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ABSTRACT

Quantum information science has completely changed the way we think about and
process information. From the simple realization that information is physical, we
have been able to use the peculiar features of quantum mechanical phenomena
to our advantage. Designing algorithms whose performance exceeds those run-
ning on classical computers, and performing secret communication whose security
can actually be proven from sound assumptions are two main catalysts for the
establishment of the field.

This thesis discusses some progress in quantum key distribution and quantum
randomness generation. Quantum key distribution, which is motivated by the
increasing need to communicate securely, is on the verge of becoming an established
technology. With the goal of extending the reach of quantum key distribution
to more realistic scenarios, we present a study on reference-frame-independent
protocols whose knowledge can help design more efficient protocols, and a frame-
work to the security analysis of distributed-phase-reference protocols, which have
been missing for many years. This allows these protocols to be used in practice
against the most general adversary, although the key rate is rather pessimistic. In
quantum randomness generation, the amount of extractable randomness from a
quantum system depends on the level of trust or characterization of the devices;
we present a study into such interaction. In the extreme situation of distrust, i.e.
device-independent scenarios, we study the effect of the input randomness on the
certifying power of such scenarios, and realize that one cannot amplify an arbitrary
min-entropy source device-independently. Finally we discuss the amount of ran-
domness in post-selected data, which has consequences on practical randomness
generation protocols. The in depth study of randomness generation from quantum
processes is well justified by the important role of randomness in modern computer

science and other fields.
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CHAPTER 1

INTRODUCTION

Since its birth in 1920’s, quantum mechanics has been very successful at pre-
dicting and explaining phenomena happening in the microscopic world. Despite
its tremendous success, deep philosophical and conceptual questions related to
the foundation of quantum mechanics linger to the present day [1]. However, as
researchers wrestle with these difficulties a paradigm shift slowly happens: it is
realized that the mind-boggling quantum weirdness can actually have practical
applications in computer science and engineering.

The first example is quantum cryptography, or more precisely quantum key
distribution [2]. First proposed by Charles H. Bennett and Gilles Brassard in
1984 [3] and later by Artur Ekert in 1990, quantum key distribution offers a
solution to the key distribution problem in classical private key cryptosystems such
as the one-time-pad. The solution is an ingenious spin on the standard “problems”
with quantum mechanics, utilizing these negativities to our advantage. Because
one cannot measure without disturbing and cannot duplicate an unknown quantum
system, they serve as ideal information couriers to carry the key between distant
parties. Any attempt at eavesdropping ultimately manifests as errors which the
parties can detect; therefore the security of the key is guaranteed by principles of
quantum mechanics.

The second example is quantum randomness. In contrast to classical mechanics,
being probabilistic is the norm in quantum mechanics. This feature left Einstein
wonder if there may exist hidden variables such that when discovered would explain
the probabilistic nature of quantum mechanics and return us to the deterministic
worldview [4]. The apparently philosophical issue is conclusively answered by John
Bell in his discovery of Bell inequalities [5]. When a Bell inequality is violated in

an experiment as demonstrated in [6, 7], the results are intrinsically random: no



local hidden variables can explain the results of such experiments. In other words,
quantum mechanics can be used to generate randomness and we have again utilize
the strange features of quantum mechanics to our advantage! Incidentally, the
power of Bell does not stop there; it propels the field of quantum non-locality and
the device-independent approach into existence [8].

It is these developments that open up a new interdisciplinary field of scientific
investigation known today as quantum information science, which comprises of
many subfields notably quantum computing, quantum communication, quantum
information theory, and the aforementioned quantum cryptography. This thesis
presents some recent theoretical advancements in quantum key distribution and
quantum randomness generation, the motivations for which we briefly discuss next.

Quantum cryptography is born out of the need to communicate secretly. While
secure communication is an obvious need of governments and corporations, the
daily consumers of internet services are not entirely safe from spying eyes, in light of
increasing instances of hacking and surveillance. Therefore, in order to communicate
securely, one must employ techniques of cryptography, the science and art of
rendering a message unintelligible to any unauthorized party [9]. Cryptographic
systems, or methods for encryption and decryption of messages, fall into two
main categories: public and private key cryptosystems. The security of public key
cryptosystems such as RSA [10] relies on the computational complexity of prime
factorization, whereas that of private key cryptosystems such as one-time-pad
only rests on the security of a common secret key. Security based on factorization
complexity is unlikely to withstand challenges posed by the development of fast
quantum computers in the future [11]. On the contrary, it is proven that the
one-time-pad cryptosystem is information-theoretically secured provided the key
is truly random, as long as the message, used only once and unknown to any
unauthorized party [12]. Hence, one-time-pad cryptosystem provides an ideal
method for secret communication if the problem of key distribution is solved. An
obvious solution to the key distribution problem is for the two communicating
parties to meet and agree upon a secret key. However, it is clear that their secret
communication can only be sustained until they use up their pre-established key.
They may think of using a trusted courier to deliver the key but finding such a
trustworthy agent is certainly not an easy task because classical agents are prone
to corruption. Moreover, they have to tackle the problem of key storage before the
encryption when sending a message, especially when the key is very long and must
be kept secret for extended period of time. Quantum key distribution offers a nice
solution to the key distribution problem. With the use of quantum mechanical

systems as information carriers we can guarantee the security of the secret key



based on our understanding of the law of quantum physics. Furthermore, the
key can be distributed on demand before secret communication is required, which
eliminates partly the problem of key storage before secret communication. The
best known example of a QKD protocol is the BB84 protocol proposed by Charles
H. Bennett and Gilles Brassard in 1984.

Randomness is an important concept and also a fundamental resource in
modern science. It is used to assign test subjects in a randomized controlled trials
so scientists can test their hypothesis, or to randomly select a sample out of a
population for analysis to avoid experimental design bias. It is present in the
analysis of experiments, e.g. to see if a certain effect is due to chance or has an
underlying cause, and used in randomized algorithms and statistical simulations, etc.
It lies at the heart of cryptography, and a close analysis of quantum key distribution
protocols we have just introduced reveals that it is used there as well. Randomness
is also essential to the operation of casinos. It is thus crucial to investigate methods
of generating randomness. However, the notions of randomness used in applications
are not equal; it can roughly be categorized based on whether the randomness is
required to be private, as in cryptographic and gambling applications or not, as in
the other remaining applications. In other words, randomness can appear to be
perfect but when used in such applications, renders cryptographic insecurity or
a loss to the casinos. Quantum mechanical processes therefore serve as the best
known candidates to date to generate private randomness, and has been the subject
of several experimental proposals. The task of private randomness generation is
first explored in Roger Colbeck’s thesis [13].

Since their conceptions, both fields have undergone significant development.
The main problem in the beginning of quantum key distribution was to obtain a
rigorous security analysis of the BB84 protocol and its variants such as the six-state
protocol [14, 15]; some proofs were rather technical [16, 17] while some required
the link between privacy amplification, entanglement purification and quantum
error correction [18; 19]. Later, by noticing that most quantum cryptography
protocols (BB84 included) are permutation invariant, the analysis of a general
protocol was simplified tremendously. One only need to consider security against a
much more restricted class of attacks known as the collective attacks where Eve
interacts with each quantum signals using the same strategy [20, 21]. At the same
time, it was realized that the security definition used in several works were not
satisfactory, i.e. not composable and may undermine the security of an application
where quantum key distribution is used as a subprotocol [22]. Then advancements
were made on the finite key security proof using ideas such as the quantum

deFinetti theorem [23], post-selection technique [24] and the entropic uncertainty



relations [25]. Today, experimentalists and theorists are working closely together
to bridge the gap between theoretical modeling and experimental realization.
This effort has spawned further ideas such as measurement-device-independent
protocol [26] or device-independent quantum key distribution [27]. For private
randomness generation, after the first investigation by Colbeck, the field quickly
developed along two main directions: randomness expansion and randomness
amplification. In randomness expansion, the main goal is to expand a small
amount of high quality randomness; one of the first paper to consider this task in
the device-independent setting is [28] which holds for adversary holding classical
information. Security against quantum adversary as well as better expansion (up to
unbounded expansion) were developed later [29-31]. In randomness amplification,
we start with low quality randomness and try to make it more uniform or more
perfect. The amplification of Santha-Vazirani source using quantum resource was
first studied in [32] but the result was limited to relatively high quality sources.
Later [33] extended the result to arbitrary weak Santha-Vazirani source. Since then,
further results on amplification against quantum adversaries and amplification of
min-entropy sources were obtained; consult [34] for a review of these results.

We may wonder how can one contribute to such a developed field? Fortunately,
even though a lot of progress has been made, there are still many open problems
to consider. For instance, how can we perform quantum key distribution in
practical scenarios such as earth-to-satellite (in anticipation of the development
of a global quantum internet) and chip-to-chip communication while respecting
and utilizing all the scenarios’ constraints? Also despite major development and
understanding of security proofs, the security proof for a certain class of quantum
cryptography protocols called the distributed-phase-reference protocols is still
missing because of the lack of permutation invariance. In the field of quantum
randomness amplification, it is still unknown whether one can amplify weaker
randomness source such as the min-entropy source. Moreover, an understanding of
the payoff between different assumptions on the randomness generation scenario or
the way we post-process the experimental outcomes and the amount of randomness

obtained is still lacking. This thesis provides partial answers to such questions.

Contributions

In the field of quantum key distribution, we make two important advancements.
Firstly, in recent years there has been an interest in the reference frame independent
protocol proposed by Laing et al. [35], which enable the distribution of secret keys

without the need to align the reference frame of the experimental setups of Alice



and Bob. While trying to generalize the protocol to d level quantum systems, we
realized that the protocol is actually doing tomography in disguise and from such
tomographic information one can have better key rate or even realign the reference
frames than by passing through the parameter C'. Secondly, the security proofs of
distributed phase reference protocols have been restricted to single photon sources
or specific attacks [36-38]. Using the deFinetti approach, we provide a security
proof against the most general adversary, namely one who can perform arbitrary
coherent attacks on the signals. Our security proof relies on numerical methods to
bound the error rates from the observed data and may be of independent interest.

In the field of quantum randomness generation, there are two main tasks as
mentioned before: randomness expansion and randomness amplification. Although
many strong results have been obtained in the literature, the assumptions involved
are often implicit in the proof. Here we provide an analysis on various conceivable
scenarios, which helps clarify various concepts and provides an overall understanding
of the task of randomness generation from quantum systems. Our framework leads
to various bounds on the amount of randomness which depend on the assumptions
made. We also consider the task from the point of view of practical experiments
where photonic implementations suffer from a lot of no-detection events. Our
contribution here involves obtaining a correct bound for the amount of randomness
in the post-selected events consisting of the detected runs, which benefits the
classical post-processing.

The task of randomness amplification (without the use of an independent seed)
has received a lot of attention recently. It is well known that one cannot amplify a
single Santha-Vazirani source or min-entropy source classically. However, it was
first proven by Colbeck and Renner that one can amplify a Santha-Vazirani source
of high enough quality using quantum resources. This direction has been completed
by Gallego et al. in [33] where any arbitrary Santha-Vazirani source can be
amplified with a five partite Bell scenario. Nevertheless, the question of amplifying
min-entropy sources using quantum resource remains open. Here we prove a general
impossibility result: it is not possible to amplify arbitrary min-entropy sources by
using arbitrary no-signalling resources. Our result is compatible with other works
in the literature; for instance the amplification protocol [39] assumes the initial

min-entropy is relatively high.

Overview of the thesis

The rest of this thesis is divided into four chapters.



Chapter 2: Preliminaries

In this chapter we present the basic background material underlying the thesis.
We first introduce some basic quantum information concepts and tools and then
discuss some basic background on Bell nonlocality. This chapter also serves to

establish some notation used in this thesis.

Chapter 3: Quantum Key Distribution

The chapter starts with a brief introduction to quantum cryptography and move
on to discuss the security definitions and extractable key rate. Then we move on to
present the results on reference-frame-independent protocols, which are based on
the paper [40] and a framework to prove the security of distributed-phase-reference

protocols against coherent attacks [41].

Chapter 4: Quantum Randomness Generation

We first lay out scenarios for quantum randomness generation which is based on
the levels of characterization (or trust) of the devices. Then we present a study
on the relationship between devices’ levels of characterization and randomness
generation [42], which assumes the measurement independent assumption. Drop-
ping this assumption, we investigate the role of the input randomness in Bell tests.
This result, which is based on the paper [43], has important consequences on both
device-independent applications and as well as foundations of physics. Our final
result is about the amount of randomness present in a subset of post-selected
events [44]. The study is motivated by the need to discard the double no-detection
events which occur very often in Bell tests because of the inefficiencies of the source

and detectors.

Chapter 5: Conclusions and Outlook

This chapter concludes the thesis and gives several remarks on the possible future
directions of the field.









CHAPTER 2

PRELIMINARIES

Most of the materials in this chapter are basic working knowledge in quantum
information. The readers are referred to [45] for an introduction to quantum
information science, [23] for an introduction to the tools used in quantum key

distribution, and [8] for a recent review on Bell nonlocality.

2.1 Mathematical notations

Unless otherwise stated, all Hilbert spaces are assumed to be finite dimensional.
The state of a quantum system is described by a positive semidefinite operator
of trace one acting on some Hilbert space H. For convenience, we may use
subnormalized states, which are positive semidefinite operators having trace at
most one; the set of states and subnormalized states are denoted as S_(H) and
S<(H), respectively. If the state is diagonal in some basis p = >, A\, |z) (x|, then
the system is said to be classical in this basis and a simpler description by a
probability distribution Px(z) = A, suffices. Conversely, classical system can be
described in the quantum formalism as a state diagonal in some basis. For composite
systems, the joint Hilbert space is given by the tensor product Hag = Ha @ Hpg
and given a joint state psp the reduced state of each subsystem is given by the
partial trace operation py = tra(pap). A classical-quantum state describes the
correlation between a classical (in some basis) and a quantum system, and is of the
form pxp =3, Px(x) |z) (x| ® 0%, where the superscript in 0%, is used as a label
to mean the quantum state of system E conditioned on the first system being x.
Following this line of thought, a classical-classical system is described by a joint

probability distribution Pxy(x,y).



2.1. MATHEMATICAL NOTATIONS 9

We will need two operator norms, the Schatten 1-norm and 2-norm. The 1-norm
of an operator L is the sum of its singular values, namely ||L|, = tr(|L|) where
|L| = vV LTL is the unique positive square root of LTL. The 1-norm induces a metric

or distance function known as the trace distance

1
D(p,o) =5 lp=ol, (2.1)

which reduces to the statistical distance or the total variational distance when both

states are diagonal in the same basis

D (S Peto)lob el T Qx(a) o) o) = ;T IPslo) - @xloll. (22
The 2-norm is induced by the Hilbert-Schmidt inner product (A, B) = tr(A'B);
explicitly, ||L||, = \/(L, L) and is the square root of the sum of the square of the
singular values of L. Likewise, the 2-norm also induces a metric.

Entropies are measures of uncertainty. While there are many entropic quantities
such as the a-Renyi entropies, the correct entropy which captures the worst-case
uncertainty of an adversary Eve on some classical system (e.g. the key) is given
by the conditional min-entropy. For quantum-quantum states, the conditional

min-entropy is defined as
Hyin(A|B), = maxsup{\ € R: pap <2714 @ op} (2.3)

where the condition pap < 2714 ®0op means 27214 @0 — pap is positive semidef-
inite and the maximization is taken over subnormalized quantum states. This
quantity is related to the maximum fidelity to a maximally entangled state between
A and B (which describes an omniscient observer B of A) one can recover by acting
on half of the bipartite system [46]. In other words, the conditional min-entropy
of pap is directly related to the maximum achievable singlet fraction [47]. For
classical-quantum states px g, the min-entropy reduces to —logy Pyyess(X|B), with

the usual guessing probability of X given the quantum side information F
Pyuess(X|E), = max } | Px () (] £(o%) |z) (2.4)

where the maximization is done over all quantum operation £ (trace preserving
completely positive maps). The smooth min-entropy is defined as a maximization

of min-entropy over an e-ball of states. Formally,

Hremn(A‘B)p = miaXHmin(A|B)ﬁ (25)
p
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where p € P(p,e) := {7 € S<(Hap) : P(p,7) < €} is the e-ball around p with
respect to the purified distance (a metric based on the fidelity). The smoothed
entropies are the main quantity of interest in finite-size quantum information where
statistical fluctuations only allow the estimation of pap up to some € accuracy.
Dually, we have the notions of max-entropy and smooth max-entropy. They

are defined as follows:

Hyox(A|C), = mgininf{)\ €R:pac <21, ® 00}, (2.6)

Hio (AC), = min Hypox (A|C) 5. (2.7)
19

The max-entropy of quantum-quantum states is related to the decoupling accuracy,
a quantity which captures how close a state pac to being “decoupled”, namely
being of the form 14 ® o¢ for arbitrary o¢ (describing an ignorant observer C' of
A). For classical-quantum states, the max-entropy is related to the security of a
secret key.

The smooth min-entropy is important in randomness extraction and privacy

amplification because of the following result [23]:

Theorem 1. (Leftover hash lemma against quantum side information)
Let pxg be a classical-quantum state and F be a two-universal family of hash
functions from X to K = {0,1}*. For any 0 < e <1,

1 1 .
5 lpxer — Uk ® pp @ Up||; < e+ 5V 26 Hawin (X1E) (2.8)

where

PKEF = Zf: Pr(f)proae @ [f) (f] (2.9)

is the final state after the action of a random f € F chosen with uniform probability
Pr(f) =1/|F| and Uk is the completely mized state of the system K.

Operationally, this result implies one can extract HS, (X|FE) uniformly random

bits from a source X, which may be correlated with an adversary E, by applying a
randomly chosen function f from the two-universal family of hash functions to the

output = of the process X.

2.2 Bell nonlocality

Bell’s 1964 theorem represents one of the most profound developments in foundation

of physics. In a typical Bell experiment, one finds two separated parties, each
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performing measurements on their own system. The two systems may have
interacted in the past: for instance they may be two photons emitted from the
same source towards the two distant observers. After performing the measurements
x and y chosen from a set of possibilities, they record the outcomes a and b, which
may differ between runs even if the same measurements have been chosen. The
data is used to interpret a family of conditional probability distributions p(a, b|x,y)
indexed by the pair of settings, which represents the “average behavior” of the
experiment. Not surprisingly, there may be a correlation between the inputs and
the outcomes and because of this reason, the family p(a, b|z,y) is often called the
correlation of the experiment. This correlation between distant parties certainly
“cries out for explanation”. A moment’s thought lead Bell to a very plausible model

which could explain the correlation: the local realistic model,

pla.ble.y) = [ drp(Np(alz, p(bly. ). (2.10)

where it is imagined, because two systems may have interacted in the past, that
their behaviors are locally determined by a common hidden variable A. Such
behaviors form the local set £ of correlations, i.e. a convex polytope for which

tight Bell inequalities, for instance the CHSH inequality
|(AoBo) + (AgB1) + (A1 By) — (A1 B1)] <2 (2.11)
with a,b, z,y € {+1,—1} and
(ApBy) = p(1,1]0,0) 4+ p(—1,—1|0,0) — p(1,—1]0,0) — p(—1, 1|0, 0) (2.12)

and similarly for other averages, are facets of the polytope. Correlations out-
side the local sets are the quantum correlations Q, namely those which admit a
representation

p(a,blz,y) = tr (pABMau ® Mb|y> (2.13)

for some state and measurements POVMs, and the no-signaling correlations NS,

i.e. p(a,b|x,y) satisfying

> pla,blz,y) =D pla,blz,y') for all a,x,y,y (2.14)
b b

>_pla,blz,y) = pla, b, y) for all b, y, z, 2’ (2.15)

a

which aim to capture the idea that any spacelike separated correlations cannot be

used to signal a message between the two parties (for compatibility with Einstein’s
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theory of relativity).

A useful tool in any application of non-locality is the NPA hierarchy of semidefi-
nite programs characterizing the quantum set of correlations [48, 49]. It is based on
the following observation: first notice that in the defining condition for a quantum
behavior (2.13), the quantum state and measurement can be “purified”, namely
we can assume the state to be pure and the measurements to be von Neumann
projections. Let O be a set of k operators, define I' = (I';;) to be a k x k moment
matrix (associated with @) with entries I'y; = (1| OIO; |9) for O;,0; € O then it

is clear that I' is positive semidefinite: for all ,

2
> 0.

T = S, = (0] (Sl (Z ujOj) ) =
(2.16) ’ j

The observation applies to the choice of O being all the von Neumann projection

ZujOj )
J

operators M., My, together with the identity operator and some finite products
of them. Moreover, the correlation p(ab|zy) corresponds to a subset of the entries
of I'. Thus we have shown that if p(ab|zy) is a quantum behavior then there exists
a positive semidefinite moment matrix I' which contains p(ab|zy) as some entries.
By restricting the maximum number n of operators in the allowed products we
have an increasing sequence O,, (with respect to set inclusion) corresponding to a
decreasing sequence of sets Q,, which better approximates the quantum set Q.
As an example of the technique, let us describe the so called “local level 1”
relaxation of the quantum set. In this case, the set O consists of 1, A,,, By,
Ap|o By for all possible choice a, b, ,y. The operators are not independent since for
each measurement setting, say x for Alice, it must be that 37, Ay, = 14; this allows
us to eliminate dependent operators and obtain a simplified set O. In particular,
for the Bell scenario involving two parties each having two measurements with two

outcomes, the associated operator set is

O = {1, Aopo, Aoj1, Bojo, AojoBojo; Aot Bojo, Boj1, AojoBojr; Aoj Bop } (2.17)
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and therefore the (symmetric) moment matrix I" is given by .

1 pa(0[0) pa(0[1) p5(0[0

~—

p(00]00) p(00[10) pp(0[1) p(0001) p(00[11)

pa(0[0) w1 p(00[00) p(00[00)  wp  p(00[01) p(00[01)  wvs
pa(0[1) p(00[10) vy p(00[10) p(00J11) w3 p(00|11)
p5(0[0) p(00]00) p(00[10)  v4 s U
p(00]00) Vg U5 Us vy
p(00]10) Vg Vg Vg
pu(O[1) p(00[01) p(00]11)
p(00[01) w3
p(O0[11)

with v; the unknown variables. If p(ab|zry) is quantum then there must exist v,
such that I' > 0, so this can be used to constraint the adversary to be in quantum,

i.e. use quantum resources.









CHAPTER 3

QUANTUM KEY DISTRIBUTION

3.1 Introduction to QKD

3.1.1 The BB84 protocol

A QKD protocol is a set of instructions for the two distant parties, Alice and Bob,
to generate a common secret key in the presence of an adversary Eve who is trying
to learn about their key. The BB84 protocol uses four photon polarization states
|H), |V), |[+45), and |—45) belonging to the + and X bases to encode and transmit
information between Alice and Bob; |H) and |+45) codes for bit “0”, while |V')
and |—45) codes for bit “1”. The protocol has 4 steps:

e Alice randomly prepares a photon in one of the four states and sends to Bob
who will choose at random to measure it in either the + or x basis. Each

party will then have a list of pairs (bit, basis).

e Alice and Bob communicate over the classical channel the information of the
basis of each bit, keeping only the bit which has been prepared and measured

in the same basis (sifting).

e They announce a small subset of their bits in the + and x bases to estimate
the quantum bit error rate (QBER) or the probability of error in the bases

(e, and €,, respectively).

o If the QBERs are not too large, they perform error correction to ensure that
their list of bits are identical, otherwise they abort the protocol and no key

is generated.

