View metadata, citation and similar papers at core.ac.uk

PRL 114, 200401 (2015)

brought to you by .{ CORE

22 MAY 2015

Entropic Tests of Multipartite Nonlocality and State-Independent Contextuality

Sadegh Raeisi,"**" Pawet Kurzyfski,**" and Dagomir Kaszlikowski

3.5.%

Unstitute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada
2Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada
Centre Jfor Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
4Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
5Departmem‘ of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore
(Received 27 February 2015; published 22 May 2015)

We introduce a multipartite extension of an information-theoretic distance introduced by Zurek
[Nature (London) 341, 119 (1989)]. We use it to develop a new tool for studying quantum correlations
from an information-theoretic perspective. In particular, we derive entropic tests of multipartite non-
locality for three qubits and for an arbitrary even number of qubits as well as a test of state-independent
contextuality. In addition, we rederive the tripartite Mermin inequality and a state-independent non-
contextuality inequality by Cabello [Phys. Rev. Lett. 101, 210401 (2008)]. This suggests that the
information-theoretic distance approach to multipartite nonlocality and state-independent contextuality can
provide a more general treatment of nonclassical correlations than the orthodox approach based on

correlation functions.
DOI: 10.1103/PhysRevLett.114.200401

Introduction.—In classical information theory, if some
binary property A is correlated with B’, B’ with A’, and A’
with B, then A must be correlated with B. This is not
necessarily true in nonclassical information theories where
correlations can be nontransitive. For instance, A can be
anticorrelated with B [1] (see Fig. 1). If one looks only at
the outcomes of random variables, the classical and non-
classical scenarios are dramatically different; however,
from the entropic point of view they do not differ at all
[2]. More precisely, the Shannon entropies H(A), H(B),
and H(AB), where H(A) = =) _,P(A = a)log,P(A = a),
are the same regardless of whether the system is classical
or not.

In order to detect nonclassicality via an entropic test, one
should look for other types of nonclassical correlations [see
Fig. 1(b), right]. These can be found by either looking for a
different set of measurements [3] or by a postprocessing of
a measured data, e.g., mixing of nonclassical and classical
distributions [2].

The entropic tests of the bipartite nonlocality were
introduced in the late 1980s [3] and further investigated
recently in Ref. [4]. These tests were extended to include
the state-dependent contextuality [5-7], which is a more
general concept than nonlocality since it studies systems
that are not necessarily spatially separated. However, the
entropic approach to the state-independent contextuality
has not been proposed before.

We use the previously developed information-theoretic
distance approach to nonclassical correlations [8—10] and
propose a new multipartite distance that can be applied to
binary £1 measurements. This provides a powerful tool for
studying the distinction between quantum and classical
correlations. We quantify multipartite correlations in terms

0031-9007/15/114(20)/200401(5)

200401-1

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.Mn

of Shannon entropy and derive an entropic tripartite
inequality. This inequality is consistent with a similar
one in Ref. [4], and its structure resembles the tripartite
Mermin inequality [11]. Next, we derive an entropic
inequality to test the multipartite nonlocality of an arbitrary
even number of qubits. Finally, we derive an entropic
inequality to test the state-independent contextuality, which
resembles the correlation-based inequality by Cabello [12].
All these inequalities are satisfied by correlations for which
the information-theoretic distance is properly defined. This
is true for local realistic and noncontextual systems, but not
for quantum systems.
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FIG. 1 (color online). Bipartite correlations between two
observers. Each local measurement is maximally random, i.e.,
P(A=1)=P(A=-1)=1/2,etc. Classical correlations (a) are
transitive: if A = B, B = A’, and A’ = B, then A = B. However,
nonclassical correlations can be nontransitive: A = —B [(b), left],
or no correlations H(AB) = H(A) + H(B) [(b), right]. Such
extreme nonclassical bipartite correlations cannot be observed
between quantum systems.
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Multipartite distance.—The entropy-based information-
theoretic distance was originally proposed by Zurek [13].
The essence of distance is to measure how far apart two
points are. Points can be represented by coordinates in a
Cartesian space or by more abstract objects, such as
functions or operators. In the information-theoretic
framework these objects are two random variables—in
our case, two jointly measurable observables. Can
we extend the notion of distance to more than two
points? We show that this can be done for binary, jointly
measurable random variables. For a similar approach,
see Ref. [14].

Consider the following function defined for binary
observables A and B:

d(A.B) = H(A - B). (1)

The outcome of A - B is the product ab.

