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Abstract

The process of large-scale software development and maintenance can be unpredictable,
with high costs, and a bug-prone and fragile output at times. It is estimated that 90%
of the total cost of a software project is spent on evolution and maintenance, causing
some authors to call it the legacy crisis (such as [109]). Refactoring is widely believed
to have a positive impact on these costs. Without refactoring the gain in development
costs can be easily lost in the form of increased maintenance costs [14]. Refactoring
can also benefit development costs, as shown by eXtreme Programming [13] which also
advocates relentless refactoring throughout a project’s life cycle in order to eliminate
redundancy, remove unused functionality, and restructure obsolete designs. Refactoring
also enables changes during the life cycle of a software system by updating its structure
and design and is crucial to the success of a system.

Automated techniques have been proposed to either identify refactoring opportu-
nities (i.e., code fragments that can, but have not yet been restructured in a program),
or reconstruct historical refactoring (i.e., code restructuring operations that have hap-
pened between different versions of a program). However, it remains challenging to
consistently apply those techniques to large code bases containing millions of lines of
code involving many versions. Besides scale, the main challenge is that refactoring may
change the syntactic shape of a program while preserving functional equivalence. One
particularly complex change involves moving code fragments across function boundaries
for refactorings such as Extract Method, Preserve Whole Object, etc. Detecting such
changes accurately requires that a refactoring detection tool should possess knowledge
about precise code change patterns induced by refactoring and should flexibly omit or
emphasize specific program elements when computing similarity between two code
fragments.

This research thesis aims at addressing this challenge. The thesis asserts that efficient
and effective detection of code fragments related by refactoring operations within large
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software can be achieved by performing abstraction and algebraic operations over
high-dimensional vectors representing the code, potentially leading to great saving in
software maintenance costs.

To this end, we propose a new scalable approach that can be used for identifying
both refactoring opportunities and historical refactoring. The key technique in our
approach is the design of efficient vector inlining operations that simulate the effect of
method inlining among code fragments, as well as the introduction of vector abstraction
and concretization operations to capture the essential patterns of the code changes
induced by various refactoring operations. Thus, the obnoxious scalability problem
can be effectively resolved by reducing the problem of refactoring identification to the
problem of vector matching.

We have implemented our technique for Java and have ran the prototype on 200
bundle projects from the Eclipse ecosystem containing 4.5 million lines of code. Our
prototype reports in total more than 32K instances of 17 types of refactoring opportuni-
ties for all Eclipse projects, taking 25 minutes on average for each type. We have also
applied the prototype to 14 versions of 3 smaller programs (JMeter, Ant, XML-Security),
and detected (i) more than 2.8K refactoring opportunities within individual versions
with an accuracy of about 87%, and (ii) more than 190 historical refactorings across
consecutive versions of the programs with an accuracy of about 92%.
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Chapter 1

Introduction

“Programs are meant to be read by humans and only incidentally

for computers to execute.”

– H. Abelson and G. Sussman

– Structure and Interpretation of Computer Programs

Programming is informally defined as the process that takes in the formulation

of a computing problem and transforms it into an executable program. Elements that

factor in the process are existing software, methodologies and even hardware. In the

early days of programming, the lack of methodologies and attention to code quality,

combined with constraints on the size of the executable program, often led to code being

only meant to be read by the machine which had “the same clean logical structure as

a plate of spaghetti” [16]. The difficulty posed by reusing, changing, or reading such

code led Dijkstra to argue that GOTO statements should be abolished. Later on, the

development of the so-called “waterfall” programming methodology followed. This too

did not lack criticism. The “waterfall” basically describes a sequence of phases such

as design, implementation, verification, maintenance, whose key problem is that when

completed their results cannot change and are frozen. The computing problem must thus

1



2 CHAPTER 1. INTRODUCTION

be specified fully before its implementation with no back loop to revise the specification

based on changing needs or fresh insights.

Contemporary programming models, in contrast, inherently allow for changes.

Software products are released in versions or iterations with each version bringing an

increase in functionality. However, in order to add a new feature or port a software

system to a new environment, the structure and design of the software needs to be

sufficiently flexible to enable change.

Refactoring
Refactoring is the process of improving the design of existing code
while preserving its functionality [38].

Refactoring is central to the development and maintenance process. In particular, the

study of Xing and Stroulia found refactoring to be very common in Eclipse’s evolution

history, amounting to 70% of structural changes [129]. Refactoring helps to restructure

obsolete designs, adapt to new requirements, eliminate redundancy or remove unused

functionality. While for communicating with other components the interface exposed by

software is critical, for the developers that read or need to maintain and evolve software,

looks certainly matter. Thus code modularity and clarity are imperative. The code

structure also influences our code comprehension. Software that is easy to read also

makes it easy to detect bugs and possible logical errors. A study by Kim et al., [69], on

Windows 7 version history, found that refactored modules had higher reduction in the

number of post-release defects. The goal of many refactoring transformations is thus to

improve code readability and modularity.

Many modern development environments, such as Eclipse, Microsoft Visual Studio,

have built-in support for various kinds of refactoring operations, such as Rename

Variable, Encapsulate Field, Move Method, Extract Method, and Extract Interface [40].1

These tools, however, usually require refactoring opportunities (i.e., program fragments

1This chapter uses “method” and “function” interchangeably.
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that can be, but have not yet been refactored) to be identified first.

1.1 The Gap: Weak Refactoring Support

Detecting refactoring opportunities – program fragments that can be, but have not yet

been restructured – has been a topic of long lasting interest in the literature [34, 51,

78, 120, 121]. The theme for many of these works is reducing duplication in code or

so called code clones. Specifically, duplicate code in sibling classes might gain from

generalization refactoring, that involves creating an abstract superclass for a set of

concrete classes, migrating the common functionality to that superclass, and inheriting

from that class, as defined by Opdyke in his thesis [93]. Therefore, some developers

might find generalization refactoring opportunities from clone detector results. The

Aries system, proposed by Higo et al. [49–51], exploits this idea by classifying duplicated

code reported by CCFinder according to the refactoring operations that can remove

duplication. Their approach is based on a number of metrics that characterize the

coupling of the duplicated program fragments with their surroundings. For example,

if duplicated methods appear in classes that extend a common base class, the Pull Up

Method would be suggested.

However, removing duplication by generalization or inheritance tends to be less

of a popular choice compared to employing delegation (Kegel et al. [65]). Hui Liu

et al., [79], showed in their evaluation that more than 95% of clone sets were not

accepted as generalization refactoring opportunities by developers. Moreover, replacing

generalization or inheritance with delegation is a standard refactoring operation and a

recurrent theme in programming textbooks.

Despite the large body of work and the presence of many proposed engines for

finding opportunities and automated refactoring, recent studies show that developers

often perform real-world refactoring manually [69, 85, 87, 125]. Specifically, [85] shows
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that almost 90% of refactoring is performed manually, without the help of tools. The

problem with this is that manual refactoring is error prone. According to a field study

at Microsoft [69], more than 70% of developers find it difficult to correctly perform

refactoring. Moreover, Weißgerber and Diehl found evidence that a significant fraction

of the bugs discovered are caused by incomplete refactoring [127]. However none of

the current works provides developers with support for finding refactoring opportunities

similar to the one performed manually. In what follows we illustrate the gap to be filled

by this thesis.

1.1.1 Sample Scenario

A developer realizes that a method in one of the many subprojects of Eclipse is too

big and that part of the functionality of that method is needed by other functions. The

method in question deals with escaping a string and the partial functionality deals with

escaping a character. She decides to increase code modularity by restructuring the

method, which involves extracting that functionality into a new method, that can then

be invoked as needed. The result is shown in Figure 1. It depicts three methods from

a class named Disassembler in the JDT project. Method escapeString invokes

decodeStringValue which in turn invokes method escapeChar. The change history

of Eclipse shows that the method escapeChar was created by means of an Extract

Method Refactoring.

Meanwhile the code in Example 2 is found in class named Disassembler in

the Equinox project. It depicts one method, escapeString, that is the same as

escapeString in Example 1 before refactoring in Eclipse 3.5.2. While both

escapeString methods have the same functionality, they are structurally different.

By simply looking at Example 2 alone it may not be clear whether it has refactoring

opportunity. However, by observing how the code in Example 1 is structured, a devel-

oper can easily detect a missed cross-function refactoring opportunity for the method
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Example 1. ( Extract Method Refactoring from Eclipse )

1 org.eclipse.jdt.internal.core.util.Disassembler

2 String escapeString(String s) {

3 return decodeStringValue(s);

4 }

1 String decodeStringValue(char[] chars) {

2 StringBuffer buffer = new StringBuffer();

3 for (int i = 0, max = chars.length; i < max; i++) {

4 char c = chars[i];

5 escapeChar(buffer, c);

6 }

7 return buffer.toString();

8 }

1 void escapeChar(StringBuffer buffer, char c) {

2 switch(c) {

3 case ’\b’ :

4 buffer.append("\\b"); //NON-NLS-1

5 break;

6 case ’\t’:

7 ...

8 }

9 }

call

call

(a)

(b)

(c)

escapeString in Example 2 as well. Usual clone detection may consider parts of

the code in the two examples as code “clones” (i.e., code fragments similar to each

other, [62, 71, 103] [36, 59]) under some very relaxed similarity conditions. Detecting

the similarity between the two escapeString methods on the other hand requires an

inter-procedural analysis and answering questions such as 1) what to compare: naively

searching through all possible combinations of different code fragments is not likely

to be scalable and 2) how to represent code: a representation such an AST or program

dependence graph (PDG) will deem an inter-procedural analysis expensive.

The example also indicates that not all refactoring opportunities would be detected

and capitalized on by developers at the same time. Refactoring parts of a large code base
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Example 2. ( Refactoring Opportunity from Eclipse )

1 org.eclipse.equinox.p2.internal.repository.comparator.
java.Disassembler

2
3 String escapeString(String s) {
4 StringBuffer buffer = new StringBuffer();
5 for (int i = 0, max = s.length(); i < max; i++) {
6 char c = s.charAt(i);
7 switch (c) {
8 case ’\b’ :
9 buffer.append("\\b"); //NON-NLS-1

10 break;
11 case ’\t’:
12 buffer.append("\\t"); //NON-NLS-1
13 break;
14 case ’\n’:
15 buffer.append("\\n"); //NON-NLS-1
16 break;
17 ...
18 }
19 }
20 return buffer.toString();
21 } (a)

of related programs often causes initially similar code fragments in different projects

to diverge. For code bases that have long evolution histories, such divergences can in

time cause difficulties in finding those missed refactoring opportunities again. Usual

refactoring detection based on clone detection (e.g., [12, 36, 50, 103, 116]) would not

report two code fragments, one of which is a refactored copy of the other, as clones,

and would miss many refactoring opportunities. As for this example, the switch

statement in Example 1 may be detected as a clone of the body of escapeChar in

Example 2, but the for loops might not be detected, as the for-construct is present in a

method decodeStringValue, separated from the switch statement. Thus, usual clone

detection will typically fail to suggest a refactoring for code in Example 2.
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For the remaining of this thesis we will use the term refactoring opportunity or

missed refactoring opportunity to denote the following:

Definition 1.1 ( Refactoring Opportunity )
A pair of code fragments (C, C’) represents a refactoring opportunity
if C can be transformed through refactoring to obtain C’.

Scalably detecting such missed cross-function refactoring opportunities and helping

developers perform refactoring is one of the goals of this thesis. Detecting missed

refactoring opportunities can help keep code consistent by finding inconsistencies or

divergence in the design or structure of code that might be indicative of bugs or code

smells [38]. Consistency even in the little details, such as when to introduce a new

variable or create a new method, matter a lot to developers. How often have you opened

up code written by a third party, and before anything else, re-indented it to match your

coding style? When everyone is writing code that has the same consistent style, code is

easier to understand. One example of refactoring opportunity we can detect that shows

code divergence and an inconsistency in naming is illustrated in Example 3.

Example 3. ( Extract Method and Inconsistent Naming )
1 org.eclipse.jdt.internal.corext.buildpath.ClasspathModifier

2 public static boolean isIn External Or Archive (IJavaElement element) {

3 IPackageFragmentRoot root =
4 (IPackageFragmentRoot) element.getAncestor(IJavaElement.PACKAGE_FRAGMENT_ROOT);
5 return root != null && (root.isArchive() || root.isExternal());
6 }

1 org.eclipse.jdt.internal.ui.jarpackager.JarPackageWizard

2 private static boolean isIn Archive Or External (IJavaElement element) {

3 IPackageFragmentRoot root =
4 JavaModelUtil.getPackageFragmentRoot(element);
5 return root != null && (root.isArchive() || root.isExternal());
6 }

1 org.eclipse.jdt.internal.corext.util.JavaModelUtil
2 public static IPackageFragmentRoot getPackageFragmentRoot(IJavaElement element) {
3 return
4 (IPackageFragmentRoot) element.getAncestor(IJavaElement.PACKAGE_FRAGMENT_ROOT);
5 }

call
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1.1.2 Refactoring Reconstruction

Another theme in refactoring is the detection of historic refactoring. Studies that focus

on this goal aim to reconstruct the refactoring operations used to transform the code by

analyzing different versions of a program to facilitate evolution studies [25, 26, 48, 70,

98, 113, 118, 128].

An approach that provides consistent detection of refactoring opportunities and

historic refactoring is needed. Such an approach would enable developers to both

improve software maintenance by detecting missed opportunities and measure more

accurately the refactoring efforts and progress through software evolution.

This goal presents the following challenges:

1. Scalability of a refactoring detection technique still remains challenging for large

code bases containing millions of lines of code.

2. The problem of detecting refactoring opportunities is compounded by cross-

function refactoring opportunities that involve moving code fragments across

function boundaries. Naively searching through all possible combinations of

different code fragments is not likely to be scalable.

3. It continues to be challenging for many code clone techniques and the refactoring

detection techniques based on them to detect the similarity between two code

fragments without incurring a significant number of false positives in their out-

come [23, 41, 57, 60, 68, 91, 102]. This is a consequence of the fact that these

techniques cannot flexibly omit or emphasize specific program elements when

computing similarity.

Example 1 illustrated the first challenge, posed by cross-function refactoring op-

portunities. Here, we also illustrate, through an example, the third challenge faced by

detecting refactoring. Specifically, the code in Example 4 was detected by our work

between two versions of Apache Ant. It shows a category of refactoring operations to
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Example 4. ( Apache Ant setEof.v1 Changed to setEof.v2 )

1 org.apache.tools.ant.taskdefs.FixCRLF
2
3 public class FixCRLF ... {
4
5 private int ctrlz; // eof: -1 =>

remove, 0 => asis, +1 => add
6
7 /* ...
8 * Unix: cr="remove" tab="asis" eof="

remove"
9 */

10 public FixCRLF() {
11 ...
12 if (System.getProperty("path.separator

").equals(":")) {
13 crlz = -1; // remove
14 ...
15 }
16
17 ...
18
19 public void setEof(AddAsisRemove attr)
20 {
21 String option = attr.getValue();

22 if (option.equals("remove"))

23 ctrlz = -1;

24 } else if (option.equals("asis")) {
25 ctrlz = 0;
26 } else {
27 // must be "add"
28 ctrlz = +1;
29 }
30 }

1 org.apache.tools.ant.taskdefs.FixCRLF
2
3 public class FixCRLF ... {
4
5 private static final int ADD = 1;
6 private static final int ASIS = 0;
7 private static final int REMOVE = -1;
8 ...
9

10 public FixCRLF () {
11 ...
12 if (System.getProperty("path.

separator").equals(":")) {
13 ctrlz = REMOVE;
14 ...
15 }
16
17
18 public void setEof(AddAsisRemove attr)
19 {
20 String option = attr.getValue();

21 if (option.equals("remove")) {

22 ctrlz = REMOVE;

23 } else if (option.equals("asis")) {
24 ctrlz = ASIS;
25 } else {
26 // must be "add"
27 ctrlz = ADD;
28 }
29 }

improve code clarity that involve small code transformations. Checking the correctness

of method setEof after refactoring, denoted here by setEof.v2, is much easier. For

method setEof.v1 a developer must first check that the constant values used are cor-

rect. In order to alleviate this problem, the code contains comments that document the

constant values used.⌥
1 private int ctrlz; // eof: -1 => remove, 0 => asis, +1 => add⌃ ⇧

This however is error prone. In particular, Ant revision history shows that a bug related
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to confusing numerical values in FixCRLF was fixed in commit 6231c77 shown below.

240 240 log("options:" +

241 " cr=" + (addcr==-1 ? "add" : addcr==0 ? "asis" : "remove") +
242 " tab=" + (addtab==-1 ? "add" : addtab==0 ? "asis" : "remove") +
243 " eof=" + (ctrlz==-1 ? "add" : ctrlz==0 ? "asis" : "remove") +

241 " cr=" + (addcr==1 ? "add" : addcr==0 ? "asis" : "remove") +
242 " tab=" + (addtab==1 ? "add" : addtab==0 ? "asis" : "remove") +
243 " eof=" + (ctrlz==1 ? "add" : ctrlz==0 ? "asis" : "remove") +

244 244 " tablength=" + tablength,
245 245 Project.MSG_VERBOSE);

Later on, in commit a794b2b between versions 1.3 and 1.4, the Replace Number

with Constant refactoring was performed which resulted in method setEof.v2. The

refactoring operation performed is defined as follows:

Replace Number with Constant
A transformation that takes in a code fragment containing a literal
number with a particular interpretation and creates a constant, names
it after the interpretation, and replaces the number with it is called
Replace Number with Constant.

Detecting code fragments that differ exactly by the small transformation induced by

Replace Number with Constant can prove difficult. In particular it may result in a large

number of almost identical code fragments to be returned by traditional approaches that

use a threshold to find similar code; all of which are clones but irrelevant to the Replace

Number with Constant refactoring (aka., high number of false positives.). This indicates

that a desired refactoring detection tool should possess knowledge about the precise code

change patterns induced by refactoring and should flexibly omit or emphasize specific

program elements when computing similarity, as well as work flexibly with various

kinds of refactoring operations.

The state of the art in detecting historical refactoring, RefFinder, detects the Replace

Number with Constant refactoring by the definition below. The definition however is very

coarse-grained. It checks that the transformation involves a) the creation of a constant,

(added_field) and b) an access to the new constant by a method (added_accesses ^
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before_method). It does not however check that the transformation replaces a number

by a constant thus also erroneously identifying as a true positive a transformation that

completely rewrites a method and happens to access a new constant. Moreover it will

not detect the opportunity posed by setTab shown in Example 5 to be refactored in the

same way as setEof.

RefFinder Definition of Replace Number with Constant

added_field(fFullName, X, X) ^
added_fieldmodifier(fFullName, final) ^
added_accesses(fFullName, mFullName) ^
before_method(mFullName, X, X) ! replace_magic_number_with_constant(mFullName, fFullName)

Example 5. ( Apache Ant setTab.v1 Refactoring Opportunity )
1 public void setTab(AddAsisRemove attr)
2 {
3 String option = attr.getValue();
4 if (option.equals("remove")) {

5 addtab = -1 ;

6 } else if (option.equals("asis")) {

7 addtab = 0 ;

8 } else {
9 // must be "add"

10 addtab = +1 ;

11 }
12 }

1 public void setEof(AddAsisRemove attr)
2 {
3 String option = attr.getValue();
4 if (option.equals("remove")) {

5 ctrlz = REMOVE ;

6 } else if (option.equals("asis")) {

7 ctrlz = ASIS ;

8 } else {
9 // must be "add"

10 ctrlz = ADD ;

11 }
12 }

1.2 Thesis Statement and Contributions:

Refactoring Support via Vector Operations

Thesis
Efficient and effective detection of code fragments related by refactor-
ing operations within large software can be achieved by performing
abstraction and algebraic operations over high-dimensional vectors
representing the code.
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In this work, we present a new vector-based approach for scalable detection of both

refactoring opportunities and historical refactorings. The vectors we construct, as the

first step of our approach, were first proposed by [41]. These characteristic vectors

encode syntactic program features and each of them can be considered an additive

program representation. This property of the representation is essential to our work and

can be defined as follows:

Additive representation
Given two non-overlapping code fragments c1 and c2 from method m

and their vectors v1 and v2, v1 + v2 exactly represents code fragment
c1; c2.

We use such vectors to encode inlined code so that the effect of method extraction and

inlining, which are common transformations induced by various refactoring operations,

can be captured. We simulate the effect of method inlining by summing up the vectors

for the caller and the callee and manipulating the features in the vectors that are related to

method declarations and invocations, i.e., the features for invocations, return operations,

and formal and actual parameter substitutions.

Then, we employ a novel approach via vector abstraction and concretization for

manipulating the characteristic vectors flexibly based on code change patterns induced by

known refactorings. For Example 4, both the abstraction and concretization operations

manipulate the features in the characteristic vectors related to “number literals” and

“simple variable names holding constants”. The abstraction will “massage” them into

a single feature “number literals or simple names holding constants” thus making the

vectors equal. The concretization will reverse the effect of the abstraction and constrain

the code change patterns between two vectors to be just those induced by the sought

after refactoring Replace Number with Constant. Specifically the concretization will

check whether the difference between the features "number literals" is the reverse of that

between the features "simple names". Since vector-based operations such as additions
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can be performed in almost linear time with respect to the total number of vectors and

the dimension of each vector, it becomes the key to the scalability of our approach.

In addition to detecting a code fragment c that may be refactored, our approach also

reports the code fragment r, that either shows how c was refactored, when detecting

historical refactoring, or provides an example of how c may be refactored, when detecting

opportunities for refactoring. For Example 2, our approach identifies escapeString

in the Equinox project as a refactoring opportunity, and it reports the code fragments

shown in Example 1 to illustrate how it may be refactored. Then, a user could proceed

to refactor the code in Example 2 in a way similar to Example 1. For Example 4, our

approach identifies method setEof.v1 on the left as an actual refactoring opportunity

that was exploited resulting in setEof.v2 on the right.

We have implemented our approach for Java, generating vectors for both source

code and bytecode, and extracted vector abstraction and concretization operations for

21 common types of refactoring operations. Our tool takes in the source code of a

Java program, compiles it to get bytecode, inlines non-recursive method calls that

invoke methods defined in the program itself for one level, and generates characteristic

vectors for both the original code and inlined code. Then, for every type of refactoring

operations �, the tool applies the corresponding vector abstraction to every generated

vector, uses hash-based search to cluster vectors that are identical under abstraction �,

and concretizes the vectors within clusters to identify ones that match the effect of �.

Let us briefly outline the key points in which our proposal differs from previous

approaches. Some previous studies focus on the detection of refactoring operations

that have happened and recorded in the version history of a project (e.g., [25, 70, 113,

118, 128]), so as to reconstruct those refactoring operations. Some other studies focus

on formal definitions of refactoring operations (e.g., [107, 108, 119]), so as to help

ensure semantic equivalence or correctness of code refactoring. Some tools, such as

LAMBDAFICATOR and CONCURRENCER, can automatically perform certain refactoring



14 CHAPTER 1. INTRODUCTION

operations (e.g., converting sequential code to use java.util.concurrent support,

changing anonymous class to lambda expression, replacing certain for loops with

functional operations, etc.). Other tools only perform a refactoring operation if the

code that needs the operation is identified first with sufficient relevant information (e.g.,

[40, 50]). Our study addresses a different problem of scalable and precise identification

of both refactoring opportunities and historical refactoring; results from our tool can

be used to facilitate other tools for performing and validating refactoring operations.

Similar to our study, Cider [112], a recent study on detecting refactored clones, can also

detect code clones that have diverged due to refactoring. However, Cider’s detection

algorithm works on a graph representation of a program, which can be computationally

expensive and has limited ability in detecting cross-function refactoring. Also, Cider

requires initial seeds for its search algorithm, while our approach does not need seeds.

Another study by Meng et al. [83] can also detect refactoring opportunities. They create

context-aware edit scripts from two or more examples and use the scripts to identify edit

locations and transform the code. However, edit-scripts are also limited within a single

method, and are yet not scalable to detect changes across methods.

Our main contributions in this thesis are as follows:

• We propose a new technique called vector inlining to simulate the effect of method

inlining, which enables scalable detection of cross-function refactoring;

• We design a systematic way to represent essential code changes needed for various

types of refactoring operations as abstraction and concretization operations of

vectors, which encode syntactic features of code and code changes;

• Our vector-based encoding of refactoring operations enables detection of refactor-

ing both within the same version and across different versions of a program, so

that we can detect both refactoring opportunities and historical refactorings;

• Our vector-based encoding and similarity queries for abstract and concrete vectors

enable scalable detection of refactorings;
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• We have evaluated our approach on large code bases with millions of lines of

code, and show scalable and accurate detection results.

