster state, we propose a two-dimensional Kitaev-like model

Figure 3.2: Two-dimensional Kitaev-like model, where black circles represent
spin-1/2 particles, red bonds denote �x

i

�x

j

interactions, blue bonds denote �y

i

�y

j

interactions, and green bonds are �z

i

�z

j

interactions where i and j label two
corresponding spin-1/2 particles.
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[see Fig.(3.2)] that satisfies the form of Eq.(3.3). The Hamiltonian of the two-

dimensional model reads H2D = H2D

0

+ �V 2D, where

H2D

0

= �J
X
j

X
hµ,µ0i

�zj,µ�
z
j,µ0 , (3.28)

V 2D = �
X
hj,j0i

X
µ

(�xj,µ�
x
j0,µ

r

+ �yj,µ�
y
j0,µ

b

). (3.29)

Each logical qubit, denoted by a green plaquette in Fig.(3.2), is composed of

four physical spin-1/2 particles. Here, j = (j
1

, j
2

) is the coordinate of a logical

qubit, hµ, µ0i labels two connected spin-1/2 particles which belong to the same

logical qubit located at the position j, hj, j0i denotes two connected logical qubits,

and µr (µb) denotes the spin-1/2 particle connected with particle (j, µ) via a red

(blue) bond [see Fig.(3.2)]. For each logical qubit, there is a cube associated

with a conserved quantity

Wj = �xj,1�
x
j,2�

x
j,3�

x
j,4 ⇥ (3.30)

�zj0+e2,nb(j,1)
�zj0+e1,nb(j,2)

�zj0�e2,nb(j,3)
�zj0�e1,nb(j,4)

,

where e1 and e2 correspond to two unit vectors in the 3D Cartesian coordinate

system. In addition, di↵erent Wj’s commute with each other and also with the

Hamiltonian, i.e., [H2D, Wj] = 0. This model is nonintegrable. Thus, we cannot

obtain the exact analytical energy gap. However, using standard perturbation

technique [see Appendix A], we arrive at an e↵ective Hamiltonian

H2D

e↵

= const. � (�6/1536J5)
X
j

Wj, (3.31)
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with an approximate energy gap of �E2D ' �6/768J5. We anticipate a larger

gap for larger �, even if the perturbation is no longer valid. The 2D cluster state

is then obtained following the same preparation procedure as the 1D cluster

state.

3.5 3D square lattice model

A resource state in three dimensions is desirable since there is fault-tolerance

quantum error correction scheme [44–46] that can be used to correct any inad-

vertent error during the quantum computations. In this section, we show the 3D

square lattice model [see Fig.(3.3) (a)] has the unique ground state with an en-

ergy gap at � 6= 0. Moreover, we provide some system operating parameters and

conditions at which such system becomes a good resource state for the universal

MBQC with built-in fault-tolerant quantum error correction schemes.

The Hamiltonian of the 3D square lattice model is given by H3D = H3D

0

+�V 3D,

where

H3D

0

= �J
X
j

X
hµ,µ0i

�z
(j,µ)�

z
(j,µ0

)

, and (3.32)

V 3D = �
X
j

4X
µ=1

�x
(j,µ)�

z
nb(j,µ). (3.33)

Each logical qubit j, a grey circle with four black circles in Fig.(3.3) (a), is en-

coded in four spin-1/2 particles and, there exists a unique analytic ground state

after a controlled-phase unitary transformation (CZ) on every bond [47, 48],
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i.e., H3D = (CZ)H3D(CZ) =
P

j H3D

j , where H3D

j = [�J
P

hµ,µ0i �
z
(j,µ)�

z
(j,µ0

)

