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Abstract and Summary

Quantum state tomography is a central and recurring theme in quantum information

science and quantum computation. In a typical scenario, a source emits a certain

desired state which carries the information, or is required for the computational task.

Quantum state tomography is needed for the verification and identification of the

state emitted by the source. In the first part of the thesis, we focus on the efficient

detection of entanglement, a key resource in many quantum information processing

tasks. We report an experiment in which one determines, with least tomographic

effort, whether an unknown two-photon polarization state is entangled or separable.

The method measures whole families of optimal entanglement witnesses at once. We

introduce adaptive measurement schemes that greatly speed up the entanglement

detection. The witness family measurement enables informationally complete (IC)

quantum state tomography if the individual family gives inconclusive results. On

average, only about three families need to be measured before the entanglement is

detected and the IC state tomography is hardly necessary.

However, in a realistic experiment, not only the quantum state to be recon-

structed, but additional parameters in the experimental setup are also unknown,

for example, the efficiency of the detectors, the total number of copies emitted, etc.

Furthermore, the assumption of a closed quantum system is also only an approxi-

mation, and there are often the ignored bath degrees of freedom which interact with

the system. The second part of the thesis aims at these aspects. For the former

aspect, based on the idea of credible regions, we construct joint optimal error re-

gions for the system state and the other unknown parameters. By marginalizing

over the nuisance parameters, one can obtain a marginal likelihood which only de-

pends on the parameter of interest. We illustrate the method and technique with
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several examples. Some of them display unusual features in the likelihood function.

For the latter aspect, we show how one uses ideas from quantum tomography or

state estimation to deduce a reasonable and consistent system-bath state. In typ-

ical experimental situations, such a state turns out to be uncorrelated or almost

uncorrelated between the system and the bath.

a
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Chapter 1

Introduction

Before the advent of quantum theory, we describe the classical world around us

using the Newton’s classical mechanics and Maxwell’s electromagnetic theory. Both

theories are deterministic in the sense that the state of the system now uniquely and

completely determines all phenomena about the system in the future. There is the

classical chaos, but such random behavior is due to the extreme sensitivity of the

subsequent dynamics on the initial conditions and the fact that in practice, we do

not have such precise control on these initial conditions. In principle, if we do have

such precise control and know the complete knowledge of the state, then everything

about the system in the future is completely determined.

However, the development of quantum theory brings challenges to such a point

of view: a fundamental feature of quantum theory is that it is probabilistic. The

complete knowledge of the state of the system now does not enable us to predict the

outcomes of all possible measurements that could be performed on the system. In

quantum theory, events are randomly realized and this randomness is an intrinsic

feature. One can only predict the probabilities that certain events will be observed if

a measurement is done on a system prepared in a certain way. Quantum theory is the

mathematical framework that enables us to calculate these probabilities. Born’s rule

is central in the framework as it provides us with the link between the phenomena

observed and the formalism of the quantum theory.

That quantum theory cannot enable us to predict the outcomes of all possible

measurements does not imply that quantum theory is ill-defined, or incomplete.
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It is not possible to add any further elements to the theory so as to make such

predictions. There are various attempts at modifying the theory so as to reinstall

determinism in the theory. However, all such attempts cannot make consistent

modifications without getting wrong predictions in other situations. The violation

of Bell’s inequality observed in the laboratory tells us conclusively that, whether

you like it or not, randomness is intrinsic in quantum mechanics. To add to that,

up to now, there has not been even a single experimental fact that contradicts a

quantum-theoretical prediction. Whether it is unsound to one’s philosophical ideas

of the world or just contrary to one’s liking, we have to accept that quantum theory

is probabilistic in nature and try to live with such randomness.

Besides the intrinsic randomness, quantum systems also show other non-classical

features that do not have analogs in a classical system. Some examples include su-

perposition and entanglement. All these strange features, however, could be utilized

in some way to do useful things for us. For example, intrinsic randomness is ex-

ploited in cryptographic schemes to make absolute security possible. Superposition

is found to be useful in the so-called Deutsch algorithm and other quantum compu-

tation tasks. Entanglement plays a crucial role in quantum information protocols

such as teleportation. In all these examples, the quantum system is manipulated to

perform certain information tasks or computations. In a nutshell, quantum infor-

mation and quantum computation are about finding ways of utilizing the quantum

system in theory, and about gaining better and more precise control on them in the

experiments, to perform useful information tasks and computations for us.

In all of these quantum information tasks and computations, quantum state

preparation is the first important step for any protocol that makes use of a source

of a quantum system. In a typical scenario, a source emits a certain desired state

which carries the information, or is needed for the computational task. For instance,

a quantum-state teleportation protocol that is carried out using optical equipment

requires a source that produces two photons that are prepared in a maximally-

entangled quantum state. Ideally, these preparations should be accurate and their

implementations should not be too cumbersome. A variety of states should be

generated in a controllable manner without the need to consume too much time or
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involve too complex a setup with a huge number of pieces of equipment.

In order to verify that the source is indeed producing the desired state, or some-

thing close to it, one carries out quantum state tomography on the source. Quantum

state tomography is about reconstructing the input state given measurement data

collected about it. It is needed for the verification and identification of the state

emitted by the source. As we will see later, quantum measurement is not a triv-

ial problem as it is not possible to extract all information needed to reconstruct

the state by measuring only a single copy of the system. In general, we need to

send many independently and identically prepared copies of such system to a mea-

surement apparatus. The measurement could in general result in different possible

outcomes, which are monitored by different detectors placed at appropriate output

ports. By counting the relative frequencies of each of the detector clicks, one can

then infer the input state using some data processing protocols.

It turns out that most of these desired states possess entanglement, a key resource

in many quantum information processing tasks. Hence entanglement verification and

detection is also of critical importance in quantum information science and quantum

computation. Entanglement witnesses have been introduced such that if we know

the state, then we can choose a suitable witness to detect its entanglement. However,

given an unknown generic state, one can only randomly select a witness which may

or may not detect its entanglement (if there is any in the state). One then has to

keep trying new ones until one succeeds. In the case if the state does not possess

any entanglement, one will never come to any conclusion. However, if we choose

entanglement witnesses which enable quantum state tomography, then measuring a

finite number of them will help one reconstruct the input state and then determine

whether there is entanglement in the state or not. Hence, in a certain sense, quantum

state tomography is a central and recurring theme in quantum information science

and quantum computation.

In a realistic quantum state tomography experiment, not only the quantum state

to be reconstructed is unknown, but also some additional parameters in the exper-

imental setup, for example, the efficiency of the detectors, the dark counts of the

detectors, etc. Furthermore, quantum systems tend to interact with the environ-
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ment that is surrounding them, and then decohere. The assumption that we have a

closed quantum system is just an approximation, though often a good one. Such in-

teraction generally develops correlations between the system and environment, often

in the form of entanglement, which have implications on the subsequent dynamics

of the system. This interaction is however often ignored when one describes such

quantum state tomography experiments.

It is then the aim of this thesis to study some of the issues raised above. In the

first part of the thesis, we focus on state preparation and the efficient detection of

entanglement, presenting two experiments that have been performed. The second

part of the thesis aims at tackling two theoretical aspects: the issue of additional

unknown parameters and that of coupling between the system and environment

during quantum state tomography. Below is a more detailed outline of this thesis.

In Chapter 2, we present a short review of quantum mechanics and basic ideas

in quantum state tomography that are needed to follow this thesis. For the short

review on quantum mechanics, the polarization of light is used as the example and

most of the treatment follows very closely to that given in Lectures on quantum

mechanics: basic matters by Englert [Eng06]. Very often, I remark on things that

will strike the experienced reader as rather elementary. This is because over the

years, I realized that more and more younger researchers like high school students

are also entering this research field and, for them, very little suitable material is

there to help them learn and get familiarized with the topics. I find the book by

Englert especially to my liking and these elementary remarks in this thesis are meant

for the high school students who can get introduced to these basic notions and ideas.

For the overview on quantum state tomography, both point estimators and region

estimators are briefly introduced that will be used subsequently in this thesis.

Chapter 3 deals with the issue of state preparation. We focus in this chapter

on mixed states in particular. They are useful in investigations of quantum com-

puting, studies of the quantum-classical interface, and decoherence channels. We

report a controllable method for producing mixed two-photon states via spontaneous

parametric down-conversion with a two-type-I crystal geometry. By using variable

polarization rotators (VPRs), one obtains mixed states of various purities and de-
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grees of entanglement depending on the parameters of the VPRs. The method can

be easily implemented for various experiments that require the generation of states

with controllable degrees of entanglement or mixedness.

As an application of the source described in Chapter 3, we discuss an exper-

iment done on entanglement witnesses in Chapter 4. Besides testing the utility

and robustness of the source introduced in Chapter 3, this experiment also has

its fundamental importance on its own as it involves fast and efficient detection of

entanglement. In this experiment, one determines, with least tomographic effort,

whether an unknown two-photon polarization state is entangled or separable. The

method measures whole families of optimal entanglement witnesses. We further

introduce adaptive measurement schemes that greatly speed up the entanglement

detection.

As we were performing the experiments discussed in Chapter 3 and Chapter 4,

we realized that in a typical experiment such as the ones we performed, additional

parameters, apart from the state, are also unknown, for example the efficiency of the

detectors. However, for simplicity, the majority of the quantum state tomography

experiments performed so far assume that the quantum state to be estimated is

the only unknown, while other parameters necessary to reconstruct the state are

all perfectly known, normally as a result of some form of pre-calibration. However,

such pre-calibration is not always feasible. In this chapter, we study quantum state

tomography with additional unknown parameters and illustrate the construction of

optimal error regions with some examples.

Finally in Chapter 6, we turn our attention to the inevitable interaction between

the system and the environment that is omnipresent. Such systems are called open

quantum systems. The initial state of a system-environment composite is needed

as the input for predictions from any quantum evolution equation, which describes

the effects of noise on the system from joint evolution of the system-environment

interaction dynamics. The conventional wisdom is to simply write down an un-

correlated state as if the system and environment were prepared in the absence of

each other; or one pleads ignorance and writes down a symbolic system-environment

state, allowing for possible arbitrary correlations—quantum or classical—between
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the system and the environment. Here, we show how one uses ideas from quantum

state tomography to deduce a reasonable and consistent initial system-environment

state. In typical situations, such a state turns out to be uncorrelated or almost

uncorrelated between the system and the environment. This has implications, in

particular, on the subject of subsequent non-Markovian or non-completely-positive

dynamics of the system, where the non-complete-positivity stems from initial non-

trivial correlations between the system and the environment.

We close the thesis with a short conclusion and outlook in Chapter 7.



Chapter 2

Background

In this chapter, we will briefly review some of the elementary concepts that are

useful to follow this thesis. In particular, we will first give a short review of quantum

mechanics, using the polarization of light as the example, followed by a brief overview

on quantum state tomography.

2.1 Quantum mechanics: A brief review

2.1.1 Basic concepts: Events and states

Before one is exposed to quantum mechanics, one’s first encounter with physics usu-

ally starts with Newton’s classical mechanics [New87], which deals with the motion

of massive bodies, or simply masses, (that is, their positions, ri(t), and velocities,

vi(t), where the subscript i refers to the ith mass) under the influence of forces. The

equation of motion (also known as the Newton’s second law)

mi
d

dt
vi(t) = F i(t), (2.1)

where mi is the mass of the ith body and F i(t) is the total force acting on it at

time t, governs its motion. Note that, however, Newton’s equation of motion is

built upon the concepts of masses and forces, which are preexisting, and does not

answer why there are masses and forces in the first place. Similarly, in Maxwell’s

electromagnetic theory [Max73], electric charge is a preexisting concept, and the

theory deals with electromagnetic forces exerted on charges, and in turn, how these
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(moving) charges modify the electromagnetic fields. Both Newtonian mechanics and

Maxwell’s electromagetism are deterministic theory. See, for example, Eq. (2.1),

where the solution to these differential equations with the given initial conditions

ri(t = 0) and vi(t = 0) uniquely determine the subsequent trajectories of the masses.

In quantum mechanics, one deals with the behaviour of atomic systems, and in

particular, with the results of measurements on them [Sch01]. Similar to Newtonian

classical mechanics, there are also preexisting concepts in quantum mechanics, one

of which is that of an event [Eng13, Haa90]. Some examples of an event include:

the emission of a photon by an atom in its excited state; the landing of a silver

atom on a screen; the absorption of a photon by a semiconductor detector, etc.

However, contrary to classical mechanics which are deterministic, quantum theory

is an intrinsically probabilistic theory. Take for example, the famous Stern-Gerlach

experiment [GS22]: We can only predict the percentage of silver atoms landing on

the upper (lower) part of screen. But for each individual silver atom, we do not

know, or rather, it is unknownable, where it will land. This is because when one

deals with atomic measurements, first of all, atomicity means that the microscopic

entities have many of their properties carried in certain basic units. Put it simply,

there is an electron which cannot be halved. There is no half a unit of charge. As

a result of this, we cannot make the electric interaction as arbitrarily small as we

like. Secondly, we are also unable to compensate for the disturbance caused during

the measurement due to the interactions in the realm of atomic measurement, as we

cannot predict in detail what each individual event will do, but only on a statistical

level [Sch01]. Put it simply, there is no mechanism that decides the outcome of

a quantum measurement [Eng06]. What one can tell is only the probabilities for

the occurrence of the various possible outcomes. Quantum mechanics does this job

exactly, enabling us to correctly calculate these probabilities.

Let us illustrate these ideas using a simple example: the polarization of the

light [Hec01]. As we know, light is a transverse electromagnetic wave, consisting

of electric field and magnetic field oscillating in space and time. The direction of

the oscillations in space of the electric field defines its polarization axis. A beam of

light, travelling along the z-axis, could have its plane of oscillation horizontal (along
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x-axis),

E(z, t) = exE cos(kz − ωt)=̂E(t)

1

0

 , (2.2)

which we call horizontally polarized light, or vertical (along y-axis),

E(z, t) = eyE cos(kz − ωt)=̂E(t)

0

1

 , (2.3)

which we call vertically polarized light. A device that could sort out the polarization

is the so-called polarizing beam splitter (PBS). When a horizontally polarized light

is sent to a PBS, it will be transmitted, whereas being reflected for a vertically

polarized light. But the electric field could also be oscillating at an angle, say ±45◦

with respect to the horizontal, that is

E(z, t) =
1√
2

(ex ± ey)E cos(kz − ωt)=̂E(t)
1√
2

 1

±1

 . (2.4)

We call such light diagonally (for 45◦) polarized or anti-diagonally (for −45◦) polar-

ized. What happens when diagonal or anti-diagonal polarized light hits the PBS?

If we now put two detectors on the two ports of the PBS, we see that half of the

intensity is transmitted and half reflected. Note that we can use the so-called Jones

vector as a compact notation to represent the state of polarization of the light, so

that an arbitrary polarization is given by

E(z, t) = exEx(t) + eyEy(t)=̂

Ex(t)

Ey(t)

 , (2.5)

where Ex(t) and Ey(t) are the amplitude of the electric field along the x and y-axis

respectively. Note that the electric field is real, but the Jones vector represents

the (relative) amplitude and the (relative) phase of the electric field in x and y

directions. Hence, the amplitude could be complex here so as to include circularly

polarized light (or more generally elliptically polarized light). Further, also note that

by taking the modulus square of the electric field amplitude, one gets the correct

intensity, observed in the respective detectors in the transmitted arm or reflected
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arm of the PBS.

Now what happens if we keep dimming the light source until there is only a single

photon in each pulse?1 Then we notice that at any time, since a photon cannot be

further split, only one of the detectors will click. But it is completely random

and unpredictable which one will click for the next incoming photon.2 When one

carries out this experiment, a typical sequence that one would get looks like this:

HHVHVVVHVH.... If one waits long enough, then on average, one gets half of the

photons transmitted, and half reflected. But for each individual photon, all we can

say is the probability that it will be transmitted or reflected. Following Dirac, we

will write a ket |h〉 to symbolize a photon with horizontal polarization, and ket |v〉
for a photon with vertical polarization, with a vector representation similar to the

Jones vector given by

|v〉 =̂

1

0

 , |h〉 =̂

0

1

 , (2.6)

with the completeness relation given by

|v〉〈v|+ |h〉〈h| =̂

1

0

(1 0
)

+

0

1

(0 1
)

(2.7)

=

1 0

0 1

 =̂1, (2.8)

where 1 is the two-dimensional identity operator.

Any other polarization state can be written as a linear combination of these two

kets. In general, our description of the photon is symbolized by the state vector,

usually denoted as | 〉 (or 〈 |), called the Dirac’s ket (or bra). That is, we have

| 〉 = |v〉α+ |h〉β, (2.9)

where α, and β are the probability amplitudes. The bra is the complex transposition

1The concept of a photon is more subtle than that, see, for example, Ref. [Lou00]. But for the
purpose of the current discussion, let us take a photon to mean the smallest packet of energy that
will trigger only a single click from the detector.

2So far, I have only tried to make it sound plausible that the randomness is intrinsic without
proof. For the proof, see many standard quantum mechanics textbooks on Bell’s inequality.
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(denoted as †) of the ket, that is 〈 | = | 〉†, which is to be represented by a row

vector. The complex transposition is to take the transpose of the matrix (denoted

as T), followed by complex conjugation (denoted as ∗), that is,

M † =
(
MT

)∗
, (2.10)

for a matrix M .

We also generalize the dot product between two vectors in real space,

ex · ey = 0, (2.11)

to the inner product between the bra and the ket, which is also called a bracket,

given by

〈h|v〉 = 0, (2.12)

expressing the orthogonality between these two kets.

Just like taking the modulus square of the electric field amplitude gives us the

intensity, taking the modules square of the probability amplitudes gives us the cor-

rect probabilities that the photon will be detected at the H-port, or V-port of the

detectors. Since the probabilities must add up to one, we need |α|2 + |β|2 = 1, the

so-called normalization condition.

Some terminology is in order. We say that the set {|v〉, |h〉} forms an orthogonal

basis for the case of photon polarization, since any polarization of the photon can be

written as a linear combination of the two basis kets which are orthogonal to each

other. If all the basis kets are normalized, then it is an orthonormal basis. More

generally, a more complex quantum system may need the specification of d such basis

kets, say {|k〉}k=1,2,··· ,d, for the ket space of dimension d, with the completeness and

orthonormality properties given by

d∑
k=1

|k〉〈k| = 1, (2.13)

and

〈k|j〉 = δkj , k, j = 1, 2, · · · , d, (2.14)
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where 1 is the d-dimensional identity operator.

Such orthonormal basis is not unique and in fact there are infinitely many

of them. For example, besides {|v〉, |h〉}, diagonal and anti-diagonal polarization

{|d〉, |a〉} or left- and right-circular polarization {|l〉, |r〉} also form a basis.

The sets of kets and bras form Hilbert spaces of dimension d that are dual to

each other. Introducing an orthonormal basis, one can expand any arbitrary ket in

this basis by

| 〉 = 1| 〉 =
d∑

k=1

|k〉〈k| 〉 =
d∑

k=1

〈k| 〉|k〉, (2.15)

where the inner product 〈k| 〉 represents the overlap of | 〉 with the basis ket |k〉. In

the example of photon polarization, the dimension of the Hilbert space is two, since

any polarization can be decomposed into linear combination of two independent

ones. Such a system of two-dimensional Hilbert space is called a qubit, and the most

popular orthonormal basis is perhaps {|v〉, |h〉}.

2.1.2 Measurement: Born’s rule

Continuing the discussion of polarization of the photon, suppose that we send pho-

tons with the polarization state | 〉 = |v〉α + |h〉β to a PBS, then the probability

that the next photon is detected at the V-port of the PBS is given by |α|2, that is

p(V) = |α|2 = |〈v| 〉|2 = 〈v| 〉〈 |v〉. (2.16)

We now introduce the so-called trace operation, defined by

tr{|a〉〈b|} = 〈b|a〉, (2.17)

with the linearity property given by

tr{A+B} = tr{A}+ tr{B}, (2.18)

and

tr{cA} = c× tr{A}, (2.19)
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for all operators A and B, and all scalars c.

This enables us to re-write Eq. (2.16) as

p(V) = tr{ρΠV}, (2.20)

where

ρ = | 〉〈 |, (2.21)

known as the statistical operator, which summarizes our knowledge about the state,

and

ΠV = |v〉〈v|, (2.22)

which summarizes our knowledge about the measurement. Similarly, we have

p(H) = tr{ρΠH}, (2.23)

with

ΠH = |h〉〈h|, (2.24)

for the probability that the next photon is detected at the H-port. We call such a

measurement projective measurement as it projects the photons onto the V/H basis.

In general, we have

pi = tr{ρΠi}, (2.25)

known as the Born’s rule. The operators Πis are known as the probability operators.

In the case considered above, the probability operators belong to a class of special

operators known as projectors. However, to be general, we allow for non-projective

measurement, or generalized measurement [NC10]. Regardless of the details of the

measurement, such as the exact physical nature of the measurement, or the state

of the system after the measurement, a consistent measurement theory must satisfy

the following two criteria. Firstly, the probability of occurrence, pi, for the outcome

of probability operator Πi must be non-negative. Secondly, the probabilities for all

outcomes must sum to unity, assuming no losses.3 Hence, we call a set of positive

3The effect of losses can be accounted for by introducing one more probability operator in the
POM.
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operators {Πi} the probability operator measurement (POM), if they satisfy the

positivity property

Πi ≥ 0, for all i, (2.26)

and the completeness property ∑
i

Πi = 1. (2.27)

A particular probability operator Πi is also called one element of the POM. The

POM element can only enable us to calculate the respective probabilities that one

is interested in. However, in certain cases, one also would like to know the state of

the system after the measurement. For that purpose, one needs to know the details

of the implementation of the measurements, so as to construct the measurement

operator, also known as the Kraus operator [Kra83],

Πi = K†iKi. (2.28)

The state of the system after the measurement is given by

| 〉 → Ki| 〉
〈 |Πi| 〉

. (2.29)

For the situation considered above, we have

KH = |vac〉〈h|, KV = |vac〉〈v|, (2.30)

where |vac〉 symbolizes the vacuum state, since the photon is absorbed after the

measurement. Depending on which of the detector clicked, the statistical operator

is then updated according to

ρ→ KiρK
†
i

pi
. (2.31)

As a final remark, notice that in quantum mechanics, a measurement of a certain

property could be realized in many different bases. For example, for the measure-

ment of the polarization of light, by using optical devices which modifies the po-

larization such as half-wave plate (HWP) or quarter-wave plate (QWP), one could

do a projective measurement in the D/A basis or L/R basis. A photon which is
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surely transmitted at the H-port of the PBS will be completely unpredictable when

it is measured in the D/A or L/R basis. This effect, namely, if precise knowledge

of one of the observables implies that all possible outcomes of measuring the other

are equally probable, is known as complementarity [SEW91].

2.1.3 Mixed state: Purity

What we described so far is the concept of a pure state. That is, the light has a

certain pure and well-defined polarization state. It is a state of the photon that

there exists a chosen basis, such that if measurement is done in this basis, then

we know for sure that only one of the detectors would click. One can also think

of it as someone has prepared all the photons in that particular state. How do we

then describe a preparation such that a certain fraction of the photons are prepared

in a particular state, and others in a different state, say half of the photons in H-

polarized state and half in V-polarized state? To describe such a state, let us imagine

that it is sent to a measurement apparatus realizing a particular POM, {Πi}. The

measurement result on the fraction of photons in the H-polarized state is predicted

by tr{|h〉〈h|Πi}, whereas that on the fraction of photons in the V-polarized state is

predicted by tr{|v〉〈v|Πi}. Since we have half of each of them, the overall result is

predicted by using

pi =
1

2
tr{|h〉〈h|Πi}+

1

2
tr{|v〉〈v|Πi}

= tr

{(
1

2
|h〉〈h|+ 1

2
|v〉〈v|

)
Πi

}
. (2.32)

It then follows that the appropriate description of such a mixed state is given by

the statistical operator

ρ =
1

2
|h〉〈h|+ 1

2
|v〉〈v|. (2.33)

More generally, the generic form of statistical operator is

ρ =
∑
i

|i〉gi〈i|, (2.34)

where |i〉 is the ket of the ith type system, and gi is its weight in the mixture. The
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statistical operator, also known as the density operator, density matrix, or simply,

the “state”, is the generalization of the ket or bra. It is hermitian by construction,

satisfying the hermiticity property that ρ† = ρ. In Eq. (2.34), one can interpret the

state as if the state is made up of mixtures of |i〉〈i|, each with the weight gi. Note

that however, this decomposition is generally not unique: There are infinitely many

as-if realities for a given state, with pure states being the exception. Following the

standard terminology, we have a unique mixture made up of different blends. An

arbitrary ensemble of systems could consist of purely identical copies of a quantum

system, or mixtures of different ones. Then, the first kind of ensemble is known as

pure states, and the second kind as mixed states.

Two remarks are in order: First, we refer to the dimension D of the state space

(the space of all statistical operators) as the number of entries of the density matrix,

i.e. the representation of statistical operator in any basis. For example, bipartite

qubit systems have a D =16-dimensional state space. We have D = d2, where d is

the dimension of the Hilbert space introduced previously. Secondly, we call states

with n non-zero eigenvalues as rank-n states. For instance, pure states are rank-one

states, mixtures of two orthogonal pure states are rank-two states.

