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ABSTRACT

Ticket queues are popular in many service systems. Upon arrival, each cus-

tomer is issued a numbered ticket and receives service on a first-come-first-

served basis according to the ticket number. There is no physical queue;

customers may choose to walk away and return later (before their numbers

are called) to receive service. In this thesis, we study the problem of opti-

mal staffing in such a system, where the staffing decision can only be based

on ticket numbers, as opposed to the physical queue length in a traditional

system. The thesis consists of two parts.

In the first part, we consider the system with two staffing levels (low

and high). Using the renewal reward theorem, we first derive the long-run

average cost (including customer delay and abandonment costs, server oper-

ating cost and cost for changing staffing levels), and then obtain the optimal

staffing policy using the fractional programming. Moreover, with the help of

random walk theory, we develop some approximations for the system perfor-

mance measures, and then establish the asymptotical optimal staffing policy.

The extensive numerical experiments show the asymptotical optimal policies

perform very well.

The second part is devoted to the analysis of the system with more than

two staffing levels. We use the fluid approximation approach to analyze the



iv

system dynamics under the assumption that the customer arrival rate and

service rate are very high. The optimal staffing policy for the fluid ticket

queueing model can be determined by the optimal solution of EOQ model.

Moreover, this optimal staffing policy for the fluid ticket queueing model is

proved to be asymptotically optimal for our original ticket queue in the sense

that its long-run average cost achieves the asymptotical lower bound.



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Markov Chain Analysis for Ticket Queues . . . . . . . . . . . . . . 9

2.1 Formulation and Analysis . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Performance Measures . . . . . . . . . . . . . . . . . . 17

2.2 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Fractional Programming . . . . . . . . . . . . . . . . . 36

2.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Random-Walk Method . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Random-Walk Approximations . . . . . . . . . . . . . 53

2.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.2 Accuracy of Random-Walk Approximation . . . . . . . 62



Contents vi

2.4.3 Comparison with Existing Results . . . . . . . . . . . . 64

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 67

3. Fluid Model and Asymptotics for Ticket Queues . . . . . . . . . . . 69

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Fluid Approximation . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Analysis of the Long-Run Average Cost . . . . . . . . . . . . . 95

3.4 The Optimal Policy in the Fluid Model . . . . . . . . . . . . . 105

3.5 Asymptotic Optimality . . . . . . . . . . . . . . . . . . . . . . 118

3.6 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.6.1 Same αi1 and αi2 . . . . . . . . . . . . . . . . . . . . . 123

3.6.2 Different αi1 and αi2 . . . . . . . . . . . . . . . . . . . 126

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 128

4. Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 131

A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1 ET1 and C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 ET2 and C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 Long-run Average Cost Π(Q) . . . . . . . . . . . . . . . . . . 144



LIST OF TABLES

2.1 Comparison between Exact and RW: I . . . . . . . . . . . . . 62

2.2 Comparison between Exact and RW: II . . . . . . . . . . . . . 63

2.3 Comparison between Exact and RW: III . . . . . . . . . . . . 63

2.4 Comparison between Exact and RW: IV . . . . . . . . . . . . 64

2.5 Comparison between Exact and Existing Results: I . . . . . . 65

2.6 Comparison between Exact and Existing Results: II . . . . . . 65

2.7 Comparison between Exact and Existing Results: III . . . . . 65

2.8 Comparison between Exact and Existing Results: IV . . . . . 66

2.9 Comparison between Exact and Existing Results: V . . . . . . 66

2.10 Comparison between Exact and Existing Results: VI . . . . . 66

3.1 Markov vs. Fulid: I(a) . . . . . . . . . . . . . . . . . . . . . . 123

3.2 Markov vs. Fulid: I(b) . . . . . . . . . . . . . . . . . . . . . . 123

3.3 Markov vs. Fulid: II(a) . . . . . . . . . . . . . . . . . . . . . . 124

3.4 Markov vs. Fulid: II(b) . . . . . . . . . . . . . . . . . . . . . 124

3.5 Markov vs. Fulid: II(c) . . . . . . . . . . . . . . . . . . . . . . 124

3.6 Markov vs. Fulid: III(a) . . . . . . . . . . . . . . . . . . . . . 125

3.7 Markov vs. Fulid: III(b) . . . . . . . . . . . . . . . . . . . . . 125

3.8 Markov vs. Fulid: III(c) . . . . . . . . . . . . . . . . . . . . . 125



List of Tables viii

3.9 Markov vs. Fulid: IV(a) . . . . . . . . . . . . . . . . . . . . . 126

3.10 Markov vs. Fulid: IV(b) . . . . . . . . . . . . . . . . . . . . . 126

3.11 Markov vs. Fulid: IV(c) . . . . . . . . . . . . . . . . . . . . . 126

3.12 Markov vs. Fulid: V(a) . . . . . . . . . . . . . . . . . . . . . 127

3.13 Markov vs. Fulid: V(b) . . . . . . . . . . . . . . . . . . . . . 127

3.14 Markov vs. Fulid: V(c) . . . . . . . . . . . . . . . . . . . . . 127



LIST OF FIGURES

2.1 States Transitions for L = −1 . . . . . . . . . . . . . . . . . . 11

2.2 States Transitions for L ≥ 0 . . . . . . . . . . . . . . . . . . . 12

2.3 α1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 58

2.4 α2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 59

2.5 h Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 60

2.6 K Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 60

2.7 Sensitivity Analysis for Operation Cost . . . . . . . . . . . . 61

3.1 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2 Generating a Two-Piece Policy . . . . . . . . . . . . . . . . . 107

3.3 Policy with No Cycle Feature . . . . . . . . . . . . . . . . . . 119



1. INTRODUCTION

1.1 Motivation

Ticket queues appear in hospitals, banks, retail stores, theme parks, govern-

ment agencies, and many other service systems. Upon arrival, each customer

is issued a numbered ticket. The ticket numbers are then called out in se-

quence whenever service becomes available, and the ticket holders receive

service accordingly. Ticket queues have also been implemented in certain

online services. One example is Dell’s Internet customer service. The system

issues each customer upon login a number and provides service following the

natural (increasing) order of the numbers.

Compared with traditional queueing systems where there is a physical

queue, ticket queues have many apparent advantages. Customers are freed

from the physical discomfort of having to stand and wait in crowded queues.

In fact, they have the option to walk away and return later (before their

numbers are called) for service so as to make more productive usage of their

waiting time. From the service provider’s perspective, the absence of a phys-

ical queue reduces the pressure to provide adequate space capacity, alleviates

over-crowding related problems, and makes it easier to manage the waiting

area and customer flow.
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On the other hand, ticket queues have a disadvantage of invisibility

of abandonment customers to the system managers, as some ticket-holding

customers may not return for their service (on time or at all). This dis-

advantage prevents system managers from obtaining information about ex-

act queue lengths. However, for traditional queues, the more practical and

widely adopted staffing policy is congestion-based staffing, where the num-

ber of servers is adjusted according to the queue length and current service

level. Continuing along this line, the disadvantage in ticket queues makes

the problem of optimal staffing more difficult for the system manager, since

ticket number is the only information available to the managers. We study

the problem of optimal staffing in such systems, where the staffing decision

can only be based on ticket numbers, as opposed to the physical queue length

in a traditional system.

Let’s pursue the customer abandonment issue a bit further. Suppose

the system manager records and updates the number of customers who are

in service or have already received service up to time t, denoted c(t). There

are two other numbers the manager has ready access to: the last ticket

number taken before t by an arriving customer, denoted a(t); and the last

ticket number called out (for a waiting customer to receive service) before

t, denoted b(t). We must have a(t) ≥ b(t) ≥ c(t). Note that a(t) − b(t)

is the ticket queue-length, those waiting for service in the invisible ticket

queue. The catch is, not every customer in the ticket queue may be present

(at time t); indeed some may have walked away, and some may choose never

to return; and b(t)− c(t) exactly captures the number of no-show customers

(cumulative up to time t). Thus, the system manager can use the ratio,
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(b(t) − c(t))/b(t), to estimate the abandonment rate of customers. In fact,

realistically, the abandonment rate will depend on the number of servers in

action — when customers observe more servers actively serving in the system

they are less likely to walk away. Indeed, by associating the aforementioned

ratio with the number of servers serving at time t, the manager can come up

with estimates on abandonment rates that are server-dependent. Applying

the abandonment rates to the ticket queue-length, a(t) − b(t), the manager

will have a solid grasp on the actual congestion level in the system, and will

make staffing decision accordingly. This, in a nutshell, is the kind of staffing

rule that we shall study in this paper.

Specifically, we will assume that the server-dependent abandonment

rates are given; that is, we de-couple the estimation problem from the staffing

problem, and focus on the latter instead. (Otherwise, the problem will be

more complex, with the two problems, control and learning, intertwined; i.e.,

making staffing decisions while updating the estimates on customer aban-

donment rates.) Two types of costs are considered in our staffing decision:

customer-related abandonment and delay costs, and service-related operat-

ing and changeover costs. (The last one refers to the cost associated with

changing staffing levels.)

1.2 Literature Review

Existing studies on the optimal staffing for traditional queues can be classified

into two categories. The first category assumes no customer abandonment.

Yadin and Naor [36] investigate how to determine the service rate, based on
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the queue length, so as to minimize the long-run average total cost, including

the operating cost, customer delay cost, and the service rate changeover cost.

Using the Markov decision theory, Bell [7], and Gans and Zhou [14] consider

multiserver queues and characterize the optimal policies of adjusting the

number of working servers. When customer arrival rates change over time,

Fu et al. [13] study the optimal staffing policy for a multiserver system with

transient queueing effects. More recently, Zhang [38] studies the tradeoff

between the expected queue length and the frequency of service capacity

changeover. When the system has two capacity levels (low and high), the

author develops fluid and diffusion approximations for the expected queue

length, and then numerically illustrates the accuracy of these approximations

and the effectiveness of the congestion-based staffing policy. If there is no

customer abandonment, the ticket queue studied in this chapter will reduce

to the traditional queue, and the optimal staffing problem studied in Zhang

[38] will apply.

The second category takes into account customer abandonment in staffing

decisions. Harrison and Zeevi [20] use fluid approximations to optimize the

trade-off between the system cost and customer abandonment penalties for

call centers with multiple customer classes and multiple server pools. Using

diffusion approximation, the square-root staffing rule is studied by Garnett

et al. [15] and Mandelbaum and Zeltyn [25] with/without constraints on the

fraction of abandoning customers, average waiting time, and the probability

of service delay. The study is recently refined by Zhang et al. [37], and

extended by Pang and Perry [28] to different large-scale systems. When the

abandonment and reneging probabilities are increasing and concave functions
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of the number of customers in the system (queue length), Armony et al. [4]

establish certain properties of the queue length and abandonment process

with respect to the service capacity, and then analyze the sensitivity of the

optimal service capacity.

There is a rich body of literature on customer abandonment in tradi-

tional queueing systems. The earlier focus was on performance evaluation of

queues with impatient customers; refer to Cox and Smith [12], Ancker and

Gafarian (1962a, b), and Reynolds [29]. Later, Baccelli et al. [6], Gnedenko

and Kovalenko [17], and Stanford [32] consider single-server queues with

customer abandonment depending on the waiting time. Furthermore, the

similar problem of customer abandonment depending on waiting-plus-service

time is investigated by Gavish and Schweitzer [16], Hokstad [22], and Van

Dijk [34]. More recently, Brown et al. [11], Mandelbaum and Shimkin [24],

and Zohar et al. [39] develop statistical methods to estimate customer pa-

tience times. In ticket queues, information such as queue lengths, waiting

times, and abandonment epochs in traditional queues becomes unavailable.

Thus the methods reviewed in the literature above for characterizing cus-

tomer abandonment behavior are not applicable. This explains why in this

thesis we choose not to model directly customer abandonment behavior; in-

stead, we base our staffing decision on the customer abandonment rate as

observed by the system manager; and this parameter, as motivated earlier,

is readily estimated by the ticket counts (along with a count of customers

served and in service).

Specifically, our model is also related to the literature on the hysteretic

optimal control in M/M/1 queue, where the change in service rate incurs
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set-up cost. In this study, it’s not desirable to assign a service rate to a given

queue length because of the set-up cost. The optimal value of service rate at

any moment depends on previous history of the system, such as the queue

length and previous service rate. Yadin and Naor [36] derive the stationary

distribution of queue length given one hysteretic policy. Later, Lu and Ser-

fozo [23] and Kitaev and Serfozo [19] build a Markov decision process and

show that the optimal policy indeed is hysteretic policy, assuming that cost

function are submodular and satisfy some additional technical conditions.

Blackburn [10] takes into account customer balking and renege, and consid-

ers controlling an M/M/1 queue by turning the server on and off. Bell [8]

study an M/M/2 queue with removable servers. Both Blackburn [10] and

Bell [8] establish that optimal policy has hysteretic property, but they can

only open or shut down servers instead of choosing service rate. Compared

with existing literature, our study consider a more general problem and finds

the asymptotic optimal policy.

To our knowledge, there are two papers studying ticket queues. The

paper by Xu et al. [35] pursues an analytical study on ticket queues, where

a single-server model is considered. A Markov chain analysis leads to the

equilibrium distribution of the number of tickets in the system, along with

numerical methods for performance evaluation. The analysis there shows

the difficulties involved in deriving the analytic expressions for ticket queues,

even just for a single-server model and without staffing control. Thus, the

complexity in our model should come off as no surprise. Another paper

by Jennings and Pender [18] compare ticket queueing system and standard

queueing system. They conclude that the ticket queue and standard queue
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will perform asymptotically identically under heavy traffic condition.

1.3 Structure of the Thesis

In Chapter 2, we consider the system with two staffing levels (low and high).

Using the renewal reward theorem and matrix analytic methods, we first

derive the long-run average cost (including customer delay and abandonment

costs, operating cost and cost for changing staffing levels), and then obtain

the optimal staffing policy by the fractional programming. Moreover, with

the help of random walk theory, we develop some approximations for the

system performance measures, and then establish the asymptotical optimal

staffing policy. The extensive numerical experiments show the asymptotical

optimal policies perform very well.

In Chapter 3, we consider the system with more than two staffing levels.

It is almost impossible to write an analytic expression of the long-run average

cost. Instead, we use the fluid approximation approach to analyze the system

dynamics under the assumption that the customer arrival rate and service

rate are very large. After building the corresponding fluid model for ticket

queues, we establish a connection between it and the EOQ model in inventory

management. The optimal staffing policy for the fluid ticket queueing model

can then be determined by the optimal solution of EOQ model. Moreover,

the optimal staffing policy for the fluid ticket queueing model is proved to

be asymptotically optimal for our original ticket queue.

In Chapter 4, we discuss several future research problems.

In Appendix, we derive the long-run average cost of the system with
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multiple servers and two staffing levels.

1.4 Notation

The following notation will be used throughout this thesis. Pr(A) denotes

the probability of event A, IA denotes the indicator of the event A, E denotes

the expectation operator, and Var denotes the variance operator. For any

real number x, let x+ = max{0, x}, x− = max{0,−x}, x = 1 − x. We use

to boldface uppercase characters to denote matrix, and use I to denote an

identity matrix with the dimension being clear from the context. D[0,∞)

denotes the space of functions defined on [0,∞), which are right continuous

and have left-limits. A sequence of processes Zn inD[0,∞) is said to converge

u.o.c. to a process Z in D[0,∞), if Zn converges to Z uniformly on any

compact set on [0,∞) as n→∞.



2. MARKOV CHAIN ANALYSIS FOR TICKET QUEUES

In this chapter, we study the optimal staffing of the ticket queue with two

staffing levels, based on information from the ticket counts only. We derive

the optimal threshold to increase and decrease the staffing levels. The main

contributions of the study are as follows:

• a Markov chain analysis for the ticket queue, with explicit analytical

expressions derived for all major performance measures;

• a complete solution to the optimal staffing problem via fractional pro-

gramming, along with key structural properties of the problem;

• sensitivity analysis with respect to abandonment rates and other cost

parameters;

• random-walk approximations for system performance measures.

The chapter is organized as follows. Section 2.1 spells out the details of

the mathematical model and the Markov chain analysis for the ticket queue

with two staffing levels. Solutions to the optimal staffing policy and its prop-

erties are obtained in Section 2.2. Section 2.3 provides approximations based

on random walk analysis. Numerical results including sensitivity analysis are

given in Section 2.4. Concluding remarks are summarized in Section 2.5.
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2.1 Formulation and Analysis

In the queueing system we consider, customers arrive according to a Pois-

son process with rate λ. Upon arrival, each customer will receive a num-

bered ticket with the ticket number running in increasing order. Customers

are called to receive service according to the increasing order of the ticket

numbers they hold. Assume the customer service requirements are iid (in-

dependent and identically distributed) exponential random variables, and

independent of the arrivals. The system has two staffing levels, indexed by

i = 1, 2, with service rates µi; and which staffing level to use to serve the

customers is the main decision. Each staffing level may involve a single server

or a group of multiple servers in parallel, but we will not model this level of

granularity. Instead, we will assume at each staffing level i, the total output

rate is equal to µi, a constant, unless the system is empty (in which case

the output rate is zero). Thus, for ease of discussion, we shall refer to each

staffing level i simply as server i, i = 1, 2.

A customer may abandon her ticket before her number is called for

service (no show). If a customer shows up when her ticket number is called,

the customer will immediately receive service from one of working servers. If

the customer is a no-show, her number will be discarded and the next ticket

number will be called. We use αm (m = 1, 2) to represent the abandonment

probability of a ticket when m servers are in operation. That is, whenever one

of the m servers (if there are m operating servers) is free to serve, she calls the

next ticket number and that number has a probability of αm to be associated

with a no-show customer. Formally, we consider four cost components: (i)
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customer abandonment cost: each abandonment customer incurs cost r; (ii)

adding one server cost (service capacity changeover cost or server setup cost,

in the following “server setup cost” is used for the sake of simplicity): each

server setup costs K; (iii) server operating cost: server-i operation costs per

unit time ci, i = 1, 2; (iv) customer delay cost: each delayed customer incurs

cost h per unit time.

1,1,11,0,0 1,0,1 1,0,2 1,0,N 1,1,2 1,1,3 1,1,N+1 1,1,N+2... ... ...

Fig. 2.1: States Transitions for L = −1

Our question is how to use ticket information to dynamically determine

the staffing level of the ticket queue such that long-run average cost over the

infinite time horizon is minimized. Let the binary variable Si(t) represent

the working situation of server-i at time t. Namely, server-i is open at time

t if Si(t) = 1, and server-i is closed at time t if Si(t) = 0. Thus, S(t) =

S1(t)+S2(t) is the number of open servers at time t. Let Q(t) be the number

of tickets in the system at time t, including the customers, if any, who are

currently receiving service; that is, Q(t) is the sum of the number of busy

servers at time t and the difference between the number of the last issued

ticket before time t and the maximum of the ticket numbers under service at

time t. Then the number of uncalled tickets in queue at time t is Q(t)−S(t).

Denote state (1, 0, 0) as the empty system with server-1 open. Starting from
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the initial state (S1(0), S2(0), Q(0)) = (1, 0, 0), the system keeps only server-

1 to handle arriving customers, and will add server-2 to handle the waiting

customers when Q(t) exceeds N . On the other hand, as soon as the number

of tickets in the systems reduces to L+ 1 (−1 ≤ L < N) from Q(t) = N + 1,

the system will immediately shut down the server that has just finished the

customer service to reset the number of open servers to one, and the system

enters into state (1, 0, L+1) or (0, 1, L+1). If L = −1, the threshold for us to

reset the number of operating servers to be one is zero. That is, only when

the system becomes empty, we shut down one server from two operating

servers, and to be specific (and without loss of generality), we will shut down

server-2. Similarly, if L = 0, the threshold for us to shut down one operating

server among two operating servers is one, that is, as long as one operating

server gets idle, we shut it down, the system state transits from (1, 1, 2) to

one of (1, 0, 1) and (0, 1, 1).

1,0,0 1,0,1 ... 1,0,L+1 1,0,L+2 1,0,N

1,1,L+2 1,1,N

0,1,0 0,1,1 ... 0,1,L+1 0,1,L+2 ... 0,1,N

...

... 1,1,N+1 ...

Fig. 2.2: States Transitions for L ≥ 0
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We need to determine the optimal threshold N (to add an operating server)

and L+1 (to shut down one operating server) so as to minimize the expected

long-run average cost. To avoid the trivial case, we assume

(1− α2)λ

µ1 + µ2

< 1. (2.1)

2.1.1 Markov Chains

Due to exponential interarrivals and service times, {(S1(t), S2(t), Q(t)), t ≥

0} is a Markov chain with the state space

{(s1, s2, 0), (s1, s2, 1), · · · , (s1, s2, N), (1, 1, n), s1, s2 = 0, 1 withs1 + s2 = 1,

and n ≥ L+ 2}.

The renewal reward theorem will be used to derive the expected long-run

average cost. As the system operating cost and customer abandonment

probability depend on the number of operating servers, we decompose the

state space into two disjoint subspaces: the one-server region constituting

the states when one server is open,

{(1, 0, 0), (1, 0, 1) · · · , (1, 0, N); (0, 1, 0), (0, 1, 1) · · · , (0, 1, N)},

and the two-server region containing the states when two servers are open,

{(1, 1, n), n ≥ L+ 2}. Each cycle starts with state (1, 0, L+ 1) and ends also

with this state after the system visits state (1, 0, N + 1) for only one time.
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Starting from this state, the system moves to either state (1, 0, L+ 2) or one

of states {(1, 0, n) : 0 ≤ n ≤ L}. From state (1, 0, n) with 1 ≤ n ≤ L (state

(1, 0, L+ 2)), the system then visits either state (1, 0, k) with 0 ≤ k ≤ n− 1

(state (1, 0, n) with 0 ≤ n ≤ L + 1) or state (1, 0, n + 1) (state (1, 0, L + 3))

and so on. Of course, from state (1, 0, 0), the system then moves to state

(1,0,1) with probability one. According to the mechanism of our threshold

policy, when the system moves to state (1, 0, N + 1) from state (1, 0, N) due

to a new arrival, it will immediately set up server-2, who will in turn call the

first waiting customer for service. If this customer shows up, the system state

changes to (1, 1, N + 1); if she is a no show, her ticket will be discarded and

the subsequent ticket number will be called, and so on. In general, suppose

that the first n waiting tickets are discarded due to no shows and the (n+1)st

ticket corresponds to a showing customer, n = 0, 1, . . . , N − L− 1, then the

system moves to state (1, 1, N +1−n). If all the first (N−L) waiting tickets

correspond to no show customers, the system moves to state (1, 0, L + 1),

and server-1 that is originally busy is kept open while server-2 that is just

opened will be shut down immediately. Consequently, our cycle is over. After

moving to state (1, 1, N + 1 − n) with n ≤ N − L − 1, the system has two

operating servers to handle customers. As soon as the number of tickets in the

system drops down to L+ 1 due to a new service completion, the server that

has just completed the service will be immediately closed, and the system

state will change from (1, 1, L + 2) to (0, 1, L + 1) if server-1completes that

service, and to (1, 0, L + 1) if server-2 does. If the system state changes

to (1, 0, L + 1), the cycle is over. Otherwise, we start with (0, 1, L + 1) to

repeat the above. Figures 2.1 and 2.2 show the two groups of states and all
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possible transitions for L = −1 and L > −1 cases respectively, where dotted

arcs represent the transitions triggered by customer arrivals, and solid arcs

denote the transitions incurred by the service completions.

Let c = c1 + c2, µ = µ1 + µ2, and

µ̂i =
µi
α1

, µ̂ =
µ

α2

, ρi =
λ

µi
, ρ =

λ

µ
, αi = 1− αi,

βi = λ− µ̂i, β = −λ+ µ̂, θi = α1 +
1

ρi
, i = 1, 2, .

Here θi reflects the traffic intensity in the one-server region. Namely, when

θi ≤ 1, the traffic intensity is larger than or equal to one, and while θi > 1,

the traffic intensity is less than one. In view of (2.1), we can see that θi ≤ 1

is the more interesting case than θi > 1, as it puts the traffic intensity ρi in

the (higher) range of [1/α1, 2/α2) with (2.1) holding. Let T1 be the time

interval that the system stays in the one-server region in a regenerative cycle.

Similarly, let T2 be the time interval that the system stays in the two-server

region in a regenerative cycle. By the memoryless property of the exponential

distribution, each regenerating cycle (the time interval between two entries

to state (1, 0, L + 1) and in which the system visits state (1, 0, N + 1) only

one time) is T1 + T2. First we consider T1. When L = −1, the one-server

region consists of only states when server-1 is open. By the Markov prop-

erty of the process (S1(t), S2(t), Q(t)), T1 can be considered as the absorbing

time of the Markov chain {(S1(t), S2(t), Q(t)), t ≥ 0} with the state space

{(1, 0, 0), (1, 0, 1), · · · , (1, 0, N + 1)}, the absorbing state (1, 0, N + 1), the
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generator D



−λ λ

µ1 −(λ+ µ1) λ

α1µ1 α1µ1 −(λ+ µ1) λ

α2
1µ1 α1α1µ1 α1µ1 −(λ+ µ1) λ

...
...