1.3 Overview and Organization

This dissertation is principally positioned in the domain of automated refactoring de-

tection. Hence we start with a classification and discussion of the different refactoring

operations in Chapter 2. Chapter 3 then surveys the related works on the detection

of refactoring opportunities and the reconstruction of historical refactoring. We also

discuss works in the field of clone detection due to the similarity of the techniques we

propose in this thesis to works in the field of clone detection and the contribution of this

thesis on pushing the state of the art in finding cross-function similarity or “clones”.

In Chapter 4 we introduce vector inlining, which enables the scalable detection of

cross-function refactoring opportunities. In Chapter 5 we introduce vector abstraction

and concretization to detect a large number of both refactoring opportunities and histori-

cal refactoring. We conclude this dissertation with a discussion on future directions of

research in Chapter 6 and with a summary of the contributions in Chapter 7.





Chapter 2

Preliminaries

Refactoring techniques induce a spectrum of code transformations, ranging from renam-

ing a method, to more complex and ambitious transformations such as extracting a class,

changing to an object-oriented design from a procedural one, or restructuring a whole

class hierarchy by introducing polymorphism. The refactoring.com website maintains a

catalog of refactoring techniques [37] and describes around 100 refactoring techniques.

This chapter presents some refactoring techniques and a classification of the differ-

ent classes of refactoring operations, that are the subject of existing works, according

to their effect on code structure. Existing works are concerned with either the imple-

mentation of refactoring or support in detecting software refactoring. For instance,

modern software development environments, e.g. Eclipse and MS Visual Studio, offer

interactive support for implementing a number of refactoring techniques 2: Rename

Method/Field/Class, Extract Method, Inline Method, Pull-Up/Push-Down Method, Move

Method, Self-Encapsulate Field, Add Parameter, and Extract Interface. By interactive

support we refer to the fact that the developer needs to first select a refactoring op-

eration and the code location that needs refactoring, and the tool will implement the

transformation, prompting the developer to provide any required information. Another

2In this thesis we use the terms refactoring techniques and refactoring operations interchangeably.

17
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goal of refactoring works is to automatically find code locations that need refactoring

and thus speed up the process of refactoring and improve the productivity of software

development. Detecting refactoring opportunities is a highly active area of research.

Current investigations in this area can be broadly classified according to the type of

approaches they employ and the refactoring operations they detect.

2.1 Refactoring Operation Types

One class of refactoring operations, that many of the existing works focus on, is meant

to optimize the class structure of object-oriented systems. Such an optimization can, for

example, involve moving features across classes. Detecting refactoring opportunities

from this class requires an analysis of relations between classes, methods, and even

class attributes. Extract Class and Move Method, defined below, fall into this category.

Definition (Extract Class)

Given P , a program in which the functionality of one class can be divided across

two classes, an Extract Class refactoring is a code transformation that creates a new

class and moves the relevant fields and methods into the new class, thus yielding a

new program P 0, P
Extract Class

‡ P 0.

Definition (Move Method)

Given P , a program in which a method is using or is used by more features of

another class than the class in which it is defined, a Move Method refactoring is a

code transformation that creates a new method with a similar body in the class it

uses most and transforms the old method into a simple delegation or even completely

removes it, thus yielding a new program P 0, P
Move Method

‡ P 0.

Generalization Refactoring, also known as Refactoring for Generalization (Opdyke

[93], Fowler et al. [38]), represent another class of refactoring operations. Generalization
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refactoring aim to restructure object-oriented code to fully benefit from generalization.

They basically involve creating an abstract superclass for a set of concrete classes, and

migrating the common functionality to that superclass, as defined by Opdyke in his

thesis [93]. Examples of refactorings in this class are: Pull Up Field, Pull Up Method,

Pull Up Constructor Body, Push Down Method, Push Down Field, Replace Inheritance

with Delegation, Extract Interface, etc.

Definition (Pull Up Field)

Given P , a program in which two subclasses have the same field f , a Pull Up Field

refactoring is a code transformation that moves f to the superclass, thus yielding a

new program P 0, P
Pull Up Field

‡ P 0.

Definition (Extract Interface)

Given P , a program in which several clients use the same subset of a class’s interface

or in which two classes share part of their interfaces, an Extract Interface refactoring

is a code transformation, that extracts the subset into a new interface, thus yielding a

new program P 0, P
Extract Interface

‡ P 0.

Another class of refactoring operations deals with composing methods in order to

correctly bundle code. Methods that are too long are very often a source of problems.

The key refactoring in this category is Extract Method. In order to detect refactoring

operations that fall in this class an inter-procedural analysis is needed.

Definition (Extract Method)

Given P , a program in which a method contains a code fragment c which is (fairly)

loosely coupled with its context, an Extract Method refactoring is a code transforma-

tion that extracts fragment c into a new method m and replaces the fragment with a

call to m, thus yielding a new program P 0, P
Extract Method

‡ P 0 .
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Another class of refactoring operations deals with Organizing Data, Making Method

Calls Simpler, and Simplifying Conditional Expressions. Out of this class of operations,

a number of refactorings induce only simple code transformations: transformations

to method signatures for instance (renaming a method) or simple transformations to

how data is organized in classes, Replace Data Value with Object shown in Example 6.

Though these simple transformations can help improve the readability of code, our focus

in this thesis is more on modularity of code and the subclass of refactoring operations

that induce structural changes on method bodies (e.g. extracting a method, introducing

a new variable). One instance of this subclass of operations is Consolidate Conditional

Expression. This refactoring can be described as changing a sequence a conditionals

into one conditional and extracting the new conditional into a new method. As opposed

to detecting this instance of structural change the detection of Replace Data Value with

Object or Pull Up Field requires an analysis and decision procedure that takes into

account more than method structural information. Consequently operations such as

Replace Data Value with Object, Rename Method, or Pull Up Field are out of the scope

of this thesis.

Definition (Rename Method)

Given P , a program in which the name of a method does not reveal its purpose, a

Rename Method refactoring is a code transformation that changes the name of the

method, m, thus yielding a new program P 0, P
Rename Method

‡ P 0.

Definition (Replace Data Value with Object)

Given P , a program which contains a data item that needs additional data or

behavior, a Replace Data Value with Object refactoring is a code transforma-

tion that transforms the data item into an object, thus yielding a new program

P 0, P
Replace Data with Object

‡ P 0.
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Example 6. ( Replace Data Value with Object )

Order
customer: String

Order
Customer

name: String

Definition (Consolidate Conditional Expression)

Given P , a program in which a method contains a sequence of conditional tests with

the same result, a Consolidate Conditional Expression refactoring is a code transfor-

mation that combines them into a single conditional expression c, extracted/refactored

into a new method m, thus yielding a new program P 0, P
Consolidate Conditional

‡ P 0.

Existing state-of-the-art techniques with respect to refactoring opportunity detection

handle only a small number of refactoring operations. Most of the existing techniques

are specifically tailored to one operation and cannot be applied to other operations.

According to [20], Extract Class, Move Method and Extract Method are targeted by

most of the approaches.

In contrast, this thesis proposes a general approach for detecting a significant number

of method level refactoring opportunities. By method level refactoring we refer to those

refactorings that induce structural transformations reflected at the method level and only

optionally at the level of the class hierarchy or at how methods are bundled in classes.

One such example is the Extract Method refactoring operation, as shown in Example 1.

The transformation at the method level induced by Extract Method involves replacing a

code fragment c with a call to a method that has the same functionality as c. Another
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example would be Replace Method with Method Object, defined below and illustrated

in Example 7. This refactoring operation involves transforming the local variables in a

method into fields.

Definition (Replace Method with Method Object)

Given P , a program which contains a long method that uses local variables in such a

way that you cannot apply Extract Method, an Replace Method with Method Object

refactoring is a code transformation that turns the method into its own class so that

all the local variables become fields of that class, thus yielding a new program P 0.

Example 7. ( Replace Method with Method Object )

1 class Order{
2 int price (int i, int q) {
3 double primaryBasePrice;
4 double secondaryBasePrice;

5
// long computation;
primaryBasePrice = (i * q) + i%q;
secondaryBasePrice = (i * q%i);

6 }

1 class Order{
2 int price (int i, int q) {
3 return new OrderComputation(this).

price(i, q);
4 }
5 }...
6 class OrderComputation{
7 double primaryBasePrice;
8 double secondaryBasePrice;
9 int price (int i, int q) {

10
// long computation;
primaryBasePrice = (i * q) + i%q;
secondaryBasePrice = (i * q%i);

11 }

In this thesis we efficiently and accurately define structural transformations reflected

at method level by abstraction and algebraic operations over high-dimensional vectors

representing the code. For instance vector inlining, which will be presented in Chapter 4,

makes it possible to scalably detect refactoring operations that involve transformations

that span across method boundaries such as those from the class that deals with compos-

ing methods (e.g., Extract Method). Furthermore, in Chapter 5 we will show that the

precise code change patterns induced by refactoring, from classes such as those that deal
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with simplifying conditional expressions or making method calls simpler, can be learned

from examples, using a semi-automatic approach, and then detected by employing a

flexible approach based on abstractions and concretizations.

Moreover, though this thesis is concerned with refactoring (our experiments in

Chapter 5 target 21 refactoring operations), the techniques it describes are general and

can in theory be applied to detect code transformations from a more broader scope such

as bug fixes or other systematic code edits.





Chapter 3

Related Work

The purpose of this chapter is to provide a survey on the state-of-the-art research in

refactoring detection. In Section 3.1 we survey the related work on detecting refactoring

opportunities. Section 3.2 presents the related work on refactoring reconstruction, which

is critical for code evolution and API understanding. In Section 3.3, we present an

overview of the studies which define refactoring operations and automate the code

transformations induced by refactoring. As refactoring detection is related to clone

detection, Section 3.4 investigates the use of clone discovery in detecting refactoring

opportunities. Furthermore, Section 3.5 reviews an emerging area of clone detection

research aimed at finding code fragments matching an input code fragment in fractions

of a second. Finally, Section 3.6 surveys works that automate program transformations

based on examples.

3.1 Refactoring Opportunities

Refactoring opportunities are informally defined as code fragments that could benefit

from refactoring. Over the last decade a number of works [49–51, 121, 124] have been

proposed to automate the detection of such code fragments. Based on their underlying

25
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techniques, these works can be classified as illustrated in Figure 3.1. Some of these

works suggest refactoring based on checking if a set of conditions is satisfied by the

code. Others look at software metrics such as the structural and semantic similarity

between methods in a class, or propose techniques that involve clustering code fragments,

representing code as a graph, or code slicing. In terms of refactoring operations to which

they can be applied, most of the works are specifically tailored to one specific refactoring

operation and can be hard to generalize to other operations. In contrast, our approach

is more general and can be used to detect a broad range of refactoring opportunities.

Moreover, our proposal can be used to complement most of the existing techniques,

especially those that target opportunities such as Extract Class and Move Method whose

aim it to optimize class hierarchies and the bundling of methods in classes. In the

following subsections we review these existing techniques.

Approaches for Refactoring Opportunities

Metrics Based

Bavota et al. ’14
[6–10]

Dallal ’12
[19, 21]

Fokaefs et al. ’07
[32]

Higo et al. ’08
[49–51]

Mahouachi ’12
[81]

Sales et al. ’13
[106]

Yang et al. ’09
[132]

Zhao et al. ’06
[133]

Graph Based

Kanemitsu et al. ’11
[61]

Melton et al. ’07
[82]

Pan et al. ’09, ’13
[94–97]

Clustering Based

Alkhalid ’11
[1–3]

Cassell ’11
[15]

Fokaefs et al. ’09
[33–35]

Rao et al. ’11
[100]

Serban et al. 07
[111]

Precondition Based

Hotta et al. ’12
[52]

Lee et al. ’11
[75]

Liu et al. ’13
[79]

Seng et al. ’06
[110]

Tairas et al. ’12
[117]

Tourwe et al. ’03
[120]

Tsantalis et al. ’09
[122]

Tsantalis et al. ’10
[123]

Slicing/Dynamic Based

Kataoka et al. ’01
[64]

Igaki et al. ’12

[55]
Tsantalis ’09, ’11

[121, 124]

Figure 3.1: Approaches for Detecting Refactoring Opportunities
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3.1.1 Metrics-Based Approaches

The Aries system, proposed by Higo et al. [49–51], is based on a number of metrics

that characterize the coupling of duplicated program fragments with their surroundings.

Based on these metrics, Aries classifies duplicated code reported by CCFinder according

to the refactoring operations that can remove duplication. For example, if duplicated

methods appear in classes that extend a common base class, the Pull Up Method would

be suggested. Other refactorings it can detect include: Extract Class, Extract Superclass,

Extract Method, Pull Up Method, Form Template Method, Move Method, Parameterize

Method, Pull Up Constructor. The perfect type of duplicate code the approach of

by Higo et al. targets, also called merge clones or generalization clones, is shown in

Example 8. For this example Aries would suggest an Extract Method refactoring.

Example 8. ( Perfect Sample Code for Merge Clone Refactoring )

1 void printChocolate(int quantity)
2 int price = getChocolatePrice();
3

4
int total = price * quantity;
print("Total price:" + total);
print("Quantity:" + quantity);

5 }
6
7 void printGummy(int quantity)
8 int price = getChocolatePrice();
9

10
int total = price * quantity;
print("Total price:" + total);
print("Quantity:" + quantity);

11 }

1 void printChocolate(int quantity)
2 int price = getChocolatePrice();
3 printSweetsBalance(price, quantity);
4 }
5
6 void printGummy(int quantity)
7 int price = getChocolatePrice();
8 printSweetsBalance(price, quantity);
9 }

10
11 void printSweetsBalance(
12 int price, int quantity){

13
int total = price * quantity;
print("Total price:" + total);
print("Quantity:" + quantity);

14 }

extract

However not all duplicate code can benefit from merge or generalization refactorings.

Hui Liu et al., [79], showed in their evaluation that more than 95% of clone sets were

not accepted as generalization refactoring opportunities by developers. Generalization

refactorings basically involve creating an abstract superclass for a set of concrete classes,

migrating the common functionality to that superclass, and inheriting from that class.
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An example of duplicate code that should not be merged is shown in Example 9. Each

of the methods in Example 9 sets the value of a class field based on checking if a

set of conditions is abided by. As these methods access different fields they cannot

benefit from merge or generalization refactorings. In general, removing duplication by

means of generalization, or inheritance, tends to be less of a popular choice compared to

employing delegation (Kegel et al. [65]). Consequently, most clone sets might not be

good generalization refactoring opportunities.

Example 9. ( A False Positive Case for Merge Clone Refactoring )
1 public void setTab(AddAsisRemove attr)
2 {
3 String option = attr.getValue();
4 if (option.equals("remove")) {
5 tabs = SPACES;
6 } else if (option.equals("asis")) {
7 tabs = ASIS;
8 } else {
9 // must be "add"

10 tabs = TABS;
11 }
12 }

1 public void setEof(AddAsisRemove attr)
2 {
3 String option = attr.getValue();
4 if (option.equals("remove")) {
5 ctrlz = REMOVE;
6 } else if (option.equals("asis")) {
7 ctrlz = ASIS;
8 } else {
9 // must be "add"

10 ctrlz = ADD;
11 }
12 }

A number of other proposals aim to predict Extract Class refactoring opportunities.

In [7] Bavota et al. approach the problem by analyzing the structural and semantic

similarity between methods in a class, class cohesion. In [11] they combine class

cohesion with class coupling (similarity between one method and methods in other

classes) and propose an approach based on game theory. Zhao et al. [133] take on a

different approach and propose the use of a set of complexity metrics to predict Extract

Class. The work of Dallal, [19, 21], predicts Extract Subclass using a statistical model

based on size, cohesion, and coupling metrics. Variants of class cohesion and coupling

are also used to predict Move Method opportunities [10], [32], [106].

The work proposed by Mahouachi et al. [81] is claimed to be applicable to all

refactoring activities. Their approach is based on a genetic algorithm, that considers

knowledge from a set of defect examples and their corrections, in order to generate a set
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of rules. The format of the rules and an example of a rule are as follows:

IF “Combination of metrics with their threshold values” THEN
“Combination of Refactorings to apply”

IF No. of attributes >= 10 AND No. of methods >= 20 THEN
MoveMethod >=6 AND EncapsulateField < 18

As can be seen from the example, the metrics used in [81] refer to properties of

classes. They do not capture method functionality, do not aim to improve code within

methods, and essentially classify classes as bad smells3. However detecting classes

that can refactored can be a bit coarse grained. This thesis does not aim to supersede

techniques that focus on class-level optimizations such as those detected by [81] or

[7, 10, 11, 19, 21, 32, 106, 133]. Instead, our proposal aims to accurately and efficiently

capture and specify fine-grained structural information and code transformations induced

by refactoring on methods thus improving code within methods. The resulting vector

abstraction and concretization technique, to be presented in Chapter 5, is generic enough

that it can be used to capture a broad range of refactorings.

3.1.2 Graph-Based Approaches

The majority of proposals that use graph based program representations to find oppor-

tunities for refactoring are mostly targeted towards optimizing the class structure of a

program. In [96, 97], Pan et al. detect Move Method refactoring opportunities. Their

approach is based on a graph that encodes the relations between class attributes and

methods. This graph is processed in order to compute an optimized class structure by an

evolutionary algorithm [96] or a community detection algorithm [97]. The Move Method

refactoring opportunities are then identified by comparing the initial and optimized

graphs. A similar approach is presented in [94, 95], where the graphs are created to

3A code smell is defined according to Fowler as a “surface indication that usually corresponds to a
deeper problem in the system". Code smells have also been defined as being certain structures in the design
that indicate violations of fundamental design principles and negatively impact design quality [115].
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encode classes and their dependencies and the work focuses on Move Class.

The work of Melton et al., [82], focuses on Extract Interface refactoring oppor-

tunities. They construct a graph where each node is a class and the edges encode

the dependencies between classes. An analysis is then employed on the reachability

information of each node to detect Extract Interface refactoring opportunities.

None of the previously mentioned proposals focuses on improving code within meth-

ods. This is however the aim of the approach by Kanemitsu et al. in [61]. Their approach

constructs the program dependencies graph of a method and analyzes the distances

between the nodes of this graph in order to identify Extract Method opportunities.

3.1.3 Clustering-Based Approaches

The idea behind clustering based techniques is to use the semantic and structural

distances between various software elements to improve the grouping of code, e.g. lines

of code in methods, methods in classes, etc. In [111], Serban et al. propose computing

the distances between the fields and methods both within a class and across classes

to identify Move Method, Move Field, Inline Class, and Extract Class opportunities.

Similarly, Alkhalid et al. proposed using the similarity between methods within and

across classes to predict Move Method opportunities. They also proposed using the

similarities between classes to detect Move Class opportunities and thus refactor the

bundling of classes into packages [3].

Clustering is also used to predict if the functionality of one class can be divided

across two classes, or basically if an Extract Class can be performed, [15, 33–35, 100].

Specifically, Fokaefs et al. and Rao et al. [33–35, 100] consider the distances between

class attributes and methods as the basis for a number of clustering techniques algorithms.

Similarly, Cassell et al. [15] consider the semantic and structural distances between the

elements of a class as the basis for clustering.

Extract Method can also be detected using clustering. In [1], Alkhalid et al. propose
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using the similarity between the lines of code in a method as input to an adaptive

k-nearest neighbor algorithm in order to predict refactoring at function level.

3.1.4 Precondition-Based Approaches

The idea behind precondition-based approaches is to define a set of conditions which,

when satisfied by code, indicate the applicability of a specific refactoring operation.

Seng et al. [110] propose preconditions to identify Move Method refactoring. In

[52, 75, 79, 117] the authors propose a set of preconditions for code clones, priorly de-

tected, in order to identify the best refactoring operation to apply. There are also studies

that detect refactoring opportunities based on “bad smells” in code [38, 78, 86, 120, 123].

Tourwe and Mens [120] use logic programming to encode several types of refactoring

operations and detect possible refactoring opportunities. They define a set of conditions

which, if satisfied by priorly detected bad smells, indicate the applicability of refactoring.

Tsantalis et al. [123] define a set of conditions to identify refactoring opportunities intro-

ducing polymorphism. In [122] they identify Move Method refactoring opportunities

using an approach based on detecting the Feature Envy bad smell and checking the

compliance to some preconditions.

Our proposal is complementary to existing approaches in this category. They could

be used by developers as a first step to detect code fragments that are suitable candidates

for refactoring. Our proposal can then make use of the result of this first step to detect

missed refactoring opportunities or to reconstruct the refactorings that have occurred.

3.1.5 Code Slicing and Dynamic Analysis Approaches

Code slicing and dynamic analysis have also been touted as approaches to detecting

refactoring opportunities. Tsantalis et al. [121, 124] identify Extract Method refactoring

opportunities based on slicing the program dependencies graph of a method. Igaki et

al. [55] identify Move Method refactoring opportunities by analyzing method invocation

traces and the relations between methods. Kataoka et al. [64] detect refactoring oppor-
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tunities by using program invariants found by Daikon. A specific pattern of invariants

indicates the applicability of a specific refactoring operation. For example, the Remove

Parameter refactoring can be applied if an invariant over the parameters indicates that

one parameter can be obtained from the others and is thus not needed. Compared to

these works our approach can be applied to detect a broader range of refactorings.

3.2 Historical Refactoring

When a new version of a program, P 0, is analyzed or tested, we may want to reconstruct

the transformation from the previous version, P ‡ P 0, into constituent transformations

that could be analyzed or tested. The transformations that preserve behavior and

represent refactoring could have been omitted from testing or could be analyzed for

reasons such as understanding API evolution. Many of the existing techniques targeting

such transformations or so-called historical refactoring rely on the changes recorded in

version control systems. Given successive program versions, P and P 0, these techniques

will essentially analyze the changes found between the corresponding program entities:

Approach : Program ⇥ Program ! {Diff}

Weißgerber and Diehl [128] search for the changed, added, or removed entities

(methods, classes, fields) to get refactoring candidates, and then use clone detection to

rank these candidates. They use an analysis based on method signatures, as shown below,

to detect local refactorings that transform the signature of a method, such as Rename

Method, Hide/Unhide Method, Add/Remove Parameter or structural refactorings such

as Move Class/Interface/Field/Method, and Rename Class.
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Example. Sample Condition for Signature-based Refactoring Detection
Given two program versions, P and P 0, and a tuple,
(c0,m0, p0, r0, w0) 2 P 0, consisting of a class, a method name, a
list of parameter types, a return type, and a visibility level, method m0

is obtained from its previous version by refactoring Add Parameter, if
the following condition holds:

@ (c0,m0, p0, r0, ⇤) 2 P ^ 9 (c0,m0, p, r0, ⇤) 2 P ^ p ⇢ p0

Hayashi et al. [48] construct a graph representation of the structural differences

between two program versions and model the refactoring detection as a search on

this graph. Demeyer et al. [25] propose the use of a set of heuristic metrics to search

for refactoring. Taneja et al. [118] and Dig et al. [26] present tools (RefacLib and

RefactoringCrawler respectively) to detect refactoring between versions of libraries.

Soetens et al. [113] detect refactoring operations as actual changes are happening in an

integrated development environment. Godfrey et al. [45] analyze how call relations

are changed between two versions of a program in order to detect certain refactoring

operations.

The state-of-the-art techniques for historical refactoring detection are introduced by

Prete et al. [98] and Kim et al. [70]. The techniques observe that a logic query engine

can be efficiently used to detect a broad range of refactorings. They essentially represent

the changes between program versions as logical facts and define a set of template logic

queries, based on these facts, to represent refactoring operations. In Example 10, the

logical facts would capture that in program version P 0 method compute was changed,

method print was added, a call to print was added in method compute, and that print

is similar to the old version of compute. Based on these facts the query for Extract

Method, shown below, would return method print as a refactoring candidate.

As opposed to the techniques in this category our approach is not limited to changes

between versions; it can search the entire code base and detect refactoring opportunities



34 CHAPTER 3. RELATED WORK

Example 10. ( P ‡ P 0 )
⌥

1 void compute(int a, int b)
2 int c = a + b;
3 print("Result:" + c);
4 log("Info: Result:" + c);
5 }⌃ ⇧⌥
1 void compute(int a, int b){
2 int c = a + b;
3 print(c); Diff 2: Added Function Call
4 }
5
6 Diff 1: Added Function
7 void print(int c){
8 print("Result:" + c);
9 log("Info: Result:" + c);

10 }⌃ ⇧
RefFinder Definition of Extract Method

added_method(newmFullName, newmShortName, tFullName) ^
added_calls(mFullName, newmFullName) ^
similarbody(newmFullName, newmBody, mFullname, mBody) ^
after_method(mFullName, X, tFullName) !
extract_method(mFullName, newmFullName, newmBody, tFullName)

within the same version of a code base as well. The precise change patterns we define

differ from those employed by works that detect historical refactoring. Many of these

works rely on the changes recorded in version control systems and define the patterns

used to detect refactoring based on changes between the versions (e.g. introduced

new local variable in function m). These patterns cannot however be applied to detect

refactoring opportunities within the same version. Moreover, these works rely on coarse

measures of similarity between function bodies. Though powerful in terms of the

number of refactoring operations it can detect, the state-of-the-art technique in detecting

historical refactoring ( [98]) uses a threshold-based measure to capture the similarity

between function bodies (similarbody). Using threshold-based similarity implies that

changes permissible within the threshold can be arbitrary and not necessarily only those
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induced by the sought after refactoring operation thus leading to inaccurate results.

