
NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY

Deep Neural Networks

Author:
Benjamin SCELLIER

Supervisor:
Dr. Alexandre THIERY

August 12, 2015

Introduction
Defined in 1959 by Arthur Samuel as the "the field of study that gives computers the ability to learn without being
explicitly programmed", Machine Learning has been getting more and more important in the age of big-data. Indeed,
massive amounts of computation for recognizing patterns, detecting anomalies or making predictions, are now cheaper
than paying someone to write a task-specific program.

Since the late 2000’s, a new area of research in Machine Learning has emerged, known as Deep Learning. Based among
others on observations in neuroscience such as the structure of the visual system in the brain, it is believed that, in order
to achieve the AI-dream of building truly intelligent agents, one needs to build models with deep architectures. One class
of such models is the class of deep neural networks. Until recently, the idea to train deep neural networks had not
shown much success. Among other reasons, it is often mentioned that computers used to be too slow and labeled datasets
used to be too small. In this report, we will more particularly emphasize the breakthrough that happened in 2006, when
unsupervised learning was shown to help a lot when training deep artificial neural networks [10].

In part I we introduce preliminary mathematical tools and concepts for machine learning. In part II we will discuss neural
network models for supervised learning and observe that we face difficulties when training them. Finally, in part III,
we will introduce algorithms for unsupervised learning that can be used as a pre-training step for subsequent supervised
learning. In the last section, we will build a model called Deep Belief Network for modeling the joint distribution of the
MNIST digits and their labels.

Acknowledgement
I would like to extend my sincere thanks to my supervisor Alexandre Thiery for the time he devoted to me to guide me
throughout my research project and my graduate studies at NUS. Beyond the research project, I thank him for introducing
me to the field of Deep Learning, an exciting field of research in which I have developed a strong interest and in which I
intend to pursue a PhD.

1

Contents

I Preliminaries in Machine Learning 4

1 Machine learning approach 4

2 A mathematical framework for machine learning 4
2.1 Model . 4
2.2 Training phase . 5
2.3 Regularization . 6

3 The classification task 7
3.1 Discriminative learning . 7
3.2 Generative learning . 8

II Discriminative models 10

4 Biological motivations for modeling neural networks 10

5 Artificial neurons 11

6 Shallow architectures 12
6.1 Binary threshold unit . 12
6.2 Perceptron . 13
6.3 General linear models . 13
6.4 Support vector machines . 14

7 Deep architectures 14
7.1 Feedforward neural networks . 15
7.2 Backpropagation algorithm . 16
7.3 Difficulties to train deep MLPs . 17

III Generative models 18

8 Hopfield networks 18
8.1 Model . 18
8.2 Learning . 19

9 Fully visible Boltzmann machines 20
9.1 Energy-based models (simplified version) . 20
9.2 Model . 20
9.3 Learning . 21
9.4 Contrastive divergence . 21
9.5 Persistent contrastive divergence . 23

10 Boltzmann machines (general version) 24
10.1 Energy-based models (general version) . 24
10.2 Model . 24
10.3 Learning . 25
10.4 The mean field approximation . 26
10.5 Deep Boltzmann machines . 27

2

11 Restricted Boltzmann machines 27
11.1 Model . 27
11.2 Learning . 28

12 Sigmoid belief networks 29
12.1 Early graphical models . 29
12.2 Model . 30
12.3 Learning . 31

13 Deep belief networks 32
13.1 Model . 33
13.2 Learning layers of features by stacking RBMs . 33

14 Back to the multi-layer perceptron 35
14.1 Discriminative fine-tuning of DBNs . 35
14.2 Comparison of MLPs with/without unsupervised pre-training . 36

15 Experimentation: DBN for generating handwritten digits 38

IV Appendix: Python Code 42

3

Part I

Preliminaries in Machine Learning
In the first section of this part, we motivate the need of Machine Learning algorithms. In the second section, we will intro-
duce a mathematical framework for designing Machine Learning algorithms. Then, in the third section, we will discuss
discriminative learning and generative learning and show that these problems can be both described in this mathematical
framework. Models for discriminative and generative learning will be developed in parts II and III respectively.

1 Machine learning approach
There are many tasks that we would like to automate, but writing programs by hand for performing these tasks seems very
hard. We do not know what programs to write because we do not know how the brain performs these tasks. Even if we had
an idea how to write such a program, the content of the program may be extremely complicated. Consider for example
the task of recognizing images of handwritten digits (figure 1). Each image is a gray-scale image of 28 by 28 pixels, that
can be represented by a vector x of 784 real numbers corresponding to the pixel intensities. The goal is to come up with a
program that takes a vector x and recognizes the digit y that it represents. Because of the wide variability of the vector x,
there is no simple and reliable rule for this recognition task. We need to combine a large number of weak rules.

Figure 1: Samples from the dataset of MNIST digits

The Machine learning approach is the following. Instead of hand-writing a very long program with many weak rules,
we collect lots of examples that specify the correct output for a given input. A machine learning algorithm takes these
examples and produces a program that predicts outputs for new inputs. The program produced by a machine learning
algorithm looks very different from a typical hand-written program. It contains many parameters, sometimes millions.

A usual hand-written program produces the same output y each time it receives the same input x. By contrast, a program
produced by a machine learning algorithm is able to improve its performance, so it may produce different results later
times that it receives the same input x. Also, a machine learning algorithm has much more flexibility than a usual hand-
written program: if the data changes, the program can adapt by training on the new data.

2 A mathematical framework for machine learning
In this section we describe a mathematical framework for learning parametric models by minimizing an objective cost
function by gradient descent. This framework will enable us to study both discriminative learning and generative learning,
two approaches of machine learning that will be introduced in the next section and developed in parts II and III respectively.

2.1 Model
Let (Z,FZ) and (T ,FT) be two measurable spaces and Z a random variable taking values in Z . We consider a measur-
able function l : T → [0 ;∞[called loss function or objective cost function. The loss L is defined for every measurable
function f : Z → T by

L(f) := E [l(f(Z))] . (1)

4

Figure 2: Typical machine learning problem

The goal is to find or approximate a function f∗ that achieves the infimum:

f∗ ∈ arg min
f :Z→T

L(f).

We call such a function f∗ an oracle. Moreover we will write L∗ := inff L(f).

From the computer scientist’s point of view, no data structure can represent a general measurable space, so we restrict
ourselves to problems where Z and T are finite dimensional real vector spaces. Similarly, no data structure can represent
a general measurable function f : Z → T , so we parametrize the problem by restricting the space of measurable functions
to a subspace of the form

{fw : Z → T | w ∈W} , (2)

where W is a space called the parameter space (or weight space). In a parametric model, the space W is also a
multi-dimensional real vector space. For example, as we will see in parts II and III, in a neural network, the parameter
w represents the weights of the connections between the neurons. To simplify the notations, we write L(w) := L(fw).
Henceforth, the problem consists in finding or approximating a parameter w∗ such that

w∗ ∈ arg min
w∈W

L(w).

Such a parameter w∗ is also called an oracle.

2.2 Training phase
For a given parameter w, the true value of the loss L(w) is inaccessible. In practice, we are given a dataset Dn :=
{Zi : 1 ≤ i ≤ n}, called training set, consisting of i.i.d. copies of Z. All we know about the distribution of Z is
contained in the σ-algebra Fn := σ(Dn). We estimate the loss L(w) by the empirical loss L̂n(w) defined by

L̂n(w) := 1
n

n∑
i=1

l(fw(Zi)). (3)

We can then compute the gradient of L̂n(w) with respect to w and perform a gradient descent type algorithm to minimize
(3). Standard gradient descent consists in iterating the following:

1. compute the gradient
#»∇w L̂n(w);

5

2. update the parameter w := w − γ #»∇w L̂n(w) where γ is a step-size parameter called learning rate.

Each step is called an epoch. Since
#»∇w L̂n(w, λ) = 1

n

n∑
i=1

#»∇w l(fw(Zi)),

the problem of computing the gradient of the whole training setDn boils down to computing the gradient for each training
case Zi. In fact, instead of computing

#»∇w L̂n(w) at each step of the gradient descent, a large amount of time and
computations can be saved by replacing it by

#»∇w L̂batch(w) where

L̂batch(w) := 1
nbatch

∑
i∈batch

l(fw(Zi))

is the loss of a mini-batch of size nbatch. One splits the training set into mini-batches of size nbatch each (typically,
nbatch ≈ 100). After one epoch (which corresponds to going through the whole dataset once), the weights will have been
updated n/nbatch times. This procedure is called mini-batch gradient descent or stochastic gradient descent. In the
extreme case where nbatch = 1, i.e. each mini-batch contains one training case, we call the procedure online learning.

When training neural networks, variants of the gradient descent can be applied to speed up the learning, such as the
momentum method [18], rmsprop [9] and AdaGrad [8]. When doing full batch learning, more advanced second-order
methods can be applied such as the conjugate gradient algorithm and the Hessian-free optimization. However, we will
not discuss these techniques here.

2.3 Regularization
From the initial goal of finding an oracle f∗ that minimizes (1) to the model fw corresponding to the parameter w that
has been learned during the training phase, several approximations have influenced the learning. First we restricted the
capacity of the model to a parametric model indexed by w ∈ W . Then we approximated the true cost function by the
empirical cost function related to Dn. Finally, the gradient descent does not guarantee to find the global minimum of the
empirical cost function.

We measure the distance between the model fw learned and the oracle f∗ by the difference of their loss. This difference
can be decomposed in two terms as follows:

L(w)− L∗ = L(w)− L(w∗) + L(w∗)− L∗.
Clearly, both terms are positive. The second term is a deterministic error called restriction bias, whereas the first term is
a stochastic error. The restriction bias depends on the model complexity, i.e. the set of models defined by equation (2).
The stochastic error depends on both the training set Dn (i.e. the size and the quality of the dataset) and the conditions in
which the gradient descent was performed (i.e. the initialization of the weights, the learning rate γ, the size of the batches
and the number of epochs).

The approach of deep learning is to allow very complex models with deep architectures so that the restriction bias is very
small. Then, a bag of techniques called regularization techniques are applied to make the stochastic error as small as
possible, i.e. to avoid overfitting.

One widely used technique is called early stopping. It consists in keeping track of the true loss L(w) of the model during
the gradient descent on the empirical loss L̂n(w), and to stop the gradient descent when the true loss L(w) is getting
worse (figure 3). Again, in practice, the true loss L(w) is inaccessible. All we can do is to estimate it empirically. Recall
that w is a σ(Dn)-measurable random variable. Let Z ′ have the same distribution as Z. The relationship

E [l(fw(Z ′)) | Dn] = L(w) (4)

does not hold in general. In particular, equation (4) is not true if Z ′ = Zi for some i ∈ {1, · · · , n}. However, if Z ′ is
independent of Dn, then (4) is true. So, in order to get an unbiased estimator of the loss L(w), we use a new dataset
D′m = {Z ′1, · · · , Z ′m} of i.i.d. copies of Z and independent of Dn. The empirical loss L̃m defined by

L̃m(w) := 1
m

m∑
i=1

l(fw(Z ′i)),

6

is an unbiased estimator of L(w) and the new dataset D′m is called cross-validation set.

Figure 3: Early stopping. The gradient descent should be stopped after 50
epochs.

Several other techniques are used in practice to prevent from overfiting. The weight sharing technique, massively used
in convolutional neural networks for instance, aims to restrict the number of parameters. Adding a regularization term
to the empirical cost function aims to penalize certain values of w. Adding noise in the model and/or in the training data
makes the model more robust. However, we will not discuss these techniques.

3 The classification task
In the setting of supervised learning, we are given a set of examples drawn from a joint distribution (X,Y) and the goal
is to predict Y given X . The random variables X ∈ X and Y ∈ Y are called input vector and label respectively. The
joint distribution of (X,Y), denoted by P (X,Y), is characterized by the marginal distribution of X and the conditional
distribution of Y given X , denoted by P (X) and P (Y |X) respectively. Clearly, learning about the distribution P (Y |X)
will help predict Y given X . In a less obvious way, P (X) can also help for this task. If P (X) and P (Y |X) are unrelated
as functions of X , then unsupervised learning of P (X) is not going to help learning P (Y |X). On the other hand, if
they are related, and if the models for P (X) and P (Y |X) involve the same parameters, then each example (X,Y) brings
information on P (Y |X) not only in the usual way but also through P (X).

In the sequel, we will be more particularly interested in the classification task, which corresponds to the particular setting
of supervised learning where the label Y only takes a finite number of values. The possible values taken by Y are called
the classes. In this section, we are going to show how learning P (Y |X) and learning P (X) both belong to the framework
defined in the previous section. In part III, the goal will be to show that unsupervised learning of P (X) can help improve
supervised learning of P (Y |X). We will establish this in the case of the classification of the MNIST dataset of handwritten
digits (figure 1 page 4).

3.1 Discriminative learning
Discriminative learning consists in learning P (Y |X) so as to predict Y givenX . When Y takes infinitely many values, i.e.
when the set of labels Y is infinite, no data structure enables to build a model that, given an input x, outputs a distribution
over Y . This would involve infinitely many outputs. One usually builds a model that assigns to each x ∈ X one single
value hw(x) ∈ Y that "best" represents the true distribution of Y given X = x. For example, in regression analysis the
goal is to learn E(Y |X = x) for each x.

7

In contrast, in the setting of classification with k classes, if k is not too large (say, k ≤ 1000), one can aim to learn
the distribution of Y given X = x by building a model that outputs one value for each class. Let us denote the set of
probability distributions over the k classes by

P(Y) :=
{
y ∈ [0 ; 1] k :

k∑
i=1

yi = 1
}
. (5)

Notice that each class can be represented by an element of P(Y) of the form

y = (0, · · · , 0, 1, 0, · · · , 0). (6)

For this reason, we simplify the notations by writing the label Y in the form Y = (Y1, · · · , Yk) like in equation (6). With
this representation, commonly called one-hot encoding, the distribution of Y givenX = x is determined by E(Y |X = x).
Thus, the goal is to learn the oracle function

h∗(x) = E(Y |X = x).

By the cross-entropy inequality (stated below), the oracle function h∗ minimizes the cross-entropy loss, defined for every
function h : X → P(Y) by

L(h) = E

[
−

k∑
i=1

Yi log(hi(X))
]

= E

[
−

k∑
i=1

E(Yi|X) log(hi(X))
]
.

The cross-entropy inequality is stated as follows. Let y ∈ P(Y) be fixed. If ŷ ∈ P(Y), the quantity −
∑k

i=1 yi log(ŷi),
called cross entropy, is minimal when ŷ = y.

