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Abstract

Given a set of images or videos having common content, the ob-

jective of co-segmentation is to simultaneously segment the set

of images or videos to extract this common content. The term

“common content” here refers to the image or video regions that

depict the same thing, which, in most of the cases, is the theme

of the input images or videos acknowledged by the user. Most

previous approaches focus on image co-segmentation, while re-

cently, more and more attempts have been made on the prob-

lem of video co-segmentation, which presents much more com-

plexity and difficulty than image segmentation. In this thesis,

we address the challenge of video co-segmentation and develop

techniques for common content extraction.

In the first part of the thesis, we propose to segment a pair of

videos to extract their common action, which we define as those

video contents that have similar motion patterns. We propose

the trajectory co-saliency measure to match the spatiotemporal

components among different videos, which captures the notion

that trajectories recurring in all the videos should have their

mutual saliency boosted. It can compare trajectories with dif-

ferent lengths and not necessarily spatiotemporally aligned, and

yet be discriminative enough despite significant intra-class vari-

ation in the common action. As a result, we can remove the

extraneous action content and the moving background. To eval-

uate the performance of our framework, we introduce a dataset



containing clips that have animal actions as well as human ac-

tions. Experimental results show that the proposed method

performs well in common action extraction.

In the second part of the thesis, we utilize video co-segmentation

to extract common foreground objects. When the foreground

objects have variegated appearance and/or manifest articulated

motion, not to mention the momentary occlusions by other un-

intended objects, a segmentation method based on single video

and a bottom-up approach is often insufficient for their extrac-

tion. To address the aforementioned challenges, we place central

importance in the role of “common fate” among all the videos,

that is, the different parts of the foreground should persist to-

gether in all the videos. We also introduce a new dataset which

contains videos depicting objects with complex form and mo-

tion and therefore liable to ambiguity in interpretation. Our

experimental results on this dataset show that our method suc-

cessfully addresses the challenges in the extraction of complex

foreground and outperforms the state-of-the-art video segmen-

tation and co-segmentation methods.
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Chapter 1

Introduction

Along with the development of the Internet, the amount of images or videos

grows in such an explosive way that the leveraging on this resource becomes

a big opportunity as well as a big challenge. Content extraction, by which

we mean the localization of interesting and useful information in images

or videos, is one of the most important steps for this leveraging. Most of

the images and videos on the Internet are currently only tagged with a set

of keywords by the owners; content extraction will allow users to obtain

more fine-grained information. For instance, an image could be tagged with

the label “car”, and the content extraction system would then generate a

bounding box or label the regions covered by the car; if a long video is

tagged with “Penguin Tobogganing”, the content extraction system would

not only spatially locate the tobogganing penguin, but also temporally

locate when this action happens by highlighting the related frames of the

video.

Achieving successful content extraction has, however, proven extremely

hard. Clearly, accurate content extraction can be obtained by manual ef-

fort if time or effort is not an issue. The tag information supplementation

approach [121] belongs to this category, which supports image and video

tagging at finer granularities. For example, several websites, such as La-
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1. INTRODUCTION

belme [95], support the tagging service that allows users to provide tags to

a specific location of an image. Other websites, such as Veotag, Vaddler

and MotionBox, allow users to assign tags to subclips instead of the whole

video. The interactive graphics methods such as Lazy Snapping [64] and

Video SnapCut [5] also belong to this category, which aim to provide a

user-friendly interface in the segmentation of images and videos.

Generally, no matter how user-friendly the interfaces are designed, the

above-mentioned manual tagging is very time-consuming and requires far

too much labor to deal with the large amount of visual data on the Internet.

Therefore, the automatic tagging approach has attracted great research in-

terest in the recent years; it refers to the process of assigning a set of tags

to images or videos without any interference from human. In the computer

vision community, competitions and challenges, such as PASCAL VOC [31]

that started from 2005, and ILSVRC [94] that started from 2010, have been

organized with a view towards the solving of automatic classification and

tagging of images. Similarly, for the automatic tagging of videos, there

are tasks specified by TRECVID [80] since 2002 aiming to solve automatic

event detection, and there are also several datasets such as UCF-Sports [90],

UCF50 [87] and HOHA [57] designed for action recognition and detection.

Most of the methods proposed for these competitions and challenges em-

ploy machine learning algorithms to train models for every specific tag and

after the training, the trained models are used to predict the tag of the

new data. Though the prediction is performed automatically, the training

process of most of the methods is performed in a supervised manner. That

is, it still requires laborious labeling of the training samples to provide ad-

ditional information about when and where the contents depicted by the

tags actually appear in the images or videos. This is because the machine

learning methods need to first extract discriminative features to describe

the specific tag, and in unconstrained images or videos, the extraction of

2
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these positive features should preferably be restricted to part of the images

or videos so as to align with the foreground content. In general images

or videos with cluttered background, content from the background can-

not serve as positive features, otherwise, the performance of the model in

prediction will degrade severely.

In view of the preceding, an unsupervised or weakly supervised content

extraction approach is more desirable for many applications. One of the

most prevalent unsupervised approaches is via that of automatic image or

video segmentation. For images, appearance cues such as brightness, color,

texture and boundary are explored to group images pixels or segments as

foreground content [99, 26, 3, 4, 66]. The main direction of this kind of

methods is to define the segmentation as finding the labeling of an image

that minimizes a specific energy term. Some other methods formulate

the automatic content extraction as salient object detection [28, 7, 135],

the underlying assumption being that the appearance contrasts between

objects and their surrounding regions are high. For videos, motion cues

are incorporated to define the foreground contents and cluster them into

multiple groups; the assumption is that the interesting objects are those

that are moving in the videos and that different objects are undergoing

different motions. Works in this area include [97, 46, 11, 79, 40]. The work

of [85] extends the salience measure to incorporate motion contrast. Other

video segmentation methods [107, 81] explore the motion boundaries to

extract objects. All of these methods proposed for automatic segmentation

of content of interest could succeed if their underlying assumptions are

satisfied. Unfortunately, this is often not the case and once their underlying

assumptions are not satisfied, this kind of methods is prone to error. Thus,

despite over 40 years of research in computer vision, there is still no reliable

single-image and single-video segmentation algorithms that are completely

automatic.

3
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Figure 1.1: Visualization of pairwise distance matrix between segments for
weakly supervised annotation.

Given that the supervised methods are very labor-intensive on the one

hand and the completely unsupervised content extraction is an ill-posed

problem on the other, performing content extraction under weak supervi-

sion has attracted significant recent interest. Generally, the weakly super-

vised approach only requires the images or videos to be weakly annotated,

by which it means that the tags of the images or videos are given but the

contents referred to by the tags are not spatially localized in the images or

spatiotemporally localized in the videos. Given the multimedia source (a

batch of images or videos) that are weakly tagged with a concept (such as

“Car”, “Dog” and etc.), the goal of the methods in this field is to localize

the contents related to the concept from the multimedia source, and then

learn the visual model for the concept.

Fig. 1.1 is borrowed from [109] to illustrate the basic idea of weakly

supervised content extraction. It shows a distance matrix between the dif-

ferent kinds of segments. The methods in this field can be roughly divided

into two categories. The first category requires that the given multimedia

source contains positive and negative segments, which are respectively all

segments from the images or videos labeled and not labeled with the con-

cept tag. Among the positive segments, there are concept segments that

4



Introduction

actually depict the concept and there are also background segments that

are not related to the concept. By exploring both the positive and nega-

tive segments, the goal of this category of method is to determine which

of the positive segments are concept segments, and which are background

segments. Works that belong to this category are described as follows. The

works of [21, 101, 83, 42, 109] aim to discover the interesting objects and

learn their models; the works of [47] extend the framework proposed in [101]

for the discovery of discriminative spatiotemporal patches to represent the

interesting action; the works of [78, 108] focus on the temporal localization

of the interesting actions and the learning of their temporal structures.

The second category of methods is that of co-segmentation, which refers

to the problem of simultaneously segmenting a batch of images or videos

to extract the common contents. The co-segmentation does not require

negative segments and therefore, can operate solely on the top-left 2 × 2

submatrix of the distance matrix shown in Fig. 1.1. First introduced

in [91], the image co-segmentation has recently become a topic of active

research with works including [91, 115, 12, 24, 52, 50, 54, 116]. It has also

been applied for applications such as storyline reconstruction [53] and the

removal of noise images for image search engine [15, 92].

The primary focus of this thesis is to address the challenge of video

co-segmentation and develop techniques for the extraction of both com-

mon action and common objects. Though many approaches have been

proposed for image co-segmentation, only a few attempts have been made

on the problem of video co-segmentation. The success of content extraction

based on video co-segmentation can significantly benefit multiple applica-

tions such as visual recognition (object, action, and etc.). Most of the

training processes of the visual recognition require not only positive ex-

amples containing the relevant content, but also the localization of those

pertinent parts of the examples. Using video co-segmentation, these per-
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tinent parts in the related videos can be automatically retrieved and thus

save the labor-intensive process to drawing boxes or scribbling to define the

content to learn. Moreover, it can enhance the accuracy of visual search

engines (like Google, Youtube and etc.) by serving as a pre-processing

step to provide video sources with their interesting content extracted. Last

but not least, solving the video co-segmentation also sheds light on how

to define a video similarity measure. Other than the appearance of the

foreground, the video similarity measure also has to consider the temporal

changes, which is exactly the main challenge that the video co-segmentation

approach needs to handle.

1.1 Video Action Co-Segmentation

The video action co-segmentation is relatively different from image co-

segmentation: Given a set of videos that are assumed to have common

action, the video action co-segmentation aims to locate this common action

by matching motion patterns among different videos. Specifically, it aims

to remove the possible extraneous moving content that exists at the same

time with the action of interest. The extraneous moving content may come

from that someone is performing extraneous action. It may be also caused

by the camera undergoing complex motion such as moving fast forward. In

this case, the stationary background would look like moving according to

the 2D motion cues.

To achieve these, effective spatiotemporal descriptors and matching al-

gorithms need to be designed to discriminate between the common action

and the extraneous moving content. Specifically, we must design a dis-

tance measure that can generate a distance matrix (as shown in Fig. 1.1)

in which the pair-wise distances between the common actions (concept seg-

ments) are small and those between the common action and the extraneous
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(a) (b)

Figure 1.2: Challenges of video co-segmentation for the common action
extraction. (a) The common action may be spatiotemporally misaligned.
(b) The common action may have large intra-class variance.

moving content (background segments) are large.

This, however, is difficult for the reason that compared to the image co-

segmentation, the time dimension in video presents significant challenges

that must be overcome by the video action co-segmentation. First of all, the

action contents of interest from different videos may be spatiotemporally

misaligned. For example in Fig. 1.2(a), the skier in the left video slides to

the left and then to right, while the motion pattern of the skier in the right

video is undergoing a motion in the reverse order. Therefore, to match

these two skiers, we need to design spatiotemporal feature descriptors to

deal with this spatiotemporal misalignment.

Other than the spatiotemporal misalignment, the common action may

have other intra-class variances as shown in Fig. 1.2(b), where two birds are

swallowing prey. These two birds have significantly different appearances;

the differences their swallowing actions also pose a significant difficulty for

the matching between these two actions. Clearly, using low-level features

is not adequate in this video action co-segmentation problem; an effective

matching framework is needed to address these intra-class variances within

the common action.

Our contributions with respect to this problem are listed as follows:
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1. To the best of our knowledge, it is the first attempt to identify the

spatial location of the common action as well as its temporal location.

2. We define the notion of trajectory co-saliency, propose a scheme for

its measurement and design a framework to employ it for the common

action extraction.

3. We collect a dataset of clips that have animal actions as well as human

actions to evaluate this common action extraction problem.

1.2 Video Object Co-Segmentation

The problem of common object extraction based on a video setting can be

viewed as an extended case of image co-segmentation, with the additional

time dimension along with its motion and spatiotemporal structure provid-

ing rich information about potential object boundaries and the relationship

between different objects. Therefore, these available motion cues present

the video object co-segmentation methods with an opportunity to handle

some challenges that are extremely difficult for the image co-segmentation.

For example, if the foreground object has a variegated appearance, such

as a panda with its striking black and white parts, the traditional image

co-segmentation methods tend to over-segment this variegated object. In

comparison, the video co-segmentation can use motion cues to bind the

object segments together if they manifest the characteristics of common

fate, that is, moving together in the same direction. Cluttered background

is another challenge that is hard for the image co-segmentation methods to

deal with. In this case, some object in the background in the background

may look more like an object than the foreground; this violates the assump-

tion made by some image co-segmentation methods that employ saliency

measure or object proposals to generate foreground object candidates.

However, the use of motion brings some complications for the segmen-
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tation. First of all, if there are some extraneous objects that happen to

be moving together with the foreground object, they would be incorrectly

identified as foreground according to the motion segmentation criteria. Sec-

ondly, the foreground object may be undergoing non-rigid motion such as

articulated motion. In this case, relying on motion would over-segment the

object into different articulated parts. Finally, the extraction of motion

cues mainly relies on the optical flow estimation, which in practice may be

inaccurate. Using motion cues from the inaccurate optical flow obviously

would severely affect the segmentation.

In summary, the goal of this thesis is to propose a video co-segmentation

framework to address the following challenges:

1. Extraneous objects happening to be moving together in some videos;

2. Motion segmentation issue caused by the foreground object undergo-

ing non-rigid motion such as articulated motion;

3. Interacting multiple objects to be regarded as a single foreground

entity;

4. Segmentation issue caused by cluttered background or variegated ap-

pearance of foreground;

5. Different objects sharing some common parts.

Another contribution in this thesis for the video object co-segmentation is

the collection of a new dataset of videos that manifest the aforementioned

segmentation challenges.

To simplify the problems to a manageable level, some assumptions are

made in this thesis. For video action co-segmentation, the viewpoint invari-

ance issue is not considered; that is, the action scenes are assumed to be

shot from similar viewpoints. Moreover, the scope of the action categories

considered is limited to simple actions like running, skating and etc., while

9
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complex actions or activity like cooking and dancing are not considered.

For video object co-segmentation, the common objects are assumed to have

similar appearance; objects belonging to the same object class but having

very different appearance (like different vehicles) are not considered.

1.3 Structure of the Thesis

The thesis is organized as follows:

In Chapter 2, we first review the historical background of segmentation,

discussing various representative methods in this area. The categorization

of the methods for segmentation is mainly based on the grouping criteria

and the visual cues they rely on. Then, we review existing methods for co-

segmentation, separating them into five main categories, presenting their

basic ideas and briefly discussing their advantages and disadvantages.

In Chapter 3, we propose a video co-segmentation framework for com-

mon action extraction. As a preprocessing step, we first remove the back-

ground trajectories by a motion-based figure-ground segmentation. To re-

move the remaining background and those extraneous actions, we propose

the trajectory co-saliency measure, which captures the notion that trajec-

tories recurring in all the videos should have their mutual saliency boosted.

This requires a trajectory matching process which can compare trajectories

with different lengths and not necessarily spatiotemporally aligned, and yet

be discriminative enough despite significant intra-class variation in the com-

mon action. We further leverage the graph matching to enforce geometric

coherence between regions so as to reduce feature ambiguity and matching

errors. Finally, to classify the trajectories into common action and action

outliers, we formulate the problem as a binary labeling of a Markov ran-

dom field (MRF) , in which the data term is measured by the trajectory

co-saliency and the smoothness term is measured by the spatiotemporal
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consistency between trajectories.

In Chapter 4, we address the problem of video object co-segmentation

when faced with the complex foreground and background. Departing from

the objectness attributes and motion coherence used by traditional figure-

ground separation methods, the proposed video object co-segmentation

framework in this thesis places central importance on the role of “com-

mon fate”, that is, the different parts of the foreground should persist

together in all the videos. To operationalize this idea, we first extract seed

superpixels by a motion-based figure/ground segmentation method. We

next formulate a set of initial to-link constraints between these superpixels

based on whether they exhibit the characteristics of common fate or not.

An iterative manifold ranking algorithm is then proposed to trim away the

incorrect and accidental linkage relationships. Then, we perform cluster-

ing at two levels: the superpixel-level and the object-level; this two-level

clustering is needed because features at the superpixel level are too low-

level to adequately discriminate between different objects. Firstly, based

on the trimmed to-link constraints and combining the spatial information,

the superpixel-level clustering groups the seed superpixels into object in-

stances. Next, computing the features for the obtained object instances

and treating them as nodes, the object-level clustering further groups the

object instances into different object classes. This two-level clustering al-

gorithm also performs automatic model selection to estimate the number

of object classes in the foreground. Finally, a multiclass labeling MRF is

used to obtain a refined segmentation result.