To quantify the amount of mixedness in a given state ρ, a simple measure is

given by its purity [NC10],

P = tr
{
ρ2
}
. (2.35)

The values of the purity are bounded between 1/d and one. It equals to one if

and only if ρ is pure, and equals to 1/d when ρ is completely mixed, i.e. ρ = 1/d.

Obviously, the completely mixed state is a rank-d state, or a full rank state. States

which are not full rank are rank-deficient.

As an example, let us consider a qubit. One particularly convenient way to

parametrize a qubit is to write

ρ =
1

2
(1 + s · σ) , (2.36)

where σ = {σx, σy, σz} are the familiar Pauli matrices, sometimes denoted as

{X,Y, Z}, and |s| ≤ 1. The geometry of the qubit state space could be visual-
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ized as the Bloch ball, with pure states on the surface with |s| = 1, and mixed states

inside with |s| < 1 [NC10].

2.1.4 Bipartite system: Entanglement

For a system composed of two subsystems, called a bipartite system, the extension

of symbols for states is straightforward, with the tensor product ⊗ between the two

subsystems’ states. For instance, |h〉A ⊗ |h〉B, or simply |hh〉, identifies a pair of

horizontally polarized photons from subsystems A and B. Just like {|v〉, |h〉} forms a

basis for a single system, we have {|vv〉, |vh〉, |hv〉, |hh〉} for a basis for the bipartite

system, with straightforward meanings. An arbitrary bipartite (pure) state is then

given by

| 〉 = α|vv〉+ β|vh〉+ γ|hv〉+ δ|hh〉, (2.37)

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

For example, we can have (with α = β =
√

1
2 , and γ = δ = 0)

| 〉 =

√
1

2
|vv〉+

√
1

2
|vh〉

= |v〉 ⊗
(√

1

2
|v〉+

√
1

2
|h〉
)
, (2.38)

describing a bipartite system with subsystem A in the vertical polarization state,

and subsystem B in the diagonal polarization state. If we now wish to make reference

to one of the subsystem only, we obtain the reduced statistical operator of one of the

subsystem by taking the partial trace over the other subsystem,4 that is

ρA = trB{ρAB}. (2.39)

The partial trace trB is defined by

trB{|a1〉〈a2| ⊗ |b1〉〈b2|} = |a1〉〈a2|tr{|b1〉〈b2|}, (2.40)

where |a1〉 and |a2〉 are any two vectors in the state space of subsystem A, and |b1〉
4Why the partial trace? See, for example, Ref. [NC10]
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and |b2〉 are any two vectors in the state space of subsystem B. For the state given

by Eq. (2.38), we have ρA = trB{ρAB} = |v〉〈v|, and ρB = trA{ρAB} = |d〉〈d|, as

one would expect.

The state given by Eq. (2.38) is an example of a tensor product structured

state, called a product state. How about the state (with β =
√

1
2 , γ = −

√
1
2 , and

α = δ = 0)

|Ψ−〉 =
1√
2

(|vh〉 − |hv〉), (2.41)

known as the singlet state? It turns out that this state (and many others) cannot be

written as a tensor product of two subsystem states, that is, there exists no values

of α1, β1, α2, and β2 such that

1√
2

(|vh〉 − |hv〉) = (α1|v〉+ β1|h〉)⊗ (α2|v〉+ β2|h〉) . (2.42)

We call such a state entangled, as it seems to be impossible to make reference to

only one subsystem without making reference to the other. This non-classical state

possesses quantum entanglement.

The meaning of the entanglement is revealed further by looking at measurement

results done on this bipartite system. One shows that

p(HH) = tr {|Ψ−〉〈Ψ−| (ΠH ⊗ΠH)} = 0, (2.43)

where the tensor product of operators, ΠH⊗ΠH, similarly describes the probability

operator that subsystem A is projected into H-polarized state and subsystem B is

also projected into H-polarized state. Similarly, one shows that

p(HV) =
1

2
, p(VH) =

1

2
, and p(VV) = 0. (2.44)

This means that when this bipartite system is measured in the H/V basis, half of the

time, subsystem A will be detected at the H-port and the other half at the V-port,

completely random. One could also see this by looking at the reduced statistical
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operator of subsystem A, which is

ρA = trB

{
|Ψ−〉〈Ψ−|

}
=
1

2
, (2.45)

the completely mixed state. But whenever subsystem A is detected at H-port,

subsystem B is always detected at V-port and vice versa, meaning that there exists

correlations between the measurement results on these two subsystems.

At this point, it is important to distinguish the state given by Eq. (2.41) with

that given by

ρ =
1

2
|hv〉〈hv|+ 1

2
|vh〉〈vh|, (2.46)

as the latter state also results in the same correlation. However, such correlation

are classical in nature as one can prepare the state given by Eq. (2.46) at separate

locations by classical communications. That is, imagine that Alice at lab A prepares

the state |v〉 half of the time, and |h〉 half of the time. But whenever she prepares |h〉,
she calls Bob at lab B to prepare |v〉, and vice versa. This form of classical correlation

will disappear if the joint state that they prepare is measured in a different basis. On

the contrary, the quantum correlation possessed by the state in Eq. (2.41) persists

even if measurement was done in any other orthogonal basis and the state can only

be prepared if subsystem A and B were to interact some time at the same location.

This kind of intimate quantum correlation between two subsystems, which is non-

classical in nature, is known as entanglement. We obtain less information about the

individual subsystem, but gain in knowledge about them as a pair.

More generally, for a k-partite system, one calls the ket entangled if it is a

superposition ket, which cannot be factorized completely into tensor products of

kets of all individual subsystems. Then, the generalization of entanglement to mixed

states are as follows. States which can be written as

ρ =
∑
i

giρ1,i ⊗ ρ2,i ⊗ · · · ⊗ ρk,i (2.47)

are known as separable, whereas states which are not separable are entangled.

Physically speaking, a separable state describes a mixture of systems which can
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be obtained by preparing all individual subsystems of the k-partite separately and

in well-defined states. In other words, all the subsystems retain their individuality,

and have no quantum correlations with each other. The set of all separable states

is a convex set. That is, mixtures of separable states will remain separable, which

is obvious. However, the set of entangled states are not convex. A simple counter-

example is an equal mixture of |Ψ+〉 = 1√
2
(|vh〉+ |hv〉) with |Ψ−〉, which results in

ρ = |vh〉12〈vh|+ |hv〉12〈hv|. This clearly is a separable state.

Entanglement is one active topic of current research, where the quantum corre-

lation between subsystems is at the heart of many interesting fields, like quantum

key distribution [Eke91], quantum teleportation [BPM+97], and demonstration of

various concepts of quantum mechanics [AGR81, CS78]. While it is the our aim of

this thesis to study various applications and usefulness of quantum entanglement, we

are concerned with how to efficiently verify whether an unknown state is entangled

or separable. For this purpose, we introduce the idea of an entanglement witness.

Due to the special closure or convex property of the separable states described

above, there must exist [HHH96, Ter00] a hermitian operator W , called the entan-

glement witness or witness operator, such that if the state ρ0 is entangled, then


tr{ρW} ≤ µ for all separable states,

tr{ρW} > µ for some entangled states, including ρ0.

(2.48)

µ is called the threshold of the witness operator, and when the second inequality

above is satisfied, one says that this witness operator detects the state ρ. As a

concrete example, for a bipartite qubit system, W = |Ψ+〉〈Ψ+| is a witness with

threshold value µ = 1/2. The concept of a witness was first used by M., P., and

R. Horodecki [HHH96], and the term “witness” was introduced by Terhal [Ter00]; for

reviews that cover all important aspects of entanglement witnesses, see Refs. [GT09,

HHHH09].

Here, we mention briefly one particular important kind of witness operator

known as an optimal witness WOpt: No other witnesses can detect all the entangled

states detected by WOpt, plus some other states [LKCH00]. Geometrically, a witness

defines a hyperplane in the state space, which separates a partial set of entangled
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⇢sep

W

Wopt

⇢ent

⇢2

⇢1

Figure 2.1: Geometry of states and entanglement witnesses: The set of separable
state ρsep is convex, whereas the set of entangled state ρent is not. An entanglement
witness W defines a hyperplane in the state space which separates the separable
states and a partial set of entangled states. An optimal entanglement witness Wopt

touches the convex set of separable states. In this figure, the state ρ1 is an en-
tangled state which cannot be detected by W , but can be detected by Wopt. The
entangled state ρ2, however, could not be detected by Wopt. In order to detect the
entanglement in ρ2, one needs to measure another suitably chosen entanglement
witness.

states from all other states. Then, an optimal witness defines a hyperplane in the

state space which touches the convex set of separable states, see Fig. 2.1 for a simple

illustration.5 In the figure, the state ρ1 is an entangled state which cannot be de-

tected by W , but can be detected by Wopt. The entangled state ρ2, however, could

not be detected by Wopt. In order to detect the entanglement in ρ2, one needs to

measure another suitably chosen entanglement witness.

Alternatively, if the density operator of the state is known, then there are well-

known methods to determine whether the state is entangled or separable. For the

case of two qubits, we use the Peres-Horodecki criterion [Per96, HHH96]: if the

partial transposition of a two qubit state is also a valid state, then the original two

5The figure shown is for demonstration only: The actual convex state space in its boundary is
not as simple as drawn, but generally complex and abstract.
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qubit state is separable. Given a general state ρ which acts on HA ⊗HB,

ρ =
∑
ijkl

pijkl|i〉〈j| ⊗ |k〉〈l|, (2.49)

the partial transposition (with respect to subsystem B) is defined as

ρTB =
∑
ijkl

pijkl|i〉〈j| ⊗ |l〉〈k|. (2.50)

To understand this criterion, first we note that if a state on HA ⊗HB is separable,

then it is obvious that its partial transposition is a positive operator, whatever the

dimensions of the Hilbert space of A and B. We see this in

(ρA ⊗ ρB)TB = ρA ⊗ ρT
B, (2.51)

which is clearly positive, since the transposition does not change the eigenspectrum

of the operator ρB. However, the reverse is true only for a Hilbert space of C2 ⊗ C2,

and C2 ⊗ C3, that is for a two-qubit system, or for a qubit-qutrit system. We will

make use of this criterion in the thesis since the experiment discussed later involves

a two-qubit state. However, given an unknown state, how to determine the density

operator of the state? This is the subject of quantum state tomography and we will

answer this question in Section 2.2 later.

Just like purity quantifies the amount of mixedness in a given state, we also

need to be quantitative about the amount of entanglement possessed by a given

state. Indeed, there are a plethora of such measures, stemming from various (geo-

metrical, algebraic, operational) considerations [BŻ06]. For our work, we choose to

use the concurrence C, and its square, the tangle T , which for bipartite qubit, has

the advantage of having available analytical expressions, as our basic measures of

entanglement [Woo98, CKW00]. The analytical expression for concurrence is

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (2.52)

where the λjs are the eigenvalues, in decreasing order, of the Hermitian matrix

R ≡
√√

ρρ̃
√
ρ. Here, ρ̃ = ΣρTΣ, where ρ and Σ = Y ⊗ Y , Y being the y-Pauli
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operator, all are expressed in the standard basis {|vv〉 , |vh〉 , |hv〉, |hh〉}, i.e.

Σ = Y ⊗ Y =


〈v| 〈h|

|v〉 0 −i

|h〉 i 0

⊗

〈v| 〈h|

|v〉 0 −i

|h〉 i 0



=



〈vv| 〈vh| 〈hv| 〈hh|

|vv〉 0 0 0 −1

|vh〉 0 0 1 0

|hv〉 0 1 0 0

|hh〉 −1 0 0 0


. (2.53)

For all separable states, their concurrences are zero, and for maximally entangled

states, C = 1.

Finally, we mention that just like the set {|vv〉, |vh〉, |hv〉, |hh〉} forms a basis for

a bipartite qubit system, there are also entangled kets which form an orthonormal

basis. The often used one is the so-called Bell basis, which consists of the following

four Bell states

|Ψ−〉 =
1√
2

(|vh〉 − |hv〉), (2.54)

|Ψ+〉 =
1√
2

(|vh〉+ |hv〉), (2.55)

|Φ−〉 =
1√
2

(|vv〉 − |hh〉), (2.56)

|Φ+〉 =
1√
2

(|vv〉+ |hh〉). (2.57)

These states are maximally entangled states in the two-qubit state space, having a

concurrence equal to one.

2.1.5 Dynamics

So far, we have been concerned with only kinematics of the quantum system (with

the exception of the measurement), that is how a quantum system is described.

We now turn our attention to the dynamics of the quantum system, that is how a
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quantum system evolves in time. We focus on closed quantum system first and look

at how the basis bras evolve with time. At time t, we have a complete orthonormal

basis 〈. . . , t|, where the ellipses stands for any quantum property of the system

(polarization, position, momentum, etc). At time t+ τ , we have another set of basis

bras 〈. . . , t + τ |. These two sets must be related to each other by some unitary

transformation, that is, we have

〈. . . , t+ τ | = 〈. . . , t|Ut(τ), (2.58)

with U †t Ut = 1. It then follows that the dynamics of the quantum system is governed

by unitary evolution

ρ→ UρU †. (2.59)

This is true for a closed quantum system. If the system is open to interact

with the environment, there will be flow of information between the system and the

environment. The evolution of the system will no longer by described by unitary

transformations. However, one can still treat the system plus the environment

composite as forming a closed quantum system. The joint system-environment state

then evolves according to

ρSE → USEρSEU
†
SE, (2.60)

where the unitary transformation, USE, acts on the system-environment as a whole.

Here, USE is related to the total Hamiltonian of the system-environment composite

HT = HS + HE + HI, where the three terms represent the Hamiltonian of the

system, that of the environment, and that of the interaction respectively, see Fig. 2.2.

Knowing the system-environment state at t = 0, as well as the total unitary USE(t),

one can then work out the system-environment state at time t. The system-only

state is obtained as usual, by taking the partial trace over the environment, so that

ρS(t) = trE

{
USE(t)ρSE(0)U †SE(t)

}
. (2.61)

In most of the cases, one assumes that initially the system and environment is
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environment

system

HS

HE

USE

HIHI

Figure 2.2: Quantum system with Hamiltonian HS is inevitable to interact with the
environment with Hamiltonian HE. There will be flow of information between the
system and the environment due to the interaction Hamiltonian HI. The evolution of
the system will no longer by described by unitary transformations. However, one can
still treat the system plus the environment composite as forming a closed quantum
system. The evolution of the joint system-environment state is then governed by
the total unitary USE.

uncorrelated and in a product state, that is

ρSE(0) = ρS(0)⊗ ρE(0). (2.62)

Such an assumption results in master equation descriptions for the system-only state

[NC10, BP06].

2.2 Quantum state tomography

2.2.1 Introduction

After the short review on quantum mechanics, we are now prepared for discussions

on quantum state tomography. Quantum mechanics enables us to correctly predict

the probabilities of various outcomes through the Born’s rule, that is, given the state

ρ, and the measurement {Πi}, what are the probabilities {pi}. However, in many
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cases, one would encounter the reverse problem. How could we infer the unknown

state ρ if we know the measurement results?

This seems to be a rather innocent question, however, the answer is completely

non-trivial. If one knows the correct probabilities pis, then the answer is indeed

simple and straightforward. One just inverts the Born’s rule. However, unless one

has an infinite amount of resources, one would never be able to get the exact correct

probabilities. This is due to the Heisenberg uncertainty relation [Hei27, Hei30] and

the complementarity principle which forbids us from extracting all necessary infor-

mation to reconstruct the state ρ from a single copy of the system. Any measurement

on a generic quantum system inevitably disturbs it, so that after one measurement

is done, almost no further information could be extracted from it about its state

before the measurement. Take for example, the situation we considered in Section.

2.1.2, with the Kraus operators given by Eq. (2.30), the photon is destroyed after

the measurement and no further information could be obtained. In order to recon-

struct its state, one needs to measure an ensemble of independently and identically

prepared such photons. However, as one only has a finite number of copies, what

one gets in the experiment is only the relative frequencies of each outcome, not the

true probabilities, because there will always be fluctuations in the data. Quantum

state tomography, or quantum state estimation, is about estimating the state from

these measurement data.

The scenario is hence depicted in Fig. 2.3. In general, we have an unknown input

state ρ to be estimated. The state is sent to a measurement apparatus described by

a POM {Πi}, with K outcomes. Each of the detectors Di corresponds to a particular

outcome Πi. What is observed in the experiment is a sequence of detector clicks. One

then knows the total number of clicks of each detector ni. The relative frequencies

are then computed using

fi =
ni
N
, with N =

K∑
i=1

ni, (2.63)

and the task of quantum state tomography is to find an estimator, ρ̂, for the unknown

input state ρtrue, given these detector clicks {ni}.
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measurement

apparatus
input state

⇢

⇧1

...

⇧2

⇧3

⇧K DK

D3

D2

D1

⇢̂{ni}

Figure 2.3: In general, we have an unknown input state ρ to be estimated. The state
is sent to a measurement apparatus described by a POM {Πi}, with K outcomes.
Each of the detectors Di corresponds to a particular outcome Πi. What is observed in
the experiment is a sequence of detector clicks. One then knows the total number of
clicks of each detector ni. Quantum state tomography is to reconstruct an estimator
ρ̂ for the input state from the measurement data {ni}.

While the probabilities are uniquely determined by ρ according to the Born’s

rule, the converse may not be true. We remind ourselves that an arbitrary density

matrix has d2−1 independent parameters taking into consideration of its hermiticity

and unit-trace properties. Hence, to fully characterize a state, we need to perform

measurements to acquire at least d2 independent outcomes to obtain enough infor-

mation about the state.6 A Set of measurement operators which provides enough

information to characterize an unknown state is called an informationally complete

(IC) POM. For minimal IC POM, exactly d2 outcomes are measured. Hence, the

probabilities uniquely determine the ρ if and only if the POM is IC. If the POM is

informationally incomplete, then there will generally be more than one state that

could give rise to the same data. In order to single out one estimator, additional

criteria have to be invoked. We will discuss one such criterion later. Generally, due

to the statistical nature of quantum measurement outcomes, measurements on many

identical copies of the state are needed in order to obtain a precise and reliable state

identification.

6We need d2 (instead of d2 − 1) independent outcomes for normalization of the probabilities
because the total number of measured copies are usually not known a priori.
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At this point, one may object that even in classical inference theory, the same

data fluctuation is also present, which limits the accuracy of the estimator. Such

objections are indeed valid. However, there is an added restriction in quantum state

estimation, that is the estimator should be a positive estimator in order to make

sense. There should not be any measurement that gives a negative probability.

Hence, if one simply inverts the Born’s rule, the resulting estimator may not be a

positive estimator. In classical estimation, all resulting estimators are valid. In a

nutshell, quantum state estimation is then classical estimation plus quantum con-

straints on top of it. All the statistical tools that we know about classical inference

are still valid in the quantum regime. However, the quantum constraints often make

the problem much more difficult.

As a concrete example, let us consider the so-called trine measurement performed

on a qubit [Pv04]. The classical analog is that of a three-sided die, characterized by

{p1, p2, p3 = 1 − p1 − p2}. Classically, the valid probability space is an equilateral

triangle, shown in Fig. 2.4. The three vertices correspond to the three extremal

points (p1, p2, p3) = (1, 0, 0), (0, 1, 0) or (0, 0, 1) respectively. However, there are

quantum constraints in the case of the trine measurement, and the valid probability

space are restriced to

p2
1 + p2

2 + p2
3 ≤

1

2
, (2.64)

which limit the valid states to the circle inscribed in the triangle.

Finally, we remark that quantum state tomography is a central and recurring

theme in quantum information science and quantum computation. Quantum state

preparation is the first important step for any protocol that makes use of a source

of quantum systems. For instance, a quantum-state teleportation protocol that is

carried out using optical equipment requires a source that produces two-photons that

are each prepared in a maximally-entangled quantum state. In a typical scenario,

a source emits a certain desired state which carries the information, or is needed

for the computational task. In order to verify the integrity of the quantum state

that appropriately describes the source prepared, one carries out quantum-state

tomography on the source. Quantum state tomography is a rich field by itself that

is still under research. In the next part, we will first look at point estimator, which is
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quantum

classical

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

Figure 2.4: The classical analogy of the trine measurement is that of a three-sided
die, characterized by {p1, p2, p3 = 1 − p1 − p2}. The three vertices correspond to
the three extremal points (p1, p2, p3) = (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.
Classically, any point in the equilateral triangle is a valid probability state of the
die. However, there are quantum constraints in the case of the trine measurement,
which limit the valid states to the circle inscribed in the triangle.

reporting a single estimator in the state space. When the sample size is large where

the relative frequencies approach the probabilities, reporting a point estimator is

justified. In this case where the central limit theorem applies, the estimation errors

attached with the estimator could be found using the Fisher information. We will

then move on to region estimator, which is reporting a set of estimators in the state

space. Such region estimators are especially important when the sample size is small

and one should not be so conclusive as to report only a single estimator in the state

space.
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2.2.2 Point estimator

There are many well-studied quantum tomographic methods which enable one to

reconstruct a single estimator from the measurement data. The choice of which

one to use is still a subject under intense debate and discussion [SKR+15, SNE14].

Inevitably, the choice may also depend on the system under consideration as well as

the application in mind. In this section, for the purpose of this thesis, we will quickly

review three such methods: the maximum likelihood (ML) estimation method [Fis22,

Hel76a], the Bayesian mean (BM) estimation method [CL08, Hel76b, SBC01], and

the maximum likelihood maximum entropy (MLME) estimation method [TZE+11,

TSE+12], while very briefly mention some of the other techniques.

Maximum likelihood estimation

Suppose we performed an experiment on a prepared “true” state ρtrue, and obtained

the frequencies {fj} for the POM {Πj}. By denoting pj = tr{Πjρ} as the probability

of getting the outcome j for the state ρ, the likelihood L for given ρ to produce the

observed data is then

L({nj}|ρ) =
∏
j

p
nj
j . (2.65)

The likelihood function is the probability (apart from the constant multinomial

factor for a give data) for observing the data given the state ρ. Given no prior

knowledge about the system, one estimates the state which maximizes the likeli-

hood, ρML, as the true state ρtrue. In a nutshell, ML estimation is to look for the

state for which the data is most likely to occur. For an IC POM, this maximum-

likelihood (ML) estimator is unique. Ideally, ρML should coincide with ρtrue, and

satisfy tr{ρMLΠj} = pj = fj . Realistically however, there are unavoidable fluctua-

tions in the outcomes due to statistical nature of quantum phenomena, and possibly

imperfections in real experimental set-up. It is then almost certain that ρML will

not coincide with ρtrue.

ML estimator has the advantage that the positivity constraint of the state is

automatically taken care of, by searching only among the valid density operators.

Unlike linear inversion, it will never give rise to an invalid statistical operator. How-
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ever, ML estimators are often rank-deficient since the true maximum of the likeli-

hood often lies outside the state space. Hence, ML estimators are also biased. This

unfortunate terminology seems to suggest that ML estimator is“bad” in some sense,

which is not really true. What matters is the consistency of the estimator. ML

estimators are consistent estimators in the sense that when the measurements are

performed over a reasonably large number of copies of the system, ρML will be close

to ρtrue, and ρML → ρtrue when N → ∞. When the number of copies measured

is large, the likelihood function becomes very narrowly peaked. The ML estimator

is then one’s best guess about the unknown state, since any other state will have

a negligibly smaller likelihood value as compared with the ML estimator. Efficient

computer algorithms to perform maximum-likelihood quantum state estimation are

readily available, as can be obtained from references [Pv04, ŘHKL07].

Bayesian mean estimator

In a typical experiment in tomography, it is desirable to measure a large number

of copies N , so that the resulting state estimator is as close to the true state as

possible in the asymptotic limit. However, there are situations where the value

of N is far from this limit, due to various reasons. Depending on the nature and

physical carrier of the quantum system, the state could be difficult to generate

and one then only has limited resources. For example, to perform tomography on

quantum systems where the Hilbert space dimension d is large, typically correlated

many-body systems, the number of POM outcomes d2 for IC measurement increases

rather fast. Not only that, for each outcome, one has to measure a sufficiently

large number of copies. Therefore in these situations, in order to obtain a good

tomographic accuracy of the estimator, N would have to increase rather quickly with

d. In addition, the generation of these correlated systems, out of a multi-photon

source for example, generally becomes more difficult and rarer as d increases. So

the time needed to measure a fixed number of copies of these systems increases.

Thus, realistic experiments on these complex systems would involve relatively fewer

copies.

In the regime of small N , the likelihood has a broad peak, and neighboring
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quantum states around the maximum give approximately the same likelihood as the

maximal value. As such, it is statistically reasonable to consider all these neighboring

states also as plausible states of the physical source. The natural resulting estimator

is then to report the average of all these estimators, weighed by their respective

likelihood values. However, as the state space is continuous rather than discrete,

one needs to perform some form of integration rather than simply “adding”. The

idea of marginalization can thus be employed when the observer incorporates his or

her prior distribution (dρ) about the true state of the source into state estimation.