Proof of the cross-entropy inequality. By Jensen’s inequality,(
−

k∑
i=1

yi log(yi)
)
−

(
−

k∑
i=1

yi log(ŷi)
)

=
k∑

i=1
yi log

(
ŷi

yi

)

≤ log
(

k∑
i=1

yi

ŷi

yi

)
= log

(
k∑

i=1
ŷi

)
= log(1) = 0

Therefore, we choose as the loss function the cross-entropy loss function l : P(Y)× Y → [0 ;∞[defined by

l(ŷ, y) := −
k∑

i=1
yi log(ŷi). (7)

Consequently, recalling the notations of section 2, this setting corresponds to the case where the input space isZ = X×Y ,
the output space is T = P(Y) × Y , the random variable is Z = (X,Y), the model is fw(Z) = (hw(X), Y) where
hw : X → P(Y) and the loss function is the cross entropy loss function defined above. Moreover, the dataset takes the
form Dn := {(Xi, Yi) : 1 ≤ i ≤ n} where (Xi, Yi) are i.i.d. copies of (X,Y).

3.2 Generative learning
Unlike discriminative learning where we learn P (Y |X), generative learning aims to learn P (X) by modeling a distribu-
tion over the data space X . This method is also called maximum likelihood estimation. The goal is to learn the oracle
function defined by

∀x ∈ X , f∗(x) = P (x).

8

Let us consider the space of probability distributions on X :

P(X) :=
{
f : X → [0, 1]

∣∣∣∣∣ ∑
x∈X

f(x) = 1
}
.

By the cross-entropy inequality, the oracle function f∗ minimizes the negative log-likelihood, defined for every proba-
bility distribution f by

L(f) = E [− log(f(X))] = −
∑
x∈X

P (x) log(f(x)).

Therefore we choose the loss function defined by

∀p̂ ∈ [0 ; 1] , l(p̂) := − log(p̂).

Again, this is a particular case of the framework described in section 2 in the setting where the input space is Z = X , the
output space is T = [0, 1], the random variable is Z = X , the model is f ∈ P(X) and the loss function is the negative
log-likelihood defined above. The dataset takes the form Dn := {Xi : 1 ≤ i ≤ n}.

9

Part II

Discriminative models
We start this part by giving biological motivations for studying artificial neural networks (section 4). Then we describe a
model for artificial neurons (section 5). Next we present a few models for discriminative learning that today we call shal-
low architectures (section 6). In section 7, we claim that in order to learn complicated tasks such as image recognition,
one may need deep structures, after what we introduce a neural network model, called multi-layer perceptron (MLP),
that has the potential for implementing deep architectures. However, we conclude this part by pointing out problems that
arise when training deep MLPs. In part III, we will introduce methods to overcome these problems.

4 Biological motivations for modeling neural networks
The idea of trying to emulate the brain is motivated by the fact that the human brain is the best system that we know
of to solve recognition tasks. The brain can learn to process images and recognize scenes, learn to hear and recognize
sounds, learn to process the sense of touch, etc. One hypothesis in neuroscience is that there exists only one single learning
algorithm for all these abilities. In this section, we give some piece of evidence for this hypothesis, inspired from [17].

In one paragraph, the way the brain works can be described as follows. Each neuron receives inputs from other neurons,
and a small fraction of the neurons also receive inputs from receptors (the visual system, the audio system, etc). For
each neuron, the effect of each input is controlled by a synaptic weight, which can be positive or negative. The synaptic
weights adapt through time and experience so that the brain learns to perform useful computations. In total, the human
brain contains about 1011 neurons and 1015 synapses.

In appearance, different parts of the neural cortex learn different functions. For example, the part of the cortex called
auditory cortex learns to hear, recognize sounds and understand language. But remarkably, the neural cortex looks pretty
much the same all over.

Neuroscientists have done the following neuro re-wiring experiments with baby ferrets. If one cuts off the wire from
the ears to the auditory cortex, and reroutes the visual input to the auditory cortex, then the auditory cortex will learn to
see [21]. Similar experiments have been carried out with the somatosensory cortex (the part of the brain that processes the
sense of touch) and the conclusions are similar. These experiments suggest that it is not genetically predetermined which
part of the brain will perform which function.

Figure 4: If one implants a third eye to a bufo melanostictus, the amphibian
will learn to use it. [13]

Other experiments and observations show that the brain can also learn unusual functions. For example, it has been
observed that some blind people have developed the ability to do human echolocation (also called human sonar). By
snapping their fingers or clicking their tongue, the subjects can perceive the echos of the sounds they produce and use
them to detect the presence of objects or persons [7]. Again, these observations suggest that the cortex is made of general
purpose hardware that can turn into special purpose hardware in response to experience.

10

Finally, other experiments suggest that if one plugs any sensor to the brain, the brain will figure out how to deal with that
data and how to learn from it. Because the same piece of brain tissue can process sight, sound or touch, it is believed that
the brain has got one unique, universal and fairly flexible learning algorithm. This hypothesis is called the one-algorithm
hypothesis. For all these reasons, it seems reasonable to try and figure out what the learning algorithm of the brain is and
to imitate it or implement some approximation of it.

5 Artificial neurons
Instead of trying to imitate biological neurons as faithfully as possible, we remove all the complicated details and idealize
them. Artificial neurons are very simple mathematical models that enable us to build neural networks whose behavior can
be understood and to make analogies to other familiar systems in mathematics and physics.

Figure 5: Artificial neuron

Artificial neural networks consist of artificial neurons (also called units) connected to each other by synapses. Every
unit i is defined by a set of incoming synapses and by an activation function ai. We denote by I(i) the set of units
connected to unit i by an incoming synapse, and by wji the synaptic weight between unit j and unit i. Moreover we define
the pre-activation xi and the output yi of unit i as

xi :=
∑

j∈I(i)

wji yj and yi = ai(xi). (8)

The simplest kind of non-linear unit is the binary threshold unit, such that

yi = 1xi≥0.

This type of unit will be introduced in the next section. In section 7, we will introduce feedforward neural networks whose
units have a logistic activation function, i.e.

yi = 1
1 + e−xi

.

Such units are called logistic units. Finally, in part III, we will introduce Boltzmann machines (BM), sigmoid belief
networks (SBN) and deep belief networks (DBN) which are composed of binary stochastic units, i.e.

P (yi = 1|xi) = 1
1 + e−xi

.

11

Binary stochastic units treats the output of the logistic function as the probability of producing a spike.

Notice that a logistic unit can be used to model a probability distribution over two states. Indeed, the activation

yi = 1
1 + e−xi

may represent the probability of being in the state 1, while 1− yi may represent the probability of being in the state 0. A
k-way softmax unit generalizes this idea by modeling a probability distribution over a set of k states. Suppose a set of k
units have pre-activations x1, · · ·xk. Then, if we define the activation of unit i by

yi := exp(xi)∑
i′ exp(xi′) ,

the vector (y1, · · · yk) can be used to model a probability distribution over k states or classes, since the activations of the
k units add up to 1.

Figure 6: Activation functions

6 Shallow architectures
In this section, we present a few models that we today refer to as shallow models. The binary threshold unit can be seen
as an architecture of depth 1, whereas the perceptron, generalized linear models and support vector machines can be seen
as architectures of depth 2. By contrast, we will introduce in the next section a class of models that can have deeper
architectures.

6.1 Binary threshold unit
The earliest kind of artificial neuron was the binary threshold unit. It enables to classify inputs in two classes. Let us
denote by w its weight vector. The function that it implements takes the form

fw(x) := 1w·x≥0.

12

The learning rule for one training case goes as follows. Given an input vector x and its binary label y, update each weight
wi as

wi ← wi + γ(y − fw(x))xi. (9)

Notice that the weights change only if y 6= fw(x), that is, if the prediction is wrong. Given a training set, the learning
algorithm consists in applying the learning rule (9) for each training case one after another as long as needed. It is easily
shown that this learning algorithm will terminate if and only if the two classes are linearly separable. In other words, the
learning is guaranteed to find a set of weights that gets the right answer for all the training cases if any such set exists.
Unfortunately, for many problems, such a set of weights does not exist.

6.2 Perceptron
The perceptron is the first generation of neural networks. It is composed of two layers. The first layer converts the raw
input into a vector of hand-designed feature activations. Then a binary threshold unit is stacked on top of the first layer
(figure 7).

Figure 7: Perceptron architecture

The features in the first layer use handwritten programs based on common sense: their weights do not learn. Only the
weights of the binary threshold unit (called decision unit in this context) are learned. Depending on the features that we
choose, the learning may be easy or unfeasible. All the work is in finding the right features.

6.3 General linear models
General linear models are linear models trained on nonlinear functions of the data. They can be seen as architectures of
depth two, similar to the perceptron.

In a general linear model, the input layer is expanded in a first layer of non-linear and non-adaptive features by using a basis
of functions such as the trigonometric basis or the polynomial basis. Then the second layer learns a linear combination of
the features in the first layer.

For example: if we want to fit a paraboloid to the data instead of a plane, one can expand the raw input x = (x1, x2) into
a first layer of features (1, x1, x2, x1x2, x

2
1, x

2
2) and then learn a linear combination of these features:

fw(x) = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2.

13

6.4 Support vector machines
A support vector machine (SVM) can also be seen as an architecture of depth two with only one layer of adaptive
weights. The input layer has p units where p is the dimension of the input space, the first layer has n units where n is the
number of training cases, and only the second layer learns a linear combination of features in the first layer.

More specifically, in the case of a SVM with Gaussian kernel, each input vector x = (x1, · · · , xp) is expanded in a large
layer of n non-adaptive features

e−‖x−x(1)‖2

, · · · , e−‖x−x(n)‖2

where x(1), · · · , x(n) are the training cases.

7 Deep architectures
Architectures of depth one, such as the binary threshold unit, are very limited in the input-output mappings they can
model. Adding a layer of hand-coded features like in the perceptron makes them more powerful, but the hard task is to
design the features. In this section, we first give a motivation for trying to learn models based on deep architectures. Then
we introduce a neural network model, called multi-layer perceptron (MLP), that can learn multiple layers of features.
Finally we will conclude this part by showing that we face difficulties when training deep MLPs.

Figure 8: Building higher abstractions, starting from the raw input (picture of
Yoshua Bengio) [2]

A plausible way to learn complicated AI-level tasks such as vision is to use deep architectures that compute gradually
more abstract functions of the raw input. Extracting useful information from an image can be achieved by transforming
the raw pixels into gradually higher levels of abstractions, for example: edges, local shapes, parts of objects, objects, etc.
From there, the model can capture enough understanding of the image to answer questions about the scene. In practice,

14

the right representation for the levels of abstractions is not known in advance. Linguistic concepts may help guessing what
the higher levels should represent, but there may be no linguistic concept to describe lower or intermediate abstractions.

At the highest level of abstraction in figure 8, one would expect to recognize a man sitting. What is called an abstraction
is a category, a concept or a feature, that can be represented by a function of the sensory data. Lower level abstractions are
closer to the raw input whereas higher level abstractions are more remote. Lower-level and intermediate-level abstractions
would be useful to construct a high-level abstraction such as a MAN-detector.

However, we aim to avoid hand-designed features since the number of abstractions to be learned may be much too large. In
the next subsections, we introduce a type of neural networks that has the potential for learning multiple layers of features
by itself.

7.1 Feedforward neural networks
Currently, the most common type of neural networks used in practical applications is the feedforward neural network.
It is a directed acyclic graph whose nodes are the units (figure 9). The units are numbered in their topological order. The
first units are the input units, the last units are the output units, and intermediate units are the hidden units. The network
implements a function fw from the input space to the output space as follows. First clamp the input vector to the input
units. Then update the units sequentially in their topological order. Finally read the output vector from the output units.
This procedure is called a forward pass.

Figure 9: Feedforward neural network

Recall from subsection 3.1 that in the setting of a classification problem with k classes, the output must be composed of k
numbers that sum up to 1. We model this by using a k-way softmax unit.

Figure 10: Multi-layer perceptron (MLP)

In practice, feedforward neural networks appear under the architecture of a multi-layer perceptron (MLP). See figure
10. This architecture is composed of several layers of units. The bottom layer contains the input units. The intermediate

15

layers, called hidden layers, contain the hidden units, and the top layer is composed of the output units. There is no
connection within a layer, no skip-layer connection, and two successive layers are fully connected. The advantage of this
architecture is that it enables to perform parallel computations. Given the states of the units in the layer k, all the units in
the layer k+ 1 can be updated in parallel. We will see this type of architecture again in part III when we will discuss deep
Boltzmann machines (DBM), sigmoid belief networks (SBN) and deep belief networks (DBN).

7.2 Backpropagation algorithm
The back-propagation algorithm is an algorithm that computes the gradient of the cost function by showing the network
both an input vector x and its label y. Thus we can make a feedforward neural network learn by gradient descent. In the
setting of classification, we have decided in subsection 3.1 to choose as a cost function the cross-entropy loss function. To
simplify the notations we will denote the loss function for the training case (x, y) by l = l(fw(x), y).

Figure 11: Backpropagation

Recall the notations introduced in section 5 and let us introduce more notations. We denote by O(i) the set of units
connected to unit i by an outgoing synapse. During a forward pass, recall that for each unit i, we compute the pre-
activation xi and the output yi. Similarly, during the learning phase, we compute ∂l

∂yi
and ∂l

∂xi
. The gradient of the

loss function with respect to the synaptic weights can be computed by the following differentiation chain rule. First we
compute

∂l

∂yi
=
∑

j∈O(i)

wij
∂l

∂xj
and

∂l

∂xi
= a′i(xi)

∂l

∂yi
. (10)

Then we compute
∂l

∂wij
= yi

∂l

∂xj
. (11)

Notice the symmetry between the procedures (8) and (10), as well as the symmetry between the figures 5 and 11. The
most common type of activation function used is the logistic function whose derivative simplifies into

∂yi

∂xi
= yi(1− yi).

Similarly, softmax units have a nice derivative formula, namely

∂yi

∂xi′
= yi′(1i=i′ − yi)

16

This makes the learning rule easy, provided that a forward pass has been made before.

Therefore, the backpropagation algorithm works as follows. For each output unit i, we compute the partial derivative ∂l
∂yi

directly from the definition of the loss function, as in equation (7) page 8. Then, the partial derivatives ∂l
∂yi

and ∂l
∂xi

of
each unit i can be updated sequentially in the reverse topological order using equations (10) and (11).

7.3 Difficulties to train deep MLPs
A deep MLP, consisting of multiple layers of units, is an obvious type of deep architectures that can both implement
abstract levels of representations discussed at the beginning of the section, and learn the features by itself. However,
optimizing the loss of a deep neural network is a highly non-convex problem which becomes more and more complicated
as the number of layers increases. As a consequence, by using backpropagation to optimize the loss function of a deep
neural network, one faces all the difficulties of non-convex optimization problems. In particular:

1. the global optimum may be unreachable by gradient descent depending on the starting point (the initial weights);

2. even if it can be reached, the convergence to the global optimum may be too slow because of vanishing gradients in
flat regions of the parameter space (in particular near saddle points [6]).

Figure 12 shows the effect of the number of layers when learning to classify the MNIST digits. The deeper the network, the
less performing. Although deep neural networks have a theoretical advantage if they are optimized correctly, in practice
their model is far from being optimal when initializing the weights randomly. Thus, one can argue that deep networks are
not useful if finding a good minimum of the loss function is intractable in practice.

