
REQUIREMENT-AWARE STRATEGIES FOR

SCHEDULING MULTIPLE DIVISIBLE

LOADS IN CLUSTER ENVIRONMENTS

HU MENGLAN

NATIONAL UNIVERSITY OF SINGAPORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48811136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

REQUIREMENT-AWARE STRATEGIES FOR

SCHEDULING MULTIPLE DIVISIBLE

LOADS IN CLUSTER ENVIRONMENTS

HU MENGLAN

(B. Eng, HUST)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012

Acknowledgments

I would like to thank my advisor, Bharadwaj Veeravalli, for supporting me over

the years, and for giving me so much freedom to explore and discover new areas of

task scheduling in distributed systems. His dedication, encouragement, support,

and hard work constantly inspired me to better myself and aim higher.

To my parents: Thank you for letting me pursue my dream for so long so far

away from home. I also thank my grandparents for giving me unconditional love

and support.

I want to thank my friends and my colleagues in CNDS lab for their kind

assistance and suggestions on research and other issues. These include Wang Yang,

Zeng Lingfang, Luo Tie, Lau Kah Soon, and other members in CNDS lab. The

interesting discussions during lunch and supper time are so enjoyable. Finally, I

would like to thank all my friends who made my life in Singapore enjoyable and

sociable. Thank you for all the good times.

i

Table of Contents

Acknowledgments i

Table of Contents ii

Summary v

List of Figures vii

1 Introduction 1

1.1 Background of Divisible Load Theory 1

1.2 Motivations . 3

1.3 Objectives and Contributions of the Thesis 5

2 Related Works 10

2.1 Divisible Load Scheduling . 10

2.2 Real-Time Scheduling . 15

2.3 Scheduling Coarse-Grain Independent Tasks 17

3 Models 19

3.1 The Task Model . 19

3.2 The System Model . 20

ii

TABLE OF CONTENTS

4 Scheduling Multiple Divisible Loads with Arbitrary Processor

Release Times 23

4.1 Problem Formulation . 24

4.2 Static Scheduling Strategy . 25

4.3 Dynamic Scheduling Strategy . 31

4.4 Performance Evaluation . 34

5 Scheduling Real-Time Divisible Loads 43

5.1 Problem Formulation . 44

5.2 Design and Analysis of RARTS Algorithms 44

5.2.1 The MSCF Scheduling Policy 45

5.2.2 The AEP Load Distribution Strategy 47

5.2.3 The LCF Load Distribution Strategy 51

5.2.4 Scheduling Architecture of RARTS 52

5.3 Performance Evaluation . 53

6 Scheduling Hybrid Loads 64

6.1 Problem Formulation . 65

6.2 Proposed HLS Algorithm . 66

6.3 Performance Evaluation . 71

7 Dynamic Scheduling of Hybrid Real-Time Tasks 76

7.1 Problem Formulation . 77

7.2 Proposed HLPPS Algorithm . 77

7.3 Extension of HLPPS for Loosely Coupled Clusters 84

7.4 Performance Evaluation . 88

iii

TABLE OF CONTENTS

8 Conclusions and Future Recommendations 99

8.1 Conclusions . 99

8.2 Future Work . 101

Bibliography 104

List of Publications 116

iv

Summary

Divisible load applications occur in many fields of science and engineering. Such

applications can be easily parallelized in a master-worker fashion, but pose several

scheduling challenges. This thesis investigates the problem of scheduling multiple

divisible loads in cluster systems with a particular emphasis in capturing two

important real-life constraints, various processing requirements of different loads,

and different load types.

We first study the problem of scheduling multiple divisible loads with different

processing requirements. Since the divisible loads to be performed may widely vary

in terms of their required hardware and software, we capture the loads’ various

processing requirements in our load distribution strategies, a unique feature that is

applicable for running proprietary applications only on certain eligible processing

nodes. Thus in our formulation each task may only be processed by some certain

nodes due to their different processing requirements.

We also study the scheduling of hybrid tasks comprising both divisible and

indivisible loads. Indivisible loads are characterized by the property that they

need to be processed on their entirety on a single processor while divisible loads

can be distributed across several processing nodes by exploiting the underlying

data parallelism. Since clusters are designed to handle any types of loads, handling

v

TABLE OF CONTENTS

hybrid tasks comprising both divisible and indivisible loads is common in practice.

We thoroughly investigate the above problems for both real-time and non-

real-time tasks. We contribute several efficient scheduling algorithms that are

aware of different processing requirements and load types of the tasks. Also, we

perform extensive performance evaluations to demonstrate the effectiveness and

competitiveness of our algorithms on various scenarios.

vi

List of Figures

4.1 Timing diagram of SSS. 25

4.2 Timing diagram of DSS. 32

4.3 Total processing time versus B. 36

4.4 Average total processing time versus M 37

4.5 Average total processing time versus J 38

4.6 Average total processing time versus pa. 39

4.7 Average total processing time versus pb. 40

4.8 Average total processing time versus Tp. 41

5.1 Timing diagram of AEP. 47

5.2 Average acceptance ratio versus R. 55

5.3 Average acceptance ratio versus 1/λ (R = 0.2). 56

5.4 Average acceptance ratio versus 1/λ (R = 1). 57

5.5 Average acceptance ratio versus pa (R = 0.2). 58

5.6 Average acceptance ratio versus pa (R = 1). 59

5.7 Average acceptance ratio versus B (R = 0.2). 60

5.8 Average acceptance ratio versus B (R = 1). 61

5.9 Average acceptance ratio versus Tp (R = 0.2). 62

5.10 Average acceptance ratio versus Tp (R = 1). 63

vii

LIST OF FIGURES

6.1 Timing Diagram of HLS for Step 1. 66

6.2 Timing Diagram of HLS for Step 2. 67

6.3 Average total processing time versus B. 71

6.4 Average total processing time versus M 72

6.5 Average total processing time versus J 73

6.6 Average total processing time versus p. 74

7.1 Motivating example: (a) scheduling L1 first and (b) scheduling L2

first. 78

7.2 Timing diagram of HLPPS. 80

7.3 Timing diagram of the divisible load distribution for loosely coupled

clusters in Step 3 of HLPPS. 85

7.4 Average acceptance ratio versus R. 90

7.5 Average acceptance ratio versus Rd. 91

7.6 Average acceptance ratio versus p. 92

7.7 Average acceptance ratio versus 1/λ. 93

7.8 Average acceptance ratio versus M 94

7.9 Average acceptance ratio versus B. 95

7.10 Average acceptance ratio versus Tp. 96

7.11 Average acceptance ratio versus R for divisible and indivisible loads. 96

7.12 Average acceptance ratio versus p for divisible and indivisible loads. 97

viii

Chapter 1

Introduction

1.1 Background of Divisible Load Theory

Distributed computing is an area in computer science that utilizes distributed sys-

tems to solve computational problems. A distributed system consists of multiple

autonomous computers that communicate through a computer network. These

networked computers interact with each other in order to achieve a common goal.

In distributed computing, a computational problem is divided into many small

tasks, which are then solved in parallel by the networked computers. Due to the

great computing power of the distributed systems, they are widely used to solve

large-scale scientific and engineering problems, which require massive amounts of

computations. Over the last decade, various distributed systems such as high per-

formance computer clusters and grids have been deployed to process enormous

applications (or tasks) in various scientific and engineering domains such as math-

ematics, computational physics, computational chemistry, climate change, weather

prediction, seismic analysis, bioinformatics, drug discovery, economic forecasting

and financial modeling.

1

CHAPTER 1. INTRODUCTION

Scheduling tasks in distributed systems is a critical issue which demands a

clever design of polices to partition, assign, communicate, and process the load

on networked computers. Inefficient scheduling decisions may result in severe

overheads and poor performance when running applications. The task schedul-

ing problem includes many forms, depending on the properties of the tasks to

be scheduled, the computing platforms, and the goal of scheduling. One type of

scheduling problems is that no dependencies exist among the tasks, and the num-

ber of tasks and task sizes can be arbitrarily chosen. In the real world, this is the

case for various large-scale applications in scientific and engineering domains, such

as image processing, database searching, matrix computing, and protein/DNA se-

quencing. Such applications are structured as large numbers of independent, iden-

tical, and low granularity computations and are thus amenable to straightforward

parallel computing. These applications have been called divisible loads because a

scheduler may arbitrarily divide the loads among networked computers, in terms

of both the numbers and sizes of the tasks.

The above scheduling problem can be characterized using the divisible load

model, which has been studied extensively in the last two decades, resulting in a

cohesive theory called Divisible Load Theory (DLT) [1]. DLT offers a tractable

and powerful tool to scheduling that allows linear and continuous modeling of

partitionable computations and communications for parallel processing. A vast

number of literatures on DLT demonstrates it as an elegant methodology for han-

dling large-scale applications in distributed systems [2, 3, 4, 5, 6]. In practice, this

divisible load model is an approximation of an application consisting of massive i-

dentical, independent, and low-granularity computations, and has been applied to

a wide spectrum of real-life applications including database searching [7], matrix

2

1.2. MOTIVATIONS

computing [8], and biological sequencing [9].

1.2 Motivations

Prior DLT literatures usually explore the scheduling of a single divisible load.

However, in practice, distributed systems are not likely to be utilized exclusively

by a single application. Thus it is highly desirable to investigate the problem of

scheduling multiple divisible loads. But this problem receives only limited atten-

tion due to its complexity. This problem was first considered in [1], which assumed

that tasks were executed in the first-in-first-out order on a set of heterogeneous

processors, all processors were used by each task, the computations of a task fin-

ished on all processors simultaneously, and startup time was negligible. Based

on the same set of assumptions, a multi-installment load distribution strategy was

proposed in [10]. This strategy is advantageous as it can minimize schedule length,

but for some cases it cannot avoid idle times in utilizing processors. Marchal et al.

[11] formulated a steady-state multi-task divisible load scheduling problem based

on a novel and realistic network model for wide-area networks. They found this

problem as NP-complete and hence proposed several heuristics for seeking near-

optimal solutions. Drozdowski et al. [12] discussed the computational complexity

of scheduling multiple divisible loads on a star network. They showed that the

problem is computationally hard (strictly speaking NP-hard) and identified several

special cases solvable in polynomial time. Drozdowski and Lawenda [13] analyzed

the problem of scheduling multiple divisible loads on homogeneous star systems

and showed that this problem is again computationally hard. They also presented

polynomial time solutions for special cases.

3

CHAPTER 1. INTRODUCTION

In the above works the diversity of different divisible loads were not taken into

consideration. They assume that all tasks are of the same type and have the same

processing requirements. However, in real world, the tasks can be of different

types and thus have different processing requirements on computing resources.

Accordingly, we identify two open problems in scheduling multiple divisible loads.

Firstly, the above papers assume that all tasks have the same processing re-

quirements so that all processing nodes can compute all tasks. However, for real

life applications, this assumption does not always hold true. In practice, due to

variations in different tasks and processing nodes not all nodes may be capable of

computing all tasks. There exist some proprietary applications that are licensed

and are available only at specific vantage locations. Also, compute nodes’ software

and hardware may become bottlenecks and restrict their capabilities of processing

various loads. For example, an application requiring 2 Gigabytes RAM should be

assigned to compute nodes that have at least that much RAM. Therefore it is high-

ly desirable to investigate the problem of scheduling multiple divisible loads with

various processing requirements and design load distribution strategies that inher-

ently absorb those requirements. We refer to this context simply as requirement-

aware scheduling problem.

Secondly, the prior works assume that all tasks are divisible loads. However,

in practice divisible and indivisible tasks can coexist in the system for processing.

Since clusters are in general catered to process any types of loads, handling a set

of tasks comprising both divisible and indivisible loads is very common in real-

life. But to the best of our knowledge, none of the earlier works addressed the

problem of scheduling hybrid divisible and indivisible tasks on distributed system.

To this end, in the thesis we also investigate the problem of scheduling a set of

4

1.3. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

tasks comprising both divisible and indivisible tasks on clusters.

By and large, the first problem addresses which processors can be used to

compute a given task while the second problem concerns how many processors are

to be used. Therefore both issues deal with tasks’ various processing requirements

on computing resources from two different perspectives.

1.3 Objectives and Contributions of the Thesis

The above discussion clearly sets the motivation for the problems addressed in this

thesis. Thus the general objective of this thesis is to investigate the problem of

scheduling multiple divisible loads on cluster systems and design efficient schedul-

ing algorithms that are aware of different processing requirements and load types

of the tasks. While achieving this goal, this thesis also addresses two realistic sce-

narios.

The first scenario is scheduling divisible loads under arbitrary processor re-

lease times. Most prior DLT works assume that all processors are simultaneously

available for a task. However, in real-life application execution some processors

may have been allocated to previously-admitted tasks. Such processors will not

be available until their previously-admitted tasks are completed. Thus it is worth

studying the case that processors have different release times (or ready times). A

few prior works have studied the problem of scheduling divisible loads with dif-

ferent processor release times. Prior work [14] presented strategies for scheduling

divisible loads on bus networks with arbitrary processor ready times. Closed-form

solutions were derived for identical release times and a heuristic was presented for

arbitrary release times. Another work [15] studied scheduling divisible loads on

5

CHAPTER 1. INTRODUCTION

linear chain networks with arbitrary processor ready times. In [15] both single and

multi-installment strategies were presented for the cases that a minimum process-

ing time can be achieved. Two heuristics were proposed for the cases that a min-

imum processing time cannot be realized. Moreover, Bharadwaj and Barlas [16]

addressed different processor release times together with finite buffer constraints.

In these works predetermined and known ready times were assumed. However, in

real-life scenarios, these assumptions are not always satisfied. In many cases pro-

cessors’ release times are indeterminable or unknown until they become available.

Therefore, it is beneficial to consider the case of dynamic processor ready times,

where ready times are unknown until processors are released. Motivated by this

need, in Chapter 4 we consider the requirement-aware scheduling problem with

arbitrary processor release times. We study both static and dynamic processor

release times and present efficient algorithms to tackle these challenges.

The second scenario is scheduling real-time tasks, which is also a critical issue

in the field of distributed computing. Several prior algorithms have been pro-

posed for scheduling real-time divisible loads in cluster environments. In [17] Lin

et al. proposed a real-time divisible load scheduling algorithm for cluster environ-

ments. Their algorithm employs the DLT rule to compute the minimum number

of processors required to meet an application’s deadline. In [18] Lin et al. con-

sidered different processor available times and revisited the works in [17] to devel-

op a scheduling algorithm which exploits inserted idle times to provide real-time

guarantees. In [19] Chuprat and Baruah extended the works in [18] and provided

exact solutions to improve the approximate solutions in [18]. In [20] Mamat et

al. considered advance reservations in designing real-time divisible load scheduling

algorithms. These papers adopted a “single-round” scheme in which one can di-

6

1.3. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

vide the load into many pieces equal to the number of processors and dispatch the

pieces in a single round of allocation. Although the single-round scheme is simple

to implement, yet it leads to poor overlap of communication and computation [5].

Therefore, in [21], the authors attempted to extend [5] to design a “multi-round”

scheme. However, they only considered the simplest case of one task and did not

provide algorithms to schedule multiple real-time tasks. To this end, in the thesis

we also study the scheduling problems for real-time tasks. Specifically, in Chapter

5 we investigate the problem of scheduling real-time divisible loads with various

processing requirements. We propose to design efficient “multi-round” scheduling

algorithms which can efficiently overlap communication with computation by dis-

patching loads in multiple rounds. In addition, in Chapter 7 we study the problem

of scheduling hybrid real-time tasks comprising divisible and indivisible tasks.

The scope of the thesis is to design efficient algorithms for scheduling multiple

divisible loads with different processing requirements and load types. We also

perform rigorous performance evaluation studies to quantify the performance of

our strategies on a variety of scenarios. However, implementation is beyond the

scope of the thesis.

This thesis thoroughly studies the requirement-aware scheduling problems and

contributes several algorithms to solve these problems. Chapter 4 investigates

scheduling multiple divisible loads with arbitrary processor release times and var-

ious processing requirements. Both static and dynamic processor release times

are taken into account and two scheduling strategies are presented, respectively.

In addition, a requirement-aware load selection policy is also provided to handle

the contention among different loads with various processing requirements. Chap-

ter 5 considers the problem of scheduling real-time divisible loads with various

7

CHAPTER 1. INTRODUCTION

processing requirements. In this chapter we present requirement-aware real-time

scheduling algorithms, which consist of a real-time scheduling policy and two load

distribution strategies. Chapter 6 studies the scheduling problem for processing

a set of tasks comprising both divisible and indivisible tasks. A scheduling algo-

rithm is provided to achieve high resource utilization. Chapter 7 addresses the

scheduling problem for processing a set of tasks comprising both divisible and in-

divisible real-time tasks. We propose a dynamic real-time scheduling algorithm,

which is shown to efficiently exploit the parallelism in divisible loads without un-

dermining the schedulability of indivisible loads and thereby optimize the overall

performance.

Nowadays Cloud/Cluster/Grid systems have been widely deployed to handle

various applications. In such environments multiple applications share and con-

tend for the resources. But such studies are currently missing in the DLT domain

and hence become the primary focus of this thesis. Therefore the problems ad-

dressed in this thesis are very useful and directly applicable. To the best of our

knowledge, the contributions in this study are the first of its kind to schedule mul-

tiple divisible loads with various processing requirements and load types.

The organization of this thesis is as follows. Chapter 2 presents a detailed re-

view of related works in the fields of scheduling divisible loads, indivisible loads

and real-time tasks, respectively. Chapter 3 introduces mathematical models and

assumptions used throughout the thesis. In Chapters 4 and 5 we investigate the

problem of scheduling multiple divisible loads with different processing require-

ments for non-real-time and real-time tasks, respectively. Chapter 4 also considers

the challenge of arbitrary processor release times. In Chapters 6 and 7 we study

the problem of scheduling a set of hybrid tasks comprising divisible and indivisi-

8

1.3. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

ble loads for non-real-time and real-time tasks, respectively. Finally, in Chapter

8, we conclude this thesis and put forward some future recommendations in the

context of this problem.

9

Chapter 2

Related Works

2.1 Divisible Load Scheduling

The research of scheduling divisible loads in distributed systems originated in

1988, with two initial works [22] and [23]. A later work [24] first presented a for-

mal mathematical framework for scheduling divisible loads and denominated the

theory as Divisible Load Theory (DLT). DLT offers a tractable and powerful tool

to scheduling that allows linear and continuous modeling of partitionable compu-

tations and communications for parallel processing. DLT literature until 1996 was

summarized by a landmark book [1] including above mentioned theoretical frame-

work and formulations. The book popularizes DLT and paves the way for various

extended DLT works in the last decade. In addition, two recent survey articles

[25, 26] highlighted the advantages of using DLT. Moreover, a special issue of the

Cluster Computing journal was devoted to divisible load scheduling [27]. Below

we review related DLT literature in detail.

Network topology is a critical issue to consider when designing scheduling algo-

rithms. Previous DLT works have studied many network topologies, such as bus,

10

2.1. DIVISIBLE LOAD SCHEDULING

linear chain, tree, mesh, and arbitrary graph. Bus is one common network topolo-

gy of local area networks and has received much attention in DLT studies. In bus

networks, processors are connected through a bus and the communication speed

between any two processors is identical. Also, any two processors can directly

communicate with each other. The authors in [28] provided a closed form solution

of optimal load distribution in bus networks. A later work [29] demonstrated the

optimality principle for bus networks. Linear daisy chain is another basic network

topology, in which processors are sequentially linked one by one. Any intermedi-

ate processor in the chain receives its load fraction from its predecessor and relays

the rest of the load to next processor. Robertazzi in [30] presented a concept of

”equivalent processor” and used it to determine load distribution in linear chain

networks. Mani and Ghose in [31] provided a closed-form solution of optimal load

distribution in linear networks. A more complicated topology is a tree network.