Instead our approach can flexibly omit or emphasize specific program elements when

computing similarity. Another example of work that suffers from the same drawback is

that of Xing and Stroulia [129]. Their work detects refactoring by comparing program

versions at the design level, which are packages, classes, interfaces, fields, and blocks.

The comparison is however based on names and structural similarities and does not

analyze method bodies.

The rules we define to detect refactoring are based on the differences in functions

and not the changes between versions (e.g. added_method). In particular, for Extract

Method the difference lies in having a method call, that has the same functionality as a

code fragment c, instead of code fragment c. We efficiently and accurately define and

detect these differences in functions by two new techniques called vector inlining and

vector abstraction and concretization. Our approach can thus detect the Extract Method

in Example 10 by comparing method compute from program version P against method

compute from P 0 after inlining method print.

3.3 Specification and Implementation of Refactoring

Another area of works related to this thesis deals with formally specifying the precondi-

tions and code transformations required by refactoring operations.

The classical work by Opdyke [93] describes a set of refactoring operations for

C++ in terms of the preconditions needed to preserve behaviour. Griswold specifies

refactoring from the perspective of its effect on the program dependencies graph [46].

Lämmel [74] and Garrido [43] represent refactoring operations through the use of

rewriting rules. Recent studies also aim to allow programmers to script their own

refactoring operations. To this end, Verbaere et al. [126] propose a domain specific

language for expressing dataflow properties on a graph representation of the program.
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Schafer et al. [107] improve on this and provide high-level specifications for many

refactoring operations implemented in Eclipse. Our work complements these studies,

in that it searches for refactoring opportunities that could then be implemented by the

various approaches mentioned. In future we plan to investigate the development of a

query language and of abstractions that would allow us to more comprehensively and

precisely specify the refactoring opportunities to search for.

Some studies focus on automatic refactoring. One of the first tools to offer refac-

toring support was the RefactoringBrowser for Smalltalk, proposed by Don Roberts

et al. [101]. Its success was followed by modern development environments, such as

Eclipse, IntelliJ’s IDEA and Microsoft’s Visual Studio, that offer refactoring capabilities.

Another tool was proposed by Franklin et al. [39] to automatically refactor certain

anonymous inner Java classes and for loops by using lambda expressions and functional

operations available in Java 8. Our tool currently focuses on scalable detection only. We

plan in future work to make our tool implement the detected refactoring automatically.

3.4 Clone Detection

Clone detection is informally defined as the process of identifying similar code. Devel-

opers are often interested in finding and tracking similar code (a.k.a. code clones), since

clones may help perform various important tasks during development and maintenance,

such as understanding code design and API usage [5, 92], investigating software evo-

lution [4, 27, 71, 91, 105, 137], identifying redundant code for refactoring [12, 50, 136],

analyzing possibly incorrect reuses of code with incompatible licenses [30,63], and prop-

agating bug fixes from one location to other locations with similar bugs [42, 58, 59, 76].

Over the last decade, many techniques and tools have been developed to de-

tect clones, such as Deckard [57], Exas [89], CP-Miner [76], CCFinder [60, 80],

CloneDR [12], NiCad [17, 102], XIAO [22, 23], etc. Empirical evaluations of these
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tools have shown that they can detect many clones with good accuracy and can scale to

millions of lines of code. The clones they detect are however mostly syntactic clones

that reside in the same function, with limited gaps allowed in-between the code elements

in each clone.

In order to detect semantic clones, a number of other studies used program depen-

dence relations among code elements [41, 72, 73, 77]. Compared with syntactic clone

detection tools, they are more resilient to certain kinds of changes such as reordered

statements, relevant statements interleaved with other irrelevant statements. However,

program dependencies considered in these techniques are mostly limited within functions

and are not aimed at detecting clones across functions mainly due to scalability concerns.

Cider [112] proposes a solution to the scalability concerns by first employing a simple

clone detector, to find similar code fragments or so-called initial seeds, and then by

using the seeds to analyze an inter-procedural graph of the program.

Example 11. ( General Clone )

1 } else if (arg.equals("--file")){

2 try{

3 configuration.add(args[i+1]);

4 i++;

5 } catch (ArrayIndexOutOfBoundsException e){

6 String message = "File must be specified" +

7 "when --file is given";

8 }

9 } else if (arg.startsWith("--consoleLog")

10 || args[i+1].startsWith("--consoleLog")){

11 log("Console Logging");

12 ...

13 }

1 } else if (arg.startsWith("--threshold")){

2 try{

3 properties.add(args[i+1]);

4 i++;

5 } catch (ArrayIndexOutOfBoundsException e){

6 String message = "Threshold must be specified "

7 "in order to compute LSH" +

8 "when --threshold is specified";

9 }

10 } else if (arg.equals("--nothreshold")){

11 // Compute based on default values.

12 ...

13 }

2 try{

3 var1.add(args[i+1]);

4 i++;

5 } catch (ArrayIndexOutOfBoundsException e){

6 String message = "var2 must be specified "

7 "var3" +

8 "when var2 is specified";

9 }

merge merge
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Leveraging on code clone detection techniques there have been proposals to rank

program refactoring opportunities (Extract or Pull-Up Method in particular). Fontana et

al. [36] manually refactor code clones detected by three different clone detection tools

and find that certain code quality metrics have improved after the refactoring. Higo et

al. [50] define several metrics for code clones and demonstrate a tool that can suggest

refactoring operations for code clones. Tairas [116] visualize clones so that it may

become easy to select candidates for refactoring. Van Rysselberghe and Demeyer [103]

investigate three different kinds of clone detection techniques (simple line matching,

parameterized matching, and metric fingerprints) and determine that clones detected by

different techniques may be suitable for different kinds of refactoring.

Code clones are however, not always suitable for refactoring. Example 11 illustrates

such a case. The highlighted code fragments are general code clones, which can be

detected using a token-based technique. In the code fragment on the left, operations

based on the -file property are performed whereas in the code fragment on the right

the operations are based on the -threshold property. The try-catch blocks have a

common logic, however there are a few statements and method calls that differ which

obstructs refactoring. In other words, extracting the try-catch blocks using an Extract

Method would not be possible.

Our study differs from the above studies on clone detection refactoring. Our unique

contribution to the code clone detection area of research is a novel similarity measure

that leverages on abstraction and concretization mechanisms and can flexibly omit or

emphasize specific program elements. We also propose a scalable approach that makes

it practical to detect cross-function similarity on subject programs containing millions

of lines of code. This is achieved by encoding syntactic features of code in vector

format and by flexibly omitting or manipulating specific elements of the vectors when

measuring similarity. This allows us to constrain the dissimilarities allowed between

code thus enabling us to encode precise change patterns induced by refactoring.



CHAPTER 3. RELATED WORK 39

Our vector inlining technique, presented in Chapter 4, builds on, and extends a

previous study on clone detection with the capability to handle cross-function similar

code. In contrast to Cider, our technique does not rely on initial seeds and uses vector

matching, making it much more scalable to large code bases where code divergence

across functions occurs more often.

3.5 Real-Time Clone Search

A special category of related works deals with real-time clone search. Real-time clone

search is an emerging area of clone detection research aimed at finding code fragments

matching an input code fragment in fractions of a second. Existing works in this category

are able to scale to systems of millions of lines of code.

The first work to provide a solution to the requirements of real-time clone search,

scalability and a short response time, was the work of Hummel et al. entitled “Index-

Based Code Clone Detection: Incremental, Distributed, Scalable” [53]. The key tech-

nique proposed by the authors involves hashing code fragments, storing the hashes in a

database, and then querying the database during clone search. Their proposed index-

based approach has the advantage of not needing clustering and expensive pairwise

comparisons during clone search.

Keivanloo et al. [66] build on top of the success of [53]. They aim to be more

robust to small statement reordering by hashing code fragments at two granularity levels,

storing the hashes in a database and querying the database during clone search. The first

level of hashing granularity is statement level which is followed by ordering the hashes

and then by hashing the first level hashes. An overview of how their technique works

is presented in Figure 3.2. [67] further extends [66] and presents a hybrid clone search

approach using indexing, information retrieval clustering, and Semantic Web reasoning

to attain short response times.
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Although these clone search studies are shown to scale to large code bases it is not

clear how their work can be naturally extended to handle inter-procedural clones. In this

thesis, we circumvent this inter-procedural issue – while maintaining high scalability –

by introducing arithmetic operations on vector representation of code.

 
 

Figure 3.  Transformation, FLS, TLS grouping, and hashing samples 

Based on our analysis, the following observations can be 
made. First, the preparation step complexity is linear, which 
is important since our approach will have to support Internet-
scale code analysis. Second, the clone search is almost 
constant, since !" #$%&'$() * & . Third, the update 
complexity is linear to the number of updated lines. As a 
result, our approach has the lowest observed complexity for 
clone search (excluding type-3 clones), repository 
preparation, and updates. Both the complexity and the 
memory requirements support our claims that it can support 
scalable incremental repository updates and provide real-
time clone search for very large source code corpora.  

VIII. CLONE PAIR DETECTION EXPERIMENT 
Although the main objective of our research is clone 

search, we conducted a traditional clone detection 
experiment to determine if our clone search approach can 
also be applied for clone detection on an Internet-scale 
corpus to detect type-1, 2, and 3 clones. We applied the 
detection on our complete repository (1,500,000 files) and 
the results are shown in Fig. 5. In our experiment, the worst-
case scenario took about 21 minutes to find all possible raw 
clone pairs (11 billion). 

Our results provide a clear indication of the number of 
clone pairs that an Internet-scale clone detection tool must be 
able to handle in order to be scalable. In our case, the run-
time would remain under 3 minutes for detection of all 
clone-pairs (within the entire repository) if we exclude the 
outlier patterns.  

TABLE IV.  COMPUTATIONAL COMPLEXITY 

 Process Time Memory 
Repository preparation 

(indexing) +,&- .,/ 0 1- 
Clone pair detection +,2()3)45 -$ .,6- 

Clone pair search +,() 7 ! 89: #-a .,;<- 
Repository update 
(addition/deletion) +,=- .,> 0 1>- 

a. 89: # is applicable in case of access to the secondary FLS index. Similar 
situations can be applied to the forward detection complexity. 

 
Figure 4.  Clone pair matching and coverage search algorithms 

 
Figure 5.  Clone pair detection run-time. Note that it is different 
from the clone search process. 
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Algorithm ?@&'A@B@=%#C%@#D,?" &" @E)FG- 
Input          f : query’s code fragment, n:target line in f, ix: indices                
Output      HC,$HCIJJ: true positive and false positive clone-pair sets 
 
1   @EKFG L !%=!M=%NOPQA,?- // @EKFG: FLS values for f 
2   RQAST L @E)FGU ?@&',!%=!M=%NORQAV@EKFG" &W- 
3   for   tls   in   RQA  //tls: minimal candidate lines 
4  @EKFGX L #ON#@OYO$(#@B%#Z$?=D$@&'OE$[?$N=D 
5  &X L #ON#@OYO$N%#\ON$=@&O$[?$N=D 
 //?X is the candidate fragment 
6      if  ]?KFGX S&XT" ?KFGX S&^JI_X T" ?KFGX S&`Ia)X Tb  
             c]?KFGS&T" ?KFGS&^JI_T" ?KFGS&`Ia)Tb d $e    then 
7   !(U M( L ?@&'C%@#H[YO#%\O,@EKFG" &" @EKFGX " &X" M(-  
8   !(U '& L ?@&'C%@#H[YO#%\O,@EKFG" &" @EKFGX " &X" 'f&- 
9  HCU %'',!(- 
10 else 
11  HCIJJU %'',N=D- //false positive due to hashing 
 
Algorithm  ?@&'C%@#H[YO#%\O,@EKFG" &" @EKFGX " &X" '-  
Input d:lookup direction. n and &X:pointers to the lines.  
Output        cp’s coverage boundary for the given direction (i.e. d)  
/* t denotes the distance threshold for type-3 approximate lookup. The default 
value is set to the current method block size */ 
 
1  $!(U NZ(O d general //cp is the clone-pair under evaluation 
2   if n’s tls is not equal to &X’s tls considering the line order then 
3 !(U NZ(O d type-3 $ 
4   do // do-while loop 
//&g$%&'$&gX $'O&[NO$NhO `Ia)^JI_ =@&OD$[?$&$%&'$&X$#O\%#'@&\$' 
5  if     @EKFGS&gT d @EKFGX S&gX T          then 
6  & L &gi &X L &gX  
7  continue loop 
8 else 
9  @EKFGjX L #ON#@OYO$DO![&'#Z$@&'OE$[?$@EKFGX  
10  k L @EKFGjX U ?@&',@EKFGS&gT- 
11  E L BlB m k c !(" nBX m k c !( 
    " o&X c Bo p o&X c BXo 
12  if   o&gX c $Eo p N   then  
13   & L &gi &X L E ; !(U NZ(O d type-3 
14   continue loop 
15  else 
16  fix corresponding boundary of cp 
17   break loop 
18  while(true)    //end of do-while loop 
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Figure 3.  Transformation, FLS, TLS grouping, and hashing samples 

Based on our analysis, the following observations can be 
made. First, the preparation step complexity is linear, which 
is important since our approach will have to support Internet-
scale code analysis. Second, the clone search is almost 
constant, since !" #$%&'$() * & . Third, the update 
complexity is linear to the number of updated lines. As a 
result, our approach has the lowest observed complexity for 
clone search (excluding type-3 clones), repository 
preparation, and updates. Both the complexity and the 
memory requirements support our claims that it can support 
scalable incremental repository updates and provide real-
time clone search for very large source code corpora.  

VIII. CLONE PAIR DETECTION EXPERIMENT 
Although the main objective of our research is clone 

search, we conducted a traditional clone detection 
experiment to determine if our clone search approach can 
also be applied for clone detection on an Internet-scale 
corpus to detect type-1, 2, and 3 clones. We applied the 
detection on our complete repository (1,500,000 files) and 
the results are shown in Fig. 5. In our experiment, the worst-
case scenario took about 21 minutes to find all possible raw 
clone pairs (11 billion). 

Our results provide a clear indication of the number of 
clone pairs that an Internet-scale clone detection tool must be 
able to handle in order to be scalable. In our case, the run-
time would remain under 3 minutes for detection of all 
clone-pairs (within the entire repository) if we exclude the 
outlier patterns.  

TABLE IV.  COMPUTATIONAL COMPLEXITY 

 Process Time Memory 
Repository preparation 

(indexing) +,&- .,/ 0 1- 
Clone pair detection +,2()3)45 -$ .,6- 

Clone pair search +,() 7 ! 89: #-a .,;<- 
Repository update 
(addition/deletion) +,=- .,> 0 1>- 

a. 89: # is applicable in case of access to the secondary FLS index. Similar 
situations can be applied to the forward detection complexity. 

 
Figure 4.  Clone pair matching and coverage search algorithms 

 
Figure 5.  Clone pair detection run-time. Note that it is different 
from the clone search process. 
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Algorithm ?@&'A@B@=%#C%@#D,?" &" @E)FG- 
Input          f : query’s code fragment, n:target line in f, ix: indices                
Output      HC,$HCIJJ: true positive and false positive clone-pair sets 
 
1   @EKFG L !%=!M=%NOPQA,?- // @EKFG: FLS values for f 
2   RQAST L @E)FGU ?@&',!%=!M=%NORQAV@EKFG" &W- 
3   for   tls   in   RQA  //tls: minimal candidate lines 
4  @EKFGX L #ON#@OYO$(#@B%#Z$?=D$@&'OE$[?$N=D 
5  &X L #ON#@OYO$N%#\ON$=@&O$[?$N=D 
 //?X is the candidate fragment 
6      if  ]?KFGX S&XT" ?KFGX S&^JI_X T" ?KFGX S&`Ia)X Tb  
             c]?KFGS&T" ?KFGS&^JI_T" ?KFGS&`Ia)Tb d $e    then 
7   !(U M( L ?@&'C%@#H[YO#%\O,@EKFG" &" @EKFGX " &X" M(-  
8   !(U '& L ?@&'C%@#H[YO#%\O,@EKFG" &" @EKFGX " &X" 'f&- 
9  HCU %'',!(- 
10 else 
11  HCIJJU %'',N=D- //false positive due to hashing 
 
Algorithm  ?@&'C%@#H[YO#%\O,@EKFG" &" @EKFGX " &X" '-  
Input d:lookup direction. n and &X:pointers to the lines.  
Output        cp’s coverage boundary for the given direction (i.e. d)  
/* t denotes the distance threshold for type-3 approximate lookup. The default 
value is set to the current method block size */ 
 
1  $!(U NZ(O d general //cp is the clone-pair under evaluation 
2   if n’s tls is not equal to &X’s tls considering the line order then 
3 !(U NZ(O d type-3 $ 
4   do // do-while loop 
//&g$%&'$&gX $'O&[NO$NhO `Ia)^JI_ =@&OD$[?$&$%&'$&X$#O\%#'@&\$' 
5  if     @EKFGS&gT d @EKFGX S&gX T          then 
6  & L &gi &X L &gX  
7  continue loop 
8 else 
9  @EKFGjX L #ON#@OYO$DO![&'#Z$@&'OE$[?$@EKFGX  
10  k L @EKFGjX U ?@&',@EKFGS&gT- 
11  E L BlB m k c !(" nBX m k c !( 
    " o&X c Bo p o&X c BXo 
12  if   o&gX c $Eo p N   then  
13   & L &gi &X L E ; !(U NZ(O d type-3 
14   continue loop 
15  else 
16  fix corresponding boundary of cp 
17   break loop 
18  while(true)    //end of do-while loop 
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Figure 3.2: Index-Based Clone Search. Taken from [66]

3.6 Automating Program Transformations

Another work similar to ours automates program transformations based on examples

of systematic edits [83]. Systematic edits are defined by Meng et al. [83] as similar

yet not identical changes to multiple code locations usually performed by developers

in order to add features or fix bugs. The approach they propose in [83] is based on
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code examples containing such systematic edits. Starting from two or more such code

examples they create context-aware edit scripts and use the scripts to identify edit

locations and transform the code. As refactoring is also a code transformation their

approach can also in theory be applied to find refactoring opportunities. However,

the edit-scripts are so far limited within a single method, as from their experience

combining inter-procedural analysis and the expressiveness of general-purpose edits is a

very hard problem. They thus cannot detect changes that require moving code from one

method to another or coordinating changes to multiple methods in the way our approach

does. Just like our work, their approach is similar to many studies on programming by

examples [47, 83, 84, 88] and specification mining [92, 131, 134, 135] in the sense that

we all learn from examples.





Chapter 4

Vector Inlining

4.1 Introduction

The decomposition of a complex method by extracting a code fragment into a new

method is one of the most extensively performed refactoring operations [85, 124].

Furthermore it can be combined with other code transformations, giving rise to different

refactoring operations, in order to address a range of software design problems. This

type of refactorings we define as cross-function refactoring.

Modern software development environments, e.g. Eclipse, offer support for imple-

menting cross-function refactoring such as Extract Method. However the code locations

that should benefit from refactoring or refactoring opportunities must be manually

identified by the developers. This in itself can prove painstaking and nontrivial for large

software products. Consequently, a number of works have focused on automating and

speeding up the identification process and thus improving the productivity of software

development [34, 51, 121]. The identification problem is however challenging for

cross-function refactoring.

In this chapter, we present a new scalable approach for identifying cross-function

refactoring opportunities (refer to Definition 1.1 for refactoring opportunity). Our

43
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technique builds on top of the success of representing code fragments by characteristic

vectors, as defined in previous studies [41, 57, 90]. The salient point of our technique

is the design of efficient vector inlining operations that simulate the effect of method

inlining among code fragments, based on characteristic vector representations of code.

Such inlined vectors naturally represent inlined code, taking method extraction and

inlining into account. Thus, the problem of scalable identification of cross-function

refactoring can be reduced to the problem of scalable identification of similar vectors.

Our investigation is based on the following hypothesis about cross-function refactor-

ing, which we intend to provide evidence of support in this chapter.

Hypothesis for cross-function refactoring
If two pieces of code become similar, either syntactically or semanti-
cally, after the methods called by them are inlined, they are very likely
to indicate a true cross-function refactoring opportunity, especially
when the two code pieces are not similar to each other before inlining.

This means that two pieces of code which have structural differences related to how

this code is bundled in functions can benefit from applying a cross-function refactoring

(e.g. Extract Method) to one of the code pieces to make them structurally similar and

to increase the modularity of code. Thus, our technique uses a special vector query

and filtering strategy, which will be presented in Section 4.4.5, to detect pairs of code

fragments whose characteristic vectors are similar to each other after inlining but have

structural differences related to bundling code in methods before inlining. Example 12

illustrates such code pieces.

We have implemented our technique for Java in a prototype named REDEX.4 The

tool takes in the source code of a Java program, from which it first creates particular

characteristic vectors for every Java method, and then generates inlined vectors by

merging the vectors of the methods that have caller-callee relations to simulate the

4“ReDex” means refactoring detection in this chapter. We use the name since refactoring operations, especially
method extraction/inlining, bear similarity to “reducible expressions” in lambda calculus.
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Example 12. ( Extract Method Structural Differences )

1 void f(int a, int b)
2 int c = ...;

-3 print("Result:" + c);
-4 logToFile("Info: Result:" + c);
5 }

1 void m(int a, int b){
2 int c = ...;

+3 log(c);
4 }

+6 void log(int c){
+7 print("Result:" + c);
+8 logToFile("Info: Result:" + c);
+9 }

inline⌘

effect of method inlining. It then uses an efficient vector query technique, Locality

Sensitive Hashing (LSH [24, 44]), together with a set of filters, to search for methods

satisfying certain refactoring criteria reporting them as refactoring opportunities. We

have applied the tool to a large code base comprising of 200 bundle projects in the Eclipse

ecosystem (e.g., Eclipse JDT, Eclipse PDE, Apache Commons, Hamcrest, ObjectWeb

ASM, etc.) containing 4.5 million lines of code. REDEX reported 277 refactoring

opportunities, and with manual investigation done by 5 students, we found that the

detected opportunities are of high accuracy at about 80%, and cover many categories

of cross-function refactoring operations from classical collections of refactoring (e.g.,

[38, 56]), such as Self Encapsulate Field, Decompose Conditional Expression, Hide

Delegate, Preserve Whole Object, etc.

Our study addresses the problem of scalable identification of missed cross-function

refactoring opportunities that have yet to happen; results from our tool can be used to

facilitate other tools for performing and validating refactoring operations. Similar to our

study, Cider [112], a recent study on detecting refactored clones, can also detect clones

that have diverged due to refactoring. However, Cider’s detection algorithm works

on a graph representation of a program, which is less efficient than REDEX’s vector

representation and has limited ability in detecting cross-function refactoring. Also, Cider

requires initial seeds for its search algorithm, while REDEX works automatically without



46 CHAPTER 4. VECTOR INLINING

the need of seeds. Another study by Meng et al. [83] can also theoretically be applied

to detect refactoring opportunities. They create context-aware edit scripts from two or

more examples and use the scripts to identify edit locations and transform the code.

However, edit-scripts are limited within a single method as, from the author’s experience,

combining an inter-procedural analysis with the expressiveness of general-purpose edits

is a very hard problem.

Our main contributions in this chapter are as follows:

• Our vector-based encoding of refactoring operations enables detection of refactor-

ing both within the same version and across different versions of a program, so

that we can detect both refactoring opportunities and historical refactorings;

• We propose a new technique called vector inlining to simulate the effect of method

inlining, which enables scalable detection of cross-function refactoring;

• We have evaluated a prototype of our technique on a code base containing 200

projects (4.5M lines of code) from the Eclipse ecosystem, and results show that

our prototype can efficiently (in a few seconds) detect more than 200 missed

refactoring opportunities with an accuracy of 80%.

The rest of the chapter is organized as follows. Section 4.2 describes more cross-

function refactoring examples that can be detected by our technique. Section 4.4 presents

our technique in detail. Section 4.5 presents the results of our empirical evaluation and

discusses threats to validity. Section 4.6 concludes with future work.