The resulting estimator constructed from this procedure is the Bayesian mean

estimator, that is

ρ̂B =

∫
(dρ)L({ni}|ρ)ρ∫
(dρ)L({ni}|ρ)

. (2.66)

As can be noticed, one disadvantage of BM estimation is that it is difficult to

handle the operator integral. This integral is to be performed over the admissible

state space, which means that the parameters can vary only up to the positivity

constraint for ρ. As the boundary of the state space is highly complicated, it is

impossible to do the integrations by hand. One is forced to do these numerically.

One way of doing the integral is to use a Monte Carlo method [SSN+15a, SSN+15b].

Maximum-likelihood-maximum-entropy (MLME) estimation

If the measurement does not form an IC POM, one could then have many estimators

which are consistent with the experimental data with equally high likelihood. To still

have a unique identification of the state, additional constraints need to be enforced.

One such method is known as the maximum-likelihood-maximum-entropy (MLME)

scheme, in which after the maximum-likelihood estimation stage, one chooses the

estimator that maximizes the von Neumann entropy S(ρ) = −tr{ρ log2 ρ} [TZE+11,

TSE+12]. For a given set of frequencies {fj}, this MLME estimator ρMLME is unique.

As the entropy is a measure of uncertainty in a physical system [NC10], the MLME

estimator corresponds to the least-bias and most conservative guess for true state

consistent with the measurement data.
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Finally, we remark that there are also other estimation schemes such as linear in-

version [Fan57], minimax estimators [NE12], hedged maximum likelihood estimators

[BK10a], etc. We refer to the interested reader to references.

Whichever the technique to choose, one needs to know how accurate the estima-

tion is and how close the estimator is to the target state. To measure how “close”

the estimator is to the target ρtrue, the fidelity, F , which generalizes the overlap

between two kets, is used [Joz94, NC10]. For any ρ and ρ0, the fidelity is given by

F = tr
{√√

ρρ0
√
ρ
}

= tr{|√ρ√ρ0|}. (2.67)

Obviously, F = 1 when the two states are identical, and F = 0 when they correspond

to blends of orthogonal states, i.e. ρ =
∑
j

|φj〉gj〈φj |, ρ0 =
∑
j

|ψj〉fj〈ψj |, where

〈ψj |φk〉 = 0 ∀{j, k}. When both states are pure, F reduces to the absolute value of

their overlap, F = |〈ψ|φ〉|.

Another commonly used distance measure between two states is the trace dis-

tance [NC10]. It is given by

D(ρ, σ) ≡ 1

2
tr {|ρ− σ|} . (2.68)

If two statistical operators are close in trace distance, then any measurement per-

formed on those states will result in probability distributions which are close together

in the classical sense of trace distance. In another words, no measurement will be

able to distinguish these two states very well. It is also worth mentioning that the

trace distance and the fidelity are closely related, despite their different forms. In

the case of pure states, they are completely equivalent to each other. For many

purposes, it does not matter which one is used to quantify the distance.

2.2.3 Region estimator

Whether one prefers the ML estimator, Bayesian mean estimator, or any other

estimator mentioned above, it is a single state which is a point in the state space. The
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data unavoidably have statistical fluctuations and therefore, we should supplement

them with error bars (in the case of a one-dimensional problem). Strictly speaking,

these are error regions in the state space for higher-dimensional problems. Many

recipes, which are often ad hoc in nature, have been used. They usually rely on

having a lot of data, involve data resampling or consider all data that one might

have observed. For example, the confidence regions recently studied are a set of

regions, one region for each data, whether observed or not, from the measurement

of N copies. To find a confidence region for the actual data that is observed, one

must specify the whole set of confidence regions for other data that might have, but

is not observed, because the confidence level is a property of the whole set.

For us, we would like to construct error regions that are based on only the

data actually observed. For this purpose, we find the concept of the bounded-

likelihood regions introduced in Ref. [SNS+13] natural and fitting, as an extension

and generalization of the maximum likelihood estimator. For a given data, instead

of asking which estimator gives the largest likelihood value, we ask which region

gives the largest likelihood for that region, L(D|R). All regions that enter the

competition should of course have the same size, SR. This maximization problem

gives the bounded-likelihood regions as the result. The basic idea is then to report

a region in space states which consists of all states ρ for which the point likelihood

exceeds a threshold value. See, for example, Fig. 2.5 for an illustration of the

bounded-likelihood region, here plotted for the case of a single parameter θ. θ̂ML

is the maximum likelihood point estimator. The red line is the bounded-likelihood

region Rλ, for the threshold value λ.

The bounded-likelihood regions are also the smallest credible regions, that is,

given a certain desired credibility, this region is the smallest in size. The notion of

the size and credibility is central in the construction of such regions. The size of the

region is quantified by the prior probability of the region, that is, the probability

that the true state is in the given region before the data is collected. The credibility,

on the other hand, is the posterior probability, that is, the probability that the

actual state is in the region given that the data have been obtained. The bounded-

likelihood regions then have straightforward and clear interpretations: It is the
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Figure 2.5: An illustration of the bounded-likelihood region, here plotted for the
case of a single parameter θ. θ̂ML is the maximum likelihood point estimator. The
red line is the bounded-likelihood region Rλ, for the threshold value λ.

region for which the observed data are most likely among all regions of the same

size. It is also the region that contains the actual state with high probability. If one

fixes the desired credibility, then this is the smallest region that one can report.
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Chapter 3

Controllable Generation of

Mixed Two-Photon States

In this chapter, we report a controllable method for producing mixed two-photon

states via spontaneous parametric down-conversion with a two-type-I crystal ge-

ometry. By using variable polarization rotators (VPRs), one obtains mixed states

of various purities and degrees of entanglement depending on the parameters of

the VPRs. The generated states are characterized by quantum state tomography.

The experimental results are found to be in good agreement with the theory. The

method can be easily implemented for various experiments that require the genera-

tion of states with controllable degrees of entanglement or mixedness.

3.1 Introduction

Quantum information is a promising field that utilizes the nonclassical aspects of

physical systems to perform sophisticated tasks of computations and communica-

tions. Quantum entanglement plays an important role in the implementation of

these tasks. Arguably, the most famous entangled states are the Bell states, which

are pure and maximally entangled. They are used in quantum cryptography [Eke91],

quantum teleportation [BPM+97], and the demonstration of various concepts of

quantum mechanics [CS78, AGR81]. However, apart from the highly entangled

pure states, there exists a vast uncharted region of state space, where states can

be simultaneously mixed and entangled [Ter00, HHH96]. Mixed states are useful
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in investigations of quantum computing [CGK98], studies of the quantum-classical

interface [KE04], and decoherence channels [ZB05]. These applications motivate an

interest in the generation and characterization of mixed states.

Up to now, several methods have been suggested for generating photonic mixed

states. In Ref. [LHLLK06], Werner states are produced with controlled addition of

white noise to the Bell states. In Ref. [WAB+05], more sophisticated schemes for

producing broad classes of states are presented. Such schemes employ an incoherent

temporal mixing of state amplitudes, several decoherers, or a hybrid technique.

However, as commented in Ref. [WAB+05], such schemes require many additional

optical components, and are challenging in practice.

In this chapter, we report a controllable method for producing mixed states,

which requires only few additional optical components added to a Bell-state genera-

tion set-up. We use variable polarization rotators (VPRs), placed in the pump and

signal beams of a conventional Spontaneous Parametric Down-Conversion (SPDC)

set-up with two type-I crystals. Varying the parameters of the VPRs enables us to

obtain mixed states of various purities and degrees of entanglement, which are then

characterized by quantum state tomography. We remark that VPRs have been used

earlier by Gogo et al. in studies of quantum erasure [GSB05] without, however,

presenting a detailed study and systematic characterization of the generated states.

3.2 Mixed-state generation with VPR

The basic principle underlying this method of producing mixed states is to generate

incoherent mixtures of orthogonal Bell states with controllable weights. Consider

a SPDC set-up with two type-I crystals with orthogonal axes, pumped by a laser

polarized at −45◦ [KWW+99], also see Fig. 3.1. The first beta-barium borate (BBO)

crystal produces pairs of horizontally polarized photons, while SPDC at the second

crystal produces vertically polarized photons. As the coherent length of the pump

beam is much longer than the thickness of the crystal, it is indistinguishable whether

a given pair is produced in the first or the second crystal, resulting in a coherent

superposition of horizontally and vertically polarized photon pairs. The produced
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Figure 3.1: Schematic for the generation of the Bell states. A continuous-wave diode
laser pumps two type-I BBO crystals with optic axes on orthogonal planes, and the
SPDC occurs in the non-collinear frequency-degenerate regime. When the HWP
is set at ±22.5◦, it changes the vertically polarized pump photons to ∓45◦, and
thereby produces the Bell states. One can set the HWP at an arbitrary angle ϑ to
generate a class of rank-1 states given in Eq. (3.8), more about this later. Quartz
plates (QP) are used to control the relative phase between the generated states from
the two crystals. For more details, see [Len14].

state is then the Bell state

|Φ−〉 = (|hshi〉 − |vsvi〉) /
√

2, (3.1)

where H and V denote horizontal and vertical polarizations of down-converted pho-

tons, respectively, and the subscripts s-signal, and i-idler (hereafter omitted for

simplicity) label the spatial modes. If the pump is polarized at +45◦, the orthog-

onal Bell state |Φ+〉 = (|hh〉 + |vv〉)/
√

2 is generated. By blending these two Bell

states with different weights, one obtains the incoherent mixture

ρ = α|Φ−〉〈Φ−|+ (1− α)|Φ+〉〈Φ+|

=
1

2

(
|hh〉〈hh|+ |vv〉〈vv|

)
+
(1

2
− α

)(
|hh〉〈vv|+ |vv〉〈hh|

)
, (3.2)

where α (0 ≤ α ≤ 1) is the weight of the state |Φ−〉〈Φ−| in the mixture.

To generate such mixed states, one switches the polarization of the pump back

and forth between −45◦ and +45◦ and averages over a sufficient interval of time

to sample both polarization states. Such a switching can be realized by inserting a

VPR with electrically driven retardance in the pump beam. By applying a square

waveform across the VPR, one achieves fast flippings between the two orthogonal

linear polarizations. The parameter α is equal to the duty cycle (DC = t/τ , where
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t is the duration of the high voltage, and τ is the period of the waveform) of the

applied square waveform.

The purity P = tr{ρ2} of such states is given by

P = 2
(
α− 1

2

)2
+

1

2
. (3.3)

When α is zero or one, one of the Bell states is produced, and the purity is one.

When α is 0.5, the two Bell states are mixed with the same proportion, and the

purity has the minimum value of 0.5. Thus, changing α enables one to obtain states

with different purities.

Different amounts of entanglement can also be obtained by varying the parameter

α. The tangle T is a measure of quantum-coherence properties of a quantum state

[Woo98, CKW00]. It has a value of zero for separable states, and one for maximally

entangled states. For the states given by Eq. (3.2), the tangle is related to α by

T = (1− 2α)2. (3.4)

Generated states can be characterized by polarization correlation analysis. For

the Bell states, the polarization correlation gives a visibility of 100% when measured

in the ±45◦ basis. For the states given by Eq. (3.2), the visibility varies with α

according to

V = |1− 2α| =
√
T . (3.5)

In particular, when α = 0.5, the generated state is

ρ =
1

2

(
|hh〉〈hh|+ |vv〉〈vv|

)
, (3.6)

which results in zero visibility of the polarization correlation in ±45◦ basis. Note

that for the state given by Eq. (3.2), V =
√
T , however, this relation is not true in

general.

With a single VPR in the pump beam and α set to 0.5, one produces mixed states

with minimal purity P , = 0.5, see Eq. (3.3). However, for a completely mixed state,

P = 1/d, where d is the dimension of the density matrix (d = 4 for a two-photon



3.3. Experimental Set-up 41

state). The completely mixed state can be written as:

ρM =
1

4

(
|hh〉〈hh|+ |vv〉〈vv|+ |hv〉〈hv|+ |vh〉〈vh|

)
=
1

4
. (3.7)

Thus, one has to include in the mixture the other two Bell states |Ψ−〉 = (|vh〉 −
|hv〉)/

√
2, and |Ψ+〉 = vh〉+|hv〉)/

√
2 with equal weights. These two Bell states can

be generated in the same set-up by inserting a VPR with a half-wave retardance

in either the signal or idler beam. In this case the VPR transforms the states

|Φ−〉 −→ |Ψ−〉, and |Φ+〉 −→ |Ψ+〉. By switching between zero and half-wave

retardance of the VPR, incoherent mixtures of |Φ−〉〈Φ−| and |Ψ−〉〈Ψ−|, or |Φ+〉〈Φ+|
and |Ψ−〉〈Ψ−|, are produced. Hence, by using two VPRs with DCs set to 0.5, one

placed in the pump beam, and the other in the signal or idler beam, one can obtain

the completely mixed state given by Eq. (3.7).

A Werner state [Wer89] can then be produced by mixing this completely mixed

state with the singlet state. Notice that an important family of states, namely the

Bell diagonal mixed states, can also be generated if the waveforms and duty cycles

of the two VPRs are independently controlled. More generally, one can obtain

mixtures of non-maximally entangled states

|Ψϑ〉 = cosϑ|hh〉+ sinϑ|vv〉 (3.8)

by rotating the polarization of the pump beam to an arbitrary angle. This enables

the generation of even more states such as the Collins−Gisin states [CG04], given

by

ρCG(α, ϑ) = α|Ψϑ〉〈Ψϑ|+ (1− α)|hv〉〈hv|. (3.9)

3.3 Experimental Set-up

3.3.1 State Preparation

The experimental set-up is shown in Fig. 3.2. Two BBO crystals of 0.8 mm thickness

with orthogonal optic axes are cut at 29.5◦ for noncollinear frequency-degenerate



42 3. Controllable Generation of Mixed Two-Photon States

HWP

404.6nm Pump

BBO

VPR

PC

State  Preparation

Quantum

State

Tomography

SMF

QP

D2

D1

VPR

HWP PBS

QWP

IF

&

D3

D4

QWPSMF
PC

VPR

Controllers

Figure 3.2: Experimental set-up. Two type-I BBO crystals with orthogonal axes are
pumped by a cw diode laser. The SPDC is operated in the noncollinear frequency-
degenerate regime. Mixed states are generated by inserting variable polarization
rotators (VPRs) in the pump and signal beams. QP, are quartz plates used to control
the phase of the produced states. The SPDC photons are coupled into single-mode
fibers (SMF) with lenses (L). PC are polarization controllers, IF - interference filters.
Quarter- and half-wave plates (QWP, HWP) and polarizing beam splitters (PBS)
are used for quantum state characterization. D1-4 are single photon detectors, whose
outputs are processed by a coincidence circuit (&).

phase matching. The BBOs are pumped by a frequency stabilized continuous wave

diode laser at a wavelength of 404.6 nm (Ondax, LM series). The first crystal pro-

duces pairs of vertically polarized photons from the pump’s horizontal polarization

component, while the second crystal produces pairs of horizontally polarized pho-

tons from the pump’s vertical polarization component. With noncollinear SPDC,

the down-converted photons travel in different directions with a cone opening angle

of 4◦. Down-converted photons of narrow spatial bandwidth are collected into single-

mode optical fibers (SMF) using aspherical lenses (L) with a focal length of 11 mm,

placed at a distance of 800 mm from the BBOs. The down-converted photons are

filtered with interference filters (IF) centered at 810 nm, with 10 nm full width at

half maximum. Polarization rotations in the optical fibers are compensated for by

manual polarization controllers (PC).

With a half-wave plate (HWP) in the pump beam at 22.5◦, the vertical polar-

ization of the pump is rotated to −45◦, and the resulting state is

| 〉 =
|hh〉 − eiφ|vv〉√

2
, (3.10)

where φ is the relative phase. This phase can be set to zero or integer multiples of

2π by manipulating the ellipticity of the pump with two quartz plates (QP) which
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are placed after the HWP, thus producing |Φ−〉 = (|hh〉 − |vv〉)/
√

2.

Two different types of VPR have been used in the experiment as we only have

one piece of each. The first one is a photoelastic modulator (HINDS Instrument,

I/FS50). It is based on the photoelastic effect, in which a mechanically stressed

optical device exhibits birefringence proportional to the resulting strain. The me-

chanical stress is being applied by a piezoelectric transducer. They are resonant

devices where the precise oscillation frequency is determined by the properties of

the transducer assembly. In our case, the frequency is at 50 kHz and the modulator

switches between zero and half-wave retardance. However, it only has a fixed DC

of 0.5, which cannot be tuned. The second one is a liquid crystal retarder (LCR)

(Meadowlark, LRC-200). The liquid crystal molecules in the retarder have an or-

dered orientation, which together with the stretched shape of the molecules creates

an optical anisotropy. When an electric field is applied, the molecules align to the

field and the level of birefringence is controlled by the tilting of the LC molecules,

which is controlled by the voltage applied. In our experiment, it is configured so

that zero retardance is obtained at the “low” voltage of VL = 1.39 V. The pump

polarization entering the crystal remains at −45◦, and |Φ−〉 is generated. For the

“high” voltage of VH = 1.64 V, half-wave retardance is obtained. The pump po-

larization entering the crystal changes to +45◦, and |Φ+〉 is generated. A square

waveform with the frequency of 1 Hz is applied to the LCR. The averaging is done

over 3-minutes time intervals. By varying the DC of the square waveform, different

mixed two-photon states are obtained, see Eq. (3.2).

To produce the completely mixed state, given by Eq. (3.7), the photoelastic

modulator is placed in the pump beam, and the LCR with DC = 0.5 is placed in

the signal beam. The operation voltages of the LCR for down-converted photons

are adjusted to VL = 1.84 V and VH = 6.95 V. The frequency of the LCR square

waveform is kept at 1 Hz, and the averaging is done over 3-minutes time intervals.

3.3.2 State characterization

To fully characterize the states, quantum state tomography is performed. In both

signal and idler arms, we install quarter-, and half-wave plates (QWP, HWP) and a
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polarizing beam splitter (PBS) [JKMW01]. The transmission and reflection ports of

both PBSs are directed to single-photon detectors (Silicon Avalanche Photodiodes,

quantum efficiency ∼ 50%, Qutools Twin QuTD). Coincidence events are registered

using the Time-To-Digital Converter (quTAU) with a time window of 5ns. The

coincidences between any two of the detectors are recorded. By manipulating the

wave plates in front of the PBSs, we perform measurements in nine different bases,

which give an overcomplete measurement of 36 outcomes. Using the technique of

maximum likelihood estimation [Pv04], the state is inferred from the collected data.

3.4 Results

For the calibration of the set-up, the polarization correlation analysis in the ±45◦

basis is performed with the Bell state |Φ−〉. The constant “low” voltage is applied

across the LCR in the pump beam. The QWPs in the signal and idler arms are fixed

at 0◦. The HWP in the idler arm is fixed at −22.5◦ and the HWP in the signal arm

is rotated. This causes the coincidence rate between the counts of two detectors in

the transmitted ports of the PBSs to vary sinusoidally.

The visibility is defined as

V =

∣∣∣∣∣N+45◦ −N−45◦

N+45◦ +N−45◦

∣∣∣∣∣, (3.11)

where N+45◦ and N−45◦ are the coincidence rates when the HWP in the signal arm

is oriented at +22.5◦ and −22.5◦, respectively. The obtained value of visibility

97.3± 1.4% indicates high-quality of the produced Bell state.

The analysis is then extended to the mixed states prepared with the LCR op-

erating at different DCs, and with the photoelastic modulator. The obtained ex-

perimental visibilities are in good agreement with the theoretical expectation of

Eq. (3.5), see Fig. 3.3. One observes a degradation of the visibility as α increases

from 0 to 0.5. After which, the visibility is gradually restored as α increases from

0.5 to 1.

Next, quantum state tomography on the generated states is performed. The state
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Figure 3.3: Dependence of the visibility of the polarization correlation measurements
in the ±45◦ basis on the DC of the LCR (solid circle), and of the photoelastic
modulator (red open diamond). The solid line is the theoretical prediction. The
error bars are smaller than the symbols.

is reconstructed and the fidelities, F , of the reconstructed density matrices with the

states given by Eq. (3.2) are calculated. Using the definition F = tr
{
|√ρ√σ|

}
,

where ρ is the maximum likelihood estimator, and σ is the target state, fidelities

F > 97% are consistently observed, see Table. 3.1. The last two entries with PEM

and 1/4 refer to the state generated using only the photoelastic modulator in the

pump beam, and the completely mixed state generated using two VPRs, respectively.

α Fidelity

0 0.9857±0.0005

0.05 0.9886±0.0005

0.25 0.9814±0.0006

0.35 0.9750±0.0012

0.45 0.9776±0.0007

0.50 0.9782±0.0006

α Fidelity

0.55 0.9724±0.0012

0.65 0.9727±0.0008

0.75 0.9792±0.0007

0.95 0.9786±0.0012

1 0.9785±0.0003

PEM 0.9890±0.0005

1/4 0.9942±0.0003

Table 3.1: Fidelities of the reconstructed states with the target states for various
DCs of the LCR. F > 97% are consistently obtained for all the states. The last two
entries with PEM and 1/4 refer to the state generated using only the photoelastic
modulator in the pump beam, and the completely mixed state generated using two
VPRs, respectively.
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The matrix elements of reconstructed density matrices are shown graphically in

Fig. 3.4, for α=0.05, 0.25, and 0.5. As an example, for α = 0.25, the reconstructed

density matrix expressed in the standard basis is

ρα=0.25=̂
0.545 0.049 + 0.012i −0.013 + 0.038i −0.232 + 0.110i

0.049− 0.012i 0.008 −0.005 + 0.008i 0.015 + 0.004i

−0.013− 0.038i −0.005− 0.008i 0.013 −0.039 + 0.006i

−0.232− 0.110i 0.015− 0.004i −0.039− 0.006i 0.434

 .

The reconstructed state has a tangle of T = 0.2476 ± 0.0049, a purity of P =

0.6295± 0.0022, and a fidelity with the target state of F = 0.9814± 0.0006.

As one can see from Fig. 3.4, an increase of α from 0 to 0.5 causes vanishing of

the off-diagonal elements, which indicates the decreasing amount of entanglement of

the mixed states. The calculated values of the tangle for the reconstructed states,

are in good agreement with Eq. 3.4, see Fig. 3.5(a). The state with almost zero

Figure 3.4: Absolute values of (a,b,c) real and (d,e,f) imaginary parts of the density
matrices representing the reconstructed states for (a,d) 0.05DC; (b,e) 0.25DC and
(c,f) 0.50DC. The vanishing of the off-diagonal elements is clearly seen.
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Figure 3.5: Dependence of (a) tangle and (b) purity of reconstructed states on the
DC of the LCR (solid circles), and of the photoelastic modulator (red diamonds).
The solid curves are the theoretical predictions. The error bars are smaller than the
symbols used for both figures.

tangle is generated with the photoelastic modulator. It performs better than the

LCR at α=0.5, as the wavelength of the pump laser is at the edge of the working

range of the LCR.

Lastly, one verifies that the method indeed produces states with different amounts

of mixedness. The dependence of the purity of the states on α is shown in Fig. 3.5(b).

The obtained results are close to those predicted by Eq. (3.3).

To demonstrate generation of the completely mixed state, the set-up is modi-

Figure 3.6: Absolute values of (a) real and (b) imaginary parts of the reconstructed
density matrix for the completely mixed state.
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fied by inserting VPRs in the pump and in the signal beams, see Sec. 3.1. The

reconstructed density matrix of the state is shown graphically in Fig. 3.6. The re-

constructed state has a tangle of zero, a purity of P = 0.2615±0.0007, and a fidelity

with the target state of F = 0.9942 ± 0.0003. Such a state is separable and highly

mixed.

3.5 Conclusion

In summary, an accessible way of generating controllable mixtures of two Bell states

with high fidelities is reported. There is no need for extra optical components, ex-

cept the VPR. Furthermore, the method does not require any reconfiguration of the

standard set-up for Bell states generation, as the VPR can be easily turned on and

off, to generate mixed and pure states, respectively. In addition, it offers the im-

portant advantage of interferometric stability. The presented method will facilitate

state generation and can be used in various quantum-information processing appli-

cations. We have used it for an experimental realization of qubit-pair tomography

with witness bases which will be described in the next chapter [ZTE10, DLT+14].



Chapter 4

Witness-Family Measurements

In this Chapter, we report an experiment in which one determines, with least tomo-

graphic effort, whether an unknown two-photon polarization state is entangled or

separable. The method measures whole families of optimal entanglement witnesses.

We introduce adaptive measurement schemes that greatly speed up the entangle-

ment detection. The experiments are performed on states of different ranks, and we

find good agreement with results from computer simulations.

4.1 Introduction

Entangled states play an important role in the manipulation of quantum informa-

tion, be it for present-day quantum key distribution or future quantum computa-

tion. One may need to verify if a certain quantum state—perhaps emitted by a

source of quantum-information carriers or obtained as the output of a quantum

computation—is entangled or not. For this purpose, the expectation value of an

entanglement witness is telling: The state is surely entangled if a negative value is

obtained. A positive value, however, is inconclusive—the unknown state could be

entangled or separable, the witness cannot tell, but other witnesses might be able

to; recall Fig. 2.1 in Chapter 2.