...
. . .

αN−2
1 µ1 αN−3

1 α1µ1 αN−4
1 α1µ1 · · · · · · −(λ+ µ1) λ 0

αN−1
1 µ1 αN−2

1 α1µ1 αN−3
1 α1µ1 · · · · · · α1µ1 −(λ+ µ1) λ

0 0 0 · · · · · · 0 0 0



,

(2.2)

and the initial distribution Pr((S1(0), S2(0), Q(0)) = (1, 0, L + 1)) = 1.

When L > −1, the one-server region consists of the states when server-1

is open and possibly when server-2 is open. T1 is equal to the above ab-

sorbing time plus the random number of the absorbing times of the Markov

chain {(S1(t), S2(t), Q(t)), t ≥ 0} with the state space {(0, 1, 0), (0, 1, 1), · · · ,

(0, 1, N+1)}, the absorbing state (0, 1, N+1), the generator D with µ1 replac-

ing by µ2, and the initial distribution Pr((S1(0), S2(0), Q(0)) = (0, 1, L+1)) =

1. Let X represent this random number. We know during a regenerating cy-

cle, the number of times to open server-2 is one, and the number of times to
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open server-1 is X, and

Pr(X = k) =

 αN−L2 + (1− αN−L2 )µ2
µ
, if k = 0,(

αN−L2 + (1− αN−L2 )µ1
µ

)k−1

(1− αN−L2 )2 µ1µ2
µ2
, if k ≥ 1.

It is direct to verify that

EX =
µ1

µ2

. (2.3)

With the help of M/M/2, the analysis for T2 will be directly carried out.

2.1.2 Performance Measures

To get the system performance, we first compute the expected length of a

regenerative cycle, ET1+ET2, and the expected cost per regenerative cycle in-

cluding customer abandonment penalty, server operating cost, and customer

delay cost.

We first look at T1. Based on the above discussion, T1 can be decomposed

into two parts, namely, one-server region with server-1 open (write T11), and

one-server region with server-2 open (write T12). Each of them is determined

by the absorbing time of the Markov chain given by (S1(t), S2(t), Q(t)). Thus

T11 and T12 can be represented by phase-type distributions. Using the phase-

type distribution properties, we have:

Lemma 1. The expected time interval for the system to use only one server
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during one regenerative cycle is given by

ET1 =


ET11 if L = −1,

ET11 + ET12 if L > −1,

(2.4)

where

ET11 =
α1(N − L)

λθ1

+
θN+1

1 − θL+1
1

λρ1θ
2

1

, ET12 =
µ1

µ2

[α1(N − L)

λθ2

+
θN+1

2 − θL+1
2

λρ2θ
2

2

]
.

Proof. First we look at ET11. Let D̃1 be the N × N dimensional matrix

obtained by removing the entries in generator D associated with state (1, N+

1):

D̃1 =



−λ λ

µ1 −(λ+ µ1) λ

α1µ1 α1µ1 −(λ+ µ1) λ

α2
1µ1 α1α1µ1 α1µ1 −(λ+ µ1) λ

...
...

...
. . .

αN−2
1 µ1 αN−3

1 α1µ1 αN−4
1 α1µ1 · · · · · · −(λ+ µ1) λ

αN−1
1 µ1 αN−2

1 α1µ1 αN−3
1 α1µ1 · · · · · · α1µ1 −(λ+ µ1)



.

(2.5)
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From the phase-type distribution theory,

ET1 = (0, . . . , 0︸ ︷︷ ︸
L+1

, 1, 0, . . . , 0)× (−D̃−1
1 )× e′, (2.6)

where e′ is the transpose of the N−dimensional unit vector. It is direct to

verify the inverse of D̃1, denoted by D̃−1
1 = (d̃ij)N×N , can be written as

−1
λρ1



ρ1 +

N−1∑
i=0

θi1 ρ1 +

N−2∑
i=0

θi1 ρ1 +

N−3∑
i=0

θi1 · · · ρ1 +

2∑
i=0

θi1 ρ1 +

1∑
i=0

θi1 ρ1 + 1 ρ1

N−1∑
i=0

θi1 ρ1 +

N−2∑
i=0

θi1 ρ1 +

N−3∑
i=0

θi1 · · · ρ1 +

2∑
i=0

θi1 ρ1 +

1∑
i=0

θi1 ρ1 + 1 ρ1

θ1

N−2∑
i=0

θi1

N−2∑
i=0

θi1 ρ1 +

N−3∑
i=0

θi1 · · · ρ1 +

2∑
i=0

θi1 ρ1 +

1∑
i=0

θi1 ρ1 + 1 ρ1

θ21

N−3∑
i=0

θi1 θ1

N−3∑
i=0

θi1

N−3∑
i=0

θi1 · · · ρ1 +

2∑
i=0

θi1 ρ1 +

1∑
i=0

θi1 ρ1 + 1 ρ1

...
...

...
. . .

θN−3
1

2∑
i=0

θi1 θN−4
1

2∑
i=0

θi1 θN−5
1

2∑
i=0

θi1 · · ·
2∑

i=0

θi1 ρ1 +

1∑
i=0

θi1 ρ1 + 1 ρ1

θN−2
1

1∑
i=0

θi1 θN−3
1

1∑
i=0

θi1 θN−4
1

1∑
i=0

θi1 · · · θ1

1∑
i=0

θi1

1∑
i=0

θi1 ρ1 + 1 ρ1

θN−1
1 θN−2

1 θN−3
1 · · · θ21 θ1 1 ρ1



.

(2.7)

ET11 directly follows (2.6)-(2.7). Note that the expectation of T12 is (1+EX)

multiplied by ET11 replacing θ1 and ρ1 by θ2 and ρ2, respectively. Hence ET12

can be obtained by (2.6)-(2.7) replacing θ1 and ρ1 by θ2 and ρ2, respectively.
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Now we consider T2. To determine the expectation of T2, as mentioned in

the above subsection, consider an auxiliaryM/M/2 system in which customer

arrivals follow a Poisson process with parameter (1−α2)λ, and the customer

service times from two servers are different. Specifically, the service time

from server-i is exponentially distributed with parameter µi, i = 1, 2. The

initial number of customers in this M/M/2 system is (1 + j) (“1” represents

the customer under service and j is the number of customers in queue who

have not abandoned) with probability pj+1 given by

pj+1 =
(
N−L+

j

)
αj2α

N−L+−j
2 , j = 0, · · · , N − L+. (2.8)

For this M/M/2 system, let τj be the first passage time from state j to state

(j − 1), where j = 2, · · · , N + 1, and τ1i the first passage time from state 1

with server-i busy to empty, i = 1, 2. Recall that when L > −1, there are

one time to open server-2 and X times to open server-1 during a regenerating

cycle, and when L = −1, there is only one time to open server-2. Moreover

after each opening, the system evolves as M/M/2 described above. Thus we

have

ET2 =


(1 + EX)

[
p2Eτ2 + p3 (Eτ2 + Eτ3) + · · ·+ pN−L+1

N−L∑
j=1

Eτj+1

]
, if L > −1,

p1Eτ11 +
∑N

j=1 pj+1

(
µ2
µ Eτ11 +

µ1
µ Eτ12 +

j∑
k=1

Eτk+1

)
, if L = −1.

(2.9)

By Lemma 1 in [27], we know that τ2, τ3, · · · , τN+1 have the same distribution
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with the mean

Eτ2 =
1

µ− α2λ
. (2.10)

Going alone the line of the proof of Lemma 1 in [27], for τ11 and τ12, we have

Ee−sτ11 =
λ

λ+ µ1 + s
Ee−sτ2

(µ1

µ
Ee−sτ12 +

µ2

µ
Ee−sτ11

)
+

µ1

λ+ µ1 + s
, (2.11)

Ee−sτ12 =
λ

λ+ µ2 + s
Ee−sτ2

(µ1

µ
Ee−sτ12 +

µ2

µ
Ee−sτ11

)
+

µ2

λ+ µ2 + s
. (2.12)

This, by taking derivative on both sides and letting s = 0, gives that

Eτ11 =
µ(λ+ µ2)(µ+ λα2)

µ1µ2(µ+ 2λ)(µ− λα2)
, Eτ12 =

µ(λ+ µ1)(µ+ λα2)

µ1µ2(µ+ 2λ)(µ− λα2)
. (2.13)

It follows from (2.3) and (2.8)-(2.13) that

Lemma 2. The expected time interval between an open and a shutdown of

the second server is given by

ET2 =
(µ+ λα2)[αN2 µ1(µ2 − µ1) + µ1(λ+ µ1) + µ2(λ+ µ2)]

µ1µ2(µ+ 2λ)(µ− λα2)
L−

+
α2(N − L+)

µ− λα2

(
1 +

µ1

µ2

(1− L−)
)

Finally we compute the expected total cost in a regenerative cycle, which

includes the server’s setup and operation costs, the customer delay cost, and

the customer abandonment cost. Clearly, the server’s expected setup cost is

K if L = −1 (as the second server is opened only once in each cycle), and

(1 +EX)K if L > −1 (as server-2 is opened only once and server-1 is opened
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X times in each cycle), operation cost for server-1 is c1 · (ET11 + ET2), and

operation cost for server-2 is c2 ·(ET12 +ET2). For the customer delay cost, we

consider two parts: one-server region and two-server region. Let C1 denote

the customer delay cost in the one-server region. For the one-server region,

when L = −1, only the system states (1, 0, n) with 2 ≤ n ≤ N may incur

the customer delay cost; when L > −1, both the system states (1, 0, n) and

(0, 1, n) with 2 ≤ n ≤ N may incur the customer delay cost. Moreover, if

the system state is (1, 0, n) or (0, 1, n), the number of customers the system

pays their delay cost (that is, the number of waiting customers) is a binomial

random variable with mean α1(n − 1). As the system sojourn time at each

state (1, 0, n) (or (0, 1, n)) with 1 ≤ n ≤ N is an exponential random variable

with parameter (λ + µ1) (or (λ + µ2)), thus to find the customer delay cost

in the time intervals T1, it suffices to find out the number of times for the

system to visit each state (1, 0, n) during T1 and (0, 1, n) during T12. Based

on this analysis, by the property of the Markov chains, we can prove

Lemma 3. The customer delay cost in the one-server region is

C1 =
hα1

λρ1

[θL+

1 − θN1
θ

3

1

− 1 + ρ1θ1

2θ1

(
(L+)2 −N2

)
+

2 + θ1 + ρ1θ
2

1

2θ
2

1

(L+ −N)
]

+
µ1

µ2

· hα1

λρ2

[θL+

2 − θN2
θ

3

2

− 1 + ρ2θ2

2θ2

(
(L+)2 −N2

)
+

2 + θ2 + ρ2θ
2

2

2θ
2

2

(L+ −N)
]
(1− L−).

Proof. First we consider the customer delay cost incurred by the period T11.
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For the Markov chain {(S1(t), S2(t), Q(t)), t ≥ 0} given in (2.2) starting with

state (1, 0, L+1), let V (1, 0, i) be the number of visits to state (1, 0, i) during

T1, i = 0, · · · , N. In view of the definition of D̃−1
1 given by (2.7). Let fL+1,i

be the probability that the chain visits state (1, 0, i) from state (1, 0, L + 1)

and fi,i the probability that the chain revisits state (1, 0, i), i = 0, 1, · · · , N .

From the theory of absorbing property of the first passage probability of

the transient Markov chain, we know that V (1, 0, i) is a geometric random

variable with

Pr (V (1, 0, i) = n) = fL+1,i × (1− fii)× (fii)
n−1, n = 1, 2, · · · , i 6= L+ 1

Pr (V (1, 0, L+ 1) = n) = (1−fL+1,L+1)×(fL+1,L+1)n−1, n = 1, 2, · · · , i = L+1.

The first passage probabilities fL+1,i and fii can be computed by

fL+1,i =

∑∞
n=1 p

n
L+2,i+1∑∞

n=0 p
n
i+1,i+1

, i 6= L+ 1,

fii =

∑∞
n=1 p

n
i+1,i+1∑∞

n=0 p
n
i+1,i+1

, i = 0, 1, · · · , N.

Here, pnij is the n-step transition probability for the transition probability

matrix given by

P = (pij)(N+1)×(N+1) =
1

λ+ µ
D̃1 + I.
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Here D̃1 is given by (2.5) and I is an identity matrix. This implies

(I−P)−1 = (λ+ µ1)
(
−D̃1

)−1

.

In view of (2.7), we have

fL+1,i =
d̃L+2,i+1

d̃i+1,i+1

and fii =
(λ+ µ1)d̃i+1,i+1 + 1

(λ+ µ1)d̃i+1,i+1

.

We have

EV (1, 0, i) = −(λ+ µ1)d̃L+2,i+1, i = 0, · · · , N.

This implies that the expected sojourn times in states (1, i) is

1

λ+ µ1

EV (1, 0, i) = −d̃L+2,i+1, i = 0, · · · , N. (2.14)

Given the ticket queue length i, the corresponding number of waiting cus-

tomers follows a binomial distribution with mean (1 − α1)i. Then, the cus-

tomer delay cost in T11 is

h
[
(1− α1)(−d̃L+2,3) + 2(1− α1)(−d̃L+2,4) + · · ·+ (N − 1)(1− α1)(−d̃L+2,N+1)

]
.

(2.15)
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The customer delay cost in T12 can be obtained by (2.15) in which µ1 is

replaced by µ2. Hence the proof of the lemma is completed.

Denote C2 as the customer delay cost in the two-server region. When

L > −1, there are (1 + X) times to open the second server. According to

the mechanism for us to use the second server and the memoryless property

of exponential distributions, we know that after each opening, the system

evolution follows M/M/2 system dynamics with the initial distribution of

the number of customers given by (2.8). In other words, we have (1 + X)

two-server subregions in the two-server region, and each subregion has the

same customer delay cost. We use T
(s)
2 denote a two-server subregion. Of

course, T
(s)
2 = T2 if L = −1. Let C

(s)
2 be the customer delay cost during

T
(s)
2 . Note that there always exist at least L+ waiting tickets in period T

(s)
2 .

Also there are N waiting tickets at the instant to open the second server.

Note that the customer delay cost is independent of the service discipline as

long as the system is work-conserving. Thus we keep the initial L+ tickets

never to be called during T
(s)
2 . At the beginning, we first call the initial other

(N−L+) tickets to get service, then we serve the customers who arrive during

T
(s)
2 . In view of this service arrangement, we can decompose the customer

delay cost in period T
(s)
2 into three parts:

• C(s)
21 is the expected customer delay cost incurred by arriving customers

during T
(s)
2 ,

• C(s)
22 is the expected customer delay cost incurred by the initial L+

tickets during T
(s)
2 ,
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• C(s)
23 is the expected customer delay cost incurred by the initial (N−L+)

tickets.

C
(s)
2 can be written as

C
(s)
2 = C

(s)
21 + C

(s)
22 + C

(s)
23 . (2.16)

Recall that the number of waiting customers among the initial L+ tickets is

random and follows a binomial distribution with mean α2L
+. Hence,

C
(s)
22 = hα2L

+ × ET
(s)
2 . (2.17)

Also the number of waiting customers among the initial N − L+ tickets,

denoted by Y , follows a binomial distribution with mean α2(N − L+). C23

is just the delay cost of these Y customers. Since the waiting time of the ith

customer in the sequence of Y customers is (i− 1)/µ, we have

C
(s)
23 = hE

( Y∑
i=1

i− 1

µ

)
=
h

µ
E
(Y (Y − 1)

2

)
=

h

2µ
α2

2(N − L+)(N − L+ − 1).

(2.18)

To get C
(s)
21 , we again consider the auxiliary M/M/2 system. Let Q2(t) be

the number of customers at time t, with the initial number of customers

Q2(0) = 1 + Y , where Y is the same random variable as one used by (2.18).

We decompose T
(s)
2 into three periods denoted by T

(s)
21 , T

(s)
22 , and T

(s)
23 , where

T
(s)
21 is the first time at which the system can handle the customers arriving
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during T
(s)
2 , T

(s)
22 is the first time at which the system has one idle server after

T
(s)
21 , and T

(s)
23 is the first passage time from state (1, 1, 1) to state (1, 1, 0) for

L = −1. Clearly, if L > −1, we have T
(s)
23 = 0. Formally,

T
(s)
21 = inf{t : the number of the service completions by time t ≥ Y },

T
(s)
22 = inf{t ≥ 0 : Q2(t) = 1} − T (s)

21 ,

T
(s)
23 = T

(s)
2 − T

(s)
21 − T

(s)
22 .

Let W be the waiting time of a customer arriving during T
(s)
2 . Then

from Little’s formula, we have

C
(s)
21 = hET

(s)
2 ×

[
λα2E

(
W
∣∣∣arriving during (T

(s)
21 + T

(s)
22 )
)E(T

(s)
21 + T

(s)
22 )

ET
(s)
2

+ λα2E
(
W
∣∣∣arriving during T

(s)
23

)ET (s)
23

ET
(s)
2

]
.

(2.19)

From this we can get C
(s)
21 .

Lemma 4. The expected customer delay cost incurred by arriving customers

during T
(s)
2 is given by

C
(s)
21 =


hλα2

2(N−L)
µ−λα2

[
λα2

µ(µ−λα2) +
α2(N−L)+1+α2

2µ

]
, if L > −1,

hλα2
µ−λα2

[
α2
2N

2

2µ + α2N
λα2

2+(1+α2)µ
2µ(µ−λα2) +

αN2 λµ1(µ2−µ1)+λ(λµ+µ21+µ22)
µ1µ2(µ+2λ)(µ−λα2)

]
, if L = −1.
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Proof. First, according to Theorem 1 of Omahen and Marathe (1978),

E
(
W
∣∣∣arriving during (T

(s)
21 + T

(s)
22 )
)

=
λα2

µ(µ− λα2)
+

E(T
(s)
21 )2

2ET
(s)
21

. (2.20)

The Laplace-Stieltjes Transform of T
(s)
21 is given by

Ee−sT
(s)
21 =

N−L+∑
i=0

(
N−L+

i

)
αN−L

+−i
2 αi2

(
µ

µ+ s

)i
=

(
µ+ sα2

µ+ s

)N−L+

.

This implies

ET
(s)
21 =

(N − L+)α2

µ
, E

(
T

(s)
21

)2

=
α2

2(N − L+)2 + (1− α2
2)(N − L+)

µ2
.

(2.21)

Using (2.20), we have

E
(
W
∣∣∣arriving during (T

(s)
21 + T

(s)
22 )
)

=
λα2

µ(µ− λα2)
+
α2(N − L+) + 1 + α2

2µ
.

(2.22)

By (2.9),

E(T
(s)
21 + T

(s)
22 ) =

[
p2Eτ2 + p3 (Eτ2 + Eτ3) + · · ·+ pN−L+1

N−L∑
i=1

Eτi+1

]
=
α2(N − L+)

µ− λα2

.
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Hence the lemma for L > −1 follows from T
(s)
23 = 0, (2.19) and (2.22).

Now we consider the case L = −1. According to the definition of T
(s)
23

and τ11 and τ12 in (2.9), we have

E
(
W
∣∣∣arriving during T

(s)
23

)
=
µ1

µ
E
(
W
∣∣∣arriving during τ12

)
+
µ2

µ
E
(
W
∣∣∣arriving during τ11

)
. (2.23)

Taking derivative with resect to “s” in (2.11)-(2.12), we have

Eτ11 =
1/(λ+ µ1)

1− λµ2/[µ(λ+ µ1)]
+

λ/(λ+ µ1)

1− λµ2/[µ(λ+ µ1)]
Eτ2 +

λµ1/[µ(λ+ µ1)]

1− λµ2/[µ(λ+ µ1)]
Eτ12,

Eτ12 =
1/(λ+ µ2)

1− λµ1/[µ(λ+ µ2)]
+

λ/(λ+ µ2)

1− λµ1/[µ(λ+ µ2)]
Eτ2 +

λµ2/[µ(λ+ µ2)]

1− λµ1/[µ(λ+ µ2)]
Eτ11.

Therefore E
(
W | arriving during τ11

)
and E

(
W | arriving during τ12

)
can be

written as

E
(
W | arriving during τ11

)
=

λ/(λ+ µ1)

1− λµ2/[µ(λ+ µ1)]
· Eτ2

Eτ11
· E
(
W | arriving during τ2

)
+

λµ1/[µ(λ+ µ1)]

1− λµ2/[µ(λ+ µ1)]
· Eτ12

Eτ11
· E
(
W | arriving during τ12

)
, (2.24)

E
(
W | arriving during τ12

)
=

λ/(λ+ µ2)

1− λµ1/[µ(λ+ µ2)]
· Eτ2

Eτ12
· E
(
W | arriving during τ2

)
+

λµ2/[µ(λ+ µ2)]

1− λµ1/[µ(λ+ µ2)]
· Eτ11

Eτ12
· E
(
W | arriving during τ11

)
. (2.25)
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By Theorem 2 of Omaben and Marathe (1978),

E
(
W | arriving during τ2

)
=

1

µ− λα2

.

Hence, we have

E
(
W | arriving during τ11

)
= E

(
W | arriving during τ12

)
=

λ

(µ+ λα2)(µ− λα2)
. (2.26)

Recalling from (2.9) that

ET
(s)
23 = αN2 Eτ11 + (1− αN2 )

(
µ1
µ
Eτ12 + µ2

µ
Eτ11

)
, (2.27)

we know that

E
(
W | arriving during T

(s)
23

)
=
(
αN2 + (1− αN2 )

µ2

µ

) Eτ11

ET
(s)
23

E
(
W | arriving during τ11

)
+ (1− αN2 )

µ1

µ

Eτ12

ET
(s)
23

E
(
W | arriving during τ12

)
. (2.28)
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Combining (2.26)-(2.37) yields that

ET
(s)
23 × E

(
W | arriving during T

(s)
23

)
=

λ

µ− λα2

αN2 µ1(µ2 − µ1) + µ1(λ+ µ1) + µ2(λ+ µ2)

µ1µ2(µ+ 2λ)(µ− λα2)
.

The lemma for L = −1 directly follows from (2.19) and (2.22).

Using (2.3), (2.16)-(2.18), Lemma 4, C2 = C
(s)
2 if L = −1, and C2 =

(1 + EX)C
(s)
2 , we get the customer delay cost for the two-server region.

Lemma 5. The expected customer delay cost in the two-server region, C2,

is given by

C2 =



hα2

2(µ−λα2)

(
α2N

2 +N α2[(2+α2)λ−µ]
µ−λα2

+
2λ2
[
αN2 µ1(µ2−µ1)+λµ+µ21+µ22

]
µ1µ2(µ+2λ)(µ−λα2)

)
if L = −1;

hα2
2µ

2µ2(µ−λα2)

(
N2 − L2 + (N − L)λ(2+α2)−µ

µ−λα2

)
if L > −1.

To get the customer abandonment cost, for each cycle, we need find

the expectation of the system idle time in one-server region, denoted by T10,

and the expectation of the one server idle in two-server region for L = −1,

represented by T20. Again by the properties of phase-type distributions, we

have
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Lemma 6. For each cycle, the expectation of the system idle is given by

ET10 =
θL

+

1 − θN1
λρ1θ1

+
L−

λ
+
µ1

µ2

θL
+

2 − θN2
λρ2θ2

(1− L−), (2.29)

and the expectation of one server idle is

ET20 =
αN2 µ1(µ2 − µ1) + µ2(λ+ µ2) + µ1(λ+ µ1)

µ1µ2(µ+ 2λ)
. (2.30)

Proof. In view of Lemma 3, we know that

ET10 =
1

λ+ µ1

EV (1, 0, 0).

By (2.7)-(2.14), we have the lemma for ET10. Now consider ET20. Let τ
(0)
1i is

the accumulative time for one server idle during τ1i, i = 1, 2. Then we have

Eτ
(0)
11 =

1

λ+ µ1

+
λ

λ+ µ1

[µ2

µ
Eτ

(0)
11 +

µ1

µ
Eτ

(0)
12

]
,

Eτ
(0)
12 =

1

λ+ µ2

+
λ

λ+ µ2

[µ2

µ
Eτ

(0)
11 +

µ1

µ
Eτ

(0)
12

]
.

This gives that

ET20 =
[
αN2 +

µ2

µ
(1− αN2 )

]
Eτ

(0)
11 +

µ1

µ
(1− αN2 )Eτ

(0)
12

=
αN2 µ1(µ2 − µ1) + µ2(λ+ µ2) + µ1(λ+ µ1)

µ1µ2(µ+ 2λ)
,
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which prove the lemmas for ET20.