The function in Eq. (1) satisfies distance properties:
(i) non-negativity, d(A, B) > 0, because H(X) > 0 and it
equals zero only if the entropy of A - B is zero, i.e., in case
A and B are maximally correlated or anticorrelated,
(ii) symmetry, d(A, B) = d(B, A), and (iii) triangle inequal-
ity, HA-B) <H(B-C)+ H(A-C).

The triangle inequality is satisfied because
H(A-B|A-C,B-C)=0; ie., if the outcomes of the
two measurements A - C and B - C are known, then the
outcome of A - B is the product of the two outcomes and is
therefore known. More precisely, H(A-B) < H(A - B,
B-C,LA-C)=HA-BJA-C,B-C)+H(B-C,A-C) =
HB-C,A-C)<HB-C)+HA-C). We  used
H(AB) = H(A|B)+ H(B), H(AB) < H(A) + H(B), and
H(A) < H(AB).

Equation (1) can be extended to multipartite measure-

ments: for a set of binary +1 variables {A{,A,,...,A,},
one can define
5<A1,A2,...,An) :H(Al 'A2 """ An) (2)

The function § is non-negative,
associative:

symmetric, and

S(Aps o A At oo A)
=0((A1 oo Ay, (Agy - oo Ay)). 3)

Because of the symmetry, any two A; can be associated.
Moreover, the associativity also implies that § obeys the
following version of the triangle inequality:
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S(ALs oo Ay A1 o Ay)
=6((Ar .. Ap), (Ap A,))
<S((Ay - Ay (By - B,))
+o((By -+ By) - (Ager -+ A,))
— 5(Ay,.... A By, ... B,)
4 8(Bys v By Aps1s o Ay). )

In Ref. [14], Vitanyi considered the following quantity,

Emax (X) = ?g%K(Xlx)’ (5)

where X is a set, x are its elements, and K stands for
Kolmogorov complexity. However, E, (X) with K
replaced by the Shannon entropy cannot be used to detect
the difference between classical and nonclassical correla-
tions. This motivated us to look for Eq. (2).

Tripartite information-theoretic Bell inequality.—Let us
examine the properties of Eq. (2) for tripartite measure-
ments. We have

5(A1, By, Cy)
<d(A;. (By.Cy)) +d((By.Cy). (B,.Cy))
=d(A,B,.C,) + 6(B,,Cy,B;,C5)
< (A1, By, Cy) +d(Ay, By - Cy) + d(Ay, By - Cy)
=06(A1, By, C3) + 6(A2, By, Cy) +8(Ay, B, C3),  (6)

where A;, Bj, and Cy (i, ],k = 1,2) are measurements of
Alice, Bob, and Charlie, respectively. This inequality is
similar to the one in Ref. [4].

The inequality (6) was derived using the classical
properties of Shannon entropy; therefore, it must hold in
any theory that obeys them. In particular, all local realistic
theories have a joint probability distribution for all observ-
ables [15] and their joint entropy. However, Eq. (6) is
violated by quantum mechanics (see Fig. 2).

Let us consider a three-qubit system in the Greenberger-
Horne-Zeilinger (GHZ) state |GHZ) = (1/+/2)(|000) +
|111)) shared between Alice, Bob, and Charlie. Each of
them performs one of the two possible local +-1 measure-
ments on their subsystem: A;,A,,B;,... We choose
8(A;,B;.Cy) =H(A; ® B; ® Cy) (for i,j.k=1,2) and
obtain

H(A ®B ®C)<HA ®B,® ()
+HA, ®B ®C,)+H(A, ® B, ®Cy). (7)

Quantum theory violates the inequality (7) if Alice, Bob,
and Charlie choose
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( |
5o & \E/ & The term on the left-hand side contains only measurements

FIG. 2 (color online). Tripartite correlations between three
observers. Each local measurement is maximally random, i.e.,
P(A=1)=P(A=—-1)=1/2, etc. Classical correlations (a)
imply that if AB'C' =A'BC' =A'B'C =1, then ABC = 1.
However, for nonclassical tripartite correlations [(b), left] one
can observe ABC = —1 (GHZ paradox). The above nonclassical
correlations cannot be distinguished from the classical ones with
entropic inequalities. No tripartite correlations between A, B, and
C can be observed [(b), right]. These can be detected via entropic
inequalities. In contrast to the bipartite scenario, such extreme
nonclassical tripartite correlations can be observed between
quantum systems.