�

�
P

4

µ=1

�x
(j,µ)]. For each plaquette j, we notice there exists local conserved quan-

tities

W loc

j = (CZ)Wj(CZ) =
4Y

µ=1

�x
(j,µ), (3.34)

such that W loc

j ’s commute with each other as well as with the Hamiltonian,

i.e., [H3D

j , W loc

j ] = 0. Since each jth plaquette is independent of each other,

we have �E3D = 2
p

2J2 + 2�2 + 2
p

J4 + �4 � 2
p

J2 + �2 � 2J , the energy gap

[48] between its unique ground state and first excited state. This energy gap,

[see Fig.(3.4)], ensures cooling the system to its unique ground state. This ini-

tial ground state of the time-dependent Hamiltonian H3D

j (�(t)) remains an ap-

proximate ground state of the Hamiltonian throughout the entire evolution as

long as the rate of change of � is su�ciently slow satisfying the adiabatic con-

dition [17]. We also note that the stabilizers W loc

j ’s, Eq.(3.34), stabilize the

Figure 3.3: (a) Three-dimensional square lattice model, where black circles
represent spin-1/2 particles, red bonds denote �x

i

�z

j

interactions, and green
bonds are �z

i

�z

j

interactions where i and j are labels of two nearest-neighbor
spin-1/2 particles. Here, a grey circle with four spin-1/2 particles is a logical
qubit. (b) Equivalent model in a logical subspace, where four physical qubits
bonded by �z

i

�z

j

are taken as a single logical qubit, a black circle. Red colored
�x

i

�z

j

interactions remain the same, while the dashed box represents a unit
square lattice.
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Figure 3.4: Energy spectrum of the 3D square lattice Hamiltonian H3D
j

versus
the coupling �. Energy eigenstates with eigenvalue +1 (eigenvalue -1) of the

stabilizer, Eq.(3.34), are plotted in blue (red) solid lines.

instantaneous ground state throughout the adiabatic evolution (t : 0 ! ⌧) since

[H3D

j , W loc

j ] = 0. Moreover, there exists a larger energy gap � within the sub-

space with eigenvalue +1 of the stabilizer that in turn allows us to apply a

constant � switching rate even though �E3D ! 0, where H3D has many degen-

erate ground states. Thanks to the adiabatic evolution and the local stabilizers

W loc

j ’s, we can concentrate our initially prepared ground states to computation-

ally useful cluster states.

3.5.1 Error and feasibility

In the numerical simulation of the 3D cluster state concentration process, we

consider a Hamiltonian of the form H3D

j (t) = H3D

j0 +�(t)V 3D

j , where � ! 0 as t :

0 ! ⌧ (⌧ = �
0

/v and �(t) = �
0

�vt). In this subsection, we provide some physical

insights towards 3D cluster state concentration with feasible physical parameters

that might help to guide experimental realization. As such, we prepare a thermal
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state as the initial state, ⇢(0) = Z�1e�H3D
j

(0)/T , where Z = tre�H3D
j

(0)/T and

T is the temperature of the system setting the Boltzmann’s constant to unity.

The ground state without evolution [see Fig.(3.5) (inset)] corresponds to the

case of a perturbative expansion [36]. With our adiabatic concentration process,

the three di↵erent evolution times (⌧ = 5, 7, and 10) give rise to 3 orders of

magnitude higher operating temperature compared to the no-evolution case. An

important observation adduced from Fig.(3.5) is that the longer the evolution

time, the higher the temperature, at which the system ground state can be

prepared and the larger phase space region where standard fault-tolerant error

correction schemes can be implemented to correct for possible errors.

Here, we further investigate errors origin of the 3D model from its geometrical na-

ture, since it is well-known that the topological fault-tolerant quantum comput-

ing can be used to apply quantum error correction during the course of quantum
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Figure 3.5: Phase diagram which shows, in temperature and initial coupling
�0 space, the lines below which an initial thermal state after the adiabatic
evolution is a resource state for fault-tolerent MBQC because the areas enclosed
by the lines represent regions with less than 3% total phase-flip errors while
the outer areas are regions with more than 3% total phase-flip errors. Solid
line in the inset figure corresponds to the ground state without evolution while
solid, dashed and dotted lines correspond to the ground state with evolution

time ⌧ = 5, 7, and 10 respectively.
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computations as long as the average total phase-flip errors E⇣ = PZ+4PC1+2PC2

of individual logical qubit in the 3-D model is 3% or less [44–46]. Errors on each

square lattice in the final state can be expressed by a superoperator

E = F (1)+PZ

 
4X

k=1

[Zk]

