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ABSTRACT

We live in the era of Big Data, where data is being created, collected and

integrated at an unprecedented scale. To uncover the true value of Big Data,

distributed system is unquestionably one of the most important and effective

solutions. Among all the existing distributed systems, epiC is one of the most

elastic and extensible data processing systems proposed for Big Data. epiC

adopts a general Actor-like concurrent programming model which is able to

handle multi-structured data and execute different kinds of computations in a

single system. While epiC provides a simple yet extensible interface to cope

with various types of Big Data applications, many challenges still remain to be

solved, such as data storage, complex query processing, simplicity management

and resilience to failures.

In this thesis, we aim to develop effective and efficient solutions to address

two challenging issues in epiC: complex query processing and failure recovery.

We employ epiC as our underlying distributed system due to its simplicity,

efficiency and extensibility, but our approaches can be implemented in other

distributed systems as well. For the query processing, we first focus on the prob-

lem of answering k nearest neighbor join queries in epiC. We then introduce

our graph processing engine, epiCG, to handle graph-related analytics queries.

epiCG is built on top of epiC and supports both edge-cut and vertex-cut parti-

tioning methods. Lastly, we address the recovery problem in epiC/epiCG. The

traditional checkpoint-based recovery works well for one-pass jobs such as kNN

join, but it incurs long recovery latency for iterative graph applications. We

discuss in detail the drawbacks of the checkpoint-based recovery method and

vii



CONTENTS

propose a novel parallel recovery mechanism. We also implement our recovery

method in epiCG. For all the three pieces of work, we compare our approaches

with state-of-the-art solutions and conduct extensive experiments using real

datasets and multiple benchmark tasks.
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CHAPTER 1

Introduction

In the era of Big Data, data is being created and collected at an unprecedented

scale in a broad range of application areas. In social science, for instance,

over 100 billion emails were sent and received per day worldwide in 2013 [72];

more than 15TB data were collected daily in Facebook in 2012 [8]; over 500

million tweets were sent to Twitter per day in 2013 [1]; 100 hours of videos were

uploaded to YouTube every minute in 2014 [6]. According to a recent report [7],

90% of world’s data have been generated over the past two years. Along with the

Big Data explosion, tremendous successes have been achieved by analyzing the

sheer volume of data being generated. A McKinsey report estimated that data

analytics could save U.S. healthcare costs by 300 to 450 billion annually [38].

In [61], it was estimated that services enabled by individual locational data

could help consumers to capture over 600 billion dollars in economic surplus.

While the potential benefits of Big Data are significant, it is challenging to

uncover the true value of Big Data due to its three V characteristics. The first

V is Volume, i.e., data size. The sheer size of data requires the capability to

continuously act upon the large-scale growing data. Velocity and Variety are

the other two Vs of Big Data. Velocity refers to the high generation speed of

data and Variety refers to diverse data types. Recently, Big Data has also been

characterized by Veracity, which refers to the noises, biases and abnormality in

data. All the Vs in Big Data introduce a large number of challenging issues such

as scale, heterogeneity, statistical errors, privacy, data storage, data integration
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CHAPTER 1. INTRODUCTION

and query processing. Without the ability to address all these crucial issues,

the true value of Big Data is locked.

As we will see later, traditional centralized system infrastructures and com-

putation methods are far from satisfactory in terms of supporting Big Data

analytics. It is therefore not surprising that traditional solutions that lever-

age multi-core and multi-thread to speed up data processing even do not have

enough space to store data due to its sheer size. Supercomputers employ a

massive number of multi-core processors that are collaborated with each other

in a complicated way to maximize the computing capability. While supercom-

puters are indeed powerful and competitive in high-performance computing,

they are really expensive and can hardly be afforded by typical IT companies

and research communities. Moreover, data is growing at a much faster rate

than the performance improvement of supercomputers [11].

To handle the challenges of Big Data, distributed processing over a clus-

ter of community computers has gained attraction in recent years. In general,

computers in a distributed system are physically distributed and each com-

puter is associated with its own memory and disk space, and is responsible

for a subset of computation tasks. All the computers perform computation

in parallel and communicate with each other via network messages. While a

single computer has limited capability in terms of both storage and computing

power, the collaboration of multiple computers exhibits competitive computing

capability compared with a general-purpose computer. More importantly, dis-

tributed systems based on clusters of community computers are more affordable

for mid-sized companies and research communities.

Figure 1.1 summarizes the state-of-the-art distributed systems proposed for

Big Data applications. Among all the existing distributed systems, epiC [47]

is one of the most elastic and extensible data processing systems designed for

Big Data applications. The core abstraction of epiC is a general Actor-like

concurrent programming model which is able to execute different kinds of com-

putations (called units), independent of the data processing models. This flex-

ible design allows users to handle multi-structured data in a single system, by

processing each data type with the most appropriate data processing model.

While epiC provides a simple yet extensible unit interface to cope with var-

ious types of Big Data applications, many challenges still remain to be solved.

From the perspective of application design, it should be able to support various

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Landscape of advanced distributed systems [97]

analytics tasks over Big Data efficiently; from the perspective of system design,

it should possess several properties such as simplicity, scalability, elasticity and

fault tolerance. In this thesis, we aim to develop effective and efficient solutions

to address two challenging issues in epiC: complex query processing and failure

recovery.

Various real-life applications, such as data mining, pattern recognition,

multimedia and geographic analysis, require to analyze Big Data via complex

queries, i.e., queries that cannot be easily expressed by standard SQL queries or

non-relational (e.g., NoSQL) queries. k nearest neighbor join is an important

example of complex queries that combines each object of one dataset with k

nearest neighbors of another dataset. As a primitive operation, kNN join serves

a broad spectrum of data mining applications. For instance, in each iteration

of the well-known k-Means and k-Medoid clustering, a set of cluster centers are

computed and each data point will be assigned to its nearest center. This point

assignment process corresponds to a k = 1 nearest neighbor join between the

set of center points and the set of data points. In k nearest neighbor classifi-

cation, we need to decide the class labels of unclassified data objects based on

a set of classified objects (k is a pre-defined parameter). To do this, for each

3



CHAPTER 1. INTRODUCTION

unclassified object, a k nearest neighbor query on the set of classified objects is

evaluated. This process corresponds again to a k nearest neighbor join between

the set of unclassified objects and the set of classified objects. Other kNN join

based applications include (but are not limited to) the following list: sample

assessment, sample post-processing, missing value imputation, and k-distance

diagrams [15, 16]. While kNN join covers almost all the stages of knowledge

discovery process [15], it mainly solves complex queries over high-dimensional

data objects and is insufficient to handle complex graph analytics queries that

require to perform iterative computation over large graph data.

Recent years have witnessed the emergence of large real-life graphs such

as social networks (e.g., Facebook, LinkedIn), spacial networks (e.g., Google

Maps, FedEx) and the Web. Querying and mining large graphs are becoming

increasingly important in many real applications. Examples include two-hop

friend list and influence analysis in social networks [80, 37], traffic analysis

and route recommendation over spacial graphs [89, 28, 32], PageRank [67] and

reverse link web graph computation over the Web graph. In most applications,

the sheer size of graph data creates a critical need for distributed systems to

handle various graph analytics queries more efficiently.

While epiC allows us to accomplish heterogeneous analytics tasks in a single

system, designing efficient algorithms in epiC to answer the above two complex

queries, kNN join and graph analytics queries, is still challenging with the

following two reasons.

• kNN join queries can hardly be handled via a single-unit epiC job. Differ-

ent kinds of units must be implemented and collaborated with each other

to process data gradually. The design of each unit has to take two impor-

tant issues into account. The first issue is to balance the load among the

units that process data simultaneously in parallel. The second issue is to

reduce the network communication cost between units. Both issues are

critical to the performance of complex query processing, especially under

Big Data workloads.

• Most graph analytics tasks, such as PageRank and shortest path compu-

tation, require iterative computation over large graphs. However, epiC

is a disk-based distributed solution which requires to flush the computed

results (e.g., computed graph data) to the distributed file system at the
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CHAPTER 1. INTRODUCTION

end of each iteration and reload them to the memory in the beginning of

next iteration. This incurs high network cost and degrades the system

performance. Hence, it is important to enhance epiC to support iterative

computation for graph analytics tasks more efficiently.

The second challenging issue we want to address is the failure recovery prob-

lem in epiC. That is, epiC should continue operating properly and quickly when

some of the system components fails. Failure recovery is one of the most fun-

damental problems that must be faced when we run programs in distributed

systems. In fact, the increasing data size and analytics complexity inevitably in-

crease the failure probability of machines in the distributed systems. Currently,

epiC, as well as other advanced distributed systems, adopts checkpoint-based

approach to recover from failures. During the computation, the system will pe-

riodically save its runtime status to persistent storage as a checkpoint. When

a failure occurs, the system will reload the latest checkpoint and restart the

computation since then. For non-iterative analytics tasks such as kNN join,

checkpoint-based recovery is efficient and easy to implement [71]. However, for

graph analytics tasks, it might incur high recovery latency as all the computers

in the cluster have to redo the lost iterations since the latest checkpoint even if

a computer has finished its computation task and never failed. This inspires us

to develop more efficient recovery mechanism to reduce the recovery overhead.

To address the above two challenging issues (i.e., complex query processing

and failure recovery), in this thesis, we first study the problem of answer-

ing k nearest neighbor join query in epiC. We then extend epiC and develop

an efficient graph processing engine, called epiCG, on top of epiC, to han-

dle graph analytics queries efficiently. For the recovery issue, the traditional

checkpoint-based recovery method works well for the non-iterative jobs such as

kNN join [71], but incurs long recovery latency for the iterative graph analytics

tasks. Hence, we propose a novel parallel recovery mechanism and implement

it in epiCG to accelerate the recovery process.

In the remainder of this chapter, we first review several advanced distributed

systems. We then present research challenges in distributed systems and pro-

vide background of complex query processing and failure recovery in distributed

systems. Finally, we outline the objectives of this thesis and provide an outline

of the thesis.
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1.1 Brief Review of Distributed Systems

MapReduce [31] and its open source implementation Hadoop [3] are undoubt-

edly an advanced distributed solution proposed for Big Data analytics. MapRe-

duce is a distributed platform with two primitive functions, Map and Reduce,

for the purpose of data processing. Figure 1.2 illustrates the processing logic

of MapReduce framework. The Map function absorbs a key-value pair as input

and transforms it into an intermediate key-value pair. The Reduce function

takes all the intermediate key-value pairs with the same key as input and pro-

duces a key-value pair in the final result. In MapReduce, programmers are

responsible for implementing the Map and Reduce functions, while the system

will manage the overall computation and communication process automatically.

MapReduce achieves great success and popularity due to its following features.

• Flexibility. Programmers can write simple Map and Reduce functions

to process data over a large cluster without the knowledge of how the

MapReduce job is performed in the underlying distributed system.

• Efficiency. MapReduce does not require input data to be stored in the

database before the processing. Therefore, it is very efficient for the

applications that only process data in a small number of passes.

• Scalability. MapReduce supports data parallel partitioned execution. To

cope with the increasing size of data and load, MapReduce can easily

leverage more computers to execute Map and Reduce functions in parallel

and achieve high computing capability.

• Fault tolerance. A MapReduce job is typically processed by a cluster

of computers. Once a computer/mapper/reducer fails, MapReduce can

recover from the failure automatically and the programmers do not need

to worry about the failures during the period of job execution.

To enhance the performance of MapReduce, many extensions based on

MapReduce framework have been developed. For example, Sailfish [73] modi-

fies the transportation layer between mappers and reducers in order to reduce

the network cost of shuffling intermediate key-value pairs; FileMap [35] is a

file-based distributed system, in which data is stored in Unix files and no dis-

tributed file system is required; Themis [74] aims to reduce I/O cost for exe-

cuting MapReduce jobs. More proposals can be found in a recent survey [54].
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Figure 1.2: MapReduce framework

One limitation of the above proposed systems is that they are not suitable

for iterative computations. This is because most of these systems require ex-

pensive I/O operations towards underlying file systems during each iteration

of computation. In MapReduce, for example, all the data will be flushed out

to the distributed file system (DFS) at the end of one iteration and be re-

trieved from the DFS at the beginning of next iteration. It is important to

note that iterative computations do exist in many real-life analytics jobs such

as PageRank, shortest path computation and connected component comput-

ing. Recently, a new iterative programming model, called Pregel [59], has been

proposed by Google to deal with iterative computation. Pregel aims to handle

iteration computations for graph-oriented applications. That is, the input of

a Pregel job is typically a directed graph. As shown in Figure 1.3, a Pregel

job consists of three phases: an input phase to load and distribute graph data

among a cluster of compute nodes, followed by a set of supersteps for iterative

computations, and finally an output phase to produce the computed results.

Pregel adopts vertex-centric computation model. In each superstep, every ver-

tex executes the compute function specified by the programmers and sends

messages to other vertices. When all the vertices finish computations and for-

ward messages successfully in one superstep, they proceed to the next superstep

synchronously. Pregel eliminates costly I/O operations by maintaining all the
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graph data and messages in main memory during the iterative computations.

Inspired by Pregel, various vertex-centric distributed systems are developed to

support graph-parallel computations. GPS [75], Hama [5] and Giraph [2] pro-

vide similar APIs as Pregel. Trinity [76] deploys a distributed memory cloud to

support both online graph query processing and offline graph analytics tasks.

GraphLab [56] allows vertices to perform computation asynchronously. Un-

like Pregel, GraphLab provides three primitives gather, apply and scatter for

graph computation. Pregelix [4] aims to support both in-memory and out-of-

core graph workloads efficiently. Pregelix is built on top of Hyracks [20] and

leverages the out-of-core data management techniques and optimizations from

Hyracks to accelerate the processing for extremely large graphs.

As we can see, different distributed systems (e.g., MapReduce, Pregel) have

been developed to process data of different types (e.g., key-value pairs, graph

data). However, due to the high variety of Big Data, we cannot afford to build

a specific distributed system for each particular type of data/task. To address

the high variety challenge, Jiang et al. [47] proposed a novel distributed system,

called epiC. epiC adopts a general Actor-like programming model and provides

a simple yet efficient unit interface to support various computation models.

Figure 1.4 provides an overview of epiC. In epiC, users can express different

computation logics by defining different units. Each processing unit performs

computation in parallel with other units and communicates with other units

through message passing. For example, MapReduce framework can be eas-

ily developed by implementing two units, MapUnit and ReduceUnit; relational
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model can be implemented by designing SQL-related units such as SingleTable-

Unit to process a single table, JoinUnit to join two tables based on join keys

and AggregateUnit to collect partitions of different groups and calculate the

aggregated results for each group. Such kind of unit-based solution allows pro-

grammers to process each data type with the most appropriate data processing

model. More importantly, thanks to the flexibility and extensibility of epiC,

various data types and data analytics tasks can be handled appropriately in a

single distributed system.

1.2 Research Challenges in Distributed Sys-

tems

Developing a distributed system with promising capability of handling Big Data

analytics is a non-trivial task. In this section, we first provide an overview of

research challenges in distributed systems. We then elaborate on two important

challenges: complex query processing and resilience to failures.

1.2.1 Overview

In order to ensure that distributed systems are efficient, scalable and reliable,

we have to address the following challenging issues.
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• Storage. Data storage is a fundamental challenge in distributed systems.

Data processed by distributed systems can be stored in various types

of data storages such as shared data storage, main memory and real-

time data streams. Whether the storage is effective or not have a great

impact on the execution of the upper-level applications. Typically, the

effectiveness is referred to as long-term duration, provenance, availability,

consistency, performance, etc.

• Query processing. Query processing is inevitably a crucial challenge in

distributed systems. Typically, we consider two kinds of queries: offline

data analytics queries and online transactional queries. In general, query

processing in distributed systems has to address several problems: cor-

rectness, efficiency, scalability, accuracy and speedup. Noting that there

does not exist a distributed system that can fit all requirements with one

size, different kinds of distributed systems have been developed and each

of them focuses on some particular queries.

• System management. Distributed systems are much harder to manager

than stand-alone systems and the complexity stems from the complex

collaborations (computation and communication) among multiple com-

puters and complicated infrastructure for the purpose of efficiently pro-

cessing data in sheer size. To make distributed systems more applicable,

an important research challenge is to make the management of distributed

system simpler. The management includes system configuration and up-

grade, software development, install, update and remove.

• Fault tolerance. Failures are inevitable and a reliable distributed system

must have the ability to detect the occurrence of failures automatically.

Various types of failures could happen in distributed systems, either from

software or from hardware. Once a failure is detected, the system has

to perform recovery resiliently such that the overall recovery process is

transparent to the users. For the distributed systems that deal with real-

time query processing, efficient failure recovery is required to ensure high

availability.

• Security. Security issues in distributed systems may come from network

vulnerability, erroneous operations performed by the users, malicious soft-

10
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ware used in distributed systems, etc. The development of distributed

systems should be able to guarantee the anonymity of sensitive data and

the correctness of computation results.

In this thesis, we mainly focus on two challenging issues in distributed sys-

tems: complex query processing and fault tolerance.

1.2.2 Complex Query Processing

To discover the value of Big Data, modern distributed systems such as MapRe-

duce aim to support large-scale data-driven analytics. Therefore, the first and

foremost challenge in distributed system design is its ability to answer complex

data analytics queries. Broadly, we categorize complex analytics queries into

the following three categories.

• SQL-like data processing. SQL-like data processing is to implement basic

database operations to process the data. The operations include pro-

jection, selection, aggregation and join. Join operations can be further

categorized into similarity join, kNN join, equijoin, etc.

• Iterative computation. Many data mining and machine learning applica-

tions require to perform computation over data sets iteratively, e.g., social

network analysis, web data ranking, clustering. One famous example of

iterative computation is PageRank [67], which continuously calculates the

PageRanks of all the webpages. Typically, the input of an iterative com-

putation job (e.g., PageRank) consists of an invariant part that will not

change in different iterations (e.g., static connection graph for the web

pages), and a variant part that will change during the iterations (e.g.,

PageRank of each web page computed after each iteration).

• Stream and continuous query processing. Many analytics queries such as

stream processing [78, 12] and online aggregation [41, 52] cannot retrieve

all the data they need before computation, but have to deal with contin-

uous data streams. These queries will be issued once and then logically

run continuously over data streams.

Traditional centralized approaches to complex query processing cannot be

easily transformed to efficient distributed processing. Hence, various novel ap-
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proaches have been proposed to answer complex queries efficiently in a dis-

tributed environment.

For SQL-like data processing, more attention has been paid to accelerate

the process of performing various types of joins such as theta-join [64, 99],

equijoin [14], similarity join [9, 62, 85] and multiway join [46]. Most of the pro-

posed solutions adopt MapReduce as the underlying distributed system, and

the proposed solutions provide particular Map and Reduce functions for differ-

ent join operations. Various optimizations are provided to balance the workload

among mappers and reduces, and reduce the shuffling cost of transmitting in-

termediate data from mappers to reducers. In addition to the implementations

of database operations, several high-level languages such as PigLatin [65] and

HiveQL [81] have also been introduced for MapReduce. These high-level lan-

guages are well supported by many distributed systems such as Pig [65] and

Hive [81]. In these systems, programmers do not have to implement database

operations on their own. Instead, they can pose complex SQL queries using the

high-level languages, and the system will automatically translate these queries

into a sequence of lower-level operations that have already been implemented

in the systems.

For queries that involve iterative computation, a straightforward solution

is to decompose the query into a sequence of analytics jobs and execute the

jobs sequentially. However, such a solution requires to retrieve both invari-

ant and variant input data at the beginning of the execution of each job and

flush them out whenever a job finishes. Obviously, this will incur high I/O

cost as read and write in distributed systems always require remote data access

via network. To address the problem, HaLoop [25], a variant of MapReduce

was proposed to support iteration computation efficiently. Specifically, HaLoop

caches invariant data across all the iterations via two new primitives AddMap

and AddReduce. Furthermore, HaLoop supports automatic termination. That

is, if two consecutive sets of reducers’ output are identical, HaLoop will termi-

nate the iteration and report the final results. Recently, a new computation

model, called Pregel [59], was introduced to perform iterative computation for

graph applications. Unlike MapReduce, Pregel only involves two I/O phases.

One is the input phase that retrieves input data at the beginning of a Pregel

job; another is the output phase that flushes out the final results at the end of

the job. During the iterations, all the data, either invariant or variant, will be

12
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maintained in the memory.

For stream and continuous query processing, continuous operations will be

performed over continuously incoming data. Consider, for example, an aggrega-

tion query over a data stream. The key challenge to deal with continuous queries

is to effectively pipeline the execution of consecutive operations. MapReduce

Online [30] extends MapReduce framework and addresses two kinds of pipelines

in MapReduce. First, it supports the pipeline between mappers and reducers.

While MapReduce requires reducers to pull data from mappers, MapReduce

Online asks mappers to push the output data to the reducers and the reduc-

ers will sort incoming data locally. Second, if an application requires multiple

MapReduce jobs to be executed sequentially, MapReduce Online also supports

the pipeline between two consecutive jobs, which is to transfer output data

from reducers directly to the mappers of the next job. For example, consider a

sort-merge query that involves two jobs, one job for sorting followed by another

job for merging. MapReduce Online allows the mappers for the merging job to

start merging once the reducers for the sorting job start to produce results.

While the above three types of complex queries have been well studied in

the literature, there still exist a broad spectrum of complex analytics queries

that have not been solved yet such as k-nearest neighbor join queries. Further

research is needed to support more complex analytics queries in distributed

systems.

1.2.3 Resilience to Failures

Failure is an inevitable result of involving more and more computers into one

system to cope with the increasing scale of data. In distributed systems, each

computer is responsible for a subset of computation tasks. When a computer

fails, all the tasks executed on that computer fail as well. If the tasks are

correlated with each other, one task failure may result in the failures of the

tasks that are being executed in healthy computers. In the worst case, all the

tasks fail and have to be redone from the beginning.

Resilience to failures is one of the most important requirements for dis-

tributed systems. To fulfill this requirement, a distributed system must be able

to detect the occurrence of failures automatically. Furthermore, the system

must be able to perform recovery immediately upon any failure and return to

13



CHAPTER 1. INTRODUCTION

normal execution after recovery. In practice, failures may occur at any time,

either during the normal execution or during recovery, and the latter makes the

overall recovery process more complicated.

In many popular distributed systems such as MapReduce, automatic failure

detection is achieved by asking all the slave computers (which are responsible

for computation tasks) to send heartbeats periodically to one master computer

(which manages the collaborations among slaves). Specifically, the master com-

puter will set up a local servlet to check the heartbeats registered by the slaves

periodically. If a slave computer does not send its heartbeat within a pre-

defined time period, the servlet will inform the master computer of the slave’s

failure. Once a slave fails, all the tasks executed in that slave fail as well and

the master will ask some healthy slaves to take over (i.e., re-execute) the failed

tasks.

Upon the detection of a failure, the system has to recover from the failure

by restarting appropriate execution. One of the most popular recovery mecha-

nisms adopted in distributed systems is checkpoint-based recovery. Intuitively,

checkpoint-based recovery requires the system to write a consistent state, i.e.,

checkpoint, to a reliable storage periodically. Whenever a failure occurs, the

system will terminate the current execution, reload the latest checkpoint from

the reliable storage and resume the execution since then. For example, in

MapReduce, if a mapper fails, the system will create a new mapper. The newly

created mapper will retrieve the input data that were processed by the failed

mapper and then execute the Map function over the retrieved data again. Sim-

ilarly, if a reducer fails, the system will launch another reducer to substitute

the failed one; the new reducer will retrieve the corresponding output from

the mappers and execute the Reduce function over the retrieved data again.

In MapReduce, the system does not have to make any checkpoint explicitly

due to the fact that both the initial input and the intermediate data produced

by mappers are materialized to the reliable distributed file system automat-

ically. Other distributed systems such as Pregel have to perform periodical

checkpointing explicitly [59].

Checkpoint is the basic foundation of most existing recovery mechanisms [42].

However, performing checkpointing essentially requires the system (i.e., all the

computers involved in the system) to pause its on-going execution and materi-

alize all the necessary information such as the computed data and forwarding
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messages into a reliable storage. During that period, the execution of the job is

paused and no progress will be made. Furthermore, the recovery process based

on checkpointing may involve high recovery latency. This is because the over-

all recovery process includes reloading the latest checkpoint from the reliable

storage, rolling back the system to the state maintained in the latest check-

point and redoing all of the lost computations and communications since then.

In order to accelerate the recovery process, we need to develop new recovery

mechanisms that are more efficient.

1.3 Objective and Contributions

The objective of this thesis is to develop effective and efficient approaches to

two challenging issues in distributed systems: complex query processing and

fault tolerance. Most specifically, we first focus on answering a complex ana-

lytics query, k nearest neighbor join in a distributed manner. We then propose

an efficient graph processing engine to handle graph-related analytics queries.

Finally, we address the recovery problem in distributed systems. For all the

three problems we study, we choose epiC [47] as our underlying distributed sys-

tem due to its simplicity, efficiency and extensibility, but our approaches can

be implemented in other distributed systems as well. We provide more details

in the following sections.

1.3.1 k Nearest Neighbor Join

k nearest neighbor (kNN) join is an important primitive operation that serves

a wide range of data mining and analytics applications, such as k-means clus-

tering, k-medoids clustering and outlier detection [22, 51]. Given two sets R, S

of data objects, kNN join is defined as: for each object o in R, find k objects

in S that are closest to o based on a pre-defined distance measure. All the

existing approaches solve kNN join problem in a centralized manner and hence

suffer from performance deterioration when the size of dataset increases. In

this thesis, the first problem we consider is: how to answer kNN join query in

a distributed manner?

We leverage MapUnit/ReduceUnit in epiC which is an implementation of

MapReduce framework, and propose a MapReduce-based solution to answer

15



CHAPTER 1. INTRODUCTION

kNN join query for objects under the metric space. In our solution, we exploit

the Voronoi-based partitioning method and divide input objects into groups.

We design an effective map function which guarantees that similar objects must

be gathered and processed by the same reducer (i.e., ReduceUnit). We then

answer kNN join query by examining pair-wise objects within the same group.

In order to further accelerate the processing, we provide a theoretical analysis of

the computation and shuffling cost involved in our approach. Based on the cost

model, we introduce a cost-based grouping strategy to balance the workload

among the reducers (i.e., ReduceUnits) and introduce several pruning rules to

eliminate the examination of dissimilar object pairs.

Contributions. Our proposed method is the first distributed solution for an-

swering kNN join query. Compared with the existing index-based approaches [15,

16], our distributed solution allows us to perform pair-wise examinations for

candidate object pairs in parallel, thus accelerating the processing of kNN join

query significantly. Furthermore, our cost-based grouping strategy that keeps

similar objects together and our proposed pruning rules that keep dissimilar

objects apart can be applied to the existing index-based solutions as well.