In Chapter 5, we conclude the thesis with some discussions about the

limitations of the proposed methods and suggest some potential future

directions related to this thesis.
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Chapter 2

Literature Review

This chapter gives a historical background of segmentation and co-segmentation.

In Sect. 2.1, we organize the discussion about the different segmentation

approaches in terms of the grouping criteria and the visual cues they rely

on. In Sect. 2.2, we discuss various co-segmentation methods, roughly

separating them into five categories. The basic idea of each category is

presented, and their advantages and disadvantages are also briefly summa-

rized.

2.1 Segmentation

First put forth at the beginning of the 20th century, the Gestalt laws of

grouping [124] propose simple bottom-up rules, called grouping principles,

that aim to describe how certain combination of image elements are orga-

nized by our perceptual system into a unitary whole. The Gestalt principles

that are pertinent for segmentation in computer vision include proximity,

similarity, closure, common fate and continuity.

The contour based methods can be used to group images into regions

based on the Gestalt principles of proximity, closure and continuity. To de-

tect the edge fragments, some works require users to specify the seed points

along the object boundary [74, 75] or to mark a rough curve around the ob-
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ject [51, 127]. Some other works perform the edge detection automatically.

For example, the work of [3] proposes an Oriented Watershed Transform to

measure the probability of a pixel being an edge and the works of [107, 81]

make use of motion cues with the assumption that the motion boundary

should overlap with the object boundary. After the detection of edges, the

work of [89] joins the edges using orientation and texture cues in multiple

scales; the work of [3] performs this by the construction of an Ultrametric

Contour Map that defines a hierarchical segmentation.

Another category of the bottom-up segmentation approaches is the pixel

based methods, which favor the principles of similarity and proximity for

grouping. A prevalent approach in this category is to formulate the seg-

mentation task as a pixel labeling problem. Early works along this line

[8, 64, 8] propose globally optimizable energy function for binary labelling

of pixels, while later works [44, 100, 56, 41] extend this idea for multi-class

labeling. Their formulation elegantly incorporates object representations

defined by the users or some learned object models, while taking into ac-

count the interaction between adjacent pixels.

Clustering is another popular formulation used by the pixel based meth-

ods, for the reason that segmentation can be viewed in essence as a clus-

tering process wherein pixels with similar properties form a compact set.

Specifically, these methods first build a graph with nodes representing each

pixel and edges connecting a node to either 4 or 8 of its neighboring nodes.

Then, the edges are weighted according to the similarity or dissimilarity

between the nodes they connect, decided by the visual cues like color and

texture of these pixels [71, 32]. After this, the segmentation is obtained

by the partitioning of the built graph. One of the most influential works

amongst this category is the Normalized Cut [99], which formulates a cost

function for partitioning nodes in a graph into two disjoint partitions and

keeps the cost of the partition properly normalized so as to avoid the shrink-
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ing bias associated with minimum cut partitions.

Suggested by the Gestalt principle of common fate, it is well known that

motion provides important information for grouping. The motion segmen-

tation approaches take this grouping principle into account. Compared to

some of the contour based methods that use motion information to detect

edges, the motion segmentation methods use motion information to de-

fine the interaction and relationship between pixels or trajectories. Some

motion segmentation methods [120, 123, 98, 22] focus on the motion cues

provided by two-frame optical flow. The limitations of these methods are

multifold. First and foremost, they depend on a pair of frames with a

clear motion difference between objects. In addition, simple extension of

these methods using multiple pairs of frames to handle the segmentation of

multiple frames is likely to generate inconsistent segmentation results. Re-

cently, some motion segmentation methods are proposed to perform long

term analysis of point trajectories over multiple frames [11, 79, 35, 36].

These methods are generally carried out in the following multiple steps:

1) Track long term trajectories; 2) Build an affinity matrix with entries

encoding the pairwise spatiotemporal similarity between trajectories; 3)

Run spectral clustering [77] on this affinity matrix, whose output is then

regarded as the segmentation results.

Main obstacles to these bottom-up segmentation approaches, criticized

by David Marr in [72], include

1. The problem they aim to solve is not clearly defined.

2. The low-level cues they rely on might not have enough information

to detect the regions.

Based on these observations, top-down segmentation techniques such as

[6, 59] are proposed; they assume the object category and a rough bounding

box are known. Their main idea is to make use of the stored exemplars
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to guide the object segmentation in some new images. There are also

some works such as [62, 55] which propose to combine both bottom-up

cues and top-down cues for object segmentation. The recent advent of

automatic and effective mid-level region sampling technique [30] brings

forth a new wave of unsupervised segmentation approaches that eschew

the traditional bottom-up process [58, 130]. Generally, these approaches

first sample object proposals for every frame in a video, and then formulate

the task of object segmentation as an object proposal selection problem for

all the frames.

2.2 Co-Segmentation

In this section, we review existing works in the area of co-segmentation,

which can be coarsely separated into the following five categories:

Histogram Matching

The first attempt to solve the co-segmentation problem is to incorporate

into the traditional MRF energy function a global term that encodes a

similarity measure between the foreground histograms of the multiple in-

put images [91]. That is, given a image pair I1 and I2, this category of

approaches formulates the co-segmentation problem as the optimization of

energy of the following form:

E(x) =
∑
p

wpxp +
∑
p,q

wpq|xp − xq|+ λEglobal(h1, h2), (2.1)

where x represents the set of labels of image pixels to optimize, wp is the

unary weight, wpq is the pairwise weight and h1 and h2 represents the

histograms of foreground pixels from I1 and I2 respectively. The work of

[115] reviews and compares different models for the global terms including

l1-norm [91], l2-norm [76], reward model [45] and Boykov-Jolly model. It
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(a)

(b)

Figure 2.1: Co-segmentation of image pairs: (a) Input image pairs. (b)
Co-segmentation results by the histogram matching.

also discusses several methods for the optimization of (2.1).

The incorporated global term Eglobal(h1, h2) in (2.1) penalizes the vari-

ation in the histograms of the foreground regions, thus, leading the MRF

labeling to select the common content from the image pair as foreground.

This is illustrated and shown in Fig. 2.1. The main drawbacks of the co-

segmentation approaches in this category include: 1) They are restricted

to handle image pairs and to generate two-layer segmentation. 2) Their

definitions of the foreground is purely based on the commonality measure;

therefore, if the background content surrounding the object of interest is

also common across different images, this category of approaches will fail

to recognize this object.

Clustering Based Methods

The clustering based methods formulate the co-segmentation as a graph

partitioning problem [52, 20, 49, 50]. Specifically, these works first build

a graph to include pixels from all the input images, with the intra edges

connecting pixels within the same image and inter edges connecting pixels
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Figure 2.2: Co-segmentation results of [50]. From left to right: Original
frames, the segmentation result with K = 2 and the segmentation result
with K = 3.

from different images. Then, they aim to find the global optimum cut of

the graph following the spectral graph theory akin to normalized cut [99].

Compared to the histogram matching based methods, it is straightfor-

ward for these clustering based methods to include more than two images

as input and to generate multi-class segmentation. One open problem re-

maining to be solved in this category is the model selection problem, that is,

that of estimating the number of groups for the graph partitioning. Denot-

ing the group number as K, most existing clustering based co-segmentation

methods require K to be known a priori. The partitioning with a large

K tends to over-segment the foreground, while that with a small K may

fail to extract the foreground objects. The challenge is that the optimum

K generating the best segmentation result may not be consistent with the

natural analysis of the scene, and thus, it is not easy to find the best K

unless one can compare the ground truth with the results given by different

K. For example in Fig. 2.2, the ground truth of the images should have

only two classes, the planes and the background. However, setting K = 2
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for the method of [50] would group the planes and part of the background

(the sky) together. Only when K increases to 3 are the planes correctly

extracted.

Another drawback of these clustering based co-segmentation methods is

that they generally perform the matching between different images based

on low-level features using the inter edges of the graph. This may not

adequately discriminate between the foreground and the background for the

reason such as there is low contrast between foreground and background.

It may also fail to match the common objects across different images for

the reasons such as there exist some extraneous objects that share some

common part in appearance with the common objects.

Learning Based Methods

Works including [12, 54, 93] employ the machine learning techniques in

their co-segmentation frameworks. The pipelines of their frameworks are

similar: First of all, they initialize the object models and the background

model based on the results of some single image or video segmentation

methods (like the GrabCut used by [12] and the motion saliency used by

[93]). After this, they learn classifiers from the initialized models and test

these learned classifiers on the input images/videos. Then, the testing

results are used to update the object model and the background model,

which in turn are used to update the classifiers. These steps are iterated

until convergence or reaching the maximum number of iterations.

These learning based methods, however, are sensitive to the initializa-

tion. That is, if the employed single image or video segmentation methods

yield very bad segmentation results, which often happens when the scene

contains cluttered background, it is very hard for these co-segmentation

methods to refine the learned models to the good ones.
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Co-Saliency

Regions in the input images are co-salient if they satisfy the following two

conditions:

1. The regions in the individual image exhibit strong contrasting stimuli

with respect to the background;

2. The regions from different images exhibit high similarity.

The most outstanding property of the co-segmentation methods using

co-saliency is that they can deal with the common background (such as

grass, sky and roads) as long as the common background is non-salient

in most of the input images. Works contributing to the co-saliency mea-

sure include [112, 14, 63, 13, 37, 122]. The method in [63] models the

co-saliency as a linear combination of the single-image saliency map and

the multi-image saliency map. The method proposed in [112] introduces

the notion of co-saliency for image matching. It strengthens the similar-

ity measure across different images by requiring that the correspondence

between the co-salient regions from different images should exhibit strong

geometric coherence. The methods proposed in [13, 37] make use of the

repeatedness property among images to define the co-saliency. The work of

[122] applies the co-saliency idea in video object co-segmentation, integrat-

ing image saliency, motion cues and SIFT flow to define the intra-frame

saliency, inter-frame consistency and across-video similarity.

Using Object Proposals

Recently, with the development of category-independent methods for cre-

ating object proposals [30, 1], some co-segmentation frameworks [116, 73,

38, 39, 131, 67] are built upon the object proposals, taking advantages

of their potential to delineate the entirety of objects. The basic idea of

these approaches is to jointly select from all the input images the object
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proposals that depict the common object and that have high objectness

scores. The work of [116] is the first attempt in this category, formulat-

ing the task of joint selection of object proposals as a labeling problem in

a complete graph. In comparison, the work of [73] reduces the complete

graph to a digraph based on local region similarities and saliency maps.

Then, it formulates the joint selection of object proposals as the shortest

path problem. The idea of using object proposals is also applied in the

video object co-segmentation. Similar to [116], the work of [38] and [67]

proposes a labeling problem in a graph of object proposals to model the

video co-segmentation problem. As an extended work of [38], the work of

[39] built upon the graph model of [38] with an additional indicator matrix

to remove the constraint that every foreground object must be present in

all the videos. The work [131] proposes to find the maximum weight clique

of the proposal graph to extract the objects of interest.

Due to the potential to delineate the entirety of objects brought about

by the object proposals, the co-segmentation methods in this category are

able to extract mid-level features for the objects, which significantly ben-

efits both the intra and inter image/video analysis. However, their as-

sumptions that there are object proposals correctly covering the objects

of interest may not be satisfied when the background is cluttered or when

the foreground object are complex in shape or variegated in appearance.

In this case, the segmentation results of the methods in this category will

degrade severely.

21



2. LITERATURE REVIEW

22



Chapter 3

Video Co-segmentation for

Meaningful Action Extraction

In this chapter, we propose a video co-segmentation framework for common

action extraction. As a preprocessing step, we first remove the background

trajectories by a motion-based figure-ground segmentation. To remove the

remaining background and those extraneous actions, we propose the tra-

jectory co-saliency measure, which captures the notion that trajectories

recurring in all the videos should have their mutual saliency boosted. This

requires a trajectory matching process which can compare trajectories with

different lengths and not necessarily spatiotemporally aligned, and yet be

discriminative enough despite significant intra-class variation in the com-

mon action. We further leverage the graph matching to enforce geometric

coherence between regions so as to reduce feature ambiguity and match-

ing errors. Finally, to classify the trajectories into common action and

action outliers, we formulate the problem as a binary labeling of a MRF,

in which the data term is measured by the trajectory co-saliency and the

smoothness term is measured by the spatiotemporal consistency between

trajectories. To evaluate the performance of our framework, we introduce

a dataset containing clips that have animal actions as well as human ac-
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tions. Experimental results show that the proposed method performs well

in common action extraction.

3.1 Introduction

Consider Fig. 3.1, which shows two frames from a sequence example: Two

penguins are tobogganing and one penguin is walking. One basic task of

a vision system is to extract the interesting foreground of this video. This

begs the question: What is the interesting foreground? A straightforward

approach would be to extract those objects that move in the scene [11, 85].

In that case, all the penguins in Fig. 3.1 would be extracted as foreground.

Clearly, this simple criteria is not fine-grained enough for many applications

where more specific kinds of actions may be of interest. The labeling task

for these latter kinds of applications can be collectively termed as video

tag information supplementation [121]. For instance, most of the videos

on Youtube are currently tagged with a set of keywords by the owners.

However, the manual tagging process through which this is usually done

is quite unwieldy and would require far too much labor to provide any

additional information such as when and where the contents depicted by

the tags actually appear in the tagged video. Therefore, most of the videos

are only provided with a simple tag. It will be desirable for a video tag

information supplementation system to augment the tag with more fine-

grained supplementary information. For example, if the video in Fig. 3.1 is

tagged as “Penguin Tobogganing”, only the tobogganing penguins should

be extracted as foreground, while the walking penguin and the rest of the

scene should be treated as background. Another example is that if the

content referred to by the tag only appears in some frames of a long video,

only those frames should be retrieved, while the others can be discarded.

The difficulty of equipping our system with such a capability lies in its
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Figure 3.1: Two frames in a video example. If the desired action is pen-
guin tobogganing, motion cues alone would fail to identify the correct fore-
ground.

need of cues with a higher level of semantic meaning, for instance, cues

describing what is tobogganing.

Such informative content retrieval also has important benefits for action

recognition or detection. In the training of an action classifier or detector,

the collection of positive examples includes not only gathering videos that

contain useful information, but also retrieving those pertinent parts from

these videos. Most of the existing action recognition or detection methods

simply rely on the labor intensive process of manually drawing boxes to

define the action [86, 118]. For the case of human actions, while one may

make use of human pose estimation [129, 2] for automatic retrieval of the

relevant bounding boxes [113], the method may still fail when there exist

extraneous actions.

A similar problem exists in object-oriented image segmentation where

there might exist extraneous objects in the foreground. To handle this

problem, the technique of image co-segmentation has been used [91, 112].

It simultaneously segments common regions occurring in multiple images.

In this chapter, we develop an analogous video co-segmentation framework

for common action extraction, which allows us to extract the desired action

without having to use higher level cues or any learning process.
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In the work of image co-segmentation [112, 63], a pair of regions are

defined to be co-salient if

1. each of these regions exhibits strong internal coherence and has strong

local saliency w.r.t the background, and

2. the correspondence between the regions should be supported by high

similarity of features extracted from these regions.

Our work is based on the similar concept of trajectory co-saliency. Com-

pared to the case of image, the time dimension in video provides additional

advantage such as better delineation of salient regions using the motion

saliency cue, but also presents significant challenges that must be overcome

before the trajectory co-saliency idea can be realized effectively. First we

must have a set of effective spatiotemporal descriptors that can discrim-

inate various animate and inanimate motion patterns. For instance, one

should not match a walking motion to a running motion. The second chal-

lenge is the additional variation brought about by the time dimension. Not

only the common action across the multiple videos can now be misaligned

in both time and space, the action may also exhibit significantly more

complex intra-class variation.

