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Abstract

Quantum theory introduces a cut between the observer and the observed system [1], but
does not provide a definition of what is an observer [2]. Based on an informational def-
inition of the observer, Grinbaum has recently [3] predicted an upper bound on bipartite
correlations in the Clauser-Horne-Shimony-Holt (CHSH) Bell scenario equal to 2.82537,
which is slightly smaller than the Tsirelson bound [4] of standard quantum theory, but is
consistent with all the available experimental results [5–17]. Not being able to exceed Grin-
baum’s limit would support that quantum theory is only an effective description of a more
fundamental theory and would have a deep impact in physics and quantum information
processing. In this thesis, we present a test of the CHSH inequality on photon pairs in
maximally entangled states of polarization in which a value 2.8276 ± 0.00082 is observed,
violating Grinbaum’s bound by 2.72 standard deviations and providing the smallest distance
with respect to Tsirelson’s bound ever reported, namely, 0.0008 ± 0.00082. This sets a new
lower experimental bound for Tsirelson’s bound, strengthening the value of principles that
predict Tsirelson’s bound [18–20] as possible explanations of all natural limits of correla-
tions, and has important consequences for cryptographic security [21], randomness certifi-
cation [22], characterization of physical properties in device-independent scenarios [23, 24]
and certification of quantum computation [25].

The thesis also reports on our efforts in experimentally demonstrating that it is impossi-
ble to simulate quantum bipartite correlations with a deterministic universal Turing machine.
Our approach is based on the Normalized Information Distance (NID) [26] that allows the
comparison of two pieces of data without detailed knowledge about their origin. Using
NID, we derived a completely new Bell type inequality for output of two local determin-
istic universal Turing machines with correlated inputs that is independent of any statistical
considerations usually associated with other Bell’s inequalities. As a proof of concept, this
inequality is violated by 6.5 standard deviations from its classical limits with a value of
0.0494 ± 0.0076 by correlations generated by a maximally entangled polarization state of
two photons. The violation is shown using a freely available lossless compression pro-
gram. The presented technique may also complement the common statistical interpretation
of quantum physics by an algorithmic one.



viii

Similar to entanglement, the dimensionality of the Hilbert space describing a quantum
system is an important quantum resource for various quantum information processing tasks.
Previous attempts at experimentally witnessing large Hilbert space dimension have the limi-
tation of not being able to distinguish between classical and quantum dimensions [27–29] or
requiring a priori knowledge of the state under test to make a full assessment [30–33]. What
is needed here is a way to device independently assess the minimal dimension of Hilbert
space that is necessary to describe the system. Generalizing the work of Brunner [34], we
report in this thesis an experimental implementation of a dimension witness based on the
Collins-Gisin-Liden-Massar-Popescu (CGLMP) inequality [35] to test the dimensionality of
an energy-time and polarization hyperentangled state. However, due to persistent stability
issues in the generation of the hyperentangled state, we were not yet able to achieve a result
with a small enough error bound to support a conclusion. Unfortunately, shortly before the
conclusion of the writing of this thesis, it was also realized that the inequality can be violated
with entangled states of a lower dimensionality purely by the classical feed-forward of an
earlier measurement result onto the choice of settings for a later measurement, making our
dimensions witness susceptible to the same limitations mentioned earlier. Whether this is a
limitation of the specific form of the CGLMP inequality we were working with or indeed
any other dimensional witnesses are subjects of ongoing work here.
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Chapter 1

From Quantum Mechanics to Quantum
Information and Computation

The three-age system often referred to in archaeology and anthropology compartmentalizes
early human history, based on the prevailing tool-making technologies of the era, into three
consecutive time periods: the Stone Age, Bronze Age, and Iron Age. The transitions be-
tween these epochs corresponded to times of great advancements in every facade of human
society.

As we stepped barely two decades into the 21st century, we have already found ourselves
in the midst of the fourth age, the Information Age (Digital Age). Evidences of this are
clearly visible: almost all of our daily activities, ranging from the way we communicate and
interact to the way knowledge is being taught in schools, rely on information. Suffice to say
digital information as intangible as it may be has an even greater impact on our lives than
any tangible tools that followed previously.

This technological turn of events was of course spawned by the first quantum revolution
which brought us the transistor. The first solid state transistor, invented at Bell Laboratories
on December 16, 1947 by William Shockley, John Bardeen, and Walter Brattain, started life
as a study into the flow of electrons over the surface of a semiconductor. The smaller and
more energy efficient transistor ultimately replaced the vacuum tube. Since then, increasing
level of miniaturization enabled more transistors to fit onto a single silicon chip, resulting in
more powerful and energy efficient processors for computers.

Paralleling these technological advancements were the significant progresses made in
the field of experimental physics over the past few decades. We are becoming increasingly
proficient in the fabrication and manipulation of physical systems which demonstrate quan-
tum effects. With this next quantum revolution, experiments have started to exploit the
various degrees of freedom available in a number of quantum systems to encode bits of



2 From Quantum Mechanics to Quantum Information and Computation

quantum information or qubits. Some of these first experiments [6, 38] used the polariza-
tion degree of a photon to encode the qubit. These photonic qubits have the advantage of
being easy to generate and are relatively resistant to decoherence. Thus they remain very
much relevant and widely used in experiments [7, 43–46] till today.

These qubits exhibit features of non-cloneability, superposition, and can be entangled
in multi-qubit states, all of which are purely quantum mechanical effects. When photonic
qubits are entangled in a multi-qubit state, they can be used for various quantum communi-
cation protocols [47, 48] and fundamental tests of quantum physics in higher-dimensional
Hilbert spaces [35, 49, 50]. Multi-qubit states also allow certain classes of computational
tasks [51, 52] which are either inefficient or impractical on classical information processing
systems to be carried out.

Just barely a few decades into the Information Age, are we seeing the first telltale signs
that we are on the verge of the Quantum Information Age? Quantum key distribution (QKD)
systems, initially the exclusive domain of research laboratories of universities are making
their first commercial appearances1. Large organizations like Google, Lockheed Martin,
and NASA are using D-Wave computers which are touted as the world’s first commercial
quantum computers2.

However, despite the technological advances and progresses in our understanding of
how to manipulate and experiment on these quantum systems, there are still significant gaps
in our understanding of the fundamental issues surrounding quantum mechanics. Questions
regarding whether quantum theory is a fundamental theory or an effective version of a more
general theory and whether the currently predominant statistical interpretation of quantum
mechanics is the only one available to us remain unanswered.

On the application side of quantum mechanics, there is also a lack of comprehensive
ways to certify cryptographic security [21], randomness [22], and quantum computation [25].
Methods to characterize physical properties in these quantum system in device-independent
scenarios [23, 24] are also needed: e.g. methods to device independently assess the dimen-
sionality of quantum information processing systems which determines the capacity of these
system to perform quantum information processing [33, 53].

The above mentioned issues serve as the main motivations for the work presented in this
thesis. In this thesis, we report our attempt at setting up a source of high quality polarization-
entangled photon pairs and their use in violating the CHSH inequality both maximally

1Currently there are four companies, idQuantique, MagiQ Technologies, QuintessenceLabs, and Se-
QureNet offering commercial QKD devices.

2Due to the secrecy surrounding the structures and performances of these D-Waves computers, the scien-
tific community at large have yet to reach a consensus on whether these D-Wave computers, while unitizing
certain quantum phenomenons in their operations, qualify as quantum computers.
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and with the smallest error bar currently recorded in literature to closely approaching the
Tsirelson’s bound3, This thesis also reports our work in deriving a completely new Bell type
inequality based solely on the concept of Kolmogorov complexity and normalized informa-
tion distance (NID) [26], independent of any statistical considerations usually associated
with other Bell’s inequalities. We also document in detail our procedures in coming up with
an estimate to the Kolmogorov complexity by appealing to the concept of compressibility,
obtainable in actual implementation using freely available compression softwares. This in-
equality was then violated in experiment as a proof of concept. Lastly we report the setting
up of a energy-time and polarization hyperentangled source and its use in the experimental
implementation of a dimension witness based on the Collins-Gisin-Liden-Massar-Popescu
(CGLMP) inequality, a family of Bell’s inequalities for bipartite quantum systems of arbi-
trarily high dimensionality.

1.1 Qubit, The Quantum Mechanical Bit

The bit is the most fundamental unit of classical information. It is a representation of a
binary digit, taking a logical value of either "1" or "0". Due to the binary nature of the
classical bit, digital information can be encoded in any physical system which has two stable
states such as the direction of a magnetic domain on magnetic media, the pits and bumps on
the reflective layer on an optical disk, or voltage levels in a digital circuit.

Over the past few decades, we have seen experiments that allow us to study and manipu-
late physical systems which exhibit quantum behaviors being devised and implemented. In
this quantum regime, the quantum bit of information or qubit can be encoded in state of a
spin-1

2 (two-level) system. The reason why a spin-1
2 system is also called a two-level system

stemmed from an experiment performed by Otto Stern and Walther Gerlach in 1922 [54, 55]
to study the intrinsic angular momentum of an electron. In what later came to be known as
the Stern-Gerlach experiment (Fig. 1.1), they showed that the spin angular momentum of an
electron along any direction can only take one of two possible value, + h̄

2 (spin-up) or − h̄
2

(spin-down). In the quantum state vector representation, spin-up and spin down can be writ-
ten as |↑⟩ and |↓⟩, respectively. It is possible to manipulate the direction of the electron spins
and by associating "1" to |↑⟩ and "0" to |↓⟩, this degree of freedom can be used essentially
to encode qubits.

3The Tsirelson’s bound is a fundamental limit predicted by quantum mechanics for the amount of corre-
lation that can exist between quantum systems. Saturation of this limit in experiment would imply that no
modification of the standard quantum theory is required.
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Fig. 1.1 Stern-Gerlach experiment. A beam of neutral silver atom is collimated and directed
through an inhomogeneous magnetic field. After passing through the inhomogeneous mag-
netic field, the beam splits into two. Since the silver atoms in the beam are neutral, any
deflection of the silver beam can only be attributed to the intrinsic angular momentum of
the unpaired electron in the silver atoms. Thus this experiment shows that the spin angular
momentum of an electron along the direction defined by the magnetic field can only take
one of two possible value, + h̄

2 (spin-up) or − h̄
2 (spin-down).

Apart from the spin of an electron, various degrees of freedom of other quantum systems
can also be used to encode the qubit. A few examples are the magnetic flux, charge or
phase of superconducting circuits [56] and the energy levels [57] or nuclear spins [58] in
atoms. By far the most commonly used physical carrier of the qubit in experiments is the
photon. The photon has a number of degrees of freedom that can be used to encode a qubit:
photon number (the number of photons in a specific mode) [59], energy-time (arrival times
of photons in an interferometric-type setup [60, 61]), or the polarization [7, 62, 63]. Out
of the three, the polarization of a photon is most often used to encode a qubit as it is easy
to generate, manipulate, and relatively resistant to decoherence. These qubits exhibit the
features of non-cloneability, superposition, and can be entangled in multi-qubit states. All
these characteristics are purely quantum mechanical in nature and they form the backbone
for quantum information and quantum computation.

1.1.1 Non-cloneability

It is trivial to copy a file on the computer. The copy of the file is essentially a prefect clone of
the original. However, in quantum mechanics this is not generally true. This phenomenon is
outlined in the non-cloning theorem [64, 65]. The theorem forbids the creation of identical
copies of an arbitrary unknown quantum state. If a quantum cloning device is able to clone
a state |ψ⟩ with prefect fidelity, it is at most only able to do so for the orthogonal state |ψ⟩⊥.
For the special case of a spin-1

2 system, even under optimal condition, the maximum fidelity
of cloning of an arbitrary unknown quantum state is shown only to be 0.83 (ranging from 0
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to 1 denoting increasing levels of fidelity from the case of being completely non-identical
to being identical in state) [66].

The no-cloning theorem has significant implications especially for the field of quantum
key distribution (QKD). It prevents an eavesdropper from making perfect multiple copies
of the qubits being distributed in the quantum channel, which in principle could be used, in
conjunction with other resources, to gain full knowledge of the distributed key.

1.1.2 Superposition

A classical bit of information can take the logical value of either "0" or "1", but not both
simultaneously. However, in the quantum regime, it is possible to prepare a quantum system
such that it is in a state c0|0⟩+ c1|1⟩, where c0 and c1 are the probability amplitudes and
are in general both complex numbers. When we measure this qubit in the |0⟩ and |1⟩ basis
state, the probability of the outcome is |c0|2 and |c1|2, respectively. As the absolute squares
of the amplitudes equate to probabilities, it follows that c0 and c1 must be constrained by
the equation |c0|2 + |c1|2 = 1, which implies that one will measure either one of the states.
Such a two-level quantum system is said to be in a linear superposition of the |0⟩ and |1⟩
basis state and does not exist definitely in either states.

The advantage of a superposition of states really comes in when we start dealing with
system containing several qubits. Such a collection of N qubits is a called a quantum register
of size N and can hold 2N numbers. This is in contrast with a classical register of the same
size which can only hold a single number. For example in the case of a two-qubit system
register, a state consisting of a superposition of the four combination is possible. The state
of such a two-qubit system can be written as:

|Ψ⟩ = c00|0⟩A|0⟩B + c01|0⟩A|1⟩B + c10|1⟩A|0⟩B + c11|1⟩A|1⟩B, (1.1)

where ci j is the probability amplitude of |i⟩A| j⟩B and the notation |i⟩A| j⟩B means that qubit
in mode 1 and 2 are in state A and B, respectively.

Quantum algorithms make full use of this fact by being able to accept all the possible
inputs pertaining to a certain computation task as a linear superposition of basis states like
in Eq. 1.1 and evaluate them in parallel. The required output from the evaluation is then ob-
tained by suitable measurements performed on the resulting state. It is this parallelism that
gives quantum systems the edge over their classical counterparts in certain computational
tasks4.

4A brief discussion on the classes of computation problems which benefit from quantum parallelism is
available in [67].
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Fig. 1.2 The Einstein-Podolsky-Rosen (EPR) thought experiment. A two-particle system is
prepared in a state with a well-defined relative position x1 − x2 and total momentum p1 + p2
at time t = 0. The particles are then permitted to interact from time t = 0 to t = T . After a
certain amount of time t > T when the particles are sufficiently separated such that they are
no longer interacting, the position particle 1 is measured. From the measurement result, it
is possible to assign a definite value to the position of particle 2 without changing the state.
The same case can be repeated for the measurement of momentum. This contradiction with
the prediction quantum mechanics came to be known as the EPR paradox.

1.1.3 Entanglement

Quantum entanglement is a peculiar feature that is observed in some composite quantum
systems. Essentially, the quantum mechanical state of certain systems consisting of two or
more entities can no longer be adequately described by considering each of the component
entity in isolation. A full description of such a composite quantum system is only possible
by considering the system as a whole. This results in a kind of connection between the
components that is quantum mechanical in nature and cannot be explained by classical cor-
relations alone. These non-classical connections between entangled qubits are the essential
requirements for various quantum computation and communication protocols.

The very idea of quantum entanglement originated from a paper published by Albert
Einstein, Boris Podolsky, and Nathan Rosen in 1935 [68] regarding their discussion on the
completeness of the quantum mechanical description of reality. In their discussion, they
considered a two-particle system (Fig. 1.2) prepared in a state with a well-defined relative
position x1 − x2 and total momentum p1 + p2 at time t = 0. The particles are then permitted
to interact from time t = 0 to t = T . After a certain amount of time t > T when the particles
are sufficiently separated such that they are no longer interacting, the position of particle 1
is measured. From the measurement result, it is possible to assign a definite value to the
position of particle 2. The same case can be repeated for the measurement of momentum.

As the measurement of position or momentum of particle 1 will yield definite values for
both particles, these quantities are, according to their definition, elements of reality. Since
the two particles no longer interact with each other, the state of particle 2 is left unchanged
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by the measurement performed on particle 1. This is contrary to the prediction of quantum
mechanics where the two operators of position and momentum do not commute. Measure-
ment of the position of a particle will inadvertently change the state of the particle in such
a way that it destroys all knowledge of the momentum and vice versa. This contradiction,
which came to be known as the Einstein-Podolsky-Rosen (EPR) paradox, forced them to
conclude that the quantum mechanical description of physical reality given by wave func-
tions is not complete.

For a complete description, they hypothesized that there are variables that correspond
to all the elements of reality, giving rise to the phenomenon of non-commuting quantum
observables and the seemingly nonlocal effect that the measurement on one particle has on
the state of the other. Such a theory is called a local hidden variables (LHVs) theory. It is
only until later in the same year that Erwin Schröodinger used the term ‘entanglement’ to
describe this kind of non-classical connection between the particles (an English translation
of the original 1935 paper in German can be found in [68]).

In 1951 David Bohm came up with an alternative version of the EPR thought exper-
iment [36] based on electron spins. This came to be known as the EPR-Bohm (EPRB)
experiment. In the thought experiment (Fig. 1.3), he considered a source of electrons and
positrons from the decay of a neutral π meson:

π0 → e− + e+.

As the pion has zero spin, by conservation of angular momentum, the electron and positron
are in a singlet configuration described by:

|ψ−⟩ = 1√
2
(|↑e−⟩A|↓e+⟩B − |↓e−⟩A|↑e+⟩B). (1.2)

Spin measurement of either the electron or positron in any arbitrary direction a⃗, b⃗, or c⃗
will have an equal probability of yielding spin-up or spin-down. However, when comparing
the results of the spin of both particles measured in the same direction, they showed perfect
anti-correlation. Such a two-particle system is said to be in an entangled state. The state of
such a system as described by Eq. 1.2 can no longer be factorized into the product of two
individual states. Based on the Bohm experiment, John S. Bell came up with the Bell’s in-
equality [69] in 1964, which allows the prediction of quantum mechanics and LHV theories
to be distinguished. It is derived based on arguments about measurement probabilities that
result from classical correlations alone and imposes an upper limit for it. Quantum mechan-
ics which can lead to stronger correlations will violate this limit. The original form of the
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Fig. 1.3 The Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) thought experiment. An alterna-
tive version of the EPR experiment proposed by David Bohm in 1951 [36]. In the experi-
ment, the decay of a neutral π meson acts as a source of electrons and positrons which are
entangled in their spins. Spin measurement of either the electron or positron in any arbitrary
direction a⃗, b⃗, or c⃗ will have an equal probability of yielding spin-up and spin-down. How-
ever, when comparing the results of the spin measurement of both particle measured in the
same direction, they show perfect anti-correlation.

Bell’s inequality is written as:

|P(⃗a, b⃗) − P(⃗a, c⃗)| ≤ 1 + P(⃗b, b⃗) (1.3)

where a⃗, b⃗, or c⃗ are the direction of the spin measurements shown in Fig. 1.3. P(⃗a, b⃗) is the
average value product of the spins measured in direction a⃗ and b⃗, respectively. The measure-
ment results will violate the Bell’s inequality only for certain systems when there is quantum
entanglement between the particles. In 1969 John F. Clauser, Micheal A. Horne, Abner Shi-
mony, and Richard A. Holt rederived Bell’s inequality in a form that is no longer restricted
to experiments where the measurement results only have two possible outcomes. This in-
equality later came to be known as the CHSH inequality [70]. It includes an experimentally
determinable parameter S which is defined by

S = E(a0, b0) − E(a0, b1) + E(a1, b0) + E(a1, b1). (1.4)

The correlation function E(a0, b0) for measurements with only two possible outcomes as in
the case of Fig. 1.3 is given by:

E(a0, b0) = P(↑↑ |a0, b0) − P(↑↓ |a0, b0) − P(↓↑ |a0, b0) + P(↓↓ |a0, b0), (1.5)

where P(↑↑ |a0, b0) is the probability of obtaining spin-up for both particles with detectors
orientated at angle a0 and b0, respectively.
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Fig. 1.4 The experimental setup used by Alain Aspect et al. in the early 1980s to violate
the Bell’s inequality. The polarization-entangled photons are generated via radiative atomic
cascade of calcium. The photons then pass through the polarizers (Pol), consisting of glass
plates stacked at Brewster angle, and are detected by photomultiplier tubes (PM). A combi-
nation of a time-to-amplitude converter (T.A.C.) and a coincidence circuit detects photons
arriving within 19 ns of each other. With the setup, they observed a violation of the Bell’s
inequality by up to 9 standard deviations. (Figure adapted from [6])

For classical correlation, the parameter S will take values |S| ≤ 2. The stronger quantum
correlation will result in the violation of this inequality. Thus the parameter S can be used to
quantify whether there is entanglement in a system above the limit expected from classical
correlations alone.