1.3.2 Efficient Graph Processing Engine

The second problem we address is: how to answer graph-related analytics

queries efficiently? As mentioned before, epiC is a disk-based distributed solu-

tion for large-scale data analytics. To support iterative computations for graph

applications, epiC implements a class called graphUnit to handle the computa-

tion task of a subgraph. However, current graphUnit-based graph engine has

two drawbacks. First, it is not a memory-based solution for iterative graph ap-

plications because the graph data will be flushed to the distributed file system

at the end of each iteration and then be reloaded into main memory in the

beginning of next iteration. As discussed previously, such kind of I/O opera-

tions is time-consuming due to the high network cost. Second, in the current

design, if one slave computer wants to communicate with another slave, it has

to send a message to the master first and the master will forward the mes-

sage to the corresponding slave. In other words, all the communications among

slave computers are coordinated by the master computer and cannot be per-

formed directly by the slave computers. Hence, the master computer will be the
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bottleneck when the communications among the slave computers are frequent.

To support memory-based iterative computation, we extend epiC and de-

velop a new graph processing engine, called epiCG. epiCG is implemented as

an extension of epiC to avoid deploying a new distributed system in the cluster

for graph processing. The design of epiCG addresses several challenges. First,

in terms of graph partitioning, epiCG supports both edge-cut based and vertex-

cut based graph partitioning methods. Edge-cut partitioning method is easier

to implement, but vertex-cut partitioning method is known to be more effec-

tive in handling power-law graphs. Second, for any given partitioning, epiCG

can distribute the input graph among the slave computers efficiently and per-

form computation and communication effectively during the iterations. Finally,

epiCG allows slave computers to send messages among each other instead of

communicating via the master computer.

Contributions. epiCG is developed as one extension of epiC, thus allowing

users to execute different types of analytics jobs using the same distributed sys-

tem. epiCG supports both vertex-cut and edge-cut partitioning methods. For

vertex-cut, we propose an efficient greedy strategy to parallelize the process

of vertex-cut generation. In terms of fault tolerance, epiCG achieves auto-

matic failure detection and recovery. We compare epiCG with two advanced

distributed graph processing systems, Giraph [2] and PowerGraph [36]. The

results illustrate the high efficiency and scalability of epiCG.

1.3.3 Recovery in Distributed Graph Processing Sys-

tems

In the third piece of this thesis, we focus on the recovery issue in epiC/epiCG.

The traditional checkpoint-based recovery works well for one-pass jobs such as

kNN join, but it always requires long recovery time for graph-related applica-

tions executed in epiCG. The reason is two-fold. First, in distributed graph

processing systems like epiCG, each computer is responsible for the compu-

tation task of a subgraph. Once a computer fails, checkpoint-based recovery

requires the whole system to rollback to the latest checkpoint. All the com-

putations finished by the healthy computers are ignored and will be redone

since the latest checkpoint. This is wasteful. Second, for the failures that occur

during the recovery period, all the partially recovered workload has to be re-
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done since the latest checkpoint as well. If the frequency of failure occurrence

is high, checkpoint-based recovery may repeatedly rollback and re-execute the

lost computation since the latest checkpoint.

To address the problem, we study the problem of efficient failure recovery

in distributed graph processing systems. We first formalize the failure recovery

problem in graph processing systems. We then propose a novel partition-based

recovery method to parallelize the failure recovery processing. Different from

the traditional checkpoint-based recovery approach, our recovery method dis-

tributes recovery tasks to multiple computers such that the tasks can be exe-

cuted concurrently. We prove that it is NP-hard to find a partitioning for the

recovery workload such that the total recovery time is minimized. Hence, we

provide a communication and computation cost model to estimate the overall

recovery time for a given partitioning and propose a greedy algorithm to split

the recovery workload among the computers in a cost-effective way. To further

accelerate the recovery process, we require every compute node to log their

computed results into local disk periodically. Based on the logs, the compu-

tations performed by the healthy computers do not need to be redone during

recovery.

Contributions. Our work is the first parallel recovery mechanism proposed

for distributed graph processing. Our recovery method can handle failures that

occur at any time, either during normal execution or during recovery period.

To accelerate the recovery process, we eliminate the high computation cost for

the subgraphs residing in healthy computers and distribute the recovery tasks

for the subgraphs in failed computers to multiple computers. We implement

our recovery method in epiCG for performance evaluation. The results show

that our partition-based recovery method is efficient and scalable.

1.4 Synopsis of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we first review

existing techniques in solving kNN join and the advanced distributed graph pro-

cessing systems proposed to answer graph-related analytics queries. We then

present the recovery mechanisms adopted in distributed systems. Chapter 3

studies the problem of efficiently answering kNN join queries in epiC. Chap-

ter 4 introduces our distributed graph engine epiCG on top of epiC. Chapter 5
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addresses the problem of efficient failure recovery in epiCG. We conclude this

thesis in Chapter 6.
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CHAPTER 2

Literature Review

Various techniques have been proposed to address the challenges in distributed

systems. On the one hand, efficient algorithms are designed to support both

offline data analytics and online query processing. On the other hand, various

distributed systems are developed to handle various real-life data-driven appli-

cations more effectively. In this chapter, we review the techniques and systems

that are closely related to this thesis. In particular, we first introduce the ex-

isting methods of answering kNN join query. We then review the advanced

distributed systems proposed for efficient graph processing. Finally, we discuss

the recovery mechanisms adopted in distributed systems.

2.1 Answering k Nearest Neighbor Join Query

The goal of kNN join is to produce k nearest neighbors of each object in a data

set R from another data set S according to a given distance measure. Instead

of solving kNN join for a particular distance measure, in this thesis, we consider

to perform kNN join for objects under metric space. In what follows, we first

introduce the concept of metric space and then discuss the existing solutions

to kNN join.
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2.1.1 Objects under Metric Space

A metric space is an ordered pair (S, d) where S is a set of objects and d defines

the distances between every two objects in S. Formally, the distance function

d in a metric space is presented by d : M ×M → R, which have the following

three properties:

1. (positivity) d(x, y) ≥ 0 for all x, y ∈ S;

2. (symmetry) d(x, y) = d(y, c) for all x, y ∈ S;

3. (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ S.

There exist a number of examples of metric space. For instance, consider a

real number set R with distance function d satisfying d(x, y) = |y − x| for all

x, y ∈ R. It is easy to see (R, d) is a metric since all the above three conditions

hold. Another popular example is the set of n-dimensional objects with the

Euclidean distance function d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2, where

x = (x1, · · · , xn) and y = (y1, · · · , yn) are n-dimensional vectors.

2.1.2 Existing Solutions to kNN Join

Existing solutions to kNN join can be categorized into two groups. The first

group contains all the centralized solutions in which input data is stored in

local disk and kNN join is performed in main memory using a single computer.

The second group contains all the distributed solutions to handle data in sheer

size and perform kNN join in parallel.

Centralized Solutions

A näıve centralized approach to kNN join is the following. For each data object

o in R, we compute its distance to each of the object in S, and maintain a list

of size k to store k objects that are closest to o. Clearly, this approach involves

high computation cost as it requires to compute distance for every object pair

in R×S. Furthermore, if either R or S is too large to be maintained in memory,

this approach will incur high I/O cost caused by repeated disk reads of data

objects.

To address the problem, various approaches leverage indexing technique to

accelerate the processing of kNN join query. Böhm et al. proposed a R-tree
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based method to answer kNN join query [15, 16]. In their design, the input

data objects are first organized and stored into large-sized pages, and each large

page will be further partitioned into a set of small-sized pages, each of which is

equipped with a secondary R-tree index. Large-sized pages are used to reduce

the I/O cost, i.e., more objects can be escaped from retrieval when the algorithm

determines that a large page does not contain any kNN result; secondary R-tree

indexes within the small-sized pages try to reduce CPU cost to accelerate the

processing further. However, R-tree based solutions to kNN query were found

to be inefficient when the dimensionality of data objects increases [88].

Xia et al. [90] proposed a grid partitioning based approach named Gorder

to answer kNN join query. Gorder applies the Principal Components Analysis

(PCA) technique on the input data objects and sorts data objects according to

their proposed Grid Order. Specifically, each object will be assigned to a grid

and objects in close proximity are always assigned to the same grid. After the

assignment, Gorder applies the scheduled block nested loop join on the ordered

data objects and outputs the final result. Note that it uses block nested loop

join for the purpose of reducing both CPU and I/O costs.

Yu et al. [94] proposed IJoin, a B+-tree based method to answer kNN join

query for multi/high-dimensional datasets. In their design, two input datasets

are first split into disjoint partitions. IJoin then constructs a B+-tree for the

objects in each dataset using the iDistance technique [45, 95]. iDistance helps to

efficiently filter far-away candidate pairs during processing. To further reduce

CPU and I/O costs, two variants of IJoin were introduced. The first variant

eliminates unnecessary disk accesses and distance computations via approxima-

tion bounding cube; the second variant indexes high-dimensional data objects

by only considering a subset of dimensions rather than all the dimensions.

Yao et al. [93] proposed Z-KNN, a Z-order based method to answer kNN join

query. They utilized Z-order to map each multi-dimensional data object into

a one-dimensional value and provided both approximate and exact solutions

to kNN join. Instead of using spatial databases or stand-along systems, Z-

KNN relies on relational databases and performs kNN join via primitive SQL

operators. In particular, Z-KNN method transforms a kNN join query into a

set of kNN search operations by considering each object in R as a query point.

An important advantage of this solution is that no changes are required to be

made to the underlying database engine.
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All of the above index-based solutions perform kNN join in a single-threaded

manner. Another set of centralized solutions to kNN join rely on multiprocessor

environment to parallelize the join process [23, 69]. Brinkhoff et al. [23] focused

on two-dimensional data objects and exploited R-tree for efficient processing of

spatial join. Several optimizations including tunning the parameters for the R-

tree and better buffer management are provided to reduce CPU and I/O costs.

In [69], the authors first de-clustered spatial data and then stored them into

a parallel database system for querying. They proposed various spatial join

algorithms for different de-clustering methods. However, none of the parallel

algorithms can be easily adapted to handle kNN join for the data objects that

are physically distributed across several computers. Furthermore, most parallel

algorithms focus on performing kNN join over two-dimensional data objects

and the proposed optimized solutions are inappropriate to solve kNN join for

multi-dimensional objects.

Distributed Solutions

Recently, more attention has been paid to perform join operation in a dis-

tributed environment. Zhang et al. [98] studied the problem of solving spatial

join using MapReduce and provided an implementation for the Map and Re-

duce functions. However, their approach cannot be adapted to handle kNN

join.

In [96], the authors answered kNN join query using MapReduce. They first

provided a basic solution using block nested loop join. Specifically, in the map-

per side, similar objects are forwarded to the same reducer, while dissimilar

objects are forwarded to different reducers. In the reducer side, pairwise dis-

tance computations are performed to produce the final results. The drawback of

this basic solution is the high shuffling cost from mappers to reducers due to the

fact that each data object will be forwarded to multiple reducers. To address

the problem, they provided another efficient MapReduce algorithm by trans-

forming multi-dimensional data objects into one-dimensional z-values. While

the second approach shows high efficiency, it is an approximate algorithm, i.e.,

the produced results may not be the exact kNN join results.

In this thesis, we focus on answering exact kNN join query for multi-

dimensional data objects under metric space. We choose epiC as our underlying

distributed system due to its efficiency, simplicity and scalability.
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2.2 Advanced Distributed Graph Processing Sys-

tems

Distributed graph processing systems (DGPS) are proposed to handle iterative

graph computation and machine learning tasks such as PageRank, shortest

path computing and connected component computation. Existing distributed

graph processing systems can be categorized into two groups based on their

computation models. One category is known as synchronous graph processing

systems, where all the computers will reach a synchronous barrier at the end

of each iteration. Another category is known as asynchronous graph processing

systems, in which no global synchronization is required. We now review the

existing distributed graph processing systems in each of the categories.

2.2.1 Synchronous Graph Processing

The most famous example of synchronous graph processing systems is Pregel [59].

Pregel follows the Bulk Synchronization Parallel (BSP) model [83]. Typically,

the execution of a Pregel job consists of an initialization phase where the graph

is distributed among compute nodes, followed by several iterations of compu-

tations, called supersteps, and finally an output phase to flush out the results.

Every vertex carries two states: active and inactive. At the beginning of the

job, every vertex is active. During the computations, a vertex can inactivate

itself by voltToHalt and it will be automatically activated upon receiving a new

incoming message. The job terminates when all the vertices become inactive

or the number of supersteps reach a predefined upper bound. During each

superstep, every active vertex can process messages sent by other vertices in

the previous superstep, execute compute function, update its value and forward

messages to other vertices (to be processed in the next superstep). A global

synchronization will be performed at the end of each superstep.

The architecture of Pregel is a master-slave architecture. In particular,

each of the slaves is responsible for performing computation for a subgraph

and forwarding messages to other slaves, or local aggregation values to the

master; the master is responsible for checking the health status of every slave,

synchronize the supersteps and performing global aggregation based on the

local aggregation values sent by the slaves.
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Since the introduction of Pregel, various synchronous graph processing sys-

tems have been developed including Giraph [2], GPS [75], Trinity [76], GraphX [91]

and Hama [5]. Most of them follow similar or exactly the same computation

model as Pregel, hence each of them can be considered an implementation of

Pregel.

Compared with MapReduce, Pregel achieves high performance in iterative

graph computations. However, a Pregel job may also require long execution

time due to the frequent communications among inter-computer vertices. To

address the problem, several optimizations are proposed to improve the perfor-

mance. Tian et al. [82] introduced the idea of “thinking as a graph”. Instead

of designing compute function for each vertex, they adopted a subgraph-based

computation unit and allowed the programmers to define compute function

over a subgraph. Basically, in each iteration, computations are first performed

within every subgraph internally and after that, subgraphs exchange updated

information among each other via message forwarding. Such kind of graph-

centric programming model allows asynchronous computation in different sub-

graphs, thus accelerating convergence rates for many graph applications. How-

ever, designing compute function for subgraphs introduces extra implementa-

tion cost and would be difficult for some complex graph applications.

Pregelix [4] addresses the problem of out-of-core graph computation, i.e.,

the graph size is too large to be loaded into the main memory of the comput-

ers. Pregelix leverages the existing data-parallel platform, Hyracks [20], as its

underlying execution engine and supports the full Pregel API by carefully using

the operations provided by Hyracks.

Unlike Pregel, asynchronous graph processing systems are developed to per-

form iterations without doing synchronization, as we will introduce in the next

section.

2.2.2 Asynchronous Graph Processing

Distributed GraphLab [55] adopts asynchronous computation model for itera-

tive machine learning and graph applications. Distributed GraphLab consists

of three main parts: data graph, update function and the sync operation. Data

graph defines mutable data structure; update function defines computation op-

erations to be applied to the data graph; sync operation maintains global aggre-
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gation values concurrently. In each iteration, GraphLab loops over the vertices

in the data graph and executes the update function for each vertex. The over-

all iterative computation is performed in parallel, using a cluster of computers.

GraphLab performs asynchronous processing by allowing multiple distributed

processes to execute update function over different data graphs simultaneously

without global synchronization. To ensure that overlapping computations are

not conducted simultaneously, GraphLab introduces several consistency models

to optimize the parallel computation while maintaining the serialization of the

execution.

Later on, PowerGraph [53] was proposed to handle iterative computation.

PowerGraph follows the same asynchronous computation model as distributed

GraphLab, but focuses on dealing with power-law graphs. Processing power-

law graphs is challenging. The main reason is that vertices with high fan-outs

have a large number of neighbors that are distributed among all the comput-

ers in the cluster; forwarding messages to all these neighbors will incur high

network cost. To address the problem, PowerGraph adopts vertex-cut graph

partitioning rather than edge-cut graph partitioning. In vertex-cut, when a

vertex wants to forward the same message to several neighbors that reside in

another computer, it first sends the message to its mirror on that computer and

the mirror will forward the message to the corresponding neighbors. By doing

this, PowerGraph eliminates high communication cost caused by forwarding

messages for the vertices having high fan-outs.

Compared with synchronous graph processing systems, asynchronous graph

processing systems are more efficient due to the elimination of synchronization

cost, but require complex concurrency control to ensure serializability. In this

thesis, we focus on synchronous graph processing and leave asynchronous graph

processing as our future work.

2.3 Recovery Mechanisms in Distributed Sys-

tems

One advantage of distributed systems is the higher computation power achieved

by the collaboration of a cluster of computers. However, the increasing num-

ber of computers will inevitably increase the probability of the occurrences of
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failures. Various types of failures may occur in distributed systems, includ-

ing software anomalies, hardware failures and network failures. Moreover, the

failure of one computer may affect other computers because the computation

tasks distributed among the computers can be correlated with each other. In

the worst case, all the computers in the distributed system may need to redo all

the computation tasks since the beginning in order to recover from the failure

of a single computer. Hence, resilience to failures is one of the most important

requirements of distributed systems. In this section, we first discuss different

failure models proposed for distributed systems and then review the existing

recovery methods adopted in distributed systems.

2.3.1 Modeling Failures

Typically, a distributed system consists of two components: a fixed number of

processes, and communication links that transfer information from one process

to another. Consider, for example, a Pregel-like distributed system, where the

processes correspond to the slave computers which perform graph computation

in parallel, and the communication links correspond to the messages forwarded

from one slave to another. Failures may occur in both processes and com-

munication links. In essence, process failures will lead to a certain amount

of computation workload being lost and the failures in communication links

prevent processes from communicating or communicating correctly.

Failures that occur in processes can be modeled in different ways as fol-

lows [77].

• Fail-stop: a process fails by stopping.

• Arbitrary(malicious, byzantine): a process fails without stopping. Specif-

ically, a failed process may show an unexpected behavior that might be

malicious and disruptive.

Failure models for communication links are the following [77].

• Send-omission: a process completes a send operation, but the information

does not appear in the outgoing buffer.

• Receive-omission: information is put into a process’s incoming buffer, but

the process does not receive it.
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• Channel-omission: information is lost during transmission.

In addition to the above models, failures in distributed systems can also be

modeled by their types, say, software fault and hardware fault. Software fault

can be further categorized into deadlock, protection fault, dividing by zero, etc;

hardware fault can be caused by hard disk failures, input and output device

failures, etc.

In this thesis, we focus on the failures of computers rather than analyze

a particular failure type. We consider fail-stop failure model. That is, each

computer either works properly or fails by stopping. Note that when a com-

puter fails, all the computation tasks executed by that computer fail as well.

Furthermore, we mainly consider the scenario where only a subset of computers

in the cluster have failed while others are working properly. We refer to this

as partial failures. In contrast, the scenario that all the computers in the dis-

tributed system have failed is referred to as full failures, which rarely happens

in practice.

2.3.2 Failure Recovery

The objectives [79] of failure recovery in distributed systems include:

• application transparency: the recovery process should be transparent to

the upper-level applications.

• application independence: the recovery mechanism should be able to re-

cover the execution of arbitrary upper-level applications.

• high throughput: all the CPU resources should be available when there

is no failure.

• maximal fault-tolerance: the recovery mechanism should be able to re-

cover from the failure of any number of processes in the distributed sys-

tem.

• low latency: the execution of recovery algorithm should be efficient.

With different objectives of failure recovery, the adoption of recovery mech-

anisms varies from one distributed system to another. In general, recovery

methods used in the existing distributed systems fall into three categories:
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replication-based recovery, rollback recovery and roll-forward recovery. The

details are provided in the following.

• Replication-based recovery. Replication is a basic recovery method used

in distributed systems, especially the real-time distributed systems [70].

When a failure occurs in a certain system component (e.g., computer),

one replication of the failed component will take over the responsibility

and the system can continue its processing. Typically, there are two types

of replications.

– Data replication: store data in multiple places/devices to make data

available during processing.

– Computation replication: execute the same computing task on sep-

arate devices.

Replication-based recovery must ensure that all the replications of a com-

ponent will change synchronously with the original one [39]. To fulfill

this requirement, there are two fundamental replication techniques. The

first technique is primary-backup replication, where one of the replicas

is called the primary and the others are called the backups [26]. The

primary is responsible for receiving information, performing computation

and forwarding information to other primaries, and every backup will

communicate with its primary. When a primary fails, one of its back-

ups will be selected as the primary and handle the incoming invocations

accordingly. The second technique is called active replication. In active

replication, all the replicas for a particular component play the same role,

i.e., all of them will handle the same sequences of invocations. In contrast

to primary-backup replication, all the replicas for the same component in

active replication are pair-wise equivalent. While replication-based re-

covery provides high availability of the system upon a failure, it is worth

noting that it incurs high network cost for synchronizing all the replicas

periodically.

• Rollback recovery [33]. Traditional rollback recovery treats a distributed

system as a collection of processes that communicate between each other

via network messages. There are two important types of rollback recovery:

checkpoint-based and log-based. In checkpoint-based rollback recovery,
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all the processes will save their states to a stable storage periodically,

either synchronously or asynchronously, during normal execution. Each

of the saved states is called a local checkpoint. Upon a failure, a failed

process will restart from one of its saved states. Furthermore, any process

that is dependent on the failed one has to rollback to one of its local

checkpoint as well to preserve global consistency. In log-based rollback

recovery, every process will write logs (e.g., the executed commands) to

a stable storage. During recovery, a failed process will retrieve its logs

and replay the lost workload based on the logs. In practice, log-based

rollback recovery is always combined with checkpointing method to reduce

the log size. There are several protocols proposed for log-based rollback

recovery, including pessimistic log-based recovery protocol, optimistic log-

based recovery protocol, causal log-based recovery protocol and optimal

log-based recovery protocol. Each of them has its own trade-off between

runtime efficiency and recovery efficiency.

• Roll-forward recovery. Roll-forward recovery aims to reduce the amount

of rollback upon a failure, i.e., quickly correct system state in the presence

of failures and resume normal execution. The first work on roll-forward

recovery [40] proposed a protocol based on synchronous and incremental

checkpoint to maximize roll-forward. Later on, many optimizations [29,

92] were introduced to improve the performance of roll-forward recovery

in real systems.

Recovery in Distributed Graph Processing Systems

Designing efficient failure recovery methods has long been a goal of distributed

systems. In this thesis, we study the problem of failure recovery in our graph

processing engine, epiCG. Our solution can be implemented in other Pregel-like

distributed graph processing systems as well. Many existing distributed graph

processing systems including Giraph [2], GraphLab [57], PowerGraph [36], GPS

[75], Mizan [50] adopt checkpoint-based rollback recovery. GraphX [91] adopts

log (called lineage) based recovery, and utilizes the resilient distributed datasets

(RDD) to speedup failure recovery. Pregel [59] proposes confined recovery which

is a hybrid mechanism of the checkpoint-based and log-based recovery. Specif-

ically, only the newly-added computer that substitutes for the failed one will
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rollback and redo the computation since the latest checkpoint. One problem of

confined recovery is that the recovery workload is performed in a centralized

way. During recovery, most healthy computers become idle but wait for the

recovery process to finish.

Location and replication independent recovery proposed by Bratsberg et al.

employed replicas for recovery [21]. The algorithm partitions the data into frag-

ments and replicates fragments among multiple computers which can takeover

in parallel upon failures. However, recovery task for the failed computer is still

performed in a centralized manner after the computer finishes internal recovery.

Another recovery method that presents similarities with our proposed so-

lution is introduced by RAMCloud [66]. RAMCloud backs up the data across

many distributed computers, and during recovery, it reconstructs in parallel the

lost data. However, as RAMCloud is a distributed storage, it does not need to

track the dependencies among the scattered data. In contrast, in distributed

processing systems, understanding how the program dependencies affect both

the communication and the computation time is of utmost importance [10].

Since checkpointing and logging operations are the backbone of recovery

methods [13, 18, 19], accelerating them has long been a target for optimiza-

tions [33]. Most previous work focuses on accelerating the process of storing

the information required for recovery, including incremental checkpointing [63]

and command log [60].

2.3.3 Summary

In this chapter, we first reviewed the existing work on complex query pro-

cessing in distributed systems. We presented the techniques on answering two

important complex queries, k-nearest neighbor join queries and graph-related

analytics queries. For kNN join queries, most of the work perform kNN join

using a single computer [15, 16, 90, 94, 93]. The recent distributed solution [96]

is an approximate algorithm that may not produce the exact kNN join results.

For graph-related analytics queries, various graph processing distributed sys-

tems have been proposed such as Pregel [59] and GraphLab [57]. However,

all of these graph processing systems require their own configurations from

scratch, which is always a daunting job. We then reviewed related work on

fault tolerance in distributed systems. We introduced the failure models and

32



CHAPTER 2. LITERATURE REVIEW

various recovery mechanisms in distributed systems. While most distributed

systems adopt checkpoint-based recovery due to its simplicity, the recovery

process based on checkpointing may involve high recovery latency as all the

computers in the cluster have to rollback to the latest checkpoint and redo all

the lost computation.
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CHAPTER 3

kNN Join using MapReduce Framework

k nearest neighbor join (kNN join), designed to find k nearest neighbors from

a dataset S for every object in another dataset R, is a primitive operation

widely adopted by many data mining applications. As a combination of the k

nearest neighbor query and the join operation, kNN join is an expensive op-

eration. Given the increasing volume of data, it is difficult to perform a kNN

join on a centralized machine efficiently. In this chapter, we investigate how

to perform kNN join using MapReduce which is a well-accepted framework for

data-intensive applications over clusters of computers. In brief, the mappers

cluster objects into groups; the reducers perform the kNN join on each group

of objects separately. We design an effective mapping mechanism that exploits

pruning rules for distance filtering, and hence reduces both the shuffling and

computational costs. To reduce the shuffling cost, we propose two approximate

algorithms to minimize the number of replicas. We implement our apporach

by leveraging MapUnits/ReduceUnit in epiC, which is an implementation of

MapReduce framework. Extensive experiments on our in-house cluster demon-

strate that our proposed methods are efficient, robust and scalable.

3.1 Introduction

k nearest neighbor join (kNN join) is a special type of join that combines each

object in a dataset R with the k objects in another dataset S that are closest

35



CHAPTER 3. KNN JOIN USING MAPREDUCE FRAMEWORK

to it. kNN join typically serves as a primitive operation and is widely used

in many data mining and analytic applications, such as the k-means and k-

medoids clustering and outlier detection [22, 51].

As a combination of the k nearest neighbor (kNN) query and the join oper-

ation, kNN join is an expensive operation. The naive implementation of kNN

join requires scanning S once for each object in R (computing the distance

between each pair of objects from R and S), easily leading to a complexity of

O(|R| · |S|). Therefore, considerable research efforts have been made to improve

the efficiency of the kNN join [17, 90, 94, 93]. Most of the existing work devotes

themselves to the design of elegant indexing techniques for avoiding scanning

the whole dataset repeatedly and for pruning as many distance computations

as possible.