How many witnesses, then, does one need to measure until a conclusion is

reached? The answer to this question is given in Ref. [ZTE10]: If one solely re-

lies on the expectation values of the witnesses one by one, one may never get a

conclusive answer; if, however, the expectation values of suitably chosen witnesses
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are jointly used for an estimation of the quantum state, D2 − 1 witnesses suffice for a

D-dimensional quantum system. The idea is to choose these witnesses so that their

expectation values altogether enable IC quantum state tomography of the state.

Even though each of them does not give any conclusive answer individually, jointly,

they give full information of the state so that no more measurement is necessary.

The number can be further reduced by exploiting all the information gathered

when determining the expectation values of the witnesses measured in succession.

Traditional witness measurement only utilizes the expectation value of the witness

operator. However, by measuring in the eigenbasis of the witness operator, one

obtains many relative frequency values which can be exploited, rather than just a

single expectation value. In the case of a two-qubit state (D = 4), for instance, one

never has to measure more than six witnesses, rather than 15 = 42 − 1. This can be

demonstrated by an experiment such as the one proposed in Ref. [ZTE10]; we are

here reporting its laboratory realization.

4.2 Witnesses and witness families

A hermitian observable W is an entanglement witness if tr{ρsepW} ≥ 0 for all sep-

arable states ρsep and tr{ρentW} < 0 for at least one entangled state ρent. For each

entangled state, there are some witnesses that detect it (“< 0”), but many other

witnesses will give an inconclusive result (“≥ 0”).

We shall concern ourselves with two-qubit systems—in the experiment, they

are polarization qubits of a down-converted photon pair—and focus on optimal

decomposable witnesses [LKCH00] of the form W =
(
|w〉〈w|

)T2 , where |w〉 is the

ket of an entangled pure two-qubit state, and T2 denotes the partial transposition

on the second qubit. This witness is optimal in the sense that no other witness

can detect some entangled states in addition to the states already detected by W .

The generic example is |w〉 = |00〉 cos(1
2α) + |11〉 sin(1

2α) with sinα 6= 0, on which

all other |w〉s can be mapped by local unitary transformations.
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For any α, the eigenkets of the resulting witness,

W (α) = |00〉1 + cosα

2
〈00|+ |11〉1− cosα

2
〈11|

+ |Ψ+〉
sinα

2
〈Ψ+| − |Ψ−〉

sinα

2
〈Ψ−| , (4.1)

are the same: the two product kets |00〉 and |11〉 as well as the two Bell kets

|Ψ±〉 = (|01〉 ± |10〉) /
√

2. This whole family of entanglement witnesses can, there-

fore, be measured by the projective measurement of their common eigenstates—the

witness basis of the family.

For a separable state, tr
{
ρsepW

(α)
}
≥ 0 for all α. Hence, we can apply a

stricter criterion by searching among all the W (α)s for which the minimum value of

tr
{
ρW (α)

}
is obtained. In another words, this search of the minimum maximizes

our chance of entanglement detection. Upon denoting the expectation values p1 =

tr{ρ|00〉〈00|}, p2 = tr{ρ|11〉〈11|}, p3 = tr{ρ|Ψ+〉〈Ψ+|} and p4 = tr{ρ|Ψ−〉〈Ψ−|}, we

have

min
α

{
tr{ρW (α)}

}
= min

α

{
p1(cosα)2 + p2(sinα)2 + (p3 − p4) sinα cosα

}
= min

α

{p1 + p2

2
+
(p3 − p4

2

)
sin(2α) +

(p1 − p2

2

)
cos(2α)︸ ︷︷ ︸

1
2

√
(p1−p2)2+(p3−p4)2 sin

(
2α+tan−1

(
p1−p2
p3−p4

))
}

=
p1 + p2

2
− 1

2

√
(p1 − p2)2 + (p3 − p4)2. (4.2)

Hence, this requirement implies the witness-family criterion [ZTE10]

S ≡ 4p1p2 − (p3 − p4)2 ≥ 0 . (4.3)

In the experiment, we estimate these probabilities from the observed frequencies,

that is, by measuring the relative frequencies for the two product states, f1 and f2,

and those for the Bell states, f3 and f4. Consequently, once the frequency data are

obtained from the measurement, a negative value of S reveals that the unknown

state ρtrue is entangled.
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Three remarks are in order. (i) The expectation value of one witness W (α) is

a linear function of the fjs, whereas S is a quadratic function. This is reminiscent

of, yet different from, the “nonlinear entanglement witness” of Ref. [KKK10], which

requires a joint measurement on two copies of the unknown state. Our witness-family

measurement uses only one copy at a time. (ii) Also, the nonlinear witnesses of

Ref. [GL06] are quite different; their evaluation requires complete or almost complete

knowledge of the state. (iii) The witnesses W (α) can also be measured by other

schemes, such as that of Barbieri et al. [BDMDN+03] who extracted the expectation

value of W (π/2) from local measurements that examine the two qubits individually.

By contrast, we perform a joint measurement on both qubits, which implements the

projective measurement in the eigenbasis of W (α) and so realizes the most direct

measurement of the witness. More about (ii) and (iii) in Section. 4.8.

Our witness-family measurement provides estimates for three two-qubit observ-

ables (four fjs with unit sum), whereas the expectation value of a single witness

is only one number. For example, for the witness basis given above, one gets

{f1, f2, f3, f4} from the eigenbasis measurement. This is equivalent to measuring

the set of observables, {Z1 + 1Z,ZZ,XX + Y Y }, as one can show that

〈
Z1 + 1Z

〉
= 2(f1 − f2), (4.4)

〈
ZZ
〉

= f1 + f2 − (f3 + f4), (4.5)

and 〈
XX + Y Y

〉
= 2(f3 − f4). (4.6)

To obtain the other observables, one measures another suitably chosen witness

family. As discussed in Ref. [ZTE10], these data can be exploited for quantum-

state reconstruction after measuring six witness families, related to each other by

the six local unitary transformations of Table 4.1: Each witness family provides the

expectation values of one (of six) single-qubit observables and of two (of nine) two-

qubit observables. Therefore, a measurement of all six witness families constitutes an

informationally complete (IC) measurement for full tomography of an unknown two-

qubit state; thereby, all six single-qubit parameters and six two-qubit parameters
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Family U1 U2 Observables

1 1 1 Z1 + 1Z, ZZ, XX + Y Y
2 1 X Z1− 1Z, ZZ, XX − Y Y
3 C† C X1+ 1Z, XY, Y Z + ZX
4 C† XC X1− 1Z, XY, Y Z − ZX
5 C C† Y 1 + 1X, Y X, ZY +XZ
6 C XC† Y 1− 1X, Y X, ZY −XZ

Table 4.1: The six witness families that enable full tomography of the two-qubit
state. The single-qubit unitary operators U1 and U2 transform the first family into
the other five families. The Pauli operator X permutes |0〉 and |1〉; the Clifford
operator C permutes the three Pauli operators cyclically.

are obtained once, while three two-qubit parameters, that is, ZZ, XY and Y X,

are determined twice, see Table 4.1. The single-qubit unitary operators U1 and

U2 transform the first family into the other five families. The Pauli operator X

permutes |0〉 and |1〉; the Clifford operator C permutes the three Pauli operators

cyclically, that is CX = Y C, CY = ZC, and CZ = XC. It is given explicitly by

C =
1

2
(1− iX − iY − iZ) . (4.7)

These six witness families will enable full tomography of the two-qubit state. This

offers the possibility of measuring an IC set of witness families such that, if all

families give an inconclusive result (S ≥ 0), a full state estimation can be performed

for identifying ρtrue. With ρtrue then at hand, its separability can be determined

straightforwardly by, for example, checking the Peres-Horodecki criterion [Per96,

HHH96].

4.3 Three Schemes

4.3.1 Scheme A: Random sequence

Since ρtrue is unknown, there is no preference for a particular one of the six families

to start with. Hence, one starts with a randomly chosen family and checks the

inequality (4.3). If the result is inconclusive, one then chooses the next family at

random from the remaining five families, and so forth until a conclusive result is

obtained. If all six families give inconclusive results, ρtrue is estimated from the data
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to establish if it is entangled or separable.

4.3.2 Scheme B: Adaptive measurements

Alternatively, we can perform the witness-family measurements in an adaptive man-

ner: We choose the next family to be measured in accordance with the data obtained

from previous measurements. Each time a witness family is measured, a set of

four frequencies is obtained and these informationally incomplete data are used to

partially estimate ρtrue by, for example, jointly maximizing the likelihood and the

entropy—the MLME strategy of Ref. [TZE+11, TSE+12]. The MLME estimators

ρmlme tend to be highly-mixed states and are thus hard to detect by entanglement

witnesses; therefore, if the measurement of a witness family detects the entangle-

ment of the MLME estimator by the criterion (4.3), measuring that family has a

good chance of detecting the entanglement of ρtrue. The value of S is used for com-

paring the unmeasured witness families with the MLME estimator, with fj replaced

by the jth MLME probability tr
{
ρmlme U

†ΠjU
}

where U = U1 ⊗ U2 is one of the

six unitary operators of Table 4.1, and Πj projects to the jth ket in the witness

bases.

The family that gives the smallest value of S is then measured next; this ju-

dicious choice of family reduces the average number of witness families that need

to be measured before the entanglement is detected. Instead of fixing the above

six families, based on the MLME estimator, one can also choose from all thinkable

families in each step. However, it is not worth the trouble as such optimization

hardly improves the entanglement detection, see Section. 4.8.

4.3.3 Scheme C: Maximum-likelihood set

All state estimators, including ρmlme, that maximize the likelihood compose a convex

set, the maximum-likelihood (ML) set. They all give the same estimated probabilities

for the witness families already measured. When the number of qubit pairs measured

per witness family is large (104 pairs suffice in practice), ρtrue is very likely contained

in the ML set. Then, if there is no separable state in the ML set, we can conclude

that ρtrue is entangled. For finite data, this conclusion is correct within a certain



4.4. Simulations 55

error margin, as is the case for all conclusions drawn from entanglement witness

measurements. For this non-separability check, we compute the maximal values of

the likelihood for both the entire state space (Lmax) and the entire space of separable

states (Lsep
max) [ŘH03]. If we find that Lmax > Lsep

max, we infer that ρtrue is entangled.

To further economize the adaptive scheme, this check is performed before looking

for the unmeasured witness family with the smallest value of S.

4.4 Simulations

To investigate the efficiencies of the three schemes, we perform computer simula-

tions of witness-family measurements with both pure and full-rank mixed two-qubit

entangled states. We generate a unitarily invariant ensemble of random entangled

states by the procedure of Ref. [ZS01]: For each random state, we first compose an

auxiliary matrix A of dimensions 1 × 4 (for a pure state) or 4 × 4 (for a full-rank

state), with the random complex entries chosen from a normal distribution with zero

mean and unit variance; then, the 4 × 4 matrix representing the random state is

A†A/tr
{
A†A

}
. Most of the random states generated this way are entangled, since

there are many more entangled states in such an ensemble than separable states; we

check the concurrence of each state to ensure that only entangled states are used in

the simulation.

Figure 4.1 shows the histograms that summarize the cumulative distribution in

the percentage of entangled states detected against the number of witness families

needed using schemes A, B and C. We observe that the average number of families

is largest for scheme A and smallest for scheme C. For instance, with only three

witness families measured, scheme C detects about 95% of the rank-1 entangled

states whereas scheme A will need the measurement of five families to reach the

same detection rate. When using either scheme A or scheme B, about 2% of the

random pure states and about 67% of the full-rank mixed states are undetected by

the six families without performing full tomography. The additional separability

check in scheme C reduces the percentage of undetected pure states to virtually

zero, and one needs no more than five witness families to detect entanglement for

the rest of the pure states. The improvement is even more dramatic for the mixed
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Figure 4.1: Simulation results on the measurement of the set of six informationally
complete entanglement witness families for 104 randomly chosen two-qubit entangled
states: pure states (bottom) and full-rank mixed states (top). The cumulative
histograms compare between measurements performed with scheme A, scheme B,
and scheme C.

states, with a reduction from about 67% to about 2.7%. We also observe that the

mean number of witness families needed to detect entanglement for mixed states is

larger than that for pure states. This is as expected, since mixed states generally

have weaker entanglement and are, therefore, harder to detect.

4.5 Experiment

We experimentally test the entanglement detection and tomographic scheme with

three classes of states of different ranks. The first class of states are the pure states

ρ
(1)
true = |ϑ〉〈ϑ|, with |ϑ〉 = |00〉 sinϑ+ |11〉 cosϑ for 0 < ϑ < π, ϑ 6= π/2. The second

class of states are rank-two states of the form ρ
(2)
true = |Φ+〉µ〈Φ+|+ |Φ−〉(1− µ)〈Φ−|

for 0 ≤ µ ≤ 1 and µ 6= 1/2, where |Φ±〉 = (|00〉 ± |11〉)/
√

2. The third class of states

are the Werner states ρ
(3)
true = |Ψ−〉λ〈Ψ−|+ (1− λ)/4 for 1/3 < λ ≤ 1. The experi-

ment uses the polarization qubits of a down-converted photon pair at 810 nm with,

for example, ket |10〉 standing for the photon in mode 1 horizontally polarized and

the photon in mode 2 vertically polarized.



4.5. Experiment 57

State
Preparation

WPs

WPs

M

M

M

MTS

BS

State
Measurement

State
Measurement

T
D
C

WPs

QWP

HWP

QWP

State
Measurement

IF PBS

BS

BS

Figure 4.2: Experimental set-up. The polarization-entangled two-photon states are
prepared by the method described in Ref. [DLT+13]. Upon emerging from the
source, the two photons are guided with mirrors (M) to interfere at a 50:50 beam
splitter (BS), with the temporal overlap controlled by a translation stage (TS).
After passing through interference filters (IF), the photons are sorted by polarizing
beam splitters (PBS) and registered by one of the photo-detectors, four on each
side. The detector outputs are addressed to a time-to-digital converter (TDC), and
coincidences between counts of any two detectors are recorded. Two sets of wave
plates (WPs), each composed of a half-wave plate (HWP) and two quarter-wave
plates (QWP), implement the polarization changes that correspond to the unitary
operators of Table 4.1.

The experimental set-up is shown in Fig. 4.2. The rank-one states and rank-two

states are produced as described in Refs. [KWW+99, DLT+13]. The rank-four states

are produced by adding a controlled admixture of white noise to the singlet state by

varying the coincidence time window of the detection electronics [LHLLK06]. For

greater details, see Ref. [Len14].

Owing to unavoidable imperfections, the actual states emitted by the source are

not the ideal ρ
(1,2,3)
true stated above but full-rank approximations of them. For example,

as reported in Ref. [DLT+13], fidelities above 97% are consistently achieved for the

rank-two states, and the experimental rank-one and rank-four states are of similar

quality [Len14].

To implement the most direct measurement of the witness bases, we make use of
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a Hong-Ou-Mandel (HOM) [HOM87] interferometer. The signal and idler photons

are directed to interfere at a 50:50 beam splitter (BS) and could either emerge on

the same side of the BS (bunching) or emerge on different sides of the BS (anti-

bunching). Due to this interference effect, the four eigenkets, that is, two product

kets and two Bell kets, of the witness operator in Eq. (4.1) can be distinguished.

If the input state were |hh〉, |vv〉, or |Ψ+〉, the two photons will emerge on the

same sides of the BS, whereas they will anti-bunch for the input state |Ψ−〉. Two

additional PBS could then be installed at the two output ports of the BS, see

Fig. 4.3. The four eigenkets of the witness operator could then be measured due to

the following distinctive features summarized in Table 4.2.

However, in order to obtain the different signatures of the four eigenkets, one

must be able to distinguish between a single photon event and a two-photon event.

The detectors in our lab is not able to meet this requirement. Hence, we installed

four additional 50:50 BSs, that is, one at each output port of the two PBSs to further

split the photons, see Fig. 4.2. Due to this further splitting, a total of eight detectors

need to be used. The coincidences between the appropriate pairs of them enable us

to distinguish and measure the relative frequencies of each of the four eigenkets; for

more details, see Ref. [Len14].

To get good interference effect, the two photons need to be indistinguishable.

If they are distinguishable even in principle, for example, having different polariza-

tions, arrival times, or any other properties, the interference effect will be weak or

disappear completely. Hence, we need to optimize the interferometer, carefully con-

trolling the polarizations of the photons, and the temporal as well as spatial overlap

Eigenket Photon counts (lh,lv,rh,rv)

|hh〉 (2,0,0,0) or (0,0,2,0)
|vv〉 (0,2,0,0) or (0,0,0,2)
|Ψ+〉 (1,1,0,0) or (0,0,1,1)
|Ψ−〉 (1,0,0,1) or (0,1,1,0)

Table 4.2: Signatures of the four eigenkets of the witness operator. For example,
if the signal photon and idler photon were in the state |hh〉, then either the lh-
detector, or the rh-detector will register two photon counts, with each registering
photon counts half of the time, while all the other detectors will register no photon
counts.
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BS

Figure 4.3: Realization of a witness-basis measurement using HOM interferences,
with the signatures given in the Table 4.2. As an example, when the detectors
at lh and lv ports both register photons simultaneously, this corresponds to a
measurement signature for the |Ψ+〉 eigenket. The wave plates WPs are used to
change the witness family for subsequent measurements.

of the signal and idler photons. For this optimization, we first remove the other BSs

in the output ports of the PBSs; see Fig. 4.2. Next, we address the outputs of the

two detectors in the transmission ports of the two PBSs to a coincidence unit, where

we record the coincidence rate for the input two-photon state |hh〉. A translation

stage with a step size of 500 nm is used to control the temporal overlap between the

photons, and the spatial overlap is controlled by adjusting the mirrors that direct

the two beams to interfere on the HOM BS.

The interferometer is optimized at where the coincidence rate is minimal, as

shown in Fig. 4.4. The visibility of the HOM dip is 95 ± 3%. Imperfections in the

BS ratios, the WPs, and the polarization controllers limit the maximum experimen-

tal achievable visibility of the dip. Nevertheless, the visibilities of the HOM dips

obtained in our experiment exceed 90% for all the data collected for the construction

of the histograms shown later in Fig. 4.5.

On the way from the source to the HOM BS, the photons pass through sets of

wave plates (WPs) that change the polarization in accordance with one of the six

local unitary transformations of Table 4.1. Each of the local unitary operators of
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Figure 4.4: An example of a HOM dip obtained in our experiment for the state
|hh〉〈hh|. The visibility, V , of the HOM dip above is 95 ± 3%; other HOM dips
observed for different polarization states are similar to this one.

Table 4.1 is implemented by a HWP between two QWPs,

U = UQWP(α)UHWP(β)UQWP(γ) , (4.8)

where the QWP with angle γ is the first in the sequence; see Fig. 4.2.

The matrix representation for a HWP, apart from an irrelevant global phase

factor, is (see, e.g., [EKW01])

UHWP(θ) =
(
|v〉 |h〉

) cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 〈v|
〈h|


=̂

 cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 , (4.9)
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where θ is the angle between its major axis and the vertical direction, and we have

UQWP(θ) =̂
1√
2

 1− i cos(2θ) −i sin(2θ)

−i sin(2θ) 1 + i cos(2θ)

 (4.10)

for a QWP. Further, the matrices for the Pauli operator X that permutes |v〉 and

|h〉 and the Clifford operator C that permutes the three Pauli operators cyclically

are

X =̂

 0 1

1 0

 and C =̂
1√
2

 1 −i

1 i

 , (4.11)

respectively.

The angles α, β, and γ, for which the various Us are realized, are reported in

Table 4.3. As an example, we consider

U = XC =̂
1√
2

 0 1

1 0

 1 −i

1 i

 =
1√
2

 1 i

1 −i

 (4.12)

and verify that α = 0, β = 0, and γ = −π/4 are correct choices. Indeed, they are:

UQWP(0)UHWP(0)UQWP(−π/4) =̂
1− i√

2

 1 0

0 i

 1 0

0 −1

 1√
2

 1 i

i 1


= e−iπ/4 1√

2

 1 i

1 −i

 , (4.13)

since the global phase factor is irrelevant.

U α β γ

1 0 0 0
X 0 π/4 0
C 0 π/4 −π/4
C† −π/4 0 0
XC 0 0 −π/4
XC† π/4 0 0

Table 4.3: Wave plate settings to realize each of the unitary operators of Table 4.1.
The angles α, β, and γ are the settings of the QWP, HWP and QWP respectively,
shown in Fig. 4.2, such that the corresponding U is obtained from Eq. (4.8).
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After interfering at the HOM BS, in each output port of the interferometer, the

photons pass through an interference filter with a central wavelength at 810 nm and

a full width at half maximum of 10 nm and are then sorted by a polarizing beam

splitter (PBS). To discriminate between one-photon and two-photon events, an-

other 50:50 BS is installed into each output port of the PBS, and eight single-photon

avalanche photodiodes detect the photons. A time-to-digital converter (TDC) records

the arrival times of the photons, and coincidences between any two of the eight de-

tectors are obtained from the analysis of the time stamp record of the TDC. For

each rank, we studied 21 different states.

4.6 Results

We set the source to a particular state and performed witness-family measurements

for one minute per family, and so measured about 104 photon pairs for each state

and family. The data were analyzed for all three schemes.

For the three classes of states, only one of the witness families gives a conclusive

result. Hence, for scheme A, the number of families needed for entanglement detec-

tion is equally likely to be one to six. The data for schemes B and C were analyzed

as follows. The first family is chosen at random among the six families. If the

measurement of this family gives a negative value of S, the state is detected to be

entangled and no further measurement is needed. If the result is inconclusive, then

one uses the adaptive scheme to choose the next family, until a conclusive result is

obtained. The result is n, the number of witness families that have to be measured

in order to detect the entanglement; see Table 4.4 for illustrations.

The results are shown in Fig. 4.5, where one observes a significant improvement

over the non-adaptive scheme A, which needs about 3.5 families on average. One

rarely needs more than four witness families to detect the entanglement in these

states; full tomography is never necessary since all rank-one, rank-two, and rank-

four states are detected by one of the witness families.

We also performed simulations for these three specific classes of two-qubit states

used in the experiment. For each class, data from 104 photon pairs (per witness
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Figure 4.5: A comparison of schemes B (left column) and C (right column) for rank-
one states (top row), rank-two states (middle row), and rank-four states (bottom
row). The histograms report the percentage of entangled states detected against
the number n of witness families needed without performing state estimation; 〈n〉 is
the average value. Both the simulation data (left empty bars) and the experimental
data (right full bars) show that, for the three kinds of quantum states considered,
scheme C provides further improvement over scheme B: It requires fewer families
on average and the distributions are narrower. The similarity of the two histograms
for the rank-one states is confirmed by their large fidelity F ; similar values are
obtained for the other histograms. — Here, the simulation uses only states of the
kind generated by the state preparation in the set-up of Fig. 4.2, whereas no such
restriction applies to the randomly-chosen states for Fig. 4.1.
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family) for 103 states were simulated with Monte Carlo techniques, for the schemes

A, B, and C. As expected, the simulation showed that for measurements done with

the random order of scheme A, the number of families needed for entanglement

detection is distributed almost evenly from one to six, with a mean of about 3.5, and

fewer families need to be measured in the adaptive schemes. The striking similarity

between the results of the simulation and the experiment indicates that there are no

significant systematic errors in the experimental data. The small differences are due

to statistical fluctuations in the random choice of the first family and various the

imperfections in the experiment as mentioned before. For example, the simulations

for Fig. 4.5 use the ideal states, whereas the experiment has limited fidelities to the

ideal states.

For the rank-one states, the fidelity F =
∑

j(pjp
′
j)

1/2 between two probability

distributions {pj} and {p′j} compares the histograms from simulation and experi-

ment, and the large value of F is reassuring. The error bars for the rank-one states

are obtained by bootstrapping the actual data one hundred times; these error bars

show the variation in the histograms that repeated measurements of this kind would

display. The fidelity values and the error bars for the other histograms are of similar

sizes and not displayed.

For the three classes of states, all entangled states are successfully detected

State Families and their S values n

ρ
(2)
true family 3 family 4 family 2 3

µ = 0.15 0.46± 0.03 0.06± 0.02 −0.23± 0.04

ρ
(3)
true family 1 — — 1

λ = 1 −0.83± 0.03

ρ
(1)
true family 4 family 2 — 2

ϑ = π/4 0.21± 0.03 −0.87± 0.03

Table 4.4: Examples demonstrating how Fig. 4.5 is derived. The first family is
chosen at random among the six families. If the measurement of this family gives
a negative value of S, then the state is detected to be entangled and no further
measurement is necessary. However, if the result is inconclusive, then one uses the
adaptive scheme to choose the next family, until a conclusive result is obtained. The
figure of merit is n, the number of witness families that have to be measured in order
to detect the entanglement.
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without the need to perform full tomography. There are, however, other entangled

states that would escape detection, and all separable states can only give inconclusive

results. Regarding entangled states, we recall that about 2% of the random pure

states and about 67% of the random mixed states are not detected by the six witness

families without the separability check of scheme C. Hence, to confirm the efficiency

and accuracy of the tomographic scheme, we also collected IC data even if the state

is known to be entangled before all six witness-family measurements are done so as

to check the reliability of the tomography. Using the technique of ML estimation

[BDPS00, ŘHKL07], we then infer the state from the data and calculate the fidelity

tr
{
|√ρtrue

√
ρest|

}
between the true and the estimated state. The average fidelities

are 98.3 ± 0.7%, 97.4 ± 1.4%, and 98.7 ± 1.1% for the respective true states of

rank one, two, and four. Indeed, if all the six family measurements fail to detect

the entanglement in the state, one can use the tomographic information to reliably

reconstruct the unknown input state and then determine its separability numerically.