It should be noted that due to the model on which the CHSH inequality is based, it is only
applicable to bipartite systems containing even numbers of particles, i.e. the particles are
distributed evenly between two modes. A description of a special case of a Bell’s inequality
for three particles can be found in [71]. In the early 1980s, Alain Aspect et al. conducted a
series of experiments [6, 72, 73] aimed at violating the Bell’s inequality. In their experimen-
tal setup (Fig. 1.4), the polarization-entangled photons are generated via radiative atomic
cascade of calcium. The photons then pass through the polarizers (Pol), consisting of glass
plates stacked at Brewster angle, and are detected by photomultiplier tubes (PM). A com-
bination of a time-to-amplitude converter (T.A.C.) and a coincidence circuit detect photons
arriving within 19 ns of each other. With this setup, they observed a violation of the Bell’s
inequality by up to 9 standard deviations.
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From that point on, there have been numerous realizations of the Bohm-type experiment
using various entangled quantum systems. Currently, the polarization degree of freedom
of the photon is by far the most commonly used physical property to encode the qubit. In
the Aspect experiments, these polarization-entangled photons are generated by the atomic
cascade of calcium. This has been replaced by the process of spontaneous parametric down-
conversion (SPDC) in non-linear optical media (detail about the process can be found in
Chapter 2) for the generation of entangled photons in modern experiments.

1.2 Thesis Outline

We begin this thesis in Chapter 2 by briefly explaining the theory behind SPDC and its
experimental application in sources of polarization-entangled photon pairs. We will also
cover the derivation of some of the mathematical models used to predict and interpret the
results of projective measurement [67] done on these entangled photon pair source. We then
use these models to predict expected results from characterization of these sources with
various noise contributions.

This is followed by a report of our experimental attempt to closely approach Tsirelson’s
bound [4], specifically the theoretical maximum violation of the CHSH inequality [70] with
S = 2

√
2, in Chapter 3. We will briefly discuss the motivation, both from a fundamental

and practical standpoint, for the experiment and recount some of the experimental consid-
erations and procedures required to setup a high quality polarization-entangled photon pair
source to violate the CHSH inequality maximally. We then highlight some of the possible
implications of the result obtained.

In Chapter 4, we will examine an idea first proposed by Turing and von Neumann [74]
that physical processes can be considered as computations performed on some universal ma-
chine and that the complexity of observed phenomena is closely related to the complexity
of computational resources needed to simulate them [75]. We will highlight the concept
of Kolmogorov complexity and its use in the Normalized Information Distance (NID) [26]
that allows for the comparison of two data sets without detailed knowledge of their origin.
We then show how an approximation to NID can be obtained by appealing to the compress-
ibility of the data sets obtained using freely available compression softwares. We will go
indepth about our choice of the compression software that we use and the experimental
implementation of an Bell type measurement based solely on complexity considerations.

We cover in Chapter 5, details regarding the generation of energy-time entangled states
and give an overview of how a bipartite quantum system consisting of either the energy-time
or polarization degree of freedom can be expanded for the generation of higher dimensional
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states in an experimental implementation. Specifics on the hyperentanglement [76–78] of
the energy-time and polarization degrees of freedom are also discussed.

Building on what we have learnt in the previous chapter regarding the generation of
higher dimensional quantum states, we examine an experimental estimation of the dimen-
sion witness quantum systems based on the CGLMP inequality [35] in Chapter 6. Prior
to that we will derive the CGLMP inequality for a bipartite system with four outcomes and
recount the various experimental procedures needed for the implementation of a hyperentan-
gled state in this experiment.

Lastly, we will wrap up all our findings in this thesis with some concluding remarks in
Chapter 7.





Chapter 2

Generation of Polarization-Entangled
Photons and Their Characterization

Entanglement, one of the essential features exhibited by some composite quantum systems,
sets quantum mechanics apart from classical physics. It is the connection that exists between
the components of these composite quantum systems and renders them describable only
as collective entities rather than a consolidation of descriptions of individual components.
Since there is no such equivalence in classical physics, it comes as no surprise that many
experiments designed to gain insights into quantum mechanics involved the generation of
entangled states encoded in these composite quantum systems and fundamental tests being
conducted on them.

The first of such experiments paving the way for the generation of entangled states
(Fig. 2.1), implemented by Kocher et al. in 1967 [37], was photonic-based. It utilized
the process of atomic cascade in Ca (Fig. 2.2) to generate polarization-correlated photon
pairs. Ultraviolet light from a H2 arc lamp was used to excite a beam of Ca atoms from the
ground state 4s2 1S0 to the excited state 3d4p 1P1. The Ca atoms then decay to the desired
4p2 1S0 level through spontaneous decay. Further de-excitation of the Ca atoms via the 4p4s
1P1 level back to the ground state produces a 551.3 nm and 422.7 nm photon in the process.

As there was no net change both in the total angular momentum J and the parity of the
initial and final state of the atom, the emitted photons in each pair exhibited polarization
correlations. This was shown to be the case by comparing the number of photon pairs
detected (coincidence counts) within a certain time interval (coincidence time window),
after a pair of parallel and crossed polarizers. In the early 1980s, using similar techniques,
Aspect et al. [6, 72, 73] successfully implemented a source of polarization-entangled photon
pairs that violated Bell’s inequality [69, 70, 79] by up to 9 standard deviations.
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Fig. 2.1 The experimental setup used by Kocher et al. in 1967 to generate polarization-
correlated photon pairs. Ultraviolet light from a H2 arc lamp excited a beam of Ca atoms.
Polarization-correlated photon pairs were generated when the excited Ca atoms decayed
back to the ground state via an intermediate level (Fig. 2.2). These photon pairs then passed
through linear polarizers followed by narrowband interference filters to be detected by pho-
tomultiplier tubes. (Figure adapted from [37].)
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Fig. 2.2 The atomic cascade of Ca. Each Ca atom de-excites from the excited 4p2 1S0 level
via the 4p4s 1P1 level back to the ground state producing a 551.3 nm and 422.7 nm photon.
The emitted photon pairs carry no net angular momentum as J = 0 for both the initial and
final states of the cascade. Coupled with the fact that both levels have the same even parity,
the photons in each pair will exhibit polarization correlation.

Parallel developments also saw major progress being made in the field of non-linear op-
tics which resulted in the first experimental implementation of a photon pair source (Fig. 2.3)
based on the non-linear optical effect of spontaneous parametric down-conversion (SPDC)
by Burnham et al. [38] in 1970. With SPDC, photon pairs entangled in various degrees of
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freedom [60, 62, 80] can be implemented. These sources find applications in areas like quan-
tum key distribution [81] and fundamental tests of quantum physics (e.g. tests of Leggett
models [46, 82]). SPDC remains to date a routinely used technique in experiments involving
the generation of correlated and entangled photon pairs.

Fig. 2.3 The first photon pair source based on the process of SPDC was implemented by
Burnham et al. in 1970. An ammonium dihydrogen phosphate (ADP) crystal is pumped by
a 325 nm beam from a He-Cd laser. The ADP crystal is cut in such a way that the optical
axis makes an angle of 52.4◦ with the normal of the faces to satisfy the condition of phase-
matching. The down-converted photons then pass through a combination of spatial (iris)
and spectral filtering (spike filter consisting of a monochromator) to be detected with the
photomultiplier (PM) tubes. (Figure adapted from [38].)

In this Chapter, we will begin by briefly describing, in Section 2.1, the theory behind
second-order non-linear optical phenomena which gives rise to the process of SPDC. This is
followed by an in-depth discussion on the process of SPDC in Section 2.2 and how it is used
to generate polarization-entangled photon pairs in Section 2.3. A derivation of the expected
result for various polarization measurements based on a maximally-entangled theoretical
model for the generated entangled state is provided in Section 2.4. Lastly, we will cover
the various factors affecting quality polarization entanglement and how these factors can be
easily characterized by probing the polarization correlation in various bases in Section 2.5.



16 Generation of Polarization-Entangled Photons and Their Characterization

2.1 Second-order Non-linear Optical Phenomena

The process of SPDC is suited for use in the generation of entangled photons. These pho-
tonic qubits can be easily encoded in one or any combinations of several degrees of freedom,
namely polarization [62], energy-time [60] (time-bin), and orbital angular momentum [80].
They are relatively resistant against decoherence, allowing them to travel long distances
without suffering degradation from their initial state. They can be manipulated and detected
with relative ease as the techniques involved have been studied in great detail [83, 84].

To understand the process of SPDC, a second-order non-linear optical phenomenon, we
need to appeal to the behavior of the electrons and positively charged nuclei of the atoms
in a dielectric material when subjected to an electric field. Upon application of an external
electric field E on the dielectric material, the electrons and the positively charged nucleus
in each atom redistributes themselves polarizing the atom. The atoms then acquire a small
dipole moment that is aligned to the direction of the applied electric field. In the regime
where the applied electric field is weak, the response of the dielectric material is linear with
the applied electric field. This behavior can be written as:

P ≈ ε0χE, (2.1)

where P is the electric polarization (dipole moment per unit volume) induced in the dielectric
material, ε0 is the electric permittivity of free space, χ is the linear electric susceptibility,
and E is the applied electric field. The susceptibility χ is related to the refractive index of the
dielectric material. For an isotropic medium, the susceptibility χ only has one value which
describes the refraction or dispersion characteristics of the electric field in the dielectric
medium. For a crystalline material, the susceptibility χ is a tensor quantity related to the
symmetry of the crystal structure.

When large electric field amplitudes are applied, e.g. situation found in the light waves
from the output of some lasers, higher-order contributions become significant. The linear
behavior described by Eq. 2.1 needs to be modified with additional terms. In component
form, the modifications are given by:

Pi = ε0χ(1)
i j E j + ε0χ(2)

i jk E jEk + ... + ε0χ(n)
i jk...lE jEk...El, (2.2)

where E is the applied electric field, i, j, ..., k∈ (1,2,3), and χ(n) is the nth-order suscep-
tibility. Of particular interest to us is the second-order susceptibility χ(2) as it allows us to
setup a relation between three electric fields in the material. This underlying mechanism is
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ultimately responsible for various three-wave mixing processes1, e.g. in SPDC this is seen
as a pump light electric field giving rise to a signal and idler light 2 electric field.

2.2 Spontaneous Parametric Down-conversion (SPDC)

The theory of SPDC was established by Klyshko [87] in 1970 while the modern quantum
mechanical description was provided by Hong et al. [88] in 1985. In SPDC, a pump photon
of frequency ωp gets annihilated producing a signal and idler photon with frequency ωs and
ωi, respectively. The term parametric in SPDC refers to the fact that the down-conversion
medium is left unchanged by the process. Thus, this necessitates a series of conservation
laws [89] that must satisfied by the pump, signal, and idler photons. The conservation laws,
in the limit of an infinite medium, are given by:

ωp = ωs + ωi, (2.3a)
−→
kp =

−→
ks +

−→
ki , (2.3b)

where Eq. 2.3a and Eq. 2.3b are statements of energy and momentum conservation, re-
spectively. In the field of non-linear optics, these statements are also known respectively
as the frequency-matching and phase-matching conditions. The dispersion relation of the
wavevectors in Eq. 2.3b is given by:

−→
k j =

n j(ω j)ω j

c
ŝ j,

where n j(ω j) is a dispersive refractive index of a material dependent on frequency ω j, ŝ j is
the unit vector pointing in the

−→
k j direction, and c is the speed of light, allowing us to rewrite

Eq. 2.3b into:
np(ωp)ωpŝp = ns(ωs)ωsŝs + ni(ωi)ωiŝi. (2.4)

For the special case of an isotropic medium, i.e. np = ns = ni = n, and degenerate down-
conversion, i.e. ωs = ωi =

ωp
2 , the minimum magnitude of |

−→
ks | + |

−→
ki | that can still satisfy

the condition of momentum conservation (Eq. 2.3b) occurs when the down-converted light
is collinear with that of the pump. The expression in Eq. 2.4 then reduces to:

n(ωp) = n(
ωp

2
).

1A brief introduction of the various three-wave mixing processes can be found in [85]
2This naming convention has its origin in early research on optical parametric amplifiers [86] where only

one of the two output modes (signal) is useful. The unused mode is called the idler.
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Since the refractive index n for most dielectric materials increases with increasing fre-
quency [86], both frequency and phase-matching conditions cannot be simultaneously sat-
isfied in an isotropic medium. To overcome this, there needs to be two channels into which
the down-conversion can occur. This can be achieved in a birefringent medium, β -Barium-
Borate (BBO) crystal in our case, where there are two different refractive indices no and
ne for the ordinarily (o) and extraordinarily (e) polarized light3, respectively. The phase
matching condition (Eq. 2.4) assuming an e-polarized pump can now be written in terms of
no and ne, most commonly as the following:

ne(ωp)ωpŝp = no(ωs)ωsŝo + no(ωi)ωiŝo, (2.5a)

ne(ωp)ωpŝp = ne(ωs)ωsŝe + no(ωi)ωiŝo. (2.5b)

In Eq. 2.5a, also called type-I phase-matching, both the signal and idler have the same
polarization. This is in contrast to type-II phase-matching in Eq. 2.5b, where the signal and
idler have the orthogonal polarization. For the purpose of this thesis, I will only focus the
discussion on type-II phase-matching.

2.3 Generation of Polarization-Entangled Photon Pairs

In type-II phase-matched SPDC, the wavelength degenerate4 o and e-polarized photons are
emitted from the down-conversion crystal in two distinct respective cones (Fig. 2.4) which
are non-concentric with the pump beam and each other. Due to Eq. 2.3b, the emission
directions of the two photons in each pair are always symmetric about the pump direction.
Since we orientate the down-conversion crystal such that the extraordinary axis coincides
with the vertical (V) polarization, while the ordinary axis coincides with the horizontal (H)
polarization in the experimental setup reported in the later chapters, and we give the down-
converted photons the labels of Ho and Ve , respectively.

It is noteworthy to mention that as we are operating in the regime of a continuous wave
(CW) narrowband pump, the differences in the spectral bandwidth of the down-converted
light due to dispersion induced by the propagation of the o and e-polarized photons through
the birefringent crystal is negligible5, thus rendering the H and V photon indistinguishable
in the spectral degree of freedom. However, as we still need to contend with the distin-

3The term "ordinary" and "extraordinary" refers to the slow and fast axis of a birefringent crystal, respec-
tively.

4This is chosen such that the down-converted photos in each pair are only distinguishable in the polariza-
tion degree of freedom.

5This is in contrast to the case where a pulsed broadband pump is used [90].
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Fig. 2.4 Type-II phase matched down-conversion. In type-II phase matching, an e-polarized
pump photon gets down-converted into a pair of o and e-polarized photons of lower energy.
The o and e-polarized photons are emitted from the down-conversion crystal in two respec-
tive cones which are non-concentric with either the pump beam or each other. In our setup,
the down-conversion crystal is oriented in such a way that the extraordinary axis coincides
with the vertical (V) polarization, while the ordinary axis coincides with the horizontal (H)
polarization. These two cases are denoted as Ve and Ho, respectively.

guishability in the temporal degree of freedom, the label of o and e polarization will be
retained for the moment. The reason for the distinguishability in this degree of freedom will
be highlighted in Section 2.3.1.

For the generation of polarization-entangled photon pairs, we need two possible decay
paths given by the polarization combinations |Ho⟩|Ve⟩ and |Ve⟩|Ho⟩. This situation can only
be found at the two intersections of the Ho and Ve emission cones, which also define two
spatial modes A and B, denoting Alice and Bob, respectively. This is called a "crossed-ring"
configuration6 [7, 63, 93].

The things that we have covered so far are still limited to the domain of classical wave
theory and thus are not able to explain the spontaneous pair emission when signal and idler
are initially in a vacuum state. SPDC can only be understood in the "quantum description"
of three-wave mixing where the process is stimulated by random vacuum fluctuations. The
quantum mechanical creation operator for the two-photon polarization state describing such
a situation can be written as7:

|ψ⟩ = C
(

a†
Ho

b†
Ve

+ eiϕ a†
Ve

b†
Ho

)
|0⟩,

6Down-conversion setups can also be implemented in the "beamlike" [91] and collinear [92] configuration.
7This is the lowest order approximation of the squeezing operator and does not account for the higher order

emissions of SPDC (i.e. multipair emission), which may be important in fully describing certain systems using
SPDC.
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where C is the normalization constant, a†
i and b†

i are the creation operators of a photon
with polarization state i in spatial mode A and B, respectively8. After normalization, the
following polarization-entangled two-photon state:

|ψ⟩ = 1√
2

(
|Ho⟩A|Ve⟩B + eiϕ |Ve⟩A|Ho⟩B

)
, (2.6)

is obtained.

2.3.1 Compensation of Longitudinal and Transverse Walk-Off

In actuality, the photon pairs found at the intersection of the o and e emission cone (Fig. 2.4)
are not in a pure polarization-entangled state (Eq. 2.6). The differences in refractive index
no and ne of the birefringent crystal result in a difference in the propagation velocity of the
o and e-polarized photons through the crystal. This gives rise to a relative delay between
the arrival time of the photon in each pair that is dependent on the site in the crystal where
they are created.

In one extreme case (Fig 2.5a), the photon pairs are created at the face of the crystal
incident to the pump beam. This give rise to the maximum time difference between the ar-
rival time of the o and e-polarized photon at the detectors. At the other extreme (Fig. 2.5b),
the photon pairs are created at the face where the pump exits the crystal. Thus, there is no
relative delay between the o and e-polarized photons. Only the photon pair combinations
|Ho⟩A|Ve⟩B and |Ve⟩A|Ho⟩B created here are truly indistinguishable and exist in a pure po-
larization state. However, when the photon pairs from all the creation sites are included, a
mixed state is produced which in turn lowers the polarization entanglement quality.

It should be noted that this problem of temporal distinguishability between the photon
pairs cannot eliminated simply by having a coincidence time window to be greater than the
maximum relative delay expected. This is due to the fact that entanglement in the state |ψ−⟩
(Eq. 2.6) is a process involving two-photon interference between the two Feynman alterna-
tives creating the |Ho⟩A|Ve⟩B and |Ve⟩A|Ho⟩B combination. Thus, any distinguishability of
the two decay paths in degrees of freedom that are not resolved will still manifest itself in
the result of certain measurement.

A common way to eliminate this problem [7] involves the use of a combination of
half-wave plates (λ/2) and compensation crystals (CC) (Fig. 2.5). The photons in each
spatial mode first pass through a λ/2 with its fast axis aligned such that it rotates their
polarization by 90◦. This is followed by the CC which are identical to the crystal used

8Such a representation of the number of photons with a specific polarization in each spatial mode is called
a Fock state. The creation operator a† obeys the relation, a†|n⟩ =

√
n + 1|n + 1⟩
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Fig. 2.5 Compensation of temporal walkoff. The photons first pass through a half wave
plate (λ/2) which rotates their polarization by 90◦. This is followed by compensation crys-
tals (CC) which are identical to the crystal used for down-conversion except with half the
thickness. The optical axis (OA) of both CC are aligned in the same direction as that of the
down-conversion crystal. In the first extreme case (a), the CC will halve the relative delay
between the photons in the pair. In the second extreme case (b), the CC will induce a relative
delay equal to that in the previous case between the photons in the pair. Thus, the photons
pairs from these two cases are indistinguishable in the temporal degree of freedom, resulting
in a pure polarization-entangled state. This is also true for all complementary creation sites
in the crystal symmetric about the center of the crystal. For photon pairs created right in the
center of the down-conversion crystal, the relative delay is just eliminated by the CC.

for down-conversion except with half the thickness. The optical axis (OA) of both CC are
aligned in the same direction as that of the down-conversion crystal. In the first extreme case
(Fig. 2.5a), the CC will halve the relative delay between the photons in the pair. In the sec-
ond extreme case (Fig. 2.5b), the CC will induce a relative delay equal to that in the previous
case between the photons in the pair. Thus, the photons pairs from these two cases are indis-
tinguishable in the temporal degree of freedom, resulting in a pure polarization-entangled
state. This is also true for all complementary creation sites in the crystal symmetric about
the center of the crystal. For photon pairs created right in the center of the down-conversion
crystal, the relative delay is just eliminated by the CC. Since photons in each pair are now
indistinguishable apart from their polarization H and V, the o and e label can be dropped
from Eq. 2.6, giving us:

|ψ⟩ = 1√
2

(
|H⟩A|V ⟩B + eiϕ |V ⟩A|H⟩B

)
. (2.7)
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Apart from eliminating the problem of temporal distinguishability, the CC are also used
to compensate for the transverse walkoff (Fig. 2.6) between the down-converted o and e-
polarized light. To satisfy the phase-matching condition in Eq. 2.3b, the axis perpendicular
to both the fast and slow axis of the down-conversion crystal is usually titled at an vertical
angle to the pump beam. This results in a slightly different profile for the o and e emission
cones. At each of the intersection of the emission cones, this will appear as an elongated
spread of the o-polarized photon distribution as compared to that of the e-polarized photons.
After passing through the λ/2, the polarization of the photons are rotated by 90◦. The CC,
which are orientated such that their OA are parallel to that of the down-conversion crystal,
then cause a shift in the path of the down-converted light, coinciding the center for the
distribution of the o and e-polarized photons. In conjunction with the matching of the waist
of the pump beam and collection modes [63], this provides a better collection efficiency into
single mode optical fibers.
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Fig. 2.6 Compensation of transverse walkoff. At each of the intersection of the emission
cones, there is an elongated spread of the o-polarized photons as compared to the e-polarized
photons. After passing through the λ/2, the polarization of the photons are rotated by 90◦.
The CC, which are orientated such that their OA are parallel to that of the down-conversion
crystal, then cause a shift in the path of the down-converted light such that the center for the
distribution of the o and e-polarized photons coincide. This provide better overlap between
the two distributions and thus results in a better spatial mode for collection into single mode
optical fibers.