14
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e They perform privacy amplification, reducing their list of bits to a shorter
but more secured (unknown to any adversary Eve) common secret key. This
is usually done by applying a random two-universal hash function, which can

be chosen by Alice and communicated to Bob via the classical channel.

Bob

Diagonal
detector basis

Alice
Diagonal
polarization filters (& -w .. E§ Horizontal-
) _ 4 1 ,is’\ vertical
Horizontal-vertical 2 \\ iaailas detector basis
polarization filters $ ,a t \\

Light source

£V

Alice’s bitsequence 1 0110011001110
Bob’s detection basis & & X JIx] x I+l XWX
Bob’smeasurement 1 0010011000100
Retained bitsequence 1 - -100-100-1-0

Figure 3.1: Illustration of the BB84 protocol in polarization encoding in the ideal
case (perfect system and no eavesdropping). Image courtesy of [50].

After running the protocol, provided that Alice and Bob do not abort, they
share a secret key of which Eve has very little knowledge. The key can be used in

the one-time-pad cryptosystem for secure communication.

3.1.1(a) The origin of security

The security of BB84 and other QKD protocols can be traced back to several
fundamental principles of quantum physics. Since information is encoded in
quantum systems unknown to Eve, any attempt by Eve to extract information
disturbs the information carriers, which manifests as errors detectable by Alice and
Bob. Moreover, the possibility of Eve possessing an identical copy of each quantum
signal shared between Alice and Bob is ruled out by the no cloning theorem: it
is impossible to perfectly clone an unknown quantum state. Alternatively, in the
entanglement based scheme the security can be certified by violation of Bell’s
inequality because the measurement outcomes do not exist before the measurement,
and thereby cannot be created by pre-established agreement (i.e. Eve could not

have pre-established Alice and Bob’s correlation).
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3.1.2 Generic QKD protocol

The BB84 protocol reflects the general structure of any discrete variable QKD
protocol. There are two main phases in such a protocol: the signal exchange
phase and classical information processing phase. Having agreed upon a common
encoding of classical information in quantum systems, Alice and Bob perform
signal exchange via an ideal quantum channel which does not disturb the state,
and then measurements on these systems to obtain classical results. Then they
perform classical information processing, namely sifting, parameter estimation,
error correction and privacy amplification, to transform their classical results to a
common secret key (or abort if necessary).

QKD protocols are sometimes classified according to how quantum resources
are distributed. If Alice prepares the quantum system and sends to Bob for mea-
surement, the protocol is called a quantum key distribution or prepare-and-measure
scheme. If Alice and Bob share some entangled quantum state distributed from
some source and perform local measurements on their respective part of the joint
system, the protocol is called a quantum key distillation or entanglement-based
scheme. Any prepare-and-measure scheme has an equivalent entanglement based
partner.

For any protocol, we are mainly interested in the number of secure key bits
which can be generated. Toward this goal, we must first answer the question: what

does it mean for a QKD protocol to be secure?

3.1.2(a) Security requirements

The task of key distribution requires Alice and Bob, at the end of the protocol, to
have identical key bits unknown to Eve. To formalize these notions, let £ be the
quantum system describing the information Eve gathered during the execution of
the protocol and K4, K be Alice and Bob’s key systems (which are assumed to
be on the same key space K = {0,1}*). The protocol transforms initial quantum
resources to a final classical-quantum state describing Eve’s correlation with Alice
and Bob’s keys

prcaksr = . Pryrp(ka,kp) |ka) (ka| @ |kp) (k| @ opt*® (3.1)

ka,kp

for orthonormal bases {|k4)} and {|kg)}. The ideal situation required by the task

corresponds to the ideal state

i 1
PRk = 2 o7 |K) (K| @ k) (k] © pi (3.2)
k
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describing an adversary Eve completely uncorrelated to a uniformly distributed
key which are idential for Alice and Bob. In reality, such situation are not possible,

so we allow some small failure probability e:

ideal

Definition 1. A QKD protocol is called e-secure if 5 HpKAKBE — Piikge|, <€

<
The reason for this definition is clear from the operational interpretation of the
trace distance: the probability of distinguishing the real situation from the ideal
situation is at most 1/2 + €/2 according to Holevo-Helstrom theorem. Moreover,
this security definition is universally composable so any key generated by a QKD
protocol can be safely used in any other task such as one-time-pad [51].
In the security analysis of a protocol, it is convenient to break the analysis into

an argument about correctness and secrecy.

Definition 2. (Correctness). A QKD protocol is called egc-correct if
Pl"[SA §é SB] S €EEC- (33)

Definition 3. (Secrecy). A QKD protocol is called €g.-secret if

ideal

1
2 HPSAE ~ PSAE

1 S Esec' (3.4)

Definition 4. (Security). A QKD protocol is called e-secure if it is egc-correct

and €gee-secret with egc + €gec < €.

3.1.2(b) Extractable secret key rate

Using the leftover hash lemma an eg.-secret key of length ¢ can be extracted by

two-universal hashing if there exists a smoothing parameter € > 0 such that

1

(Gsec - E) .

(< H¢

min(X‘E/> -2 lOg (35)
where E' represents the information Eve has gathered before privacy amplification.
In particular E’ contains the information which Eve learns during the error correc-
tion phase of the protocol and any additional information £ before that. Using a

one-way error correcting protocol, we have

2
i (X|E) — leakge — log — (3.6)

H(X|E') > Hy,
€EC

m

where leakgc is the number of bits one party have to send the other and egc

is the probability of failure of the error correction phase (as determined by the
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choice of the error correcting code). Hence, we can generate an e-secure key with

€ = €gec + €pc provided

2
— leakgc — log —. (3.7)

¢ < Hf =
o (esec - 6) €EC

m

in(X|E) — 2log
Equivalently, a rate ry := /N can be obtained with

n(1__ 2 1 1 1 2
=—|-H , (X|F)— —log—— — —leakgc — —log — 3.8

= (2618 - 2og 5 = Moo~ Lo 2 ). 39)
where N = n + k is the total number of signals, n the number of signals devoted
for the raw key and k is the number of signals for parameter estimation. Most of
the difficulty with a finite key security proof lies in finding a good lower bound
for H¢

€ . (X|E) compatible with the observed data, i.e. the error rates. The main
reason is that there is not a good characterization of the coherent attacks of
Eve or equivalently, the joint state px~yn~pg after signal exchange phase has no
simple structure. This is where techniques such as the de Finetti theorem or the
uncertainty relations can be useful.

In the asymptotic limit N — oo, n/N converges to the sifting probability
which can be assumed to converge to 1 because the remaining k signals are still
sufficient for a sharp parameter estimation. Moreover, by permuting the classical
outcomes and using the de Finetti theorem one can reduce a security statement
about coherent attacks to one about collective attacks. It is beyond the scope of
this thesis to present the full details of this reduction and we refer to Chapter 6
of [23] for a proof. The asymptotic key rate is given by

Too = I;}ql}gl H(X|E)— H(X|Y), (3.9)
where the entropies are evaluated on a state o4 which is a purification of o 45
and the minimization is over all 045 compatible with the observed statistics of the
different measurements performed by the two parties. From now on, consider only

the asymptotic key rate as the benchmark for the performance of a QKD protocol.

3.2 Tomographically complete QKD protocols

3.2.1 Reference frames in QKD

Reference frames play an important role in physics; they are conventions we

agree in order to unambiguously define various variables of a physical system.
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Unsurprisingly, most QKD protocols implicitly assume a shared reference frame for
the quantum communication between the two parties. For instance, in the BB84
protocol, Alice and Bob shares the same understanding of horizontal and vertical
directions despite being physically far apart.

Shared reference frame is a resource that should not be taken for granted,
however, because the establishment of such requires lots of resources communicated
between the corresponding parties [52]. In some scenario, it is even desirable not
to try establishing such a shared reference frame because of the natural constraints
imposed by the scenario. The first example one may conjure is QKD between an
earth station and an orbiting satellite. Apart from a direct communication link
between the station and the satellite where circular polarization is unambiguously
defined, the linear polarizations may vary in time because the satellite may be
rotating with respect to the station. The second example is path-encoded chip-
to-chip QKD where the goal is establishing a key between integrated quantum
photonic circuits. There it is known that the which-path information is very stable
compared to the interferometric stability between Alice and Bob’s chips.

One method of performing reference-frame-independent quantum communi-
cation is encoding information in decoherence-free subspace or decoherence-free
subsystem of a large composite physical system [52]. Suppose p, defined with
respect to Alice’s reference frame is sent to Bob via an ideal quantum channel. Let
the unitary operator relating Bob’s reference frame to Alice’s be U(g) parametrized
by a set of parameters labeled g. Let G be a group of operations relating Bob’s
frame to Alice’s frame; for instance, G can be the group of three dimensional
rotations and U can be the unitary representation of this group. If g € G is

unknown, Bob’s state with respect to his reference frame reads

5= [ dgUlg)eU"(g). (3.10)

which is completely different from p in general. However, there may exit states
that are invariant under the action of such G' (i.e. p = p), and these span the

1

so-called decoherence-free subspace'. The simplest non-trivial example of such

decoherence-free subspace is the antisymmetric subspace of two spins 1/2 which is
spanned by the singlet (total spin 0) [¥~) = (]01) — |10))/v/2. Without a shared
Cartesian frame, Alice can communicate one classical bit to Bob with every two
qubits by the following encoding: states in the antisymmetric subspace code for bit

0, while states in the symmetric subspace (orthogonal to the antisymmetric one)

Tt should be noted that the decoherence free subspace may not exist or may be trivial for a
particular system with a particular type of noise.
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code for bit 1. Bob then performs a projective measurement onto the symmetric
and antisymmetric subspaces defined by his reference frame to determine the bit
sent by Alice. To send a qubit, we need a larger composite system, namely three
physical spin 1/2.

This kind of encoding has also be applied to QKD. Boileau et. al proposed
a polarization based protocol where Alice sends photon pairs in state |¥~) and
Bob measures the polarization of individual photon [53]. However, as the amount
of resources increases so is the sensitivity of the protocol to photon losses. Later,
Aolita and Walborn improve the protocol by encoding in the decoherence free
subspace of two degrees of freedom of a single photon, namely the polarization
and transverse spatial degree of freedom (or transverse spatial profile), therefore
solve the above problem [54]. The main drawback with this approach is still the
complexity in manipulating multiple systems or multiple degrees of freedom in the
same system.

The reference-frame-independent (henceforth abbreviated rfi) QKD protocol
tackles the problem of reference frames in a slightly different manner by utilizing

the naturally aligned basis (circular polarization or which-path).

3.2.2 Reference frame independent protocols

The main idea in the rfi protocol is that Alice and Bob share a common well-aligned
measurement basis Z = Z, = Zpg which is taken to be the key basis, while the

other measurements can be misaligned by an arbitrary but fixed angle g
Xp=cosfBX4+sinfYy, Yp=cosfYs—sinfX,u. (3.11)

As usual, we have the quantum bit error rate in the Z basis,

1-(Z®Z)

Q="Pra#bZ02) = ——, (3.12)

where (Z ® Z) is the average value of the joint measurement Z of both parties.
Instead of the error rate in the other basis, the protocol uses the S-independent

parameter
C=(Xa®Xp)?+(Xa®@Yp)’+ (Ya® Xp)*+ (Ya®Vp)? (3.13)

to bound Eve’s information. C' is an entanglement witness: C' < 1 for separable

states and C' = 2 for maximally entangled states.
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3.2.2(a) A family of rfi protocols for qudits

We propose a generalization of this protocol to qudits. Let {|0),|1),...,|d — 1)}
be the computational basis vector of the Hilbert space describing a qudit, it is
well known that the Pauli operators admit a generalization to higher dimension

known as the Weyl operators, which are unitary operators of the form X*Z* for

k.t € {0,1,....,d—1} and

d—1 d—1
Z=3 WGl X=) 11+l (3.14)

j=0 J=0
where w = €?™/4 are the roots of unity and j + 1 denotes the sum modulo

d. To accommodate relative unitary rotation around Z (similar to the relative
frame angle 3 in the qubit protocol), let X, = UXU' and Xp = VXV where
U,Z] = [V,Z] = 0. In the generalized protocol, Alice and Bob perform the
projective measurements on the eigenstates of X fff Z% and X 22 7" and from the

statistics estimate () and

d—1

C= Y |X§ZheXpzh)? (3.15)
k1,k2=1
£1,02=0

to bound Eve’s information. (3.15) is a generalization of (3.13) with all the desired
properties: it is independent of the local unitaries U and V mentioned above and
is an entanglement witness (C' < (d — 1)? for separable states and C' = d(d — 1) for
maximally entangled states).

The essential ingredients in the proof that equation (3.15) generalizes C' are
twofold: (i) the relation between average values of operators and the Hilbert-Schmidt
inner product, namely (O), = (p,O) where (:,-) is the Hilbert-Schmidt inner
product, and (ii) the Weyl operators as an orthonormal basis up to normalization,
ie. (Xkzh Xk 70y = dby 1,000, We recall the computation of inner product

using an orthonormal basis

d

|
—

d

|
—

(0, X 2N (X 2", p) =
0

(0. X*ZOP. (3.16)

{p,p) = ;

ISHN

k

~
Il

k

~
Il
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To prove that C' is invariant with respect to rotations around Z, first note that

C' can be rewritten as

d—1 d—1
C= > [(XRZheXpz@))P- Y (ZheXpz®)P

k1,k2=0 ko ,l2=0

l1,00=0 £1=0
d—1 d—1

- S xhzteznp+ S (2t 0 2P @17
k1,61=0 l1,62=0
l2=0

where the first sum simplifies to d? Tr(p% ). We can switch bases from X2 7% to
X*2 7" since they are both bases for the space of linear operators £(C%) on C%, thus
invariant, and similarly for the third sum. The final term is obviously invariant
with respect to Z rotations. Therefore, we have proved that C' is independent of
the local unitaries U and V' commuting with Z.

To show that C' acts as an entanglement witness, consider the product state

paB = 04 ® op for which C factorizes into

d—1 d—1

C=> [XEZ), P > UXEZ%) 6, (3.18)
k1=1 ko—=1
£1=0 £5=0
and note that
d—1 . d—1
YoOUXEZM) P =dTe(0}) — 1= > [(Z8),,1P <d—1, (3.19)
k=1 =1

¢1=0

from which C' < (d — 1)? for all product states and moreover for all separable
states by convexity. Thus if C' > (d — 1)? for a particular state, then the state is
entangled, however, the converse, that the state is separable for C' less than that
value, is not implied. Indeed, entangled states can have C' < (d — 1).

Note that C' is a sum over tensor products of operators that do not commute
with Z, the raw key basis. The maximum value of C' is only achieved for maximally
entangled states. The maximum value that can be obtained with a separable
state is (d — 1)?, therefore there is a gap between separable states and maximally

entangled states that scales linearly with d.

3.2.3 RFI protocols are tomographically complete

The way measurement results are used in the rfi protocols is not optimal in the

sense that the tomographic information deducible from the measurement statistics
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can be used directly, instead of via the parameter C'. Estimating C' requires the
knowledge of [d(d—1)]? correlators (X% Z @ X2 Z*), and combining these into C
discards valuable information that can lead to a tighter bound on Eve’s information.

In other words, these correlators can directly be used to completely specify the

state as
1 d—1
pan== > (XhZheXprmxhziexhzc (320
k1,ka,01,02=0

in the measurement bases of Alice { X% Z'} and Bob {X& Z}. This follows from
the fact that collective attacks are the optimal in general for Eve in this scenario
by the quantum de Finetti representation theorem [23, 55|, so that we can consider
a pure state papg from which the above psp is the marginal state. This is also the
reason why the rfi protocols are actually tomographic in disguise: we are trying to
do tomography on Eve’s optimal state in her collective attack. Therefore by using
tomography, one can have a rfi protocol without the need for C' [56]. In fact, the
correlators can be used to realign the reference frames during the execution of the
protocol, if necessary.

Let us explain in detail how tomography can be done in practice. The most
direct approach is to make d?> measurements X*Z* on each subsystem of each party
and combine the measurement outcomes to find each correlator directly. This is
very inefficient because it requires d? different estimates to be made with good
precision, which requires many copies of the state. Also, it is unnecessary because
many of the Weyl operators have the same set of eigenvectors, for instance Z* for
¢ =0,...,d —1 for instance; hence the measurement statistics of one can be used
to calculate the average values of all the others. In general, the minimum number
of measurements needed to completely specify the state is still unknown. However,
if d is prime, one can reconstruct the state by making only d + 1 measurements
corresponding to d + 1 mutually unbiased bases on each subsystem, the mutually
unbiased bases generated by the set of operators B = {Z,XZ*:(=0,....d — 1}
for example. After the measurements, Alice and Bob can estimate their marginal
probability distribution locally, and if they share the measurement outcomes, the
joint probability distribution p(a,b|A ® B) where A, B € B. It is well known that
the eigenbasis of any X*Z* is among the eigenbases of observables in B; therefore

from p(a,b|A ® B) we can compute all the average values using

(XEZ" 0 X2z =3 Ap(a,b|A® B), (3.21)

a,b

where ), is the eigenvalue associated to the eigenvector representing outcome a of
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Xk 74 and A is the operator in B with the same eigenbasis as X!, ditto for Bob.
Hence, a full state reconstruction is possible by (3.20).

As a side remark, we note that state reconstruction can also be done if a
SIC-POVM (symmetric and informationally complete positive operator valued
measure) exists for the given dimension. For instance, such a measurement exists
for a qubit: the POVM elements are projectors pointing towards the corners
of a tetrahedron in the Bloch sphere. However, the implementation of such

measurements may be complicated.

3.2.4 Conclusions

Our effort to generalize the rfi QKD for qubits, which arises naturally in several
realistic applications, to higher dimension have been hit with the realization that
the protocols are actually tomographic in nature. In other words, our family of d
dimensional rfi protocols can be seen as a generalization of the six-state protocol.
Thus using directly the tomographic information gives a better constraint on the
state shared by the users and the adversary, which ultimately gives better key rate.
The reference frame independent property of a QKD protocol is not a consequent

of the invariance of the parameters (such as C') used in the protocol.

3.3 Distributed-phase-reference QKD

3.3.1 Motivations

When experimentalists try to implement discrete variable protocols (BB84, six-state,
or the one presented in the previous section) using quantum optics, they invent a
whole new class of QKD protocols called the distributed-phase-reference (DPR)
protocols. The major distinction between discrete variable and DPR protocols lie
in their way of encoding information. In discrete variable protocols each symbol is
encoded in a quantum state distinct from the quantum state encoded any other
symbol, while in DPR protocols each symbol is encoded in consecutive pairs of
quantum states (laser pulses). The two most well known DPR protocols are the
differential phase shift (DPS) and the coherent one way (COW) protocols.

In the DPS protocol [57], Alice sends a sequence of coherent states with the
same intensity, and modulates the phase between successive pulses between 0 to
code for bit “0” and 7 to code for bit “1”. On Bob’s side, he can unambiguously
discriminate the encoded bit by interfering successive pulses with an unbalanced
interferometer. More specifically, Bob can calibrate his interferometer such that

the path length difference makes up for the delay between the pulses, and whenever
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their relative phase is 0 then detector DO will click (likewise for relative phase 7
and detector D1).

In the COW protocol [58], Alice sends a sequence of empty and non-empty
coherence states with the same intensity, and encodes each bit in successive pairs:
bit 0 is encoded in the sequence empty, non-empty while bit 1 is encoded in the
reverse sequence of non-empty followed by empty pulse. Bob can unambiguously
decode each bit by measuring the time of arrival (or time of detection) of each
pulse. The security can be guaranteed by sending decoy sequence consisting of two
non-empty pulses and check for their relative phases like DPS.

It is clear that in both protocols, there is no clear distinction which pair of
pulses encodes for which bit, and therefore the entire chain of pulses must be
treated as a single, albeit very huge, signal. This hinders the development of a
complete security proof of DPR-QKD in a realistic setting. However, security has
been proven against restricted types of attacks [36, 37], or assuming single photon
sources [38].

In the remaining of this section, we will prove the security of a variant of COW.
This variant is the subject of an experiment in the group of Nicolas Gisin. The

basic setup is shown in Figure 3.2. Alice uses a laser, followed by an intensity

channel
Alice Bob

data line DDd
O
1+41+3 1+21+1 i 11 i-2 1-3 -;?L

time instances _
. — monitoring
signal states: |0)[a) = m line

a)|0) = m 50:50 BS

Figure 3.2: Schematic description of a modified version of the COW protocol with
an active measurement choice. Bob reads the raw key in detector D;. Moreover,
he uses an optical switch to send some pairs of consecutive pulses to a monitoring
line that examines the coherence between even and odd pulses.

M

laser

modulator (IM), to prepare a sequence of coherent states |0) |a) and |a) [0). On
the receiving side, Bob employs an active optical switch to distribute each pair of
incoming pulses into the data or the monitoring line. The data line measures the
arrival time of the pulses in detector Dy and creates the raw key. Whenever Bob
sees a click in this detector in say time instance i, he decides at random whether to

publicly announce a detection event in time instances ¢ and i+ 2 or ¢ and ¢ — 2. The



3.3. DISTRIBUTED-PHASE-REFERENCE QKD 26

first case is associated with a bit value “0”, while the second corresponds to a bit
value “17. If the state sent by Alice in these time instances is |0) |a) (respectively
|a) |0)) then she assigns to it a bit value “0” (respectively “1”) and tells Bob to
keep his result. Otherwise, the result is discarded?. This public announcement
by Alice and Bob is labeled as v later in the text. The monitoring line checks
for eavesdropping by measuring the coherence between subsequent even and odd
pulses. This is done by interfering adjacent pairs of pulses in a 50 : 50 beamsplitter

and measuring the outputs in detectors D, and D_.

3.3.2 A framework to security of DPR
3.3.2(a) The de Finetti approach to security

The challenge in DPR-QKD is to prove security against coherent attacks. Usually,
such attacks in the discrete variable protocols are known to be of no advantage to
Eve in comparison to collective attacks, by virtue of the de Finetti theorem [23,
55]. This theorem applies, for instance, when the underlying quantum state shared
by Alice and Bob is permutationally invariant, which is typically ensured by per-
forming simultaneous random permutations on the classical measurement results.
DPR-QKD defines however a fixed ordering of the signals by its coherence measure-
ment and, therefore, it is not possible to permute the classical outcomes without
destroying vital information. However, such a predicament can be circumvented
by grouping the entire signal stream into blocks. More specifically, consider that
Alice and Bob group their signals into subsequent blocks of size m with m being
optimized for the expected behavior. When permuting these blocks, one preserves
the coherence information within them, while the information between the blocks
is destroyed. Still, this is enough to apply the de Finetti argument on the level of
blocks. As a result, the state shared by all parties after distributing a large number
mN of signals satisfies pfy ~ pige, and security against collective attacks on

these signal blocks implies security against coherent attacks in the original setting.