Without loss of generality, after making a cost normalization, we assume

the cost per customer abandonment is one, i.e., r = 1. Using the results

developed yet (Lemmas 1-3 and Lemmas 5-6), we can express the expected

long-run average cost, denoted by AC(L,N), as

AC(L,N) =
1

ET1 + ET2

[
λα1(ET1 − ET10) + λα2(ET2 − L− × ET20) + C1 + C2

+ c1(ET11 + ET2) + c2(ET12 + ET2) +K + (1− L−)
µ1

µ2

K
]

:=
f(L,N)

g(L,N)
, (2.31)

where

f(L,N) = a(θN1 − θL
+

1 ) + a2(N2 − (L+)2) + a1(N − L+) + (a0 + aeα
N
2 )L− +K

+ (1− L−)
µ1

µ2

[
a′(θN2 − θL

+

2 ) + a′2(N2 − (L+)2) + a′1(N − L+) +K
]
,

(2.32)

g(L,N) = b(θN1 − θL
+

1 ) + b1(N − L+) + (b0 + beα
N
2 )L−

+ (1− L−)
µ1

µ2

[
b′(θN2 − θL

+

2 ) + b′1(N − L+)
]
, (2.33)

a =
α1ρ1µ̂

2
1

β2
1

− ρ1µ̂
2
1

β3
1

h+
µ̂2

1(1 + α1ρ1)

λβ2
1

c1, a2 =
h

2

(α1

β1

+
α2

β

)
, (2.34)

a1 =
λα1 + c1

β1

+
λα2 + c

β
− h

2

[ µ̂1(1 + α1 + ρ1α
2
1)

β2
1

+
µ− λ(2 + α2)

β2

]
,

(2.35)

a0 =

[
µ1(λ+ µ1) + µ2(λ+ µ2)

][
λ2α2β + βc(µ+ λα2) + hλ2

]
µ1µ2β2α2(µ+ 2λ)

+
c1

λ
,

(2.36)
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ae =
λ2α2(µ2 − µ1) + c(µ2 − µ1)(µ+ λα2)

µ2βα2(µ+ 2λ)
+

λ2(µ2 − µ1)

µ2β2α2(µ+ 2λ)
h,

(2.37)

a′ =
α1ρ2µ̂

2
2

β2
2

− ρ2µ̂
2
2

β3
2

h+
µ̂2

2(1 + α1ρ2)

λβ2
2

c2, a′2 =
h

2

(α1

β2

+
α2

β

)
, (2.38)

a′1 =
λα1 + c2

β2

+
λα2 + c

β
− h

2

[ µ̂2(1 + α1 + ρ2α
2
1)

β2
2

+
µ− λ(2 + α2)

β2

]
,

(2.39)

b =
1 + α1ρ1

λ
· µ̂

2
1

β2
1

, b1 =
1

β1

+
1

β
, b0 =

1

λ
+

(µ+ λα2)
[
λµ+ µ2

1 + µ2
2

]
βµ1µ2α2(µ+ 2λ)

(2.40)

be =
(µ2 − µ1)[µ+ λα2]

βµ2α2(µ+ 2λ)
, b′ =

1 + α1ρ2

λ
· µ̂

2
2

β2
2

, b′1 =
1

β2

+
1

β
. (2.41)

Our objective is to find L and N so as to minimize AC(L,N). That is,

min
L≥−1,N≥0∨L

AC(L,N) = min
L≥−1,N≥0∨L

f(L,N)

g(L,N)
. (2.42)

2.2 Optimal Solution

To obtain the optimal thresholds of opening and closing the second server,

we first look at some properties of the coefficients of the decision variables L

and N in (2.42). The following relations follow immediately:

b > 0 and b′ > 0, (2.43)

θ1 ≤ 1⇔ β1 ≥ 0; θ2 ≤ 1⇔ β2 ≥ 0, (2.44)

b1 > 0 and a2 > 0 if θ1 ≤ 1; b′1 > 0 and a′2 > 0 if θ2 ≤ 1, (2.45)
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a > 0 if θ1 > 1; a′ > 0 if θ2 > 1, (2.46)

Also note that for i = 1, 2

θi > (≤) 1 if and only if ρi < (≥)
1

1− α1

; (2.47)

whereas

β > 0 if and only if
λ

µ
<

1

1− α2

.

As N → +∞, we have, from (2.34)-(2.41) and (2.43)-(2.46),

f(L,N)

g(L,N)
→



+∞, if θ1, θ2 ≤ 1,

a′

b′
I{L≥0} +∞I{L=−1} > 0, if θ1 ≤ 1 < θ2,

a
b
> 0, if θ2 ≤ 1 < θ1,

a′

b′
I{L≥0,µ1<µ2} + a

b

(
I{L≥0,µ1>µ2} + I{L=−1}

)
+µ2a+µ1a′

µ2b+µ1b′
I{L≥0,µ1=µ2} > 0, if θ1 > 1, θ2 > 1.

(2.48)

The first limit above takes into account a2 > 0 and a′2 > 0. The limit in

(2.48) implies that to solve the minimization problem in (2.42), we only need

to consider (L,N) ∈ [−1, L0]×[0∨L,N0] for some pre-specified sufficient large

L0 and N0. This can enable us to use the standard fractional programming

techniques to solve problem (2.42). For simplicity, we shall write minL,N

below, in lieu of minL∈[−1,L0],N∈[0∨L,N0].
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2.2.1 Fractional Programming

Formally, the optimal policy to (2.42) can be solved as follows:

min
L,N

[f(L,N)− xg(L,N)] := Ψ(x), (2.49)

along with a line search

Ψ(x) = 0. (2.50)

To see this, let x∗ be the solution to the equation in (2.50), and (L∗, N∗)

be the corresponding minimizer in (2.49), i.e., with x = x∗. Then,

x∗ =
f(L∗, N∗)

g(L∗, N∗)
≤ f(L,N)

g(L,N)
, for N ≥ L ≥ −1,

where the first equality follows from Ψ(x∗) = 0, and the second inequality is

due to:

0 = f(L∗, N∗)− x∗ · g(L∗, N∗) ≤ f(L,N)− x∗ · g(L,N).

Note, here we implicitly use that g(L,N) (= ET1 + ET2) > 0. In addition,

we need g(L,N) <∞ for any feasible (L,N) ∈ [−1, L0]× [0 ∨ L,N0], which

certainly holds.

Below we go into more details about solving the two problems in (2.49)

and (2.50). First, note that Ψ(x) is strictly decreasing in x. To see this, con-
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sider x1 < x2 and let (L̃, Ñ) and (L̂, N̂) be the two corresponding minimizers

of (2.49). Then,

Ψ(x1) = f(L̃, Ñ)− x1g(L̃, Ñ) > f(L̃, Ñ)− x2g(L̃, Ñ)

≥ f(L̂, N̂)− x2g(L̂, N̂) = Ψ(x2),

where the first (strict) inequality is due to g(L,N) > 0. Hence, the solution

to (2.50) uniquely exists. Next, consider the minimization problem in (2.49).

Define f1(y) = (a − xb)θy1 + a2y
2 + (a1 − xb1)y and f2(y) = (a′ − xb′)θy2 +

a′2y
2 + (a′1 − xb′1)y. Then, (2.49) can be written as

min
L,N

{
f1(N)− f1(L+) + (a0 − xb0 + aeα

N
2 − xbeαN2 )L− +K

+(1− L−)
µ1

µ2

[
f2(N)− f2(L+) +K

]}
. (2.51)

The second derivative with respect to N of the objective function above is:

(a− xb)(ln θ1)2θN1 + 2a2 +
µ1

µ2

(1− L−)
[
(a′ − xb′)(ln θ2)2θN2 + 2a′2

]
+ L−(ae − xbe)(lnα2)2αN2 , (2.52)

and the second derivative with respect to L of the objective function is:

−(a− xb)(ln θ1)2θL1 − 2a2 −
µ1

µ2

(1− L−)
[
(a′ − xb′)(ln θ2)2θL2 + 2a′2

]
. (2.53)

There are two steps to find optimal N∗ and L∗. The first step is to find
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the optimal (L∗1, N
∗
1 ) given L ≥ 0; and the second step, to find the optimal

(L∗2, N
∗
2 ) given L = −1 (here L∗2 = −1). Then, we compare AC(L∗1, N∗1 ) and

AC(L∗2, N∗2 ) to find the optimal (L∗, N∗). For L ≥ 0, there are four cases:

(i) θ1 < 1, θ2 < 1; in which case a2 > 0, a′2 > 0 (see (2.45)).

(i-a) Suppose a − xb ≥ 0, and a′ − xb′ ≥ 0. Then, by (2.52), the

objective function in (2.51) is strictly convex with respect to N ;

hence, the solution N∗1 uniquely exists. Similarly, the objective

function in (2.51) is strictly concave with respect to L. Thus, in

view of L ≤ N , the optimal L∗1 should be 0.

(i-b) Suppose a−xb < 0, and a′−xb′ < 0. Then, the objective function

in (2.51) is, with respect to N , either convex, provided

(a− xb)(ln θ1)2 + 2a2 +
µ1

µ2

[
(a′ − xb′)(ln θ2)2 + 2a′2

]
≥ 0, (2.54)

(since the first (negative) term in (2.52) becomes less negative

as N increases); or it starts with a concave piece, followed by a

convex piece, with switch over at N = Ñ , where Ñ is unique

since (a − xb)θN1 (ln θ1)2 + 2a2 + µ1
µ2

[
(a′ − xb′)θN2 (ln θ2)2 + 2a′2

]
is

increasing in N here. Hence, the optimal solution N∗1 is either 0 or

the minimal point of the convex piece of f1(y)+ µ1
µ1
f2(y). Following

the same argument of (i-a), the optimal solution L∗1 is either 0 or

the maximal point of the concave piece of f1(y) + µ1
µ1
f2(y).

(i-c) Suppose a− xb < 0, and a′ − xb′ ≥ 0.

(i-c-1) Suppose µ1 ≥ µ2. The convexity of objective function in
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(2.51) may have three cases. The first case is that the objec-

tive function in (2.51) is convex, then the optimal solutions

N∗1 and L∗1 are similar to (i-a); the second one is that the ob-

jective function in (2.51) starts with a concave piece, followed

by a convex piece, and the optimal solutions N∗1 and L∗1 are

similar to (i-b); the last case is that the objective function in

(2.51) starts with a convex piece, switches to a concave piece,

and switches to a convex piece. In the last case, solution N∗1

is the minimal point of the lower convex piece, and solution

L∗1 is either 0 or maximal point of the concave piece.

(i-c-2) Suppose µ1 < µ2. Then the objective function in (2.51) either

is convex or starts with a concave piece, followed by a convex

piece, and the optimal solutions for N and L is similar to (i-a)

and (i-b), respectively.

(i-d) Suppose a − xb ≥ 0, and a′ − xb′ < 0. This case is completely

similar to (i-c).

(ii) 0 < θ1 < 1 < θ2; in which case a2 > 0 (see (2.45)).

(ii-a) Suppose a − xb ≥ 0, and a′ − xb′ ≥ 0. Similar to (i-c-1), we can

obtain the optimal solutions N∗1 and L∗1.

(ii-b) Suppose a − xb < 0, and a′ − xb′ < 0. Then the convexity of

objective function in (2.51) may have three cases. The first case is

that the objective function in (2.51) is concave, then the optimal

solution N∗1 is N0, and the optimal L∗1 is either the maximal point

of f1(y)+µ1
µ2
f2(y) or 0; the second one is that the objective function
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in (2.51) starts with a convex piece, followed by a concave piece,

and the optimal N∗1 is either N0 or the minimal point of the convex

piece, the optimal L∗1 is either the maximal point of the concave

piece of f1(y) + µ1
µ2
f2(y) or 0; the last case is that the objective

function in (2.51) starts with a concave piece, switches to a convex

piece, and switches to a concave piece. In the last case, solution

N∗1 is either N0 or the minimal point of the convex piece, and

optimal L∗1 is the maximal point of the higher concave piece or 0.

(ii-c) Suppose a − xb < 0, and a′ − xb′ ≥ 0. This case is similar to

(i-c-2).

(ii-d) Suppose a−xb ≥ 0, and a′−xb′ < 0. Then the objective function

in (2.51) either is concave or starts with a convex piece, followed by

a concave piece, and the optimal solutions N∗1 and L∗1 are similar

to (ii-b).

(iii) 0 < θ2 < 1 ≤ θ1; in which case a′2 > 0 (see (2.45)). This case is

completely similar to (ii).

(iv) θ1 ≥ 1, θ2 ≥ 1.

(iv-a) Suppose a−xb ≥ 0, and a′−xb′ ≥ 0. Then the objective function

in (2.51) either is convex or starts with a concave piece, followed

by a convex piece, and the optimal solutions N∗1 and L∗1 are similar

to (i-b).

(iv-b) Suppose a−xb < 0, and a′−xb′ < 0. Then the objective function

in (2.51) either is concave or starts with a convex piece, followed by
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a concave piece, and the optimal solutions N∗1 and L∗1 are similar

to (ii-b).

(iv-c) Suppose a− xb < 0, and a′ − xb′ ≥ 0.

(iv-c-1) Suppose µ1 ≥ µ2. Then the convexity of objective function in

(2.51) may have three cases. Namely, concave; starting with

a convex piece followed by a concave piece; starting with a

concave piece, switching to a convex piece, and switching to

a concave piece. The optimal solutions N∗1 and L∗1 can be

obtained by the approach discussed in (ii-b).

(iv-c-2) Suppose µ1 < µ2. Then the convexity of objective function in

(2.51) may have three cases. Namely, convex; starting with

a concave piece followed by a convex piece; starting with a

convex piece, switching to a concave piece, and switching to

a convex piece. The optimal solutions N∗1 and L∗1 are similar

to (i-c-1).

(iv-d) Suppose a − xb ≥ 0, and a′ − xb′ < 0. This case is completely

similar to (iv-c).

For L = −1, because 0 ≤ α2 ≤ 1 there are two cases:

(v) θ1 < 1. The solution is similar to (i).

(vi) θ1 ≥ 1. The solution is similar to (iii).
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2.2.2 Properties

In this subsection we look at some properties that help us to understand how

the setup cost can affect the optimal policy.

Proposition 7. The optimal threshold to open the second server N∗ is in-

creasing and the optimal threshold to shut down the second server L∗ is de-

creasing in K. Furthermore, the cycle length between two consecutive actions

to open server-2 is increasing in K.

Proof. First, write the objective function as

AC(L,N,K) =
1

g(L,N)

[(
f(L,N)−K−µ1

µ2

(1−L−)K
)

+K+
µ1

µ2

(1−L−)K
]
.

By noticing that (f(L,N) − K − µ1
µ2

(1 − L−)K) does not contain K, for

K̃ ≥ K,

AC(L,N, K̃)−AC(L,N,K) =
1

g(L,N)

(
1 +

µ1

µ2

(1− L−)
)

(K̃ −K). (2.55)

Thus for K̃ ≥ K,

[
AC(L,N + 1, K̃)−AC(L,N + 1, K)

]
−
[
AC(L,N, K̃)−AC(L,N,K)

]
=
g(L,N)− g(L,N + 1)

g(L,N)g(L,N + 1)

(
1 +

µ1

µ2

(1− L−)
)

(K̃ −K),[
AC(L+ 1, N, K̃)−AC(L+ 1, N,K)

]
−
[
AC(L,N, K̃)−AC(L,N,K)

]
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=
[g(L,N)− g(L+ 1, N)

g(L,N)g(L+ 1, N)

(
1 +

µ1

µ2

(1− L−)
)

+
1

g(L+ 1, N)

µ1

µ2

L−
]
(K̃ −K),

where

g(L,N + 1)− g(L,N)

= −bθN1 θ1 + b1 − L−beαN2 α2 −
µ1

µ2

(1− L−)
(
b′θN2 θ2 − b′1

)
, (2.56)

g(L+ 1, N)− g(L,N)

=


bθL1 θ1 − b1 + µ1

µ2

(
b′θL2 θ2 − b′1

)
, if L ≥ 0,

−
(
b0 + beα

N
2

)
+ µ1

µ2

(
b′(θN2 − 1) + b′1N

)
, if L = −1.

(2.57)

We want to show the objective functionAC(L,N,K) is submodular in (N,K)

and supermodular in (L,K). Consequently, from the monotone and antitone

properties associated with minimizing submodular and supermodular func-

tions (refer to [33]), we know the optimal solution N∗ is increasing in K and

L∗ is decreasing in K. This, in turn, implies the desired result,

g(L∗(K + 1), N∗(K + 1)) ≥ g(L∗(K + 1), N∗(K)) ≥ g(L∗(K), N∗(K)).

So, we next show g(L,N + 1) − g(L,N) ≥ 0, as g(L + 1, N) − g(L,N) ≤ 0
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is completely analogous by

b0 + beα
N
2 =

(µ+ λα2)
(
µ1µ2α

N
2 + µ2

1(1− αN2 ) + λµ+ µ2
2

)
βµ1µ2α2(µ+ 2λ)

≥ 0, and b′ ≥ 0,

under (2.1). To do so, it suffices to show

−bθ1 + b1 − L−beαN2 α2 +
µ1

µ2

(1− L−)
(
− b′θ2 + b′1

)
≥ 0, (2.58)

in both cases of θi ≥ 1 and θi < 1, i ∈ {1, 2}, as evident from (2.56) (Note

b > 0 and b′ > 0.) Making use of equations (2.34)-(2.41), we can write

−bθ1 + b1 =
ρ1 + 1

λρ1

+
1

β
, −b′θ2 + b′1 =

ρ2 + 1

λρ2

+
1

β
.

For L ≥ 0, (2.58) is true; for L = −1, if be ≤ 0, (2.58) is also true, otherwise

be > 0, and we show −bθ1 + b1 − beαN2 α2 ≥ 0. It’s sufficient to show −bθ1 +

b1−beα2 ≥ 0 because it becomes less negative as N increases. By using again

equations (2.34)-(2.41), we have

−bθ1 + b1 − beα2 =
ρ1 + 1

λρ1

+
µ1µ+ λ

(
µ2(1 + α2) + α2µ1

)
βµ2(µ+ 2λ)

≥ 0.

Proposition 8. Assume that λα1/µi ≥ 1 with i = 1, 2. There exists a finite
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K0 such that when the setup cost K goes beyond K0, the optimal threshold to

shut down the second server, L∗, would be −1, that is, the optimal threshold

to shut down one of two operating servers is for the system to become empty.

Proof. For each setup cost K, let N∗(K) and L∗(K) be the optimal thresh-

olds to open and shut down the second server, respectively. First note that

λα1/µi ≥ 1 is equivalent to θi ≤ 1. By the monotonicity of N∗(K) and

L∗(K) given by Proposition 7, to prove the proposition, it suffices to show

that there exists a K0 ≥ 1 such that for N ≥ N∗(K0) and L ≤ L∗(1),

f(L+ 1, N)

g(L+ 1, N)
≥ f(L,N)

g(L,N)
. (2.59)

We rewrite f(L,N)/g(L,N) as

f(L,N)

g(L,N)
:=

f1(L,N) + µ1
µ2
f2(L,N)

g1(L,N) + µ1
µ2
g2(L,N)

,

where

f1(L,N) = a(θN1 − θL
+

1 ) + a2(N2 − (L+)2) + a1(N − L+) +K

+ (a0 + aeα
N
2 )L−,

f2(L,N) = a′(θN2 − θL
+

2 ) + a′2(N2 − (L+)2) + a′1(N − L+) +K,

g1(L,N) = b(θN1 − θL
+

1 ) + b1(N − L+) + (b0 + beα
N
2 )L−,
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g2(L,N) = b′(θN2 − θL
+

2 ) + b′1(N − L+).

To show (2.59) is true for N ≥ N∗(K0) and L ≤ L∗(1), it’s sufficient to prove

the following four inequalities are true,

f1(L+ 1, N)

g1(L+ 1, N)
≥ f1(L,N)

g1(L,N)
,

f2(L+ 1, N)

g2(L+ 1, N)
≥ f2(L,N)

g2(L,N)
, (2.60)

f1(L+ 1, N)

g2(L+ 1, N)
≥ f1(L,N)

g2(L,N)
,

f2(L+ 1, N)

g1(L+ 1, N)
≥ f2(L,N)

g1(L,N)
. (2.61)

We first look at inequality f1(L+ 1, N)/g1(L+ 1, N) ≥ f1(L,N)/g1(L,N) in

(2.60). After a simplification, this is equivalent to show that

[
bθL1 θ1 − b1

]
·
[
a(θN1 − θL1 ) + a2(N2 − L2) + a1(N − L) +K

]
≤
[
b(θN1 − θL1 ) + b1(N − L)

]
×
[
aθL1 θ1 − a2(2L+ 1)− a1

]
. (2.62)

In view of bθL1 θ1 − b1 < 0 when θ1 < 1, it is sufficient to show that there

exists a K1 for N ≥ N∗(K1) and L ≤ L∗(1),

K ≥− a(θN1 − θL1 )− a2(N2 − L2)− a1(N − L)

+
1

bθL1 θ1 − b1

×
[
b(θN1 − θL1 ) + b1(N − L)

]
×
[
aθL1 θ1 − a2(2L+ 1)− a1

]
.

(2.63)
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Hence, if we can find a finite K̃1 and an upper bound for the right-hand side

of (2.63) on the region {(N,L) : N ≥ N∗(K̃1), L ≤ L∗(1)}, then setting K1

just to be the maximum between K̃1 and this upper bound, we have (2.63)

for K ≥ K1. In the remain of the proof, we identify a K̃1 and build an

upper bound on the right-hand side of (2.63) on the region {(N,L) : N ≥

N∗(K̃1), L ≤ L∗(1)}. Note that, by again θ1 < 1 and the monotonicity of

L∗(·),

− a(θN1 − θL1 )− a2(N2 − L2)− a1(N − L)

+
1

bθL1 θ1 − b1

×
[
b(θN1 − θL1 ) + b1(N − L)

]
×
[
aθL1 θ1 − a2(2L+ 1)− a1

]
≤ |a|+ b(|a|+ |a1|)

b1 − bθ1

+
a2b

b1 − bθ1

(2L∗(1) + 1)

−
[
a2(N + L) + a1 −

b1

bθL1 θ1 − b1

(
aθL1 θ1 − a2(2L+ 1)− a1

)]
(N − L)

≤ |a|+ b(|a|+ |a1|)
b1 − bθ1

+
a2b

b1 − bθ1

(2L∗(1) + 1)

− a2 ·N(N − L∗(1)) +
[
|a1|+

(|a|+ |a1|+ a2(2L∗(1) + 1)) · b1

b1 − bθ1

]
· (N + 1).

(2.64)

Next we prove the non-positivity of the last expression in (2.64) when N is

large enough. Let Ñ1 be the solution (larger one) to the following quadratic
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equation of N

a2 ·N(N − L∗(1))−
[
|a1|+

(|a|+ |a1|+ a2(2L∗(1) + 1)) · b1

b1 − bθ1

]
· (N + 1)

= |a|+ b(|a|+ |a1|)
b1 − bθ1

+
a2b

b1 − bθ1

(2L∗(1) + 1).

Let K̃1 be the solution given by Ñ1 = N∗(K̃1). For N > Ñ1 (:= N∗(K̃1)),

we have

a2 ·N(N − L∗(1))−
[
|a1|+

(|a|+ |a1|+ a2(2L∗(1) + 1)) · b1

b1 − bθ1

]
· (N + 1)

≥ |a|+ b(|a|+ |a1|)
b1 − bθ1

+
a2b

b1 − bθ1

(2L∗(1) + 1). (2.65)

Combining (2.64)-(2.65) yields an upper bound for the right-hand side of

(2.63). That is, for N ≥ N∗(K̃1), we have

− a(θN1 − θL1 )− a2(N2 − L2)− a1(N − L)

+
1

bθL1 θ1 − b1

×
[
b(θN1 − θL1 ) + b1(N − L)

]
×
[
aθL1 θ1 − a2(2L+ 1)− a1

]
≤ 0.

This implies (2.63) for K ≥ K1 = K̃1 ∨ 1. We can follow the same procedure

to prove the second inequality in (2.60) and another two inequalities in (2.61),
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and derive corresponding K2, K3, and K4. Hence setting

K0 = K1 ∨K2 ∨K3 ∨K4,

we have the proposition.

2.3 Random-Walk Method

In view of Proposition 8, with the help of the random-walk theory, this section

devotes to develop a method to approximate ETi and Ci with L = −1, and

then to provide approximations for the expected long-run average cost. To

the end, we first give some preliminary results on the random walks.

2.3.1 Preliminary Results

We consider a simple random walk

S0 := 0, Sn := X1 + · · ·+Xn,

where Xi’s are i.i.d. random variables with

Pr(Xi = 1) = p and Pr(Xi = −1) = p.

Write

γ := 2p− 1 = EXi and σ2 := 1− γ2 = Var(Xi).
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Define the stopping time T(−B,A) by

T(−B,A) = min{n : Sn ≥ A or Sn ≤ −B} with A,B > 0.