The vertical angle between the fast axis of the CC and the down-converted light beam
can be adjusted by tilting the CC. This changes the relative phase between the H and V
photons in each of the spatial mode and thus the free phase ϕ in Eq. 2.7. This adjustment of
the free phase ϕ in combination with local rotation of the polarization of the down-converted
photons in each spatial mode then allows us to generate any of the four maximally-entangled
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Bell states:

|ψ−⟩ = 1√
2
(|H⟩A|V ⟩B − |V ⟩A|H⟩B) ,

|ψ+⟩ = 1√
2
(|H⟩A|V ⟩B + |V ⟩A|H⟩B) ,

|ϕ−⟩ = 1√
2
(|H⟩A|H⟩B − |V ⟩A|V ⟩B) ,

|ϕ+⟩ = 1√
2
(|H⟩A|H⟩B + |V ⟩A|V ⟩B) . (2.8)

2.4 Joint Detection Probability for Two-Photon
Polarization-Entangled States

Quantum mechanics has the interpretation of being probabilistic in nature. Thus experi-
ments to address questions in this field rely heavily on establishing the probability distribu-
tions of various measurement outcomes in order to reach their conclusions. For experiments
involving bipartite entangled states, like those documented in the later chapters, the joint de-
tection probability distributions, probability distributions of simultaneous detection events
registered by the two parties, are measured.

Thus in order for us to better interpret the results from such measurements and to fit them
to the available theoretical models for establishing various parameters, we need to derive
analytical expressions describing the expected joint probability distribution of outcomes
with different measurement bases given a model for the initial entangled state.

For the purpose of this thesis, we will limit our derivation here to the case of the joint
probability of detection for the maximally-entangled two-photon polarization state |ψ−⟩
(Eq. 2.8) for various linear polarization measurement bases.

We begin our derivation by considering the case of single photon polarization states. In
the Jones vector notation9, the two single photon polarization basis states |H⟩ and |V ⟩ are
given by the column vectors:

|H⟩ =

(
1
0

)
, |V ⟩ =

(
0
1

)
,

respectively.

9It should be noted that the Jones vector notation is only valid for pure polarization states. For mixed
polarization states, the Stokes vector notation needs to be applied.
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When this is extended to the two-photon polarization states, an increased Hibert space
results, with four bases given by |H⟩A|H⟩B, |H⟩A|V ⟩B, |V ⟩A|H⟩B, and |V ⟩A|V ⟩B. The Jones
vector notation describing the basis state |H⟩A|H⟩B for example, is given by:

|H⟩A|H⟩B =

(
1
0

)
⊗

(
1
0

)
=


1
0
0
0

 .

In a similar fashion, we define an expanded rotation matrix given by:

R(2)(θA,θB) = R(θA)⊗R(θB),

where R(θA) and R(θB) are the local polarization rotations performed in spatial mode A and
B, respectively. Applying the the expanded rotation matrix R(2)(θA,θB) on basis |H⟩A|H⟩B

we arrive at the rotated basis:

|Φ⟩ = R(θA,θB)|H⟩A|H⟩B.

Thus joint detection probability of obtaining the measurement result |H⟩A|H⟩B with analyzer
settings θA and θB for the input state |ψ−⟩ (Eq. 2.8) is thus given by:

PHH(θA,θB) = tr
(
ρpure P|Φ⟩

)
=

1 − cos[2(θA − θB)]

4
, (2.9)

where ρpure = |ψ−⟩⟨ψ−| and P|Φ⟩ = |Φ⟩⟨Φ|. The same probability distribution is also ob-
tained for any other degrees of freedom. Applying the same procedures, this derivation can
be easily generalized to systems with more than two degrees of freedom or other measure-
ment bases.

2.5 Characterization of Polarization-Entangled Photon
Pairs

There are a number of measures and methods for assessing entanglement quality [70, 94, 95]
of quantum systems. One can even appeal to full tomographic reconstructions [96, 97] of
the quantum state of the system being investigated for the same purpose. However, the
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sometimes experimentally complex or numerous measurements required for such character-
izations coupled with need for significant post-processing of the acquired data mean that
such measures and methods may not always be possible or practical. For example, to opti-
mize the alignment of the down-conversion source mentioned in Section 2.3, one may need
to perform numerous iterations of small adjustments to the pointing direction of the collec-
tion optics followed by a characterization of the quality of polarization-entanglement with
the new alignment. Since the model for the entangled state being generated and the form of
the noise contribution lowering the entanglement quality is known, it is possible to come up
with a less general entanglement measure that is experimentally simple and can be carried
out quickly.

A simple and routinely used method to assess the quality of polarization entanglement
given the generated state can be approximated by one of the four maximally-entangled Bell
states (Eq. 2.8) is to probe the visibilities of its linear polarization correlations in various
bases. The procedure involves tabulating the coincidence counts obtained with the axis of
the polarizer in one of the spatial modes set at H or V (the natural basis) and +45◦ or −45◦

(the complimentary basis), while rotating the axis of polarizer in the other.

A sinusoidal function is then fitted to the data and the fitted parameters used to calculate
the phases of the curves and their maxima and minima for the evaluation of the visibilities.
The two visibilities denoted respectively as VHV and V45, are given by:

VHV =
|CHV − CHH |
CHV + CHH

, (2.10a)

V45 =
|C+− − C++|
C+− + C++

, (2.10b)

where CHV or C+− are the number of counts recorded when the polarizer in spatial mode A
and B are set at H and V or +45◦ and −45◦, respectively.

To understand how the visibilities in Eq. 2.10 are related to the quality of polarization
entanglement, we first evaluate what are the expected outcomes for the state |ψ−⟩ (Eq. 2.8).
Setting θA as 0◦ (H) and +45◦ in Eq. 2.9 we get:

PHH(H, θB) =
1 − cos(2θB)

4
, (2.11a)

PHH(+45◦, θB) =
1 − sin(2θB)

4
. (2.11b)

Substituting the above results into Eq. 2.10, we get VHV = V45 = 1. In addition, appealing
to the result in Eq. 2.11b, it is thus possible in experiments to obtain the correct phase ϕ
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(Eq. 2.6) to get the state |ψ−⟩ by setting both θA and θB at +45◦ and adjusting tilt of the CC
until the minimum coincidence counts is obtained.

Now we consider the various contributions that will lead to a reduction of the entangle-
ment quality. For the first case we, consider an imbalance between the decay path |H⟩A|V ⟩B

and |V ⟩A|H⟩B which can be written in the form:

|ϕ⟩ = √
p|H⟩A|V ⟩B −

√
1 − p|V ⟩A|H⟩B, (2.12)

where |ϕ⟩ → |ψ−⟩ when p = 0.5. Going through the same derivation steps but with state
|ϕ⟩ instead of |ψ−⟩, we get:

VHV = 1,

V45 = 2
√

p(1 − p).

The results show VHV is independent of p and is always 1. This is expected as VHV post
selects just one of decay paths in |ϕ⟩ (Eq. 2.12). As for V45, the visibility is the maximum
for p = 0.5 (balanced contribution from |H⟩A|V ⟩B and |V ⟩A|H⟩B) and decreases as p → 0
or 1.

For the second case, we consider the two types of noise that will lower the quality of
entanglement. They are given, in terms of density matrices, by the following:

ρwhite =
1
4
(|H⟩A|H⟩B⟨H|A⟨H|B + |H⟩A|V ⟩B⟨H|A⟨V |B

+ |V ⟩A|H⟩B⟨V |A⟨H|B + |V ⟩A|V ⟩B⟨V |A⟨V |B), (2.14a)

ρcolored =
1
2
(|H⟩A|V ⟩B⟨H|A⟨V |B + |V ⟩A|H⟩B⟨V |A⟨H|B). (2.14b)

As can be seen from Eq. 2.14a, ρwhite or white noise contains equal contributions from all
possible combination of the basis states, while ρcolored (Eq. 2.14b) or colored noise only
contains terms of the entangled state, |ψ−⟩ in our case. Depending on whether the dis-
tinguishability between decay channels is the main contribution to noise, in which case a
natural choice is the "colored" state, whereas the "white" state describes a scenario when
the background comes from multiple pairs10.

Since we are operating in the CW regime, the emission time of the down-converted
photon pairs are random. Within the coincidence time window, τC, we may be detecting
photons from different pairs which are uncorrelated. The rate of coincidence counts due to

10These noise contributions originate from the 2nd order terms of the squeezing operator acting on vacuum.
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these uncorrelated pairs, termed accidental count rate, Racc, is given by:

Racc = sA × sB × τC, (2.15)

where sA and sB are the count rate (singles rate) recorded locally in spatial mode A and B,
respectively. These accidental events constitute a kind of white noise (Eq. 2.14a) that is
dependent on τC and single rates sA and sB.

In contrast to the CW cases, when the pump comes in short optical pulses, the production
of the photon pairs within a pulse are well localized temporally and are correlated with each
other. If the multiple photon pairs are not resolved during the detection, this will constitute
a kind of colored noise (Eq. 2.14b).

Here we will look only at the case of white noise which is applicable to our situation.
Taking the white noise contribution into consideration, the total density matrix is given by:

ρmixed(p) = pρpure + (1 − p)ρwhite,

where p now gives the proportion of ρpure and ρnoise. Once again we derive VHV and V45 but
now for the case ρmixed and arrive at the simple result11:

VHV = V45 = p,

where VHV and V45 varies linearly with p.
Thus the results from this section suggest that a high visibility for VHV and V45 is indica-

tive of a high quality of polarization entanglement. Our derivation also suggest that white
noise contributions play a significant role in lowering the entanglement quality. Given its
link to the accidental counts, this contribution can be lowered by decreasing the pump power
to reduce the singles rate, sA and sB, and reducing the coincidence time window τC.

11For the sake of completeness, we state here the result for the case of colored noise (Eq. 2.14b) is given
by visibilities VHV = 1 and V45 = p.





Chapter 3

Approaching Tsirelson’s Bound in a
Photon Pair Experiment

In 1964, John Stewart Bell published his seminal paper [69] entitled "On the Einstein Podol-
sky Rosen (EPR) paradox" where he presented an analogy (based on spin measurements on
pairs of entangled electrons described by David Bohm in 1951 [36]) to the original EPR
thought experiment [68]. Considering only classical correlations, specifically that corre-
lations are described by a local hidden variable (LHV) λ determined at the source, Bell
derived the Bell’s inequality [79], based the assumptions of locality and realism of measure-
ment results, which allows the prediction of quantum mechanics in or indeed any theory
that allows non-classical correlations to be distinguished from that of LHVs theories in spe-
cific cases. Bell [69] showed that the results of measurements on quantum systems cannot
be explained by LHVs, since they violate Bell’s inequality with non-classical correlations
between the outcomes of measurements of two distant locations A and B.

The original Bell’s inequality was later rederived by Clauser et al. into an experimentally
implementable form known as the CHSH inequality [70]. As in the case of the original
Bell’s inequality, the derivation of the CHSH inequality was based on two fundamental
assumptions. The derivation starts by considering a bipartite system consisting of a pair of
spin-1

2 particles. Conventionally, the two modes of the system are called Alice (A) and Bob
(B), respectively. Two fundamental assumptions were made in the derivation:

1. Correlations between the result of measurements made by A and B can be accounted
by a local realistic theory (specifically the LHV theory). In other words, the correla-
tions can be explained by some local hidden variables, classical in nature, which are
established at the source. This assumption is known as the "realism condition".
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2. Measurements made by A and B are independent of each other1. This assumption is
known as the "locality condition".

From the above assumptions, the joint probability P(i, j|a, b, λ ) of A and B obtaining
the measurement result i and j with analyzer setting a and b, respectively with a certain
dependence on the local hidden variable λ , can be expressed as the product of the individual
measurement probabilities:

P(i, j|a, b, λ ) = P(i|a, λ )P( j|b, λ ). (3.1)

Using Eq. 3.1, a correlation function E(a, b) taking into account any LHVs can be defined
as:

E(a, b) =
∫

dλ f (λ )A(a, λ )B(b, λ ), (3.2)

where A(a, λ ) and B(b, λ ) are the average values of the measurement outcomes obtained
by A and B with analyzer setting a and b, respectively. The function f (λ ) is a probability
density function that is dependent on the hidden variable λ .

For a Stern-Gerlach type measurement [54, 55] on a spin-1
2 particle, there are two possi-

ble outcomes; − h̄
2 and h̄

2 . These outcomes can be written as the basis states |−1⟩ and |+1⟩,
respectively. If we assign the value of -1 and +1 to the measurement result |−1⟩ and |+1⟩,
respectively2, the average values of the measurement outcomes obtained by Alice and Bob
with their respective analyzer setting a and b can be written as:

A(a, λ ) = P(1|a, λ ) − P(−1|a, λ ),

B(b, λ ) = P(1|b, λ ) − P(−1|b, λ ),

This will automatically imply that |A(a, λ )| ≤ 1 and |B(b, λ )| ≤ 1. The difference and
sum between the correlation function E(a, b) for different analyzer settings, a = ai and
b = bi where i = 0, 1, are given by:

E(a0, b0) − E(a0, b1) =
∫

dλ f (λ )A(a0, λ )[B(b0, λ ) − B(b1, λ )], (3.3a)

E(a1, b0) + E(a1,b1) =
∫

dλ f (λ )A(a1, λ )[B(b0, λ ) + B(b1,λ )], (3.3b)

1Measurements made by A and B can also be said to be spacelike separated.
2Indeed any two outcome measurement, e.g. polarization, can be treated in a similar fashion.
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Given that |A(a, λ )| ≤ 1, it is possible to rewrite Eq. 3.3a and Eq. 3.3b into the following
inequalities:

|E(a0,b0) − E(a0,b1)| ≤
∫

dλ f (λ )|B(b0, λ ) − B(b1, λ )|, (3.4a)

|E(a1,b0) + E(a1,b1)| ≤
∫

dλ f (λ )|B(b0, λ ) − B(b1, λ )|, (3.4b)

Since |B(b, λ )| ≤ 1, using the triangle inequality relation3, we obtain:

|B(b0, λ ) − B(b1, λ ) + B(b0, λ ) + B(b1, λ )| ≤ 2, (3.5)

Substituting Eq. 3.5 into the sum of Eq. 3.4a and Eq. 3.4b, we arrived at the CHSH Bell
inequality [70], which can be written as |S| ≤ 2, where the parameter S is a combination of
correlations E(ai, b j) defined as:

S = E(a0, b0) − E(a0, b1) + E(a1, b0) + E(a1, b1). (3.6)

In the quantum mechnical case, the correlations E(ai,b j) are defined from the joint proba-
bilities P(ai =+1,b j =+1), P(ai =+1,b j =−1), etc. as

E(ai, b j) = P(ai = +1, b j = +1)−P(ai = +1, b j = −1)

− P(ai = −1, b j = +1) + P(ai = −1, b j = −1) . (3.7)

Experimentally, with the fair sampling assumption,each E can be estimated from the statis-
tical frequency of coincidence counts N between A and B,

E =
N++ − N+− − N−+ + N−−
N++ + N+− + N−+ + N−−

. (3.8)

For the maximally-entangled states in Eq. 2.8, using the expressions for the joint probability
derived in Section 2.4, it can be shown that a maximum violation of S = 2

√
2 is obtained

for suitable choices of settings a and b.

In 1980, B. S. Cirel’son went on further to show that this violation of S = 2
√

2 ≈
2.82843 is a fundamental theoretical upper limit to quantum mechanical correlations. This
came to be known as the Tsirelson’s bound [4].

3The triangle inequality relation is defined as |x + y| ≤ |x| + |y| where x and y are real numbers.
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3.1 Implications of Approaching the Tsirelson’s Bound

Tsirelson [4] showed that, according to quantum theory, S cannot be higher than 2
√

2 ≈
2.82843. This is Tsirelson’s bound. Popescu and Rorlich [98] demonstrated that values up
to S = 4 were compatible with the no-signaling principle that prevents superluminal com-
munication. This difference stimulated the search for principles singling out Tsirelson’s
bound as part of the effort towards understanding quantum theory from fundamental prin-
ciples. So far, principles such as information causality [18], macroscopic locality [19] and
exclusivity [20] have been identified that enforce Tsirelson’s bound and principles such as
non-signaling [98] and nontriviality of communication complexity [99, 100] that allow for
higher values. Interestingly, there are also arguments predicting that Tsirelson’s bound is
not experimentally reachable.

One of them, due to Grinbaum [3], is particularly compelling because it addresses a pos-
sible defect of quantum theory, namely, the cut [1] between observer and observed system
due to a lack of a clear definition of what is an observer in quantum theory [2]. The intention
of Grinbaum in [3] is to fix this problem by integrating the observer into the theory. For that,
Grinbaum introduces a mathematical framework based on algebraic coding theory [101]
that provides a general model for communication and enables an information-theoretic def-
inition of observer. This definition involves a limit on the complexity of the strings the
observer can store and handle. These strings contain all descriptions of states allowed by
quantum theory, but may also contain information not interpretable in terms of preparations
and measurements. The language dynamics of these strings leads to a continuous model
in the critical regime that, when restricted to measurements on bipartite systems in a three-
dimensional Euclidean space, under the assumption that the number of strings with the same
complexity after uncomputable Kolmogorov reordering is 6 and some assumptions on the
mappings between certain metric spaces [3], and using the most precise determination avail-
able of a critical exponent in three-dimensional Ising conformal field theory [102], predicts
that the violation of the Bell CHSH inequality is upper bounded by 2.82537(2). Accord-
ing to Grinbaum, “The Hilbert space formalism (of quantum theory), then, emerges from
this mathematical approach as an effective description of a fundamental discrete theory of
‘quantum’ languages in the critical regime, somewhat similarly to the description of phase
transitions by the effective Landau theory” [3].

Approaching the Tsirelson’s bound by maximally violating the CHSH inequality may
imply cryptographic security, even if the measurements that lead to the violation are un-
known to the legitimate parties. This is the so-called “device-independent security” for key
distribution protocols [103]. It can be proven that, under the assumption that the probabil-
ity distributions are known without error, a necessary and sufficient condition for having
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probability distributions which are necessarily independent of the measurement results of
any eavesdropper is that the observed probabilities are exactly the quantum probability dis-
tributions reaching the Tsirelson’s bound [21]. This result leads to a protocol for certifying
device-independent security based on reaching the Tsirelson’s bound [21].

Measurements leading to non-local correlations can be treated as black boxes which,
given an input (the measurement setting), return an output (the measurement result). In-
terestingly, the observation of violations of the CHSH inequality and the assumption of
non-signaling, allow the certification of a variety of physical properties without making any
assumptions or having any knowledge of the initial state or the inner working of the measure-
ment devices. For example, the value of the violation of the CHSH Bell inequality can be
used to estimate the amount of quantum randomness produced by the black boxes [22]. The
higher the violation, the larger the amount of certified randomness. Reaching the Tsirelson’s
bound can also be used to certify that the state being measured is equivalent to a maximally
entangled state and that the measurements performed by each party are of the type repre-
sented in quantum theory by anti-commutating operators [104]. This may be adapted to
practical methods to estimate the fidelity of the maximally entangled states; e.g. a CHSH
violation larger than 2.81, certifies a singlet fidelity greater than 96% [24]. Moreover, satu-
rating the Tsirelson’s bound can be used to certify that a general quantum computation was
actually performed [25].