4.2 Cross-Function Refactoring Opportunities

Fowler et al. provide a catalog of refactoring operations [38]. Based on the code

transformations they involve, they can be classified as Extract Method, Inline Method,

Replace Temp with Query, Remove Middleman, Introduce Foreign Method, Encapsulate

Field, Separate Query from Modifier, or Form Template Method.
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In this thesis, we define refactoring opportunities as potential code changes that can

fit into classical refactoring categories (i.e., Fowler’s categorization [38]) with small

variants. Furthermore, lets recall once again that a unique feature of our approach, which

aims to increase the chance that a detected refactoring indeed has the potential to improve

the design of existing code, is that it targets missed opportunities which are similar

to some refactoring that may have happened. In addition, the term "cross-function

refactoring opportunities" in this chapter refers to those categories in Fowler’s list that

involve method extraction/inlining. In fact in this chapter, all refactoring opportunities

mentioned are cross-function refactoring opportunities.

As a first illustrative example let’s consider method escapeString presented in

Chapter 1. According to Eclipse’s revision history, method escapeString from the

JDT package, shown in Example 1, was refactored in version 3.5.2 by an Extract

Method. Meanwhile, the method with the same name from the Equinox package, shown

in Example 2(a), is what we define as a missed Extract Method refactoring opportunity.

While both methods have the same functionality, they differ in how code is bundled

in methods, with the refactored escapeString method having enhanced modularity

and readability. However, we may also classify the opportunity as Replace Duplicated

Functionality by Existing Method since escapeString from Example 1 was refactored

to reuse the functionality of an existing method, decodeStringValue. We can also say

about the method decodeStringValue that it is a 1-way extraction since compared

with its earlier version, it has one method extracted from its body, escapeChar.

Another refactoring is illustrated in Example 13, together with the call graph captur-

ing the call relations between the methods illustrated. The single method getSorted-

Targets is from a class TargetDefinitionManager that implements IRegistry-

ChangeListener. It gets an array of configuration elements and sorts them. The

three methods at the bottom belong to a different class, OSGiFrameworkManager,

that also implements IRegistryChangeListener. Although the three methods at



48 CHAPTER 4. VECTOR INLINING

Example 13. ( Separate Query from Modifier Opportunity from Eclipse )

1 public IConfigurationElement[] getSortedTargets() {

2 if (fTargets == null)

3 loadElements();

4 IConfigurationElement[] result = (IConfigurationElement[]) fTargets.values().

toArray(new IConfigurationElement[fTargets.size()]);

5 Arrays.sort(result, new Comparator() { ... } );

6 return result;

7 }

1 public IConfigurationElement[] getSortedFrameworks(){

2 IConfigurationElement[] elements = getFrameworks();

3 return orderElements(elements);

4 }

5
6 private IConfigurationElement[] orderElements(IConfigurationElement[] elems)

{

7 Arrays.sort(elems, new Comparator() { ... } );

8 return elems;

9 }

10
11 public IConfigurationElement[] getFrameworks(){

12 if (fFrameworks == null)

13 loadElements();

14 return

15 (IConfigurationElement[]) fFrameworks.values().toArray(new

IConfigurationElement[fFrameworks.size()]);

16 }

getSortedFraworksgetFrameworks

orderElements

getSortedTargets

loadValues

values

toArray

size

Arrays.sort call

call

the bottom are spatially apart from each other, they together perform the same func-

tionality as getSortedTargets. Based on the enhanced modularity and readability

of the code on the bottom, a developer may easily see a refactoring opportunity for

getSortedTargets as well. Conversely, for reasons such as performance enhance-

ment, a developer may also choose, in reference to getSortedTargets, to refactor

getSortedFrameworks by inlining the methods used in it. We call this example a 2-
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way extraction, since compared with getSortedTargets, getSortedFrameworks

has two methods, getFrameworks and orderElements, extracted from its body. In

general, we could have cross-function refactoring opportunities that are n-way extraction.

In Example 14(a), the method urlDecode was copied from an earlier version

of urlDecode in Example 14(b) according to the comments in the code. However,

the code in Example 14(b) has gone through refactoring: the decode method was

introduced to invoke the local method urlDecode and the try-catch statement was

moved from urlDecode into decode. This indicates the method in (a) has a missed

refactoring opportunity. Such a refactoring operation can be classified as Extract Service

Method. Similar to Example 1, usual clone detection tools may be able to detect parts of

the body of both urlDecode as clones, but they would not be able to link the clones to

the additional decode method or suggest a concrete way to refactor the code in (a).

Overall, our technique aims to scalably detect missed cross-function refactoring

opportunities based on actual refactoring operations that have occurred. REDEX achieves

this aim by relying on efficient vector inlining: for every method m in a code base, one

or more than one vector is generated to represent m; then REDEX searches for another

method m0 whose vector(s) can become similar to m’s vector(s) if all vectors that are

associated by call relations are appropriately inlined. The needed similarity search is

carried out in the form of a vector query with automated filtering of the results. The

results, if any, are presented as a set of pairs of code fragments including the query m

and its counter-party, indicating possible ways to refactor m. Section 4.4 has details.

4.3 Background: Characteristic Vectors

Vectors as a representation of code fragments [41, 57, 89] are the key idea of the state-

of-the-art code clone detection studies that aim to capture the structure of code yet avoid

the high complexity of comparing tree-based (e.g. ASTs) or graph-based structures
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Example 14. ( Extract Method Opportunity from Eclipse )

1 org.eclipse.ui.internal.intro.impl.
model.url.IntroURLParser

2 /* 199
3 * Note: This was copied and adapted

from
4 org.eclipse.help.internal.util.

URLCoder
5 200 */
6
7 static String urlDecode(String

encodedURL){
8 int len = encodedURL.length();
9 ......

10 try {
11 for(int i=0; i<len;) {
12 switch (encodedURL.charAt(i)) {
13 case ’%’;
14 ......
15 default:
16 os.write(encodedURL.charAt(i++));
17 break;
18 }
19 }
20 return new String(os.toByteArray(),

"UTF8");
21 } catch(UnsupportedEncodingException

ex) {
22 return null;
23 }
24 }

1 org.eclipse.help.internal.util.URLCoder
2
3 static String decode(String s) {
4 try {

5 return new String(urlDecode(s),"UTF8");

6 } catch(UnsupportedEncodingException uee
) {

7 return null;
8 }
9 }

10
11
12 static byte[] urlDecode(
13 String encodedURL) {
14 int len = encodedURL.length();
15 ......
16 for(int i=0; i<len;) {
17 switch (encodedURL.charAt(i)) {
18 case ’%’:
19
20 default:
21 os.write(encodedURL.charAt(i++));
22 break;
23 }
24 }
25 return os.toByteArray();
26 }

calls

(a) (b)

(e.g. PDGs). One of such studies, Deckard [41, 57], uses the occurrence counts of

each q-level complete binary subtree in an AST or parse tree to represent the structural

information in code fragments. Each dimension of the high dimensional vectors they

construct represents the number of occurrences of a particular kind of program element.

The advantage of this representation is that efficient near-neighbor search algorithms,

found in the database community, such as locality-sensitive hashing [24, 44], can be

used to find similar vectors quickly. A formal definition of the characteristic vectors



CHAPTER 4. VECTOR INLINING 51

proposed in the work of Jiang et al [57] is as follows: 5

Definition 4.1 ( Characteristic Vector )
Given a sequence of K unique features denoted by [f1, . . . , fK ], a
characteristic vector v for a code fragment c is an array [n1, . . . , nK ]

of size K such that n1, . . . , nK � 0 and for each i, ni is the number of
occurrences of the feature fi in c.

Another study, Exas [89], proposes sequences of labels and numbers built from

nodes, edges, and paths of various lengths in a generic graph-based representation as

dimensions of vectors to represent code. In comparison with these clone detection

studies [41, 57, 89] our work explores vectors for the purpose of refactoring detection.

Compared to clone detection, refactoring detection is aimed at code fragments that

can differ in how statements are ordered or even by how code is split across functions.

Our vector representation of choice should thus allow for this. The vectors which

our approach is based on are the characteristic vectors proposed by [57]. Though the

vectors proposed by Exas capture more complex patterns and structural information

about graphs, as we want to perform vector operations that would mimic inlining they

would would be more difficult to manipulate. As future work we will investigate the

incorporation of our technique into the graph-derived vectors of Exas.

Our characteristic vectors can be generated directly from the abstract syntax tree

of a code fragment to represent the syntactic characteristics of the code [57]. They can

also be generated from certain parts of the abstract syntax tree of the code that match

slices of the program dependence. In principle, vectors can be generated from arbitrary

combinations of parts of the trees and graphs.

As an illustrating example, Figure 4.1 shows partial ASTs for the code fragments

in Example 15. The vector associated with the top “block”-node in Figure 4.1 is the

vector for the whole tree shown in Figure 4.1. The elements of this vector indicate

5We use the term “characteristic vector” and “vector” interchangeably in this chapter.
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the occurrences of nodes of the following types: hreturn, if, for, assign, init,

new, type, funcall, ., <, !=, ++, [], id, param, consti. Program elements, such

as “block” and “parameter” in the boxes with dashed borders in 4.1, are often used to

facilitate parsing and considered irrelevant for code semantics, and thus not counted in

the vectors. The vectors can be easily generated by traversing the tree from bottom to

top and by accumulating counters for various node types. We can also remove certain

functionally non-essential code (e.g., simple error-handling code, null-check, assertions,

throws, try-catch, etc.) when generating vectors.

Example 15. ( Sample Code: (a) may be refactored as (b) )

1 members = getMemberList(...);
2 ArrayList f = new ArrayList<Member>();
3 if ( members!=null ) {
4 IFilter filter = new Filter(...);

5

for(int i=0; i<members.length;i++) {
if ( filter.satisfy(members[i]) )
f.add(members[i]);

}

6 members = f.toArray(new Member[0]);
7 ...

1 members = getMemberList(...);
2 if ( members!=null ) {
3 IFilter f = new Filter(...);
4 members = filter(members, f);
5 }
6
7 ......
8 //Code fragment C
9 Member[] filter(Member[] array,

10 IFilter f) {
11 ArrayList r = new ArrayList<Member>();

12

for(int i=0; i<array.length;i++) {
if ( f.satisfy(array[i]) )
r.add(array[i]);

}

13 return r.toArray(new Member[0]);
14 }(a) (b)

Each vector also comes with various meta data (not shown in the figures), such as

the name of the method and corresponding file, line ranges of the code fragment, number

of tokens contained in the code, etc., to facilitate various postprocessing when needed.

4.4 Methodology

Figure 4.2 illustrates the main steps of our approach. Given a code base, we construct its

abstract syntax trees (ASTs), program dependence graphs (PDGs), and call graphs (CGs).



CHAPTER 4. VECTOR INLINING 53

block

assignment

identifier

function 
call

identifier

parameter

init

identifier

new

type

if

identifier

constant

block

assignment

identifier identifier

identifier

parameter
init

identifier

new

type

parameter

for

init

++

identifier

block

…...

!=

<
identifier

constant

identifier

.

…...

.

function 
call

…...

new

type [ ]

constant

0,2,1,2,3,3,3,4,4,1,1,1,3,21,0,3

Figure 4.1: AST and Characteristic Vector for Code Fragment (a) in Ex. 15

The ASTs and PDGs are used in a way similar to previous studies [41, 57] in order

to generate characteristic vectors for code fragments from the code base (our tailored

vector generation is recapped in Section 4.3). These vectors only capture characteristics

of the code within a function body: if a method is invoked in a code fragment, the vector

for the code fragment does not capture any characteristic of the code inside the invoked

method, except the method invocation expression and actual parameters. Thus, we call

these vectors base-level characteristic vectors in this work.

The key novelty of our approach is the use of call relations captured by the call

graphs to determine how vectors from different functions can be merged, so that the

merged vectors are able to capture cross-function, semantically related code fragments.

The merge operation of vectors is in spirit mimicking the effect of method inlining, and

thus we call it vector inlining, which will be the main subject of Section 4.4.1, and we

collectively call such merged vectors inlined characteristic vectors.

After vector inlining, an adapted version of Locality-Sensitive Hashing (LSH) [44]

is applied to return vectors similar to a vector used as a query. Last but not least, all

query results are then filtered to identify refactoring opportunities. More details about

the query and filtering component will be presented in Section 4.4.5.

In comparison with previous studies, as found in [41, 57], the components in the

shaded boxes in Figure 4.2 are new developments of this work. The shaded compo-
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Figure 4.2: Vector Inlining Approach Overview

nent inside box 1 corresponds to vector inlining. The shaded components inside box

#2 correspond to vector querying and filtering tailored for cross-function refactoring

opportunities.

4.4.1 Inlining Based on Vectors

The key challenge for detecting cross-function refactoring is to efficiently capture the

call relations among code and to efficiently search for code having similar functionality

in the presence of method calls. Our solution is to use vector inlining to simulate the

effect of method inlining and extraction.

Given a piece of code c and its corresponding characteristic vector vc, if c contains

a call to a function f , method inlining would replace the function call with the code b in

f ’s body. Intuitively, vector inlining emulating method inlining would replace the parts

of vc corresponding to the call to f with the characteristic vector(s) for the code b in f ’s

body. After the replacement, the changed vector v0 would approximately represent the

code c inlined with b, taking away the code related to the function call expression.
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Algorithm 1 Vector Inlining with Depth 1
1: Input: vc: a vector for a code fragment c that requires inlining
2: Input: V : a set of candidate vectors that may be inlined into vc
3: Input: G: a call graph of all code involved
4: Output: vin: an inlined vector for vc
5:
6: Let Mcalled be the set of functions invoked by c, which can be obtained from G
7: VMcalled := ;
8: for all m 2 Mcalled do
9: Let Vm be the vector set for m, obtained from V

10: VMcalled := VMcalled [ Vm

11: end for
12: if VMcalled = ; then
13: return none
14: else
15: vin := inlineVector(v, VMcalled)
16: end if

Algorithm 1 implements the above idea and accounts for the situations when c may

contain zero or more calls. It takes as input a vector vc, a call graph G, and a set of

vectors that can be inlined into others (this set could simply be all available vectors or

chosen by users). It identifies all callees of c based on G and collects all vectors for the

callees (Lines 7–11), and then calls the inlineVector method to inline those callee

vectors VMcalled (could be a very small subset of V ) into vc (Line 15).

The inlineVector method transforms the caller vector vc and all callee vectors in

VMc for inlining: The caller vector is transformed by subtracting the parts from it that

represent method invocations and the actual parameters used in the invocations (Line

10); each callee vector is transformed by subtracting the parts from it that represent the

return statements (but retaining the expressions actually returned) (Line 12). Then the

transformed caller and callee vectors are summed to produce the inlined vector for vc

(Lines 13 and 18).



56 CHAPTER 4. VECTOR INLINING

Algorithm 2 Vector Inlining: Inline direct callees’ vectors into caller’s
1: Method inlineVector
2: Input: vc: a vector from a caller c
3: Input: VMc : a set of vectors from c’s callees
4: Output: v: an inlined vector
5:
6: v := vc; flag := false;
7: u := ~0
8: for all vm 2 VMc and vm is a vector from the method m
9: and ¬isAPI(m, config) and isInlinable(vm, config) do

10: Let v0 be the version of v that excludes the call and
the actual arguments to m

11: v := v0; flag := true
12: Let v0m be the version of vm that excludes “return”s
13: u := u+ v0m
14: end for
15: if flag = false then
16: return none
17: else
18: v := v + u
19: end if

4.4.2 Aspects of Inlining

This subsection presents our approach to handle various design considerations related to

inlining. These include: handling recursive calls, handling multiple calls to the same

function and filtering of methods to be inlined.

Recursive Function Calls

There are pros and cons for inlining the same function into itself or for inlining another

function that directly or indirectly calls itself. Recursive inlining may be too expensive,

but it may help to capture more “semantic” characteristics of code into the same function,

and the following analysis may be more convenient and “accurate.” Our vector inlining

algorithm provides two capabilities for users to decide how to inline recursive functions.

First, it relies on a control parameter called inlining depth (d in Algorithm 3 in

Section 4.4.3) to let a user provide a suitable depth of inlining so that we can terminate
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( Inlining Example )

Figure 4.3(b) depicts the vectors for the method filter and the code fragment

C invoking it. The corresponding source code is given in Example 15. The

method call to filter is shown by the shaded part in Figure 4.3(b).

By following the algorithm inlineVector, the inlining proceeds by first

subtracting the vector for the call expression from the vector for the caller,

which gives us a new vector:

h0, 1, 0, 2, 1, 1, 1, 2, 0, 0, 1, 0, 0, 8, 0, 1i - h0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0i =

v0 = h0, 1, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 0, 5, 0, 1i

Inlining will proceed according to inlineVector at Line 12 by substract-

ing the “return”s from the vector for the function body of the inlined method

filter (i.e., the vector along with “block” in Figure 4.3(a)), which results

in a new vector:

v0f = h0, 1, 1, 0, 2, 2, 2, 3, 4, 1, 0, 1, 3, 16, 0, 2i

The last step of the algorithm sums the modified caller and callee vectors

together obtaining the vector as earlier shown in Figure 4.1:

v0 + v0f = h0, 2, 1, 2, 3, 3, 3, 4, 4, 1, 1, 1, 3, 21, 0, 3i

vector inlining when the depth of inlining is reached. This is an experience-based way

to balance the costs and accuracy of cross-function refactoring detection.

Second, it relies on the structure of the given call graphs (used in Algorithm 1) to

avoid potential non-terminating inlining. When cycles exist in a call graph and it is

requested by a user, we break cyclic call relations in the call graph: Starting from an

entry node, we traverse the call graph in a depth-first fashion; if there is no obvious main

entry in the call graph, we choose a random one. Then, we remove every back edge
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Figure 4.3: Partial, Illustrative ASTs Used for Vector Generation and Inlining

found during the traversal. This back edge removal process is repeated until every node

in the graph is traversed. Then, the normal vector inlining is applied.



CHAPTER 4. VECTOR INLINING 59

Multiple Calls to the Same Function

A code fragment may contain multiple calls (with same or different actual parameters)

to the same function. For method inlining, the same method is usually inlined multiple

times. However, detecting a refactoring may require inlining the same function either

once or multiple times. In particular, the code in Example 16 needs inlining of the

same method getSectionName multiple times to be detected by Replace Constant

with Method Refactoring. On the other hand, for the refactoring operation shown in

Example 17 inlining the same function only once is needed. This is because of the fact

that the Consolidate Duplicate Conditional Fragments refactoring shown in Example

17 extracts multiple calls to compute from the if-then and else branches outside of the

if-else statement. Thus we need to only inline once for the vector capturing code on the

left to be the same as the vector for the code on the right. In REDEX, we make it an

option for users to choose, and by default we inline the same function multiple times.

Example 16. ( Replace Constant with Method Refactoring )

1 IDialogSettings section =
2 master.getSection("pluginsView");
3 if (section == null) {
4 section = master.addNewSection("pluginsView");
5 }...

1 IDialogSettings section =
2 settings.getSection(getSectionName());
3 if (section == null) {
4 section = settings.addNewSection(getSectionName());
5 }...
6 String getSectionName() {
7 return "EXPRESSION_INPUT_DIALOG";
8 }
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Example 17. ( Consolidate Duplicate Conditional Fragments )

1 if (discount) {
2 total = price * 0.95;
3 compute();
4 } else {
5 total = price * 0.98;
6 compute();
7 }

1 if (discount) {
2 total = price * 0.95;
3 } else {
4 total = price * 0.98;
5 }
6 compute ();

Inlinable Vectors

Algorithm 1 also allows ignoring certain vectors based on project-specific or user-

specific preferences (isAPI and isInlinable used at Line 9). For example a vector

can be deemed as not inlinable if it corresponds to third-party library code; if the

code corresponding to the vector is not big enough; or if the code does not contain

relevant program elements of interest to the users. Such criteria can be stored in a global

configuration file config, used to decide whether a vector from a method can be inlined

into a vector from the method’s caller. In the implementation of REDEX, we check the

fully qualified name of each Java method invoked and if the invoked method belongs to

certain packages (such as java.lang.*), then we treat it as an API and do not use it

for inlining. Also, if some called methods are interface methods or if some call sites

cannot be statically resolved to a unique target method, or if some methods are abstract

or refer to native code, we treat them as not inlinable.

4.4.3 Inlining for Multiple Depths

In method inlining, we can choose the inlining depth, from 0, 1, to infinity. Depth

0 effectively means no inlining. Suppose a function f calls another function m: with

depth 1, we only inline m’s body into f ; with depth 2, we inline m’s body and also the

body of every function called by m into f ; and so on, and with depth infinite, we risk

non-termination by inlining the body of every function called by f , either directly or
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Algorithm 3 Vector Inlining with Arbitrary Depths
1: Input: T : a set of target vectors that may require inlining
2: Input: V : a set of candidate vectors that may be inlined into vectors in T ; V may

or may not be the same as T
3: Input: G: a call graph of all code involved
4: Input: d: a desired depth of inlining (d < 0 means an infinite depth, i.e., to inline

as deep as possible)
5: Output: I1, . . . , Id: sets of inlined vectors
6:
7: Let i := 0
8: Let I0 := T
9: Let V0 := V

10: while |Vi| > 0 and (d > i or d < 0) do
11: i := i+ 1
12: Ii := ;
13: Vi := ;
14: for all t 2 T do
15: Ii := Ii

S
{Call Algorithm 1(t, Vi�1, G)}

16: end for
17: for all v 2 Vi�1 do
18: Vi := Vi

S
{Call Algorithm 1(v, V,G)}

19: end for
20: end while
21: d := i
22: return I1, I2, ..., Id

indirectly, into f . Similarly, in our vector inlining, we can choose to inline characteristic

vectors with various depths.

Algorithm 1 effectively inlines vectors with depth 1. Algorithm 3 extends it to allow

arbitrary depths. The correctness of Algorithm 3 can be easily proved based on the

correctness of Algorithm 1 and induction on the depth. The complexity of the algorithm

is linear with respect to the number of vectors involved and the depth of inlining.

4.4.4 Inlining with Indices for Efficiency

The most time-consuming operations in the above algorithms are related to the

repeated lookups in the callgraph for callees in a code fragment (especially when

the callgraph is large), and the repeated lookups for vectors corresponding to callee
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Algorithm 4 Vector Inlining With Depth 1: With Indices
1: Input: v: a vector that requires inlining
2: Input: V : a set of candidate vectors that may be inlined into v
3: Input: G: a call graph of all code involved
4: Output: vin: inlined vector for v
5:
6: Let c be the corresponding code fragment of v
7: Let L be the set of hfilename, lineNumberi in c
8: Let MV of type: String ! SetOfV ectors the index for vectors
9: Let LM of type: String ! lineNumber ! SetOfStrings the index for call

relations
10: Mcalled := ;
11: for all hfilename, lineNumberi 2 L do
12: Mcalled := Mcalled

S
LM [filename][lineNumber]

13: end for
14: VMcalled := ;
15: for all m 2 Mcalled do
16: Vm := MV [m]
17: VMcalled := VMcalled [ Vm

18: end for
19: vin := inlineVector(v, VMcalled)

signatures, which become particularly expensive when the set of vectors to be inlined

is large. However, these operations can be implemented in an efficient way by having

various indices to speed up the lookups. The idea is to construct indices among source

code locations (file names, method names, and line numbers), methods, and their

corresponding vectors. Algorithm 4 optimizes Algorithm 1 and is much more efficient

with the introduction of additional indices. If we used multi-sets, instead of sets, to store

methods (Lines 9 and 12 in Algorithm 4), we can then inline the same method more

than once as discussed in Section 4.4.2.

4.4.5 Vector Query And Filtering

With vector inlining that simulates the effect of method extraction and inlining, the

problem of scalable detection of cross-function refactoring can be reduced to finding

similarity among base-level and inlined vectors by means of vector query and filtering.
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As mentioned earlier, our intuition, which has been expressed as a hypothesis earlier,

is repeated here: If two pieces of code become similar, syntactically or semantically,

only after the methods called in them are inlined, then they are likely to indicate a

cross-function refactoring opportunity, especially if the two code pieces are not similar

to each other before inlining.

The purpose of vector query is to find vectors, from a given set of candidate vectors,

that are similar to a vector used as a query. Our vector querying engine takes as input a

pair of vector sets: the first is the query set containing all query vectors, and the second

is the target set containing all candidate vectors. The query engine then returns a set

of pairs; each pair represents a match between a query vector and a target vector. As

an example, consider a query set only containing the base-level vector for the code

fragment (a) in Example 2 and a target set only containing the inlined vector for the

cross-function code fragment (a) and (b) in Example 1. Running the query engine will

return the pair formed by the base-level vector for Example 2(a) and the inlined vector

for Example 1(a) and (b), and the corresponding source code would be presented as a

potential refactoring opportunity.