A= Cl—cos(6>X+sm<Z>Y
A = C, = cos Y (8)
2T 2 12 12

where X and Y are Pauli operators. We have H(A; ®
B,®Cy,)=H(A,®B ® C;) =H(A, ® B, ® C;) =0
and H(A; ® B; ® C;) = 1. This achieves maximal alge-
braic violation of Eq. (7).

The derivation of Eq. (6) holds for any distance with the
associativity property. For instance, applying the generali-
zation of the covariance distance [9,10] §(A;, A5, A3) =
1—(A;-A,-A3) to Eq. (6) gives the original tripartite
Mermin inequality [11]

(A1 -By-Cy) +(Ay- By - Cy) + (Ay- By - Cy)
—(A;-B,-C)) L2 9)

Multipartite information-theoretic Bell inequality.—To
extend the previous result to more than three parties, we
follow the approach of Ref. [16] and use more than two
measurements per observer. For simplicity, we consider an
even number of qubits, which requires three measurements
per observer.

Let us consider an even number N of observers sharing a
multipartite system. Each observer measures three ran-

domly chosen binary +1 observables M, D) where i =
1,2, 3 labels measurements and j = 1, ... N labels observ-
ers. We have

M gj ), whereas the first N terms on the right-hand side are
cyclic permutations of one measurement M gj >, one meas-
urement M gj ), and N — 2 measurements M (3j ). The remain-
ing term on the right-hand side contains only
measurements M<2’ ),

The derivation is as follows. We start with the multi-
partite distance 6(M<11),M52),M(13>,M§4), ...,M(IN)) and
apply the triangle inequality (together with symmetry
and associativity) to obtain

1 2 3 4 N
sV mP MO M)
<oV M MO MY, M)

+omP, oMM P M omMy. (1)

The term on the left-hand side and the first term on the
right-hand side correspond to measurable quantities in the
inequality (10), whereas the second term on the right-hand
side cannot be experimentally verified. We expand the last
term as

sM® o™ MP MY My
<sm{ M MY P, . mM

3 N
+omY, .. MV

P M ). (12)
Again, we generated a term that is observable and an
additional term that requires further application of the
triangle inequality. The following pattern emerges. After
k repetitions of the above procedure, one generates the
measurable term

s, oMY W MY M MYy (13)

and the nonmeasurable term

sV o™ mP MY M
k k+2 N
M§>,M<3+ 7 (14)

if k is odd, or
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s o™ MBS M) MY (15)

if k is even. After k = N — 1 repetitions, we obtain the
right-hand side terms of Eq. (10) except the last two, and an
additional nonmeasurable term. This term can be expanded
into two missing measurable ones,

(N)

2 2 N-1
Mo M )

<oV mMP MY, Y )

+om) . MP MY MY MmNy, (16)
which ends the derivation.

The inequality (10) can be maximally violated in
quantum mechanics by the N-partite GHZ state |GHZ)y, =
(10...0) +1...1))/v2 and for (M MP MY,
MY M"Y =HM" @M @ - @ M), etc. In
this case, the local measurements are M S" ) =
cosq;X + sina;Y, where a; =x/2N, a, =0, and
a3 = —[x/2N(N —2)]. The choice of the angles stems
from the following observation,

0...0) +1...1
—i(@it+a)|0). .0 ilatta)|] ] S
_ e | > +e | > _ ‘GHZ>N,
2
(17)

where the overlap (GHZ|GHZ)y = cos(a; + --- + ;). In

every case, except H(Mil) ® Mﬁz) @ - ® MSN)), the
overlap is one and the corresponding entropy is zero. On
the other hand, the entropy on the left-hand side of Eq. (10)
is one because the overlap is zero.

Information-theoretic state-independent contextuality.—
Contextuality is a form of nonclassicality more general than
nonlocality. In this case, all measurements can be per-
formed on a single localized system. The crucial
assumption is based on a classical intuition that an outcome
of one measurement does not depend on what other
compatible (nondisturbing) measurement is performed at
the same time. This assumption is known as noncontex-
tuality and systems violating it are called contextual.
Interestingly, in quantum theory contextuality can be
exhibited by any state of the system with the dimension
larger than two, whereas nonclassicality in nonlocal sce-
narios can be exhibited only by entangled states.

We will now consider an entropic version of the state-
independent contextuality proof commonly known as the
Peres-Mermin square [17-19]. Consider nine +1 observ-
ables that can be measured on a single system. Because of
compatibility relations, these measurements can be per-
formed in the following triples: {A,a,a},{B,b,p},
{C,c,v}.{A,B,C},{a,b,c},{a,p,y}. The classical

reasoning based on noncontextuality hypothesis implies
that, for measurable products g, =A-a-a, g, =B -b - f3,

qg3=C-c-y, q=A-B-C, ¢gs=a-b-c, and
ge¢ = a- -y, one has HiG:l g; = 1.