3.2 Prior Work

The violation of Bell’s inequality has been observed in many experiments with exceedingly
high statistical significance. Many of these experiments are based on the generation of
correlated photon pairs using cascade decays in atoms [5, 6], or exploiting non-linear optical
processes [7–9, 16, 17]. Other successful demonstrations were based on internal degrees of
freedom of ions [10–12] and neutral atoms [14], Josephson junctions [13], and nitrogen-
vacancy centers in diamond [15]. Figure 3.1 summarizes the result obtained for the Bell
parameter and the corresponding uncertainty of several experimental tests.

Interestingly, while continuous experimental progress has made it possible to approach
Tsirelson’s bound with decreasing uncertainty, predictions such as Grinbaum’s, which would
imply a radical departure from standard quantum theory are compatible with all existing re-
sults.
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Fig. 3.1 Selected experimental tests of the CHSH Bell inequality with results close to the
Tsirelson (T) and Grinbaum (G) bounds in photonic systems (circles), atoms and ions (dia-
monds), Josephson junctions (square), and nitrogen-vacancy centers in diamond (triangle).
Numbers represent the references.
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Fig. 3.2 Schematic of the experimental set-up. Polarization correlations of entangled-photon
pairs are measured by film polarizers (POL) placed in front of the collection optics. All
photons are detected by silicon avalanche photodetectors DA and DB, and registered in a
coincidence unit (CU).

3.3 Experimental Implementation

Here, we report on an experiment with entangled photon pairs that pushes the uncertainty
in the Bell parameter by another order of magnitude compared to previous experiments.

Our experiment follows the concept in [7] and is shown in Fig. 3.2. The output of a
grating-stabilized laser diode (LD, central wavelength 405 nm) passes through a single mode
optical fiber (SMF) for spatial mode filtering, and is focused to a beam waist of 80 µm into
a 2 mm thick BBO crystal.

In the crystal, cut for type-II phase-matching, spontaneous parametric down-conversion
(SPDC) in a slightly non-collinear configuration generates photon pairs. Each down-converted
pair consists of an ordinary and extraordinarily polarized photon, corresponding to horizon-
tal (H) and vertical (V) in our setup. Two SMFs for 810 nm define two spatial modes,
separated from either side of the pump beam by about 3◦, are matched to the pump mode to
optimize the collection [63]. A half-wave plate (λ /2) and a pair of compensation crys-
tals (CC) take care of the temporal and transversal walk-off [7], and allow the adjust-
ment of the phase between the two decay components to obtain a singlet state |Ψ−⟩ =
1/

√
2(|H⟩A|V ⟩B −|V ⟩A|H⟩B).

Film polarizers (specified extinction ratio 104) perform the basis choice and polarization
projection. Photons are detected by avalanche photo diodes (APDs, quantum efficiency
≈40%), and corresponding detection events from the same pair identified by a coincidence
unit (CU) if they arrive within ≈ ±1.2 ns of each other.
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To arrive at a very clean singlet state, we carefully align the photon pair collection to bal-
ance the two photon pair contributions |HV ⟩ and |V H⟩, and adjust their relative phase with
the CC. Furthermore, we minimize contributions from higher order parametric conversion
processes [105] by restricting the pump power below 7 mW, leading to average detection
rates of 5016 s−1 and 4051 s−1 at the two the detectors (both uncorrected for dark counts),
resulting in a detected photon pair rate of about 567 s−1. The detectors exhibit dark count
rates of 91.7 s−1 and 106.2 s−1, respectively. This results in an accidental coincidence rate
of 0.0267±0.0047 s−1, determined by looking at coincidences in two time windows shifted
by 10 ns and 25 ns from where the “true” coincidence were appearing.

We test the quality of polarization entanglement by measuring the polarization corre-
lations in the ± 45◦ linear polarization basis. With interference filters (IF) of 5 nm band-
width (FWHM) centered at 810 nm, we observe a visibility V45 = 99.9 ± 0.1%. The
visibility in the natural H/V basis of the type-II down-conversion process also reaches
VHV = 99.9 ± 0.1%. This indicates a high quality of polarization entanglement; the un-
certainties in the visibilities are obtained from propagated Poissonian counting statistics.

Due to imperfections in the state generation and errors in the setting of the polarizers,
the setting θ = 22.5◦ may not yield the maximum possible violation. In order to observe
the largest possible violation, and get as close as possible to the Tsirelson’s bound, we
optimized the angular settings of the polarizers.

The optimization starts by setting a = 0◦. This provides the initial reference axis and
corresponds to a0. Rotating b and recording the rate of coincidences, we identify the angles
b′0 and b′1 that better match the expected correlation values. Setting b = b′0, we repeat a
similar procedure for a, obtaining a′0 and a′1. This procedure converged to the resolution
of the rotation motors (verified repeatability/resolution 0.1◦). For our experimental demon-
stration the optimal angles are a′0 = 1.9◦, b′0 = 22.9◦, a′1 = 46.8◦, and b′1 = 67.7◦. The
deviation from the theoretically optimal angles can be attributed mainly to a systematic off-
set in the angular positions of the polarizers at the start of the measurement. The fact that
the angular separation between the experiment are not at the theoretically optimal value of
22.5◦ could indicate a slight mismatch between the axes of the crystals and the defined H
and V polarizations.

For evaluating how close we can come with the test of the CHSH Bell inequality to the
Tsirelson’s bound with a known uncertainty, we need to integrate for a sufficiently long time
to acquire the necessary counting statistics, assuming we have the usual Poissonian statistics
implied by the time invariance of our experiment. We collect coincidence events for each
of the 16 settings required to evaluate S for 1 minute, and then repeat again the whole set.
Within 312 such complete sets, we registered a total of 33,184,329 pair events. As a result,
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we obtain in this experiment, via Eqs. (3.6) and (3.8), a value of S = 2.8276 ± 0.00082, or a
separation of 2

√
2 − S = 0.0008 ± 0.00082 from the Tsirelson’s bound. The uncertainty is

obtained only by propagating Poissonian counting statistics on the individual pair detections
into the expression for S, as any systematical errors (attacks on detectors excluded [106], i.e.,
under the fair sampling assumption) would only lower the degree of violation.

So far we have worked under the assumption that Poissonian counting statistics is the
sole contribution to the error in our experiment. However various other experimental con-
ditions may also affect this error. First of such condition we will consider is the stability
of the generated state. Fluctuations in the wavelength and intensity of the pump laser may
affect the state being generated. The fluctuations in the state being generated will increase
the spread of the value of S being evaluated. To quantify this contribution, we evaluated a
series of values for S and the corresponding error ∆S from a cumulative sum of the num-
ber of detected events for the 312 measurements by propagating the error from Poissonian
counting statistics. The result of the obtained ∆S versus the number of measurements accu-
mulated is shown in Fig. 3.3. These errors are compared with those expected from a model
of a maximally violation of |Ψ−⟩ state for the same total counts. From the Fig. 3.3, it can
be seen that the experimentally obtained error is in close agreement with model, giving us
good confidence that the state is stable throughout the measurement run.

Another possible experimental condition that may contribute to the error is the presence
of wedge errors within the polarizers. Wedge error results in the deviation of a beam as
it passes through an optical element. For the polarizers where the orientation changes for
different settings, wedge errors will induce setting dependence coupling efficiencies into the
SMF for Alice and Bob, giving rise to non-uniform detection efficiencies for the different
polarization. To assess this contribution, we first normalized the singles counts at Alice and
Bob individually to their sum at every setting. This eliminates any fluctuation of the singles
due to power fluctuations in the pump beam. The singles at Alice and Bob for settings a′0,
a′1, and b′0, b′1 and their orthogonal settings respectively are plotted against the number of
measurements.

From Fig. 3.4, it can be seen that the detection efficiencies at each settings are different.
The jumps in the plots are due to minute difference in the pump wavelength each time
the laser goes out of lock with the wavemeter and is relocked. Evaluation of the value
S for each of the 312 measurements reveals that these jumps have negligible impact on
∆S. From the mean of the 8 traces we are able to calculate correction factor for each of
settings. After applying the correction, we get a value of S = 2.8281 ± 0.0031, indicating
that wedge error in the polarizers are the major source of the residue deviation from 2

√
2
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Fig. 3.3 A series of values for the error ∆S are evaluated from a cumulative sum of the
number detected events for the 312 measurements by propagating the error from Poissonian
counting statistics. These errors are compared with those expected from a model of a max-
imally violation of |Ψ−⟩ state for the same total counts. From the figure, it can be seen
that the experimentally obtained error is in close agreement with model, giving us good
confidence that the state is stable throughout the measurement.
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Fig. 3.4 To ascertain the effect of wedge errors of the polarizers on the final value of S
obtained, we first normalized the singles counts at Alice and Bob individually to their sum
at every settings to eliminate any effects on the singles due to power fluctuations in the pump
beam. The singles for settings a′0, a′1, and b′0, b′1 and their orthogonal settings respectively
are plotted here against the number of measurement. The jumps in the plots are due to
minute difference in the pump wavelength each time the laser goes out of lock with the
wavemeter and is relocked. These are ascertain to have negligible impact on the spread of
∆S. From the mean of the 8 traces we are able to calculate correction factor for each of
settings. After applying the correction, we get a value of S = 2.8281 ± 0.0031.
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for our measurements. The error bound here is obtained by propagating the error from the
Poissonian counting statistics for both the correction factor and the counted pairs.

3.4 Conclusions

The result of our experiment violates Grinbaum’s bound by 2.72 standard deviations and
constitutes the tightest experimental test of Tsirelson’s bound ever reported. Therefore, it
shows no evidence in favor of the thesis that quantum theory is only an effective version
of a deeper theory and reinforces the thesis that quantum theory is fundamental and that
the Tsirelson’s bound is a natural limit that can be reached. This conclusion strengthens
the potential value of those principles that predict Tsirelson’s bound [18–20] for explaining
the natural limits of correlations in all scenarios. The possibility of experimentally touch-
ing Tsirelson’s bound as predicted by quantum theory also has important consequences
for cryptographic security, since a necessary and sufficient condition for certifying proba-
bility distributions independent of the results of an eavesdropper in a device-independent
scenario [103] is that the observed probabilities are exactly the ones corresponding to the
Tsirelson’s bound [21]. It is also important for the certification of a variety of physical prop-
erties based solely on the assumption of non-signaling (i.e. without making assumptions on
the initial state of the system or the inner working of the measurement devices). In this re-
spect, the degree of violation of the CHSH Bell inequality can be used to certify the amount
of randomness [22]. The higher the violation, the larger the amount of certified randomness.
Reaching the Tsirelson’s bound can also be used to certify that the state being measured is a
maximally entangled state and/or that the local measurements are of the type represented in
quantum theory by anti-commutating operators [23]. This can be adapted to practical meth-
ods to estimate the fidelity of the maximally entangled states [24]. Finally, saturating the
Tsirelson’s bound can be used to certify that a general quantum computation was actually
performed [25].



Chapter 4

Probing the Quantum-Classical
Boundary with Compression Software

The idea that physical processes can be considered as computations done on some universal
machines can be traced back to Turing and von Neumann [74], and the growth in com-
putational power allowed the further development of these concepts. This resulted in a
completely new approach to science in which the complexity of observed phenomena is
closely related to the complexity of computational resources needed to simulate them [75].
In addition, there are physical phenomena that simply cannot be traced with analytical tools,
which further motivated a computational approach to physics [107]. Moreover, the idea of
quantum computation [108] lead to a discovery of a few problems that seem not efficiently
traceable on classical computers but can be done efficiently on a quantum version [51, 52].

Classical physics can be simulated on universal Turing machines or other computation-
ally equivalent models [109]. On the other hand, efficient simulation of quantum systems
requires a replacement of deterministic universal Turing machines with quantum comput-
ers whose states are non-classically correlated. Such machines can even simulate any local
quantum system efficiently [110, 111]. Can we experimentally distinguish between these
two descriptions of the universe using a logically self-contained computational approach?

In this chapter, we show that there are processes which cannot be simulated on local clas-
sical machines at all, independently of the available classical resources. We first introduce
the notion of Kolmogorov complexity, a measure of the classical complexity of a phenom-
ena, and later apply it to derive a bound on classical descriptions [26]. Next, we use the fact
that Kolmogorov complexity can be approximated by compression algorithms [112]. We
compress experimental data obtained from polarisation measurements on entangled photon
pairs and show the violation of a classical bound.
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4.1 Kolmogorov Complexity

Let’s consider the description of a machine, whether classical or quantum, that outputs a
string x made of 0’s and 1’s. In the case of a Turing machine U , we can always write a
program Λ that generates x. The simplest such program is obviously ‘PRINT x’. However,
this is not optimal: in many cases the program can be much shorter than the string itself.

This brings us to the concept of Kolmogorov complexity K(x), the minimal length l(Λ)
of all programs Λ that reproduce a specific output x. If K(x) is of the order of the length
of the output l(x) then our algorithmic description of x is inefficient and x is called algorith-
mically random [113]. In most cases K(x) cannot be computed [114]. To circumvent this
issue, we can estimate the upper bounds for K(x) with some efficient lossless compression
algorithm C(x) [112].

4.2 Simulation by Deterministic Universal Turing Machines

We now extend this picture by considering two Turing machines UA (Alice) and UB (Bob),
which are spatially separated. If these machines cannot communicate, they generate two
output strings that are independent, although the programs fed into the machines can be
correlated. Moreover, the input programs are classical bit strings so the correlations between
them must be classical.

We determine the complexity of the generated strings using the Normalized Information
Distance (NID) [26]. This distance allows for a comparison of two data sets without detailed
knowledge about their origin. In practice, we evaluate an approximation to the NID, the
Normalized Compression Distance (NCD) [112], using a lossless compression software, in
our case the LZMA Utilities (more on this in Section 4.4), based on the Lempel-Ziv-Markov
chain algorithm [115].

We consider a model experiment, similar to the one we used for testing the Bell in-
equalities [69] in Section 3.3: a source emits pairs of photons that travel to two separate
polarization analyzers MA (Alice) and MB (Bob). Each analyzer has two outputs associated
with bit values 0 and 1, and can be set along directions a0 or a1 for MA, and b0 or b1 for MB.
The record of the outputs from each analyzer forms a bit string (see Fig. 4.1).

The output x of each individual analyzer can be described as the output of a Turing
machine U , fed with the settings a j or bk and a program Λ. The program will contain the
information for generating the correct output for every detection event and for every setting.
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Fig. 4.1 Measurement: N particles enter a measuring device, characterized by two possible
polarizer settings a0 and a1, which generates a bit string of N measurement outcomes. Simu-
lation: a universal Turing machine is fed with a program elements Λi and information about
the chosen setting a0 or a1. It delivers an output string of length N.

If we consider a string of finite length l(x) = N, Λ will have to describe the 4N possible
events. The length of the shortest Λ is equal to the Kolmogorov complexity of the generated
string.

Next, we consider the simulation of the experiment with two local non-communicating
machines UA and UB (see Fig. 4.2). We feed a program Λ to both of them and obtain two
output strings, x and y, both of length N. In this case, the program has to describe the
behavior of all 2N events for all possible settings a j and bk, hence 16N possible events.

4.2.1 Normalized Information Distance

The Kolmogorov complexity of two bit strings K(x,y) is the length of the shortest program
generating them simultaneously. K(x,y) can be shorter than K(x) + K(y) if x and y are
correlated: the more correlated they are, the simpler it is to compute one string knowing the
other. This idea was further carried out by Cilibrasi et al. [112] who constructed a distance
measure between x and y called Normalized Information Distance (NID):

NID(x, y) =
K(x, y) − min{K(x), K(y)}

max{K(x), K(y)}
. (4.1)

The NID obeys all required properties of a metric, in particular, the triangle inequality:

NID(x, y) + NID(y, z) ≥ NID(x, z) . (4.2)
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Fig. 4.2 Local classical machines simulating the generation of strings x and y by correlation
measurements on an entangled state.

The above inequality holds up to a correction of order log(l(x)), which can be neglected for
sufficiently long strings [112].

4.2.2 Information Inequality

We consider the bit strings xa j and ybk generated by Alice and Bob with fixed setting a j and
bk. Equation (4.2) then transforms into:

NID(xa0, yb0) + NID(yb0 , yb1) ≥ NID(xa0, yb1). (4.3)

However, NID(yb0 ,yb1) cannot be determined experimentally because the strings yb0 and
yb1 come from measurements of incompatible observables. We therefore use the triangle
inequality:

NID(xa1, yb0) + NID(xa1 , yb1) ≥ NID(yb0, yb1), (4.4)

and combine it with inequality (4.3) to obtain a quadrangle inequality:

NID(xa0 , yb0) + NID(xa1, yb0)+NID(xa1 , yb1) ≥
NID(xa0 ,yb1). (4.5)
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Similar to various tests of Bell inequalities, we introduce a scalar quantity S′ that quan-
tifies the degree of violation of Eq. (4.5)1,2:

S′ =NID(xa0, yb1) − NID(xa0 , yb0)

−NID(xa1, yb0) − NID(xa1 , yb1) ≤ 0 (4.6)

In order to experimentally test this inequality, we have to address the following problem.
We can set up a source to generate entangled photon pairs in a state of our choosing, but
we cannot control the nature of the measurement. For every experimental run i with the
same preparation the resulting string xi,a j can be different. Consequently, the corresponding
program Λi is different for every experimental run.

It is reasonable to assume that for every two experimental runs i and i′ the complex-
ity of the generated strings remains the same: K(xi,a j) = K(xi′,a j) and K(xi,a j ,yi,bk) =

K(xi′,a j ,yi′,bk). Without these assumptions the same physical preparation of the experiment
has different consequences and thus the notion of preparation loses its meaning. More gen-
erally, the predictive power of science can be expressed by saying that the same preparation
results in the same complexity of observed phenomena. This assumption is analogous to the
ensemble interpretation in quantum mechanics [116].

4.3 Estimation of Kolmogorov Complexity

In general the Kolmogorov complexity cannot be evaluated, but it can be estimated. One
can adapt two conceptually different approaches.

4.3.1 Statistical Approach

This approach takes into account the ensemble of all possible N-bit strings and asks about
their average Kolmogorov complexity. It can be shown that this average equals the Shannon
entropy H(X) of the ensemble [114] and thus:

⟨NID(x,y)⟩ = H(x,y)−min{H(x),H(y)}
max{H(x),H(y)}

. (4.7)

1For the sake of completeness, we apply S′ to the output of a PR box [104] given by xa0 = yb0, xa1 = yb0,
xa0 = yb1, and xa1 = −yb1. The corresponding NID are then evaluated to be NID(xa1, yb0) =NID(xa0, yb1) =
NID(xa0, yb0) =NID(xa1,−yb1) = 0, giving us S′ = 0, which does not violate the inequality.

2Under the scenarios that the measurements are performed by Alice and Bob, this inequality has the same
device independence as typical statistical based Bell’s inequalities.
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Inequality (Eq. 4.5) then becomes a type of entropic Bell inequality introduced by Braun-
stein et al. [117].

To evaluate the expected values for NID(xa, yb), we assume the model that the bits that
make up string x and y are obtained from the local measurements of coincidence events of
photon pairs described by a maximally-entangled state |ψ−⟩ (Eq. 2.8) with mapping of the
outcomes of measurement with orthogonal polarizations for settings a and b to bit 0 or 1.

The entropy of each string obtained with a certain setting, e.g. H(xa) with string length
N and setting a is then given by:

H(xa) = −N ∑
i=0,1

pi(xa) log2 pi(xa)

= −N(p0(xa) log2 p0(xa) + (1 − p0(xa)) log2 (1 − p0(xa))), (4.8)

where p0,1(xa) gives the binomial distribution for the probability of obtaining bit 0 or 1
respectively, i.e. p1 = 1 − p0. The single photon density matrix, e.g. ρA describing the
state that results from just considering events in Alice, can be expressed as a partial trace of
the two-photon density matrix ρAB = |ψ−⟩⟨ψ−| over one party, e.g. Bob for this situation.
For the case of ρA, we obtain:

ρA = TrB(ρAB),

=
1
2
(|H⟩⟨H| + |V ⟩⟨V |).