Formally, a query execution will return a subset of the cartesian product A ⇥ B,

where A is the query set and B is the target set. The results can thus can be derived

from the two sets of vectors as follows:

⌦ : P(V ector)⇥ P(V ector) ! P(V ector ⇥ V ector)

Q⌦ T = {(v1, v2) | v1 2 Q, v2 2 T, v1 = v2, v1.name 6= v2.name}

Similar to previous studies on clone detection [41, 57], we adapt Locality-Sensitive

Hashing (LSH) [44], which is designed to efficiently handle nearest-neighbor queries of

high-dimensional data, to implement our query engine. Our query engine first stores the
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target set into LSH’s internal hash tables, then uses every query vector from the query

set to get matching target vectors for each query vector via LSH backend, and presents

all query results as a set of pairs of matching vectors. The LSH backend from Alex

Andoni (http://www.mit.edu/ andoni/LSH) is capable of handling a couple of millions

of vectors at a time.

Besides querying for matching code, we also need to identify matching code that

may manifest cross-function refactoring. Thus, our query engine also defines a set of

filters for matching vectors, based on heuristics, to identify more likely cross-function

refactoring opportunities. The following defines the query and filters used in REDEX.

Definition 4.2 ( Split Query )
Given two vector sets Ba and In, where Ba contains only base-level
vectors and In contains only inlined vectors, a Split Query returns a
set of pairs of similar vectors; every pair in the set contains one vector
from Ba and another vector from In.

A split query uses base-level vectors in the query set and inlined vectors in the target

set. It allows us to ask whether code contained in one function is similar to code that

spans more than one function. A positive answer may provide an opportunity to create a

more modular version of the code used as the query, by means of method extraction.

Results from the above query can be further refined by filters. A filter defines a set

of constraints over a pair of vectors, and removes the pairs that satisfy the constraints.

Some of the filters we have defined look into the origin of the inlined vectors to make

filtering decisions. This lookup can be efficiently implemented (O(1)) by keeping an

index of the original base-level vectors and searching the index. To facilitate discussion,

let us define several notations. Given a method or code fragment m, Im denotes the set

of methods invoked by m, v0m denotes the base-level vector (no inlining) for m, and vm

denotes the inlined vector when the vectors for all methods in Im are inlined (with depth
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1) into v0m. Now, we define the following filters for refining query results.

Definition 4.3 ( Filter Equal )
Given a pair of vectors, (v0q , vr), corresponding to the vectors for the
methods q and r respectively, Filter Equal first determines (v0q , v

0
r)

corresponding to the base-level vectors for methods q and r, and then
removes the pair if v0q and v0r are equal.

Filter Equal aims to eliminate those pairs where the vectors before inlining are

equal: As the code fragments for the two base-level vectors are equal, they are unlikely

to indicate a refactoring opportunity.

Definition 4.4 ( Filter Simple )
Given a pair of vectors (v0q , vr) corresponding to the vectors for the
methods q and r respectively, and r invokes a method i, this Filter
Simple removes the pair if |Ir| = 1 and v0q is equal to v0i .

It is obvious that when |Ir| = 1, i is the only method invoked by r. In addition,

when v0q = v0i , together with the query premise v0q = vr, we have vr = v0i and can infer

that the method r does nothing except invoking i. Thus, Filter Simple eliminates those

pairs where the possible refactoring opportunity is to simply fold or unfold a method

wrapper.

Definition 4.5 ( Filter Size )
Given a pair of vectors (vq, vr) or (v0q , vr) , this Filter Size removes the
pair if vq or v0q contains less than 20 nodes.

Filter Size filters out query results whose query vectors are too small in terms of

numbers of nodes contained so that we only report refactoring opportunities for code of

non-trivial sizes to help reduce possible false positives. An example of such a pair of

small vectors is shown in Figure 4.4.
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Figure 4.4: Small Vector Inlined

4.4.6 Implementation Remarks

Our approach relies on syntax trees, call graphs, and program dependence graphs

of a code base. The general idea of vector inlining is independent of programming

languages. However, the tools available for constructing these data structures are often

language-specific. Various parts of our algorithms (e.g., method signatures used in

Algorithms 4, some program elements –e.g., method invocations, return statements –

used in Algorithm 1, 2, etc.) are language-specific. Implementation of some of the data

structures may also need adjustments for different languages.

Given a Java code base, we use Eclipse JDT [29] to construct ASTs for the code base,

one AST for each Java source file, which is split into smaller ASTs for each function.

We then use IBM WALA [54] to construct DDGs and CGs for the code base, one DDG

for each function, and a big CG (which may be comprised of multiple disconnected

subgraphs) for the whole code base. The ASTs and DDGs are outputted into the .dot

format and read by the vector generation component of our system which then proceeds

to find for each DDG its matching AST and to construct a number of characteristic

vectors. We use fully qualified names and unique identifiers for the .dot files so that we

can match DDGs with ASTs easily. We limit DDGs within procedures so as to avoid

potential scalability issues for inter-procedural dependence graph construction.

Similar to previous work [114], we also eliminate safety-checking code from the



CHAPTER 4. VECTOR INLINING 67

DDGs. One of the patterns of code that we target is shown below.

if(info==null} { throw new Exception(...); }

This pattern throws an Exception when a certain property is violated. As such code

snippets have little contribution to the main functionality of code, discarding them allows

us to detect more clones and ignore associated bug-reporting code.

Due to the large size of our subject programs, the call graph construction poses a

challenge. In order to obtain a call graph, WALA first loads all classes into memory,

creates the class hierarchy of the classes, obtains the intermediate representations of

methods, creates the DDGs and constructs the call graph. The creation of the class

hierarchy is needed in order to resolve the possible targets of each virtual method call.

As polymorphism is a commonly used feature of Java and a virtual method call can be

dynamically dispatched to different method bodies at runtime, we need to determine

the number of targets of each call in order to accurately create a callgraph. The method

calls that are statically determined to correspond to multiple or no method targets are

deemed as not inlinable by our approach.

The implementation of our approach relies on careful memory management and effi-

cient data structures. In particular, our proposed solution to generating the callgraph for

large programs is based on trading computation for memory, and basically constructing

the DDG for a method m on demand: either when the body of m is analyzed or during

the resolution of a virtual method call c if c can correspond to m. Though this approach

may lead to the DDG for one method being computed multiple times (caching can be

employed to help here) the memory requirements are low and it can accurately handle

large programs such as Eclipse.

When an invoked method (e.g., a third-part library) is not part of the subject pro-

grams, no vector is generated for that method of course. For consistency and ease of

handling, we thus do not inline any method that contains a call to any method without

vectors, and leave it future work to explore the effect of allowing partial inlining.



68 CHAPTER 4. VECTOR INLINING

4.5 Empirical Evaluation

Our experiments evaluate the effectiveness and scalability of vector inlining in detecting

cross-function refactoring opportunities. The experiments show that our approach scales

to a large code base and detects many refactoring opportunities with high accuracy.

Furthermore the results give evidence that detecting missed refactoring opportunities is

indeed needed.

4.5.1 Setup and Infrastructure

We have experimented using REDEX. REDEX uses a modified version of Deckard,

which provides a wide choice of granularity levels at which vectors can be generated:

either whole methods, slices of methods obtained from PDGs, or any fragment of code

in a method. For our experiments we used the most efficient granularity and only

generate vectors that represent whole methods6. The vectors we experimented with

have 98 features. These features are presented in Figures A.1 and A.2 in Appendix

A. The first 84 features are the types of ASTNodes generated by Eclipse JDT [28].

Separated from the usual method_invocation feature, our vectors also contain the

api_invocation feature that refers to invocations of methods not defined in the subject

programs. Furthermore, the last 14 features are method_invocation_paramno and

api_invocation_paramno that denote invocations with the number of actual arguments

specified by paramno where paramno 2 {0, 6}.

Also, we focused on detecting refactoring within and across the subject projects and

ignored potential refactoring that may span across methods defined in external libraries.

Thus, our vector inlining algorithm was configured to only inline a method if the

method is defined in one of the subject projects (checked by isAPI and isInlinable

6Code in a whole method includes all executable code in the method, but excludes function headers, variable
declaration, simple elements unlikely responsible for the main functionality of the code (e.g., simple null-check and
return, throw exceptions), and non-executable lines (e.g., comments, blank lines, lines with only curly braces).
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in Algorithm 1). In addition, vector inlining was carried out in an all mode, i.e., all

inlinable and non-API methods called in a code fragment are inlined; if any one of the

methods in a code fragment cannot be inlined due to any reason (e.g., missing vectors

due to parsing errors, unresolved call targets, etc.), the inlining for the code fragment

would be cancelled. Further, we focus on evaluation of depth-1 inlining and the type of

queries and filters described in Section 4.4.5.

The experiments on REDEX were performed on a PC running Ubuntu 10.04 with

Intel Xeon at 2.67GHz and 24GB of RAM.

The subjects of our evaluation are comprised of 200 bundle projects in the Eclipse

4.2.2 ecosystem, including Eclipse Core, Eclipse JDT, Eclipse PDE, Eclipse Equinox,

Apache Commons, Apache Lucene, Hamcrest, ObjectWeb ASM etc. The projects

encompass more than 20,000 Java files, 40,000 classes and 7,000 interfaces, and contain

about 4.5 million lines of code and a long evolution history.

We chose the subject projects according to two criteria: 1) they represent a variety

of projects with a long evolution history that have gone though refactoring (the study of

Xing et al. [130] on the structural evolution of Eclipse shows that about 70% of structural

changes may be due to refactoring) and 2) they represent a large scale ecosystem of

projects and packages that may share common parts (e.g. the Disassembler class,

illustrated in Chapter 1, contained in both the Eclipse JDT project and the Eclipse

Equinox project in different forms).

4.5.2 Results and Analysis

Scalability

The first question we wanted to answer in this evaluation is related to the scalability

of our approach to large projects. We measure three aspects when determining the

scalability of REDEX: the time it takes to generate the characteristic vectors, the time it
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takes to perform vector inlining and the number of vectors generated.

The most expensive parts in terms of both time and memory consumption are the

construction of the callgraph (CG), ASTs, PDGs, and the generation of indices (cf.

Section 4.4.4) for these data structures. PDG and CG constructions using WALA [54]

took about 44 minutes; vector inlining (including building indices) took 3 minutes:

while index generation took most of the time, the actual vector inlining (cf. Algorithm 4)

took a couple of seconds for inlining of depth 1. Fortunately, all these constructions are

one-time cost, and more optimizations can be performed in future for the constructions.

REDEX generated about 186K base-level characteristic vectors, each of which

represents the body (please refer to footnote 6 for details) of a defined method in the

Eclipse ecosystem (excluding abstract, native and interface methods or external methods

defined outside of Eclipse). Thus, about 186K queries were performed and filtered; they

accumulatively took less than 2 minutes to report potential refactoring opportunities

which is quite little considering that the subject program is about 5 millions of lines of

code and the analysis is inter-procedural. As a very coarse comparison the authors of

Cider report in their evaluation more than 300 seconds for a project of 50KLOC.

Accuracy - Cross-Function Refactoring Opportunities

Recall that the hypothesis set forward in this chapter was that if two pieces of code

become similar only after the methods they call are inlined a cross-function refactoring

may be applicable. In order to verify this hypothesis and the accuracy of vector inlining

for cross-function refactoring we performed the Split Query introduced by Definition

4.2 and the type of filters described in Section 4.4.5.

We have detected many missed refactoring opportunities in the bundle projects of

Eclipse. Specifically, REDEX generated 277 reports for the 200 bundle projects in the

Eclipse 4.2.2 ecosystem. Each report is a pair of two pieces of code that may span

multiple functions: one corresponds to the query generating the report, and the other



CHAPTER 4. VECTOR INLINING 71

corresponds to the target matching the query. Each of the two pieces of code may reveal

a refactoring opportunity and could be refactored according to its counter-party.

Validation of the results was done through a user study by 5 graduate students

with good knowledge of Java and refactoring. These report inspectors were required to

classify each of the reports (i.e., resulting pairs) into one of the following four options: (1)

refactoring, (2) not refactoring but clone, (3) neither refactoring nor

clone, or (4) I don’t know. In the case when the refactoring option is selected,

they were required to classify, additionally, the refactoring operation that might be

applied to one of the code fragments in the pair.

Overall, the results after inspection showed a high accuracy at 80% for the cross-

function refactoring opportunities detected by REDEX: 80% of all reports were classified

as option (1), 16% as option (2), and 4% as options (3) or (4). The validation exercise

discovered 223 out of the 277 analysed cases to have true refactoring opportunities.

These true refactoring opportunities are each matched to one of many categories and

variants of Fowler’s catalog. Table 4.1 shows these categories and the number of

validated refactoring opportunities. These provide strong evidence to support the ability

of REDEX in detecting missed refactoring opportunities. Some examples of refactorings

have been shown in Section 4.2.

Practical Usage - Inter-Projects Divergence

One of the reasons we chose the projects in the Eclipse ecosystem as the subject of our

evaluation was because they share a long evolution history and possibly common parts

that may have evolved differently by refactoring (a.k.a., diverged). The third question of

the evaluation aims to determine whether this is indeed the case.

Figure 4.5 shows the distribution of the refactoring opportunities in the subject

projects. One can see that many projects are covered by the vectors. Figure 4.6 shows
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Refactoring Categories Occurrences

Self Encapsulate Field 76

Encapsulate Collection Access
19

and Downcast

Downcast Encapsulate 2

Decompose Conditional Expression 2

Substitute Algorithm 23

Extract/Inline method 25

Separate Query from Modifier 2

Introduce Query Method 18

Replace Duplicated Functionality
10

by Existing Method

Hide Delegate 23

Preserve Whole Object 3

Introduce Parameter Object 7

Reverse Conditional 3

Replace Temp with Chain 1

Make Method Static 11

Table 4.1: Categories of Detected Refactoring Opportunities 7

a heatmap of the number of reports (ie., resulting pairs of code) between pairs of

projects in the evaluation. Values on the diagonal indicate refactoring opportunities

detected within the same project. On the other hand, Figure 4.6 also shows many

cross-project refactoring opportunities. This shape of the heatmap results supports

our intuition that in large projects initially similar code across different functions and

projects is refactored differently or diverge, which increases the difficulty for their

identification, and techniques that can detect cross-function refactoring opportunities

are indeed needed.
7The number of refactorings recorded and displayed in Table 4.1 may be bigger than the number of reports returned

by REDEX. This is due to the fact that a piece of code may be refactored in more than one way to obtain the shape of
its counter-party, providing additional choices for users of REDEX.
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Figure 4.5: Distribution of Covered Code

Furthermore, our evaluation showed that a large number of vectors in the result set,

97%, are the result of inlining one method. This is consistent with the fact that most

refactorings that involve cross-function changes in Fowler’s catalog commonly only

involve extracting/inlining one method.

Analysis

During the investigation, the report inspectors checked if one of the code fragments in a

report can be refactored in accordance with Fowler’s categorization [38], by comparing

its shape with its counter-party. At the same time, we allow their own best judgements

and small variants to Fowler’s categories as shown in Table 4.1. Some of the reports were

validated by multiple inspectors, which resulted in interesting observations. For simple

refactorings, such as Self Encapsulate Field, the type of refactoring was mostly correctly

identified by all. For more complex refactorings, such as Preserve Whole Object or

Separate Query from Modifier, there were variations between the types of refactor-

ing classified by the inspectors. Example 18 was classified as both I don’t know

and Preserve Whole Object. The report consists of two methods convertSeverity

and convertLevel that return an integer. Although they have similar functionality,
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Figure 4.6: Heat Map of Reported Refactoring Opportunities

the two methods differ in their parameters. convertLevel receives an object as pa-

rameter and calls a member function of the object to access the data needed inside

convertLevel. convertSeverity on the other hand, receives an int value ob-

tained by a call to a member method of an object entry of the type LogEntry before

calling convertSeverity. Sending the whole object into a method makes it more

robust to certain functionality changes and avoids problems when the method needs

new data values from the object later. Thus, to make convertSeverity more robust

against certain changes, we may refactor convertSeverity to use an object of the

type LogEntry as its parameter without affecting its performance, and thus it can be

classified as Preserve Whole Object. For such cases where the refactoring types

varied, we applied our own best judgments and chose from the types selected by the

reporters.

An interesting class of reports from the results is represented by code fragments

where the Make Method Static refactoring available in IntelliJ IDEA [56] can be applied.

40 such reports were classified as not refactoring but clone by an inspector

with the comment that “one side of the code is not directly refactorable into the other yet
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they are similar (possible diverged from one source) and can be made more reasonable

with refactoring techniques”. These reports are however not counted positively toward

the accuracy of our approach. Counting these reports as Make Method Static refactoring

opportunities would have increased the accuracy to 94%.

Example 18. ( Preserve Whole Object )

1 org.eclipse.core.EclipseLogWriter

2 private static int convertSeverity(int entryLevel) {

3 switch (entryLevel) {

4 case LogService.LOG_ERROR :

5 ....

6 }

7 }

8
9 public void logged(LogEntry entry) {

10 ...

11 convertSeverity(entry.getLevel()) ..

12
13 }

1 org.eclipse.core.EclipseLogFactory

2 static int convertLevel(FrameworkLogEntry logEntry) {

3 switch (logEntry.getSeverity()) {

4 case FrameworkLogEntry.ERROR :

5 ...

6 }

7 }

4.5.3 Discussion and Threats to Validity

Our approach depends on the setting of some parameters. Some of them are related

to code similarity metrics and common to most clone detection tools. For example,

the minimal number of tokens or nodes that a code fragment needs to contain, and the

difference (or similarity) allowed between two code fragments for them to be detected.

REDEX is only evaluated with code sizes larger than 20 (cf. Filter Size in Definition

4.5) and similarity 1.0, which denotes that LSH will return for a query vector all vectors
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exactly the query.

REDEX is only evaluated with Split Query (cf. Definition 4.2) that uses base-level

vectors as the query set and inlined vectors as the target set. It is possible to use different

query sets and target sets to find additional cross-function refactoring opportunities. The

filters we used are relatively simplistic; a more comprehensive filtering constraints may

be developed based on common refactoring operations (e.g., Fowler’s categories and

other collections [38, 56]) to look for refactoring opportunities more accurately.

A number of other parameters control what can be inlined in our algorithms. For

example, the depth of inlining in Algorithm 3 and whether to inline a function more than

once (cf. Section 4.4.2) affect the number of functions inlined together for refactoring

detection. Also, since vectors can be generated for arbitrary code fragments, not just

whole methods, inlining can be carried out for vectors of arbitrary code fragments,

not just method-level inlining, which may be expected to produce more refactoring

opportunities. We currently use an all mode to inline all vectors for all methods invoked

by a code fragment; we will expect to detect more refactoring opportunities if we allow

to inline subsets of the set of invoked methods or partial inlining.

We leave it as a future work to explore the large configuration and parameter space

to balance the number of refactoring opportunities we can detect with their accuracies.

In our empirical evaluation, we evaluated the accuracy of the reported refactoring

via manual investigation by students. This introduces experimenter bias in our study.

The students’ Java programming skills and knowledge about refactoring may also affect

how they label the reports. We also limit our evaluation to Java and thus our results may

not be applicable to other programming languages. In the near future, we plan to port

our implementation to other languages, extend our evaluation to more programs, and

conduct both automated evaluation against historical refactoring operations and more

systematic user studies to alleviate the above threats to the validity of our approach.
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4.6 Chapter Summary

This chapter presents a novel, automated and scalable technique for identifying cross-

function refactoring opportunities that span more than one function (e.g., Extract/Inline

Method). The key to the success of our technique is the design of efficient vector inlining

operations that simulates the effect of method inlining among code fragments, so that

the problem of identifying cross-function refactoring can be reduced to finding similar

vectors before and after vector inlining.

We have implemented our technique in a prototype tool named REDEX which

encodes Java programs to particular vectors. We have evaluated our technique on a large

code base (4.5 MLOC) comprising of 200 bundle projects in the Eclipse ecosystem

(e.g., Eclipse JDT, Eclipse PDE, Apache Commons, etc.). The results show that ReDex

can find 277 cross-function refactoring opportunities in 2 minutes, and 223 cases were

labelled as true opportunities by users, and cover many categories of cross-function

refactoring operations in classical refactoring books, such as Decompose Conditional

Expression, Hide Delegate, Preserve Whole Object, Introduce Parameter Object, etc.





Chapter 5

Vector Abstraction and

Concretization

5.1 Introduction

In the previous chapter, we presented a technique for efficiently encoding inlined code.

Our experiments showed that this technique can be used to accurately detect code

transformations that involve moving code fragments across function boundaries such

as those induced by Extract Method, Preserve Whole Object, Self Encapsulate Field,

Replace Temp With Query, etc. There are however other kind of refactoring operations

the detection of which requires knowledge about the precise change patterns induced by

refactoring and to flexibly omit or emphasize specific program elements when computing

similarity between two code fragments. Let’s illustrate the challenges as mentioned

above by the following refactoring operation.

The code fragments in Example 19 were detected as a refactoring opportunity of type

Introduce Explaining Variable in a program named XML Security. Introduce Explaining

Variable is a very common refactoring that involves improving the readability of a

complicated expression by means of putting the result of an expression, or parts of an

79
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Example 19. ( Introduce Explaining Variable Refactoring )

1 public Key getKey(String alias, char[] password)

2 throws NoSuchAlgorithmException, UnrecoverableKeyException {

3 try {

4 KeyElement keyElement = new KeyElement(this.

getKeyEntryElement(alias),this._baseURI);

5 return keyElement.unwrap(password);

6 } catch (XMLSecurityException ex) {

7 throw new UnrecoverableKeyException(ex.getMessage());

8 }

9 }

1 public Certificate[] getCertificateChain(String alias) {

2 try {

3 Element keyElement = this.getKeyEntryElement(alias);

4 if (keyElement != null) {

5 KeyElement ke = new KeyElement(keyElement, this._baseURI);

6 return ke.getCertificateChain(alias);

7 }

8 } catch (XMLSecurityException ex) {

9 ex.printStackTrace();

10 }

11 return null;

12 }

(a)

(b)

expression, in a temporary variable with a name that explains the purpose. This change

pattern is present in Example 19. Specifically, as opposed to code fragment (a), code

fragment (b) declares a new variable at Line 3 and then reads it at Line 5. Usual clone

detection may detect (a) and (b) as code “clones” (i.e., code fragments similar to each

other [36, 59, 62, 71, 103]). Unfortunately, it may also return a large number of clones

that exhibit other differences and not the specific “change pattern” sought after (aka.,

high number of false positives).

Moreover refactorings can be combined together giving rise to more complex

“change patterns”. Example 20 shows code which exhibits a “change pattern” induced by

the combination of two refactoring operations: Inline Temporary Variable (the reverse

operation of Introduce Explaining Variable) and Extract Method. The body of method
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getControllers, depicted by (a), is similar to getVisualizer, depicted by (c),

when we inline the method invocation to getVector. Inline Temporary Variable and

Extract Method can be performed on getControllers to obtain the same structure as

getVisualizer and to remove duplication since the refactored code would reuse the

functionality of an existing method, getVector.

Example 20. ( Inline Temp and Extract Method from JMeter )

1 public static Vector getControllers(Properties properties){
2 String name = "controller.";
3 Vector v = new Vector();
4 Enumeration names = properties.keys();
5 while (names.hasMoreElements()){
6 String prop = (String) names.nextElement();
7 if (prop.startsWith(name)){
8 Object o = instantiate(
9 properties.getProperty(prop),

10 "org.apache.jmeter.control.SamplerController");
11 v.addElement(o);
12 }
13 }
14 return v;
15 }

1 public static Vector getVector(Properties properties, String name) {
2 Vector v = new Vector();
3 Enumeration names = properties.keys();
4 while (names.hasMoreElements()) {
5 String prop = (String) names.nextElement();
6 if (prop.startsWith(name)) {
7 v.addElement(properties.getProperty(prop));
8 }
9 }

10 return v;
11 }
12 ...
13 public static Vector getVisualizer(Properties properties) {
14 return instantiate(
15 getVector(properties, "visualizer."),
16 "org.apache.jmeter.visualizers.Visualizer");
17 }

(a)

(b)

(c)

Let us denote the inlined version of method getVisualizer in Example 20 (c)

by (cI ). It continues to be challenging for many code clone techniques to detect the
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similarity between (a) and (cI ) without incurring a significant number of false positives

in their outcome [23, 41, 57, 60, 68, 91, 102]. This is so because these techniques cannot

flexibly omit or emphasize specific program elements (e.g., the variable declaration and

assignment at Line 2) when computing similarity. The additional variable declarations

and assignments in (a) do not exist in (c) or (cI ), a difference which can be described

as the result of an Inline Temporary refactoring operation. This indicates that a desired

refactoring detection tool should possess knowledge about, as well as work flexibly with,

various kinds of refactoring operations.

On top of all these challenges to make refactoring detection flexible and accurate,

we also would like to locate suitable refactoring candidates from millions of lines of

code very efficiently, as we have been advocating throughout this thesis.