The initial work which studied tree networks was [32], in which both ”with front-

end” and ”without front-end” cases were studied. However, this paper only pro-

vided recursive equations but not rigorous closed-form solution. The closed-form

solution for tree networks was derived in [33]. Beaumont et al. in [3] investigated

both one-round and multi-round algorithms for both star and tree network topolo-

gies, in which both the linear and affine cost models were considered. A few open

problems were also discussed in this work. In [34] the cost of result collection was

taken into consideration and approximate algorithms were proposed for arbitrary

processor trees. Another complicated topology which has received much attention

in DLT literature is the mesh topology. The first work for the mesh topology was

reported in [35], in which a circuit-switched routing algorithm was presented for

a two-dimensional mesh network. This paper also provided a scattering approach

11

CHAPTER 2. RELATED WORKS

and analyzed the performance bound with communication delays. A later work

[36] studied a two-dimensional toroidal mesh and proposed a Peters-Syska scatter-

ing algorithm which was shown to outperform the method in [35]. Another work

[37] derived a closed-form solution for load distribution in three-dimensional mesh

networks. Furthermore, Li [38] presented load distribution algorithms for linear

arrays that can be generalized to k-dimensional meshes. In this work a pipelined

communication technique was used and a closed-form solution was derived. A

more recent work [39] proposed improved methods using a multi-round technique

for k-dimensional meshes and these methods has exhibited superior performance

than the algorithms provided in [38]. Finally, the arbitrary graph topology has also

been addressed. J. Yao et al. [40] proposed a RAOLD-OS strategy for scheduling

divisible loads in an arbitrary graph. This algorithm works by first constructing a

minimum spanning tree and then scheduling loads on this tree. In another work

[41] Darin England et al. designed a robust spanning tree for arbitrary graphs to

make a balance between robustness and performance.

Another important issue regarding the communication model is whether mul-

tiple simultaneous transmissions are allowed on one processor. Most papers in

DLT literature adopted a sequential communication mode, in which multiple si-

multaneous transmissions are not allowed on one processor. This assumption is

simple and useful in LAN since the communication throughput is restricted by

the bandwidth of the LAN, not the number of concurrent links. On the oth-

er hand, current technologies allow simultaneous transmissions on one processor

and the parallel communication mode can be beneficial for computing platforms

over wide area networks (WAN) to achieve higher throughput than the sequential

communication mode due to bandwidth-sharing properties. Hence, many works

12

2.1. DIVISIBLE LOAD SCHEDULING

[36, 38, 11] have also considered the parallel communication mode. Marchal et al.

[11] proposed a multi-port network model for wide-area networks and proposed

heuristics for seeking sub-optimal solutions for a steady-state multi-task divisible

load scheduling problem.

Start-up overheads have also received much attention in DLT research. In

practice, start-up overheads exist for both communication and computation. For

communication, the overheads may due to connection initialization, transmis-

sion delays, queuing delays, and so on. For computation, the overheads may

include processor initialization, unpacked delays, layered protocol delays, and so

on. Although in many cases such overheads are negligible and a linear cost mod-

el can be applied to model the communication and computation, yet some works

[34, 36, 37, 42, 43, 44] have taken these overheads into account and adopted an

affine cost model in which the overheads were treated as constants. The authors in

[34] investigated the cost of result collection and presented approximate algorithm-

s for arbitrary trees with start-up overheads. In [36] and [37], circuit-switching-

based scheduling strategies were proposed for 2D and 3D mesh networks under

the affine cost model. Another work [42] studied start-up overheads for different

network topologies including bus, linear chain, tree and hypercube, and proposed

recursive equations for different cases. However, this work only addressed commu-

nication overheads. A more general work [43] studied overheads in both commu-

nication and computation. Closed-form solutions were provided and the effect of

the start-up costs was discussed in this paper. A later work [45] has demonstrat-

ed that scheduling divisible loads on star networks under the affine cost model is

NP-Complete. Moreover, the combined effect of start-up cost and the finite buffer

constraint was studied in [44].

13

CHAPTER 2. RELATED WORKS

The above papers frequently adopted a ”single-round” scheme in which one can

divide the load into many pieces equal to the number of processors and dispatch

the pieces in a single round of allocation. Although the single-round scheme is

simple to implement, yet it leads to poor overlap of communication and computa-

tion. To this end, some prior works also proposed ”multi-round” algorithms which

can efficiently overlap communication with computation by dispatching loads in

multiple rounds. The first multi-round algorithms were proposed in [46, 47], for

linear chain and tree networks respectively. The authors in [47] presented a multi-

installment algorithm, which begins with small load chunks and gradually increas-

es chunk sizes throughout the load distribution process. In addition, the authors

provided a closed-form solution for homogenous systems, given a fixed number of

rounds. Later works [48, 49] also proposed multi-round algorithms and all of these

works adopted a linear cost model in which start-up overheads were not taken in-

to consideration. Under the same model, [50] proposed a multi-round algorithm

which was shown to be asymptotic optimal. However, one cannot use this algo-

rithm to obtain the optimal number of rounds because the asymptotic optimality

is achieved when the number of rounds approaches infinity, which is impractical.

To derive more practical solutions, [3, 51, 5] adopted an affine cost model to take

into account start-up overheads in communication and computation. Beaumont

et al. in [3] investigated both one-round and multi-round algorithms for both star

and tree network topologies, in which both the linear and affine cost models were

considered. A few open problems were also discussed in this work. Yang et al. in

[5] proposed a multi-round algorithm called UMR which can derive a near optimal

number of rounds under the affine model. To adapt to dynamic environments,

[52, 53] extended UMR to handle time-varying computation and communication

14

2.2. REAL-TIME SCHEDULING

speeds. Authors in [52] proposed to decrease chunk sizes at the end of load distri-

bution to tolerate performance prediction errors in dynamic environments, while

in [53] the authors focused on designing efficient performance prediction schemes.

Furthermore, multi-round algorithms are also used to solve multi-task scheduling

problems. Marchal et al. in [11] designed a novel network model for wide-area

networks and formulated a steady-state multi-task divisible load scheduling prob-

lem. They proposed multi-round heuristics for seeking sub-optimal solutions for

this problem.

Since DLT provides a practical framework for mapping independent tasks on-

to heterogeneous platforms, it has been widely applied to a large spectrum of

real-life applications including data measurement in wireless sensor networks [54],

image processing [55], large-scale matrix computations, [8], discrete wavelet trans-

form computations [56], database searching [7], load balancing on grid platform-

s [57, 58], multimedia applications [59, 60, 61], biological sequences aligning [9],

and parallel video processing [62]. All the above applications demand processing

massive computational loads that can be partitioned into small and independent

fractions and thus they are amenable to the DLT paradigm.

2.2 Real-Time Scheduling

The scheduling of real-time tasks on clusters is a critical issue for achieving high

performance. Many real-time scheduling algorithms have been proposed in liter-

ature. Real-time scheduling algorithms generally fall into two categories: static

(offline) [63, 64] and dynamic (online) [65, 66, 67]. In static algorithms, the al-

location of tasks to processors and the time that the tasks begin execution are

15

CHAPTER 2. RELATED WORKS

determined beforehand. Static algorithms [63] are used to schedule periodic real-

time tasks and the benefit is that once a schedule is obtained, deadlines will never

be violated. However, static algorithms cannot be used to schedule aperiodic real-

time tasks whose arrivals are unexpected. Scheduling such tasks requires dynamic

scheduling algorithms which dynamically admit and schedule new tasks without

compromising the guarantees for previously admitted tasks. In multiprocessor

systems, most real-time scheduling is NP-hard [65, 68, 69]. The authors in [68]

have shown that there are no optimal algorithms for scheduling aperiodic real-time

tasks whose characteristics are not known a priori in multiprocessor systems. It

was shown in [65] that a heuristic concerning a combined function of the deadline

and earliest start time of a task outperforms classical heuristics like EDF (Earliest

Deadline First) and LLF (Least Laxity First).

In the past decades, most prior works on multiprocessor real-time scheduling

assumed that a task is indivisible (independent) and executed on only one proces-

sor [65, 66]. This may cause deadlines to be violated due to poor resource utiliza-

tion. For example, a task will miss the deadline when the required computation

time is greater than the deadline. These motivate the research on parallel schedul-

ing of real-time tasks. Several recent algorithms have been proposed to deal with

the parallel real-time task scheduling problem [70, 67, 71, 72, 73, 74]. The au-

thors in [70] designed real-time algorithms for scheduling tasks on a partitionable

hypercube multiprocessor. The paper [67] presented a dynamic multiprocessor

real-time scheduling algorithm which allocates a task to multiple processors when

the allocation of one processor cannot guarantee the deadline. The authors in [71]

proposed a dynamic scalable task scheduling algorithm, in which the number of

processors allocated to each task is kept as small as possible while the deadline

16

2.3. SCHEDULING COARSE-GRAIN INDEPENDENT TASKS

is satisfied and a task with a large workload derivative is favored to start earlier.

Another recent work [72] addressed fairness issues for scheduling grid applications

with deadlines. Further, Netto and Buyya [74] studied the scheduling of parallel

bag-of-tasks applications with deadlines.

2.3 Scheduling Coarse-Grain Independent Tasks

In the recent past, the problem of task scheduling in distributed systems has been

extensively studied. A number of scheduling algorithms have been proposed in

the literature. Since this scheduling problem is NP-complete [75], the majority

of proposed solutions are heuristic algorithms. These algorithms can be classified

either as knowledge-based or knowledge-free. Knowledge-based algorithms assume

that perfect performance prediction information concerning resources and tasks is

known at the time of scheduling. Well-known knowledge-based heuristics include

Max-Min, Min-Min, Sufferage [76, 77], XSufferage [78], and Storage Affinity (SA)

[79]. Max-Min fist schedules the task whose earliest completion time over all

processors is the largest among all unscheduled tasks and then allocates the task

to the processor on which the earliest completion time can be achieved. The

only difference between Max-Min and Min-Min is that Min-Min first schedules

the task with the shortest earliest completion time. Sufferage differs from the two

algorithms as it first schedules the task with the largest sufferage value among

all unscheduled tasks. The sufferage value of a task is defined as the difference

between its earliest completion time and its second earliest completion time.

The aforementioned works relied on accurate performance prediction informa-

tion on underlying resources. But in real-life distributed systems such information

17

CHAPTER 2. RELATED WORKS

may be difficult to obtain. This motivates the design of knowledge-free approach-

es, such as RR [80] and WQR [81]. These heuristics require no performance pre-

diction information on resources. RR makes replicas of running tasks in a round-

robin fashion after conducting list scheduling for all of the unscheduled tasks.

WQR schedules tasks in an arbitrary order and dispatches them on the resources

as soon as they become available. When all tasks were scheduled, WQR starts to

create replicas, but it limits the number of times that a task may be replicated.

18

Chapter 3

Models

3.1 The Task Model

In this thesis, divisible load applications are of particular interests. These divisible

loads consist of massive identical, independent, and low-granularity data units

which can be distributed to networked computers for parallel processing. Also,

the divisible loads may be of different types. For instance one application may

deal with files and another with matrices. Following Marchal et al.’s model [11],

we have some definitions below. For each load Lj (j = 1, 2, · · ·), let Sj be the size

(in bytes) of Lj and Wj be the workload, i.e., the amount of computations (e.g.,

floating point operations) required to compute Lj. We partition each load into a

large number of identical, independent, and low-granularity load units and let Nj

be the total number of units of load Lj. Also, we let Su
j be the size (in bytes) of

a load unit of Lj and let W u
j be the workload of a unit of Lj, i.e., the amount of

computations (e.g., floating point operations) required to compute a unit of Lj.

Thus for a divisible load Lj, Sj = Su
j ∗Nj and Wj = W u

j ∗Nj. The parameters W u
j

and Su
j represent the task granularity of load Lj. We can obtain W u

j by testing one

19

CHAPTER 3. MODELS

data unit of the load Lj on a single processor and thus acquire the total amount

of computations of Lj as Nj is known [9]. When describing the divisible loads, we

use terms “task” and “load” interchangeably.

3.2 The System Model

Our target computing platform is a cluster system connected through a local area

network (LAN). The input data are divisible loads originally residing in a single

machine, P0, which is the master node for scheduling the loads. From P0’s per-

spective, the logical topology of the platform is actually a star topology. This star

topology is the generic architecture for implementing master-worker computation-

s and widely used by prior works including [3, 4, 5, 6]. Let M be the number of

processing nodes in the system and the nodes are denoted as (P1, P2, · · · , PM). P0

does not participate in processing but dispatches loads to the M nodes for parallel

processing. Each processor Pi (i = 1, 2, ...,M) has a compute speed Ci. The com-

munication speed (bandwidth) of the LAN is B. Following prior works [17, 67, 71],

we assume that B and Cis are fixed as the cluster is a dedicated system for the

master node P0 to execute the loads.

In this thesis, start-up time overheads are considered to be negligible and

we adopt a linear cost model, which is widely used in many prior DLT studies

including [2, 6, 11]. In this linear model, it takes
XSu

j

B
time units to send X units

of load Lj from P0 to each processor Pi. Similarly, each processor Pi has a compute

power Ci. It takes
XWu

j

Ci
time units to compute X units of Lj on Pi.

We assume that P0 sends loads in a sequential mode: Loads are not sent to

the processors simultaneously. Although current technologies allow simultaneous

20

3.2. THE SYSTEM MODEL

load transmission to multiple processors, this parallel communication mode can-

not significantly improve the performance of our strategies in LAN environments

primarily for two reasons. Firstly, the overall communication throughput of P0 is

restricted by the bandwidth of the LAN, not the number of receivers. Secondly,

as our strategies are shown to guarantee efficient overlapping of communications

with computations, there is very little room, if not none, for any parallel mode

to improve performance. Therefore, we adopt the sequential mode as the parallel

mode can cause unnecessary complexities for scheduling. Notice that in some oth-

er scenarios the parallel mode may significantly outperform the sequential mode

and we will discuss this in Chapter 8.

Finally, we assume that each processor has adequate storage to store and com-

pute any amount of data. When compared to the time taken for computation and

communication, the time for reporting the result back to P0 is negligible. The

time taken for making scheduling decisions is also negligible.

We now present a list of general notations that will be used throughout the

thesis. Other relevant and specific notations used in later chapters will be intro-

duced in respective chapters.

• B: bandwidth of the underlying network.

• Ci: compute speed of Pi.

• J : number of divisible load applications to be scheduled.

• Lj: j-th load (j = 1, 2, · · · , J).

• M : total number of processors in the system.

• Nj: the total number of units of Lj.

21

CHAPTER 3. MODELS

• P0: master node who distributes tasks to processors.

• Pi: i-th processor (i = 1, 2, · · · ,M).

• Sj: the size (in bytes) of Lj.

• Su
j : the size (in bytes) of a unit of Lj.

• Wj: the workload of Lj, which is the amount of computations (e.g., floating

point operations) required to compute Lj.

• W u
j : the workload of a unit of Lj, which is defined as the amount of compu-

tations required to compute a unit of Lj.

22

Chapter 4

Scheduling Multiple Divisible

Loads with Arbitrary Processor

Release Times

This chapter investigates the problem of scheduling multiple divisible loads in net-

worked computer systems with a particular emphasis in capturing two important

real-life constraints, the arbitrary processor release times (or ready times) and

heterogeneous processing requirements of different loads. We study two distinct

cases of interest, static case, where processors’ release times are predetermined and

known, and dynamic case, where release times are unknown until processors are

released. To address the two cases, we propose two novel scheduling strategies,

referred to as Static Scheduling Strategy (SSS) and Dynamic Scheduling Strate-

gy (DSS), respectively. In addition, we capture tasks’ processing requirements in

our strategies, a unique feature that is applicable for handling loads on networks

that run proprietary applications only on certain nodes. Thus each task can only

23

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

be processed by some certain nodes in our formulation. To handle the contention

of multiple applications that have various processing requirements but share the

same processing nodes, we propose an efficient load selection policy, referred to

as Most Remaining Load First (MRF). We integrate MRF into our SSS and DSS

to address the problem of scheduling multiple divisible loads with arbitrary pro-

cessor release times and heterogeneous requirements. We evaluate the strategies

using extensive simulation experiments.

4.1 Problem Formulation

The cluster system in this chapter consists ofM processors (P1, P2, · · · , PM) which

have different release times (or ready times). The ready time of processor Pi

(i = 1, 2, ...,M) is TR
i . We consider both static and dynamic cases of arbitrary

processor release times. In the static case processor release times are predeter-

mined and known before the execution starts. In contrast, in the dynamic case a

processor’s release time is unknown until the processor is released. Once a proces-

sor is released, it can be fully utilized by the master node P0 for processing loads.

The scheduling problem addressed in this chapter is to distribute J divisible

load applications (L1, L2, ..., Lj) onto M processors so that the total processing

time of all loads can be minimized. As we consider different types of applications

and heterogeneous processing nodes, these divisible loads have different computing

requirements and each load can only be processed by some certain processors. To

guarantee that all loads can be successfully completed, each load can be processed

by at least 1 processor.

24

4.2. STATIC SCHEDULING STRATEGY

Figure 4.1: Timing diagram of SSS.

4.2 Static Scheduling Strategy

In this section, we consider scheduling multiple divisible loads in the case of static

processor release times and present Static Scheduling Strategy (SSS). Fig. 4.1

shows the timing diagram of SSS for an example of 4 processors and one load.

The identifier αik indicates the load chunk allocated to processor Pi in round k.

As shown in Fig.4.1, SSS is a phase-based multi-round approach. SSS works in an

incremental fashion, consuming several rounds for scheduling and computing loads.

We use the term “load chunk” to denote a number of load units distributed in a

round to a processor. In each round, SSS works by iterating the steps of selecting

a load, selecting a processor, and then allocating a load chunk from the load to

the processor. The loads distributed in each round is computed in a corresponding

25

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

phase. The length of each phase is Tp, which is fixed and predetermined. Below

we describe the detailed design of SSS and we consider an arbitrary round k

(k = 1, 2, 3, · · ·) as an example to illustrate the working flow of SSS.

As multiple heterogeneous loads are involved, P0 needs to first select a load

before it can allocate a load chunk to some processor. The key issue of load selec-

tion is to address the contention of various loads which share the same compute

resources but have various processing requirements. To design an efficient load

selection policy, we need to achieve high processor utilization in scheduling. If

a processor is only able to compute certain loads but all those loads have been

completed, it will remain idle and this naturally wastes its compute power. Also,

we observe that such wastes severely happen at the end of the entire execution as

many loads gradually get completed and hence many processors will remain idle.

Specifically, if the processing of a load completes much later than others, many

processors that cannot compute it have to remain idle for long time, resulting in

serious compute power waste. Therefore, to minimize this waste and achieve high

performance, we should provide fairness to different loads and prevent some loads

from being completed much later than other loads. According to this principle,

we propose a fair load selection policy, referred to as Most Remaining Load First

(MRF). This policy selects the load with the most remaining amounts (in terms

of required computations). We denote LR
j as the total amount of computations

required for processing all un-allocated units of Lj. We can write LR
j as:

LR
j = NR

j W
u
j (4.1)

where NR
j is the number of un-allocated units of Lj. Thereby, among all available

loads, MRF selects the one with the largest LR
j . Since MRF first selects the

loads with the most remaining amounts, it can effectively prevent some loads from

26

4.2. STATIC SCHEDULING STRATEGY

being completed much later than other loads. Notice that at the beginning of each

round all remaining loads are set as available. If P0 cannot find any processor for

a selected load in round k, then this load will be set as unavailable.