The density matrix ρA describes a completely mixed state representing an unpolarized state.
Measurement in any two orthogonal polarizations will yield equal probability of obtaining
an outcome, i.e. pi(xa) = 1/2. Substituting this result into Eq. 4.8, we obtain the result that
corresponds to the case of maximum local entropies: H(xa) = H(yb) = N.

The joint entropy of the two string H(xa, yb) is given by: H(xa, yb) = H(xa|yb) + H(xa),
where H(xa|yb) is the conditional entropy of string yb given xa. The conditional entropy
H(xa|yb) can be further expressed as:

H(xa|yb) = −N ∑
i, j

pi j(xa, yb) log2
pi(xa)

pi j(xa, yb)
, (4.9)

where N here refers to the number of pairs, pi(xa) = 1/2 as evaluated earlier and joint
probability pi j(xa, yb) can be evaluated from the derivation in Section 2.4. Substituting
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Eq. 4.9 into Eq. 4.7, we arrive at:

⟨NID(xa,yb)⟩ =
N

∑
i, j

pi j(xa, yb)log2
1

2pi j(xa, yb)
. (4.10)

Further simplification of the analysis can be done by appealing to the result shown
in [117] that for a maximally-entangled polarization state of two photons and polarizer an-
gles obeying the constraints:

a⃗0 · b⃗1 = cos3θ ,

a⃗0 · b⃗0 = a⃗1 · b⃗0 = a⃗1 · b⃗1 = cosθ , (4.11)

inequality (4.5) is violated for an appropriate range of θ . Using this relation it is then
possible to obtain the expected value of S′ as a function of θ (Fig. 4.6a). The maximal
violation of this inequality is S′ = 0.24, with a separation of θ = 8.6◦.

4.3.2 Algorithmic approach

It is possible to avoid a statistical description of our experiment following the ideas pio-
neered in [112]. There, it was shown that the Kolmogorov complexity can be well approx-
imated by the application of compression algorithms. This approximation introduces the
new distance called Normalized Compression Distance (NCD):

NCD(x,y) =
C(x,y)−min{C(x),C(y)}

max{C(x),C(y)}
, (4.12)

where C(x) is the length of the compressed string x and C(x,y) is the length of the com-
pressed concatenated strings x,y. Replacing NID with NCD in Eq. (4.6) leads to a new
inequality:

S′ → S =NCD(xa0 , yb1) − NCD(xa0, yb0)

−NCD(xa1 , yb0)−NCD(xa1 , yb0) ≤ 0. (4.13)

This expression can be tested experimentally because the NCD distance measure is opera-
tionally defined.

To conduct an experiment we need to ensure the suitability of the compression software
we use to evaluate the NCD. For this, we numerically simulate the outcome of an experiment
based on a distribution of results predicted by quantum physics for the maximally-entangled
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state |ψ−⟩ (Eq. 2.8) using the derivation found in Section 2.4. Among the packages we
tested, we found that the LZMA Utility [115] approaches the Shannon limit [118] most
closely.

Most compression algorithms use some prediction about the data composition. If it
matches this prediction, the compression can be done efficiently. Our experimental data fit
the specifics of the LZMA Utility (refer to Section 4.4). In general our method can be used
for data from any source by finding a suitable compression algorithm [112]. Thus, we are
not limited to independent identically distributed (i.i.d.) sources, as it is commonly assumed
in standard statistical ensemble-based experiments, like, for instance, Bell-type tests.

The simulation also verifies the angle that maximizes the violation (4.13). The results of
the simulation are presented in Figure 4.6. More details on the generation of the simulated
data and the choice of the compressor are covered next in Section 4.4.

4.4 Choice of Compressor

Before moving to the experiment, we need to ensure the suitability of the compression soft-
ware we use to evaluate the NCD. For this, we numerically simulate the outcome of an ex-
periment, based on a distribution of results predicted by quantum physics for the maximally-
entangled state |ψ−⟩ (steps for this derivation can be found in Section 2.4). The simulation
also allows us to verify the angle that maximizes the violation of Eq. (4.13) predicted from
Eq. (4.11).

In order to evaluate the NCDs of the binary strings, we need to choose a compression
algorithm that performs close to the Shannon limit. This is necessary to ensure that it does
not introduce any unintended artifacts that lead to an overestimation of the violation. Prefer-
ably we want to work in the regime where the obtained NCDs always underestimate the
violation. For this purpose, we characterized four compression algorithms implemented by
freely available compression programs: lzma [115], bzip2 [119], gzip [120], and lzw [121].
To eliminate the overhead associated with the compression of ASCII text files, we save data
in a binary format.

For this characterization and simulation of the experiment, we need to generate a “ran-
dom” string of bits (1, 0) or pairs of bits (00, 01, 10, and 11) of various length with vari-
ous probability distributions. We generate these strings using the MATLAB [122] function
randsample() that uses the pseudo random number generator mt19937ar with a long period
of 219937−1. It is based on the Mersenne Twister [123], with ziggurat [124] as the algorithm
that generates the required probability distribution. The complexity of this (deterministic)
source of pseudorandom numbers should be high enough to not be captured as algorithmic.
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Fig. 4.3 Comparison of the compression overhead Q obtained using four different compres-
sion algorithms on pseudo-random strings of varying lengths. The expected value for an
ideal compressor is 0. From this characterization we can exclude lzw as a useful compressor
for our application.

The first part of this characterization involves establishing the minimum string length
required for the compression algorithms to perform consistently. We start by generating
binary strings, x, with equal probability of 1’s and 0’s, i.e. random strings, of varying length.
For each x, we evaluate the compression overhead Q as:

Q =
C(x) − H(x)

l(x)
. (4.14)

For a good compressor, we expect Q to be close to 0. From Fig. 4.3, it can be seen that for
all the compressors, Q starts to converge after about 105 bits, setting the minimum string
length required for the compressors to work consistently. The lzw compressor fails this test,
converging to a Q of 0.37 for long string, while bzip2, gzip, and lzma give a Q below 10−1.

In the second part of this characterization, test the compressors with strings with a known
amount of correlation. We generate a random string x of length 107 using the same technique
already described. We then generate a second string y of equal length and with probability
p of being correlated to x. For p = 0, the two strings are equal, i.e. perfectly correlated. For
p = 0.5, they are uncorrelated.



50 Probing the Quantum-Classical Boundary with Compression Software

10-3

10-2

10-1

 0  0.1  0.2  0.3  0.4  0.5

C
om

pr
es

si
on

 o
ve

rh
ea

d 
Q

Probability of Correlation, p

bzip

lzma

gzip

Fig. 4.4 Compression overhead Q for the string xy as a function of the probability of pair-
wise correlation p between the bits of the generating strings x and y for three different
compressors: bzip, gzip, and lzma.

The two strings x and y are then combined to form the string xy: to avoid artifacts
due to the limited data block size of the compression algorithms, the elements of x and
y are interleaved. We then compress xy and evaluate the compression overhead Q as a
function of p. The results for different compressors are shown in Fig. 4.4. Although there
are ranges of p where bzip and gzip perform better than lzma, the latter shows a more
uniform performance over the entire interval of p. It is reasonable to assume that the use of
lzma should reduce the possibility of artifacts in the estimation of the NCD also for the data
obtained from the experiment, giving us a lower bound for the violation.

Conceivably this kind of compressibility test can also be performed on the outputs from
various random number generators, e.g. quantum number generators [125], to give some
indication of their randomness especially in comparison with outputs from other sources.
The only caveat here being that the expected period of these generators, if any, must be
shorter than the size of memory block implemented in the compression software used for
the test.
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Fig. 4.5 Schematic of the experimental set-up. Polarization correlations of entangled-photon
pairs are measured by the polarization analyzers MA and MB, each consisting of a half wave
plate (λ/2) followed by a polarization beam splitter (PBS). All photons are detected by
Avalanche photodetectors DH and DV , and registered in a coincidence unit (CU).

4.5 Experiment Implementation

In our experiment (see Fig. 4.5), similar to that described in Section 3.3, the output of a
grating-stabilized laser diode (LD, central wavelength 405 nm) passes through a single mode
optical fiber (SMF) for spatial mode filtering, and is focused to a beam waist of 80 µm into
a 2 mm thick BBO crystal. In this crystal (cut for type-II phase-matching), photon pairs are
generated via spontaneous parametric down-conversion (SPDC) in a slightly non-collinear
configuration. A half-wave plate (λ /2) and a pair of compensation crystals (CC) take care
of the temporal and transversal walk-off [7].

Two spatial modes (labeled A and B) of down-converted light, defined by the SMFs for
810 nm, are matched to the pump mode to optimize the collection [63]. In type-II SPDC,
each down-converted pair consists of an ordinary and extraordinarily polarized photon, cor-
responding to horizontal (H) and vertical (V) in our setup. A pair of polarization controllers
(PCs) ensures that the stress-induced dispersion in the SMFs do not affect the polarization
of the collected photons.

It is prudent to mention here that based on earlier work done in the group [126], these
PCs typically still have unwanted dispersion remaining at the l% level. Thus this places a
constrain on the accuracy of state preparation and ultimately limits the quality of entangle-
ment. This constrain was not present in the earlier experiment described in Chapter 3 as the
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polarization analysis was done on the down-converted photons prior to being collected into
the SMFs.

To arrive at an approximate singlet Bell state, the phase ϕ between the two decay possi-
bilities in the polarization state:

|ψ⟩ = 1√
2

(
|H⟩A|V ⟩B + eiϕ |V ⟩|H⟩B

)
, (4.15)

is adjusted to ϕ = π by tilting the CC.

In the experiment described in Section 3.3, the probability distribution of the four pos-
sible outcomes, i.e. P++, P+−, P−+, and P−−, for various polarizer settings were evaluated.
As we assumed the i.i.d. situation for the entangled pairs generated, it naturally follows that
with the same integration time, the probability distribution of the measurement outcomes
will remain constant. As a result, measurement of the four possible outcomes do not need
to be performed simultaneously and the probability distribution can be obtained by normal-
izing the counts obtained for each outcome against the total number of coincidence events
for all the outcomes.

This is in contrast to the current experiment where we rely on recording the the patterns
of coincidence events and using them to build up binary strings for evaluation of the inequal-
ity S. Due to the continuous wave (CW) nature of the pump, the generation of the photon
pairs occur at random times, thus there are no timing references that one can appeal to that
indicate the time of generation of each photon pair. The absence of an detection event in one
outcome thus does not imply there a detection event in another outcome. Due to this reason,
all the outcomes need to be probed simultaneously. This is done in the polarization analyz-
ers (Fig. 4.5), where the photons from SPDC are projected onto arbitrary linear polarization
by λ /2 plates, set to half of the analyzing angles θA(B), and polarization beam splitter (PBS)
in each analyzer.

Photons are detected by avalanche photo diodes (APDs) and corresponding detection
events from the same pair identified by a coincidence unit (CU) if they arrive within the
coincidence time window, τC ≈ ±3 ns, of each other. It is worthwhile to mention that
τC here has been increased from the previous value of 1.2 ns stated in Section 3.3. This
was done to allow for a higher coincidence rate and thus a faster convergence to a long
enough string length for the compressor to perform consistently. While it was established
in Section 2.5 that increasing τC would increase the rate of accidental coincidences thereby
degrading the quality of polarization entanglement, the primary aim of this measurement
was to demonstrate a violation of S (Eq. 4.13) and not necessarily to do so maximally.
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The quality of polarization entanglement is tested by probing the polarization correla-
tions in a basis complementary to the intrinsic HV basis of the crystal; for Bell states |ψ±⟩,
strong polarization correlations are e.g. expected in a ± 45◦ linear polarization basis.

With interference filters (IF) of 5 nm bandwidth (FWHM) centered at 810 nm, we ob-
serve a visibility V45 = 99.9±0.1%. The visibility in the natural H/V basis of the type-II
down-conversion process also reaches VHV = 99.9±0.1%. A separate test of a CHSH-
type Bell inequality [70], identical to that performed in Chapter 3, leads to a value of
S = 2.826± 0.0015. This indicates a relatively high quality of polarization entanglement;
the uncertainties in the visibilities are obtained from propagated Poissonian counting statis-
tics. The slight decrease in the value of S from that obtained in Chapter 3 can be attributed
to the limitation in the accuracy of the entangled state preparation imposed by the PCs and
an increase in the rate of accidental coincidences due the increased τC.

We record two-fold coincidences of detection events between detectors at A and B. For
each PBS, the transmitted output is associated with 0 and the reflected one with 1. The
resulting binary strings x from A, and y from B are written into two individual binary files.
From these, we calculate the NCD using Eq. (4.12). This procedure is repeated for each of
the four settings (a0,b0), (a1,b0), (a1,b1), and (a0,b1) in order to obtain the value for S.

4.6 Symmetrization of detector efficiencies

The experimental setup (Fig. 4.5) uses four APDs: DHA, DVA (Alice), and DHB, DV B (Bob)
to register photon pair events in the two spatial modes. By denoting events at DH and DV

as 1 and 0, the four possible output patterns are 00, 01, 10, and 11, where the least and most
significant bit corresponds to the Alice and Bob mode, respectively. Due to differences in
the the losses in the transmitted and reflected port of the PBS, efficiencies in coupling light
into the APDs, and the quantum efficiencies of APDs, the detection efficiencies for the four
output combinations are different. The resulting effective pair efficiencies are then given by
the product of the contributing detection efficiencies ηV B, ηHB, ηVA, and ηHA.

This asymmetry will skew the statistics of the measurement results. We symmetrize
the effective pair efficiencies for each (θA,θB) measuring also the following settings: (θA +

45◦,θB), (θA,θB + 45◦), and (θA + 45◦,θB + 45◦). This procedure swaps the output ports
of the PBS at which each polarization state is detected. The resulting outcomes are then
interleaved, providing an uniform detection probability for the four possible outcomes. The
effective pair detection efficiency for all four combinations is then (ηV B ηVA + ηV B ηHA +

ηHB ηVA + ηHB ηHA)/4.
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Fig. 4.6 Plots of S versus angle of separation θ . (a) Result obtained from Eq. (4.7) (b) result
obtained from using the LZMA compressor on a simulated data ensemble, (c) measurement
of S in the experiment shown in Fig. 4.5, and (d) longer measurement at the optimal angle
θ = 8.6◦.

4.7 Results

The inequality is experimentally tested by evaluating S in Eq. (4.13) for a range of θ ; the
obtained values [points (c), (d) in Fig. 4.6] are consistently lower than the trace (a) calculated
via entropy using Eq. (4.7) and than a simulation with the same compressor (b). This is
because the LZMA Utility is not working exactly at the Shannon limit and also due to
imperfect state generation and detection.

As a consequence of Eq. (4.11), we expect the maximal violation for θ = 8.6◦. For this
particular angle we collected results from a large number of photon pairs. Although we set
out in this work to avoid a statistical argument in the interpretation of measurement results,
we do resort to statistical techniques to assess the confidence in an experimental finding of a
violation of inequality Eq. (4.13). To estimate an uncertainty of the experimentally obtained
values for S, this large data set was subdivided into files with length greater than 105 bits.
The results from all the subdivided files are then averaged to obtain the final result of S(θ =

8.6◦)= 0.0494±0.0076, with the latter indicating a relatively small standard deviation over
these different subsets.
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4.8 Conclusion

There is a trend to look at physical systems and processes as programs run on a computer
made of the constituents of our universe. We could show that this is not possible if one uses
a computation paradigm of a local deterministic Turing machine. Although this has been
already extensively researched in quantum information theory, we present a complementary
algorithmic approach for an explicit, experimentally testable example. This algorithmic
approach is complementary to the orthodox Bell inequality approach to quantum nonlocal-
ity [69] that is statistical in its nature.

Any process that can be simulated on a local universal Turing machine can be encoded
as a program that is fed into it. For every such a program there exists its shortest description
called Kolmogorov complexity, which in most of the cases can only be approximated using
compression software. Moreover, such a description must obey distance properties as shown
in [26, 112]. By testing Eq. 4.13, we showed that this is unattainable in the specific case of
polarization-entangled photon pairs. Therefore, there exist physical processes that cannot
be simulated on local universal Turing machines.

There are two fundamentally different notions of complexity in computer science. On
one hand, computational complexity, mainly researched on in quantum information science,
studies how much resources are needed to solve a computational problem. These studies
focus on complexity classes such as P, NP [127] and its main concern is, given an input
program, how efficiently it can be computed. On the other hand, algorithmic complexity
deals with a problem of what the most efficient encoding of an input program is. This
complementary problem to computation complexity has not yet received enough attention
in quantum information science and it would require a further work on quantum version of
Kolmogorov complexity [128].

We would like to stress that our analysis of the experimental data is purely and consis-
tently algorithmic. We do not resort to statistical methods that are alien to the concept of
computation. If this approach can be extended to all quantum experiments, it would allow
us to bypass the commonly used statistical interpretation of quantum theory.

At the same time we believe that this approach can also serve to complement typical
probability based Bell’s inequalities. One thing to note is that since the same assumptions,
e.g. detection loophole, fair sampling, and freedom of choice, goes into it’s evaluation, the
approach will probably be susceptible to the same set of loopholes as with any other Bell’s
inequalities. The use of real compressors in our evaluation just lowers the violation and
does not open up any other new loopholes. That being said, this is still a topic for further in
depth studies.





Chapter 5

Generation of Energy-Time Entangled
Photons and Higher Dimensional States

In the experiment described in Chapter 3 and 4, we employed the polarization degree of
freedom of correlated photon pairs generated by spontaneous parametric down-conversion
(SPDC) to encode the maximally entangled state, |ψ−⟩ (Eq. 2.8), for use in our measure-
ments. These polarization-entangled qubit pairs can be implemented experimentally [7, 62,
63, 93] with relative ease, i.e. the down-conversion setup also serves to generate polariza-
tion entanglement, as the polarization correlations between the photons in each pair is a
natural consequence of the phase-matching conditions (Eq. 2.3) obeyed by the SPDC pro-
cess. These polarization qubits are often used in free space optical links for various quantum
key distribution (QKD) [129, 130] and quantum communication [131, 132] experiments.

Two major limitations of such free space optical links are that they require direct lines
of sight and that the quality of the transmission channel is strongly affected by atmospheric
attenuations and turbulences [133]. Such limitations can be overcome by implementation of
these links in optical fibers instead. The use of optical fibers for QKD is further advantaged
when one considers the situation where the comprehensive fiber optics network currently in
place for telecommunication purposes can also serve as ready infrastructures for experimen-
tation [134–136] and conceivably its eventual commercialization.

However, the use of optical fibers in such optical links, like in the case for free space,
is not without its problems. One of such problems is while the glass or plastic used in
the core of these optical fibers is naturally isotropic, inhomogeneous mechanical stresses
applied on the fibers can induce birefringence [137], which in turn affects the polarisation
mode of the light traveling through it. This non-preservation of the polarization of the
light passing through the fibers may render some QKD protocols impossible. For short
length of fibers changes in polarization are relatively stable and can be compensated using
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polarization controllers [138] (used in the experimental setup described in Chapter 3 and 4).
For long length of optical fibers, due to the random mechanical and thermal stresses on the
fibers, active compensation of the polarization changes may not always be possible. Thus
the use of polarization qubits is not very suited for this purpose.

A more suitable degree of freedom for this purpose is that of energy-time. This degree
of freedom has its origin in an experiment, proposed by Franson in 1989 [39], involving
the preparation of an energy-time entangled state using three-level atoms with unbalanced
Mach-Zehnder interferometers [139, 140] in each of the photon paths (Fig. 5.1) for analysis.
The term energy-time here refers to the energy-time uncertainty relation [141]. The highest
and lowest state of the three-level atomic system have long emission lifetimes and it is sepa-
rated by an intermediate state with a comparatively short lifetime. Due to the uncertainty of
the emission time of the photons brought about by the long lifetime of the highest state, the
total energy of the two photons emitted can be determined with great precision. However,
the short intermediate lifetime means that upon detecting one photon, the other can be very
precisely localized temporally, making the determination of its energy uncertain.

This situation mirrored the discussion about the problem of position-momentum entan-
glement in the original EPR experiment [68]. With quantum mechanical considerations,
J. D. Franson predicted that by simultaneously monitoring the coincidence events between
detector D1 and D2 (Fig. 5.1), and scanning the phases of the interferometers, one would
observe a sinusoidally oscillation of the coincidence signal, something that is not possible
in a classical context. In 1990, Ou et al. [142] demonstrated energy-time entanglement suc-
cessfully using photon pairs generated from SPDC. As the energy-time degree of freedom
deals only with the measurement of the arrival times of photons, it is not affected by birefrin-
gence, thus making it a suitable candidate for the encoding qubits for transmission through
optical fibers.