We address these challenges at various levels. At the most basic fea-

ture level, we adopt dense trajectories as the unit of measurement, as they

capture the long-term dynamics of an action better [118, 119]. Compared

to other representation such as tubes [93] or cuboid [27], trajectory rep-

resentation allows us to track action details explicitly without having to

deal with the extraneous region that inevitably comes with a space-time

volume approach. We then adopt the motion boundary histogram (MBH)

[25] to describe the spatial and temporal variation of motion along the

trajectory, as well as to help suppress the uninformative constant motion

induced by camera motions. We then build upon the MBH so as to accom-
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modate similarity measurement between trajectories with different lengths

and probably spatiotemporally misaligned.

Relying solely on similarity measurement at the level of a single trajec-

tory would be inadequate; it would result in many ambiguous matches as it

is not unlikely that two trajectories from different actions share some simi-

larities. Instead, we carry out matching at the level of trajectory clusters, as

trajectory clusters have more discriminative and representative properties.

We first associate each trajectory with a trajectory cluster by a spatiotem-

poral over-segmentation within each video; then, a trajectory is co-salient

if 1) the trajectory cluster it belongs to succeeds in finding a large num-

ber of trajectory matches in another trajectory cluster of the other video,

and 2) these trajectory matches exhibit high geometric coherence. This

cluster association step is carried out at multiple scales; compared to a sin-

gle scale clustering, this allows for far better matches that respect global

configuration of motion pattern.

The final step is formulated as a binary labeling of a MRF which clas-

sifies the trajectories into common action and action outliers. The data

term penalizes any foreground trajectories with low co-saliency and vice

versa, and the smoothness term penalizes the assignment of different labels

to two trajectories near in some spatiotemporal sense in the same video.

Our proposed framework can deal with multiple videos. For ease of pre-

sentation, in this chapter, we use the two-video scenario to illustrate the

flow of our algorithm.

3.2 Related Works

Image Co-segmentation: The rationale behind image co-segmentation

is that the saliency of regions or objects in an image can be significantly

boosted if they recur in multiple images. To leverage on this fact, a number
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of works [91, 115, 45, 76] combine the traditional MRF energy function for

figure-ground separation of an individual image with a global constraint

term that enforces similarity between the foreground histograms extracted

from the different images. The major drawback of these methods is that

they require the backgrounds from different images to be different. A differ-

ent class of image co-segmentation methods incorporates graph partition-

ing [52, 49, 20]. They first build a graph containing intra-image edges and

inter-image edges, and then cast the co-segmentation problem as finding

the global optimum cut of the constructed graph. These works follow the

spectral graph [77, 99] where the solution involves an eigen-decomposition

of a graph Laplacian matrix. In particular, the discriminative clustering

approach [49] combines the spectral clustering technique with positive def-

inite kernels. One of the advantages of this class of methods is that they

can be easily extended to find more than two graph partitions. However,

one drawback is that they have no way of knowing which graph partition

belongs to the foreground and which to the background in an unsupervised

manner.

Among all the image co-segmentation methods, our work is most re-

lated to [63, 112] as all are based on the notion of co-saliency. Our work is

similar to [63] in that both also measure how well a potentially co-salient

region is salient with respect to the background independently within each

image or video. This helps to prevent the co-segmentation step from re-

trieving as foreground those background regions that are shared by the

different images or videos. [63] achieves this via an intra-image saliency

map, whereas we perform a motion based figure-ground segmentation. In

terms of measuring trajectory co-saliency, we employ a method similar to

that of [112]. Both leverage on grouping constraint to handle the ambigu-

ity inherent in matching local features. In [112], images are oversegmented

into regions; the more feature correspondences found within a pair of image
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regions and the stronger geometric compatibility these correspondences ex-

hibit, the higher matching score this pair of regions will obtain. Similarly,

we group trajectory into clusters and calculate the matching scores based

on the number of trajectory correspondences within the trajectory clusters

and whether these trajectory correspondences exhibit geometric coherence.

Video Co-segmentation: The problem of video co-segmentation has

been introduced recently in [93, 17]. The method proposed in [93] extracts

in each input video tubes and regions to be labeled, and iteratively im-

plements Support Vector Machines across different videos to progressively

refine the initial foreground/background segmentation by objectness and

saliency measure. This work has only been demonstrated on a relatively

simple dataset with little extraneous actions and simple synthetic cam-

era motions. The work of [17] proposes a Distance Dependent Chinese

Restaurant process to address the multi-class video co-segmentation prob-

lem. These two works mainly rely on static cues for segmentation, like

image co-segmentation, making use of motion cues only for spatiotempo-

rally consistent labeling. In contrast, our work aims at segmenting action

contents; the motion cues is used not only for enforcing spatiotemporal

consistency but also for commonality mining.

The works of common action discovery [126, 29, 19] can be regarded as

a reduced form of video co-segmentation, though not explicitly named as

such. Given a set of videos depicting a common action, these works attempt

to discover and segment in an unsupervised manner those video frames that

contain common action. In contrast to our work, they perform temporal

segmentation only, without attempting to identify the spatial location of

the common action. Their main steps include extracting feature descriptors

for each video frame, using the bag-of-word (BoW) model to represent

video segments, and finding those video segments that have similar BoW

histograms. When faced with multiple and possibly extraneous actions, it
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will be nontrivial to extend these approaches for spatial segmentation of

the common actions, without some form of trajectory tracking.

Our video co-segmentation framework is further built upon prior re-

search on using dense trajectory for figure-ground separation and video

representation.In employing these methods, we have made some modifica-

tions to better suit our task.

Trajectory-based figure-ground segmentation: Recently, the works

of [11, 16, 35, 36] perform video segmentation based on dense trajectories.

All of these works can be used in our framework for the initial figure-ground

segmentation within each video. However, we find that these methods

are not sensitive to those foreground motions with small motion contrast.

Thus, we propose in this chapter an iterative Gaussian mixture model

(GMM) fitting process to better perform this pre-processing step.

Trajectory description and matching: The works of [118, 119]

adopt the traditional BoW model to treat the MBH features extracted

along dense trajectories for the latter’s description. The work of [48] aug-

ments the preceding descriptor with those for pairwise trajectory locations

as well as motion patterns, so as to encode inter-trajectory relationship.

The work of [86] first over-segments the dense trajectories into several tra-

jectory clusters and then proposes a mid-level video representation based

on these trajectory clusters. Our work is related to [118] but we do not as-

sume that the videos are temporally aligned or have similar length. While

dynamic time warping [84, 133] can be adopted to align the trajectories first

before applying the descriptors, performing dynamic time warping for ev-

ery pair of trajectories from different videos is computationally prohibitive.

Instead, we make use of the temporal covariances of the MBH descriptors

extracted along the dense trajectories to overcome the temporal misalign-

ment problem, the details of which will be explained in later sections.
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1. Trajectory tracking 2. Initial figure-ground segmentation 3. Spatiotemporal over-segmentation
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Figure 3.2: Overview of the system. Best viewed in color.

3.3 Overview

Fig. 3.2 shows the overview of our system. Given two videos that contain

a similar action component, we first use the tracker developed in [106] to

generate dense trajectories in each video.

Next, we perform a “background subtraction” in each video to remove

the background trajectories as much as possible. We eschew the 3D motion

segmentation approaches [96, 128], as when there exit a large number of

motions, they would in general fail to figure out which group of trajectories

belong to background. Instead we propose a figure-ground segmentation

step which is based on 2D motion cues. While it contains several improve-

ments over [35, 85] so as to better extract motion with small contrast (Sect.

3.4), it is not the main focus of this chapter and we do not assume that

good background subtraction in either video is a must.

After the initial background subtraction, the remaining trajectories in

the videos might still contain action outliers, namely, the remaining back-

ground trajectories and those extraneous actions. To remove these action

outliers, we simultaneously perform the segmentation of the remaining tra-

jectories from both videos. This co-segmentation problem is finally cast

as a binary labeling of a MRF (Sect. 3.6, step 5 of Fig. 3.2), with its

customary data and smoothness terms. The preceding steps (3 and 4) ba-
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sically compute the data term, i.e., the trajectory co-saliency that rewards

common observations among multiple videos. We first associate each tra-

jectory with a trajectory cluster by a spatiotemporal over-segmentation

within each video (Sect. 3.5.2, step 3 in Fig. 3.2). Trajectory correspon-

dence candidates are initialized using the proposed extended MBH (Sect.

3.5.1). Then, the trajectory co-saliency is computed by taking into account

both the feature similarity of the trajectories and the geometric coherence

of the associated regions via a graph matching framework (Sect. 3.5.3, step

4 of Fig. 3.2).

3.4 2D Motion Based Figure-Ground Seg-

mentation

Let T denote the trajectory set of a video clip V . Our objective in this

step is to separate T into the foreground F and the background B. The

foreground trajectories are those with high motion saliency w.r.t. the back-

ground.

Denote the i-th trajectory in T as tri. The Euclidean distance between

two trajectories tri and trj at a particular instant t is dt(tr
i, trj) = 1

T
{(uit−

ujt)
2+(vit−v

j
t )

2}, where uit = xit+T−xit and vit = yit+T−yit denote the motion

of tri aggregated over T frames. We set T as 5 in our implementation. Use

sit to represent the saliency of tri at time t. We measure sit using the median

value of the distances between tri and all the others, i.e.,

sit = median{dt(tri, trk), trk ∈ Tt, k ̸= i}, (3.1)

where Tt is the set of trajectories present from t to t+ T .

After calculating sit of all trajectories present at t, we can use a thresh-

old ψ to extract those trajectories of high sit. Our intuition is that the
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Algorithm 1 GMM based figure-ground segmentation

Input: Trajectory set T of a video clip having L frames
B← T, F ← ∅;
for t = 1→ L− T do
while true do

Compute sit of all tri ∈ B ∩ Tt using (3.1);
Fit a GMM based on sit and compute ψ using (3.2);
Ft ← {tri|sit > ψ}, F ← F ∪ Ft, B← B− Ft;
if Ft = ∅ then

break;
end if

end while
end for
return F and B

background is usually the largest object in the scene, and thus, for any

particular trajectory in the background, there usually exist a large amount

of trajectories elsewhere in the scene that move in a similar manner and

hence its median value sit will be small. To set a proper ψ, we can fit a

1D GMM with two components f(s) =
∑

c=1,2 πcN(s|µc, σc), where N is

a Gaussian with mean µc (µ1 < µ2) and standard deviation σc, and πc is

the mixing coefficient. A straightforward way to set ψ is to use the mean

value of µ1 and µ2, i.e., ψ = µ1+µ2

2
. However, this is not reasonable when

µ1 is very close to µ2, indicating that the GMM process fails to isolate the

foreground component so that both of the two fitted components mainly

contain the background trajectories. We thus compare the difference be-

tween µ1 and µ2 against a threshold ρ to determine whether it falls into

this situation, and if so, ψ should be set relying only on µ1, i.e.,

ψ =


µ1+µ2

2
, if µ2 − µ1 > ρ,

µ1 + ρ
2
, otherwise.

(3.2)

The ρ in (3.2) controls the sensitivity of motion detection: The lower ρ is,

the more trajectories will be detected as moving.

For every time instant, we perform the GMM based segmentation it-
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eratively. This is because if one foreground object possesses larger motion

contrast than another one, it would likely happen that one component gen-

erated by the GMM fitting contains the object with larger motion contrast,

while the other contains the background and the object with smaller motion

contrast. Thus, a further GMM fitting process excluding the trajectories

that are already classified as foreground is needed to extract the object

with smaller motion contrast. In our algorithm, the iteration is stopped

when all remaining trajectories are classified as background.

In a video shot, some objects may be stationary in the beginning but

move later. Therefore, we carry out the proposed GMM based segmentation

in a sliding window manner with the window size set as T . The complete

algorithm is summarized in Algorithm 1.

3.5 Trajectory Co-Saliency

Given two videos Va and Vb, we denote the trajectories remaining in Va

and Vb after the initial background subtraction as Fa = {tr1a, ..., trma } and

Fb = {tr1b , ..., trnb } respectively.

3.5.1 Trajectory Feature Distance Measurement

As the first step towards measuring trajectory co-saliency, we must at the

most basic level define a trajectory-to-trajectory distance measure. This

measure must be able to overcome the following challenges: 1) Trajectories

from different videos may have different lengths; 2) Trajectories belonging

to the common action A from different videos are not necessarily spa-

tiotemporally aligned; 3) Features used for the similarity measure need to

be discriminative enough for different action classes and yet can accommo-

date the potentially significant variations within an action class.

Given a trajectory tri of length Li with its local neighborhood of C×C
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Figure 3.3: The extraction of the MBH set. hj contains two components
from Iu and Iv respectively. Here we only show one.

pixels in each frame, a 3D volume of size C × C × Li can be obtained.

From each pair of successive frames, we extract the MBH h as follows: 1)

Compute dense optical flow u and v (which we already obtained during

the dense trajectory generation step), 2) Treating the two “flow images”

Iu, Iv independently, compute the corresponding gradient magnitudes and

orientations, and 3) Use them to weigh the votes into local orientation

histograms (refer to [25, 118] for details). We set the block size C = 32,

the cell size c = 16 and the bin number b = 16 in each cell for full orientation

quantization (See Fig. 3.3). Based on these, two histograms with 2×2×b =

64 bins are obtained from Iu and Iv respectively; we simply concatenate

them to generate a 128-bin histogram. We next normalize the final 128-

bin histogram using its ℓ2-norm. The MBH feature helps to suppress the

non-informative constant motion induced by camera motions.

After extracting all the MBH features of tri, we can represent tri using

Hi = [hi
1, . . . ,h

i
Li−1]. To measure the feature distance between two inter-

video trajectories, all hi
k in Hi should be treated as elements of a set, in view

of the lack of temporal alignment. Thus, a set-to-set similarity definition

is required. The straightforward “min-dist” measure [125] could have been
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used. However, this measure discards most of the information from Hi,

which is not desirable since even two very different types of actions may

share the same local feature at some time instant. Here we propose to

take advantage of the accumulated energy of each bin of the MBHs across

frames, and the temporal correlation between these bins. We first compute

Pi =
1

Li − 1
HiHiT. (3.3)

It is evident that the diagonal elements of Pi are the average energy of each

bin and the non-diagonal ones represent the temporal correlation between

different bins. We produce the final feature by taking the upper triangle ele-

ments of Pi and rearranging them as pi , [P11, P12, . . . , P1d, P22, P23, . . . , Pdd].

Then, we measure the distance between two trajectories from different

videos as follows:

dinter(tr
i
a, tr

j
b) = ∥pi

a − pj
b∥2. (3.4)

3.5.2 Trajectory Grouping

We now associate each trajectory in a video with a trajectory cluster, so

that geometric coherence can be brought to bear on the measurement of

trajectory co-saliency. To form the clusters, we adapt the trajectory group-

ing method proposed in [86]. Given two trajectories tri and trj that co-exist

in a time interval [τ1, τ2], their distance is defined as follows:

dijintra = max
t∈[τ1,τ2]

dijspatial[t] ·
1

τ2 − τ1

τ2∑
k=τ1

dijvelocity[k], (3.5)

where dijspatial[t] is the Euclidean distance of the trajectory points of tri and

trj at the time instant t, and dijvelocity[t] is that of the velocity estimate.

Then, the affinity between trajectories i and j is computed as follows and
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stored in the (i, j) entry of the affinity matrix W :

W(i, j) =
0, if maxt∈[τ1,τ2] d

ij
spatial[t] ≥ 30,

exp(−dijintra), otherwise.

(3.6)

It enforces spatial compactness by setting the affinity to be zero for trajec-

tory pairs not spatially close. If two trajectories never co-exist at any time

interval, the affinity between them is also set to zero.

Assuming there are n trajectories, an n × n affinity matrix W is con-

structed. Spectral clustering [77] is then used to segment these n trajecto-

ries into K clusters. As for the number of clusters K, we do not need to

set it to be exactly the number of objects or motions. We only need to en-

sure the cluster size is large enough so that the cluster-to-cluster matching

procedure has enough number of trajectories to make good decision. Thus,

in our experiment, we simple set K = ceil(n/200).