All the existing work [17, 90, 94, 93] is proposed based on the central-

ized paradigm where the kNN join is performed on a single, centralized server.

However, given the limited computational capability and storage of a single

machine, the system will eventually suffer from performance deterioration as

the size of the dataset increases, especially for multi-dimensional datasets. The

cost of computing the distance between objects increases with the number of

dimensions; and the curse of the dimensionality leads to a decline in the pruning

power of the indexes.

Regarding the limitation of a single machine, a natural solution is to con-

sider parallelism in a distributed computational environment. MapReduce [31]

is a programming framework for processing large scale datasets by exploit-

ing the parallelism among a cluster of computing nodes. Soon after its birth,

MapReduce gains popularity for its simplicity, flexibility, fault tolerance and

scalability. MapReduce is now well studied [48] and widely used in both com-

mercial and scientific applications. Therefore, MapReduce becomes an ideal

framework of processing kNN join operations over massive, multi-dimensional

datasets.

However, existing techniques of kNN join cannot be applied or extended

to be incorporated into MapReduce easily. Most of the existing work rely on

some centralized indexing structure such as the B+-tree [94] and the R-tree [17],

which cannot be accommodated in such a distributed and parallel environment

directly.

In this chapter, we investigate the problem of implementing kNN join oper-
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ator by leveraging MapUnit/ReduceUnit in epiC, which is an implementation

of MapReduce framework. The basic idea is similar to the hash join algorithm.

Specifically, the mapper (i.e., MapUnit) assigns a key to each object from R

and S; the objects with the same key are distributed to the same reducer (i.e.,

ReduceUnit) in the shuffling process; the reducer performs the kNN join over

the objects that have been shuffled to it. To guarantee the correctness of the

join result, one basic requirement of data partitioning is that for each object r

in R, the k nearest neighbors of r in S should be sent to the same reducer as r

does, i.e., the k nearest neighbors should be assigned with the same key as r.

As a result, objects in S may be replicated and distributed to multiple reducers.

The existence of replicas leads to a high shuffling cost and also increases the

computational cost of the join operation within a reducer. Hence, a good map-

ping function that minimizes the number of replicas is one of the most critical

factors that affect the performance of the kNN join using MapReduce.

In particular, we summarize the contributions of this chapter as follows.

• We present an implementation of kNN join operator using MapReduce,

especially for large volume of multi-dimensional data. The implementa-

tion defines the mapper and reducer jobs and requires no modifications

to the MapReduce framework.

• We design an efficient mapping method that divides objects into groups,

each of which is processed by a reducer to perform the kNN join. First,

the objects are divided into partitions based on a Voronoi diagram with

carefully selected pivots. Then, data partitions (i.e., Voronoi cells) are

clustered into groups only if the distances between them are restricted

by a specific bound. We derive a distance bound that leads to groups of

objects that are more closely involved in the kNN join.

• We derive a cost model for computing the number of replicas generated in

the shuffling process. Based on the cost model, we propose two grouping

strategies that can reduce the number of replicas greedily.

• We implement our approach by leveraging MapUnit/ReduceUnit in epiC,

whic is an implementation of MapReduce framework. We conduct exten-

sive experiments to study the effect of various parameters using two real
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datasets and some synthetic datasets. The results show that our proposed

methods are efficient, robust, and scalable.

3.2 Preliminaries

In this section, we first define kNN join formally and then describe Voronoi

diagram-based partitioning, which is a basis of our kNN join approach. Finally,

we provide a brief review of MapReduce framework. Table 3.1 lists the symbols

and their meanings used throughout this chapter.

3.2.1 kNN Join

We consider data objects in an n-dimensional metric space D. In general, a

metric space D is a set of objects that has a notion of the distance between every

two objects. Given two data objects r and s, let |r, s| represent the distance

between r and s in D. For any objects r, s, t ∈ D, the distance measure |·, ·|
satisfies the following four conditions:

1. (non-negativity) |r, s| ≥ 0

2. (positive-definiteness) |r, s| = 0 iff r = s

3. (symmetry) |r, s| = |s, r|

4. (triangle inequality) |r, s| ≤ |r, t|+ |t, s|

Without loss of generality, we use the Euclidean distance (L2) as our distance

measure, i.e.,

|r, s| =
√ ∑

1≤i≤n

(r[i]− s[i])2, (3.1)

where r[i] (resp. s[i]) denotes the value of r (resp. s) along the ith dimension

in D. Our methods can be easily applied to other distance measures such as

the Manhattan distance (L1), and the maximum distance (L∞).

Definition 3.1 (k nearest neighbors). Given an object r, a dataset S and an

integer k, the k nearest neighbors of r from S, denoted as KNN(r, S), is a set

of k objects from S that ∀o ∈ KNN(r, S),∀s ∈ S −KNN(r, S), |o, r| ≤ |s, r|.
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Table 3.1: Notations used throughout Chapter 3
Symbol Definition

D an n-dimensional metric space
R (resp. S) an object set R (resp. S) in D
r (resp. s) an object, r ∈ R (resp. s ∈ S)
|r, s| the distance from r to s
k the number of near neighbors

KNN(r, S) the k nearest neighbors of r from S
Rn S kNN join of R and S

P a set of pivots
pi a pivot in P
pr the pivot in P that is closest to r
PR
i the partition of R that corresponds to pi

pi.dj the jth smallest distance of objects in P S
i to pi

U(PR
i ) max{|r, p||∀r ∈ PR

i }
L(PR

i ) min{|r, p||∀r ∈ PR
i }

TR the summary table for partitions in R
N the number of reducers

Definition 3.2 (kNN join). Given two datasets R and S and an integer k,

kNN join of R and S (denoted as RnKNN S, abbreviated as Rn S), combines

each object r ∈ R with its k nearest neighbors from S. Formally,

Rn S = {(r, s) | ∀r ∈ R, ∀s ∈ KNN(r, S)} (3.2)

According to Definition 3.2, RnS is a subset of R×S. Note that kNN join

operation is asymmetric, i.e., RnS 6= SnR. Given k ≤ |S|, the cardinality of

|R n S| is k × |R|. We assume that k ≤ |S|. Otherwise, kNN join degrades to

the cross join and just generates the result of Cartesian product R× S.

3.2.2 Voronoi Diagram-based Partitioning

Given a dataset O, the main idea of Voronoi diagram-based partitioning is to

select M objects (which may not belong to O) as pivots, and then split objects

of O into M disjoint partitions where each object is assigned to the partition

with its closest pivot 1. In this way, the whole data space is split into M

1In particular, if there exist multiple pivots that are closest to an object, then the object
is assigned to the partition with the smallest number of objects.
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Figure 3.1: An example of data partitioning

“generalized Voronoi cells”. Figure 3.1 shows an example of splitting objects

into 5 partitions by employing the Voronoi diagram-based partitioning. For

the sake of brevity, let P be the set of pivots selected. ∀pi ∈ P, PO
i denotes

the set of objects from O that takes pi as their closest pivot. For an object o,

let po and PO
o be its closest pivot and the corresponding partition respectively.

In addition, we use U(PO
i ) and L(PO

i ) to denote the maximum and minimum

distance from pivot pi to the objects of PO
i , i.e., U(PO

i ) = max{|o, pi||∀o ∈ PO
i },

L(PO
i ) = min{|o, pi||∀o ∈ PO

i }.

Definition 3.3 (Range selection). Given a dataset O, an object q, and a dis-

tance threshold θ, range selection of q from O is to find all objects (denoted as

Ō) of O, such that ∀o ∈ Ō, |q, o| ≤ θ.

By splitting the dataset into a set of partitions, we can answer range selec-

tion queries based on the following theorem.

Theorem 3.1. [43] Given two pivots pi, pj, let HP (pi, pj) be the generalized

hyperplane, where any object o lying on HP (pi, pj) has the equal distance to pi

and pj. ∀o ∈ PO
j , the distance of o to HP (pi, pj), denoted as d(o,HP (pi, pj))

is:

d(o,HP (pi, pj)) =
|o, pi|2 − |o, pj|2

2× |pi, pj|
(3.3)

Figure 3.2(a) shows distance d(o,HP (pi, pj)). Given object q, its belonging

partition PO
q , and another partition PO

i , according to Theorem 3.1, it is able to

compute the distance from q to HP (pq, pi). Hence, we can derive the following

corollary.
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Figure 3.2: Properties of data partitioning

Corollary 3.1. Given a partition PO
i and PO

i 6= PO
q , if we can derive d(q,HP (pq, pi))

> θ, then ∀o ∈ PO
i , |q, o| > θ.

Given a partition PO
i , if we get d(q,HP (pq, pi)) > θ, according to Corol-

lary 3.1, we can discard all objects of PO
i . Otherwise, we check partial objects

of PO
i based on Theorem 3.2.

Theorem 3.2. [45, 95] Given a partition PO
i , ∀o ∈ PO

i , the necessary condi-

tion that |q, o| ≤ θ is:

max{L(PO
i ), |pi, q| − θ} ≤ |pi, o| ≤ min{U(PO

i ), |pi, q|+ θ} (3.4)

Figure 3.2(b) shows an example of the bounding area of Equation 3.4. To

answer range selections, we only need to check objects that lie in the bounding

area of each partition.

3.2.3 MapReduce Framework and epiC

MapReduce [31] is a popular programming framework to support data-intensive

applications using shared-nothing clusters. In MapReduce, input data are rep-

resented as key-value pairs. Several functional programming primitives includ-

ing Map and Reduce are introduced to process the data. Map function takes

an input key-value pair and produces a set of intermediate key-value pairs.

MapReduce runtime system then groups and sorts all the intermediate values
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associated with the same intermediate key, and sends them to the Reduce func-

tion. Reduce function accepts an intermediate key and its corresponding values,

applies the processing logic, and produces the final result which is typically a

list of values.

epiC provides an implementation of MapReduce framework. In epiC, map-

pers are referred to as MapUnits and reducers are referred to as ReduceUnits.

In this chapter, we may use all these notations alternatively. Data in epiC are

stored in HDFS by default. HDFS consists of multiple DataNodes for storing

data and a master node called NameNode for monitoring DataNodes and main-

taining all the meta-data. In HDFS, imported data will be split into equal-size

chunks, and the NameNode allocates the data chunks to different DataNodes.

The epiC runtime system establishes two processes, namely MasterNode and

WorkerNode. The MasterNode splits a submitted job into MapUnit and Re-

duceUnit tasks and schedules the tasks among all the available WorkerNodes.

WorkerNodes will accept and process the assigned MapUnit/ReduceUnit tasks.

For a MapUnit task, the WorkerNode takes a data chunk from HDFS and ap-

plies the map() function. When all the map() functions complete, the epiC

runtime groups all the intermediate results and launches a number of Reduce-

Unit tasks to run the reduce() function and produce the final results. Both

map() and reduce() functions are specified by the user.

3.3 An Overview of kNN Join Using MapRe-

duce

In MapReduce, the mappers produce key-value pairs based on the input data;

each reducer performs a specific task on a group of pairs with the same key.

In essence, the mappers do something similar to (typically more than) the

hashing function. A naive and straightforward idea of performing kNN join in

MapReduce is similar to the hash join algorithm.

Specifically, the map() function assigns each object r ∈ R a key; based on

the key, R is split into disjoint subsets, i.e., R =
⋃

1≤i≤N Ri, where Ri

⋂
Rj =

∅, i 6= j; each subset Ri is distributed to a reducer. Without any pruning rule,

the entire set S has to be sent to each reducer to be joined with Ri; finally

Rn S =
⋃

1≤i≤N Ri n S.
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Figure 3.3: An overview of kNN join in MapReduce

In this scenario, there are two major considerations that affect the perfor-

mance of the entire join process.

1. The shuffling cost of sending intermediate results from mappers to reduc-

ers.

2. The cost of performing the kNN join on the reducers.

Obviously, the basic strategy is too expensive. Each reducer performs kNN

join between a subset of R and the entire S. Given a large population of

S, it may go beyond the capability of the reducer. An alternative frame-

work [96], called H-BRJ, splits both R and S into
√
N disjoint subsets, i.e.,

R =
⋃

1≤i≤
√
N Ri, S =

⋃
1≤j≤

√
N Sj. Similarly, the partitioning of R and S

in H-BRJ is performed by the map() function; a reducer performs the kNN

join between a pair of subsets Ri and Sj; finally, the join results of all pairs of

subsets are merged and R n S =
⋃

1≤i,j≤
√
N Ri n Sj. In H-BRJ, R and S are

partitioned into equal-sized subsets on a random basis.

While the basic strategy can produce the join result using one MapReduce

job, H-BRJ requires two MapReduce jobs. Since the set S is partitioned into

several subsets, the join result of the first reducer is incomplete, and another

MapReduce is required to combine the results of Ri n Sj for all 1 ≤ j ≤
√
N .

Therefore, the shuffling cost of H-BRJ is
√
N · (|R| + |S|) +

∑
i

∑
j |Ri n Sj|2,

2
√
N · (|R| + |S|) is the shuffling cost of the first MapReduce.

∑
i

∑
j |Ri n Sj | is the

shuffling cost of the second MapReduce for merging the partial results.
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while for the basic strategy, it is |R|+N · |S|.
In order to reduce the shuffling cost, a better strategy is that R is partitioned

into N disjoint subsets and for each subset Ri, find a subset of Si that RinS =

Ri n Si and Rn S =
⋃

1≤i≤N Ri n Sj. Then, instead of sending the entire S to

each reducer (as in the basic strategy) or sending each Ri to
√
N reducers, Si is

sent to the reducer that Ri belongs to and the kNN join is performed between

Ri and Si only.

This approach avoids replication on the set R and sending the entire set

S to all reducers. However, to guarantee the correctness of the kNN join, the

subset Si must contain the k nearest neighbors of every r ∈ Ri, i.e., ∀r ∈
Ri, KNN(r, S) ⊆ Si. Note that Si∩Sj may not be empty, as it is possible that

object s is one of the k nearest neighbors of ri ∈ Ri and rj ∈ Rj. Hence, some

of the objects in S should be replicated and distributed to multiple reducers.

The shuffling cost is |R|+ α · |S|, where α is the average number of replicas of

an object in S. Apparently, if we can reduce the value of α, both shuffling and

computational cost we consider can be reduced.

In summary, for the purpose of minimizing the join cost, we need to

1. find a good partitioning of R;

2. find the minimal set of Si for each Ri ∈ R, given a partitioning of R 3.

Intuitively, a good partitioning of R should cluster objects in R based on

their proximity, so that the objects in a subset Ri are more likely to share com-

mon k nearest neighbors from S. For each Ri, the objects in each corresponding

Si are cohesive, leading to a smaller size of Si. Therefore, such partitioning not

only leads to a lower shuffling cost, but also reduces the computational cost of

performing the kNN join between each Ri and Si, i.e., the number of distance

calculations.

3.4 Handling kNN Join Using MapReduce

In this section, we introduce our implementation of kNN join using MapReduce.

First, Figure 3.3 illustrates the working flow of our kNN join, which consists of

one preprocessing step and two MapReduce jobs.

3The minimum set of Si is Si =
⋃

1≤j≤|Ri|KNN(ri, S). However, it is impossible to find
out the k nearest neighbors for all ri apriori.
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• First, the preprocessing step finds out a set of pivot objects based on

the input dataset R. The pivots are used to create a Voronoi diagram,

which can help partition objects in R effectively while preserving their

proximity.

• The first MapReduce job consists of a single Map phase, which takes the

selected pivots and datasets R and S as the input. It finds out the nearest

pivot for each object in R ∪ S and computes the distance between the

object and the pivot. The result of the mapping phase is a partitioning on

R, based on the Voronoi diagram of the pivots. Meanwhile, the mappers

also collect some statistics about each partition Ri.

• Given the partitioning on R, mappers of the second MapReduce job find

the subset Si of S for each subset Ri based on the statistics collected in

the first MapReduce job. Finally, each reducer performs the kNN join

between a pair of Ri and Si received from the mappers.

3.4.1 Data Preprocessing

As mentioned in previous section, a good partitioning of R for optimizing kNN

join should cluster objects based on their proximity. We adopt the Voronoi

diagram-based data partitioning technique as reviewed in Section 3.2, which

is well-known for maintaining data proximity, especially for data in multi-

dimensional space. Therefore, before launching the MapReduce jobs, a pre-

processing step is invoked in a master node for selecting a set of pivots to be

used for Voronoi diagram-based partitioning. In particular, the following three

strategies can be employed to select pivots.

• Random Selection. First, T random sets of objects are selected from

R. Then, for each set, we compute the total sum of the distances between

every two objects. Finally, the objects from the set with the maximum

total sum distance are selected as the pivots for data partitioning.

• Farthest Selection. The set of pivots are selected iteratively from a

sample of the original dataset R (since preprocessing procedure is exe-

cuted on a master node, the original dataset may be too large for it to

process). First, we randomly select an object as the first pivot. Next,

the object with the largest distance to the first pivot is selected as the
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Figure 3.4: Partitioning and building the summary tables

second pivot. In the ith iteration, the object that maximizes the sum of

its distance to the first i− 1 pivots is chosen as the ith pivot.

• k-means Selection. Similar to the farthest selection, k-means selec-

tion first does sampling on the R. Then, traditional k-means clustering

method is applied on the sample. With the k data clusters generated, the

center point of each cluster is chosen as a pivot for the Voronoi diagram-

based data partitioning.

3.4.2 First MapReduce Job

Given the set of pivots selected in the preprocessing step, we launch a MapRe-

duce job for performing data partitioning and collecting some statistics for each

partition. Figure 3.4 shows an example of the input/output of the mapper func-

tion of the first MapReduce job.

Specifically, before launching the map function, the selected pivots P are

loaded into main memory in each mapper. A mapper sequentially reads each

object o from the input split, computes the distance between o and all pivots

in P, and assigns o to the closest pivot P . Finally, as illustrated in Figure 3.4,

the mapper outputs each object o along with its partition id, original dataset

name (R or S), distance to the closest pivot.

Meanwhile, the first map function also collects some statistic for each input

data split and these statistics are merged together while the MapReduce job
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completes. Two in-memory tables called summery tables are created to keep

these statistics. Figure 3.3 shows an example of the summary tables TR and TS

for partitions of R and S, respectively. Specifically, TR maintains the following

information for every partition of R: the partition id, the number of objects

in the partition, the minimum distance L(PR
i ) and maximum distance L(PR

i )

from an object in partition PR
i to the pivot. Note that although the pivots are

selected based on dataset R alone, the Voronoi diagram based on the pivots

can be used to partition S as well. TS maintains the same fields as those

in TR for S. Moreover, TS also maintains the distances between objects in

KNN(pi, P
S
i ) and pi, where KNN(pi, P

S
i ) refers to the k nearest neighbors of

pivot pi from objects in partition P S
i . In Figure 3.3, pi.dj in TS represents the

distance between pivot pi and its jth nearest neighbor in KNN(pi, P
S
i ). The

information in TR and TS will be used to guide how to generate Si for Ri as

well as to speed up the computation of Ri n Si by deriving distance bounds of

the kNN for any object of R in the second MapReduce job.

3.4.3 Second MapReduce Job

The second MapReduce job performs the kNN join in the way introduced in

Section 3.3. The main task of the mapper in the second MapReduce is to find

the corresponding subset Si for each Ri. Each reducer performs the kNN join

between a pair of Ri and Si.

As mentioned previously, to guarantee the correctness, Si should contains

the kNN of all r ∈ Ri, i.e., Si =
⋃
∀rj∈Ri

KNN(rj, S). However, we cannot get

the exact Si without performing the kNN join on Ri and S. Therefore, in the

following, we derive a distance bound based on the partitioning of R which can

help us reduce the size of Si.

Distance Bound of kNN

Instead of computing the kNN from S for each object of R, we derive a bound

of the kNN distance using a set oriented approach. Given a partition PR
i (i.e.,

Ri) of R, we bound the distance of the kNN for all objects of PR
i at a time

based on TR and TS, which we have as a byproduct of the first MapReduce.

Theorem 3.3. Given a partition PR
i ⊂ R, an object s of P S

j ⊂ S, the upper
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Figure 3.5: Bounding k nearest neighbors

bound distance from s to ∀r ∈ PR
i , denoted as ub(s, PR

i ), is:

ub(s, PR
i ) = U(PR

i ) + |pi, pj|+ |pj, s| (3.5)

Proof. ∀r ∈ PR
i , according to the triangle inequality, |r, pj| ≤ |r, pi| + |pi, pj|.

Similarly, |r, s| ≤ |r, pj| + |pj, s|. Hence, |r, s| ≤ |r, pi| + |pi, pj| + |pj, s|. Since

r ∈ PR
i , according to the definition of U(PR

i ), |r, pi| ≤ U(PR
i ). Clearly, we can

derive |r, s| ≤ U(PR
i ) + |pi, pj|+ |pj, s| = ub(s, PR

i ).

Figure 3.5(a) shows the geometric meaning of ub(s, PR
i ). According to the

Equation 3.5, we can find a set of k objects from S with the smallest upper

bound distances as the kNN of all objects in PR
i . For ease of exposition, let

KNN(PR
i , S) be the k objects from S with the smallest ub(s, PR

i ). Apparently,

we can derive a bound (denoted as θi that corresponds to PR
i ) of the kNN

distance for all objects in PR
i as follows:

θi = max
∀s∈KNN(PR

i ,S)
|ub(s, PR

i )|. (3.6)

Clearly, ∀r ∈ PR
i , the distance from r to any object of KNN(r, S) is less than

or equal to θi. Hence, we are able to bound the distance of the kNN for all

objects of PR
i at a time. Moreover, according to the Equation 3.5, we can also

observe that in each partition P S
i , k objects with the smallest distances to pi

may contribute to refine KNN(PR
i , S) while the remainder cannot. Hence, we

only maintain k smallest distances of objects from each partition of S to its

corresponding pivot in summary table TS (shown in Figure 3.3).

Algorithm 1 shows the details on how to compute θi. We first create a

priority queue PQ with size k (line 1). For partition P S
j , we compute ub(s, PR

i )

for each s ∈ KNN(pj, P
S
j ), where |s, pj| is maintained in TS. To speed up

the computation of θi, we maintain |s, pj| in TS based on the ascending order.
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Algorithm 1: boundingKNN(PR
i )

1 create a priority queue PQ;
2 foreach P S

j do
3 foreach s ∈ KNN(pj, P

S
j ) do /* set in TS */

4 ub(s, PR
i ) ← U(PR

i ) + |pi, pj|+ |s, pj|;
5 if PQ.size < k then PQ.add(ub(s, PR

i ));
6 else if PQ.top > dist then
7 PQ.remove(); PQ.add(ub(s, PR

i ));

8 else break;

9 return PQ.top;

Hence, when ub(s, PR
i ) ≥ PQ.top, we can guarantee that no remaining objects

in KNN(pj, P
S
j ) help refine θi (line 8). Finally, we return the top of PQ which

is taken as θi (line 9).

Finding Si for Ri

Similarly to Theorem 3.3, we can derive the lower bound distance from an

object s ∈ P S
j to any object of PR

i as follows.

Theorem 3.4. Given a partition PR
i , an object s of P S

j , the lower bound dis-

tance from s to ∀r ∈ PR
i , denoted by lb(s, PR

i ), is:

lb(s, PR
i ) = max{0, |pi, pj| − U(PR

i )− |s, pj|} (3.7)

Proof. ∀r ∈ PR
i , according to the triangle inequality, |r, pj| ≥ |pj, pi| − |pi, r|.

Similarly, |r, s| ≥ |r, pj| − |pj, s|. Hence, |r, s| ≥ |pj, pi| − |pi, r| − |pj, s|. Since

r ∈ PR
i , according to the definition of U(PR

i ), |r, pi| ≤ U(PR
i ). Thus we can

derive |r, s| ≥ |pi, pj|−U(PR
i )−|s, pj|. As the distance between any two objects

is not less than 0, the low bound distance lb(s, PR
i ) is set to max{0, |pi, pj| −

U(PR
i )− |s, pj|}.

Figure 3.5(b) shows the geometric meaning of lb(s, PR
i ). Clearly, ∀s ∈ S,

if we can verify lb(s, PR
i ) > θi, then s cannot be one of KNN(r, S) for any

r ∈ PR
i and s is safe to be pruned. Hence, it is easy for us to verify whether an

object s ∈ S needs to be assigned to Si.

Theorem 3.5. Given a partition PR
i and an object s ∈ S, the necessary con-

dition that s is assigned to Si is that: lb(s, PR
i ) ≤ θi.
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Algorithm 2: compLBOfReplica()

1 foreach PR
i do

2 θi ← boundingKNN (PR
i );

3 foreach P S
j do

4 foreach PR
i do

5 LB(P S
j , P

R
i )← |pi, pj| − U(PR

i )− θi;

According to Theorem 3.5, ∀s ∈ S, by computing lb(s, PR
i ) for all PR

i ⊂
R, we can derive all Si that s is assigned to. However, when the number of

partitions for R is large, this computation cost might increase significantly since

∀s ∈ P S
j , we need to compute |pi, pj|. To cope with this problem, we propose

Corollary 3.2 to find all Si which s is assigned to only based on |s, pj|.

Corollary 3.2. Given a partition PR
i and a partition P S

j , ∀s ∈ P S
j , the neces-

sary condition that s is assigned to Si is that:

|s, pj| ≥ LB(P S
j , P

R
i ), (3.8)

where LB(P S
j , P

R
i ) = |pi, pj| − U(PR

i )− θi.

Proof. The conclusion directly follows Theorem 3.5 and Equation 3.7.

According to Corollary 3.2, for partition P S
j , objects exactly lying in region

[LB(P S
j , P

R
i ), U(P S

j )] are assigned to Si. Algorithm 2 shows how to compute

LB(P S
j , P

R
i ), which is self-explained.

kNN Join between Ri and Si

As a summary, Algorithm 3 describes the details of kNN join procedure that

is described in the second MapReduce job. Before launching map function, we

first compute LB(P S
j , P

R
i ) for every P S

j (line 1–2). For each object r ∈ R, the

map function generates a new key value pair in which the key is its partition

id, and the value consists of k1 and v1 (line 4–6). For each object s ∈ S,

the map function creates a set of new key value pairs, if not pruned based on

Corollary 3.2 (line 7–11).

In this way, objects in each partition of R and their potential k nearest

neighbors will be sent to the same reducer. By parsing the key value pair
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(k2, v2), the reducer can derive the partition PR
i and subset Si that consists of

P S
j1
, . . . , P S

jM
(line 13), and compute the kNN of objects in partition PR

i (line

16–25).