Going a step further, there are experiments, e.g. reference frame independent QKD [143–
145] and the experimental violation of higher dimensional Bell’s inequality [49], that require
entangled states with dimensionality more than the entangled state that we present in Chap-
ter 3 and 4. One way to expand this dimensionality is to increase the number of qubits by
entangling a greater number of particles [146]. However, this may be complicated and re-
source intensive. Another way is to ‘combine’ different degrees of freedom to achieve a state
with a higher dimensionality. The resulting state is called a hyperentangled state [77, 147].
This is possible due to the fact that each physical carrier, in our case the photon, has multiple
degrees of freedom on which qubits can be encoded. Thus essentially, each photon can be
encoded with more than one qubit.
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Fig. 5.1 Schematic of experiment proposed by Franson in 1989. Wavelength-correlated
photons, γ1 and γ2, generated by spontaneous decay from the excited state of a three-level
atomic system passes through an unbalanced Mach-Zehnder interferometers on each path.
Photon coincidence measurements of the interference between the amplitudes along the
shorter paths, Sl and S2, and the longer paths, Ll and L2 for various phase setting of ϕ1 and
ϕ2 were taken (Figure adapted from [39]).

In this chapter, we will first cover, in Section 5.1 the generation of energy-time entan-
gled photons using the process of SPDC. This is followed by a detailed discussion of the
experimental parameters required in the generation. We then highlight the theoretical back-
ground of how such energy-time entangled state can be characterized in Section 5.2. Lastly,
in Section 5.3, we will present ways of increasing the dimensionality of quantum systems
and examing in-depth into how the same can be achieved by combining the polarization and
the energy-time degree of freedom to form a hyperentangled state.

5.1 Generation of Energy-Time Entanglement

The first idea for energy-time entanglement originated from an experiment (Fig. 5.1) pro-
posed by Franson in 1989 [39]. The proposed experiment calls for photon pairs to be created
in an atomic decay process in a three-level system. This proposal was later implemented
experimentally by Ou et al. [142] but using SPDC instead for the generation of the photon
pairs. The schematic of an experimental setup, functionally similar to that implemented by
Ou et al., is found in Fig. 5.2. The photon pairs generated by SPDC1 are analyzed by an
unbalanced Mach-Zehnder interferometer in each of the Alice (A) and Bob (B) path of the

1It should be noted that the SPDC process here is only required to generate wavelength degenerate photon
pairs. The polarization degree of freedom is not resolved in this experiment and thus the alignment to get the
two decay paths of |H⟩A|V ⟩B and |V ⟩A|H⟩B, as indicated in Section 2.3, is not necessary.
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down-conversion. For the generation of energy-time entangled photons, a few conditions
must be satisfied:

1. The path-length difference ∆L within the A and B interferometers must be longer
than the coherence length lCdc of the down-converted photons: This condition ensures
there is no single photon interference [148] of the down-converted photons in the
interferometers.

2. The time difference, ∆T = ∆L
c , where c is the speed of light, must be greater than

the coincidence time window τC: We first consider all the possible paths the pairs of
down-converted photon can take through the two interferometers to reach detector DA

and DB. The states of the four possible paths are given by |s⟩A|l⟩B, |l⟩A|s⟩B, |s⟩A|s⟩B,
and |l⟩A|l⟩B, where s and l represent the short and long path of the interferometers
respectively. Considering tA − tB, the arrival time of a photon at DA with respect to
DB (Fig. 5.2a), we obtain the time difference of −∆T and ∆T for the combination
|s⟩A|l⟩B and |l⟩A|s⟩B respectively. For the combination |s⟩A|s⟩B, and |l⟩A|l⟩B, there is
no difference in arrival time, i.e. tA − tB = 0, assuming that the two interferometers
are identical.

If we plot the probability of obtaining a coincidence event between DA and DB ver-
sus tA − tB, we obtain Fig. 5.3. The width of the peaks, given by the convolution of
the two single photon temporal profiles of the down-converted photons in the pairs,
provides a sort of two-photon coherence time. As explained in Section 2.3, two in-
distinguishable decay paths are needed for entanglement and from Fig. 5.3, it is clear
that this condition is only satisfied for the central peak. Thus to only post-select the
central peak, the coincidence time window τC must also be less than ∆T .

It is noteworthy to mention that as this is an interferometric measurement, it is highly
susceptible to stability issues due to mechanical disturbances, e.g. acoustic vibra-
tions and thermally induced length changes of structure of the interferometers. Often
the longer the path-length difference ∆L, the more pronounced is the stability issue,
shortening the characteristic stable time of the interferometers. Thus as a matter of
practical consideration, ∆L is chosen to be as short as possible such that the adjacent
peaks do not overlap. This minimum ∆L is thus limited by the coherence length of the
down-converted photons lCdc and the size of the of the coincidence time window τC.

3. The coherence length lCp of the pump light must be greater than the path-length differ-
ence ∆L in each of the interferometers: This is to ensure there is coherence between
the short path |s⟩ and long path |l⟩ of the interferometers.
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Fig. 5.2 a) Experimental setup for the preparation of energy-time entangled photon pairs. A
pump photon with coherence time τp is down-converted into correlated photon pairs with
coherence time τdc. The photon pairs are sent into Mach-Zehnder interferometers which
introduces a time delay ∆T due to the unbalanced arm lengths (short path |s⟩ and long path
|l⟩). The condition ∆T < τ2 guarantees the coherent superposition of the photon pairs which
take the short path |s⟩ or long path |l⟩ in the interferometers. The Franson interference [39]
or second order correlation between the photon pairs are measured by silicon avalanche
photodiodes (APD), with a time delay tA − tB between DA and DB. b) For the generation
of time-bin entanglement, the pump is operated in a pulsed regime, with an inclusion of an
unbalanced Mach-Zehnder interferometer in in the path of the pump.

4. The path-length difference ∆L in the A and B interferometer should be identical or
within the coherence length of the down-converted photons lCdc of each other: This is
to ensure there is biphoton interference of the two states |s⟩A|s⟩B, and |l⟩A|l⟩B.

These four constraints thus determine the geometries and dimensions of the experimental
setup.

It is prudent to highlight here, the essential difference between energy-time and time-
bin entanglement [61, 149]. In time-bin entanglement (Fig. 5.2b), the pump is operated in a
pulsed regime as opposed to a continuous wave (CW) regime for energy-time entanglement.
These pulses, generated from a mode-locked femtosecond laser for example, are in general
not coherent with each other. Due to the broadband nature of these short optical pulses,
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Fig. 5.3 Four possible amplitudes of the photon pairs in the time delay basis. The two co-
herent states |s⟩A|s⟩B and |l⟩A|l⟩B overlap up to the coherence length of the down-converted
photon pairs and there is no single photon interference under the condition where the coher-
ence length of the down-converted photons are less than that introduced by the unbalanced
Mach-Zehnder interferometer, lCdc < ∆L.
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the short coherence length lCp of the pump light would not be able to satisfy the previously
mentioned listed 3rd condition.

To restore the coherence between the early and late pulses, another interferometer is
introduced into the path of the pump light. Introducing an additional unbalanced Mach-
Zehnder interferometer in the pump beam splits the pulse train into a fixed delay ∆T . Thus,
the successive pulses are now indistinguishable from the preceding pulses which were gen-
erated ∆T earlier. The states of the photon pairs |s⟩A|s⟩B and |1⟩A|1⟩B generated from SPDC
are also now indistinguishable.

The phase ϕp of the pump interferometer between and s and l path can be adjusted by
changing the path-length difference. The path-length difference in the pump interferometer
in this case must also be matched by the two Mach-Zehnder interferometers used for analy-
sis for proper post-selection. In such a configuration, the entangled photon pairs will have
well-defined emission times in contrast to the energy-time case. The resulting entangled
state is given by:

|ϕ⟩t =
1√
2

(
|s⟩A|s⟩B + ei(ϕA+ϕB+ϕp)|l⟩A|l⟩B

)
, (5.1)

where ϕA,B is the relative phase between the |s⟩ and |l⟩ path in A and B (Fig. 5.2).
The corresponding ϕp for energy-time entanglement, where a CW pump is used, is given

by the relative phase difference of the light from two points in the pump beam separated by
∆L, the path-length difference of the analyzer interferometers. Since this phase ϕp cannot
be adjusted directly, it is offset by combining it with one of the phases of the analyzer
interferometers, i.e. ϕ ′

a = ϕa + ϕp.
It is illuminating to think of the time-bin case as a special case of energy-time entangle-

ment. The CW pump is coherent between any two points separated by the coherence length
lCp or less. In the context of a pulsed pump, this can be seen as a continuum of pump interfer-
ometers with various path-length differences. The analyzer interferometers just post-select
the case corresponding to a path-length difference ∆L.

For our experiment in the coming chapter, we have opted for the implementation of the
energy-time entanglement. This decision was prompted by our previous experiences with
wavelength stability issues with our femtosecond pulsed laser in earlier work [90, 150, 151].

5.2 Characterization of Energy-Time Entangled
Photon Pairs

Similar to the measurement of visibility for the polarization correlation described Section 2.5,
the quality of energy-time correlation is determined by measuring the joint detection prob-
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ability of the photon pairs while varying the phases ϕA or ϕB in one of the interferome-
ters (Fig. 5.2a) and evaluating the visibility of the interference known as Franson interfer-
ence [39]. The visibility is determined both by how well the s and l spatial mode overlaps
within each interferometer and the overlap of between spatial mode A and B.

To obtain the expected result for the case of prefect overlap in both cases, we start by
considering the field amplitude at detector DA and DB which can be written as:

ψ(r j, t) =
1
2

ψ0(r j, t) +
1
2

eiϕA,Bψ0(r j, t − ∆T ).

where j = A, B, respectively. The field amplitudes ψ0(r j, t) and ψ0(r j, t − ∆T ) are the
field amplitude due to the s and l path respectively at the detectors. If we consider only
cases where both down-converted photons take the short path s. The coincidence function
R between DA and DB is given by:

R = ⟨s|ψ†(rA, t)ψ†(rB, t)ψ(rA, t)ψ(rB, t)|s⟩,

which then expands to2:

R =
1

16
⟨s|[ψ†

0 (rA, t)ψ†
0 (rB, t)+ e−i(ϕA+ϕB)ψ†

0 (rA, t −∆T )ψ†
0 (rB, t −∆T )]×

[ψ0(rA, t)ψ0(rB, t)+ ei(ϕA+ϕB)ψ0(rA, t −∆T )ψ0(rB, t −∆T )]|s⟩. (5.2)

The conservation of energy requires that:

ωp +∆ω = ωs +ωi,

where ωs,i are the frequencies of the signal and idler of the down-converted light (assumed
to be identical for the wavelength degenerate case), ωp is the frequency of the pump, and
∆ω is the uncertainty of the pump frequency. We then write:

ψ0(rA, t −∆T )ψ0(rB, t −∆T ) = ei(ωp+∆ω)∆T ψ0(rA, t)ψ0(rB, t).

2The case where both down-converted photons take the long path will be similar to the case shown here.
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Assuming ∆ω∆T << 1 and neglecting the contribution from this term, the coincidence
function R (Eq. 5.2) can be written as:

R ∝
[
1+ e−i(ωp∆T+ϕA+ϕB)

][
1+ ei(ωp∆T+ϕA+ϕB)

]
∝ cos2

(
ωp∆T +ϕA +ϕB

2

)
. (5.3)

The coincidence function depends on the sum of the relative phases and a constant offset3

given ωp∆T . The coincidence function R varies between 0 and 1 giving a prefect visibility.
Any mismatch between either the s and l mode or between the A and B spatial mode will
result in an increase in the minimum of R decreasing the visibility.

5.3 Generation of Higher Dimensional States and
Hyperentanglement

In the next chapter, we experimentally determine the lower bound of the dimensionality of a
bipartite quantum system. The dimensionality d of the system is defined there as the number
of independent bases needed to completely span the Hilbert space of each individual party
A or B. Based on this definition, the maximally-entangled polarization Bell states in Eq. 2.8
have d = 2, since there are only two independent polarization bases, |H⟩ and |V ⟩, for either
A or B.

There are multiple ways of implementing a bipartite quantum system with a higher di-
mensionality4, i.e. d > 2. For a typical SPDC setup, similar to the one described in Chap-
ter 3 and 4 which generates polarization-entangled photon pairs in a crossed-ring configura-
tion [7, 63, 93], one way to accomplish this is to increase the pump power. This is due to the
fact that the probability of down-conversion scales linearly with the pump power [152–154].
At sufficiently high power, the probability of generation of double pairs that are temporally
close to each other becomes significant compared to that of pairs, resulting in contributions
from two-photon states with d = 2 and multiphoton states with d = 4 [155, 156]. This
increase in pump power is often effected by operating the pump in the pulsed regime [155–
157] where the instantaneous power is much higher than that found in the CW case. As
mentioned in Section 2.5, when conducting 2-photon measurements in which the 4-photon

3The origin of this term for both the energy-time and time-bin case is explained in Section 5.1
4For the purpose of this thesis, we will only be touching on the dimensionality of these quantum states and

not the quality of entanglement associated with them, i.e. specifics about the form of these higher dimensional
states will not be covered.



66 Generation of Energy-Time Entangled Photons and Higher Dimensional States

ΔL

2ΔL

3ΔL

4ΔL

Fig. 5.4 Energy-time bipartite states with a dimensionality, d > 2, can be implemented by
cascading two or more interferometers in each arm of both A and B [40–42]. The difference
between the long path of each of the interferometers must be greater than the coherence
length of the down-converted photons to avoid single photon interference and ∆T must be
greater than coincidence window τC such that the various energy-time combinations are
distinguishable. Given the constraint, the natural choice of the length of the long paths for a
cascade of n interferometer is ∆L, 2∆L, 3∆L, ..., and n∆L.

states are not resolved, these double pairs would manifest themselves as white noise, lower-
ing the quality of entanglement. When the double pairs are made coherent to each other like
in the case of stimulated emission [157, 158], a maximally entangled 4-photon polarization
state is obtained.

Energy-time bipartite states with a higher dimensionality, d > 2, can be implemented
by cascading two or more interferometers (Fig. 5.4) in each arm of both A and B [40–42].
All the interferometers in each arm need to satisfy the conditions listed in Section 5.1. The
difference between the long path of each of the interferometers must be greater than the
coherence length of the down-converted photons to avoid single photon interference and ∆T
must be greater than coincidence window τC such that the various energy-time combinations
are distinguishable. Given the constraint, the natural choice of the length of the long paths
for a cascade of n interferometer is ∆L, 2∆L, 3∆L, ..., and n∆L. If for example there are
two cascaded interferometers, the photons can take one of 4 possible paths, |s + s⟩, |l + s⟩,
|s + 2l⟩, and |l + 2l⟩ to the detector.

It should be noted that as long as the coherence length lCp of pump is longer than the path-
length difference between the shortest and longest path taken by the photons through the
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cascaded interferometers, the dimensionality is directly dependent upon the post-selection
by the interferometers. The dimensionality of these states, unlike the polarization case, are
not limited to the number of photons in each individual mode A or B as they not using the
internal degrees of freedom of the photon for encoding the state5. Experimental implemen-
tation of this scheme would however be difficult as it requires a complicated stabilization
scheme for the all the interferometers. A complicated multiple delay coincidence detection
scheme is also required to resolve the different combination.

For the experiment described in Chapter 6, we need to generate a bipartite state with
d = 4. Instead of obtaining this expanded dimensionality by using the same degrees of free-
dom, similar to the two cases discussed earlier, we combined different degrees of freedom
to produce what is termed a hyperentangled state [76–78]. Hyperentangled states allow im-
provement in super dense coding [159], full Bell-state analysis [160–163], simplification of
quantum logic [164], remote entangled state preparation [165], and enhancing the quantum
nonlocality tests [166]. A hyperentangled state |Φ⟩ can be defined as follows:

|Φ⟩ =
N

∏
i=1

|ϕi⟩, (5.4)

where each term |ϕi⟩ corresponds the state encoded in one of the N degrees of freedom
describing the bipartite system. For the state used in Chapter 6, is given by:

|Φ+⟩ = |ϕ+
polarization⟩ ⊗ |ϕ+

energy−time⟩, (5.5)

where |ϕ+
polarization⟩ and |ϕ+

energy−time⟩, maximally entangled state (Eq. 2.8) for polarization
and energy-time degree of freedom, are given by:

|ϕ+
polarization⟩ =

1√
2
(|H⟩A|H⟩B + |V ⟩A|V ⟩B) ,

|ϕ+
energy−time⟩ =

1√
2
(|s⟩A|s⟩B + |l⟩A|l⟩B) , (5.6)

respectively.
It is interesting to note for |Φ+⟩ (Eq. 5.4), a product state of two quantum states, the

measurements associated with each degree of freedom are uncoupled and can be performed
independently.

5This observation provides a very clear distinction between the physical carriers, in this case the photons,
and the quantum information that is encoded with the carriers’ various degrees of freedom, the qubits.





Chapter 6

Experimental Estimation of the
Dimension Witness Quantum Systems

Certain quantum information processing and communication tasks require presence of en-
tanglement in the system. This leads to the concept that entanglement is a kind resource to
be utilized. However, the very same can well be said about the dimensionality of the Hilbert
space of quantum systems. Realistically, for any practical application utilizing entangled
quantum systems, high-dimensional entangled states are required, e.g. protocols involv-
ing reference frame free communication and dense coding for more decoherence resistance
communication.

With such high-dimensional systems comes the need for techniques to evaluate their di-
mensionality. One such class of techniques is termed the dimension witnesses. Various ex-
periments have been reported recently about the implementation of such witnesses [27, 28].
However, the major limitation with these witnesses is that they are unable distinguish a clas-
sical d-dimensional state from a d-dimensional entangled state. What is needed here is a
dimension witness that does not suffer from the same limitation and is capable of assessing
the dimensionality of a quantum system in a device independent way. One promising candi-
date which we will investigate in this chapter is the CGLMP inequality which is generalized
for arbitrary high-dimensional bipartite systems. In this chapter we give a detailed overview
of the derivation of the CGLMP inequality for a dimensionality of d = 4. We will also
touch on the implementation of a hyperentangled state and highlight the findings from our
attempt to violate the 4-dimensional CGLMP inequality.
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6.1 CGLMP Inequality

In Chapter 3, we presented our experimental attempt at maximally violating the CHSH in-
equality [70] as a way to approach Tsirelson’s bound [4]. The CHSH inequality, which
belongs to a class of mathematical formulations broadly termed as Bell’s inequalities, al-
low us to distinguish the predictions of local hidden variable theories (LHVs) and theories
involving non-classical correlations, specifically quantum theory in our case. In that experi-
ment, we worked with a maximally-entangled state (Eq. 2.8) with a dimensionality of d = 2,
i.e. the number of independent outcomes of the measurements. The maximum violation of
the CHSH inequality expected for such a bipartite, two-outcome experiment is S = 2

√
2.

The CHSH inequality can however be also generalized to experiments with d > 2 [49,
151, 167] given suitable modification to correlation function E (Eq. 3.7). This inequality has
the feature that the expected theoretical maximum violation decreases with the increasing
d [151] and converges to the classical limit of S = 2 for d = ∞. This feature may sug-
gests somekind of an approach to classicality with large particle counts. As one might also
imagine this feature renders the CHSH inequality unusable as a means to probe the dimen-
sionality of quantum systems. A violation of less than S = 2

√
2 may indicate the system

has d > 2 or it might due to the non-maximally entangled nature of the state describing the
quantum system under test.

In 2002, Daniel Collins, Nicolas Gisin, Noah Linden, Serge Massar, and Sandu Popescu
came up with a set of Bell’s inequalities which came to be known collectively as the CGLMP
inequality [35]. The inequality is generalized for arbitrary high-dimensional bipartite sys-
tems with two measurement settings and d outcomes on each side. What this means is that
the violation increases with the dimensionality d of the system. When the inequality of a
certain dimension d is violated, one can then make some deduction of the lower bound of
the dimensionality of the system being probed being at least of dimensionality d.