4.7 Conclusions

We performed an experiment to verify the witness-family-based entanglement de-

tection scheme introduced in Ref. [ZTE10]. In going beyond that proposal, we also

introduced adaptive schemes that use the information acquired in previous measure-

ments to reduce the average number of witness families that need to be measured. A

few-witness way of detecting entanglement for photon-polarization qubits was thus

demonstrated. Further, we showed that the witness-family measurements enable re-

liable quantum state tomography. With the necessary changes and within the limits

set by what is experimentally feasible, the witness-family approach is also applicable

to qubits of other physical kinds than photon polarization and to higher-dimensional

or multi-partite systems.
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4.8 Further Comments

4.8.1 The experiment by Barbieri et al.

Upon denoting the Pauli operators of the jth qubit by Xj , Yj , and Zj , the witness

of Eq. (4.1) is

W (α) =
1

4

[
1 + (Z1 + Z2) cosα+ Z1Z2 + (X1X2 + Y1Y2) sinα

]
. (4.14)

In the experiment of Barbieri et al. [BDMDN+03] the two polarized photons are

measured separately and, therefore, a direct measurement of W (α) is not possible.

Instead, the expectation value of W (π/2) is inferred from three auxiliary measure-

ments that detect the common eigenstates (i) of X1 and X2, (ii) of Y1 and Y2, and

(iii) of Z1 and Z2.

Together, the data acquired in these measurements establish the nine expectation

values

〈X1〉 , 〈X2〉 , 〈X1X2〉 ,
〈Y1〉 , 〈Y2〉 , 〈Y1Y2〉 ,
〈Z1〉 , 〈Z2〉 , 〈Z1Z2〉 ,

(4.15)

of which only the three values in the right column are used for
〈
W (π/2)

〉
. The other

six values are not exploited. While this is wasteful, it does not matter in the context

of Ref. [BDMDN+03] where one knows beforehand that the unknown state is of the

form

ρ =
1

4

[
1− p(X1X2 + Y1Y2 + Z1Z2)

]
(4.16)

with 0 ≤ p ≤ 1. The value of parameter p is then provided by
〈
W (π/2)

〉
= (1− 3p)/4.

All witnesses in the first and the second family of Table 4.1 are made available by

the five expectation values in the bottom row and the right column in (4.15). It

follows that the inequality

1 + 〈Z1Z2〉2 ≥ 2
∣∣〈X1X2〉〈Y1Y2〉 − 〈Z1Z2〉+ 〈Z1〉〈Z2〉

∣∣
+ 〈X1X2〉2 + 〈Y1Y2〉2 + 〈Z1〉2 + 〈Z2〉2 (4.17)
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holds for all separable states. There are two more inequalities of the same structure

for the expectation values of the first and the second row, respectively, and the third

column in (4.15).

If all three inequalities are obeyed, further measurements are needed. They

would detect the common eigenstates of X1 and Y2, of Y1 and X2, and so forth.

Each such measurement gives the expectation values of two single-qubit operators

already contained in (4.15) and adds one new two-qubit expectation value to the list.

More inequalities analogous to (4.17) become available in the course. Eventually,

when all six two-qubit expectation values that are missing in (4.15) are determined,

full tomography is achieved.

Clearly, the sequence in which the fourth, fifth, . . . ninth measurements are

carried out, can be optimized by an adaptive strategy. There is also the option

of checking, at each stage, whether there are separable states in the convex set of

maximum-likelihood estimators, and inferring that the unknown state is entangled

if there are none.

In summary, the measurement scheme of Barbieri et al. can be used for an indi-

rect measurement of witness families. When state reconstruction is necessary, this

indirect measurement needs nine settings, each providing three expectation values

of the fifteen independent ones; each of the six single-qubit expectation values is

determined thrice. By contrast, the direct measurement achieves full tomography

with six settings, whereby three of the nine two-qubit expectation values are deter-

mined twice (see Table II in Ref. [ZTE10]). Although one could conclude that the

direct measurement is less wasteful and should be preferred over the indirect mea-

surement, one must remember that the direct measurement is not feasible when the

two polarized photons are at different locations. Then, the Barbieri et al. scheme

does the job.

4.8.2 The nonlinear witnesses of Gühne and Lütkenhaus

The inequality
〈
W (α)

〉
≥ 0 holds for all separable states; this is, of course, the

witness property. In Ref. [GL06], Gühne and Lütkenhaus show that the null bound
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can be replaced by various state-dependent positive bounds,

〈
W (α)

〉
≥
∣∣〈G(α)

〉∣∣2 , (4.18)

where, for example, the non-Hermitian operators

G
(α)
1 =

1√
8

sin
(α

2
+
π

4

)
(1 +X1X2 + Y1Y2 + Z1Z2)

+
1√
8

cos
(α

2
+
π

4

)
(Z1 + Z2 + iX1Y2 − iY1X2) (4.19)

or

G
(α)
2 =

1√
8

sin
(α

2
+
π

4

)
(X1 +X2 + iY1Z2 − iZ1Y2)

+
1√
8

cos
(α

2
+
π

4

)
(X1Z2 + Z1X2 + iY1 − iY2) (4.20)

are possible choices for G(α). The lower bounds in Eq. (4.18) are second-degree

polynomials of one-qubit and two-qubit expectation values; there are also lower

bounds that are polynomials of fourth or higher order.

We can evaluate
〈
G

(α)
1

〉
as soon as the three witness families 1, 3 (or 4), and 5

(or 6) have been measured; similarly,
〈
G

(α)
2

〉
is available after measuring the four

families 3–6. This illustrates that partial tomography is needed before the more

stringent lower bounds of Eq. (4.18) are at hand.

Nevertheless, it could be interesting to exploit criteria of this kind (with param-

eter α optimized) for a possible further reduction of the number of witness families

that need to be measured before one can conclude that the unknown state is entan-

gled. This is unexplored territory.

4.8.3 General adaptive schemes

The adaptive schemes B and C that speed up the entanglement detection select

the next witness family from the six pre-chosen families specified by the unitary

operators in Table 4.1. If, instead, one selects also from other families than the six

pre-chosen ones, such a more general adaptive scheme might be more efficient, in the



4.8. Further Comments 69

sense that fewer families need to be measured on average before one can conclude

that the unknown state is entangled. Thereby, the selection is still done by opting

for the family which is expected to give the smallest value of S upon measurement.

It turns out that the more general adaptive schemes are not worth the trouble. We

justify this remark by a study of the generalizations of schemes B and C.

Scheme B’

As in scheme B, we calculate the MLME estimator ρmlme and exploit its properties

when choosing the next family to be measured. If ρmlme is entangled, ρT2
mlme has one

negative eigenvalue, and the eigenket |φ〉 to this eigenvalue is entangled. The next

witness family is then the one obtained from W =
(
|φ〉〈φ|

)T2 because this family

is best for detecting the entanglement of ρmlme. Since ρmlme is the current best

guess for the unknown state ρtrue, this family has also a good chance of detecting

entanglement in ρtrue. If the MLME estimator is separable, however, we proceed as

in scheme B.

Scheme C’

On top of scheme B’, the separability check of scheme C is implemented.

Simulations

We investigate the general adaptive schemes by performing computer simulations for

pure and full-rank states and constructing histograms analogous to those in Fig. 4.1.

As can be seen from the results in Fig. 4.6, scheme B’ improves over scheme B. For

both rank-one and rank-four states, the cumulative percentage of states detected

is higher. The percentage of undetected rank-four states after six families drops

from about 67% to about 25%. While this improvement is substantial, it pales

in comparison with the dramatic reduction to about 2.7% when using scheme C.

Therefore, when aiming at the most efficient way of detecting entanglement, we have

to employ either scheme C or scheme C’.

Now, as we learn from Fig. 4.6, scheme C’ is only slightly better than scheme

C — if at all. For, the somewhat smaller proportion of rank-four states detected
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Figure 4.6: Simulation results for 104 randomly chosen two-qubit entangled states:
pure states (bottom) and full-rank mixed states (top). The cumulative histograms
compare between adaptive measurements performed with the six pre-chosen families
of Table 4.1 (schemes B and C) and with six arbitrary families (schemes B’ and C’).

by the first, randomly chosen, family and the somewhat larger proportion of states

requiring tomography are surely resulting from statistical fluctuations in the simu-

lation. The other differences between the histograms for schemes C and C’ are of

similar size. Accordingly, there is no evidence that scheme C’ is worth the trouble

of its implementation, which requires that the settings of the WPs are calculated

and updated in every step for every state. On the other hand, the data obtained

in scheme C are optimal for the tomographic reconstruction of ρtrue. In summary,

then, scheme C serves all purposes very well.



Chapter 5

Quantum State Tompgraphy

with Additional Unknown

Parameters

The majority of the quantum state tomography experiments performed so far as-

sume that the quantum state to be estimated is the only unknown, while other

parameters necessary to reconstruct the state are all perfectly known. However, in

a typical experiment such as the ones discussed in the previous chapters, additional

parameters apart from the state, for example the efficiency of the detectors, are

also unknown. In this chapter, we study quantum state tomography with additional

unknown parameters and illustrate the construction of optimal error regions with

some examples.

5.1 Introduction

As mentioned previously, quantum information is a promising field that utilizes

quantum systems to perform sophisticated tasks of computations and communi-

cations. Inevitably, characterization of a source of quantum information carriers,

verification of the properties of a quantum channel, and so on, are of crucial im-

portance to quantum information processing tasks. The efforts in providing reliable

answers to such challenges culminate in the field of quantum state estimation [Pv04].
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In quantum state estimation, assumptions have usually been made to simplify

the real problem. Currently, most of the quantum state tomography experiments

assume that the quantum state to be estimated is the only unknown, while other

parameters necessary to reconstruct the state are all perfectly known. Such param-

eters could be needed to specify the devices in the measurement, (e.g. the efficiency

of the detectors) or the type of unitary transformation the quantum state under-

goes during the experiment (e.g. the splitting ratio of the beam splitter, the settings

of the wave plates), or perhaps needed to completely characterize the source (e.g.

the mean number of photons emitted out by the source per second). For example,

one of the many simplification is that the detection of the quantum systems can

be normalized to as if the detections were perfect. In performing the Pauli mea-

surements to determine the polarization state of a photon, one first calibrates the

relative efficiencies of the detectors, and then normalizes the detector counts, such

that one would obtain data that corresponds to perfect detection. Similar normal-

ization technique is also used in estimating the phase of a Gaussian state, where

the detectors are purposely made to have equal efficiency (usually by lowering the

efficiency of one detector). While such normalization techniques are legit, they are

not always possible. For example, one might not be able to obtain a reliable relative

efficiencies of the detectors, due to the set-up of the real detectors in the experiment.

In a more realistic setting, we need to consider the situation for which there are

additional unknown parameters. Typically, these various parameters are normally

calibrated before the experiment (if that is possible). This calibration provides the

experimenter with a prior knowledge of these parameter values. In the process of

carrying out the experiment, the data not only tell us new knowledge about the

state, but also the additional parameters. There exist proposals to reconstruct the

quantum state, and calibrate the measurement device, simultaneously—the so-called

“self-calibrating” technique [MŘH12]. The essence of this technique is to estimate

the state and other additional parameters in the measurement set-up by maximizing

the likelihood of obtaining the data, given a (set of) state parameter(s) as well as

any additional parameters relevant in the experiment. Various demonstrations of the

technique have been presented [QBJ13, SIK+13]. However, they lack error regions to
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make them statistically meaningful. Similar to quantum state estimation, one should

also supplement the point estimators for these additional parameters with error

regions. To tackle the issue of reporting error regions, various methods have been

proposed, but they usually rely on having a lot of data , involve data resampling,

or consider all data that one might have observed. There are also numerical coarse-

graining scheme to reliably estimate the quantum state of a source given a set of

noisy measurement outcomes that are not well calibrated [TŘH14].

In this chapter, we would like to consider a more realistic quantum state esti-

mation experiment, in which various additional parameters could be unknown. We

get rid of the assumption that the number of copies measured in the experiment is

large so that it suffices to report point estimators and would like to report meaning-

ful error regions if just a few copies are measured. We would also like to construct

error regions systematically from only the data that are actually observed. We show

that the machinery developed in Ref. [SNS+13] can indeed by efficiently applied to

various realistic quantum state tomography experiments with additional unknown

parameters.

In the construction, one faces the subtlety that the the state parameters (e.g.

the Bloch vector of a qubit) and other parameters (e.g. the number of undetected

copies from the inefficient detectors) are of different nature. The optimal error

region is therefore not a region in the state space, but rather, it comprises of direct

sum of the state space and the parameter space. The experimenter in the end

might be interested in the value and errors of the state estimator and the different

parameters individually. We demonstrate how to separate the different estimators

from their joint optimal regions, and attaching error regions (intervals) to them

separately. By marginalizing over the nuisance parameters, one obtains a marginal

likelihood which only depends on the parameter of interest. The marginal likelihood

characterizes one’s evidence that he or she has about the parameter of interest. The

bounded-likelihood intervals obtained from the marginal likelihood are the optimal

error intervals as they are the smallest credible intervals.

Here is a brief outline of this chapter. We set the stage and fix the notations

in Section 5.2. We also explain how to report the error interval for the parameter
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that one is interested in, by marginalizing over the nuisance parameters. We then

illustrate the construction with a simple example on polarization tomography in

Section 5.3. In Section 5.4, we focus on quantum phase estimation, and demonstrate

how to deal with cases where there are multiple peaks and multiple regions in the

parameter space. Finally we close this chapter with discussion and conclusion.

5.2 Setting the stage

To set the stage, we first introduce the general scenario and set the notations used in

this paper. In a typical setting, there is an unknown state to be reconstructed based

on the data acquired. Several independently and identically prepared copies of the

state are measured by an apparatus that realizes a POM. The experimenter’s lack of

knowledge about the state, ρ(s), can be captured by s = {s1, s2, · · · , sn}, where n is

the number of parameters needed to fully specify the states. It is straightforward to

generalize to the preparation of a set of states {ρk(s)}. Any other additional parame-

ters that are needed to reconstruct the states are represented by γ={γ1, γ2, · · · , γm},
where m is the number of additional parameters in the experiment.

Our aim is now to reconstruct the state, ρ(s), as well as estimate the unknown

parameters, γ, simultaneously. By that, we mean we would like to report a region

in the space of the state and the parameters that contains the true values with high

probability, yet small in size. A notion of size is taken for granted here [SNS+13].

Prior to taking any data, it is most natural to assign equal probabilities to equivalent

alternatives. For example, if we split the state space equally and fairly into two,

then it is equally likely that any state will be contained in either of the two pieces.

What does it mean by splitting equally and fairly? We say that it is fair provided

the size of the two pieces is the same. Hence, here we take it seriously that the size

of a region is quantified by its prior probability. Note that the above reasoning can

also be reversed. If we have already established the prior probability of the regions

with some other arguments, perhaps by symmetry or other considerations [SNS+13],

then we take it as the natural measure of the size of the region [EGS06].

We denote by (dρ) the size of the infinitesimal vicinity of the state ρ, and sim-
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ilarly by (dγ) that in the infinitesimal vicinity of the additional parameters. Here,

the calibration of the additional unknown parameters provide us with the prior

(“size ≡ prior probability”)

(dγ) = dγ1dγ2 · · · dγmw(γ1, γ2 · · · γm), (5.1)

where w(γ1, γ2 · · · γm) is the prior density for the parameters γ. In most cases, these

additional parameters are uncorrelated and the prior density is a product of prior

densities for each of the individual parameters, that is

w(γ1, γ2 · · · γm) = w(γ1)w(γ2) · · ·w(γm). (5.2)

Together with our knowledge about the source which provides the quantum state,

it enables us to compute the size SR of the region R,

SR =

∫
R

(dρ)(dγ) with

∫
R0

(dρ)(dγ) = 1. (5.3)

Here, one could of course simplify the notation by grouping the additional parame-

ters γ with the state parameters and writing only (dρ) for both. However we choose

to write (dρ)(dγ) just for the sake of clarity so that we can make reference to the

state parameters and any other additional parameters easily. R0 is the reconstruc-

tion space on which the size is normalized to unity.

In the process of carrying out the experiment, new data are obtained. From

them, we update our knowledge about the various parameters according to

posterior ∝ prior× likelihood, (5.4)

where the likelihood here is L(D|ρ,γ), a likelihood that is conditioned on both ρ

and γ. The posterior is then a property of the state and additional parameters as

a whole. Just like the prior probability tells us about the size of the region, the

posterior probability here tells us about the credibility of the region.

The optimal error regions can now be constructed. Following Ref. [SNS+13], we

find the bounded-likelihood region (BLR), Rλ, for different threshold values of λ.
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The size of the region is given by

sλ =

∫
R0

(dρ)(dγ)χλ(ρ,γ), (5.5)

where

χλ(ρ,γ) = θ
(
L(D|ρ,γ)− λL(D|ρ̂ML, γ̂ML)

)
. (5.6)

Here θ( ) denotes Heaviside’s unit step function. The BLR is the maximum likeli-

hood region (MLR), i.e., the region for which the given data are more likely than

for any other region with the same pre-chosen size.

The BLR Rλ has credibility

cλ =
1

L(D)

∫
R0

(dρ)(dγ)χλ(ρ,γ)L(D|ρ,γ). (5.7)

The BLR is also the smallest credible region (SCR), i.e., the smallest region with

pre-chosen credibility, where credibility of a region is the probability of finding actual

state and parameter in that region, conditioned on the data. Once sλ is known as

a function of λ, we can also obtain cλ from

cλ =
λsλ +

∫ 1
λ sλ′dλ

′∫ 1
0 sλ′dλ

′
. (5.8)

The error regions will be reported by communicating sλ and cλ as functions of λ.

The experimenter interested in the MLR with the size s of his or her liking, or the

SCR of his or her desired credibility c can determine the required values λ. It is

then easy to check if a state is inside the specified error region.

At this stage, notice that the SCR is a region containing both the state parameter

s, as well as additional parameters γ. It is a property of all of them as a whole.

The experimenter in the end might be interested in reporting the state estimator

and estimators for the other parameters separately, with their own error regions.

Suppose that the experimenter is interested in the parameter γi, he or she can first

integrate over the nuisance parameters (anything else other than γi) to obtain the
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marginal likelihood

L(D|γi) =

∫
R0

(dρ)
∏
j 6=i

dγjw(γ)L(D|ρ,γ). (5.9)

With this marginal likelihood at hand, one can then proceed with determining the

ML estimator for the parameter γi, as well as BLRs. The BLRs will be the smallest

credible region, or rather smallest credible interval for the one-dimensional parame-

ter γi. If the experimenter is interested in a higher-dimensional state, he or she can

construct the marginal likelihood and optimal error regions analogously.

Finally, just as a comment, the MLR and the SCR are unique for the data

observed. Once the data are obtained, there is the MLR and SCR, whereas the

MLRs and SCRs associated with unobserved data play no role at all. This is very

different from the confidence regions, where one needs to consider all possible data

that were not obtained, but could possibly be obtained. Nonetheless, they are

not totally unrelated. For discussions on how high-credibility regions offer starting

points of construction of confidence regions, see Ref. [CR12].

5.3 Polarization measurement with imperfect detectors

To demonstrate our method, we start with a simple, yet very illustrative example of

the polarization measurement on a single qubit. The state of the source is described

by a statistical operator ρ. For the moment, suppose only the expectation value

of σz is of interest, then a projective measurement in the z-basis is sufficient to

determine z = 〈σz〉.

In a typical and also more realistic situation in the lab, the detector efficiencies

will not be unity and it is inevitable that some photons will escape detection. The

POM describing the above situation is then {Π1,Π2,Π0}. Here, Π1 describes the

detection in the transmission port of PBS, given by

Π1 = η1
1 + σz

2
, (5.10)

where η1 is the efficiency of the detector in this port. Similarly, Π2 describes detec-
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Figure 5.1: Polarization measurement on a single qubit: An unknown state ρ is
sent to a polarizing beam splitter (PBS) where only the expectation value of σz is
of interest. In a typical and also more realistic situation in the lab, the detector
efficiencies will not be unity and it is inevitable that some photons will escape
detection. The detector D1 with quantum efficiency η1 realizes the POM element
η1|h〉〈h|, and The detector D2 with quantum efficiency η2 realizes the POM element
η2|v〉〈v|. The POM element Π0 for the missing counts is not drawn, see text for
more details.

tion in the reflection port, which is

Π2 = η2
1− σz

2
, (5.11)

and Π0 = 1 − Π1 − Π2 accounts for the missing copies. For simplicity, we assume

that the efficiencies of both detectors are known.

The probability that the emitted photon is horizontally polarized (i.e. detector

1 clicks) is given by

p1 = tr{ρΠ1} =
η1(1 + z)

2
. (5.12)

Similarly,

p2 = tr{ρΠ2} =
η2(1− z)

2
, (5.13)

and p0 = 1 − p1 − p2. In typical experiments, the data consist of the observed

number of clicks for detector 1 and 2 respectively, denoted by n1 and n2. However,
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the number of missing copies, n0, is generally unknown, except that one does have a

prior knowledge for the n0, as a result of one’s prior knowledge for the total number

of measured copies, N = n1 + n2 + n0. In this case, one a priori expects that N

follows the usual Poissonian photon statistics, i.e.

P (N) =
(νT )N

N !
e−νT , N = 0, 1, 2 . . . , (5.14)

where the average photon count rate, ν, and the duration of data collection, T , are

known.

We can then incorporate the additional parameter, which is n0 here, into the

likelihood function. The likelihood of obtaining a particular set of data, D, given z

and n0, is

L(D|z, n0) = pn1
1 pn2

2 pn0
0

(
N

n0

)
, (5.15)

where the binomial factor comes from the different possibilities of missing n0 copies

from a total of N copies. Using MLE, upon maximizing the likelihood with respect

to z, we get

ẑML =
n1(1− η2) + n2(1− η1)

(η1 − η2)(n0 + n1 + n2)
±√

(η2n0 + n1 − η1(n0 + n1)− n2(1− η2))2 + 4n1n2(1− η2)(1− η1)

(η1 − η2)(n0 + n1 + n2)
. (5.16)

The ± sign of ẑML is determined by the constraint |z| ≤ 1.

To obtain the ML estimator for n0, we cannot differentiate L with respect to n0

since n0 only takes integral values. Instead, suppose we have found n̂ML
0 and ẑML,

such that Lmax = L(D|ẑML, n̂ML
0 ) is maximum. When n0 = n̂ML

0 + 1,

Lmax > L(D|ẑML, n̂ML
0 + 1). (5.17)

Similarly, when n0 = n̂ML
0 − 1,

Lmax > L(D|ẑML, n̂ML
0 − 1). (5.18)
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From these two inequalities, one gets

n̂ML
0 = floor

(
(n1 + n2)

1− p1 − p2

p1 + p2

)
. (5.19)

In summary, given a set of data, we have to find ẑML and n̂ML
0 that satisfy both

Eqs. (5.16) and (5.19) as the ML estimators for the two unknowns respectively.

The point estimator that we obtained above should be supplemented by an error

region. To construct the region, we use Eq. (5.3), where in this context, there is

only one additional parameter, i.e. γ = {n0}. Since it is discrete, the integral

would mean a summation in n0 with the Poissonian prior that we have about this

parameter. Hence, we have,

SR =

∫
R

(dρ)
∞∑

n0=0

(νT )n1+n2+n0

(n1 + n2 + n0)!
e−νT . (5.20)

For this three-element POM, i.e. (dp) = dp1dp2dp0, the permissible probabilities,

assuming without loss of generality that η1 ≥ η2, are identified by

wcstr(p)=̇θ(p1)θ(p2)θ(p0 − (1− η1))

× δ
(
p1

η1
+
p2

η2
− 1

)
δ(p1 + p2 + p0 − 1), (5.21)

where δ( ) is Dirac’s delta function. The dotted equal sign stands for ‘equal up

to a multiplicative constant’, namely the factor that ensures the unit size of the

reconstruction space. For the primitive prior, we then have

(dρ) = dp1dp2dp0wcstr(p) =
η1η2

2
dz, (5.22)

so that the multiplicative constant in Eq. (5.21) is given by 1
η1η2

to ensure the correct

normalization, since then we have

∫
R0

(dρ) =

∫
dp1dp2dp0

1

η1η2
wcstr(p) =

∫ 1

−1

dz

2
= 1. (5.23)

We see here that the primitive prior in the probabilities turns out to be also the
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Figure 5.2: Graphs with (n1, n2, η1, η2) = (10, 4, 0.7, 0.5). The red star (?) is the true
state that is used for the simulation. The black triangle (4) is the ML estimator.
The collection of the red lines form the SCR for this set of data for cλ = 0.9, and
the blue lines are for cλ = 0.5.

primitive prior in z. Collecting the pieces, finally we have

SR =

∫
R

dz

2

∞∑
n0=0

(νT )n1+n2+n0

(n1 + n2 + n0)!
e−νT . (5.24)

The size of the bounded-likelihood region for z and n0 as a whole can then be found

using

sλ =

∫
R0

(dρ)
∞∑

n0=0

p(n0)χλ(z, n0), (5.25)

where

χλ(z, n0) = θ
(
L(n1, n2|z, n0)− λL(n1, n2|ẑML, n̂ML

0 )
)
. (5.26)

Once the size is determined for different values of λ, the credibility can then be

evaluated according to Eq. (5.8).