Figure 12: Effect of depth (random initial weights)

In fact, what these observations suggest is that backpropagation alone is insufficient for training deep architectures. Back-
propagation requires labeled training data whereas almost all real data is unlabeled. Supervised learning does not make
use of unlabeled data, whereas a lot of structure could be learned from unlabeled data as well, by exploring unsupervised
learning algorithms. As we will see in the next part, using unsupervised learning is not only a way to deal with the lack
of labeled data, but also a way to find a good initial set of weights for a neural network, before fine-tuning them by
backpropagation.

17

Part III

Generative models
One of the goals of unsupervised learning is to create an internal representation of the sensory input data that is useful
for subsequent supervised learning. In this part, we are going to see that generative models can be applied as feature
extraction methods for supervised learning algorithms.

First we introduce Hopfield networks (section 8), an early version of energy-based graphical models. They will help
us have more insight for understanding Boltzmann machines (sections 9 and 10). Next we will introduce Restricted
Boltzmann Machines (section 11), a simple version of Boltzmann Machines that have very efficient learning algorithms
due to their particular architecture. Finally, we will see how Restricted Boltzmann Machines can be used as building
blocks for constructing Deep Belief Networks (section 13). But before that, we will need to introduce Sigmoid Belief
Networks (section 12). The ultimate goal of this part is to show how a Deep Belief Network can be used as a pre-training
step to find a sensible starting point for a MLP before training it with backpropagation (section 14). We will also build a
Deep Belief Network for modeling the joint distribution of the MNIST digits and their labels (section 15).

Let us mention that all the models introduced in this part are models for binary data. In gray-scale images such as those
of the MNIST dataset of handwritten digits, the real-valued pixel intensities can be treated as probabilities for a pixel to
be black. Thus, we can cast the inputs to binary data in the following way: each time an image is processed, we binarize
it by sampling from the Bernoulli distribution defined by the intensities of the pixels.

8 Hopfield networks

8.1 Model
A network composed of binary threshold units with symmetric connections between them is called a Hopfield network
[12]. It is a prototype of undirected graphical models (also called Markov random fields or Markov networks). It
can be used for modeling binary data, provided that it has as many units as the number of dimensions of the data. As
usual, we denote by w the set of parameters of the network, i.e. the weights of the connections (figure 13). To each binary
configuration s of the units, we associate the energy

Ew(s) := −
∑
i<j

sisjwij . (12)

The energy gap of the unit i, given the state of the other units, is defined by

∆Ei
w := Ew(si = 0)− Ew(si = 1) =

∑
j

sjwij . (13)

The binary threshold decision rule for updating unit i gives

si = 1 ⇐⇒
∑

j

sjwij ≥ 0 ⇐⇒ Ew(si = 1) ≤ Ew(si = 0),

si = 0 ⇐⇒
∑

j

sjwij < 0 ⇐⇒ Ew(si = 0) < Ew(si = 1).

Thus, the binary threshold decision rule chooses whichever of the two states gives the lowest energy. This ensures that the
energy of the network can only decrease through sequential updates of the units. Thus, the following procedure enables
to find local minima of the energy function. Start from a random binary configuration, choose a unit at random, use the
binary threshold decision rule to update this unit, and repeat until convergence. Notice that the updates in this procedure
need to be sequential, not simultaneous.

Thanks to the generating procedure that we have just described, local minima of the energy function of Hopfield networks
can be regarded as "memories". Indeed, the binary threshold decision rule can be used to access these memories. In
particular, given an incomplete or corrupted memory, the whole configuration of the memory may be recovered by using
the binary threshold decision rule. A memory can be accessed by just knowing part of its content.

18

Figure 13: A Hopfield network. On the left, a local minimum. On the right, the
global minimum.

8.2 Learning
In this section, we describe a method to "learn" the weights of a Hopfield network in the following sense. The question is
the following: given a binary data vector s, how to modify the weights of the network in order to make s more likely to
be generated by the model (as described in subsection 8.1)? The algorithm presented in the sequel will be a good starting
point for understanding the learning algorithm of a fully visible Boltzmann machine in the next section.

The algorithm consists in lowering the energy of the configuration s by moving w in the direction of −∇wEw(s). Since
the partial derivatives of Ew(s) are given by

∂Ew(s)
∂wij

= −sisj ,

the algorithm is straightforward: set the network in the configuration s and update the weight between any two units i and
j according to the formula

wij ← wij + γ sisj .

However, if we go through the training set many times and keep applying this learning rule, the energy of the data vectors
will keep decreasing indefinitely and will create very deep minima.

A way to avoid this phenomenon is by doing unlearning (or reverse learning). We improve the learning procedure
described above by adding the following unlearning phase: set the network in a random configuration, let the network
settle to a minimum s′ (by updating the units sequentially), and update the weight between any two units i and j according
to the formula

wij ←− wij − γ s′is′j .
The unlearning phase increases the capacity of the network by raising the energy of spurious minima.

As an aside, it is worth mentioning that neuroscientists Crick and Mitchison proposed the unlearning phase as a model
for the state of the brain during REM sleep (rapid-eye movement sleep) [5]. The model goes as follows. During the
day the brain stores data by doing learning. At night the brain is set in a random state, settles to a minimum and does
unlearning. This simple model proposes an explanation to the reason why after waking up, dreams are gone: the state of
the brain during the dream has been unlearnt and cannot be found again. Moreover, this model suggests that the function
of dreaming is to get rid of spurious minima so as to increase the capacity of the network.

Because of their binary threshold units, Hopfield networks can get trapped into suboptimal local minima and are then
unable to escape from them. One way to avoid this is to add noise in the model by introducing stochastic units. In the
next section, we are going to introduce Boltzmann machines that exploit this method. The idea of adding noise to help
cross energy barriers and find the global minimum of an energy function is the main idea behind the general principle
of simulated annealing. However, in contrast with simulated annealing where we usually start with a lot of noise and
reduce it little by little, in Boltzmann machines the amount of noise (also called temperature) is constant over the time.

19

9 Fully visible Boltzmann machines
In this section, we consider Hopfield networks with binary stochastic units, which we will call fully visible Boltzmann
machines (they are known as Ising models in the physics community). This simplified version will help us introduce
the main principles of the framework of Boltzmann machines. Moreover we will introduce the main ideas behind two
important learning algorithms for Restricted Boltzmann Machines, namely Contrastive Divergence (CD) and Persistent
Contrastive Divergence (PCD). Boltzmann machines and Restricted Boltzmann Machines will then be introduced in sec-
tions 10 and 11 respectively. We start this section by defining Energy Based Models, a class of models that includes fully
visible Boltzmann machines.

9.1 Energy-based models (simplified version)
An energy-based model (EBM), determined by a parameter w, associates an energy Ew(s) to each configuration of the
variables of interest s. Furthermore, it defines a probability distribution over the space of configurations by the formula:

Pw(s) := e−Ew(s)

Zw
where Zw :=

∑
s

e−Ew(s). (14)

By analogy with statistical physics, the number Zw is called the partition function. Learning an EBM consists in
modifying w so as to give lower energy (i.e. higher probability) to the training data, which can be done by performing
gradient descent on the negative log-likelihood of the training data. The gradient with respect to the weight parameter w
is given by the partial derivatives

−∂ log(Pw(s))
∂wij

= ∂Ew(s)
∂wij

−
〈
∂Ew

∂wij

〉
model

, (15)

where, by definition,
〈f〉model :=

∑
s

Pw(s)f(s).

The right-hand side of equation (15) is composed of two terms called the positive phase and the negative phase respec-
tively. The terms positive and negative reflect their effect on modifying the probability distribution Pw defined by the
model. The first term increases the probability of the training data by lowering its energy, while the second term decreases
the probability of samples generated by the current model by raising their energy.

As we will see in the next subsections, in the case of fully visible Boltzmann machines, the likelihood Pw(s) and the
gradient of the log-likelihood ∂ log(Pw(s))

∂wij
are intractable. We will present several methods to estimate them.

9.2 Model
A fully visible Boltzmann machine is a network composed of binary stochastic units with symmetric connections
between them. Just like Hopfield networks, fully visible Boltzmann machines are meant to model binary data. They
define the same energy function, given by equation (12). However, by contrast with Hopfield networks, using stochastic
units can help model the probability distribution Pw as defined in equation (14) over the data space. Let us denote by s−i

the set of values associated with all units except unit i. We want to compute the probability distribution of si given s−i.
By using Baye’s formula, and equations (14) and (13), we get

Pw(si = 1 | s−i) = Pw(si = 1, s−i)
Pw(si = 1, s−i) + Pw(si = 0, s−i)

= 1
1 + Pw(si = 0, s−i)/Pw(si = 1, s−i)

= 1
1 + e−∆Ei

w
= 1

1 + e
−
∑

j
wijsj

. (16)

Equation (16) is the usual equation for computing the output of a binary stochastic unit with logistic activation function,
which is consistent with the definition of a fully visible Boltzmann machine that we have just given.

Conversely, the following procedure enables to approximate samples from Pw. Start from a random binary configuration
and update the units sequentially, one by one and chosen at random, according to the stochastic unit rule (16). By an

20

ergodic theorem, the Markov chain defined by this procedure is guaranteed to converge to the stationary distribution Pw

(also called thermal equilibrium by analogy with physical systems) [15]. This procedure is known as Gibbs sampling,
a particular case of the Metropolis algorithm.

There are two difficulties that make data generation by Gibbs sampling difficult. First, starting from a random configura-
tion, it may take a very long time until the Markov chain reaches thermal equilibrium. Second, it is very hard to tell when
the Markov chain has reached thermal equilibrium.

In the next subsection, we will see how to compute the gradient of log(Pw(s)) for the learning. However, in order to
perform early stopping (see subsection 2.3) during the gradient descent, we also need to compute log(Pw(s)) for each
data point in the training set and validation set. Unfortunately log(Pw(s)) is intractable because its computation involves
Zw that has exponentially many terms in the number of units. One way to approximate Pw(s) is to use the pseudo-
likelihood (PL) as a proxy to the likelihood. Pseudo-likelihood assumes that all bits are independent, that is

PLw(s) :=
∏

i

Pw(si | s−i) and log(PLw(s)) =
∑

i

log(Pw(si | s−i)).

9.3 Learning
In the case of fully visible Boltzmann machines, equation (15) takes the form

∂ log(Pw(s))
∂wi,j

= sisj − 〈sisj〉model . (17)

We find a formula very similar to the (second) learning algorithm for Hopfield networks. The first term, called positive
phase, exactly corresponds to the learning phase of Hopfield networks. It strengthens the connection between active units
to lower the energy of the data point s. The second term, called negative phase, corresponds to the unlearning phase of
Hopfield networks. It lessens the connection between active units of samples produced by the model so as to get rid of
deep spurious minima in the network. The negative phase finds configurations that are best competitors and raises their
energy.

Because the negative phase has exponentially many terms in the number of units, its true value is intractable in practical
problems. So we give up on computing the true value of 〈sisj〉model and aim to get an unbiased sample of this quantity
by sampling from the distribution Pw of the model. That is, we ideally aim to collect

" unbiased estimator of
∂ log(Pw(s))

∂wij
" = sisj − sw

i s
w
j (18)

where s is the data point and sw is a sample from Pw. We call sw a fantasy particle or hallucination. Unfortunately,
samples from Pw are also intractable.

One way to get a proxy to a fantasy particle is to run a Markov chain: starting from a random initial state, one updates
the units successively one at a time by Gibbs sampling, as described in the previous subsection. This algorithm was the
original sampling procedure to collect the samples [1]. However, by doing so, one faces the two difficulties mentioned in
the previous subsection, namely the slow convergence and the difficulty to estimate the time needed to converge.

In fact, when running a Markov chain to approximate a fantasy particle, the initial state need not be random at all. It can
be any initial state. The Markov chain will always converge to the stationary distribution Pw. In the next two subsections,
we will introduce two algorithms, called Contrastive Divergence and Persistent Contrastive Divergence, that correspond
to two different initial states for the Markov chain.

9.4 Contrastive divergence
The first algorithm corresponds to taking the data point s itself as the initial state for the Markov chain. Let us denote
by s(0) = s the initial state of the Markov chain, and s(1), s(2), · · · , s(k) the successive states of the Markov chain by

21

sequential Gibbs sampling. If k is large enough so that s(k) has reached the stationary distribution, then equation (18) can
be rewritten as

" unbiased estimator of
∂ log(Pw(s))

∂wij
" = s

(0)
i s

(0)
j − s

(k)
i s

(k)
j . (19)

Again, the problem of such a learning procedure is that k needs to be big, and when k is big, the learning algorithm may
be too slow.

In fact, here is a shortcut, originally discovered by Carreira-Perpinan and Hinton in the case of Restricted Boltmann
Machines [4]. Instead of choosing k large enough so as to get a good approximation of a sample from Pw, we choose a
small k so as to make the algorithm as fast as possible. When k is small, the sample s(k)

i s
(k)
j is clearly not a sample from

Pw. So the learning rule given by equation (19) is not following the gradient of the log-likelihood of the training data.
But this learning rule still works in practice, and has theoretical justifications [3]. This algorithm is known as contrastive
divergence (CD).

Figure 14: Maximum-likelihood learning vs Contrastive divergence

Here is a heuristic to understand what contrastive divergence does and explain why the learning still works (figure 14).
When k is big enough so that the maximum-likelihood learning is (approximately) correct, the Markov chain starts at the
data point s and wanders away from s towards configurations that have lower energy. The idea of using a small k comes
from the fact that one can see in which direction the Markov chain is wandering after only a few steps. We know how to
change the weights of the network before the Markov chain reaches the stationary distribution, so it is a waste of time to
let it go all the way to the stationary distribution. The learning rule consists in lowering the energy of the data and raising
the energy of the state of the Markov chain after running it for a few steps. Eventually the learning will cancel out once
the network has created energy minima at the data.

22

The weakness of Contrastive Divergence lies in regions of the data space that have low energy and that are far away from
the data. Such regions will never be reached by the Markov chains if k is too small and their energy will never be raised.
A way to avoid this is to start with small k and to increase k gradually. By increasing k to a large enough value, it is
possible to approximate maximum-likelihood learning arbitrarily well [4].

9.5 Persistent contrastive divergence
The second algorithm, known as persistent contrastive divergence (PCD), is due to Neal and was originally used to train
Sigmoid Belief Networks [16]. It works as follows. Instead of starting the Markov chain from a random configuration,
the idea is to use a persistent Markov chain, also called persistent particle. In other words, the Markov chain starts
from whatever state it ended up in the previous time. The advantage of using persistent particles is that it gives a warm
start to the Markov chain. If the Markov chain was at thermal equilibrium last time and if the weights of the network have
changed little, then it should only take a few updates to the Markov chain to reach thermal equilibrium again. So we do
not need to run the Markov chain all the way from a random state to thermal equilibrium as in the naive approach.

In fact, one single persistent particle is insufficient to sample from all the data space. So we use a set of a few hundreds of
persistent particles. This makes PCD very well suited for a mini-batch learning procedure. And when used in mini-batch
learning, it is natural to choose the number of persistent particles equal to the size of the mini-batches.