3.3.2(b) The asymptotic key rate formula

The state in collective attacks shared by all parties after transmitting an m block
signal pi'zr is not arbitrary and can be related to Alice’s preparation procedure,
where she sends potentially mixed states pf* with a priori probability p(i). In the

equivalent entanglement based version, Alice first creates a source state [U™), , 5 =

2Note that the two-way communication here is needed to establish the raw key and is not part
of the classical post-processing which is chosen to be one-way communication (say from Alice to
Bob).
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> \/M |9) A, 1P7") A.B> Where [p]") y 5 denotes purifications of the signal states p"
to an inaccessible (to Eve) shield system Ag. Afterwards, she measures her bit
system Ay in the standard basis, thereby producing the correct signal states at
site B which are sent to Bob. Eve transforms the overall source state to the
aforementioned tripartite state pipp with A = ApA,. In other words, Eve is
allowed to only interact with the system travelling to Bob, hence the collective
attack state pizp obeys certain constraints of the corresponding DPR protocol
(such as fixed marginal on Alice).

To derive the asymptotic key rate, let us first consider the effect of public
announcements by Alice and Bob based on their classical measurement results.
This announcement, labeled as v, allows both parties to distinguish between
conclusive events that contribute to the sifted key and inconclusive ones that are
discarded. On the level of quantum states this is described by suitable maps
A% ® AB. Given an announcement v that happens with probability p(v), the three
parties share the state 075 determined by AS @ AR (pRgg) = p(v)osy ..

For each announcement’v one can use the one-way classical post—pfocessing
key rate formula [19] (or one can derive it from our asymptotic key rate formula
presented before). If system A denotes a qubit and Alice’s raw key is obtained
by projecting this system onto |0)z,|1)s, then a lower bound on the secret key
rate is given by 1 — ha(e,) — ha(d,) with ha(p) = —plog(1l —p) — (1 — p) log(1 — p)
the binary entropy associated with the distribution {p,1 — p}. Here e, is the
symmetrized bit error between the key measurements of Alice and Bob, and 4,
denotes the corresponding error, typically called phase error, when Alice performs
a measurement in a mutually unbiased basis and Bob in his other setting. This
last parameter is used to upper bound Eve’s knowledge on the sifted key generated
by Alice. Note that d, does not need to be measured directly, it only needs to be
estimated.

To consider that the output system A is a qubit implies that Alice can, at best,
distill one secret bit per block. Nevertheless this restriction should not have a
significant impact on the key rate in a long distance regime, since Bob observes, if
any, most often only one single conclusive event per m arriving signals due to the
high losses in the channel (given that m is not too big).

Instead of estimating separate phase errors 9, it is often easier to combine all
conclusive announcements v € V. into an averaged version. Let G = Y ¢y, p(v) <1

denote the total sifted key gain. Then, we have that the secret key rate per block
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is bounded by

Ry, > inf > p(v) [1 — ho(ey) — ha(6y)] (3.22)
P vEVe
> inf G (1= ha(ec) — ha(6/G)]
> G |1 = ha(@e) — ha(67/G)] . (3.23)

Here one uses concavity of binary entropy to lower bound R,, by the averaged
(conditional) error rates €. = Y yey. p(v)e,/G and § = 3,ey,. p(v)d,. The last step
takes into account that e. and G are observed quantities and that the optimization
is attained at the largest phase error 6™ compatible with the obtained data since
hy increases in [0, 5.

3.3.2(c) Phase error estimation SDP program

The main difficulty to compute (3.23) is to upper bound the average phase error 4.
This parameter can be expressed as an expectation value on the original bipartite

state piiy = trg(pigg) using adjoint maps

6= Z p(v) tr(oxz vFév Z tr[AD @ A (pig) Fs.)

vEV,: vEVe

= trlpky D AT @ AV (E,)] = tr(pRp Fy)- (3.24)

’UGVC

Here Fj, denotes the corresponding phase error operators on the state o%: ABo-
Partial knowledge of Alice and Bob about the state pz can be parsed as known
expectation values k; = tr(pXz K;) for certain operators K;. More precisely, since
on the receiving side Bob performs a measurement modeled by By, as a result, both
Alice and Bob observe the expectation values of [i), (i| ® 1o, ® By. Moreover,
since Eve is restricted to interact only with Bob’s system, the reduced density
matrix p}' = trpge(pipg) is fixed and given by the source state. This information
can be added by including expectation values of Ty ® 1y, where T} denotes a
tomographic complete operator set on A. Both sets of observables constitute the
previously denoted K;. This means that the search for the maximum phase error

0™ can be cast into a semidefinite program,

max  tr(pipF;) (3.25)
s.t. pap = 0, tr(phg K;) = k; Vi.
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Such special convex optimization problems can be solved efficiently using standard

tools to obtain the exact optimum, even for large dimensions.

3.3.2(d) Finite dimensionality and the de Finetti theorem

The signal states and performed measurements in practical DPR-QKD are described
by operators on an infinite dimensional Fock space of several modes. In order
to apply the de Finetti argument [23, 55], and to numerically obtain an upper
bound using (3.25), it is necessary to formulate this problem in a manageable,
finite dimensional form. Clearly, system Ay is finite dimensional. For Bob’s
measurements one can employ the squash model argument [59, 60]. Here the real
measurement is notionally decomposed into a two step procedure by first applying
a map that transforms any incoming signal to a finite dimensional output state
on which a specified target measurement B, is performed afterwards. Since this
map can be even given to Eve, its output state only lowers the key generation
capabilities of Alice and Bob, and one readily works in finite dimensions. For the
shield system Ag one uses only partial information of the reduced state. In the case
of phase randomized signal blocks, an example that we consider later, a purification
stores the total number of photons of the block in the shield system [n), . Using
tomography on the subspace spanned by all n = 1,... ney, together with an
ancilla |[N), for all other cases, the shield system can effectively be described in

finite dimensions.

3.3.3 Security analysis of a variant of COW

For the described COW protocol we consider blocks carrying m bits of information.
Since a single bit comprises two modes, one has 2m different temporal modes
described by their creation and annihilation operators a! and as, respectively, with
s=1,...,2m. We assume that the [-th bit relates to the modes with s = 2] — 1, 2[.
In the security analysis we assume that Alice and Bob discard coherence information
between consecutive blocks and that the sifted key is created only from signals
within the same block. To guarantee this, one could discard detection events where

Bob declares time instances that belong to different blocks.

3.3.3(a) Real and assumed measurement description

At first let us concentrate on the real measurement model M} and the way how we
describe it in the security part, denoted as By previously. For the real measurement
setup we assume inefficient photon number resolving detectors that suffer from

state-independent dark counts. The inefficiency of M is modeled by a global



3.3. DISTRIBUTED-PHASE-REFERENCE QKD 30

beamsplitter (BS) of transmittance nq4e located in front of a perfectly efficient
scheme, labeled as My, that still suffers from dark counts. This is schematically
drawn in the first line of Figure 3.3. In a second step, one models the efficient
scheme M} as a map Ag, sometimes called squashing or filter operation [59], in
front of the assumed description By. Let us emphasize that the security simulation
is valid for any true measurement scheme that can be modeled as a physical map

A followed by the measurement By as shown in the third line of the figure.

wes [ B S P Efficient
M k = Ndet S(}I\I;Zne
| BS [P
| Tdet AS Bk

= A Bk

Figure 3.3: Decomposition of Bob’s measuring device.

There are three different types of outcomes for the so far abstract outcome label
“k”. (i) For a data line measurement we use d, with d = 1,...,2m, to denote a
single photon detection in temporal mode d only. The corresponding measurement

operator My is given by
My = e(1 —€)* ! vac) (vac| + (1 — €)*™ |d) (d| (3.26)

with e representing the dark count probability of Bob’s detectors and |d) = al; [vac).
(ii) In addition to a data line measurement Bob can also perform coherence
measurements on subsequent bits employing the monitoring line. For instance,
whenever he tests the coherence between bits [ and [ + 1 he effectively mixes the
modes 2] — 1,20 + 1 and, at the same time, 2[,2] + 2. For each pair of modes there
are two single photon events, denoted as 4, that can be distinguished, depending
on whether the single excitation is registered in the bright (D) or in the dark (D_)
detector. As an outcome label for the coherence measurements we use k = (¢, %),
where ¢ = 1,...,2m — 2 denotes the first of the two interfering modes. In this case

the measurement operators are given by

M, 1 = €(1 —€)*™ ! |vac) (vac| + (1 — ¢)*™

XE) (xE

, (3.27)
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with |xF) = (Je) & |c + 2))/v/2. Let us emphasize that in these coherence measure-
ments it is still necessary to check that all other modes are empty. (iii) Finally,
note that each measurement setting has also other possible outcomes, e.g.“no click”
or more than a single photon detection event. All these cases are grouped (via
classical post-processing) into a single inconclusive outcome described by Mjy.

As the modeled measurement operators By we use

By = |d) (d|, (3.28)
Box=xZ) (xF (3.29)
Binc = |a) {al , (3.30)

where |a) is the auxiliary state that describes the inconclusive outcome. These
measurement, operators By act on a 2m + 1 dimensional Hilbert space.

Both measurement sets can be made equivalent by an appropriate map Ag
such that tr(pMy) = tr[As(p)Bx] holds for all possible states p and measurement
outcomes “k” as schematically shown in Figure 3.3. This map A; is given as
follows. First one measures the total number of photons n within an arriving
block. Whenever one finds n > 2 one outputs the auxiliary state |a). If n =1 then
with probability (1 — €)*™ the single photon state stays untouched, otherwise the
auxiliary state is thrown again. Finally, for n = 0 the map creates the completely
mixed single photon state 3, |k) (k| /2m with probability 2me(1 — €)*™~! and
la) otherwise. This map is physical because we explicitly describe it in terms of

measurements and conditional signal state preparations.

3.3.3(b) Source state and reduced density matrix

The following discussion provides the source states for both cases of pure or phase
randomized COW block signals. These states determine the reduced density matrix
px which belongs to the available information.

Consider first the case of pure signal states. In this COW version Alice sends
to Bob either the sequence |«, 0) or |0, a), with a € R, depending on whether her
raw key bit value is “0” or “1”. Let us start with the scenario where Alice sends to
Bob only one bit value, occurring with equal a priori probability. This corresponds
to a block size m = 1. Then the source state is given by

o=ty (|0>A @, 0) + 1) 10, ) ), (3.31)

AB

%\
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and its reduced density matrix becomes

11 e
pf_l ~ 5 [ a2 ] : (3.32)
e

Suppose now that Alice sends to Bob m bits according to this scheme. If
i = (i1,%2,...,%y,) denotes the m-bit string being sent and |¢;); refers to the

corresponding signal state, then one obtains

|l11m>AB = 272 Z |i>A’¢i>B
ie{0,1}m
XM

= ), s =Y (3.33)

In particular, from the last expression one finds that the reduced density matrix
Px is given by
o = (), (3.34)

Next, let us turn to the case of phase randomized blocks. Since randomizing the
phase of a block is equivalent to measuring the total number of photons contained

in it, the true signals states are of the form

Pt =3 T |6) (6l T = 3 pa(m) [ ) (] (3.35)
n=0 n=0

Here II,, stands for the projector onto the n-photon subspace of the 2m different

modes. The outcome of such a photon number measurement follows a Poisson

distribution py(n) = e *\"/n! with mean A\ = ma?. The projected n-photon signal

states |1} ) can be expressed as

; n it (a£l+' )

7 _ -z 1] —

Uiy = m VL S ] pvac),, (3.36)
Nni,...Nm [=1

where the summation runs over all natural numbers nq, ..., n,, that satisfy >, n; =

n. These states fulfill the relation

o m— A \"
! 7Y = dnﬁ — y 337
walvh) =6 (59 (337
with A;; being the Hamming distance between the bit strings ¢ and j, i.e. the
number of places they differ.

Using the framework of mixed signal states as explained in the last section one

must now choose an overall purification of all signal states |¢%), to a shield system
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|p7") o, However let us point out that though a single purification [pf"), 5 is
unique up to local unitary, here one requires that all signals p* are purified to the
same shield A, which is not unique anymore. While certain collective purifications

are clearly better than others, any choice is valid. For our simulation we select

|sz>ASB = 2 \/pk(”) |”>AS

which can be seen as a coherent storage of the total photon number n in the shield

i)y (3.38)

system A,. Let us remark that this choice satisfies (pj"|p}") = F(pf", p}'), with
I being the fidelity of mixed states, which is also the maximal possible overlap
between two signal states [45]. We find, therefore, that the source state in this

scenario is given by

|qjm>AbAsB =277 Z |Z.>Ab |P;n>AsBa (3.39)
ie{0,1}™

with A, = A;...A,. This means that the reduced density matrix p%’, with

A = AL A,, can be expressed as

PR = Yo ma(n)pi, @[n), (nl, (3.40)
n=0

with pji ~given by

B m—20;\" .

=22 (M58 o, Gl (341
12

In our simulation we only use partial information of the reduced density matrix

p%. In particular, we transform A to Ay by making a shield measurement that

distinguishes the different photon number cases mentioned in the main text such

that one obtains

Ncut
pr s = > oan)pk, ®@n)x (n|
n=1

Y. mn)pi, ®|N)5, (NI, (3.42)
n&{1,....,ncut }

+

where |N); denotes an auxiliary system for all higher photon numbers. Let us
point out that considering the reduced state given by (3.42) can be understood as

“tagging” the n = 1,..., ney signal states [61].
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3.3.3(c) Announcement maps and phase operator

The specific announcements v of the COW protocol can be phrased in terms of
appropriate maps A, on the quantum state. Together with a chosen “phase setting”
measurement this provides a concrete expression for the averaged phase error
operator Fjs used in (3.24).

As explained in the protocol description, Bob announces two consecutive even
or odd time slots where he registered his single photon event. Suppose, for instance,
that he announces v = (20 — 1,2l + 1). These are the first arrival times of the
modes associated with bits ¢; and 7;,1 sent by Alice. In such cases, Alice and Bob
agree to call the outcome in the first time instance “0” while the later event is “1”.
This announcement can be modeled as a filter operation AB(p) = FBpFB given
by .

B
P = 7
If Bob measures system B in the standard basis |0)5,|1)5 he obtains the real
outcome he has observed. The pre-factor 1/4/2 which appears in (3.43) takes

into account that whenever Bob sees a single photon click in either 2/ — 1 or

(10)gg (20 = 1/ + [1)gg (20 + 1)) (3.43)

20 + 1 he announces this particular v with just 50% probability, i.e. FBTFE =
(Bai—1 + Baiy1)/2.

Suppose Bob has actually declared v = (2] — 1,20 + 1). Then, Alice has to look
on her bit string to determine whether she can conclusively infer Bob’s bit value.
For that, only her bits ¢; and i;,1 matter. As shown in Figure 3.4, if these two bits
are equal it means that she had sent to Bob either two full or two empty pulses. In
this scenario, she cannot infer Bob’s bit value and they discard this result. However,
if these bits differ then she knows Bob’s sifted bit value precisely (in the error

free case) and she tells Bob to keep it. Such a conclusive announcement by Alice

Alice's bits Bob's declaration  Alice's declaration

__________
s s

i i, 202B0 21 20°)
I 1
0 ' _ﬂ_}_‘ — Discard
A
1

/\ — Keep

—> Keep

AN
“é‘& _‘_!_ﬂ —  Discard

0
1
1

Figure 3.4: Announcement choices for Alice given that Bob has declared a detection
event in time slots 2/ — 1 and 21 4 1.
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can similarly be modeled as a filter operation A2 acting on her qubits [ and [ + 1,

F=0)5 a0+ 15 a4, (10] (3.44)

Again a measurement in the standard basis [0)3 ,|1)z provides Alice with her real
outcomes.

In order to determine the phase error 9, we assume that both parties perform
measurements in the X-basis, i.e. they project the output signals from their filter
operations onto the states |+) = (|0) & |1))/v/2. Then, the symmetrized phase
error 6, = p(+, —) + p(—, +) can be expressed as

1
p(v)d, = p(v) tr 5(11 ®1—0,®0,)053, (3.45)
1 1
5 (v) — 5 tr(o, @ oup(v)oyy,) (3.46)
1
= 529(@) — tr(X) ® Xppis), (3.47)

with o, denoting the Pauli matrix o, = [0) (1| 4 |1) (0|. In (3.47) we have defined

the operators

Xo=1a8, XA ® LA, An; (3.48)
1 1
Xp = iFfTafo =7 (120 =1) L+ 1]+ 21+ 1) 2 = 1), (3.49)

with X = FAo, FA =01) (10] + |10) (01].
Similar arguments apply to the cases where Bob announces subsequent even
outcome pairs or the special instances at the borders of the blocks. We find that

the averaged phase error § = Y,¢y. p(v)d, can be written as
0= B > p(v) — tr(X5pRp), (3.50)

with an operator Xz = >/%; Xay ® Xp,. Here X, denotes the operator composed
by the previously defined X, acting on qubits [ and [+ 1 and the identity operator
acting on the remaining qubits (I = m means the first and last qubit). On Bob’s

side the operators X, are given by

1
Xpy = Z(!Ql — 1) 2L+ 1|+ |21 + 1) (21 — 1] + |20) (21 + 2| + |21 + 2) (2I]), (3.51)

with addition being carried out modulo 2m.
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3.3.3(d) Communication channel model

In this part we present the employed channel model of the COW experiment used
in our numerical simulations. Note, however, that the results presented here can be
applied as well to any other quantum channel, as they only depend on the observed
detection probabilities in both the data and monitoring lines.

In particular, we characterize the losses in the channel with a BS of transmittance
Nehannel- 1 his parameter can be related with a transmission distance d measured in

km for the given QKD scheme as
Tlchannel = 107%7 (352)

where « represents the loss coefficient of the channel (e.g.an optical fiber) mea-
sured in dB/km. Together with the efficiency of the detectors the overall system

transmittance is given by

Tlsys = Tlchannel’]det - (3 53)

The total system loss in dB is used as the x-axis in the secret key rate figures,
i.e.—1010g;( Nsys-

The channel misalignment is parametrized with an error probability eq that
a signal hits Bob’s detectors in the wrong time slot within the same bit. For
simplicity, we assume that eq is a constant independent of the distance and we use
eq = 1% for simulation purposes. This effect is modeled by a completely positive
trace-preserving map ® that incoherently flips the signal states within the same bit

0, nsysa> — ‘\/ns_ysa,0> and ‘\/ns_ysa,0> —

eq. Here we consider that the input signals have been already affected by system

slot as 0, nsysa> with probability
losses. We have, therefore, that whenever Alice sends to Bob a corresponding COW
signal state with coherent state |«) in temporal mode d, the probability that Bob
observes a single photon detection event in this mode only (within the whole signal

block) is given by

pa e = tr{A[ @ (piow) | Ma} (3.54)

= (1 —€)? e h 1 (1 — €)™ (1 — eq)nsyste” ™, (3.55)

where pp', represents the output signal of the BS characterizing the total system
loss, pt = a2, and A = mu. Similarly, when Alice sends to Bob a vacuum state in

temporal mode d Bob can observe a single photon detection event in this mode

only with probability

pgrror — 6(1 . E)melefnsys)\ + (1 o 6)2m€dnsysue*nsys)\. (356)
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The total probability that Bob observes an inconclusive detection event in the data

line is then given by
Dine = 1— m(pzorrect + pzrror> . (357)

In the monitoring line we include an additional misalignment effect that reduces
further the interferometric visibility. In particular, we assume that whenever two
equal coherent states interfere at a 50 : 50 BS then the outcome signal can exit the
BS through the wrong output port with error probability e,,. In our simulations we
use e, = 0.5%. Here we distinguish two possible scenarios, depending on whether
the signals which interfere at the BS were prepared by Alice in the same quantum
state or not. Let us assume that the first signal corresponds to bit i; while the
later to bit 7;,1. That is, Bob interferes modes 2] — 1,2l + 1 and, at the same time,
21,20 4 2.

Let us consider first the situation where both signals were generated in the same
state |0, ). In this scenario, we find that Bob observes a single photon detection
event in temporal mode 2l — 1 only (and no click in the remaining modes of the
block) with probability

P2-14 = 6(1 - 6)2m71€—nsys)\ + (1 — E)ansysﬂefﬁsysk
x {2(1 —ed)*(1 — e) + eq(l — ed)} 7
P2-1,- = 6(1 - G)Qmileinsys)\ + (1 — E)ansysﬂefnsysk

X {2(1 —eq)’em +eq(l — ed)} , (3.58)

where the superscript + indicates whether the single excitation is registered in the
bright (D) or in the dark (D_) detector of the monitoring line. Similarly, we have
that the probability that Bob sees a single photon detection in temporal mode 2/
only is given by

pary = €(1 — €)™ e d (1 — €)M e ™A
X [263(1 —em) +eq(l — ed)} ,
par— = €(1 — €)™ e d 4 (1 — )2 pyepe

X {26(216110 +eq(l — ed)} . (3.59)

The case where both signals were generated in the same state |«, 0) is completely

analogous. One only needs to interchange (3.58) and (3.59).
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Finally, let us consider the situation where both signals are prepared in a

different quantum state. In this scenario the probabilities are given by

Pa—14 = Pauy = €(1 — )" e 4 (1 — €)M gyepe”

1423 —2
X l?ed(l —eq)(1—en) + —1—€;€d17 (3.60)
and
P21-1,— = P21,— = €<1 - 6)2mileinsy5)\ + (1 — E)ansysﬂefnsys)‘
1+ 22 —2
XF%ﬂ—wkm++6§eﬂ. (3.61)

3.3.4 Simulation results

For simulation purposes, we consider that Bob’s detectors are identical with a dark
count rate of 10~7. The channel model includes an intrinsic error rate of 1% in
the data line together with an additional misalignment in the monitoring line that
reduces the visibility to 99%. We study two different scenarios: (a) the case where
all different m-signals blocks share the same phase, and (b) the scenario where
each block is phase randomized. The resulting lower bounds on the secret key
rate per pulse, R,,/(2m), are illustrated in Figure 3.5. For comparison, this figure
includes as well a lower bound on the secret key rate for a coherent-state version
of the BB84 protocol with and without phase randomization [61, 62]. For a given
total system loss, i.e. including the losses in the channel and in Bob’s detection
apparatus, we optimize the lower bound over the respective signal strength a of
Alice’s source which is of order 0.1. As expected, we find that case (b) performs
better than that where all blocks share a common phase, since the signal states are
less distinguishable for an eavesdropper without a global phase. We obtain that
the tolerable system loss for the COW protocol is, respectively, ~ 19.5 dB (a), and
~ 22.6 dB (b). The bit error and visibility at these cutoff points are, respectively,
~ 3% and ~ 96% (a), and ~ 5.3% and =~ 93.3% (b).