Figure 5.2 shows SCRs obtained for a simulated experiment in which (n1, n2, η1, η2) =

(10, 4, 0.7, 0.5), for two different values of cλ. In the simulation, the true state is

z = 0.4, and a total of 21 copies are used which resulted from a Poissoan distribu-

tion of ν = 9.44 photons per second and T = 2 seconds. The actual ν = 9.44 is
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Figure 5.3: Size (the blue curve) and credibility (the red curve) as functions of λ for
the primitive prior for the regions in Fig. 5.2. The experimenter interested in the
SCR of his desired credibility c can determine the required value of λ and check if a
given value of z and n0 is in the region. The kinks (which are barely noticeable but
shown in the inset) in the graph are due to the discrete nature of the parameter n0.

based on a prior on ν with known mean ν̄ and standard deviation δν (more about

this in the following part). The number of missing copies is eight in the simulation.

The ML estimator for z and n0 is ẑML = 0.3506 and n̂ML
0 = 7 respectively. Fig-

ure 5.3 shows the size and credibility of the MLRs and SCRs as functions of λ. As

λ increases, the size of both MLR and SCR decreases. Notice that there are kinks

in the graph. They are due to the discrete nature of the parameter n0.

The sλ and cλ is a property of the region of both z and n0 together. The

experimenter may wish to separate these two parameters and attach error regions

to them individually. To do this, one first obtains the marginal likelihood for z only,

given by

L(D|z) =

∞∑
n0=0

L(D|z, n0)p(n0)

=
∞∑

n0=0

L(D|z, n0)
(νT )n1+n2+n0

(n1 + n2 + n0)!
e−νT

= pn1
1 pn2

2

(νT )n1+n2

(n1 + n2)!
e−νT (p1+p2). (5.27)
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More strictly speaking, the likelihood in Eq. (5.27) is a likelihood conditioned on z

as well as ν. In a realistic setting, the experimenter normally calibrates the source

so that he or she knows the average value and spread of ν, denoted by ν̄ and δν .

This knowledge could be captured as a prior in ν, for example

p(ν, ν + dν) = dνβα+1 ν
α

α!
e−βν , α, β > 0, (5.28)

with

α =

(
ν̄

δν

)2

− 1, (5.29)

and

β =
ν̄

(δν)2
. (5.30)

Here, the widely used Gaussian distribution should be avoided since it has a tail in

the negative region, but ν is a positive quantity. Instead, a Gamma distribution is

more appropriate. It is commonly used as a conjugate prior distribution for various

types of rate parameters, such as the rate of a Poisson distribution (which is the

case here). The Gamma distribution also has the advantage that it is the maximum

entropy probability distribution for a random variable X for which E[X] is fixed

and greater than zero, and E[ln(X)] is fixed. It follows that

p(N |ν̄, δν) =

∫ ∞
0

p(ν, ν + dν)
(νT )N

N !
e−ν

=
(α+N)!

α!N !
βα+1(β + 1)−α−N−1, (5.31)

and the new marginal prior for z now is

L(D|z) =
∞∑

n0=0

L(D|z, n0)p(N |ν, δν)

= pn1
1 pn2

2

(α+ n)!

α!n!
βα+1(β + p1 + p2)−α−n−1, (5.32)

where n = n1 + n2, with p1 and p2 given by Eqs. (5.12) and (5.13), and α and β

given by Eqs. (5.29) and (5.30) respectively.

With Eq. (5.32) at hand, we can now evaluate the size and credibility as a

function of λ. We report the results in Fig. 5.4. There are no more kinks in Fig. 5.4
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Figure 5.4: Size (the blue curve) and credibility (the red curve) as a function of λ
for the bounded-likelihood regions using the marginalized likelihood of Eq. (5.32).
There are no more kinks as the discrete parameter has been marginalized over.
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Figure 5.5: The smallest credible interval for the parameter z as a function of
credibility. From this figure, one draws horizontal lines to determine the smallest
credible interval corresponding to one’s desired value of the credibility; see text for
details. The red line shows the true state of z = 0.4 used in the simulation.

since the the discrete parameter n0 has been marginalized over. With Fig. 5.4, the

experimenter can find the value of λ that corresponds to his or her desired credibility

and check whether an arbitrary value of z is in the BLR. Since the parameter of
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interest, z, is one-dimensional here, it is more instructive to plot the smallest credible

interval as a function of the credibility and this is shown in Fig. 5.5. The vertical

axis is the credibility and the blue curve indicates the smallest credible interval.

From the figure, one draws a horizontal line at c = c0, where c0 is the desired value

of the credibility. This horizontal line will cut the blue curve at two points, zmin,

and zmax, unless c0 = 0. The smallest credible interval to report is then (zmin, zmax).

When c goes zero, one obtains the maximum likelihood point estimator. When c0

goes one, one then needs to report the full interval (−1, 1).

5.4 Estimation of phase in an interferometer

Let us consider an ideal Mach-Zehnder interferometer with lossless beam splitters of

50:50 splitting ratio, and only input port 1 is used. The unknown phase φ between

the two arms is to be estimated with the help of an auxiliary phase controller which

switches the control phase randomly between either 0 or π/2, see Fig. 5.6. Note

that this random switch simply selects either of the two choices 0 or π/2 half of

the time. But when the choice is made, the value of the random auxiliary phase

is then known, so that for each copy of the photon, we know the setting of the

auxiliary phase control. Effectively, half of the incoming photons are measured with

the auxiliary phase set to 0, while the other half with π/2. The auxiliary phase is

needed so as to get a unique estimator for the unknown phase [HMP+96, ŘHZ+99]

; this device is equivalent to the 8-port homodyne detection scheme [NFM91].

The probabilities that the respective detectors will click with each used control

phase are,

p1 = η1

(
1 + cosφ

4

)
, p2 = η2

(
1− cosφ

4

)
,

p3 = η1

(
1− sinφ

4

)
, p4 = η2

(
1 + sinφ

4

)
, (5.33)

where ηj is the given efficiency of the detector Dj .

For the moment, we consider perfect detectors, i.e. η1 = η2 = 1. Interesting

features in the likelihood function now could arise due to the sinusoidal dependence
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on the parameter. For this case, we have

L(D|φ) =
4∏
j=1

p
nj
j , (5.34)

where D = {n1, n2, n3, n4}. We estimate the phase φ by maximizing the logarithm

of the likelihood. Requiring
∂ logL

∂φ
= 0 gives

√
A2 +B2 sin

(
φ+ tan−1 B

A

)
= 0, (5.35)

where

A =
n2

1− cosφ
− n1

1 + cosφ
, (5.36)

phase �

⇡
⇡/2

or

unknown

auxiliary
phase

M

M
BS

BS

D1

D2

Figure 5.6: An ideal Mach-Zehnder interferometer with lossless beam splitters (BS)
of 50:50 splitting ratio and mirrors (M). Only input port 1 is used, and the two
output ports are directed to two detectors D1 and D2. The unknown phase φ between
the two arms is to be estimated with the help of an auxiliary phase controller which
switches the control phase randomly between either 0 or π/2. Note that this random
switch simply selects either of the two choices 0 or π/2 half of the time. But when
the choice is made, the value of the random auxiliary phase is then known, so that
for each copy of the photon, we know the setting of the auxiliary phase control.
Effectively, this is a four element POM; see text for details.
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Figure 5.7: Example of a likelihood function exhibiting multiple peaks and multiple
regions in the parameter φ. One of the peaks is hardly visible.

and

B =
n4

1 + sinφ
− n3

1− sinφ
. (5.37)

Equation (5.35) implies either A = B = 0 or tanφ = −B/A, which tells us that

there could be multiple local maxima in the likelihood function plotted against φ,

depending on the data that is actually obtained in the experiment. We note that

each of these local maxima resides in different disjointed regions. For each of the

disjointed regions, there is only one local maximum. For illustration, suppose the

data D = {1, 2, 1, 3} is obtained, Fig. 5.7 shows that the likelihood function now

exhibits four peaks in the parameter φ (one of the peaks is hardly visible).

Indeed, if we now identify the permissible probabilities for this POM, we have,

wcstr(p)=̇θ(p)δ

(
p1 + p2 −

1

2

)
δ

(
p3 + p4 −

1

2

)
δ

(
(p1 − p2)2 + (p3 − p4)2 − 1

4

)
,

(5.38)

where

θ(p) =

4∏
k=1

θ(pk). (5.39)

This is very similar to the crosshair measurement considered in Ref. [SSN+15b].



88 5. Quantum State Tompgraphy with Additional Unknown Parameters

The only difference is in the replacement of the step function in Eq. (23) of

Ref. [SSN+15b]; we have a delta function, which restricts our states to be only

the set of pure states on the equator. Such a set is not a convex set, and hence

one does not expect the likelihood to be convex in the parameter φ. Now, for the

primitive prior, we have

(dρ) = dp1dp2dp3dp4wcstr(p)

= dp2dp4 δ

((
1

2
− 2p2

)2

+

(
1

2
− 2p4

)2

− 1

4

)

=
1

2| cosφ|dp4 =
dφ

8
, (5.40)

so that the multiplicative constant in Eq. (5.38) is 4
π to ensure the correct normal-

ization. The primitive prior in the probabilities turns out to be the primitive prior

in φ in disguise.

In general, even if the likelihood function exhibits multiple peaks, the concepts

of BLR are still meaningfully defined. The subtle difference is that we now consider

variations on the union of the disjoint regions. The search for the MLR is now

slightly modified: for given total size of the union of the regions, we want to maximize

the sum of the likelihood of the union of the regions, i.e. we would like to have

k∑
i=1

∫
∂Ri

d ~Ai · δ~εi L(D|ρ,γ) = 0, (5.41)

subject to the constraint
k∑
i=1

∫
∂Ri

d ~Ai · δ~εi = 0, (5.42)

where k is the number of disjoint regions in the likelihood function. Here, ∂Ri is

the boundary of the ith region Ri, d ~Ai is the vectorial surface element of ∂Ri for

the ith region, and δ~εi is the infinitesimal displacement of ρ and γ in the ith region.

Since each of the regions are disjointed, the results of the variation show that the

MLR and SCR that we are looking for is still the BLR.

The size of the regions can be calculated just as before, using Eq. (5.5). The only

difference is that we now need to evaluate the disjoint regions separately. Whenever
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Figure 5.8: Size (the blue curve) and credibility (the red curve) of the BLR. In this
case, the BLR consists of a union of regions. The kinks in the graph occurs whenever
a further decrease of λ results in more regions being included in the BLRs.

we want the size of a union of regions, we simply add the size of each of the regions

together to obtain the total size. Once the size is determined, the credibility is found

in the same way, using Eq. (5.8).

Figure 5.8 shows the size and credibility as a function of λ for the data D =

{1, 2, 1, 3}. Each of the disjoint regions has a size of 0.25 as λ goes to zero, since

a primitive prior for φ is used. The kinks of the graph occur whenever the further

decrease of λ results in more regions being included in the BLRs.

Similar to the first example, since the parameter, φ, is one-dimensional, it is

more instructive to plot the smallest credible interval as a function of the credibility

and this is shown in Fig. 5.9. From the figure, one can easily determine the optimal

interval to report if one wants a certain value of the credibility, in the same manner

as explained in the case of Fig. 5.5. The difference is that there are now multiple

branches in the blue curve, so that the horizontally drawn line may cut the blue

curve at more than two points, depending on the chosen value of the credibility. For

example, if one wishes to have a credibility of c = 0.95, then the dashed black line

cuts the blue curve six times, resulting in three pairs of (φimin, φ
i
max), for i = 1, 2

and 3. As a result, one has to report the union of these three disjoint intervals as
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Figure 5.9: The smallest credible interval for φ as a function of the credibility. The
red line is the true state φ = 0.75 used in the simulation. The black dash shows
that if one desires a credibility of c = 0.95, then one has to report the union of three
intervals.

the smallest credible interval. For 95% of the time, the true state will be inside this

interval. If only c = 0.8 is needed, then reporting the union of two intervals will

suffice.

From this example, the advantage of reporting MLR, rather than a single ML

estimator, is manifested obviously. The ML estimator (the one corresponding to

the global maximum) for this case is φ = 2.3 which is far away from the true state.

This is because the number of copies measured in the experiment is too small to

make a conclusive statement about the unknown phase φ. If the number of copies

becomes larger, all the side peaks will diminish and become unnoticeable, and the

global peak will stand out as the ML estimator near the true state. However, when

the number of copies measured is small, fluctuations in the data could easily result

in the scenario shown in Fig. 5.9, where the red line is outside the main interval.

In such cases, one really is not equipped with enough confidence to report the ML

point estimator, and rather reporting the MLR is the better way. Notice that even

if the number of copies are large, the side peaks are still there and there would still

be four disjoint regions (as long as one of the nj is non-zero, which practically never
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Figure 5.10: Likelihood as a function of φ when the number of copies used is large.
The ML estimator now is very close to the true state φ = 0.75. The other three
peaks are so low that they are practically not there.

happens as N goes to infinity in an experiment). It is just they are so small to be

even noticed.

Figure 5.10 shows the likelihood function when the number of copies used be-

comes larger. The global peak will stand out near the true state φ = 0.75, whereas

all the other peaks diminished so low that they are practically not there. However,

one can see from Fig. 5.11, which is the logarithm of the likelihood function, that

there are four maximua. Only the global peak will be the consistent estimator when

N becomes larger.

Having settled the occurrence of multiple peaks in the likelihood function, we now

return to the case of a realistic imperfection detection. The likelihood of obtaining

the data D is then

L(D|φ, n0) =pn0
0

4∏
j=1

p
nj
j

(
N

n0

)
, (5.43)

where p0 ≡ 1 −
4∑
j=1

pj and N =

4∑
j=0

nj , with n0 denoting the unknown number of
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Figure 5.11: Logarithm of the likelihood function where one can see the appearance
of four maxima.

undetected copies and n ≡
4∑
j=1

nj is the number of detected copies.

We can estimate the phase φ and n0 simultaneously in the same manner as

Section 5.3. For φ, we have

√
A2 +B2 sin

(
φ+ tan−1 B

A

)
= 0, (5.44)

where

A =
n0η−

4− 2η+ + η−(sinφ− cosφ)
+

n2

1− cosφ
− n1

1 + cosφ
, (5.45)

and

B =
n0η−

4− 2η+ + η−(sinφ− cosφ)
+

n4

1 + sinφ
− n3

1− sinφ
, (5.46)

with η+ ≡ η1 + η2 and η− ≡ η1 − η2.

For the undetected copies, we have

n̂ML
0 = floor

( np0

1− p0

)
. (5.47)

In summary then, given a set of data, φ̂ML and n̂ML
0 are obtained from solving both

Eqs. (5.44) and (5.47), simultaneously. One can then proceed with either reporting
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combined optimal error regions for φ and n0, or marginalizing over the nuisance

parameters to report the optimal error interval for the parameter of interest, similar

to the manner that we demonstrated in Section 5.3 above.

Instead of doing that, here we demonstrate how the detector efficiency could be

simultaneously estimated with error intervals. For illustrative purpose, suppose η1

is known and η2 = η is to be estimated. One first obtains a marginal likelihood on

φ and η after marginalizing over n0, so that

L(D|φ, η) =
(νT )n

n!
pn1

1 pn2
2 pn3

3 pn4
4 e−νTp, (5.48)

where p = p1 + p2 + p3 + p4.

Now a suitable prior for η is the Beta distribution so that

p(η) =
1

B(α, β)
ηα−1(1− η)β−1, (5.49)

with

α = η̄

(
η̄(1− η̄)

(δη)2
− 1

)
, (5.50)

and

β = (1− η̄)

(
η̄(1− η̄)

(δη)2
− 1

)
. (5.51)

As usual, the calibration on the detector before the experiment provides us with

the values of η̄ and δη. If such calibration were not possible, the experimenter could

assume a uniform prior for η over the interval zero to one. Which prior to use really

depends on how much the experimenter knows about his or her apparatus.

We can then obtain the marginal likelihood on φ given by

L(D|φ) =

∫ 1

0
dηL(D|φ, η)p(η)

=e−νT (p1+p3)

(
1− cosφ

4

)n2
(

1 + sinφ

4

)n4

× pn1
1 pn3

3 (νT )n

n!

Γ(a)Γ(β)

Γ(a+ β)B(α, β)
M(a, β,−c), (5.52)

where Γ( ) is the gamma function, B( ) is the beta function, and M( ) is the
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confluent hypergeometric function, with

a = n2 + n4 + α, (5.53)

and

c = νT

(
2 + sinφ− cosφ

4

)
. (5.54)

If, however, the experimenter is interested in the value and credible interval of η

only, then marginalizing over φ gives

L(D|η) =
(νT )n

n!

ηn1+n3
1 ηn2+n4

4n
e−νT

η1+η
2 f(η), (5.55)

where f(η) is obtained from the integral

∫ 2π

0
dφ e−

νT
4

(η1−η)(cosφ−sinφ)(1 + cosφ)n1(1− cosφ)n2(1− sinφ)n3(1 + sinφ)n4

=

(
d

dt

)n1
(

d

du

)n2
(

d

dv

)n3
(

d

dw

)n4

g(u, v, w, t)|t,u,v,w→0 , (5.56)

with

g(u, v, w, t) = et+u+v+wI0

(√
(t− u− d)2 + (w − v + d)2

)
, (5.57)

where I0 is the modified Bessel function of the first kind with order zero, and d =

νT
4 (η1 − η).

5.5 Discussions

In this chapter, we presented two typical examples illustrating the construction of

error regions for quantum tomography experiment with additional unknown pa-

rameters. As there is a myriad of parameters that could be unknown in various

experiment, it is not possible, nor the aim of this chapter, to study in details all

such possible parameters. The two chosen examples are meant to illustrate the tech-

nique. However, as an outlook, we do mention two other examples that we plan to

study in the future due to their unique features. One of them is quantum homodyne

tomography [VR89]. It is a robust and versatile tool of quantum optics and has been

applied in many different experimental settings for which the technique of maximum
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likelihood has been used successfully. One of the many advantage of the ML tech-

nique is the possibility to incorporate the detector inefficiencies. A common model

for a homodyne detector of non-unitary efficiency results in a generalized Bernoulli

transformation for the transmitted density matrix. When aware of the homodyne

detector efficiency η, one can run well-known iterative algorithm and reconstructs

the original density matrix [Pv04].

To illustrate the idea of Bayesian credibility region in such experiments, it suf-

fices to consider tomography of Gaussian states. Such states represent the wide

class of coherent, squeezed and thermal states, all of them being characterized by

a Gaussian Wigner function. Let’s consider a thermal squeezed state subject to

homodyne measurement. The thermal squeezed state is characterized by two state

parameters, the squeezing parameter, ν, and the true mean photon number, nT. The

measurement device is characterized by an additional parameter, η, the efficiency of

the detectors. The statistics of the quadrature distributions of such a state is given

by

p(θ, x) =
1√

2πσ2
exp(−x2/2σ2), (5.58)

with

σ2 = η

[
2nT + 1

2Q

(
Q2(cos θ)2 + (sin θ)2

)
+ δ

]
, (5.59)

where Q = exp(2ν), and δ = (1− η)/2η [MŘH12]. Note that in the Ref. [MŘH12],

such an example has already been studies, without however, attaching optimal error

regions to such a scenario. Furthermore, the Figure. 3 presented in Ref. [MŘH12]

is a joint property of the state parameters and additional parameters. The idea of

marginalization can also been applied in this case. However, in this case, numerical

integration is required for the marginalization.

Another example is an experiment involving dark counts of the detectors. At

the moment, such experiments are always done with pre-calibration of the detector

before the actual experiment. That is, one first switches on the detector alone and

records the average number of counts per unit time due to the dark counts, Ndark,

without running the experiment. One then runs the experiments and records the

number of counts, Nobserved. The number of actual counts is then corrected for the
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dark count using

Nactual = Nobserved −Ndark. (5.60)

However, due to the statistical fluctuations in the data, this could sometimes results

in a negative value of Nactual, which does not make sense. This situation is worse

when the detector has a high dark count, or the state is nearly pure or rank-deficient,

so that Nactual is very small for one of the POM element measured, or both.

A more sensible way to analyze such an experiment would be to estimate the dark

counts simultaneously instead of doing a pre-calibration first and correction later.

The techniques presented in this chapter then become relevant and we remark that

such a study is still underway.

5.6 Conclusions

In conclusion, we note that, in a typical experiment, additional parameters apart

from the state could also be unknown. Self-calibration, i.e. the simultaneous re-

construction of a quantum state and various additional parameters needed to char-

acterize the measurement device, has been recently introduced. However, such a

reconstruction should be attached with error regions to make them statistically

meaningful. In this chapter, we illustrate that optimal error regions for such exper-

iments can indeed be constructed efficiently using the bounded-likelihood region.

The optimal error regions constructed is a joint property of the state parameters

and the other parameters as a whole. We show how to separate the different es-

timators from their joint optimal regions and attaching error regions (intervals) to

them separately by marginalizing over the nuisance parameters to obtain a marginal

likelihood which only depends on the parameter of interest. The marginal likelihood

characterizes one’s evidence that he or she has about the parameter of interest. The

bounded-likelihood intervals obtained from the marginal likelihood are the small-

est credible intervals. Two typical experimental situations are studied in details as

illustrations, and we offer two other examples to be studied as an outlook.



Chapter 6

Initial System-Bath State

In this chapter, we show how one uses ideas from quantum state tomography to

deduce a reasonable and consistent initial system-bath state. In typical situations,

such a state turns out to be uncorrelated or almost uncorrelated between the system

and the bath. This has implications, in particular, on the subject of subsequent

non-Markovian or non-completely-positive dynamics of the system, where the non-

complete-positivity stems from initial correlations between the system and the bath.

6.1 Introduction

As mentioned previously, the first step in a quantum information processing or

computation task always involves the preparation of a certain initial state, which

would be subjected to some dynamical evolution later on, for example, by letting

the state evolve freely, or sending it through a series of gates for manipulation aimed

at a certain computation. The subsequent dynamics typically depends on the initial

state prepared.

Such a dependence also appears in the study of open quantum systems [BP06],

where the subject of interest includes not only the quantum system, but also the

environment that it inevitably couples to. Strictly speaking, no quantum system

is truly an isolated system and all quantum systems couple to some extent to the

external environment. Hence, the initial condition in such a situation should not

include the system-only state ρS, but rather the system-environment composite state

ρSE.
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system

bath

environment

HSB

T

Figure 6.1: The system sitting in an immediate larger bath, which is further im-
mersed in the environment. For example, in an ion-trap experiment, one typically
has the system qubits, which are coupled to the bath qubits, and the system-bath
composite is immersed in the external environment. Hence, the system-bath com-
posite is not thought of as a closed quantum system here. However, the main
coupling to the system comes from its immediate bath through the interaction
Hamiltonian HSB, and the coupling between the system and the larger external
environment is negligible. The bath serves the purpose of the “memory-full” part
of the environment that interacts with the system. The environment however pro-
vides a mechanism for the system-bath composite to be maintained at a certain
temperature T .

Strictly speaking, in order to form a closed quantum system, the environment

includes the “rest of the universe”. However, the description involving the “rest of

the universe” is normally neither feasible, nor is it necessary or sensible. Further-

more, in a typical experimental situation, such coupling to the “rest of the universe”

is also not capturing the essence of the physics. Rather, one often has the system

sitting in an immediate larger bath, which is further immersed in the environment.

For example, in an ion-trap experiment, one typically has the system qubits, which

are coupled to the bath qubits, and the system-bath composite is immersed in the

external environment. Hence the situation we are considering here is slightly dif-

ferent from the one introduced in Chapter 2, and is a more realistic model. The

typical scenario is depicted in Fig. 6.1. Here, the system-bath composite is not

thought of as a closed quantum system, but immersed in an environment that acts
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as the temperature reservoir. However, the main coupling to the system comes from

its immediate bath through the interaction Hamiltonian HSB, and the coupling be-

tween the system and the larger external environment is negligible. The bath in this

case serves the purpose of the “memory-full” part of the environment that interacts

directly with the system. Information flows between the system and the bath and

very little goes into the larger external environment. The environment, however,

provides a mechanism for the system-bath composite to be maintained at a certain

temperature T . Hence, what we need here is an initial system-bath composite state

ρSB acting on HS ⊗HB, for predictions of future behavior of the composite system.

One may object by saying that what is important is the system-only state, and one

does not need to predict any future behavior of the bath state. For that, one may

resort to the master equation description of the system state, where the bath state

is traced over. However, even in such a system-only description, the specification of

an initial system-bath composite state is also required as an important step towards

deriving the system-only master equation. Hence, one cannot avoid specifying an

initial system-bath state even if the predictions later on only involve the system

state.