Suppose load Lj is selected for scheduling. Now P0 needs to select a processor

and allocate it a load chunk from Lj. To make efficient scheduling decisions, we

should first consider the workings of the processors to understand the rationale

behind the scheduling. In SSS, the processors compute chunks once they have

any unprocessed chunks. Also, they process chunks in a first-come-first-serve way.

Hence, following a common strategy, in each round k P0 attempts to dispatch

appropriate amounts of loads to processors so that the processors can finish their

chunks of round k simultaneously when phase (k+1) ends (as shown in Fig. 4.1).

The strategy that guarantees processors to finish simultaneously is widely used

in many DLT works [1] since this strategy achieves load balancing and optimizes

resource utilization.

For processor selection in round k P0 only considers the processors satisfying 3

criteria: Firstly, such processors are capable of processing Lj. Secondly, such pro-

cessors are released before phase (k+1) ends because all processors are scheduled

to finish the chunks of round k when phase (k + 1) ends to conform to the above

rule. Thirdly, such processors have idle time before phase (k + 1) ends. If a re-

leased processor is allocated an adequate amount of load to continually compute

until phase (k + 1) ends, the processor is categorized as having no idle time be-

fore phase (k + 1) ends; otherwise, it is classified as having idle time before phase

(k + 1) ends.

The processors satisfying the 3 criteria are considered for Lj and P0 picks one

among them to allocate a chunk. Since all processors have the same communica-

27

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

tion speeds and their compute speeds are independent to loads, thus P0 selects a

processor among all available ones. If no processor is available for Lj, Lj will be

set as unavailable for round k. This means Lj cannot be scheduled in this round

but it will be considered in next rounds. Then P0 executes MRF again to select

another load. If no loads are available, P0 will end round k. It may be noted that

two cases can cause that no loads are available. The first is that all loads have

been finished allocation. The second is that all released processors that can com-

pute the loads have been allocated enough load chunks so that they have no idle

time. In this case, P0 will immediately start round (k + 1).

There is another rule for ending round k as explained below. The transmission

of round k must be finished before phase (k+1) starts so that processors can start

immediately to compute the chunks of round k in phase (k + 1) and P0 can also

start immediately to transmit the chunks of round (k+1) in phase (k+1). Thus,

when phase k ends P0 will immediately terminate the communication of round k

and start round (k + 1). Therefore, if there are too many processors so that P0

cannot utilize all of them, then P0 will abandon some processors, guaranteing that

the communication of round k can be finished before phase (k+1). This rule also

guarantees the loads with the most remaining amounts can be timely scheduled

in the next round.

Suppose P0 has selected load Lj and processor Pi for scheduling, now a load

chunk can be allocated from Lj to Pi. In round k P0 dispatches appropriate

amounts of load to Pi so that the chunk can be guaranteed to reach Pi before

phase (k + 1) starts and Pi can finish the chunk when phase (k + 1) ends (as

shown in Fig. 4.1). To allocate a chunk, P0 first calculates Pi’s available compute

time before phase (k + 1) ends. Then it can allocate a chunk according to the

28

4.2. STATIC SCHEDULING STRATEGY

available time. We denote this time as T comp
ik . To obtain T comp

ik we should consider

4 constraints. Firstly, Pi can process loads only after it becomes ready. Secondly,

Pi can process the new chunk only after it finishes previously allocated chunks.

Thirdly, even if Pi is ready and idle, necessary communication time should be

subtracted from the total available time. Finally, the communication of Pi should

be finished before phase (k + 1) starts. We can obtain T comp
ik as follows:

maxT comp
ik (4.2)

subject to: 

T comp
ik ≤ Tp(k + 1)− TR

i

T comp
ik ≤ Tp(k + 1)− T F

i

T comp
ik ≤ Tp(k + 1)− T comm

1 +
CiSu

j

BWu
j

T comp
ik ≤

BW u
j (kTp − T comm)

CiSu
j

(4.3)

where T F
i is Pi’s finish time of its previously allocated chunks, which is obtained

according to prior load allocation. T comm is the time instant when P0 is allocating

loads to Pi and thus (Tp(k + 1) − T comm) is the total available time when P0 is

allocating loads to Pi. The above linear program can be simplified as follows:

T comp
ik = min(E1, E2, E3, E4) (4.4)

where: 

E1 = Tp(k + 1)− TR
i

E2 = Tp(k + 1)− T F
i

E3 =
Tp(k + 1)− T comm

1 +
CiSu

j

BWu
j

E4 =
BW u

j (kTp − T comm)

CiSu
j

(4.5)

29

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

As E1, E2, E3, and E4 in Equation (4.5) can be directly calculated, we can easily

determine T comp
ik and obtain the chunk size αijk (in terms of number of units)

allocated to Pi from Lj in round k. In reality, this number should be an integer.

Thus we can write αijk as follows:

αijk = ⌊CiT
comp
ik

W u
j

⌋ (4.6)

If NR
j is less than the chunk size αijk, then αijk is accordingly reduced to that

number and all un-allocated units of Lj are allocated to Pi. In this case, Pi will

still be available after allocated the chunk since it still has some idle time before

phase (k + 1) ends. After dispatching the chunk, P0 iterates the above steps of

load selection, processor selection, and load allocation until no loads are available

for this round, or phase k terminates. Then P0 terminates round k and starts

round (k + 1), repeating scheduling loads until all the loads are allocated.

Now we discuss on the mechanism of SSS and highlight its advantages. From

Fig. 4.1 we can observe that, in phase (k + 1), while computing the chunks of

round k, processors can simultaneously receive the chunks of incoming rounds.

In this way, communications and computations are pipelined and overlapped to

save time. Prior DLT works usually adopt a single-round approach, in which

processors need to wait for P0 (thus, wasting time) to transmit loads to other

processors before they can start their own communication and computation [4,

6]. But in SSS such waste is significantly reduced by efficient overlapping. In

addition, in each round P0 dispatches loads according to processors’ available

time so that all processors can simultaneously finish their loads of that round.

This naturally achieves load balancing in each round. Further, SSS offers efficient

resource utilization since processors can continuously work throughout consecutive

phases, provided processors can process enough numbers of loads.

30

4.3. DYNAMIC SCHEDULING STRATEGY

It may be noted that in the last round, processors may finish computing at

different times. But this influences the overall performance little because the

unbalancing is limited in one phase and for all other rounds efficient load balancing

is guaranteed. However, if the number of rounds is too small, for example, less

than 5, unbalanced amounts of load in the last round may become considerable.

Therefore, the length of each phase Tp is not arbitrarily chosen. If Tp is too large,

unbalanced load in the final round will become significant and seriously weakens

the performance. In addition, the time taken in waiting for communication in

round 1 will also become considerable. On the other hand, Tp cannot be too small

because the data units cannot be infinitesimally small. Therefore, we should avoid

determining Tp as either very small or very large. When implementing SSS in

real-world applications, we should check the task granularity and the total size of

the data before Tp can be determined. In Section 4.4 we will evaluate the impact

of Tp on our strategies.

4.3 Dynamic Scheduling Strategy

Now we tackle a more realistic situation wherein processors that will eventually

participate are unknown until they become available. To handle unexpected pro-

cessor releases, we revisit SSS to carry out an alternate design, namely Dynamic

Scheduling Strategy (DSS). DSS is again a phase-based multi-round approach. Fig.

4.2 is a timing diagram of DSS showing an example of 4 processors and 1 load.

The identifier αik means the chunk allocated to processor Pi in round k. Same as

SSS, in each round, DSS iterates the steps of selecting a load by MRF, selecting a

processor, and then allocating a load chunk from the load to the processor accord-

31

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

Figure 4.2: Timing diagram of DSS.

ing to Equations (4.4) and (4.6). These steps repeat until all loads are completed.

Since the steps have been thoroughly described in Section 4.2, we omit to detail

these again, but below we intend to describe the differences between SSS and DSS.

In SSS load distribution can be determined before the entire execution, but

in DSS the distribution should be dynamically generated in each round since a

processors’ participation is unknown until it is released. In other words, we should

avoid making scheduling decisions too early since such decisions may result in poor

utilization of new processors. Therefore DSS works in a periodic fashion: For each

round k, P0 starts dispatching at the beginning of phase k and distributes the

chunks of this round in phase k. Thus the chunks sent in phase k can timely

reach the processors before the computation of round k starts in phase (k + 1).

32

4.3. DYNAMIC SCHEDULING STRATEGY

Same as SSS, in DSS the transmission of all chunks of round k must be finished

before phase (k + 1) starts so that processors can timely start to compute these

chunks in phase (k + 1) and P0 can also timely start to transmit the chunks of

round (k + 1) in phase (k + 1). When phase k ends P0 terminates round k and

immediately starts the next round. Therefore the communication time of round k

is only limited in phase k (as shown in Fig. 4.2).

Notice that P0 may finish the communication of round k before phase k ends.

But P0 will not start round (k + 1) until phase (k + 1) starts. This is because a

processor’s ready time is unknown until it is released; if load distribution is deter-

mined too early and loads are sent too early, when new processors are released the

loads may have been allocated to early-released processors and the new processors

may not be involved in computation. Although it is possible to redistribute loads

to the new processors and the early-released processors so that the new processors

can also be utilized, this process will waste communication resources, and become

cumbersome to handle scheduling and load balancing, especially in the presence

of heterogeneous loads. Therefore, in DSS P0 always starts the communication of

round k at the beginning of phase k and works in a periodic way as we mentioned

before. After sending loads to all available processors, P0 will remain idle, waiting

until phase k ends, and then start a next round.

DSS handles newly released processors in a different way to SSS. In fact, in SSS

new processors are not explicitly addressed, but in DSS extra efforts are needed to

handle dynamic processor releases. In DSS, P0 keeps monitoring new releases. If

a new processor Pi becomes ready in phase k, P0 will realize this immediately. If

P0 is busy when Pi becomes ready, P0 will handle it after the current transmission;

otherwise, P0 will immediately address it. To handle the new processor, P0 checks

33

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

all the loads that can be processed by Pi. If some loads that can be executed by

Pi are set as unavailable but they have un-allocated units, P0 will set such loads

as available. Thus these loads can be considered again in this round and Pi can

also be utilized immediately. Then P0 continues the steps of scheduling loads.

Now we conclude the mechanisms and benefits of DSS. In order to handle

new processors dynamically, DSS works in a periodic fashion so that scheduling

decisions will not be made too early. Also, DSS elegantly handles unexpected

release times by dynamically scheduling loads to new processors once they become

ready. Moreover, same as SSS, DSS provides efficient load balancing and resource

utilization as we analyzed in Section 4.2. DSS also implements efficient pipelining

and overlapping of communication with computation (as shown in Fig. 4.2) to

optimize processing time. The complexity of both SSS and DSS for scheduling J

tasks with MRF is O(J2).

4.4 Performance Evaluation

In this section, we evaluate the performance of SSS and DSS strategies by rigorous

simulation experiments. We typically follow the style of simulation study used in

most earlier studies in DLT literature [2, 4, 6].

To evaluate SSS and DSS, we compare their performance with an ideal case

(the performance bound) as there are no strategies available in the literature to

compare in this current problem context directly. For the ideal case, we assume

that arbitrary processor releases are perfectly handled so that each processor is

immediately involved in computation once it is released. Also, we assume that the

ideal case is not influenced by the granularity of the loads, which means the number

34

4.4. PERFORMANCE EVALUATION

of load units can be rational numbers when simulating the ideal case. In addition,

in the ideal case communications can be “optimally” overlapped with computation

such that communication delays are zero. However, if the network bandwidth is too

small, communications may not absolutely hidden even if an “optimal” scheduling

policy is applied. Hence we recognize a performance bound for the communication

of the ideal case. That is, in the ideal case the total processing time of X units

of load Lj cannot be less than the minimum communication time for transmitting

such a load chunk, which is
XSu

j

B
seconds. If a calculated processing time of the

ideal case is less than its minimum communication time, we let the processing

time be the minimum communication time. Therefore the ideal case presents the

performance bound among all possible solutions since the resource utilization of

either computation or communication is 100% in this case. In the following figures

the results of the ideal case are denoted as “Ideal”.

The normal experiment sets are denoted as “SSS-MRF” and “DSS-MRF”. Al-

so, we simulate an ideal load allocation case (ILA), in which each processor can

compute all loads. We apply ILA to both SSS and DSS to produce “SSS-ILA”and

“DSS-ILA”, respectively. Thus, by comparing SSS/DSS-MRF with SSS/DSS-ILA,

we can study the effect of heterogeneous loads and evaluate MRF. By comparing

SSS/DSS-ILA with the ideal case, we can evaluate the effectiveness of SSS/DSS

in handling homogeneous loads.

The simulated system consists of randomly generated processing nodes. The

initial configurations are set as follows: The number of processing nodes M is 20

and the number of loads J is 10. For each processor Pi the computation power

Ci is uniformly distributed among [100, 500] and the communication speed B is

set as 100. Processors’ ready times are uniformly distributed among [0, 100] time

35

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

20 40 60 80 100 120 140 160 180 200
100

150

200

250

300

350

400

450

500

550

B (Communication Speed)

T
ot

al
 P

ro
ce

ss
in

g
T

Im
e

Ideal
SSS−MRF
SSS−ILA
DSS−MRF
DSS−ILA

Figure 4.3: Average total processing time versus B.

units. As stated before, for SSS the processors’ ready times are known before

execution starts and for DSS the processors’ ready times are unknown until they

are released. In addition, to study the influence of different load types and sizes, we

let Su
j be uniformly distributed among [0.5, 1.5], let W u

j be uniformly distributed

among [1, 100], and let Nj be uniformly distributed among [500, 1500]. The length

of each phase Tp is 10 time units. To study the influence of multiple loads with

heterogeneous requirements, we use parameter p to denote the probability that a

load Lj can be processed by any processor. We let pj be uniformly distributed

among [0.2, 0.8].

In the following experiments we vary our interested parameters while fixing

other parameters as their initial values to study the effect of the interested pa-

rameters. We first vary B from 20 to 200 and the corresponding processing time

36

4.4. PERFORMANCE EVALUATION

5 10 15 20 25 30 35 40 45 50
100

150

200

250

300

350

400

450

500

550

M (Number of Processors)

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

Ideal
SSS−MRF
SSS−ILA
DSS−MRF
DSS−ILA

Figure 4.4: Average total processing time versus M .

is shown in Fig. 4.3. In addition, we vary M from 4 to 40 and Fig. 4.4 plots the

processing time versus M . Further, we vary J from 2 to 20 and Fig. 4.5 depicts

the processing time versus J . Then, to study the effect of pjs, we let pjs be uni-

form distributed among [pa − 0.1, pa + 0.1] and we vary pa among [0.2, 0.8], and

the corresponding processing time is shown in Fig. 4.6. Moreover, to investigate

the effect of different load groups with different p values, we consider a load set

consisting of two groups - group 1 are “easy” loads for which pj is uniformly dis-

tributed among [0.5, 0.9], and group 2 are “hard” loads for which pj is uniformly

distributed among [0.1, 0.5]. We use pb to denote the proportion of the number

of loads in group 1 to the number of the loads in the whole load set. We vary pb

among [0, 1] and Fig. 4.7 plots the processing time versus pb. Finally, we vary Tp

from 0.3125 to 160 and the corresponding processing time is shown in Fig. 4.8.

37

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

2 4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

J (Number of Loads)

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

Ideal
SSS−MRF
SSS−ILA
DSS−MRF
DSS−ILA

Figure 4.5: Average total processing time versus J .

The results in these figures show that both SSS and DSS strategies are effi-

cient, and their performance is close to to the ideal case in most cases. The only

exceptions are located in Fig. 4.6, 4.7, and 4.8, where the performance of both

SSS/DSS-MRF is much worse than the ideal case when processors cannot com-

pute enough loads or Tp is not properly chosen. In addition, SSS outperforms DSS

in most cases in our evaluations. This is because in SSS P0 can dispatch loads to

new processors before they become ready, but in DSS new processors have to wait

until P0 knows them and then dispatches loads to them. This results in higher re-

source utilization in SSS than in DSS. Moreover, the available communication time

of each round is limited to one phase in DSS , but may be more than one phase

in SSS. Accordingly, in each round P0 can send more loads in SSS than in DSS.

Fig. 4.3 shows that the processing time of all experiment sets stabilizes when

38

4.4. PERFORMANCE EVALUATION

0.2 0.3 0.4 0.5 0.6 0.7 0.8
120

140

160

180

200

220

240

260

280

300

pa

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

Ideal
SSS−MRF
SSS−ILA
DSS−MRF
DSS−ILA

Figure 4.6: Average total processing time versus pa.

B is greater than 80. This is due to the fact that when the network bandwidth is

large enough communication can be efficiently overlapped with computation and

hence varying B impacts little on the performance. In the contrary, when B is

smaller than 80, the processing time sharply increases as B decreases since when

B is small, communication requires too much time and thus cannot be effectively

hidden. Moreover, when B is large the performance gap between SSS and DSS

becomes small. A possible reason is that since the advantages of SSS to DSS lie in

communications, the advantages will become small when communication speeds

are enough high. Similarly, when B is small all experiment sets deliver close

performance, indicating that for slow networks communication delays dominate

the performance and other factors become negligible.

Fig. 4.4 shows that as M increases the processing time of all sets decreases as

39

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

0 0.2 0.4 0.6 0.8 1
120

140

160

180

200

220

240

260

pb

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

Ideal
SSS−MRF
SSS−ILA
DSS−MRF
DSS−ILA

Figure 4.7: Average total processing time versus pb.

more nodes computing in parallel saves more time. But the performance of SSS

and DSS gradually stabilizes when M is greater than 30. A plausible explanation

is that when there are abundant processors, network bandwidth becomes a bot-

tleneck and restricts resource utilization. Further, the performance gap between

SSS/DSS-ILA and SSS/DSS-MRF is significant when M is small, but gradually

decreases as M grows. This indicates that if there are only a few processing nodes,

MRF cannot always find proper nodes for scheduling, but if there are abundant

nodes probably MRF can find proper nodes.

From Fig. 4.5 we observe that the performance gap between SSS/DSS-MRF

and the ideal case gradually decreases as J grows. One contributing factor is that

the required computation time is approximately proportional to the total load size

but the communication delays which cannot be overlapped are merely related to Tp,

40

4.4. PERFORMANCE EVALUATION

10
−1

10
0

10
1

10
2

10
3

100

150

200

250

300

350

Length of Each Phase

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

Ideal
SSS−MRF
SSS−ILA
DSS−MRF
DSS−ILA

Figure 4.8: Average total processing time versus Tp.

which is fixed. Thus the effect of communication delays become more significant

when the processing time shortens as J decreases. Another contributing factor is

that when there are a few loads, the choices for MRF are very limited. Thus, MRF

may not be as efficient as ILA. This also explains the fact that the performance

gap between ILA and MRF decreases as J grows.