Our simulations reveal that a main limiting factor in DPR-QKD seems to be
the dark count rate of Bob’s detectors. For given experimental parameters, there
is an optimal finite block size that allows a maximum tolerable total system loss.
If one increases the block size further this does not translate into an improved
lower bound or distance. This is due to the fact that, in the high loss regime, large
sized blocks suffer from a higher dark count probability per block than smaller
sized blocks, and this reduces the achievable secret key rate. A similar effect was

observed in the security analysis for the differential-phase-shift protocol with true
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single photon sources [38]. For a dark count rate per pulse of 10~7 the optimal
block size in the COW scheme turns out to be m = 3, i.e.6 optical pulses. Also,
this figure shows that a coherent-state version of the BB84 protocol without decoy
states can deliver higher key rates per signal than the analyzed COW protocol
assuming the same channel. The reason for this might be threefold: (1) the small
optimal block size in the COW scheme; (2) considering blocks, it can be shown
that certain multi-photon pulses are completely insecure; (3) most importantly,
while in the BB84 the phase error is measured directly, in the COW protocol it

has to be estimated.

3.3.5 Conclusions

We have presented a generic method to prove security of practical DPR-QKD
against general attacks. With the explicit example of a variant of the COW
protocol, we have shown that these schemes are indeed secure for certain distances
at given rates. Its performance, however, seems to be less robust against practical
imperfections than originally expected.

To further improve the lower bounds shown in Figure 3.5 there are several
alternatives. Since a main limitation seems to come from dark counts, one may
consider security in the fully calibrated device scenario where these errors are not
attributed to Eve. As a quantitative bound on the performance of this scenario
we investigated the case of a zero dark count rate, in which all bounds shown in
Figure 3.5 shift by about 3 dB, though the difference between the COW and the
BB8&4 protocol remains. Additionally, one can evaluate different announcements in
a similar spirit like the SARG protocol [63]. We considered different declarations,
but unfortunately none of them enhanced the resulting rate. Another possibility
is to include, for instance, an extra monitoring line on Bob’s side to additionally
check the coherence between subsequent pulses. The state distribution part of this
protocol is then very similar to the original COW scheme with an additional decoy
signal composed by two vacuum pulses [64]. This hardware change improves the
maximum tolerable system loss by about 1 dB.

Another hardware change might be to include additional phase differences in
the signal stream, such that the signals states get closer to the one used in a BB84
protocol. Finally, one may ask whether different security techniques might provide
better lower bounds. For instance, one could consider more valid detection events
per block. This needs however much larger block sizes such that one obtains at all
a reasonable fraction of two or more click events in the long distance limit. Another

alternative would be to bound the rate by the individual phase errors, i.e. directly
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using (3.22). This could give a benefit if, for example, bits at the boundary are
much easier to infer by Eve than bit values originating from events well inside the
block. Clearly another option would be to abandon the block idea. However even
in this case Eve could always attack the signals block-wise. Though a coherence
measurement across blocks would then reveal the eavesdropper, any coherence
measurement within would be still fine. Hence considering only an average visibility
this effect will become less and less important. All these alternatives definitely

deserve further investigations, but we do not expect a dramatic improvement.
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Figure 3.5: Lower bound on the secret key rate given by (3.23) per pulse on a
logarithmic scale (base 10) vs. the total system loss in dB for the COW protocol
illustrated in Figure 3.2 using signal blocks carrying m bits of information (i.e.
2m optical pulses) in the security proof. The upper figure corresponds to the case
where all blocks of signals share a common phase, while in the lower figure each
block is phase randomized. For comparison, we include a lower bound on the secret
key rate for a coherent-state version of the BB84 protocol [3] with and without
phase randomization [61, 62]. We consider three main errors: an intrinsic error rate
of 1% in the data line, an additional misalignment in the monitoring line reducing
the visibility to 99%, and a dark count rate of 10~7 for each detector. Moreover, in
the lower figure we assume n., = 2.









CHAPTER 4

QUANTUM RANDOMNESS GENERATION

4.1 Randomness from different levels of charac-

terization

Figure 4.1: Generic setup of quantum randomness extraction. The authorized party
inputs z and receives the outcome ¢, whose randomness one wants to guarantee
with respect to an adversary Eve. Inside the box, the role of z consists in selecting
a possible measurement M, to be performed on a state p, and c is going to be the
outcome of that measurement. Various scenarios can be considered based on the
power given to Eve and the level of characterization that the authorized party has
of her devices.

The generic setup for quantum randomness is sketched in Figure 4.1. As
explained in the caption, the goal of the authorized party is to certify the randomness
of the outcome ¢ with respect to Fve’s knowledge. There is a priori place for a

third party, the provider, who may have produced some of the devices but has no
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interest in learning ¢. A scenario will be defined by the power given to Eve and
the level of characterization of the devices. We address them in this order.

For definiteness, we focus exclusively on the case of measurement independence:
namely, we assume that the state to be measured p and the choice of the mea-
surement z are fully uncorrelated in each run. It is remarkable that even this
assumption can be partially relaxed, giving rise to the possibility of randomness
amplification [32, 33, 39, 65-69]. However, our results in Section 4.2 show that
any Bell-based randomness amplification protocol cannot amplify arbitrary input

source.

4.1.1 Scenarios for quantum randomness
4.1.1(a) Classes of adversarial power

Throughout this section, we are going to assume that quantum theory holds; in
particular, we don’t discuss the possibility of certifying randomness against an
adversary limited only by no-signaling [30, 32, 33, 66, 67, 70]. The power given to

Eve can be divided in three main classes:

Class (I) Eve is outside of Alice’s laboratory. Because of the Kerchhoff-Shannon
principle (one should not look for security in hiding details of the hardware
or the protocol), we assume Eve has knowledge of the experimental setup
but cannot influence it. Eve may know in each run which quantum state
enters the box, and which measurement is used (not only the set of possible
measurements). Her description of both state and measurements may be
better than that of both Alice and the provider: for instance, she may be able
to describe the state as pure in each run by knowing which decomposition
of a possible mixture is being used. Since the choice of measurements
in each run is known to Eve, we speak of randomness generation. We
can define two subclasses (a) and (b), according to whether Eve does not
(classical side information) or does hold (quantum side information) a possible
purification of the state in a quantum memory (in the literature on quantum
cryptography one finds also intermediate situations between (a) and (b),
the so-called bounded-storage models [71] and noisy storage models [72]).
Because quantum theory is no-signaling, holding a purification does not allow
Eve to change the state p, but may give her more guessing power since she
will be able to steer towards a specific decomposition (by performing a specific

measurement on her reduced state).
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Class (II) Eve is a party inside Alice’s laboratory. In other words, we can allow Eve to

Class (III)

distribute the state, while giving her only classical, though perfect, knowledge
about the set of possible measurements. If Eve is allowed to know the choice
of measurement in each run, she could use her power to distribute a state
that gives her a deterministic outcome (and measurement independence
is violated). In other words, randomness generation is impossible for an
adversary in this class. To be compatible with measurement independence,
Eve is not allowed to know which measurement is being used in each run, and
we speak of randomness expansion where an initial seed of randomness with
respect to Eve must be required. We can again define subclasses (a) and (b)
as above. Class II(b) is a natural analog of the entanglement-based scheme
in which quantum cryptography can be proven “unconditional security”: as
such, most papers on quantum randomness have considered it [29-31, 73].
This class is natural in the case where Alice holds two subsystems situated

in secured, but possibly distant locations.

The maximal class is that in which Eve is the provider, namely she prepares
both the measurement devices and the state: the only power left with Alice
is the choice of z in each run. The claim is frequently made, at least in
semi-popular accounts, that quantum physics could provide security against
an adversarial provider. The correct statement is that one may be able to
certify the quantumness of the process that generates ¢, typically in the case
of a loophole-free Bell test. However, an adversarial provider would certainly
find a way to hide a transmitter in the devices, with the task of leaking out
the values of ¢ at the end of the protocol, or may employ attacks discussed
in [74]. Therefore, however certifiably quantum the process that generated
the outcomes may have been, there cannot be any randomness with respect
to an adversarial provider. So we won’t consider this class any longer in this

thesis.

A further point worth reiterating is the amount of randomness needed to

generate the seed z. What must be guaranteed is measurement independence, i.e.

the choice of z must be “random” with respect to the choice of the state in each run,

and vice versa; while the randomness we want to extract must be unpredictable

for Eve. Therefore, if one works in Class I(a), no randomness with respect to Eve

is required in the seed: even if Eve knows z, she cannot adapt the state to it. One

can speak of randomness generation [75]. On the contrary, in Classes I(b) and

I1, since Eve steers or prepares the state, the inputs z must be generated with a

process that is a priori guaranteed to be unknown to Eve. In other words, in these



4.1. RANDOMNESS FROM DIFFERENT LEVELS OF

CHARACTERIZATION 45
Class I Class 11 Class III
FEve... has no access to the devices | distributes the state | prepares the devices
Subclass (a) randomness
holds classical side information generation randomness no
expansion randomness

Subclass (b) randomness
holds quantum side information generation

Table 4.1: Randomness protocols in presence of measurement independence with
different classes of adversaries. The gray cell corresponds to the trusted provider
assumption, which describes the class of adversaries considered in this work.

classes there is no randomness generation, but only randomness expansion — and,
after a series of partial results [29, 75, 76], it has been proved that such expansion
can in principle be unbounded [30].

Finally recall that we are assuming strict measurement independence. If partial
measurement dependence is taken into account, one would have to refine the
definition of these classes: for instance, by specifying whether the dependence is

introduced unwittingly by the provider or maliciously by Eve.

4.1.1(b) Levels of characterization of the devices

The second defining feature of a scenario is the level of characterization that Alice
has of the working of her devices. We sketched it in the introduction, now we can

be more precise:

e The tomography level of characterization usually means that Alice knows the
behavior of her devices as well as Eve does. This is what we shall consider
in this paper. Of course, in the vast literature on quantum tomography, the
possibility of partial knowledge of the devices has been considered [77-80], so
one could refine this level of characterization in several sublevels. In all cases,
though, it is assumed that Alice knows exactly which degrees of freedom are

relevant to the measurement (polarization, spin, quadrature of a field...).

When this trust in the characterization is unwarranted, a Class II Eve may
successfully hack the devices. In particular, Eve may know that some degrees
of freedom, others than the ones Alice is aware of, play a role in the physical
process, and may thus influence the behavior of the boxes by addressing
those degrees of freedom. For instance, this was the case in the series of
experiments that hacked quantum cryptography devices by exploiting the
physics of photodetectors [81-83]. Similarly, a Class I Eve could also take
advantage of her knowledge about what happens in additional degrees of

freedom if a setup happens to use them.
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o The device-independent level of characterization means that Alice does not
rely on a description of her devices but only on the observed statistics. Since
the statistics on a single quantum system can always be reproduced with
classical randomness, device-independence requires a loophole-free violation
of a Bell inequality. Specifically, it is crucial to close the detection loophole,
while the no-signaling condition may be justified in other ways than by
arranging spacelike separation. In any case, Alice may actually hold both
measurement devices in her lab. Nevertheless, for convenience we shall
speak of Alice and Bob when it comes to device-independence. We also note
that, as it happens for measurement independence, the strict no-signaling
condition may be partially relaxed, but we don’t consider this relaxation in
this paper [84].

e One can define intermediate levels of characterization, collectively known as
semi-device-independent. For instance, in the context of quantum cryptogra-
phy, the idea of measurement-device-independence has been put forward after
noting that hacking usually involves detectors (which are therefore better
left untrusted) rather than sources (which may therefore be trusted) [26].
Other works relax the tomographic requirement of perfect knowledge of the
degree of freedom, but assume an upper bound on the dimensionality of the
systems under study [85]. In this paper, we shall consider explicitly the case
called one-sided device-independent, in which entanglement is certified by two
devices, Alice’s being tomographic and Bob’s unknown; this case was studied

for quantum key distribution [86].

4.1.1(c) Assumptions of this Section

)

In this paper, we consider Eve in Class I(a), which was called “trusted provider’
in previous works [87]. In real life, this class describes randomness generation in
an experiment performed by a trusted laboratory: therefore, even if it does not
explore the ultimate limits of quantum power, it is arguably relevant for physics [88,
89]. The randomness is guaranteed against any Eve that is not involved in setting
up or running the experiment. Furthermore, Eve not being in the lab, she could
hold the purification only if those degrees of freedom were “radiative” and she
had the power to collect them: this, together with the state-of-the-art of quantum
memories, makes it very reasonable to restrict to subclass (a) at least for a few
years to come.

Also, we consider only the asymptotic limit of infinitely many runs where each

run is assumed to be independent and identically distributed (i.i.d.) according to
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some strategy of Eve. Corrections due to finite samples, and extension to non-i.i.d.

scenarios can in principle be done with the techniques in [75, 90, 91].

4.1.2 Computing randomness for different levels
4.1.2(a) Definitions and notations

Let us introduce the basic notions to study randomness (cf. [92]). The authorized
party can input z € {1,...,m} in the box and obtain output ¢ € {1,...,d} (see
Figure 4.1). In the asymptotic limit of infinitely many runs, she can reconstruct
the statistics P(c|z). This statistical distribution may reflect either accidental
randomness (due to ignorance of some details of the state or the device) or intrinsic
randomness, due to the unpredictability of the outcome of quantum measurements.
We are interested in the latter because for Eve, in any of the Classes defined above,
there is no accidental randomness.

In this section, the states |¢)) or p (single- or bi- or multi-partite) refer to
everything that is in the box, so that the measurements can be assumed to be
projective. When the box is fully characterized, it becomes possible to distinguish
between the system and a possible ancilla used for POVM measurements. We
analyze the randomness of this case in 4.1.4(b)

If the state is pure, there is no accidental randomness for von Neumann
measurements. Then, the randomness of ¢ obtained from a given z is quantified by
the probability G(|v) , z) of guessing the outcome correctly. Since the best strategy

for guessing is to guess the most probable outcome, this guessing probability is

G([¢), z) = max P(c|z, [¢)), (4.1)

where P(c|z,|1)) is the probability of obtaining the outcome ¢ given a measurement
z on quantum state |¢). If the state shared by Alice and Bob is mixed, we have to
separate the intrinsic randomness from the accidental one. For measurement z, the

average guessing probability that quantifies intrinsic randomness is then given by
G(p,z) = max > q\G([¢n),2), (4.2)
{Cb\ﬂﬁ)\} A

where p = >, ¢ [¥2) (¥5], and the maximization is taken over all possible such
decompositions.
For the device-independent level of characterization, Alice cannot write down a

quantum state but needs to use only the observed probability distribution P(c|z).
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Then the guessing probability that quantifies intrinsic randomness is

G(P,z) = G 4.3
(P, 2) A (p, 2), (4.3)
where the maximization is taken over all quantum states p and measurements M
compatible with the probability distribution P.

In all these cases, the number of random bits that can be extracted per run is

quantified by the min-entropy (c.f. the preliminary chapter)
Hyin(G) = —log, G. (4.4)

Finally, one may consider extracting randomness out of several settings, rather
than a single one. If Eve is allowed to keep a purification of the state [subclasses
(b)], upon learning which settings have been used in a given run, she can steer the
state to the decomposition that maximizes (4.2) for those settings. In this case,
therefore, there is no advantage for Alice to use several settings: she should just
stick to the setting z that gives the smallest GG. If Eve does not hold a purification
[subclasses (a)], however, using several settings is advantageous [87].

Now we are going to explain how randomness can be computed in each of
the three levels of characterization of our concern. For the device-independent
level of characterization, randomness generation against a Class Ia Eve have been

presented in [87, 93], so we don’t repeat this here.

4.1.2(b) Tomography level of characterization

For the case of tomography level of characterization, we are on a ground familiar for
most physicists. If a qubit is prepared in the state |[+z), to say that a measurement
of o, provides a perfect random bit is just a rephrasing of elementary textbook
knowledge. The example of a qubit prepared in the maximally mixed state 1/2 is
only slightly more involved: then, a measurement of a single observable (say) o,
does not guarantee any randomness, because the state may have been prepared by
mixing eigenstates of that operator, in which case Eve would have full knowledge of
the outcome of each run. However, the uncertainty relations provide a way around
it: if in each run Alice can choose to measure either o, or ., no preparation can
be an eigenstate of both, therefore there is randomness with respect to Eve as long
as she does not hold a purification (see [94] for how uncertainty relations must be
modified if Eve does hold a purification).

Now we provide a general recipe to compute the intrinsic randomness for

projective measurements; the case of POVMs will be discussed in 4.1.4(b).
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Since the state p can be reconstructed and is therefore part of the observed
data, we need to perform the maximization of (4.2). In the decomposition, it is not
a priori obvious how many quantum states |¢)) are to be considered. Fortunately,
the argument used in [87] can be transposed directly from probability distributions
to density matrices, so it is sufficient to consider one state per outcome. Explicitly,
for a projective measurement M = {Il.,c = 1,...,d} with d outcomes, the optimal

guessing probability reads

G(p, M) = max |> gymaxtr(|in) (¥al L) | - (4.5)
{QAW)\} A ¢
Define the subnormalized state p. = Yxen, @r [¥2) (2] where A. = {A € A :
arg max, tr(|vy) (Y| Ty) = ¢} forms a partition for A, then

Glp, M) = max 3 tr (peIl) (4.6)

under the constraints that p = > _.p., p. > 0. Like in the case of device-
independence, this maximization is a semi-definite program (SDP), the only
difference being that the matrix that must be positive is the quantum state
itself, not a moment matrix of the observed statistics. Moreover, here the SDP
solves the problem of interest directly, rather than a relaxation thereof. Given the
tomography level of characterization, Alice can choose to extract randomness from
any measurement, and will choose that for which the guessing probability in (4.6)
is the lowest. Hence, for a given state p the optimal randomness extractable from

measuring a single von Neumann measurement on this state is
G(p) = min G(p, M) [one measurement] (4.7)

with the minimization is over the set of possible projective measurements on
the system. Further, when Eve is not allowed to hold a purification, it may be
advantageous to extract randomness from more measurements. If measurement

M, is chosen with probability ¢,, the average guessing probability will be

m
G(p,{M.}.) =max > > q.tr (pcl'[;) =max Y _tr(peMc), (4.8)
{rc} 5200 {rc} 5
where we have denoted M¢ = >7" | ¢.II7 ; the constraints are as above, and now
C = (1,62, ...y C), 80 the maximization now involves a decomposition on d™ states.
The fact that Eve cannot steer Alice’s mixture is explicit in that the decomposition

p = > ¢ pc is independent of z. As above, Alice is allowed to choose the set of
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measurements that minimizes the guessing probability, so

G(p) = ?1\141% G(p,{M.}) [more measurements]. (4.9)
Notice that unlike the optimization (4.8) which is an SDP, this last optimization

over the choices of measurement settings does not appear to be an SDP.

4.1.2(c) One-sided device-independent level of characterization

The one-sided device-independent level of characterization, to our knowledge, has
never been considered before in the context of randomness. The scenario is very
similar to steering [95, 96]: the setup is actually the same, but the figure of merit
is different. Indeed, instead of having Alice to convince Bob that she can steer
his state, we just let them perform their measurements locally and ask whether
randomness can be extracted from their outcomes.

Like before, we consider first the amount of random bits that can be extracted
from the outcomes ¢ = (a,b) of a single pair of measurements z = (z,y) with
A, = {II*} and B, = {II}} denoting Alice and Bob’s local measurements. The
guessing probability is analog to (4.3) and given by

G(P z) = (p,Ag,lgﬁ%PG(p’ A, B, = (pc’ArgaBz()_}ch: P.(c|2) (4.10)
where p = Y. p., and P.(a,blz,y) = tr(pJI* ® II}). The constraints for the
optimization are the observed statistics P(a, b|x,y), and the knowledge of the state
and measurements on Bob’s side.

Such optimization is very similar to the one used for the device-independent level
of characterization in [87, 93], where one can use the hierarchy introduced in [49]
to provide upper bounds. In that case, from the set of local measurements and
depending on the hierarchy’s level, one forms a certain matrix I'. whose elements are
expectation values with p. of products of operators of the form: (M, ®1), (1& Mp),
(May® Mp), (MAM, 1), (1@ MpMpy), (MaM, @ MgM}), etc, where My, M,
and Mpg, My are operators from the set of Alice’s and Bob’s local measurements
(union the identity), respectively (see [49] for a detailed description of this matrix).
Some elements of I, are related to the P.(a, b|x,y) mentioned above, while others
are extra unknown variables in the optimization. By constraining I'. to be positive
semi-definite and the sum over ¢ of P.(a, bz, y) to be the observed statistics, one can
bound the guessing probability in the device-independent level of characterization.

Now in the one-sided device-independent case, we impose further constraints on

the elements of I'. based on the knowledge of Bob’s measurements. Namely, we use
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the algebraic relations satisfied by these operators to constraint the moments of I'.
which involve them. For instance, if By = (B; + B,)/v/2 or B1By = —B, By, the
relations (OB3) = ((OB;) + (OBy))/v2 or (OB, B,) = —(OByB;) are imposed
for all product of operators O. This reduces the number of independent variables
in the optimization. These relations are imposed on each ¢ in (4.10), as they should
hold for each of the p. in the decomposition. Note that we do not directly use the
knowledge of Bob’s local state to further constraint the optimization. We thus
obtain an upper bound on the guessing probability.

Just like in the other levels of characterization, one could consider extracting
randomness from more than one measurement here, if Eve does not hold a purifi-
cation of the measured state. The optimization problem can be set up in a manner

analogous to what we have been considering.

4.1.3 Comparison of the yields of three levels

In order to compare the yields of the various levels of characterization, we need a
common set of data. We assume that the data come from measuring a two-qubit
Werner state py = V' [®T) (&F| 4 (1 — V)1/4; Alice measures either A; = o, or
Ay = 0., Bob measures one of the four By = 0,, By =0,, By =0, or By =0_
with o4 = (0, % 0.)/v/2. These measurements can lead to non-trivial assessment
for all the level of characterization we are interested in. Indeed, (A, As; By, Bs)
can be used for partial tomography and identify |®*) uniquely when V = 1;
for device-independence, (Ay, As; B3, By) violate the CHSH inequality for V' >
1/v/2 and certify |®*) for V = 1 because CHSH = 2/2 [97]; for one-sided
device-independence, a similar argument holds for (A;, As; By, By) and the steering
inequality Sy defined in [98]. Anyway, in what follows, the amount of randomness
is computed directly from the observed statistics, without processing them into a
specific tomography protocol or inequality.