Figure 15: The learning helps Markov chains mix faster

A question arises though: how can the negative phase in equation (17) be well estimated with only a few hundreds of
persistent particles, whereas the data space may be highly multi-modal and have many more than hundreds of modes?
Here is an attempt to explain. We need to keep in mind that the statistics collected by using a persistent particle is an
approximation of

sisj − sw
i s

w
j ,

which in turn is an unbiased estimator of

∂ log(Pw(s))
∂wi,j

= sisj − 〈sisj〉model .

The whole algorithm cannot be analyzed by viewing the learning as an outer loop and the Markov chain as an inner loop.
On the contrary, the learning interacts with the Markov chain that is being used to gather the statistics for the negative

23

phase. If a mode has more persistent particles than data, the learning will raise the energy surface of the mode and help the
persistent particles escape from the mode. Conversely, if a mode has less persistent particles than data, the learning will
lower the energy surface of the mode and attract the persistent particles in it. The interactions between the learning and
the Markov chains make the persistent particles move around much faster than a Markov chain defined by static weights.
The interactions enable the persistent particles to overcome energy barriers that would be too high for the Markov chain to
cross in a reasonable time. The learning does not only define the model but also helps the Markov chain mix faster (figure
15).

10 Boltzmann machines (general version)
In this section, we introduce the proper general version of Boltzmann Machines. As compared to the fully visible version
described in the previous section, they have hidden units that increase the learning capacity of the model. However, we
will see that learning general Boltzmann Machines is also more complicated than in the fully visible case. In the last
two subsections we introduce two algorithms for learning (general) BMs, called Mean Field approximation and Deep
Boltzmann Machines, that have been discovered more recently [19]. These two subsections can be safely skipped by
the reader as we will not talk anymore about them in the sequel. The main purpose of introducing general Boltzmann
Machines here is to have more insight for understanding Restricted Boltzmann Machines that will be described in the next
section.

10.1 Energy-based models (general version)
First, we extend the framework of energy-based models to which the general Boltzmann Machines belong. Recall the
notations introduced in subsection 9.1. We now introduce a hidden state to increase the expressive power of the model.
The data space is now represented by a variable v called visible state, whereas the hidden state is represented by a
latent variable h. The joint configuration (also called global configuration) is denoted by s = (v, h) in order to remain
consistent with the notations introduced previously. The model defines a probability distribution over s = (v, h) in the
same way as before. Moreover, it defines a probability distribution over the visible state by the formula

Pw(v) =
∑

h

Pw(v, h) =
∑

h

e−Ew(v,h)

Z
.

We introduce the free energy of a visible configuration:

Fw(v) := − log
∑

h

e−Ew(v,h), (20)

so that we can write

Pw(v) = e−Fw(v)

Zw
and Zw =

∑
v

e−Fw(v),

which recalls the form of equation (14). Now, the gradient of the negative log-likelihood of a data vector v has the form

−∂ log(Pw(v))
∂wij

= ∂Fw(v)
∂wij

−
〈
∂Fw

∂wij

〉
model

. (21)

As usual, the two terms in equation (21) are referred to as the positive phase and the negative phase.

10.2 Model
In general Boltzmann machines (BM), the hidden state is modeled by introducing extra units called hidden units. From
now on, the units that model the data are called visible units and their state is denoted by v, while the state of the hidden
units is denoted by h. The joint configuration is denoted by s = (v, h).

Henceforth, given a data vector v, the Markov chain’s ability to search for low-energy configurations can be used to find
a configuration h over the hidden units such that the joint configuration (v, h) has low energy. We call the configuration

24

Figure 16: Boltzmann machine

h an interpretation (or an explanation) of the sensory input vector v. The energy of the joint configuration measures the
goodness of the interpretation. The lower the energy, the better the interpretation.

A BM defines among others the following five distributions: Pw(v, h), Pw(v), Pw(h), Pw(v|h) and Pw(h|v). As we will
see in the next subsection, two of them are particularly important for the learning, namely Pw(v, h) and Pw(h|v). The
procedure for sampling from Pw(v, h) is just the same as the procedure for sampling from Pw(s) in the case of fully
visible Boltzmann machines. The procedure for approximating samples from Pw(h|v) by running a Markov chains is also
similar: first clamp the data vector v to the visible units and initialize the hidden units at random, then let the network
settle to its stationary distribution by updating the hidden units sequentially and leaving the visible units alone.

10.3 Learning
In a general BM, computing the free energy Fw(v) (or its gradient) is intractable. A notable exception is the case of
Restricted Boltzmann Machines as we sill see in section 11. After differentiating Fw(v), equation (21) can be rewritten
as:

∂ log(Pw(v))
∂wi,j

= 〈sisj〉v − 〈sisj〉model (22)

where by definition

〈f〉v :=
∑

h

Pw(h|v)f(v, h) and 〈f〉model :=
∑
v,h

Pw(v, h)f(v, h),

for every function f defined on the space of the global configurations. Equation (22) shows that, as opposed to fully
visible BMs, in general BMs, both the positive and negative phases of the learning are intractable. Again, we retreat to
getting unbiased samples of the gradient of the log-likelihood:

" unbiased estimator of
∂ log(Pw(v))

∂wij
" = (sw

v)i(sw
v)j − sw

i s
w
j (23)

where sw
v is a sample of s = (v, h) from Pw(h|v) and sw is a fantasy particle at thermal equilibrium under Pw(v, h). And

again, those samples are not tractable, so we need to MCMC approximate them.

For the negative phase, we proceed just like for fully visible BMs, by keeping a set of persistent particles (PCD). In the
next two subsections, we will introduce two methods used for learning Boltzmann machine. The first method, called mean
field approximation speeds up the learning of the first phase by making an assumption on the model that is learnt. The
second method consists in considering a special architecture of Boltzmann machines, called Deep Boltzmann machines,
that enables to speed up the learning of the negative phase.

25

10.4 The mean field approximation
Recall that the right procedure to collect the statistics of the positive phase is to update the hidden units stochastically and
sequentially according to the formula

Pw(si = 1 | s−i) = σ

∑
j

sjwij

 , (24)

where σ(x) = 1/(1 + e−x) is the logistic function. However, this algorithm is too slow. The mean field approximation
[14] consists in updating the hidden units deterministically and simultaneously by using the logistic activation function:

pt+1
i = σ

∑
j

pt
jwij

 . (25)

Notice that in this setting the units are no longer considered as binary stochastic but real valued and deterministic. At
t =∞, the number pi can be loosely interpreted as the probability for unit i of being turned on.

Instead of equation (25), one can use the damped mean field approximation to avoid biphasic oscillations:

pt+1
i = λpt

i + (1− λ)σ

∑
j

pt
jwij

 , (26)

where typically λ = 0.5.

Figure 17: The set of "good" interpretations of the Necker cube is bimodal

Thus we have the following online learning algorithm for the positive phase: clamp a data vector v on the visible units,
initialize all the hidden units to 0.5, update all the hidden units in parallel using equation (26), repeat until convergence
and record pipj as an estimator of 〈sisj〉v . Notice that, in contrast with the Markov chain procedure where it is hard to
tell when thermal equilibrium has been reached, in the updating procedure described by equation (26) it is easy to decide
when the sequence has converged.

Notice that the mean field approximation associates to each data vector v only one interpretation h in a deterministic
way. This restricts ourselves to learning models in which one sensory input vector does not have multiple very different
interpretations. In other words, this algorithm makes an assumption of uni-modality. Note that this is a strong assumption:
figure 17 shows a simple example of a 2D-image that has two very different 3D-interpretations. A Boltzmann Machine
trained with mean field approximation cannot model these two different 3D-interpretations.

26

Finally, let us point out that the uni-modal assumption is only reasonable for the positive phase. Using the mean field
approximation for the negative phase would mean that we restrict ourselves to learning a model with only one energy
minimum.

10.5 Deep Boltzmann machines
Combining the mean field approximation for the positive phase and persistent fantasy particles for the negative phase
provides an efficient mini-batch learning procedure for Boltzmann Machines [19]. In fact, one can speed up the negative
phase by restricting the model to a special architecture.

In a general (fully-connected) Boltzmann machine, sampling from Pw(v, h) by Gibbs sampling is slow because the
stochastic updates of the units need to be sequential. However, there exists a special architecture that allows to make
computations more parallel. These networks, called deep Boltzmann machines (DBM), are divided into layers, like the
MLP (section 7.1). The visible units form the bottom layer while the hidden units form other layers (figure 18). There is
no connection within a layer and also no skip-layer connections. In such a network, given the states of all units in all odd
(resp. even) layers, all the units in all even (resp. odd) layers are independent and can be computed in parallel. Therefore,
at each step, one can update half of the units in parallel. This method is called alternating parallel Gibbs sampling (or
block Gibbs sampling).

Figure 18: Deep Boltzmann machine

11 Restricted Boltzmann machines
In this section, we introduce the Restricted Boltzmann Machine (RBM), which was originally called Harmonium[20].
RBMs are just Boltzmann machines with a simplified architecture, in which a lot of connections are missing. We will also
describe two powerful algorithms for learning RBMs, namely the Contrastive Divergence algorithm and the Persistent
Contrastive Divergence algorithm, already introduced in section 9. RBMs are major tools for understanding Deep Belief
Networks (DBN) that we will discuss in section 13.

11.1 Model
Restricted Boltzmann Machines have a much simpler architecture in which there is no visible-to-visible connection and
no hidden-to-hidden connection (figure 19). As we will see in a moment, this implies two important consequences:

1. sampling from Pw(h|v) and Pw(v|h) is straightforward (in particular the exact value of the positive phase of the
learning can be computed efficiently);

27

2. samples from Pw(v, h), Pw(v) and Pw(h) are still intractable, but the Markov chains to approximate those samples
converge faster.

Figure 19: Restricted Boltzmann machine

By convention, in a RBM, we denote by i the index of a visible unit and by j the index of a hidden unit. A consequence
of the architecture of RBMs is that the hidden units are conditionally independent given the states of the visible units, and
vice versa, that is:

Pw(h|v) =
∏

j

Pw(hj |v) and Pw(v|h) =
∏

i

Pw(vi|h).

Therefore, for RBMs, the inference problem is easy and fast: samples from Pw(h|v) can be obtained in exactly one step
and the computations for each hidden unit can be made in parallel. Similarly, given the states of the hidden units, the
visible units can be updated in parallel. Samples from Pw(v, h) are still intractable, but we can speed up the Markov
chain that approximates them by sampling from Pw(h|v) and Pw(v|h) alternatively. Just like in the case of DBMs (see
subsection 10.5), we call this algorithm alternating parallel Gibbs sampling. Finally, although this is not required, the
visible-to-hidden pairs are fully connected in practice.

11.2 Learning
In the case of RBMs, the free energy defined by equation (20) and its gradient take the form

Fw(v) = −
∑

j

log
(

1 + e
∑

i
viwij

)
and

∂Fw(v)
∂wij

= −vi · σ

(∑
i′

vi′wi′j

)
,

where σ(x) = 1/(1+e−x) is the logistic function. Therefore, in the learning algorithm defined by equation (21), the value
of the positive phase can be computed exactly. This can also be seen directly from equation (22). Moreover, collecting the
statistics of the negative phase boils down to sampling from Pw(v). These samples can be approximated by alternating
parallel Gibbs sampling, as described in the previous subsection. To conclude this section, we show how Contrastive
Divergence (see subsection 9.4) and Persistent Contrastive Divergence (see subsection 9.5) can be used in the case of
RBMs to speed up the negative phase of the learning.

The RBM-version of the CD-k algorithm works as follows. Start the Markov chain from the data point, denoted by
v(0) = v, and then sample h(0), v(1), h(1), · · · , h(k−1), v(k) successively by alternating parallel Gibbs sampling. The
procedure is illustrated in figure 20. The gradient of the negative log-likelihood is then estimated by

" estimator of − ∂ log(Pw(v))
∂wij

" = ∂Fw(v(0))
∂wij

− ∂Fw(v(k))
∂wij

.

The shortcut (choosing small k), as described in subsection 9.4, still applies to RBMs. Choosing k = 1 means that
we collect the statistics for the negative phase from the reconstruction of the sensory input (figure 21). So, with CD-
1, the network is trained to be good at reconstructing the data in one step, not at maximizing the log-likelihood of the
data. The reconstructions of the data after running the Markov chain for one full step are also called confabulations by
psychologists.

28

Figure 20: Contrastive divergence for RBMs (CD-k)

Finally, we briefly specify the RBM-version of the PCD-k algorithm introduced by Tieleman [22]. Recall from subsection
9.5 that we keep a set of persistent (fantasy) particles. During the negative phase, each persistent particle is updated by k
full steps of the Markov chain before collecting the statistics vihj . In fact, we do not need to store the global configuration
(v, h) of the persistent particles. We only need to store their configuration over the visible units v. Then we can update
the hidden and visible units k times by alternating parallel Gibbs sampling.

Figure 21: Contrastive divergence for RBMs (CD-1)

12 Sigmoid belief networks
In the last sections, we have seen energy-based models. In this section, we introduce sigmoid belief networks (SBN)
which belong to a second type of generative models called causal models. Understanding SBNs is a prerequisite to
understanding Deep Belief Networks (DBN) that we will introduce in the next section. However, we will not go in the
details of the learning algorithms for SBNs because they are not the main focus of this part. We start this section by briefly
describing the more general class of Bayes networks.

12.1 Early graphical models
The prototype of causal models is the Bayes network, also called belief network. Bayes networks are directed acyclic
graphs with stochastic variables in the nodes (figure 22). In these networks, by convention, the bottom nodes (the leafs)

29

represent observed effects, whereas the other nodes represent hidden causes. The model generates data as follows. First
the hidden states in the top layer are independently picked at random from their prior distribution. Then the states of the
nodes in the next layers are sampled from their conditional distribution given the states of the upper nodes.

Figure 22: An example of Bayes network

In Bayes networks, the main effort is made for the inference problem, that is, given observed consequences, we want to
infer the state the hidden causes. Unfortunately, because of the so-called explaining away effect, inference algorithms
for Bayes networks are exponential in the in-degrees of the nodes. This makes them unpractical for big densely connected
graphs. For this reason, early graphical models were small, sparsely connected and meant to be interpretable. On the other
hand, the learning problem (learning the weights) was mostly ignored in early Bayes networks. The architecture of the
graph and the weights (the conditional probabilities) were designed and hand-coded by experts. The weights could not
learn and adapt.

In contrast with early Bayes networks, neural networks don’t aim for interpretability or sparse connectivity. In neural
networks, the learning is crucial: the knowledge comes from learning the training data, not from experts. In the sequel we
introduce a neural network version of the Bayes network called sigmoid belief network.

12.2 Model
Like a BM, a sigmoid belief network (SBN) is a generative model that describes a probability distribution over binary
data. However, the probability distribution that it defines does not involve an energy function and a normalization constant
(the partition function). In this subsection, we describe how a SBN defines a probability distribution.