From Fig. 4.6 we observe that when pa is less than 0.4 the processing time of

SSS/DSS-MRF sharply increases as p decreases. A plausible explanation is that

when pa is less than 0.4, a processor is unable to compute enough number of loads

and thus cannot be fully utilized. Thereby, increasing pa enables the processors to

compute more loads and thus improves the performance. On the other hand, when

pa is greater than 0.4 their performance stabilizes as pa grows. This is because when

pa is greater than 0.4, a processor becomes efficient to process enough number of

41

CHAPTER 4. SCHEDULING MULTIPLE DIVISIBLE LOADS WITH ARBITRARY
PROCESSOR RELEASE TIMES

loads and thus be fully utilized in computation. Accordingly, increasing pa impacts

little on the performance. Fig. 4.7 shows another case wherein processors cannot

compute enough loads for group 2. Hence increasing pb enables the processors to

compute more loads and thus improves the performance.

Fig. 4.8 shows that when Tp is greater than 40, the processing time of SSS/DSS

sharply increases as Tp increases. This is due to the fact that the time taken in

waiting for communication in round 1 becomes considerable when there are only

a few rounds. Also, when Tp is too large, load unbalancing in the final round

becomes considerable and seriously weakens the performance. In the contrary,

when Tp is less than 1.25, the processing time of SSS/DSS significantly increases

as Tp decreases. This is because load units cannot be infinitely small. If Tp is too

small probably some processors cannot receive a unit as they cannot finish 1 unit

in 1 phase. Further, the performance of SSS/DSS stabilizes when Tp is among

[1.25, 40]. This shows that although Tp cannot be too small or too large, there

is still a wide range in which varying Tp only slightly influence the performance

of SSS/DSS. This range is related to the granularity and the sizes of the loads.

As SSS and DSS are designed for processing divisible loads consisting of large

numbers of low-granularity computations, choosing satisfactory values of Tp may

be not challenging. When implementing SSS/DSS for real-world applications,

simulations or experiments can help determine satisfactory values of Tp once the

granularity and size of the data are given.

42

Chapter 5

Scheduling Real-Time Divisible

Loads

In the last chapter, we have addressed the requirement-aware scheduling prob-

lem for processing multiple divisible loads with arbitrary processor release times.

To further enhance quality-of-service (QoS) and provide performance guaran-

tees in distributed computing environments, in this chapter we investigate the

requirement-aware problem in real-time cluster systems. We propose scheduling

algorithms referred to as Requirements-Aware Real-Time Scheduling(RARTS) al-

gorithms, which consist of a novel scheduling policy, referred to as Minimum Slack

Capacity First (MSCF), and two multi-round load distribution strategies, referred

to as All Eligible Processors (AEP) and Least Capability First (LCF). We per-

form rigorous performance evaluation studies to quantify the performance of our

strategies on a variety of scenarios.

43

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

5.1 Problem Formulation

Consider a real-time aperiodic divisible load model in which for each load Lj, Aj

is its arrival time and Dj is its deadline. As we consider diverse tasks and hetero-

geneous processors, the divisible loads have different computing requirements and

hence each load can only be processed by certain processors. We define processor

Pi’s capability on computing Lj as Cij. If processor Pi can process Lj, Cij = 1;

otherwise Cij = 0. To guarantee that all loads can be successfully completed, each

load can be processed by at least 1 processor.

The scheduler has complete knowledge about currently active list of tasks,

but not about future tasks which have not arrived. When a new task arrives, the

scheduler runs an admissibility test to dynamically determine whether it is feasible

to schedule the new task without compromising the guarantees for previously

admitted tasks. That is, the scheduler generates a task list containing the new

task and all previously admitted tasks. It then executes RARTS algorithms to

schedule all loads in the list. Upon completion of the test, if all tasks can be

completed within their respective deadlines, it can generate a new schedule to

replace the existing schedule and the new task is accepted. Otherwise, it rejects

the new task and maintains the existing schedule.

5.2 Design and Analysis of RARTS Algorithms

This section presents the detailed design and analysis of RARTS algorithms. We

describe the MSCF scheduling policy in Section 5.2.1 followed by two load distri-

bution strategies, AEP and LCF, in Section 5.2.2 and 5.2.3, respectively. Notice

that a complete load management process requires both a scheduling policy (e.g.,

44

5.2. DESIGN AND ANALYSIS OF RARTS ALGORITHMS

MSCF) and a load distribution strategy (e.g., AEP or LCF).

5.2.1 The MSCF Scheduling Policy

As multiple real-time tasks are involved, P0 first needs to adopt a scheduling policy

to determine the order in which the tasks are to be considered for allocation. The

most widely used urgency-based scheduling policy is the Earliest Deadline First

(EDF) method, which orders tasks by their absolute deadlines. Another well-

known scheduling policy is the Least Laxity First (LLF) approach, which first

selects the task that has the smallest slack time, defined as the time difference

between the deadline and the finish time of a task if it is started now.

For a set of real-time divisible loads with heterogeneous processing require-

ments, EDF and LLF may not properly reflect their real urgency. We can imme-

diately realize this via the following example. Consider processing 2 loads on 5

processors. The computation speed of each processor is 1 data unit per time unit.

Load L1 has 15 units of data and its deadline is 4. Load L2 has 5 units of data

and its deadline is 7. Also, all processors can process L1 but only processor P1 can

process L2. It takes 3 time units to process T1 on all processors and 5 time units

to process L2 on P1. Both EDF and LLF will schedule L1 first on all processors

according to DLT rule [1], causing L2 to violate its deadline. However, if we sched-

ule L2 first on P1, L1 can also be successfully scheduled on the other 4 processors.

This example shows that to schedule real-time divisible loads with heterogeneous

processing requirements, we shall consider processors’ capabilities in determining

tasks’ deadlines.

To this end, we present the Minimum Slack Capacity First (MSCF) policy to

handle real-time divisible loads with various requirements. For a given load Lj,

45

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

we only consider the processors which are capable of processing Lj and become

available before Lj’s deadline. Such processors are denoted as “eligible processors”

for Lj. Since a divisible load can be partitioned into small pieces for parallel

processing, the total available computation capacity for Lj before its deadline is

denoted as Ca
j , which is the amount of computations that can be performed using

all Lj’s eligible processors before Lj’s deadline. We can obtain Ca
j as follows:

Ca
j =

M∑
i=1

CijT
avail
ij Ci (5.1)

where the available time T avail
ij of Pi which can be utilized for computing load Lj

is given as:

T avail
ij = max(Dj − T F

i , 0) (5.2)

where T F
i is Pi’s finish time of its previously allocated load units, which can be

calculated according to prior load allocation.

To determine Lj’s urgency, we shall consider both the available computation

capacity before its deadline and the remaining amount of the load. We denote Lr
j

as the total amount of computations required for processing all remaining units of

Lj. We can write Lr
j as:

Lr
j = N r

jW
u
j (5.3)

where N r
j is the number of remaining units of Lj. In MSCF we use“slack capacity”

δj to determine Lj’s urgency. We denote δj as:

δj = Ca
j − Lr

j (5.4)

Thus δj is defined as the amount of loads that can be processed before Lj on all

Lj’s eligible processors without violating Lj’s deadline. This metric can reflect

Lj’s urgency by considering both available capacity before the deadline and the

46

5.2. DESIGN AND ANALYSIS OF RARTS ALGORITHMS

Figure 5.1: Timing diagram of AEP.

remaining load size. Hence, in MSCF the task with the smallest δj is first selected.

If δj is negative, Lj cannot be successfully scheduled.

5.2.2 The AEP Load Distribution Strategy

The scheduling policies (EDF, LLF, and MSCF) only determine the scheduling

order of tasks, but they do not determine how to distribute the selected task to

processors. To address this dilemma in processor assignment, we propose two

load distribution strategies, AEP and LCF. Both the strategies employ a “phase-

based” multi-round approach and in this subsection we first introduce AEP. Fig.

5.1 shows the timing diagram of AEP for an example of 4 processors and 3 tasks

in 4 rounds. The identifier αijk indicates the load chunk (in terms of number of

47

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

load units) distributed to processor Pi from load Lj in round k. AEP works in an

incremental and periodical fashion, executing multiple rounds to distribute and

process loads. This process lasts for multiple phases and each phase is a fixed

period of which the length is Tp. To achieve high performance, the basic idea

behind AEP lies in implementing efficient pipelining. That is, the load chunks

distributed in round k (k = 1, 2, 3, · · ·) are sent in phase k and computed in phase

(k + 1). In phase (k + 1), while computing the chunks of round k, processors

can simultaneously receive the chunks of round (k + 1), as shown in Fig. 5.1. In

this way, communications and computations are pipelined and overlapped. Also,

the transmission of round k must be completed before phase (k + 1) starts so

that processors can start immediately to compute the chunks of round k in phase

(k+1) and P0 can also start immediately to transmit the chunks of round (k+1)

in phase (k + 1).

Suppose load Lj is selected for load distribution. Now we describe how P0

distributes Lj to eligible processors in each round. The allocation process starts

from round 1 and here we consider an arbitrary round k as an example. In round k,

since P0 attempts to dispatch Lj to all eligible processors, we shall first determine

the eligible processors for Lj, which need to satisfy the following two criteria.

Firstly, such processors are capable of processing Lj. Secondly, such processors

have idle time in phase (k + 1). If a processor is distributed an adequate amount

of load to continually compute until the end of phase (k + 1), the processor is

categorized as having no idle time in phase (k + 1); otherwise, it is classified as

having idle time in phase (k + 1).

As P0 attempts to dispatch Lj to all eligible processors, it (sequentially) selects

each eligible processor Pi to distribute it a load chunk. To distribute a chunk, P0

48

5.2. DESIGN AND ANALYSIS OF RARTS ALGORITHMS

first computes Pi’s available compute time before phase (k+1) ends. Then it can

allocate a chunk according to the available time. We denote this time as T comp
ik .

To obtain T comp
ik we shall consider the following three constraints. Firstly, Pi can

process the new chunk between the time when it finishes previously allocated

chunks and the deadline of Lj or the termination time of phase (k+1). Secondly,

even if Pi is idle, necessary communication time should be subtracted from the

total available time. Thirdly, the communication of Pi should be finished before

phase (k + 1) starts. Thus we can obtain T comp
ik as follows:

T comp
ik = min(E1, E2, E3) (5.5)

where: 

E1 = Tend − T F
i

E2 =
Tend − T comm

k

1 +
CiSu

j

BWu
j

E3 =
BW u

j (T0 + kTp − T comm
k)

CiSu
j

(5.6)

where Tend = min(Dj, T0 + Tp(k + 1)). This means if the deadline Dj occurs in

phase (k + 1), Pi can process loads until Dj is met; otherwise Pi can work till

the end of phase (k + 1). Here T0 is the time instant when the new schedule is

generated and the start time of phase k is T0 + Tp(k − 1). Thus the compute

time of round 1 can be greater than 1 phase when there is no prior load allocation

(T F
i = 0), as shown in Fig. 5.1. T comm

k is the time instant when P0 can start

to send the load chunk to Pi and thus (Tend − T comm
k) is the total available time

when P0 is allocating loads to Pi. Notice that all load chunks of different tasks of

round k are sent in phase k according to the order in which they are scheduled

(as shown in Fig. 5.1). Therefore, at the beginning of each round k, T comm
k is

initialized as T0+Tp(k−1) and once a chunk of round k is allocated, the scheduler

49

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

will update T comm
k by adding the corresponding communication time of the chunk.

As E1, E2, and E3 in Equation (5.6) can be directly calculated, T comp
ik can also be

easily determined. Knowing T comp
ik , we can calculate the chunk size αijk (in terms

of number of units) allocated to Pi from Lj in round k. In reality, this number of

units should be an integer. Thus we can write αijk as follows:

αijk = ⌊CiT
comp
ik

W u
j

⌋ (5.7)

If N r
j is less than the chunk size αijk, then αijk is accordingly reduced to that

number and all unallocated units of Lj are distributed to Pi. Accordingly, Pi will

still be available after being distributed the chunk since it still has some idle time

before phase (k+1) ends. In this case, Pi can be allocated another chunk in round

k from remaining tasks and Pi shall execute these different chunks in phase (k+1)

following their scheduling order so that deadlines will not be violated.

P0 iterates this load distribution process to distribute Lj in this round to other

processors until all eligible processors are utilized in this round or communication

time is used up (T comm
k = kTp). Then P0 starts to distribute Lj in round (k + 1)

and repeats these steps until the entire Lj is allocated. Afterwards P0 can start

to distribute next task selected by scheduling policies.

From Figure 5.1 we can observe that in phase (k + 1), while computing the

chunks of round k, the processors could simultaneously receive the chunks of round

(k + 1). In this way, communications and computations are pipelined and over-

lapped to save time. Prior works that addressed real-time issues in DLT literature

[17, 18, 19] adopted a single-round approach; in these strategies processors need to

wait for P0 to transmit loads to other processors before they can start their own

communication and computation. But in AEP such idle-time waste is significant-

ly minimized by efficient overlapping. In addition, AEP offers efficient resource

50

5.2. DESIGN AND ANALYSIS OF RARTS ALGORITHMS

utilization since processors can continuously work throughout consecutive phases

once processors become available. However, in [17] it is assumed that all partici-

pating processors assigned to a given task are released simultaneously and thus a

processor can start to compute the task only after all the participating processors

become available, which can cause severe wastage of compute power.

5.2.3 The LCF Load Distribution Strategy

The AEP strategy does not consider the contention of various loads which share

the same compute resources but have various processing requirements. This leaves

some room for performance optimization. Therefore, we revisit AEP to design an

alternative load distribution strategy, LCF, which selects the processor with the

least capability first. The capability parameter θi of processor Pi is defined as the

total amount of all remaining loads that can be processed by Pi. We denote θi as

follows:

θi =
∑
j∈S

CijW
u
j N

r
j (5.8)

where S is a set containing all loads to be scheduled. In LCF, P0 first selects the

processor with the smallest θi among all eligible processors of the selected load Lj.

For a selected processor Pi, P0 starts from round 1 and sequentially distributes

load chunks from Lj to Pi in multiple rounds according to Equations (5.5), (5.6),

and (5.7) until Lj’s deadline. Then P0 iterates to select other processors and to

distribute chunks to the processors until the entire task is allocated. Afterwards

P0 can start to distribute next task selected by scheduling policies.

Below we compare the benefits and the drawbacks of AEP and LCF. LCF

handles the contention of tasks by first selecting the processors with the least θis

and leaving the processors with high θis to remaining tasks. Thus LCF guarantees

51

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

high resource utilization as the processors with high θis are likely to be utilized by

remaining loads. On the contrary, in AEP it is possible that the processors with

low θis are left to remaining tasks, and such processors may not be utilized due to

their restricted capabilities. This leads to low resource utilization and may finally

cause some tasks to be rejected. Therefore, for the current set of tasks, LCF can

optimize processor utilization.

On the other hand, although LCF can efficiently utilize processors for the

current set of tasks, yet it may not achieve high resource utilization for future

tasks once contention is not intensive. For example, if there are only a few tasks

and the tasks’ deadlines are not urgent, some processors will remain idle since

LCF tends to employ the minimum number of processors to meet tasks’ deadlines.

This leads to low processor utilization and may finally cause some future tasks to

be rejected since current tasks are finished late. Therefore, when contention is not

intensive (e.g., deadlines are not urgent), it is beneficial to use AEP which employs

all eligible processors so that current tasks can be completed as soon as possible

and the processors can be released timely for computing unexpected future tasks.

The time complexity of AEP for scheduling J tasks is O(J2) and the complexity

of LCF is O(J2 + JM) as LCF needs additional efforts in processor selection.

5.2.4 Scheduling Architecture of RARTS

When a new task arrives at time T0, the scheduler runs an admissibility test to

dynamically determine whether it is feasible to schedule the new task without com-

promising the guarantees for previously admitted tasks. To run the admissibility

test, the scheduler generates a task list containing the new task and previously ad-

mitted tasks. The scheduler then executes a scheduling policy (EDF or MSCF) to

52

5.3. PERFORMANCE EVALUATION

determine task scheduling orders and a load distribution strategy (AEP or LCF)

to distribute selected tasks to processors. Upon completion of the test, if all tasks

can be completed within their respective deadlines, a new schedule is developed

to replace the existing schedule and the new task is accepted. Otherwise, the new

task is rejected and the scheduler maintains the existing schedule.

To generate a new schedule, P0 will reset system parameters. The new task

and remaining unsent loads are considered together for scheduling. In the new

schedule, P0 starts round 1 from T0 and thus the start time of each phase k is

T0 + Tp(k − 1). Processors’ finish times T F
i s are updated according to the finish

time of the chunks which have been sent before the arrival of the new task.

5.3 Performance Evaluation

In this section, we evaluate the performance of RARTS strategies by rigorous sim-

ulation experiments. Our interested metric is acceptance ratio, which is defined

as the ratio of the number of tasks found schedulable to the number of tasks ar-

riving for scheduling. With the aforementioned scheduling polices and load dis-

tribution strategies, we can generate 5 algorithms, EDF-AEP, LLF-AEP, MSCF-

AEP, EDF-LCF, and MSCF-LCF. The nomenclature of the algorithms includes

two parts. The first part represents the scheduling policy adopted: EDF, LLF, or

MSCF. The second part indicates the load allocation strategies adopted: AEP or

LCF. We only combine LLF with AEP because when LCF is applied, the slack

time of LLF would be zero for a load since its finish time is equal to its deadline.

To understand the merits of our algorithms, we shall compare them with al-

gorithms proposed in prior works. Among the strategies proposed in prior works

53

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

on real-time divisible load scheduling [17, 18, 20, 19], we found that the strategies

in [17, 18, 19], can be used for comparison because [20] focus on factors irrelevant

to our work. Although the strategies in[17, 18, 19] are designed for homogeneous

computing platforms and homogeneous divisible loads, yet we can modify them so

that they can also work on heterogeneous computing platforms and handle het-

erogeneous loads. Since the strategy in [19] outperforms the strategies in [18] (as

reported in [19]), and the strategies in [18] outperform the strategies in [17] (as

reported in [18]), we choose the strategy proposed in [19] for comparison. This

strategy, extended from works in [18], adopts the same basic mechanism as [18].

That is, the strategy attempts to schedule loads to the minimum number of pro-

cessors in a single round of workload allocation so that the processors can finish

computing at the deadline. The modification we made for this strategy is that

when determining the minimum number of processors for a selected load, only

the processors which are capable of processing the load are considered. Below we

denote this modified single-round strategy as “SRS”.

The simulated system consists of randomly generated processing nodes. The

initial simulation configurations are set as follows: The number of processors is 20.

For each processor Pi the computation power parameter Ci is uniformly distributed

among [100, 500] and the communication speed B is set as 100. To generate a

set of real-time divisible loads, we assume that the inter-arrival times follow an

exponential distribution with a mean of 1/λ and we initially set 1/λ as 10 time

units. A task’s relative deadline (defined as Dj − Aj) is assumed to be uniformly

distributed among [T sc
j ∗(1+ 1

2
R), T sc

j ∗(1+ 3
2
R)] where T sc

j is the estimated shortest

compute time for load Lj (T
sc
j =

Lj∑M
i=1 CijCi

) and R is the laxity parameter which

denotes the tightness of the deadlines. In addition, to study the effect of different

54

5.3. PERFORMANCE EVALUATION

10
−1

10
0

10
1

10

20

30

40

50

60

70

80

90

100

Laxity Parameter R

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.2: Average acceptance ratio versus R.

load types and sizes, we let Su
j be uniformly distributed among [0.01, 0.05], let W u

j

be uniformly distributed among [1, 5], and let Nj be uniformly distributed among

[10, 000, 30, 000]. The length of each phase Tp is set to be 1 time unit. To study the

influence of multiple loads with heterogeneous requirements, we use parameter pj

to denote the probability that a load Lj can be processed by any processor. Thus

for a given load Lj, pj is a constant, but for different loads, this parameter can be

different. We initially let pj be uniformly distributed among [0.1, 0.9].