As mentioned before, we focus on the randomness generated by a single pair
of setting. In the device-independent case, we bound the amount of random bits
using the second level of the hierarchy [49], as described in (4.3) (see [87, 93]
for more details). For the one-sided device-independent case, we use the method
described in 4.1.2(c) at the same level of the hierarchy, together with the algebraic
relations generated by Bob’s measurements (including Bs = (B; + By)/v/2, By =
(By — By)/v?2, BiBy = —ByB,, B3By = —B,Bs, etc.). Finally, for tomography
characterization, we compute the amount of randomness based on (4.8), as explained
in 4.1.2(b).
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Figure 4.2: Amount of randomness extracted H,,;, from the outcomes of the setting
pair As, By from three different levels of characterizations.

The main result we obtained for three different levels of characterization is
shown in Figure 4.2. As expected, for any visibility V' the amount of randomness
increases with the level of characterization of the devices, with the tomographic
level giving the largest amount of randomness.

Note that for all three different levels of characterization, two bits of randomness
can be extracted when V = 1. In the device-independent case, this is more
randomness than the ~ 1.23 bits that can be certified from the maximal violation
of the CHSH inequality [28]. To understand this difference, we compare the amount
of randomness that can be certified in this scenario from different constraints.

Namely, we consider the randomness that can be certified from the correlations
above, the one that is certified from an optimal violation of the CHSH inequality

with the same state, and from an optimal violation of a modified CHSH inequality
CHSH3 = (A1 By) + (A1Bs) + (AaBy1) — (A Bs) + (A1 Bs) < 3. (4.11)

These last two computations are performed by fixing the value of the inequality
rather than the value of the correlations in the corresponding SDP. The result is

shown in Figure 4.3: 2 bits of randomness can be extracted indeed from CHSH;
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when the pair of perfectly uncorrelated measurements 74, Xp are used. However,

no such measurements are available when CHSH is maximally violated.

1.8 | - - CHSH .
-~ Modified CHSH |
1.6/ | — Full Probability i

min
—
T

0.8-

0.6

0.4r

0.2 s |

00.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Visibility

Figure 4.3: The amount of randomness computed with different constraints: CHSH,
CHSHj3, and full observed statistics. Hy,;, of CHSH corresponds to the setting pair
As, B3, while others correspond to As, Bj.

Note also that in Figures 4.2 and 4.3, randomness can be extracted in the
device-independent case only provided that a Bell inequality is violated, i.e. when
V > 1/4/2 for CHSH and V > 3/(2y/2+1) = 0.78 for CHSH3 *. In other words, no
randomness is found when a local hidden variable model can produce the observed
correlations.

In the one-sided device-independent case, however, randomness can be extracted
from all Werner state, except the completely mixed state. Yet, it is known that
Werner states are non-steerable for V' < 0.5 [95], i.e. such states admit a Local
Hidden State (LHS) model. Thus, our result shows that one can certify randomness
in one-sided device-independent context even in presence of a LHS model.

This can be understood by the fact that a local hidden state model only ascribes

fixed outcomes to the measurement of one party. The other one, Bob in our case,

1For Wehner state, the value of CHSHj as a function of the visibility is V' (2v/2+1) + (1 —V)0.
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receives a quantum state to measure. However, Bob enjoys in this context a
tomographic level of characterization of his system. He can thus always extract
some randomness from this state. This is the case unless all the quantum states
given to Bob can all be chosen in the same basis, as possible when V' = 0.

Note that randomness can be extracted for all V' > 0 in the tomographic level of
trust as well. However the randomness also disappears there when V' = 0, i.e. when
the Werner state is white noise. In the next section, we discuss how randomness

can be extracted from the white noise by using several measurement settings.

4.1.4 More results on the tomographic level

4.1.4(a) Randomness from single-qubit white noise and uncertainty

relations

Among the many possible illustrations of randomness in the tomographic level of
characterization, we consider the case of randomness extraction from a single qubit
in the maximally mixed state p = 1/2, against an adversary of Class I(a). We
recover known results on uncertainty relations and show numerical evidence for
more general situations.

As mentioned at the beginning of 4.1.2(b), for a single measurement (equa-
tion (4.7)) one has G(1/2) = 0: for whatever measurement being performed, the
mixture may have been prepared by mixing the two eigenstates of the measurement
and this information could be available to Eve. So to bound the guessing capability
of Eve, we need to consider more than one measurements. We thus refer to (4.8)
and (4.9) from now onwards.

Let us denote {Mj}r—1 .~ the N projective measurements with outcomes £1
on a qubit which is characterized by their Bloch vector 7. For any string of values

C = (c1,...,cn) € {=1,+1}¥, the effective measurement operator is

l+7c-0 N
MC = “f’TQZC’O' with T_ic = Z qi. Ck T_ik . (412)
k=1
With this notation, we have
1 —
G(1/2, (M) = Lmaxelic] (4.13)

2

Indeed, the r.h.s. is obviously an upper bound, since it is the largest of the
eigenvalues; and it can be achieved by the decomposition 1/2 = L |4+7g) (+7is] +
1 |—iig) (—7ia| where C' is defined by |fig| = maxc |fic|. Finally, we are allowed to

choose the N most favorable measurements, i.e. (4.9) becomes G(1/2, N) = 115
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for

= min max || . 4.14
IN {My,q} C | C| ( )

Now, since |7ix| = 1, we have

fcl? =g+ D (crawii) - (crawiin) . (4.15)
k kAk!
Notice that the second term can always be made non-negative by the maximization

over C'. Indeed, it follows from

Yo D (ewqiin) - (Cwquiiy) =0 (4.16)

CLyeCN kAR

that maxc >y (crquik) - (Crrquiin) > 0. Therefore, in the minimization, the best
choice would consist in choosing all the vectors mutually orthogonal, but this is
possible only for N = 2, 3. In these cases, it is simple to finish the optimization:
we find g, = 1/4/2 ~ 0.7071 and g5 = 1/+/3 ~ 0.5774. Notice that, translated in

min-entropy, the case for N = 2 bound saturates the uncertainty relation for two

1+1/\/§>
% .

To go further, we resort to numerical optimization to obtain upper bounds

min-entropies, equation (9) of [99], namely Hyin(0.) + Humin(0z) > log(

on gy. For N = 4, the optimal choice of measurements is found to be {(o,,1 —
3q), (01,q), (02,q), (—03,q)} where the vectors 7 23 are 120 degrees apart from
each other in the z —y plane; knowing this geometry, one can finish the optimization
analytically to find g4 = \/m ~~ 0.5547 for ¢ = 3/13. For N =5 and N = 6, we
find g5 ~ 0.5422 and gg ~ 0.5270. This trend suggests that, when N — oo, one has
gN — % This would be the case if the optimal choice would consist in spreading
the 77;, uniformly in the half-sphere 2. Indeed, parametrizing the measurement
Bloch vector using polar coordinates 7i(6, ¢) = (sin# cos ¢, sin sin ¢, cos ) and

using the Haar measure on half of the sphere dfd¢ sin 6/2m we have

no = /0 de do o (sin @ cos ¢, sin 0 sin ¢, cos ) = (0,0,1/2). (4.17)

4.1.4(b) Randomness from POVMs

As we have just seen and also mentioned in 4.1.2(b), no randomness can be
extracted from a single projective measurement on the maximally mixed state,

because Eve may know the decomposition in the eigenvalues of that measurement.

2This guess comes from the intuition that for all measurement configuration {Mjy,qx} the
inner maximization over C occur at ¢y = ¢ = ... = ¢y = +1.
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The reasoning does not seem to apply to POVMs, though: even knowing a pure
state, in general Eve cannot guess with certainty the outcome of a non-projective
POVM (for instance, the state |¢)) and POVM M = {1/d,1/d,...,1/d}). Is it
therefore possible to extract randomness from a single POVM on the maximally
mixed state? The answer is, yes, but the origin of the randomness makes the
problem trivial. Indeed, because of Neumark’s theorem, a POVM is nothing else
than a projective measurement on the system and some additional degrees of
freedom. We are going to show that a POVM on the maximally mixed state cannot
provide more randomness than that present in the ancilla — thence it is pointless
to perform the POVM for randomness purposes, one could have measured the
ancilla directly.

To see this, let us first denote the system’s dimensions by d,. The n-outcomes
POVM elemenets are written as {IL.}.—1,

noise, the probability for Eve to guess the outcomes correctly is

»- Given that the state we have is white

G(1/dy, {11}) = max Y gt (pelL,) (4.18)

{aclve)} c=1
where 1/ds = Y, q.p. and, as previously, p. groups all the states in the decomposi-
tion for which max. tr[pll.] = tr[pIl.]. Since the maximization in (4.18) is taken
over all possible decomposition, any specific decomposition provides a lower bound.

In particular, we can choose

I1, tr (I1,.)
= o= —— 4.19
Pe= L) ¢ 0 (4.19)

which indeed gives >, q.p. = 1/ds. Then
2 tr (IL,) I1, "1 5

G(1/d,, {11.}) > t .| =) —tr(llZ) . 4.20
(1) > 3 M e[ e <3 e () (1.20

Each II. can be written as its spectral decomposition
. = Z He,k |Ke) (Kel (4.21)

where r, = rank(Il.) and j. are the eigenvalues of II., with |k.) (k.| to be the

corresponding projector. Substituting the spectral decomposition into (4.20) gives

n n T

> () = 733, (4.22)

c=1""8 S c=1k=1
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But using the Cauchy-Schwarz inequality, we have

[i )3 ui,c] [Zn: )3 12] > [i )3 uqk] 2

c=1 k=1 c=1k=1 c=1 k=1
that is,
n re 2
DD DI (1.23)
=1 k=1 2e=1Te

because Y0 D1 fek = 2w tr (Hk) = ds. By substituting this inequality
into (4.22), we find finally the following lower bound on the guessing probability:

ds
G(1/ds, {1le}) > = (4.24)
c=1"'c
that is, the upper bound on the min-entropy
Hyin(1/ds, {11e}) < log(D_rc) — logds. (4.25)

In the tensor product implementation of the POVM, which uses an ancilla of
dimension d,, we have ), r. = dsd,; whence the maximum min-entropy is logd,,
which comes solely from the ancilla. In the direct sum implementation, >, 7. =
ds + dj, is the minimum total dimension (system + hidden subspace) required to
implement the POVM [100]: since log(ds + d) < logds + log d,, the min-entropy
is upper bounded by logd,. In both cases, we have proved our claim: all the
randomness that can be obtained in a POVM on the maximally mixed state can
be ascribed to the additional degrees of freedom used to implement the POVM.
Finally notice that, as far as our proof goes, this conclusion applies only when the
system is in the maximally mixed state: it remains an open problem whether, in
other cases, POVMs may extract more randomness from the system than projective

measurements.

4.1.4(c) Randomness from pointer measurements

The previous observation on POVMs extends to another case in which additional
degrees of freedom are used: that of measurement by coupling the relevant degree
of freedom to a pointer. The best known textbook example is the Stern-Gerlach
experiment. More common nowadays is the measurement of the polarization of a
photon: the photon is sent on a polarizing beam-splitter (PBS), the two output
ports of which are correlated with orthogonal polarizations. It is by detecting
in which beam the photon is (pointer) that polarization is inferred. Now, if one

sets up an experiment to extract randomness from the polarization qubit [101,
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102], the same setup provides another degree of freedom, whose state must be very
close to pure if the measurement has to make sense at all: indeed, the beam must
come from a well-defined direction for the PBS to work as expected. Thence, in
principle one can extract more randomness by ignoring polarization and sending
the photon on a normal beam-splitter [103, 104]. We stress that this argument
bears on the amount of randomness and on simplicity “on paper”: polarization
may be preferable to deal with other practical concerns [101].

For other qubits, things may be more subtle. Consider for instance the probing
of an atomic qubit with a laser beam: a laser beam alone can be used to generate
randomness [105], but with a different detection scheme than the one used in
probing atomic excitations; so it may not be immediate to suggest that one should
ignore the atom and extract randomness directly from the laser. For yet other
pointer measurements, it may not even be feasible to measure the pointer in
a complementary basis (certainly it would be challenging for the Stern-Gerlach
setup).

It is not our aim to propose concrete schemes to extract randomness at the
tomography level of characterization. Rather, the bottom-line message could be
put this way: whenever a quantum degree of freedom is measured by coupling it
to a pointer, the pointer is usually in a well-defined quantum state. So, if the goal
is to extract randomness, it is worth considering the possibility of getting it directly

from the pointer.

4.1.5 Conclusions

In this work, we have quantified the randomness that can be extracted from a given
quantum device with the device-independent, one-sided device-independent, and
tomographic level of characterization. Specific tools were introduced to perform this
quantification in the one-sided device-independent and tomographic cases. For the
latter, we have also shown that not all conceivable procedures to extract randomness
are actually relevant: in particular one must be careful whenever ancillas are
involved since the randomness may just come from them rather than from the
system under study. We have focused on the minimal class of adversarial power,
relevant for the study of implementations performed by trusted experimentalists; a
similar study could be conducted for randomness extraction against more powerful
adversaries.

In the next Section, we study the consequences of allowing measurement depen-

dence, which we do not assume for the results of this current Section.
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4.2 The role of randomness in Bell tests

The violation of Bell inequalities have been used to certify important quantum
information properties in a black-box scenario under minimal assumptions. This
idea of “device-independent” certification started in the context of quantum key
distribution, where the violation of Bell inequalities bounds the information leaked
to the eavesdropper [27, 106, 107]; and it has been extended to various other tasks,
notably state certification [106, 108, 109], measurement certification [110], and
private randomness expansion [29, 111, 112]. Ultimately, this stems from the fact
that the violation of Bell inequalities certifies the presence of a quantifiable amount
of intrinsic randomness: indeed, a contrario, if the outcomes were predictable,
one could have predicted them in advance and the measurement could consist of
reading from a pre-existing list. This is exactly what the violation of Bell inequality
certifies as impossible (provided locality is assumed).

Unfortunately, two assumptions are left in device-independent certification. The
first is no-signaling: the choice of the measurement setting of one party should not
be known to the measurement boxes of the other parties before they produce their
outcome. This can be guaranteed ultimately by ensuring space-like separation,
although one may also trust a weaker demonstration of separation, as for instance
in [111]. The second assumption is measurement independence: the information
A contained in the boxes in each run should be uncorrelated from the choice of
the settings in that run. So far, no way of checking measurement independence
is known in a black-box scenario: the best one can do is to buy the source of A
and the devices that choose the settings from different providers, who are believed
not to be conspiring together. Alternatively, one can partly give up the black-box
scenario, characterize the devices and be confident that the relevant degrees of
freedom are uncorrelated.

It is clear that no-signaling and measurement independence cannot be arbitrarily
relaxed: if any amount of signaling is allowed, or if arbitrary correlation is admitted
between source and settings, the violation of a Bell inequality can be obtained
with purely classical resources A, so there is no hope to conclude that A contains
intrinsic randomness. However, with the aim of reducing the assumptions of
device-independent certification to their bare minimum, one can partially relax
no-signaling and measurement independence, and ask how much information must
be signaled and how much measurement dependence must be allowed for a Bell
test to become irrelevant [84]. In this paper, we focus on the latter question, the
study of partial measurement dependence (sometimes called reduced measurement

independence or reduced “free will”), which has been the object of a few recent
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studies [32, 33, 113, 114]. In particular, we consider the random source that is
required to choose the input settings for a Bell inequality and place bounds on
the min-entropy necessary to show any difference between local and no-signaling
output distributions. Note that if the violation of a Bell inequality is used in
a device independent protocol to certify the amplification or expansion of input

randomness, this source would serve as the seed randomness in the protocol.

4.2.1 Measurement dependence and its basic consequences
4.2.1(a) Measurement independence

For the sake of this introduction, we consider a bipartite Bell scenario. Operationally,
a Bell experiment consists of N apparently identical runs®, in each of which box A
receives input x and outputs a value a, box B receives input y and outputs a value
b. A measurement-setting source (henceforth source) for the Bell test supplies
the experimentalist with inputs x and y; its behavior is modeled by a probability
distribution p(xy|A). One can then estimate the statistics p(ablzy). We denote by
A the information present in the boxes in a given run.

Measurement independence, the assumption that we want to relax, is captured

by the condition
p(Alzy) = p(A) Va,y. (4.26)

Under this assumption, the observed statistics are modeled by

pa(abley) = [ plableyXp(3) di (4.27)

The specific goal of a Bell test is to assess whether there is intrinsic randomness
in the boxes, that is, in the usual terminology, to guarantee that A is not a local
variable. Mathematically, local variables are defined by p(ab|zyA) = p(a|zA)p(blyN).
It is useful to stress that, as written, (4.27) contains an additional assumption,
namely that A itself is chosen independently in each run according to the distribution
p(A). Under measurement independence, it can be proved that this is ultimately not
a restriction for Bell tests, although one has to be careful in interpreting statistics
from finite samples [90, 91, 115].

Measurement independence cannot be denied in a systematic way without
undermining the scientific method itself (if a clinical trial is to make sense, whether

each patient receives the drug or the placebo cannot depend on the any details of

3We focus on the operational description of current experiments and do not consider the more
general, but as yet abstract, case of parallel repetition, in which all the inputs are given at the
same time.
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the patients’ conditions). However, it is certainly possible to question measurement
independence in a given setup: the devices that determine the inputs x,y may
be correlated to the process that determines A\. The origin of such correlation
may be trivial, like the fluctuations in power of the city network to which all the
devices are connected; it may be due to lack of attention of the experimentalists,
who introduced unwanted connections; or it may be strongly conspiratorial, in an
adversarial scenario in which the devices come from an untrusted provider. In all
cases, (4.26) does not hold, nor does the proof that one can restrict the study to

independently-chosen .

a b

Figure 4.4: There are many different processes by which the information A in
devices A and B might become correlated with the inputs to the devices x and v,
as discussed in the text. In this illustration the processes are represented by some
external pre-existing variable p that serves to introduce the correlation. The blue
boxes represent the physical random number generators used to pick the inputs to
the Bell test.

By relaxing condition (4.26), one allows correlations between the boxes’ content

A and the choice of the settings z,y. Bayes theorem implies that

p(Mzy) # p(A) <= p(ay|A) # p(zy) . (4.28)

The first relation could be read as “the output of the source is restricted for a
given choice of settings”, the second as “the choice of settings is restricted for a
given output of the source” Neither needs to refer to a real causal relation: all is
compatible with both A and x,y being influenced by a common cause (Figure 4.4).
That being clarified, our discourse will be mostly phrased in the second way. We
shall then look at measurement dependence as reducing the probability of certain

pairs of settings. In the case where the dependence is sufficient to exclude enough
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pairs of settings, unwanted features of local variable models may be hidden. This is
the same intuition behind the power of the detection loophole; in fact, measurement
dependence is even stronger, because it may allow to exclude a single pair of settings,
whereas the detection loophole is local and excludes all pairs of settings such that
one given setting of Bob, for instance, is associated to unwanted features. This

opens a wealth of possibilities that we review rapidly next.

4.2.1(b) Effects of measurement dependence

The obvious effect of measurement independence is the possibility of faking a
violation of Bell inequalities. A Bell inequality is built on a linear combination
of p(ab|zy), whose maximal value (called algebraic limit) cannot be reached by
local variables. If, in each run, one can exclude some suitable pairs of settings in
correlation with the content of the boxes A, then it becomes possible to reach the
algebraic limit while having only local variables in the boxes.
Let us illustrate this point with the most famous Bell inequality, the CHSH
inequality
|(AgBo) + (AgB1) + (A1 By) — (A1 By)] < 2 (4.29)

with A,, B, € {—1,+1}. In order to achieve the algebraic limit of 4, one should
have Ay = By, A1 = By, Ag = By and A; = —Bj. Local deterministic points exist
that satisfy three out of these four conditions. If one wants to achieve the algebraic
limit with local variable and measurement dependence, a sufficient strategy is the
following: in each run, A is chosen among the aforementioned local deterministic
points, and the pair of settings corresponding to the unwanted condition is never
chosen [84, 113].

The fact that a sufficient amount of measurement dependence can lead to the
algebraic limit has an intriguing consequence for some inequalities. Indeed, in
generic inequalities, the algebraic limit may lie even above what can be reached

with no-signaling correlations. For instance, the tilted CHSH inequality

has an algebraic limit of 4 4+ «, but no-signaling correlations can reach only up to
4 if a <2 [92]. If measurement dependence is allowed, to the point that one pair

of settings can be excluded, then one can achieve the algebraic limit with a convex
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mixture of

(+1,—-1,-1,+1) (x,y)
(+1,+1,+1,-1) (z,9)
(+1,—1,+1,+1) together with (z,y) # 10
(+1,+1,+1,+1) (x,y)

together with

together with (4.31)

A
A
A
A

together with

where we denoted a local deterministic point as A = (Ao, A1, By, B1). If a Bell test
is run with this underlying strategy, the observed correlations will lie outside the
no-signaling polytope, i.e. are formally signaling. Obviously, this does not mean
that measurement dependence makes it possible to use entanglement to actually
send a message: in order for (say) Alice to send a message to Bob, she must be able
to choose her setting at will, which is precisely what measurement dependence denies.
At any rate, one must be careful when working with measurement dependence: the
worst case are correlations that reach the algebraic limit, not the no-signaling one
(to our knowledge, all the studies of measurement dependence so far dealt with
inequalities for which the two limits happen to coincide [32, 33, 84, 113, 114]).
The take-away message of this paragraph is that one does not have to reach the
extreme case of total measurement dependence (i.e. A determining z,y uniquely):
already with some partial amount of measurement dependence, it becomes impos-
sible to draw any conclusion from the wviolation of a Bell inequality. This has
important consequences when the source is characterized only by its conditional
min-entropy. Indeed, one of our main result will consist in deriving general bounds
for this amount (Section 4.2.3). In order to do that, we need first to recall the
definition of min-entropy and its relation to the Santha-Vazirani condition in light

of measurement dependence.

4.2.2 Min-entropy and measurement dependence

As mentioned, the source of the Bell test behaves according to p(xy|\). Measure-
ment independence implies that p(xy|\) has as much entropy or randomness as
p(zy). In contrast, partial measurement dependence means that there is some
randomness in the source, but it is less than the entropy of the distribution p(xy).
The min-entropy and min-entropy deficit Hyin(Z) — Humin(Z|A), where Z and A
are strings over some alphabet, are measures of randomness of a source, and they
partly capture the amount of measurement dependence in special cases. But note
that they are not intrinsic measures of measurement dependence (for instance,
min-entropy deficit equals zero does not imply measurement independence). If

the min-entropy is not high enough, it leaves open the possibility of excluding
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certain settings, which allows faking of Bell violations as we discussed before. This

behavior is forbidden in Santha-Vazirani sources as explained next.

4.2.2(a) Min-entropy vs Santha-Vazirani condition

We illustrate our point with an example. The chained inequality is a bipartite
Bell inequality with m settings for each party and binary outcomes a, b for both

measurements on A and B, which reads

In=pla=blz=1y=m)+ Z pla #blz,y) <2m —1. (4.32)

ze{y,y+1}

It has been used to put stringent bounds on quantum theory thanks to the property
that, in the limit m — oo, its algebraic limit I,, = 2m can be reached with
measurements on quantum states [116, 117].