In this chapter, we present a novel approach via vector abstraction and concretization

that manipulates the characteristic vectors flexibly based on code change patterns

induced by known refactorings. The approach in this chapter employs the same idea as

the previous chapter, and extends it to define vector abstraction and concretization for

detecting specific types of refactorings.

We have implemented our approach for Java, generating vectors for both source

code and bytecode, and performed vector abstraction and concretization operations for

21 common types of refactoring operations. Our tool takes in the source code of a

Java program, compiles it to get bytecode, inlines non-recursive invocations to methods

defined in the program itself for one level, and generates characteristic vectors for both

the original code and inlined code. Then, for every type of refactoring operations �,

the tool applies the corresponding vector abstraction to every generated vector, uses

hash-based search to cluster vectors that are identical under abstraction, and concretizes

the abstract vectors within clusters to identify ones that match the effect of �.

The tool is both scalable and accurate in detecting refactorings. In a large code base

comprising of more than 200 bundle projects in the Eclipse ecosystem (e.g., Eclipse
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JDT, Eclipse PDE, Apache Commons, Hamcrest, ObjectWeb ASM, etc.) containing

4.5 million lines of code, the tool reported in total more than 32K instances of 17

types of refactoring operations for all Eclipse projects, taking 25 minutes on average

for each type. In a smaller code base containing 16 versions of three Java programs

(JMeter, Ant, and XML-Security), each version having an average size of 33KLOC, our

tool reported 191 historical refactorings across various versions and more than 2.8K

instances of refactoring opportunities. Through both automated and manual validation

by four graduate students, we find that the detected refactorings are of high accuracies,

about 92% for detected historical refactorings and about 87% for detected refactoring

opportunities.

Our main contributions in this chapter are as follows:

• We design a systematic way to represent essential code changes needed for various

types of refactoring operations as abstraction and concretization operations of

vectors, which encode syntactic features of code and code changes;

• We have evaluated our approach on large code bases with millions of lines of

code, and show scalable and accurate detection results.

The rest of the chapter is organized as follows. Section 5.2 presents our detection

approach. Section 5.3 presents specific vector abstraction and concretization operations

used in our detection approach. Refactoring as Vector Abstraction and Concretization

Section 5.4 presents the results of our empirical evaluation, Section 5.4.4 discusses

threats to validity. and Section 5.5 concludes with future work.

5.2 Methodology

We explain the main steps of our approach along with Figure 5.1. Given a source code

base, we construct its syntax trees (STs), and call graphs (CGs). The STs are used in

a way similar to previous studies [41, 57] to generate characteristic vectors for code
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Figure 5.1: Overview of Our Approach

fragments from the code base. When the code is compilable, we also generate the

bytecode (for Java) or binary code, and construct characteristic vectors for the bytecode

or binary code as well [104]. Using bytecode or binary code has the benefit that many

code differences only applicable to high-level languages (e.g., different syntaxes for

writing for loops) are unified or eliminated, which can potentially help to detect more

refactorings [104]. We also simulate the effect of method inlining by manipulating the

STs based on call relations and get inlined code, and generate vectors for code fragments

in the inlined code as well. Our tailored vector generation is described in Section 5.2.1.

After vectors are generated, they are abstracted to eliminate or unify code character-

istics related to a particular type of refactoring �. The particular code characteristics

are semi-automatically extracted from known sample code refactored by � (see Section

5.2.2 and 5.3 for more details).

Then, a hash-based search (simple hash and locality-sensitive hashing –e.g. LSH

[44]–) is employed to query for similar abstract vectors efficiently so that we can

identify candidates for refactoring (refer to Section 5.2.3). Not all candidates can be true

refactorings. We then apply vector concretization to check whether the characteristics
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in the concrete vectors indeed match the code characteristics of a particular type of

refactoring (see Section 5.2.4). We can afford to do more detailed checks during

concretization since the number of candidates is much smaller than the original code

sizes. Finally, the code fragments corresponding to the candidates that are likely to be

true refactorings are reported to users.

5.2.1 Vector Generation

As the work described in Chapter 4, we represent code fragments as high dimensional

vectors in the form of v = hv1, v2, ..., vni, where vi represents the number of occurrences

of a particular kind of program element. Note that node types for source code and

bytecode can be different and thus corresponding vectors can be different.

Since the vectors are generated according to the number of occurrences of program

elements in code, they themselves do not capture various specific information about each

element (e.g., the specific name of an identifier, the specific value of a constant, etc.)

or relational information between elements (e.g., the containing class of a method or a

field, the parent class of a child class, a statement appearing before another statement,

etc.). Nevertheless, such vectors have been shown to be effective for code clone

detection [41, 57].

For Original not-yet-Inlined Code

Given a code fragment c from a code base, we can identify the nodes of the syntax

tree that match the location of c and then count the number of occurrences of different

node types. As an illustration, in Table 5.1, we provide some samples of heavily

simplified vectors representing the code fragments depicted in Example 20. The table

headers indicate the sample features used for the vectors and rows 1–3 indicate the

vectors for each of the three methods. Separated from the usual method invocation

(“mth invoc.”), “API invoc.” refers to invocations of methods not defined in the subject
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program; “new invoc.” refers to invocations of constructors (e.g., new Vector()). The

actual number of features in the vectors depend on the number of different types of

nodes in (either abstract or concrete) syntax trees for a programming language. Our

prototype implementation relies on abstract syntax trees generated by Eclipse JDT for

Java, which has more than 80 node types.

row 

ID
Code simple 

name

string 

literal

var. 

decl. 

stmt. cast if return while

mth 

invoc.

new 

invoc.

api 

invoc.

1 getControllers 29 2 5 1 1 1 1 1 1 6
2 getVector 23 0 3 1 1 1 1 0 1 6
3 getVisualizer 3 2 0 0 0 1 0 2 0 0

4
getVisualizer 

(inline getVector) 26-1 2 3 1 1 2-1 1 2-1 1 6

Features

Table 5.1: Sample Partial Vectors for Code Fragments in Example 20

These vectors only capture characteristics of the code inside the same function: if a

method is invoked in a code fragment, the vector for the code fragment does not capture

any characteristic of the code inside the invoked method, except the method invocation

expression and actual parameters. As in Chapter 4, we call these vectors base-level

characteristic vectors, or simply base vectors.

For Inlined Code

Refactoring may involve different ways of extracting methods. Simulated method

inlining via vector manipulation has been shown in Chapter 4 to be effective for detecting

method extraction. As it is important to the understanding of the techniques presented

in this chapter we will briefly recap the technique of vector inlining.

Vector inlining essentially simulates the effect of method inlining by summing up

the vectors for the caller and the callee and manipulating the features in the vectors that

are related to method declarations and invocations. For the features shown in Table 5.1,

vector inlining involves reducing the occurrence counters for “mth invoc.” and “simple
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name” each by one for each method that is inlined (“simple name” is a child node of

“mth invoc.”, representing the method name in the syntax trees generated by Eclipse JDT

for Java), and removing all counts for returns from the callee. For example, when we

inline getVector into getVisualizer, the vector for getVisualizer is changed

as row 4 in Table 5.1. The red parts of the row indicate the manipulations applied to

the sum of rows 2 and 3 to simulate the inlining. We assume each actual argument is

only evaluated once and the corresponding formal parameter somehow automatically

receives its value, and thus the vector manipulations do not need to consider the effect

of parameter substitution.

This chapter extends vector inlining to allow for more types of inlining. As opposed

to Chapter 4, where we experimented with inlining all method calls, in this chapter

we consider different ways to inline methods, for a given code fragment c, in order to

encode various possible changes induced by method inlining or extraction. In general, if

c invokes n methods, there could be up to 2n ways to inline the n methods in combination.

To reduce the search space, in this chapter we inline methods invoked in c in mainly

three different modes: inlining all methods invoked in c all at once (as in Chapter 4),

inlining all calls to each distinct method separately, or inlining nothing. We do not

inline constructor and API invocations. In this way, the number of inlined versions CI

of c may equal to two plus the number of distinct methods defined in the program and

called in c. An inlined version cI for c can be the same as c when the mode of “inlining

nothing” is applied or when no method is called in c.

In the following discussion, we use the following terms and notations: given a code

fragment c, we call it base code, and its vector is called base vector and denoted as vc.

The set of all possible inlined versions of c is denoted as CI , while an instance in the set

is denoted as cI . The vector for the inlined code cI is called inlined vector and denoted

as vIc .
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5.2.2 Vector Abstraction

Our objective here is to encode code changes induced by a kind of refactoring operation

in the form of vectors as precisely as possible, and abstract away (or eliminate) the

changes from the vectors representing code, while maintaining essential code features,

so that after the abstraction, the abstract vector representations for the code before and

after it is refactored are identical. Then, the problem of searching for refactorings can

be reduced to the problem of finding code with the same abstract vector representation.

Each refactoring type defines a different abstraction operation on vectors since they

often induce different code changes. We use �A to denote the abstraction operation for a

refactoring type �. �A(v) means to apply the abstraction onto a vector v, and � denotes

the resulting abstract vector.

The “Query” portion to the left of Figure 5.2 illustrates the conceptual relations

among base code, inlined code, and various kinds of vectors with respect to a refactoring

�: A piece of base code used as a query q can have more than one inlined code qI ; its

base vector vq can become an abstract base vector � q; and its inlined vector vIq can

become an abstract inlined vector � I
q . It is possible that � I

q may be the same as vIq

and/or vq for example if method q does not invoke any methods or does not contain any

of the vector features that are affected by the abstraction.

In this chapter, we use a semi-automated mechanism to extract differences from

sample code refactored by a type of refactoring � and define the abstraction for �

systematically based on the differences. We introduce our definitions:



CHAPTER 5. VECTOR ABSTRACTION AND CONCRETIZATION 89

inline 

Base Code Inlined Code 

Inlined  Vector Base  Vector 

Abstract 
Inlined  Vector 

Abstract 
Base  Vector 

Query Query Result 1 (1) match 
abstract 
vectors 

(2) filter vectors 

Query Result 2 

(4) check across results for higher accuracy Vector 
Abstraction 

Code 

Vectors 

Abstract 
Vectors 

Vector 
Generation 

Figure 5.2: Vector Abstraction and Concretization Steps

Definition 5.1 ( Vector Substitution )

Given a vector v and a set of mappings from features to counts (F =

{fi 7! ni}), the vector substitution is denoted by v(F); it generates a
new vector v0, such that :

8i 2 1..K, v0[i] =

(
ni if {fi 7! ni} 2 F

v[i] otherwise

Both ni and F[i] denote the mapping result for a feature fi.

Definition 5.2 ( Vector Difference )

Given two vectors v1 and v2, the vector difference operation � for v1
and v2 is defined as �(v1, v2) = (v�,m,D) where

1. v� is a vector called assimilation vector between v1 and v2: 8i 2
1..K, v�[i] = min(v1[i], v2[i]);

2. 0  m  K;
3. D is a feature mapping set of size m: 8i 2 1..K, (fi 7! (v2[i]�

v1[i])) 2 D iff v1[i] 6= v2[i].
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Such vector difference operation (v�,m,D) encodes both “common” parts (in v�)

and differences (in D) between two vectors. When v1 and v2 correspond to two sample

pieces of code c1 and c2 respectively, and c2 is the result of applying a certain refactoring

operation � onto c1, the feature mapping set D indicates the features that may be changed

by �, and can help us define the abstraction operation �A for � that can abstract away

the changes that may be induced by � into an arbitrary vector v. The abstract vector for

v is denoted by either �A(v) or � . The rules below describe how � is generated for an

arbitrary v, based on a given �(v1, v2). The rules are conceptually the same for vectors

representing both source code and bytecode.

(I) � [i] = v[i], if D does not contain a mapping for fi.

(II) if there is a subset of D, denoted as Ds = {fd1 7! nd1 , fd2 7! nd2 , . . . , fds 7!

nds} where 2  s  K and 1  d1  d2 . . .  ds�1  ds  K, such that

⌃s
i=1ndi = 0,8 then we consider the features in Ds as inter-exchangeable and we

merge all their counts in v into a unique conceptual feature as follows:

• � [d1] = ⌃s
i=1v[di];

• 8i 2 2..s,� [di] = 0.

For example, various relational operators (<, >, <=, and >=) in code are in fact

inter-exchangeable, since a refactoring operation can reverse the condition in an if

statement and swap the branches of if. Such a refactoring would induce changes

in the counts for the individual operators, but the total sum of the counts for these

inter-exchangeable code features should remain the same.

(III) if there is a subset of D, denoted as Ds = {fd1 7! nd1 , fd2 7! nd2 , . . . , fds 7!

nds} where 2  s  K and 1  d1  d2 . . .  ds�1  ds  K, such that

nd1 = nd2 = . . . = nds , then we conclude that the features in Ds should be

changed together in the same way by � and we set all their counts to 1 as follows:

• 8i 2 1..s,� [di] = 1.

88(fdi 7! ndi) 2 D, ndi 6= 0 because of rule III in DEF. 5.2.
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This rule helps the refactoring cases when it is not important to count the actual

number of occurrences of a code feature as long as the feature exists in the code.

For example, the refactoring type Consolidate Duplicate Conditional Expression

consolidates more than one conditional expression into one, so the features essential

to the conditional expressions were all set to 1.

(IV) there may be multiple subsets of D matching the above rules; if these subsets are

pairwise disjoint, we perform the abstraction for each subset separately; if they

overlap, we manually identify a subset to abstract. In our experiments, since vector

differences D are generated from sample refactored code in classical collections

(see Section 5.3) and are of small sizes, it has been relatively easy to find suitable

subsets such as above efficiently.

(V) � [i] = 0, otherwise. The intuition for this rule is that if a feature fi can be changed

by the refactoring � but not in “conjunction” with other features, fi may in fact

be changed arbitrarily by �, and it is non-essential for �, and thus we abstract

it away. As one can see, we define “conjunction” as the subsets satisfying rule

(II) or (III), and we find that simple rules are sufficient for the refactoring types

detected in our experiments. Also, since the rules do not yet consider the semantics

of the features, the mapping D generated from sample refactored code may contain

more features than what are really needed for �. So, we also manually verify each

inferred abstraction in our experiments and based on our understanding of the code

changes involved by the refactorings, we may remove some features or add new

ones.

For example, we can define the vector abstraction for the kind of refactoring oper-

ation in Example 20. Even though those code snippets are detected by our tool, here

we use them as sample refactored code to illustrate how we define the abstraction for

a refactoring operation based on sample refactored code. For this case, the vector in

row 1 in Table 5.1 is v1 and the other in row 4 is v2; the vector difference D is {“simple
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name”7! �4, “var. decl. stmt.” 7! �2} which indicates the removal of two variable

declaration statements containing four simple names (two are for the variable names;

the other two are for the variable types). The above abstraction rule (V) applies, so the

abstraction �A would set the counts for both “simple name” and “var. decl. stmt.” to zero.

Table 5.2 shows the abstract vectors if the abstraction rules described above are applied

to the concrete vectors in Table 5.1.

row 

ID
Code simple 

name

string 

literal

var. 

decl. 

stmt. cast if return while

mth 

invoc.

new 

invoc.

api 

invoc.

1 getControllers 0 2 0 1 1 1 1 1 1 6

2 getVector 0 0 0 1 1 1 1 0 1 6

3 getVisualizer 0 2 0 0 0 1 0 2 0 0

4
getVisualizer 

(inline getVector) 0 2 0 1 1 1 1 1 1 6

Features

Table 5.2: Sample Abstract Vectors Corresponding to Vectors in Table 5.1

When more than one pair of sample code is provided for a refactoring operation �,

we can refine the extracted abstraction for � to represent the most general code changes

induced by �. To achieve this, we can calculate the vector difference (v�,m,D) for

every pair, and look for the “maximum common difference” among all those vector

differences.

5.2.3 Vector-Based Query

When we want to find instances of a refactoring operation type � in a large code base, we

apply the abstraction for � to all vectors generated from the code base. This causes the

code difference induced by � to be eliminated, and the abstract vectors of either refac-

tored or non-refactored to be identical. Consequently the abstract vectors corresponding

to refactored code can be clustered together and the abstract vectors corresponding to

non-refactored code can be used to query only against the corresponding cluster of
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refactored code. Specifically, we can use Locality-Sensitive Hashing (LSH) [24, 44] to

efficiently handle nearest-neighbor queries on our high-dimensional vectors and thus

to find the cluster of vectors that is matching a query [41, 57]. Afer matching, the

comparisons between a query and the vectors in its corresponding cluster can be more

complex since the number of pair-wise comparisons is much smaller than the total

number of pair-wise comparisons that would be needed for all the vectors.

Different from the vector query presented in Section 4.4.5, that returns pairs of

vectors, the results returned by the methodology of this chapter are pairs comprising

of a vector q, also called query or candidate that can be refactored via a refactoring

operation �, and a cluster of possibly many vectors, that represent examples of how q

could be refactored. Furthermore, as shown by step 5 in Figure 5.2 we check the query

results within a cluster against one another to determine if the query can be refactored

in a unique way. For instance if the returned vectors for one query q suggest both

refactoring via introducing two explaining variables and refactoring via introducing one

explaining variable, thus the way to refactor q is not unique, then we exclude q and the

example vectors from the results. As illustrated in step (1) in Figure 5.2, we perform

queries on abstract vectors of either base or inlined code, or both (either  q or  I
q or

both). Depending on the vectors used, we can identify candidates in both the context of

historical refactoring and the context of refactoring opportunities:

(1) when we use every abstract vector generated from one version of code as a query

to search for matching abstract vectors from a version of the code, we can detect

historical refactorings that happened between two versions of the code.

(2) when we use every abstract vector generated from a code base as a query to search

for matching abstract vectors in the same code base, we can detect refactoring

opportunities that may be available among code fragments in the current code base.

The types of refactorings under investigation would affect whether the corresponding
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queries and matching results are drawn from either base vectors or inlined vectors or

both. For example, for the detection of the opportunity of method inlining shown in

Example 20(a), we use the abstract base vector of (a) as a query and search for its

matches among the abstract vectors for all other inlined code.

Not all matched vectors can be subject to refactoring; we apply heuristic filters

(Figure 5.2, step (2)) to reduce unlikely ones:

FilterSmall: When a piece of code is too small (e.g., smaller than the number of

elements involved in the abstraction for � or the sizes of the sample code used to

define the abstraction), it may not be useful to refactor it. We can use a threshold

(e.g., 50% of the sizes of the sample code or 10 program elements or 1 functioning

statement) to remove code that is too small.

FilterClones: When comparing the concrete vectors for both the inlined and baseline

query and result code, if vIq = vIc1 and vq = vc1 , then q and c1 are very likely the

same syntactically and do not exhibit structural differences related to Extract/Inline

Method refactoring. c1 is simply a clone of q and thus the pair (q , c1) does not

indicate how to refactor q, and can be removed.

FilterNames: Many refactoring operations would maintain various names (e.g., some

variable names in the code and the name of the method/class/file containing the

code) the same before and after the refactoring. We can remove a query result if its

fully qualified method name does not match that of the method containing the query

code. This can be useful for detecting and reconstructing historical refactorings

happened between versions, where the query code and the result code are in different

versions of a program and often share same name. We only turn on this filter for

across-version refactoring detection.

For the code fragments in Example 20, (a) and (c) inlined with (b) can be detected as

likely refactorings since their abstract vectors (rows 1 and 4 in Table 5.2) are identical.
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5.2.4 Vector Concretization

After the above steps, we have a set of filtered query results for each piece of code used

as query. The following concretization phase performs several kinds of checks on the

concrete vectors corresponding to the query and its results to improve the precision of

refactoring detection. This phase corresponds to steps (3) and (4) in Figure 5.2.

The first kind of checks is to make sure the differences among the concrete vectors

indeed subsume the differences (D, see Section 5.2.2) that are induced by a kind

of refactoring operation �. This is useful for reducing false positives since different

refactoring operations may in fact change same features in code and having similar

abstract vectors may not mean the corresponding concrete vectors satisfy requirements

needed by � (see the concretization rule (I) below).

The second kind of checks is to make sure the reported query results indeed have

the contexts in which the refactoring operation � can be carried out. For example, the

refactoring Reverse Conditional reverses the relational operator in an if statement and

swaps the branches of the if, and thus the refactoring can only happen when the code

contains at least one if, even though the feature representing if itself is not changed

by the refactoring. So we perform checks that the common parts among the concrete

vectors indeed subsume the common parts (v�, see Section 5.2.2) that represent the

contexts needed for � (see the rule (II) below).

For certain types of refactorings, we manually add special checks for them (see

Section 5.3), based on our understanding of the code changes involved in the refactorings,

to help reduce false positives. For example, a refactoring operation may simply replace

the whole body of a method by a call to a newly extracted method containing the replaced

body. Although such a refactoring may be classified as Extract Method, it may be too

simple to be useful. Thus, we filter such cases during concretization (the rule (III)).

We also cross-check query results to improve their credibility. Intuitively, the query

results should be syntactically different from the query; otherwise, they are likely
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clones only, not refactorings. Also, when there are more than one query result that are

syntactically different from each other, they may indicate more than one way to refactor

the query code, which may appear confusing for users. We thus choose to remove such

cases so that users can have higher confidence that the refactoring operation indicated

by the final query results can be applied to the query code (the rule (IV)).

The rules below describe the above checks more rigorously:

(I) Calculate the vector difference between vIq and each vIci : �(v
I
q , v

I
ci) = (vI�q ,mI

q ,D
I
q).

Check them against the vector difference (v�,m,D) for �, and remove the query

result ci if one of the following conditions is true:

(1) if 9(fi 7! ni) 2 D, s.t. (ni < 0) ^ (vIq [i] < |ni|), it means � would need to

remove |ni| instances of the code feature fi but qI does not contain that many

instances;

(2) if 9(fi 7! ni) 2 D, s.t. either DI
q does not contain fi or |DI

q [fi]| < |ni|.

This indicates that the changes between vIq and vIci are too few in comparison

with the changes induced by � to be a real case of �;

(3) if 9i 2 1..K, s.t. (vIq [i] < v�[i]) _ (vIci [i] < v�[i]), it means � would need to

be carried out in a context containing v�[i] instances of the code feature fi but

neither qI or cIi does not contain that many instances;

(II) Check vIq and vIci against (v�,m,D), and remove the query result ci if the following

condition is true:

(1) if 9i 2 1..K, s.t. (vIq [i] < v�[i]) _ (vIci [i] < v�[i]), it means � would need to

be carried out in a context containing v�[i] instances of the code feature fi but

neither q or ci does not contain that many instances;

(III) Check all base and inlined vectors against code change rules specific to � so as to

remove possibly more negative query results 9;

9These code rules are based on our understanding of the code changes involved in the refactorings. For
a refactoring operation that reverses a conditional, for example, such a rule would involve checking that an
if condition is present.
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(IV) We finally check the query results against each other if there are still more than one

result at this step. We remove all of the results if the following condition is true:

(1) 9i, j, s.t. i 6= j ^ vci 6= vcj ;

Finally, the code corresponding to the query and checked query results are reported

as refactorings. For the code fragments in Example 20, one of the differences among

their concrete vectors (Table 5.1, rows 4 and 1) indeed match the vector difference

operation ({“simple name”7! �4, “var. decl. stmt.” 7! �2}). Their contexts are also

matched. Thus, (a) and (c) inlined with (b) are reported as refactorings.

5.3 Refactoring as Vector Abstraction and Concretization

Our approach is based on abstraction and concretization of characteristic vectors that

capture various code features before and after certain refactorings. The effectiveness

of our approach is dependent on how well the vectors can represent code features. By

far, the vectors used in this work only capture code features related to the number

of occurrences of program elements in code; they themselves do not capture various

specific information about each element (e.g., the specific name of an identifier, the

specific value of a constant, etc.) or relational information between elements (e.g., the

containing class of a method or a field, the parent class of a child class, etc.) Thus, our

approach can be perceived as tailoring for detecting those refactoring operations that

would change the number of occurrences of various program elements in code. Some

refactoring operations can induce code changes that are not captured by the existing

vectors. For example, Pull Up Method moves a method from a child class to its parent

class. The moved method itself is the same before and after the refactoring, but its

containing class has been changed. Rename Method changes the name of a method.

The characteristics of such changes are not captured in the vectors, and thus are not yet

detectable by our approach. In future, we intend to enhance the capabilities of vectors to
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encode changes made by such refactoring operations.

In this work, the types of refactorings we can detect are mostly defined by classical

collections [38, 56]. Table 5.3 lists sample abstraction and concretization operations

developed by our approach for the types of refactoring operations that we can detect.