In the following experiments we vary our interested parameters while fixing

other parameters as their initial values to study the effect of the interested param-

eters. We first evaluate the influence of the laxity parameter R on our algorithms.

To simulate different deadlines we vary R among the range [0.1, 3.2] and Fig. 5.2

depicts the acceptance ratio versus R. In addition, we vary 1/λ from 2 to 20 and

55

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

Inter−Arrival Time

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.3: Average acceptance ratio versus 1/λ (R = 0.2).

Fig. 5.3 and 5.4 show the acceptance ratio versus 1/λ for R = 0.2 and 1, re-

spectively. To study the effect of pjs, we let pjs be uniformly distributed among

[pa − 0.2, pa + 0.2] and we vary pa among [0.3, 0.8], and the corresponding accep-

tance ratio is shown in Fig. 5.5 and 5.6 for R = 0.2 and 1, respectively. Moreover,

we vary B among [20, 200] and the corresponding acceptance ratio is shown in

Fig. 5.7 and 5.8 for R = 0.2 and 1, respectively. Finally, we vary Tp among the

range [1/32, 16] and the corresponding acceptance ratio is shown in Fig. 5.9 and

5.10 for R = 0.2 and 1, respectively.

The simulation results show that the RARTS algorithms outperform SRS in

most cases. This may be due to 3 plausible reasons. Firstly, RARTS algorithms

distribute loads in multiple rounds which can efficiently overlap communications

with computations to save time, while SRS dispatches loads in a single round

56

5.3. PERFORMANCE EVALUATION

2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

90

100

Inter−Arrival Time

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.4: Average acceptance ratio versus 1/λ (R = 1).

of allocation and hence consumes more communication time than RARTS. This

explains the fact that EDF-AEP delivers better performance than SRS in most

cases. Secondly, SRS does not take measures to handle different requirements

of various tasks. Thirdly, since SRS tends to employ the minimum number of

processors, some nodes will remain idle when deadlines are not urgent. This leads

to low processor utilization and may finally cause some future loads to be rejected.

Fig. 5.2 shows that MSCF-AEP, EDF-LCF, and MSCF-LCF significantly out-

perform EDF-AEP, LLF-AEP and SRS for different R values since MSCF-AEP,

EDF-LCF and MSCF-LCF utilize either MSCF or LCF to handle heterogeneous

tasks. In addition, we observe that when R is small, EDF-LCF, and MSCF-LCF

outperform MSCF-AEP because when the contention among tasks is intensive

LCF can optimize resource utilization by leaving the processors with high capa-

57

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

0.3 0.4 0.5 0.6 0.7 0.8
30

35

40

45

50

55

60

65

70

pa

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.5: Average acceptance ratio versus pa (R = 0.2).

bilities to remaining loads. But for AEP it is possible that the processors with

low capabilities are left to remaining loads and such processors may not be used

due to their limited capabilities. On the other hand, as R increases, MSCF-AEP

gradually exhibits its efficiency and delivers better performance than EDF-LCF

and MSCF-LCF. A plausible explanation is that since LCF employs a minimum

number of nodes to meet loads’ deadline, some nodes will remain idle when dead-

lines are not urgent. This leads to low resource utilization and may finally cause

some future loads to be rejected. Therefore, when deadlines are not urgent, it is

beneficial to use AEP which employs all processors so that current tasks can be

completed soon and the processors can be released timely for computing future

loads. Moreover, we observe that when R is small EDF-AEP significantly outper-

forms SRS but their performance gap decreases as R grows. This is due to the fact

58

5.3. PERFORMANCE EVALUATION

0.3 0.4 0.5 0.6 0.7 0.8
65

70

75

80

85

90

pa

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.6: Average acceptance ratio versus pa (R = 1).

that the communication time is more critical to acceptance ratio when deadlines

are urgent.

Fig. 5.3 and 5.4 show that as the inter-arrival time 1/λ increases the load

acceptance ratio of each experiment set increases since reducing the loads arrived

in a period of time can decrease the contention on the computing resources and

hence increase the acceptance ratio. In addition, we can observe that no matter

how 1/λ varies, when R is 0.2 EDF-LCF outperforms MSCF-LCF and MSCF-

AEP; when R is 1 MSCF-AEP delivers better performance than EDF-LCF and

MSCF-LCF. These observations can be explained by the above analysis.

From Fig. 5.5 and 5.6 capture the influence of pa, which signifies the capability

of a node. We can observe that when pa is small and deadlines are urgent EDF-LCF

and MSCF-LCF deliver better performance than MSCF-AEP. On the other hand,

59

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

B

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.7: Average acceptance ratio versus B (R = 0.2).

when pa is large and deadlines are not urgent, MSCF-AEP outperforms EDF-

LCF and MSCF-LCF. Moreover, we can observe that EDF-AEP and LLF-AEP

are more sensitive than MSCF-AEP, EDF-LCF and MSCF-LCF to the fluctuation

of pa. This is due to the fact that MSCF-AEP, EDF-LCF and MSCF-LCF utilize

either MSCF or LCF to handle heterogeneous loads. In this case, when pa is small

MSCF-AEP, EDF-LCF and MSCF-LCF significantly outperform EDF-AEP and

LLF-AEP since the contention among heterogeneous loads is more crucial when pa

is small. On the other hand, when pa is large, EDF-AEP and LLF-AEP become

more competitive. This is because when pa is large, a task can be processed by

most processors and hence the contention among heterogeneous loads becomes

slight, which benefits EDF-AEP and LLF-AEP.

Fig. 5.7 and 5.8 show that as communication speed parameter B increases the

60

5.3. PERFORMANCE EVALUATION

20 40 60 80 100 120 140 160 180 200
20

30

40

50

60

70

80

90

B

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.8: Average acceptance ratio versus B (R = 1).

load acceptance ratio of each experiment set increases since decreasing communi-

cation time reduces the processing time of the loads. Fig. 5.7 shows that SRS is

more sensitive than others to the variation of B because SRS is a single-round ap-

proach and hence consumes more communication time. Also, Fig. 5.8 shows that

SRS becomes less sensitive to the variation of B due to slack deadlines. Further,

the acceptance ratios of our strategies stabilize when B is large. This is because

when B is large enough varying B impacts little on the processing time.

Fig. 5.9 and 5.10 show that when Tp is large the acceptance ratios of MSCF-

AEP, EDF-LCF and MSCF-LCF decrease as Tp increases. This is because if Tp is

large, processors may not become available soon since their finish time increases

as Tp becomes large. In addition, when Tp is less than 0.125 the acceptance ratios

of the 5 proposed algorithms sharply reduce as Tp decreases. This is due to the

61

CHAPTER 5. SCHEDULING REAL-TIME DIVISIBLE LOADS

10
−2

10
−1

10
0

10
1

10
2

30

35

40

45

50

55

60

Length of Each Phase

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.9: Average acceptance ratio versus Tp (R = 0.2).

fact that if Tp is too small probably some processors cannot receive a unit as they

cannot finish 1 unit in 1 phase. Further, the performance of MSCF-AEP, EDF-

LCF and MSCF-LCF stabilizes when Tp is among [0.125, 2]. This shows that

although Tp cannot be too small or too large, there is still a wide range in which

varying Tp only slightly influences the performance. This range is related to the

granularity and the sizes of the loads. As the proposed algorithms are designed

for processing divisible loads consisting of many low-granularity computations,

choosing satisfactory values of Tp may not be challenging. When implementing

RARTS for real-world applications, simulations or experiments can help determine

satisfactory values of Tp once the granularity and size of the data are given.

The simulation results have shown that MSCF-AEP, EDF-LCF, and MSCF-

LCF are more effective than EDF-AEP, LLF-AEP and SRS in most cases. Lessons

62

5.3. PERFORMANCE EVALUATION

10
−2

10
−1

10
0

10
1

10
2

50

55

60

65

70

75

80

85

Length of Each Phase

A
cc

ep
ta

nc
e

R
at

io

MSCF−AEP
EDF−LCF
MSCF−LCF
EDF−AEP
LLF−AEP
SRS

Figure 5.10: Average acceptance ratio versus Tp (R = 1).

learnt from this experience seem to offer a set of recommendations on the choice

of scheduling policies and load allocation strategies. In a realistic system, the

scheduler can first use MSCF-AEP to handle new tasks since AEP is beneficial for

admitting future tasks. Once MSCF-AEP cannot admit a new task, the scheduler

can use EDF-LCF/MSCF-LCF as they outperform MSCF-AEP when the con-

tention among tasks are intensive.

63

Chapter 6

Scheduling Hybrid Loads

In this chapter we investigate the scheduling problem for processing a set of tasks

comprising both divisible and indivisible tasks on cluster systems. Indivisible loads

are characterized by the property that they need to be processed on their entirety

on a single processor while divisible loads can be distributed across several pro-

cessing nodes by exploiting the underlying data parallelism. We propose a novel

scheduling algorithm referred to as Hybrid Load Scheduling (HLS) algorithm for

handling a set of tasks comprising both divisible and indivisible tasks on clusters.

HLS fully exploits the parallelism in divisible loads to achieve high resource uti-

lization. It again applies the pipelining technique to hide communication time.

However, differing from the phase-based algorithms presented in Chapters 4 and

5, in HLS the schedule begins with the last phase and the communication follows

a “latest phase first” rule. These designs are made to fit the context of scheduling

hybrid tasks.

64

6.1. PROBLEM FORMULATION

6.1 Problem Formulation

We consider scheduling J load applications (L1, L2, ..., LJ) ontoM processors. The

objective is to minimize the total processing time (i.e., makespan) of all the loads.

We let Sj be the size (in bytes) of Lj andWj be the workload of Lj, i.e., the amount

of computations (e.g., floating point operations) required to compute Lj. Let CIj

be the computation intensity value of Lj and CIj = Wj/Sj. Following prior works

[71, 72], we assume that the workloads of all tasks (Wjs) are known a priori thanks

to prediction mechanisms such as code profiling and statistical prediction.

As we consider hybrid tasks, the loads can be either indivisible or divisible.

The divisible loads are a typically embarrassingly parallel type of applications,

which consist of large numbers of identical, independent, and low-granularity data

units which can be distributed to networked computers for parallel processing.

Following the model in [2, 11], we partition each divisible load into a large number

of identical, independent, and low-granularity load units and let Nj be the total

number of units of load Lj. Also, we let Su
j be the size (in bytes) of a load unit

of Lj and let W u
j be the workload of a unit of Lj, which is defined as the amount

of computations required to compute a unit of Lj. Thus for a divisible load Lj,

Sj = Su
j ∗ Nj and Wj = W u

j ∗ Nj. In this paper, the start-up time overheads

for divisible loads are considered to be negligible and we adopt a linear and fixed

communication and computation model, which is widely used in many prior DLT

papers including [2, 3, 4]. In this linear model, it takes
XSu

j

B
time units to send

X units of load Lj from P0 to each processor Pi and it takes
XWu

j

Ci
time units to

compute X units of load Lj on Pi.

The indivisible loads are independent tasks without inter-task communications

or dependencies. Each indivisible load can only be executed on one processor.

65

CHAPTER 6. SCHEDULING HYBRID LOADS

Figure 6.1: Timing Diagram of HLS for Step 1.

Accordingly, if a load Lj is indivisible, then Nj = 1. For each indivisible load Lj,

it takes
Sj

B
time units to send Lj from P0 to each processor Pi and it takes

Wj

Ci
time

units to compute Lj on Pi.

6.2 Proposed HLS Algorithm

The HLS algorithm consists of 2 steps. Step 1 first schedules indivisible loads s-

ince they are inflexible and cannot be partitioned for parallel computing. Step 2

then schedules divisible loads. To schedule indivisible loads, the Max-Min policy

described below can be used. Max-Min first schedules the task whose earliest com-

pletion time over all processors is the longest among all unscheduled tasks. The

selected task is then allocated to the processor on which the earliest completion

time can be achieved. After all indivisible loads are allocated, a partial schedule

containing the indivisible loads is generated. As shown in Fig. 6.1, the partial

schedule starts at time instant TS and terminates at TE. Also, the load transmis-

sion of the indivisible loads is finished at Tcomm. We can observe that between TS

66

6.2. PROPOSED HLS ALGORITHM

Figure 6.2: Timing Diagram of HLS for Step 2.

and TE there is considerable idle processor time, which can be exploited to pro-

cess divisible loads. The idle time results from two cases. Firstly, processors need

to wait for P0 (thus, wasting time) to transmit loads to other processors before

they can start their own communication and computation (Area A in Fig. 6.1).

Secondly, processors may finish computing at different times. The processors that

finish earlier than others will remain idle and this leads to considerable wastage of

processor time (Area B in Fig. 6.1). Accordingly, these leave large space for op-

timization. Since scheduling divisible loads between TS and TE does not increase

the makespan, we aim to first utilize such idle time to schedule divisible loads.

To enhance the utilization of the idle time, communication time should be ef-

ficiently hidden. Therefore, in Step 2 we adopt a pipelining technique in schedul-

ing divisible loads. Fig. 6.2 shows the timing diagram of HLS for an example

of scheduling both divisible and indivisible loads. HLS works in a periodic fash-

ion, processing divisible loads in multiple phases. The duration of each phase is

67

CHAPTER 6. SCHEDULING HYBRID LOADS

Tp, which is predetermined. Let TE be the end of phase X and TS be in phase

(X − Y). Hence the partial schedule spans (Y + 1) phases. While Y is known, X

can be determined at the end of the scheduling. Also, we denote the computation

time of a processor Pi in phase k (k = X−Y,X−Y +1, · · · , X) as a slice Sliceik.

If a slice is not fully utilized in computing indivisible loads, it is categorized as

an idle slice and can be exploited to compute divisible loads. As all idle slices

are known, we can utilize the idle time by filling divisible loads in the idle slices

in multiple phases. We use the term “load chunk” to denote a number of load u-

nits executed in each idle slice. To achieve high performance, we again apply the

pipelining technique in designing HLS. That is, the load chunks executed in the

slices of phase k are sent before phase k. The chunks of phase k are transmitted

prior than the chunks of phase (k + 1). While computing the chunks in phase k,

processors can simultaneously receive the chunks of future phases. In this way,

communication time can be effectively hidden.

We can observe that to utilize idle time slices in Area A in Fig. 6.1 we need

additional time for communication before TS since the communication time be-

tween TS and Tcomm has been used up. But there exists available communication

time between Tcomm and TE, which means the idle slices in Area B may be utilized

without additional communication time. Hence, to optimize performance we shall

start to exploit idle slices from Area B. This means the scheduler shall first deter-

mine the load distribution of the last phases. In other words, the scheduler should

schedule divisible loads to the idle slices of multiple phases according to the de-

scending order of the phases. In this case, the scheduling of divisible loads begins

with the latest phase X and reverses to phase (X − Y) to generate a complete

schedule. Notice that if there are abundant divisible loads, the schedule of divis-

68

6.2. PROPOSED HLS ALGORITHM

ible loads can even be out of this range (between phase (X − Y) and phase X).

In each phase, the scheduler attempts to utilize all idle slices and allocate chunks

to the slices. Suppose that an idle slice Sliceik is (sequentially) selected. The idle

time of Sliceik is T comp
ik . The scheduler then selects a divisible load for allocation.

To efficiently utilize the available communication time between Tcomm and TE,

the scheduler selects the divisible load Lj with the lowest computation intensity

value (CIj) because this load requires much communication time and can effective-

ly utilize the available communication time between Tcomm and TE. The scheduler

then allocates a chunk from load Lj to the selected idle slice. One can calculate

the chunk size αijk (in terms of number of units) allocated to Sliceik from Lj as

follows:

αijk = ⌊CiT
comp
ik

W u
j

⌋ (6.1)

Now we consider the communication (or transmission) of each load chunk. For

the convenience of scheduling, the transmission of the divisible loads processed in

phase k should be finished before phase k. It is preferable to send the chunk in

the latest phase before the computation of the chunk. This helps to efficiently u-

tilize communication time because the communication time in a phase k can only

be utilized by load chunks computed in phase (k + 1) or later phases. Since the

computation time of different phases is allocated in reverse order, if the commu-

nication time of phase k is not fully utilized, later load distributions which are

scheduled for prior phases may not be able to utilize such communication time.

In this case, the policy for allocating communication time follows a “latest phase

first” rule. For a given chunk executed in phase k, the scheduler first attempts to

allocate enough communication time from phase (k − 1). If there is no enough

communication time in phase (k− 1), the scheduler allocates all available commu-

69

CHAPTER 6. SCHEDULING HYBRID LOADS

nication time in phase (k − 1) to the chunk and attempts to allocate communica-

tion time from the second latest phase (k − 2). This process repeats until enough

communication time is allocated to the chunk.

The scheduler iterates this load distribution process to distribute loads to all

idle slices in phase k. Once there is no idle slice in phase k, the scheduler starts

to distribute loads to the idle slices of phase (k − 1). In this way, the scheduler

can distribute all loads to the idle slices of multiple phases. If there are abundant

divisible loads, some loads will be scheduled to slices before phase (X − Y) and

accordingly the start time of the complete schedule will be before phase (X − Y).

In this case, k can be less than (X−Y). After all divisible loads are scheduled, the

overall start time T0 and the total processing time can be determined. Suppose

T0 is in phase (X −Z). Let X = Z +1. Accordingly, T0 is in phase 1 and one can

obtain X because Y and Z are known after all load distributions are determined.

In the example shown in Fig. 6.2, X is 9 and the complete schedule spans 9 phases.

Finally, we conclude the mechanisms and benefits of HLS. Although the schedul-

ing of indivisible loads causes idle processor time, HLS can flexibly schedule di-

visible loads to different slices so that the idle time can be easily utilized to op-

timize processing time. Also, HLS exploits pipelining to overlap communication

with computation, which can further improve the resource utilization. The time

complexity of HLS for scheduling Jd divisible loads and Ji indivisible loads is

O(J2
i + JiM + J2

d).

70

6.3. PERFORMANCE EVALUATION

10 15 20 25 30 35 40 45 50
40

50

60

70

80

90

100

110

120

130

Communication Speed

A
ve

ra
ge

 M
ak

es
pa

n
Ideal
HLS
MMM
ROG

Figure 6.3: Average total processing time versus B.

6.3 Performance Evaluation

In this section, we evaluate the performance of HLS strategies by rigorous sim-

ulation experiments. As this paper is the first of its kind to consider scheduling

mixed divisible and indivisible loads, there are no strategies available in the lit-

erature to compare with HLS directly. To understand the merits of our strategy,

we design 2 simple algorithms, Modified Max-Min (MMM) and Random Order

Greedy (ROG), to compare with the proposed algorithm. In Both MMM and

ROG, each divisible load is divided into 10 equal pieces and each piece is treat-

ed as a new indivisible load, which can be scheduled independently. Then MM-

M utilizes Max-Min to schedule all tasks and ROG randomly selects a task and

schedules the task to the processor on which the finish time can be minimized. In

71

CHAPTER 6. SCHEDULING HYBRID LOADS

10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

90

100

Number of Processors

A
ve

ra
ge

 M
ak

es
pa

n
Ideal
HLS
MMM
ROG

Figure 6.4: Average total processing time versus M .

addition, we compare the above 3 algorithms with an ideal case, in which all load-

s are assumed to be arbitrarily divisible. Also, in the ideal case communication

can be “optimally” hidden by computation such that the communication time is

zero. However, if the network bandwidth is too small, communication time may

not absolutely hidden even if an “optimal” scheduling policy is applied. Hence we

recognize a performance bound for the communication of the ideal case. That is,

in the ideal case the total processing time of X units of load Lj cannot be less

than the minimum communication time for transmitting such a load chunk, which

is
XSu

j

B
seconds. If the calculated computation time of the ideal case is less than

its minimum communication time, we let the overall processing time of the ideal

case be the minimum communication time. Therefore the ideal case presents the

performance bound among all possible solutions since the resource utilization of

72

6.3. PERFORMANCE EVALUATION

5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

Number of Loads

A
ve

ra
ge

 M
ak

es
pa

n
Ideal
HLS
MMM
ROG

Figure 6.5: Average total processing time versus J .

either computation or communication is 100% in this case.