!
+

PC1

2

 
4X

m$l=1

[ZlZm]

!
+

PC2

2
([Z

1

Z
3

]+[Z
2

Z
4

]), (3.35)

where F refers to fidelity, PZ refers to local phase-flip errors, PC1 refers to cor-

related errors type-1, m $ l means the sites m and l are graphically connected,

PC2 refers to correlated errors type-2 [see Fig.3.7], F, PZ , PC1 , PC2 are functions

of their respective arguments, and a superoperator satisfies O[⇢] = O⇢O†.
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Figure 3.6: (a) Imperfection (1-fidelity) versus temperature plot. (b) Total
phase-flip error (E

⇣

) versus temperature plot. (c) Correlated error type-1 (P
C1)

versus temperature plot. (d) Correlated error type-2 (P
C2) versus temperature

plot. Solid, dashed and dotted lines represent the evolution with ⌧ = 5, 7 and
10 respectively with �0 = 2.5.
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logical qubits 

physical qubits 

1 2 

3 4 
k

Figure 3.7: An elementary cubic lattice in the three-dimensional square lat-
tice model. A grey circle of four spin-1/2 particles connected by four green
bonds denotes a logical qubit. Numbers 1, 2, 3 and 4 label four physical qubits

located inside the k logical qubit.

The e�ciency and e↵ectiveness of the fault-tolerance quantum computation de-

pend not only on PZ , which is estimated in Fig.(3.5), but also on correlated errors

PC1 and PC2 among neighboring logical qubits. Here, we demand PC1+PC2 ⌧ PZ

so that the conclusion that we have adduced from Fig.(3.5) is valid. From the

numerical evidence shown in Fig.(3.6) (b-d), it is clear that the above mentioned

requirement is fulfilled in all the three di↵erent evolution times. Moreover, we

see that halving temperature from T = 1 ! 0.5 for ⌧ = 5, 7, 10 reduces the total

phase-flip errors by about one order of magnitude [see Fig.(3.6) (b)].

3.5.2 Sequential adiabatic switch-o↵

As proposed earlier on, we are required to turn-o↵ all the nearest-neighbor in-

teractions during our adiabatic cluster state concentration. However, it seems

that this constraint is not a good way towards a scalable quantum computing,

since the size of our resource state is bounded by decoherence rate of the logical

qubits. However, in this subsection, we show that not all the interactions need
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to be switched o↵. In fact, we can switch them o↵ sequentially just before local

measurement is performed on individual qubits. To be precise, the 3D system

is initially prepared or cooled down to its unique ground state, which is not a

computational resource state. We then adiabatically switch o↵ �
(j,µ)’s for each

logical qubit j one at a time. By doing so, we drive the jth logical qubit state

into a computational resource state at the end of the adiabatic evolution. We

then perform measurement onto this resource state. After the measurement of

the jth logical qubit, Hamiltonian of the fully connected logical qubits in the

residual Hamiltonian

H3D

res

=
N�5X
k

[�J
X
µ$µ0

�z
(k,µ)�

z
(k,µ0

)

�
4X

µ=1

�
(k,µ)�

x
(k,µ)�

z
nb(k,µ)](f.c) (3.36)

+
4X

m2nb(j)

[�J
X
⇠$⇠0

�z
(m,⇠)�

z
(m,⇠0) �

3X
⇠,(m,⇠)=(j,µ)