∀r ∈ PR
i , in order to reduce the number of distance computations, we

first sort the partitions from Si by the distances from their pivots to pivot

pi in the ascending order (line 14). This is based on the fact that if a pivot

is near to pi, then its corresponding partition often has higher probability of

containing objects that are closer to r. In this way, we can derive a tighter

bound distance of kNN for every object of PR
i , leading to a higher pruning

power. Based on Equation 3.6, we can derive a bound of the kNN distance,

θi, for all objects of PR
i . Hence, we can issue a range search with query r

and threshold θi over dataset Si. First, KNN(r, S) is set to empty (line 17).

Then, all partitions P S
j are checked one by one (line 18–24). For each partition

P S
j , based on Corollary 3.1, if d(r,HP (pi, pj)) > θ, no objects in P S

j can help

refine KNN(r, S), and we proceed to check the next partition directly (line

19–20). Otherwise, ∀s ∈ P S
j , if s cannot be pruned by Theorem 3.2, we need

to compute the distance |r, s|. If |r, s| < θ, KNN(r, S) is updated with s and

θ is updated accordingly (lines 22–24). After checking all partitions of Si, the

reducer outputs KNN(r, S) (line 25).

3.5 Minimizing Replication of S

By bounding the k nearest neighbors for all objects in partition PR
i , accord-

ing to Corollary 3.2, ∀s ∈ P S
j , we assign s to Si when |s, pj| ≥ LB(P S

j , P
R
i ).

Apparently, to minimize the number of replicas of objects in S, we expect to

find a large LB(P S
j , P

R
i ) while keeping a small |s, pj|. Intuitively, by selecting

a larger number of pivots, we can split the dataset into a set of Voronoi cells

(corresponding to partitions) with finer granularity and the bound of the kNN

distance for all objects in each partition of R will become tighter. This observa-

tion is able to be confirmed by Equation 3.8. By enlarging the number of pivots,

each object from R∪S is able to be assigned to a pivot with a smaller distance,

which reduces both |s, pj| and the upper bound U(PR
i ) for each partition PR

i

while a smaller U(PR
i ) can help achieve a larger LB(P S

j , P
R
i ). Hence, in order

to minimize the replicas of objects in S, it is required to select a larger number

of pivots. However, in this way, it might not be practical to provide a single
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Algorithm 3: kNN join

1map-setup /* before running map function */

2 compLBOfReplica ();

3map (k1,v1)
4 if k1.dataset = R then
5 pid← getPartitionID(k1.partition);
6 output(pid, (k1, v1));

7 else
8 P S

j ← k1.partition;

9 foreach PR
i do

10 if LB(P S
j , P

R
i ) ≤ k1.dist then

11 output(i, (k1, v1));

12reduce (k2,v2) /* at the reducing phase */

13 parse PR
i and Si (P S

j1
, . . . , P S

jM
) from (k2, v2);

14 sort P S
j1
, . . . , P S

jM
based on the ascending order of |pi, pjl |;

15 compute θi ← max∀s∈KNN(PR
i ,S)
|ub(s, PR

i )|;
16 for r ∈ PR

i do
17 θ ← θi; KNN(r, S)← ∅;
18 for j ← j1 to jM do
19 if P S

j can be pruned by Corollary 3.1 then
20 continue;

21 foreach s ∈ P S
j do

22 if s is not pruned by Theorem 3.2 then
23 refine KNN(r, S) by s;
24 θ ← max∀o∈KNN(r,S){|o, r|};

25 output(r,KNN(r, S));

reducer to handle each partition PR
i . To cope with this problem, a natural idea

is to divide partitions of R into disjoint groups, and take each group as Ri. In

this way, Si needs to be refined accordingly.

3.5.1 Cost Model

By default, let R =
⋃

1≤i≤N Gi, where Gi is a group consisting of a set of

partitions of R and Gi ∩Gj = ∅, i 6= j.

Theorem 3.6. Given partition P S
j and group Gi, ∀s ∈ P S

j , the necessary
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condition that s is assigned to Si is:

|s, pj| ≥ LB(P S
j , Gi), (3.9)

where LB(P S
j , Gi) = min∀PR

i ∈Gi
LB(P S

j , P
R
i ).

Proof. According to Corollary 3.2, s is assigned to Si as long as there exists a

partition PR
i ∈ Gi with |s, pj| ≥ LB(P S

j , P
R
i ).

By computing LB(P S
j , Gi) in advance for each partition P S

j , we can derive

all Si for each s ∈ P S
j only based on |s, pj|. Apparently, the average number

of replicas of objects in S is reduced since duplicates in Si are eliminated.

According to Theorem 3.6, we can easily derive the number of all replicas

(denoted as RP (S)) as follows.

Theorem 3.7. The number of replicas of objects in S that are distributed to

reducers is:

RP (S) =
∑
∀Gi

∑
∀PS

j

|{s|s ∈ P S
j ∧ |s, pj| ≥ LB(P S

j , Gi)}| (3.10)

3.5.2 Grouping Strategies

We present two strategies for grouping partitions of R to approximately mini-

mize RP (S).

Geometric Grouping

Geometric grouping is based on an important observation: given two partitions

PR
i and P S

j , if pj is far away from pi compared with the remaining pivots,

then P S
j is deemed to have a low possibility of containing objects as any of

kNN for objects in PR
i . This observation can be confirmed in Figure 3.1 where

partition P5 does not have objects to be taken as any of kNN of objects in P2.

Hence, a natural idea to divide partitions of R is that we make the partitions,

whose corresponding pivots are near to each other, into the same group. In this

way, regarding group Gi, objects of partitions from S that are far away from

partitions of Gi will have a large possibility to be pruned.

Algorithm 4 shows the details of geometric grouping. We first select the

pivot pi with the farthest distance to all the other pivots (line 1) and assign
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Algorithm 4: geoGrouping()

1 select pi such that
∑

pj∈P |pi, pj| is maximized;

2 τ ← {pi}; G1 ← {PR
i }; P← P− {pi};

3 for i← 2 to N do
4 select pl ∈ P such that

∑
pj∈τ |pl, pj| is maximized;

5 Gi ← {PR
l }; P← P− {pl};τ ← τ ∪ {pl};

6 while P 6= ∅ do
7 select group Gi with the smallest number of objects;
8 select pl ∈ P such that

∑
∀PR

j ⊂Gi
|pl, pj| is minimized;

9 Gi ← Gi ∪ {PR
l }; P← P− {pl};

10 return {G1, G2, . . . , GN}

partition PR
i to group G1 (line 2). We then sequentially assign a partition to

the remaining groups as follows: for group Gi (2 ≤ i ≤ N), we compute the

pivot pl which has the farthest distance to the selected pivots (τ) and assign

PR
l to Gi (line 3–5). In this way, we can guarantee that the distance among all

groups are the farthest at the initial phase. After assigning the first partition

for each group, in order to balance the workload, we do the following iteration

until all partitions are assigned to the groups: (1) select the group Gi with the

smallest number of objects (line 7); (2) compute the pivot pl with the minimum

distance to the pivots of Gi, and assign PR
l to Gi (line 8–9). In this way, we can

achieve that the number of objects in each group is nearly the same. Finally,

we return all groups that maintain partitions of R (line 10).

Greedy Grouping

Let RP (S,Gi) be the set of objects from S that need to be assigned to Si.

The objective of greedy grouping is to minimize the size of RP (S,Gi∪{PR
j })−

RP (S,Gi) when assigning a new partition PR
j to Gi. According to Theorem 3.6,

RP (S,Gi) is able to be formally quantified as:

RP (S,Gi) =
⋃
∀PS

j ⊂S

{s|s ∈ P S
j ∧ |s, pj| ≥ LB(P S

j , Gi)} (3.11)

Hence, theoretically, when implementing the greedy grouping approach, we can

achieve the optimization objective by minimizing RP (S,Gi∪{PR
j })−RP (S,Gi)

instead of
∑

PR
j ∈Gi

|pi, pj| in the geometric grouping approach. However, it
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is rather costly to select a partition PR
j from all remaining partitions with

minimum RP (S,Gi ∪ {PR
j }) − RP (S,Gi). This is because by adding a new

partition PR
j to Gi, we need to count the number of emerging objects from

S that are distributed to the Si. Hence, to reduce the computation cost, once

∃s ∈ P S
l , |s, pj| ≤ LB(P S

j , Gi), we add all objects of partition P S
l to RP (S,Gi),

i.e., the RP (S,Gi) is approximately quantified as:

RP (S,Gi) ≈
⋃
∀PS

j ⊂S

{P S
j |LB(P S

j , Gi) ≤ U(P S
j )} (3.12)

Remark: To answer kNN join by exploiting the grouping strategies, we use

the group id as the key of the Map output. We omit the details which are

basically the same as described in Algorithm 3.

3.6 Experimental Evaluation

We evaluate the performance of the proposed algorithms on our in-house clus-

ter, Awan4. The cluster includes 72 computing nodes, each of which has one

Intel X3430 2.4GHz processor, 8GB of memory, two 500GB SATA hard disks

and gigabit ethernet. On each node, we install CentOS 5.5 operating system,

Java 1.6.0 with a 64-bit server VM, and epiC. All the nodes are connected via

three high-speed switches. To adapt the epiC environment to our application,

we make the following changes to the default epiC configurations: (1) the repli-

cation factor is set to 1; (2) each node is configured to run one MapUnit and one

ReduceUnit. (3) the size of virtual memory for each MapUnit and ReduceUnit

is set to 4GB. For simplicity, we refer to MapUnit and ReduceUnit in epiC as

mapper and reducer in the following content, respectively.

We evaluate the following approaches in the experiments.

• H-BRJ is proposed in [96] and described in Section 3.3. In particular, to

speed up the computation of Ri n Sj, it employs R-tree to index objects

of Sj and finds kNN for ∀r ∈ Ri by traversing the R-tree. We used the

implementation generously provided by the authors;

• PGBJ is our proposed kNN join algorithm that utilizes the partitioning

and grouping strategy;

4http://awan.ddns.comp.nus.edu.sg/ganglia/
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• PBJ is also our proposed kNN join algorithm. The only difference between

PBJ and PGBJ is that PBJ does not have the grouping part. Instead, it

employs the same framework used in H-BRJ. Hence, it also requires an

extra MapReduce job to merge the final results.

We conduct the experiments using self-join on the following datasets:

• Forest FCoverType5 (Forest for short): This is a real dataset that pre-

dicts forest cover type from cartographic variables. There are 580K ob-

jects, each with 54 attributes (10 integer, 44 binary). We use 10 integer

attributes in the experiments.

• Expanded Forest FCoverType dataset: To evaluate the performance on

large datasets, we increase the size of Forest while maintaining the same

distribution of values over the dimensions of objects (like [86]). We gener-

ate new objects in the way as follows: (1) we first compute the frequencies

of values in each dimension, and sort values in the ascending order of their

frequencies; (2) for each object o in the original dataset, we create a new

object ō, where in each dimension Di, ō[i] is ranked next to o[i] in the

sorted list. Further, to create multiple new objects based on object o, we

replace o[i] with a set of values next to it in the sorted list for Di. In

particular, if o[i] is the last value in the list for Di, we keep this value

constant. We build Expanded Forest FCoverType dataset by increasing

the size of Forest dataset from 5 to 25 times. We use “Forest ×t” to

denote the increased dataset where t ∈ [5, 25] is the increase factor.

• OpenStreetMap6 (OSM for short): this is a real map dataset containing

the location and description of objects. We extract 10 million records

from this dataset, where each record consists of 2 real values (longitude

and latitude) and a description with variable length.

By default, we evaluate the performance of kNN join (k is set to 10) on

the “Forest ×10” dataset using 36 computing nodes. We measure several pa-

rameters, including query time, distance computation selectivity, and shuffling

cost. The distance computation selectivity (computation selectivity for short)

5http://archive.ics.uci.edu/ml/datasets/Covertype
6http://www.openstreetmap.org
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Table 3.2: Statistics of partition size
# of pivots 2000 4000 6000 8000

Random Selection

min. 116 18 24 6
max. 9062 5383 4566 2892
avg. 2905.06 1452.53 968.35 726.27
dev. 1366.5 686.41 452.79 338.88

Farthest Selection

min. 24 14 13 12
max. 1130678 1018605 219761 97512
avg. 2905.06 1452.53 968.35 726.27
dev. 27721.1 13313.56 5821.18 2777.84

k-means Selection

min. 52 17 3 6
max. 7829 5222 3597 2892
avg. 2905.06 1452.53 968.35 726.27
dev. 1212.38 700.20 529.92 338.88

Table 3.3: Statistics of group size
# of pivots 2000 4000 6000 8000

Random Selection

min. 143720 144564 144758 144961
max. 150531 147180 146617 146118
avg. 145253 145253 145253 145253
dev. 1656 560 378 251

Farthest Selection

min. 86805 126635 116656 141072
max. 1158084 221539 1078712 173002
avg. 145253 145253 145253 145253
dev. 170752 20204 149673 6916

k-means Selection

min. 143626 144456 144746 144961
max. 148111 146521 145858 146118
avg. 145253 145253 145253 145253
dev. 1201 570 342 251

is computed as follows:

# of object pairs to be computed

|R| × |S|
, (3.13)

where the objects also include the pivots in our case.

3.6.1 Study of Parameters of Our Techniques

We study the parameters of PGBJ with respect to pivot selection strategy,

pivot number, and grouping strategy. By combining different pivot selection
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and grouping strategies, we obtain 6 strategies, which are: (1) RGE, random

selection + geometric grouping; (2) FGE, farthest selection + geometric group-

ing; (3) KGE, k-means selection + geometric grouping; (4) RGR, random se-

lection + greedy grouping; (5)FGR, farthest selection + greedy grouping; (6)

KGR, k-means selection + greedy grouping.

Effect of Pivot Selection Strategies

Table 3.2 shows the statistics of partition sizes using different pivot selection

strategies including random selection, farthest selection and k-means selection.

We observe that the standard deviation (dev.for short) of partition size drops

rapidly when the number of pivots increases. Compared to random selection

and k-means selection, partition size varies significantly in the farthest selec-

tion. The reason is that in the farthest selection, outliers are always selected

as pivots. Partitions corresponding to these pivots contain few objects, while

other partitions whose pivots reside in dense areas contain a large number of

objects. Specifically, when we select 2000 pivots using farthest selection, the

maximal partition size is 1,130,678, which is about 1/5 of the dataset size.

This large difference in partition size will degrade performance due to the un-

balanced workload. We also investigate the group size using geometric grouping

approach7. As shown in Table 3.3, the number of objects in each group varies

significantly using the farthest selection. Again, this destroys the load balance

since each reducer needs to perform significantly different volume of computa-

tions. However, the group sizes using random selection and k-means selection

are approximately the same.

Figure 3.6 shows the execution time for various phases in kNN join. We

do not provide the execution time for farthest selection because it takes more

than 10,000s to answer kNN join. The reason of the poor performance is: al-

most all the partitions of S overlap with large-size partitions of R. Namely,

we need to compute distances for a large number of object pairs. Comparing

RGE with KGE, and RGR with KGR in Figure 3.6, we observe that the

overall performance using random selection is better than that using k-means

selection. Further, when the number of pivots increases, the gap of the over-

all performance becomes larger. This is because k-means selection involves a

large number of distance computations, which results in large execution time.

7We omit the results for greedy grouping as they follows the same trend.
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Figure 3.6: Query cost of tuning parameters

Things get worse when k increases. However, during the kNN join phase, the

performance of k-means selection is slightly better than that of random selec-

tion. To verify the result, we investigate the computation selectivity for both

cases. As shown in Figure 3.7(a), we observe that the computation selectivity of

using k-means selection is less than that of using random selection. Intuitively,

k-means selection is more likely to select high-quality pivots that separate the

whole dataset more evenly, which enhances the power of our pruning rules.

However, another observation is that the selectivity difference becomes smaller

when the number of pivots increases. This is because k-means selection will

deteriorate into random selection when the number of pivots becomes larger.

It is worth mentioning that the computation selectivity of all the techniques is

low, where the maximum is only 2.38h.
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Figure 3.7: Computation selectivity and replication

Effect of the Pivot Number

From Figure 3.6, we observe that the minimal execution time for kNN join phase

occurs when |P| = 4000. To specify the reason, we provide the computation

selectivity in Figure 3.7(a). From this figure, we find that the computation

selectivity drops by varying |P| from 2000 to 4000, but increases by varying |P|
from 4000 to 8000. As discussed in kNN join algorithm, to computeKNN(r, S),

we need to compute the distances between r and objects from S as well as

between r and pi ∈ P . When the number of pivots increases, the whole space

will be split into a finer granularity and the pruning power will be enhanced

as the bound becomes tighter. This leads to a reduction in both distance

computation between R and S and replication for S. The results for replication

of S are shown in Figure 3.7(b). One drawback of using a large number of

pivots is that the number of distance computation between r and the pivots

becomes larger. On balance, the computation selectivity is minimized when

|P| = 4000. For the overall execution time, it arrives at the minimum value

when |P| = 4000 for RGE and |P| = 2000 for the remaining strategies. The

overall performance degrades for all the combination of pivot selection and

partition grouping strategies when the number of pivots increases.

Effect of Grouping Strategies

When comparing RGE with RGR, and KGE with KGR in Figure 3.6, we

find the execution time in the kNN join phase remains almost the same using

different grouping strategies. In fact, in our partitioning based approach, for
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Figure 3.8: Effect of k over “Forest × 10”

each object r with all its potential k nearest neighbors, the number of distance

computations for r remains constant. This is consistent with the results for

the number of object pairs to be computed in Figure 3.7(a). As described

above, in PGBJ, ∀r ∈ Ri, we send all its potential kNN from S to the same

reducer. Hence, the shuffling cost depends on how to partition R into subsets.

From Figure 3.7(b), when |P| increases, the average replication of S using

greedy grouping is slightly reduced. However, the execution time in partition

grouping phase increases significantly. This leads to the increment in the overall

execution time.

Remark. To summarize the study of the parameters, we find that the overall

execution time is minimized when |P| = 4000 and RGE strategy is adopted

to answer kNN join. Hence, in the remaining experiments, for both PBJ and

PBGJ, we randomly select 4000 pivots to partition the datasets. Further, we

use geometric grouping strategy to group the partitions for PBGJ.
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Figure 3.9: Effect of k over OSM dataset

3.6.2 Effect of k

We now study the effect of k on the performance of our proposed techniques.

Figure 3.8 and Figure 3.9 present the results by varying k from 10 to 50 on

“Forest × 10” and OSM datasets, respectively.

In terms of running time, PGBJ always performs best, followed by PBJ

and H-BRJ.This is consistent with the results for computation selectivity. H-

BRJ requires each reducer to build a R-tree index for all the received objects

from S. To find the kNN for an object from R, the reducers will traverse the

index and maintain candidate objects as well as a set of intermediate nodes in a

priority queue. Both operations are costly for multi-dimensional objects, which

result in the long running time. In PGJ, our proposed pruning rules allow each

reducer to derive a distance bound from received objects in S. This bound

is used to reduce computation cost for kNN join. However, without grouping

phase, PGJ randomly sends a subset of S to each reducer. This randomness

results in a loose distance bound, thus degrading the performance. In addition,

Figure 3.8(c) shows the shuffling cost of three approaches on the default dataset.
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Figure 3.10: Effect of dimensionality

As we can see, when k increases, the shuffling cost of PGBJ remains nearly the

same, while it increases linearly for PBJ and H-BRJ. This indicates that the

replication of S in PGBJ is insensitive to k. However, for H-BRJ and PBJ, the

shuffling cost of Ri n Sj (∀Ri ⊂ R, Sj ⊂ S) increases linearly when k varies.

3.6.3 Effect of Dimensionality

We now evaluate the effect of dimensionality. Figure 3.10 presents both the

running time and computation selectivity by varying the number of dimensions

from 2 to 10.

From the results, we observe that H-BRJ is more sensitive to the number

of the dimensions than PBJ and PGBJ. In particular, the execution time in-

creases exponentially when n varies from 2 to 6. This results from the curse of

dimensionality. When the number of dimensions increases, the number of ob-

ject pairs to be computed increases exponentially. Interestingly, the execution

time of kNN join increases smoothly when n varies from 6 to 10. To explain
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Figure 3.11: Scalability results

this phenomenon, we analyze the original dataset and find that values of 6–10

attributes have low variance, which means the kNN for objects from R do not

change too much by adding these dimensions. We show the shuffling cost in

Figure 3.10(c). For H-BRJ and PBJ, when the number of dimensions increases,

the shuffling cost increases linearly due to the larger data size. However, for

PGBJ, when the number of dimensions varies from 2 to 6, the shuffling cost

increases exponentially due to the exponential increment of the replication of S.

Nevertheless, it will converge to |R|+N ×|S| even at the worst case. Although

it may exceed both H-BRJ and PBJ, in that case, PBJ can be used instead of

PBGJ if we take the shuffling cost into main consideration.

3.6.4 Scalability

We now investigate the scalability of three approaches. Figure 3.11 presents

the results by varying the data size from 1 to 25 times of the original dataset.

From Figure 3.11(a), we can see that the overall execution time of all the
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Figure 3.12: Speedup results

three approaches quadratically increases when we enlarge the data size. This is

determined by the fact that the number of object pairs increase quadratically

with the data size. However, PGBJ scales better than both PBJ and H-BRJ.

In particular, when data size becomes larger, the running time of PGBJ grows

much slower than that of H-BRJ. To verify this result, we analyze the com-

putation selectivity for the three approaches. As shown in Figure 3.11(b), the

computation selectivity of PGBJ is always the smallest one. One observation is

that when data size increases, the selectivity differences among three approaches

tend to be constant. In practice, for large datasets with multi-dimensional ob-

jects, a tiny decrease in selectivity will lead to a dramatic improvement in

performance. This is the reason that the running time of PGBJ is nearly 6

times faster than that of H-BRJ on “Forest × 25”, even if their selectivity does

not differ too much. We also present the shuffling cost in Figure 3.11(c). From

the figure, we observe that the shuffling cost of PGBJ is still less than that of

PBJ and H-BRJ, and there is an obvious trend of increasing returns when the

data size increases.
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3.6.5 Speedup

We now measure the effect of the number of computing nodes. Figure 3.12

presents the results by varying the number of computing nodes from 9 to 36.

From Figure 3.12(a), we observe that the gap of running time among three

approaches tends to be smaller when the number of computing nodes increases.

Due to the increment of number of computing nodes, for H-BRJ and PBJ, the

distribution of objects over each reducer becomes sparser. This leads to an

increment of computation selectivity that is shown in Figure 3.12(b). However,

the computation selectivity for PGBJ remains constant. Based on this trend,

it is reasonable to expect that PGBJ will always outperform both H-BRJ and

PBJ, while the improvement in running time is getting less obvious. We also

show the shuffling cost in Figure 3.12(c). From the figure, we can see that

the shuffling cost increases linearly with the number of computing nodes. In

addition, our approaches cannot speed up linearly, because: (1) each node

needs to read pivots from the distributed file system; (2) the shuffling cost will

be increased.

3.7 Summary

In this chapter, we study the problem of efficiently answering the k nearest

neighbor join using MapReduce framework. By exploiting Voronoi diagram-

based partitioning method, our proposed approach is able to divide the input

datasets into groups and we can answer the k nearest neighbor join by only

checking object pairs within each group. Several pruning rules are developed

to reduce the shuffling cost as well as the computation cost. We implement our

proposed solution using MapUnit/ReduceUnit in epiC, which is an implementa-

tion of MapReduce framework. Extensive experiments performed on both real

and synthetic datasets demonstrate that our proposed methods are efficient,

robust and scalable.
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CHAPTER 4

epiCG: An Efficient Distributed Graph

Engine on epiC

In this chapter, we extend epiC and introduce our distributed graph processing

engine, epiCG. While existing distributed graph processing systems require to

deploy a new framework in the cluster for graph processing, we develop epiCG

as an extension of epiC to reduce the effort of system deployment. epiCG

supports both edge-cut and vertex-cut graph partitioning. For vertex-cut, we

propose a light-weight approach to parallelize the process of generating a vertex-

cut partitioning. In terms of fault tolerance, epiCG achieves automatic failure

detection and recovery. Extensive experiments show the high efficiency and

scalability of epiCG.

4.1 Introduction

Graph is a powerful data structure that models the relationships among ob-

jects. Real-life graph examples include social network graphs, road networks

and global web graphs. Graph analytics, which aims to extract values from

real-life graphs, has attracted more and more attention in various domains

such as machine learning and data mining. However, the size of real-life graphs

has been growing at a dramatic space in recent years, which inevitably poses

challenges in graph analytics to cope with the scale.
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MapReduce [31] was proposed as a programming model to handle large-scale

data analytics. MapReduce gains popularity due to its efficiency, simplicity

and scalability. However, MapReduce is tailored for one-pass data processing,

but performs poorly for iterative graph analytics tasks such as shortest path

and connected component computation. To address the problem, Pregel [59],

a vertex-centric programming model, was proposed to handle iterative graph

applications. Pregel follows the Bulk Synchronous Parallel (BSP) model [84].

During each iteration, all the vertices execute a compute function defined by the

programmer in parallel and communicate with each other via messages. After

all the vertices finish their computations and message forwarding, a global syn-

chronization point is reached and all the vertices proceed to the next iteration.

Inspired by Pregel, various distributed graph processing systems following the

same programming model as Pregel are developed such as GPS [75], Giraph [2],

Hama [5], GraphX [91] and Pregelix [4].

4.1.1 Issues and Opportunities

While various implementations of Pregel have been proposed for large-scale

graph processing, we find most of them require users to set up a new framework

and conduct necessary configuration on their own clusters before running any

graph applications. This is always a daunting job for the users who manage

the cluster. In other words, regarding various types of data analytics jobs, we

should avoid setting up a new system for each type of them.

Opportunity: Is there any unified distributed solution to support various

types of analytics applications, for instance, both MapReduce jobs and Pregel

jobs?

Another issue about Pregel is the high communication overhead caused by

cross-machine message forwarding. Pregel adopts edge-cut based graph parti-

tioning which distributes vertices among the compute nodes and allows edges

to cross the nodes. Network communication overhead incurs when a vertex in

one compute node wants to send a message to its neighbor in another node. It

is worthy noting that the overhead becomes more significant when the degrees

of vertices in the graph follow a power-law distribution. Such kind of graph

is also referred to as natural graphs. For natural graphs, it can hardly find a

good graph partitioning that involves a small number of cross-node edges. In-
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stead of using edge-cut based partitioning method, PowerGraph [36] proposed

vertex-cut based graph partitioning. The idea is to randomly distribute edges

among the compute nodes and allow vertices to across the nodes. Unlike edge-

cut, the communication cost produced by a vertex-cut is restricted to the total

number of compute nodes spanned by the vertices. However, PowerGraph does

not follow the same framework as Pregel. It abstracts a graph algorithm as

the execution of a sequence of gather(), apply() and scatter() functions. Fur-

thermore, the vertex-cut partitioning algorithm used in PowerGraph places the

i+ 1 edge after having placed the previous i edges. Therefore, when generating

an edge-cut, PowerGraph requires one compute node to load the entire graph

into the main memory, execute the partitioning algorithm and forward edges to

the nodes accordingly. This has a minimum requirement for the RAM needed

to run the edge-cut partitioning algorithm.