Let Yn’s be nonnegative i.i.d. random variables such that {Yi, i ≥ n} is

independent of {X1, · · · , Xn−1} and EY1 < ∞. Then we have the following

results.

Lemma 9. (Two Absorbing Barriers) Assume that γ = E(Xi) 6= 0.

(i) ET(−B,A) = A[1−(p/p)−B ]−B[(p/p)A−1]
γ[(p/p)A−(p/p)−B ]

; (ii) Pr(ST(−B,A)
= A) = (p/p)B−1

(p/p)A+B−1
;

(iii) Pr(ST(−B,A)
= −B) = (p/p)A+B−(p/p)B

(p/p)A+B−1
; (iv) E

(∑T(−B,A)

i=1 Yi

)
= ET(−B,A) ×

EY1; (v) For any constant D, E
(∑T(−B,A)

i=1 (D + Si−1)Yi

)
=
[(
D + A−B

2
−

1
2γ

)
ET(−B,A) + AB

2γ

]
· EY1.

Proof. The first three results directly follow from the random walk theory

(see, for example, [31]). (iv), by noting that T is a stopping time for the

sequence {Yn, n ≥ 1}, follows from Wald’s equation. Now we show (v). Let

Fn be the sigma field generated by {(Xi, Yi), i = 1, . . . , n}. Note both {Sn}

and {Yn} are adapted to the filtration {Fn, n ≥ 1}. Hence

E
( n∑
i=1

Si−1Yi

∣∣∣Fn−1

)
=

n−1∑
i=1

Si−1Yi +E(Sn−1Yn|Fn−1) =
n−1∑
i=1

Si−1Yi +Sn−1EYn,

(2.66)

where we use the fact that Yn is independent of Fn−1. Taking expectation
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on both sides of (2.66), we have

E
( n∑
i=1

Si−1Yi

)
= E

( n−1∑
i=1

Si−1Yi

)
+ (ESn−1)× EYn = · · · = E

( n−1∑
i=1

Si

)
× EY1.

Hence

E
( T∑
i=1

Si−1Yi

)
= EY1 × E

( T−1∑
i=1

Si

)
= EY1 ×

[
E
( T∑
i=1

Si

)
− EST

]
= EY1 ×

[
E
( T∑
i=1

Si

)
− γ × ET

]
. (2.67)

Now we consider E
(∑T

i=1 Si

)
. Write Xi = ξi + γ, where ξi’s are i.i.d., and

Eξi = 0, Var(ξi) = σ2, we have

T∑
i=1

Si =
T∑
i=1

i∑
n=1

Xn =
T∑
n=1

(T − n+ 1)Xn = TST −
T∑
n=1

(n− 1)(ξn + γ)

= TST −
γ

2
T (T − 1)−

T∑
n=1

(n− 1)ξn.

The last term above is a martingale. Hence

E
( T∑
i=1

Si

)
= E(TST )− γ

2
ET 2 +

γ

2
ET. (2.68)

Applying optimal stopping theorem to the martingale {(Sn − nγ)2 − nσ2}
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yields

E
(
ST − Tγ

)2

= σ2ET ⇒ E(ST − Tγ)2 = σ2ET

⇒ ES2
T + γ2ET 2 − 2γE(STT ) = σ2ET

⇒ E(STT ) =
ES2

T

2γ
− 1− γ2

2γ
ET +

γ

2
ET 2. (2.69)

Plug (2.69) into (2.68) and we have

E
( T∑
i=1

Si

)
=

ES2
T

2γ
+

2γ2 − 1

2γ
ET.

Since, by EST = γ · ET = AπA −B(1− πA),

ES2
T = A2πA +B2(1− πA) = (A−B)γET + AB,

we simplify E
(∑T

i=1 Si

)
as

E
( T∑
i=1

Si

)
=
(A−B

2
+ γ − 1

2γ

)
ET +

AB

2γ
.

Thus, by (2.67), we have

E
( T∑
i=1

Si−1Yi

)
= EY1 ×

[(A−B
2

+ γ − 1

2γ

)
ET +

AB

2γ
− γET

]
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= EY1 ×
[(A−B

2
− 1

2γ

)
ET +

AB

2γ

]
.

This gives (v). Therefore, the lemma is proved.

Now define an one-barrier stopping time T(−B,∞) with negative drift as

T(−B,∞) = inf{n : Sn ≤ −B} with B > 0.

Similar to Lemma 9, we have the following result.

Lemma 10. (One Absorbing Barrier with Negative Drift) Assume

that γ < 0. (i) ET(−B,∞) = −B
γ

; (ii) E
(∑T(−B,∞)

i=1 Yi

)
= −B

γ
× EY1; (iii) For

any constant D, E
(∑T(−B,∞)

i=1 (D + Si−1)Yi

)
= B

2γ

[
− 2D +B + 1

γ

]
· EY1.

Proof. Going along the line of the proof of Lemma 9, the lemma can be

proved similarly.

2.3.2 Random-Walk Approximations

To obtain approximations for the expected long-run average cost, we build

a connection between the ticket queue given in Section 2.1 and the random-

walk studied in the above subsection. The connection is characterized by

an one-to-one mapping between the dynamics of the ticket position Q(t)

and the random walk. Formally, a customer arrival in the system will be

considered to be a right-side-movement for the random walk, while a service

completion in the system will be considered to be a left-side-movement for
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the random walk. As each service completion will deplete 1/αi tickets on the

average (when there are i working servers), we can consider the service rate

to be µ̂i or µ̂ from the customer ticket perspective. Further, noting that only

customer arrivals and service completions can change the dynamics of the

ticket position, the expectation of the sojourn time is 1/(λ+µ̂i) (1/(λ+µ̂)) for

each system-nonempty state with server-i working (2 working servers), and

1/λ for the system-empty state. Thus, to approximate T1, we just consider a

random walk with −1 as a reflecting barrier and N as an absorbing barrier,

and calculate how many steps for the random walk to be absorbed. Hence,

by Lemma 9 with p = λ/(λ+ µ̂1), we have

ET1 ≈
∞∑
k=0

(1− Pr(T(−1,N) = N))k ·
[1

λ
+ ET(−1,N) ×

1

λ+ µ̂1

]
=

N + 1

β1

− µ̂1

β2
1

[
1− 1

(α1ρ1)N+1

]
:= ET rw1 . (2.70)

To get the approximation of the expected system-empty time ET0 (see Lemma

6), note that the zero ticket-position, at which the original system visits each

time in one regenerative cycle, just corresponds that the random walk moves

to the reflecting barrier. Hence,

ET10 ≈
∞∑
k=0

(1− Pr(T(−1,N) = N))k · 1

λ
=

1

β1

[
1− 1

(α1ρ1)N+1

]
:= ET rw10 .

(2.71)

Consider the approximation of the expected two-server region part ET2. As

the ticket position increases to (N + 1), the system enters into the two-
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server region, and then leaves it until the system becomes empty. Thus the

corresponding random-walk will be set to start with N . Furthermore, when

the system has one ticket (Q(t) = 1) in the two-server region, only one server

works even the other server is in operating state. Specifically, the probability

for server-i working is µ3−i/µ. This observation indicates that it is necessary

to modify our random walk’s sojourn time in state 0 to 1/[λ+ 2µ1µ2/(µα2)].

When the random walk moves into state 0, it will move to −1 in exactly one

step with probability 2µ1µ2/(λµα2 + 2µ1µ2) (:= π(−1,1)). Thus, from Lemma

10 with p = λ/(λ+ µ2),

ET2 ≈ ET(−N,∞)
1

λ+ µ̂
+

1

λ+ 2µ1µ2/(µα2)

+
∞∑
k=1

k(1− π(−1,1))
kπ(−1,1)

[
ET(−1,∞)

1

λ+ µ̂
+

1

λ+ 2µ1µ2/(µα2)

]
=

N

β
+

µ2

2µ1µ2β
:= ET rw2 . (2.72)

Note that the state 0 of the random walk corresponds to one server busy

and the other one is idle but in operating state. Consequently, there is no

customer abandonment in this case. Thus, when considering abandonment

cost, we need to know how many times the random walk visits state 0 during

T2. Based on the above analysis, it is straightforward to see that the average

number of times to visit state 0 is

π(−1,1) + 2(1− π(−1,1))π(−1,1) + · · · = 1

π(−1,1)

.
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Hence,

ET20 ≈
1

λ+ 2µ1µ2/(µα2)
× 1

π(−1,1)

=
µα2

2µ1µ2

:= ET rw20 . (2.73)

For the customer delay cost, note that only non-abandonment customers get

the delay cost payment. When i servers operate, we will pay h(1−αi)×k on

the average if there are k tickets waiting to be called. Thus, h(1−α1)×(k−1)+

will be charged if the corresponding random walk moves at k when one server

operates. Hence, from Lemma 9 with D = 0, A = N,B = N ,

C1 ≈
hα1

1− Pr(T(−1,N) = N)

[(N − 1

2
− λ+ µ̂1

2β1

)
ET(−1,N) +

N(λ+ µ̂1)

2β1

] 1

λ+ µ̂1

=
α1

2β1

hN2 − µ1(1 + α1ρ1)

2β2
1

hN +
µ1λh

β3
1

(
1− 1

(α1ρ1)N

)
:= Crw

1 . (2.74)

Finally consider the approximation for the customer delay cost in the two-

server region, C2. There is no delay cost incurred when the ticket position is

one or two (Q(t) = 1, 2). After the random-walk moves to 1, the system will

incur the delay cost only when the random-walk moves to 2 in the next step.

So the approximation will be decomposed into two parts: the delay cost for

the period in which the random-walk will first move to 1 starting with N ;

and the delay cost for the period in which the random-walk first move to 1

starting with 2. By Lemma 10 with D = N−1, B = N−1 and D = 1, B = 1

respectively, the first part cost is given by

hα2

2
· µ̂+ λ

β

(
(N − 1) +

µ̂+ λ

β

)
· N − 1

µ̂+ λ
,
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and the second part is

hα2

2
· µ̂+ λ

β

(
1 +

µ̂+ λ

β

)
· 1

µ̂+ λ
.

Note that the probability that starting with 1, the random walk reaches −1

before reaching 2 is 2/[ρ1ρ2α
2
2 + 2(ρα2 + 1)] (:= π(−1,2)). Therefore,

C2 ≈
hα2

2
· µ̂+ λ

β

(
(N − 1) +

µ̂+ λ

β

)
· N − 1

µ̂+ λ

+
∞∑
k=1

k(1− π(−1,2))
kπ(−1,2) ·

hα2

2
· µ̂+ λ

β

(
1 +

µ̂+ λ

β

)
· 1

µ̂+ λ

=
α2

2β
hN2 +

µ

2β2
(3α2ρ− 1)hN +

α2
2µρ1ρ2

2β2
h := Crw

2 . (2.75)

In view of (2.70)-(2.75), then our long-run average cost can be approximated

by

AC(−1, N) ≈ 1

ET rw1 + ET rw2

[
λα1(ET rw1 − ET rw10 ) + (λα2 + c2)ET rw2

− λα2ET
rw
20 + c1(ET rw1 + ET rw2 ) + Crw

1 + Crw
2 +K

]
:= ACrw(−1, N). (2.76)

Following the fractional programming technique developed in Subsection

2.2.1, we can solve minN≥0ACrw(−1, N). Let N rw∗ be its solution. Com-

pared with the exact analysis developed in Section 2.1, the random-walk

method provides a unified and simpler approach to evaluate the system per-

formance measures such as the expectations of one-server and two-server
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regions, the system cumulative idle times, and the customer delay cost. Of

course, when α1 = α2 = 0, we know that the exact analysis and the random-

walk approximation are same, that is, AC(−1, N) = ACrw(−1, N).

2.4 Numerical Studies

In this section we provide numerical results to show the sensitivity of the

optimal policies with respect to the abandonment probabilities, the customer

delay and operating costs, the efficiency of the approximations developed in

Section 2.3, and the comparison with the results existing in the literature.

First we look at the sensitivity.

2.4.1 Sensitivity
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Fig. 2.3: α1 Sensitivity Analysis

In Figure 2.3, we choose (λ, µ1, µ2, K, c1, c2) = (160, 120, 100, 5, 0.12, 0.1).

Figures 2.3 (a) and 2.3 (b) show that when the abandonment rate α2 for

the two-server region is smaller, the optimal threshold N∗ of opening the
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second server is decreasing with respect to α1. Furthermore, for each fixed

one-server region abandonment rate α1, the higher the abandonment rate α2

is, the higher the optimal threshold of opening the second server is. The

reason for this monotonicity is to reduce the customer abandonment cost by

delaying opening the second server. However, for the optimal threshold L∗ of

shutting down the second operating server, with consideration of the setup

cost already incurred, the system needs a longer cycle to consume the setup

cost (that is, conservative to close the second operating server). Thus, L∗ is

very insensitive with respect to α1. Compared Figure 2.3 (a) (customer delay

cost h = 0.6) with Figure 2.3 (b) (h = 0.8), we can see when the customer

delay cost gets higher, the second server will be opened earlier to reduced

the delay cost.
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Fig. 2.4: α2 Sensitivity Analysis

In Figure 2.4, we choose (λ, µ2, h,K, c2)=(19,10,0.25, 10, 0.1). Figures

2.4 (a) and 2.4 (b) show the sensitivity about the abandonment rate α2 in the

two-server region. A comparison between two figures illustrates the higher

the operating cost is, the later we put the second server into operation.
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(b) α2 = 0.05

Fig. 2.5: h Sensitivity Analysis

In Figure 2.5, we choose (α1, λ, µ1, µ2, c1, c2, K)=(0.4, 15, 13, 10,0.15,0.1,

10). Figures 2.5 (a) -2.5 (b) show that the optimal N∗ decreases with respect

to h. The reason is intuitive. The system could speed up the service rate

by opening the second server earlier such that the customer delay cost can

be reduced. Compared Figure 2.5 (b) with Figure 2.5 (a), we open the

second server earlier to enjoy the lower abandonment cost from α2 = 0.15 to

α2 = 0.05.
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Fig. 2.6: K Sensitivity Analysis
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In Figure 2.6 we choose (α1, λ, µ1, µ2, h, c1, c2)=(0.4,20, 15, 10, 0.25, 0.3,

0.2). Figures 2.6 (a) -2.6 (b) illustrate the monotonicity of the optimal thresh-

old to open the second server with respect to the setup cost K, which is

consistent with Proposition 7. The higher the setup cost K is, the higher

the threshold to open the second server is. The figures shows the threshold

to shut down the second server is not sensitive to increase the setup cost

K. Compared Figure 2.6 (a) with Figure 2.6 (b), we open the second server

earlier to enjoy the lower abandonment cost from α2 = 0 to α2 = 0.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−2

−1

0

1

2

3

4

5

c
1

 

 

L
N
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(b) (µ1, µ2, c1)=(12.5,15,0.2)

Fig. 2.7: Sensitivity Analysis for Operation Cost

In Figure 2.7, we choose (α1, α2, λ, h,K)=(0.4,0.2,20,0.9,5). Figure 2.7

(a) shows that the optimal thresholds are very insensitive to the operation

cost c1. For Figure 2.7 (b), when c2 increases, both L∗ and N∗ decrease. The

reason for this follows from the utilization rate of server-2 with respect to its

cost c2. When we keep L = −1 and N = 11, the utilization rate of server-2

is given by E(T12 + T2)/E(T11 + T12 + T2) = 0.6591; and while the policy

with L = −1 and N = 8, the utilization rate of server-2 is 0.3157. Thus if

c2 ≥ (µ2/µ1)c1 = 0.24, then server-2 is more expensive and the system enjoys
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its lower utilization; if c2 ≤ (µ2/µ1)c1 = 0.24, then server-2 is cheaper and

the system enjoys its higher utilization rate.

2.4.2 Accuracy of Random-Walk Approximation

In this subsection, we will make a comparison between the exact analysis

given by Section 2.2 and the random-walk approximation given by Section

2.3.

In table 2.1, we choose (λ, µ1, µ2, α2, c1, c2, h,K)=(1,0.65,0.55,0,0.2,0.1,1,

50). In table 2.2, we choose (λ, µ1, µ2, α2, c1, c2, h,K)=(1,0.7,0.5,0.05,0.2,0.1,

0.4,20).

Tab. 2.1: Comparison between Exact and RW: I

α1
Exact Analysis RW Approx

L∗ N∗ cost N rw∗ cost error%

0 -1 3 6.0518 3 6.0518 0
0.2 -1 4 5.9354 4 5.9354 0
0.32 -1 4 5.8375 5 5.8544 0.29
0.36 -1 5 5.7970 6 5.8543 0.99
0.4 -1 5 5.7377 8 5.9161 3.11
0.42 -1 5 5.7073 12 6.1769 8.23

Tables 2.1-2.2 show that the customer abandonment rate at the one-

server region makes a big impact on the accuracy of the random-walk ap-

proximation. If we look at the generator given by the Markov chain (see

(2.2)) {(S1(t), S2(t), Q(t)), t ≥ 0} , which is used to characterize the system

state, and make a comparison with the random-walk method, we observe that

the smaller the customer abandonment rate α1 is, the more closer for the two

generators corresponding the Markov chain (2.2) and the random-walk, re-
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Tab. 2.2: Comparison between Exact and RW: II

α1
Exact Analysis RW Approx

L∗ N∗ cost N rw∗ cost error%

0 -1 4 2.2327 4 2.2327 0
0.2 -1 4 2.1938 5 2.1951 0.06
0.32 -1 5 2.1449 6 2.1530 0.37
0.36 -1 6 2.1247 7 2.1405 0.74
0.39 -1 6 2.1029 9 2.1496 2.22
0.42 -1 7 2.0771 228 2.3012 10.79

spectively. Hence, these two tables indicate that the higher the customer

abandonment rate α1 is, the more inaccurate the random-walk approxima-

tions incur.

In table 2.3, we choose (λ, µ1, µ2, α2, c1, c2, h,K)=(10,6.5,5.5,0,0.2,0.1,1,50).

In table 2.4, we choose (λ, µ1, µ2, α2, c1, c2, h,K)=(100,70,50,0.05,0.2,0.1,0.4,20).

Compared with Tables 2.1-2.2, Tables 2.3-2.4 have the higher arrival and ser-

vice rates. Tables 2.3-2.4 show that the higher arrival rate and service rate

can dilute the impact incurred by the customer abandonment rate. This can

be explained by the law of the large number as the arrival and service rates

get bigger and bigger, the mean of the arrivals (or service) plays a big role.

Tab. 2.3: Comparison between Exact and RW: III

α1
Exact Analysis RW Approx

L∗ N∗ cost N rw∗ cost error%

0 -1 11 13.0831 11 13.0831 0
0.2 -1 12 12.4240 11 12.4372 0.10
0.32 -1 13 11.6488 13 11.6488 0
0.36 -1 14 11.2646 14 11.2646 0
0.4 -1 17 10.7555 18 10.7722 0.15
0.42 -1 19 10.4215 25 10.5671 1.40
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Tab. 2.4: Comparison between Exact and RW: IV

α1
Exact Analysis RW Approx

L∗ N∗ cost N rw∗ cost error%

0 -1 38 17.8058 .38 17.8058 0
0.2 -1 33 25.0262 32 25.0284 0.01
0.32 -1 25 31.2293 23 31.2730 0.14
0.36 -1 22 33.4578 20 33.5398 0.25
0.39 -1 21 35.1048 18 35.2360 0.37
0.42 -1 19 36.7045 17 36.8095 0.29

2.4.3 Comparison with Existing Results

Following our discussion in the introduction, our model also generalizes

Zhang [38] when L = −1 and α1 = α2 = 0. So here we make a com-

parison with his result. As he does not consider operation cost, here we just

let µ1 = µ2 and c1 = c2 = 0. Zhang [38] uses a fluid approximation for the

one-server region and a diffusion approximation for the two-server region. As

the exact analysis can more precisely capture the customer delay cost than

just fluid approximation and diffusion approximation, the results obtained

in Section 2.2 performs much better than Zhang [38].

In table 2.5, we choose λ = 215, µ1 = 200, h = 0.25. In table 2.6, we

choose λ = 205, µ1 = 190, h = 0.25. Tables 2.5-2.6 show that the smaller

the setup cost is, the bigger error Zhang [38] incurs. The reason is that

a smaller setup cost will give a lower optimal threshold to open the second

server. When the threshold of opening the second server becomes lower, the

one-server region will get smaller, which consequently implies the time when

we use one server will become shorter. It turns out inaccurate to use the
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fluid-model to approximate the original queueing model in the short time

period even though the system evolves under the heavy traffic regime.

Tab. 2.5: Comparison between Exact and Existing Results: I

K
Exact Analysis Zhang (2009)

N∗ cost N z∗ cost error%

0.1 7 1.0486 2 2.2246 112
1 19 2.9581 9 4.4254 49.6
10 45 8.5124 32 9.3543 9.9

Tab. 2.6: Comparison between Exact and Existing Results: II

K
Exact Analysis Zhang (2009)

N∗ cost N z∗ cost error%

0.1 7 1.0290 2 2.1252 107
1 18 2.9231 9 4.2758 46.3
10 45 8.4573 32 9.2094 8.9

Tab. 2.7: Comparison between Exact and Existing Results: III

λ
Exact Analysis Zhang (2009)

N∗ cost N z∗ cost error%

212 19 2.8321 8 4.8308 70.6
215 19 2.9581 9 4.4254 49.6
220 19 3.1611 11 3.9287 24.2
260 20 4.3905 17 4.4492 1.3
300 20 4.9420 19 4.9454 0.07

In table 2.7, we choose µ1 = 200, h = 0.25, K = 1. In table 2.8,

we choose µ1 = 110, h = 0.25, K = 1. Tables 2.7-2.8 indicate that when

the system cost parameters are fixed, the traffic intensity also impact the

accuracy of the method proposed by Zhang [38]. Only when the traffic

intensity becomes very high, Zhang [38] can perform better.
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Tab. 2.8: Comparison between Exact and Existing Results: IV

λ
Exact Analysis Zhang (2009)

N∗ cost N z∗ cost error%

120 15 2.3490 7 3.4933 48.7
130 15 2.7948 10 3.1135 11.4
140 15 3.1501 12 3.2494 3.2
170 14 3.7315 13 3.7477 0.44
190 12 3.9859 12 3.9859 0

Tab. 2.9: Comparison between Exact and Existing Results: V

h
Exact Analysis Zhang (2009)

N∗ cost N z∗ cost error%

0.9 27 15.3640 13 24.1613 57.3
0.5 34 11.0284 18 15.5411 40.9
0.1 62 4.5541 43 5.0915 11.8

Tab. 2.10: Comparison between Exact and Existing Results: VI

h
Exact Analysis Zhang (2009)

N∗ cost N z∗ cost error%

0.9 11 6.8697 6 8.8282 28.5
0.7 12 6.0320 7 7.5118 24.5
0.3 18 3.8862 12 4.3190 11.1
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In table 2.9, we choose λ = 210, µ1 = 200, K = 10. In table 2.10, we

choose λ = 230, µ1 = 200, K = 1. Tables 2.9-2.10 show that the customer

delay cost also plays a big role in the approximation given by Zhang [38]

regardless of the setup costs. Under either the higher setup cost (K = 10)

or lower setup cost (K = 1), the higher the customer delay cost is, the more

inaccurate the approximation proposed by Zhang [38]. The reason is that

when the customer delay cost becomes higher, the system needs to use the

second server to reduce the number of the waiting customers. In order to

put the second server into use earlier, we need to pull down the threshold of

opening the second server. This consequence again incurs a shorter period

for the one-server region. Thus with the same reason shed by Tables 2.5-2.6,

the method of Zhang [38] gives a big error when the customer delay cost

increases.

2.5 Concluding Remarks

In this chapter we provide a study on the optimal staffing problem for a ticket

queue with two staffing levels. The only information required to carry out the

optimal policy is the ticket counts along with a count of customers served.

Customer abandonment rates are assumed given, and as we outlined in the

Introduction these rates can be readily estimated (also by simple counts of

tickets and customers served). Thus, the optimal staffing rule is suitable for

practical implementations.

The Markov chain and random walk analyses developed here can be

readily extended to multiple staffing levels. To solve the optimal staffing
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problem in that more general setting, however, is a quite different matter.

For instance, suppose there are m > 2 servers. We need to first address

the issue, how many different staffing levels do we need to focus on? Only

use either 1 server or m servers, or any other number of servers in between

should also be considered? Only when this issue is resolved, then we can

decide the corresponding thresholds upon which to switch up or down to the

next staffing level. We will answer these questions in Chapter 3.