�
(m,⇠)�

x
(m,⇠)�

z
nb(m,⇠)](p.c),
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Figure 3.8: Energy spectrum of the 3-D square lattice Hamiltonian H3D
j

versus the coupling �’s while (a) the surrounding logical qubit-1, 2, 3, and 4 and
(b) the surrounding logical qubit-1, 3, 2, and 4 [see Fig. 3.7] are disconnected
in sequential adiabatic manner where �1, �2, �3 and �4 are coupling constants
between the central jth logical qubit and the surrounding logical qubit-1, 2 ,3
and 4 respectively. Energy eigenstates with eigenvalue +1 (eigenvalue -1) of the
stabilizer are plotted in blue solid (red dashed) lines. Each � is adiabatically

tuned from 2 to 0 as in Fig.(3.4).
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is still gapped (with �E3D) as before and the four neighboring partially con-

nected ones are no more protected by the gap. Here, N is the total number of

logical qubits, (m, ⇠) = (j, µ) means the physical qubit ⇠ belonged to the mth

logical qubit is not graphically connected to the physical qubit µ belonged to

the jth logical qubit and nb(j) means neighbour of the jth logical qubit. From

this observation, we draw attention that after every consumption of a resource

state, there could be some other partially connected (p.c.) logical qubits located

on a boundary between measured logical qubits and fully connected (f.c.) ones.

These partially connected ones should be measured immediately or treated as

redundant and discarded. Moreover, adiabatically switching o↵ �’s of the jth

qubit from the bulk does not couple instantaneous ground states with excited

states because there is no level crossing in the energy spectra [see Fig.(3.8)], and

this can be done monotonically in time due to the presence of larger energy gap

� in the subspace defined by stabilizers throughout the entire adiabatic evolu-

tion. Specifically, from Fig.(3.8), we note that the ground state subspace with

+1 eigenvalue of the stabilizers has non-zero energy gap � > �E3D > 0 when

�’s are being adiabatically turned o↵ in succession.

With all the properties described above, our model enjoys an energy gap pro-

tection similar to the AKLT resource state [25]. The most important advantage

with our proposal is that we are able to create cluster states of spin-1/2 particles

with just nearest-neighbor two-body interactions.
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“The good thing about science is that it’s true whether or not you

believe in it”.
— Neil deGrasse Tyson

Our proposal is not limited to the three models discussed so far and it can also be

applied to other models such as the Bartlett and Rudolph’s 2D hexagonal lattice

[36], and the Kitaev’s 2D honeycomb model [41]. However, the error correction

threshold for the 2D cluster states [49–51] is believed to be much lower than that

of 3D cluster states [44–46]. Thus, we are more interested in the implementation

of our protocol in generating 3D cluster states. Our proposal benefits from an

energy gap protection similar to that of the AKLT resource state [25] since the

interactions can be switched o↵ sequentially. Also, our models have a close

connection with condensed matter models.

It is interesting to explore some future possible directions in this work. The

central result of our current work is that we could overcome the no-go theorem
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regarding the impossibility of a cluster state as a ground state of a two-body

nearest-neighbor interaction Hamiltonian. Clearly aside from perturbation, we

have shown that it is possible to obtain the desired highly entangled resource

via adiabatic evolution. Other methods for obtaining the highly desired entan-

gled resources is by projecting the ground states of higher dimensional systems

through appropriate projective measurements or obtaining larger cluster states

through a series of fusion rules or operations [52]. At this end, we have listed

some open questions to be addressed in the foreseeable future.

• We have numerically studied the robustness of the concentration process

for 3D cluster state with temperature using a thermal state as an initial

state. It is known that quantum systems are highly influenced by the en-

vironment. It would therefore be interesting to extend the study to the

e↵ects of open system on the evolution using appropriate Master equations

[53]. How does the errors propagate under open system dynamics? More-

over, one could also study the e↵ects of non-Markovianity of such systems

on the e↵ectiveness of fault tolerance.

• For adiabatic evolution, the time needed to achieve adiabaticity is noto-

riously di�cult to compromise. There is often a trade-o↵ between de-

coherence of qubits and the time needed to maintain some adiabaticity.