Opportunity: Can we implement a light-weight vertex-cut partitioning method

in a system that follows the same programming model as Pregel?

The third issue is fault tolerance. Most existing distributed graph process-

ing systems adopt checkpoint-based recovery mechanism. That is, a checkpoint

is made periodically. Once a compute node fails or reports an exception, the

job will restart its execution from the latest checkpoint. However, to our best

knowledge, existing distributed graph processing systems such as GPS, Giraph,

Hama cannot recover from failures automatically. Instead, when a failure oc-

curs, the job will be terminated and the system requires users to manually

restart the job from the latest checkpoint. Apparently, such kind of implemen-

tation violates the requirement of fault tolerance to perform recovery automat-

ically and resume normal execution properly after recovery completes.

Opportunity: Can we achieve automatic failure detection and recovery in

distributed graph processing systems?

4.1.2 Our Solution and Contributions

To address the above three challenging issues, we propose our graph processing

engine, epiCG. We build epiCG on top of epiC, an elastic data processing sys-

tem proposed for large-scale data analytics. epiC adopts the Actor-like model

as its common programming model and regards any particular programming

model as one actor. The common programming model of epiC consists of a
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set of computation units that can perform computation in parallel and com-

municate with each other via message passing. Based on this general model,

epiC is able to support the implementation of various customized programming

models, including MapReduce model, relational model and Pregel model. We

implement epiCG as one extension of epiC and obtain the following benefits.

• Reusability: implementation cycle of a graph engine is shortened by lever-

aging existing components provided in epiC.

• One-size-fit-all: the user does not need to configure the cluster to run a

new system for graph applications, which is always a daunting job for

system administrators.

While epiC is extensible to support iterative graph applications, the imple-

mentation of epiCG on top of epiC is still challenging. The reason is two-fold.

First, epiC employs a disk-based generic programming model. That is, the

output of a epiC job will be written back to the distributed file system. Con-

sider a PageRank algorithm ran on top of epiC. After the system finishes one

iteration of graph processing, it will flush the newly computed graph back to

the distributed file system, which will be loaded into memory at the beginning

of the next iteration. This incurs high I/O cost when the number of iterations

is large. Second, computation units in epiC cannot communication with each

other directly. For example, if one computation unit wants to send a mes-

sages to another unit, it has to first send the message to the master thread in

epiC and the master thread will then forward the message to the corresponding

computation unit. Apparently, the master would become the bottleneck as the

volume of the messages involved in many graph applications is always large.

To solve both problems, we implement epiCG as an in-memory processing

engine on top of epiC. In particular, we allow computation units to maintain

their computed data in memory during iterations until they receive a flush

request from the master. Moreover, we establish connections between every

two computation units such that any two units can forward messages between

each other directly.

Contributions: the contribution of this work is the following.

• We develop a scalable graph processing engine epiCG as one extension of

epiC, making users to execute different types of analytics jobs using the
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same distributed system. epiCG is an in-memory processing engine that

can handle iterative graph applications efficiently. We also establish con-

nections between every two computation units in epiCG for the purpose

of direct communication.

• epiCG supports vertex-centric computation using both edge-cut and vertex-

cut graph partitioning. For vertex-cut, we propose a light-weight greedy

strategy which uses multiple compute nodes to generate a vertex-cut in

parallel. In terms of fault tolerance, epiCG allows automatic failure de-

tection and recovery.

• We conduct comprehensive experiments to demonstrate the efficiency and

scalability of epiCG, compared with advanced graph processing systems.

4.2 Overview of epiCG

In this section, we present the graph model, computation model and architec-

ture of our distributed graph engine epiCG.

Graph model. The input of epiCG is a graph G = (V , E), where V denotes

the set of vertices and E ⊆ V × V represents the set of directed edges1. To

distribute the graph among a cluster N of compute nodes, the graph is divided

into partitions, where each partition contains a set of vertices and all the edges.

Let P be the set of all the partitions. For any partition Pi ∈ P , we have

Pi = (Vi, Ei) where Vi ⊆ V and Ei = {(u, v) ∈ E | u ∈ Vi}. Typically, the

number of partitions is much larger than the number of compute nodes and

each compute node will be assigned with multiple partitions.

Computation model. Similar to Pregel, epiCG follows the Bulk Synchro-

nization Parallel (BSP) model [83]. Typically, the execution of an epiCG job

starts from an initialization phase where the graph is distributed among com-

pute nodes, followed by several iterations of computations, called supersteps,

and finally an output phase to flush out the results. Every vertex carries two

states: active and inactive. At the beginning of the job, every vertex is ac-

tive. During the computation, a vertex can inactivate itself by voltToHalt()

and it will be automatically activated if receiving any new incoming messages.

1For indirected graph, we can represent each undirected edge (u, v) by two directed edges
〈u, v〉 and 〈u, v〉.
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Figure 4.1: The Architecture of epiCG

The program terminates when all the vertices become inactive or the number

of supersteps reach a predefined upper bound. During each superstep, every

active vertex can process messages sent by other vertices in the last superstep,

execute compute() function, update its value and forward messages to other

vertices (to be processed in the next superstep). A global synchronization will

be performed at the end of each superstep.

Architecture. Figure 4.1 shows the architecture of epiCG. epiCG deploys the

distributed file system (DFS) as its underlying storage. Typically, DFS includes

the initial graph data to be processed by epiCG as well as the final results

produced by epiCG. epiCG adopts master-worker architecture which consists

of three components. The first component is the worker, which performs graph

computation with other workers concurrently. The second component is the

master, which coordinates the execution among all the workers. The third

component is the zookeeper, which maintains information shared by the master

and worker, such as which workers have finished the execution of the current

superstep, how many worker have dumped a checkpoint, the health status of

each worker and so on. By default, we use two compute nodes to execute

the master thread and zookeeper thread respectively. The core for each of

the three components is a GraphUnit, which defines the execution logic of the
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worker/master/zookeeper. The details are listed as follows.

• GraphUnit in the master side is responsible for two tasks: (1) partition

and distribute the input graph among the workers, and (2) coordinate

the workers to perform supersteps synchronously. To perform these tasks

correctly, GraphUnit in the master maintains several important objects:

(1) MasterPartitioner: generate the partitioning of the input graph and

decide which partition is assigned to which worker; (2) MasterClient:

notify the workers on the newly computed global aggregated values; (3)

MasterAggregator: retrieve local aggregated values from the workers and

generate the global aggregated ones.

• GraphUnit in the worker side consists of four parts: (1) WorkerServer:

retrieves and manages the graph data that is assigned to the worker; (2)

WorkerPartitioner: maintains partition information for the vertices resid-

ing in the worker; (3) WorkerClient: forwards messages to the zookeeper

and other workers; (4) WorkerAggregator: computes aggregated values

and writes to the zookeeper. Based on these parts, each worker can do

the following tasks: (1) retrieve its graph data; (2) loop over vertices re-

siding in the slave and execute compute() function; (3) forward messages

generated during the computation; (4) generate aggregated values and

write to the zookeeper.

• GraphUnit in the zookeeper side controls the start and stop of zookeeper

service and monitors the health and working status of the workers.

Once a graph job is submitted to epiCG, all the GraphUnits will be acti-

vated immediately. At the beginning of the execution, epiCG sets up pairwise

connections between the GraphUnits from the master, the workers and the

zookeeper. This is different from epiC where units cannot communicate with

each other directly, but rely on the message service provided by the master.

Specially, if a unit A want to send a message to another unit B, A has to send

a message to the master first and tell the master to forward this message to B.

As we mentioned before, most graph applications such as PageRank and short-

est path computation always involve a large number of messages. Setting up

direct connections between units allows them to communicate more efficiently

and hence reduces the network burden in the master side.
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In what follows, we provide implementation details of epiCG and present

how graph job is executed in epiCG.

4.3 Implementation Details

epiCG supports two graph partitioning methods: edge-cut and vertex-cut.

Edge-cut partitioning distributes vertices among the compute nodes. When

a vertex is assigned to a compute node, all of its outgoing edges are assigned

to that node as well. Different from edge-cut, vertex-cut partitioning assigns

edges to the compute nodes in a random fashion. For a vertex that spans n

nodes, we maintain n copies of the vertex. One copy is elected as the master

which receives messages, performs computation and forwards updated values to

the other copies which are known as mirrors. Each copy maintains a subset of

edges of the vertex in the original graph. To eliminate network communication

cost for sending messages from copies to their neighbors, vertex-cut requires

that for any edge 〈v, u〉, the master version of u and 〈v, u〉 must be assigned to

the same worker.

We next introduce the data structures used for both edge-cut and vertex-cut

partitioning in epiCG.

4.3.1 Distributed Graph Structure

Given a graph as input, each worker is responsible for a subgraph, which will

be processed by the GraphUnit in that worker. In epiCG, we organize all

the vertices into partitions, and hence the subgraph in each worker consists

of several partitions. Organizing subgraph into partitions has an important

advantage, which is to support dynamic repartitioning. More specifically, each

worker can collect statistics such as the execution time for each partition it

owns and report this information to the master. The master retrieves all the

statistics from the workers and may ask some of them to exchange partitions for

the purpose of load balance. Instead of repartitioning the graph in the vertex

granularity, partition-based repartitioning is obviously more cost effective.

Table 4.1 lists several important data structures managed by each worker to

maintain its subgraph. Vertex records the information for a vertex in the input

graph, including the identity of the vertex, its value, outgoing edges, status
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Table 4.1: Graph-related objects maintained by each worker
Object Description
Vertex information of a vertex in the input graph
Partition a set of vertex in a partition
PartitionStore a set of partition residing in the worker
PartitionOwner indicating a partition belongs to which worker
PartitionOwnerList partition-worker mapping

(active or inactive). For each vertex, we also attach two variables, isMaster

and #allEdges, to support vertex-cut graph partitioning. isMaster is a boolean

variable indicating whether the vertex is a master version or a mirror; #allEdges

records the total number of edges associated with the vertex in the original

graph (see details in Section 4.3.2). Partition contains a set of vertices and

each partition is associated with an identifier “pid”. Typically, every worker is

responsible for multiple partitions. We use PartitionStore to keep track of

all the partitions assigned to the worker. In order to forward messages to the

corresponding destination vertices, every worker needs to know in which worker

and which partition every destination vertex resides. One way to do this is to

maintain two mappings, one vertex-to-partition mapping ϕ and one partition-

to-worker mapping φp in each worker, where ϕ indicates which vertex belongs

to which partition and φp indicates which partition is assigned to which worker.

If the worker wants to forward a message to vertex u, it can easily conclude

that u belongs to partition ϕ(u) in the worker φp(ϕ(u)).

However, the size of ϕ is proportional to the total number of vertices in the

graph. To avoid large memory footprint, epiCG adopts a simple hash mapping

function for ϕ. That is, let P be the set of all the partitions. For a vertex v

and a partition P ∈ P ,

ϕ(v) = P ⇔ v.vid ≡ P.pid (mod |P|) (4.1)

Given the total number of partitions, each worker can easily derive which par-

tition a vertex resides in. Although similar hash function can be applied to φp,

we allow a better partitioning to be achieved. That is, the assignment of parti-

tions can be decided before graph loading by using advanced graph partitioning

tools such as Metis [49]. By default, let W be the set of all the workers. For a
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partition P ∈ P and a worker W ∈ W ,

φp(P ) = W ⇔ P.pid ≡ W.workerid (mod |W|) (4.2)

In epiCG, we use PartitionOwner to keep information for a partition, i.e.,

this partition is assigned to which worker. Every worker maintains a list

PartitionOwnerList (i.e., φp) recording PartitionOwners for all the parti-

tions. During the computation, every worker can easily forward a message

to the destination vertex by referring to the vertex-partition mapping ϕ and

PartitionOwnerList.

4.3.2 Graph Loading and Output

The execution of an epiCG job consists of three phases: graph loading, iterative

computation and output. In this section, we mainly focus on the graph loading

and output phases, but leave the discussion on iterative computation in the

next section.

Graph Loading Phase

The input graph of an epiCG job is stored as a plain file in the distributed file

system. Typically, a graph file consists of a set of lines, where each line contains

a vertex id and all of its neighbors’ ids representing the outgoing edges for the

vertex. In the beginning of graph loading phase, the master will generate the

PartitionOwnerList and inform all the workers of the list via zookeeper. All

the workers will then retrieve the partitions that are assigned to it based on the

list. To achieve this, in epiCG, every worker first reads from the distributed file

system several data splits (i.e., several lines) of the input graph. The worker

then iterates over the data splits and for each line, it checks whether the vertex

belongs to any of its partitions. If so, the worker appends the vertex and its

outgoing edges into its local partition. Otherwise, the worker forwards this

vertex and the edges to its belonging worker based on the PartitionOwnerList.

To achieve a vertex-cut, we allow vertex with a large number of outgoing

edges to span across multiple compute nodes. For example, consider the vertex

v in Figure 4.2(a). v has 6 outgoing edges. Instead of assigning v and all its

edges to one compute node, we can split its edges into two parts, as shown in

Figure 4.2(b). One part contains 3 edges of v, i.e., v → u1, v → u2, v → u3
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(a) Vertex v
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(b) An vertex-cut of v

Figure 4.2: An example of vertex-cut

and the other part contains the rest three edges. We assign these two parts to

two different compute nodes, W1 and W2 respectively, making vertex v span

across two compute nodes. We may decide one replica of v (associated with

v → u1, v → u2, v → u3) to be the master version, and the other replica

(associated with v → u4, v → u5, v → u6) to be the mirror. Moreover, since

epiCG organizes vertices into partitions, we need to know the two parts actually

belong to which partitions in the workers W1 and W2, respectively. In summary,

to generate vertex-cut partitions, we need to perform the following three steps

for each vertex in the input graph.

1. First, we generate a vertex-cut for the vertex, i.e., split the edges into

several parts and assign each part to a worker.

2. Second, we choose one copy of the vertex as the master version, while the

others are the mirrors.

3. Third, we decide each part in the vertex-cut belongs to which partition

of the worker.

We next provide details for the above three steps.

Vertex-cut generation. PowerGraph [36] proposed a greedy strategy for

vertex-cut partitioning. However, their approach requires a single node to load

the entire graph into main memory, and then place the i + 1 edge based on

the previously placed i edges. This approach has two drawbacks. First, it has

a minimum requirement on the RAM of the single compute node. Second, all

the other compute nodes become idle but wait to receive its assigned edges.

In epiCG, we adopt a light-weight vertex-cut generation algorithm which

allows all the workers to generate a vertex-cut for a subset of vertices. Recall
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that in the loading phase, each worker would first load several data splits from

the DFS. When a worker reads one line in the split, it can learn from the

PartitionOwnerList that the destination vertex of each edge will be assigned to

which worker, and then group the edges based on the belonging workers of the

destination vertices. Consider the vertex v in Figure 4.2(a). Suppose u1, u2, u3

belong to the same worker W1 and u4, u5, u6 belong to another worker W2. We

can obtain two groups of edges for v naturally (see Figure 4.2(b)) and both

groups compose a vertex-cut for v. We then forward v and three of its edges

v → u1, v → u2, v → u3 to worker W1. Similarly, we forward v and three edges

v → u4, v → u5, v → u6 to worker W2. More formally, for any edge 〈v, u〉 ∈ E ,

we assign it to worker W iff:

φp(ϕ(u)) = W (4.3)

It is worth noting that the assignment of the edges is decided by the vertex-

to-partition mapping ϕ and PartitionOwnerList maintained in each worker.

Hence, all the workers could decide how to generate a vertex-cut (i.e., assign

edges) for the vertices in its data splits independently.

Master selection. Let {(v1, E1), · · · , (vn, En)} be a vertex-cut for vertex v,

where vi is a copy of v and Ei is the outgoing edges of vi, 1 ≤ i ≤ n. We denote

by Wi the worker to which (vi, Ei) is assigned. According to the vertex-to-

partition mapping ϕ and PartitionOwnerList φp, vertex v is assigned to worker

φp(ϕ(v)). Hence, we choose copy vi in worker Wi as the master version iff:

φp(ϕ(v)) = Wi (4.4)

, where ϕ is defined in Equation 4.1 and φp is defined in Equation 4.2. All of

the other copies become the mirrors.

Partition selection. In epiCG, each worker organizes its subgraph into sev-

eral partitions. Therefore, in addition to the worker information, we need to

know each part of a vertex-cut belongs to which partition of the worker. Let

{(v1, E1), · · · , (vn, En)} be a vertex-cut for vertex v and (vi, Ei) is assigned to

worker Wi, 1 ≤ i ≤ n. Suppose vj(1 ≤ j ≤ n) is the master version. According

to the PartitionOwnerList, we know the set Pi of partitions that belong to the

worker Wi. In fact, Pi corresponds to the PartitionStore maintained by worker

Wi. For the master version vj, (vj, Ej) is assigned to partition P ∈ Pj in Worker
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Wj iff:

P = ϕ(v) (4.5)

This is because both ϕ and φp decide the assignment for all the master vertices.

For each mirror vi(i 6= j), we assign (vi, Ei) to partition P ∈ Pi in worker Wi

iff:

P = Pi[0] (4.6)

That is, we assign each mirror vi to the first partition maintained in the Par-

titionStore of worker Wi. Here, we may assign (vi, Ei) to any one of partitions

in worker Wi. We choose the first partition in the PartitionStore only for the

implementation purpose.

Another important issue of vertex-cut generation is that we should avoid

spanning vertices with low out-degrees (i.e., the total number of the outgoing

edges) . This is because the copies of these vertices increase network cost for

synchronizing vertex values, while their contributions to reducing the cost of

forwarding cross-node message is less significant. As argued in [27], distributing

edges in a random fashion will result in all the vertices having several copies,

thus degrading system performance. To address the problem, we set a threshold

θ on the out-degrees of the vertices. If the out-degree of a vertex is no larger

than θ, we assign all the edges to the vertex without generating any copies for

the vertex. If the out-degree of a vertex exceeds θ, we decompose it into several

parts to obtain a vertex-cut.

Algorithm 5 summarizes the pseudo code of our vertex-cut generation algo-

rithm. Given a vertex v, we first check whether its out-degree exceeds threshold

θ (line 3). If not, we assign all the edges to the vertex and the vertex will be

forwarded to partition ϕ(v) using Equation 4.1 (line 4). Otherwise, we start to

assign the edges of v among the workers (line 5-15). Specifically, we maintain

a map function N from workers to the copies indicating which worker owns

which copy (line 7) and iterates over all the outgoing edges of the vertex (line

8). For each edge 〈v, u〉, we first compute the worker W where u resides (line

9). We then check whether N contains worker W (line 10-11). If it contains

W , we retrieve from N the copy v′ that is assigned to W and attach 〈v′, u〉
to the edge list of v′. If N does not contain worker W , we create a copy v′

and assign edge 〈v′, u〉 to the copy. Besides, we add the pair (W, v′) to N (line

13). We next select one copy as the master version using Equation 4.4 and for
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Algorithm 5: GenerateVertexCut

Input : v, a vertex
φp, PartitionOwnerList
n, the number of partitions

Output: M : list of (copy, partition) pairs
1 M ← ∅;
2 Ev ← v.GetEdges ();
3 if |Ev| ≤ θ then
4 M ← {〈v, GetPartition(v.vid)〉};
5 else
6 /* generate vertex-cut for v */
7 N ← ∅;
8 foreach Edge 〈v, u〉 ∈ Ev do
9 W ← GetWorkerInfo(GetPartition(u.vid), φp);

10 v′ ← N.get(W );
11 if v′ = null then
12 v′ ← CreateVertex(v);
13 N ← N ∪ {(W, v′)};
14 v′.AddEdge(〈v′, u〉);
15 /* select master version and assign vertex-cut to workers */
16 W ∗ ← GetWorkerInfo(GetPartition(v.vid), φp);
17 vm ← null; Pm ← ∅;
18 foreach (W, v′) ∈ N do
19 if W = W ∗ then
20 v′.isMaster ← true;
21 M ←M ∪ {v′, GetPartition(v.vid)};
22 vm ← v′;

23 else
24 v′.isMaster ← false;
25 P ← GetAllPartitions(W ).get(0);
26 M ←M ∪ {(v′, P )};
27 Pm ← Pm ∪ {P.pid};
28 v′.#allEdges← |Ev|;
29 vm.AddMirrorPartitionIds(Pm);

each pair (W, v′) in N , we assign v′ to one of the partitions in worker W using

Equation 4.5 and 4.6 (line 16-27). Furthermore, for each copy of v, we record

the out-degree of v in the original graph (line 28) and for the master version,

we record a list of partition ids indicating the locations of the mirrors (line 29).
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This is easy to verify that the vertex-cut partitioning produced by Algo-

rithm 5 has the following properties.

Property 4.1. Consider a vertex v and the set Ev of its outgoing edges. Let

{(v1, P1), · · · , (vn, Pn)} be the list M produced by Algorithm 5 and Ei be the set

of edges associated with vi, 1 ≤ i ≤ n. We have:

1. ∀i 6= j ∈ [1, n], Ei ∩ Ej = ∅;

2.
⋃n
i=1 Ei = Ev;

3. ∀〈vi, u〉 ∈ Ei, φp(Pi) = φp(ϕ(u)).

The third point guarantees forwarding messages from any copy to its neighbors

does not incur any network communication cost.

In the graph loading phase, every worker can apply Algorithm 5 to the

vertices in its own data splits in parallel with other workers. After obtaining

a vertex-cut for a particular vertex, the worker can forward each copy and its

edges to the corresponding partition based on its computed list M . After all

the workers finish shuffling vertex copies and edges, every worker obtains the

following information:

• for every vertex v in its own partitions, the worker knows the out-degree

of the vertex in the original graph based on v.#allEdges and whether it

is a master version or a mirror based on v.isMaster.

• for a master vertex v in its own partitions, the worker records every mirror

of v resides in which partition in the list of v.MirrorPartitionIds and it

can compute every mirror belongs to which worker using Equation 4.2.

• for any vertex in the graph, the worker knows the master version of the

vertex resides in which partition and which worker based on Equation 4.1

and 4.2.

Output Phase

When an epiCG job finishes all the supersteps, the master will ask every worker

to produce output for its own partitions. Basically, every worker loops over its

PartitionStore and for each partition in the store, it iterates over the vertices
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in the partition. If the vertex is a master version, the worker writes the id and

the value of the vertex into its output file; the worker will do nothing for the

mirrors.

4.3.3 Iterative Computation

epiCG performs iterative graph computation (i.e., a set of supersteps) follow-

ing the vertex-centric programming model in Pregel. To cope with vertex-cut

partitioning, every worker in epiCG will experience the following three phases

in each superstep.

Phase 1: Mirror message delivery.

In epiCG, every master vertex will forward its updated vertex value to all

of its mirrors at the end of each superstep. Once a worker receives an updated

vertex value, it will store it into a VertexValueUpdateCache. In the beginning

of a superstep, the worker will first update its mirrors with the new values

received in the last superstep. Specifically, every worker will go through all

of its residing vertices. If a vertex is a mirror and VertexValueUpdateCache

contains a new value for the vertex, the worker will update its value accordingly.

When all the values in VertexValueUpdateCache are processed, the worker will

clear this cache.

After a mirror updates its value, it needs to produce and forward messages

to its own neighbors. That is, a message that should be forwarded directly from

the master vertex will now be produced and forwarded by the mirror instead

of the master.

To achieve this, we define a new API, produceMsg(Edge e), in Vertex

class. This function will be called by the mirrors to send messages to its own

neighbors. In epiCG, if a user submits a graph job and chooses vertex-cut as the

partitioning method, we require the user to define produceMsg function to be

executed by the mirrors. Figure 4.3 provides an implementation of produceMsg

for PageRank computation. A mirror retrieves its value via getValue() and

computes the share of its neighbor, which is the vertex value divided by the

out-degree of the vertex in the original graph.

One limitation of produceMsge function is that for every mirror, the message

it is going to create can only rely on the value of the vertex, the out-degree of the

vertex in the original graph (stored in Vertex.#allEdges) and the information
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public DoubleWritable produceMsg(Edge<LongWritable,NullWritable> edge) {

int edges = getNumEdges();

if(edges > 0) {

double tmp = getValue().get()/edges;

return new DoubleWritable(tmp);

}

else

return null;

}

Figure 4.3: ProduceMsg(Edge e) for PageRank

(e.g., value) of the edge. To the best of our knowledge, the above information

is sufficient to produce messages for most real-life graph applications includ-

ing PageRank, breadth first search, graph keyword search, triangle counting,

connected component computation, graph coloring, minimum spanning forest

computation, k-means, shortest path, minimum cut, clustering/semi-clustering.

Each message produced by a mirror will be forwarded to the master-version

destination vertex. Thanks to vertex-cut partitioning, all the messages sent

by a mirror will not incur network cost, i.e., the master-version destination

vertices reside in the same compute node as the mirror. Hence, each generated

message will be appended by the worker to the incoming message store of the

destination vertex locally.

Phase 2: master vertex computation and message delivery.

After all the mirrors finish producing and forwarding messages to their

neighbors, vertex computation starts. In this phase, every worker checks its

partitions in the PartitionStore. For each partition, the worker loops over

the vertices in it. The worker performs computation for a vertex v iff (1) v is

a master vertex; (2) v receives at least one messages sent by other vertices.

When a master vertex performs computation, it may produce messages.

Note that a master vertex may only has a subset of the edges and hence can

only send messages to its known neighbors. Every worker collects the messages

produced by the master vertices during the computation and forwards them to

the workers where the destination vertices reside accordingly. If the destination

vertex of a message has multiple replicas, the message will only be forwarded

to the master vertex, and none of the mirrors will receive any messages. In

epiCG, all the workers forward their messages asynchronously.
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Figure 4.4: Graph computation in epiCG

Phase 3: vertex value synchronization.

When a master vertex finishes its computation, it may produce a new vertex

value and all of its mirrors must be informed of this new value. In epiCG,

every worker is responsible for sending the updated value of a master vertex

(obtained after vertex computation) to all the mirrors. Recall that every master

vertex maintains a list MirrorPartitionIds recording the partitions where

the mirrors reside. By checking this list, the worker forwards the updated

vertex value to the mirrors via syncVertexValueRequest requests. To ensure

the correctness of vertex value synchronization (i.e., every mirror must receive

updated vertex value successfully), we adopt the three-way handshake protocol

to handle the syncVertexValueRequest requests. That is, when a worker

W1 forwards a syncVertexValueRequest request to another worker W2, W1

will wait for a completion signal sent from W2. If W1 does not receive the

completion signal for a while, it will re-send the request. Any worker who

receives a syncVertexValueRequest request will parse the request and put the

updated value into VertexValueUpdateCache for the corresponding mirror.