Another natural extension of this model is to allow customer abandon-

ment rate to depend on both staffing levels and ticket queue length. When an

arrival customer observes a shorter ticket queue, he is less likely to abandon

and will choose to stay. On the other hand, when he observes a long ticket

queue, he may choose to leave, but he can still come back later since his

ticket occupies his position. Thus it’s unclear whether long ticket queue will

lead to a high abandonment rate. Another difficulty of this extension is: by

incorporating ticket queue length into customer abandonment rate, we need

to first address the problem of how to characterize system dynamics, which

might be much more complex. We leave this extension for future study.



3. FLUID MODEL AND ASYMPTOTICS FOR TICKET

QUEUES

In this chapter, we study the optimal staffing of the ticket queue with more

than two staffing levels. Based on information from the ticket counts and

previous service rate, we show that policy with two staffing levels is better

than policy with multiple staffing levels, and the optimal threshold to change

staffing level can be derived through the EOQ formula.

The main contributions of the study are as follows:

• Asymptotic optimal policy for staffing problem in ticket queues with

customer abandonment;

• Simple structure of the asymptotic optimal policy;

• Fluid model for ticket queue with customer abandonment;

• Connection between EOQ model and fluid ticket queue.

This chapter is organized as follows. Section 3.1 introduces the details

of the mathematical model. Section 3.2 derives the fluid model for the ticket

queue. Analysis of the long-run average cost in the fluid model is given in

Section 3.3, and the optimal staffing policy in the fluid model is given in

Section 3.4. We show that the optimal policy derived from fluid model is
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asymptotic optimal in Section 3.5. Numerical results are given in Section

3.6. Concluding remarks are summarized in Section 3.7.

3.1 Problem Formulation

The queueing system has m identical servers available. Customers arrive

according to a general renewal process with rate λ. Formally, the arrival time

of the first customer is given by u1/λ, and the time between the (` − 1)st

and `th customer arrivals for ` ≥ 2 is given by u`/λ, where {u` : ` ≥ 1} is a

sequence of independently and identically distributed (iid) random variables

with unit-mean. The number of the customer arrivals by time t, A(t), is

given by

A(t) = max
{
k :

u1

λ
+ · · ·+ uk

λ
≤ t
}
. (3.1)

Upon arrival, each customer will receive a numbered ticket with the ticket

number running in an increasing order to proceed to its service. The system

has m servers and the number of operating servers, denoted by i, can be

adjusted to any number in {1, · · · ,m} immediately after an arrival or a

service completion. Right after receiving its numbered ticket, the ticketed

customer will immediately receives service if there is one idle server among the

i operating servers. Otherwise, the ticketed customer has to wait to be called

to receive service. The waiting customers are called to get service according to

increasing order of their ticket numbers. A customer may abandon his ticket

before his number is called for service (no show). If a customer shows up when
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his ticket number is called, the customer will immediately receive service from

an available server among the operating servers. If the customer is a no-show,

his number will be discarded and the next ticket number will be called. We

use αi to represent the no-show probability of a ticket when i (i = 1, · · · ,m)

servers are in operation. That is, whenever one of the i operating servers is

free to serve customers, she calls the next ticket number and that number has

a probability of αi to be associated with a no-show customer. The customer

service times are assumed to be iid random variables with rate µ. Namely,

the first customer service time is s1/µ, and the `th customer’s service time is

s`/µ, where {s` : ` ≥ 1} is a sequence of iid random variables with unit-mean.

Similar to two-level staffing policy case, we consider four cost compo-

nents: (i) the abandonment cost: each no-show customer will incur cost r;

(ii) the nonabandoned customer waiting cost: each delayed customer who

will not abandon the system will incur cost h per unit time (iii) the server

setup cost: each server setup will cost K (that is, K is applied to each server

whenever one is added into service, but there is no cost to remove a server);

and (iv) the server operating cost: i operating servers cost ci per unit time.

Our question is how to use ticket information to dynamically determine

the staffing level of the ticket queue that minimizes the system long-run

average cost. To characterize ticket information, let S(t) be the number of

operating servers at time t, and let Q(t) be the number of tickets in the

system at time t, including the customers, if any, who are currently receiving

service; that is, Q(t) is the sum of the number of busy servers at time t, S(t),

and the difference between the number of the last issued ticket before time

t and the maximum of the ticket numbers under service at time t. Then the
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number of uncalled tickets in queue at time t is (Q(t)− S(t))+.

We first look at the system cost by time t. Let cS(t) be the operating cost

incurred when staffing level is S(t), that is, the unit operating cost incurred

by S(t) servers at time t. Following the way how to charge the server setup

and operating costs, we have the cumulative operating cost up to time t,

E

∫ t

0

cS(x)dx := O(t), (3.2)

and the cumulative setup cost up to time t

K · E
∫ t

0

I{S(x)>S(x−)}dS(x) := S(t). (3.3)

We say the system to be in i-server region if there are exact i operating

servers among m servers. Let Tij(t) be the total amount of time that server j

is processing the customer service requirement when the system is in i-server

region during [0, t]. It is straightforward to see that
∑m

i=1 Tij(t) is the total

amount of time that server j is busy during [0, t]. Recall that adding one

operating server is triggered by a customer arrival, and shutting down one

operating server is triggered by a customer service completion from it.

Let v(t) be the virtual waiting time, which is the amount of time a

hypothetical customer would have to wait before its numbered ticket to be

called upon arriving at time t. Hence, with τ` = (1/λ)
∑`

`′=1 u`′ , v(τ`−)

(:= v`) is the time that the `th arriving customer has to wait before its

ticket gets a call. In order to describe the costs of customer abandonments

and customer delay, we introduce m independent sequences of i.i.d binary
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random variables {zi` : ` ≥ 1} (i = 1, · · · ,m) with

Pr(zi` = 0) = αi and Pr(zi` = 1) = 1− αi.

Suppose that the system makes the `th call for a ticket number among the

waiting customers, and the system is being operated under i-server region.

Then the called ticket will abandon if zi` = 0 and show up if zi` = 1. Thus, the

total number of abandonments incurred by the customers who have arrived

in the system by time t can be written as

A(t)∑
`=1

m∑
i=1

(
1− zi`

)
× I{S(τ`+v`)=i,Q(τ`+v`)>i} := R(t). (3.4)

Let {Bj(t) : t ≥ 0} (j = 1, · · · ,m) be m independent and identical renewal

processes with the same distribution of {B(t) : t ≥ 0} given by

B(t) = max
{
` :

s1

µ
+ · · ·+ s`

µ
≤ t
}
. (3.5)

Then

Dj(t) = Bj

( m∑
i=1

Tij(t)
)

(3.6)

is the number of customers who have departed from server j after receiving

their service by time t. Let τ(t) be the arrival time of the customer who

is the last one to start receiving service among the customers currently in

service if (Q(t) − S(t))+ > 0, and to be t if (Q(t) − S(t))+ = 0. In view of
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(3.4), the customer abandonment cost by time t is

r · ER(τ(t)), (3.7)

and the customer delay cost by time t is

h
m∑
i=1

(1− αi)E
∫ t

0

[
A(x)−R(τ(x))−

m∑
j=1

Dj(x)− i
]+

· I{S(x)=i}dx := H(t).

(3.8)

The system dynamics are given by

Q(t) = A(t)−R(τ(t))−
m∑
j=1

Dj(t). (3.9)

Note that in (3.4), R(t) is the cumulative number of the abandonments

counted from all the customers who have arrived in the system by time t.

Among them, some of their tickets have been called out, and some have not

been called out yet by time t. In contrast to (3.4), R(τ(t)) in (3.9) is the

cumulative number of the abandonments counted from all the customers who

have arrived in the system, and have been also called out by time t. Hence,

R(t)−R(τ(t))

is the number of the abandonments from the customers who have already

arrived in the system but their ticker numbers have not been called out yet
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by time t.

Based on the information only given by Q(t), our objective is to dynam-

ically determine S(t) at any time t to minimize

r × ER(τ(T )) +H(T ) +O(T ) + S(T )

T
(3.10)

over the time interval [0, T ] with large enough T . To avoid the trivial case,

we assume there exists a m0 with 1 < m0 ≤ m such that

(1− αm0+1)λ

(m0 + 1)µ
< 1. (3.11)

That is, the overall arrival traffic (after balking) can only be handled by

m0 + 1 or more servers working simultaneously.

Without loss of generality, after making a cost normalization, we assume

the cost per customer abandonment is one, i.e., r = 1 in the remainder of

the paper. The methodology that we use to study the above problem is fluid

approximation. We consider a sequence of systems similar the one described

above. For the nth system, the customer arrival rate is nλ, and the service

rate is nµ. Because in the fluid limit (letting n go to infinite), the jumps

incurred by customer arrivals or service completion become negligible, this

simple feature makes the above problem analytically tractable.
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3.2 Fluid Approximation

This section describes the fluid approximation of our problem. Consider a

sequence of systems as described in the previous section, indexed by n ≥ 1.

For the nth system, the arrival time of the first customer is given u1/λ
n, and

the time between the (` − 1)st and `th customer arrivals for ` ≥ 2 is given

by u`/λ
n. The number of customers that arrived during [0, t] is given by

{An(t) : t ≥ 0} with

An(t) = max
{
k :

u1

λn
+ · · ·+ uk

λn
≤ t
}
.

The sequence of customer service times is given by {s`/µn : ` ≥ 1} accord-

ingly. Here the sequences of arrival rates {λn : n ≥ 1} and service rates

{µn : n ≥ 1} satisfy

lim
n→∞

λn

n
= λ and lim

n→∞

µn

n
= µ with λ and µ satisfying (3.11) (3.12)

All the other processes associated with the nth network are appended with a

superscript n. In order to make the problem analytically tractable, we impose

convergence assumption on the arrival process, namely, with probability one,

the following limit holds uniformly on compact sets of [0,∞):

An(t)− λnt
n

→ 0 and
Bn(t)− µnt

n
→ 0 as n→∞. (3.13)
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Furthermore, we assume the independence between the customer abandon-

ments and the customer arrivals and service times. Namely,

{zi` : ` ≥ 1} is independent of {u` : ` ≥ 1} and {s` : ` ≥ 1}. (3.14)

It follows from (3.9) that

Qn(t) = [An(t)− λnt]−
An(τn(t))∑

`=1

m∑
i=1

[(1− zi`)− αi]× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

−
m∑
j=1

[
Bn
j

( m∑
i=1

T nij(t)
)
− µn

m∑
i=1

T nij(t)
]

+ λnt−
An(τn(t))∑

`=1

m∑
i=1

αi × I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i} − µn
m∑
j=1

m∑
i=1

T nij(t).

(3.15)

From the definition of τn(·), we also have

(
Qn(t)− Sn(t)

)+

= An(t)− An(τn(t)). (3.16)

In view of the work-conserving property, we have that for each i ∈ {1, · · · ,m},

∫ t

0

I{Sn(x)=i,Qn(x)≥i}d
(
ix−

m∑
j=1

T nij(x)
)

= 0. (3.17)
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By (3.15)-(3.16), we get the fluid-scaled processes,

Qn(t)

n
=
An(t)− λnt

n
− 1

n

m∑
j=1

[
Bn
j

( m∑
i=1

T nij(t)
)
− µn

m∑
i=1

T nij(t)
]

− 1

n

An(τn(t))∑
`=1

m∑
i=1

[(
1− zi`

)
− αi

]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

+
λn

n
t− µn

n

m∑
j=1

m∑
i=1

T nij(t)

− 1

n

An(τn(t))∑
`=1

m∑
i=1

αi × I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}, (3.18)

and

(
Qn(t)− Sn(t)

)+

n
=
An(t)− λnt

n
− An(τn(t))− λnτn(t)

n
+
λn

n
(t− τn(t)).

(3.19)

The equicontinuous property of {T nij(·) : n ≥ 1} follows from the fact

that

0 <
m∑
i=1

(
T nij(t)− T nij(s)

)
< (t− s) for all t > s > 0, j = 1, · · · ,m, and n ≥ 1.

(3.20)

In order to get the fluid approximation, we first establish the following lemma.

Lemma 11. Suppose that (3.13)-(3.14) hold. With probability one, for any

subsequence of {τn : n ≥ 1} with τn = {τn(t) : t ≥ 0}, there exists a further
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subsequence {τn` : ` ≥ 1} with n` →∞ as `→∞ such that as `→∞,

τn` → τ̄ u.o.c.,

where τ̄ = {τ̄(t) : t ≥ 0} is Lipschitz continuous on [0,∞).

Proof. First note that, by the definition of τn (τn(t) is the arrival time of

the customer who is the last one to receive service in the nth system among

the customers currently in service if Qn(t) > 0, and to be t if Qn(t) = 0),

τn is nondecreasing and 0 ≤ τn(t) ≤ t for all t ≥ 0 and all n ≥ 1. This

observation gives that for any subsequence of {τn : n ≥ 1} there exist a

subsequence {τn` : ` ≥ 1} and a nondecreasing function τ̄ defined on all

rational numbers in [0,∞) with 0 ≤ τ̄(t) ≤ t such that

τn`(t)→ τ̄(t) as `→∞ for all rational numbers t ≥ 0. (3.21)

Since τ̄ is a nondecreasing function on all rational numbers on [0,∞),

it can be extended to all real numbers on [0,∞) in an obvious way: for any

irrational real number t > 0, find a decreasing sequence of rational numbers

t` such that t` → t as ` → ∞ and then define τ̄(t) to be the limit of τ̄(t`)

as ` → ∞. If we can show that the process τ̄ = {τ̄(t) : t ≥ 0} is Lipschitz

continuous, then by a result in Resnick (2007) (which states that if a sequence
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of nondecreasing functions on [0,∞) converges to a continuous function on

[0,∞) for all rational numbers, then the convergence is u.o.c.), we complete

the proof.

Now we show that the Lipschitz continuity of τ̄ . To the end, it suffices

to show that there exists a constant C such that for any rational numbers

s, t ∈ [0,∞) with s ≤ t,

lim sup
n→∞

(
τn(t)− τn(s)

)
≤ C × (t− s). (3.22)

According to the definition of {Tij(t) : t ≥ 0}, for the nth system, the

cumulative number of the customer service completion during time interval

(s, t] is given by

m∑
j=1

(
Bn
j (

m∑
i=1

T nij(t))−Bn
j (

m∑
i=1

T nij(s))
)
. (3.23)

By again the definition of τn(t), the service requirements of the customers

who have arrived during time interval [τn(s), τn(t)] but not abandoned either

have been completed or have not been completed but started during time

interval (s, t]. Note that the number of the customers who have arrived
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during time interval (τn(s), τn(t)] but not abandoned is given by

(
An(τn(t))− An(τn(s))

)
−

An(τn(t))∑
`=An(τn(s))+1

m∑
i=1

(
1− zi`

)
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}.

(3.24)

Among them, there are at most m customers who have started their service

but haven’t finished during time interval (s, t], since at most m servers are

in operation. Hence, we have

m∑
j=1

(
Dj(t)−Dj(s)

)
≥
(
An(τn(t))− An(τn(s))

)
−m

−
An(τn(t))∑

`=An(τn(s))+1

m∑
i=1

(
1− zi`

)
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}.

(3.25)

It follows from (3.20) that the sequences {T nij : n ≥ 1} given by T nij = {T nij(t) :

t ≥ 0} (i, j = 1, · · · ,m) are equicontinuous. Therefore, by the Asoli-Arzela

theorem (Royden 1988), any subsequences of {T nij : n ≥ 1} have further

convergent subsequences {T n`ij : ` ≥ 1} such that for i, j = 1, · · · ,m,

T n`ij → T̄ij u.o.c. as `→∞ (3.26)

with T̄ij = {T̄ij(t) : t ≥ 0} (i, j = 1, · · · ,m) being increasing and Lipschitz
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continuous functions satisfying 0 <
∑n

i=1

(
T̄ij(t) − T̄ij(s)

)
< (t − s) for all

s, t ∈ [0,∞) with s < t. Using (3.12)-(3.13) and (3.26), we have that

lim
`→∞

1

n`

m∑
j=1

(
Bn`
j (

m∑
i=1

T n`ij (t))−Bn`
j (

m∑
i=1

T n`ij (s))
)

= lim
`→∞

1

n`

m∑
j=1

[(
Bn`
j (

m∑
i=1

T n`ij (t))− µn`
m∑
i=1

T n`ij (t)
)

−
(
Bn`
j (

m∑
i=1

T n`ij (s))− µn`
m∑
i=1

T n`ij (s)
)]

+
µn`

n`

m∑
j=1

m∑
i=1

(
T n`ij (t)− T n`ij (s)

)
= µ

m∑
j=1

m∑
i=1

(
T̄ij(t)− T̄ij(s)

)
≤ mµ(t− s). (3.27)

Note that

(
An(τn(t))− An(τn(s))

)
−m

−
An(τn(t))∑

`=An(τn(s))+1

m∑
i=1

(
1− zi`

)
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

=
(
An(τn(t))− An(τn(s))

)
−m

−
An(τn(t))∑

`=An(τn(s))+1

m∑
i=1

αiI{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

+

An(τn(t))∑
`=An(τn(s))+1

m∑
i=1

(zi` − (1− αi))I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

≥
(
An(τn(t))− An(τn(s))

)
−m−max

i
αi

(
An(τn(t))− An(τn(s))

)
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+

An(τn(t))∑
`=An(τn(s))+1

m∑
i=1

(zi` − (1− αi))I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

=
(
An(τn(t))− An(τn(s))

)
(1−max

i
αi)−m

+

An(τn(t))∑
`=An(τn(s))+1

m∑
i=1

(zi` − (1− αi))I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}. (3.28)

As {zi` : ` ≥ 1} (i = 1, · · · ,m) are sequences of iid binary random variables,

we have that for i = 1, · · · ,m,

Zn
i → 0 u.o.c. as n→∞, (3.29)

where Zn
i = {Zn

i (t) : t ≥ 0} with Zn
i (t) = 1

n

∑bntc
`=1

(
zi` − (1 − αi)

)
. By the

random-time change theorem (see Billingsley, 2009)and (3.13), we have

Z̃n
i → 0 u.o.c. as n→∞, (3.30)

where Z̃n
i = {Z̃n

i (t) : t ≥ 0} with Z̃n
i (t) = 1

n

∑An(t)
`=1

(
zi`−(1−αi)

)
. In view of

τn(t) ≤ t and (3.30), we have that with probability one, for any s, t ∈ [0,∞)

with s ≤ t,

An(τn(t))∑
`=An(τn(s))+1

m∑
i=1

(
zi` − (1− αi)

)
→ 0 as n→∞. (3.31)

Using (3.6), (3.25), (3.13), and (3.21), there exists a subsequence {τn′` : ` ≥
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1} of {τn` : ` ≥ 1} given by (3.26) such that for any rational numbers

s, t ∈ [0,∞) with s ≤ t,

1

n′`

(
An
′
`(τn

′
`(t))− An′`(τn′`(s))

)
=

1

n′`

[(
(An

′
`(τn

′
`(t))− λn′`τn′`(t)

)
−
(
An
′
`(τn

′
`(s))− λn′`τn′`(s)

)]
+
λn
′
`

n′`

(
τn
′
`(t)− τn′`(s)

)
→ λ

(
τ̄(t)− τ̄(s)

)
as `→∞. (3.32)

Combining (3.27 )-(3.28) and(3.31)-(3.32) yields that for any rational num-

bers s, t ∈ [0,∞) with s ≤ t,

τ̄(t)− τ̄(s) ≤ mµ

λ(1−maxi αi)
(t− s), (3.33)

which implies that (3.22). Therefore, the proof of the lemma is completed.

For i = 1, · · · ,m, define

Rn
i (t) =

1

n

An(τn(t))∑
`=1

[
(1− zi`)− αi

]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}, (3.34)

and Rn
i = {Rn

i (t) : t ≥ 0}.

Lemma 12. Suppose that (3.12)-(3.14) hold. With probability one, as n →
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∞, for i = 1, · · · ,m,

Rn
i → 0 u.o.c.

Proof. For each i = 1, · · · ,m, consider the sequence {Xn
i : n ≥ 1} given by

Xn
i =

n∑
`=1

[
(1− zi`)− αi

]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}.

Let Fn` be the σ-field generated by

{(z1k, · · · , zm,k), uk, sk : 1 ≤ k ≤ `− 1} , {uk : ` ≤ k ≤ An(τn` + vn` ) + 1},

and {S(t) : t ∈ [0, τn` )}.

Then we know that for ` < `′,
[
(1 − zi`) − αi

]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i} is

measurable with respect to Fn`′ , and I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i} is measurable

with respect to Fn` . Hence, by (3.14), we have that for ` < `′,

E
([

(1− zi`)− αi
]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

×
[
(1− zi`′)− αi

]
× I{Sn(τn

`′+v
n
`′ )=i,Q

n(τn
`′+v

n
`′ )>i}

)
= E

[
E
{([

(1− zi`)− αi
]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

×
[
(1− zi`′)− αi

]
× I{Sn(τn

`′+v
n
`′ )=i,Q

n(τn
`′+v

n
`′ )>i}

)∣∣∣Fn`′}]
= E

[([
(1− zi`)− αi

]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}
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× I{Sn(τn
`′+v

n
`′ )=i,Q

n(τn
`′+v

n
`′ )>i}

)
× E
{[

(1− zi`′)− αi
]∣∣∣Fn`′}]

= E
[([

(1− zi`)− αi
]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

× I{Sn(τn
`′+v

n
`′ )=i,Q

n(τn
`′+v

n
`′ )>i}

)
× 0
]

= 0.

Thus, we have E
(
Xn
i

)2

≤ n(1− αi)αi. This, in turn, implies

1

n
Xn
i converges to zero in probability. (3.35)

Define Y n
i = {Y n

i (t) : t ≥ 0} with

Y n
i (t) =

1

n

bntc∑
`=1

[
(1− zi`)− αi

]
× I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}.

Consequently, by (3.35) and the Skorohod representation theorem, with prob-

ability one,

Y n
i → 0 u.o.c. as n→∞. (3.36)

It follows from Lemma 11 and the random-time change theorem (see Billings-
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ley, 2009) that with probability one,

Rn
i → 0 u.o.c. as n→∞. (3.37)

Therefore, we have the lemma.

Let Bn = {Bn(t) : t ≥ 0} with

Bn(t) =
1

n

m∑
j=1

[
Bn
j

( m∑
i=1

T nij(t)
)
− µn

m∑
i=1

T nij(t)
]
. (3.38)

Lemma 13. Suppose that (3.13)-(3.14) hold. With probability one, as n →

∞,

Bn → 0 u.o.c.

Proof. By (3.13), first we have that for any constant C > 0, with probability

one,

Bn
C → 0 u.o.c. as n→∞,

where Bn
C = {Bn

C(t) : t ≥ 0} with Bn
C(t) = (1/n)

∑m
j=1

[
Bn
j (Ct) − µnCt

]
.

Then the lemmas directly follows from the fact that for j = 1, · · · ,m, and

t ∈ [0,∞),
m∑
i=1

T nij(t) ≤ t.
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Define

Ln(t) =
1

n

An(τn(t))∑
`=1

m∑
i=1

αi × I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}. (3.39)

Notice that, by the definition of zil, (3.34), and (3.39), n(Ln(t)+
∑m

i=1R
n
i (t))

is the number of customer abandonments between time 0 and τn(t) in the

nth system.

Lemma 14. Suppose that (3.13)-(3.14) hold. With probability one, for any

subsequence of {Ln : n ≥ 1} with Ln = {Ln(t) : t ≥ 0}, there exists a further

subsequence {Ln` : ` ≥ 1} with n` →∞ as `→∞ such that as `→∞,

Ln` → L̄ u.o.c.,

where L̄ = {L̄(t) : t ≥ 0} is Lipschitz continuous on [0,∞).

Proof. Note that for all t ≥ 0 and all n ≥ 1,

Ln(t) =
1

n

An(τn(t))∑
`=1

m∑
i=1

αi × I{Sn(τn` +vn` )=i,Qn(τn` +vn` )>i}

=
1

n

∫ τn(t)

0

m∑
i=1

αi × I{Sn(x+vn(x))=i,Qn(x+vn(x))>i}dA
n(x)

≤ 1

n

∫ τn(t)

0

max
i
αidA

n(x)

≤ An(τn(t))

n
max
i
αi

≤ An(t)

n
max
i
αi. (3.40)
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As the integrand is nonnegative in Ln(t), we know that Ln is nondecreasing.

Hence for any subsequence of {Ln : n ≥ 1} there exist a subsequence {Ln` :

` ≥ 1} and a nondecreasing function L̄ defined on all rational numbers in

[0,∞) such that

Ln`(t)→ L̄(t) as `→∞ for all rational numbers t ≥ 0. (3.41)

Similar to the proof of Lemma 11, we extend the domain (nonnegative ra-

tional numbers) of L̄ to [0,∞). To prove the lemma, it suffices to show that

there exists a constant C > 0 such that for all rational numbers s, t ∈ [0,∞)

with s ≤ t,

L̄(t)− L̄(s) ≤ C × (t− s). (3.42)

To the end, by (3.40),

Ln(t)− Ln(s) =
1

n

∫ τn(t)

τn(s)

m∑
i=1

αi × I{Sn(x+vn(x))=i,Qn(x+vn(x))>i}dA
n(x)

≤ 1

n

(
An(τn(t))− An(τn(s))

)
×max

i
αi

= max
i
αi ×

[An(τn(t))− λnτn(t)

n
− An(τn(s))− λnτn(s)

n

+
λn

n

(
τn(t)− τn(s)

)]
.
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(3.42) directly follows from (3.13) and (3.32)-(3.33) with

C =
mµ

1−maxi αi
×max

i
αi.