Out of the m? possible pairs of settings, 2m are effectively used in the inequality.
Furthermore, there exist local deterministic points that can satisfy 2m — 1 of these
conditions. Therefore, in order to verify any conclusion based on the chained
inequality, it is enough to have an amount of measurement dependence that allows
the exclusion of only one pair of settings out of m?2. In the limit of large m, under
whichever measure, such a source is very close to a fully random source: for instance,
its min-entropy per run (defined below) is log(m? — 1), which differs from the fully
random value logm? by O(m™2). This example shows that a source, which would
presumably be considered as good as it gets in an abstract assessment, is already
catastrophic for the Bell inequality under study. Notice that this remark is not
in contradiction with the results of [32], which can be seen as proving that the
chained inequality is pretty robust to measurement dependence: indeed, in that
work, the additional Santha-Vazirani assumption was made on the source, which
implies that all the pairs of settings are possible in each run. Our argument, based
on excluding one setting in each run, does not apply.

It is now time to present the definitions we have just sketched in their suitable
formal setting. We shall consistently use the word source to stress that the source
of randomness we are interested in is the randomness of the inputs given the
knowledge of the physical process A\ or vice versa, not the randomness possibly
present in A (which would be the intrinsic randomness of quantum origin in the

ideal case).
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4.2.2(b) Formal definitions

Here we review rapidly the definitions of well-known types of sources of randomness
for the purpose of this paper, referring to [118] for a comprehensive study.
Consider a random variable Z in an alphabet Z of size d; and let Z = Z;...Zn
be an N-dit string. In our case, Z will represent the settings chosen for the Bell
test, i.e. Z = (z,y) in a bipartite scenario. Randomness being synonymous with
unpredictability, a source of randomness will be characterized by specifying what
one wants to predict and how predictable it is, given some prior information A
(supposed to be classical throughout this paper). One would then say that the

source contains randomness if (see also the preliminary chapter)

Pauess(Z|A) :=> P(A = X) Pyuess(Z|A = X) < 1, (4.33)
A

where Pyuess(Z|A = ) := max, p(Z = z|A = \). The amount of randomness is
quantified by the min-entropy

Hypin(Z|A) := —10g Pyyess(Z|A) . (4.34)

Clearly, Huyin(Z|A) > 0 implies the presence of some randomness. To someone who
does not have access to A, the source will appear to have min-entropy Hpin(Z) =
—10g Pyuess(Z) which can only be higher by the data processing inequality. Though
obvious, it may be worth stressing that Y-y P(A = X) Pyuess(Z|A = ) is not the
same as Pyuess(Z), since Pyyess is not a given probability distribution but a notation
for a procedure that picks up the maximum of a probability distribution. As an
extreme example, if Z looks uniform but the knowledge of A determines z uniquely,
one has Pyuess(Z) = 1/dY and 3\ P(A = \) Pyuess(Z|A = X) = 1.

The loosest characterization of the source, i.e. the one that requires fewer

assumptions, simply puts a bound on the min-entropy:

Definition 5. Min-entropy source. A random variable Z is a k min-entropy source

of randomness with respect to another random variable A if Hyin(Z|A) > k.

As soon as k > 0, the knowledge of A does not determine z uniquely. One can
add some structure to a min-entropy source. For instance, a k-min-entropy source
is called uniform it Huyin(Z|A = X) := —log Pyuess(Z|A = X) > k for all values of .
A block min-entropy source is one for which not only the min-entropy of the whole
string, but the min-entropy of blocks is also lower bounded.

As soon as k < log(d™ —1), the definition of k-min-entropy source is compatible

with Pyess(Z = z|A = X\) = 0 for one string z. As hinted in Min-entropy vs
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Santha-Vazirani condition, the possibility that some settings are not chosen
is critical for sources of Bell tests. Because of this, one may want to add to the
properties of the source the assumption that all the dV strings have non-zero

probability. This is equivalent to the following type of source:

Definition 6. Santha-Vazirani sources. A random variable Z is a (Pmin, Pmaz)
Santha-Vazirani source with respect to A (where 0 < pin < 1/d and 1/d < ppae <
1) if

Pmin < P(Zi A\, 215 2i21) < P Vi (4.35)

If Z; is a bit, pmin = 1 — Pmax 1S usually written § [119]. Some of the most
important results in measurement dependence in Bell tests have been obtained
for Santha-Vazirani sources [32, 33, 114]. These results show that there is a
real advantage in considering Bell-based randomness, because it overcomes no-go
theorems for classical information.

Finally, let us focus on distributions that are independent and identically
distributed (i.i.d.) such that

N
p(Z =z|A =N) H (Z; = z|N). (4.36)

This can also be viewed as a block min-entropy source where each block consists of

only one symbol, Z;. In this case, the Santha-Vazirani definition implies:

Pmin S p(zp\) S Pmaz - (437)

We will use a different notation such that pn.. = Py and pni, = P, to make
clear that we are in the i.i.d. scenario. Then the definition of uniform min-entropy
sources is equivalent to the figure of merit of measurement dependence used in [113],
namely

Py = mz%\Xp(zM) , [i.i.d.] (4.38)

since Hyin(Z|A = X) > k for all ) is equivalent to Py, < 27, In the following, we
will use these two figure of merits interchangeably for i.i.d. models.
Instead of bounding the largest probability, the smallest probability also gives

information on measurement dependence, as first proposed in [120]:
P, = mi/\np(z|)\) . [i.i.d.] (4.39)

If only Py, is explicitly bounded, then a bound on P, can be inferred, however, it

might be trivial, since it can be negative: P,, > 1 — (d — 1) Py;. Bounding only the
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min-entropy of the input source to the Bell test, or equivalently bounding only P,
which is the guessing probability, allows much different worst-case behavior in Bell

tests than when the Santha-Vazirani definition is adopted, as we shall now explore.

4.2.3 Lower bound for min-entropy sources

We will be dealing with a K-partite Bell scenario where the " party has m; > 1
measurement settings (m4, mp for bipartite) and each setting has an arbitrary
number of outcomes. The joint configuration of settings z = z...2x with z; €
{1,..m;} (z = xy for bipartite) is a K-tuple in the set of all settings S of size
Hfil m;. In this Section, moreover, we consider a Bell test in which the observed

statistics of the settings follow a uniform distribution, that is

Huin(Z1, ..., Zx) = Nlog S|, (4.40)
or equivalently
L -1
Pobs(21-2x) = Y p(z1zcNp(N) = ([T ma) (4.41)
A =1

This is not an assumption like those on the nature of the source: p,s is observed
in a realization; but it is a frequent working assumption for theoretical works,
which was made in all previous works on measurement dependence. In Section
4.2.4, we shall see that a non-uniform p.,s has interesting consequences in studies
of measurement dependence.

We are presently able to discuss our main result: a lower bound on the min-
entropy of the source, below which no conclusion can be drawn from any Bell test,

unless further structure is assumed.

4.2.3(a) Reaching the no-signaling limit

The main insight is provided by the following Lemma, which we present in the
bipartite scenario, and generalize to multipartite scenarios. Intuitively, the lemma
can be paraphrased as follows: by changing the output behavior for some input
(i.e. for some zy, changing the distribution p(ablry)) any no-signalling correlation

can be made local.

Lemma 1. For any pair of settings (z,y), and for all p(ablxy) being an arbitrary

no-signaling correlation with x € {1,....ma} and y € {1,...,mp}, there exists a
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local distribution pr(ablzy) such that

pr(ablzy) = p(ablzy) (4.42)
for (z,y) € Szy ={(z,v), (2", y) : 2" € {1,....,ma}, v € {1,...mp}}.

Moreover, this result is tight: if another pair of settings is added to the subset of

pairs, there exists a no-signaling point for which those probabilities are nonlocal.

Proof. The proof can be done by constructing explicitly one such local distribu-
tion. Let us fix (z,y) = (1,1) without loss of generality. From the no-signaling

distribution p, we construct

ma mpg
p(a17a27"'aamA;blab2>'“vme) :p(al)p(b1|a1) Hp(ajlbl) Hp(bkla’l) (443)
j=2 k=2

with obvious notations for the marginals. This is a valid joint probability distri-
bution over the outcomes of all the measurements. Now, on the one hand, the
marginals p(a;; by) = pr(a,blj, k) define a local distribution, as first proved by
Fine [121]. On the other hand, it is easy to show that p(ay;bx) = p(a,b|1,k): one
should sum first over all possible values of aa, ..., a,, to find p(ay;by,ba,....byy) =
plar) TIiE p(bglay), after which the sum over the b’s is obvious. Similarly one
proves that p(a;;b1) = p(a,blj,1). So indeed we have a local distribution that
mimicks the initial no-signaling one on the desired subset of pairs of settings.

As for the tightness, suppose that we add a single pair of settings, say (2,2),
to Si.1: there exist no-signaling points for which CHSH is violated by the settings
(1,1), (1,2), (2,1) and (2,2); so those statistics can’t be mimicked by a local
distribution. ]

Lemma 2. For any K-tuple of settings z = (z1, ..., Zx ) and for all p(o|z) being
an arbitrary K-partite no-signaling correlation with z = (z1, ..., zx) where z; €
{1,...,m;} and o is a K-tuple of outcomes, there exists a local distribution pr(o|z)
such that

pr(olz) = p(o|z) (4.44)

forzeS; = {(El,zé, s 2 ) ey (2 e 201 ZK) 2k € {1 ...,mi}} :

Moreover, this result is tight: if another K-tuple of settings is added to the subset

Sz, there exist a no-signaling point for which those probabilities are nonlocal.

Proof. Again, let us fix 2 = (1,..., 1) without loss of generality. Let o be the

ith party’s outcome given the z" measurement setting. From the no-signaling
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distribution p, we construct a valid probability distribution

p(o}...0, ;.01 ..o ) (4.45)
~ plo) [Hp<oﬂo}...oa-1>] [T T1 plo}fo}.oi o of)| (440
i=2 i=1 j=2
whose marginals p(o. ;...; ﬁ; ) = pr(ot...0%|z1...2;) define a local distribution by

Fine’s result [121]. To Verlfy that we have a local distribution that mimics the

initial no-signaling one on the desired subset of pairs of settings, consider this

example: for the input string (1, 22, ...z;) with the distribution p(of;02,; ...; 0% )
1,2

pr(0'0?...0% |1, 25, ...2;) we sum first over all possible values of each outcome variable

1
03, ..., 0p, to find

P(01;07...00,5 -3 01 ...0m ) (4.47)
K
= p(07) H (0ilo;...0 H p(o ’01 o tor . or) (4.48)
=2
after which continue to sum over all the 02, ..., 0f except 0Z2, e oﬁi{ and one is left

K

.,.) on only K variables, one for each

with a probability distribution P(o{,02,...0
party. The other verifications are similar. Another way to think of it is to notice
that each conditional probability factor on K variables (one variable conditioned
on K — 1 other variables) effectively sets a joint probability distribution on those
same K variables. In the distribution (4.46) there are > m; — K + 1 such factors
and so this is exactly how many local points pr(0|z) that can be matched for a
given hidden variable value (see equation (4.50) in the main text). The argument
for tightness still works if we consider only two parties among K. For any two
parties we can choose a pair of inputs for each to return to a CHSH-type scenario,
then the argument follows in the same way as in the proof of Lemma 1.

O

Now we can state the main theorem:

Theorem 2. Consider a min-entropy source with an observed min-entropy Hupin(XY) =

Nlog(mampg) for an N-run bipartite Bell test with m inputs on Alice, mp inputs

on Bob and arbitrary alphabets for the outcomes. If
Hyin(XY|A) < N log(ma +mp — 1) (4.49)

no conclusion can be drawn from the Bell test, since the no-signaling limit of the

inequality can be reached with local distributions. The generalization of this result
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to K-partite Bell tests reads

K
Huin(Z1... Zic|A) < N log<2mk —K+1>. (4.50)

k=1
for Huin(Zq..Zx) = —log(Ilx mk). Notice in particular that, without further

assumptions, any source of randomness with Hpym(XY|A) < N log3 is useless as

a source for any Bell tests.

Proof. We will construct an explicit i.i.d. source which allows the faking of a Bell
violation up to the no-signaling bound with appropriate local resources. From
Lemma 1 we know that there exist subsets Sz 5 of ma +mp — 1 pairs of settings, for
which no difference can be seen if a local distribution is substituted for a possibly
nonlocal no-signaling point: in particular, this could be the no-signaling point that
reaches the no-signaling limit for the inequality under study. If H,(XY|A) is
sufficiently low, the source will allow only the pairs of settings that belong to one

of the Sz 5 and distribute the corresponding local strategy Az ;. The source

— L ifry €Sy
playiheg) = § Tl R (4.51)
0, otherwise
has Py = W in each run, whence we have proved the bound (4.49) as long

as we can find p(Azy) such that 3; ; p(zy| Az 5)p(Az,g) = Pobs(wy) for all ,y. In the
case where pps is uniform, this can always be found by simply choosing uniformly
the pair (7,7), i.e. p(Azz) = =+

mampg’
The proof of the multipartite case is identical using the material of Lemma 2. The

This concludes the proof for the bipartite case.

final remark of Theorem 1 stems from the fact that each Bell test much involve at
least two parties and each must have at least two settings.

]

Two remarks can be drawn from our result at this point. The first is on
randomness amplification. Given a single min-entropy source producing a string
z, without an additional seed it is well known that one cannot amplify the source
classically: for any function f, there exists a min-entropy source Z such that f(Z)
is constant. Here we extend this impossibility result to the case of randomness
amplification via no-signalling resources. One obstacle stands in our way: how to
we connect the output from the source with the inputs to the Bell test? As in the
classical case, without an additional independent seed, all one can do is to use the
min-entropy source to pick the settings of an N run Bell test. This is formalized

by applying a function from the alphabet of Z to the set of all possible setting
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Figure 4.5: Sources that reach the critical min-entropy bound for uniform observed
distribution of settings. For the inequality independent bound (4.50), the source is
uniform on my + mp — 1 settings and is zero elsewhere. For a given inequality,
the no-signaling limit may be reached with a source that is uniform on a larger
number of settings \Sf|, and still zero on the others; in order to reach only the
quantum limit, one can allow the settings in S to be used sometimes. Of course,
for each A, the settings that are chosen may vary.

combinations for the Bell test. Since this process cannot increase the min-entropy
of the source, our main result extends to this case: one cannot amplify an arbitrary
min-entropy source using no-signalling resources (in the device-independent level
of characterization). Either the initial quality needs to be high enough or the level
of characterization must increase (e.g. tomography level).

The second remark is about the critical min-entropy. Because of the tightness of
Lemma 1, the bounds (4.49) and (4.50) are the best inequality-independent bounds
that one can obtain with i.i.d. sources. Moreover, since there exist inequalities
for which the quantum and the no-signaling limits coincide, the bound to reach
the quantum limit cannot be better. If the inequality is given, however, much less
measurement dependence may be sufficient to reach the no-signaling limit, and
even less to reach the quantum limit if it is lower. We elaborate further on this

point in the following paragraph.

4.2.3(b) Inequality-dependent bounds

Let B define a Bell inequality, whose local, quantum and no-signaling limits are
given by By, < Bq < Bxs, and 8% be the set of settings that are used by the Bell

inequality 4. Again, for each A there is a local strategy for assigning outputs such

4The chained Bell inequality is an example of an inequality whose value depends only some of
the possible inputs. Only terms such that x = y or x = y + 1 and the term for x =1, y =m
appear.
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that in order to achieve the no-signaling limit, some settings will be incompatible
with this strategy and must be hidden by measurement dependence. Let this
set of inputs be SP()\). Then, an arbitrary no-signaling point is required to be
compatible with a local point only on the subset S7()) := 8%\ §()). Suppose
an inspection of the inequality B shows that at most |SP| of these |SP| settings
must be hidden for any choice of A. Once the probabilities of the settings SP())
are set to zero, the min-entropy is maximized by the uniform distribution over
the remaining |S?| settings (Figure 4.5). However, one must be very careful to
show the existence of p(\) which satisfies (4.41). Whenever such a distribution
exists, if Py; > 1/|SP|, the non-local game can be won with probability one with
local strategies. As implied by the results of the previous section, if the observed
input distribution peps(z) is uniform then a strategy in the form of equation (4.51)
or its generalization in Lemma 2 with a uniform probability over A will always
satisfy (4.41). However, it is possible to do better in some cases where |[SP| < |S].
In such cases |SP| (the most settings that must be hidden for any A) can be small.
Here, for a uniform p,s equation (4.41) will also be satisfied provided possibly
more settings than required are hidden for each A such that |SP(\)| = |SP| for all
X and if £(z) is the set of \s for which z € SP()\), |£(z)| = |SZ| must be constant
for all z. This is a symmetry condition that can be met by many Bell inequalities.

As before, the existence of this example proves that a min-entropy source with
k< N log (IS7)) (4.52)

can reach the no-signaling limit of B with local strategies for uniform input
distributions. In the following section we will show how to obtain bounds for
arbitrary p.s and that approach will also give tight bounds and optimal strategies
when the inequality is one in which the size of the “hidden sets” varies with \.
Further, if Bq < Byg, in order to simulate physics one may be content with
reaching the quantum limit. A possible i.i.d. source (not proved to be optimal)
is the following (see Figure 4.5). With probability 1 — ¢, the settings are chosen
uniformly among all M possible K-tuples: this is measurement independence,
so B < By, on these cases, and the physical process A can be chosen as one
of those that saturate B = Bp,. In the other instances, the settings are chosen
uniformly in SgB and the physical process \ is chosen in each case in order to achieve
B = Bys. In other words, this source is a convex combination of the measurement
independent uniform source and the source described in the previous paragraph.
Note that this new source will automatically satisfy the constraint (4.41). For

such a source, therefore, Py, is the probability of each setting in Sf, which reads
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Py = I?ll {1 +q (|8 /ISF] — 1)} With this measurement-dependent strategy, one
can reach B = ¢Bns + (1 — ¢)By, so B > Bq for ¢ > (Bqg — By)/(Bxs — Br). In

summary, the quantum limit can be achieved with an i.i.d. source with

PE’Q 1 |: B - BL

> |14 =29 b 3—1} 4.
> Sl 5B (Isl/1821 - 1) |, (4.53)

that is, a min-entropy source with k£ < —N log Pfl’Q can reach the quantum limit
of B with local strategies, for a uniform input distribution.

Let us illustrate the methodology with the analysis of some inequalities:

e ('HSH: here, it is always necessary and sufficient to hide one pair of settings.
Therefore |SP| = 3 and the inequality-dependent bound (4.52) is the same
as the inequality-independent one (4.49) to reach the no-signaling limit, as
already proved in [113]. Recall that this does not prove the bounds to be
tight, because they are based on explicit i.i.d. sources: non i.i.d. sources may
lead to tighter bounds, though we do not know any example. As for reaching

the quantum limit, we have Ppy® = H14 (V2 —1)/3] ~ 0.2845.

o Chained inequality: here again, as we have seen in 4.2.2(a), it is always
necessary and sufficient to hide only one pair of settings out of M = m?,
s0 |SP| =m? — 1 and |SF(X\)] = 1 for all X\. As a consequence, in terms of
min-entropy, the inequality-dependent bound (4.52) is N log(m? — 1), which
is approximately twice the value N log(2m — 1) obtained from (4.49). For

large m, the quantum and no-signaling limits basically coincide.

o CGLMP inequalities: like the CHSH inequality, the CGLMP inequalities are
two party inequalities where each party has two inputs. However, this family
of inequalities has d possible outputs for each party. In the quantum case,
the CGLMP inequalities can provide more robustness against measurement
dependence than the CHSH inequality, in the sense that the min-entropy of
the inputs given the source must be lower if the quantum bound is to be
achieved. The reason is that it has been shown that as d — oo, the quantum
limit increases and approaches the no-signaling limit [122, 123]. As can be
seen, inspecting equation (4.53), the value of (Bq — By)/(Bns — Br) will
increase with d, and the value of Py, necessary to reach the quantum limit
with local resources increases, until it reaches the no-signaling value PE’NS in
the limit.

e Mermin inequalities: Mermin inequalities [124, 125] are multipartite in-

equalites such that for odd numbers of parties, the quantum and no-signaling
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bounds coincide. For this reason, the 5-party Mermin inequality was used
in [33] to amplify randomness. When the number of parties is an odd number
at least 3 only a subset of all possible inputs appear in the corresponding
Mermin inequality and the inequality-independent bound is not tight. In
general, for odd K parties |SP| = 2572 4 20K=9/2 and |SP| = 2K~ [120].
Specifically for the 5-party case, [SP| = 10 and |S”| = 16.

4.2.4 Counteracting measurement dependence

Theorem 1 shows that assuming a full min-entropy source on the measurement
settings, for any meaningful conclusion to be drawn from a Bell test, it must be
that Hpin(XY|A) > N log(ma + mp — 1). However, recalling that the role of the
observed data is actually a constraint imposed on the underlying model (similar
to (4.41)), we can hope to use it to our advantage. This motivates the question: for
a given value of Hy,in(XY|A) = Nk > N log(ma +mp — 1) that is being assumed,
what is the optimal distribution on the inputs such that the maximum possible
Bell value obtainable with this degree of measurement dependence and only local
resources is as low as possible. Because the situation for non i.i.d. models is
intractable, we are restricting ourselves to the i.i.d. model for the remaining of
this chapter. Here instead of the min-entropy, the guessing probability P, is used
exclusively as the figure of merit of measurement dependence. First, we consider

the CHSH inequality as an explicit example.

4.2.4(a) The CHSH Inequality

Intuitively, we expect that the optimal solution is to set for each input round
Hpin(XY) = Hpn(XY|A) = k and pys(xy) = 27% for three pairs (z,y) and
Pobs(2'y') = 1 — 3 x 27 for the final pair because in this case A cannot contain any
further information on XY than is available simply from observing the distribution
Pobs(y). We will highlight an example of this type of distribution later in this
section. This is not a uniform distribution, so we can already see that non-uniform
input distributions can be beneficial. In this section, we will consider fixed input
distributions pps(xy) and find the maximum value that the CHSH inequality can
take given a bound on P);. Note that the method in this section extends to any
multipartite Bell inequality.