Like a feedforward neural network (see subsection 7), a SBN is a directed acyclic graph. If there is a directed connection
from unit i to unit j, we say that i is a parent of j and that j is a child of i. If unit i has no parent, we say that i is an
orphan; if it has no child, we say that it is a leaf. The visible units, corresponding to a configuration of the data space,
are the leafs of the graph. Their state is denoted by v. All other units, including the orphans, are the hidden units. Their
state is denoted by v. A global configuration (also called joint configuration) is a configuration over all units, visible
and hidden. Like in feedforward neural networks, we write I(i) the set of parents of unit i and denote by

sI(i) := {sj : j ∈ I(i)}

the states of its parents. Finally, all biases are treated by adding an extra unit, numbered 0, whose activation is constantly
equal to 1, and connected to all other units. We have 0 ∈ I(i) for all node i and the bias of unit i is written bi = w0i.

Unlike feedforward neural networks that are composed of logistic units, SBNs have binary stochastic units. The activation
function of unit i given the states of its parents is defined by

Pw(si = 1 | sI(i)) := σ

 ∑
j∈I(i)

sjwji

 , (27)

30

where σ(x) = 1/(1 + e−x) is the logistic function. If unit i is an orphan, then I(i) = {0} and equation (27) simplifies to

Pw(si = 1) = σ (bi) .

Therefore, orphans represent independent events. Next, the probability of a global configuration is given by

Pw(s) =
∏

i

Pw(si | sI(i)). (28)

Finally, by denoting s = (v, h) a joint configuration of the visible and hidden units, the probability of the visible configu-
ration v is

Pw(v) =
∑

h

Pw(v, h). (29)

Equation (28) shows that, unlike EBMs, computing Pw(v, h) in a SBN is straightforward. Indeed, SBNs are locally
normalized models: they don’t have an intractable normalization constant like EBMs have (i.e. the partition function).
On the other hand, equation (29) shows that Pw(v) involves exponentially many terms in the number of hidden units and
is therefore intractable for big graphs.

Finally, let us point out that, just like MLPs, DBMs, RBMs and other neural network models, SBNs often arise under the
architecture of a multi-layer network that enable fast parallel computations.

Figure 23: Sigmoid belief network (SBN)

12.3 Learning
Similarly to BMs, we learn the weights of a SBN by performing gradient ascent on the log-likelihood of the training data.
The learning rule for a global configuration s takes the form

∂ log(Pw(s))
∂wij

= sj(si − pi), (30)

where

pi := e

∑
j∈I(i)

sjwji

1 + e

∑
j∈I(i)

sjwji

is the probability that node i is turned on given the states of its parents.

31

Proof of equation (30). It follows from equation (28) that

∂ log(Pw(s))
∂wij

=
∂ log

(
Pw(si | sI(i))

)
∂wij

.

Moreover, it is easily checked, by distinguishing between the cases si = 1 and si = 0, that equation (27) can be rewritten

Pw(si | sI(i)) = e

∑
j∈I(i)

sjwjisi

1 + e

∑
j∈I(i)

sjwji

.

Finally, we get
∂ log

(
Pw(si | sI(i))

)
∂wij

= sjsi − sjpi,

as desired.

Unlike BMs, there is only one phase in the learning procedure of a global configuration of a SBN. This phase corresponds
to the positive phase in a BM. There is no negative phase because SBNs are locally normalized models as mentioned in
the previous subsection. Therefore, learning a global configuration is straightforward.

Now let us tackle the problem of learning a configuration over the visible units. Recall that we write s = (v, h) for a
global configuration. The gradient of the log-likelihood of a data point v takes the form

∂ log(Pw(v))
∂wij

= 1
Pw(v)

∑
h

∂Pw(v, h)
∂wij

= 1
Pw(v)

∑
h

Pw(v, h) sj(si − pi)

= 〈sj(si − pi)〉v ,

where by definition
〈f〉v :=

∑
h

Pw(h|v) f(v, h).

Again, the true value of the gradient is intractable since the sum has exponentially many terms in the number of hidden
units. So, in a similar way to the positive phase of a BM, learning the weights of a SBN boils down to the inference
problem, i.e. sampling from Pw(h|v). Unfortunately, inference is not easy in a SBN. Getting samples from Pw(h|v) is
much more difficult than in the case of BMs because of a phenomenon known as the explaining away effect. Unlike
BMs, no simple algorithm (such as MCMC) is known to get approximate samples from Pw(h|v) in a SBN.

Despite this difficulty, a learning algorithm was discovered by Hinton and al. in 1995, called the wake-sleep algorithm
[11]. This algorithm is a variational method that makes learning by assuming that the posterior distribution Pw(h|v) is
factorial (in other words by ignoring the explaining away effect). This algorithm makes the learning wrongly but it can be
proved that it improves a variational lower bound on the log probability of the model. We will not describe this algorithm.

13 Deep belief networks
In this section, we introduce a model that is neither a pure energy-based model, nor a pure causal model, but rather a
mixture of the two. This hybrid model has the capacity to learn more complex distributions than SBNs. The deep belief
network (DBN) corresponds to a particular architecture of this hybrid model. We will show how one can train a DBN by
using the learning algorithms of RBMs.

32

13.1 Model
We introduce a graphical model defined as follows. First, a set of nodes are linked with symmetric connections to form
a BM. We denote by sBM the configuration of these nodes and by wBM the weights of the connections between them.
Next, extra nodes and directed connections are added. When removing mentally the symmetric connections in the BM,
the whole graph forms a SBN whose orphans are the nodes in the BM. We further denote by wSBN the weights of the
directed connections, by w = (wBM , wSBN) the set of all weights, and by s a global configuration. The probability
distribution defined by this generative model is given by

Pw(s) := PwBM
(sBM) PwSBN

(s|sBM),

where PwBM
(sBM) is the probability distribution defined by the BM and PwSBN

(s|sBM) is the probability distribution
defined by the SBN. As usual, the global configuration s can be split in a visible and a hidden part s = (v, h).

The sampling procedure in this hybrid model is the following. Starting from any state sBM over the BM, run a Markov
chain in the BM by Gibbs sampling so as to reach thermal equilibrium. Then, update each unit in the SBN stochastically
in their topological order.

This model resembles a SBN, but instead of having independent orphans, the distribution over the orphans is determined
by a BM. In a purely causal model such as a SBN, the top hidden causes are independent. This restricts the capacity of
these models. In contrast, using a BM enables to model a better prior distribution (not necessarily factorial) over the top
hidden causes.

Figure 24: Deep belief network (DBN)

In practice, the hybrid model described above appears in the form of a multilayer architecture: the top two layers form a
RBM while the next layers form a SBN (figure 24). This model is called a deep belief network (DBN). Generating data
is done as follows: first get a sample from the thermal equilibrium in the top RBM by alternating parallel Gibbs sampling
(this step defines the prior distribution over the penultimate layer), then perform a top-down pass in the SBN.

13.2 Learning layers of features by stacking RBMs
In subsection 11.2, we saw two efficient algorithms, namely CD-k and PCD-k, that enable RBMs to learn a layer of non-
linear features of the data. A natural idea is to take these features, treat them as data and learn another RBM to model
the correlations between the features. We thus learn features of features. Continuing this way by stacking one RBM on

33

top of the previous one, one can learn as many layers of non-linear features as one likes [10]. Each new layer of features
models the correlated activity in the features in the layer below. This idea, called greedy layer-wise training, led to a big
resurgence of interest in learning deep neural networks in 2006.

Figure 25: Combining two RBMs to make a DBN

The model built by stacking RBMs successively on top of each other should be seen as a DBN. Indeed, if all layers have
the same number of units, then it can be proved that, each time a new layer of features is added by stacking an RBM, we
improve a variational lower bound on the log probability of generating the training data. Here is a heuristic of the proof.
Consider a DBN and call W the weights of the connections of the RBM in the top two layers. Now, consider a copy of
this DBN, regard it as a SBN, and make it a new DBN by stacking on top of it an RBM whose weights are initialized
to be WT (figure 26). Clearly, these two generative models are equivalent. Indeed the top RBM in the second model is
just the top RBM in the first model upside down. Now, the second model can only improve if we train its top RBM with
maximum-likelihood learning.

Figure 26: Equivalence between two DBNs

34

14 Back to the multi-layer perceptron
In subsection 7.3, we said that one difficulty encountered when training deep MLPs is the poor initialization of the weights
before starting backpropagation. In the previous section, we have seen how a DBN can learn multiple layers of non-linear
features. We will see in a moment that this DBN can be advantageously converted into a MLP. Thus, the learning of the
DBN can be regarded as a pre-training phase for finding a good initialization of the weights of an MLP. The model can
finally be fine-tuned by backpropagation to be better at discrimination.

14.1 Discriminative fine-tuning of DBNs
Once layers of features of the data vectors have been learnt by stacking RBMs, we can regard the model as an MLP,
stack on top of it a logistic regression layer of the dimension of the labels, initialize the weights of this layer to 0, and
fine-tune the model by backpropagation (figure 27). This method turns out to work well in practice. Although it is not
well understood why the method works, let us give some informal arguments.

Figure 27: Converting a DBN into a MLP

First, we justify the benefit of the pre-training phase from the point of view of optimization. We have seen in section 7.3
that learning deep MLPs is difficult because the objective cost function is non-convex. Optimization by gradient descent
is sensitive to the initial weights of the network. When the network is not pre-trained, the gradient descent needs to do a
global search from a random starting point. In contrast, when the network is pre-trained, the gradient descent only needs
to do a local search from a sensible starting point. The pre-training phase enables to discover sensible feature detectors
that will help for the discriminative task. The fine-tuning by backpropagation only modifies the features slightly to set the
decision boundaries between the classes in right places. Backpropagation does not need to discover new features.

Second, the pre-training phase makes the network generalize better and shows less over-fitting. In fact, most of the
information in the final weights comes from the pre-training phase, i.e. from modeling the distribution of the input
vectors, not from backpropagation. Indeed, in AI-level tasks such as image recognition, the input vectors (i.e. the images)
typically contain much more information than the labels. A label contains only a few bits of information that are only
used for fine-tuning the model.

35

Actually, the discriminative fine-tuning phase (backpropagation) does not require as much labeled data as the pretraining
phase. The learning procedure with greedy layerwise pretraining is very suitable for semi-labeled data, that is, when most
of the training data is unlabeled. The unlabeled data is still usefull for discovering good features during the pretraining
phase.

14.2 Comparison of MLPs with/without unsupervised pre-training
In this subsection, we build MLP models with greedy layer-wise pre-training to discriminate between classes of the
MNIST digits, and we compare them to MLP models of subsection 7.3. First we train a DBN for modeling the MNIST
digits. Recall however that DBNs model binary data. Therefore, we treat the real-valued pixel intensities of the gray-scale
images as probabilities for a pixel to be black. Each time an image is processed, it is binarized by sampling from the given
Bernoulli distribution for each pixel. Once the DBN has been trained, we add a 10-way softmax at the top of the network
and fine-tune the weights of the MLP by backpropagation (figure 27).

Figure 28 shows the effect of depth on MLPs with and without pre-training. The first observation is that for the same
number of layers, networks with pre-training perform better than networks without pre-training. Secondly, without pre-
training, deep networks perform worse than shallow networks, whereas with pre-training, deep networks perform better
than shallow networks.

Figure 28: Effect of depth (with and without pre-training)

Finally, we describe a method to represent and visualize neural networks, so that we can compare pre-trained models
and not pre-trained models. First, let us point out that it is no use comparing networks in the weight space, because
two networks that are very far from each other in this space may represent models that implement the same function.
This happens when one permutes the units within the layers of an MLP, for example. A sensible way to compare neural
networks is to compare the functions that they implement: we take a bunch of test cases and concatenate the outputs
produced by the network into one long vector.

Figure 29 shows how models produced with and without pre-training evolve during backpropagation. The 2D-visualization
is produced by t-SNE (stochastic neighborhood embedding) [23]. The color shows the epoch of the training phase. Re-
markably, pre-trained models and not pre-trained models form two well separated clusters. All models obtained with
(resp. without) pre-training are in the lower (resp. upper) part of the figure. The fact that there is no overlap between
pre-trained and not pre-trained models shows that these types of networks are qualitatively different. Without pre-training,
all models start pretty much from the same initial point, then separate and end up in different local minima. In contrast,
with pre-training, all models tend to be more similar.

36

Figure 29: Models in the function space. Visualization with t-SNE

37

15 Experimentation: DBN for generating handwritten digits
In this final section, by using the dataset of MNIST digits, we build the Deep Belief Network introduced by Hinton,
Osindero and Teh in [10] for generating handwritten digits. The model is shown in figure 30. We first train a RBM on
top of the input layer x and call this hidden layer h1. Then we train a second RBM on top of h1 and call this second
hidden layer h2. Finally, we concatenate h2 and the label units y, train a third RBM and call this hidden layer h3. Finally
the weights of the DBN are fine-tuned by using a version of the wake-sleep algorithm called the contrastive wake-sleep
algorithm. We have thus built a DBN that models the joint distribution of images and their labels.

Figure 30: A DBN for modeling the MNIST digits. The first two hidden layers
are learned without using the labels. The top layer is learned as an RBM for
modeling the labels concatenated with the features in the second hidden layer.

38

The model can generate images both in "free mode" or with a label clamped on the label units. Figure 32 shows images
generated by the model in free mode, with 1000 steps of Gibbs sampling between every two. The top RBM typically
stays in the same ravine of energy for a while before it jumps to another ravine. Therefore it takes some time before the
model switches from one class of labels to another. When generating images with a label clamped on the label units, it
will typically take a few dozens of iterations of Gibbs sampling for the RBM to settle in the corresponding energy ravine
and then the Markov chain will stay in the ravine forever.

Figure 31: Image generated by the model when clamping a 6 to the label units

Figure 32: Each column shows 10 samples from the generative model in free
mode. The top-level RBM is run for 100 iterations of alternating parallel Gibbs
sampling between samples.

39

The model can also be used to classify new inputs by using variational inference (figure 33). The error rate that I obtain
on the MNIST test set is 1.62%.

Figure 33: Model used as a classifier on a test image

Finally, for a given unit from the hidden layers, one can inspect what kind of input image stimulates this unit. This gives
an idea of the type of feature detectors that the model has learnt. To do so, one maximizes the pre-activation of this unit
numerically by performing gradient ascent with respect to the input image (with backpropagation).

Figure 34: Input image maximizing the activation of a given unit in the layer
h1. Image obtained by numerical optimization with backpropagation.

40

Figure 35: Input image maximizing the activation of a given unit in the layer
h2. Image obtained by numerical optimization with backpropagation.

Figure 36: Input image and label maximizing the activation of a given unit in
the layer h3. Image and label obtained by numerical optimization with back-
propagation.