Define

Qn =
{Qn(t)

n
: t ≥ 0

}
and T n =

{(
T nij(t), i, j = 1, · · · ,m

)
: t ≥ 0

}
.

(3.43)

With the help of Lemmas 11-14, we get the following fluid approximation.

Since we are interested in the long-run average cost, in theorem 15, proposi-

tion 16, and theorem 18, we consider the system starting from empty state.

Theorem 15. Suppose that (3.13)-(3.14) hold. With probability one, for any

subsequence of {(τn, Ln, T n, Qn) : n ≥ 1}, there exists a further subsequence

{(τn` , Ln` , T n` , Qn`) : ` ≥ 1} with n` →∞ as `→∞ such that as `→∞,

(
τn` , Ln` , T n` , Qn`

)
→
(
τ̄ , L̄, T̄ , Q̄

)
u.o.c., (3.44)

where τ̄ = {τ̄(t) : t ≥ 0}, L̄ = {L̄(t) : t ≥ 0}, and T̄ = {(T̄ij(t), i, j =

1, · · · ,m) : t ≥ 0} are increasing and Lipschitz continuous on [0,∞), and

Q̄ = {Q̄(t) : t ≥ 0} is Lipschitz continuous on [0,∞). At the same time, the
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above limit satisfies

Q̄(t) =λt− L̄(t)− µ
m∑
i=1

m∑
j=1

T̄ij(t) = λ(t− τ̄(t)) ≥ 0, (3.45)

0 ≤
m∑
i=1

(
T̄ij(t)− T̄ij(s)

)
≤ (t− s) for all t > s > 0 and j = 1, · · · ,m.

(3.46)

Proof. The convergence given by (3.44) and (3.45)-(3.46) directly follow from

Lemmas 11-14 and (3.18)-(3.20).

Similarly, using Qn(t) and Sn(t), we can also write down the correspond-

ing cost function On(t), Sn(t), Rn(τn(t)), and Hn(t) in nth system. Define

On =
{On(t)

n
: t ≥ 0

}
, Sn =

{Sn(t)

n
: t ≥ 0

}
, (3.47)

Rn =
{Rn(τn(t))

n
: t ≥ 0

}
, Hn =

{Hn(t)

n
: t ≥ 0

}
. (3.48)

Proposition 16. Suppose that (3.13)-(3.14) hold. With probability one, for

any subsequence of {(On,Sn,Rn,Hn) : n ≥ 1}, there exists a further subse-

quence {(On` ,Sn` ,Rn` ,Hn`) : ` ≥ 1} with n` → ∞ as ` → ∞ such that as

`→∞,

(
On` ,Sn` ,Rn` ,Hn`

)
→
(
Ō, S̄, R̄, H̄

)
u.o.c., (3.49)
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where Ō = {Ō(t) : t ≥ 0}, S̄ = {S̄(t) : t ≥ 0}, R̄ = {(R̄(τ(t)) : t ≥ 0}, and

H̄ = {H̄(t) : t ≥ 0} are increasing and Lipschitz continuous on [0,∞). At

the same time, the above limit satisfies

Ō(t) =

∫ t

0

m∑
i=1

ci × I{S̄(x)=i}dx, (3.50)

S̄(t) = K

∫ t

0

I{S̄(x)>S̄(x−)}dS̄(x), (3.51)

R̄(t) = L̄(t), (3.52)

H̄(t) = h
m∑
i=1

(1− αi)
∫ t

0

Q̄(x)I{S̄(x)=i}dx. (3.53)

The proof are similar as the proof in Theorem 15. We can further specify

the expressions if the actions are given. We illustrate this in the following

theorem.

Theorem 17. For any fixed T > 0, we assume that each system uses k

different staffing-level policy during [0, T ). More specifically, for the nth sys-

tem, i` servers are put into operation during the time interval [tn`−1, t
n
` ) where

tn` (` = 1, · · · , k) are random and 0 = tn0 < tn1 < · · · < tnk = T . If with

probability one, limn→∞ t
n
` = t` for ` = 1, · · · , k, then for t ∈ [t`−1, t`),

0 =
m∑
i=1

∫ t

0

I{S̄(x)=i,Q̄(x)>0}d
(
ix−

m∑
j=1

T̄ij(x)
)
, (3.54)

L̄(t) = λ
m∑
i=1

∫ τ̄(t)

0

αiI{S̄(x)=i,Q̄(x)>0}dx, (3.55)
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τ̄(t) =
m∑
i=1

∫ t

0

I{S̄(x)=i,Q̄(x)>0}
µi
λ
dx, (3.56)

Q̄(t) =
m∑
i=1

∫ t

0

I{S̄(x)=i,Q̄(x)>0}βidx, (3.57)

where

S̄(x) = i` for x ∈ [t`−1, t`) and ` = 1, · · · , k.

Proof. Now we prove (3.54)-(3.57) of the theorem. Consider the subsequence

{n` : ` ≥ 1} given by (3.44). When t ∈ [0, t1), by the positivity of Q̄(t), for

large enough n`,

Qn`(t) > m. (3.58)

This together with (3.17) gives that

0 =

∫ t

0

I{Sn` (x)=i1,Q
n` (x)≥i1}d

(
i1x−

m∑
j=1

T n`i1j(x)
)

=

∫ t

0

d
(
i1x−

m∑
j=1

T n`i1j(x)
)
.

Hence,
m∑
j=1

T n`i1j(t) = i1t for t ∈ [0, t1),

which, by (3.44), implies that (3.54) holds for t ∈ [0, t1). For (3.55), by (3.40)
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and (3.58), for t ∈ [0, t1),

Ln`(t) =
1

n`

∫ τn` (t)

0

m∑
i=1

αi × I{Sn` (x+vn` (x))=i,Qn` (x+vn` (x))>i}dA
n`(x)

=
1

n`

∫ τn` (t)

0

αi1 × I{Sn` (x+vn` (x))=i1,Q
n` (x+vn` (x))>i1}dA

n`(x)

=
1

n`

∫ τn` (t)

0

αi1dA
n`(x)

=
An`(τn`(t))

n`
αi1 → λαi1 τ̄(t).

This shows that (3.55) holds for t ∈ [0, t1). By Theorem 15, for t ∈ [0, t1),

we have that

Q̄(t) = λt− L̄(t)− µ
m∑
j=1

T̄i1j(t)

= λt− λαi1 τ̄(t)− i1µt

= λ(t− τ̄(t)). (3.59)

This implies

τ̄(t) =
µi1
λ
t. (3.60)

Plug (3.60) into (3.59), we have

Q̄(t) = βi1t.
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Repeating the above procedure, we can show that (3.54)-(3.57) hold for any

t ∈ [0, T ). Hence we have the theorem.

3.3 Analysis of the Long-Run Average Cost

Based on the information up to time t, our objective is to dynamically de-

termine S̄(t) among {1, · · · ,m} at any time t to minimize

AC(T ) :=
r × R̄(T ) + H̄(T ) + Ō(T ) + S̄(T )

T
(3.61)

for large enough T . Denote

βi := λ− µi =
λi − iµ
1− αi

, µi =
iµ

1− αi
, λi = (1− αi)λ, i = 1, · · · ,m.

(3.62)

We assume that

βi is decreasing and convex on [1,m]. (3.63)

βi can be viewed as the net input rate. It’s natural to assume βi is decreasing.

In addition, we also assume βi is convex in i. This implies that βi decreases

very fast with small i, but decreases very slowly with large i. That is, the

initial added servers are more efficient at increasing the net input rate.
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In view of Assumptions (3.11) and (3.63),

βi > 0, i ≤ m0; βi < 0, i > m0. (3.64)

This, by Theorem 15, gives that for any given time interval [s, t), if the fluid

queue length Q̄ is positive and the system is in i-server region, then

Q̄(s) < Q̄(t) for i ≤ m0, and Q̄(s) > Q̄(t) for i > m0. (3.65)

We use the idea from the renewal reward theorem to solve the problem (3.61).

The regenerative point is defined by Q̄(t) = 0, that is, the points of the system

empty. During each cycle, suppose we have k times of changing service

regions, where staffing levels are denoted by i1, . . . , ik, and the thresholds

to switch the service region are sequentially given by Q̄1, · · · , Q̄k. More

concrete, starting with empty during each cycle, there are i1 servers to process

customer service requirements, and the queue length builds up. When the

queue length first accumulates to Q̄1, we switch from i1-server region to i2-

server region. When the queue length either builds up to (if i2 ≤ m0) or

shrinks to (if i2 ≥ m0 + 1) Q̄2, we change over to i3-server region, and so

on. Finally, the queue length starts with Q̄k−1 and system runs in ik-server

region, the cycle will be over as soon as the system becomes empty. Clearly,

i1 ≤ m0, ik ≥ m0 + 1, and Q̄k = 0.

The pairs (i`, Q̄`) (` = 1, · · · , k) and k are our decision variables to solve
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the problem (3.61). By (3.65), we have that

Q̄`−1 < Q̄` for i` ≤ m0, and Q̄`−1 > Q̄` for i` ≥ m0 + 1.

We consider only stationary policies, which adopt same actions in each

cycle, since cost will not be reduced by considering nonstationary policies.

Thus, in the following, we will derive the average cost in fluid model, given

a feasible policy (i`, Q̄`) (` = 1, · · · , k) in one cycle.

For the nth system given by Section 3.2, we repeat to use the above

policy: the system starts with staffing level i1, the staffing level will be

switched from i1 to i2 when the queue length Qn first reaches to nQ̄1. Then

the ticket queue length either builds up to nQ̄2 (if i2 ≤ m0), or reduces to

nQ̄2 (if i2 > m0). If it first reaches nQ̄2 before reaching empty (which means

this cycle ends), the staffing level will be switched from i2 to i3. This process

continues until the staffing level is switched to ik, and the system runs in

ik-server region until system becomes empty, i.e. reaches nQ̄k = 0. We call

this policy (i`, nQ̄`) (` = 1, · · · , k). Then we have our results as follows.

Theorem 18. For the nth system, we use policy (i`, nQ̄`) (` = 1, · · · , k).

Denote δ` = Q̄` − Q̄`−1, where Q̄0 = Q̄k = 0. The fluid approximation
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(
τ̄ , L̄, T̄ , Q̄

)
given by (3.44) in Theorem 15 satisfies that, for ` = 0, 1, . . . ,

Q̄(t) =



βi1

(
t− `

∑k
j=1

δj
βij

)
, for t ∈ [`

∑k
j=1

δj
βij
, `
∑k

j=1
δj
βij

+ δ1
βi1

),

δ1 + βi2

(
t− `

∑k
j=1

δj
βij
− δ1

βi1

)
for t ∈ [`

∑k
j=1

δj
βij

+ δ1
βi1
, `
∑k

j=1
δj
βij

+ δ1
βi1

+ δ2
βi2

),

...∑k−1
j=1 δj + βik

(
t− `

∑k
j=1

δj
βij
−
∑k−1

j=1
δj
βij

)
for t ∈ [`

∑k
j=1

δj
βij

+
∑k−1

j=1
δj
βij
, (`+ 1)

∑k
j=1

δj
βij

).

(3.66)

L̄(t) =



`
∑k

j=1

αijµij δj

βij
+ αi1µi1

(
t− `

∑k
j=1

δj
βij

)
,

for t ∈ [`
∑k

j=1
δj
βij
, `
∑k

j=1
δj
βij

+ δ1
βi1

),

`
∑k

j=1

αijµij δj

βij
+

αi1µi1δ1
βi1

+ αi2µi2

(
t− `

∑k
j=1

δj
βij
− δ1

βi1

)
,

for t ∈ [`
∑k

j=1
δj
βij

+ δ1
βi1
, `
∑k

j=1
δj
βij

+ δ1
βi1

+ δ2
βi2

),

...

`
∑k

j=1

αijµij δj

βij
+
∑k−1

j=1

αijµij δj

βij
+ αikµik

(
t− `

∑k
j=1

δj
βij
−
∑k−1

j=1
δj
βij

)
,

for t ∈ [`
∑k

j=1
δj
βij

+
∑k−1

j=1
δj
βij
, (`+ 1)

∑k
j=1

δj
βij

).

(3.67)
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τ̄(t) =



`
∑k

j=1
δj
βij

+
µi1
λ

(
t− `

∑k
j=1

δj
βij

)
,

for t ∈ [`
∑k

j=1
δj
βij
, `
∑k

j=1
δj
βij

+ δ1
βi1

),

`
∑k

j=1
δj
βij

+
µi1δ1
λβi1

+
µi2
λ

(
t− `

∑k
j=1

δj
βij
− δ1

βi1

)
,

for t ∈ [`
∑k

j=1
δj
βij

+ δ1
βi1
, `
∑k

j=1
δj
βij

+ δ1
βi1

+ δ2
βi2

),

...

`
∑k

j=1
δj
βij

+
∑k−1

j=1

µij δj

λβij
+

µik
λ

(
t− `

∑k
j=1

δj
βij
−
∑k−1

j=1
δj
βij

)
,

for t ∈ [`
∑k

j=1
δj
βij

+
∑k−1

j=1
δj
βij
, (`+ 1)

∑k
j=1

δj
βij

).

(3.68)

k∑
`=1

m∑
j=1

T̄i`j(t) =



`
∑k

j=1
δjij
βij

+ i1(t−
∑k

j=1
δj
βij

),

for t ∈ [`
∑k

j=1
δj
βij
, `
∑k

j=1
δj
βij

+ δ1
βi1

),

`
∑k

j=1
δjij
βij

+ i1δ1
βi1

+ i2(t−
∑k

j=1
δj
βij
− δ1

βi1
),

for t ∈ [`
∑k

j=1
δj
βij

+ δ1
βi1
, `
∑k

j=1
δj
βij

+ δ1
βi1

+ δ2
βi2

),

...

`
∑k

j=1
δjij
βij

+
∑k−1

j=1
ijδj
βij

+ ik(t−
∑k

j=1
δj
βij
−
∑k−1

j=1
δj
βij

),

for t ∈ [`
∑k

j=1
δj
βij

+
∑k−1

j=1
δj
βij
, (`+ 1)

∑k
j=1

δj
βij

).

(3.69)

Moreover, the long-run average cost incurred by the above fluid model is
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equal to

[ k∑
`=1

(
h(1− αi`)

(
Q̄` −

δ`
2

)
+ µi`αi` + ci`

) δ`
βi`

+K(i` − i`−1)+
]/ k∑

`=1

δ`
βi`
.

(3.70)

Proof. For the nth system, let ξn be the first time of the queue length Qn

reaching nQ̄1, and ςn the first time of the queue length reaching nQ̄2 after

ξn. Define

ξn0 = ξn ∧ 2Q̄1

βi1
and ςn0 = ςn ∧ 2

(Q̄1

βi1
+
Q̄2 − Q̄1

βi2

)
.

It follows from (3.19) that under the policy (i`, nQ̄`) (` = 1, · · · , k), for

t ∈ [0, ξn0 ],

Qn(t)

n
=
An(t)− λnt

n
− 1

n

m∑
j=1

[
Snj

(
T ni1j(t)

)
− µnT ni1j(t)

]

− 1

n

An(τn(t))∑
`=1

[(
1− zi1`

)
− αi

]
× I{Qn(τn` +vn` )>i1}

+
λn

n
t− µn

n

m∑
j=1

T ni1j(t)−
1

n

An(τn(t))∑
`=1

αi1 × I{Qn(τn` +vn` )>i1}. (3.71)

Note that with probability one, {ξn0 : n ≥ 1} and {ςn0 : n ≥ 1} are bounded.

Hence, for each ω ∈ Ω, there exists a subsequence of {ξn0 : n ≥ 1}, called



3. Fluid Model and Asymptotics for Ticket Queues 101

{ξn`(ω)
0 (ω) : ` ≥ 1} such that

ξ
n`(ω)
0 (ω)→ ξ̄0(ω) as `→∞.

By Theorem 15, we have that for t ∈ [0, ξ0(ω)],

(
τn`(ω)(t, ω), Ln`(ω)(t, ω), T n`(ω)(t, ω), Qn`(ω)(t, ω)

)
→
(
τ̄(t, ω), L̄(t, ω), T̄ (t, ω), Q̄(t, ω)

)
as `→∞, (3.72)

Q̄(t, ω) = λt− L̄(t, ω)− µ
m∑
j=1

T̄i1j(t, ω), (3.73)

Q̄(t, ω) = λ
(
t− τ̄(t, ω)

)
, (3.74)

L̄(t, ω) ≤ λαi1t,
m∑
j=1

T̄i1j(t, ω) ≤ i1t. (3.75)

The limit satisfies that for t ∈ [0, ξ0(ω)],

Q̄1 ≥ Q̄(t, ω) = λt− L̄(t, ω)− µ
m∑
j=1

T̄i1j(t, ω)

≥ λt− λαi1t− µi1t

=
(
λ− λαi1 − µi1

)
t. (3.76)

Hence, Q̄(t, ω) is positive only except t = 0. By again Theorem 15, we have
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that

L̄(t, ω) = λαi1 τ̄(t, ω) and
m∑
j=1

T̄i1j(t) = i1t. (3.77)

This, by (3.73)-(3.74),

Q̄(t, ω) = λt− λαi1 τ̄(t, ω)− µi1t

= λ
(
t− τ̄(t, ω)

)
. (3.78)

This implies

τ̄(t, ω) =
µi1
λ
t. (3.79)

Plugging (3.79) into (3.78) yields that for t ∈ [0, ξ0(ω)],

Q̄(t, ω) = βi1t. (3.80)

By the first inequality of (3.76), we have that for t ∈ [0, ξ0(ω)],

Q̄1 ≥ βi1t,
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which implies

ξ0(ω) ≤ Q̄1/βi1 .

In view of the definitions of ξn and ξ0(ω), we have that

lim
`→∞

ξn`(ω)(ω) = ξ0(ω) <
2Q̄1

βi1
. (3.81)

Therefore, for large enough n`,

[0, ξ
n`(ω)
0 (ω)] = [0, ξn`(ω)(ω)].

Thus, replacing t by ξn`(ω)(ω) in (3.71), its right-hand side is Q̄1. Letting

n`(ω) → ∞, by (3.73), (3.78) and (3.81), we have that Q̄1 = βi1 × ξ0(ω).

This gives ξ0(ω) = Q̄1

βi1
. Combining (3.72), and (3.77)-(3.79), we know that

(τ̄ , L̄, T̄ , Q̄) given by (3.68)-(3.69) holds for t ∈ [0, Q̄1/βi1 ]. Going along

the similar line, we can prove the theorem for the other intervals. Here the

details are omitted.

Now let’s verify that the long-run average cost for the fluid model is

characterized by (3.70). Let T̄` denotes the time length of i`-server region in
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the fluid model. Then

T̄` =
δ`
βi`

=
Q̄` − Q̄`−1

βi`
. (3.82)

The system dynamics of the fluid model in one cycle are shown in Figure 3.1.

βi1

βi2

βik−1

βik

Q̄1

Q̄2

Q̄k−1

T̄1 T̄2 T̄k−1 T̄k

Q̄0 Q̄k

Fig. 3.1: System Dynamics

Denote one cycle length by T̄c =
∑k

`=1 T̄`. By Proposition 16 and the

above analysis, the relevant cost in one cycle are:

• operating costs : O(T̄c) =
∑k

`=1 ci`T̄`;

• setup cost: S(T̄c) = K
∑k

`=1(i` − i`−1)+, where i0 = 0;

• customer abandonment costs :

R(T̄c) = λ
k∑
`=1

αi`(τ̄(T̄`)− τ̄(T̄`−1)) =
k∑
`=1

αi`µi`T̄`;
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• customer delay cost: H(T̄c) = h
2

∑k
`=1(1− αi`)(Q̄`−1 + Q̄`)T̄`.

By (3.82), the average cost during one cycle is

[ k∑
`=1

(
h(1− αi`)

(
Q̄` −

δ`
2

)
+ µi`αi` + ci`

) δ`
βi`

+K(i` − i`−1)+
]/ k∑

`=1

δ`
βi`
.

For any given large T , we use ACn(T ) to denote the average cost incurred

by nth system under policy (i`, nQ̄`) (` = 1, . . . , k). Then

lim
T→∞

lim
n→∞

ACn(T )

=
[ k∑
`=1

(
h(1− αi`)

(
Q̄` −

δ`
2

)
+ µi`αi` + ci`

) δ`
βi`

+K(i` − i`−1)+
]/ k∑

`=1

δ`
βi`
.

(3.83)

Consequently, we have the theorem.

3.4 The Optimal Policy in the Fluid Model

In this section, we minimize the objective function (3.70) and find the optimal

policy in fluid model. The constraints are:

δ` = Q̄` − Q̄`−1 and i` ∈ [0,m], ` = 1, . . . , k. (3.84)

Note that we have relaxed the integer requirement on i` in the above con-

straints. This is consistent with the continuous nature of the fluid model. In
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terms of implementing the optimal solution, this should not be a problem.

For instance, if i` = 2.5, we can alternately use 2 and 3 servers in consecutive

(regeneration) cycles. Also note that we do not require δ` ≥ 0; Q̄` could very

well be less than Q̄`−1. However, do note that δ` and βi` always have the

same sign (Q̄` < Q̄`−1 means i` > m0; so, βi` < 0). Thus, δ`/βi` ≥ 0, for all

`.

Another observation is this. The setup cost is lower-bounded by

k∑
`=1

K(i` − i`−1)+ ≥
k∑
`=1

K(i` − i`−1) = Kik+1.

We make further assumptions on the abandonment probability αi. Namely,

µiαi + ci is increasing and convex, (3.85)

1− αi is increasing and convex. (3.86)

It’s natural to assume µiαi + ci and 1−αi is increasing. In addition, we also

assume them to be convex in i. This implies that marginal cost is increasing,

which further imply the following results in Proposition 19.

Proposition 19. Under Assumptions (3.63) and (3.85)-(3.86),

min
(i`,δ`)

[ k∑
`=1

(
h(1− αi`)

(
Q̄` −

δ`
2

)
+ µi`αi` + ci`

) δ`
βi`

+K(i` − i`−1)+
]/ k∑

`=1

δ`
βi`

≥ min
i1,i2

{(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

+

√
2hK

c2

cα
i2

}
, (3.87)
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where i` and δ` satisfy (3.84), i1 ≤ m0, i2 ≥ m0 + 1,

1

c
=

1

βi1
− 1

βi2
, and

1

cα
=

1− αi1
βi1

− 1− αi2
βi2

. (3.88)

.

βi1

βi2

βik−1

βik

Q̄1

Q̄2

Q̄k−1

T̄1 T̄2 T̄k−1 T̄k

Q̄0 Q̄k

Q̄q

T̄q

βu∗ βd∗

time

ticket queue length

Fig. 3.2: Generating a Two-Piece Policy

Proof. Let Q̄q represent the smallest positive Q̄`, i.e.,

Q̄q = min{Q̄1, · · · , Q̄k}.

We connect points (0, 0) and (
∑q

`=1 T̄`, Q̄q), (
∑q

`=1 T̄`, Q̄q) and (
∑k

`=1 T̄`, 0)

(dotted line in Figure 3.2), then we derive a 2-piece policy. The first piece

has slop βu∗ and the second piece has slop βd∗ , where

βu∗ =

∑q
`=1 T̄`βi`∑q
`=1 T̄`

≥ 0, and βd∗ =

∑k
`=q+1 T̄`βi`∑k
`=q+1 T̄`

≤ 0. (3.89)
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βd∗ is nonpositive because Q̄q =
∑q

`=1 T̄`βi` = −
∑k

`=q+1 T̄`βi` . Let

u =

∑q
`=1 i`T̄`∑q
`=1 T̄`

and d =

∑k
`=q+1 i`T̄`∑k
`=q+1 T̄`

.

Taking into account the convexity of βi with respect to i (Assumption (3.63)),

we have

βu ≤
∑q

`=1 T̄`βi`∑q
`=1 T̄`

= βu∗ and βd ≤
∑k

`=q+1 T̄`βi`∑k
`=q+1 T̄`

= βd∗ . (3.90)

Hence, u ≥ u∗ and d ≥ d∗ follows from βi decreasing in i (Assumption (3.63)).