The sample refactored code we use for defining abstraction and concretization are taken

from the classical collections [38, 56]. In the table, abstraction rules that do not change

the values for a feature are not shown (e.g., � [i] = v[i], if the vector difference D does

not contain a mapping for fi.); some concretization rules that are the same for all types

of refactorings, as described in various subsections of Section 5.2 are also omitted. In

addition to the notations used in Section 5.2, vectors superscripted with “S” are vectors

generated from source code, while vectors without the “S” superscript are generated

from bytecode. Many features used in the operations characterize bytecode instructions

in our implementation, but we use more high-level names for the features here for

illustration purposes(e.g, constant denotes bytecode instructions iload_0, iload_1, etc.).

We rely on the feature names to convey their meaning. The other refactoring operations

that we have experimented with in this chapter and are not defined in the table are the

following: Remove Assignment to Initialization, Consolidate Conditional, Decompose

Conditional, Replace Nested Conditional with Guard Clauses, Introduce Parameter

Object, Replace Parameter with Method, Hide Delegate, Remove Middleman, Replace

Method with Method Object, Replace Temporary with Query.

5.4 Empirical Evaluation

This section presents the evaluation of vector abstraction and concretization on four

aspects. They are the effectiveness of our methodology in detecting historical refactoring,

the effectiveness in detecting refactoring opportunities, the accuracy in identifying
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# Refactoring Abstractions ( ( ) or simply ψ) Concretization Checks Descriptions 

1.  Extract Method ψ[load] = ψ[store] = 0 
ψ[constant] = 0 

∄ vi inlined into vc s.t. vq== vi 
(remove simple extraction methods) 

 

2.  Inline Method ψ[load] = ψ[store] = 0 
ψ[constant] = 0 

∄ vi inlined into vq s.t. vq == vi 
(remove simple extraction methods) 

 

3.  Inline Temp ψ[load] = ψ[store] = 0 
vq [load] - vc [load] > 0 && 
vq [load] - vc [load] == vq[store] - vc [store] == 
vq

S[var_declaration] - vc
S[var_declaration] 

Remove the declaration of a temporary 
variable, and replace the use of the 
variable with the value of the variable. 

4.  
Introduce 
Explaining 
Variable 

ψ[load] = ψ[store] = 0 
vq [load] - vc [load] < 0 && 
vq [load] - vc [load] == vq[store] - vc [store] == 
vq

S[var_declaration] - vc
S[var_declaration] 

Extract a complicated expression into a 
temporary variable. 

5.  Split Temporary 
Variable 

ψ[load] = v[load]+∑v[load_i] 
ψ[store] = v[store]+∑v[store_i] 
ψ[load_i] = ψ[store_i] = 0 
i ∈ { 0, 1, 2, 3 } 

vc
S[variable_declaration_statement] >=2 && 

(vq
S[assignment] - vc

S[assignment]) == 
 - (vq

S[var_declaration] - vc
S[var_declaration])  

Transform multiple assignments to a 
temporary variable into separate variable 
declarations for each assignment. 

6.  
Replace Method 
With Method 
Object 

ψ[load] = ψ[store] = 0 
ψ[getfield] = ψ[putfield] = 0 
ψ[new] = ψ[invoke_init] = 0 

∃ vi  inlined into vc s.t.  

    (∑ vi[f] -  ∑ vq[f]) == (vi[getfield] + vi[putfield]), f ∈ {0,.. vq.length}  
    (vi[getfield] - vq[getfield] > 0) 
    (vc

I[new] - vq[new] > 0) 

Transform a method into its own object 
so that all the local variables become 
fields. Abstraction involved ignoring 
"new" operators and encapsulation. 

7.  Self Encapsulate 
Field 

ψ[aload_0] = 0 
 
( aload_0 is used for loading "this" on 
the stack ) 

vq [getfield] -  vc
I[getfield] > 0 // ∃ an extra field to encapsulate 

∃ vi  inlined into vc s.t. 

    vi [getfield] == 1 && vi [return] == 1 && vi [aload_0] == 1 
    vi [op] == 0 where op!= getfield && op!= return && op!= aload_0 

Replace direct accesses to a field with a 
getter method 

8.  

Replace Magic 
Number with 
Symbolic 
Constant 

No abstraction needed as both are 
represented by the same bytecode. 

∑ vq
S[literal] - ∑ vc

S[literal] > 0  // query has more magic numbers 
   literal ∈ { string_literal, boolean_literal, num_literal }
vq

S[simple_name] - vc
S[simple_name] < 0 

Replace constants used in code with 
symbolic names for easier maintenance 

9.  
Replace Magic 
Number with 
query method 

No abstraction needed as both are 
represented by the same bytecode. 

∃ vi  inlined into vc
  s.t.  

     ∑  vi
S[op] == 1, op ∈ { string_literal, boolean_literal, num_literal } 

     vi
S[return] == 1 

     vi
S[totalCount] == 2 

Replace constants used in code with a 
getter method that returns the constants. 

10.  Reverse 
Conditional 

ψ[eq] = v[eq] + v[neq] 
ψ[lt] = v[lt] + ∑ v opp
ψ[neq] = ψ[opp] = 0 
opp ∈ { gt, ge, le } 

∃ cond ∈ { eq, neq} or opp ∈ { lt, gt, ge, le } s.t.  
   vq [cond] - vc [cond] != 0 ||  
   vq [opp] - vc [opp] != 0 

Treat "==" the same as "!=" 
Treat "<=" the same as ">", ">=", and "<"

11.  Encapsulate 
Downcast 

ψ[checkcast] = 0 
(ignore type casts) vq [methodinvoke_checkcast] - vc[methodinvoke_checkcast] > 0 Encapsulate type cast operations into a 

separate method returning the casted type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: Sample Abstraction and Concretization Operations for Refactoring

refactoring, and the scalability of our methodology to large software systems.

5.4.1 Setup and Infrastructure

We have implemented the algorithms presented in Section 5.2 in a tool for Java programs

and performed two case studies. All experiments related to these studies were performed

on a PC running Ubuntu 10.04 with Intel Xeon at 2.67GHz and 24GB of RAM.

In the first case study we aimed to explore the effectiveness and accuracy of our

system in detecting both historical refactoring and refactoring opportunities. This

study analyzed three Java programs from the Software Infrastructure Repository (SIR):

JMeter, XMLSecurity, and Apache Ant. We performed experiments on 6 versions

(0 to 5) of JMeter, 6 versions of Apache Ant, and 4 versions of XMLSecurity. The
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size of these subject programs ranges from 17KLOC to 80KLOC. The projects were

selected according to the criteria that they were discussed in related works which

allows the comparison of our prototype with the state-of-the-art technique in detecting

historical refactorings—RefFinder [99], and for measuring the effectiveness of detecting

refactoring opportunities by our prototype.

In the second case study we aimed to explore the scalability of our system. We

applied the prototype to a large code base containing 4.5 million lines of code and 200

bundle projects from the Eclipse ecosystem (e.g., Eclipse JDT, Eclipse PDE, Apache

Commons, Hamcrest, etc.).

To evaluate the precision of the results detected by our approach, a group of four

graduate students with good knowledge of Java and refactoring were invited to inspect

the results independently. Due to the large number of results, we do not evaluate each

one of them. For refactoring opportunities detected for the three subject programs in

the first case study, we chose to inspect the results for the first version of each program

only. Each result inspector was required to verify if each of the detected refactorings

is correctly classified. A result was counted as a false positive if any of the inspectors

considered it as a false positive. For historical refactorings detected, we chose to inspect

all of them due to a more manageable number.

It is not our focus to evaluate the recall of our approach due to lack of ground truths.

However, we tested our approach on a set of examples taken from Fowlers catalog

and found our approach can successfully detect all defined types of refactorings in the

example set.

5.4.2 Results

The results of the experiments performed in the first case study are shown in tables 5.4,

5.5, and 5.6. Each row in the tables shows the results obtained for one type of refactoring

query; the types having no detection results are not shown in the tables. Each column
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Refactoring
Operation

Program Versions

0 0!1 1 1!2 2 2!3 3 3!4 4 4!5 5

Extract Method 11 7 1 6 15 6 1 7 1 7

Inline Method 20 16 15 48 56 60

Introduce Var 20 16 15 48 56 60

Inline Temp 7 9 10 21 20 4 18

Replace
Assignment with
Initialization

4 1 1 1 1 1 1

Downcast
Encapsulate

34 37 38 32 10 10 10

Reverse
Conditional

1 1 1

Replace Magic
Number with
Symbolic
Constant

1 5 5 2 6 6 6

Self Encapsulate
Field

17 17 18 3 17 18 18

Replace
Parameter with
Method

10 10 10

Subtotal 107 0 109 1 113 53 162 1 173 5 178

Table 5.4: Jmeter Results Summary

having a single number (e.g. 1) as the header name shows the refactoring opportunities

within a version of the project, while each column having a number range (e.g. 0-1) as

the header shows the number of detected historical refactorings between two versions.

The number of historical refactorings we detected between versions ranges from 0

to 99 while the number of opportunities within each version ranges from 70 to 611. Out

of total 2882 refactoring opportunities detected within all versions of the three subject

programs,10 the students inspected all 276 for the first version of each subject program

10A piece of code can be counted multiple times if it appears in multiple refactoring types in our results.



102 CHAPTER 5. VECTOR ABSTRACTION AND CONCRETIZATION

Refactoring
Operation

Program Versions

0 0!1 1 1!2 2 2!3 3 3!4 4 4!5 5

Extract Method 18 1 31 23 23 12 78 49 106

Inline Method 18 31 29 29 2 53 80

Introduce Var 1 21 17 17 52 53

Inline Temp 2 6 9 9 1 14 4 21

Replace
Assignment with
Initialization

3 3 3 1 4 4

Downcast
Encapsulate

10 4 4

Reverse
Conditional

3 5 10 10 14 15

Replace Magic
Number with
Symbolic
Constant

1 3 11 3 17 16 179 195

Self Encapsulate
Field

28 47 55 55 6 137 50 128

Introduce
Parameter Object

1 1 1 7 8

Split Temp 1 1 1

Subtotal 71 4 166 3 168 0 167 23 539 99 611

Table 5.5: Ant Results Summary

and identified 35 false positives, giving a precision for our approach of 87% in detecting

refactoring opportunities.

We inspected all of the 191 historical refactorings detected. This validation was

performed independently by the authors and the students, to verify that the classification

reported by our approach for an actual code change between two versions is correct. We

found 14 false positives, which resulted in a 92.6% precision for detecting historical

opportunities.

The tables show that the numbers of refactoring opportunities detected evolve from



CHAPTER 5. VECTOR ABSTRACTION AND CONCRETIZATION 103

Refactoring Operation Program Versions

0 0!1 1 1!2 2 2!3 3

Extract Method 4 1 3 3 3

Inline Method 24 1 6 6 6

Introduce Var 41 41 36 43

Inline Temp 12 12 12 10

Reverse Conditional 1 1 1 1

Replace Magic Number
with Symbolic Constant

4 4 4

Self Encapsulate Field 14 8 8 4

Introduce Parameter Object 2 2 2

Subtotal 98 2 77 0 72 0 71

Table 5.6: XMLSecurity Results Summary

one version to another in a non-monotonic manner. An increase in the numbers of

reported refactorings may imply that the size of the project increased due to code copy-

paste operations or refactorings that have only been applied to parts of the project. A

decrease may indicate that code was deleted, that previously similar code has diverged

in shape or that the opportunities were applied. An example of the latter situation is

exhibited by JMeter between versions 2 and 3 for refactoring Downcast Encapsulate

(Row # 6 and Columns # 2, 2-3, and 3 in Table 5.4). In versions 0, 1, and 2 of

JMeter, a large number of methods invoke method getProperty from class Task and

downcast their result to obtain a string. Another category of methods invoke method

getPropertyAsString from class Task which has the downcast inside the method.

The similarity between the methods that invoke getProperty and those that invoke

getPropertyAsString resulted in a number of refactoring opportunities which were

detected by our approach. Between versions 2 and 3, some of these opportunities

were applied and the methods that invoke getProperty were changed to invoke

getPropertyAsString. These cases were captured by our approach by comparing
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Validated results Accuracy

Refactoring Opportunities 276 87%

Refactoring Historical 191 92.6%

Table 5.7: Accuracy in Detecting Refactoring

the two versions, but were not detected by RefFinder.

The second case study evaluated the scalability of our approach by applying it on

a large-scale ecosystem of projects. The results are presented in Table 5.8 and show

that our approach can efficiently detect a broad range of refactoring types in Eclipse

projects. Queries for each type of refactoring finished in about 25 minutes on average.

The exceptions were Consolidate Conditional and Replace nested conditionals which

took 59 minutes as the complex concretizations rely on comparing features from both

bytecode and source-code vectors. As a contrast, we note that for the biggest project in

the first case study, Ant version 5, the queries for each type of refactorings took at most

40 seconds.

These show that our approach can both scale to a very large project and detect a

broad range of refactoring types. For each refactoring type, our system took about 25

minutes on average to complete. Specifically, we note that around 23K of Introduce

Explaining Variable refactoring opportunities were discovered in less than 23 minutes.

Such a speedy return of results is unattainable by any of the existing refactoring detection

systems - in fact, if they were to scale to the level of comparing two versions of Eclipse,

then most systems would have taken hours to complete detection of many of these

refactorings [98, 99]. Lastly, we note that Consolidate Conditional and Replace nested

conditionals each took about 59 minutes to complete. A plausible reason is that the

abstract vectors created for these refactoring operations are rather coarse, resulting

in the formation of large clusters, thus needing a large number of comparisons at the

concretization stage.
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Refactoring Type Number of results Time

Extract Method 1310 17m21

Inline Method 527 14m7

Self Encapsulate Field 2948 17m6

Downcast Encapsulate 664 18m36

Introduce Var 22942 22m43

Inline Temp 2013 22m22

Reverse Conditional 1021 21m21

Split Temp 26 26m56

Remove Assignment to Initialization 50 26m56

Replace Magic Number with
Symbolic Constant 1577 24m44

Consolidate Conditional 52 59m3

Replace Nested Conditional with
Guard Clauses 60 59m29

Introduce Parameter Object 325 18m57

Replace Parameter with Method 228 18m57

Hide Delegate 13 19m44

Remove Middleman 10 19m14

Replace Method with Method Object 2 18m8

Table 5.8: Eclipse Results Summary

5.4.3 Analysis

We now discuss a few refactoring types that highlight the strength of our approach as

opposed to using either clone detection to detect refactoring opportunities, or tools in

the literature [25, 48, 70, 98] that detect historical refactorings:

a) Classifying refactoring involving small changes precisely: Self Encapsulate Field

is a refactoring that manifests itself in terms of changes to method bodies by a change

from a direct field access to a call to a getter method. This small change between the

before and after methods can cause a large number of similar methods to be returned by
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traditional threshold-based similarity approaches. Unfortunately, most of the returned

results are irrelevant to the Self Encapsulate Field refactoring, leading to high numbers

of false positives. Our vector abstraction and concretization, on the other hand, can

accurately encode and detect this small change and can thus detect a large number of

Self Encapsulate Field refactorings with high precision. Specifically, we detect more

than 50 historical refactorings, that were not detected by RefFinder, between the Ant

versions 4 and 5 with a 100% precision.

In comparison with RefFinder [98] – the state-of-the-art historical refactoring

approach– we note that RefFinder has a different definition for Self Encapsulate Field.

Its definition, which is shown below, is based on the changes occurring between two

versions of a program. In particular it focuses on the creation of a getter method (e.g.

added_getter and added_fieldmodifier) and does not capture the manifestation of

the field encapsulation on the methods that, before refactoring, accessed a field di-

rectly and, after refactoring, will access a field through a getter method. This makes

comparison between RefFinder and our approach impractical.

RefFinder Definition of Self Encapsulate Field
encapsulate_field(fFullName)^ @ access to the field besides the new getter and setter

! self_encapsulate_field

deleted_fieldmodifier(fFullName, public) ^
added_fieldmodifier(fFullName, private) ^
added_getter(mGetFullName, fFullName) ^
added_setter(mSetFullName, fFullName)
! encapsulate_field

Moreover, we note that RefFinder cannot be applied within the same version, thus is

unable to discover any refactoring opportunity that occurs within a version.

b) Detecting complex refactoring patterns: Replace Parameter with Method trans-

forms a method m (which invokes a method m1 and passes its return value as an

argument for another method m2) by moving the call to m1 into a modified version of
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m2. Example 21 illustrates such a refactoring. Detecting an instance of this refactoring

type requires a specific definition of similarity among the caller and the callees. Our

approach can achieve the precision by specifying that the difference in the numbers

of method calls between the two versions of vectors for the caller (getPrice) has the

same absolute value and a different sign as compared to the difference in the numbers of

method calls between the two versions of vectors for the callee (discountedPrice).

In order to understand how our system scales we compared the results from our

first case study with the results for Eclipse and the results reported in [98]. In our first

case study, the average size of the subject programs was 33KLOC and a query took on

average 34 seconds. The total time to detect all opportunities for refactoring and all

historical refactoring within and between the 16 versions of Ant/Jmeter/XMLSec took

slightly more than 3 hours. This is faster than [98] based on the results reported in [98]

for projects of similar size to the ones in our case study. [98] can however detect more

types of historical refactoring while we can detect opportunities for refactoring.

The size of Eclipse on the other hand is 4,500KLOC and each query took on average

25 minutes. The results of comparing the time spent on Eclipse versus that spent on the

first case study are encouraging as they show that time increases in a sub-linear manner

with respect to the increase in project size. Specifically, although Eclipse is more than

100 times larger than the average project in the first case study, each query for Eclipse

took less than 50 times more time. A plausible reason for the sub-linear relation is that

the overhead of reading the vectors, creating the LSH structure may not increase linearly

with respect to the increase in project size.

5.4.4 Discussion and Threats to Validity

Our approach relies on characteristic vectors, which results in a threat to construct

validity stemming from whether the vectors can really represent refactorings. Although

vectors ignore various information in code (e.g., the ordering or relations among program
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Example 21. ( Replace Parameter with Method Refactoring )

1 public double getPrice() {

2 int basePrice = _quantity * _itemPrice;

3 int discountLevel = getDiscountLevel();

4 double finalPrice = discountedPrice (basePrice, discountLevel);

5 return finalPrice;

6 }

7
8 private double discountedPrice (int basePrice, int discountLevel) {

9 if (discountLevel == 2)

10 return basePrice * 0.1;

11 else return basePrice * 0.05;

12 }

1 public double getPrice() {

2 int basePrice = _quantity * _itemPrice;

3 double finalPrice = discountedPrice (basePrice);

4 return finalPrice;

5 }

6
7 private double discountedPrice (int basePrice) {

8 if (getDiscountLevel() == 2)

9 return basePrice * 0.1;

10 else return basePrice * 0.05;

11 }

getPrice

getDiscountLevel discountedPrice()

getPrice

getDiscountLevel discountedPrice

callcall

pass

call

call

elements, the specific names of identifiers), they have been shown to be effective for

code clone detection [41, 57], and the abstraction and concretization operations take the

features of each type of refactorings into consideration, making the vectors more tailored

for refactoring detection. However, since the vectors only count the occurrences of basic

program elements and do not encode features needed for many other refactoring types



CHAPTER 5. VECTOR ABSTRACTION AND CONCRETIZATION 109

in classical collections [38, 56], we will need to encode more features in the vectors to

go beyond the types of refactorings we can detect now. The features encoded in the

vectors are language-dependent, so are some refactoring types; so our approach may

need adjustments for different languages.

Our vector abstraction and concretization operations are heuristic and learned from

sample refactored code; so their accuracies are dependent on the “quality” of the sample

code. We used sample code from classical collections, and aimed to ensure precise

encoding of the most essential changes for each refactoring type; our results show good

precisions. However, there may also be biases in the evaluation of the accuracy of the

reported refactorings, since we relied on manual investigation on selected samples by

students, had only compared with one previously existing tool for detecting historical

refactorings, and we need a better way to evaluate the recall rates of our approach.

In the near future, we plan to extend vector operations for more refactoring types,

apply our approach with more sample refactored code to more subject programs, port

our implementation to other languages, conduct more systematic user studies to alleviate

the above threats, and make our tool and evaluation data available for other researchers.

Also, we plan to automate the definitions of abstraction and concretization operations

with ideas and techniques from programming by examples [18,83,84] and apply detected

refactoring opportunities automatically.

5.5 Chapter Summary

This chapter presents a new vector-based approach for scalable detection of refactorings.

Our approach builds on top of characteristic vectors that encode various code features.

Most importantly, it extends vectors with abstraction and concretization operations to

capture the features of the code changes that may be induced by a refactoring operation.

Such abstraction and concretization operations can be extracted and refined based on

known refactored code samples. Both refactoring opportunities (i.e., code fragments
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that may be restructured according to a refactoring type) and historical refactorings

(i.e., code fragments that have been restructured according to a refactoring type) can be

encoded via concrete and abstract vectors. Thus, our approach reduces the problem of

detecting refactoring to the problem of detecting matching vectors, which can be solved

efficiently in almost linear time with respect to vector numbers.

We have implemented our approach for Java and applied the prototype to a large

code base containing 200 bundle projects from the Eclipse ecosystem (e.g., Eclipse JDT,

Eclipse PDE, Apache Commons, Hamcrest, etc.) and about 4.5 million lines of code.

Our prototype detects more than 32K instances of 17 types of refactoring opportunities

in about 7 hours. We have also applied our prototype to 16 versions of 3 programs used

in previous studies on refactoring detection, and found 191 instances of various types of

historical refactorings across consecutive versions of the programs, with 92% precision.

Our prototype also detects more than 2.8K instances of refactoring opportunities within

individual versions of the programs.



Chapter 6

Future Work

In the previous chapters we have shown that efficient and effective detection of code

fragments related by refactoring operations within large software can be achieved

by performing abstraction and algebraic operations over high-dimensional vectors

representing the code. Specifically, in Chapter 4 we introduced vector inlining and

showed that the detection of refactoring operations involving cross-function changes

can be accurately achieved by vector addition and vector query. In Chapter 5 we further

refined the approach and showed that the precise code change patterns induced by

refactoring can be learned from examples, using a semi-automatic approach, and then

detected by employing a flexible approach based on abstractions and concretizations. In

the rest of this chapter we will outline several possible directions of future research.

6.1 Extensive Detection of Refactoring or Code Edits

One possible avenue of research involves extending the list of refactorings that we can

detect and discovering the relations between the abstractions and concretizations of all

refactoring operations.

Currently the detection of a refactoring operation is based on algebraic operations

111
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over high-dimensional vectors representing the code. Classifying certain refactoring

operations may however require us to incorporate more diverse metadata about the vec-

tors, or information about other detected refactoring operations. For example, the new

metadata criteria might include the positions in the class hierarchy of the classes enclos-

ing the code fragments, the relation between such classes (extend relation), call graph

information about the particular call relations between code fragments, or some other

characteristics of code fragment composition. By introducing appropriate abstraction

and concretization criteria we aim to detect a broad range of refactorings.

One such example of criteria that can be used to detect refactoring is illustrated by

Example 22. Specifically, the example shows how clustering individual refactorings can

provide definitions for complex refactorings such as Parameterize method.

Example 22. ( Parameterize Method )

1 org.apache.jmeter.gui.action.Load$Test

2 public void testFile4() throws Exception {

3 HashTree tree = getTree(testFile4);

4 //loader.updateTree(tree);

5 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.testelement.TestPlan);

6 loader.convertTree(tree);

7 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.control.gui.TestPlanGui);

8 }

1 org.apache.jmeter.gui.action.Load$Test

2 public void testFile5() throws Exception {

3 HashTree tree = getTree(testFile5);

4 //loader.updateTree(tree);

5 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.testelement.TestPlan);

6 loader.convertTree(tree);

7 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.control.gui.TestPlanGui);

8 }

1 public void testFile12() throws Exception {

2 ...

3 }

1 org.apache.jmeter.gui.action.Load$Test

2 public void testFile4() throws Exception {

3 loadAndAssertTree(getTree(testFile4));

4 }

5
6 private void loadAndAssertTree(HashTree tree)

7 throws Exception {

8 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.testelement.TestPlan);

9 loader.convertTree(tree);

10 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.control.gui.TestPlanGui);

11 }

1 org.apache.jmeter.gui.action.Load$Test

2 public void testFileN(TestFile testFile)

3 throws Exception {

4 loadAndAssertTree(getTree(testFile));

5 }

6
7 private void loadAndAssertTree(HashTree tree)

8 throws Exception {

9 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.testelement.TestPlan);

10 loader.convertTree(tree);

11 assertTrue(tree.getArray()[0] instanceof org.apache

.jmeter.control.gui.TestPlanGui);

12 }

In a Parameterize Method refactoring, several methods that do similar things but

with different values, are transformed by creating one method that uses a parameter for
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the different values. The code fragments in Example 22 are taken from Apache Ant.