We want to find the violation By, under local resources and measurement
dependence, as a function of Py and peps(zy). To this end, observe that the local
distributions form a convex polytope and so is the set of sources with a fixed value

of Py (the source polytope). Using the decomposition into extremal points of a
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convex polytope, we have
p(ablzy\) = Za, Jei(ablzy) , (4.54)

p(zy|\) = Z Bi(N) fi(zy) (4.55)

where e;(ab|zy) are the extremal points of the local polytope and f;(zy) are the
extremal points of the source polytope. Now after multiplying by both sides by

Pobs(y), the i.i.d. model with measurement dependence becomes

plabry) = [ dNSS (N8 (Neslablay) fi(ey)p(N) = g (abey) . (456)

j ij

where

= [ a8, (0p(Y). (457)

gij(abzy) = ei(ablzy) fi(wy) . (4.58)

In this notation, the problem becomes a linear program, i.e. finding

bxy)
Bmax_(p  Dobs (T — max -1 a+b+$yp(a7 4.59
CHSH( M Pob ( y)) p(abzy) abzq:y( ) pobs(xy) ( )

subjected to the constraints

plabzy) =Y vijgi;(abry), > plabzy) = poss(zy) (4.60)

i ab

for known values of pyys(2xy) and Py;. The result is presented in Figure 4.6.
Using the numerical results, it is easy to see that the optimal strategy for
maximizing the Bell value Bcysg whether or not the observed distribution is

uniform is to choose

PM ifl’,yES@g

(4.61)
1—-3P,  otherwise

p(ry|Az ) = {

for each Az j, where S; 5 is defined in equation (4.42). Choosing this strategy, it is

straightforward to find an analytic expression for Bff§y:

1 —3Py

max 1
Berisn(Pu) =4 =5 [(1 —3Pu)gt 5

(g —16)

1

where for convenience we define ¢ :=3°, PN
’ obs\L)

This expression is only valid
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Figure 4.6: Plot of maximum CHSH value against measurement dependence Py
for different p,ps. Notice that Py start from max{poo, po1, P10, P11} because of the
data processing inequality: no underlying model of smaller P; can reproduce the
observed input statistics. In a Bell test with an assumed dependence bound Py, if
the value of the inequality is above the line that corresponds to the observed input
distribution p.s then there is intrinsic randomness in the outcomes contributed by
A. Therefore, for some observed violations, biased settings statistics can allow the
certification of intrinsic randomness while uniform statistics cannot.

for max, y, povs(2y) < Py < 5 (HZ (2y) > Hupin(xy|X) > log 3). Notice that when
the distribution is uniform ¢ = 16 and the second term vanishes, leaving a linear
expression in Pp;.

It is interesting to observe that for the purpose of violating Bell inequalities (that
is, demonstrating non-locality by exceeding B™**) under measurement dependence,
suppose the inputs have privacy quantified by P,;, then it is advantageous for us to
purposely select an input distribution that is not uniform. This can be seen easily
from for example the red curves for Py; = 0.27: selecting uniform input distribution
allows a violation up to about 2.5 while selecting non-uniform input distribution
only allows a lower maximum violation! Note that for non-uniform distributions on
the inputs the upper bound on the Bell value is only as low as 2 (the local bound
assuming measurement independence) for non-product distributions on the inputs.

(See the blue dashed curves.) All non-uniform product input distributions can have



4.2. THE ROLE OF RANDOMNESS IN BELL TESTS 7

Bell values larger than 2, if measurement independence is relaxed. Notice also,
that the lowest blue curve, the one that takes the value 2 at Py; = 0.29 is the one
corresponding to the distribution [p(00),p(01), p(10), p(11)] = [0.29,0.13,0.29, 0.29].
This is precisely the form of the distribution on the inputs we has anticipated at

the start of this section.

4.2.4(b) Generalizations

We have seen that for the case of the CHSH inequality, the strategy outlined in
Section 4.2.3 in equation (4.51) is the optimal strategy even in the case that the
distribution peps(zy) is not uniform. In general however this is not the case. It is
possible to find some inequalities that together with some distributions pys(z) do

not admit a strategy of the form

PM, if z € Sg
p(ry|As) = (4.62)
Q(Xz), otherwise

_|aB
where Q()) is determined by the normalization condition to be Q(A\z) = %
h
Let us limit our focus to inequalities with symmetries such that [S”(\)| = [S7|

and |SP(N\)| = |SP| for all A\. In that case, equation (4.41) can be written as a
matrix equation, with p.,s(z) and p(\) written as vectors and p(z|);z 5) is a matrix
whose entries are defined by equation (4.62). If the p(z|\) matrix is is full-rank,
then there is a unique solution for p(A) that is a valid probability distribution.
This will always be the case if |.S,| and |S,| have no common factors.

Examples of cases where the sizes of the sets Sy and S}, have no common factors
are any bipartite Bell inequality with terms for all input pairs present and where
both parties have the same number of inputs. For these cases, the min-entropy
bound of Section 4.2.3 also applies for any non-uniform observed distribution on
the inputs.

If, for a given inequality, |S,| and |Sj| have at least one common prime factor,
there may be some choices of distribution p,s for which the strategy (4.62) will
not be able to reproduce p,,s with any valid distribution p(A). In that case, the
optimal strategy may have to be found numerically. For the i.i.d. case, one do this
by solving a linear program that is a generalization of the one presented in the

previous section.
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4.2.5 Conclusions

Bell tests are an essential tool in device-independent approaches. They rely on
a set of reasonable assumptions, but some of the assumptions are untestable. In
particular, the correlations between source and settings are strictly unobservable
and therefore the amount of reduction of measurement independence is ultimately
an assumption, either on the power of an adversary, on a physical model for the
experiment. This study has demonstrated that when relaxing this assumption, the
definition used, be it min-entropy or a Santha-Vazirani condition, is critical with
respect to what kind of guarantees can be obtained from a Bell test.

There are results [33, 65] showing that with a Santha-Vazirani source assumption
arbitrarily weak randomness can be amplified using a protocol that checks for the
violation of a Bell inequality. This cannot be accomplished using a min-entropy
condition, as we have demonstrated in Section 4.2.3: for sufficiently low min-entropy
any inequality can be violated up to its no-signaling bound, using only the classical
measurement dependent correlations and in a way that a third party could predict
all of the outcomes of the measurements. Even for the protocol in [32] that amplifies
bounded randomness (in the Santha-Vazirani definition) using violations of the
chained Bell inequality, in order to get perfectly free bits out, the number of inputs
for this inequality must go to infinity. As we point out in 4.2.2(a), in this limit the
chained Bell inequality is not robust to any relaxation of input randomness if the
min-entropy definition is used instead.

Other works in the literature claiming the amplification of arbitrary min-entropy
sources must bypass our result in one way or another. For example, the protocol
for block sources described in [39] is able to amplify arbitrary (n, k) block min-
entropy source, which can be seen a combination of a min-entropy source and
a Santha-Vazirani source at the block level: each new block of n bit strings is
guaranteed to have at least £ bit of min-entropy even when conditioned on previous
blocks. If one thinks of the min-entropy source as a one shot resource (use it
once and it disintegrates), then a block min-entropy source is a reusable resource,
promising at least k bits of min-entropy whenever the source is queried. Indeed,
by querying the block source M times, we can create a potentially long string
with Mk bits of min-entropy (or equivalently boosting the & value of the original
source) which exceeds the threshold presented in Section 4.2.3. The only problem
is to “hash” the long string down to obtain the inputs for the Bell test without
using any randomness. This is obtained by playing many independent Bell tests
(multiple devices) each using an input from a hash function and then XOR one

party’s output across different tests. Using the same idea, the authors also show
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the amplification of a single min-entropy source with high enough rate (i.e. high
enough k/n). We remark that this idea is also independently discovered by Chung,
Shi and Wu in their amplification of min-entropy source paper [69].

The bounds on the min-entropy presented in Section 4.2.3 give immediate
bounds for any inequality on the amount of input randomness required to draw
conclusions about whether the violation of a Bell inequality can give any certification
of quantum or non-local behavior. The method demonstrated for the CHSH
inequality in Section 4.2.4 demonstrates how to get tight upper bounds for the
value a given Bell inequality can take assuming a min-entropy bound for any
distribution over the measurement settings. It also shows that there may be
advantages to deliberately choosing non-uniform distributions over measurement
settings in device independent protocols, depending on what assumptions are
being made. In this direction, perhaps the best development since this work has
been published is the result of Ptz et. al [127]: it is shown that by selecting
the Bell inequality wisely (as a function of the presumed input min-entropy) Bell
nonlocality can still be observed for any value of input min-entropy above the
inequality independent threshold.

Being as the assumption of measurement independence cannot be confirmed,
it is important to understand the consequences for device independent protocols
when it is relaxed. It is especially interesting that the min-entropy condition, a
condition widely adopted in classical security studies [118, 128-130], is has such
a different behavior from the Santha-Vazirani condition for these device-testing

purposes.

4.3 Randomness in post-selected data

4.3.1 Why post-selection?

The final step in a Bell-based randomness generation protocol is applying a ran-
domness extractor to the outcomes of the Bell tests. Randomness extractors such
as two-universal hashing require an independent random seed: the longer the initial
string input to the extractor, the longer the needed seed ® and the computational
time to output the result; in fact, it is an active research direction to construct
randomness extractor with short seed length [118]. It would thus be helpful in
practice to apply the extractor to a string as short as possible.

In photonic implementations of Bell tests, because of the inefficiencies of the

source and the detectors, the recorded data is mostly populated with non-detection

5The seedlength is typically the logarithm of the length of the input.
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events “@” [131, 132]. From physics, we know that these non-detection events
carry little or no randomness: for instance, they may be associated to the source
not having emitted any pair in a given time. It is thus tempting to simply discard
these events before extracting the randomness. But is it possible to do so without
opening the detection loophole [133, 134]?

One may ask a similar question in the following extreme situation. Consider
a Bell experiment running over the course of two days. During the first day, the
setup works perfectly, producing clicks in Alice’s and Bob’s detectors at every
round which are compatible with a maximal violation of the CHSH inequality.
At the beginning of the second day, however, the source of entangled particles
stops working, so that no detector click is recorded during the whole day. Any
experimentalist witnessing such a behavior would certainly treat the data from each
day separately, and maybe even choose to neglect the data accumulated during
the second day. However, from a device-independent perspective, one need not
assume anything about the behavior of the setup, and thus one may try to reach a
conclusion by looking only at the overall statistics over the two days.

In fact, it is not clear why doing so would result in a restrictive estimate in this
particular situation, because each of the two regimes can be distinguished very
clearly in the data: during the first day, only outcomes 0 and 1 were observed, but
the second day only gave rise to non-detections @, which can be formally identified
as a third outcome. Available techniques [87, 93] guarantee that these 3-outcomes
statistics imply a randomness rate of ~ 0.41 bit/run for Alice’s outcomes. At the
same time, by performing an analysis on each day independently one could clearly
certify 1 bit/run for the first day and 0 bit/run for the second one, resulting in a
larger average randomness rate of 0.5 bit/run. Is this mismatch due to the presence
of a loophole in the analysis considering each day independently? Is the limitation
highlighted here intrinsic for all device-independent method which only depends
on the overall statistics?

In order to shed some light on these questions, we provide here a method
to quantify the randomness present in a subset of events (for instance, double
detections). This method takes into account the whole observed statistics (including
the non-detection events) and thus does not open the detection loophole.

Our method applies to i.i.d. sampling in the limit of infinitely many measure-
ment rounds. If randomness cannot be certified in this limit, it can also certainly
not be certified in the non-i.i.d. finite statistics case. On the other hand, random-
ness present in this case might still be certifiable in the non-i.i.d. finite statistics
case, but this remains to be proven.

After introducing the method in Section 4.3.2, we analyze its consequence
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on several physically-motivated models of observed statistics in Section 4.3.4. A

glimpse beyond the i.i.d. restriction is given in Section 4.3.5 before the conclusion.

4.3.2 Average randomness in post-selected data

Consider a bipartite Bell experiment where each party uses inputs x € X, y € Y
and obtains outputs a € A, b € B. In the following, we consider a bipartition of
the joint output alphabet O = A x B into two sets V and N ¢. If the outputs
observed at a given round (a,b) € V, we say that the round is valid, and otherwise,
if (a,b) € N, that it is invalid. The list of all inputs and outputs recorded during
the run of the Bell experiment constitutes the raw data of the experiment, whereas
we refer to the data observed in valid runs only as the post-selected data. Our goal
is to estimate how much randomness can be extracted from the post-selected data.

A priori, an adversary trying to guess the post-selected data might not have
access to the information about which run turned out to be valid or invalid, since
he should not have access to the outputs observed by the parties. For simplicity,
however, we’ll assume here that the adversary has access to this information.
This allows him to know exactly which run he should try to guess and is thus
advantageous for him. This assumption might however be problematic in a non-i.i.d.

situation (see Section 4.3.5).

4.3.2(a) Guessing probability with post-selection

In general, the conditional probabilities describing the behavior of the experiment

at one round p(ablzry) can be decomposed as
plablzy) = Zp )pa(ablxy), (4.63)

where p(A) is a normalised distribution and p,(ab|zy) are valid conditional proba-
bilities.

Assuming that an adversary interested in guessing the observed outputs is
limited to hold only classical information on the users’ devices [87, 135], he can
at most have access to the variable A\ and to the description of the distributions
pa(ablzy) appearing in the decomposition (4.63). In presence of a given decomposi-

tion, his optimal strategy thus consists in guessing the pair of outputs (a, b) which

6The label N is highly motivated by the no-detection event occurring in the practical Bell
experiment.
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maximizes py(ab|zy). His average guessing probability on the raw data is then
Zp max py (ab|zy). (4.64)

This expression can be operationally interpreted as the (optimal) fraction of
runs averaged over \ where the adversary correctly guesses the outcome (a, b) given
the knowledge of (z,y, A\) when the runs are played with identical devices behaving
independently according to P(ab|zy) (i.e. with i.i.d. devices, see Section 4.3.3).

Note that one reason why an adversary might only have access to classical
information about the devices is because he is not allowed to interact directly with
the quantum systems (in particular he’s not the one who produces them) [135].
For simplicity, we consider here such an adversary: someone who is interested in
guessing the outcomes observed by the user, but which is only able to do so based
on classical information that he could potentially find. To distinguish him from the
adversary usually considered in QKD, which is allowed to directly interact with

the quantum systems, we will refer to him as Thomas [87].

Now let us change the rule of the guessing game: at each round the user reveals
whether he observes valid outcomes or not, and the adversary is only asked to guess
the post-selected data. In this situation, the adversary can win only if he correctly
guesses an outcome in V. In other words, whenever a run produces (a,b) € N,

Thomas automatically wins that run. We will show that

. >_p(\) max px(ablzy) (4.65)

Gy = —ii—
bop(Viwy) S abey

is the guessing probability when conditioned on the outputs being valid and has
the operational interpretation: the adversary wins a fraction G, of the i.i.d. runs
producing outcomes in V. Here, V' denotes the event “(a, b) € V7, and so the division
by p(V|xy) = > ey p(ablzy) corresponds to the operation of discarding/ignoring
all the runs with outcomes in /. Note that in the case V = O, i.e. in absence of
post-selection, G, reduces to P,,,.

Formally deriving this result requires careful application of the concept of
conditional probability, which captures the adversary’s information in light of
additional knowledge. First notice that for A with max,ey pa(ablry) = 0, the box
pa(ablzy) can only produce outcomes which will be discarded. Therefore, these As
will not play any role in the guessing probability. In other words, these As will not
be needed to ‘explain’ the post-selected data. For the remaining As, we need to

obtain the correct probability of them appearing in the post-selected data in terms
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of the available information. The probability of the original box producing valid
outcomes is p(V]zy\) = X ey Pa(ab|zy); therefore the normalized non-local boxes

given V are

palabley) e b=y
p(ablzy V) = { pVlzyd) s 7 (4.66)
0 if ab ¢ V.

Likewise, the probability of A appearing in the decomposition describing the

post-selected data needs to be adjusted to (here we are considering a fixed pair of

inputs (z,y))

p(VIMp(Y)
p(AzyV) = ————. 4.67
V) = = ay) o
Hence, we obtain a model for the post-selected data
1
plablzyV) = ——— > p(A|xyV)p(ablzyAV 4.68
(ablzyV') p(wxy)%:H )p(abl ) (4.68)

which is consistent with how the users renormalize the probabilities, namely

plablzy) e b e Y
p(ablzyV) = Vi) na ’ (4.69)
0 if ab ¢ V.

We remark that the sum over As in the previous decomposition, which is a
restricted subset of all the original As, can be extended to all As in the original
decomposition. This decomposition of the post-selected data into a convex mixture
of boxes p(ablxyAV') allows one to write down the expression for the guessing

probability for this pair of settings (see (4.64))

1
> p(A|zyV) m%xp(ab|xy)\V) (4.70)

Goy =
op(Viey) 5

which gives (4.65) after unwinding the definitions of post-selected boxes.

4.3.2(b) Optimizing the guessing probability

Since the decomposition of p(ablry), namely (4.63), is unknown to us, we must

perform an optimization to find the maximum guessing probability of Thomas
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under such constraints:

1
G, = —— A b
xy max p(V|l‘y) z)\:p< >I£21))(p)\<a |$y)

s.t. ) p(\)pa(ablry) = p(ablzy)

p(N) = 0and Y p\) = 1

(4.71)

paablzy) € Q

A priori, it is not clear how many As need to be considered in this program.
The following argument shows that this number can always be assumed finite.

Partition the set A of all As into finite number of classes for each ab € V

Ay ={)\:arg maxpk(a V|ry) = ab} (4.72)
/b/

each with probability

i(Aa) = S p() (4.73)

AEAp

and average box, which is a convex combination of boxes in the class with weight

p()‘)/ﬁ(Aab)a

oA, P (N)p(a't'[zyN)
ﬁ(Aab) '

Notice that this grouping operation does preserve the property of each class, namely

pla't |zyAy) = (4.74)

r/rg/ag](}p(a V|ryAay) = plableyAgy), (4.75)

as well as all the constraints in (4.71). This allows us to rewrite the optimization

program using only finitely many As:

P ab abll‘yAab)
V|$y a%\/

Z p ’b’ (lb|l‘yA ’b’) = p(ab|xy)
a'b eV (4.76)

p(A /b/) > O and Zp /b/ = ]_

/b/

plableyAgy) € Q

From now on, we thus work with a finite number of As.
Note that when reexpressed in terms of Ay, the internal maximization in (4.71)
disappeared. This allows us to upper-bound the result of this optimization by a

semidefinite program by relaxing the last condition p(a’t/|xyAs) € Q to just ask
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that these probabilities belong to some level of the NPA hierarchy [48, 49, 136].
Such bound can then be easily evaluated numerically.

In the case where no outcomes are discarded, i.e. ¥V = O, this SDP reduces to
the one described in [87, 93] to bound the guessing probability as a function of
correlations p(ablzy).

Notice that the constraints in the above program are based on the distributions
before post-selection. This reflects the fact that our analysis is not subject to the

detection loophole.

4.3.3 A digression: bound for i.i.d. experiments

Here, we discuss the operational interpretation of (4.64) and (4.65), as well as
the implication of revealing or not to the adversary the list of valid measurement
rounds. As a short hand, z stands for the pair of inputs z,y and ¢ stands for the

pair of outputs a, b.

4.3.3(a) The guessing probability for an N-run experiment

Let z and ¢ be the strings of inputs z;...zxy and outputs c;...cy of the Bell experi-
ment. The adversary Thomas holds some additional information A which may be

correlated to z and ¢ as characterized by the distribution

p(ezA) = p(z)p(A)pa(clz), (4.77)

where measurement independence is implicitly assumed as the input z and A are
independent, and py(c|z) can be seen as the behavior of the experiment or as its
“preparation”. If the device employs a deterministic strategy then there is only
a single A and a single behavior for any experiment; however, if the strategy is
probabilistic (as in the case of the following i.i.d. strategy) then different behaviors,
i.e. different py(c|z), are prepared in different experiments.

The post-processing we apply to the raw string ¢ can be paraphrased as follows:
discard all the symbols ¢; in N and keeping the order of the raw string to get a
new string labeled s. This can be formalized as a function f from OV to UN_,y™
where V0 consists of only the empty string (i.e. the raw string c is completely
discarded) and V™ is the set of strings of length m over the alphabet V (the m
times Cartesian product of the set V). Given a post-processed string s, we denote
f71(s) as the set of raw strings which are mapped to s under f. Thomas can

“undo” the effect of our post-processing by considering the induced distribution of



4.3. RANDOMNESS IN POST-SELECTED DATA 86

the post-selected data

ar(s|z) = Z pa(clz). (4.78)

cef~1(s)
Thomas’ guessing probability given his available information gives us a bound on
how many uniformly random bits we can extract by hashing the post-processed
string.

The description so far is quite general; it encompasses devices behaving in a
non-i.i.d. manner. The restriction to the i.i.d. behavior, where in each run a
box labeled py,(¢;|z;) is sampled from a fixed set of boxes with probability p()\;),
simplifies the form of py(c|z) greatly. In other words, the behavior

palelz) = pa, (e1lz1)..pay (en]2w) (4.79)

is prepared in an experiment with probability p(A) = p(A1)...p(Ayx). The reason

this is called i.i.d. is because when average over many experiments

plclz) = Zp )palclz) (4.80)

=11 (ZP DA, Cz|Zz>) = [T a(cil=) (4.81)

=1

where p(c;|z;) is the single run average behavior.

The sum in (4.78) can be decomposed as follows: the structure of a string c
is given by two set of indices «; for which c,, € V and f3; for which ¢, € M. For
instance, the string ¢ = 02102 has structure {1, 3,4} as indices in valid and {2,5}
as indices in no-detection (i.e. the structure is VN VVN). Given s with length m
then the set f~1(s) can be grouped into strings with the same structure, allowing

us to rewrite

=% 3 IInnoa

cs; €D i1=1

=2 ljllpxai(sailzai) Hznpxﬁj (M]25,) (4.83)

Zo) H Pas, (cs,28,) (4.82)

for s € V™, where the outermost sum is over structures compatible with s, and
Pas, N1zg,) = YeaeN Pg, (¢s,]23,) is the probability of no-detection for the 3"
run.

Now the string guessing probability for three different scenarios can be discussed.
If we reveal nothing to Thomas other than the specified protocol, then Thomas’

optimal strategy is to pick the most probable post-processed string according to
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qx(8|z), i.e. we have the guessing probability
Puess(S|Z =z, A =) = max qx(s|z) (4.84)

for the given experiment. If, however, we reveal to Thomas the length of the
post-processed string, then Thomas can restrict his search of the most probable

string to the set V" thus giving

qx(s|z)
S|Z =z, A =)X) = max . 4.85
| ) SEVT 3 cym qa(8]2) (4.85)

guess (

Finally, if we even reveal to Thomas the structure of the post-processed string then

he only need to guess among the strings with that structure:

Wi (17 — 2 A = A) = T may Do (FeilZ)

On average over many realizations (with the same input string z and post-selected

length m),

quess guess

Pvalld (S’Z — z’A) — Z (A)Pvahd (S’Z - Z7A = A)
A

p)\a.(soa' Za-) m
— i e v — GZ ‘
E 2y Wy |~ L

where G, can be seen as the single run average guessing probability with post-
selection.

Therefore, we are led to bound the single run guessing probability

Px., (Sai ZOéi)
max —————— 4.87
Saie}\() P, V|za,) ( )
and its average over A\, namely
Sa; |2
Zp ;) Max —————= P, (S |2a:) (4.88)

s, &V P, (V]2a,)

as presented in Section 4.3.2.