In a bipartite system, suppose that both parties, Alice (A) and Bob (B) each can carry
out two possible measurements, A1 or A2, and B1 or B2, respectively. Each measurement
may have d possible outcomes denoted by 0, ..., d − 1 (Fig. 6.1). The expression for the
CGLMP expression can then be written as:

Id ≡
⌊d/2⌋−1

∑
k=0

(
1− 2k

d −1

)
{[P(A1 = B1 + k)+P(B1 = A2 + k+1)

+P(A2 = B2 + k)+P(B2 = A1 + k)]

−[P(A1 = B1 − k−1)+P(B1 = A2 − k)

+P(A2 = B2 − k−1)+P(B2 = A1 − k−1)]}, (6.1)
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where P(Aa = Bb + k) is the probability that the measurements Aa and Bb have outcomes
that differ by k modulo d:

P(Aa = Bb + k)≡
d−1

∑
j=0

P(Aa = j,Bb = j+ k modd), (6.2)

where d ≥ 2. For any dimensionality d, the CGLMP inequality has the classical limit of
Id ≤ 2.

Fig. 6.1 A d-dimensional quantum system with two measurement settings A1 and A2 or B1
and B2, and d outcomes on each side. The four different combinations of settings give in
total of 4d2 possible outcome of coincidence patterns which can be used for calculating the
CGLMP inequality.

For bipartite system with two outcomes on each side, i.e. d = 2, the CGLMP inequality
expression I2 can be written as,

I2 = [P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2) + P(B2 = A1)]

− [P(A1 = B1 − 1) + P(B1 = A2) + P(A2 = B2 −1)

+P(B2 = A1 − 1)]
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which further expands to:

= P(A1 = 0,B1 = 0)+P(A1 = 1,B1 = 1)+P(A2 = 0,B1 = 1)

+P(A2 = 1,B1 = 0)+P(A2 = 0,B2 = 0)+P(A2 = 1,B2 = 1)

+P(A1 = 0,B2 = 0)+P(A1 = 1,B2 = 1)−P(A1 = 0,B1 = 1)

−P(A1 = 1,B1 = 0)−P(A2 = 0,B1 = 0)−P(A2 = 1,B1 = 1)

−P(A2 = 0,B2 = 1)−P(A2 = 1,B2 = 0)−P(A1 = 0,B2 = 1)

−P(A1 = 1,B2 = 0)

= E(A1,B1)+E(A2,B2)+E(A1,B2)−E(A2,B1),

= S, (6.3)

thus recovering the original expression for the CHSH inequality (Eq. 3.6) for the same
dimensionality.

As the dimensionality of the Hilbert space increases, the maximal violation for a maximally-
entangled state:

|Φ+
d ⟩ =

1√
d

d−1

∑
j=0

| j⟩A ⊗| j⟩B, (6.4)

also increases. It is noteworthy to mention that for d > 2, the inequality Id does not give the
maximum violation for a maximally-entangled state [168–170]. Paradoxically, a maximum
violation for Id only occurs for the case of a non-maximally entangled state. This demon-
strate the fundamental properties that non-maximally entangled states are more resistance
to noise than maximally-entangled states. The same conclusion cannot be reached with the
CHSH inequality.

For the purpose of this chapter, to assess the CGLMP inequality as a dimension wit-
ness, we will focus on the case of a bipartite system with dimensionality d = 4 (this is the
minimum dimensionality where the behaviors of CHSH and CGLMP inequality diverges),
with two measurement settings at each party. A and B can each perform two possible mea-
surements, A1 or A2, and B1 or B2, respectably. Each measurement will yield 4 possible
outcomes, giving a total of 64 joint outcomes when all 4 possible combinations of A and B
settings are considered.

The computation of these high-dimensional CGLMP inequalities has been the subject
of several numerical studies [171, 172] in recent years. They provided a simple expression
for the CGLMP expression:

Let Poaob
AB (sa,sb) be the joint probability of A and B obtaining outcomes oa and ob with

the measurement setting sa and sb, respectively, where o = 1, ..., d and s = 1, ..., m (m pos-
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sible measurement settings). Suppose now A and B have mA and mB possible measurement
settings that would each generate dA and dB outcomes, respectively. For a compact descrip-
tion of the number of local measurement settings and the number of possible outcomes for
each local measurement, we denote m≡ (mA, mB) and d≡ (dA, dB). A simplified and equiv-
alent CGLMP expression Im;d with two measurement settings mA = mB = 2 and d possible
outcomes, dA = dB = d, can then defined as [173]:

I22dd(LHV) =
d−1

∑
oa=1

d−oa

∑
ob=1

Poaob
AB (1,1)+

d−1

∑
oa=1

d−1

∑
ob=n−oa

[Poaob
AB (1,2)+Poaob

AB (2,1)

−Poaob
AB (2,2)]−

d−1

∑
oa=1

Poa
A (1)−

d−1

∑
ob=1

Pob
B (1)≤ 0. (6.5)

For two outcomes d = 2, the above expression further reduces to:

I2222(LHV) = P11
AB(1,1)+P11

AB(1,2)+P11
AB(2,1)+P11

AB(2,2)

−P1
A(1)−P1

B(1)≤ 0, (6.6)

which is a form known as the CH74 [174] inequality developed by Clauser and Horne
in 1974 which is equivalent to the original CHSH inequality under the assumption of no-
signaling. By making the fair sampling assumption1, the CHSH inequality can be recovered
from the CH74.

The I2222 contains only the measurement with one outcome P1
A(1) or P1

B(1), so whether
or not the total measurement outcomes 1 and 2 represents a fair sample of the total events
emitted from the source is irrelevant. Fair sampling takes into account no detection and
double detection events in A and B’s outcomes. It is considerably more general compared
to the CHSH inequality but is difficult to implement in practice. This is because one would
need ideal detectors to measure the total events received by A and B in order to establish the
quantity P1

A(1) and P1
B(1).

The CGLMP expression Id in Eq. 6.1 is equivalent to the I22dd expression in Eq. 6.6 [173]
and the two inequalities are related as follows:

I22dd =
d −1

2d
(Id −2). (6.7)

In the presence of white noise, the quantum state becomes (similar to that given in Eq. 2.14b):

ρ(p) = p|Φ+
d ⟩⟨Φ

+
d |+(1− p)

Id ⊗ Id

d2 , (6.8)

1The fair sampling assumption states that the sample of detected pairs is representative of the pairs emitted.
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where I is an identity matrix with dimension d and p is the weight of the d-dimensional
maximally-entangled state in the mixture. The CGLMP expression is certainly violated if
p > 2

Id(QM) = pw.

Table 6.1 shows the summary of different types of violation with two measurement set-
tings and d outcomes. It has been shown that the maximum CGLMP violation Imax

d (QM)

does not correspond to maximally entangled input states [168, 175]. I
|Φ+

d ⟩
d is the maxi-

mum violation for an maximally entangled input state |Φ+
d ⟩. I

|Φ+
d ⟩

22dd is the corresponding best
known I22dd violation given in Eq. 6.7. Below the threshold weight pw, no violation is ex-
pected. For d ≥ 2, Imax

d (QM) increases suggesting a larger violation could be possible by

Table 6.1 CGLMP Id(QM) and I22dd violation [173].

d Imax
d (QM) I

|Φ+
d ⟩

d I
|Φ+

d ⟩
22dd pw

2 2.8284 2.8284 0.20711 0.70711
3 2.9149 2.8729 0.29098 0.69615
4 2.9727 2.8962 0.33609 0.69055
5 3.0157 2.9105 0.36422 0.68716
6 3.0497 2.9202 0.38342 0.68488
7 3.0776 2.9272 0.39736 0.68326
8 3.1013 2.9324 0.40793 0.68203
9 3.1217 2.9365 0.41622 0.68108

10 - 2.9398 0.42291 0.68032
100 - 2.9668 0.47856 0.67413
1000 - 2.9695 0.48427 0.67351

∞ - 2.9698 0.48491 0.67349

increasing the dimension of the system. The pw values indicate that the CGLMP violation
of higher dimensional systems are more resistant to noise.

In the later section, we will use the CGLMP inequality as a dimension witness for our
d = 4 experiment. The idea of dimension witness is that there exists an upper bound of
CGLMP violation if we restrict ourself to lower dimensional systems. In this particular
case, the maximum violation of I2244 with qutrits (d = 3), is strictly lesser than ququads
(d = 4). The maximal violation of I2244 with qutrits could be shown to be identical to
Imax
2233 = 0.304951 [176, 177]. To summarize, for experiment with two measurement settings

and four outcomes on each side, if the bound Imax
2233 ≤ 0.304951 is violated, the dimension

of the entangled system under investigation is at least 4.

This I2244 will be useful later for comparison with our experimental results to verify if
we indeed have a 4-dimensional maximally-entangled state.
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6.1.1 Derivation of the 4-Dimensional CGLMP Inequality

We now attempt to derive the maximum violation of I2244 = 0.33609 (in Table 6.1) for a 4-
dimensional maximally-entangled state using the CGLMP expression in Eq. 6.5. Following
the derivation steps given in Section 2.4, we start by writing a 4-dimensional maximally-
entangled state given by:

|Φ⟩ = 1
2
(|00⟩+ |11⟩+ |22⟩+ |33⟩) , (6.9)

with the definitions:

|0⟩ = (1,0,0,0)T

|1⟩ = (0,1,0,0)T

|2⟩ = (0,0,1,0)T

|3⟩ = (0,0,0,1)T

The detection probability (coincidence) between outcome |k⟩A,a and |l⟩B,b is written as

Pkl
AB(a,b) = tr(|k⟩A,a|l⟩B,b⟨k|A,a⟨l|B,b ρ). (6.10)
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The corresponding density matrix is written as (the zeros are replaced by dots):

ρ = |Φ⟩⟨Φ| =
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. (6.11)

Referring to the CGLMP expression in Eq. 6.5, for d = 4, this expression can be written
as:

I2244(QM) =
3

∑
k=1

4−k

∑
l=1

Pkl
AB(1,1)+

3

∑
k=1

3

∑
l=4−k

[Pkl
AB(1,2)+Pkl

AB(2,1)−

Pkl
AB(2,2)]−

3

∑
k=1

Pk
A(1)−

3

∑
l=1

Pl
B(1)

= P11
AB(1,1)+P12

AB(1,1)+P13
AB(1,1)+P21

AB(1,1)

+P22
AB(1,1)+P31

AB(1,1)+P13
AB(1,2)+P22

AB(1,2)

+P23
AB(1,2)+P31

AB(1,2)+P32
AB(1,2)+P33

AB(1,2)

+P13
AB(2,1)+P22

AB(2,1)+P23
AB(2,1)+P31

AB(2,1)

+P32
AB(2,1)+P33

AB(2,1)−P13
AB(2,2)−P22

AB(2,2)

−P23
AB(2,2)−P31

AB(2,2)−P32
AB(2,2)−P33

AB(2,2)

−P1
A(1)−P2

A(1)−P3
A(1)−P1

B(1)−P2
B(1)−P3

B(1). (6.12)



6.1 CGLMP Inequality 77

For simplicity, we write the coefficients of the joint probability in a compact manner via
Table 6.2 with each of the entries representing the coefficient of the joint probability. There
are 24 joint probabilities shown in the table.

Table 6.2 Coefficients of the joint probabilities.

P1
B(1) P2

B(1) P3
B(1) P4

B(1) P1
B(2) P2

B(2) P3
B(2) P4

B(2)

P1
A(1) 1 1 1 . . . 1 .

P2
A(1) 1 1 . . . 1 1 .

P3
A(1) 1 . . . 1 1 1 .

P4
A(1) . . . . . . . .

P1
A(2) . . 1 . . . -1 .

P2
A(2) . 1 1 . . -1 -1 .

P3
A(2) 1 1 1 . -1 -1 -1 .

P4
A(2) . . . . . . . .

Table 6.3 Coefficients of all the probabilities with swapping of Bob’s outcome.

-1 -1 -1 . . . . .
-1 1 1 1 . 1 . . .
-1 . 1 1 . 1 1 . .
-1 . . 1 . 1 1 1 .
. . . . . . . . .
. 1 . . . -1 . . .
. 1 1 . . -1 -1 . .
. 1 1 1 . -1 -1 -1 .
. . . . . . . . .

Table 6.4 Coefficients of all the probabilities with added joint probabilities P14
AB(1,1),

P24
AB(1,1), P34

AB(1,1), P44
AB(1,1), P41

AB(1,2), P42
AB(1,2), P43

AB(1,2) and P44
AB(1,2).

-1 -1 -1 -1 . . . .
-1 1 1 1 1 1 . . .
-1 . 1 1 1 1 1 . .
-1 . . 1 1 1 1 1 .
-1 . . . 1 1 1 1 1
. 1 . . . -1 . . .
. 1 1 . . -1 -1 . .
. 1 1 1 . -1 -1 -1 .
. . . . . . . . .
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We then perform a swap of Bob’s outcomes shown in Table 6.3 with -1 representing
the coefficient of the probability of Pk

A or Pl
B shown in Eq. 6.12. The six additional terms,

namely P1
A(1), P2

A(1), P3
A(1), P1

B(1), P2
B(1) and P3

B(1) are practically impossible to measure.
As an example, with the condition P14

AB(1,1)+P24
AB(1,1)+P34

AB(1,1)+P44
AB(1,1)−P4

B(1) = 0,
we added the coefficients of this condition into Table 6.4 [178].

The coefficients of the non-joint probabilities in the Table 6.4 are taken care of by the
conditions, −P1

A(1)−P2
A(1)−P3

A(1)−P4
A(1) = 1 and −P1

B(1)−P2
B(1)−P3

B(1)−PB
B (1) =

1. Therefore these probabilities need not be measured in the experiment. The CGLMP
inequality thus requires a minimum of 32 joint probabilities to be measured. Finally, for a 4-
dimensional maximally-entangled state, the maximum violation of the CGLMP is evaluated
to be Imax

2244(QM) = 0.33609. Thus for a verification of a dimensionality of d = 4, we need
0.304951 ≤ Imax

2244(QM) ≤ 0.33609.

6.2 Implementation of 4-Dimensional Entangled Photons

For our experimental test of the CGLMP inequality I2244 as a dimension witness for a di-
mensionality of d = 4, we implemented a hyperentangled state consisting of a maximally-
entangled polarization |ϕ+

polarization⟩ and energy-time |ϕ+
energy−time⟩ state each with a dimen-

sionality of d = 2. As as discussed in Section 5.3 the hyperentangled state can be written
as:

|Φ+⟩ = |ϕ+
polarization⟩ ⊗ |ϕ+

energy−time⟩. (6.13)

Similar to the experiments performed in Chapter 3 and 4, for the polarization degree
of freedom, we implemented a typical spontaneous parametric down-conversion source
(SPDC) to generate the maximally-entangled polarization state |ϕ+

polarization⟩ (Eq. 2.8). In
our experiment (Fig. 6.2a), the output of a laser diode (LD, central wavelength 405 nm)
passes through a single mode optical fiber (SMF) for spatial mode filtering and is focused to
a beam waist of 80 µm into a 2 mm thick BBO crystal. In this crystal (cut for type-II phase-
matching), photon pairs are generated via SPDC in a slightly non-collinear configuration.
A half-wave plate (λ /2) and a pair of compensation crystals (CC) take care of the temporal
and transversal walk-off [7].

Two spatial modes (labeled A and B) of down-converted light, defined by the SMFs for
810 nm, are matched to the pump mode to optimize the collection [63]. In type-II SPDC,
each down-converted pair consists of an ordinary and extraordinarily polarized photon, cor-
responding to horizontal (H) and vertical (V) in our setup. A pair of polarization controllers
(PCs) ensures that the stress-induced dispersion in the SMFs do not affect the polarization
of the collected photons. One of the PCs is adjusted such that it rotates the polarization of
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Fig. 6.2 Implementation and analysis of the polarization and energy-time hyperentangled
state with a dimensionality of d = 4. a) Entangled photon pairs are generated by a typical
spontaneous parametric down-conversion (SPDC) setup in a crossed-ring configuration. b)
The polarization degree of freedom of the down-converted photons is first analyzed on an
optical bench consisting of a quarter-wave (λ /4), half-wave plate (λ /2), and a polarization
beam splitter (PBS). This is followed by an unbalanced Michelson interferometer where the
energy-time degree of freedom is analyzed. The photons are detected by silicon avalanche
photodetectors (APD) and the signals registered on a coincidence unit (CU).

the photons by 90◦, i.e. |H⟩ ↔ |V ⟩. The CC is then adjusted to generate a |ϕ+
polarization⟩

state. Interference filters (IF) with bandwidth of 5 nm are placed in front of the collection
for spectral filtering of the intended down-conversion wavelength of 810 nm.

In the analyzer (Fig. 6.2b), projection of the collected down-converted photons onto
arbitrary the polarization is done by an optical bench consisting of a quarter-wave (λ /4) and
half-wave plate (λ /2) followed by a polarization beam splitter (PBS). For the energy-time
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analysis, we implemented two unbalanced Michelson interferometers2 MA and MB. Each
interferometer consist of a 50:50 beam splitter (BS) with a fixed retro-reflecting mirror (FM)
and a moveable retro-reflecting mirror (MM). The BS splits the incoming light into two
paths which get retro-reflected by the mirrors and recombined in the same BS. Movement
of the MM is effected by means of a piezo3 driven translation stage with a travel range of
up to 17.4 µm. The directions of movement are aligned to be parallel to the path of the
beam. The MM assembly of one of the interferometers is further mounted on a motorized
linear translation stage, which extends its range of travel to 25 mm. This is used for coarse
scanning purposes later on. To further enhance the spatial mode overlap between the |s⟩
and |l⟩ path, we introduce short patch of SMF just before APDs to spatially select a single
spatial mode. Photons are detected by avalanche photo diodes (APDs, quantum efficiency
≈40%) and corresponding detection events from the same pair identified by a coincidence
unit (CU) if they arrive within ≈ ±1.2 ns of each other.

As mentioned in Section 5.1, a number of conditions must be satisfied for the generation
of energy-time entanglement. The pump light comes from a grating feedback stabilized
external cavity diode laser. The typical frequency bandwidth of such a laser is on the order
of a few MHz which translates a coherence length lCp of meters. This was independently
verified by sending light from the laser into an unbalanced Michelson interferometer with a
path-length different of 4 m and seeing high visibility of the interference fringes.

The CU has a minimum coincidence time window of τC is 1.2 ns. From Section 5.1 we
established that the minimum path-length difference of the interferometer has to be at least
2cτC, where c is the speed of light, in order for the different energy-time combinations to
be distinguished. This corresponds to a minimum path-length difference of 0.72 m in our
case. For our interferometer, we set the length difference between the FM-BS and MM-BS
distance4 to be 0.38 m, giving us a round trip path-length difference of 0.76 m between the
two arms of the interferometer, greater than the minimum required. As the down-converted
light typically has a bandwidth of a few nm, its coherence length lCdc is much shorter than of
path-length difference of the interferometers in our case. Thus there is no concern of single
photon interference.

2The Michelson interferometer is functionally similar to the Mach-Zehnder interferometer but it is easier
to set up and alignment in our case. The choice is also motivated by our use of a movable mirror to effect the
phase shift ϕ in the interferometer

3Piezoelectric actuator AE0505D16F, Thorlabs.
4The experiment is being installed on an imperial optical table where the mounting holes are all 1 inch

apart. For the ease of referencing, we chose the length difference between the FM-BS and MM-BS distance
to be 15 mounting holes apart or 15 inch, giving us the seemingly odd choice of 0.38 m.
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6.2.1 Setting the Electronic Delays

The CU can reach a minimum coincidence time window τC of 1.2 ns. Thus in order to
properly post-select the central peak (Fig. 5.3) consisting of the |l⟩A|l⟩B and |s⟩A|s⟩B combi-
nations, the total delay, including both optical and electronic delays, must be equal. In order
to zero the delay between the two output signals of the APDs at the CU, an electronic delay
stage is fitted to each of the two signal lines leading to the CU. To ascertain the correct delay
settings, we monitor the coincidence counts between the two APDs and while keeping A’s
delay fixed, we scan the electronic delay of the signal from B’s detector over a range of a
few ns. By doing this, we obtain Figure 6.3.

From Figure 6.3, we can see that the delay between consecutive peaks is ≈ 2.5 ns, consis-
tent with that expected from a path-length difference of ∆L = 0.76m in the interferometers.
By setting the B’s delay to 3.38 ns, we are in the regime of zero delay between the output
signals from the two APDs at the CU. We can also deduce that with our choice of 0.76 m
for the path-length difference of the interferometers, the CU can efficiently post-select just
events from the |l⟩A|l⟩B and |s⟩A|s⟩B combinations.