41

Part IV

Appendix: Python Code
1 import cPickle

import numpy as np
3 import os

import theano
5 import theano . tensor as T

import theano . tensor . extra_ops
7 from theano . tensor .shared_randomstreams import RandomStreams

9 def initialize_layer (n_in_list , n_out) :

11 rng = np.random.RandomState()
params = []

13

for n_in in n_in_list :
15 vb_values = np.zeros ((n_in ,) , dtype=theano. config . floatX)

W_values = np. asarray (
17 rng .uniform(

low=−np.sqrt(6. / (n_in + n_out)) ,
19 high=np. sqrt (6. / (n_in + n_out)) ,

size=(n_in , n_out)
21) ,

dtype=theano. config . floatX
23)

W_values *= 4
25 params.extend ([vb_values , W_values])

27 hb_values = np.zeros ((n_out ,) , dtype=theano. config . floatX)
params.append(hb_values)

29

return params
31

def initialize_rbm (path , n_in_list , n_out) :
33 f = file (path , ’wb’)

params = initialize_layer (n_in_list , n_out)
35 cPickle .dump(params, f, protocol =cPickle .HIGHEST_PROTOCOL)

f . close ()
37

def load(path) :
39 f = file (path , ’rb’)

params = cPickle . load(f)
41 f . close ()

return params
43

The class RBM is used to build :
45 # − the layer h1 on top of the layer x

− the layer h2 on top of the layer h1
47 class RBM(object):

49 def __init__ (self , vb, W, hb, theano_rng) :
self .vb = theano . shared(value=vb, name=’vb’, borrow=True)

51 self .W = theano . shared(value=W, name=’W’, borrow=True)
self .hb = theano . shared(value=hb, name=’hb’, borrow=True)

53 self .params = [self .vb, self .W, self .hb]
self . theano_rng = theano_rng

55

def prop_up(self , v) :
57 h_pre = T.dot(v, self .W) + self .hb

h_mean = T.nnet.sigmoid(h_pre)
59 h_sample = self . theano_rng.binomial(size=h_mean.shape, n=1, p=h_mean, dtype=theano.config . floatX)

return [h_pre, h_mean, h_sample]
61

def prop_down(self , h) :

42

63 v_pre = T.dot(h, self .W.T) + self .vb
v_mean = T.nnet.sigmoid(v_pre)

65 v_sample = self . theano_rng.binomial(size=v_mean.shape, n=1, p=v_mean, dtype=theano.config . floatX)
return [v_pre, v_mean, v_sample]

67

def gibbs(self , v) :
69 [h_pre, h_mean, h_sample] = self .prop_up(v)

[v_pre, v_mean, v_sample] = self .prop_down(h_sample)
71 return [h_pre, h_mean, h_sample, v_pre, v_mean, v_sample]

73 def free_energy (self , v) :
[h_pre, _, _] = self .prop_up(v)

75 return − T.dot(v, self .vb) − T.sum(T.log(1 + T.exp(h_pre)) , axis=1)

77 # The class Top_RBM is used to build the layer h3 on top of the layers y and h2
class Top_RBM(object):

79

def __init__ (self , vby, Wy, vb2, W2, hb3, theano_rng) :
81 self .vby = theano . shared(value=vby, name=’vby’, borrow=True)

self .Wy = theano . shared(value=Wy, name=’Wy’, borrow=True)
83 self .vb2 = theano . shared(value=vb2, name=’vb2’, borrow=True)

self .W2 = theano. shared(value=W2, name=’W2’, borrow=True)
85 self .hb3 = theano . shared(value=hb3, name=’hb3’, borrow=True)

self .params = [self .vby, self .Wy, self .vb2, self .W2, self .hb3]
87 self . theano_rng = theano_rng

89 def prop_up(self , y, h2):
h3_pre = T.dot(y, self .Wy) + T.dot(h2, self .W2) + self .hb3

91 h3_mean = T.nnet.sigmoid(h3_pre)
h3_sample = self . theano_rng.binomial(size=h3_mean.shape, n=1, p=h3_mean, dtype=theano.config . floatX)

93 return [h3_pre, h3_mean, h3_sample]

95 def prop_down(self , h3):
y_pre = T.dot(h3, self .Wy.T) + self .vby

97 y_mean = T.nnet.softmax(y_pre)
y_sample, updates = theano .scan(

99 fn = lambda p: self . theano_rng. multinomial(n=1, pvals=p, dtype=theano. config . floatX) ,
sequences = y_mean

101)
h2_pre = T.dot(h3, self .W2.T) + self .vb2

103 h2_mean = T.nnet.sigmoid(h2_pre)
h2_sample = self . theano_rng.binomial(size=h2_mean.shape, n=1, p=h2_mean, dtype=theano.config . floatX)

105 return [y_pre, y_mean, y_sample, h2_pre, h2_mean, h2_sample], updates

107 def gibbs(self , y, h2):
[h3_pre, h3_mean, h3_sample] = self .prop_up(y,h2)

109 [y_pre, y_mean, y_sample, h2_pre, h2_mean, h2_sample], updates = self .prop_down(h3_sample)
return [h3_pre, h3_mean, h3_sample, y_pre, y_mean, y_sample, h2_pre, h2_mean, h2_sample], updates

111

def free_energy (self , y, h2):
113 [h3_pre, _, _] = self .prop_up(y, h2)

return − T.dot(h2, self .vb2) − T.dot(y, self .vby) − T.sum(T.log(1 + T.exp(h3_pre)) , axis=1)
115

class DBN(object):
117

def __init__ (self) :
119

if not os . path . isfile ("h1.save") :
121 initialize_rbm ("h1.save" , [28*28], 500)

if not os . path . isfile ("h2.save") :
123 initialize_rbm ("h2.save" , [500], 500)

if not os . path . isfile ("h3.save") :
125 initialize_rbm ("h3.save" , [10, 500], 2000)

127 [vbx, Wx, hb1] = load("h1.save")
[vb1, W1, hb2] = load("h2.save")

129 [vby, Wy, vb2, W2, hb3] = load("h3.save")

43

131 self . theano_rng = RandomStreams(np.random.RandomState().randint(2 ** 30))

133 self . layer1 = RBM(vbx, Wx, hb1, self.theano_rng)
self . layer2 = RBM(vb1, W1, hb2, self.theano_rng)

135 self . layer3 = Top_RBM(vby, Wy, vb2, W2, hb3, self.theano_rng)

137 def save(self) :

139 f = file ("h1.save" , ’wb’)
params = [param.get_value () for param in self . layer1 .params]

141 cPickle .dump(params, f, protocol =cPickle .HIGHEST_PROTOCOL)
f . close ()

143

f = file ("h2.save" , ’wb’)
145 params = [param.get_value () for param in self . layer2 .params]

cPickle .dump(params, f, protocol =cPickle .HIGHEST_PROTOCOL)
147 f . close ()

149 f = file ("h3.save" , ’wb’)
params = [param.get_value () for param in self . layer3 .params]

151 cPickle .dump(params, f, protocol =cPickle .HIGHEST_PROTOCOL)
f . close ()

153

def build_generator_layer_1 (self) :
155

x_start = T.matrix(’ x_start ’)
157 x = self . theano_rng.binomial(size= x_start .shape, n=1, p= x_start , dtype=theano. config . floatX)

[_, _, h1_sample] = self . layer1 .prop_up(x)
159 [_, x_mean, _] = self . layer1 .prop_down(h1_sample)

161 generator_layer_1 = theano . function (
inputs =[x_start],

163 outputs=[x_mean, h1_sample]
)

165

return generator_layer_1
167

def build_generator_layer_2 (self) :
169

h1_start = T.matrix(’ h1_start ’)
171 [_, _, h2_sample] = self . layer2 .prop_up(h1_start)

[_, _, h1_sample] = self . layer2 .prop_down(h2_sample)
173 [_, x_mean, _] = self . layer1 .prop_down(h1_sample)

175 generator_layer_2 = theano . function (
inputs =[h1_start],

177 outputs=[x_mean, h1_sample, h2_sample]
)

179

return generator_layer_2
181

def build_generator_layer_3 (self) :
183

h2_start = T.matrix(’ h2_start ’)
185 y_start = T.matrix(’ y_start ’)

[_, _, h3_sample] = self . layer3 .prop_up(y_start , h2_start)
187 [_, _, y_sample, _, _, h2_sample], updates = self . layer3 .prop_down(h3_sample)

[_, _, h1_sample] = self . layer2 .prop_down(h2_sample)
189 [_, x_mean, _] = self . layer1 .prop_down(h1_sample)

191 generator_layer_3 = theano . function (
inputs =[y_start , h2_start],

193 outputs=[x_mean, y_sample, h1_sample, h2_sample, h3_sample],
updates=updates

195)

197 return generator_layer_3

44

199 def build_trainer_layer_1 (self , datasets) :

201 (train_set_x , train_set_y) = datasets [0]
batch_size = T. lscalar (’ batch_size ’)

203 index = T. lscalar (’index’) # index of a mini−batch
x = train_set_x [index * batch_size : (index + 1) * batch_size]

205 x_sample = self . theano_rng.binomial(size=x.shape, n=1, p=x, dtype=theano. config . floatX)

207 chain_start = T.matrix(’ chain_start ’)
k = T. iscalar (’k’)

209 ([_, _, _, _, _, chain], updates) = theano .scan(
self . layer1 . gibbs ,

211 outputs_info =[None, None, None, None, None, chain_start],
n_steps=k

213)
chain_end = chain[−1]

215

cost = T.mean(self . layer1 . free_energy (x_sample)) − T.mean(self. layer1 . free_energy (chain_end))
217 params = self . layer1 .params

gparams = T.grad(cost=cost , wrt=params, consider_constant =[x_sample, chain_end])
219 learning_rate = T. dscalar (’ learning_rate ’)

for gparam, param in zip (gparams, params):
221 updates[param] = param − gparam * learning_rate

223 train_pcd = theano . function (
inputs =[index , chain_start , batch_size , k, learning_rate],

225 outputs=[cost , chain_end],
updates=updates

227)

229 train_cd = theano . function (
inputs =[index , batch_size , k, learning_rate],

231 outputs=[cost],
updates=updates,

233 givens={ chain_start : x_sample}
)

235

return [train_pcd , train_cd]
237

def build_trainer_layer_2 (self , datasets) :
239

(train_set_x , train_set_y) = datasets [0]
241 batch_size = T. lscalar (’ batch_size ’)

index = T. lscalar (’index’)
243 x = train_set_x [index * batch_size : (index + 1) * batch_size]

x_sample = self . theano_rng.binomial(size=x.shape, n=1, p=x, dtype=theano. config . floatX)
245 [_, _, h1_sample] = self . layer1 .prop_up(x_sample)

247 chain_start = T.matrix(’ chain_start ’)
k = T. iscalar (’k’)

249 ([_, _, _, _, _, chain], updates) = theano .scan(
self . layer2 . gibbs ,

251 outputs_info =[None, None, None, None, None, chain_start],
n_steps=k

253)
chain_end = chain[−1]

255

cost = T.mean(self . layer2 . free_energy (h1_sample)) − T.mean(self. layer2 . free_energy (chain_end))
257 params = self . layer2 .params

gparams = T.grad(cost=cost , wrt=params, consider_constant =[h1_sample, chain_end])
259 learning_rate = T. dscalar (’ learning_rate ’)

for gparam, param in zip (gparams, params):
261 updates[param] = param − gparam * learning_rate

263 train_pcd = theano . function (
inputs =[index , chain_start , batch_size , k, learning_rate],

265 outputs=[cost , chain_end],
updates=updates

45

267)

269 train_cd = theano . function (
inputs =[index , batch_size , k, learning_rate],

271 outputs=[cost],
updates=updates,

273 givens={ chain_start : h1_sample}
)

275

return [train_pcd , train_cd]
277

def build_trainer_layer_3 (self , datasets) :
279

(train_set_x , train_set_y) = datasets [0]
281 batch_size = T. lscalar (’ batch_size ’)

index = T. lscalar (’index’)
283

y = train_set_y [index * batch_size : (index + 1) * batch_size]
285 y_one_hot = T.extra_ops . to_one_hot(y, 10)

287 x = train_set_x [index * batch_size : (index + 1) * batch_size]
x_sample = self . theano_rng.binomial(size=x.shape, n=1, p=x, dtype=theano. config . floatX)

289 [_, _, h1_sample] = self . layer1 .prop_up(x_sample)
[_, _, h2_sample] = self . layer2 .prop_up(h1_sample)

291

y_chain_start = T.matrix(’ y_chain_start ’)
293 h2_chain_start = T.matrix(’ h2_chain_start ’)

k = T. iscalar (’k’)
295 ([_, _, _, _, _, y_chain, _, _, h2_chain], updates) = theano .scan(

self . layer3 . gibbs ,
297 outputs_info =[None, None, None, None, None, y_chain_start , None, None, h2_chain_start],

n_steps=k
299)

y_chain_end = y_chain[−1]
301 h2_chain_end = h2_chain[−1]

303 cost = T.mean(self . layer3 . free_energy (y_one_hot,h2_sample)) − T.mean(self. layer3 . free_energy (y_chain_end,h2_chain_end))
params = self . layer3 .params

305 gparams = T.grad(cost=cost , wrt=params, consider_constant =[y_one_hot, h2_sample, y_chain_end, h2_chain_end])
learning_rate = T. dscalar (’ learning_rate ’)

307 for gparam, param in zip (gparams, params):
updates[param] = param − gparam * learning_rate

309

train_pcd = theano . function (
311 inputs =[index , h2_chain_start , y_chain_start , batch_size , k, learning_rate],

outputs=[cost , h2_chain_end, y_chain_end],
313 updates=updates

)
315

train_cd = theano . function (
317 inputs =[index , batch_size , k, learning_rate],

outputs=[cost],
319 updates=updates,

givens={
321 y_chain_start : y_one_hot,

h2_chain_start : h2_sample
323 }

)
325

return [train_pcd , train_cd]

code/dbn.py

46

import cPickle
2 from dbn import *

import numpy as np
4 import os

import theano
6 import theano . tensor as T

import theano . tensor . extra_ops
8 from theano . tensor .shared_randomstreams import RandomStreams

10 def initialize_finetuned_dbn () :

12 [vbx, Rx, hb1] = load("h1.save")
[vb1, R1, hb2] = load("h2.save")

14 [vby, Wy, vb2, W2, hb3] = load("h3.save")