Now we show that 2-piece cost is less than k-piece cost given by the left-

hand side of (3.87). For the k-piece cost, the customer delay cost, without

constant multiplier h/2, is

k∑
`=1

(1− αi`)(Q̄`−1 + Q̄`)T̄`

=
k∑
`=1

2T̄`

(
Q̄`−1 +

T̄`βi`
2

)
(1− αi`)

=
k∑
`=1

T̄`

(
2
`−1∑
`′=1

T̄`′βi`′ + T̄`βi`

)
(1− αi`)

=
k∑
`=1

T̄`(1− αi`)
∑̀
`′=1

T̄`′βi`′ +
k∑
`=1

T̄`(1− αi`)
`−1∑
`′=1

T̄`′βi`′ . (3.91)

For the 2-piece cost, the customer delay cost, without constant multiplier
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h/2, is

( q∑
`=1

T̄`

)2

(1− αu∗)βu∗ −
( k∑
`=q+1

T̄`

)2

(1− αd∗)βd∗

=

q∑
`=1

T̄`(1− αu∗) ·
q∑
`=1

T̄`βi` −
k∑

`=q+1

T̄`(1− αd∗) ·
k∑

`=q+1

T̄`βi`

≤
q∑
`=1

T̄`(1− αi`) ·
q∑
`=1

T̄`βi` −
k∑

`=q+1

T̄`(1− αi`) ·
k∑

`=q+1

T̄`βi`

=

q∑
`=1

T̄`(1− αi`) ·
q∑
`=1

T̄`βi` +
k∑

`=q+1

T̄`(1− αi`) ·
q∑
`=1

T̄`βi`

=
k∑
`=1

T̄`(1− αi`) ·
q∑
`=1

T̄`βi` , (3.92)

where the inequality follows from 1−αi increasing and convexity with respect

to i

1− αu∗ ≤ 1− αu ≤
∑q

`=1 T̄`(1− αi`)∑q
`=1 T̄`

, (3.93)

1− αd∗ ≤ 1− αd ≤
∑k

`=q+1 T̄`(1− αi`)∑k
`=q+1 T̄`

, (3.94)

see Assumption (3.86). Therefore, to prove the customer delay cost given

by the k-piece policy is larger than the customer delay cost incurred by the

2-piece policy, it is sufficient to show that

k∑
`=1

T̄`(1− αi`) ·
q∑
`=1

T̄`βi`
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≤
k∑
`=1

T̄`(1− αi`)
∑̀
`′=1

T̄`′βi`′ +
k∑
`=1

T̄`(1− αi`)
`−1∑
`′=1

T̄`′βi`′ (3.95)

After simplification, (3.95) is equivalent to

q∑
`=1

T̄`(1− αi`)
q∑

`′=`+1

T̄`′βi`′

≤
k∑

`=q+1

T̄`(1− αi`)
∑̀
`′=q+1

T̄`′βi`′ +
k∑
`=1

T̄`(1− αi`)
`−1∑
`′=1

T̄`′βi`′ . (3.96)

We notice that
∑`−1

`′=1 T̄`′βi`′ ≥ 0 for any `. For ` ≤ q, we have
∑q

`′=1 T̄`′βi`′ ≤∑`
`′=1 T̄`′βi`′ , therefore

∑q
`′=`+1 T̄`′βi`′ ≤ 0; for ` > q, we have

∑q
`′=1 T̄`′βi`′ ≤∑`

`′=1 T̄`′βi`′ , therefore
∑`

`′=q+1 T̄`′βi`′ ≥ 0. Thus in (3.96), the left-hand side

is negative and the right-hand side is positive, and (3.96) is true.

Next, consider the abandonment and operating cost.

(µu∗αu∗ + cu∗)

q∑
`=1

T̄` + (µd∗αd∗ + cd∗)
k∑

`=q+1

T̄`

≤ (µuαu + cu)

q∑
`=1

T̄` + (µdαd + cd)
k∑

`=q+1

T̄`

≤
q∑
`=1

(µi`αi` + c`)T̄` +
k∑

`=q+1

(µi`αi` + c`)T̄`

=
k∑
`=1

(µi`αi` + c`)T̄`. (3.97)

Here the first inequality follows from µiαi+ ci increasing in i, and the second
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inequality follows from convexity of µiαi + ci in i, see (3.85). (3.97) implies

that the abandonment and operation cost incurred by the k-piece policy is

larger than the one given by the 2-piece policy.

Finally, we look at setup cost. We have

k+1∑
`=1

(i` − i`−1)+K ≥
[
(u∗)+ + (d∗ − u∗)+

]
K = d∗K.

The above inequality is true according to the definition of Q̄q. Thus, com-

pared with the (k + 1)-piece policy, we can get better-off when the 2-piece

policy is implemented.

Now we prove the optimization problem for 2-piece policies can be writ-

ten as the right-hand side of (3.87). As any 2-piece policy can be deter-

mined by three variables, namely, i1, i2 and Q̄1. That is, we need to decide

what staffing level to start the system (i1 < m0), which threshold level for

the queue length to switch another staffing level (Q̄1), and what staffing

level to be used after switching (i2). For the 2-piece policy with parameters

(i1, i2, Q̄1), the system average cost has the following three parts:

• average customer delay cost = hc
2cα
Q̄1;

• average setup cost = cK
Q̄1
i2 (note i1 + (i2 − i1)+ = i2 here);

• average abandonment and operating cost = (µi1αi1 + ci1)
c
βi1
− (µi2αi2 +
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ci2)
c
βi2

;

where c and cα are given in the proposition. The optimization problem can

be written as

min
i1,i2,Q̄1

{ hc
2cα

Q̄1 +
cK

Q̄1

i2 + (µi1αi1 + ci1)
c

βi1
− (µi2αi2 + ci2)

c

βi2

}
. (3.98)

We can first optimize Q̄1, and use Q̄∗ to represent optimal Q̄1, i.e.,

Q̄∗ =

√
2K

h
cαi2,

which implies that (3.98) is equivalent to

min
i1,i2

{√
2hK

c2

cα
i2 +

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

}
.

This completes the proof of the theorem.

Now let

(i∗1, i
∗
2) = arg min

i1,i2

{√
2hK

c2

cα
i2 +

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

}
,

(3.99)

Q̄∗ =

√
2K

h
c∗αi
∗
2 with

1

c∗α
=

1− αi∗1
βi∗1

−
1− αi∗2
βi∗2

. (3.100)
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Corollary 1. Assume that 1−αi = a+bi with a, b ≥ 0, and iµ
a+bi

(1−a−bi)+ci

is increasing and convex with respect to i. Then,

(i∗1, i
∗
2) = (m0,m0 + 1). (3.101)

Remark 1. It is straightforward to see that if 1 − αi = a + bi with a, b ≥

0, then βi is is decreasing and convex on [1,m]. Thus, we know that the

assumptions given by the corollary imply that (3.63) and (3.86) hold.

Proof. To prove the corollary, it is sufficient to show that

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

and
c2

cα
(3.102)

are increasing in i2 and decreasing in i1. First we consider the monotonicity

of c2/cα in i1 and i2.

To get the increasing property of c2/cα in i2, it suffices to show that

2

c
· dc
di2
≥ 1

cα
· dcα
di2

. (3.103)

Taking derivative with respect to i2 on both sides of 1
cα

=
1−αi1
βi1
− 1−αi2

βi2
, we

have

− 1

c2
α

· dcα
di2

= − 1

β2
i2

·
(
βi2b− (1− αi2)

dβi2
di2

)
,
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which implies

1

cα
· dcα
di2

=
cα
β2
i2

(
βi2b− (1− αi2)

dβi2
di2

)
.

Similarly, taking derivative with respect to i2 on both sides of 1
c

= 1
βi1
− 1

βi2
,

we have

− 1

c2
· dc
di2

=
1

β2
i2

· dβi2
di2

,

which implies

1

c
· dc
di2

= − c

β2
i2

· dβi2
di2

.

Therefore (3.103) is equivalent to

dβi2
di2
·
( 2

cα
− 1− αi2

c

)
≤ −bβi2

c
. (3.104)

Substituting c and cα we have

2

cα
− 1− αi2

c
=

2(1− αi1)− (1− αi2)
βi1

− 1− αi2
βi2

.

This implies that (3.104) is equivalent to

aµ

a+ bi2

(
λ− i1µ

a+ bi1

)
+
( i2µ

a+ bi2
− λ
)aµ[(a+ bi1)2 + b2(i1 − i2)2]

(a+ bi1)(a+ bi2)2
≥ 0.

(3.105)
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Since i2 > i1 and i2µ
a+bi2

≥ λ ≥ i1µ
a+bi1

, (3.105) is true.

Next we consider the decreasing property of c2/cα in i1. It suffices to

show taht

2

c
· dc
di1
≤ 1

cα
· dcα
di1

. (3.106)

Taking derivative with respect to i1 on both sides of 1
cα

=
1−αi1
βi1
− 1−αi2

βi2
, we

have

1

c2
α

· dcα
di1

=
1

β2
i1

·
(
− βi1b+ (1− αi1)

dβi1
di1

)
,

which implies

1

cα
· dcα
di1

=
cα
β2
i1

(
− βi1b+ (1− αi1)

dβi1
di1

)
.

Similarly, taking derivative with respect to i1 on both sides of 1
c

= 1
βi1
− 1

βi2
,

we have

1

c2
· dc
di1

=
1

β2
i1

· dβi1
di1

,

which implies

1

c
· dc
di1

=
c

β2
i1

· dβi1
di1

.
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Therefore (3.106) is equivalent to

dβi1
di1
·
( 2

cα
− 1− αi1

c

)
≤ −bβi1

c
. (3.107)

Substituting c and cα we have

2

cα
− 1− αi1

c
=
−2(1− αi2) + (1− αi1)

βi2
+

1− αi1
βi1

.

This gives that (3.107) is equivalent to

i2µ

a+ bi2
− λ+

(
λ− i1µ

a+ bi1

)[a+ bi1
a+ bi2

+
2b(i2 − i1)

a+ bi1

]
≥ 0. (3.108)

Since i2 > i1 and i2µ
a+bi2

≥ λ ≥ i1µ
a+bi1

, (3.108) is true.

Finally we consider the monotonicity of the first term in (3.102). Note

that

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

= µi1αi1 + ci1 +

[
(µi2αi2 + ci2)− (µi1αi1 + ci1)

]
βi1

µi2 − µi1

= µi1αi1 + ci1 + βi1
(µi2αi2 + ci2)− (µi1αi1 + ci1)

i2 − i1

/µi2 − µi1
i2 − i1

. (3.109)

By the increasing property and convexity of µiαi + ci, we have that for fixed
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i1,

βi1
(µi2αi2 + ci2)− (µi1αi1 + ci1)

i2 − i1
is positive and increasing in i2. (3.110)

By the increasing property and concavity of µi (as βi = λ− µi is decreasing

and convex), we know that for fixed i1,

µi2 − µi1
i2 − i1

is positive and decreasing in i2. (3.111)

Combining (3.109)-(3.111) yields that for fixed i1,

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

is increasing in i2.

Finally consider the monotonicity of the first term of (3.102) in i1. Sim-

ilar to (3.109), we have

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

= µi2αi2 + ci2 −
[
(µi1αi1 + ci1)− (µi2αi2 + ci2)

]
βi2

µi2 − µi1

= µi2αi2 + ci2 + βi2

[
(µi2αi2 + ci2)− (µi1αi1 + ci1)

i2 − i1

/µi2 − µi1
i2 − i1

.



3. Fluid Model and Asymptotics for Ticket Queues 118

Similar to (3.110)-(3.111), we can prove

(µi2αi2 + ci2)βi1 − (µi1αi1 + ci1)βi2
βi1 − βi2

is decreasing in i1. Thus we have the corollary.

3.5 Asymptotic Optimality

In Section 3.3 and Section 3.4, we only consider cyclical policy. That is,

by using that policy, ticket queue length will reach system empty infinitely

many times. We exclude policies who are not cyclical because they cannot

be optimal. We illustrate this point in the following.

Suppose there exists one policy, after finite time, ticket queue length

will never reach system empty. In figure 3.3, we use solid line to represent

ticket queue length trajectory by using this policy. Based on that, we will

generate a new policy, whose ticket queue length trajectory are represented

by the dotted line. The dotted line hits system empty (i.e. ticket queue

length 0) after finite time, say ts. Then we show that dotted line incurs

lower average cost. Suppose Qs is the smallest ticket queue length among all

positive ticket queue lengths. Suppose the first piece of solid line has slope

βi1 . The new policy represented by the dotted line is: in the first time interval

[0, Qs
βi1

), set staffing level im0+1; at time point Qs
βi1

, adjust staffing level from

im0+1 to i1; from time point Qs
βi1

on, follow exactly same actions determined

by initial policy. Compared with initial policy, this new policy have same

server operation cost, server setup cost, and customer abandonment costs,
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except in the first interval [0, Qs
βi1

). So new policy and initial policy have

same average server setup cost, average server operating cost, and average

customer abandonment cost. But new policy can reduce average customer

delay cost by at least hQs(1 − α1). Now we can start from time point ts

on, and continue same procedure to generate another new policy and find

the next time point when ticket queue length hits system empty. Continuing

along this line, we can find that optimal policy belongs to cyclical policies;

or in other words, optimal policy hits ticket queue length empty infinitely

many times.

time
0

ticket queue length

Qs

ts

Fig. 3.3: Policy with No Cycle Feature

Consider the sequence of the system given by Section 3.2, a staffing

policy sequence {πn∗ : n ≥ 1} is said to be asymptotically optimal, if for any

feasible policy {πn : n ≥ 1}, we have

lim
T→∞

lim
n→∞

ACnπn∗ (T ) ≤ lim
T→∞

lim
n→∞

ACnπn(T ),
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where

ACnπn(T ) =
r ×Rn

πn(τnπn(T )) +Hn
πn(T ) +Onπn(T ) + Snπn(T )

nT
,

ACnπn∗ (T ) =
r ×Rn

πn∗
(τnπn∗ (T )) +Hn

πn∗
(T ) +Onπn∗ (T ) + Snπn∗ (T )

nT
.

For the nth system given by Section 3.2, we repeat to use the following policy:

the system starts with staffing level i∗1, the staffing level will be switched from

i∗1 to i∗2 when the ticket queue length Qn reaches to nQ̄∗, and the i∗2 staffing

level will be used until the system becomes empty, where i∗1, i∗2 and Q̄∗ are

given by (3.99) and (3.100). We call this policy as 2-piece (i∗1, i
∗
2, nQ̄

∗) policy.

Define

1

c∗
=

1

βi∗1
− 1

βi∗2
,

1

c∗α
=

1− αi∗1
βi∗1

−
1− αi∗2
βi∗2

.

Then by Theorem 18 and Proposition 19, we derive our main result

Theorem 20. (Asymptotic Optimality) Suppose that Assumptions (3.63) and

(3.85)-(3.86) hold. If for the nth system, the 2-piece (i∗1, i
∗
2, nQ̄

∗) is imple-

mented, then the fluid approximation
(
τ̄ , L̄, T̄ , Q̄

)
given by (3.44) in Theorem
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15 satisfies that

τ̄(t) =


`Q̄∗

c∗
+

µi∗1
λ

(
t− `Q̄∗

c∗

)
, for t ∈ [ `Q̄

∗

c∗
, `Q̄∗

c∗
+ Q̄∗

βi∗1
),

`Q̄∗

c∗
+

µi∗1
Q̄∗

λβi∗1
+

µi∗2
λ

(
t− `Q̄∗

c∗
− Q̄∗

βi∗1

)
, for t ∈ [ `Q̄

∗

c∗
+ Q̄∗

βi∗1
, (`+1)Q̄∗

c∗
);

(3.112)

L̄(t) =



`
(
αi∗1

µi∗1
Q̄∗

βi∗1
+

αi∗2
µi∗2

Q̄∗

βi∗2

)
+ αi∗1µi∗1

(
t− `Q̄∗

c∗

)
,

for t ∈ [ `Q̄
∗

c∗
, `Q̄∗

c∗
+ Q̄∗

βi∗1
),

`
(
αi∗1

µi∗1
Q̄∗

βi∗1
+

αi∗2
µi∗2

Q̄∗

βi∗2

)
+

αi∗1
µi∗1

Q̄∗

βi∗1
+ αi∗2µi∗2

(
t− `Q̄∗

c∗
− Q̄∗

βi∗1

)
,

for t ∈ [ `Q̄
∗

c∗
+ Q̄∗

βi∗1
, (`+1)Q̄∗

c∗
);

(3.113)

2∑
`=1

m∑
j=1

T̄i∗` j(t) =



`
( i∗1Q̄∗
βi∗1
− i∗2Q̄

∗

βi∗2

)
+ i∗1

(
t− `Q̄∗

c∗

)
,

for t ∈ [ `Q̄
∗

c∗
, `Q̄∗

c∗
+ Q̄∗

βi∗1
),

`
( i∗1Q̄∗
βi∗1
− i∗2Q̄

∗

βi∗2

)
+

i∗1Q̄
∗

βi∗1
+ i∗2

(
t− `Q̄∗

c∗
− Q̄∗

βi∗1

)
,

for t ∈ [ `Q̄
∗

c∗
+ Q̄∗

βi∗1
, (`+1)Q̄∗

c∗
);

(3.114)
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and

Q̄(t) =


βi∗1

(
t− `Q̄∗

c∗

)
, for t ∈ [ `Q̄

∗

c∗
, `Q̄∗

c∗
+ Q̄∗

βi∗1
),

Q̄∗ + βi∗2(t− `Q̄∗

c∗
− Q̄∗

βi∗1
) for t ∈ [ `Q̄

∗

c∗
+ Q̄∗

βi∗1
, (`+1)Q̄∗

c∗
).

(3.115)

Moreover, the long-run average cost incurred by the above fluid model is equal

to

(µi∗2αi∗2 + ci∗2)βi∗1 − (µi∗1αi∗1 + ci∗1)βi∗2
βi∗1 − βi∗2

+

√
2hK

(c∗)2

c∗α
i∗2.

Hence, by Proposition 19, the 2-piece (i∗1, i
∗
2, nQ̄

∗) is an asymptotically optimal

policy. In particular, If 1−αi = a+ bi and assumptions in Corollary 1 hold,

then (m0,m0 + 1, nQ̄∗) is an asymptotically optimal policy.

3.6 Numerical Studies

In this section, we make extensive numerical experiments to show that the

asymptotic policy established in the fluid model performs very well. To make

direct comparisons, we compute optimal staffing levels and threshold through

both Markov analysis and fluid analysis. For Markov analysis, we use long-

run average cost expression, denoted by Π(Q), given in Appendix. We use

im1 , im2 , and Qm to denote the optimal staffing levels and threshold derived

through Markov analysis. For fluid analysis, we use formulas (3.99) and

(3.100) to derive the optimal staffing levels i∗1, i∗2, and the optimal threshold
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Q̄∗. Assume 1− αi = a+ bi and ci = d× i2. First we consider the situation

αi1 = αi2 .

3.6.1 Same αi1 and αi2

Case I: In table 3.1 - table3.2, we change operating cost ci. In table 3.1, we

choose (λ, µ, h,K, a, b,m)=(40,10,2,25,0.85,0,7); in table 3.2, we choose

(λ, µ, h,K, a, b,m)=(40,10,2,25,0.45,0,7).

Tab. 3.1: Markov vs. Fulid: I(a)

d m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

0.0025 3 1.13 0.85 2 4 17 35.94 3 4 18 43.74
0.25 3 1.13 0.85 2 4 17 39.46 3 4 18 47.20
25 3 1.13 0.85 3 4 46 369.10 3 4 18 393.39

Tab. 3.2: Markov vs. Fulid: I(b)

d m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

0.0025 1 1.8 0.9 1 2 16 49.44 1 2 20 49.65
0.25 1 1.8 0.9 1 2 16 50.33 1 2 20 50.54
25 1 1.8 0.9 1 2 22 139.47 1 2 20 139.54
200 1 1.8 0.9 1 2 47 756.63 1 2 20 768.84

Case II: In table 3.3 - table 3.5, we change holding cost h. In table 3.3, we

choose (λ, µ, d,K, a, b,m) = (40, 10, 0.5, 25, 0.6, 0, 7); in table 3.3, we
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choose (λ, µ, d,K, a, b,m) = (48, 10, 0.5, 25, 0.85, 0, 7); in table 3.3, we

choose (λ, µ, d,K, a, b,m) = (50, 15, 0.5, 25, 0.45, 0, 7).

Tab. 3.3: Markov vs. Fulid: II(a)

h m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

0.02 2 1.2 0.8 2 3 228 21.67 2 3 224 21.67
0.2 2 1.2 0.8 2 3 72 27.08 2 3 71 27.08
2 2 1.2 0.8 2 3 24 43.31 2 3 22 43.35
20 2 1.2 0.8 2 4 10 86.17 2 3 7 86.43

Tab. 3.4: Markov vs. Fulid: II(b)

h m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

0.02 4 1.02 0.82 4 5 273 19.30 4 5 113 21.55
0.2 4 1.02 0.82 4 5 101 27.59 4 5 36 46.10
2 4 1.02 0.82 2 5 18 46.42 4 5 11 83.47
20 4 1.02 0.82 2 6 7 80.78 4 5 4 97.29

Tab. 3.5: Markov vs. Fulid: II(c)

h m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

0.02 1 1.5 0.75 1 2 299 31.44 1 2 304 31.44
0.2 1 1.5 0.75 1 2 94 37.18 1 2 96 37.18
2 1 1.5 0.75 1 2 30 55.28 1 2 30 55.28
20 1 1.5 0.75 1 3 14 118.40 1 2 10 122.26
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Case III: In table 3.6 - table 3.8, we change λ and µ while keeping λ/µ

constant, and customer delay cost is smaller than server operation cost.

In table 3.6, we choose (h, d,K, a, b,m) = (0.2, 0.5, 25, 0.45, 0, 7); in

table 3.7, we choose (h, d,K, a, b,m) = (0.2, 0.5, 25, 0.65, 0, 8); in table

3.8, we choose (h, d,K, a, b,m) = (0.2, 0.5, 25, 0.95, 0, 8).

Tab. 3.6: Markov vs. Fulid: III(a)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

5 1.5 1 1.5 0.75 1 2 31 6.78 1 2 30 6.77
50 15 1 1.5 0.75 1 2 94 37.18 1 2 96 37.18

500 150 1 1.5 0.75 1 2 298 303.03 1 2 304 303.04
5000 1500 1 1.5 0.75 1 2 945 2836.25 1 2 962 2836.30

Tab. 3.7: Markov vs. Fulid: III(b)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

8.8 1.5 3 1.27 0.95 2 4 14 15.47 3 4 23 15.64
88 15 3 1.27 0.95 2 4 45 47.24 3 4 73 48.26

880 150 3 1.27 0.95 2 4 172 344.31 3 4 232 347.26
8800 1500 3 1.27 0.95 3 4 798 3193.80 3 4 734 3194.10

Tab. 3.8: Markov vs. Fulid: III(c)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

8 1.5 5 1.01 0.84 5 6 51 19.32 5 6 12 21.95
80 15 5 1.01 0.84 5 6 113 31.26 5 6 39 40.85

800 150 5 1.01 0.84 5 6 290 95.43 5 6 125 119.17
8000 1500 5 1.01 0.84 5 6 772 544.68 5 6 394 585.92

Case IV: In table 3.9 - table 3.11, we also change λ and µ while keeping

λ/µ constant, but customer delay cost is larger than server operating



3. Fluid Model and Asymptotics for Ticket Queues 126

cost. In table 3.9, we choose (h, d,K, a, b,m) = (2, 0.025, 25, 0.8, 0, 8);

in table 3.10, we choose (h, d,K, a, b,m) = (2, 0.025, 25, 0.8, 0, 8); in

table 3.11, we choose (h, d,K, a, b,m) = (2, 0.025, 25, 0.96, 0, 8).

Tab. 3.9: Markov vs. Fulid: IV(a)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

7.5 3.5 1 1.71 0.86 1 3 13 19.10 1 2 7 19.12
75 35 1 1.71 0.86 1 2 23 57.16 1 2 24 57.20

750 350 1 1.71 0.86 1 2 74 273.07 1 2 75 273.09
7500 3500 1 1.71 0.86 1 2 234 1880.10 1 2 236 1880.10

Tab. 3.10: Markov vs. Fulid: IV(b)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

5 1.5 2 1.33 0.89 2 4 10 11.23 2 3 6 18.17
50 15 2 1.33 0.89 2 3 18 44.07 2 3 20 44.19

500 150 2 1.33 0.89 2 3 59 199.62 2 3 63 199.79
5000 1500 2 1.33 0.89 2 3 194 1314.60 2 3 198 1314.70

Tab. 3.11: Markov vs. Fulid: IV(c)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

6.5 2 3 1.04 0.78 2 4 9 13.91 3 4 5 20.44
65 20 3 1.04 0.78 2 4 29 54.78 3 4 15 107.47

650 200 3 1.04 0.78 2 4 99 212.20 3 4 48 377.70
6500 2000 3 1.04 0.78 3 4 359 900.50 3 4 151 1222.20

3.6.2 Different αi1 and αi2

Here we consider αi1 6= αi2 . In table 3.12, we choose (h, d,K, a, b,m)=(0.05,1,

2,0.45,0.005,6); in table 3.13, we choose (h, d,K, a, b,m)=(0.05,1,2,0.7,0.005,6);
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in table 3.14, we choose (h, d,K, a, b,m)=(0.05,1,2,0.25,0.005,8).