3.5.3 Graph Matching

Denote the trajectory clusters obtained from Fa and Fb as Ca = {C1
a, ...,C

Ka
a }

and Cb = {C1
b , ...,C

Kb
b } respectively. Following the graph matching formula-

tion in [61], the matching score of two trajectory clusters Ch
a and Ck

b (from

Ca and Cb respectively) can be computed as

S(Ch
a,C

k
b ) =

1

|Ch
a|+ |Ck

b |

{
max

x
xTMhkx

}

s.t.


x ∈ {0, 1}pq

X1q×1 ≼ 1p×1,X
T1p×1 ≼ 1q×1,

(3.7)

where | · | denotes the cardinality of a set; p and q denote the number of tra-

jectory candidates for matching in Ch
a and Ck

b respectively; X ∈ {0, 1}p×q is
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a binary assignment that represents possible trajectory correspondences;

x ∈ {0, 1}pq denotes a column-wise vectorized replica of X; the two-

way constraints of (3.7) ensure that there are only one-to-one trajectory

matches; Mhk is a pq × pq symmetric matrix encoding geometric coher-

ence, with its diagonal element Mhk(il, il) representing the self-coherence

of a trajectory correspondence candidate (i, l), and the non-diagonal el-

ement Mhk(il, jr) representing the pair-wise coherence of two correspon-

dence candidates (i, l) and (j, r). In other words, Mhk(il, jr) is set to be

small if the deformation between (i, j) and (l, r) is large.

In our implementation, we first initialize those inter-video trajectory

pairs with the top 0.01% smallest inter-video feature distances (calculated

in (3.4)) as the correspondence candidates. Then, the graph matching

is performed only between those trajectory clusters Ch
a and Ck

b contain-

ing at least 2 correspondence candidates, while the matching scores S be-

tween those containing less than 2 correspondence candidates are set to

zero. To construct Mhk, the unary terms Mhk(il, il) are set to 0 since all

selected correspondence candidates tend to have high and similar unary

affinity, rendering it unnecessary to differentiate them. As for the pair-

wise terms Mhk(il, jr), we first compute the relative polar coordinates

of the trajectory pair (i, j), i.e., cij = {(dτ1ij , θ
τ1
ij ), . . . , (dτ2ij , θ

τ2
ij )}, where

[τ1, τ2] is the time interval over which the trajectories i and j co-exist.

clr is similarly defined. Imposing strong inter-region geometric coherence

means that we demand cij and clr to be similarly distributed. Assuming

both d and θ are Gaussian-distributed, Mhk(il, jr) is then computed as

Mhk(il, jr) = exp{−1
2
(Bh(dij, dlr)+Bh(θij, θlr))}, where Bh(·, ·) represents

the Bhattacharyya distance between two Gaussian distributions. To solve

the optimization problem in (3.7), we use the spectral matching proposed

in [61], although other methods [18, 134] can be applied too.

Fig. 3.4 shows some graph matching results. It can be seen in the
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Figure 3.4: The results of graph matching between trajectory clusters. The
matching scores by (3.7) are overlaid at the top.

second and third rows that there may be many correspondence candidates

not belonging to the common action. However, the association of trajec-

tory clusters and the incorporation of graph matching help to suppress the

matching scores of the erroneous matches and significantly boost those of

the correct ones (the first row in Fig. 3.4).

3.5.4 Co-Saliency Measurement

With the matching scores of all inter-video cluster pairs at our disposal, we

can now compute the co-saliency of a trajectory in Fa w.r.t Fb as follows:

Mt(tria,Fb) = max
Ck
b∈Cb

S(Ch
a,C

k
b ), tria ∈ Ch

a. (3.8)

which assigns the best cluster-to-cluster matching score of Ch
a as the co-

saliency of all trajectories within this cluster.
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Figure 3.5: Better results can be obtained by MRF labeling rather than
simply thresholding the trajectory co-saliency. From left to right: Original
frames, the segmentation by thresholding the co-saliency using γ = 0.2,
and the segmentation using MRF labeling.

3.6 MRF Based Co-Segmentation

The final classification of the trajectories into common action and action

outliers is cast as a binary labeling of a MRF. This is achieved by minimiz-

ing an energy function incorporating the trajectory co-saliency measure as

the data term, subject to suitable smoothness measure. Formally, denoting

the union set of Fa and Fb as U = {tr1a, ..., trma , tr1b , ..., trnb }, our task is to

find Σ = {σ1
a, ..., σ

m
a , σ

1
b , ..., σ

n
b } so that σi

v ∈ {0, 1} indicates whether triv

belongs to the action outliers or the common action.

The optimal binary labeling is computed by minimizing the following

energy function over the labels σa and σb:

ET (Σ,U) = E(σa,Fa,Fb) + E(σb,Fb,Fa), (3.9)
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where

E(σv1 ,Fv1 ,Fv2) =
∑

triv1∈Fv1

D
(
σi
v1
, triv1 ,Fv2

)
+λV

∑
{i,j}∈N

V (σi
v1
, σj

v1
, triv1 , tr

j
v1

),

which consists of a data term D and a smoothness term V , with λV as

the weighing factor. The purpose of D is to penalize the assignment of

trajectories with low co-saliency to the common action and vice versa. It

is defined as:

D (σ, tr,F) = δσ,1(1− f(tr,F)) + δσ,0f(tr,F), (3.10)

where δ·,· is the Kronecker delta, i.e., δp,q = 1 if p = q and otherwise δp,q = 0;

f is in turn defined as

f(tr,F) = max
(

0, sign(M̂t(tr,F)− γ)
)
, (3.11)

in which M̂t(·, ·) linearly normalizes the trajectory co-saliency Mt(·, ·) in

(3.8) to [0, 1] and γ is a threshold.

The smoothness term V encourages the labeling to be spatiotemporally

consistent and is defined as

V (σi, σj, tri, trj) = (1− δσi,σj) exp(−dijintra), (3.12)

where dijintra is calculated as in (3.5). To build the neighbor pair set N, we

use Delaunay triangulation to connect the tracked points for each frame

of a video. Any pair of trajectories that are ever connected by one of the

Delaunay triangulations is considered to be a neighbor pair.

Since it is a binary labeling with the smoothness term being a metric,

the global minimum can be computed via graph cuts [9]. Note that the
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Figure 3.6: Co-segmentation of the Cha-cha-cha videos. From left to right:
original frames, ground truth, segmentation of [93], our method with γ =
0.1 and that post-processed by [79].

Table 3.1: Video co-segmentation results of the chacha sequences.

video chacha1 chacha2 chacha3 chacha4

Labeling accuracy on dense trajectories (%)
ours (γ = 0.1) 98 98 97 98

Labeling accuracy on pixels (%)
ours (γ = 0.1) plus [79] 96 96 95 96

[93] 61 81 56 74

labeling is processed at the trajectory level rather than at the cluster level,

since it is easier to impose the spatiotemporal smoothness constraint (3.12).

This smoothness constraint helps to restore parts of the common action

that are not initially detected as co-salient back to their correct group.

The superiority of the MRF labeling results is illustrated by Fig. 3.5.

3.7 Experiment

3.7.1 Comparison with [93]

In this subsection, we apply our method on the Cha-cha-cha videos from

the Chroma database [111]. These videos are suitable for the action co-

segmentation problem for that they contain the same instance of object

(two cha-cha-cha dancers) with different synthetic animated backgrounds.

The main challenges of this dataset lie in the highly cluttered background
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and the movement of camera.

We compare our results with those reported in [93]. The method of [93]

is the first method that applies the concept of co-segmentation to video,

aiming to extract the objects of the same class moving in a similar manner.

It belongs to the learning based methods as introduced in Chapter 2: it

initializes the object models and the background model based on the results

of motion saliency, and then, iteratively updates the object model and the

background model in a cross-validation manner using the input videos.

The experimental results are shown in Fig. and Table 3.7.1. Since [93]

presented their results in terms of pixels rather than dense trajectories like

ours, we use the method of [79] to turn our trajectory labels into pixel

labels for comparison. The ratio of correct labels (labeling accuracy) is

summarized in Table 3.7.1. It can be seen that our method obtains at least

97% labeling accuracy at the level of trajectories; for pixels, our method

achieves at least 95%, significantly better than the results of [93] (74%).

As reported in [93] and can be seen from the third column of Fig. 3.6,

its algorithm is sensitive to wrong initial segmentation caused by those

background contents that confuse the objectness and saliency measures.

3.7.2 Experiment on a 80-pair Dataset

Dataset and Evaluation Method: We build a dataset comprising 80

pairs of sequences containing a significant amount of action outliers in the

sense defined by this chapter. Among them, 50 are selected from the UCF50

[87] depicting human actions. We should remark that these 50 human

action video pairs are temporally segmented, i.e., the tagged actions appear

throughout the clips. Another 30 pairs are excerpted mainly from various

BBC animal documentaries depicting animal actions. Different from the

collected human action videos, the animal action videos are relatively longer

(most of them have more than 300 frames) and the tagged actions need not

43



3. VIDEO CO-SEGMENTATION FOR MEANINGFUL
ACTION EXTRACTION

Table 3.2: Action tags included in the dataset and the corresponding num-
ber of pairs of sequences.

Human Action Num. Animal Action Num.

Basketball Shooting 5 Big Cat Running 1
Bench Press 6 Big Cat Walking 3
Clean and Jerk 3 Bird Swallowing Prey 4
Fencing 6 Dragonfly’s Ovipositing Flight 2
Horse Riding 3 Frog Jumping off 1
Jumping Rope 5 Frog Calling 1
Lunges 6 Inchworm Moving 2
Pommel Horse 2 Kangaroo Jumping 3
Rope Climbing 1 Penguin Tobogganing 3
Skate Boarding 2 Penguin Walking 4
Skiing 6 Snake Slithering 3
Swing 5 Dolphin Breaching 3

stretch over the entire videos. Table 3.2 lists all the included action tags

and the corresponding number of pairs. Taken together, these 80 video

pairs allow us to evaluate our algorithm’s performance on both the spatial

and temporal extraction of the tagged contents.

We have annotated all the common actions with bounding boxes in

order to quantify our common action extraction performance (Examples

of the bounding boxes can be seen in Fig. 3.7, Fig. 3.8 and Fig. 3.9).

For the 30 animal action video pairs, indices of all frames where the tagged

actions appear are also given. To evaluate the performance on action outlier

detection, we measure the action outlier detection error (AODE) as the

number of bad labels of the action outliers over the total number of action

outliers, which is estimated by counting the moving trajectories outside the

bounding boxes. To evaluate the performance on spatial localization, we

define the localization score (following [86]) as LOC = 1
T

∑T
t=1[

|At∩Lt|
|At| ≥ α],

where [·] is the zero-one indicator function, Lt and At are respectively the

set of points inside the annotated bounding box and those belonging to

the detected common action at the time instant t, and α is a threshold

that defines the minimum acceptable overlap. Moreover, we evaluate the
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coverage of our localization using COV = 1
T

∑T
t=1

Ar(At∩Lt)
Arg

, where Ar(·) is

the area of the minimum bounding box formed by a set of given points,

and Arg is the area of the given bounding box.

To evaluate the temporal localization performance, we compute another

two measures: missing rate (MR) and false alarm rate (FAR) . Denot-

ing those frames where the common action appears as active frame, MR

then represents the rate of error of mistaking active frames for non-active

frames, whereas FAR represents that of mistaking non-active frames for

active frames. To determine whether a frame in a clip is to be regarded as

active or not, we first find the frame in this clip that contains the maximum

number of detected common action points and denote this maximum num-

ber as Nmax. Then, all frames in this clip that contain more than ηNmax

(η < 1) detected common action points are regarded as active frames. As

a baseline comparison for temporal localization, we select a recently pro-

posed method for unsupervised temporal commonality discovery (TCD)

[19]. It uses a bag-of-temporal-words (BoTW) model to represent video

segments and then finds two subsequences from two different videos having

the minimum distance measure, with the constraint that both of the sub-

sequences are longer than a preset window length L. In the experiment,

we use the MBH as the basic feature for input to TCD (as this method

is feature-neutral). In particular, only those MBHs along the trajectories

detected as moving by the initial figure-ground segmentation (Sect. 3.4)

are fed to the BoTW model.

Experimental setting: We set the sampling density of the trajectory

tracker [106] as 4 (only every 4th pixel in the x and y direction is taken

into account) for the human action clips and 8 for the animal action clips.

We discard all trajectories whose lengths are less than 8 frames. For the

motion based figure-ground segmentation, ρ in (3.2) is set as ρ = 3. The

threshold γ in (3.11) is set as γ = 0.2 and the scalar parameter λV in (3.10)
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Table 3.3: Common action extraction results of our method.

Criteria LOC LOC LOC COV AODE
(α = 0.9) (α = 0.7) (α = 0.5) (%) (%)

Human Action (50 video pairs)
Mean 0.76 0.89 0.91 61.78 13.58
Median 1.00 1.00 1.00 70.58 11.04

Animal Action (30 video pairs)
Mean 0.82 0.89 0.93 38.98 12.00
Median 0.93 1.00 1.00 39.46 3.20

is set as λV = 50.

Experiment results: Table 3.3 presents the quantitative results of

the spatial localization performance of our method. It can be seen that

our method has an average localization score more than 0.75 even when

the threshold α is as high as 0.9. Moreover, the trajectories that are ex-

tracted as common action cover more than 60% and 35% of the annotated

bounding boxes for the human action dataset and the animal action dataset

respectively. The figure is significantly lower for animal actions due to the

substantial postural variation in some categories (e.g. the Black Skimmer

and Shoebill in example (1) of Fig. 3.9), compounded by the much more

irregular outlines of the animals that are not well fitted by a rectangular

box. As for the subtraction of action outliers, our method is able to detect

more than 85% and 90% of the action outliers for the human action dataset

and the animal action dataset respectively.

In Fig 3.10, we depict the MR and FAR of our method and the TCD

[19] with various settings of η and window lengths. It can be seen that

our method can achieve a low MR as well as a low FAR (especially for η

between 0.1 and 0.3), significantly outperforming TCD [19]. One reason for

the unsatisfactory performance of TCD is that it heavily predicates on the

assumption that the common action from two different videos shares the

same entries of the built BoTW whereas the temporal action outliers fall
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(1)

Basketball Shooting

(2)

Fencing

(3)

Horse Riding

(4)

Jumping Rope

Figure 3.7: Results of video pair examples from the human action dataset.
In each example, from top to bottom: two image frames from the pair,
and the co-segmentation results. Blue denotes the background trajectories
detected in the initial background subtraction step; green denotes the de-
tected action outliers; red denotes the detected common action. The yellow
bounding boxes are the given annotations that indicate the interesting re-
gions. The corresponding tags of the videos are overlaid on the top of each
example.
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(1)

Lunges

(2)

Clean and Jerk

(3)

Bench Press

(4)

Swing

(5)

Skiing

(6)

Skate Boarding

Figure 3.8: Results of video pair examples from the human action dataset.
In each example, from top to bottom, same figure and color arrangement
as in Fig. 3.7.
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(1)

Bird Swallowing Prey

(2)

Kangaroo Hopping

(5)

Dragonfly’s Ovipositing Flight

(6)

Snake Slithering

(4)

Penguin Walking

(3)

Penguin Toboganning

Figure 3.9: Results of six examples from the animal action dataset, with
the same color notation scheme as in Fig. 3.7. In each example, multiple
frames of the two input videos are arranged in time order. The active
and the non-active frames are bordered in red and green respectively. The
corresponding tags are overlaid on the top-left of each example.
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Figure 3.10: Temporal localization performance on the animal action.

into other entries. This is, however, usually not the case when the BoTW

is based on low-level features such as the MBH and no learning process is

used to discard the uninformative ones. Another important shortcoming of

TCD is that it cannot deal with spatial action outliers, i.e., those extraneous

actions co-existing with the common action.

Some qualitative results of our method are also depicted in Fig. 3.7,

Fig. 3.8 and Fig. 3.9. It can be seen that the proposed figure-ground

segmentation based on 2D motion cues is able to subtract most of the still

background across a wide variety of motion-scene configurations. However,

it has poor performance when the camera undergoes complex motions; nev-

ertheless, after further co-segmentation, most of the background is finally

removed as action outliers (see examples Fig. 3.7(3), Fig. 3.8(1), Fig.