The simulated system consists of randomly generated processing nodes. The

initial simulation configurations are set as follows: The number of processors M is

20 and the number of loads J is 40. The computation speed Ci is uniformly dis-

tributed among [1, 5] and the communication speed B is set as 40. In addition, we

use parameter p to denote the probability that a load Lj is indivisible. We initial-

ly set p as 0.5. Further, to study the effect of different load types and sizes, we let

Wj be uniformly distributed among [20, 100] and let CIj be uniformly distributed

among [0.1, 10]. Also, we let Nj of divisible loads be uniformly distributed among

[1, 000, 10, 000]. Finally, the length of each phase Tp is set to be 1 time unit.

In the following experiments we vary our interested parameters while fixing

other parameters as their initial values to study the effect of the interested pa-

73

CHAPTER 6. SCHEDULING HYBRID LOADS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40

45

50

55

60

65

p

A
ve

ra
ge

 M
ak

es
pa

n
Ideal
HLS
MMM
ROG

Figure 6.6: Average total processing time versus p.

rameters. We first vary B from 10 to 50 and the corresponding processing time is

shown in Fig. 6.3. In addition, we vary M from 10 to 50 and Fig. 6.4 plots the

processing time versus M . Further, we vary J from 5 to 50 and Fig. 6.5 depicts

the processing time versus J . Moreover, to investigate the effect of different load

types, we vary p among [0.1, 0.9] and Fig. 6.6 plots the processing time versus p.

Fig. 6.3 shows that as B increases the processing time of all experiment sets

decreases as communication time is reduced. When B is quite small, the perfor-

mance of HLS and MMM is close to the ideal case, indicating that for slow net-

works communication delays dominate the performance. Also, when B is large the

performance of all algorithms saturates, showing that once network speed is very

large, communication time can be effectively hidden and hence varying B impacts

little on the average makespan. Such saturation is also shown in Fig. 6.4, wherein

74

6.3. PERFORMANCE EVALUATION

when M is large there are abundant processors to accommodate divisible load-

s. Accordingly increasing M impacts little on the performance. In this case the

performance of MMM is also close to the ideal case due to abundant processors.

Fig. 6.5 shows that when J is small the performance of HLS and MMM is

very close. This is because when J is small it is possible that not all processors

are fully utilized throughout the execution. Thus this is similar to the case that

M is large. As J grows HLS exhibits its advantages and its performance get close

to the ideal case.

Fig. 6.6 captures the influence of proportion of indivisible loads to the entire

loads. It is shown that when grows from 0.1 to 0.9 the total processing time

of the 3 algorithms increases since indivisible loads cannot be parallelized and

thus more indivisible loads lead to longer makespan. Also, Fig. 6.6 shows that

HLS outperforms MMM and ROG when p is less than 0.8. When p is small, the

performance of HLS is close to the ideal case since HLS can efficiently schedule

divisible loads to optimize the resource utilization when there are many divisible

loads. But when p grows the performance gap between HLS and the ideal case

increases and the performance of HLS approaches the performance of MMM. This

is due to the fact that there are only a few divisible loads so that resource utilization

can not be effectively maximized in HLS.

75

Chapter 7

Dynamic Scheduling of Hybrid

Real-Time Tasks

The general problem of scheduling hybrid loads has been addressed in last chap-

ter. In this chapter we further consider this problem in real-time systems to en-

hance quality-of-service (QoS) and provide performance guarantees. We propose

a dynamic (online) real-time scheduling algorithm referred to as Hybrid Loads

Push-Pull Scheduling (HLPPS) algorithm for handling a set of tasks comprising

both divisible and indivisible real-time tasks on cluster systems. HLPPS is shown

to efficiently exploit the parallelism in divisible loads without undermining the

schedulability of indivisible loads and thereby optimize the overall performance.

We perform rigorous performance evaluation studies to quantify the performance

of our algorithm on a variety of scenarios.

76

7.1. PROBLEM FORMULATION

7.1 Problem Formulation

We consider two distinct network platforms - tightly coupled (in Section 7.2) and

loosely coupled clusters (in Section 7.3) in designing the strategy. The difference

between the two platforms is that for tightly coupled clusters the underlying net-

works are high speed networks so that communication costs are negligible, while

for loosely coupled clusters the communication costs are non-zero and the com-

munication speed (bandwidth) of the LAN is B. For the case of loosely coupled

clusters, we adopt the uni-port/sequential transmission model in designing our

algorithm, as described in Chapter 3.

We assume a real-time aperiodic task model in which each load Lj arrives at

time Aj and Dj is its deadline. We let Sj be the size (in bytes) of Lj and Wj

be the workload, i.e., the amount of computations (e.g., floating point operations)

required to compute Lj. Tasks can be either divisible or indivisible and the de-

tailed model of hybrid loads has been introduced in paragraphs 2 and 3 of Section

6.1. Following prior works [71, 72], we assume that after tasks arrive the work-

loads of the tasks (Wjs) are known thanks to prediction mechanisms such as code

profiling and statistical prediction. Finally, we assume that indivisible tasks are

non-preemptable but divisible loads are preemptable due to their low-granularity

and divisible nature.

7.2 Proposed HLPPS Algorithm

The scheduler has complete knowledge about currently active list of tasks, but not

about future tasks which have not arrived. When a new task arrives at time T0, the

scheduler runs an admissibility test to dynamically determine whether it is feasible

77

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

Figure 7.1: Motivating example: (a) scheduling L1 first and (b) scheduling L2 first.

to schedule the new task without compromising the guarantees for previously

admitted tasks. The admissibility test is conducted as follows. The scheduler

generates a task list containing the new task and all previously admitted tasks. It

then executes HLPPS to schedule all tasks in the list. Upon the completion of the

test, if all tasks can be completed within their respective deadlines, it generates

a new schedule to replace the existing schedule and the new task is accepted.

Otherwise, it rejects the new task and maintains the existing schedule.

Before presenting HLPPS, we first introduce the motivating idea behind it.

Prior scheduling policies neglect the types of different loads, which may result in

inefficient scheduling decisions. We can immediately realize this via the following

example, as shown in Fig. 7.1. Consider processing two loads on 4 processors.

The computation speed of each processor is 1 data unit per time unit. The divisi-

ble load L1 has 12 units of data and its deadline is 4. The indivisible load L2 has

5 units of data and its deadline is 7. The widely used EDF policy will schedule

78

7.2. PROPOSED HLPPS ALGORITHM

L1 first on all processors according to DLT rule [1], causing L2 to violate its dead-

line, as shown in Fig. 7.1(a). However, if we schedule L2 first on any processor,

L1 can also be successfully scheduled on the other 3 processors, as shown in Fig.

7.1(b). This example shows that in some cases even if the total amount of avail-

able computation time of the processors is greater than the required computation

time of an indivisible task, yet it is still possible that none of the processors can

accommodate the task without violating its deadline. Therefore, it could be ben-

eficial to schedule indivisible tasks first since they cannot be partitioned to gain

the benefit of parallel processing.

To this end, we propose the HLPPS algorithm. Fig. 7.2 shows the timing

diagram of HLPPS for an example of scheduling a task list containing 4 indivis-

ible loads (L1, L2, L3, and L4) and 1 divisible load (L5). As shown in Fig. 7.2,

HLPPS consists of 4 steps. In Step 1 indivisible loads are first scheduled since

they are inflexible and cannot be partitioned for parallel computing. Step 2 de-

lays (or “pushes forward”) the scheduled indivisible loads to create time slots to

accommodate divisible loads. Then, Step 3 exploits the parallelism in divisible

loads and schedules them to all processors. Finally, in Step 4 indivisible loads are

advanced (or “pulled backward”) to enhance processor utilization and save time

for unexpected future loads. Below we first present the details of HLPPS for the

case of negligible communication costs. Then in next section we extend HLPPS

to address non-zero communication costs for loosely coupled networks.

Step 1 first schedules indivisible loads. EDF is applied to determine the queu-

ing order of the indivisible loads. However, the EDF rule answers only the “queu-

ing order” question, but it does not determine the processor where the selected

task is assigned. To address this dilemma in processor assignment, the Earliest

79

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

Figure 7.2: Timing diagram of HLPPS.

80

7.2. PROPOSED HLPPS ALGORITHM

Completion Time (ECT) policy described below can be used. Suppose Lj is se-

lected by EDF. Among the M available processors, the ECT rule selects the one

that minimizes the following quantity:

î = arg min
i∈{1,··· ,M}

{TES
i +

Wj

Ci

} (7.1)

where TES
i is the earliest start time on processor Pi, which can be calculated

according to prior load allocations. Now we can generate an initial schedule for

indivisible tasks. If some task violates its deadline, then we fail to generate a

feasible schedule and the new task should be rejected. Note that this schedule

only assigns indivisible loads to processors and determines the execution order of

loads allocated to the same processor, but the start time of each indivisible load

can be changed in latter steps.

Step 2 postpones (or “pushes forward”) the indivisible tasks in order to create

time slots for accommodating divisible loads. If some indivisible loads are not

urgent, processing them too early may occupy computation time which should be

allocated to divisible loads with urgent deadlines and cause the divisible loads to

miss their deadlines. Therefore the indivisible loads scheduled in Step 1 should

be delayed to create available time slots for urgent divisible loads. We defer the

indivisible tasks according to the decreasing order of their deadlines. This is

because for the indivisible tasks allocated to the same processor, if we do not

first delay the task with the latest deadline, we cannot delay other tasks without

violating the executing order of the tasks. Suppose Lij is the j-th indivisible load

(j = 1, 2, ..., Yi) among Yi indivisible loads which are allocated to Pi. Let T S
ij be

the start time and TE
ij be the end time of Lij obtained in Step 1. Thus Lij’s

processing time T P
ij equals to (TE

ij −T S
ij). Also, let T

NS
ij be the new start time and

TNE
ij be the new end time of Lij after deferring. Hence the new end time TNE

ij can

81

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

be obtained as follows:

TNE
ij =


min(TNE

i(j+1) − TE
ij + T S

ij , Dij) if j < Yi

Dij if j = Yi

(7.2)

where Dij is the deadline of Lij. In this case, we can recursively calculate the new

start times of all indivisible tasks after delaying.

Then Step 3 schedules divisible loads. We also use EDF to schedule divisible

loads. For each divisible load, we attempt to utilize all available processors to

compute it since this strategy naturally minimizes processing time and guarantees

high processor utilization. In the contrary, prior works [17, 18, 19] tend to employ

the minimum number of processors to meet tasks’ deadlines. However, if there

are many processors but only a few tasks and the tasks’ deadlines are not urgent,

some processors will remain idle according to their strategies. This leads to low

processor utilization and may finally cause some future tasks to be rejected since

current tasks are finished late.

Now we suppose a divisible load Lj is selected by EDF and the distribution

of the load should be determined. We first need to determine the finish time T f
j

of Lj and then map the load to the available time slots before T f
j on all proces-

sors. As processors’ available times are different, the total available computation

power varies with processors becoming available or unavailable. Suppose before

deadline Dj there are X time instants at which some processors become available

or unavailable. We denote the x-th time instant as t(x) (x = 1, 2, ..., X) and t(1)

is the computation start time of Lj. In addition, we define Cs(t) as the sum of

the computation speeds of all available processors at time t. This means at each

t(x), Cs(t(x)) is updated to a new value. These time instants t(x)s and total com-

putation speeds Cs(t(x))s can be easily calculated according to the start and end

82

7.2. PROPOSED HLPPS ALGORITHM

times of the indivisible loads obtained in Step 2. Let w(t) be the amount of load

that can be executed before time t on all available processors. Then we can write:

w(t(x)) = w(t(x− 1)) + Cs(t(x− 1)) ∗ (t(x)− t(x− 1)) (7.3)

where (x = 2, 3, ..., X). Also, w(Dj) can be expressed as:

w(Dj) = w(t(X)) + Cs(X) ∗ (Dj − t(X)) (7.4)

Because w(t(1)) = 0, we can recursively calculate w(Dj) and w(t(x)) for all t(x)s.

If w(Dj) < Wj, then deadline Dj will be missed. Let x0 be the largest x that

satisfies w(t(x)) < Wj where x = 1, 2, ..., X. We can obtain the finish time T f
j of

Lj as follows:

T f
j = t(x0) +

Wj − w(t(x0))

Cs(t(x0))
(7.5)

According to the start and end times of the indivisible loads, we can easily calculate

the total available time between T0 and T f
j for each processor and hence obtain the

amount of load distributed to each processor. In this way, we iterate to determine

the load distributions of all divisible loads. If some task misses its deadline, we

fail to generate a feasible schedule and the new task should not be admitted.

After divisible loads are scheduled in Step 3, there may be some unused time slots

between some divisible loads and indivisible tasks, as shown in Fig.7.2. These

leave some room for further optimization.

Therefore, Step 4 advances (or “pulls backward”) the indivisible tasks in order

to save time for future loads. This benefits future loads as current indivisible

tasks can be finished earlier. Without this “pull” operation, some future tasks

may be rejected since current tasks are finished late. We hasten the indivisible

tasks according to the EDF rule. This is because for the indivisible tasks allocated

83

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

to the same processor, if we do not advance the task with the earliest deadline,

we cannot advance other tasks without violating the executing order of the tasks.

Traditional scheduling policies neglect the types of different loads. For exam-

ple, when running EDF, in some cases even if the total amount of available com-

putation times of the processors is greater than the required computation time of

an indivisible task, yet it is possible that none of the processors can accommodate

the task without missing its deadline. In contrast, such cases are greatly reduced

for HLPPS since indivisible loads are first scheduled. Also, scheduling indivisible

loads first will not impede the scheduling of urgent divisible loads as indivisible

loads are delayed to create time slots in Step 2. In addition, HLPPS optimizes

processor utilization by parallelizing divisible loads to all processors in Step 3 and

advancing indivisible loads in Step 4. Therefore, HLPPS fully exploits parallelism

in divisible loads without undermining the schedulability of indivisible loads, op-

timizing the overall performance. The time complexity of HLPPS for scheduling

Jd divisible loads and Ji indivisible loads is O(J2
i + JiM + J2

d). This guarantees

the scalability of HLPPS in real-life implementations.

7.3 Extension of HLPPS for Loosely Coupled

Clusters

Now we extend HLPPS to deal with non-zero communication costs for loosely cou-

pled clusters. Since indivisible loads are inflexible, the modification for indivisible

loads are rather limited and we mainly focus on optimizing the communication

of divisible loads in Step 3. Below we first simply introduce the modifications in

Steps 1, 2, and 4.

84

7.3. EXTENSION OF HLPPS FOR LOOSELY COUPLED CLUSTERS

Figure 7.3: Timing diagram of the divisible load distribution for loosely coupled
clusters in Step 3 of HLPPS.

Firstly, the modification in Step 1 is that the earliest start time is modified

as TES
i = max(TCC , T F

i) where TCC is the communication completion time of P0

and T F
i is Pi’s finish time of its previously allocated tasks, which are obtained

according to prior load allocation. Secondly, in Step 2, when indivisible tasks are

delayed, the scheduled communication time is also delayed as much as possible so

that the communication of each task happens immediately before the computation

start time of the task. This helps to reduce the contention of communication times

and thereby create effective time slots for divisible loads. Lastly, in Step 4, when

indivisible tasks are advanced, the scheduled communication time is also advanced

as much as possible. This guarantees that the communication will be completed

timely so that processors need not waste time in waiting for the communication.

As divisible loads can be arbitrarily partitioned for parallel computing, in Step

3 we aim to optimize the performance by distributing divisible loads in multiple

85

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

rounds so that communications are overlapped with computations to save unnec-

essary waiting times. As shown in Fig. 7.3, we design a“phase-based”multi-round

load distribution approach, which works in an incremental fashion, executing mul-

tiple rounds to distribute and process loads. The length of each phase is Tp, which

is fixed and predetermined. We use the term “load chunk” to denote a number

of load units distributed in a round to a processor. The identifier αik in Fig. 7.3

indicates the load chunk allocated to processor Pi in round k. The basic idea of

the multi-round approach is that the load chunks of round k (k = 1, 2, 3, · · ·) are

distributed before phase (k+ 1) and processed in phase (k+ 1). In phase (k+ 1),

while computing the chunks of round k, processors can simultaneously receive

the chunks of future rounds. In this way, communications and computations are

pipelined and overlapped. Also, the transmission of round k must be completed

before phase (k+1) starts so that processors can start immediately to compute the

chunks of round k in phase (k+ 1) and P0 can also start immediately to transmit

the chunks of round (k + 1) in phase (k + 1).

The allocation process starts from round 1 and here we consider an arbitrary

round k as an example. As P0 attempts to dispatch Lj to all available processors,

it (sequentially) selects each processor Pi to distributes it a load chunk. We denote

the computation time of the chunk as T comp
ik . Suppose for Pi there are Q available

time slots in phase (k + 1) before Dj. The length of each slot is specified as βi
q.

Thus the total available time in phase (k + 1) can be written as:

tcomp =

Q∑
q=1

βi
q (7.6)

Communication time is another constraint in determining T comp
ik . Let TCS be

the time instant when P0 starts to transfer loads to Pi. The transfer of this

chunk should be finished before phase (k + 1) starts. Suppose for P0 there are

86

7.3. EXTENSION OF HLPPS FOR LOOSELY COUPLED CLUSTERS

Z available communication time slots between TCS and the communication finish

time (T0 + kTp). We use θz to denote the z-th communication time slot (z =

1, 2, ..., Z). Hence the total available communication time for this chunk is:

tcomm =
Z∑

z=1

θz (7.7)

Accordingly one can obtain T comp
ik as follows:

T comp
ik = min(tcomp,

BW u
j tcomm

CiSu
j

) (7.8)

Knowing T comp
ik , we can calculate the chunk size αijk (in terms of number of units)

allocated to Pi from Lj in round k. In reality, this number of units should be an

integer. Thus we can write αijk as follows:

αijk = ⌊CiT
comp
ik

W u
j

⌋ (7.9)

We denote the number of remaining load units of Lj as N r
j . If N r

j is less than

the chunk size αijk, then αijk is accordingly reduced to that number and all un-

allocated units of Lj are distributed to Pi. Accordingly, Pi will still be available

after receiving the chunk since it still has some idle time before phase (k + 1)

ends. In this case, Pi can be allocated another chunk in round k from remaining

tasks and Pi shall execute these different chunks in phase (k + 1) following their

scheduling order so that deadlines will not be violated.

The scheduler iterates this load distribution process to distribute Lj in this

round to other processors until all available processors are utilized in this round

or communication time is used up (TCS = T0 + kTp). Then P0 starts to distribute

Lj in round (k+1) and repeats these steps until the entire Lj has been allocated.

Afterwards P0 can start to distribute next task selected by EDF.