Every worker will continue its processing only if all of its requests are sent

successfully and all of its received requests are handled properly.

Figure 4.4 illustrates the procedure of graph computation in epiCG. Con-

sider a master vertex v in worker1 and its only mirror in worker2. Each of
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them is associated with three outgoing edges. During one superstep, worker2

first updates the value of the mirror and the mirror then computes messages

by calling produceMsg function and forwards to its neighbors u4, u5, u6 (Fig-

ure 4.4(1)). Meanwhile, worker1 performs computation for the master vertex

v (Figure 4.4(2)) and produces messages to the three neighbors u1, u2, u3 (Fig-

ure 4.4(3)). After that, worker1 informs worker2 of the updated value of v

(Figure 4.4(4)).

4.4 Fault Tolerance

Failure detection and recovery are two key problems to achieve fault tolerance.

epiCG achieves failure detection by asking every worker to register its healthy

status periodically. At the end of each superstep, the master will check healthy

statuses for all the workers. If a worker does not register its status over a time

period, the master will regard it as failed.

In most existing distributed graph processing systems such as Giraph and

GraphLab, the master will report error messages for the failed workers and

terminate the job accordingly. To resume the execution of a failed job, exist-

ing systems require users to manually launch a new job that starts from the

latest checkpoint. Apparently, such kind of implementation for failure recovery

violates the requirement of fault tolerance that the system should be able to

recover from failures and resume normal execution automatically.

To achieve automatic recovery, upon worker failures, epiCG leverages the

remaining healthy workers to continue the execution instead of terminating

the job. Specifically, the master will create a JobState indicating: 1) the

next superstep (i.e., the latest checkpointing superstep) to perform, and 2)

every worker should load graph data from the latest checkpoint in the next

superstep. The master then broadcasts this state to all the healthy workers.

When the next superstep starts, the master will generate a new partition-

to-worker mapping based on the remaining healthy workers and informs the

workers of the new mapping via zookeeper; the workers will first load graph data

from the latest checkpoint, exchange vertices and edges according to the newly

received partition-to-worker mapping and then start execution from the latest

checkpointing superstep. By doing this, epiCG is able to resume execution

from the latest checkpoint automatically. To accelerate the recovery process,
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we also implement a novel parallel recovery mechanism in epiCG (see details in

Chapter 5).

It is important to note that the job completion time would increase dramat-

ically when too many workers get failed. A user may prefer to terminate the job

and restart with a fixed number of workers rather than ask few healthy workers

to continue the execution. In epiCG, we provide a threshold MinWorker on the

minimal number of healthy workers. MinWorker is set to 1 by default, but we

allow users to set their own values for MinWorker via job configuration. Upon

worker failures, the master will first check whether the number of remaining

healthy workers is smaller than MinWorker. If not, it will perform automatic re-

covery as mentioned before. Otherwise, it will terminate the execution without

performing recovery.

4.5 Experimental Evaluation

We evaluate the performance of epiCG by comparing it with the two most pop-

ular distributed graph processing systems [34], Giraph [2] and PowerGraph [36].

It has been experimentally shown that PowerGraph is the most efficient graph

processing engine on small graphs compared with several other popular graph

processing systems such as Hama and GraphX [24]. In all the experiments, we

use Giraph version 1.0.0 and PowerGraph version 2.2. Our comparisons include

running time, communication cost, scalability and speedup.

4.5.1 Experiment Setup

We ran all the experiments on our in-house clusters. The cluster consists of

72 compute nodes, each of which is equipped with one Intel X3430 2.4GHz

processor, 8GB of memory, two 500GB SATA hard disks and gigabit ethernet.

For each node in the cluster, we installed CentOS 5.5 operating system, Java

1.7.0 with a 64-bit server VM and Hadoop 0.20.203.02. Giraph runs as a Map-

only job on top of Hadoop, hence we made the following changes to the default

Hadoop configurations: (1) the replication factor is set to 1; (2) each node

is configured to run one map task. (3) the size of virtual memory for each

map task is set to 4GB. By default, we chose 30 compute nodes out of the

2http://hadoop.apache.org/
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Table 4.2: Dataset description
Dataset Data Size #Vertices #Edges Avg. Degree
Livejournal 1.0GB 3,997,962 34,681,189 8.67
Friendster 31.16GB 65,608,366 1,806,067,135 27.53
Ftiny 1.9GB 12,739,496 221,933,535 17.42
Fsmall 3.7GB 17,694,120 428,192,865 24.19
Fmedium 7.5GB 25,126,704 862,648,522 34.33

72 compute nodes for the experiments. For Giraph, one node was selected as

the master running Hadoop’s NameNode and JobTracker, while the remaining

compute nodes were the slaves running TaskTracker daemons. Similarly, for

both epiCG and PowerGraph, we chose one compute node to be the master

and all the others to be the slaves; we required every node to execute only one

master/slave thread and set the virtual memory size for each thread to 4GB.

To make a fair comparison, we ran PowerGraph in the synchronous mode. For

all the three systems, we used HDFS as the underlying distributed file system.

4.5.2 Benchmark Tasks and Datasets

We study the performance of different distributed graph processing systems

using two benchmark tasks: Shortest path and PageRank.

• Shortest path. Shortest path computing is to select one vertex as the

source and compute the shortest distances to the source for all the ver-

tices. For all the three systems, we always use the same vertex as the

source.

• PageRank. The PageRank algorithm is an iterative graph processing

algorithm. We refer the readers to the original paper [68] for the details

of the algorithm.

Without loss of generality, we run all the tasks for 10 supersteps and all the

results are averaged over ten runs.

We conduct the experiments using several real-life datasets, downloaded

from the website3. Table 4.2 provides the details for each of the following

datasets.

3http://snap.stanford.edu/
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• Livejournal. Livejournal is an online social networking and journaling

service that enables users to post blogs, journals, and dairies. It contains

more than 4 million vertices (users) and over 30 million directed edges

(friendships between users). We use this dataset to evaluate the execution

of Shortest path tasks.

• Friendster. Friendster is an online social networking and gaming ser-

vice. It contains more than 60 millions vertices and 1 billion edges. We

use it to evaluate the execution of PageRank tasks. To evaluate the

speedup of various systems, we prepare three down-samples, Ftiny, Fs-

mall, Fmedium, of Friendster by randomly selecting a subset of vertices

from the original Friendster dataset and only keeping the edges involving

the selected vertices.

For the experiments, we compare the performance of epiCG-E (using edge-

cut), epiCG-V (using vertex-cut) with Giraph (using edge-cut) and PowerGraph

(using vertex-cut) over two metrics: running time and communication cost.

For the communication cost, we calculate the number of cross-node messages

(i.e., sendMsgRequests) to be forwarded during the computation as well as the

number of cross-node messages (i.e., syncVertexValueRequests) to synchronize

vertex values from master vertices to their mirrors.

4.5.3 Effect of Vertex-cut Degree Threshold θ

We first study the effect of vertex-cut degree threshold θ on the performance

of epiCG-V (using vertex-cut). Recall that θ decides whether we need to gen-

erate mirrors for a vertex. Figure 4.5(a)-4.5(d) show the number of cross-node

requests forwarded in Shortest path task over different values of θ using 10, 20,

30, 40 compute nodes, respectively. We mainly consider two kinds of requests:

sendMsgRequest refers to the messages forwarded during vertex computation

and syncVertexValueRequest corresponds to the messages from master vertices

to their mirrors to synchronize the values. For all the compute node numbers

(i.e., 10 to 40 nodes), when θ becomes larger, the number of sendMsgRequests

increases. In particular, the number of sendMsgRequests for θ =100 is around

3x larger than that for θ =20. This is because larger values of θ result in more

vertices without mirrors and hence more sendMsgRequests will be forwarded
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Figure 4.5: Effect of vertex-cut degree threshold θ (Shortest path)

directly from vertices to their neighbors. In contrast, the number of syncVertex-

ValueRequests decreases as θ becomes larger, due to the fact that for larger val-

ues of θ, more vertices have no mirrors and fewer number of requests is required

for vertex value synchronization. When the number of compute nodes increases

from 10 to 40, the number of sendMsgRequests for each particular value of θ

remains constant while the number of syncVertexValueRequests increases sig-

nificantly. Specifically, for θ=20, the number of syncVertexValueRequests for

40 nodes is over 4x larger than that for 10 nodes. This is because the neighbors

of a vertex can be assigned to multiple distinguished compute nodes. Therefore,

the number of mirrors generated for a vertex with more than θ outgoing edges

is potentially proportional to the number of compute nodes.

Figure 4.6(a)-4.6(d) show the number of cross-node requests required in

PageRank task over various θ using 10, 20, 30, 40 compute nodes, respectively.

Compared with Shortest path task, PageRank incurs larger numbers of sendMs-

gRequests and syncVertexValueRequests for all the cases. This is because we

ran PageRank over Friendster dataset, which is 30x larger that Livejournal
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Figure 4.6: Effect of vertex-cut degree threshold θ (PageRank)

(used for Shortest path task). For all the compute node numbers, the number

of sendMsgRequests increases (e.g., 5x more sendMsgRequests for θ=100 than

θ=20 using 10 nodes) and that of syncVertexValueRequests decreases (e.g., 3x

fewer syncVertexValueRequests for θ=100 than θ=20 using 10 nodes) as θ be-

comes larger. This is because larger θ, fewer vertices having mirrors and smaller

number of requests used for vertex value synchronization. When the number

of compute nodes becomes larger (i.e., from 10 to 40), the number of syncVer-

texValueRequests increases significantly for all the values of θ. As explained

above, the number of mirrors is potentially a linear function of the number of

the compute nodes. In the worst case, we may generate mirrors for a vertex in

all the compute nodes if each node contains at least one neighbor of the vertex.

Execution time. We now present the execution time of epiCG-V over different

values of θ. Figure 4.7(a) provides the execution time per superstep for Shortest

path task using 20 compute nodes. As we can see, the execution time does not

change too much as θ varies. For smaller values of θ, more sendMsgRequests are

forwarded during the computation while the number of vertices with mirrors
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Figure 4.7: Execution time

as well as the cost for synchronizing all the mirrors is reduced. Note that every

node has to generate and send messages locally for the mirrors with updated

values. Hence, fewer mirrors reduce the execution time caused by the extra

message generation and forwarding. Figure 4.7(b) shows the execution time

per superstep using 30 nodes. Similar to 20-node cases, the execution time

remains constant over various θ. We omit the results for 10 and 40 compute

nodes as they exhibit similar behaviors as 20-node and 30-node cases.

Figure 4.7(c) and 4.7(d) provide the execution time per superstep for PageR-

ank task using 20 and 30 compute nodes, respectively. For 20 nodes, the ex-

ecution time of epiCG-V shows a U-shape curve as θ increases. However, the

largest difference between the longest and shortest execution time is less than 5

seconds. For 30 nodes, the execution time over various θ remains constant. We

observe similar results for 10 and 40 nodes and omit them to avoid redundancy.

We observe that θ = 60 provides the best performance of epiCG-V in both

Shortest path and PageRank tasks. Henceforth, without specified otherwise,

we set θ to 60 for both Shortest path and PageRank tasks by default.
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4.5.4 Scalability
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Figure 4.8: Scalability

We next evaluate the scalability of epiCG using different number of com-

pute nodes. Figure 4.8(a) shows the execution time per superstep in Shortest

path task using different number of compute nodes. As we can see, all the

graph systems scales well when more compute nodes are used. PowerGraph

requires the least execution time over all the compute node numbers, slightly
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less than epiCG-V. This is because PowerGraph uses C as its programming

language, which is more efficient than Java used by epiCG. On average, epiCG-

V runs 1.5x faster than Giraph, slightly faster than epiCG-E. This is because

epiCG-V leverages vertex-cut to reduce the message forwarding cost during

computation. As shown in Figure 4.8(b), the number of sendMsgRequests in

epiCG-V is only two-thirds of that in Giraph; epiCG-E and Giraph require

the same number of sendMsgRequests as they use the same partitioning func-

tion. PowerGraph requires the minimum number of sendMsgRequests over all

the number of compute nodes, which is about 6x and 10x lower than that of

epiCG-V and Giraph, respectively. However, as we can see in Figure 4.8(c),

the number of syncVertexValueRequests forwarded in PowerGraph is over 10x

larger than that in epiCG-V. In fact, the sophisticated vertex-cut partitioning

approach adopted by PowerGraph balances the cost of message forwarding and

that of mirror synchronization. We also observe that the advantage of epiCG-V

becomes less significant when more compute nodes are used. This is because

the number of mirrors increases linearly with the number of compute nodes, as

illustrated in Figure 4.8(c). The cost of vertex value synchronization degrades

the performance of epiCG-V.

Figure 4.8(d) provides the execution time per superstep in PageRank task.

The execution time in all the graph systems decreases almost linearly as the

number of compute nodes increases from 10 to 40. Compared with Shortest

path task, PageRank task requires 10x more execution time due to the large

size of the Friendster dataset. We only obtain the results of PowerGraph using

30 and 40 nodes. This is because PowerGraph generated a large number of

mirrors which exhausted the memory space quickly. epiCG-V requires the least

execution time over all the compute node values. On average, epiCG-V runs

over 2x and 1.5x faster than Giraph and epiCG-E, respectively. This is because

we tested PageRank task on Friendster dataset, which follows power-law de-

gree distribution; vertex-cut reduces the communication cost significantly for

natural graphs. For 30 and 40 nodes, epiCG-V runs slightly faster than Pow-

erGraph. This is because the vertex-cut generated by PowerGraph incurs 3x

more sendMsgRequests and 1.5x more syncVertexValueRequests than epiCG-

V, as shown in Figure 4.8(e) and Figure 4.8(f). We observe that all the systems

perform similarly in both Shortest path and PageRank tasks and hence in the

following sections, we only report results for PageRank task.
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Figure 4.9: Speedup

4.5.5 Speedup

We now study the performance of epiCG using 4 datasets in various sizes,

i.e., Ftiny, Fsmall, Fmedium and Friendster (see details in Table 4.2). Fig-

ure 4.9(a) shows the execution time per superstep required in all the datasets

using 30 compute nodes for PageRank task. All the systems require longer

execution time when the size of dataset increases. PowerGraph requires the

least execution time on the smaller graphs (i.e., Ftiny, Fsmall, Fmedium), but

is less efficient than epiCG-V on the large graph (i.e., Friendster). Further-

more, epiCG-V shows the highest speedup. In particular, the ratio between the

time for the largest dataset (i.e., 31GB Friendster) and that for the smallest

dataset (i.e., 1.9GB Ftiny) in epiCG-V is 6.7, while the ratios for PowerGraph,

epiCG-V and Giraph are 7.6, 7.79 and 6.92, respectively. For all the datasets,

epiCG-V requires less execution time than Giraph and epiCG-E and the ad-

vantage becomes more significant. For Friendster, epiCG-V runs 1.7x and 1.3x

faster than Giraph and epiCG-E. Figure 4.9(b) and 4.9(c) provide the num-
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ber of sendMsgRequests and that of syncVertexValueRequests over different

datasets, respectively. As we can see, PowerGraph requires more sendMsgRe-

quests and syncVertexValueRequests than epiCG-V over all the datasets. The

number of sendMsgRequests in both Giraph and epiCG-E increases linearly

with the size of the dataset, while epiCG-V requires almost the same number

of sendMsgRequests over all the datasets. We also observe that the number of

syncVertexValueRequests in epiCG-V becomes larger when the size of dataset

increases. More specifically, the number of syncVertexValueRequests in epiCG-

V grows linearly with the size of the dataset. This is because larger datasets

contain more vertices with over θ (i.e., 60) outgoing edges than the smaller

ones.

4.6 Summary

In this chapter, we present our distributed graph processing engine epiCG. We

develop epiCG as one extension of epiC to avoid extra configuration for a new

system. epiCG supports both edge-cut and vertex-cut partitioning methods.

For vertex-cut, we propose a light-weight approach to parallelize the processing

of vertex-cut generation. epiCG also allows automatic failure detection and

recovery. The experiments on real-life datasets illustrate the high efficiency

and scalability of epiCG, compared with two state-of-the-art distributed graph

processing systems, Giraph and PowerGraph.

95





CHAPTER 5

Failure Recovery in epiCG

Distributed graph processing systems increasingly require many compute nodes

to cope with the requirements imposed by contemporary graph-based Big Data

applications. However, increasing the number of compute nodes increases the

chance of node failures. Therefore, provisioning an efficient failure recovery

strategy is critical for distributed graph processing systems. In this chapter, we

propose a novel recovery mechanism for distributed graph processing systems

that parallelizes the recovery process. The key idea is to partition the part

of the graph that is lost during a failure among a subset of the remaining

nodes. To do so, we augment the existing checkpoint-based and log-based

recovery schemes with a partitioning mechanism that is sensitive to the total

computation and communication cost of the recovery process. We implement

our recovery method and conduct extensive experiments in epiCG to validate

the performance of our proposed method.

5.1 Introduction

Graphs capture complex relationships and data dependencies, and are impor-

tant to Big Data applications such as social network analysis, spatio-temporal

analysis and navigation, and consumer analytics. MapReduce was proposed as a

programming model for the Big Data about a decade ago, and since then, many

MapReduce-based distributed systems have been designed for Big Data appli-
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cations such as large-scale data analytics. However, in recent years, MapReduce

has been shown to be ineffective for handling graph data, and several new sys-

tems such as Pregel [59], Giraph [2], GraphLab [36, 57], and Trinity [76] have

been recently proposed for scalable distributed graph processing.

With the explosion in graph size and increasing demand of complex analyt-

ics, graph processing systems have to continuously scale out by increasing the

number of compute nodes, in order to handle the load. But scaling the number

of nodes has two effects on the failure resilience of a system. First, increasing

the number of nodes will inevitably lead to an increase in the number of failed

nodes. Second, after a failure, the progress of the entire system is halted until

the failure is recovered. Thus, a potentially large number of nodes will become

idle just because a small set of nodes have failed. In order to scale out the

performance continuously when the number of nodes increases, it is becoming

crucial to provision the graph processing systems with the ability to handle the

failures effectively.

The design of failure recovery mechanisms in distributed systems is a non-

trivial task, as they have to cope with several adversarial conditions. Node

failures may occur at any time, either during normal job execution, or during

recovery period. The design of a recovery algorithm must be able to handle both

kinds of failures. Furthermore, the recovery algorithm must be very efficient

because the overhead of recovery can degrade system performance significantly.

To a certain extent, due to the long recovery time, failures may occur repeat-

edly before the system recovers from an initial failure. If so, the system will go

into an endless recovery loop without any progress in execution. Finally, the

system must cope with the failures while maintaining the recovery mechanism

transparent to user applications. This implies that the recovery algorithm can

only rely on the computation model of the system, rather than any computation

logic applied for specific applications.

The usual recovery method adopted in current distributed graph process-

ing systems is checkpoint-based [56, 59, 91]. It requires each compute node to

periodically and synchronously write the status of its own subgraph to a stable

storage such as the distributed file system as a checkpoint. Upon any failure,

checkpoint-based recovery employs an unused healthy compute node to replace

each failed node and requires all the compute nodes to load the status of sub-

graphs from the most recent checkpoint and then synchronously re-execute all

98



CHAPTER 5. FAILURE RECOVERY IN EPICG

the missing supersteps. A failure is recovered when all the nodes finish the

computation of the superstep in which the failure occurs. Note that the re-

computation will be replayed again whenever a further failure occurs during

recovery.

Although checkpoint-based recovery is able to handle any node failures, it

potentially suffers from high recovery latency. The reason is two-fold. First,

checkpoint-based recovery replays the missing supersteps for the whole graph,

residing in both failed and healthy compute nodes, based on the most recent

checkpoint. This could incur high computation cost as well as high communi-

cation cost, including loading the whole checkpoint, performing recomputation

and passing the messages among all compute nodes in each missing superstep.

Second, when a further failure occurs during the recovery, the lost computation

caused by the previous failure may have been partially recovered. However,

checkpoint-based recovery will forget about all these partially completed work-

load, rollback every compute node to the latest checkpoint and replay the com-

putation since then. This eliminates the possibility of performing the recovery

progressively.

In this chapter, we propose a new recovery scheme to enable fast failure

recovery. The key idea is to 1) restrict the recovery workload to the subgraphs

residing in the failed nodes using locally logged messages; 2) distribute the

subgraphs residing in the failed nodes among a subset of compute nodes to redo

the lost computation concurrently. In our recovery scheme, in addition to global

checkpointing, we require every compute node to locally log their outgoing

messages at the end of each superstep. Upon a failure, the system first replaces

each failed node with a new one. It then divides the subgraphs residing in the

failed nodes into partitions, referred to as failed partitions, and distributes these

partitions among a subset S of compute nodes. During recovery, every node

in S will hold its original subgraph and load the status of its newly received

partitions from the latest checkpoint. When the system re-executes missing

supersteps, the recomputation is confined to the failed partitions by nodes in S

concurrently, using logged messages from healthy subgraphs and recalculated

ones from failed partitions. To distribute the lost subgraphs effectively, we

propose a computation and communication cost model to quantify the recovery

time, and according to the model, we split the lost subgraphs among a subset

of compute nodes such that the total recovery time is minimized.
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To the best of our knowledge, this is the first parallel recovery mecha-

nism proposed for distributed graph processing. In contrast with traditional

checkpoint-based recovery, our approach eliminates the high recomputation cost

for the subgraphs residing in the healthy nodes due to the fact that failures of-

ten occur among a small fraction of compute nodes. Note that the subgraph in

a healthy node can include both its original subgraph (whose computation is

never lost) and a set of newly received partitions (whose computation is partially

recovered) due to previous failures. Furthermore, we distribute the recompu-

tation tasks for the subgraphs in the failed nodes among multiple compute

nodes to achieve better parallelism. Thus, our approach is not a replacement

for checkpoint-based recovery methods. Instead, it complements them because

it accelerates the recovery process through simultaneous reduction of recovery

communication costs and parallelization of the recovery computations.

Our contributions of this chapter are summarized as follows.

• We formally define failure recovery problem in distributed graph process-

ing systems and introduce a partition-based failure recovery method that

can efficiently handle any node failures, either during normal execution

or during recovery period (Section 5.2 and 5.3).

• We formalize the problem of distributing recomputation tasks for sub-

graphs residing in the failed nodes as a reassignment generation problem:

find a reassignment for failed partitions with minimized recovery time. We

show the problem is NP-hard and propose a cost-sensitive reassignment

algorithm (Section 5.4).

• We implement our proposed parallel recovery method on top of epiCG

(Section 5.5) and conduct extensive experiments on real-life datasets using

both synthetic and real applications. Our experiments show our proposed

recovery method outperforms traditional checkpoint-based recovery by a

factor of 12 to 30 in terms of recovery time, and a factor of 38 in terms of

the network communication cost using 40 compute nodes (Section 5.6).

5.2 Preliminaries

In this section, we provide some background of epiCG, define our problem and

discuss the challenges of failure recovery in epiCG. Table 5.1 lists the symbols
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Table 5.1: Notations used throughout Chapter 5
Symbol Definition

G = (V , E) graph with vertices V and edges E
N compute node
VN vertices that reside in node N
P graph partitions
Nf failed nodes
sf superstep that a failure occurs
F failure
F i i-th cascading failure for F
S state
ϕ vertex to partition mapping
φp partition to node mapping
φr failed partition to node mapping (reassignment)

and their meaning used throughout this chapter.

5.2.1 Background of epiCG

Distributed Graph

The input to epiCG is a directed graph1 G = (V , E), where V and E are the

sets of vertices and edges, respectively. Every vertex in the graph has a unique

vertex identifier. In epiCG, the set of vertices is divided into partitions. A

partition of G is formally denoted by Pi = (Vi, Ei), where Vi ⊆ V and Ei =

{〈vi, vj〉 ∈ E|vi ∈ Vi}. Note that Ei includes all the outgoing edges from

vertices in Vi, which may cross partitions. All the partitions are distributed

among compute nodes, i.e., physical machines.

Let P and N respectively be the set of partitions and the set of compute

nodes. Typically, the number of partitions is larger than that of compute nodes

(i.e., |P| > |N |), to achieve a better load balance. For ease of illustration, we

denote by ϕ, φp two mappings, where (vertex-partition mapping) ϕ : V → P
records every vertex belongs to which partition and (partition-node mapping)

φp : P → N records every partition resides in which compute node. For any

node N ∈ N , we denote by VN the set of vertices residing in N .

Figure 5.1(a) shows a distributed graph G over two nodes N1, N2. G is

1Undirected graphs can be represented as directed graphs where for every edge
〈u, v〉 there is a corresponding edge 〈v, u〉
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Figure 5.1: Distributed graph and partitions

divided into 5 partitions P1-P5, as shown in Figure 5.1(b). We use colors to

differentiate vertices in different partitions.

Computation Model

The computation model in epiCG follows the Bulk Synchronous Parallel (BSP)

model [83]. Typically, the computation consists of an input phase, where a

graph is distributed among the compute nodes, followed by a set of iterations,

called supersteps, separated by global synchronization points, and finally an

output phase. Every vertex carries two states: active and inactive. Initially (at

the beginning of superstep 1), all the vertices are active. A vertex can deactivate

itself by voting to halt. Once a vertex becomes inactive, it has no further

work to do in the following supersteps unless activated by incoming messages

from other vertices. Within each superstep, only active vertices participate in

computation: process messages sent by other vertices in the previous superstep,

update its value or the values of its outgoing edges and send messages to other

vertices (to be processed in the next superstep). This kind of computation

logic is expressed by a user-defined function. All the active vertices in the same

compute node execute the function sequentially, while the execution in each

compute node is performed in parallel with other nodes. After all the active

vertices finish their computation in a superstep, a global synchronization point

is reached.

Basic architecture. epiCG follows a master/slave architecture. The master is
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responsible for coordinating the slaves, but is not assigned any graph partitions.

The slaves are in charge of performing computation over its assigned partitions

in each superstep.

5.2.2 Failure Recovery in epiCG

Checkpointing Scheme

We consider synchronous checkpointing to be performed every C(∈ N+) super-

steps. At the beginning of superstep iC + 1(i ∈ N+), we flush the complete

graph status into reliable storage such as distributed file system, including graph

structure, vertex values, vertex status(active/inactive), edge values, incoming

messages received in the previous superstep, and other auxiliary application-

specific information. The saved status is called a checkpoint. In short, a check-

point made in superstep iC + 1 records the graph status after the completion

of superstep iC. We assume that no failures occur during checkpointing.