3.8(5) and Fig. 3.8(6)). The results shown in Fig. 3.9 demonstrate that

the proposed method is able to spatially and temporally locate the tagged

common action. It can be seen from examples (3) and (4) of Fig. 3.9 that

our method succeeds in distinguishing different actions of the same species

having nearly the same appearance. Furthermore, some of the common

actions can be identified across rather different bird species (example (1)

of Fig. 3.9), ignoring the peculiarities of appearance.
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3.8 Conclusions

We have presented a video co-segmentation framework for common action

extraction using dense trajectories. Given a pair of videos that contain a

common action, we first perform motion based figure-ground segmentation

within each video as a preprocessing step to remove most of the back-

ground trajectories. Then, to measure the co-saliency of the trajectories,

we design a novel feature descriptor to encode all MBH features along the

trajectories and adapt the graph matching technique to impose geometric

coherence between the associated cluster matches. Finally, a MRF model

is used for segmenting the trajectories into the common action and the

action outliers; the data terms are defined by the measured co-saliency and

the smoothness terms are defined by the spatiotemporal distance between

trajectories. Experiments on our dataset shows that the proposed video

co-segmentation framework is effective for common action extraction and

opens up new opportunity for video tag information supplementation.
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Chapter 4

Video Object Co-Segmentation

in Complex Scenes

This chapter address the problem of video object co-segmentation when

faced with the complex foreground and background. Departing from the ob-

jectness attributes and motion coherence used by traditional figure-ground

separation methods, the proposed video object co-segmentation framework

in this thesis places central importance on the role of “common fate”, that

is, the different parts of the foreground should persist together in all the

videos. To operationalize this idea, we first extract seed superpixels by

a motion-based figure/ground segmentation method. We next formulate a

set of initial to-link constraints between these superpixels based on whether

they exhibit the characteristics of common fate or not. An iterative man-

ifold ranking algorithm is then proposed to trim away the incorrect and

accidental linkage relationships. Then, we perform clustering at two levels:

the superpixel-level and the object-level; this two-level clustering is needed

because features at the superpixel level are too low-level to adequately

discriminate between different objects. Firstly, based on the trimmed to-

link constraints and combining the spatial information, the superpixel-level

clustering groups the seed superpixels into object instances. Next, com-
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puting the features for the obtained object instances and treating them as

nodes, the object-level clustering further groups the object instances into

different object classes. This two-level clustering algorithm also performs

automatic model selection to estimate the number of object classes in the

foreground. Finally, a multiclass labeling MRF is used to obtain a refined

segmentation result. To evaluate the performance of our framework, we in-

troduce a new dataset in which the videos have complex form and motion

which are liable to ambiguity in interpretation. Our experimental results on

this dataset show that our method successfully addresses the challenges in

the extraction of complex foreground and outperforms the state-of-the-art

video segmentation and co-segmentation methods.

4.1 Introduction

Imagine how, starting with a lack of models for most categories of objects, a

developing young infant, say 7-8 month old, can come to acquire the faculty

of segmenting the world into objects. It is believed that young infants

gradually perceive individual objects as unified, bounded, and persisting by

repeated observations from different perspectives and how objects interact

with others [102, 110]. However, the computational process underpinning

this developmental process is not well-explored. Imagine another (common)

scenario where we are given multiple videos with the same tag, but no

further information is provided; how can we automatically augment the

tag with more fine-grained information such as the segmentation of the

tagged object [121]? These two scenarios provide the motivation for our

work proposed in this chapter.

Our work is akin to the traditional figure-ground separation albeit in

a multiple video setting. We prefer calling it foreground separation rather

than figure-ground separation in such a multiple video setting, as not nec-
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essarily all the figures in the individual videos are of interest — some figural

objects are only present fleetingly and/or coincidentally. Despite some such

subtle differences, our problem has many similarities with the traditional

figure-ground separation works. Of course, figure-ground separation has

been a longstanding important problem. Despite many attempts made

over decades [33, 70, 88, 103, 58, 130, 104], the problem remains difficult

or even ill-defined. In those methods based on a single image, classical

mid-level visual cues to figure/ground assignment such as convexity and

parallelism are used [33, 70, 88, 103]. However, most proposed represen-

tations are still too local and bottom-up to handle the complex variability

in natural images. They were usually demonstrated solely on line images,

with a few exceptions [70, 88].

The reason for figural assignment being hard is that it is not a purely

bottom-up phenomenon [69]. Top-down cues such as familiar shape con-

tours play a role [82], especially in natural scenes where many objects may

not have convex shape or have holes. Moreover, the figure itself may con-

tain multiple objects (e.g., a pair of birds in courtship ritual), which may

be spatially separated with each other so that many of the figure-ground

segmentation methods may fail to extract the whole figure due to their con-

tinuity assumption about the figure. Besides, these multiple objects may

belong to the same object class (e.g., a group of swimming fish) or different

ones (e.g., the male and female birds in courtship ritual); thus, multi-class

segmentation among multiple instances is required to give a fine-grained

analysis for the foreground, which again is not possessed by many of the

figure-ground segmentation methods.

When we are viewing a dynamic scene, motion cues provide strong

information about figural assignment. For instance, when an object in the

scene moves, not only does it attract strong attention but it also provides

a strong occlusion cue that can reveal the outline of the figure. Despite
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(c)

(a) (b)

(d)

Figure 4.1: Challenges of video foreground co-segmentation: variegated
objects (such as the ostrich and the panda’s variegated black and white
appearance), objects hardly separable from the background (such as the in-
conspicuous female Bird of Paradise in (c)), and motion ambiguities caused
by articulated motions of many animals, and extraneous objects moving
together momentarily by chance (e.g. the green toy horse in (b)). First
row: Original videos. Second row: Video segmentation results from [11].
Third row: The selected object proposals of [130]. Fourth row: Results
of the proposed video foreground co-segmentation method.
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the utility of motion cues, not many methods exploit motion for figure

extraction. Recently, video segmentation methods [11, 79, 104] divide the

video into motion layers, though the focus of these methods has been not so

much on figure-ground separation. For simple scenes (e.g. near planar) or

object motions (e.g. rigid), these approaches of course also yield figure and

ground as two layers, but for more complex scenes and object motions, this

simple strategy would fail. The natural world, unfortunately, abounds with

such motions, such as the slithering motion of snake, the articulated motion

of mammals (e.g. the ostrich in Fig. 4.1(a)), and indeed, almost all animal

motions. The video segmentation approach is also plagued by the practical

difficulties of obtaining accurate optical flow. Fig. 4.1 illustrates two of

these difficulties. In the second row of Fig. 4.1(a), the elongated head

and neck of the ostrich are poorly delineated because of the well-known

inaccurancy of the optical flow around the object boundary or around the

thin objects; in Fig. 4.1(c), the smaller female Bird of Paradise in the near

ground fails to be separated from the background due to the paucity of

textural details in the female bird.

From the above brief review of the figure-ground separation problem, we

can make the following observations. The image-based methods are often

plagued by over-segmentation, due to the variegated appearance of many

objects and the non-convex shapes of many real-world objects. While the

video-based methods can use motion cues to bind object segments together,

they often over-rely on motion coherence which limits its applicability for

natural motions. The use of motion cue also does not guarantee accurate

figure outline due to the practical difficulty of estimating optical flow (See

the second row of Fig. 4.1).

In our problem setting, the use of motion (or form for that matter)

brings another complication: How to determine whether a group of seg-

ments (coherent in motion or form) are from the same object, and not from
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different objects moving together momentarily? One example is shown in

Fig. 4.1(b) where a panda is playing with a toy horse. In other videos,

there might be multiple moving objects. Some of them might be only mo-

mentarily present, but some might be interacting with one another on a

prolonged basis, for instance, the two Birds of Paradise in courtship ritual

in Fig. 4.1(c). In the former example, imagine we are trying to segment all

the pandas in a group of videos bearing the tag “panda”. Then clearly we

are not interested in the toy horse. In the latter example, there might be

strong reasons to regard the multiple objects as a single foreground entity.

Recently, the use of object proposals [1, 30] is introduced for the image-

based or video-based figure-ground segmentation [58, 130]. The limitation

of this kind of object proposal methods is that when the target object is

complex itself or surrounded with complex scene, they may fail to generate

adequately good proposals to correctly cover the whole figure region. One

easy way to solve this is increasing the number of proposals generated.

However, this at the same time increase the difficulty for the segmentation

methods to select the correct object proposal since there would be a large

amount of object proposals and the correct one may have a low ranking

according to the objectness measure. The third row of Fig. 4.1 illustrates

the limitations of the usage of object proposals in video segmentation: the

method fail to generate or select the object proposals to cover the neck

and feet of the ostrich (Fig. 4.1(a)) or the bottom part of the panda (Fig.

4.1(b)).

In solving our problem of video foreground separation, we need to han-

dle the aforementioned difficulties faced by the image-based approach as

well as those using dynamic cues. Our definition of foreground is much more

generic than those used for figure-ground separation; we eschew assump-

tions used by the preceding approaches, such as those based on objectness

attributes and motion coherence. As we have at our disposal multiple video
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(a) Input videos

(b) Initial figure-ground segmentation
and to-link constraint pairs

(c) Discovering shared
to-link constraints

(d) Two-level clustering

(e) MRF based segmentation

t

Figure 4.2: Algorithm overview with steps (a) to (e).

sequences, with the foreground of interest appearing in all of them (though

both the background and the actions performed by the foreground could

be different), the foreground is simply an object that is recurring in all the

videos, moving differently from the background but having certain perma-

nence quality about it. Operationally, this permanence quality is checked

by requiring the different parts of the foreground should persist together

in all the videos. In other words, the goodness of the foreground is based

upon “common fate”, which we believe is a much more generic assumption

than those used for figure-ground separation. By observing the appearance

under different environment, we will be able to tease out the stable from

the accidental, not getting entangled in possibly spurious correlations of

features. For instance, our algorithm has successfully removed the toy the

panda is playing with (fourth row of Fig. 4.1(b)), because the toy does not

appear in all videos.

Fig. 4.2 shows an overview of the proposed method. It first performs

an initial motion based figure-ground segmentation within each video to

get seed superpixels for foreground and background (Sect. 4.3.1). We also

generate initial pairwise to-link constraints between these superpixels if

they manifest the characteristics of common fate in a video. Among the

initial constraints, there could be many incorrect ones due to extraneous
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objects moving together momentarily by chance and the failure of the initial

figure-ground segmentation. Therefore, in the next step, our goal is to

refine the to-link constraints by looking through all of the given videos so

that the correct ones are retained, whereas the spurious connections are

pruned (Sect. 4.3.2). We model the refinement of the to-link constraints as

a manifold ranking problem in which the incorrect constraints are removed

iteratively via a cross-validation procedure.

Based on the seed superpixels and the corrected to-link constraints, we

then perform a two-level clustering to segment the seed superpixels into dif-

ferent object classes. The first level clusters the seed superpixels based on

color appearance, subject to the to-link constraints (Sect. 4.3.3). This step

should be able to group a variegated object consisting of multiple distinctive

regions moving together into a single foreground, but separate multiple re-

gions that belong to different objects but happen to move together in some

videos. However, such clustering using low-level superpixels is inadequate

on its own: when two different objects have some shared parts, they may

be clustered into the same class due to the strong affinity between the

corresponding superpixels in the affinity graph (see Fig. 4.5(a)). To over-

come this issue, we perform a further object-level clustering (Sect. 4.3.4).

Specifically, we form object instances by considering both the superpixel

level clustering results and their spatial connectivity information, extract

mid-level features from the object instances and finally perform clustering

based on these mid-level features. Since the shared parts from different

objects only contribute to part of the mid-level features, the latter are now

much more discriminative such that the object-level clustering can correctly

cluster the object instances. In this object-level clustering step, we want

to allow for the situation when the multiple object instances belong to the

same object class; therefore, we do not require different object instances

from the same frame of a video to be mutually exclusive, that is, only one
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of the object instances can be selected as foreground, like [130, 38, 131].

We also want to allow for multiple objects in the foreground, such as the

male and female Bird of Paradise in Fig. 4.1(c). Thus, in general, we need

to perform model selection in this clustering step to decide the number of

object types. Finally, we perform multiple and multiclass labeling MRFs

to obtain the final refined co-segmentation result (Sect. 4.3.5).

We test our method on a newly created dataset, entitled CFViCS for

complex foreground video co-segmentation. It comprises videos highlight-

ing the aforementioned foreground segmentation challenges. The experi-

ments in Sect. 4.5 show that our method successfully addresses these chal-

lenges and outperforms the state-of-the-art video segmentation [11, 79, 130]

and co-segmentation [17, 131] methods.

4.2 Related Works

Video Segmentation: Video segmentation methods such as [11, 79] make

use of dense trajectories and the associated motion cues for grouping. Due

to the lack of explicit notion of how the figure looks like, they simply assume

that the figure contents are the ones moving in the scene. Clearly, this

criteria is not fine-grained enough in many cases where some extraneous

objects of no interest are also moving or momentarily interacting with the

figure. Another limitation of these methods arises when there are objects

with articulated motions. In this case, relying on the pairwise motion

distance for clustering is likely to result in over-segmentation.

Some other methods make use of dense optical flow between two frames

for figure-ground segmentation [23, 85]. They are also easily plagued by the

practical difficulties of obtaining accurate optical flow. The work of [104]

aims to address this issue by simultaneously estimating accurate flow and

solving for a figure-ground segmentation that yields good flow estimates.
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While it is able to recover fine structures, it still faces the limitation of a

two-layer segmentation and would suffer from the various ambiguity prob-

lems mentioned above.

Recently, several video segmentation methods built upon object pro-

posals [1, 30] that are proposed to detect the primary object in videos

[58, 130]. When faced with the scenario in Fig. 4.1(b), they are still likely

to suffer from the aforementioned issue as they are unable to determine

whether there is an object with variegated appearance or there are multi-

ple objects moving together. Other modes of failure include: the employed

object proposal method may fail to generate adequately good proposals to

correctly cover the whole figure region. Even when there exist good object

proposals, the video segmentation algorithm may still fail to identify them

and thus select the bad ones. This is likely to happen especially when the

object has non-compact shape, for instance, the ostrich in Fig. 4.1(a). Due

to the variegated appearance as well as its articulated motion, the selected

object proposals by [130] does not cover the neck and the feet of the ostrich

(third row, Fig. 4.1(a)).

Co-segmentation: The problem of object co-segmentation is first ad-

dressed by [91] on an image pair. The usage of object proposals has also

been introduced to co-segmentation [116, 38, 39, 131, 67]. They share with

other object-based approaches the same limitation mentioned in the pre-

ceding paragraph.

There are other co-segmentation works that segment objects using videos

[117, 17]. The former [117] formulates subspace clustering for video co-

segmentation which jointly utilizes appearance feature across multiple videos

and motion features within each video to segment the foreground of interest.

The assumption that the motion of each object forms a low-rank subspace

makes this work incapable of handling objects with articulated motion.

While it can treat multiple objects as foreground, it cannot provide fur-
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Table 4.1: Comparison of our algorithm with previous video and image co-
segmentation methods (top and bottom halves respectively). MS: whether
an algorithm can perform model selection. MF: whether an algorithm is de-
signed for multiple figure object segmentation. CM: whether an algorithm
can deal with the content misalignment issues (see text for discussion).
Hetero-FG: whether an algorithm can identify a heterogeneous object as a
single object. Y and N represent yes and no respectively

Method MS MF CM Hetero-FG

Ours Y Y Y Y
ddCRP [17] Y Y Y N
ObMiC [38] N Y N Y

RMWC [131] N Y Y Y
SC&QPBO [117] N N N Y

DC-M [50] N Y N N
MFC [54] N Y Y Y
OC [116] N N N Y

ther segmentation into the individual foreground objects. The latter [17]

formulates a distant-dependent Chinese Restaurant Process across multiple

videos based on motion cues and appearance cues, but the co-segmentation

results are not organized into foreground and background explicitly. It also

suffers from severe over-segmentation when dealing with complex scenes

with a lot of clutter.

Table 4.1 compares our method with the previous video and image ob-

ject co-segmentation methods. As explained above, our method can handle

foreground with variegated appearance and non-compact shape, foreground

comprising multiple objects (with the number of objects unknown), and fi-

nally, can remove extraneous or spurious objects momentarily present in

the scene or interacting with the foreground. Note from Table 4.1 that [17]

and [54] are also able to handle extraneous objects that are only present

in some of the scenes. They termed this kind of images or videos as ex-

hibiting content misalignment. One big difference is that they choose to

retain these extraneous objects in the foreground. In principle, both these

two and our methods have the ability to discard or retain these extraneous
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objects, depending on the needs of the applications.

4.3 Proposed Method

Given a set of N videos V = {V1, V2, ..., VN}, we first run the motion-aware

superpixel segmentation of [40] for each frame within each video, and then

represent each video as a collection of superpixels, i.e., S = {S1, S2, ..., SN},

where Si denotes the superpixel collection of Vi. Our video co-segmentation

method presented in this section is based on these superpixels as input.