However, there are “short-cuts” in adiabatic quantum computation and it

is interesting to invesigate if such “short-cuts” [54–57] are useful for our

systems.
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• In our study, we have restricted our model to simple Heisenberg inter-

actions. However, there are many other nearest-neighbor models, like

the Kagome lattice or Hubbard-type models, which are more appropriate

for some solid state systems. We need to study more two-body nearest-

neighbor Hamiltonians to compare and see their di↵erences and similarities

between di↵erent systems under our proposal.

• We note that there have been several methods that have been proposed to

overcome the no-go theorem. It would be intersting to study these methods

more carefully and see if one could combine some of these technqiues for

a more robust way of creating the cluster states. In particular, there have

been several studies on a robust coupling procedure that could couple small

cluster or graph state arrays into bigger structures. This approach could

also be investigated via an adiabatic method [52, 58].

In summary, we have proposed a means to create cluster states of spin-1/2 par-

ticles with just nearest-neighbor two-body interactions via adiabatic evolution,

which could be experimentally realized with existing technology.
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Appendix A

Perturbation Theory

The use of perturbation theory in the present context is to obtain the spectrum

of a Hamiltonian eH = H + V , where H is an unperturbed Hamiltonian while V

is a small perturbation. Our main objective is to approximate the spectrum of

eH as close as possible and we can then claim that the spectrum of H
e↵

, which

is the e↵ective Hamiltonian, provides the required answer.

Let us assume H has a zero eigenvalue with an associated eigenspace, whereas

all other eigenvalues are greater than 4 � kV k, where 4 is the assumed energy

spectral gap around some cuto↵ eigenvalue �⇤ 2 R on the spectrum of H. Let

�j , | ji (e�j , | e ji) be the eigenvalues and the eigenvectors of H ( eH) respectively.

From now on, everything related to the perturbed Hamiltonian eH is marked with

tilde. We define the resolvent of eH as

eG(z) =
⇣
zI � eH⌘�1

=
X
j

⇣
z � e�j⌘�1

| e jih e j |, (A.1)
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and its usefulness comes from the fact that eG has poles at z = e�j and the poles

can be preserved under projections while eigenvalues are usually not. Similarly,

we define the resolvent of H as

G(z) = (zI � H)�1 =
X
j

(z � �j)
�1 | jih j |. (A.2)

Definition: Let H = L
+

� L�, where L
+

is the space spanned by eigenvectors

of H with eigenvalues � � �⇤ and L� is the space spanned by eigenvectors of H

with eigenvalues � < �⇤. Let ⌥± be corresponding projection operator onto L±.

For an operator V on H, we define operator V
++

= V |L+ = ⌥
+

V ⌥
+

on L
+

and

similarly V�� = V |L� . We also define V
+� = ⌥

+

V ⌥� as an operator from L�

to L
+

, and similarly for V�+

= ⌥�V ⌥
+

. Finally, we define self-energy function

as

⌃�(z) = zI� � eG�1

��(z). (A.3)

To derive the expression for H
e↵

, we first express eG in terms of G as

eG =
�
G�1 � V

��1

=

0BB@G�1

++

� V
++

�V
+�

�V�+

G�1

�� � V��

1CCA
�1

,

since G is block diagonal in the representation of H = L
+

�L�. Using the block

matrix identity

0BB@A B

C D

1CCA
�1

=

0BB@ (A � BD�1C)�1 �A�1B(D � CA�1B)�1

�D�1C(A � BD�1C)�1 (D � CA�1B)�1

1CCA , (A.4)
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we find

eG�� =
⇣
G�1

�� � V�� � V�+

�
G�1

++

� V
++

��1

V
+�
⌘�1

. (A.5)

With the help of the series expansion (I �Y )�1 = I +Y +Y 2+ · · · and Eq.(A.2),

we have the expression for the self-energy function in terms of the perturbation

V as

⌃�(z) = zI� � G�1

�� + V�� + V�+

�
G�1

++

� V
++

��1

V
+�

= H�� + V�� + V�+

�
G�1

++

� V
++

��1

V
+�

= H�� + V�� + V�+

G
++

(I
+

� V
++

G
++

)�1 V
+�

= H�� + V�� + V�+

G
++

V
+� + V�+

G
++

V
++

G
++

V
+� +

V�+

G
++

V
++

G
++

V
++

G
++

V
+� + · · · (A.6)

Proof:

1. By definition eG(z) = (zI � eH)�1, the eigenvalues of eH| eL�
appear as poles

in eG.