4.3.4 Examples relevant for experiments

Let us consider an application of the guessing game described in the previous

section on the correlations that can be sampled in some quantum experiments. For
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the sake of the example, we consider a simplified model of the correlations expected
in a pulsed down-conversion experiment. The source is an on-demand photon pair
source with finite efficiency v: a two-photon state is produced with probability v
and the vacuum with probability 1 — v. Each measurement setup of each party
has two detectors, which might have a finite efficiency n (this efficiency also takes
into account possible losses along the transmission of the photon). Because of both
the vacuum component and the inefficiency of the detectors, a third outcome is
possible in each run, namely the absence of any detection. The fourth possible
outcome that could appear in a real experiment, double detection, is neglected;
and so are dark counts.

Note that it is common in photonic experiments to use a single detector to
attribute the result 0 or 1 to a measurement. This is achieved by assigning one
result in case of a detection, and the other one in absence of detection. In doing so,
no distinction is made between the absence of detection which is due to loss and
that which comes from the state of the photon. For simplicity, we don’t consider
this situation here. It can be analysed similarly, though, and one can check that it
provides similar conclusions for the scenarios considered here.

In our situation, each party’s measurement has three possible outcomes called
0,1, 2. If p(ab|zy) for a,b, z,y € {0, 1} is the correlation obtained from some choice
of state and measurements when n = v = 1, then in the presence of imperfect

source and detectors the observed statistics are

vn’*p(ablry) if a,b € {0,1},
vn(1l —n)p(a|x ifae{0,1} and b=9

J(ably) = n(1 —n)plalz) | {0,1} ‘ (4.89)
vn(1 —n)p(bly) if a =@ and b={0,1}

v(l-n)?*+(1-v) fa=b=g,

where p(a|z) and p(bly) are marginal distributions of p(ab|zy).
Using the program (4.76), we are going to compute lower bounds on the

extractable randomness that can be found in the following cases:

e (a) All outcomes are considered in the SDP program, i.e. N'= N, =0 (the
empty set).

e (b) The post-selected string of outcomes does not contain double occurrences

of @, i.e. N =N, = {@0}.

e (c) The post-selected string of outcomes does not contain any occurrence of
a no-detection event @, i.e. N =N, = {09, 19, g2, 20, &1}.



4.3. RANDOMNESS IN POST-SELECTED DATA 89

Randomness rate
o o
o 0¢]

©
~
T

0.2

0.8 0.85 0.9 0.95 1
Detection efficiency

Figure 4.7: Randomness from a singlet with finite detection efficiency. Curves (a)
and (b) coincide almost perfectly and approach 0 at the detection loophole limit
0.828 [134].

Removing some outcomes reduces the length of the considered data by different
amounts depending on which post-selection process (a), (b) or (c) is used. Hence,
the randomness rate —log, G, corresponds to different length of the input string
to the randomness extractor. For a fair comparison, we renormalize the randomness
rate obtained on post-selected data with respect to the total number of runs. This
choice is also natural because the total number of runs is the actual amount of
resources used in the randomness generation process.

Finally, let us mention that all optimizations reported here were performed at
local level 1 of the SDP hierarchy [137].

4.3.4(a) Example 1: Imperfect detectors, perfectly heralded source

We first consider the case where the source efficiency is ¥ = 1 and 7 varies. This is
the model that was used in most studies of the detection loophole, even if it is not
realistic for down-conversion, because one cannot suppress the vacuum component
without producing higher-number excitations (the joint study of detection loophole
and realistic models of the source in down-conversion experiments is surprisingly
recent [138, 139)]).

For the state, we consider two cases. First, that of a maximally-entangled state
[9~) = (]01) — |10))/+/2. In this case, the usual optimal CHSH measurements for
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Figure 4.8: Randomness from Eberhard correlations. Curves (a) and (b) coincide
and approach 0 at the Eberhard limit of 2/3 [133].

the singlet give

plablay) — i <1 + (—1)a+b+w\}§> (4.90)

for a,b,z,y € {0,1}. The expected randomness rate as a function of 1 is shown
in Figure 4.7. We note that no randomness can be extracted if n < 82.8% which
is the boundary at which those statistics can be explained locally with a model
exploiting the detection loophole.

The second case is that of Eberhard’s famous study [133]. The state is the
partially entangled state |¢) = cos(f) |00) + sin(f) [11) with 6 depending on the
detector efficiency n; in turn, the measurement can be parametrized by two angles
ap, @1 which also depend on 7. These parameters are chosen to optimize the
violation of a lifting [140] of the CHSH inequality, for each value of . The resulting
randomness rate is plotted in Figure 4.8. Again, no randomness can be extracted
below the detection loophole threshold of n < 66.6%.

In both cases, we notice that about the same amount of randomness is certified
in case (a) and (b) (with a small difference of less than 10% in advantage of
case (a) for Eberhard correlations when the efficiency is 1 € [0.7,0.9]). Extracting
randomness from the subset of all the data in which the double non-detection events
(@, @) are removed thus doesn’t seem to be a problem here: in a heralded Bell
test with finite detection efficiency, one can essentially discard double no-detection

events, provided that a count is kept of how many of them appear (their statistics
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Figure 4.9: Randomness from a singlet produced with finite probability. Curves
(b) and (c) are identical, since there are no events with one detection and one
no-detection in the raw data (the post-selection procedures (b) and (c¢) are actually
the same for this correlation). Curve (h), which gives the randomness from raw
string of outcomes upon the heralding of a successful preparation of the state (i.e.
randomness from the correlation (4.90)), exactly coincides with curves (b) and (c).
Curve (a) lies below the other ones.

is kept).

However, considering case (c¢), we see that removing all events where some
no-detection occurred results in a clearly lower randomness rate. For efficiencies
lower than 86% and 85%, no randomness at all is even certified. This kind of
post-selection is thus too strong if one is interested in certifying an optimal amount

of randomness.

4.3.4(b) Example 2: Perfect detectors, not heralded source

The other limiting case, where the detectors have perfect efficiency but not the
source, has not received much attention so far. However, this is going to be the
ideal case for experiments using down-conversion sources: coupling and detec-
tion efficiencies are being steadily improved, but one cannot avoid the fact that
down-conversion produces almost perfect singlets only in the regime v < 1.

In Figure 4.9, we show how much randomness can be certified when ¢(ab|zy)
is given in (4.90), detection efficiency is n = 1 and v varies. In this case, the
lower bound on the randomness computed from the raw data is lower than the

one obtained after removing double no-detections from the data. In fact, after
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discarding double no-detections, the same amount of randomness that could be
certified if the source was heralded is recovered (i.e. it is proportional to the source
efficiency v).

That the bounds we find are never better than the heralded one is consistent
with the intuition that double non-detections contain no randomness. However,
the fact that more randomness can be certified from considering the post-selected
data than from considering the raw data may sound surprising and even potentially
wrong: did some additional randomness come from the post-processing? Let us
show that this result is indeed correct.

For this, we go back to the optimization program (4.71). First absorbing
p(A) in to py(ablzy) and calling the new variable Py(ab|zy), the optimization for

randomness in setting pair (z,y) of the post-selected data can be rewritten as

ma.

1
— Py (ab
 pViay) 3y Ptk

s.t. Y Py(ablry) = p(ablzy) Yabzy
By

Py(ab|zy) € Q sub-normalized

where V = {00, 01, 10, 11,02, 12, @0, &1} if we are going to discard double non-

detections. Now, for the case under study, we have

X 0 1

y b\ael|0 1 @ |0 1 O
o1l - 0 )

plablay) = © Ol 0 (4.91)

g 0 0 1-v|0 0 1-v
0 0 0

1 1 0 C 0
g0 0 1-v|{0 0 1-v

where the sum of the probabilities in the dotted positions in each sector sums up

to v. This means that, for all A\, the underlying strategy must have zeros in the
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positions below:

Py(ablzy) = —— O — 0 (4.92)

00 -(0O0

In turn therefore, any underlying strategy with a guessing probability G, ({ Px(ablzy)})

can be reduced to an underlying strategies of the form

0 0
0 0
000/0 00
Qx(ablzy) = 0 x A #(9,9) (4.93)
0 0
000/0 00
00 0 (00 0
00 0 (00 0
00 1-v|00 1—v
_ (.0 (ablzy) = , 4.94
Qxr=(2.2)(ablry) 0 o0 oo o (4.94)
00 0 (00 0
00 1-v|00 1-—v

(which utilizes one additional lambda as compared to the original strategy) while
still satisfying G, ({@a(ablzy)}) = Gay({Pa(ablzy)}). The optimization for ran-

domness can be further simplified to

1
max — Y max Q,(ablzy)

AEDD abey

st. Y Qi(ablzy) = p(ablzy) Vab € V Vry

ANADD

Qx(ablzy) € Q sub-normalized

where we have emphasized the removal of the strategy A = (&, @) in the objective
function as well as in the constraints. It is easily seen then that this optimization is

the same as that of a heralded source where the observed correlation is py(ablzy) =
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p(ablxy)/v (namely the following optimization

max ;Hﬁxq,\(abuy)
s.t. Y ga(ablzy) = ppablzy) Vabzy
A

q,\(ab\xy) € Q sub-normalized

with ¢y (ablzy) = Qx(ablzy)/v — observe that in this last optimization all prob-
abilities are with respect to the heralded data or post-selected data, unlike the
previous optimization where probabilities are computed on the raw data including
the (&, @) outcome). This gives curve (h) of Figure 4.9.

In other words, the mechanism for the increase in min-entropy is a consequence
of the properties of the min-entropy with respect to the state: it is neither a
concave or a convex function of the state. Consider the toy example of mixing two
coins where the first is a perfect coin outputting 0 or 1 with min-entropy 1 and the
second is a deterministic coin outputting 2 or 3 with min-entropy 0 for instance.
If the mixing is uniform, namely each coin is chosen with probability 1/2, then
we have a four sided die with outcome alphabet 0,1,2,3 and min-entropy 0.415. If
we flip only once the two coins, we get 1 bit of randomness for the two outcomes.
If we flip the four sided die we get only a single output among 0,1,2,3 and this
outcome has 0.415 bit of randomness. Now we are trying to reverse direction
of this mixing, and the fact that the min-entropy is neither concave nor convex,
gives us no limitation on the amount of randomness we can gain. In fact, for this
example we gain from 0.415 bit (alphabet 0,1,2,3) to a full 1 bit (alphabet 0,1).
(To be fair, this happen only half of the time because the other half we get the
second coin with output alphabet 2 or 3 which has no randomness). In other words,
we managed to decompose the state from the four sided die to two coins with
“additional information” that the process is actually mixed as described. Likewise,
in our previous analysis with the SDP, the “additional information” is provided by
the form of the global correlation.

Also, there is no contradiction with the data processing inequality because the
post-processing can only increase the min-entropy. The min-entropy of post-selected
data can be lower bounded by the min-entropy in the raw data, which in turn
can be provided by the method in [87]. Here our analysis lower bounded the
min-entropy of post-selected data directly using the observed correlations, and is
able to obtain a better bound.

This also resolves the two-day paradox mentioned in the introduction (at least in

its i.i.d. randomized form). Indeed, doing a similar analysis as shown in Figure 4.9
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Figure 4.10: Randomness from the Eberhard correlations produced with 1%
probability. Curve (a) is lower than if the source was heralded (curve (h)). However,
curve (b) recovers almost perfectly the heralded case (h).

for the randomness of Alice’s outcomes confirms that the average rate of 1/2 bit
per run can be certified by only considering the global statistics P(ab|zy).

This reasoning shows that the optimal way of certifying randomness may be
achieved with some processing applied before the extraction (hence a pre-processing
as seen from the point of view of randomness extraction). A similar observation was
made for QKD, where adding random local noise may actually help [20]. In the case
we are studying, one may see this pre-processing as dividing the observed outcomes
into two strings, one that contains (00,01, 10,11) and the other that contains
(@2). The randomness is then obtained by applying an extractor on both strings
(extraction on the second string being trivial in this case), and concatenating the
resulting uniform strings *. Clearly, such an analysis by part could be applied for
any partitioning of the joint set of outputs O, as long as the extraction parameters

for each part takes into account the original statistics on the set of all outputs.

4.3.4(c) Example 3: Imperfect detectors, not perfectly heralded source

Finally we study an example where both the detectors and the source are imperfect.

Now, no-detection events can come either from the source having left the field in

"One must be careful with the resulting quality (as measured by distance to uniform) of the
combined string.
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the vacuum state, or from the detectors not having fired. In Figure 4.10, we set
v = 1% and vary 7 for the Eberhard correlations described in 4.3.4(a).

Again we find that slightly more randomness can be certified by considering
N = N, when the efficiency is low (n < 0.85). However, the analysis with N' = A,
is advantageous whenever n 2 0.85. Moreover, it gives a similar bound as curve
(a) from Figure 4.8 rescaled by a factor of v. Thus, roughly as much randomness
as could be certified if the source was heralded could also be extracted here, by

applying an extractor on just less than 1% of the raw data.

4.3.5 Beyond the i.i.d. case

In this section, we are going to show that relaxing the i.i.d. assumption in the
scenario considered above results in strictly less randomness being certifiable than
shown above. The fact that non-i.i.d. strategies are strictly more powerful than i.i.d.
strategies even in the asymptotic limit of infinitely many runs is, to our knowledge,
a feature not found in previous works on randomness from Bell tests [111, 115,
141] or on quantum key distribution [23].

While we are not able to provide a general bound against non-i.i.d. devices,
we can provide explicit examples of more powerful strategies. These non-i.i.d.
strategies exploit the fact that we are revealing whether the outcomes of a run are
discarded or not. They can thus be easily circumvented by not letting the user reveal
any information about the outputs that he observes, thus potentially reconciling
the asymptotic i.i.d. and non-i.i.d. bounds. As mentioned in Section 4.3.2, such
scenario has other complications that prevented its study so far.

Specifically, we found the strategies below by thinking in the following terms:
suppose that the outcomes of run n have been kept; the adversary would like to
know the value. But the boxes may happen to behave in such a way that the fact
of keeping or discarding the outcome at run n + 1, which Thomas will learn, leaks
some information about the outcome kept at run n. This is similar to the argument
of [74].

For clarification, let us mention that the kind of non-i.i.d. behavior considered
here is possible even in a situation in which the adversary does not produce the
devices. Simply, it is not a consequence of the action of a possibly malicious
adversary, but rather represent a possible defect of the devices. If such defects
are compatible with the observed statistics, one cannot exclude a priori that a
non-malicious adversary could become aware of it, and exploit it in his guessing

strategy.
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4.3.5(a) An explicit strategy

Consider the following quantum correlations, as written in terms of Collins-Gisin

tables [142]:

0.4453

0.3121

0.6570
Pl - O

0.1708
0

0.0394
0

0.3244
0.4942

0.0247
0.4195

0.8544

0.2843
0.0277

0.7373

Py, = 0.8919

0
0.8381

0
0.7209

0.2619
0.4973

0.1165
0.4972

0.6042

0.2617
0.2354

0.5429

0.3979
P; = 0.6021

0.0886
0.5156

0.0365
0.5064

0.4588
0.5412

0.1078
0.4964

0.6663

0.4267
0.1162

0.2038

0.6663
0

0.2038
0

0.2936
0.7064

1

0.1393
0.5270

0.9996

0.1112
0.0926

0.0015

0
P5: 1

0
0.9996

0
0.0015

0.0010
0.9990

0.0006
0.9990

0.0004
0.0011

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

Now consider a device which realises one of the three first correlations with
probability p(1) = 0.4097, p(2) = 0.4992, p(3) = 0.0911. Whenever one of the

first two boxes is chosen, it determines the outcomes for that run, and a new box

within this same set is chosen for the next round. When the third box is chosen, it

also determines the outcomes for that run, but the outcome of the next round are

sampled as follows:



4.3. RANDOMNESS IN POST-SELECTED DATA 98

e If Alice’s outcome in the current run is 1, and the value of two pre-determined

hidden variables A and p are 0, then the box Py is chosen for the next round.

e Ifa=1, A=0, u =1, then Bob still uses his part of box P, but Alice

outputs the third outcome.
e [fa=1, A=1, up=0, then box Ps is chosen for the next round.
e Ifa=1,A=1, u=1, then Bob uses P5; and Alice outputs the third outcome.
o Ifa=2 A=0,u=0, then Bob uses P, and Alice outputs the third outcome.
o Ifa=2 A=0, u=1, then box P, is chosen for the next round.

o Ifa=2 A=1, u=0, then Bob uses box P; and Alice outputs the third

outcome.

e Ifa=2 A=1, u=1, then box Ps is chosen for the next round.

(Note that box P3 never produces a = 3.)

Here p and A are i.i.d. variables with distribution p(A=0) =1—-p(A=1) =
0.0013, p(pt = 0) = p( = 1) = 1/2, and different realizations of A, u are used every
time the box number 3 is chosen.

Thanks to the fact that boxes P, and Ps; only produce one of the first two
possible outcomes, Alice’s outcome when box 3 is used is always fully encoded in
the fact that his outcome in the next round be in the valid V or invalid N set, and
in the knowledge of variable u for that run. Moreover, for all boxes except P; one
of the first two outcomes always appears with probability zero. It is thus always
possible to guess Alice’s outcome.

One can check, however, that it would not be possible to fully guess Alice’s
outome if the device behaved in an i.i.d manner. For this, note that the average

observed correlations according to the above rules are P =

p(1) Py + p(2) Py 4 p(3) Ps 4 p(3) (p(A =
p(1) +p(2

0)(Py+ PP)/2 +p\=1)(P5 + P7)/2)
)

+2p(3)
(4.100)

which numerically evaluates to

1 0.6919 | 0.5000
0.2800 | 0.0716 | 0.0178
0.5000 | 0.4681 | 0.3722 , (4.101)
0.2800 | 0.0716 | 0.2621
0.5000 | 0.4681 | 0.1279
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where PP and PP denote the correlations obtained when Bob uses the box 4 or 5,
and Alice produces a third outcome.

Applying our i.i.d. SDP to these correlations, one can show that in case Alice
uses her first input and the run is not discarded, the guessing probability on her

outcome is upper-bounded by 0.9874.

4.3.5(b) A simpler but less realistic strategy

The above strategy requires information about outcomes observed in previous runs,
but never from a different box: neither Alice’s nor Bob’s device needs to know
which outcomes the other party observed in any previous run. If one were to allow
Alice and Bob’s devices to depend on all of their previous inputs and outputs, a
simpler strategy could already be possible. Note however that one would have to
argue why it is the case that one box can signal to another one, but not to the
adversary!

Consider the situation in which the parties measure a singlet with probability
p, and nothing with probability 1 — p. This situation doesn’t create any single
no-detection: no-detections always come in pair between Alice and Bob. Thus, we
know that for any p > 0, some randomness remains in the non-discarded outcomes
(see Figure 4.9).

However, the same statistics could be observed if measurements are always
performed on a perfect singlet, and runs with double no-detections are artificially

added by using the following rule:

singlet outcomes a,b | following runs
1,1
1,2 &, D (4.102)
2.1 .2 0,0
2,2 2.0 .9 O,

In this case, counting the number of successive discarded events fully informs about
the value of both parties’ outcomes. This corresponds to the above situation with

an average source efficiency of p =2/5 > 0.

4.3.6 Conclusions

In this study we consider the effect of post-selection on Bell based randomness
generation. We showed that it is possible to analyse the randomness that can be

extracted from post-selected data without opening the detection loophole.
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For several physically-motivated models of the observed statistics, we showed
that one can indeed vindicate the idea that most of the randomness is present in
the double-detection events. From a practical perspective, this means that we can
directly hash the post-selected subset of the original data, which is of much smaller
size for current efficiencies, thereby reducing the needed seed length, and also the
time required to compute the final output. In the case of the statistics created in a
down-conversion experiment with low pumping, in particular, our result suggest
that essentially all the randomness can be extracted from the set of data where at
least one party observed a detection.

While our method applies to the i.i.d. situation, we provided a hint of what
can be expected in a non-i.i.d. analysis of randomness from post-selected data. It
would be interesting to know whether the bounds presented here remain true in
this case, if no information about the outputs is revealed to the adversary.

More generally, our method could be used to analyse the randomness present
in disjoint subsets of events independently. As shown in 4.3.4(b), this may lead to
tighter randomness estimates than previously achievable, solving in particular the

two-day paradox. We leave the full generalization of this result for further study.






CHAPTER b

CONCLUSIONS AND OUTLOOK

In this thesis we have presented several results in the field of quantum key distribu-
tion and quantum randomness generation. The main workforce behind the security
of these applications is the unique properties of quantum mechanical systems:
measurement disturbance, no cloning, nonlocality.

We presented a possible extension of the reference-frame-independent protocol
to d-level quantum signals and showed that the protocol is actually tomographic in
nature; it is better to use directly the different correlations, rather than compressing
them into a single frame independent parameter. We also proposed a framework
to prove the security of distributed-phase-reference protocols which is based on
the de Finetti theorem. This is only a first step towards a full framework tailored
specifically for the DPR protocols, which is a fruitful direction to explore.

We studied the relationship between amount of extractable randomness and the
levels of characterization of the devices in the setting of measurement independence.
Since trust or levels of characterization is a personal issue, one cannot force the users
into a certain level of trust. In fact, they must choose a level of trust on the devices
with which they are comfortable, and then our results give the corresponding
amount of random bits which can be extracted by two universal hashing. Our
frame work here is applicable to any scenario where guessing probability and trust
is involved, e.g. two party cryptographic applications.

Leaving measurement independent behind, we explained the important role
of the randomness of the inputs in Bell tests: they are required to reveal the
local behavior of the boxes (if any) in an adversarial scenario. This has important
consequences for randomness amplification, namely that Bell tests cannot be used to
amplify arbitrary min-entropy source in the device-independent scenario. Moreover,

the main concern with any randomness amplification protocol is to provide a
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reasonable estimate for the initial quality of the source (which is relative to Eve
and is therefore unobservable by definition). This is the most pressing question
that randomness amplification commynity must answer in order for the field to be
meaningful. Perhaps some further fundamental physical principles not present in
quantum theory can provide us with such a bound.

The last topic we discussed in this thesis is the amount of randomness in a
post-selected data of Bell tests. It is well known that improper treatment of the
experimental data opens up the detection loophole (i.e. an adversary can fake a
violation of Bell inequalities with local variables); we presented a way to analyze
the data for the desired amount of randomness without opening such loophole.
The result is applicable to an experiment, especially in photonic implementations
with source and detector inefficiencies.

Our randomness results are not presented in the most general framework of
non-i.i.d adversaries. Unless there is any physical reason limiting the adversary’s
strategy (such as the de Finetti theorem in QKD), we should aim any cryptographic
security results toward the most powerful model allowed by the current physical
theory. In fact, beyond i.i.d. in quantum information is currently a hot topic of
research [143]. Therefore, an extension of our results to the non-i.i.d. adversary is
an interesting direction to explore. Moreover, our last work on the randomness
in post-selected data as well as earlier works on QKD [20] have also hinted the
possibility of pre-processing as a way to enhance the performance of quantum

information processing tasks.
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