4.3.1 Discovering Seed Superpixels and Initial Pair-

wise Constraints

The objective in this step is to perform a rudimentary foreground-background

segmentation in each video to obtain a set of seed superpixels that are mov-

ing differently from its surrounding background and some initial pairwise

to-link constraints among those seed superpixels that manifest the char-

acteristics of “common fate”. In this rudimentary foreground-background

segmentation, often only fragments of the foreground are selected, together

with extraneous background or other undesirable objects. Thus, further

processing of foreground-background separation will be needed (Sect. 4.3.2,

4.3.3 and 4.3.4).

To extract the superpixels that are moving differently from the back-

ground, we adopt the latest technique in computing the motion saliency

map [85] and the inside-outside map [81]. The motion saliency measure

of [85] exploits the local feature contrast in motion (optical flow field) to

separate the foreground. It is relatively robust to any complex intra-object

motion differences that could arise from self-occlusion or articulated mo-

tion. For instance, it allows different intra-object parts to have different

motions (the head and neck of the ostrich in Fig. 4.1(a)) or occlude each
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other, as long as the contrast with the background is large enough. The

drawback is that it depends on sufficient motion contrast (see the missing

arm in the second column, second row of Fig. 4.3), and could be sensitive

to spurious motion contrast due to depth discontinuities in the background.

Different from the motion saliency that relies on local motion contrast,

the inside-outside map of [81] globally estimate whether a pixel is inside the

moving object via the point-in-polygon rule. Specifically, the inside-outside

map of is formed in two steps: First, by detecting motion boundaries that

might be incomplete, and second, by detecting the inside points, all of

whose ejecting rays should intersect the motion boundaries an odd number

of times. Since this inside-outside measure performs in a global manner,

it significantly outperforms the motion saliency measure when the fore-

ground has a small motion contrast against the background which may

generate incomplete motion boundaries. However, it is erroneous when the

foreground object possesses large intra-object motion differences, since in

this case, the differences could raise too many edges in the interior of the

foreground, violating the basic premise of the point-in-polygon rule.

Fig. 4.3 shows both the motion saliency map and the inside-outside

map of two frames of a video, where their aforementioned pros and cons

are well-illustrated in the second and third columns. We found that the two

measures can actually complement each other to resolve their drawbacks.

Thus, we combine them to extract those seed superpixels s that are likely

to cover the foreground region:

SF = {s
∣∣ sal(s) > α or in(s) > β }, (4.1)

where SF denotes the collection of seed superpixels (F stands for figure);

sal(·) and in(·) represent the average motion saliency and the inside points

ratio of a superpixel respectively; α and β are the thresholds, and they are

set as α = 0.4 and β = 0.3 which are empirically verified suitable. The

65



4. VIDEO OBJECT CO-SEGMENTATION IN COMPLEX
SCENES

Figure 4.3: First column: Two original frames. Second column: motion
saliency measure. Third column: inside-outside measure, with intensity
indicating degree of inside-ness. Fourth column: extracted patches by
combining motion saliency and inside-outside measure.

fourth column of Fig. 4.3 shows initial foreground-background separation

results. Despite the relatively good result of the foreground-background

segmentation for this example, there are plenty of other examples where

the initial segmentation is inadequate, for instance, the panda shown in

Fig 4.2.

The discovering of seed superpixels only provides possible components

of the foreground objects. The relationship of these seed superpixels in

motion and appearance needs to be investigated to determine how they

form the foreground objects. In the rest of the subsection, we aim to

find the pairs of seed superpixels that manifest the “common fate” and

assign them to-link constraints. These constraints will eventually guide

the formation of the correct foreground model in a constrained clustering

setting. Denoting SF
n as the seed superpixels of video Vn, we want to build

for SF
n a constraint matrix Zn = {Zij}Nn×Nn , Nn = |SF

n|:

Zij =


1, (si, sj) ∈M

0, otherwise.

(4.2)

where M denotes the set of to-link constraints. To compute M, we select

a pair of superpixels (si, sj) that are adjacent in a frame, and warp them

to the next 5 and previous 5 frames using the forward and the backward
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optical flow respectively. If the warped superpixels still remain close to

each other, i.e., exhibiting common fate, (si, sj) are selected to be in M;

otherwise, no constraints are assigned to (si, sj).

Since we rely only on the gestalt law of common fate to generate con-

straints, the graphs are robust to intra-object motion difference arising from

self-occlusion or articulated motions. For instance, the different parts of the

ostrich are linked together due to the fact they stay connected despite the

articulated motions and distinct color zones. Evidently, there would still

be incorrect constraints, such as those to-link constraints that arise when

there are different objects interacting with each other in a single video (e.g.

the panda and the toy horse). This is where one needs to use multiple

videos to tease out the stable aspect of the foreground appearance.

4.3.2 Discovering Valid To-Link Constraints

Given N input videos V = {V1, V2, ..., VN}, the seed superpixels SF =

{SF
1 , S

F
2 , . . . , S

F
N}, and the to-link constraint set M, the objective in this

subsection is to prune the incorrect constraints among M. Based on the

assumption made in the last subsection, namely, those correct to-link con-

straints are stable and recur for all input videos while those incorrect ones

should not recur in most videos, we propose an iterative manifold ranking

algorithm to deal with the aforementioned issues. Our key idea is similar

to the cross-validation procedure, where the input constraints are divided

into two subsets. The incorrect constraints from Vn are identified as those

having low ranking scores, when ranked by using the constraints from the

other (N − 1) videos as cross-validation (also known as queries).

The proposed algorithm is summarized in Algorithm 2 and will be dis-

cussed in what follows. First, we start with computing an affinity matrix

W ∈ RM×M (M =
∑N

n=1 |SF
n|), which describes the similarity between all

seed superpixels. We extract the L1-normalized color histograms as the
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Algorithm 2 Iterative Manifold Ranking for Pruning of To-Link Con-
straints
Input: W, {Z1,Z2, . . . ,ZN} and T .
for t = 1→ T do
for n = 1→ N do
for m = 1→ N,m ̸= n do

Compute the matrix Gm
n by (4.5);

Get the manifold ranking scores fmn by (4.6);
end for
Compute fn by (4.7);

end for
if no unshared constraints detected then

break;
end if
Delete the unshared to-link constraints in each video;
Update every Zn as in (4.8);

end for
Z∗ = diag(Z1,Z2, . . . ,ZN);
return Z∗

feature descriptors of superpixels as in [50, 17] and compute the pairwise

affinity using the following formula:

W(i, j) = exp

(
−∥χ

2(ci, cj)∥2

σc

)
, (4.3)

where ci denotes the color histogram and χ2(·, ·) represents the χ2-distance

between two histograms.

We then run an iterative ranking process to discover the to-link con-

straints that are most shared by everyone. In every iteration t, we traverse

every video and select the constraints from this video as the targets to rank

(the n-loop in Algorithm 2). In each round of the n-loop, we traverse every

video other than the target and select the constraints from this video as

queries (the m-loop in Algorithm 2).

To perform the ranking of the to-link constraints, we make use of the

manifold ranking algorithm proposed in [132], which ranks the data points

along their underlying manifold by analyzing their relationship in feature

space. Given a set of nodes X = {x1, . . . , xl, xl+1, . . . , xN}, where the nodes
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{x1, . . . , xl} are queries and the remaining nodes {xl+1, . . . , xN} need to be

ranked according to their relevance to the queries, the manifold ranking

algorithm computes a ranking vector f = [f1, . . . , fN ] as follows to assign a

ranking value fi to each xi:

f = (I− γL)−1y, (4.4)

where I is an identity matrix, γ is a parameter in [0, 1), and y denotes

an indicator vector, in which the element yi = 1 if xi is a query and

yi = 0 otherwise. L is the normalized Laplacian matrix given by L =

D−1/2GD−1/2 where G is the affinity matrix for the set of nodes X and D

is its degree matrix.

To employ this manifold ranking algorithm for the ranking of the to-link

constraints, we first need to compute an affinity matrix that describes the

similarity between all pairs of superpixels that have been assigned the to-

link constraints. Denote Gm
n as the affinity matrix in the ranking process

that uses the to-link constraints in Vm as queries to rank the to-link con-

straints in Vn. Its element Gm
n |ij,lr contains the pairwise affinity between

two pairs of superpixels, (si, sj) and (sl, sr) that are from Vm or Vn and

have been assigned to-link constraints. We compute Gm
n |ij,lr as follows:

Gm
n |ij,lr =

W(j, r), if i = l,

W(j, l), if i = r,

W(i, l), if j = r,

W(i, r), if j = l,

max {min{W(i, l),W(j, r)},min{W(i, r),W(j, l)}} , otherwise.

(4.5)

Given Gm
n and denoting its normalized Laplacian matrix as Lm

n =
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Dm
n

−1/2Gm
n D

m
n

−1/2, we perform the manifold ranking based on the func-

tion given by (4.4):

fmn = (I− γLm
n )−1ym

n , (4.6)

in which ym
n (i) = 1 indicates that element i is a query from Vm whereas

ym
n (i) = 0 indicates that element i is a target from Vn.

In each round of the n-loop, after traversing all the videos in the m-loop,

N − 1 ranking score vectors can be obtained. For each to-link constraint

candidate in Vn, we extract the minimum score from these N − 1 score

vectors as its final ranking score, that is,

fn(i) = min
m

f̄mn (i), (4.7)

where f̄mn linearly normalizes fmn in (4.6) to [0, 1] by dividing fmn by it

maximum element.

Having processed the n-loop, we are ready to delete those unshared

constraints from each videos. We use a threshold θ to determine whether

a to-link constraint is shared by all the videos or not, following which each

constraint matrix is updated as follows:

Zn(i, j) =


0, if the to-link pair (si, sj) is identified as unshared,

Zn(i, j), otherwise.

(4.8)

The deleted to-link constraints will not take part in the next iteration of

the t-loop in Algorithm 2 as queries or targets to be ranked. The iteration

will be stopped when no more unshared constraint is found or the preset

maximum iteration limit T is reached. Finally, we combine all remaining

constraints into a matrix Z∗ with Z∗ = diag(Z1,Z2, . . . ,ZN) and this is
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init. t=1 t=2 t=3 End

V1

V2

V3

t=4

Figure 4.4: The updating process of the to-link constraints by Algorithm
2 for three of the panda sequences (V1, V2 and V3). The red and blue
segments represent the detected shared and unshared to-link constraints in
each iteration respectively.

the output of Algorithm 2. In some cases, only one iteration is enough to

remove all incorrect constraints if the incorrect constraints across videos

have low affinity among themselves. However, when the inter-video affinity

among the incorrect constraints is not so low and these constraints form

not an insignificant minority, it may happen that at the beginning, the

ranking scores of some incorrect constraints are high. In this kind of cases,

it is difficult to remove all the incorrect constraints in one iteration, and

therefore, the iterative process in Algorithm 2 (the outermost t-loop) is

necessary for the extermination of the incorrect to-link constraints.

Fig. 4.4 visualizes the process of discovering shared to-link constraints

by Algorithm 2. In this example, 2 out of 3 sequences contain extraneous

objects, the toy horse and the man, that are moving together with the

panda, and Algorithm 2 succeeds in removing the incorrect to-link con-

straints between these extraneous objects and the panda iteratively. Some

correct to-link constraints inside the panda are also removed; nevertheless,

sufficient parts of the panda are learnt eventually. Their survival makes

sure that the constrained clustering proposed in the next subsection can

group the white and black patches as one cluster.
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4.3.3 Superpixel-Level Constrained Clustering

In this subsection, we perform a constrained clustering of the seed super-

pixels SF = {SF
1 , S

F
2 , . . . , S

F
N} subject to the to-link constraints obtained

by Algorithm 2, so as to obtain an initial segmentation. Rewrite the

set of seed superpixels as SF = {s1, s2, . . . , sn}, n =
∑N

i=1 |SF
i | and denote

C ∈ {0, 1}n×K as the indicator matrix, whose row entries indicate which

group the superpixels belong to, i.e., if superpixel si belongs to group k,

C(i, k) = 1 and the remaining entries of the i-th row are all 0’s. Thus, if

superpixels si and sj belong to the same group, ⟨C(i, :),C(j, :)⟩ = 1; oth-

erwise, ⟨C(i, :),C(j, :)⟩ = 0, where ⟨·, ·⟩ denotes the inner product of two

vectors. Based on these notations, and given the affinity matrix W for SF

computed as in (4.3) and the constraint matrix Z∗ returned by Algorithm

2, we propose to cluster SF into K groups by solving the following standard

trace maximization problem over C:

max
C

tr(WTCCT)

s.t. C ∈ {0, 1}n×K ,

C1K = 1n,

⟨C(i, :),C(j, :)⟩ = 1 if Z∗(i, j) = 1.

(4.9)

where tr(·) indicates the trace operator of the given matrix.

To perform the constrained clustering in (4.9), we first use the Ex-

haustive and Efficient Constraint Propagation method (EECP) from [68]

to incorporate the constraints into the affinity matrix. We then adopt

the state-of-the-art simultaneous clustering and model selection (SCAMS)

method from [65] to perform clustering on the modified affinity matrix.

Note that this SCAMS method can simultaneously perform clustering and

model selection, that is, it can estimate the group number K in (4.9) au-

tomatically. Please refer to [68] and [65] for the details of the EECP and
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(a) (b) (c) (d)

Figure 4.5: The superpixel-level and the object-level clustering. (a) The
to-link constraints (red lines) obtained by Algorithm 2. The white edges
represent the borders of the superpixels. The yellow lines illustrate the
strong affinity that exists between the brown patches of the male and the
female ostriches, causing problems in the superpixel-level clustering. (b)
The superpixel-level clustering results. (c) Object instances obtained by
combining spatial connectivity information and the result from (b). Each
closed region bounded in white represents an object instance. (d) Object-
level clustering results. Note that the color labels in (d) are not related to
those in (b).

the SCAMS algorithms respectively.

4.3.4 Object-Level Clustering

The superpixel-level clustering in the last subsection is based on low-level

features, which may not be adequate in discriminating different objects,

especially when these different objects have some shared components. Fig.

4.5 depicts this limitation caused by using low-level features in the con-

strained clustering. In Fig. 4.5(a), the red lines represent the shared to-link

constraints that are discovered in Sect. 4.3.2; they ensure that the neck

(or the feet) and the body will be correctly grouped together even though

these body parts are separated by large distances in the color space. On

the other hand, the low-level appearance features used means that there

will be strong affinities or linkages (the yellow lines) between the male and

the female ostriches due to their shared brown patches (we only plot some
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of the linkages for illustration). The constrained clustering based on the

constraint graph and the affinity graph shown in Fig. 4.5(a) yields the seg-

mentation results shown in Fig. 4.5(b): the male ostrich (foreground) and

the female ostrich (background in this particular example) are incorrectly

grouped in the same cluster. Most of the distinctive parts of the ostrich

are identified as a single foreground, except some white plumes and tail on

the male ostrich in the bottom video due to these parts not appearing in

the male ostrich in the top video, and thus forming a second cluster (shown

in pink). Some background patches that are incorrectly extracted as seed

superpixels by the initial figure-ground segmentation (Sect. 4.3.1) are suc-

cessfully separated from the ostriches. The male and the female ostriches

fail to be separated due to the strong linkage of the brown patches as shown

in (a).

To deal with this lack of discrimination in the low-level features, we need

to move from the low-level clustering to the object-level clustering. First

of all, we generate object instances using the superpixel-level clustering re-

sults and the spatial connectivity information. Specifically, we construct a

forest of graphs by adding edge between two superpixels that are adjacent

and clustered in the same group by the superpixel-level clustering. Each

graph will then represent one object instance, as shown in Fig. 4.5(c).

Next, we treat these object instances as nodes in a graph to be clustered

into groups by their color appearance. We compute the color histogram

of each object instance, which is much more discriminative than the color

histograms of the low-level superpixels. Using the ostrich sequences in Fig.