Tab. 3.12: Markov vs. Fulid: V(a)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

40 10 1 1.82 0.92 1 2 28 26.2 1 2 32 26.2
400 100 1 1.82 0.92 1 2 79 222.1 1 2 101 222.2
400 180 1 1.01 0.51 1 2 34 214.1 1 2 39 214.3
400 70 2 1.31 0.89 2 3 116 214.8 2 3 132 224.8

Tab. 3.13: Markov vs. Fulid: V(b)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

40 10 2 1.42 0.95 2 3 26 21.4 2 3 24 21.4
40 15 1 1.88 0.94 1 2 19 16.7 1 2 21 16.7

400 100 2 1.42 0.95 2 3 67 125.7 2 3 75 125.7
400 180 1 1.57 0.79 1 2 105 123.3 1 2 118 123.3
400 80 3 1.19 0.90 2 4 109 130.5 3 4 108 130.6
400 50 5 1.16 0.97 5 6 60 145.9 5 6 78 146.0

Tab. 3.14: Markov vs. Fulid: V(c)

λ µ m0 ρm0 ρm0+1
Markov Fluid

im1 im2 Qm Π(Qm) i∗1 i∗2 Q̄∗ Π(Q̄∗)

50 10 1 1.28 0.65 1 2 68 39.8 1 2 69 39.8
400 100 1 1.02 0.52 1 2 46 294.5 1 2 69 295.1
400 50 2 1.04 0.71 2 3 205 302.1 2 3 114 302.6
400 20 5 1.10 0.93 5 6 327 324.7 5 6 166 324.7

In summary, we find that fluid model performs well when µ and λ is

large.
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3.7 Concluding Remarks

In this chapter we study the optimal staffing policy for a ticket queue system

with multiple staffing levels. We build a fluid model for the ticket system, and

show that, changing staffing level once in each cycle is better than changing

staffing level multiple times. Besides, the threshold to change staffing level

is determined through the EOQ formula. Finally, we prove the above policy

is asymptotical optimal.



4. FUTURE RESEARCH

There are several directions for follow-up research:

• Incorporating the estimation of customer abandonments . One

candidate for follow-up research is what we alluded to in the Introduc-

tion: incorporating the estimation of customer abandonment rates into

the staffing decision. Start off with initially assumed server-dependent

abandonment rates, run the optimal staffing rule based on these rates,

just like what we have done here. At the end of several cycles (the

length of which has to do with the trade-off between learning and con-

trol), update the abandonment statistic (e.g., do a Bayesian update),

and then repeat, until convergence (need to be established/justified).

• Provide some information to customers. Another aspect that we

didn’t mention in this study is: whether and when to provide some

information to customers? In other words, when should the service

provider make a delay announcement? And if so, what to announce?

In the literature of delay announcement, there are two types of an-

nouncements. The first type of announcement is to be made upon cus-

tomer arrival, and often an estimated duration of delay is announced,

see Armony et al. [5]. The second type of announcement is to be
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made during customer waiting, and various levels of information will

be given, such as the customer’s waiting time or the customer’s current

position in the queue, see Allon and Bassamboo [1] and Mandelbaum

and Zeltyn [26].

With more information, customers may change their decision about

staying and abandoning, which will consequently affect the abandon-

ment rate αi. That is, αi not only depends on the number of open

servers, but also depends on other available information. The question

is how to quantify the impact of additional information on customer de-

cisions and the system performance measures. By incorporating those

information, we need to find a way to modify our model in this more

general setting.
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A. APPENDIX

In this appendix, we study a ticket queueing system with staffing policy

(i1, i2, Q) with i1 < i2. The policy works this way: the system starts with

staffing level i1, the staffing level will be switched from i1 to i2 when the

ticket queue length reaches to Q, and the i2 staffing level will be used until

the system becomes empty. Arrival process is Poisson process, and the service

time follows exponential distribution with rate µ.

Using the idea in Chapter 2, we can derive the performance measure

ET1, C1, ET2, C2, and further derive the long-run average cost expression,

denoted Π(Q). However, the expressions will become much more complex,

because the transition matrix becomes more complex than before. In the

numerical study of Chapter 3, we use Π(Q) to find the optimal i1, i2, and Q,

which are compared with the solution derived through fluid model.

We will use a new definition of cycle in this appendix: each cycle is the

time duration between two consecutive entry to system empty after servers

finish serving some customers. The definition of cycle will not affect the long-

run average cost, but using this definition will slightly simplify our calculation

here.

In the following, we computer ET1 and C1 in A.1, and computer ET2 and

C2 in A.2. Then we will get the long-run average cost expression in A.3.
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The notations we will use in this appendix include:

θi1 = αi1 +
i1µ

λ
, ρ =

λ

µ
,

β1 = λ− i1µ

1− αi1
, β2 =

i2µ

1− αi2
− λ,

µ1 =
i1µ

1− αi1
, µ2 =

i2µ

1− αi2
.

A.1 ET1 and C1

In period T1, i1 servers are working. When the ticket queue length reaches

Q, we add i2 − i1 servers. Before ticket queue length reaches either Q or 0,

the transition rate matrix D1is

D1 =

D11 D12

D13 D14

 .

D11 is a (i1−2)×(i1−2) square matrix and D14 is a (Q−i1 +1)×(Q−i1 +1)

square matrix.

D11 =



−(λ+ µ) λ

2µ −(λ+ 2µ) λ

3µ −(λ+ 3µ) λ

. . . . . . . . .

(i1 − 2)µ −(λ+ (i1 − 2)µ)


,
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and

D14 =



−(λ+ (i1 − 1)µ) λ

i1µ −(λ+ i1µ) λ

i1µαi1 i1µ(1− αi1 ) −(λ+ i1µ) λ

...
...

...
. . .

. . .

i1µα
Q−i1−1
i1

i1µα
Q−i1−2
i1

(1− αi1 ) i1µαQ−i1−3(1− αi1 ) · · · · · · −(λ+ i1µ)


.

D12 is a (i1 − 2)× (Q− i1 + 1) matrix with only one nonzero element. D13

is a (Q− i1 + 1)× (i1 − 2) matrix with only one nonzero element.

D12 =



0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

λ 0 · · · 0


,

and

D13 =



0 · · · 0 (i1 − 1)µ

0 · · · 0 0

...
. . .

...
...

0 · · · 0 0


.

Denote

• T11: starting at 1, time duration of reaching either i1 − 1 or 0;

• T̂11: starting at i1 − 2, time duration of reaching either i1 − 1 or 0;

• T14: starting at i1 − 1, time duration of reaching either i1 − 2 or Q;
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• π1: starting at 1, probability of reaching i1 − 1 before 0;

• π2: starting at i1 − 1, probability of reaching i1 − 2 before Q;

• π3: starting at i1 − 2, probability of reaching i1 − 1 before 0.

Period T1 is the time of i1-server region (here T1 doesn’t include idle time).

Then T1 can be written as

ET1 =ET11 + ET14π1

∞∑
j=0

(π2π3)j + ET̂11π1π2

∞∑
j=0

(π2π3)j

=ET11 + ET14
π1

1− π2π3

+ ET̂11
π1π2

1− π2π3

. (A.1)

To calculate ET11 and ET̂11, it suffices to know the inverse matrix of D11,

which is denoted by

(D11)−1 = (d̄ij)(i1−2)×(i1−2).

We have

d̄ij =

 −
i!v(i)
µρi−jj!

+ i!v(i)v(j)
µρi−1(1+v(1))

i ≥ j,

−v(j)
µ

+ i!v(i)v(j)
µρi−1(1+v(1))

i < j,

where v(i) =
∑i1−2

k=i
k!

i!ρk−i+1 . By the definition of ET11 and ET̂11, we have

ET11 = (1, 0, . . . , 0)(−D−1
11 )e′

=

i1−2∑
k=1

v(k)

µ(1 + v(1))
, (A.2)
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and

ET̂11 = (0, . . . , 0, 1)(−D−1
11 )e′

=
(i1 − 2)!

µρi1−1

i1−2∑
k=1

ρk

k!
− (i1 − 2)!

µρi1−2(1 + v(1))

i1−2∑
k=1

v(k). (A.3)

Similarly, it suffices to know the inverse matrix of D14 to derive ET14,

which is denoted by

(D14)−1 = (dij)(Q−i1+1)×(Q−i1+1).

We have

dij =


Bj, i = 1, and j = 1, . . . , Q− i1 + 1,

(−c3 + c1Bj)
∑Q−i1+1−i

k=0 ck2, i > 1, and j < i,

−
(
c3

∑Q−i1+1−j
k=1 ck2 + c4

)
cj−i2 + c1Bj

∑Q−i1+1−i
k=0 ck2, i > 1, and j ≥ i,

where

c1 =
−(1− αi1)λ+ αi1(i1 − 1)µ+ µ

λαi1 + i1µ
, c2 =

λ

λαi1 + i1µ
,

c3 =
1− αi1

λαi1 + i1µ
, c4 =

1

λαi1 + i1µ
,

Bj =

(
c4 + c3

∑Q−i1+1−j
k=1 ck2

)
cj−1

2

c1

∑Q−i1
k=1 ck2 − (λ+ (i1 − 1)µ) c4

, j = 1, . . . , Q− i1 + 1.
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By definition of ET14, we have

ET14 =(1, 0, . . . , 0)(−D−1
14 )e′

=
1

(1− αi1)β1

·
θQ−i1+1
i1

− 1 + β1
µ1

(1− αi1)(Q− i1 + 1)

− i1−1
ρ
θQ−i1i1

+
(i1−1)(1−αi1 )

i1
+ β1

µ1

(A.4)

where ρ, θi1 , β1 and µ1 are defines at the beginning of the note.

Consider the embedded markov chain, we derive the following probabil-

ities

π1 =
1

1 + v(1)
, (A.5)

π2 =
(i1 − 1)θQ−i1i1

− λ(i1−1)
µ1

(i1 − 1)θQ−i1i1
− ρ
[
β1
µ1

+
(1−αi1 )(i1−1)

i1

] (A.6)

π3 =
1 +

∑i1−3
k=1

k!
ρk

1 + v(1)
. (A.7)

Plugging (A.2)-(A.7) into (A.1), we could derive the expression of ET1. Note

that when i1 = 2 and i1 = 1, ET11 = ET̂11 = 0 and π1 = π3 = 1.

All the above approach applies to i1 ≥ 1. But we should notice that,

when i1 ≥ 2, T1 doesn’t include idle time; when i1 = 1, T1 includes idle

time. We delay the detailed discussion of special case i1 = 1 to the long-run

average cost section.

In i1-server region, system incurs delay cost only when ticket queue

length exceed i1. That is, only over T14 delay cost is incurred. Denote delay
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cost in i1-server region by C1, delay cost over T14 by C14, then we have

C14 =(1, 0, . . . , 0)(−D14)−1(0, 0, 1, 2, . . . , N − i1 − 1)′(1− αi1)h

=hµ1

2ρ
i1

(θQ−i1i1
− 1)− β2

1

µ21
(1− αi1)(Q− i1)2 + β1

µ1

[
2 + β1

µ1
(1− αi1)

]
(Q− i1)

2β2
1

(
i1−1
ρ
θQ−i1i1

− β1
µ1
− (i1−1)(1−αi1 )

i1

)
(A.8)

and

C1 =
π1

1− π2π3

C14. (A.9)

The probability of reaching Q can be written as

π =π1(1− π2)
∞∑
k=0

(π2π3)k =
π1(1− π2)

1− π2π3

=π1 ·
λ(i1−1)
µ1
− ρ
[
β1
µ1

+
(i1−1)(1−αi1 )

i1

]
(i1 − 1)(1− π3)θQ−i1i1

− ρ
[
β1
µ1

+
(i1−1)(1−αi1 )

i1

]
+ λ(i1−1)

µ1
π3

. (A.10)

Based on (A.1)-(A.10), we have

ET1

π
= − µ1

ρβ1

{
θQ−i1i1

[(i1 − 1)(1− π3)ET11

π1

− ραi1 + i1
(1− αi1)β1

+ (i1 − 1)ET̂11

]
− (Q− i1 + 1)

ρ

µ1

+
ET11

π1

[
− ρ
(β1

µ1

+
(1− αi1)(i1 − 1)

i1

)
+
λ(i1 − 1)π3

µ1

]
+

ρ

(1− αi1)β1

− λ(i1 − 1)

µ1

ET̂11

}

C1

π
= −hµ

2
1

β3
1

{ ρ
i1

(θQ−i1i1
− 1)− β2

1

2µ2
1

(1− αi1)(Q− i1)2
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+
β1

2µ1

[
2 +

β1

µ1

(1− αi1)
]
(Q− i1)

}

A.2 ET2 and C2

Now we calculate ET2 and delay cost C2. After reaching Q, we add i2 − i1

servers and assign Q−i1 tickets to these i2−i1 servers. Among Q−i1 tickets,

let Z be the real customers and it follows distribution

Pr(Z = k) =

(
Q− i1
k

)
(1− αi2)kα

Q−i1−k
i2

, k = 0, . . . , Q− i1. (A.11)

Let τk be the first passage time from k to k − 1, we have

Eτk =Eτi2 =
1

i2µ− λ(1− αi2)
, for any k ≥ i2; (A.12)

Eτk =
1

kµ
+

λ

kµ
Eτk+1

=

i2−1−k∑
j=0

(k − 1)!ρj

µ(k + j)!
+

(k − 1)!ρi2−k

(i2 − 1)!

1

i2µ− λ(1− αi2)
, k = 1, 2, . . . , i2 − 1.

(A.13)

Therefore we write ET2 as

ET2 =E
i1+Z∑
j=1

τj,

=

i1∑
j=1

Eτj +

i2−i1−1∑
j=1

Pr(Z ≥ j)Eτi1+j

+ Eτi2

Q−i1∑
j=i2−i1

Pr(Z = j)(j − i2 + i1 + 1). (A.14)



A. Appendix 140

Plug (A.11) into (A.14) we derive

ET2 =
Q− i1
β2

+

i2−1∑
j=1

Eτj −
i2 − i1 − 1

(1− αi2)β2

− αQi2
i2−i1−2∑
k=0

(Q− i1)!

k!(Q− i1 − k)!
(1− αi2)kα−i1−ki2

[ i2−1∑
j=i1+1+k

Eτj

− i2 − i1 − (k + 1)

(1− αi2)β2

]
.

To derive C2, we decompose it into two parts:

C2 = C21 + C22. (A.15)

C21 is the delay cost incurred by initial Q − i1 tickets and C22 is delay cost

incurred by new arrival in i2-server region.

C21 =
h

i2µ

Q−i1∑
k=i2−i1+1

Pr(Z = k)

k−i2+i1∑
j=1

j

=
h

2i2µ

{
(Q− i1)2(1− αi2)2 + (Q− i1)(1− αi2)

[
− (1− αi2)

− 2(i2 − i1 − 1))
]

+ (i2 − i1)(i2 − i1 − 1)

+ αQi2

i2−i1−2∑
k=0

(Q− i1)!

(Q− i1 − k)!k!
(1− αi2)kα−i1−ki2

[
− k(k − 1)

+ (2k − i2 + i1)(i2 − i1 − 1)
]}
. (A.16)
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We represent ET2 as

ET2 =

i1∑
j=1

Eτj +

i2−i1−1∑
j=1

Eτi1+jPr(Z ≥ j) + ET21,

where

ET21 = Eτi2

Q−i1∑
j=i2−i1

Pr(Z = j)(j − i2 + i1 + 1).

Then we have

C22 =hET2 × λ(1− αi2)

[
i1∑
j=1

E(W |arriving during τj)
Eτj
ET2

+

i2−i1−1∑
j=1

E(W |arriving during τi1+j)
Eτi1+jPr(Z ≥ j)

ET2

+E(W |arriving during T21)
ET21

ET2

]
.

Since we know

E(W |arriving during τk) =
λ

kµ

Eτk+1

Eτk
E(W |arriving during τk+1),

k = 1, . . . , i2 − 1,

E(W |arriving during τi2) =
1

i2µ− λ(1− αi2)
,

we only need to calculate E(W |arriving during T21). Introducing delay T20,

which is the service time of real customers among Z tickets given that i2− 1

servers are used. Let X1 be the exponentially distributed service time with
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mean 1/(i2µ), then

T20 =

Q−i2∑
k=0

I{Z=i2−i1+k}(k + 1)X1.

Therefore we rewrite T21 as

T21 = min[t : (i2 − 1) customers in system when delay T20 commences at ,

time 0+(i2 − 1) customers in system at time t, where t ≥ T20].

By Theorem 1 of Omahen and Marathe (1978),

E(W |arriving during T21) =
λ(1− αi2)

i2µ(i2µ− λ(1− αi2))
+

ET 2
20

2ET20

. (A.17)

The laplace-Stieltjes Transform of T20 is

Ee−sT20 =

Q−i1∑
j=i2−i1

(
Q− i1
j

)
αQ−i1−ji2

(1− αi2)j
(

i2µ

i2µ+ s

)j−i2+i1+1

. (A.18)

This implies

ET20 =
1

i2µ

Q−i1∑
j=i2−i1

(Q− i1)!

j!(Q− i1 − j)!
αQ−i1−ji2

(1− αi2)j(j − i2 + i1 + 1), (A.19)

ET 2
20 =

1

(i2µ)2

Q−i1∑
j=i2−i1

(Q− i1)!

j!(Q− i1 − j)!
αQ−i1−ji2

(1− αi2)j(j − i2 + i1 + 1)

× (j − i2 + i1 + 2).

(A.20)
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Plug (A.19) and (A.20) into (A.17) we can get E(W |arriving during T21).

Finally, we use

E(W |arriving during τj) = E(W |τj)

to simplify our notaion and write C22 as

C22 =hλ(1− αi2)
{ i2−1∑

j=1

E(W |τj)Eτj +
(Q− i1)2

2β2µ2

+
Q− i1

(1− αi2)β2µ2

[
− 1− αi2

2

+
λ

β2

− (i2 − i1 − 2)
]

+
i2 − i1 − 1

(1− αi2)β2i2µ

(
− λ

β2

+
i2 − i1 − 2

2

)
+ αQi2

i2−i1−2∑
k=0

(Q− i1)!

(Q− i1 − k)!k!
α−i1−ki2

(1− αi2)kOk

}
,

where

Ok =−
i2−i1−1∑
j=k+1

E(W |τi1+j)Eτi1+j +
λ(1− αi2)Eτi2

i2µ(i2µ− λ(1− αi2))
(i2 − i1 − (k + 1))

+
Eτi2
2i2µ

[
− k(k − 1) + (2k − i2 + i1 + 1)(i2 − i1 − 2)

]

with convention
∑i2−i1−1

j=i2−i1 E(W |τi1+j)Eτi1+j = 0. Now we write C2 as

C2 =h
{

(Q− i1)2 1− αi2
2β2

+
Q− i1

2β2

[
− (1− αi2)− 2(i2 − i1 − 1) +

2λ

β2

]
+
i2 − i1 − 1

β2(1− αi2)
(i2 − i1

2
− λ

β2

)
+ λ(1− αi2)

i2−1∑
j=1

E(W |τj)Eτj

+ αQi2

i2−i1−2∑
k=0

(Q− i1)!

(Q− i1 − k)!k!
α−i1−ki2

(1− αi2)k
[ 1

2i2µ

(
− k(k − 1)

+ (2k − i2 + i1)(i2 − i1 − 1)
)

+ λ(1− αi2)Ok

]}
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A.3 Long-run Average Cost Π(Q)

For i1 ≥ 2, we directly have

Π(Q) =
ET1(λαi1 + pi1) + C1 + π[ET2(λαi2 + pi2) + C2 + i2K]

1/λ+ ET1 + πET2

=
ET1
π

(λαi1 + pi1) + C1

π
+ ET2(λαi2 + pi2) + C2 + i2K

1/λ+ET1
π

+ ET2

:=
aθQ−i1i1

+ a2(Q− i1)2 + a1(Q− i1) + a0 + αQi2
∑i2−i1−2

k=0
(Q−i1)!

(Q−i1−k)!
Ak

bθQ−i1i1
+ b1(Q− i1) + b0 + αQi2

∑i2−i1−2
k=0

(Q−i1)!
(Q−i1−k)

Bk

,

(A.21)

where

a =
µ1(λαi1 + pi1)

ρβ1

[
− (i1 − 1)(1− π3)ET11

π1
+

ραi1 + i1
(1− αi1)β1

− (i1 − 1)ET̂11

]
− hρµ2

1

i1β3
1

,

a2 =
h(1− αi1)

2β1
+
h(1− αi2)

2β2
,

a1 =
λαi1 + pi1

β1
+
λαi2 + pi2

β2
− h

2

[1− αi1
β1

+
2µ1

β2
1

+
1− αi2
β2

+
2(i2 − i1 − 1)

β2
− 2λ

β2
2

]
,

a0 =
µ1(λαi1 + pi1)

ρβ1

[ ρ
µ1
− ET11

π1

[
− ρ
(β1

µ1
+

(1− αi1)(i1 − 1)

i1

)
+
λ(i1 − 1)π3

µ1

]
− ρ

(1− αi1)β1
+
λ(i1 − 1)ET̂11

µ1

]
+
hρµ2

1

i1β3
1

+ (λαi2 + pi2)
( i2−1∑
j=1

Eτj

− i2 − i1 − 1

(1− αi2)β2

)
+
h(i2 − i1 − 1)

β2(1− αi2)
( i2 − i1

2
− λ

β2

)
+ hλ(1− αi2)

i2−1∑
j=1

E(W |τj)Eτj ,

Ak =
(1− αi2)k

k!αi1+k
i2

[
− (λαi2 + pi2)

( i2−1∑
j=i1+1+k

Eτj −
i2 − i1 − (k + 1)

(1− αi2)β2

)

+ h
−k(k − 1) + (2k − i2 + i1)(i2 − i1 − 1)

2i2µ
+ hλ(1− αi2)Ok

]
,

b =
µ1

ρβ1

[
− (i1 − 1)(1− π3)

λπ1
− (i1 − 1)(1− π3)ET11

π1
+

ραi1 + i1
(1− αi1)β1

− (i1 − 1)ET̂11

]
,
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b1 =
1

β1
+

1

β2
,

b0 =
µ1

ρβ1

[ ρ
µ1
− ET11

π1

[
− ρ
(β1

µ1
+

(1− αi1)(i1 − 1)

i1

)
+
λ(i1 − 1)π3

µ1

]
− ρ

(1− αi1)β1

+
λ(i1 − 1)ET̂11

µ1
+

ρ

λπ1

[β1

µ1
+

(1− αi1)(i1 − 1)

i1

]
− (i1 − 1)π3

µ1π1

]
+

i2−1∑
j=1

Eτj −
i2 − i1 − 1

(1− αi2)β2
,

Bk = −
(1− αi2)k

k!αi1+k
i2

( i2−1∑
j=i1+1+k

Eτj −
i2 − i1 − (k + 1)

(1− αi2)β2

)
.

For i1 = 1, we only have matrix D14 and π1 = π3 = π = 1 and π2 = 0.

In this case, T1 includes idle time because of the structure of matrix D14,

which includes transitions of all states before reaching N . Also notice that

when i1 = 1, D14 is exactly the same as matrix D̄1 in paper 1. Thus we can

derive expected idle time ET0 directly from there by replacing Q + 1 by Q

and θ by θ1, which is

ET0 =
1− θQ−1

1

λρ(1− θ1)
+

1

λ
=
ρ(1− α1)− θQ−1

1

ρ(1− α1)β1

.

Then, long-run average cost Π(Q) can be written as

Π(Q) =
(ET1 − ET0)(λα1 + p1) + C1 + ET2(λαi2 + pi2) + C2 +K

ET1 + ET2

If we still use expression (A.21) , we only need to modify the following coef-
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ficients:

a =
(λα1 + p1)µ1

(1− α1)β2
1

− hρµ2
1

β3
1

,

a0 = −(λα1 + p1)µ1

(1− α1)β2
1

+
hρµ2

1

β3
1

+ (λαi2 + pi2)
( i2−1∑
j=1

Eτj −
i2 − 2

(1− αi2)β2

)
+

h(i2 − 2)

β2(1− αi2)

(i2 − 1

2
− λ

β2

)
+ hλ(1− αi2)

i2−1∑
j=1

E(W |τj)Eτj,

b0 =
1

β1

− µ1

(1− α1)β2
1

+

i2−1∑
j=1

Eτj −
i2 − 2

(1− αi2)β2

.
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