What is this ρSB then? This, of course, depends on how we prepare the system-

bath composite and is then verified by quantum state tomography. However, though

the bath is a small bath compared with the “rest of the universe”, it is still large

compared with the system, and we do not have microscopic control on the bath,

unlike what we have on the system. Hence, what we have is only the ability to

prepare the system state, but we do not have the ability to prepare the bath state

in the same state every time. As tomography is only done on the system, it verifies

that we have accurately prepared the system in the state ρS = trB{ρSB}. With

this ρS now at hand, one then has to infer a reasonable and consistent system-bath

composite state ρSB that incorporates what we know and do not know about the

bath.

The easiest way to accomplish this is probably to simply attach some reference

bath state ρ
(ref)
B together with ρS and claim that ρSB = ρS ⊗ ρ(ref)

B , since a tensor-

product state has a very straightforward interpretation in the classical sense. Indeed,
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this state has been motivated traditionally by the argument that the system is well

isolated from the bath—only when the system-bath interaction is weak does this

split into system and bath make good physical sense—so that it can be described as

having been prepared in some state independently of the bath. The preparation of

the system is normally assumed to have little effect on the bath since the system is

too insignificant to have any effect on the large bath, which is in its own reference

state, as if the system were not there. This reference state is typically assumed to be

the thermal state ρ
(th)
B , since at thermal equilibrium with the environment, the bath

is expected to follow the Boltzmann distribution in its eigenstates. This reasoning

gives the ρS ⊗ ρ(th)
B as the initial system-bath state. One arrives at the same state

by alternatively imagining that the system-bath interaction is originally zero and is

“turned on” only at time t = 0.

The description using such an initial product state is one of the ingredients to

what is called Markovian dynamics later on, where one neglects memory effects

in the reduced system dynamics. However, practically, the isolation of the system

from the bath can never be complete; for example, one can never decouple from the

quantized electromagnetic field. One expects the initially perfectly uncorrelated or

independent situation to be but an approximation, albeit often a good one. Recently,

many articles [MRRAG12, DRS12] examined the effects of initial correlations with

the bath on subsequent system dynamics, usually with the observation of deviation

from purely Markovian behavior. Various measures of this deviation have been

proposed [BLP09, RWC+11, WECI08, RHP10]. Experiments have been performed,

[LLH+11, TLL+12], demonstrating the possibility of artificially engineering initial

correlation between the system and the (some controllable microscopic) bath. A

more recent experiment [RWM+15] studied how one could use these deviations to

deduce the initial (engineered) correlations between a single qubit and its bath (also

a single qubit); the method applies to larger systems and baths, as proposed in the

theoretical paper [Mod12], although one questions its feasibility for a larger bath.

In such situations of initial system-bath correlations, the simple recipe of writing

down an uncorrelated ρSB = ρS ⊗ ρ(ref)
B is no longer fully justified. What is then a

reasonable ρSB? In many of these works discussing the initial system-bath correla-



6.2. Setting the stage 101

tions, since one generally lacks any recipe to write down a specific system-bath state,

the system-bath state is taken as some arbitrary or given state, usually suggesting

that it is some fixed state, just that we do not know what it is. Such a view of some

unknown arbitrary state is hardly supported since the quantum mechanical state is

our description of the system in question, taking into consideration all the available

information we have about the state at hand. The system-bath state should thus

capture what we know about the system and the bath. There are also papers which

introduce a symbolic unknown system-bath state, as if the system-bath state can

be anything and no concrete statement could be made [KMRRS07]. Such a point

of view not only possesses little predictive power, but is also unfounded since we

can and should always apply the standard methods of state estimation to deduce

an initial system-bath state that represents our knowledge of the composite system.

There have also been other attempts to characterize initial correlation based on ini-

tial preparation of the system state [Mod12, KMRRS07, MS10]. State preparation,

however, can only be verified by the tools of tomography.

Hence, in this chapter, we examine two different ways of how one employs ideas

from state estimation to write down a statistical operator for the initial system-bath

state. One way is to apply the idea of maximum entropy [Jay57], and argue that the

resulting state is the most reasonable initial state that one is allowed to write down,

based on our ignorance. Any other guesses will introduce biases not supported by

the evidence. Another way is to write down the Bayesian mean state in accordance

with any prior information known (or with an uninformative prior if that is the

case) to the experimenter. We show in this chapter that both approaches result in

a system-bath state that is uncorrelated or almost uncorrelated.

6.2 Setting the stage

In a typical quantum experiment, the first step always involves the preparation of

the system state at time t = 0. The success or accuracy of such a preparation is

verified by quantum state tomography. The system is repeatedly prepared under

the same experimental conditions and these independently and identically prepared

copies of the system are measured using a POM {Πi}Ki=1, as discussed in Chapter 2.
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For the purpose of this chapter, we assume that we use an IC POM to extract the

information on the system. Our knowledge of the system can thus be phrased simply

as the knowledge of the pis for the tomography POM. The cases where the relative

frequencies are not the true probabilities, due to, for example, small number of copies

being measured, or the cases where there is contradictions in the data obtained, are

mentioned before and well discussed in the quantum state tomography literature.

We will refrain from discussing about these issues in this chapter and assume that

one measures a sufficiently large number of copies so that the pis are known from

the data, enabling us to reconstruct a point estimator and it is not necessary to

give a region of estimators. Note that, however, slightly different from the situation

introduced in Chapter 2, here the input state is a system-bath state, that is ρSB

from HS ⊗HB, instead of ρS from HS. The POM elements are Πi ⊗ 1B, where the

Πis are the system operators and 1B is the identity operator on the bath. In order

not to overload the notation, we will not write 1B explicitly when the meaning is

clear from the context.

What about our knowledge of the bath? As discussed, by the “bath”, we refer

to the part of the relevant physical system that we do not have microscopic control

over. However, we can have control over the macroscopic properties, such as tem-

perature, pressure, volume, etc., and we can measure these macroscopic properties

in the laboratory accurately. By “relevant”, we mean that we include only those

physical degrees of freedom that couple sufficiently, though weakly, to our controlled

system to have any effects on its dynamics, for the duration of the experiment. For

example, these degrees of freedom could be the cavity modes that are resonant or

near-resonant to a few-level atom (the idealized system) inside the cavity; the sur-

rounding environment of nuclear spins around a nitrogen-vacancy-centre spin site;

etc. Based on the experimenter’s knowledge and understanding of the actual phys-

ical situation in the experiment, this coupling can be identified as an interaction

Hamiltonian HSB between the system and the bath. Alongside this HSB, there is

also a system-only Hamiltonian HS, and a bath-only Hamiltonian HB. More general

couplings, for example, evolution via a joint physical map, are possible, but for our

current discussion, following also the usual scenario in the open-systems literature,

we will restrict ourselves to this simplest joint unitary evolution description.
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To summarize, in the system-bath model considered here, our knowledge of the

system-bath composite at time t = 0 is as follows:

1. the microscopic system state from knowing the probabilities pi = tr{ρSΠi},
i = 1, 2, . . . ,K;

2. the bath degrees of freedom, for example the accessible states, the dimension

of the relevant Hilbert space, etc.;

3. the overall Hamiltonian H = HS +HB +HSB;

4. the macroscopic properties of the bath and system, for example, temperature,

pressure, volume, etc.

6.3 The maximum-entropy state

Without the ability to perform tomography on the bath for determining its micro-

scopic state, we have only incomplete information about the overall system and bath

composite at time t = 0. The initial system-bath state that we write down must

hence reflect this incomplete knowledge. The use of maximum-entropy methods in

such situations follows a long tradition dating back to the beginnings of statistical

physics. More recently, Jaynes [Jay57, Jay82] argued lucidly for the viewpoint of

maximum entropy as the most rational statistical inference approach in the face of

incomplete information. We have already utilized this idea in another context; see

Chapter 4.

The maximum-entropy state ρ
(ME)
SB for the system-bath composite is simply the

state that attains

Smax = S
(
ρ

(ME)
SB

)
= max

ρSB
S(ρSB), (6.1)

where the entropy, S(ρ) = −tr{ρ log ρ}, is the von Neumann entropy. Here, ρSB

comes from the set of all system-bath states that are consistent with our partial

knowledge of the system and the bath, that is trB{ρSB} = ρS, or in terms of the

measured probabilities,

tr{ρSB(Πi ⊗ 1B)} = pi, (6.2)



104 6. Initial System-Bath State

together with any additional macroscopic knowledge one may have about the bath.

The constrained maximization can be incorporated using Lagrange multipliers, so

that we instead maximize

S̃(ρ) ≡ S(ρ)−
∑
i

λi(tr{ρΠi} − pi)− ν(tr{ρ} − 1)− µg(ρ) (6.3)

over all system-bath ρ. Here, λis are the Lagrange multipliers for the system tomog-

raphy information, the ν term enforces the unit-trace constraint for ρ, and µg(ρ) is

symbolic for the Lagrange multiplier term that accounts for any additional knowl-

edge that one may have.

As an example, we consider the situation where the only relevant macroscopic

property is the temperature, as is often the case in experiments. As a first check,

suppose that the bath is initially in thermal equilibrium, and the system is “opened”

and exposed to the bath at time t = 0. This describes many cold-atom experiments

where the atoms are cooled in one part of the vacuum chamber, before being trans-

ported to a different part of the chamber where the experiment is performed. Before

the introduction of the atoms into the final chamber, the bath degrees of freedom can

be thought of as being in thermal equilibrium at some temperature T ; the atoms, on

the other hand, are prepared in some state ρS in the cooling chamber (assuming that

it is unchanged under transport; if not, one has to replace ρS with the final system

state after transport). Clearly, the initial system-bath state—upon introducing the

system into the final chamber—should be the product ρS ⊗ ρ(th)
B , where ρ

(th)
B is the

thermal state of the bath at temperature T . Indeed, maximizing entropy subjected

to the tomography constraints on the system as well as the bath temperature yields

immediately the product state above.

The situation becomes more complicated when the system is prepared in situ,

that is, in constant contact with the bath, and the combined system-bath is held

at temperature T . In this case, there is little support for an initially uncorrelated

system-bath state ρS ⊗ ρ(ref)
B , although this is commonly used in the literature even

for such cases. The preparation of the system state can sometimes be accomplished

very rapidly, but even so, the coupling between system and bath is always on and

can modify the outcome of the preparation procedure, albeit weakly. Many schemes



6.3. The maximum-entropy state 105

employ adiabatic gates, that is, slow processes that gradually move the system

population into the desired state. And during this slow process, the interaction HSB

can be thought of as continuously keeping the system in thermal equilibrium with

the bath. Even in the fast-gates situation, one cannot help but worry about the

effects of HSB when the preparation of a complicated system state involves a long

sequence of gates. For example, in some ion-trap experiments, a sequence of over a

hundred gates is applied to initialize the system into the desired state. In all such

cases, the coupling to the bath has to be taken into account when stating the initial

system-bath state.

An application of the maximum-entropy principle with the constraint of fixed

overall temperature for the system and the bath—in thermal equilibrium with each

other (and with the external environment)—with the tomographic constraints given

in Eq. (6.2) yields the state

ρ
(ME)
SB = exp (−βH − Λ) /tr{. . .}, (6.4)

with the temperature parameter β ≡ 1/kT , k being the Boltzmann constant, and

Λ ≡
∑
i

λiΠi. The notation tr{. . .} when appearing in the denominator of a fraction

always means the trace of the numerator. This trace takes care of the unit trace

constraint associated with the ν Lagrange multiplier.

As an illustration, we work out this maximum-entropy state for the Jaynes-

Cummings model, where a single spin-half particle (the system) is coupled to a

single mode of light (the bath) in a cavity. In this model, we have the overall

Hamiltonian

H =
1

2
~ωaσz︸ ︷︷ ︸
HS

+ ~ωa†a︸ ︷︷ ︸
HB

+ J(σ−a
† + σ+a)︸ ︷︷ ︸
HSB

, (6.5)

where σ± = 1
2(σx±iσy) are the atomic lowering (raising) operators, and σi, i = x, y, z

are the Pauli operators as usual; a and a† are the photon ladder operators. By an

appropriate choice of phases in the a, a† operators, or in the spin states, J can be

taken as real without loss of generality. It is a small quantity, corresponding to

the condition that the system-bath coupling is weak. The HS eigenstates are |1〉
(ground state) and |0〉 (excited state).
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If one ignores the system-bath interaction, that is, putting HSB = 0, then we have

ρ
(ME)
SB =

e−β~ωa
†a−

∑
i λiΠi

tr{· · · } = ρS ⊗ ρ(th)
B , (6.6)

where the system state is

ρS =
1

2
(1 + s · σ) =

e−
∑
i λiΠi

tr{· · · } . (6.7)

Note here that one could have started using any legitimate POM specified by {Πi}
(assumed to be IC), with constraint tr{ρSΠi} = pi. But one always has the freedom

to switch to a different set of operator basis to express these constraints to make

reference to the same ρS. Here for convenience, we will choose the Pauli basis, with

the constraints now appearing as tr{ρSσi} = si. Surely, σi 6= Πi, but one can always

find different Langrange multipliers, λis and λ̃is, such that

ρS =
e−

∑
i λiΠi

tr{· · · } =
e−

∑
i λ̃iσi

tr{· · · } . (6.8)

We will then put Λ =
∑

i λiσi onwards for this example. Also note that one can

always include the HS term in the λ · σ part, so that for convenience, we will put

HS = 0 subsequently.

However, if one takes into consideration the interaction due to a non-zero HSB,

then,

ρ
(ME)
SB =

e−β(~ωa†a+J(σa†+σ†a))−
∑
i λ
′
iσi

tr{· · · } . (6.9)

At this stage, it is important to realize that the Lagrange multipliers are different in

these two expressions Eq. (6.6) and Eq. (6.9), due to the absence or presence of the

term HSB. The difference δλi = λ′i − λi is small, as HSB is assumed to be a weak

perturbation. The λi and λ′i are, of course, related via the constraint,

trB{e−β(HB+HSB)−Λ′}
tr{· · · } =

trB{e−βHB−Λ}
tr{· · · } = ρS, (6.10)

since both cases must result in the same system-only operator due to the tomo-

graphic constraint. Now, since J is a small quantity that we will keep to first order



6.3. The maximum-entropy state 107

(higher-order terms can be systematically worked out if necessary), the term HSB

and δΛ = Λ′ − Λ can be treated as small perturbations. We apply the variation of

the exponential of an operator, given by

δ
(
e−αA

)
= −α

∫ 1

0
dγ e−γαA δA e−(1−γ)αA. (6.11)

on Eq. (6.10). Given the physical context, we expect ‖HSB‖ � ‖HB‖, where ‖A‖
denotes some operator norm of A. Let α ≡ ‖HB‖, A ≡ 1

α(βHB + Λ), and δA ≡
1
α (βHSB + δΛ). If we now denote the function

f(·) =
e−α(·)

tr
{

e−α(·)
} , (6.12)

we have

δf =− αf(A)

[∫ 1

0
dγ e(1−γ)αA δA e−(1−γ)αA − tr{e−αA δA}

tr{e−αA}

]
=− f(A)

[∫ 1

0
dγ e(1−γ)αA (βHSB + δΛ) e−(1−γ)αA − tr{e−αA (βHSB + δΛ)}

tr{e−αA}

]
.

(6.13)

Now due to the constraint given by Eq. (6.10), we need to satisfy trB{δf} = 0,

which is

trB

{(
ρ

(th)
B ⊗ ρS

)∫ 1

0
dγ e(1−γ)(βHB+Λ)(βHSB + δΛ)e−(1−γ)(βHB+Λ)

}
=ρS

tr{e−βHB−Λ (βHSB + δΛ)}
tr{e−βHB−Λ}

=ρS

(
tr
{(
ρ

(th)
B ⊗ ρS

)
βHSB

}
+ trS {ρSδΛ}

)
. (6.14)

On collecting terms with HSB on one side and δΛ on the other, we have

ρS

(∫ 1

0
dγ e(1−γ)ΛδΛe−(1−γ)Λ − trS{ρSδΛ}

)
=ρS

(
tr
{(
ρ

(th)
B ⊗ ρS

)
βHSB

}
−
∫ 1

0
dγ e(1−γ)Λβ trB{ρBHSB}e−(1−γ)Λ

)
. (6.15)
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One sees that a solution to this equation is to require

δΛ = −trB

{
βρ

(th)
B HSB

}
, (6.16)

which gives us a relation between δΛ to HSB, where

δΛ ≡
∑
i

δλiσi. (6.17)

We now would like to work out the specific form of the maximum entropy state

for Jaynes-Cummings model, that is, Eq. (6.4), up to first order in J . For that

purpose, we use the variation of the exponential of an operator again, which enables

us to arrive at

ρ
(ME)
SB = ρS ⊗ ρ(th)

B

[
1−

(∫ 1

0
dγ e(1−γ)AδAe−(1−γ)A − tr

{
e−AδA

}
tr{e−A}

)]
, (6.18)

where (we absorb the α into the A here for notational simplicity)

A = β~ωa†a+
∑
i

λiσi, (6.19)

and

δA = βJ(σ−a
† + σ+a) +

∑
i

δλiσi. (6.20)

Now the second term in the integral in Eq. (6.18) simplifies to

tr
{

e−AδA
}

tr{e−A} = βJtr{ρSσ} tr
{
ρ

(th)
B a†

}
︸ ︷︷ ︸

=0

+βJtr
{
ρSσ

†
}

tr
{
ρ

(th)
B a

}
︸ ︷︷ ︸

=0

+
∑
i

δλisi

=
∑
i

δλisi. (6.21)

Due to the constraint in Eq. (6.15), we also have

∫ 1

0
dγ e(1−γ)ΛδΛe−(1−γ)Λ = tr{ρSδΛ} =

∑
i

δλisi, (6.22)

so that this term takes care of the term in Eq. (6.21) since they occur with opposite
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signs in Eq. (6.18). Now for the remaining part, we have

e(1−γ)Aσ−a
†e−(1−γ)A = a†e(1−γ)β~ωe(1−γ)

∑
λiσiσ−e−(1−γ)

∑
λiσi , (6.23)

where we used f(a†a)a† = a†f(a†a+ 1), and

e(1−γ)Aσ+ae−(1−γ)A = ae−(1−γ)β~ωe(1−γ)
∑
λiσiσ+e−(1−γ)

∑
λiσi , (6.24)

where we used f(a†a)a = af(a†a− 1).

Hence, the maximum entropy state for the Jaynes-Cummings model is given by

ρ
(ME)
SB =ρS ⊗ ρ(th)

B −
(∫ 1

0
dγe(1−γ)β~ωρSe(1−γ)Λσ−e−(1−γ)Λ

)
⊗
(
ρ

(th)
B a†

)
−
(∫ 1

0
dγe−(1−γ)β~ωρSe(1−γ)Λσ+e−(1−γ)Λ

)
⊗
(
ρ

(th)
B a

)
. (6.25)

In order to work out explicitly the terms in the integral, some relations that are

useful in what follows are:

ρS =
1

2
(1+ s · σ) =

e−λ·σ

Z(λ)
, (6.26)

where s = 〈σ〉 = sn (n being a unit vector), the Lagrange multiplier given by

λ = −(tanh−1 s)n, (6.27)

and the partition function given by

Z(λ) = 2 cosh |λ| = 2√
1− s2

. (6.28)

Now, let e(1−γ)Λ = µ+ ν · σ. Then its inverse is given by

e−(1−γ)Λ =
µ− ν · σ
µ2 − ν · ν . (6.29)
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With this, we can now work out

e(1−γ)Λσ±e−(1−γ)Λ =
1

µ2 − ν · ν (µ+ ν · σ)σ±(µ− ν · σ)

=
1

µ2 − ν · ν
(
µ2σ± + µν · [σ, σ±]− ν · σσ±σ · ν

)
,

where [A,B] = AB − BA is the commutator of A and B. The γ-dependence in µ

and in ν are found to be

µ =
1

2
tr
{

e(1−γ)λ·σ
}

= cosh((1− γ)λ) =
1√

1− tanh2 ((1− γ)λ)
, (6.30)

and

ν =
sinh ((1− γ)λ)

λ
λ = − sinh ((1− γ)λ)n. (6.31)

In conclusion, the maximum entropy system-bath state for the Jaynes-Cummings

model is given by

ρ
(ME)
SB =ρS ⊗ ρ(th)

B − βJ (ρS(A+σ− −B+n · [σ, σ−]− C+n · σσ−σ · n))⊗
(
ρ

(th)
B a†

)
− βJ (ρS(A−σ+ −B−n · [σ, σ+]− C−n · σσ+σ · n))⊗

(
ρ

(th)
B a

)
, (6.32)

with the coefficient A±, B±, and C± given by Eq. (6.33) below.

A± =

∫ 1

0
dγe±γβ~ω cosh2(γλ)

=± −(β~ω)2 − 2(e±β~ω − 1)λ2 + β~ωe±β~ω coshλ(β~ω coshλ∓ 2λ sinhλ)

(β~ω)3 − 4β~ωλ2
,

B± =

∫ 1

0
dγe±γβ~ω

sinh(2γλ)

2

=
2λ+ e±β~ω (−2λ cosh(2λ)± β~ω sinh(2λ))

2(β~ω)2 − 4λ2
,

C± =

∫ 1

0
dγe±γβ~ω sinh2(γλ)

=± 2(e±β~ω − 1)λ2 + β~ωe±β~ω sinhλ(β~ω sinhλ∓ 2λ coshλ)

(β~ω)3 − 4β~ωλ2
. (6.33)

Subsequently, the state as given in Eq. (6.32) should be used as the initial system-

bath state in any quantum mechanical dynamical equations for predictions on the
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future evolution of the system-bath state, rather than the naive uncorrelated product

state given by ρS ⊗ ρ(th)
B .

Now, one remark is in order: It is not so obvious that the above approach using

δ(eA) gives a positive operator for ρSB, i.e., positive up to O(J2). Here, we also give

a different approach to this problem, starting from a different (exact) identity:

exp
(
e−BAeB

)
= e−BeAeB, (6.34)

easily proven using the Taylor expansion of the exponential, and the fact that

eBe−B = 1. For us (note that now with A ≡ −β~ωa†a− λ · σ), we have

eA

tr{. . .} = ρS ⊗ ρ(th)
B =

exp
(
−β~ωa†a− λ · σ

)
tr{. . .} , (6.35)

and we need to find an operator B such that

e−BAeB
!

= A− βJ(σ−a
† + σ+a). (6.36)

Notice that in Eq. (6.36), there is no δΛ term as in this case, δΛ = 0, since

trB

{
ρ

(th)
B HSB

}
= 0 for this Jaynes-Cummings interaction Hamiltonian; see Eq. (6.16).

With this operator B at hand, one can then write down the maximum entropy state

as

ρ
(ME)
SB =

exp
(
e−BAeB

)
tr{. . .} =

e−BeAeB

tr{eA} . (6.37)

The last expression makes the positivity of ρSB manifest. Now the operator B should

be something small, in particular, proportional to J/~ω. We can do everything to

linear order in J/~ω, so that

ρ
(ME)
SB = e−BρS ⊗ ρ(th)

B eB =(1−B)ρS ⊗ ρ(th)
B (1 +B) +O((J/~ω)2)

=ρS ⊗ ρ(th)
B −

[
B, ρS ⊗ ρ(th)

B

]
+O((J/~ω)2), (6.38)

where the operator B satisfies

e−BAeB = A− [B,A] +O((J/~ω)2) = A− βJ(σ−a
† + σ+a), (6.39)
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which is to say that

[B,A] = βJ(σ−a
† + σ+a) +O((J/~ω)2). (6.40)

This last equation determines B, at least to linear order in J/~ω. And our task is

to find the explicit form of B for this case.

Given the form of Eq. (6.40), one can try the following form for B,

B = α+ · σa† +α− · σa+ u+σ−a
† + u−σ+a, (6.41)

for α± and u± to be determined by Eq. (6.40). It is now convenient to write σ± as

σ± = µ± · σ, with µ±=̂
1

2


1

±i

0

. (6.42)

Also, let a+ ≡ a† and a− ≡ a, much like the raising and lowering operators for the

spin. Some useful identities are (with A ≡ −β~ωa†a− λ · σ)

[α± · σa±, A] = a±[±β~ωα± + i2(λ×α±)] · σ ;

[σ∓a±, A] = a±(±β~ωσ∓ + i2(λ× µ∓) · σ) ;

and 2λ× µ∓ =̂


±iλz

λz

∓iλx − λy

.

Putting all these into Eq. (6.40), we see that a simple solution is to have

u± = ±J/~ω,

and

±β~ωα± + i2(λ×α±)± i2(λ× µ∓)(J/~ω) = 0.

The set of equations involving α± can be rewritten as matrix equations

M±α± = ∓i2(λ× µ∓)(J/~ω), (6.43)
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with M± given by

M±=̂


±β~ω −i2λz i2λy

i2λz ±β~ω −i2λx

−i2λy i2λx ±β~ω

. (6.44)

M is invertible except in accidental situations [det(M) ∼ (β~ω)3 +(λ terms), which

is never zero unless λ ∼ β~ω], so

α± = (M±)−1
(
∓i2(λ× µ∓)(J/~ω)

)
; (6.45)

one can then work out the explicit expressions for α± in terms of λ. Once this is

done, one can then put B into Eq. (6.38) to find out the maximum entropy state

for the system-bath state.