As can be seen from the example, the methods to the left, testFile4, testFile5

up until testFile12, are very similar except for their use of different values: field

testFile4 for method testFile4, field testFile5 for method testFile5, and so

on. On the other hand, method testFileN takes a parameter testFile which holds

the value to be used in the body of the method. When called with appropriate values

for its parameter, testFileN will provide the exact same functionality as testFile4,

testFile5 up until testFile12 thus asserting a Parameterize Method refactoring.

However our current approach will only detect individual Extract Method refactorings.

As the Parameterize Method refactoring operation involves changes to several meth-

ods, its detection should thus be based on first detecting several individual refactorings

(9 Extract Method in this case) and then comparing the detected results to check whether

“several methods that do similar things but with different values, are refactored into

one method”. This can be achieved by first detecting individual refactorings and then

clustering the detected refactorings based on similarity between the vectors used as

query and by classifying clusters of results as Parameterize Method.

We also plan to research the detection of class level refactorings. An example of

class level refactoring would be Form Template Method which is applied when there

exist two methods in subclasses that perform similar steps in the same order. The

application of Form Template Method will extract the steps into methods with the same

signature, so that the original methods become the same, and will then pull the newly

extracted methods into the superclass. Other examples would be Replace Inheritance

with Delegation, Replace Conditional with Polymorphism, etc. Detecting this type

of refactorings may require creation of vectors for the entire class by removing the

boundaries of encapsulation. Comparing class level vectors will then result in detecting

class level refactorings.
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6.2 Composite Refactorings and Query Language

The second direction that we plan to investigate involves composite refactorings. Cur-

rently our approach can detect individual refactorings. However it might be the case

that multiple refactoring operations are applied to a code fragment. Also, detecting

historical refactoring between non-consecutive versions may benefit from the detection

of composite refactoring.

A composite refactoring opportunity is shown in Example 23. Methods get-

Controllers in (a) and getVisualizer in (c) have the same behavior yet different

syntactic shapes. getControllers differs from getVisualizer by introducing a

number of extra temporary variable declarations and by performing all functions in

one method as opposed to getVisualizer that delegates some of its functionality

in the extracted method getVector. As the Extract Method refactoring may often

be performed together with Inline Temporary or Introduce Variable refactorings, our

approach can detect this type of composite refactoring by applying the abstractions for

both Extract Method and Inline Temp/Introduce Variable when querying for refactorings

of type extract method.

The general idea to detect the composition of two refactoring operations �1 and

�2 would be to either use the current approach and learn from examples depicting

combinations of refactorings, or to “compose” the abstractions and “compose” the

concretizations. Next we describe these two approaches.

The former approach would start with two vectors v1 and v2 corresponding to code

fragments c1 and c2, where c2 is obtained from c1 after applying �1 and �2. Next it would

construct the vector difference �(v1, v2) = (v�,m,D), which encodes both “common”

parts (in v�) and differences (in D) between the two vectors, and would generate

the abstraction and the abstract vectors �1��2A(v) or �1��2 and the concretization

�1��2C(v1, v2). Although this approach is in theory simple it does not scale as it does
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Example 23. ( Composite Refactorings )

1 public static Vector getControllers(Properties properties){
2 String name = "controller.";
3 Vector v = new Vector();
4 Enumeration names = properties.keys();
5 while (names.hasMoreElements()){
6 String prop = (String) names.nextElement();
7 if (prop.startsWith(name)){
8 Object o = instantiate(
9 properties.getProperty(prop),

10 "org.apache.jmeter.control.SamplerController");
11 v.addElement(o);
12 }
13 }
14 return v;
15 }

1 public static Vector getVector(Properties properties, String name) {
2 Vector v = new Vector();
3 Enumeration names = properties.keys();
4 while (names.hasMoreElements()) {
5 String prop = (String) names.nextElement();
6 if (prop.startsWith(name)) {
7 v.addElement(properties.getProperty(prop));
8 }
9 }

10 return v;
11 }
12 ...
13 public static Vector getVisualizer(Properties properties) {
14 return instantiate(
15 getVector(properties, "visualizer."),
16 "org.apache.jmeter.visualizers.Visualizer");
17 }

(a)

(b)

(c)

not reuse the definitions of abstractions and concretizations for individual refactorings

and requires new examples to be constructed for all combinations of refactorings.

The latter approach on the other hand would reuse the models constructed for individ-

ual refactorings. It would start with the vector difference ��1(v1, v2) = (v��1 ,m�1 ,D�1)

learned from the example corresponding to �1 and the vector difference ��2(v1, v2) =

(v��2 ,m�2 ,D�2) learned from the example corresponding to �2 and the abstractions

�1A(v) and �2A(v) and would generate the abstraction �1A(v) ��2A(v) or �1 ��2 and
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the concretization �1C(v1, v2) ��2 C(v1, v2).

There are however a number of challenges with either approach. If the feature

sets D�1 and D�2 , which indicate the features that may be changed by �1 and �2,

have no elements in common, the model for detecting �1 � �2 can be easily defined

by �1A(v) ��2A(v) = �1A(v) ^�2A(v) and �1C(v1, v2) ��2C(v1, v2) = �1C(v1, v2) ^�2

C(v1, v2). However if the refactorings �1 and �2 change the same elements, detecting the

composition becomes more difficult. For example if �1 were Introduce one Explaining

Variable and �2 were Inline Temporary Variable the composite refactoring will have no

detectable effect on the features of the vectors as they are opposite and one invalidates

the effect of the other. Detecting such composite refactorings is thus future work.

We also plan to develop a query language that allows us to specify the refactoring

opportunities to search for. The query language will also allow us to specify the

composition of multiple refactoring types based on vector compositions.

6.3 Inferring Vector Abstraction and Concretization

As another direction of future work, we plan to automate the definitions of abstraction

and concretization operations with ideas and techniques from programming by examples

[18, 83, 84] and apply detected refactoring opportunities automatically.

Our general idea to infer the definitions of abstraction and concretization operations

is in spirit similar to that of Daikon [31]. In particular we aim to capture the code

transformations induced by refactoring by a set of logic templates. The concretization

and abstraction for a refactoring will be a set of instances of these templates. An example

of such logic templates is given below:
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Template for Inference of Refactoring: Direct Two Feature Correlation
Given two characteristic vectors, v and v0, defined by a sequence of
K unique features denoted by [f1, . . . , fK ], and two vector features,
fi, fj, i < K, j < K a direct two feature correlation is defined as
follows:

v0[fi]� v[fi] == v0[fj ]� v[fj ]

A direct two feature correlation template encodes those code transformation that

involve changing two vector features in the same way. For instance the Introduce

Explaining Variable refactoring, shown in Example 24, manifests itself by adding a new

variable declaration and a new variable access. Thus v0[var_decl]� v[var_decl] ==

v0[var_access]� v[var_access].

Example 24. ( Introduce Variable Structural Differences )

1 void f(int a, int b)
2 int c = a + b;
3 ...

-4 if (... complex computation){
5 ...
6 }
7 }

1 void f(int a, int b)
2 int c = a + b;
3 ...

+4 int temp = ... complex computation;
+5 if (temp) {

6 ...
7 }
8 }

A variation of the direct two feature correlation template is the indirect two fea-

ture correlation. This logic template is meant to encode those code transformation

that involve changing two vector features in opposite ways. For instance the Reverse

Conditional refactoring, shown in Example 25, manifests itself by reversing the sense

of a conditional and thus by removing one type conditional and adding another. Thus

v0[if_less]� v[if_less] == v0[if_greater_equal]� v[if_greater_equal].
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Template for Inference of Refactoring: Indirect Two Feature Correlation
Given two characteristic vectors, v and v0, defined by a sequence of
K unique features denoted by [f1, . . . , fK ], and two vector features,
fi, fj, i < K, j < K an indirect two feature correlation is defined as
follows:

v0[fi]� v[fi] == �(v0[fj ]� v[fj ])

Example 25. ( Reverse Conditional Structural Differences )

1 void f(int a, int b)
2 int c = a - b;
3 ...

-4 if (c < 0){
5 ...
6 }
7 }

1 void f(int a, int b)
2 int c = a - b;
3 ...

+4 if (c >= 0){
5 ...
6 }
7 }

There are however a number of challenges with this approach. The first challenge is

related to generating a set of template instances that do not imply each other. For example

if the concretization for a refactoring is defined by three template instances, out of which

the first two are: 1) v0[fi]�v[fi] == v0[fj ]�v[fj ] and 2) v0[fi]�v[fi] == v0[fk]�v[fk]

the third instance, v0[fj ]� v[fj ] == v0[fk]� v[fk], is implied by the first two and not

needed. Pruning the inference of such template instances, that are implied by the existing

instances, is necessary.

The second challenge stems from the fact that one refactoring operation may change

one feature out of a set of features. One idea to circumvent this challenge is to infer a

general definition of refactoring by introducing symbolic or high level features. Each of

these symbolic features essentially represent sets of vector features. An example of such

a feature is var_decl which we briefly mentioned for the Introduce Explaining Variable

refactoring. var_decl translates, in terms of bytecode vector features, to a set of vector
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features: istore_1, istore_2 etc. Encoding such set of vector features and the changes in

sets of feature is needed. One of abstraction rules, defined in Chapter 5 which we recall

below, also makes use of sets of features.

Vector Abstraction Rule
Given the vector difference D, if there is a subset of D, denoted as
Ds = {fd1 7! nd1 , fd2 7! nd2 , . . . , fds 7! nds} where 2  s  K and
1  d1  d2 . . .  ds�1  ds  K, such that ⌃s

i=1ndi = 0, then we
consider the features in Ds as inter-exchangeable and we merge their
counts in v all into a unique conceptual feature as follows:

• � [d1] = ⌃s
i=1v[di];

• 8i 2 2..s,� [di] = 0.

Other challenges are related to efficiently verifying the inferred template instances,

to determining the number of examples to learn from for each refactoring operation, and

to applying the inference to detect code transformations from a more broader scope such

as bug fixes or other systematic code edits.
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Conclusion

In this thesis we have presented a novel approach to scalably detect refactoring. Our

experiments validate our belief that efficient and effective detection of code fragments

related by refactoring operations within large software can be achieved by performing

abstraction and algebraic operations over high-dimensional vectors representing the

code. The main technical contributions of our research thesis are as follows:

• We proposed a new technique called vector inlining to simulate the effect of

method inlining, which enables scalable detection of cross-function refactoring;

• We designed a systematic way to represent essential code changes needed for var-

ious types of refactoring operations as abstraction and concretization operations

on vectors, which encode syntactic features of code and code changes;

• Our vector-based encoding of refactoring operations enables detection of refactor-

ing both within the same version and across different versions of a program, so

that we can detect both refactoring opportunities and historical refactorings;

• Our vector-based encoding and similarity queries for abstract and concrete vectors

enable scalable detection of refactorings;
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• We have evaluated our approach on large code bases with millions of lines of

code, and show scalable and accurate detection results.

As future avenues of research we aim to investigate three interesting directions:

extensive detection of refactoring, composite refactorings, and inference of abstractions

and concretization. The former direction will involve new research in finding novel

abstractions and concretization criteria that can detect a broad range of refactorings.

The second direction will involve research into the features changed by multiple refac-

torings and their interference, and into techniques such as integer linear programming

to determine whether the change pattern between two vectors matches the composite

change pattern of each refactoring. Moreover, the latter direction aims to make our

approach applicable to a class of code edits more broad than that of the class of edits

induced by refactoring.
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Vector 

Index 
Vector Feature 

1 ANONYMOUS_CLASS_DECLARATION  

2 ARRAY_ACCESS 

3 ARRAY_CREATION 

4 ARRAY_INITIALIZER 

5 ARRAY_TYPE 

6 ASSERT_STATEMENT 

7 ASSIGNMENT 

8 BLOCK 

9 BOOLEAN_LITERAL 

10 BREAK_STATEMENT 

11 CAST_EXPRESSION 

12 CATCH_CLAUSE 

13 CHARACTER_LITERAL 

14 CLASS_INSTANCE_CREATION 

15 COMPILATION_UNIT  

16 CONDITIONAL_EXPRESSION 

17 CONSTRUCTOR_INVOCATION 

18 CONTINUE_STATEMENT 

19 DO_STATEMENT  

20 EMPTY_STATEMENT 

21 EXPRESSION_STATEMENT 

22 FIELD_ACCES 

23 FIELD_DECLARATION 

24 FOR_STATEMENT 

25 IF_STATEMENT 

26 IMPORT_DECLARATION 

27 INFIX_EXPRESSION 

28 INITIALIZER 

29 JAVADOC 

30 LABELED_STATEMENT 

31 METHOD_DECLARATION 

32 METHOD_INVOCATION 

33 NULL_LITERAL 

34 NUMBER_LITERAL 

35 PACKAGE_DECLARATION 

36 PARENTHESIZED_EXPRESSION 

37 POSTFIX_EXPRESSION 

38 PREFIX_EXPRESSION 

39 PRIMITIVE_TYPE 

40 QUALIFIED_NAME 

41 RETURN_STATEMENT 

42 SIMPLE_NAME 

43 SIMPLE_TYPE 

44 SINGLE_VARIABLE_DECLARATION 

45 STRING_LITERAL 

46 SUPER_CONSTRUCTOR_INVOCATION 

47 SUPER_FIELD_ACCESS 

48 SUPER_METHOD_INVOCATION 

49 SWITCH_CASE 

50 SWITCH_STATEMENT 

51 SYNCHRONIZED_STATEMENT 

52 THIS_EXPRESSION 

Figure A.1: Features of Java JDT AST Vectors – Part 1
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Vector 

Index 
Vector Feature 

53 THROW_STATEMENT 

54 TRY_STATEMENT 

55 TYPE_DECLARATION 

56 TYPE_DECLARATION_STATEMENT 

57 TYPE_LITERAL  

58 VARIABLE_DECLARATION_EXPRESSION 

59 VARIABLE_DECLARATION_FRAGMENT 

60 VARIABLE_DECLARATION_STATEMENT 

61 WHILE_STATEMENT 

62 INSTANCEOF_EXPRESSION 

63 LINE_COMMENT 

64 BLOCK_COMMENT 

65 TAG_ELEMENT 

66 TEXT_ELEMENT 

67 MEMBER_REF 

68 METHOD_REF 

69 METHOD_REF_PARAMETER 

70 ENHANCED_FOR_STATEMENT 

71 ENUM_DECLARATION 

72 ENUM_CONSTANT_DECLARATION 

73 TYPE_PARAMETER 

74 PARAMETERIZED_TYPE 

75 QUALIFIED_TYPE 

76 WILDCARD_TYPE 

77 NORMAL_ANNOTATION 

78 MARKER_ANNOTATION 

79 SINGLE_MEMBER_ANNOTATION 

80 MEMBER_VALUE_PAIR 

81 ANNOTATION_TYPE_DECLARATION 

82 ANNOTATION_TYPE_MEMBER_DECLARATION  

83 MODIFIER 

84 UNION_TYPE 

85 METHOD_INVOCATION0 

86 METHOD_INVOCATION1 

87 METHOD_INVOCATION2 

88 METHOD_INVOCATION3 

89 METHOD_INVOCATION4 

90 METHOD_INVOCATION5 

91 METHOD_INVOCATION6 

92 API_INVOCATION0 

93 API_INVOCATION1 

94 API_INVOCATION2 

95 API_INVOCATION3 

96 API_INVOCATION4 

97 API_INVOCATION5 

98 API_INVOCATION6 

 

Figure A.2: Features of Java JDT AST Vectors – Part 2
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Vector 

Index 
Vector Feature Feature Description 

0 nop  perform no operation 

1 aconst_null  push a null reference onto the stack 

2 iconst_m1  load the int value -1 onto the stack 

3 - 8 iconst_${n} 

$n in {0,1,2,3,4,5} 

load the int value {0, 1,2,3,4,5} onto the stack 

11 - 12 lconst_${n} 

$n in {0, 1} 

load a constant on stack 

13 - 15 fconst_${n} 

$n in {0,1,2} 

load a constant on stack  

14 - 15 dconst_${n} 

$n in {0,1} 

load a constant on stack 

16 - 17 bipush, sipush push a byte/short onto the stack 

18 - 20 ldc, ldc_w, ldc2_w push a constant #index from a constant pool 

21 - 25 ${type}load 

$type in {‘i’,‘l’,‘f’,‘d’,‘a’} 

load a value from a local variable #index 

26-45 ${type}load_${n} 

$n in {0,1,2,3} 

$type in {‘i’,‘l’,‘f’,‘d’,‘a’} 

load a value from local variable {0,1,2,3} 

46 - 53 ${type}aload 

$type in 

{‘i’,‘l’,‘f’,‘d’,‘a’,‘b’,’c’,’s’} 

load a value from an array 

54 - 58 ${type}store 

$type in {‘i’,‘l’,‘f’,‘d’,‘a’} 

store a value from a local variable #index 

59 - 78 ${type}store_${n} 

$n in {0,1,2,3} 

$type in {‘i’,‘l’,‘f’,‘d’,‘a’} 

store a value from local variable {0,1,2,3} 

79 - 86 ${type}astore 

$type in {‘i’,‘l’,‘f’,‘d’,‘a’, 

‘b’,’c’,’s’} 

store a value into an array 

87 - 88 pop, pop2 discard the top value/two values from the 

stack 

89 - 91 dup, dup_x1, dup_x2 duplicate the value on top of the stack 

92 - 94 dup2, dup2_x1, dup2_x2 92 duplicate two values on top of the stack 

95 swap swaps two top words on the stack 

96 - 119 ${type}${op} 

${type} in {i,l,f,d} 

op in 

{“add”,“sub”,“mul”,”div”,“rem”,“neg”} 

Binary operations on integer, long, float, or 

double 

120 - 123 ishl, lshl, ishr, lshr shift left/right 

124 - 125 iushr, lushr logical shift right 

126 - 131 iand, land, ior, lor, ixor, lxor perform a bitwise operation on two integers 

132 iinc increment 

133 – 147  i2l, i2f, i2d, l2i, l2f, l2d, f2i, 

f2l, f2d, d2i, d2l, d2f, i2b, i2c, i2s 

type conversion 

149 - 152 lcmp, fcmpl, fcmpg, dcmpl, dcmpg compare two values 

153 - 158 if${op} 

$op in {eq,ne,lt,ge,gt,le} 

if value is eq/ne/lt/ge/gt/le than 0 than 

branch to instruction at branchoffset  

 

Figure A.3: Features of Java Bytecode Vectors – Part 1
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Vector 

Index  
Vector Feature Feature Description 

159 - 164 if_icmp${op} 

$op in {eq,ne,lt,ge,gt,le} 

if condition than branch to instruction at 

branchoffset 

165 - 166 if_acmp${op} 

$op in {eq,ne} 

if references are equal/neq, branch to 

instruction at branchoffset 

167 goto goes to another instruction 

168 jsr jump to subroutine at branchoffset 

169 ret continue execution from address taken from 

a local variable #index 

170 tableswitch continue execution from an address in the 

table at offset index 

171 lookupswitch a target address is looked up from a table 

using a key and execution continues from 

the instruction at that address 

172 - 176 ${type}return 

$type in {‘i’,‘l’,‘f’,‘d’,‘a’} 

return a value 

177 return return void 

178 - 179 getstatic, putstatic get/put a static field value 

180 - 181 getfield,  putfield get/put a field value 

182 - 185 invokevirtual, invokespecial, 

invokestatic, invokeinterface 

invoke a method 

186 xxxunusedxxx  

187 new create new object 

188 newarray create new array 

189 anewarray create a new array of references 

190 arraylength get the length of an array 

191 athrow throws an error or exception 

192 checkcast checks whether an objectref is of a certain 

type 

193 instanceof determines if an object objectref is of a given 

type 

194 - 195 monitorenter, monitorexit  enter/exit monitor for object 

196 wide execute opcode, where opcode is either 

iload, istore, ret, inc but assume the index is 

16 bit 

197 multianewarray create a new array of dimensions 

198 - 199 ifnull, ifnonnull if value is null/nonnull, branch to instruction 

at branchoffset 

200 goto_w goes to another instruction 

201 jsr_w jump to subroutine at branchoffset 

202 initinvoke invoke constructor 

203 - 209 clientinvoke${n} 

$n in {0,1,2,3,4,5} 

invoke client defined method with n 

parameters 

210 - 216 apiinvoke${n} 

$n in {0,1,2,3,4,5,6} 

invoke api defined method with n 

parameters 

217 methodinvoke_checkcast checkcast applied to the return value from a 

client defined method  

218 apiinvoke_checkcast checkcast applied to the return value from a 

api defined method  

 

Figure A.4: Features of Java Bytecode Vectors – Part 2
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Examples

In this appendix we present examples of detected refactoring operations that were not

covered by the previous chapters such as Decompose Conditional, Self Encapsulate

Field, Downcast Encapsulate, Reverse Conditional.
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Example 26. ( Decompose Conditional Refactoring )

1 org.eclipse.team.internal.core.subscribers.
SubscriberResourceCollector

2
3 private boolean isDescendantOfRoot(IResource resource,

IResource[] roots)
4 {
5 for (int i = 0; i < roots.length; i++) {
6 IResource root = roots[i];
7 if (root.getFullPath().
8 isPrefixOf(resource.getFullPath())) {
9 return true;

10 }
11 }
12 return false;
13 }

1 org.eclipse.team.internal.core.subscribers.
SyncInfoWorkingSetFilter

2
3 private boolean isIncluded(IResource resource) {
4 // otherwise, if their is a parent of the resource
5 // in the set, it is included
6 for (int i = 0; i < resources.length; i++) {
7 IResource setResource = resources[i];
8 if (isParent(setResource, resource)) {
9 return true;

10 }
11 }
12 return false;
13 }
14
15
16 private boolean isParent(IResource parent, IResource

child) {
17 return (parent.getFullPath().
18 isPrefixOf(child.getFullPath()));
19 }
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Example 27. ( Self Encapsulate Field Refactoring )

1 package org.eclipse.jdt.internal.compiler.codegen.FloatCache
2
3 public String toString() {
4 int max = this.elementSize;
5 StringBuffer buf = new StringBuffer();
6 buf.append("{"); //NON-NLS-1
7 for (int i = 0; i < max; ++i) {
8 if ((this.keyTable[i] != 0) || ((this.keyTable[i] == 0)

&& (this.valueTable[i] != 0))) {
9 buf.append(this.keyTable[i]).append("->").append(

this.valueTable[i]); //NON-NLS-1
10 }
11 if (i < max) {
12 buf.append(", "); //NON-NLS-1
13 }
14 }
15 buf.append("}"); //NON-NLS-1
16 return buf.toString();
17 }

1 package org.eclipse.jdt.internal.compiler.codegen.FloatCache
2
3 public String toString() {
4 int max = size();
5 StringBuffer buf = new StringBuffer();
6 buf.append("{"); //NON-NLS-1
7 for (int i = 0; i < max; ++i) {
8 if ((this.keyTable[i] != 0) || ((this.keyTable[i] == 0)

&& (this.valueTable[i] != 0))) {
9 buf.append(this.keyTable[i]).append("->").append(

this.valueTable[i]); //NON-NLS-1
10 }
11 if (i < max) {
12 buf.append(", "); //NON-NLS-1
13 }
14 }
15 buf.append("}"); //NON-NLS-1
16 return buf.toString();
17 }
18
19 public int size() {
20 return this.elementSize;
21 }
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Example 28. ( Downcast Encapsulate Refactoring )

1 AuthManager
2 public String getName()
3 {
4 return (String)getProperty(

TestElement.NAME);
5 }

1 CounterConfig
2 public String getVarName()
3 {
4 return getPropertyAsString(

VAR_NAME);
5 }

1 AuthManager
2 public String getName()
3 {
4 return getPropertyAsString(TestElement.NAME);
5 }
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Example 29. ( Reverse Conditional Refactoring )

1 X509Data
2 public int lengthUnknownElement() {
3 NodeList nl = this._constructionElement.getChildNodes();
4 int result = 0;
5 for (int i = 0; i < nl.getLength(); i++) {
6 Node n = nl.item(i);
7 if ((n.getNodeType() == Node.ELEMENT_NODE) && !n.

getNamespaceURI().
8 equals(Constants.SignatureSpecNS)) {
9 result += 1;

10 }
11 }
12 return result;
13 }

1 KeyInfo
2 public int lengthUnknownElement() {
3 int res = 0;
4 NodeList nl = this._constructionElement.getChildNodes();
5 for (int i = 0; i < nl.getLength(); i++) {
6 Node current = nl.item(i);
7 /**
8 * @todo using this method, we don’t see unknown Elements
9 * from Signature NS; revisit

10 */
11 if ((current.getNodeType() == Node.ELEMENT_NODE) && current.

getNamespaceURI().
12 equals(Constants.SignatureSpecNS)) {
13 res++;
14 }
15 }
16 return res;
17 }
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