2. These poles also appear as poles of eG��.

3. z is a pole of eG�� if and only if it is an eigenvalue of ⌃�(z).

4. If we assume H
e↵

, which we obtain by taking non-constant leading orders

in ⌃�(z), is close to ⌃�(z), then any eigenvalue of ⌃�(z) must be close to

an eigenvalue of H
e↵

. Thus, eigenvalues of H
e↵

must be close to those of

eH| eL�
.
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Hence, we take Eq.(A.6) as H
e↵

as long as the condition 4 � kV k is satisfied.

For the detailed proof, one may refer to Ref.[59].

A.1 Perturbative study in the 2D Kitaev-like model

A.1.1 Configuration 1

Here, we directly apply the mathematical results and notations from the previous

section, while V 2D term in the 2D model Hamiltonian is taken as a perturbative

term. The perturbative results are listed below.

1. H(0)

e↵

= H�� = E
0

= �NJz, where N is the number of unit cells.

2. H(1)

e↵

= V�� = 0.

3. H(2)

e↵

= V�+

G
++

V
+� = const.

4. H(3)

e↵

= V�+

G
++

V
++

G
++

V
+� = const.

5. H(4)

e↵

= V�+

G
++

V
++

G
++

V
++

G
++

V
+� = const.

4 3 
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15 16 
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19 20 
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19 20 

a 
b 

c 

e d f 

(a) (b) 

Figure A.1: (a) Configuration 1 of the 2D cluster state, derived from
Fig.(3.2), with a single logical qubit in the upper layer is shown. (b) The same
figure (a) is shown in the logical subspace. The numbers 1-20 label physical

spins.
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6. H(5)

e↵

= V�+

G
++

V
++

G
++

V
++

G
++

V
++

G
++

V
+� = const.

7. H(6)

e↵

= const � J2
x

J4
y

1536J5
z

P
p �

y
17(p)

�y
18(p)

�y
19(p)

�y
20(p)

�z
4(p)

�z
7(p)

�z
9(p)

�z
14(p)

,

where 1

1536

= 16 · �1

4096

+ 16 · 1

4096

+ 8 · �1

6144

+ 8 · 1

6144

+ 8 · �1

8192

+ 8 · 1

8192

+ 8 · 1

12288

,

which we obtain from flipping of eight spins along diagonal two blue colored lines

followed by flipping of the four spins along the red line that connect the two blue

lines with rectangular symmetry. Hence, the e↵ective Hamiltonian is

H(6)

e↵

= const �
J2

xJ4

y

1536J5

z

X
p

�y
17(p)

�y
18(p)

�y
19(p)

�y
20(p)

�z
4(p)

�z
7(p)

�z
9(p)

�z
14(p)

= const �
J2

xJ4

y

1536J5

z

X
p

(Wp)
e↵

. (A.7)

(a) (b) 

(c) (d) 

Figure A.2: (a-c) Configurations 2 and 3 of the 2D cluster state, derived from
Fig.(3.2), are shown. (b-d) show their respective configurations in the logical

subspace.
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A.1.2 Configuration 2 and 3

After going through the same mathmatical exercises as before, we arrive at the

e↵ective Hamiltonian of the configuratins shown in Fig.(A.2) as

H(6)

e↵

= const �
J2

xJ4

y

3072J5

z

X
p

(Wp)
e↵

. (A.8)

Even though the two configurations in Fig.(A.2) are total di↵erence, we get the

same e↵ective Hamiltonian. The deviation only comes in when we go to higher

order perturbation.
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