Here, we mention some special cases to check whether both approaches give the

same results. If ρS is a pure state, then the general form using either approach

should simplify to ρS⊗ρ(th)
B , a product form as demanded by the unit-purity nature

of ρS. Indeed for ρS = (1/2)(1 + σz), we have

λ = λêz, with λ→∞. (6.46)

We can solve the equations for α± with λ as a parameter, and then take λ→∞ at

the end. This gives

α±=̂− 1

2

J

~ω


±1

i

0

,
and with u±, this gives B = 0. This means that

ρ
(ME)
SB = ρS ⊗ ρ(th)

B , (6.47)

as one is expecting.

For the previous approach, since ρSσ− = 0, we have

ρ
(ME)
SB = ρS ⊗ ρ(th)

B −
(∫ 1

0
dγe−(1−γ)β~ωρSe(1−γ)Λσ+e−(1−γ)Λ

)
⊗
(
ρ

(th)
B a

)
.
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In this case,

e(1−γ)Λσ+e−(1−γ)Λ =
1

µ2 − ν · ν (µ+ ν · σ)σ+(µ− ν · σ)

=
1

µ2 − ν · ν
(
µ2σ+ + µνz[σz, σ+]− ν2

zσzσ+σz
)

=
µ+ νz
µ− νz

σ+.

Then, we have,

∫ 1

0
dγe−(1−γ)β~ωρSe(1−γ)Λσ+e−(1−γ)Λ

=σ+

∫ 1

0
dγe−(1−γ)β~ωe−2(1−γ)λ = 0 (6.48)

as λ approaches infinity, and we similarly recover the expression

ρ
(ME)
SB = ρS ⊗ ρ(th)

B .

The same product state is obtained if ρS = (1/2)(1 − σz) = |1〉〈1|. This is but

just a consistency check, since a pure ρS can never result from a rational state

reconstruction from finite data.

We also work out the example of a completely mixed state on the system below.

For ρS = 1/2, we have λ = 0 so that α± = 0 and B = (J/~ω)(σ−a
† − σ+a). This

gives

ρ
(ME)
SB = eA −

[
B, eA

]
= ρS ⊗ ρ(th)

B

[
1− (J/~ω)(σ−a

†(eβ~ω − 1)− σ+a(e−β~ω − 1)
]
.

(6.49)

For the first approach, if s = 0, then the terms involving B± and C± vanish, and

the integral involving A± is trivial. We thus have,

ρ
(ME)
SB = ρS ⊗ ρ(th)

B

[
1− (J/~ω)(σ−a

†(eβ~ω − 1)− σ+a(e−β~ω − 1)
]
, (6.50)

the same expression as Eq. (6.49).

Now for one last check, take ρS = 1
2(1+ szσz), with −1 < sz < 1, then, for both
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approaches, we have

ρ
(ME)
SB =ρS ⊗ ρ(th)

B − βJ

(β~ω − 2λ)(eλ + e−λ)

×
(

eλ
(

e−β~ω−2λ − 1
)
σ− ⊗ ρ(th)

B a† + e−λ
(

1− e−β~ω+2λ − 1
)
σ+ ⊗ ρ(th)

B a
)
,

(6.51)

with λ = tanh−1 sz.

From this expression, one observes that the maximum-entropy state differs from

the uncorrelated product state by a term linear in βJ . Indeed the correction to

the uncorrelated state can always be bounded by a term proportional to J . If the

experiment is sensitive to effects of this size, the use of an initially uncorrelated state

becomes inappropriate. Note that when J = 0, we have

ρ
(ME)
SB = exp

(
−β~ωa†a− λ · σ

)
/tr{. . .} = ρS ⊗ ρ(th)

B . (6.52)

This recovers the case where the system and the bath are put into contact only at

t = 0, prior to which J can be treated as 0.

After this example of Jaynes-Cummings model, we now turn back to a general

scenario, where one might lack macroscopic information about the system and bath.

In this case, there is no µg(ρ) term, and we maximize

S̃(ρ) ≡ S(ρ)−
∑
i

λi(tr{ρΠi} − pi)− ν(tr{ρ} − 1). (6.53)

Stationarity requires

0 = δS̃ = −tr

{
δρ

(
log ρ+ 1 +

∑
i

λiΠi + ν

)}
(6.54)

for arbitrary δρ, which is satisfied for a ρ given by

ρ
(ME)
SB = exp

(
−
∑
i

λiΠi

)
/tr{. . .}. (6.55)
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Noting that the POM outcomes Πi are system-only operators, this simplifies to

ρ
(ME)
SB = ρS ⊗

1

dB
1B, (6.56)

where dB is the dimension of the bath, and

ρS = exp

(
−
∑
i

λiΠi

)
/tr{. . .} (6.57)

denotes the system-only state. Note that it is also the maximum likelihood state.

ρS is the usual state one would have deduced from the tomography data, with λis

determined only by the constraint Eq. (6.2) [BD00]. The maximally mixed state

on the bath appears naturally from this approach, corresponding to our complete

ignorance of the bath state. This complete ignorance also motivate the Bayesian

mean state as we will see later in the chapter. Partial information about the available

energy in the bath, for example, extremely high-energy bath states are unlikely given

the typical energy available in the experiment, can be incorporated by modifying

the available Hilbert space of the bath so that the identity IB has support only on

states below some energy upper-bound. A smooth weighting function, rather than a

sharp cutoff, can also be put in by hand. The precise way this cutoff is accomplished

cannot matter—at least on the level of precision available in the experiment—to the

dynamics of the system itself.

For a general HSB, provided that the interaction is weak, the maximum entropy

state is always close to ρS ⊗ ρ(th)
B . When the interaction is strong, the maximum

entropy state will possess nontrivial correlations between the system and the bath.

Even in the case of weak interaction, as we have seen, there will be deviations of

linear order in HSB, like the J/~ω in the Jaynes-Cummings model case. In a general

situation, the deviation is of the order of the norm of HSB. In some contexts, this

can become important if the effects explored are also small, comparable to this order

of magnitude.

In a general situation, one can show that

∣∣∣∣∣∣ρ(ME)
SB − ρS ⊗ ρ(th)

B

∣∣∣∣∣∣ ≤ 4β||HSB||, (6.58)
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where ‖A‖ is taken to denote the trace norm of the operator A. To prove this, one

recalls that the maximum entropy state is given by

ρ(ME) = exp
(
−βH − Λ

)
/tr{. . .}, (6.59)

and the uncorrelated state given by

ρ(sep) = ρS ⊗
exp(−βHB)

tr{. . .} = ρS ⊗ ρ(th)
B . (6.60)

Again, this is very deceptive as the Lagrange multipliers in the two states are really

different quantities, i.e., governed by different constraint equations, because of the

presence or absence of HSB; see Eq. (6.10). To be careful then, let us write down

three states that are potentially useful to consider:

ρ1 =
exp
(
−β(HB +HSB)− Λ′

)
tr{. . .} , where

tr
{

e−β(HB+HSB)−Λ′Πi

}
tr
{

e−β(HB+HSB)−Λ′
} = pi ∀i.

ρ2 =
exp
(
−βHB − Λ′

)
tr{. . .} , where

tr
{

e−β(HB+HSB)−Λ′Πi

}
tr
{

e−β(HB+HSB)−Λ′
} = pi ∀i.

ρ3 =
ρS ⊗ exp(−βHB)

tr{. . .} , where
tr
{

e−ΛΠi

}
tr{e−Λ} = pi ∀i.

Here, ρ1 and ρ2 have the same Lagrange-multipler values, despite HSB not entering

ρ2 itself, which means that ρ2 itself in fact does not satisfy the specified constraints,

but instead have its parameters satisfying the same equations as those for ρ1. ρ3

has the actual Lagrange-multipler values when HSB = 0. ρ1 (the maximum entropy

state for HSB 6= 0) and ρ3 (the product state when HSB = 0) are what we want

to compare, while ρ2 plays a convenient intermediate role. Note that, however, all

these three states have the same temperature parameter β, since it is fixed by the

external temperature bath.

Now we are interested in ‖ρ1 − ρ3‖ in the trace norm sense, and

‖ρ1 − ρ3‖ = ‖ρ1 − ρ2 + ρ2 − ρ3‖ ≤ ‖ρ1 − ρ2‖+ ‖ρ2 − ρ3‖ (6.61)

by the triangle inequality. For the first term, again, given the physical context, we
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expect ‖HSB‖ � ‖HB‖. Let α ≡ ‖HB‖, A ≡ 1
α(βHB + Λ′), and a ≡ 1

αβHSB. Then,

we can write

ρ1 − ρ2 = f(A+ a)− f(A), where f(·) =
e−α(·)

tr
{

e−α(·)
} . (6.62)

Here, β and λ′is inside Λ′ are treated as constants determined by the constraint

equations above. The term a is small compared to A, and A ∼ O(1). Similarly, we

look for the variation of the exponential of an operator with

δf = −βf(A)

[∫ 1

0
dγ e(1−γ)αAHSB e−(1−γ)αA − tr

{
e−αAHSB

}
tr{e−αA}

]
. (6.63)

It then follows that

‖δf‖=

∥∥∥∥∥βf(A)

[∫ 1

0
dγ e(1−γ)αAHSB e−(1−γ)αA − tr

{
e−αAHSB

}
tr{e−αA}

]∥∥∥∥∥
≤ β ‖f(A)‖

[∫ 1

0
dγ
∥∥∥e(1−γ)αAHSBe−(1−γ)αA

∥∥∥+

∣∣tr{e−αAHSB

}∣∣
tr{e−αA}

]

≤ β
[∫ 1

0
dγ
∥∥∥HSBe−(1−γ)αAe(1−γ)αA

∥∥∥+ ‖HSB‖
]

= 2β ‖HSB‖ .

Similarly, one can show that

||ρ2 − ρ3|| ≤ 2 ||δΛ|| , (6.64)

where we remind ourselves that

δΛ = −trB

{
βρ

(th)
B HSB

}
. (6.65)

Hence, one sees that in general, Eq. (6.58) is true. If the interaction is rather weak,

which is usually the case, then approximating the initial state by ρS ⊗ ρ(th)
B could

be a good starting point. However, one should be very careful of this nontrivial

difference. If the effects explored are also small, compared with the norm of HSB,

then using ρS ⊗ ρ(th)
B is hardly justifiable.
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6.4 The Bayesian mean state

A different viewpoint from the maximum entropy approach is the following: In the

set of ρSB consistent with the tomographic constraint, motivated by our complete

ignorance on the bath as well as our inability to control it in any way, we should

average over all such ρSBs. In any particular round of one realization, the bath state

would be slightly different due to our inability to control it microscopically in any

way. The average value of any measurement results that is produced over many

such realizations should then be consistent with some form of averaged state over

the bath. In this context, the Bayesian mean state appears naturally, that is we add

all such ρSBs in the set consistent with the tomographic constraint on the system

according to some reasonable weight, reporting

ρSB =

∫
(dρB)L(D|ρSB)ρSB∫

(dρB)L(D|ρSB)

(6.66)

as our estimator for the system-bath state. The integration over (dρB) means the

averaging is done on the bath only, and L(D|ρSB) is the likelihood of the particular

ρSB, given that data D have been obtained for the system.

For the case where we have no data on the bath, L(D|ρSB) is a constant for

all the ρSB in this set, since all such ρSB satisfies Eq. (6.2). More generally, if

some partial measurement could be done on the bath, then we can weigh each ρSB

with its likelihood. For now, we restrict ourselves to the former case, in which

ρSB =
∫

(dρB)|ψ〉SB〈ψ|/tr{· · · }, where |ψ〉SB is some pure system-bath state (it

suffices to consider pure states on the system and bath).

However, in order to do this integration, one needs to specify a prior in (dρB),

which is the difficulty in Bayesian mean estimation. We will not discuss this con-

troversy here, but just refer the readers to a vast amount of literature on how well

motivated and accurate Bayesian mean estimators can be if used with discretion,

how the choice of prior should be made, and how insignificant the choice of prior

turns out to be on the final results when the data dominate the inference[BK10b,

KW96, SNS+13]. Now, since the bath is not amenable to microscopic control, states
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of the bath related to each other by some unitary transformation would not be dis-

tinguishable to us. Hence, one natural way to do this averaging is to write

ρSB =

∫
(dUB)(IS ⊗ UB)|ψ〉SB〈ψ|(IS ⊗ U †B), (6.67)

where (dUB) is the averaging over unitary operators on the bath according to the

Haar measure [BŻ06]. This immediately gives the state

ρSB = ρS ⊗
1B

dB
, (6.68)

which happens to be the same as what we obtained using the maximum-entropy

reasoning in the absence of any knowledge of the bath. If one now imposes a

temperature constraint on the bath, and uses the Boltzmann factor as a weight

factor on top of the Haar averaging, one obtains, for the case of HSB = 0,

ρSB = ρS ⊗ ρ(th)
B , (6.69)

which is another consistency check. However, for an arbitrary HSB, it is not easy

to work out the explicit form of the Bayesian mean estimator due to the difficulty

in the integral over the state space as mentioned in Chapter 2, unless the HSB is

simple enough and has some nice properties. Below, we discuss a simple illustrative

example.

We consider the Ising model in which a system qubit is weakly coupled to N

bath qubits. The Hamiltonian is given by

HB = Jij
∑
i<j

σ(i)
z ⊗ σ(j)

z , and HSB = Ji
∑
i

σS
z ⊗ σ(i)

z , (6.70)

for the bath and the system-bath interaction respectively. If N is small, there is no

reason to expect the Bayesian mean state to be almost a separable state. However, if

N � 1, then one expects the Bayesian mean state to be very close in trace distance

to a product state. Indeed, for this particular form of the Hamiltonian, one sees

that the off-diagonal entries of ρSB average to zero with the Haar measure, and we

recover a product state due to the averaging.
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Figure 6.2: The trace distance between the Bayesian mean state and the separable
state as a function of the number of bath qubits N in the linear Ising model. Case 1
with black dotted line is done with all Jij and Ji terms being equal in Eq. (6.70), and
Case 2 with red dashed line is a more realistic model in which the force is inversely
proportional to the distance square. In both cases, one observes a decrease of trace
distance as a function of N . In the more realistic model, the decrease is slightly
faster.

To see how effective such an averaging is in removing any correlation that is there

between the system and the bath, we carried out numerical simulations to model the

qubits in the Ising model. We used a linear Ising model in which the qubits are put

in a straight line (just like how ions are placed in some ion trap experiment using

a linear Paul trap), for which the system qubit is in the center of the chain. We

then put different numbers of bath qubits on both sides of it (N = 2, 4 and 6). We

calculate the Bayesian mean estimator by averaging over 106 randomly generated

unitary operators [PŻK98], and add these states with the Boltzmann weight. We

then calculate the trace distance between the Bayesian mean estimator and the

separable state that would be obtained if HSB = 0. Figure 6.2 shows the result of

such simulation. It is observed that, as N increases, the trace distance between the

Bayesian mean state and the product state decreases, justifying the intuitive claim

we made above. In the simulation, we considered two cases: Case 1 (black dotted

line) with all Jij and Ji terms being equal in Eq. (6.70); and Case 2 (red dashed
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line), which is a more realistic model, such that

Jij ∝
1

rij
, and Ji ∝

1

ri
, (6.71)

where rij is the distance between the i-th bath qubit and the j-th bath qubit, and ri

is the distance between the system qubit and the i-th bath qubit. In both cases, one

observes a decrease of trace distance as a function of N . In Case 2, the decrease is

slightly faster. It is also quite remarkable that even for N = 2, which is quite small,

the trace distance between the two states is already rather small. The averaging in

the Bayesian mean estimator process is quite efficient in removing the entanglement

between the system and bath. As a result of the ignorance about the bath, the total

system-bath state is almost not entangled.

More generally, one could allow for an arbitrary form of the Hamiltonian rather

than the tensor product of Pauli operators above, and instead model the qubit inter-

actions by a randomly generated Hermitian operator (possibly entangling) between

each qubit pair. To see whether such general Hamiltonian still gives rise to a separa-

ble Bayesian mean estimator, we randomly generate a Hermitian matrix and use it

to model the pairwise interactions between the qubits in the Ising model. We then

do the same calculations as above for the trace distance between the Bayesian mean

estimator and the separable state that would be obtained if HSB = 0. The steps

are then repeated for another randomly generated hermitian matrix. Preliminary

simulation results show that, in this case, the trace distance between the Bayesian

mean state and the separable state is greater than that using the tensor Pauli in-

teraction above, likely due to entangling properties in the Hamiltonian. However,

as N increases, the trace distance also decreases in a similar manner as in Fig. 6.2.

In the case of the macroscopic environment that we had in mind, since N � 1,

the resulting state is still expected to possess little entanglement. The computation

becomes more numerically demanding when N is larger than 8. We are still in the

process of working along this direction to obtain more detailed results. If on the

other hand N ≈ O(1), then one does not expect to get a separable state between

the system and the bath. However, in this case, the assumption that the bath is

macroscopic, with many quantum degrees of freedom that one cannot control, is
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perhaps difficult to justify.

6.5 Conclusion

The specification of an initial system-bath composite state is required for the predic-

tion of future dynamics of the composite state, or even just the system-only state.

That we usually do not have the ability to do complete tomography on the bath

prevents us from determining the microscopic state of the bath. Traditionally, the

system-bath is often taken to be in a product state with the bath in some refer-

ence state, or the composite system is in some unknown mysterious state. However,

our state is our best estimate of the preparation given all the prior knowledge and

measurement information we have at hand. In this chapter, we show how to take

proper account of all the knowledge, together with the very definition of bath be-

ing microscopically uncontrollable, to arrive at a reasonable and consistent initial

system-bath state.

Such a system-bath composite state turns out to be uncorrelated if there is no

coupling between the system and bath, or if there is coupling, but the preparation

of the system is done in the absence of the bath, as one expects. However, if in-

situ preparation of the system is actually the case, as in some experiment, then

one should be careful when using an initially uncorrelated state. It can at best

be an approximation as the initial state is almost uncorrelated. The deviation

from the uncorrelated state is however bounded by the norm of the interaction

Hamiltonian. If the level of accuracy required in the prediction is comparable to

the norm of the interaction Hamiltonian, then using an uncorrelated initial state

becomes unjustified.

Having deduced a reasonable and consistent initial state, we must mention that

deviations from predictions for evolutions of the system-bath state using this de-

duced initial state may arise in the actual experiment. When such deviations do

arise, it is an indication that the initial state one wrote down is not consistent with

the prior knowledge that one has about the system-bath composite. Such prior-

data conflict should be carefully examined and is often due to a microscopically
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controlled, repeatedly and identically prepared degree of freedom in the bath that

one failed to identify and account for. Our description of the macroscopic bath

should then be adjusted accordingly to properly account for this degree of freedom

that one is actually controlling in the experiment.



Chapter 7

Conclusion and Outlook

As mentioned in the Introduction, quantum information and computation is a rich

and rapidly progressing field that is currently under intense research and develop-

ment. We can foresee that any future breakthrough in this field is most likely to

come about due to a concerted effort in better understanding of the theory as well as

advances in the experimental control and manipulations on the quantum systems.

I must say that I am greatly thankful that due to fortunate circumstances, during

my PhD studies, I was involved in both theoretical and experimental work. And it

is the aim of this thesis to report those results obtained.

In terms of the experimental work, in Chapter 3, we introduced a novel, yet

very practical method of generating mixed states by using the VPR. Such setups

are not cumbersome to build up, and yet are versatile enough to realize a variety

of two-photon states that one may need in a quantum information experiment.

We have tested its robustness and accuracy, and also utilized it in an experiment

on entanglement witness. Due to the limitations of our lab, we only have two

pieces of VPR and a single controller that cannot independently control each VPR.

As discussed in Chapter 2, if one has more VPRs, which can be independently

controlled, the source is capable of producing more complex states, such as Collins-

Gisin states, which have been used in tests of Bell’s inequality. Furthermore, we are

currently using this source to perform another experiment on quantitative aspects

of wave-particle duality and will report the results in a short while.

In Chapter 4, we described the experiment performed, with our new source, on
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entanglement detection using optimal-witness families. In this work, in contrast to

conventional witness experiments, we are measuring a family of optimal witnesses

in one go. The witness family is realized elegantly using a HOM interferometer.

By projecting to the eigenbasis of the witness family, we realize the most direct

measurement of these witnesses. We have further introduced adaptive measurement

schemes that allow us to reduce the mean number of witness families that are needed

to detect entanglement. Both simulation and experimental results give an affirma-

tive answer that our scheme verifies the presence of entanglement with efficient use

of the resources.

Further work in this area could involve an extension of such witness family mea-

surement that enables IC tomography to higher dimensional quantum systems. For

example, preliminary results have shown that in the case of a two qutrit system,

11 witness families are enough for tomographic completeness, rather than 81 wit-

nesses. The minimal number of families of this kind that one would need is currently

unknown for two qu-dit systems, with d > 4. Moreover, the adaptive methods intro-

duced in Chapter 4 could also be applied to higher-dimensional quantum systems

so that one is expecting a further reduction in the number of witness families that

needs to be measured. As commented in Section 4.8, it is also interesting to ap-

ply such an idea to nonlinear witnesses where the more stringent bounds could be

calculated after only partial tomography. This is currently unexplored.

As we were carrying out the experiments described in these chapters, we realized

that in order to reconstruct the unknown quantum state, many additional parame-

ters in the experimental setup need to be determined or pre-calibrated, for example,

the quantum efficiency or the dark counts of the detectors, the splitting ratio of the

beam splitters for various polarizations, etc. However, such pre-calibration may not

always be feasible or easy to be done in the actual experimental setup. In Chapter

5, we looked into such cases of quantum state tomography with additional unknown

parameters. We illustrated, with two typical examples, the construction of optimal

error regions under such situations. The construction using bounded-likelihood re-

gions are applied in this case, as the natural extension of the maximum-likelihood

estimator. The optimal error regions constructed are the maximum likelihood re-
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gions. That is, of all the regions of the same pre-chosen size, it is the one for which

the data is the most likely. They also the smallest credible regions.

The optimal error regions constructed are a joint property of the quantum state

parameters and the additional parameters. If the experimenter is interested in one

or more of these parameters while uninterested in the nuisance parameters, he or she

could marginalize over the nuisance parameters with a prior that incorporates all

that is known for each of these nuisance parameters to obtain a marginal likelihood

function for the parameters of interest. This marginalization encompasses all appro-

priate knowledge that one may have on these nuisance parameters and the resulting

marginal likelihood function is the averaged likelihood function on the parameters

on interest, representing one’s best knowledge about the parameters of interest after

taking the nuisance parameters into consideration. With this marginal likelihood

function at hand, one can then proceed with the construction of bounded likelihood

regions as before.

As there is a myriad of parameters that could be unknown in various experi-

ments, it is not possible, nor the aim of this chapter, to study in details all such

possible parameters. The two chosen examples are meant to illustrate the tech-

nique. However, as an outlook, we do mention two other examples that we plan to

study in the future due to their unique features. One of them is quantum homo-

dyne tomography [VR89]. It is a robust and versatile tool of quantum optics and

has been applied in many different experimental settings for which the technique of

maximum likelihood has been applied successfully. Another example is experiments

involving dark count of the detectors. At the moment, such experiments are always

done with pre-calibration of the detectors before the actual experiment. That is,

one first switches on the detectors alone and records the average number of counts

per unit time due to the dark counts, Ndark, without running the experiment. One

then runs the experiments and records the number of counts, Nobserved. The number

of actual counts is then corrected for the dark count. However, due to the statistical

fluctuations in the data, this could sometimes results in a negative value of Nactual.

This situation is worse when the detector has a high dark count rate, or the state is

nearly pure or rank-deficient, so that Nactual is very small for one of the POM ele-
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ment measured, or both. A more sensible way to analyze such an experiment would

be to estimate the dark counts simultaneously instead of doing a pre-calibration

first and correction later. The techniques presented in this chapter then becomes

relevant.

In Chapter 6, we studied the effect of the presence of coupling between the quan-

tum system and the bath in a tomography experiment, so as to answer the question:

What is the initial system-bath state? Such a question is very pertinent in studies

of open quantum systems where the initial state of the system-bath composite is

required for predictions of its future behavior. We disagree that such a state is

somewhat arbitrary, as some authors assert, by introducing a symbolic system-bath

state, as if no concrete statement could be made. We showed in this chapter that

employing the standard tools of quantum state tomography, one can write down a

reasonable and consistent initial system-bath state.

We take proper account of our prior knowledge of the system-bath composite,

encompassing all measurements already taken to characterize the experimental cir-

cumstances. This knowledge, together with the very definition of the bath being

microscopically uncontrollable, gives us a good handle on the initial system-bath

state. Under typical conditions, the initial system-bath state is uncorrelated or al-

most uncorrelated. However, one should be very careful if in-situ preparation of the

system state is the case, where the coupling between the system and the bath may

result in correlations between them. The uncorrelated state can at best be an ap-

proximation, the deviation from which cannot be neglected, if the level of accuracy

required in the prediction is comparable to the norm of the system-bath interaction

Hamiltonian.

Having written down this initial system-bath state, the next step would be to

study the effect of using this initial state in the various dynamical equations such

as the master equation. Deviations from the predictions could be produced from

the evolution of this initial system-bath state could be indicative of the presence

of prior-data conflict. Such deviation could be due to a microscopically controlled,

repeatedly identically prepared degree of freedom in the bath that one failed to

identify and is an alert to call for a more thorough analysis of the bath.
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