Noted that the length of each phase Tp is not arbitrarily chosen. Since phase 1

is not involved in computation, a very large Tp will significantly reduce available

87

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

computation time and lead to poor performance. On the other hand, if Tp is

too small probably some processors cannot receive a unit as they cannot finish 1

unit in 1 phase. Therefore, we should avoid determining Tp as either very small

or very large. When implementing HLPPS in real-world loosely coupled clusters,

we should check the task granularity and the sizes of the data before Tp can be

determined. In next section we will evaluate the impact of Tp on our algorithm.

7.4 Performance Evaluation

In this section, we evaluate the performance of HLPPS by rigorous simulation

experiments, following the typical style of simulation study used in prior works

[17, 67, 71]. Our interested metric is acceptance ratio, which is defined as the

ratio of the number of tasks found schedulable to the number of tasks arriving for

scheduling.

As there are no strategies available in the literature for the scheduling of hybrid

divisible and indivisible loads, to understand the merits of our strategy, we compare

it with two basic (default) algorithms: EDF-ECT-MAXP and EDF-ECT-MINP.

Both EDF-ECT-MAXP and EDF-ECT-MINP adopt EDF for load scheduling and

ECT for the load allocation of indivisible loads. For the load distribution of di-

visible loads, EDF-ECT-MAXP utilizes all processors to minimize the completion

time while EDF-ECT-MINP utilizes the minimum number of processors so that

the processors can finish computing when the deadline is met.

The initial simulation configurations are set as follows: The number of pro-

cessing nodes is 20. For each processor Pi the computation speed Ci is 1 and the

communication speed B is 100. To generate a set of real-time divisible loads, we

88

7.4. PERFORMANCE EVALUATION

assume that the inter-arrival times follow an exponential distribution with a mean

of 1/λ and we initially set 1/λ as 5 time units. Tasks can be either divisible or

indivisible. To ensure that all possible distributions of hybrid loads (percentage of

indivisible and divisible loads) are considered in our simulation experiments by our

strategies, we introduce a parameter p to denote the probability that an incoming

load Lj is indivisible and p is initially set as 0.5. Thus, by varying this parameter

the fraction of the indivisible and divisible loads in a given pool of tasks can be

varied and hence performance of our algorithm can be evaluated. A task’s rela-

tive deadline (defined as Dj − Aj) is assumed to be uniformly distributed in the

range [T 1
j , T

1
j ∗ (1+R)] where T 1

j is the compute time for load Lj on one processor

(T 1
j =

Wj

Ci
) and R is referred to as laxity parameter which denotes the urgency of

the deadlines. Thus smaller values of R indicate that deadlines are more urgent.

The initial value of R is set as 1. In addition, to study the effect of different load

sizes, we let Sj be uniformly distributed in the range [100, 200], let Wj be uniform-

ly distributed in the range [100, 200], and let Nj be uniformly distributed in the

range [10, 000, 20, 000]. The length of each phase Tp is set to be 0.1 time units.

In the following experiments we vary our interested parameters while fixing

other parameters as their initial values to study the effect of the interested param-

eters. We first evaluate the influence of the laxity parameter R on our algorithms.

To simulate different deadlines we vary R among the range [0.2, 2] and Fig. 7.4 de-

picts the acceptance ratio versus R. In addition, as divisible loads can be distribut-

ed to multiple processors to gain the benefit of parallel computing, the deadlines

of incoming divisible loads may be set to be more urgent. Therefore we also modi-

fy the relative deadlines of the incoming divisible loads as uniformly distributed in

the range [T 1
j ∗Rd, T

1
j ∗Rd ∗ (1+R)] where, Rd ∈ [0, 1] quantifies the inverse of the

89

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
70

75

80

85

90

95

100

R

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MAXP
EDF−ECT−MINP

Figure 7.4: Average acceptance ratio versus R.

number of processors to be used to process the divisible loads. The Rd parame-

ter, referred to as divisible load laxity parameter, denotes the urgency of deadlines

of divisible loads. We typically consider using values 1/16, 1/8, 1/4, 1/2, 1 for Rd

and Fig. 7.5 depicts the corresponding acceptance ratio. To investigate the effect

of various proportions of loads, we vary p from 0 to 1 and Fig. 7.6 plots the ac-

ceptance ratio versus p. Also, we vary 1/λ from 1 to 10 and Fig. 7.7 shows the

acceptance ratio versus 1/λ. Further, we vary M from 10 to 30 and Fig. 7.8 plot-

s the acceptance ratio versus M . Moreover, we vary B among [20, 200] and the

corresponding acceptance ratio is shown in Fig. 7.9. We vary Tp from 0.001 to 1

and Fig. 7.10 plots the acceptance ratio versus Tp. Finally, as one may wonder

whether the algorithms are fair to both divisible and indivisible loads, we present

Figs. 7.11 and 7.12 to show the acceptance ratios of both divisible and indivisible

90

7.4. PERFORMANCE EVALUATION

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

80

85

90

95

Rd

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MAXP
EDF−ECT−MINP

Figure 7.5: Average acceptance ratio versus Rd.

loads versus R and p, respectively. In other words, with R and p varying, Figs.

7.11 and 7.12 depict the respective acceptance ratios of divisible and indivisible

loads while Figs. 7.4 and 7.6 plot the total acceptance ratios of all loads. In Figs.

7.11 and 7.12, the acceptance ratios of divisible loads for the 3 algorithms are de-

noted as HLPPS-DL, EDF-ECT-MAXP-DL, and EDF-ECT-MINP-DL, respec-

tively; the acceptance ratios of indivisible loads for the 3 algorithms are denoted

as HLPPS-IL, EDF-ECT-MAXP-IL, and EDF-ECT-MINP-IL, respectively.

The simulation results show that the HLPPS algorithm significantly outper-

forms EDF-ECT-MAXP and EDF-ECT-MINP in most cases. This is because for

EDF-ECT-MAXP, in some cases even if the total amount of available computation

times of the processors is greater than the required computation time of an indivis-

ible task, yet it is possible none of the processors can accommodate the task with-

91

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

100

p

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MAXP
EDF−ECT−MINP

Figure 7.6: Average acceptance ratio versus p.

out violating its deadline. Although this case happens less for EDF-ECT-MINP,

yet the resource utilization of EDF-ECT-MINP may be low and some future tasks

may be rejected as current tasks are finished late. In the contrary, HLPPS can ef-

ficiently avoid these drawbacks as we described in Section 7.2. This explains why

HLPPS algorithm outperforms EDF-ECT-MAXP and EDF-ECT-MINP in these

figures.

Fig. 7.4 and 7.5 present the effect of urgency of deadlines. Fig. 7.4 shows

that as R grows the acceptance ratios of the 3 algorithms increase. Also, the

superiority of HLPPS is insensitive for different values of R. Fig. 7.5 shows that

when parameter Rd is small (divisible loads are very urgent) the advantage of

HLPPS over EDF-ECT-MAXP and EDF-ECT-MINP is not obvious. This is due

to the fact that when Rd is small the choices on the scheduling of divisible loads

92

7.4. PERFORMANCE EVALUATION

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

Inter−Arrival TIme

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MAXP
EDF−ECT−MINP

Figure 7.7: Average acceptance ratio versus 1/λ.

become very limited and thus there is little room for optimizing the scheduling

of hybrid loads. Therefore, as Rd grows HLPPS gradually exhibits its advantages

over EDF-ECT-MAXP and EDF-ECT-MINP.

Fig. 7.6 captures the influence of proportion of indivisible loads to the entire

loads. As p grows from 0 to 1 the acceptance ratio of HLPPS decreases since

divisible loads can be easily scheduled and thus acceptance ratio is higher when

there are more divisible loads. Also, HLPPS significantly outperforms EDF-ECT-

MAXP and EDF-ECT-MINP when p is among [0.1, 0.8]. When p equals to 0

or 1, HLPPS is equivalent to EDF-ECT-MAXP and hence they deliver the same

performance when p equals to 0 or 1.

Fig. 7.7 shows that as the inter-arrival time 1/λ increases the load accep-

tance ratios of all experiment sets increase since reducing the loads arrived in a

93

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

10 15 20 25 30
40

50

60

70

80

90

100

M

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MAXP
EDF−ECT−MINP

Figure 7.8: Average acceptance ratio versus M .

period of time can decrease the contention on the computing resources and hence

increase the acceptance ratio. In addition, when 1/λ is small, the performance

of EDF-ECT-MINP is closer to HLPPS than EDF-ECT-MAXP. This is because

the drawback of EDF-ECT-MINP lies on the processor utilization, but when 1/λ

is small, tasks frequently arrive so that all processors can be fully utilized. Con-

sequently, the drawback of EDF-ECT-MINP is mitigated and EDF-ECT-MINP

delivers better performance than EDF-ECT-MAXP for small values of 1/λ.

From Fig. 7.8 we can observe that when M is small the performance of HLPPS

is comparatively close to EDF-ECT-MAXP and EDF-ECT-MINP. A plausible

explanation is that when there is only a few processors HLPPS cannot effectively

exploit the parallelism of divisible loads to optimize the scheduling of hybrid loads.

Therefore when M is small HLPPS cannot significantly outperform EDF-ECT-

94

7.4. PERFORMANCE EVALUATION

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

85

90

B

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MAXP
EDF−ECT−MINP

Figure 7.9: Average acceptance ratio versus B.

MAXP and EDF-ECT-MINP. AsM grows HLPPS gradually exhibit its advantage

over EDF-ECT-MAXP and EDF-ECT-MINP until their acceptance ratios reach

100%.

Fig. 7.9 depicts the influence of the communication speed B. It shows that

when B is small the performance of EDF-ECT-MAXP and EDF-ECT-MINP

sharply deteriorates. This is because in EDF-ECT-MAXP and EDF-ECT-MINP,

some indivisible loads may be scheduled to be started early. When B is small the

communication of such loads fills available communication time and thus cause

that early phases cannot be efficiently utilized. But in HLPPS such case hardly

happens since indivisible loads are delayed in Step 2.

Fig. 7.10 shows that when Tp is greater than 0.8 the acceptance ratios of the

3 algorithms sharply decrease as Tp increases. This is because when Tp is large,

95

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

45

50

55

60

65

70

75

80

85

90

95

Tp

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS
EDF−ECT−MINP
EDF−ECT−MAXP

Figure 7.10: Average acceptance ratio versus Tp.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
50

55

60

65

70

75

80

85

90

95

100

R

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS−DL

HLPPS−IL

EDF−ECT−MAXP−DL

EDF−ECT−MAXP−IL

EDF−ECT−MINP−DL

EDF−ECT−MINP−IL

Figure 7.11: Average acceptance ratio versus R for divisible and indivisible loads.

96

7.4. PERFORMANCE EVALUATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
45

50

55

60

65

70

75

80

85

90

95

100

p

A
cc

ep
ta

nc
e

R
at

io
 %

HLPPS−DL
HLPPS−IL
EDF−ECT−MAXP−DL
EDF−ECT−MAXP−IL
EDF−ECT−MINP−DL
EDF−ECT−MINP−IL

Figure 7.12: Average acceptance ratio versus p for divisible and indivisible loads.

available computation time is significantly reduced as Tp increases. In addition,

when Tp is less than 0.0125 the acceptance ratios of the 3 algorithms decrease as

Tp reduces. This is due to the fact that if Tp is too small probably some proces-

sors cannot receive a unit as they cannot finish 1 unit in 1 phase. Further, the

performance of the 3 algorithms stabilizes when Tp is among [0.0125, 0.8]. This

shows that although Tp cannot be too small or too large, there is still a wide range

in which varying Tp only slightly influences the performance. This range is relat-

ed to the granularity and the sizes of the loads. As the multi-round approach is

designed for processing divisible loads consisting of many low-granularity compu-

tations, choosing satisfactory values of Tp may not be challenging. When imple-

menting HLPPS for real-world applications, simulations or experiments can help

determine satisfactory values of Tp once the granularity and size of the data are

97

CHAPTER 7. DYNAMIC SCHEDULING OF HYBRID REAL-TIME TASKS

given.

Finally, Figs. 7.11 and 7.12 depict the fairness issues. In Figs. 7.11 and 7.12

we can observe that in the 3 algorithms the acceptance ratios of divisible loads are

higher than indivisible loads. This is due to the difference in the divisibility of the

loads. However, although divisible and indivisible loads have different acceptance

ratios, yet HLPPS outperforms EDF-ECT-MAXP and EDF-ECT-MINP in terms

of respective acceptance ratios of both divisible and indivisible loads.

98

Chapter 8

Conclusions and Future

Recommendations

8.1 Conclusions

In this thesis, we have studied several critical issues on scheduling multiple divisible

loads on clusters. We have contributed several efficient scheduling algorithms

that are aware of tasks’ different processing requirements and load types. These

include both real-time and non-real-time cases. Also, we have performed extensive

performance evaluation studies to quantify the performance of our algorithms on

a variety of scenarios.

Firstly, in Chapter 4 we have addressed the problem of scheduling multiple di-

visible loads with arbitrary processor release times and heterogeneous processing

requirements on cluster systems. We have proposed two novel scheduling strate-

gies: SSS and DSS. These strategies provide efficient load balancing and resource

utilization while elegantly addressing arbitrary release times. In addition, we have

99

CHAPTER 8. CONCLUSIONS AND FUTURE RECOMMENDATIONS

proposed a requirement-aware load selection policy (MRF) and integrated it into

SSS and DSS to handle the contention among different loads with various process-

ing requirements. The simulation results have shown that our strategies are very

efficient for both static and dynamic cases under various system parameters.

Then, in Chapter 5 we have investigated the problem of scheduling heteroge-

neous divisible loads with deadlines on networked computing platforms. Unlike

the prior works which only study single-round approaches, in this work we have

designed multi-round approaches to handle divisible loads with deadlines. Also, in

this study we have considered scheduling divisible loads with different processing

requirements on heterogeneous computing systems while in prior works divisible

load applications are assumed to be of the same type. We have presented RARTS

scheduling algorithms, which consist of the MSCF scheduling policy, and two load

distribution strategies, AEP and LCF. We have carried out rigorous simulations

to evaluate and compare the performance of the proposed strategies. The result-

s have demonstrated the effectiveness and competitiveness of RARTS algorithms

when compared to existing methods.

Furthermore, in Chapter 6 we have tackled the problem of scheduling a set of

tasks consisting of both divisible and indivisible loads on clusters. Such situations

are common in real-life since clusters are deployed to address any types of loads.

We have proposed the HLS algorithm, which can efficiently exploit the parallelism

of divisible loads. HLS also uses a pipelining technique to hide communication

time and improve the overall performance. Simulation results are presented to

evaluate the performance of the proposed HLS strategy.

Finally, in Chapter 7 we have studied an important real-life problem of schedul-

ing a set of tasks comprising a mix of both the divisible and indivisible real-time

100

8.2. FUTURE WORK

loads on clusters. As in practice, we have considered systems that are tightly cou-

pled as well as loosely coupled cluster systems. We have proposed the HLPPS al-

gorithm which efficiently exploits parallelism in divisible loads without undermin-

ing the schedulability of indivisible loads and thereby enhances the performance

of the system. With our design, we have conducted extensive simulation tests to

quantify the performance of our algorithm. The simulation results have shown

that the HLPPS algorithm is very efficient and it outperforms EDF-ECT-MAXP

and EDF-ECT-MINP under various system parameters.

8.2 Future Work

This thesis is expected to spur further research in one or more of the following

directions. One future direction is to allow the master node P0 to perform simul-

taneous communications to processors. The parallel communication mode can be

beneficial for computing platforms over wide area networks (WAN) [11] to achieve

higher throughput than the sequential communication mode due to bandwidth-

sharing properties. In addition, computing platforms on WAN are likely to be

non-dedicated. Thus the communication and computation capacities of processors

in such systems may fluctuate with time. As computer grids are widely deployed

over WAN to perform distributed computing, it is valuable to explore scheduling

strategies accommodating the parallel communication mode [11] and fluctuated

communication and computation capacities.

While this thesis only considers star networks, it will also be interesting to

explore the scheduling problem on tree networks [3]. In complex network scenarios

such as wide-area networks, the tree topology may be useful for scheduling. In

101

CHAPTER 8. CONCLUSIONS AND FUTURE RECOMMENDATIONS

such network scenarios, when P0 leaves some processors unutilized under star

topologies due to slow links connected to the processors, tree topologies may utilize

the processors as simultaneous communications can be allowed on both the root

node and leave nodes.

In addition, since in our scheduling strategies all scheduling activities occur on

the master node P0 only, this centralized fashion may result in significant overheads

on P0 when the number of nodes is large or the network bandwidth is limited.

In this case, another future direction is to explore multi-source strategies [2] that

simultaneously distribute workloads from multiple sources (or master nodes). Such

multi-source strategies work in a decentralized fashion to achieve high performance

and improve the scalability when the number of processors is large.

Moreover, one may attempt to apply an affine cost model in DLT to include

start-up costs. Our strategies can be easily modified for the affine model without

affecting the flow of the main content. For example, consider SSS and DSS in

Chapter 4. Suppose Ocomp and Ocomm are computation and communication start-

up overheads. The only change is to use (Tp(k+1)−Ocomp) to replace Tp(k+1) and

use (T comm + Ocomm) to replace T comm in Equations (4.3) and (4.5). However, in

practice, start-up overheads are shown to be small, usually negligible. In [5], such

overheads are usually bounded in a few seconds in real-life measurements. When

the number of rounds is not too large start-up overheads are indeed negligible. On

the other hand, as we demonstrated via simulations, the number of rounds for our

strategies should not be large for efficient resource utilization. Thus the inclusion

of affine model may not be a worthwhile attempt. However, as a future work,

it would be interesting to determine an optimal, if not, an acceptable number of

rounds to be used for maximizing resource utilization.

102

8.2. FUTURE WORK

Furthermore, to implement the proposed strategies in real world, one may

attempt to consider limited buffer constraints. Actually the proposed strategies

can easily handle buffer constraints. Since the proposed strategies adopt multi-

round fashion, processors only need to buffer a few amounts of loads simultaneously

in each round. In case that only small buffers are available, reducing Tp can help

to decrease required buffer space.

Chapters 6 and 7 only consider divisible and indivisible loads. But one may

attempt to accommodate other types of loads, such as precedence-constrained

tasks (task graphs). Indeed the proposed algorithms can be directly applied to

schedule a set of tasks comprising divisible, indivisible, and precedence-constrained

tasks. In this case an indivisible load can be deemed as a special case of task

graphs in which there are no edges and only one node in the task graph. Then

task graphs are first scheduled by existing algorithms in Step 1 of either HLS or

HLPPS (presented in Chapters 6 and 7, respectively). Then divisible loads can be

addressed in later steps as usual. However, since the scheduling of task graphs is

quite challenging, especially in real-time context, it will be interesting to explore

scheduling algorithms which may further optimize the performance in the presence

of hybrid tasks comprising divisible, indivisible, and task graphs.

Finally, in Chapter 7 we utilize EDF in HLPPS to address indivisible loads and

divisible loads in Steps 1 and 3, respectively, because EDF is the most well-known

and widely-used real-time scheduling policy. Nevertheless, it is also possible and

interesting to employ other algorithms to replace EDF in Steps 1 and 3 of HLPPS.

Such replacement will not influence the basic mechanism of HLPPS.

103

Bibliography

[1] B. Veeravalli, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling Divisible

Loads in Parallel and Distributed Systems, IEEE Computer Society Press,

Los Almitos, California, 1996.

[2] J. Jia, B. Veeravalli, J. Weissman, “Scheduling Multisource Divisible Loads on

Arbitrary Networks,”IEEE Transactions on Parallel and Distributed Systems,

vol. 21, no. 4, pp. 520-531, Apr. 2010.