Problem Statement

We consider a graph job that is executed on a set N of compute nodes from

superstep 1 to smax. A compute node may fail at any time during the normal

job execution. Let F (Nf , sf) denote a failure that occurs on a set Nf(⊆ N )

of compute nodes when the job performs normal execution in superstep sf(∈
[1, smax]). We associate with F two states SF and S∗F , which record the statuses

of vertices before and after the recovery for F , respectively.

Definition 5.1 (State). The state S is a function: V → N+ recording the latest

superstep in which the computation is completed by each vertex at certain time.

After F is detected, all the vertices residing in the failed nodes are lost and

their latest statuses are stored in the latest checkpoint. The recovery for F is

initiated after all the healthy nodes finish their execution in superstep sf . Let

c+ 1 be the superstep when the latest checkpoint is made. We have:

SF (v) =

c v ∈
⋃
N∈Nf

VN
sf Otherwise

(5.1)
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In general, the recovery for F is to re-execute the computation from the latest

checkpointing superstep to superstep sf . Hence, we have:

S∗F (v) = sf , ∀v ∈ V (5.2)

We now formalize failure recovery problem as follows.

Definition 5.2 (Failure recovery). Given F (Nf , sf), the recovery for F is to

transform the statuses of all the vertices from SF to S∗F .

Example 5.1:[Running example] Consider graph G distributed over com-

pute nodes N1, N2 in Figure 5.1(a) and failure F ({N1}, 12), i.e., N1 fails during

the normal execution of superstep 12. Assume that every vertex is active and

sends messages to all its neighbors in normal execution of each superstep, and

the latest checkpoint was made in the beginning of superstep 11. SF and S∗F
are the following.

• ∀v ∈ {A,B,C,D,E, F}, SF (v) = 10 and S∗F (v) = 12;

• ∀v ∈ {G,H, I, J}, SF (v) = 12 and S∗F (v) = 12;

The recovery for F is to transform the status of each vertex to the one

achieved after the completion of superstep 12. 2

Challenging Issues

Consider a failure F (Nf , sf) that occurs during normal execution of a graph

job. During the recovery for F , compute nodes may fail at any time. More

specifically, multiple failures may occur sequentially before the system achieves

state S∗F . We refer to these failures the cascading failures for F .

Definition 5.3 (Cascading failure). Given F (Nf , sf), a cascading failure for F

is a failure that occurs during the recovery for F , i.e., after F occurs but before

F is recovered.

Let F be a sequence of all the cascading failures for F . We denote by F i the

i-th cascading failure in F.

Challenge 1. The key challenge of recovering F is to handle cascading failures

for F . To the best of our knowledge, we are not aware of any previous works

that provide details on how to handle cascading failures in distributed graph

processing systems.
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Our goal is to speed up recovery process for F . Informally, the time of

recovering F is contributed by three main tasks:

• re-execute computation such that the status of every vertex is updated to the

one achieved after the completion of superstep sf .

• forward inter-node messages during recomputation.

• recover cascading failures for F .

A naive recovery method re-runs the job from the first superstep upon the

occurrence of each failure. Obviously, such an approach incurs long recovery

time as the execution of every superstep can be costly in many real-world

graph jobs. In the worst case, the failure occurs during the execution of the

final superstep and the system needs to redo all the supersteps. Furthermore,

it is more likely that a cascading failure will occur as the recovery time becomes

longer.

Challenge 2. Given a failure F , our objective is to recover F with minimized

the recovery time, i.e., the time span between the start and the completion of

recovering F .

In what follows, we first describe how locally logged messages can be utilized

for failure recovery, which is the basis of our recovery algorithm, and then

discuss its limitations.

Utilizing Locally Logged Messages

Besides checkpoints, we require every compute node to log its outgoing messages

at the end of each superstep. The logged messages are used to reduce recovery

workload. Consider a failure F (Nf , sf). Following checkpoint-based recovery

method, for any failed node N ∈ Nf , we employ a new available node to replace

N and assign partitions in N to it. We require all the replacements to load

the status of received partitions from the latest checkpoint, and all the healthy

nodes hold their original computed partitions. In superstep i ∈ [c+1, sf ] during

recovery, only the replacements perform computation for the vertices in failed

partitions, while every healthy node forwards locally logged messages to the

vertices in failed partitions without any recomputation. For i ∈ [c+ 1, sf), the

vertices in failed partitions forward messages to each other, but for i = sf , they
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send messages to those in healthy nodes as well.

Example 5.2: Continue with Example 5.1. To recover F ({N1}, 12), we first

employ a new node to replace N1 and then re-execute superstep 11, 12. We

refer to the new node by N1. N1 loads the statuses of P1, P2, P3 from the

latest checkpoint. During recovery, only N1 performs computation for 6 vertices

A-F in two supersteps, while the recomputation for vertices G-J is avoided.

Superstep 11 incurs 5 logged inter-node messages G → B, G → D, H → D,

H → E, H → F . Superstep 12 incurs 6 inter-node messages: the above five

logged ones plus a recalculated one D → G. 2

Utilizing locally logged messages helps to confine recovery workload to the

failed partitions (in terms of both recomputation and message passing), thus

reducing recovery time. Moreover, the overhead of locally logging is negligible

in many graph applications as the execution time is dominated by computation

and network message passing (see details in Section 5.6). However, the recom-

putation for the failed partitions is shared among the nodes that replace the

failed ones and this achieves limited parallelism as the computation in one node

can only be executed sequentially. This inspires us to reassign failed partitions

to multiple nodes to achieve parallelism of recomputation.

5.3 Partition-based Recovery

We propose a partition-based method to solve the failure recovery problem.

Upon a failure, the recovery process is initiated by the recovery executor. Fig-

ure 5.2 shows the workflow of our partition-based failure recovery executor.

Let c + 1 be the latest checkpointing superstep for the failure. The recovery

executor is responsible for the following three tasks.

• Generating partition-based recovery plan. The input to this task in-

cludes the state before recovery starts and the statistics stored in reliable stor-

age, e.g., HDFS. We collect statistics during checkpointing, including:

(1) computation cost of each partition in superstep c.

(2) partition-node mapping φp in superstep c.

(3) for any two partitions in the same node, the size of messages forwarded

from one to another in superstep c.

(4) for each partition, the size of messages from an outside node (where the
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Figure 5.2: Failure recovery executor

partition does not reside) to the partition in superstep c.

The statistics require a storage cost of O(|P| + |P||N | + |P|2), which is much

lower than that of a checkpoint.

The output recovery plan is represented by a reassignment for failed parti-

tions, which is formally defined as follows.

Definition 5.4 (Reassignment). For any failure, let Pf be the set of partitions

residing in the failed nodes. The reassignment for the failure is a function φr:

Pf → N .

Figure 5.3(a) shows a reassignment for F ({N1}, 12) in Example 5.1. We assign

P1 to N1 (the replacement) and P2, P3 to N2.

• Recomputing failed partitions. This task is to inform every compute

node of the recovery plan φr. Each node N checks φr to see whether a failed

partition is assigned to it. If so, N loads the partition status from the latest

checkpoint. The status of a partition includes (1) the vertices in the partition

and their outgoing edges; (2) values of the vertices in the partition achieved

after the completion of superstep c; (3) the status (i.e., active or inactive) of

every vertex in the partition in superstep c + 1; (4) messages received by the

vertices in the partition in superstep c (to be processed in superstep c + 1).

Every node then starts recomputation for failed partitions. The details are

provided in Section 5.3.1.

• Exchanging graph partitions. This task is to re-balance the workload

among all the compute nodes after the recomputation of the failed partitions
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Figure 5.3: Recovery for F ({N1}, 12)

completes. If the replacements have different configurations than the failed

ones, we allow a new partition assignment (that is different from the one before

failure occurs) to be employed for a better load balance, following which, the

nodes might exchange partitions among each other.

5.3.1 Recomputing Failed Partitions

Consider a failure F (Nf , sf) that occurs during normal execution. The recom-

putation for the failed partitions starts from the most recent checkpointing

superstep c+1. After all the compute nodes finish superstep j, they proceed to

superstep j + 1 synchronously. The goal of recovery is to achieve state S∗F (see

Equation 5.2). Therefore, the recomputation terminates when all the compute

nodes complete superstep sf .

Algorithm 6 provides recomputation details in a superstep during recovery.

Consider a node N . In superstep i (∈ [c + 1, sf ]), N maintains a list M of

messages that will be sent by vertices residing in N in the current superstep.

Initially, M contains all the locally logged outgoing messages for superstep i

if any (line 1). N then iterates through all the active vertices residing in it

and for each active vertex, N executes its computation and appends all the

messages sent by this vertex to M if the vertex value has not been updated to

the one achieved in the end of superstep i (line 2-5). After that, N iterates

over messages in M . A message m in M is forwarded if m is needed by its

destination vertex to perform recomputation in the next superstep (line 6-9).
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Algorithm 6: Recomputation

Input: S, the state when failure occurs
i, current superstep
N , a compute node

1 M ←logged outgoing messages in superstep i;
2 for v ∈ VN do
3 for v.Active= True and S(v) < i do
4 Perform computation for v;
5 M ←M ∪ v.Sendmsgs;

6 for m ∈M do
7 vs ← m.Getsrc(); vd ← m.Getdst();
8 if S(vd) < i or (S(vs) < i ∧ S(vd) = i) then
9 Send m to vd;

10 Flush M into local storage;

Finally, N flushes M into its local storage (line 10), which will be used in case

there are further cascading failures.

Example 5.3: Figure 5.3(b) illustrates recomputation for F ({N1}, 12), given

φr in Figure 5.3(a). We use directed edges to represent the forwarding messages.

In superstep 11, N1 and N2 respectively perform 2 and 4 vertex computations

for A-F ; 2 inter-node messages D → B, G→ B are forwarded. N2 retrieves 4

logged messages sent by G in normal execution of superstep 11 but only re-sends

messages to B,D because H, I belongs to healthy partition P4. Further, N1, N2

will log 5 messages sent by A-F locally as they have not yet been included in

the log. Superstep 12 performs similarly, except for an additional message

D → G. Compared with the approach in Example 5.2, our algorithm achieves

more parallelized recomputation and incurs less network communication cost.

2

Note that the messages received by the vertex during recomputation might

have a different order compared with those received during normal execution.

Therefore, the correctness of our recomputation logic implicitly requires the

vertex computation is insensitive to message order. That is, given messages

with an arbitrary order, the effect of a vertex computation (new vertex value

and its sending messages) remains the same. This requirement is realistic since

a large range of graph applications are implemented in a message-ordering in-
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dependent manner. While we are not aware of any graph algorithms that are

nondeterministic with respect to the message order, our recovery method can

be extended easily to support such algorithms if there is any. Specifically, we

can assign a unique identifier to each message. Recall that all the messages to

be processed in a superstep must be completely collected by graph processing

engine before any vertex computation starts. In each superstep (either during

normal execution or recovery), for every active vertex v, we can sort all these

messages received by v based on their identifiers, before initiating the computa-

tion. The sorting ensures the messages for a vertex computation during normal

execution follow the same order as those for recomputation during recovery.

5.3.2 Handling Cascading Failures

We now consider cascading failures for F (Nf , sf), which occur before F is re-

covered. A useful property of our partition-based recovery algorithm is that for

any failure, the behavior of every compute node only relies on the reassignment

for the failure and the state after the failure occurs. That is, in our design,

given the reassignment and state for the failure, the behavior of every node is

independent of what the failure is. The failure can be F itself or any of its

cascading failures. Therefore, whenever a cascading failure for F occurs, the

currently executing recovery program is terminated and the recovery executor

can start a new recovery program for the new failure using the same recovery

algorithm.

In practice, the occurrence of failures is not very frequent and hence we

expect at least one recovery program to complete successfully. F is recovered

when a recovery program exits normally. That is, all the vertices complete

superstep sf and S∗F is achieved. Further, due to cascading failures, a compute

node may receive new partitions during the execution of each recovery program.

After recomputation finishes, nodes may exchange partitions to re-balance the

workload. The following example illustrates how our recovery algorithm is used

to handle cascading failures.

Example 5.4: We start with a recovery program for F ({N1}, 12) in Exam-

ple 5.3. Suppose a cascading failure F 1 occurs in N2 when the program is

executing in superstep 12. Vertices C-J residing in N2 are lost due to F 1, while

A,B in healthy node N1 are recovered. Hence, the state SF 1 after F 1 occurs
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Figure 5.4: Recomputation for cascading failure F 1

satisfying: SF 1(A) = SF 1(B) = 12 and SF 1(v) = 10 for v = C-J . A new recov-

ery program is initiated for F 1. Suppose the reassignment for F 1 assigns P2, P3

to N1 and P4, P5 to N2 (replacement). N1, N2 load the statuses of newly as-

signed partitions from the latest checkpoint and start recomputation as shown

in Figure 5.4.

Since SF 1(A) = SF 1(B) = 12, we only perform recomputation for vertices

C-J in newly failed partitions P2-P5 when re-executing superstep 11, 12. In

superstep 11, C-J forward messages to each other. In superstep 12, these

vertice sends messages to A,B as well. Suppose there is no further cascading

failure after F 1. The recovery for F is accomplished upon the completion of

the new recovery program triggered by F 1. 2

Example 5.4 considers cascading failures that occur during recomputation.

In practice, failures may occur at any time. If a failure occurs during the period

of generating recovery plan for the previous failure, we treat both failures as

one bigger failure and the union of their failed nodes as the failed node set. If

a failure occurs during exchanging phase, we treat it as the one that occurs in

superstep sf . Our recovery approach can be applied to both cases.

Without loss of generality, in the rest of this chapter, we only consider

cascading failures that occur in a recomputation phase.

5.3.3 Correctness and Completeness

We first focus on the correctness of our recovery method.
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Definition 5.5 (Correctness). Let Value(v, i) and Msg(v, i) denote the value

and the set of received messages for vertex v in the end of superstep i during

normal execution, respectively. A recovery algorithm is correct if for any fail-

ure F (Nf , sf), after the recovery algorithm finishes, the value of every vertex

v equals to Value(v, sf) and the set of messages receieved by v equals to

Msg(v, sf).

The above definition is under the assumption that the vertex computation is

deterministic with respect to message ordering, which is the case in real-world

graph applications.

The correctness of our recovery algorithm is based on two properties of

Algorithm 6.

Lemma 5.1. Algorithm 6 has the following properties:

1. a vertex performs computation in superstep j iff the vertex status has not

been updated to the one achieved in the end of superstep j during normal

execution, ∀j ∈ [c+ 1, sf ].

2. vertex v sends messages to u in superstep j iff u will perform computation

in superstep j + 1, ∀j ∈ [c+ 1, sf ].

Lemma 5.1 holds for the recovery program triggered by any failure. In

essence, Lemma 5.1 guarantees: i) the input (vertex value and received mes-

sages) of a vertex computation in any superstep during recomputation is exactly

the same as that during normal execution; ii) for failure F (Nf , sf), when our

recovery algorithm finishes successfully, each vertex completes superstep sf and

receives the same set of messages as it does in the end of superstep sf during

normal execution. These properties ensure the correctness of our approach.

Furthermore, our recovery algorithm is complete in that the recovery logic

is independent of high-level applications. That is, any node failure can be

correctly recovered using our algorithm.

Theorem 5.1. Our partition-based recovery algorithm is correct and complete.

5.4 Reassignment Generation

In this section, we present how to generate reassignment for any failure. Con-

sider a failure F (Nf , sf). The reassignment for F is critical to the overall recov-
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ery performance, i.e., the time span of recovery. In particular, it decides the

computation and communication cost during recomputation. Our objective is

to find a reassignment that minimizes the recovery time, denoted by Γ(F ).

Given the reassignment for F , the calculation of Γ(F ) is complicated by the

fact that Γ(F ) depends not only on the reassignment for F , but also on the

cascading failures for F and the corresponding reassignments. However, the

knowledge of cascading failures can hardly be obtained beforehand since F and

its cascading failures do not arrive as a batch but come sequentially. Hence, we

seek an online reassignment generation algorithm that can react in response to

any failure, without knowledge of future failures.

Our main insight is that when a failure (either F or its cascading failure)

occurs, we prefer a reassignment that can benefit the remaining recovery pro-

cess for F by taking into account all the cascading failures that have already

occurred. More specifically, we collect the state S after the failure occurs and

measure the minimum time Tlow required to transform from S to S∗F , i.e., the

time of performing recomputation from superstep c + 1 to sf without further

cascading failures. We then aim to produce a reassignment that minimizes

Tlow. Essentially, S encapsulates all the useful information about previous fail-

ures and the corresponding reassignments performed, and Tlow provides a lower

bound of remaining recovery time for F . In what follows, we introduce how to

compute Tlow and then provide our cost-driven reassignment algorithm.

5.4.1 Estimation of Tlow

For any failure, Tlow is determined by the total amount of computation cost and

network communication cost required during recomputation, which is formally

defined as follows.

Tlow =

sf∑
i=c+1

(Tp [i] + Tm [i]) (5.3)

where Tp [i] and Tm [i] denote the time for vertex computation and that for

inter-node message passing required in superstep i during recomputation, re-

spectively.

Equation 5.3 ignores the downtime period for replacing failed nodes and

synchronization time because they are almost invariant w.r.t. the recovery

methods discussed in this chapter. We also assume the cost of intra-node mes-
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sage passing is negligible compared with network communication cost incurred

by inter-node messages.

We now focus on how to compute Tp [i] and Tm [i] in Equation 5.3. Let

Si and φpi denote the state and the partition-node mapping in the beginning

of superstep i (during recomputation), respectively. We find that Tp [i] and

Tm [i] can be computed based on Si and φpi. Therefore, we first describe how

to compute Si, φpi, and then define Tp [i] and Tm [i] based on Si, φpi.

Compute Si, φpi. For i = c+ 1, Sc+1 is the state right after the failure (either

F or its cascading failure) occurs. Let ϕ be the vertex-partition mapping, φr

be the reassignment for the failure, and Pf be the set of failed partitions. We

have:

φpc+1(v) =

φr(v) If ϕ(v) ∈ Pf

φp(v) Otherwise
(5.4)

For any i ∈ (c+ 1, sf ], we have:

φpi = φpc+1, Si(v) =

Sc+1(v) If Sc+1(v) ≥ i

i− 1 Otherwise
(5.5)

Compute Tp [i] ,Tm [i]. We now formally define Tp [i] and Tm [i].

According to the computation model in Section 5.2.1, computation time

required in a superstep is determined by the slowest node, i.e., maximum com-

putation time among all the nodes. Let A(i) be the set of vertices that perform

computation during re-execution of superstep i. Let τ(v, i) denote the compu-

tation time of v in the normal execution of superstep i, ϕ be the vertex-partition

mapping.

Tp [i] = max
N∈N

∑
τ(v,i)

{v ∈ A(i) | φpi(ϕ(v)) = N} (5.6)

Due to simplicity, we assume computations for vertices in one node are per-

formed sequentially. A more accurate estimation for Tp [i] can be applied if

the computation within a node can be parallelized using machines with multi-

threaded and multicore CPUs.

To compute Tm [i], we adopt the Hockney’s model [44], which estimates

network communication time by the total size of inter-node messages divided

by network bandwidth. Let M(i) be the set of messages forwarded when re-
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executing superstep i. Let m.u, m.v and µ(m) be the source vertex, destination

vertex and size of message m, respectively. Suppose the network bandwidth is

B.

Tm [i] =
∑

µ(m)/B

{m ∈M(i) | φpi(ϕ(m.u))) 6= φpi(ϕ(m.v))} (5.7)

Note that A(i), τ(v, i),M(i) and µ(m) in Equation 5.6 and 5.7 can only be

obtained during the runtime execution of the application. A perfect knowledge

of these values requires a detailed bookkeeping of graph status in every super-

step, which incurs high maintainence cost. Therefore, we refer to the statistics

(See Section 5.3) for approximation. Specifically, we can learn from Si, φpi

whether a partition will perform computation and forward messages to another

partition during the re-execution of superstep i, and based on the statistics, we

know the computation cost and communication cost among these partitions in

superstep c. We then approximate the costs in superstep i by those in superstep

c.

Example 5.5: Consider F ({N1}, 12) in Example 5.2 and φr in Figure 5.5(a).

Let c1 and c2 be the time for each vertex computation and that for sending an

inter-node message, respectively. To compute Tlow under φr, we calculate the

re-execution time of superstep 11, 12 without further cascading failures. In both

supersteps, computation time is 4c1 caused by P1, P2 in N1. Communication

time in superstep 11 is 5c2 caused by 5 inter-node messages: 1 from P2 to P1,

4 from P4 to P2, P3, and that in superstep 12 is 6c2 following the 6 cross-node

edges. Hence, Tlow under φr is 8c1 + 11c2. 2

Theorem 5.2. Given a failure, finding a reassignment φr for it that minimizes

Tlow in Equation 5.3 is NP-hard.

Theorem 5.2 can be proven by reducing the graph partitioning problem to

the problem of finding reassignment with minimized Tlow.

5.4.2 Cost-Sensitive Reassignment Algorithm

Due to the hardness result in Theorem 5.2, we develop a cost-sensitive reas-

signment algorithm. Before presenting our algorithm, we shall highlight the

differences between our problem and traditional graph partitioning problem.

First and foremost, traditional graph partitioning problem focuses on parti-
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Algorithm 7: CostSensitiveReassign

Input : S, state after the failure occurs
Pf , the set of failed partitions
I, statistics
N , a set of compute nodes

Output: φr: reassignment
1 φr ←RandomAssign(Pf ,N);
2 Tlow ←ComputeCost(φr, S, I);
3 while true do
4 φr

′ ← φr; P ← Pf ; i← 0;
5 while P 6= ∅ do
6 i← i+ 1;
7 Li ←NextChange(φr

′,P , S, I);
8 foreach P ∈ Li.φ.Keys() do
9 φr

′(P )← Li.φ(P );
10 P ← P − {P};

11 l← arg mini Li.T ime;
12 if Ll.T ime < Tlow then
13 for j = 1 to l do
14 foreach P ∈ Lj.φ.Keys() do
15 φr(P )← Lj.φ(P );

16 Tlow ← Ll.T ime;
17 else
18 break;

tioning a static graph into k components with the objective of minimizing the

number of cross-component edges. In our case, we try to minimize the remain-

ing recovery time Tlow. Tlow is independent of the original graph structure but

relies on the vertex states and message-passing during the execution period.

Second, graph partitioning outputs k components where k is predefined. On

the contrary, our reassignment is required to dynamically allocate the failed

partitions among the healthy nodes without the knowledge of k. Further, be-

sides the partitioning, we must know the node to which a failed partition will

be reassigned. Third, traditional partitioning always requires k components to

have roughly equal size, while we allow imbalanced reassignment, i.e., assign

more partitions to one node but fewer to another, if a smaller value of Tlow can

be achieved.
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Algorithm 8: NextChange

Input : φr, reassignment
P , a set of partitions
I, statistics
N , a set of compute nodes

Output: L: exchange
1 φ← ∅; Li.T ime← +∞;
2 foreach P ∈ P do
3 foreach P ′ ∈ P − {P} do
4 φr

′ ← φr;
5 Swap φr

′(P ) and φr
′(P ′);

6 t′ ←ComputeCost(φr
′, S, I);

7 if Li.T ime > t′ then
8 Li.φ← {(P, φr(P

′)), (P ′, φr(P ))};
9 Li.T ime← t′;

10 foreach N ∈ N − {φr(P )} do
11 φr

′ ← φr; φr
′(P )← N ;

12 t′ ←ComputeCost(φr
′, S, I);

13 if Li.T ime > t′ then
14 Li.φ← {(P,N)};
15 Li.T ime← t′;

Algorithm 7 outlines our reassignment algorithm. We first generate a reas-

signment φr by randomly assigning partitions in Pf among compute nodes N ,

and calculates Tlow under φr (line 1-2). We then make a copy of φr as φr
′ and

improve φr
′ iteratively (line 3-18). In i-th iteration, the algorithm chooses some

partitions and modifies their reassignments (line 7-9). The modification infor-

mation is stored in Li. Li is in the form of (φ, T ime), where φ is a partition-node

mapping recording which partition is modified to be reassigned to which node,

and Time is Tlow under the modified reassignment. The selected partitions are

removed for further consideration (line 10). The iteration terminates when no

more failed partitions left. After that, we check list L and find l such that

Ll.T ime is minimal (line 11), i.e.,

l← arg min
i
Li.T ime

If Ll.T ime is smaller than Tlow achieved by the initial reassignment φr, we
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update φr by sequentially applying all the modifications in L1, · · · ,Ll (line

12-16), and start another pass of iterations. Otherwise, we return φr as the

result.

Algorithm 8 describes how to generate modification Li (line 7 in Algo-

rithm 7) in i-th iteration. We focus on two types of modifications: i) exchang-

ing the reassignments between two partitions; ii) changing the reassignment for

one partition. Given a reassignment φr, NextChange iterates over all the

partitions (line 2) and for each partition P , it enumerates all the possibility

of modifications, i.e., exchanging the reassignment of P with another partition

(line 3-9) as well as assigning P to another node instead of φr(P ) (line 10-15).

NextChange computes the corresponding Tlow achieved by each modification

and chooses the one with minimized value of Tlow as the modification Li.

Example 5.6: Continuing from Example 5.5, suppose c1
c2

= 1.1. Figure 5.5(a)

shows the initial reassignment with Tlow = 8c1 + 11c2. Figure 5.5(a) provides

enumerated modifications and their Tlow in the first pass. In iteration 1, as-

signing P2 to N2 achieves minimum Tlow: 8c1 + 6c2. In iteration 2, we only

consider modifications for P1, P3 as P1 has been considered. Exchanging reas-

signments for P1, P3 produces Tlow of 8c1 + 4c2. After that, all the partitions

have been considered. We apply the first two modifications to initial the reas-

signment because the minimal Tlow (i.e., 8c1 + 4c2) is achieved after the second

modification.

Figure 5.5(c) shows enumerated modifications and their Tlow in pass 2. The

minimal Tlow (i.e., 12c1) in three iterations is achieved after the first modi-

fication, which is larger than 8c1 + 4c2. Hence, the algorithm terminates and

reports the reassignment produced by pass 1, i.e., assigning P1 to N1 and P2, P3

to N2. 2

5.5 Implementation

We implement our partition-based failure recovery method on top of epiCG. It

is worth mentioning that our proposed recovery method can be integrated to

other distributed graph processing platforms such as Giraph [2] and Hama [5],

in a similar way.
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Figure 5.5: Example of modifications

5.5.1 A Brief Review of epiCG

epiCG distributes a graph processing job to a set of workers. One worker is

selected as the master that coordinates the other slave workers, which perform

vertex computations. One of the slaves acts as zookeeper to maintain various

statuses shared among the master and slaves, e.g., notifying slaves of partitions

assigned by the master, doing synchronization after accomplishing a superstep.