4.5 as an example again, the brown patches in the male ostrich only con-

tribute a small part to its color histogram, while they contribute a large

part to that of the female ostrich; thus, the color histograms computed for

the ostrich instances are now discriminative enough to distinguish between

the male and the female ostriches. To decide on the number of unique
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object instances, an affinity matrix for the object instances is constructed

similarly as in (4.3), and we again use the SCAMS method from [65] to

perform clustering and model selection. Note that this object-level cluster-

ing is performed within the object instances that are clustered in the same

group by the superpixel-level clustering. Fig. 4.5(d) shows the object-level

clustering results of the ostrich example: The male ostrich and the female

ostrich are now correctly separated.

4.3.5 MRF Based Object Segmentation

Once the clustering results of the seed superpixels are obtained, we can

use them to propagate the segmentation to those superpixels that have

been omitted during the seed superpixel extraction stage. Assume the seed

superpixels have been clustered by the two-level clustering (Sect. 4.3.3

& Sect. 4.3.4) into K groups F = {F1,F2, . . . ,FK}, among which some

are from the shared foreground while others might be from the extraneous

moving objects. We now augment it with the background seed superpixels.

To extract the seed superpixels that can represent the background, we

use the simple boundary prior proposed by [60], namely, we select those

superpixels that reside along the image boundary but do not belong to SF,

and denote the set as SB.

We then learn a K + 1 class support vector machine (SVM) classifier

that can infer an appropriate distance metric to distinguish the K + 1

classes. This is done in an one-vs-all scheme by using one of Fk or SB as

positive data and the others as negative data. The L1-normalized color

histograms are used again as the feature descriptors in this step.

Having obtained the appropriate distance metrics for the foreground

object models and the background model, we define a graph over each

video’s superpixels with nodes representing superpixels and edges between

two nodes corresponding to the cost of a cut between two superpixels.
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Then, we seek to minimize the following energy function for multi-class

video segmentation:

E(f) =
∑
i∈S

Di(fi) + λ
∑
i,j∈N

Vi,j(fi, fj) (4.10)

where f is the label vector of the superpixel nodes with each element

fi ∈ [1, K + 1], and N defines the spatiotemporal neighborhood of the

superpixels.

The data term Di(fi) penalizes the labeling of the superpixel xi with

fi, which is described as:

Di(fi) = 1− Pfi(xi) (4.11)

where Pfi(xi) is the estimated probability of assigning xi with label fi,

calculated using the learnt one-vs-all SVM for fi.

The smoothness term Vi,j(fi, fj) encourages the labeling to be spa-

tiotemporally consistent, and is defined as:

Vi,j(fi, fj) =


e−(ω1dc+ω̄1df), if fi ̸= fj and As

ij = 1,

e−(ω2dc+ω̄2do), if fi ̸= fj and At
ij = 1,

0, if fi = fj.

(4.12)

where As
ij = 1 and At

ij = 1 indicate spatial adjacency and temporal ad-

jacency respectively. The spatial adjacency is only based on the spatial

relationship in a single frame, as we want to keep the MRF to a simple

pairwise clique. To define temporal adjacency, we warp the superpixels

forward and backward to the adjacent frames using optical flow, and then,

those superpixels in the adjacent frames that overlap the warped area are

selected as the temporal neighbors. The weights wi and w̄i (wi + w̄i = 1)

are used to trade off the influence of the color distance and the motion
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Table 4.2: The summary of CFViCS dataset: The number of videos (#Vi.)
and the number of foreground object classes (#Ob.) in each video set (not
counting the extraneous objects).

Video set #Vi. #Ob.
Bicolor Angelfish 3 1

Border Collie 3 1
Clown Fish 3 1
King Cobra 2 1

Ostrich 3 1
Panda 3 1

Human and Dog Dancing 2 2
Bird of Paradise in Courtship 2 2

distance. We define the color distance dc(i, j) as the χ2-distance between

the color histograms of the superpixels, and the motion distance df (i, j)

between spatially adjacent superpixels as the Euclidean distance between

the mean motions of the pixels in the superpixels. For temporally adjacent

superpixels, their motion distance do(i, j) is computed as the average area

of two way after-motion overlap, which indicates how likely it is for xi to

move to xj and vice versa.

4.4 CFViCS Dataset

Another contribution of this work is to build a dataset1 for video co-

segmentation, which we entitle the complex foreground video co-segmentation

(CFViCS) dataset. The recently published video co-segmentation dataset

such as MOViCS [17] comprises of videos that are not complex enough:

the primary objects of these videos can be easily extracted by the ob-

ject proposals. Therefore, in order to evaluate the performance of our

method, we require a new dataset that highlights the challenges of video

co-segmentation such as motion ambiguity, variegated foreground objects

and multiple figure object segmentation.

1The full set of images can be downloaded online at http://www.ece.nus.edu.sg/
stfpage/eleclf/video_coseg.htm.
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The CFViCS dataset comprises of 8 sets of videos selected to cover the

challenges mentioned in Sect. 1, and manually annotated with ground truth

segmentations. Table 4.2 gives a summary about the CFViCS dataset,

listing the tag, the number of videos and the number of foreground object

classes included in each set of videos. Table 4.3 and Table 4.4 characterizes

the difficulty level of the various videos found in our dataset, using six

metrics that will be described in what follows.

We adopt from [114] the following three metrics to measure the difficulty

level of a video for video segmentation:

1. Foreground-background color overlap describes the degree of

overlap between the color distributions of foreground and background.

Higher color overlap means that there is less discriminative power in

the color models estimated for the foreground and background pixels

and it is likely that the segmentation will be beset with appearance

ambiguity issue. As in [114], we choose to model the foreground and

background colors with GMMs containing mixture of 5 Gaussians,

and compute the foreground-background color overlap as

C1 =

∫
X∈fg p(X|bg)∫
X∈fg p(X|fg)

+

∫
X∈bg p(X|fg)∫
X∈bg p(X|bg)

, (4.13)

where p(X|bg) and p(X|fg) are the estimated probabilities of X be-

longing to background (bg) and foreground (fg) respectively, using

the computed GMMs.

2. Interframe target motion is measured as the foreground XOR in-

tersection area normalized by the mean object bounding box area

(with XOR the binary exclusive or). Large target motion poses sig-

nificant difficulty for feature or pixel matching between successive

video frames; poor feature matching has impacts on all subsequent

steps leading to poor segmentation.
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3. Target shape change is given by the foreground XOR intersec-

tion area normalized by the mean object bounding box area, after

compensating for the translational motion estimated from centroid

differences. This metric describes how drastically the shape of the

foreground changes over time; examples include the non-rigid articu-

lated motions of human foreground.

In addition to the preceding three metrics adopted from [114], we put

forth in this chapter three more metrics to quantify the challenges in video

object segmentation or co-segmentation:

1. Foreground-background motion overlap is computed similarly

as in (4.13) but with the optical flow between two successive frames

as input (We use the large displacement optical flow proposed in

[10]). This metric describes the degree of overlap between the motion

distributions of foreground and background. Higher motion overlap

indicates more severe motion ambiguity and would pose significant

difficulty for a purely motion-based foreground segmentation method.

2. Highest ranking of good proposals is the ranking of the first pro-

posal with more than 50% overlap for the ground truth foreground re-

gion. Recently, many video segmentation and co-segmentation meth-

ods rely on the generation of object proposals to automatically iden-

tify object-like regions by selecting one of the high ranked proposals.

However, when the foreground is complex or when the foreground

is surrounded by a complex background, it is difficult for the object

proposal method to generate proposals of high ranking that correctly

cover the foreground region. With this kind of challenge in mind,

we use this metric of highest ranking of good proposals to indicate

whether the object proposal method will provide reliable high ranked

proposals for further segmentation, with lower ranking representing
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Table 4.3: CFViCS dataset metrics quantifying the difficulty level of each
video, with each column representing an attribute that might pose problems
for segmentation. The two most difficult videos from the standpoint of each
attribute are highlighted in bold.

Video c-overlap motion shape m-overlap
Bicolor Angelfish

V1 .209 .198 .125 .042
V2 .094 .107 .074 .022
V3 .191 .248 .156 .069

Border Collie
V1 .324 .189 .190 .328
V2 .457 .087 .074 .156
V3 .261 .120 .106 .252

Clown Fish
V1 .252 .200 .172 .324
V2 .259 .030 .043 .041
V3 .166 .365 .243 .138

King Cobra
V1 .582 .086 .115 .637
V2 .523 .028 .037 .102

Ostrich
V1 .169 .103 .098 .243
V2 .091 .138 .077 .183
V3 .203 .117 .093 .287

Panda
V1 .409 .074 .049 .097
V2 .349 .088 .078 .219
V3 .454 .076 .072 .220

Human and Dog Dancing: Human
V1 .125 .156 .096 .225
V2 .083 .172 .103 .284

Human and Dog Dancing: Dog
V1 .066 .236 .247 .155
V2 .048 .331 .204 .131

Bird of Paradise in Courtship: Male
V1 .086 .168 .093 .113
V2 .040 .075 .021 .065

Bird of Paradise in Courtship: Female
V1 .431 .163 .091 .227
V2 .351 .165 .127 .239
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Table 4.4: CFViCS dataset metrics quantifying the difficulty level of each
video when the segmentation relies on the object proposals [30]. These
metrics can also indicate the cluttered level of the foreground and the
background. We compute these metrics for 5 frames evenly distributed
in each video. The symbol “−” in second column represents that among
the top 100 proposals, no one has more than 50% overlap with the ground
truth region.

Video highest ranking > 50% best proposal coverage
Bicolor Angelfish

V1 [4 37 77 5 58] [.718 .830 .541 .897 .509]
V2 [8 5 3 11 16] [.768 .582 .875 .920 .766]
V3 [− − 7 8 8] [.340 .461 .599 .728 .815]

Border Collie
V1 [2 2 7 4 9] [.755 .693 .535 .797 .644]
V2 [16 10 19 − 35] [.733 .690 .679 .404 .731]
V3 [2 2 8 4 8] [.667 .596 .728 .598 .635]

Clown Fish
V1 [1 1 1 2 1] [.875 .737 .551 .520 .775]
V2 [− − − − 4] [.382 .326 .461 .499 .541]
V3 [− 11 − 2 1] [.170 .635 .494 .658 .625]

King Cobra
V1 [− − 5 7 4] [.428 .314 .540 .557 .504]
V2 [− − − 77 −] [.283 .276 .283 .513 .312]

Ostrich
V1 [1 1 1 1 1] [.836 .723 .663 .817 .768]
V2 [1 1 1 1 1] [.854 .852 .889 .891 .878]
V3 [2 4 2 4 1] [.833 .791 .774 .839 .805]

Panda
V1 [1 1 4 2 10] [.579 .546 .567 .528 .625]
V2 [4 3 6 2 3] [.845 .918 .730 .752 .886]
V3 [1 1 3 4 3] [.885 .893 .851 .756 .702]

Human and Dog Dancing: Human
V1 [2 1 2 3 4] [.843 .821 .764 .849 .827]
V2 [2 2 2 2 1] [.558 .772 .784 .580 .656]

Human and Dog Dancing: Dog
V1 [− 13 22 6 −] [.476 .573 .704 .867 .025]
V2 [39 21 7 4 17] [.749 .717 .829 .840 .897]

Bird of Paradise in Courtship: Male
V1 [1 2 10 1 1] [.772 .617 .584 .741 .773]
V2 [1 1 1 2 1] [.886 .770 .911 .961 .834]

Bird of Paradise in Courtship: Female
V1 [2 17 − − 11] [.689 .722 .118 .267 .709]
V2 [− − 34 24 25] [.032 .420 .795 .744 .681]
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Table 4.5: Object proposal related metrics of the MOViCS dataset. Same
arrangement as Table 4.4.

Video highest ranking > 50% best proposal overlap
Chicken & Turtle: Chicken

V1 [1 2 1 1 1] [.923 .921 .898 .945 .940]
V2 [11 5 2 4 6] [.761 .824 .871 .780 .830]

Chicken & Turtle: Turtle
V1 [2 1 2 6 2] [.759 .704 .842 .806 .723]

Giraffe & Elephant: Giraffe
V1 [4 4 3 2 3] [.558 .627 .581 .697 .714]
V2 [2 3 14 4] [.682 .596 .783 .727]

Giraffe & Elephant: Elephant
V2 [45 53 2 7 3] [.578 .519 .709 .623 .749]

Lion & Zebra: Lion
V1 [1 1 − 3 1] [.776 .821 .382 .855 .826]
V2 [2 1 3 3 1] [.758 .805 .673 .854 .843]
V3 [3 1 1 1 1] [.882 .888 .895 .700 .768]

Lion & Zebra: Zebra
V1 [1 1] [.924 .913]
V2 [3 15 18 19 −] [.732 .562 .658 .768 .366]
V3 [1 3 2 3 7] [.717 .796 .722 .642 .647]
V4 [− − − − −] [.387 .386 .420 .418 .480]

Tiger
V1 [13 5 3 3 3] [.733 .648 .639 .621 .647]
V2 [1 4 2 2 3] [.852 .893 .776 .790 .913]
V3 [2 1 1 2 3] [.773 .643 .723 .764 .756]
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less reliability (and thus higher difficulty for the extraction of fore-

ground objects). We sample 5 frames for each video for the compu-

tation of this metric.

3. Best proposal overlap is obtained by computing the best overlap

with ground truth regions among the top 100 object proposals. This

metric, together with the highest ranking of good proposals, indicates

the proposal quality and reliability for further segmentation. Lower

best proposal overlap represents higher difficulty to obtain accurate

segmentation. We again sample 5 frames for each video when com-

puting this metric.

The multi-object video co-segmentation (MOViCS) dataset proposed

in [17] is also designed for the video object co-segmentation challenges.

We list the metrics of highest ranking of good proposals and best proposal

overlap for the MOViCS dataset in Table 4.5. In comparison to the CFViCS

dataset, most of the videos in the MOViCS dataset have less cluttered

background and their foreground objects have relatively plain appearance.

Therefore, as can be seen in Table 4.5, it is easier for the object proposal

method [30] to generate reliable proposal having high rankings.

4.5 Experiments

In this section, we evaluate the performance of our video object co-segmentation

method on the CFViCS dataset and provide quantitative comparisons be-

tween our method and the state-of-the-art video segmentation [11, 79, 130]

and co-segmentation [17, 131] methods.

Baseline Works

We include two video segmentation methods and two video co-segmentation

methods in the experimental comparison. The method of [11, 79] focuses
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on long-term motion cues to separate the foreground from the background,

while the method of [130] relies on the high ranking object proposals to

establish and refine the models of foreground and background.

As for the two recently proposed video co-segmentation methods, the

ddCRP algorithm [17] formulates a distant-dependent Chinese Restaurant

Process across multiple videos based on motion cues and appearance cues.

It also proposes a new videos segmentation prior as well as a global ap-

pearance model that links segments of the same class. The method of [131]

is similar to [130] in that they collect high ranking object proposals first

and then select among them to build the model of foreground objects. The

difference is that the method of [131] builds a graph that not only links

the object proposals in the same video but also links those across different

videos.

Experimental Setup

To quantify the results, we follow [17] and [131], employing the intersection-

over-union (IOU) metric which is defined as M(S,G) = S∩G
S∪G , where S is a

set of segments that have the same label and G is the ground truth. For

video segmentation methods which do not link foreground objects across

videos, we compute their IOU metrics independently in each video and

obtain the average as the final IOU measure, that is,

VScore =
1

N

N∑
n=1

max
Si∈Vn

M(Si, Gn), (4.14)

where N is the number of input videos, and Gn is the ground truth in Vn.

For video co-segmentation methods which have segments sharing the same

label across different videos, the IOU metric is defined as

VCScore = max
l
M(Sl, G), (4.15)
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where Sl denotes all segments grouped into the object class l; here, both Sl

and G are shared by all input videos. For those videos whose foregrounds

contain multiple object classes, we compute the IOU for each class and

then obtain the average over the number of object classes as the final IOU

measure. Moreover, in this case, we do not include for comparison those

video segmentation methods that can only generate two-layer segmentation

(denoted as N/A in Table 4.6).

For the co-segmentation method by regulated maximum weight cliques

(RMWC) [131] which is not equipped with model selection, we provide the

true number of foreground objects K as prior knowledge, obtain the first

K + 5 object classes (ranked by the clique weight defined in [131]) and

compute the IOU accordingly. Moreover, this RMWC co-segmentation has

an important parameter called edge weight threshold which controls the

formulation of cliques and the matching across different videos. We cede

further advantage to this RMWC method by testing different thresholds

[0.4 0.5 0.6 0.7 0.8] and selecting the optimal result for comparison.