16 Wx = Rx.transpose()
W1 = R1.transpose()

18

params = [vbx, Wx, Rx, hb1, vb1, W1, R1, hb2, vby, Wy, vb2, W2, hb3]
20

f = file ("dbn.save" , ’wb’)
22 cPickle .dump(params, f, protocol =cPickle .HIGHEST_PROTOCOL)

f . close ()
24

class Generative_Layer(object) :
26

def __init__ (self , vb, W, R, hb, theano_rng) :
28 self .vb = theano . shared(value=vb, name=’vb’, borrow=True)

self .W = theano . shared(value=W, name=’W’, borrow=True)
30 self .R = theano . shared(value=R, name=’R’, borrow=True)

self .hb = theano . shared(value=hb, name=’hb’, borrow=True)
32 self .params = [self .vb, self .W, self .R, self .hb]

self . theano_rng = theano_rng
34

def prop_up(self , v) :
36 h_pre = T.dot(v, self .R) + self .hb

h_mean = T.nnet.sigmoid(h_pre)
38 h_sample = self . theano_rng.binomial(size=h_mean.shape, n=1, p=h_mean, dtype=theano.config . floatX)

return [h_pre, h_mean, h_sample]
40

def prop_down(self , h) :
42 v_pre = T.dot(h, self .W) + self .vb

v_mean = T.nnet.sigmoid(v_pre)
44 v_sample = self . theano_rng.binomial(size=v_mean.shape, n=1, p=v_mean, dtype=theano.config . floatX)

return [v_pre, v_mean, v_sample]
46

def cost_wake(self , v,h) :
48 [v_pre, _, _] = self .prop_down(h)

cost = − T.batched_dot(v, v_pre) + T.sum(T.log(1 + T.exp(v_pre)) , axis=1)
50 return cost

52 def cost_sleep (self , v,h) :
[h_pre, _, _] = self .prop_up(v)

54 cost = − T.batched_dot(h, h_pre) + T.sum(T.log(1 + T.exp(h_pre)) , axis=1)
return cost

56

class Finetuned_DBN(object):
58

def __init__ (self) :
60

if not os . path . isfile ("dbn.save") :
62 initialize_finetuned_dbn ()

64 [vbx, Wx, Rx, hb1, vb1, W1, R1, hb2, vby, Wy, vb2, W2, hb3] = load("dbn.save")

66 self . theano_rng = RandomStreams(np.random.RandomState().randint(2 ** 30))
self . layer1 = Generative_Layer(vbx, Wx, Rx, hb1, self . theano_rng)

47

68 self . layer2 = Generative_Layer(vb1, W1, R1, hb2, self . theano_rng)
self . layer3 = Top_RBM(vby, Wy, vb2, W2, hb3, self.theano_rng)

70

self .params = self . layer1 .params + self . layer2 .params + self . layer3 .params
72

def save(self) :
74

f = file ("dbn.save" , ’wb’)
76 params = [param.get_value () for param in self .params]

cPickle .dump(params, f, protocol =cPickle .HIGHEST_PROTOCOL)
78 f . close ()

80 def build_trainer (self , datasets) :

82 (train_set_x , train_set_y) = datasets [0]
batch_size = T. lscalar (’ batch_size ’)

84 index = T. lscalar (’index’)

86 y = train_set_y [index * batch_size : (index + 1) * batch_size]
y_one_hot = T.extra_ops . to_one_hot(y, 10)

88

x = train_set_x [index * batch_size : (index + 1) * batch_size]
90 x_sample_up = self . theano_rng.binomial(size=x.shape, n=1, p=x, dtype=theano. config . floatX)

[_, _, h1_sample_up] = self . layer1 .prop_up(x_sample_up)
92 [_, _, h2_sample_up] = self . layer2 .prop_up(h1_sample_up)

94 y_chain_start = T.matrix(’ y_chain_start ’)
h2_chain_start = T.matrix(’ h2_chain_start ’)

96 k = T. iscalar (’k’)
([_, _, _, _, _, y_chain, _, _, h2_chain], updates) = theano .scan(

98 self . layer3 . gibbs ,
outputs_info =[None, None, None, None, None, y_chain_start , None, None, h2_chain_start],

100 n_steps=k
)

102 y_chain_end = y_chain[−1]
h2_chain_end = h2_chain[−1]

104

[_, _, h1_sample_down] = self . layer2 .prop_down(h2_chain_end)
106 [_, _, x_sample_down] = self . layer1 .prop_down(h1_sample_down)

108 cost_wake_1 = T.mean(self . layer1 .cost_wake(x_sample_up, h1_sample_up))
cost_wake_2 = T.mean(self . layer2 .cost_wake(h1_sample_up, h2_sample_up))

110 cost_rbm = T.mean(self . layer3 . free_energy (h2_sample_up, y_one_hot)) − T.mean(self. layer3 . free_energy (h2_chain_end,
y_chain_end))

cost_sleep_2 = T.mean(self . layer2 . cost_sleep (h1_sample_down, h2_chain_end))
112 cost_sleep_1 = T.mean(self . layer1 . cost_sleep (x_sample_down, h1_sample_down))

114 cost = cost_wake_1 + cost_wake_2 + cost_rbm + cost_sleep_2 + cost_sleep_1

116 gparams = T.grad(cost , self .params, consider_constant =[x_sample_up, h1_sample_up, y_one_hot, h2_sample_up, y_chain_end,
h2_chain_end, h1_sample_down, x_sample_down])

learning_rate = T. dscalar (’ learning_rate ’)
118 for gparam, param in zip (gparams, self .params):

updates[param] = param − gparam * learning_rate
120

train_pcd = theano . function (
122 inputs =[index , y_chain_start , h2_chain_start , batch_size , k, learning_rate],

outputs=[cost , cost_wake_1, cost_wake_2, cost_rbm, cost_sleep_2 , cost_sleep_1 , y_chain_end, h2_chain_end],
124 updates=updates

)
126

train_cd = theano . function (
128 inputs =[index , batch_size , k, learning_rate],

outputs=[cost , cost_wake_1, cost_wake_2, cost_rbm, cost_sleep_2 , cost_sleep_1],
130 updates=updates,

givens={
132 h2_chain_start : h2_sample_up,

y_chain_start : y_one_hot

48

134 }
)

136

return [train_pcd , train_cd]
138

def build_generator (self) :
140

h2_start = T.matrix(’ h2_start ’)
142 y_start = T.matrix(’ y_start ’)

[_, _, h3_sample] = self . layer3 .prop_up(y_start , h2_start)
144 [_, _, y_sample, _, _, h2_sample], updates = self . layer3 .prop_down(h3_sample)

[_, _, h1_sample] = self . layer2 .prop_down(h2_sample)
146 [_, x_mean, _] = self . layer1 .prop_down(h1_sample)

148 generator = theano . function (
inputs =[y_start , h2_start],

150 outputs=[x_mean, y_sample, h1_sample, h2_sample, h3_sample],
updates=updates

152)

154 return generator

156 def build_predictor (self) :

158 x_start = T.matrix(’ x_start ’)
x_sample = self . theano_rng.binomial(size= x_start .shape, n=1, p= x_start , dtype=theano. config . floatX)

160

y_start = T.matrix(’ y_start ’)
162

[_, _, h1_sample] = self . layer1 .prop_up(x_sample)
164 [_, _, h2_sample] = self . layer2 .prop_up(h1_sample)

[_, _, h3_sample] = self . layer3 .prop_up(y_start , h2_sample)
166 [_, _, y_sample, _, _, _], updates = self . layer3 .prop_down(h3_sample)

168 predictor = theano . function (
inputs =[x_start , y_start],

170 outputs=[x_start , y_sample, h1_sample, h2_sample, h3_sample],
updates=updates

172)

174 return predictor

176 def build_activation_maximizer_layer_1 (self) :

178 unit = T. iscalar (’ unit ’)
x_old = T.matrix(’x’)

180

[h1_pre, h1_mean, _] = self . layer1 .prop_up(x_old)
182

gx = T.grad(cost=h1_pre[0, unit], wrt=x_old)
184 learning_rate = T. dscalar (’ learning_rate ’)

186 x_new = x_old + gx * learning_rate
x_new_2 = T.switch(x_new<0, 0, x_new)

188 x_new_3 = T.switch(x_new_2>1, 1, x_new_2)

190 activation_maximizer_layer_1 = theano . function (
inputs =[x_old, unit , learning_rate],

192 outputs=[x_new_3, h1_mean]
)

194

return activation_maximizer_layer_1
196

def build_activation_maximizer_layer_2 (self) :
198

unit = T. iscalar (’ unit ’)
200 x_old = T.matrix(’x’)

49

202 [_, h1_mean_, _] = self . layer1 .prop_up(x_old)
h1_mask = self . theano_rng.binomial(size=h1_mean_.shape, n=1, p=0.5, dtype=theano. config . floatX)

204 h1_mean = h1_mean_ * h1_mask #drop out

206 [h2_pre, h2_mean, _] = self . layer2 .prop_up(2*h1_mean)

208 gx = T.grad(cost=h2_pre[0, unit], wrt=x_old)
learning_rate = T. dscalar (’ learning_rate ’)

210

x_new = x_old + gx * learning_rate
212 x_new_2 = T.switch(x_new<0, 0, x_new)

x_new_3 = T.switch(x_new_2>1, 1, x_new_2)
214

activation_maximizer_layer_2 = theano . function (
216 inputs =[x_old, unit , learning_rate],

outputs=[x_new_3, h1_mean, h2_mean]
218)

220 return activation_maximizer_layer_2

222 def build_activation_maximizer_layer_3 (self) :

224 unit = T. iscalar (’ unit ’)
x_old = T.matrix(’x’)

226 y_old = T.matrix(’y’)

228 [_, h1_mean_, _] = self . layer1 .prop_up(x_old)
h1_mask = self . theano_rng.binomial(size=h1_mean_.shape, n=1, p=0.5, dtype=theano. config . floatX)

230 h1_mean = h1_mean_ * h1_mask #drop out

232 [_, h2_mean_, _] = self . layer2 .prop_up(2*h1_mean)
h2_mask = self . theano_rng.binomial(size=h2_mean_.shape, n=1, p=0.5, dtype=theano. config . floatX)

234 h2_mean = h2_mean_ * h2_mask #drop out

236 [h3_pre, h3_mean, _] = self . layer3 .prop_up(y_old, 2*h2_mean)

238 [gx, gy] = T.grad(cost=h3_pre[0, unit], wrt=[x_old,y_old], consider_constant =[h1_mask, h2_mask])
learning_rate = T. dscalar (’ learning_rate ’)

240

x_new = x_old + gx * learning_rate
242 x_new_2 = T.switch(x_new<0, 0, x_new)

x_new_3 = T.switch(x_new_2>1, 1, x_new_2)
244 y_new = y_old + gy * learning_rate

y_new_2 = T.switch(y_new<0, 0, y_new)
246 y_new_3 = T.switch(y_new_2>1, 1, y_new_2)

248 activation_maximizer_layer_3 = theano . function (
inputs =[x_old, y_old, unit , learning_rate],

250 outputs=[x_new_3, y_new_3, h1_mean, h2_mean, h3_mean]
)

252

return activation_maximizer_layer_3

code/finetuned_dbn.py

50

1 from Tkinter import *

3 import cPickle
import gzip

5 import numpy as np
from PIL import Image

7 from PIL import ImageTk
import theano

9 import theano . tensor as T
from threading import Thread

11 import time

13 from dbn import *
from finetuned_dbn import *

15

class GUI(Tk):
17

def __init__ (self) :
19

Tk. __init__ (self , None)
21 self . title (’ Digits Generator’)

23 self .dbn = DBN()
self . finetuned_dbn = Finetuned_DBN()

25

build generators , predictor and activation_maximizers
27 self . generator_layer_1 = self .dbn. build_generator_layer_1 ()

self . generator_layer_2 = self .dbn. build_generator_layer_2 ()
29 self . generator_layer_3 = self .dbn. build_generator_layer_3 ()

31 self . generator_finetuned_dbn = self . finetuned_dbn . build_generator ()
self . predictor = self . finetuned_dbn . build_predictor ()

33 self . activation_maximizer_layer_1 = self . finetuned_dbn . build_activation_maximizer_layer_1 ()
self . activation_maximizer_layer_2 = self . finetuned_dbn . build_activation_maximizer_layer_2 ()

35 self . activation_maximizer_layer_3 = self . finetuned_dbn . build_activation_maximizer_layer_3 ()

37

39 f = gzip .open("mnist . pkl .gz", ’rb’)
train_set , valid_set , test_set = cPickle . load(f)

41 f . close ()

43 def shared_dataset (data_xy, borrow=True):
data_x , data_y = data_xy

45 shared_x = theano . shared(np. asarray (data_x , dtype=theano. config . floatX) , borrow=borrow)
shared_y = theano . shared(np. asarray (data_y , dtype=theano. config . floatX) , borrow=borrow)

47 return shared_x, T. cast (shared_y, ’ int32 ’)

49 train_set_x , train_set_y = shared_dataset (train_set)
valid_set_x , valid_set_y = shared_dataset (valid_set)

51 test_set_x , test_set_y = shared_dataset (test_set)
datasets = [(train_set_x , train_set_y) , (valid_set_x , valid_set_y) , (test_set_x , test_set_y)]

53

55 # build trainers
[self . train_pcd_layer_1 , self . train_cd_layer_1] = self .dbn. build_trainer_layer_1 (datasets)

57 [self . train_pcd_layer_2 , self . train_cd_layer_2] = self .dbn. build_trainer_layer_2 (datasets)
[self . train_pcd_layer_3 , self . train_cd_layer_3] = self .dbn. build_trainer_layer_3 (datasets)

59 [self .wake_sleep_pcd, self .wake_sleep_cd] = self . finetuned_dbn . build_trainer (datasets)

61

63 self . canvas = Canvas(self , width=600, height=500)
self . canvas .pack(side=BOTTOM)

65

rng = np.random.RandomState()
67 self .x = np. asarray (

51

rng .uniform(low=0, high=1, size =(1, 28*28)) ,
69 dtype=theano. config . floatX

)
71 self .y = np. asarray (

rng .uniform(low=0, high=0.2, size =(1, 10)) ,
73 dtype=theano. config . floatX

)
75 self .h1 = np. asarray (

rng .uniform(low=0, high=1, size =(1, 500)) ,
77 dtype=theano. config . floatX

)
79 self .h2 = np. asarray (

rng .uniform(low=0, high=1, size =(1, 500)) ,
81 dtype=theano. config . floatX

)
83 self .h3 = np. asarray (

rng .uniform(low=0, high=1, size =(1, 2000)) ,
85 dtype=theano. config . floatX

)
87 self .update_canvas(first_time =True)

89

91 def clear () :
self .x = np.zeros ((1, 28*28))

93 self .y = np.zeros ((1, 10))
self .h1 = np.zeros ((1, 500))

95 self .h2 = np.zeros ((1, 500))
self .h3 = np.zeros ((1, 2000))

97 self .update_canvas ()
Button(self , text ="Clear" , command=clear).pack(side=LEFT)

99

self .modes = (
101 " train " ,

" generate " ,
103 " predict " ,

" activate "
105)

self .mode = StringVar(self)
107 self .mode.set(self .modes[1])

modeMenu = OptionMenu(self, self.mode, * self .modes)
109 modeMenu.config(width=7)

modeMenu.pack(side=LEFT)
111

self .models = (
113 " layer 1",

" layer 2",
115 " layer 3",

"DBN"
117)

self .model = StringVar (self)
119 self .model.set (self .models[3])

modelMenu = OptionMenu(self, self .model, * self .models)
121 modelMenu.config(width=6)

modelMenu.pack(side=LEFT)
123

self . running = False
125 def onClickStartButton () :

self . running = not self . running
127 if self . running:

startButton . configure (text ="Stop")
129 else :

startButton . configure (text =" Start ")
131 startButton = Button(self , text =" Start " , command=onClickStartButton)

startButton .pack(side=LEFT)
133

Label(self , text ="latency") .pack(side=LEFT)
135 self . latency = DoubleVar()