[3] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang, “Scheduling

Divisible Loads on Star and Tree Networks: Results and Open Problems,”

IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 3, pp. 207-218,

Mar. 2005.

[4] T.E. Carroll and D. Grosu, “Strategyproof Mechanisms for Scheduling Divisi-

ble Loads in Bus-Networked Distributed Systems,” IEEE Trans. Parallel and

Distributed Systems, vol. 19, no. 8, Aug. 2008.

[5] Y. Yang, K. Raadt, H. Casanova, “Multiround Algorithms for Scheduling

Divisible Loads,” IEEE Trans. Parallel and Distributed Systems, vol. 16, no.

11, pp. 1092-1102, Nov. 2005.

[6] D. Ghose, H.J. Kim, and T.H. Kim, “Adaptive Divisible Load Scheduling

104

BIBLIOGRAPHY

Strategies for Workstation Clusters with Unknown Network Resources,”IEEE

Trans. Parallel and Distributed Systems, vol. 16, no. 10, pp. 897-907, Oct.

2005.

[7] K. Ko and T.G. Robertazzi, “Signature Search Time Evaluation in Flat File

Databases,” IEEE Trans. Aerospace and Electronic Systems, vol. 44, no. 2,

pp. 493-502, Apr. 2008.

[8] D. Ghose and H.J. Kim, “Computing BLAS Level-2 Operations on Work-

station Clusters Using the Divisible Load Paradigm,” Math. and Computer

Modelling, vol. 41, pp. 49-71, Jan. 2005.

[9] H.M. Wong and B. Veeravalli, “Aligning Biological Sequences on Distributed

Bus Networks: A Divisible Load Scheduling Approach,” IEEE Trans. Infor-

mation Technology in BioMedicine, vol. 9, no. 4, pp. 489-501, Dec. 2005.

[10] B. Veeravalli, and G. Barlas, “Efficient scheduling strategies for processing

multiple divisible loads on bus networks”. Journal of Parallel and Distributed

Computing, vol. 62, pp. 132-151, 2002.

[11] L. Marchal, Y. Yang, H. Casanova and Y. Robert, “Steady-State Scheduling

of Multiple Divisible Load Applications on Wide-Area Distributed Comput-

ing Platforms,” The International Journal of High Performance Computing

Applications, vol. 20, no. 3, 2006.

[12] M. Drozdowski, M. Lawenda and F. Guinand, “Scheduling Multiple Divisible

Loads,”The International Journal of High Performance Computing Applica-

tions, vol. 20, no.1, pp. 19-30, 2006.

105

BIBLIOGRAPHY

[13] M. Drozdowski, M. Lawenda, “Scheduling multiple divisible loads in homoge-

neous star systems,” Journal of Scheduling, vol. 11, no. 5, pp. 347-356, Oct.

2008.

[14] B. Veeravalli, H.F. Li, and T. Radhakrishnan, “Scheduling Divisible Loads

in Bus Networks with Arbitrary Processor Release Times,” Computers and

Math. with Applications, vol. 32, no. 7, 1996.

[15] B. Veeravalli and H.M. Wong, “Scheduling Divisible Loads on Heterogeneous

Linear Daisy Chain Networks with Arbitrary Processor Release Times,” IEEE

Trans. Parallel and Distributed Systems, vol. 15, no. 3, pp. 273-288, Mar.

2004.

[16] B. Veeravalli, and G. Barlas, “Scheduling Divisible Loads with Processor Re-

lease Times and Finite Size Buffer Capacity Constraints,” Special Issue on

Divisible Load Scheduling in Cluster Computing, Kluwer Academic Publish-

ers, vol. 6, no. 1, pp. 63-74, Jan. 2003.

[17] X. Lin, A. Mamat, Y. Lu, J. Deogun, and S. Goddard, “Real-time scheduling

of divisible loads in cluster computing environments,” Journal of Parallel and

Distributed Computing, vol. 70, no. 3, Mar. 2010.

[18] X. Lin, Y. Lu, J. Deogun, and S. Goddard, “Real-time divisible load schedul-

ing with different processor available times,” In ICPP, 2007.

[19] S. Chuprat and S. Baruah,“Scheduling Divisible Real-Time Loads on Clusters

with Varying Processor Start Times,” In RTCSA, 2008.

[20] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, “Real-Time Divisible Load

Scheduling with Advance Reservations,” In ECRTS, 2008.

106

BIBLIOGRAPHY

[21] X. Lin, Y. Lu, J. Deogun, and S. Goddard.“Multi-Round Real-Time Divisible

Load Scheduling for Clusters,” Proceedings of the 15th International Confer-

ence on High Performance Computing. (2008): 196-207.

[22] Y.C. Cheng, and T.G. Robertazzi, “Distributed Computation with Commu-

nication Delays,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 24, no. 6, pp. 700-712, 1988.

[23] R. Agrawal and H.V. Jagadish, “Partitioning Techniques for Large-Grained

Parallelism,” IEEE Transactions on Computers, vol. 37, no. 12, pp. 1627-

1634, 1988.

[24] B. Veeravalli, “Distributed Computation with Communication Delays: Design

And Analysis of Load Distribution Strategies”, PhD diss., Indian Institute of

Science, Bangalore, India 1994.

[25] Bharadwaj, V., D. Ghose, and T. G. Robertazzi, “Divisible Load Theory: A

New Paradigm for Load Scheduling in Distributed Systems”, Cluster Com-

puting, Kluwer Academic Publishers, vol. 6, no. 1, pp. 7-18, Jan. 2003.

[26] T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,”Computer, vol

36, no. 5, May 2003.

[27] Cluster Computing, Special Issue on Divisible Load Scheduling, D. Ghose and

T. Robertazzi, eds., 2003.

[28] S. Bataineh, and T.G. Robertazzi, “Closed Form Solutions for Bus and Tree

Networks of Processors Load Sharing a Divisible Job,” IEEE Transactions on

Computers, vol. 43, no. 10, pp. 1184-1196, Oct. 1994.

107

BIBLIOGRAPHY

[29] J. Sohn, and T.G. Robertazzi, “Optimal Divisible Job Load Sharing for Bus

Networks,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32,

no. 1, pp. 34-40, Jan. 1996.

[30] T.G. Robertazzi, “Processor Equivalence for a Linear Daisy Chain of Load

Sharing Processors,” IEEE Transactions on Aerospace and Electronic System-

s, vol. 29, pp. 1216-1221, Oct. 1993.

[31] V. Mani, and D. Ghose, “Distributed Computation in Linear Networks:

Closed-form solutions,” IEEE Transactions on Aerospace and Electronic Sys-

tems, vol. 30, pp. 471-483, 1994.

[32] Y.C. Cheng, and T.G. Robertazzi, “Distributed Computation for a Tree Net-

work with Communication Delays”, IEEE Transactions on Aerospace and

Electronic Systems, vol. 26, no. 3, pp. 511-516, 1990.

[33] S. Bataineh, T. Hsiung, and T.G. Robertazzi, “Closed Form Solutions for Bus

and Tree Networks of Processors Load Sharing a Divisible Job”, Proceedings

of the 1993 International Conference on Parallel Processing, St. Charles, Ill.,

Aug. 1993.

[34] G. Barlas, “Collection-Aware Optimum Sequencing of Operations and Closed-

Form Solutions for the Distribution of a Divisible Load on Arbitrary Processor

Trees,” IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 5,

pp. 429-441, May 1998.

[35] J. Blazewicz, and M. Drozdowski, “The Performance Limits of a Two- dimen-

sional Network of Load Sharing Processors,” Foundations of Computing and

Information Sciences, vol. 21, no. 1, pp. 3-15, 1996.

108

BIBLIOGRAPHY

[36] J. Blazewicz, M. Drozdowski, F. Guinand, and D. Trystram, “Scheduling a

Divisible Task in a Two-dimensional Mesh,” Discrete Applied Mathematics,

vol. 94, no. 1-3, pp. 35-50, June 1999.

[37] Drozdowski, M., and W. Glazek, “Scheduling Divisible Loads in a Three-

dimensional Mesh of Processors”, Parallel Computing, vol. 25, no. 4, pp. 381-

404, Apr. 1999.

[38] K. Li, “Improved Methods for Divisible Load Distribution on k-Dimensional

Meshes using Pipelined Communications,”IEEE Transactions on Parallel and

Distributed Systems, vol. 14, no. 12, pp. 1250-1261, Dec. 2003.

[39] Y. Chang, J. Wu, C. Chen, and C. Chu, “Improved Methods for Divisible

Load Distribution on k-Dimensional Meshes Using Multi-Installment,” IEEE

Trans. Parallel and Distributed Systems, vol. 18, no. 11, Nov. 2007.

[40] J. Yao, and B. Veeravalli, “Design and Performance Analysis of Divisible Load

Scheduling Strategies on Arbitrary Graphs,” Cluster Computing, vol. 7, no.

2, pp.841-865, 2004.

[41] D. England, B. Veeravalli, and J. Weissman, “A Robust Spanning Tree Topol-

ogy for Data Collection and Dissemination in Distributed Environments”,

IEEE Transaction on Parallel and Distributed System, vol.18, no.5, pp.608-

620, 2007.

[42] J. Blazewicz, and M. Drozdowski, “Distributed Processing of Divisible Jobs

with Communication Startup Costs,”Discrete Applied Mathematics, vol. 76,

no. 1-3, pp. 21-41, June 1997.

109

BIBLIOGRAPHY

[43] B. Veeravalli, X. Li, and C.C. Ko, “On the Influence of Start-up Costs in

Scheduling Divisible Loads on Bus Networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 11, no. 12, pp. 1288-1305, Dec. 2000.

[44] M. Drozdowski and P. Wolniewicz, “Optimum divisible load scheduling on

heterogeneous stars with limited memory,” European Journal of Operational

Research, vol. 172, no. 2, pp. 545-559, 2006.

[45] A. Legrand, Y. Yang and H. Casanova, “NP-Completeness of the Divisible

Load Scheduling Problem on Heterogeneous Star Platforms with A ↪aÀne Cost-

s,” Technical Report CS2005-0818, CSE, UCSD, 2005.

[46] Bharadwaj, V., D. Ghose, and V. Mani,“Multi-Installment Load Distribution

Strategy for Linear Networks with Communication Delays”, Proceedings of

the First International Workshop on Parallel Processing, Bangalore, India,

Dec. 26-29 1994.

[47] B. Veeravalli, D. Ghose, and V. Mani, “Multi-installment Load Distribution in

Tree Networks With Delays,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 31, no. 2, pp. 555-567, April 1995.

[48] D. Altilar and Y. Paker, “An Optimal Scheduling Algorithm for Parallel Video

Processing,”Proc. IEEE Intl Conf. Multimedia Computing and Systems, 1998.

[49] D. Altilar and Y. Paker, “Optimal scheduling algorithms for communication

constrained parallel processing,” Euro-Par 2002.

[50] O. Beaumont, A. Legrand, and Y. Robert, “Scheduling divisible workloads on

heterogeneous Platforms”, Parallel Computing, vol. 29, pp. 1121-1152, Sep.

2003.

110

BIBLIOGRAPHY

[51] P. Wolniewicz, “Multi-installment Divisible Job Processing with Communi-

cation Startup Cost”, Foundations of Computing and Decision Sciences, vol.

27, no.1, 43-57, 2002.

[52] Y. Yang and H. Casanova,“RUMR: Robust Scheduling for DivisibleWorkload-

s,” IEEE International Symposium on High Performance Distributed Com-

puting, pp. 114-123, Jun 2003.

[53] N. Loc and S. Elnaffar, “A Dynamic Scheduling Algorithm for Divisible Loads

in Grid Environments,”Journal OF Communications, vol. 2, no. 4, June 2007.

[54] M. Moges and T.G. Robertazzi, “Wireless Sensor Networks: Scheduling for

Measurement and Data Reporting,” IEEE Trans. Aerospace and Electronic

Systems, vol. 42, no. 1, pp. 327-340 Jan. 2006.

[55] B. Veeravalli, and S. Ranganath, “Theoretical and Experimental Study on

Large Size Image Processing Applications using Divisible Load Paradigm on

Distributed Bus Networks,” Image and Vision Computing, vol. 20, no. 13-14,

pp. 917-935, Dec. 2002.

[56] T.T. Chin, B. Veeravalli, and J. Jia, “Handling Large-Size Discrete Wavelet

Transform on Network-Based Computing Systems: Parallelization via Divis-

ible Load Paradigm”, Journal of Parallel and Distributed Computing, vol. 69,

no. 2, pp. 143-152, Feb. 2009.

[57] K. Van, Y. Yang, and Casanova, H., “Practical Divisible Load Scheduling on

Grid Platforms with APST-DV,”Parallel and Distributed Processing Sympo-

sium, 2005.

111

BIBLIOGRAPHY

[58] D. Ghose, H. J. Kim, and T. H. Kim, “Agent-Based Load Balancing on Ho-

mogeneous Minigrids: Macroscopic Modeling and Characterization ”, IEEE

Transactions on Parallel and Distributed Systems, vol. 16, no. 10, pp. 897-

907, Oct. 2005.

[59] B. Veeravalli, and G. Barlas, “Access Time Minimization for Distributed Mul-

timedia Applications,” Special Issue in Multimedia Tools and Applications,

vol. 12, no. 2/3, Nov. 2000.

[60] G. Barlas and B. Veeravalli, “Optimized Distributed Delivery of Continuous

Media Documents over Unreliable Communication Links,”IEEE Transactions

on Parallel and Distributed Systems, vol. 16, no. 10, pp. 982-994, Oct. 2005.

[61] E. Balafoutis, M. Paterakis, P. Triantafillou, G. Nerjes, P. Muth, and

G.Weikum, “Clustered Scheduling Algorithms for Mixed-Media Disk Work-

loads in a Multimedia Server,” Cluster Computing, vol. 6, no. 1, pp. 75-86,

Jan. 2003.

[62] P. Li, B. Veeravalli and A.A. Kassim, “Design and Implementation of Parallel

Video Encoding Strategies Using Divisible Load Analysis,” IEEE Trans. Cir-

cuits and Systems for Video Technology, vol. 15, no. 9, pp. 1098-1112, Sep.

2005.

[63] J. Xu and L. Parnas, “Scheduling Processes with Release Times, Deadlines,

Precedence, and Exclusion Relations,” IEEE Trans. Software Eng., vol. 16,

no. 3, pp. 360-369, Mar. 1990.

[64] K. Ramamritham, “Allocation and Scheduling of Precedence- Related Peri-

112

BIBLIOGRAPHY

odic Tasks,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 4, pp.

412-420, Apr. 1995.

[65] K. Ramamritham, J.A. Stankovic, and P.F. Shiah, “Efficient Scheduling Al-

gorithms for Real-Time Multiprocessor Systems,” IEEE Trans. Parallel and

Distributed Systems, vol. 1, no. 2, pp. 184- 194, Apr. 1990.

[66] M.L. Dertouzos and A.K. Mok, “Multiprocessor On-Line Scheduling of Hard

Real-Time Tasks, ↪aś” IEEE Trans. Software Eng., vol. 15, no. 12, pp. 1,497-

1,506, Dec. 1989.

[67] G. Manimaran and C. Murthy, “An efficient dynamic scheduling algorithm

for multiprocessor real-time systems,” IEEE Trans. Parallel Distrib. Systems.

vol. 9 pp. 312́lC319, Mar. 1998.

[68] J. Stankovic, M. Spuri, M. Natale, and G. Butazzo, “Implications of classical

scheduling results for real-time systems,” IEEE Computers, vol. 28, pp. 16-25,

June 1995.

[69] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for assigning

real-time tasks to multiprocessor systems,” IEEE Trans. Computers, vol. 44

pp. 1429́lC1442, Dec. 1995.

[70] D. Babbar and P. Krueger, “On-Line Hard Real-Time Scheduling of Parallel

Tasks on Partitionable Multiprocessors,” Proc. Int ↪aŕl. Conf. Parallel Process-

ing, vol. 2, pp. 29-38, 1994.

[71] W.Y. Lee, S.J. Hong, J. Kim, “On-line scheduling of scalable real-time tasks

on multiprocessor systems,” Journal of Parallel and Distributed Computing

63 (12) (2003) 1315 - 1324.

113

BIBLIOGRAPHY

[72] Nikolaos Doulamis, Emmanouel Varvarigos1, and Theodora Varvarigou, “Fair

Scheduling Algorithms in Grids,” IEEE Trans. Parallel and Distributed Sys-

tems, vol. 18, no. 11, pp. 1630-1648, Nov. 2007.

[73] M. Eltayeb, A. Dogan, and F. Ozguner, “A data scheduling algorithm for

autonomous distributed real-time applications in grid computing,” in Proc.

ICPP, Montreal, Canada, 2004, pp. 388-395.

[74] M.A.S. Netto and R. Buyya, “Offer-based scheduling of deadline-constrained

Bag-of-Tasks applications for utility computing systems,” in Proc. IPDPS,

2009, pp.1-11.

[75] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel

Computing, second ed. Addison Wesley, 2003.

[76] O.H. Ibarra and C.E. Kim, “Heuristic Algorithms for Scheduling Independent

Tasks on Nonidentical Processors,” J. ACM, vol. 24, no. 2, pp. 280-289, 1977.

[77] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R. Freund, “Dynam-

ic Matching and Scheduling of a Class of Independent Tasks onto Hetero-

geneous Computing Systems,” Proc. Eighth IEEE Heterogeneous Computing

Workshop, pp. 30-44, 1999.

[78] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics for

Scheduling Parameter Sweep Applications in Grid Environments,” Proc.

Ninth Heterogeneous Computing Workshop, pp. 349-363, May 2000.

[79] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima, “Exploiting Replication

and Data Reuse to Efficiently Schedule Data-Intensive Applications on Grids,”

114

BIBLIOGRAPHY

Proc. 10-th Workshop Job Scheduling Strategies for Parallel Processing, pp.

210-232, 2004.

[80] N. Fujimoto and K. Hagihara, “Near-Optimal Dynamic Task Scheduling of

Independent Coarse-Grained Tasks onto a Computational Grid,” Proc. Inter-

national Conference on Parallel Processing, pp. 391-398, 2003.

[81] W. Cirne, F. Brasileiro, D. Paranhos, L.F.W. Gĺőes, and W. Voorsluys, “On

the efficacy, efficiency and emergent behavior of task replication in large dis-

tributed systems,”Parallel Computing, vol. 33, no. 3, pp. 213-234, April 2004.

115

List of Publications

[1] Hu Menglan and Bharadwaj Veeravalli, “Requirement-Aware Strategies for

Scheduling Multiple Divisible Loads with Arbitrary Processor Release Times”,

IEEE Transactions on Parallel and Distributed Systems, Vol. 22, No. 10, pp.

1697-1704, 2011.

[2] Hu Menglan and Bharadwaj Veeravalli, “Scheduling Hybrid Tasks on Clusters”,

IEEE ICON 2011, Singapore.

[3] Hu Menglan and Bharadwaj Veeravalli, “Requirement-Aware Strategies for

Scheduling Real-Time Divisible Loads on Clusters”, submittied to Journal of

Distributed and Computing.

[4] Hu Menglan and Bharadwaj Veeravalli, “Requirement-Aware Scheduling of

Bag-of-Tasks Applications on Grids with Dynamic Resilience”, submitted to

IEEE transactions on Computers.

[5] Hu Menglan and Bharadwaj Veeravalli, “Dynamic Scheduling of Hybrid Real-

Time Tasks on Clusters”, submitted to IEEE Transactions on Aerospace and

Electronic Systems.

116