Results and Discussions

Table 4.6 depicts the IOU metrics on the CFViCS dataset. It shows that

our method achieved the best performance on most of the sequences, and on

average outperformed the method of distant dependent Chinese Restaurant

Process ddCRP [17] by 20%, the RMWC [131] by 40%, the VS [130] by

39%, the Moseg ([11] post-processed by [79]) by 25%. In general, the

sequences characterized as difficult in Table 4.3 also tend to have lower

performance (e.g., King Cobra). In Bird of Paradise in Courtship, the

main difficulty is caused by the drab female bird. For the male bird which

is quite conspicuous, our algorithm nevertheless failed to pick up the fanned

tail as belonging to the bird because the tail is only visible in one of the

clips (see Fig. 4.9(b), last row, where it is regarded as extraneous). For the
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Table 4.6: Quantitative comparison of segmentation accuracy on the
CFViCS dataset. Best performance in each video is highlighted in bold.

Moseg[11, 79] VS[130] ddCRP[17] RMWC[131] Ours
Bicolor Angelfish

V1 .669 .335 .366 .041 .866
V2 .784 .905 .601 .060 .912
V3 .526 .000 .015 .000 .852

Av. .660 .414 .327 .034 .876
Border Collie

V1 .412 .666 .260 .481 .535
V2 .818 .550 .206 .520 .717
V3 .554 .703 .571 .592 .816

Av. .595 .639 .346 .531 .689
Clown Fish

V1 .169 .652 .753 .737 .837
V2 .426 .524 .630 .000 .745
V3 .847 .314 .730 .439 .728

Av. .481 .497 .704 .392 .770
King Cobra

V1 .155 .155 .306 .286 .672
V2 .529 .224 .270 .278 .685

Av. .342 .190 .288 .282 .679
Ostrich

V1 .497 .686 .610 .699 .815
V2 .334 .692 .591 .791 .867
V3 .312 .000 .508 .793 .827

Av. .381 .456 .570 .761 .836
Panda

V1 .636 .506 .013 .364 .728
V2 .818 .729 .365 .384 .869
V3 .688 .619 .395 .523 .882

Av. .714 .618 .257 .424 .826
Human and Dog Dancing: Human

V1 .344 N/A .670 .254 .688
V2 .342 N/A .774 .487 .593

Av. .343 N/A .722 .370 .643
Bird of Paradise in Courtship

V1 .451 N/A .419 .477 .641
V2 .484 N/A .520 .465 .614

Av. .468 N/A .470 .471 .627
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(a) Bicolor Angelfish (b) Border Collie

Figure 4.6: Segmentation results on the CFViCS dataset. In each example,
from top to bottom: original video frames (one each from each input video),
ground truth, results of [11] postprocessed by [79], results of [130], results of
[17], results of [131], and our results. For the 3rd row depicting the results of
[11], the segmentation is performed independently in each video, and there
is no relationship between the color across different videos. For the last
three rows that depict the results from the three co-segmentation methods,
in each video set, the same color indicates the same label, and those labels
appearing in all the given videos denote the extracted common objects,
while those not appearing in all the given videos denote the extraneous
moving objects or background (e.g. other fish species in V2 and V3 of
Bicolor Angelfish). Best viewed in color.

Human and Dog Dancing sequences, even though they are not regarded as

particularly difficult by Table 4.3, spurious corners formed by the moving

foreground and lines on the background significantly affects optical flow

estimation and in turn the foreground segmentation.

The segmentation results on the CFViCS are shown in Fig. 4.6, Fig.

4.7, Fig. 4.8 and Fig. 4.9. The video motion segmentation obtained by

postprocessing [11] with [79] tends to have a good performance when the

non-rigid deformation in the foreground motion is not too severe, as can

be seen in its results for Bicolor Angelfish , V2 of Border Collie, and V3 of
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(a) Panda (b) Ostrich

Figure 4.7: Comparative segmentation results on the CFViCS dataset.
From top to bottom, same figure and color arrangement as in Fig. 4.6.
Best viewed in color.

Clown Fish1. However, its performance degrades severely when confronted

with significant non-rigid motion, for example, the turning of fish in V1 of

Clown Fish and the slithering of snake in V1 of King Cobra. Moreover, it

tends to suffer seriously from inaccurate estimation of optical flow, as can be

seen in Bird of Paradise in Courtship with their low contrast. As expected,

it will also treat different objects moving together as the same object as

can be seen in V1 and V3 of Panda, V3 of Border Collie and V1 of Human

and Dog Dancing. When the foreground has large motion overlap with

the background—for instance, the foreground object is stationary in some

frames of the video—this motion segmentation method would erroneously

merge the foreground with the background. This happens in V1 of King

Cobra, V1 of Border Collie and V2 of Human and Dog Dancing.

The video segmentation [130] has very good segmentation results in

1Note that the high target shape change value in Table 4.3 for V3 of Clown Fish is
due to occlusion, not non-rigid deformation.
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(a) Clown Fish (b) King Cobra

Figure 4.8: Comparative segmentation results on the CFViCS dataset.
From top to bottom, same figure and color arrangement as in Fig. 4.6.
Best viewed in color.

Border Collie, V2 of Bicolor Angelfish and V2 of Panda because many ob-

ject proposals covering the foreground objects have high ranking scores.

The limitations are as follows. Firstly, when the extraneous moving object

attracts higher ranking proposals than the foreground, then, due to the un-

supervised nature of the method, it will erroneously select the extraneous

object as the foreground (primal object), resulting in 0% in the segmenta-

tion results. For instance, in V3 of Bicolor Angelfish, it selects the yellow

tropical fish and in V3 of Ostrich, it selects the female ostrich. Secondly, in

those cases where parts of the variegated foreground objects attract higher

ranking proposals than the whole foreground, the method will select those

parts as foreground. Examples include V1 of Bicolor Angelfish and Clown

Fish where only part of the fish is identified as foreground, and in V1 and
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(a) Human and Dog Dancing (b) Bird of Paradise in Courtship

Figure 4.9: Comparative segmentation results on the CFViCS dataset.
From top to bottom, same figure and color arrangement as in Fig. 4.6.
Best viewed in color.l

V2 of Ostrich, where the foreground extracted only covers the black part of

the ostrich body. Thirdly, if no good object proposal is generated to cover

the foreground object due to that the defined objectness of the object is

very low, it is obviously impossible for this method to have a reliable seg-

mentation, which is the case in King Cobra. Finally, when the same object

class contains multiple instances in a video, for example, in V2 of Clown

Fish where there are two clown fishes, it will only pick one of them as the

foreground.

As for the video co-segmentation methods, the ddCRP algorithm [17]

90



performs well when the foreground objects are relatively uniform, as can

be seen in the segmentation result of Human and Dog Dancing. It also per-

forms well in separating the foreground from the background even when

the input videos have common background. However, this is achieved at

the expense of severe over-segmentation of both the foreground and the

background so that when the foreground contains heterogeneous parts, it

performs very poorly in terms of grouping the different parts of the object

as a single entity (see Panda and Ostrich). Last but not least, when differ-

ent objects share common parts, the ddCRP algorithm tends to incorrectly

cluster these shared common parts into the same group. This is illustrated

by its segmentation results in Bicolor Angelfish, where the yellow patches

shared by the Bicolor Angelfish and the other tropical fish species are in-

correctly grouped together. This also happens to the brown patches shared

by the male and the female ostriches in Ostrich.

The RMWC [131] shared with the video segmentation method of [130]

the same limitations with regards to its dependence on the quality of the

object proposals. Thus in the Panda sequences, only some white patches

of all the three pandas are extracted as foreground, and in the King Cobra

sequences, the snakes are extracted together with a large part of the sur-

rounding background. It also fails to handle the case when the same object

class contains multiple instances in a video.

In comparison, our method is able to handle the various challenges de-

scribed by the attributes in Table 4.3. It can group different parts of the

heterogeneous foreground together, and yet resolve the appearance ambigu-

ity that might arise due to background clutter (e.g. the King Cobra scene).

It succeeds in binding different non-rigidly moving parts together (e.g. Os-

trich) and is able to extract as foreground the multiple instances that be-

long to the same object class (e.g. Clown Fish). It is also robust to errors

in optical flow. For instance, in Ostrich, significant amount of foreground
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(a) Clown fish (b) Border Collie

(c) Panda

Figure 4.10: Results of discovering valid to-link constraints and removing
incorrect ones by Algorithm 2. The 3-video setting (V1 + V2 + V3) always
performs better than the worst case of the 2-video settings.

motion is propagated to the background due to the latters low texture,

which in turn causes errors in the initial foreground segmentation; however

these errors were removed eventually. Our method also performs well in

sequences with severe motion overlap between foreground and background

(e.g. V1 of King Cobra). Finally, our method succeeds in distinguishing

between different objects even when they share some common parts (e.g.

Bicolor Angelfish).

The success of our method lies in the reducing of ambiguity in defining

what is foreground and determining how different components are con-

nected to each other to form an object. This is achieved by the step of

discovering valid to-link constraints through multiple observations in our

framework. Generally, we expect that having more videos depicting the

common objects will result in a better performance in discovering the cor-

rect constraints and removing the incorrect ones. We show this aspect of
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Table 4.7: The true numbers of objects in the foreground (#GT) and the
number of common objects extracted by our method and [17].

Video set #GT Ours [17] Ours [17] Ours [17]
p = 0 p = 0 p = 100 p = 100 p = 500 p = 500

Bicolor Angelfish 1 1 9 1 9 1 6
Border Collie 1 2 12 2 12 1 12
Clown Fish 1 4 5 1 4 1 3
King Cobra 1 1 5 1 5 1 5

Ostrich 1 2 4 2 4 1 4
Panda 1 2 10 2 10 1 9

Human and Dog Dancing 2 4 10 3 10 3 9
Bird of Paradise in Courtship 2 4 11 4 11 2 9

the performance of Algorithm 2 with different thresholds θ and different

video combinations in Fig. 4.10, where Detection Rate represents the num-

ber of discovered correct constraints over the total number of correct ones

present in the initial constraints and False Alarm Rate represents the num-

ber of remaining incorrect constraints over the total number of incorrect

ones present in the initial constraints. As can be seen in Fig. 4.10, the

3-video setting (V1 + V2 + V3) always performs better than the worst case

of the 2-video settings. Note that when two of the videos have only a small

number of incorrect constraints, it is likely that this 2-video setting is likely

to outperform the the 3-video setting, especially in cases where the third

video is a noisy one. However, without knowing which of the two videos

are the better ones a priori, it is always better to have more videos to

prevent bad results. Note that for the purpose of segmentation, low false

alarm rates should be favored. We would rather miss a few valid to-link

constraints rather than achieving high detection rates at the expense of

increased false alarms, which is highly detrimental to good segmentation.

Thus, in Fig. 4.10(a), the pink curve (V1 +V3) is not necessary better than

that of the red curve (V1 + V2 + V3).

The model selection results of our method on the CFViCS dataset are

also shown in Table 4.7. We tabulate the numbers of the detected common

objects shared by all the videos in each video set. Many of these common

93



4. VIDEO OBJECT CO-SEGMENTATION IN COMPLEX
SCENES

objects are actually small background patches mistaken as foreground, e.g.

coral waving in the currents. Rapidly moving body parts (e.g. the pec-

toral fins of the fish) also cause failure in the common fate test for the

surrounding regions, due to the appearance change caused by the moving

parts; these regions might thus appear as separate foreground objects. We

can use a size threshold p to filter away some of these small patches. We

show the results under three threshold levels ([0 100 500]). As can be

seen from Table 4.7, our method has obtained significantly better model

selection results than [17]: even when not using any size threshold (i.e.,

p = 0), our method generates no more than three extraneous object labels

in each video set. These are also sequences ranked as difficult in Table 4.3.

When (p = 500), our method obtains nearly perfect model selection result,

except for the sequences of Human and Dog Dancing, where one extrane-

ous label is generated for some patches from the common background. In

comparison, the ddCRP co-segmentation [17] yields much more extraneous

common object labels other than the true foreground.

4.6 Conclusions

We have presented a video co-segmentation framework for the separation

of complex foreground and background. We first perform an initial fore-

ground/background separation using motion cues to obtain seed superpix-

els and their pairwise to-link constraints. An iterative manifold ranking

algorithm is then put forth the discovery of the valid to-link constraints

shared by the input videos. After this, a two-level clustering is proposed

to estimate the number of object classes and assign the labels to the su-

perpixels for each object class. Finally, a multiclass labeling MRF is used

to obtain the refined segmentation results. To evaluate the video object

co-segmentation in the complex scene, we have built and published the
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CFViCS dataset. We have tested our method on this CFViCS dataset; the

experimental results demonstrate its success in addressing the challenges

present in realistic foreground extraction.
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Chapter 5

Conclusions and Future Works

In this thesis, we have explored the problem of video co-segmentation for

the extraction of interesting content. For the action co-segmentation, in

Chapter 3, we have focused on developing a framework that conducts a reli-

able matching between the spatiotemporal structures from different videos.

For the object co-segmentation, in Chapter 4, we have focused on the dis-

covery of valid common fates that help to group the different parts of

an object as a single entity, and have designed a two-level clustering to

estimate the number of object classes and assign the labels to the super-

pixels for each object class. Both of the proposed approaches have achieved

state-of-the-art performance in term of the segmentation accuracy. These

video co-segmentation frameworks open up new opportunities for weakly

supervised video tag information supplementation, which can benefit many

application areas such as object/action recognition and video annotation.

Considering that the research in video action co-segmentation is still in

its infancy, the following issues are highlighted for future works:

1. The extension to multiple videos is necessary for the solution to be

practical and useful. As of now, the proposed framework is limited to

a pair of videos. In order to apply video action co-segmentation for

general usage, such as searching engine and automatic video annota-

tion, the method is required to be able to computationally handle a

large amount of videos for scalability.
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2. The extraction of complex actions or activities in which the tempo-

ral order of the different motion components needs to be considered

will be an interesting and much more challenging problem for future

work. Currently, the proposed framework is limited to simple action.

In contrast, most of the interesting action contents in real applica-

tions are much more complex and often consist of several components

arranged in some temporal order.

3. The proposed framework assumes the action scenes are shot from

similar viewpoints, which significantly limits the scope of its usage.

In real applications, it is very likely that the action contents are shot

from very different viewpoints so that similar actions may look very

different in terms of their 2D appearance. Thus, making the video

action co-segmentation algorithm viewpoint-invariant will be another

possible avenue of future research.

Possible future works in the video object co-segmentation area are listed

as follows:

1. The proposed framework assumes that the common object across

multiple videos have similar appearance. However, this is not true in

many cases; for example, there might be complex appearance change

caused by different illumination, or in the more extreme case, the

common objects are cars of different brands. Therefore, designing and

incorporating high-level cues such as object shape for video object co-

segmentation would significantly enhance the usability of the video

object co-segmentation algorithm.

2. The input may contain noise videos that do not contain the objects of

interest. There have been several image co-segmentation approaches

that are proposed to remove the noise images. However, dealing

with noise videos would be much more difficult due to the complexity
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brought about by the additional time dimension. For example, we

have to avoid the removal of those videos where the common objects

only appear in some of the frames.

3. The test videos in this thesis are limited to those that have no scene

change. For the videos that have multiple scenes, we have to deter-

mine whether the common objects appear in all or only some of the

scenes.

4. Compared to image object co-segmentation, the current datasets for

video object co-segmentation are relatively small and not standard-

ized. Thus, a larger and standardized dataset for video object co-

segmentation needs to be established and released in the research

community.

5. Recently, object proposals specifically designed for videos are pro-

posed to capture moving objects [34]. These video object proposals

are extracted and ranked by the so-called moving objectness, which

is trained by the Convolutional Neural Network (CNN). This work

may benefit the video co-segmentation in two aspects: 1) The video

object proposals instead of the image object proposals or superpixels

can be extracted as the labeling units in the video co-segmentation

problem, which may highly simplify the graph structure. 2) Adopt-

ing CNN-based methods in the video co-segmentation to extract the

common objects is encouraged. Recently, the CNN-based methods

have shown excellent performance in automatically extracting rela-

tional visual features from the images [43] or videos [105]. Therefore,

integrating the CNN model to the learning based co-segmentation

framework (introduced in Chapter 2) is worth a try.
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