Figure 5.6 shows the processing logic of workers in one superstep. Initially, the

master generates partition assignment indicating which partition is processed by

which slave, and writes the partition-to-slave mapping into zookeeper. Slaves

fetch the mapping from zookeeper and exchange partitions along with their

receiving messages based on the mapping. They then check whether the current

superstep is a checkpointing superstep. If so, each slave saves the status of its

partitions to a stable storage. After that, every slave performs computation

for the vertices residing in it, sends messages and collects messages sent to its
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Figure 5.6: Processing a superstep in epiCG

vertices. Finally, the master synchronizes the completion of the superstep.

Failure Recovery

Node failures are detected by the master at the end of each superstep, before

synchronization. The master checks the healthy status registered periodically

by every slave and considers a slave as failed if it has not registered its status

over a specified interval. The default recovery mechanism adopted by epiCG

is checkpoint-based recovery. We refer to the first superstep performed upon a

failure as restart superstep. In the restart superstep, after the master generates

the recovery plan and writes it to the zookeeper, slaves will load failed partitions

that are assigned to them from the latest checkpoint and start recomputation.

Recovery details are omitted to avoid redundancy.

5.5.2 Major APIs

To support partition-based failure recovery, we introduce several APIs to epiCG,

as shown in Figure 5.7. We utilize PartitionOwner class to maintain the

ownership of each partition. setRestartSuperstep() sets the next super-

step when a partition needs to perform computation; setWorkerInfo() and

setPreviousWorkerInfo() set information (e.g., IP address) for current and

previous slaves in which a partition resides, respectively. To shuffle a parti-

tion from slave 1 to slave 2, we can simply set the previous, current work-

ers to salve 1 and 2, respectively; the workers can retrieve these information

via the three interfaces: getRestartSuperstep(), getPreviousWorkerInfo()

and getWorkerInfo(). In order to generate the ownership of every partition,

we introduce a new class FailureMasterPartitioner. This class will be ini-

tialized in the beginning of each superstep. It contains two important func-
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PartitionOwner() //metadata about ownership of a partition

void setRestartSuperstep(long superstep)

long getRestartSuperstep()

void setPreviousWorkerInfo(WorkerInfo workerInfo)

void getPreviousWorkerInfo()

void setWorkerInfo(WorkerInfo workerInfo)

void getWorkerInfo(WorkerInfo workerInfo)

FailureMasterPartitioner<I,V,E,M> //generate partition assignment

Collection<PartitionOwner> createInitialPartitionOwners

(Collection<WorkerInfo>, int max) //for restart

Collection<PartitionOwner> genChangedPartitionOwners

(Collection<PartitionStats>, Collection<WorkerInfo>, 

int max, long superstep)

FailureMasterPartitioning //generate reassignment for failed partitions

void doCostSensitivePartitioning();

Figure 5.7: Major APIs

tions: createInitialPartitionOwners() generates reassignment for newly

failed partitions and retains original ownership for the healthy ones; another is

genChangedPartitionOwners() which is applied to exchange failed partitions

after recovery accomplishes.

5.5.3 Implementation Details in epiCG

As an illustration, we consider a failure (can be a cascading failure) that occurs

in executing superstep sf and latest checkpointing superstep is c+ 1. We extend

epiCG mainly in the following three aspects.

Partition Assignment

This is performed by master in the beginning of each superstep.

1. During superstep 1 or the restart superstep, the master always invokes

createInitialPartitionOwners() to generate partition assginment and

set current worker for each partition accordingly. In superstep 1, we set

the previous worker for a partition to be the same as its current worker and

the restart superstep for each partition to 1. In the restart superstep, we

set previous worker for each partition to be the one before failure occurs.

For newly failed partitions, we set c+ 1 as their restart supersteps; for
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the other partitions, their restart supersteps are set to be one after the

last superstep in which their computation are performed.

2. In the other supersteps, genChangedPartitionOwners() is invoked by

the master to dynamically reassign partitions among the slaves. This is

achieved by setting the previous worker of a partition as its current one

and modifying its current worker to the new one.

Loading Partitions

After the master computes the partition assignment, it writes the partition-to-

slave mapping to the zookeeper. Since all slaves are listening to the changes

of this mapping information, every slave can fetch and parse this mapping

and then load the corresponding failed partitions from the latest checkpoint if

necessary. Note that in the checkpoint, partitions residing in the same slave

are stored in the same file named with the slave host name, and within each

file, there is a pointer to indicate which offset a partition starts. In this way, a

slave can quickly load a partition using this implicit two-level index.

Performing Computation

For recomputation, every slave invokes the function processGraphPartitions()

to execute vertex compute function, and invokes sendMessageRequest() to

forward messages. During recovery, we adjust these two functions so that un-

necessary computation and communication can be avoided, as follows.

1. processGraphPartitions() iterates over the partitions and check whether

PartitionOwner.getRestartSuperstep() is less than the current super-

step. If so, the slave loops over all the vertices residing in the partition

and perform computation by invoking Vertex.Compute();

2. During the computation from superstep c + 1 to sf − 1, a message is

omitted if it is sent to a vertex residing in the partition whose restart

superstep is less than the current superstep;

3. At end of each superstep, every slave loads its locally logged messages.

For supersteps in [c + 1, sf − 1], only messages to the partitions whose

restart supersteps less than the current superstep are forwarded. For

122



CHAPTER 5. FAILURE RECOVERY IN EPICG

superstep sf , all the messages are sent via sendMessageRequest() to the

corresponding slaves.

5.6 Experimental Evaluation

We compare our partition-based recovery method with checkpoint-based method

on top of epiCG graph processing engine.

5.6.1 Experiment Setup

The experimental study was conducted on our in-house cluster. The cluster

consists of 72 compute nodes, each of which is equipped with one Intel X3430

2.4GHz processor, 8GB of memory, two 500GB SATA hard disks and gigabit

ethernet. On each compute node, we installed CentOS 5.5 operating system,

Java 1.6.0 with a 64-bit server VM and Hadoop 0.20.203.02. All the nodes are

connected via three high-speed switches. We also made the following changes

to the default epiCG configurations: (1) the size of virtual memory for each

task was set to 4GB; (2) each node was configured to run one GraphUnit. By

default, we chose 42 nodes out of the 72 nodes for the experiments and among

them, one node acted as the master and zookeeper while the other 41 nodes

behaved as slaves.

5.6.2 Benchmark Tasks and Datasets

We study the failure recovery over three benchmark tasks: k-means, semi-

clustering [59] and PageRank.

• k-means3. We implement k-means in epiCG. In our experiments, we set

k = 100.

• Semi-clustering. A semi-cluster in a social graph consists of a group of

people who interact frequently with each other and less frequently with

others. We port the implementation in Hama [5] into epiCG. We use the

same parameter values as in Hama, i.e., each cluster contains at most 100

2http://hadoop.apache.org/
3We does not show results for k-means in Chapter 4 as k-means does not produce messages

during computation and hence is not a typical graph analytics query
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Table 5.2: Dataset description
Dataset Data Size #Vertices #Edges #Partitions
Forest 2.7G 58,101,200 0 160
LiveJournal 1.0G 3,997,962 34,681,189 160
Friendster 31.16G 65,608,366 1,806,067,135 160

vertices, a vertex is involved in at most 10 clusters, and the boundary

edge score factor is set to 0.2.

• PageRank. PageRank algorithm is an iterative graph processing algo-

rithm. We refer the readers to the original paper [68] for more details.

Without loss of generality, we run all the tasks for 20 supersteps, and perform

a checkpoint at the beginning of superstep 11. For all experiments, the results

are averaged over ten runs.

We evaluate benchmark tasks over one vector dataset and two real-life social

network graphs (Table 5.2 provides dataset details and the two graph datasets

are downloaded from the website4).

• Forest. Forest dataset5 predicts forest cover type from cartographic vari-

ables. It originally contains 580K objects, each of which is associated with

10 integer attributes. To evaluate the performance on large datasets, we

increase the size of Forest to 58,101,200 while maintaining the same dis-

tribution of values over each dimension using the data generator from

[58, 87]. We use this dataset to evaluate the execution of k-means tasks.

• LiveJournal. LiveJournal is an online social networking and journaling

service that enables users to post blogs, journals, and dairies. It contains

more than 4 million vertices (users) and about 70 million directed edges

(friendships between users). We use this dataset to evaluate the execution

of semi-clustering tasks.

• Friendster. Friendster is an online social networking and gaming service.

It contains more than 60 millions vertices and 1 billion edges. We use it

to evaluate the execution of PageRank tasks.

4http://snap.stanford.edu/data/index.html
5http://archive.ics.uci.edu/ml/datasets/Covertype
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Figure 5.8: k-means results

We compare our proposed partition-based recovery method (PBR) with the

checkpoint-based recovery method (CBR) over two metrics: recovery time and

communication cost.

5.6.3 k-means

We first study the overhead of logging outgoing messages at the end of each

superstep in PBR. Figure 5.8(a) shows the running time. PBR takes almost

the same time as CBR. The reason is that in k-means tasks, there does not

exist any outgoing messages among different vertices, and in this case, PBR

performs exactly the same as CBR during normal execution. Another inter-

esting observation is that the checkpointing superstep 10 does not incur higher

running time compared with other supersteps. This is because compared with

computing the new belonging cluster for each observation, the time of doing

checkpointing is negligible.
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We then evaluate the performance of recovery methods for single node fail-

ures by varying the failed superstep from 11 to 19. Figure 5.8(b) plots the

results. The recovery time of both CBR and PBR increases linearly when the

failed superstep varies. Since there are no messages passing among different

workers, computing the new belonging clusters for failed partitions can be ac-

celerated by using all available workers, i.e., recomputation is parallelized over

40 workers for recovery. We find that PBR outperforms CBR by a factor of

12.4 to 25.7 and there is an obvious gain when the failed superstep increases.

The speedup is less than 40x due to the overhead of loading the checkpoint in

the beginning of a recovery.

Next, we investigate the performance of recovery methods for multiple node

failures. The number of failed nodes is varied from 1 to 5 and the failed su-

perstep is set to 15. Figure 5.8(c) plots the results. When the number of

failed nodes increases, the recovery time increases linearly for PBR while that

remains constant for CBR. No matter how many nodes fail, CBR will redo

all computation from the latest checkpoint, while PBR recomputes the new

belonging clusters for observations in the failed nodes and hence the recovery

time becomes longer for a larger number of failed nodes. On average, PBR

outperforms CBR by a factor of 6.8 to 23.9.

Finally, we focus on cascading failure by setting the first failed superstep

to 19 and varying the second failed superstep from 11 to 18. Figure 5.8(d)

plots the results. When the second failed superstep increases, the recovery

time increases linearly for both CBR and PBR. On average, PBR can reduce

recovery time by a factor of 23.8 to 26.8 compared with CBR.

5.6.4 Semi-clustering

Figure 5.9(a) plots the running time of each superstep for semi-clustering. PBR

takes slightly longer time than CBR during normal execution. This is because

compared with the computation and communication costs, the overhead of

logging outgoing messages to local disks is relatively insignificant. Moreover, in

semi-clustering, the size of each message from a vertex to its neighbors increases

linearly with the superstep. Hence, both CBR and PBR runs slower in larger

supersteps. In superstep 10, there is an obvious increment in the running time

due to performing checkpoint.
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Figure 5.9: Semi-clustering results

We evaluate the performance of recovery methods for single node failures,

multiple node failures and cascading failures using the same settings as k-means.

Figure 5.9(b), 5.9(c), 5.9(d) show the respective results. Basically, the trends of

the running time of PBR and CBR in semi-clustering follows those in k-means.

Specifically, PBR outperforms CBR by a factor of 9.0 to 15.3 for single node

failures, by a factor of 13.1 to 5.8 for multiple node failures, and by a factor of

14.3 to 16.6 for cascading failures.

Besides the benefit of parallelizing computation, we also show the commu-

nication cost incurred by PBR and CBR in Figure 5.10. Since messages sent to

the vertices residing in the healthy nodes can be omitted in PBR, we observe

that in multiple node failure, PBR incurs 6.5 to 37.9 times less communication

cost than CBR. For cascading failures, PBR can reduce communication cost by

a factor of 37.1 compared with CBR.

127



CHAPTER 5. FAILURE RECOVERY IN EPICG

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 2 3 4 5

C
om

m
un

ic
at

io
n 

C
os

t (
G

B
)

# of Failed Workers

CBR
PBR

(a) Multiple node failure

 0

 100

 200

 300

 400

 500

 600

11 12 13 14 15 16 17 18

C
om

m
un

ic
at

io
n 

C
os

t (
G

B
)

Failed Superstep

CBR
PBR

(b) Cascading failure

Figure 5.10: Communication cost of semi-clustering

5.6.5 PageRank

To study the logging overhead for PageRank tasks, we report the running

time of every superstep in Figure 5.11(a). Compared with k-means and semi-

clustering, PBR takes slightly more time than CBR in PageRank. This is

because PageRank is evaluated over Friendster dataset which has power-law

link distribution and each superstep involves a huge number of forwarding mes-

sages that should be logged locally via disk I/O. However, the overhead is still

negligible, only 3% increase in running time. Due to doing checkpointing, there

is an obvious increment of running time in superstep 10. In each superstep,

the worker basically does the same task and hence the running time of each

superstep almost remains the same. We also evaluate the performance of re-

covery methods for single node failures, multiple node failures and cascading

failures. Figure 5.11(b), 5.11(c), 5.11(d) provide the recovery time, respectively.

Figure 5.12 shows the corresponding communication cost. The performance of

PBR and CBR follow the same trends as those in semi-clustering and k-means

tasks. This further verifies the effectiveness of PBR, which parallelizes compu-

tation and eliminates unnecessary computation and communication cost.

5.6.6 Simulation Study

We perform a simulation study to evaluate the effectiveness and efficiency of

our cost-sensitive reassignment algorithm CostSen in partition-based recov-

ery. As a comparison, we consider a random approach Random by balancing

computation among the nodes.
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Figure 5.11: PageRank results

Data Preparation

We investigate the effect of the following parameters that potentially affect the

performance of the reassignment algorithms:

• n: the number of failed partitions

• m: the number of healthy compute nodes

• computation cost per failed partition during recovery

• communication cost between every two failed partitions during recovery

• communication cost between failed partitions and healthy compute nodes

during recovery

We generate communication cost by simulating two categories of graph par-

titioning, random-partitioning and well-partitioning. In random-partitioning,

there is no obvious difference in the connections of two partitions lying in the

same node or across two nodes; in well-partitioning, the number of edges con-

necting two partitions within the same node is much larger than that across
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Figure 5.12: Communication cost of PageRank

two nodes. For simulation, we generate communication cost using two dis-

tributions uniformly-distributed and well-distributed corresponding to random-

partitioning and well-partitioning, as follows.

1) In uniformly-distributed, the communication cost between two failed par-

titions and that between a healthy node and a failed partition, is uniformly

drawn from the range [1, low].

2) In well-distributed, for each failed partition, we randomly select k failed

partitions. The communication cost from the partition to each of the selected

ones is uniformly drawn from range [1, high], and that from the partition to

any other failed partition is uniformly drawn from range [1, low]. The commu-

nication cost between partition and healthy node is generated in the same way.

By default, we set p, low, high to 0.6, 100, 40000, respectively.

We generate comparable computation cost for each failed partition based

a comp-comm-ratio, γ. Let SP be the total communication cost from healthy

nodes to a failed partition P . We use γ to adjust the ratio between the com-

putation cost of P and SP . The computation cost of P is randomly drawn

from the range [1, γSP ]. A larger γ implies that the job is more computation-

intensive. Table 5.3 summarizes the ranges of our tuning parameters. Unless

otherwise specified, we use the underlined default values.

Measure

We measure the performance of reassignment algorithms via five metrics: maxi-

mum computation cost (CompCost), total inter-node communication cost (Comm-
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Table 5.3: Parameter ranges for simulation study
Parameter Description Range

n number of failed partitions 20, 40, 50
m number of healthy nodes 20, 40, 50
k number of partitions (or healthy nodes)

with high communication cost
1, 2, 4, 6, 8

γ comp-comm-ratio 0.1, 0.5, 1, 5, 10

Cost), sum of CompCost and CommCost (TotalCost), running time and the

number of nodes to which failed partitions are reassigned. All the costs are

measured in seconds by default.

Effects of Comp-comm-ratio

Table 5.4 shows the results of CostSen and Random by varying γ in uniformly-

distributed scenario. On average, CostSen produces reassignments with lower

TotalCost and CommCost than Random over all the ratios. For γ = 0.1,

CostSen outperforms Random with 2x lower TotalCost and CommCost. As

γ increases, the advantage of CostSen in TotalCost and CommCost becomes

less significant. The reason is that a larger γ makes the job more computation-

intensive; this requires more nodes to parallelize the computation, while Comm-

Cost can hardly be reduced due to the uniform distribution. For smaller γ (e.g.,

0.1), CostSen assigns failed partitions to a small number of nodes (< 5) due

to insignificant CompCost, hence it reports reassignments with higher Com-

pCost than Random. For larger γ (e.g., 10), CostSen performs similarly

as Random in terms of the three costs, but it requires 2x fewer nodes for

recovery. This saving is desirable in practice. We observe similar results for

well-distributed scenario and omit the results to avoid duplication.

Effects of High Communication Partition (Healthy Node) Number

Table 5.5 shows the results of both methods when we vary the number of parti-

tions (nodes) with high communication cost (k). For all values of k, CostSen

outperforms Random with 2x lower TotalCost and CommCost. CostSen

produces reassignments with higher CompCost which is relatively insignifi-

cant compared with CommCost. Furthermore, CostSen always involves fewer

nodes for recovery. For k = 10, it uses 15x fewer nodes than Random.
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Table 5.4: Effect of comp-comm-ratio γ (uniformly-distributed)
γ CompCost CommCost TotalCost Used nodes

0.1
Random 0.4 152.6 153 40
CostSen 8.2 75.2 83.4 1

0.5
Random 2 152.3 154.3 40
CostSen 36.3 80.9 117.2 2.3

1
Random 3.9 152.4 156.3 40
CostSen 5.8 143.5 149.3 19.9

5
Random 19.5 152.1 171.6 40
CostSen 19.5 146.8 166.3 24.4

10
Random 38.9 152.6 191.5 40
CostSen 38.9 147.1 186 24.1

Table 5.5: Effects of the number of partitions (or healthy nodes) with high
communication cost k (well-distributed)
k CompCost CommCost TotalCost Used nodes

1
Random 3.8 902.4 906.2 40
CostSen 11.5 241.6 253.1 14.23

2
Random 3.9 1603.5 1607.4 40
CostSen 17.4 690.5 707.9 11.75

4
Random 3.9 2830.1 2834 40
CostSen 46 1422.5 1468.5 7.63

6
Random 3.9 4032.8 4036.7 40
CostSen 68.6 1967.4 2036 4.02

8
Random 3.8 5190.9 5194.7 40
CostSen 76.7 2558.8 2635.5 2.79

Effects of the Number of Failed Partitions

Table 5.6 provides the results by varying the number of failed partitions (n). For

each n, CostSen outperforms Random by 2.5x lower TotalCost and Comm-

Cost. Again, the reassignments reported by CostSen require higher Comp-

Cost, which is much smaller than CommCost. Furthermore, CostSen uses

3x fewer nodes for recovery. Figure 5.13(a) shows the running time of Cost-

Sen. It requires less than 250ms to generate reassignments. The running time

increases quadratically with the number of failed partitions.

132



CHAPTER 5. FAILURE RECOVERY IN EPICG

Table 5.6: Effects of the number of partitions n (well-distributed)
n CompCost CommCost TotalCost Used nodes

20
Random 3.7 775.3 779 20
CostSen 14.7 291.9 306.6 7.05

40
Random 3.8 1605.2 1609 40
CostSen 17.8 689 706.8 11.69

50
Random 4.6 2005 2009.6 40
CostSen 18.8 876.9 895.7 15.19
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Figure 5.13: Running time (well-distributed)

Effects of the Number of Healthy Nodes

Table 5.7 provides the results by varying the number of healthy nodes (m).

CostSen produces reassignments with 3x lower TotalCost and CommCost

over all values of m. Furthermore, it employs fewer healthy nodes for recovery.

For larger m (e.g., 40, 50), the number of nodes involved in the reassignments

from CostSen is 3x fewer than Random. Figure 5.13(b) shows the running

time of CostSen. The running time increases linearly with the number of

healthy nodes. For m = 50, CostSen generates reassignments over 40 nodes

within 250ms.

Summary of Simulation Study

Our simulation study show that the cost-sensitive reassigning algorithm achieves

2x speedup in our partition-based recovery framework compared with random

assignment. It also outperforms random approach by wisely choosing a smaller

number of compute nodes to handle failed partitions. Furthermore, our reas-

signing algorithm is efficient; the running time grows quadratically with the
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Table 5.7: Effects of the number of healthy nodes m (well-distributed)
m CompCost CommCost TotalCost Used nodes

20
Random 5.9 1463.3 1469.2 20
CostSen 20.5 572.1 592.6 10.21

40
Random 3.9 1582 1585.9 40
CostSen 15.6 686.8 702.4 12.27

50
Random 3.8 1617.9 1621.7 40
CostSen 16.5 695.8 712.3 12.97

number of failed partitions and linearly with the number of healthy nodes.

5.7 Summary

In this chapter, we present a novel partition-based recovery method to par-

allelize the failure recovery processing. Different from traditional checkpoint-

based recovery, our recovery method distributes the recovery tasks to multiple

compute nodes such that the recovery processing can be executed concurrently.

Because partition-based failure recovery problem is NP-Hard, we use a commu-

nication and computation cost model to split the recovery among the compute

nodes. We implement our recovery method in epiCG and observe that our pro-

posed parallel failure recovery method outperforms existing checkpoint-based

recovery methods by up to 30 times when using 40 compute nodes.
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Conclusion

6.1 Conclusion

epiC is one of the most elastic and extensible data processing systems proposed

for Big Data applications. To cope with the 3V features of Big Data, epiC

has to address several challenges. From the perspective of application design,

it should be able to support various Big Data analytics tasks efficiently; from

the perspective of system design, it should possess several properties such as

simplicity, scalability, elasticity and fault tolerance. This thesis aims to develop

effective and efficient solutions to two challenging issues in epiC: complex query

processing and failure recovery. We employ epiC as our underlying distributed

system due to its simplicity, efficiency and extensibility, but our approaches can

be implemented in other distributed systems as well.

The first problem we study is to efficiently answer k nearest neighbor join

query, which is a primitive operation in the domains of machine learning and

data mining. While existing solutions to kNN join focus on developing effec-

tive index structures to accelerate the join process, all of them are centralized

approaches. To cope with the increasing scale of data, we leverage MapUnit

and ReduceUnit in epiC and propose a MapReduce-based solution to answer

kNN join efficiently. We exploit the Voronoi-based partitioning method and

divide the input objects into groups. Our proposed Map and Reduce functions

guarantee that similar objects must be gathered into the same group. We then
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answer kNN join query by examining pair-wise objects within the same group.

Our proposed method is the first distributed solution for answering kNN join

query. We implement our solution in epiC and the results show that deploying

MapReduce framework to answer kNN join query can accelerate query process-

ing significantly compared with the existing index-based solutions. In order

to further accelerate the processing, we also provide a theoretical analysis of

the computation and shuffling cost involved in our approach. Based on the

cost model, we introduce several pruning rules to eliminate the examination of

dissimilar object pairs within the same group.

To answer graph analytics queries efficiently, our second work extends epiC

and develop a scalable graph engine epiCG. We implement epiCG as one exten-

sion of epiC to avoid deploying a new distributed system from scratch. Different

from epiC, epiCG is an in-memory processing engine that can handle iterative

computations efficiently. In particular, epiCG allows every two units to com-

municate directly instead of relying on the master computer to transfer the

messages; it also eliminates high I/O cost by asking every computation units

to maintain their computed data in memory during the iterations. epiCG fol-

lows the same programming model as Pregel, but supports both edge-cut and

vertex-cut graph partitioning methods. For vertex-cut, we propose an efficient

approach to parallelize the vertex-cut generation process. For fault tolerance,

epiCG achieves automatic failure detection and recovery. Extensive experi-

ments are conducted to validate the high efficiency and scalability of epiCG.

The third problem we address is efficient failure recovery in epiCG. We

first formalize the failure recovery problem and then propose a novel partition-

based recovery method to parallelize the recovery tasks. Different from the tra-

ditional checkpoint-based recovery approach, our recovery method distributes

recovery tasks to multiple compute nodes such that the tasks can be executed

concurrently. We implement our recovery method in epiCG for performance

evaluation. The experimental results show that our partition-based recovery

method outperforms the checkpoint-based approach by up to 30 times when

using 40 compute nodes. Furthermore, we prove that it is NP-hard to find a

partitioning for the failed subgraph such that the total recovery time is mini-

mized. To address the problem, we provide a cost model to estimate the overall

recovery time for a given partitioning and propose a greedy algorithm to split

the recovery workload among the compute nodes in a cost-effective way. Based
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on our simulation study, it is found that our proposed partitioning algorithm

outperforms a random partitioning approach by a factor of 2.

6.2 Future Work

Our first work focused on answering kNN join queries in epiC, but there are

many other complex queries that need to be solved as well. For instance, people

may ask to figure out all the similar object pairs instead of the top-k answers.

A promising future work is to develop an effective solution to answer similarity

join queries in a distributed manner. Furthermore, in Chapter 3, we mainly

considered multi-dimensional data and we would like to extend our work to

handle high-dimensional data as well. The key problem here is that voronoi

diagram-based partitioning may not work effectively in high-dimensional space,

i.e., prune dissimilar object pairs. A more effective partitioning method for

high-dimensional objects is needed.

In Chapter 4, we extended epiC and developed a graph processing engine

epiCG on top of epiC. Although the results show epiCG is efficient and scalable,

it is a synchronous graph processing system. A direct extension of this work is

to develop an asynchronous graph processing engine on top of epiC.

Finally, our proposed partition-based recovery in Chapter 5 is a rollback

recovery method. That is, the recovery requires to rollback to the latest check-

point. An interesting future work is to perform recovery without rollback. For

example, upon a failure, PageRank job can continue its computation imme-

diately by assigning a random value to each failed vertex. Without rolling

back and redoing the lost computation, PageRank still can converge to its final

state deterministically. Similar examples include Shortest Path and Connected

Component. There are some “outliers” such as k-means, which requires extra

information to continue the computation and forward to achieve its final state.

The key challenge is to figure out what kind of applications can be recovered

without rollback and what cannot.
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