However, in nonclassical theories we have []5_, ¢; = —1
(see Fig. 3). In quantum theory this is achieved by a set of
two-qubit measurements: A=XQ® 1, a=1Q X,
a=XQ®X, B=1QY, a=YQI1l, p=YQY,

C=XQ®Y,c=YQ®X,y=2ZQ Z, where X, Y, and Z
are Pauli operators [17-19].
Next, we derive

&(a. p.y)
<6(A,a,a)+6(A,a,p,7)
<é(A,a,a)+6(B,b,p)+56(A,a,B,b,y)
<6(A,a,a)+6(B,b,p) +5(A,B,C) +6(C,a,b,y)
<6(A,a,a)+86(B,b,p)+6(A,B,C)+6(a,b,c)
+6(C,c.y). (18)

The corresponding entropic inequality is

H(a-p-y)<H(A-a-a)+H(B-b-p)
+H(A-B-C)+H(a-b-c)+H(C-c-y). (19)

For the above quantum observables on a localized two-
qubit system, one finds that g; = ¢, = ... = g5 =1 and
qge = —1 for any quantum state. This distribution of out-
comes does not violate the inequality (19); however, if we
follow the method of Ref. [2] and equally mix it with the
classical distribution ¢; = --- = g4 = 1, we get the maxi-
mal violation [see Fig. 3(b), right].

(a) Classical correlations

A a a A B C ABC=1

A B C ABC =-1
B b B

A B C no correlations
o] c %

FIG. 3 (color online). Peres-Mermin square. Classical correla-
tions (a) imply (Aaa)(Bbp)(Ccy)(ABC)(abc)(apfy) = 1. Non-
classical contextual correlations [(b), left] result in the product
equal to —1. These nonclassical correlations cannot be distin-
guished from classical ones with entropic inequalities. This can
be done by mixing them with the classical correlations [(b), right]
since H(a-f-y) = 1.
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As in the case of the multipartite nonlocality, the
derivation of Eq. (18) holds not only for the function &,
but for any distance with the associativity property.
Applying 5(A;,Ay,A3) =1—(A;-A,-A3) to Eq. (18)
gives the noncontextuality inequality by Cabello [12],
which is violated by any quantum state

(Ara-a)+(B-b-p)+(A-B-C)
+{a-b-c)+{(C-c-y)—(a-p-y) <4. (20)

Discussion.—We have developed a new tool for studying
quantum correlations. In particular, we used it to derive
entropic inequalities to test the multipartite nonlocality and
the state-independent contextuality. In both cases, quantum
mechanics allows for the maximal violation of these
inequalities. On the other hand, the bipartite quantum
nonlocality was unable to maximally violate entropic
inequalities based on a finite number of measurements
[3]. This brings us to an interesting analogy. It was shown
(see, for example, Ref. [11]) that correlation-based Bell
inequalities admit the maximal quantum violation only for
multipartite systems. Here we show that the same is true for
multipartite entropic Bell inequalities.

Another important observation is the fact that for the
multipartite nonlocality we could find a state and mea-
surements leading to a direct violation, whereas for the
state-independent contextuality we had to mix the mea-
sured nonclassical data with a classical probability distri-
bution to observe the violation. We attribute this to the
state-independence property. The state-independent con-
textuality is a property of measurements, not the states. To
obtain a direct violation of an entropic inequality, one
would have to look for a product of some observables for
which the entropy in any state is larger than entropies of
other products. Although we do not provide a proof, we
speculate that such observables do not exist.

We also rederived two known inequalities. This suggests
that the multipartite information-theoretic distance provides
a more general treatment of nonclassical correlations than
the standard correlation functions approach. We have
already proposed this idea for bipartite nonclassical corre-
lations in Ref. [9]. However, to fully prove it one needs to
show that all multipartite Bell inequalities and

noncontextuality inequalities can be derived from some
multipartite distance.

There are several open problems that require further
investigation: (i) extension to nonlocality of an odd number
of qubits, (i) finding an information-theoretic distance
suitable to investigate multipartite nonlocality of higher-
dimensional quantum systems, and (iii) derive multipartite
monogamy relations from the properties of information-
theoretic distances, perhaps using ideas in Ref. [9].
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