6.2.2 Optimizing the Quality of the Interferometers

To achieve high quality entanglement of the energy-time degree of freedom, we first need
to ensure that there is a good overlap between the spatial modes of the |s⟩ and |l⟩ path
within each interferometer. Light from the input coupler going into the analyzer is made
highly collimated such that it maintains its the spatial profile after propagating through
the two paths of the interferometer and still overlap nicely before the the collection of the
APDs. Using light from a grating feedback stabilized external cavity 810 nm diode laser, our
calibration laser, which has a coherence length longer the than the path-length difference ∆L
of the interferometers, we measure the visibility of the interference obtained by scanning the
position of the MM with the piezo stage. Small adjustments are then made to the pointing
of the FM, MM and the tilt of the BS until visibility is maximized for both interferometers .

Secondly we need to ensure that the path-length difference of the two interferometers
are identical. This check is done by first coupling the output from the A interferometer to
the input of the B interferometer. Light from an infrared LED is then sent into the input
of the A interferometer and the output signal from the B interferometer is monitored while
MM for B is scanned using the motorized translation stage (Fig. 6.4). As the light from the
infrared LED is fairly broadband, it has a coherence length on the order of hundreds of µm.
Thus there will only be interference of the the two path |s⟩A|l⟩B and |l⟩A|s⟩B when the two
path-length differences are near identical. We term this as the zero path-length condition.
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Fig. 6.3 In order to zero the delay between the two output signals of the APDs at the CU, an
electronic delay stage is fitted to each of the two signal lines leading to the CU. To ascertain
the correct delay settings, we monitor the coincidence counts between the two APDs and
while keeping A’s delay fixed, we scan the electronic delay on the signal from B’s detector
over a range of a few ns.

The position of the MM for B is then set to the center of the envelope of the interference for
the zero path-length regime.

As the last process involving scanning the position of MM for B over a range much
larger than that of the piezo, there is a high chance of the MM getting misaligned. Thus the
total alignment procedure involves iterating between these two steps until a high visibility of
interference is achieved for both interferometers. For this particular alignment, we got the
visibility of interference to be a 97.4% and 97.3% for A and B’s interferometer respectively
just before the collection of the APDs. With the inclusion of a short patch of SMF for
spatial filtering, these figures increased to 99.4% and 99.6% respectively. The visibility of
the interference of the two interferometer thus imposes an upper limit of 99.0% to expected
visibility of the Franson interference for the energy-time state that we will characterize later.
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Fig. 6.4 By cascading the two interferometers one after the other and scanning the MM
of the B interferometer, interference between the |s⟩A|l⟩B and |l⟩A|s⟩B path can observed
using broadband light from an infrared LED. The position of the center of the interference
envelope corresponds to the case of a zero path-length difference between the |s⟩A|l⟩B and
|l⟩A|s⟩B, indicating that the individual path-length difference of each interferometer, ∆L are
identical.

6.2.3 Phase Setting and Stabilization of the Interferometers

To effect the various phase settings, ϕ between the |s⟩ and |l⟩ path in each of the two interfer-
ometers, the MM are moved minutely using piezoelectric actuators. These piezos transform
electrical energy into precisely controlled mechanical displacements. They are ideal for
applications requiring rapid, precise positional changes on the nanometer or micrometer
scale. However, they suffer from the non-linearity of the mechanical displacements with the
voltage applied and hysteresis effect.

To overcome this issue, we opted for the use of piezo stacks with integrated strain gauges.
These strain gauges are small resistance bridges that are stretched along the length of the
piezos. Their resistance changes linearly with extension of the piezos. Using the the output
resistance of these strain gauges as feedbacks, we implemented a closed-loop PID control
of the extension of the piezos.
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To set a certain phase, ϕ between the |s⟩ and |l⟩ path, we first send narrowband 810 nm
light from our calibration laser, mentioned in the previous section, into each interferometer
and scan the MM over a range of slightly more than a complete wavelength. We then fit the
resulting measurements of the number of counts registered by the APDs versus the strain
gauge reading to a sinusoidally varying function. From the fit parameters, we can determine
the correct strain gauge reading that corresponds to the phase setting we want. We then
command the piezo to move to the corresponding position with that particular strain gauge
reading. To characterize the accuracy of this procedure, we measured multiple cycles of
the counts versus the phase setting ϕ ranging from 0 to 2π . The curves are then fitted to
a sinusoidally varying function to determine their minimum positions which is expected at
ϕ = π . The result of the repeated measurement shows a spread of the expected minimum
position π by ±0.1 rad, giving us the uncertainty of the phase setting with this procedure.

To lessen the effect of thermal fluctuation and mechanical vibration on the stability of
the interferometers, both analyzers are enclosed with a cover. With the enclosure the inter-
ferometers display a characteristic time of about 1.5 min before the set phase, ϕ starts to
drift. This limits the integration time of each measurement point to less than 1.5 min and at
the same time, the calibration cycle needs to be performed for both interferometers before
every measurement.

6.2.4 Stabilization of the Calibration and Pump Laser

From Eq. 5.1, we can see that the energy-time entangled state depends on the phase, ϕA

and ϕB of the A and B interferometer, respectively. It is also dependent on the phase, ϕp of
the pump which in our case is related to the frequency of the pump light. Since a 810 nm
calibration laser is used calibrate the phase settings of the two interferometer, the resulting
energy-time entangled state is thus heavily dependent on the relative frequency of the two
lasers.

In order to maintain a fixed frequency relation between the two lasers, both lasers have
their frequency locked to the same wavemeter. Output readings from the wavemeter are
used in a closed loop feedback control of the position of the grating to keep their output
stable at a certain frequency. The frequency accuracy of 60 MHz for the wavemeter limits
how well the lasers are locked to each other and thus the accuracy at which we can generate
the required energy-time entangled state.



6.2 Implementation of 4-Dimensional Entangled Photons 85

0

0.2

0.4

0.6

0.8

1

0 π

2
π 3π

2
2π

N
o

rm
al

is
ed

in
te

n
si

ty

φP (rad)

∆ ≈ 0.1 rad

Fig. 6.5 In order to characterize the accuracy at which we can set the phases in the interfer-
ometers, multiple cycles of the counts versus the phase setting ϕ ranging from 0 to 2π were
measured. Fits to a sinusoidally varying function were performed to determine their mini-
mum positions which is expected at ϕ = π . The fitted minimum positions show a spread
of the expected minimum position π by ±0.1 rad, giving us the uncertainty of the phase
setting with this procedure.
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6.2.5 Characterization of the Hyperentangled State

In order to ascertain the quality of entanglement between the photon pairs, we probe their
polarization and energy-time degree of freedom separately. For polarisation entanglement
between the photon pairs, polarization correlations in the H/V basis (the natural basis, i.e.,
the basis aligned to the crystal axes) and +45◦/−45◦ bases (the complementary basis) are
measured (Fig. 6.6, upper). We obtain VHV = 100 ± 1% and V45 = 99.1 ± 0.9%. For
the energy-time correlations, we measured the Franson interference of the path |s⟩A|s⟩B and
|l⟩A|l⟩B (Fig. 6.6, lower) and obtain a visibility of V = 100 ± 9%. The large error bound
for V can be attributed to the low signal counts collected within the short integration time.
The non-zero phase of the Franson interference can be attributed to a mismatch between
the wavelength of the light from the calibration laser and the pump laser. This mismatch is
compensated for in the main measurement by offset the phase setting of the B interferometer
by the same corresponding amount.

6.3 Measurement Settings

In Section 6.1.1 we derived the maximal violation of the CGLMP, I2244 expected for a
maximally-entangled state (Eq. 6.9) with d = 4, written in the form of:

|Φ⟩ = 1
2
(|00⟩ + |11⟩ + |22⟩ + |33⟩) .

We now look at the equivalence between the above maximally-entangled state and the
hyperentangled state in Eq. 6.13. We start with the hyperentangled state given in Eq. 6.13:

|Φ+⟩ = |ϕ+
polarization⟩ ⊗ |ϕ+

energy−time⟩, (6.14)

where |ϕ+
polarization⟩ and |ϕ+

energy−time⟩ are given by Eq. 5.6:

|ϕ+
polarization⟩ =

1√
2
(|H⟩A|H⟩B + |V ⟩A|V ⟩B) ,

|ϕ+
energy−time⟩ =

1√
2
(|s⟩A|s⟩B + |l⟩A|l⟩B) ,
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Fig. 6.6 Polarization correlations (upper) in the H/V and +45◦/−45◦ bases. We observed
direct visibilities of VHV = 100 ± 1% and V45 = 99.1 ± 0.9%. The energy-time visibility
(lower) for coincidences between the signals at output of both interferometers is V = 100 ±
9%. The large error bound for V can be attributed to the low signal counts collected within
the short integration time.
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respectively. Thus |Φ+⟩ can be expanded to:

|Φ+⟩ = 1√
2
(|H⟩A|H⟩B + |V ⟩A|V ⟩B)⊗

1√
2
(|s⟩A|s⟩B + |l⟩A|l⟩B) ,

=
1
2
(|Hs⟩A|Hs⟩B + |Hl⟩A|Hl⟩B + |V s⟩A|V s⟩B + |V l⟩A|V l⟩B) , (6.15)

where, for example |Hs⟩A = |H⟩A|s⟩A. By making the following mapping:

|Hs⟩ → |0⟩,
|Hl⟩ → |1⟩,
|V s⟩ → |2⟩,
|V l⟩ → |3⟩, (6.16)

the maximally-entangled state, |Φ⟩ in Eq. 6.9 can be recovered.
In the CGLMP paper [35] discussed the Eq. 6.4, a maximally-entangled state of a two

d-dimensional system has the nondegenerate eigenvectors given by:

|k⟩A,a =
1√
d

d−1

∑
j=0

ei 2π
d j(k+αa)| j⟩A,

|l⟩B,b =
1√
d

d−1

∑
j=0

ei 2π
d j(−l+βb)| j⟩B, (6.17)

with operators Aa where a = 1,2 measured by Alice and Bb where b = 1,2 measured by
Bob, and α1 = 0, α2 = 1

2 , β1 = 1
4 and β2 = −1

4 . Eq. 6.17 has been shown to maximize the
violation of the CGLMP inequality for the maximally-entangled state of two d-dimensional
system [179, 180]. We consider a dimensionality of d = 4 and expand the eigenvectors:
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|k = 0⟩A,1 = |0⟩+ |1⟩+ |2⟩+ |3⟩
|k = 1⟩A,1 = |0⟩+ i|1⟩− |2⟩− i|3⟩
|k = 2⟩A,1 = |0⟩− |1⟩+ |2⟩− |3⟩
|k = 3⟩A,1 = |0⟩− i|1⟩− |2⟩+ i|3⟩

|k = 0⟩A,2 = |0⟩+ ei π
4 |1⟩+ ei π

2 |2⟩+ ei 3π
4 |3⟩

|k = 1⟩A,2 = |0⟩+ iei π
4 |1⟩− ei π

2 |2⟩− iei 3π
4 |3⟩

|k = 2⟩A,2 = |0⟩− ei π
4 |1⟩+ ei π

2 |2⟩− ei 3π
4 |3⟩

|k = 3⟩A,2 = |0⟩− iei π
4 |1⟩− ei π

2 |2⟩+ iei 3π
4 |3⟩

|l = 0⟩B,1 = |0⟩+ ei π
8 |1⟩+ ei π

4 |2⟩+ ei 3π
8 |3⟩

|l = 1⟩B,1 = |0⟩− iei π
8 |1⟩− ei π

4 |2⟩+ iei 3π
8 |3⟩

|l = 2⟩B,1 = |0⟩− ei π
8 |1⟩+ ei π

4 |2⟩− ei 3π
8 |3⟩

|l = 3⟩B,1 = |0⟩+ iei π
8 |1⟩− ei π

4 |2⟩− iei 3π
8 |3⟩

|l = 0⟩B,2 = |0⟩+ e−i π
8 |1⟩+ e−i π

4 |2⟩+ e−i 3π
8 |3⟩

|l = 1⟩B,2 = |0⟩− ie−i π
8 |1⟩− e−i π

4 |2⟩+ ie−i 3π
8 |3⟩

|l = 2⟩B,2 = |0⟩− e−i π
8 |1⟩+ e−i π

4 |2⟩− e−i 3π
8 |3⟩

|l = 3⟩B,2 = |0⟩+ ie−i π
8 |1⟩− e−i π

4 |2⟩− ie−i 3π
8 |3⟩ (6.18)
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If we perform the reverse mapping shown in Eq. 6.16 and decompose the resulting vector
into the polarization and energy-time degree of freedom, we can obtain the corresponding
settings in terms of polarization and energy-time degree of freedom to maximally violate
I2244. The settings are given by:
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|k = 0⟩A,1 = (|H⟩A + |V ⟩A)⊗ (|s⟩A + |l⟩A)

|k = 1⟩A,1 =
(
|H⟩A + eiπ |V ⟩A

)
⊗
(
|s⟩A + ei π

2 |l⟩A

)
|k = 2⟩A,1 =

(
|H⟩A + ei2π |V ⟩A
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Using same derivation technique that we recounted in Section 2.4, the above eigenvec-
tors for the polarization degree of freedom can be translated to the settings for the angles of
the λ /2 and λ /4 waveplates. For the energy-time degree of freedom, the phase can be direct
set on the interferometers.

Alice and Bob each have 8 possible settings. Thus in total the whole I2244 requires 64
joint measurements. Results of these 64 joint measurement are then used in Eq. 6.12 to
evaluate the inequality.

6.4 Results and Conclusions

Due to random drifts in the interferometers, there is a need to recalibrate them for every
measurement. Although the calibration process has been automated, it still take up to a
minute to characterize and to set a specific phase for each interferometer. Thus to minimize
the number of calibration cycle, we went with an integration time of 1 min, less than the
characteristic time of the interferometer of 1.5 min, for each point in the measurement. Tak-
ing these factors into consideration, each complete I2244 inequality will take up to 2 hours to
complete.

There are multiple issues with the generation and evaluation of the energy-time entan-
gled state that renders long data runs nearly impossible. One of the possible issues is the
frequency lock between the pump and calibration laser using the wavemeter. It turns out the
60 MHz resolution of the wavemeter still leave significant play between the frequencies of
the two lasers, resulting in a large variation of the energy-time entangled state generated. So
far attempts at refining this lock with a dual wavelength transfer cavity has not been success-
fully implemented. Another possible reason lies in the inaccuracy in setting the required
phases in the interferometers. This issue seems to be inherited from the difficult in obtain-
ing a good fit to the calibration data in order to obtain the required parameters for setting
the phases. Any small artifact in the data will render the fitted parameters to be inaccurate.

Another issue is with the low signal rate. Due to the geometry of Michelson interfer-
ometer, half of the signal is lost when the retro-reflected light is sent the wrong way. This
lowers the coincidence rate significantly making the accumulation of statistics difficult. So
far with best data run, we have of 10 consecutive complete measurements of I2244., From
the measurement, we obtained a value of I2244 = 0.31 ± 0.03. The error bound is too large
to fall into earlier evaluated range of 0.304951 ≤ Imax

2244(QM) ≤ 0.33609. Thus we cannot
conclusive comment on the use of the CGLMP inequality I2244 as a dimension witness.

Unfortunately, shortly before wrapping up this thesis, we realized that because the
maximally-entangled state with d = 4 can be expressed as the product state of two maximally-
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entangled states with d = 2, the inequality can still be violated purely by the classical
feed-forward of an earlier measurement result onto the choice of settings for a later mea-
surement. This makes our dimension witness susceptible to the same limitations as earlier
experiments [27–29]. Whether this is a limitation of the specific form of the CGLMP in-
equality we were working with or indeed with any other dimensional witnesses, are still
subjects of ongoing work.





Chapter 7

Conclusions

In this thesis, we presented the background theories, the implementation steps and the re-
sults obtained from three separate experiments, delving into various fundamental issues
surrounding the Tsirelson’s bound for quantum correlation, an algorithmic interpretation of
quantum mechanics and the dimensionality of quantum systems.

In Chapter 3, we implemented an experiment to violate the CHSH inequality [70] using
maximally polarization-entangled photon pairs from a SPDC source. With careful consid-
eration of the experimental parameters and optimization of the settings, we obtained a vio-
lation of 2.8276 ± 0.00082, providing the smallest distance with respect to the Tsirelson’s
bound ever reported, namely, 0.0008 ± 0.00082. The Grinbaum’s bound, which is slightly
lower than the Tsirelson’s bound, but is consistent with all previously available experimen-
tal results [5–17], was also violated by 2.72 standard deviations with this result, thus adding
further support that there is no evidence in favor of the that quantum theory is only an effect
version of a deeper theory for explaining the natural limits of correlations in all scenarios.
Conversely, this strong violation strengthened the position of those principles that predict
the Tsirelson’s bound [18–20].

The large violation also has important implication for cryptographic security where ap-
proaching the Tsirelson’ bound is a necessary and sufficient condition on certifying prob-
ability distributions in a device independent scenarios [103]. A similar situation applies
for the certification of a variety of physical properties based solely on the assumption of
non-signaling. In this respect, the degree of violation of the CHSH Bell inequality can be
used to certify the amount of randomness [22]. As presented in Section 4.3.1, the binary
output from either A or B is random in the ideal case. Thus, the higher the violation, the
larger the amount of certified randomness. Distance from the Tsirelson’s bound can also
be used check whether the state being measured is a maximally entangled state and/or that
the local measurements are of the type represented in quantum theory by anti-commutating
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operators [23]. This can be adapted to practical methods to estimate the fidelity of the
maximally-entangled states [24].

In Chapter 4, we highlighted the increasing alternative trend of viewing physical systems
and processes as programs that run on a computer made of the constituents of our universe.
In this interpretation, any process that can be simulated on a local universal Turing machine1

can be encoded as a program that is fed into it. For every such a program there exists its
shortest description called Kolmogorov complexity, which in most cases can only be approx-
imated using compression software. As such a description must obey distance properties as
shown in [26, 112], it allowed us to derived a brand new type of Bell type inequality that is
independent of any statistical interpretation. With our experimental implementation of po-
larization measurements performed on photons pairs described by a maximally-entangled
state and evaluation of approximations to Kolmogorov complexity using the compression
software LZMA [115], we obtained the value of 0.0494 ± 0.0076 for the inequality, which
is 6.5 standard deviations from the classical limits.

This result thus suggests that there exist physical processes that cannot be simulated
on local universal Turing machines. Furthermore, this algorithmic approach is complemen-
tary to the orthodox Bell inequality approach to quantum nonlocality [69] that is statistical
in its nature and if extended to all quantum experiments, it would allow us to bypass the
commonly used statistical interpretation of quantum theory. The result also beckons for a
reformulation the traditional algorithmic complexity in terms of the quantum information
science context, thus requiring further work on quantum version of Kolmogorov complex-
ity [128]2.

In Chapter 6, we highlighted the importance of the dimensionality of the Hilbert space
of a system as a quantum resource similar to entanglement in various quantum informa-
tion processing tasks. Previous attempts at experimentally witnessing large Hilbert space
dimension have the limitation of not being able to distinguish between classical and quan-
tum dimension [27–29] or requiring a priori knowledge of the state under test to make a full
assessment [30–33]. With that in mind, we motivated for the need for a device independent
way of assessing the minimal dimension of Hilbert space.

Generalizing the work of Brunner [34], we formulated a dimension witness based on
the CGLMP inequality [35] and experimentally implemented an energy-time and polariza-
tion hyperentangled state with a dimensionality d = 4 for assessing it. However, due to

1This is analogous to the statement of non-separability of entangled states described in Section 1.1.3.
2Drawing a parallel between the algorithmic and statistical interpretation of quantum theory we have:

A quantum Turing machine description would be equivalent to a non-separable entangled state while the
quantum Kolmogorov complexity would then be equivalent to the joint probability of measurement outcomes
in the statistical interpretation.
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persistent stability issues in the generation of the hyperentangled state, we only manage to
obtain the result of 0.31 ± 0.03 at the time of writing of this thesis. This result does not
violate the limit of 0.30 for d = 4 with a small enough error bar and thus does not provide
an conclusive assessment of the CGLMP inequality as a dimension witness. Unfortunately,
shortly before the conclusion of this thesis, we realized that the inequality can be violated
with entangled states of a lower dimensionality purely by the classical feed-forward of an
earlier measurement result onto the choice of settings for a later measurement, making our
dimensions witness susceptible to the same limitations mentioned earlier. Whether this is a
limitation of the specific form of the CGLMP inequality we were working with or indeed
with any other dimensional witnesses are subjects of ongoing work.
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