52

self . latency . set (0.1)
137 Entry(self , textvariable =self . latency , width=5).pack(side=LEFT)

139

141 # GENERATION
Label(self , text =" digit ") .pack(side=LEFT)

143 self . digit = StringVar ()
self . digit . set ("")

145 Entry(self , textvariable =self . digit , width=5).pack(side=LEFT)

147

PREDICTION
149 (test_set_x , test_set_y) = test_set

def set_test_image () :
151 index = rng. randint (10000)

self .x = test_set_x [index: index+1,]
153 [_, _, self .h1, self .h2, _] = self . predictor (self .x, self .y)

self .update_canvas ()
155 Button(self , text ="Test image", command=set_test_image).pack(side=LEFT)

157

ACTIVATION MAXIMIZATION
159 Label(self , text ="unit") .pack(side=LEFT)

self . unit = IntVar ()
161 self . unit . set (0)

Entry(self , textvariable =self . unit , width=5).pack(side=LEFT)
163

165 # TRAINING PARAMETERS

167 Label(self , text =" learning rate ") .pack(side=LEFT)
self . learning_rate = DoubleVar()

169 self . learning_rate . set (0.1)
Entry(self , textvariable =self . learning_rate , width=5).pack(side=LEFT)

171

Label(self , text ="batch size ") .pack(side=LEFT)
173 self . batch_size = IntVar ()

self . batch_size . set (20)
175 Entry(self , textvariable =self . batch_size , width=5).pack(side=LEFT)

177 self . algorithms = (
"CD−k",

179 "PCD−k"
)

181 self . algorithm = StringVar (self)
self . algorithm . set (self . algorithms [0])

183 algorithmMenu = OptionMenu(self, self . algorithm , * self . algorithms)
algorithmMenu.config(width=5)

185 algorithmMenu.pack(side=LEFT)

187 Label(self , text ="k") .pack(side=LEFT)
self .k = IntVar ()

189 self .k. set (1)
Entry(self , textvariable =self .k, width=5).pack(side=LEFT)

191

self . initialize_persistent_particles ()
193 self . training_set_size = 50000

195

197 # MOUSE INTERFACE

199 def mousePressed(event) :

201 if event .x >= 450−70 and event.x < 450+70 and event .y >= 400−70 and event.y < 400+70: # pixel in x is selected
x = 14 + (event .x − 450) / 5

203 y = 14 + (event .y − 400) / 5

53

self .x[0, x+28*y] = 1.
205 self .update_canvas ()

self .mode.set(self .modes[2]) # prediction (mode)
207 self .model.set (self .models[3]) # DBN (model)

209 if event .x >= 150−125 and event.x < 150+125 and event .y >= 200−12 and event.y < 200+13: # pixel in y is selected
unit = 5 + (event .x − 150) / 25

211 self . digit . set (str (unit))
self .mode.set(self .modes[1]) # generation (mode)

213 self .model.set (self .models[3]) # DBN (model)

215 if event .x >= 450−125 and event.x < 450+125 and event .y >= 300−25 and event.y < 300+25: # pixel in h1 is selected
x = 25 + (event .x − 450) / 5

217 y = 5 + (event .y − 300) / 5
self . unit . set (50*y + x)

219 self .mode.set(self .modes[3]) # activation maximization (mode)
self .model.set (self .models[0]) # layer 1 (model)

221 self . learning_rate . set (0.1)

223 if event .x >= 450−125 and event.x < 450+125 and event .y >= 200−25 and event.y < 200+25: # pixel in h2 is selected
x = 25 + (event .x − 450) / 5

225 y = 5 + (event .y − 200) / 5
self . unit . set (50*y + x)

227 self .mode.set(self .modes[3]) # activation maximization (mode)
self .model.set (self .models[1]) # layer 2 (model)

229 self . learning_rate . set (0.1)

231 if event .x >= 300−250 and event.x < 300+250 and event .y >= 100−50 and event.y < 100+50: # pixel in h3 is selected
x = 50 + (event .x − 300) / 5

233 y = 10 + (event .y − 100) / 5
self . unit . set (100*y + x)

235 self .mode.set(self .modes[3]) # activation maximization (mode)
self .model.set (self .models[2]) # layer 3 (model)

237 self . learning_rate . set (0.1)

239 self .bind("<Button−1>", mousePressed)
self .bind("<B1−Motion>", mousePressed)

241

243 Thread(target = self . run) . start ()

245 def initialize_persistent_particles (self) :

247 rng = np.random.RandomState()
batch_size = self . batch_size . get ()

249

self . persistent_particle_x = np. asarray (
251 rng .uniform(low=0, high=1, size=(batch_size , 28*28)) ,

dtype=theano. config . floatX
253)

self . persistent_particle_y = np. asarray (
255 rng .uniform(low=0, high=0.2, size=(batch_size , 10)) ,

dtype=theano. config . floatX
257)

self . persistent_particle_h1 = np. asarray (
259 rng .uniform(low=0, high=1, size=(batch_size , 500)) ,

dtype=theano. config . floatX
261)

self . persistent_particle_h2 = np. asarray (
263 rng .uniform(low=0, high=1, size=(batch_size , 500)) ,

dtype=theano. config . floatX
265)

self . persistent_particle_h3 = np. asarray (
267 rng .uniform(low=0, high=1, size=(batch_size , 2000)) ,

dtype=theano. config . floatX
269)

271 def update_canvas(self , first_time = False) :

54

273 x_mat = 256*self .x. reshape ((28,28))
x_img=Image.fromarray(x_mat).resize ((140,140))

275 self .x_imgTk=ImageTk.PhotoImage(x_img)

277 y_mat = 256*self .y. reshape ((1,10))
y_img=Image.fromarray(y_mat).resize ((250,25))

279 self .y_imgTk=ImageTk.PhotoImage(y_img)

281 h1_mat = 256*self .h1.reshape ((10,50))
h1_img=Image.fromarray(h1_mat).resize ((250,50))

283 self .h1_imgTk=ImageTk.PhotoImage(h1_img)

285 h2_mat = 256*self .h2.reshape ((10,50))
h2_img=Image.fromarray(h2_mat).resize ((250,50))

287 self .h2_imgTk=ImageTk.PhotoImage(h2_img)

289 h3_mat = 256*self .h3.reshape ((20,100))
h3_img=Image.fromarray(h3_mat).resize ((500,100))

291 self .h3_imgTk=ImageTk.PhotoImage(h3_img)

293

if first_time :
295 self .x_img_canvas = self . canvas . create_image(450, 400, image = self .x_imgTk)

self .y_img_canvas = self . canvas . create_image(150, 200, image = self .y_imgTk)
297 self .h1_img_canvas = self . canvas . create_image(450, 300, image = self .h1_imgTk)

self .h2_img_canvas = self . canvas . create_image(450, 200, image = self .h2_imgTk)
299 self .h3_img_canvas = self . canvas . create_image(300, 100, image = self .h3_imgTk)

else :
301 self . canvas . itemconfig (self .x_img_canvas, image = self .x_imgTk)

self . canvas . itemconfig (self .y_img_canvas, image = self .y_imgTk)
303 self . canvas . itemconfig (self .h1_img_canvas, image = self .h1_imgTk)

self . canvas . itemconfig (self .h2_img_canvas, image = self .h2_imgTk)
305 self . canvas . itemconfig (self .h3_img_canvas, image = self .h3_imgTk)

307 def run(self) :

309 while True:

311 while self . running and self .mode.get() == self .modes[0]: # training mode

313 if self . persistent_particle_x .shape[0] != self . batch_size . get () :
self . initialize_persistent_particles ()

315

start_time = time. clock ()
317

batch_size = self . batch_size . get ()
319 n_batches = self . training_set_size / batch_size

321 this_training_cost_list = []
for index in range(n_batches) :

323

k = self .k. get ()
325 learning_rate = self . learning_rate . get ()

327 if self .model.get () == self .models[0] and self . persistent . get () : # layer 1 PCD−k
[cost , self . persistent_particle_x] = self . train_pcd_layer_1 (index , self . persistent_particle_x , batch_size ,

k, learning_rate)
329

elif self .model.get () == self .models[0] and not self . persistent . get () : # layer 1 CD−k
331 [cost] = self . train_cd_layer_1 (index , batch_size , k, learning_rate)

333 elif self .model.get () == self .models[1] and self . persistent . get () : # layer 2 PCD−k
[cost , self . persistent_particle_h1] = self . train_pcd_layer_2 (index , self . persistent_particle_h1 , batch_size ,

k, learning_rate)
335

elif self .model.get () == self .models[1] and not self . persistent . get () : # layer 2 CD−k
337 [cost] = self . train_cd_layer_2 (index , batch_size , k, learning_rate)

55

339 elif self .model.get () == self .models[2] and self . persistent . get () : # layer 3 PCD−k
[cost , self . persistent_particle_h2 , self . persistent_particle_y] = self . train_pcd_layer_3 (index ,

self . persistent_particle_h2 , self . persistent_particle_y , batch_size , k, learning_rate)
341

elif self .model.get () == self .models[2] and not self . persistent . get () : # layer 3 CD−k
343 [cost] = self . train_cd_layer_3 (index , batch_size , k, learning_rate)

345 elif self .model.get () == self .models[3] and self . persistent . get () : # Wake−Sleep PCD−k
[cost , cost_wake_1, cost_wake_2, cost_rbm, cost_sleep_2 , cost_sleep_1 , self . persistent_particle_h2 ,

self . persistent_particle_y] = self .wake_sleep_pcd(index, self . persistent_particle_h2 , self . persistent_particle_y , batch_size ,
k, learning_rate)

347

elif self .model.get () == self .models[3] and not self . persistent . get () : # Wake−Sleep CD−k
349 [cost , cost_wake_1, cost_wake_2, cost_rbm, cost_sleep_2 , cost_sleep_1] = self .wake_sleep_cd(index,

batch_size , k, learning_rate)

351 this_training_cost_list .append(cost + 0.)

353 print (
’epoch %i, minibatch %i / %i \ r ’ %

355 (self .epoch, index , n_batches)
)

357

this_training_cost = np.mean(this_training_cost_list)
359

end_time = time. clock ()
361 duration = (end_time − start_time) / 60.

363 print (
’ training cost %f, duration %.2f minutes’ %

365 (this_training_cost , duration)
)

367

self .dbn.save ()
369 self . finetuned_dbn . save ()

371 while self . running and self .mode.get() == self .modes[1]: # generation mode

373 if self .model.get () == self .models[0]: # layer 1
[self .x, self .h1] = self . generator_layer_1 (self .x)

375 elif self .model.get () == self .models[1]: # layer 2
[self .x, self .h1, self .h2] = self . generator_layer_2 (self .h1)

377 elif self .model.get () == self .models[2]: # layer 3
[self .x, self .y, self .h1, self .h2, self .h3] = self . generator_layer_3 (self .y, self .h2)

379 elif self .model.get () == self .models[3]: # DBN
[self .x, self .y, self .h1, self .h2, self .h3] = self . generator_finetuned_dbn (self .y, self .h2)

381

if self . digit . get () in [str (i) for i in range(10)]:
383 self .y = np.zeros ((1, 10))

digit = int (self . digit . get ())
385 self .y[0, digit]=1

387 self .update_canvas ()
time. sleep (self . latency . get ())

389

while self . running and self .mode.get() == self .modes[2]: # prediction mode
391 [self .x, self .y, self .h1, self .h2, self .h3] = self . predictor (self .x, self .y)

self .update_canvas ()
393 time . sleep (self . latency . get ())

395 while self . running and self .mode.get() == self .modes[3]: # activation maximizer
unit = self . unit . get ()

397 learning_rate = self . learning_rate . get ()

399 learning_rate = self . learning_rate . get ()

401 if self .model.get () == self .models[0]: # layer 1

56

[self .x, h1] = self . activation_maximizer_layer_1 (self .x, unit , learning_rate)
403 self .h1[0, unit] = h1[0, unit]

405 if self .model.get () == self .models[1]: # layer 2
[self .x, self .h1, h2] = self . activation_maximizer_layer_2 (self .x, unit , learning_rate)

407 self .h2[0, unit] = h2[0, unit]

409 if self .model.get () == self .models[2]: # layer 3
[self .x, self .y, self .h1, self .h2, h3] = self . activation_maximizer_layer_3 (self .x, self .y, unit , learning_rate)

411 self .h3[0, unit] = h3[0, unit]

413 self .update_canvas ()
time. sleep (self . latency . get ())

415

time . sleep (0.2)
417

if __name__ == "__main__":
419

GUI().mainloop()

code/gui.py

57

References
[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann machines*.

Cognitive science, 9(1):147–169, 1985.

[2] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends® in Machine Learning, 2(1):1–127,
2009.

[3] Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive divergence. Neural computation,
21(6):1601–1621, 2009.

[4] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On contrastive divergence learning. In Proceedings of the tenth
international workshop on artificial intelligence and statistics, pages 33–40. Citeseer, 2005.

[5] Francis Crick and Graeme Mitchison. The function of dream sleep. Nature, 304(5922):111–114, 1983.

[6] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. Identi-
fying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in Neural
Information Processing Systems, pages 2933–2941, 2014.

[7] DocuFilmTV. The boy who sees without eyes. YouTube, 2013.

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[9] Geoffrey Hinton. Neural networks for machine learning. Coursera, 2012.

[10] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[11] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The" wake-sleep" algorithm for unsupervised
neural networks. Science, 268(5214):1158–1161, 1995.

[12] John J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceed-
ings of the national academy of sciences, 79(8):2554–2558, 1982.

[13] OP Jangir, P Suthar, DVS Shekhawat, P Acharya, KK Swami, and Manshi Sharma. The" third eye"-a new concept
of trans-differentiation of pineal gland into median eye in amphibian tadpoles of bufo melanostictus. Indian journal
of experimental biology, 43(8):671, 2005.

[14] Hilbert J Kappen and FB Rodriguez. Boltzmann machine learning using mean field theory and linear response
correction. Advances in neural information processing systems, pages 280–286, 1998.

[15] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science & Business Media,
2012.

[16] Radford M Neal. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113, 1992.

[17] Andrew Ng. Machine learning. Coursera, 2014.

[18] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error propaga-
tion. Technical report, DTIC Document, 1985.

[19] Ruslan Salakhutdinov and Geoffrey Hinton. An efficient learning procedure for deep boltzmann machines. Neural
computation, 24(8):1967–2006, 2012.

[20] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. 1986.

[21] Mriganka Sur, Preston E Garraghty, and Anna W Roe. Experimentally induced visual projections into auditory
thalamus and cortex. Science, 242(4884):1437–1441, 1988.

58

[22] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In
Proceedings of the 25th international conference on Machine learning, pages 1064–1071. ACM, 2008.

[23] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research,
9(2579-2605):85, 2008.

59

