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Summary 

Calcium-independent phospholipase A2 (iPLA2) is an 85 kDa enzyme 

that releases docosahexaenoic acid (DHA) from glycerophospholipids. 

Prefrontal cortical iPLA2 has been shown to be important in hippocampo-

prefrontal cortical LTP and for the antidepressive effect of the antidepressant, 

maprotiline. In the first part of the study, we investigated the role of prefrontal 

cortical iPLA2 in the antinociceptive effect of maprotiline and another TCA, 

amitriptyline. Antidepressant treatment reduced pain behavioral responses 

indicating antinociceptive effect of maprotiline and amitriptyline treatment in 

a model of inflammatory orofacial pain. Injection of antisense oligonucleotide 

to iPLA2 in the dorsolateral prefrontal cortex abolished the antinociceptive 

effect of maprotiline but not amitriptyline. In contrast, iPLA2 antisense 

injection in the somatosensory cortex had no effect on maprotiline-induced 

antinociception. Real-time RT-PCR and Western blot results showed 

increased iPLA2 mRNA and protein expression in the prefrontal cortex after 

maprotiline administration, thereby suggesting that prefrontal cortical iPLA2 is 

involved in the antinociceptive effect of maprotiline. Lipidomic analysis 

showed decreased PC and increased LPC species in the prefrontal cortex after 

maprotiline treatment, indicating increased iPLA2 enzymatic activity and 

endogenous release of DHA and EPA. These changes were blocked by 

intracortical iPLA2 antisense injection. Together, our results indicate an 

important role of prefrontal cortical iPLA2 in the antinociceptive effect of 

maprotiline, thereby suggesting a role of iPLA2 not only in the antidepressive, 

but also antinociceptive effects of maprotiline and possibly other similar 

antidepressants.  
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In the second part of the study, we elucidated the potential cellular 

mechanisms involved in iPLA2 expression induction, in particular the 

stimulation of adrenergic receptors. Treatment of SH-SY5Y neuroblastoma 

cells with maprotiline and another TCA with strong noradrenaline reuptake 

inhibition activity, nortriptyline, as well as the alpha-1 adrenergic receptor 

agonist, phenylephrine, resulted in increased iPLA2 expression. This increase 

was blocked by inhibitors to the alpha-1 adrenergic receptors, MAPK/ERK, 

and sterol regulatory element binding protein (SREBP). Maprotiline and 

phenylephrine induced binding of SREBP-2 to the SRE region on the iPLA2 

gene, as determined by electrophoretic mobility shift assay (EMSA). Our 

results indicate that stimulation of adrenergic receptors increased iPLA2 

expression via MAPK/ERK and SREBP-2 

Docosanoids such as resolvin D1 (RvD1) have been shown to be 

effective in treatment of inflammatory conditions and pain. RvD1 is 

metabolized from DHA by 15-lipoxygenase (15-LOX). In the last part of the 

study, we postulate that besides inducing iPLA2 expression, antidepressants 

with strong noradrenaline reuptake inhibition activity will similarly induce an 

increase in 15-LOX expression. Real-time RT-PCR showed a significant 

increase in 15-LOX mRNA expression after maprotiline and nortriptyline 

treatment which was blocked by prazosin. This was supported by Western blot 

analysis which showed similar results. Overall, our findings suggest that 

treatment with antidepressants, especially those with strong noradrenaline 

reuptake inhibition activity, will induce iPLA2 expression leading to increased 

DHA levels and subsequent production of resolvins via a concurrent increase 

in 15-LOX expression. The increase in DHA and its metabolites levels may 
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then contribute to the antidepressant-induced antinociception by facilitating 

activity or plasticity in the dorsolateral prefrontal cortex to stimulate the PAG 

and descending pain inhibitory pathway. 
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1. Glycerophospholipids in the brain 

 Glycerophospholipids are glycerol-based phospholipids which are 

amphipathic in nature with nonpolar and polar ends (Farooqui et al., 2000a). 

They are present in relatively high levels in brain tissue and consist of up to 20 

to 25 % of the dry weight in the adult brain (Farooqui et al., 2000a). Together 

with cholesterol and glycolipids, glycerophospholipids encompass 

approximately 50 to 60 % of the whole membrane mass in the neural 

membrane (Farooqui et al., 2000a). There are four main categories of 

glycerophospholipids in the neural membrane. Three of these four categories 

contain a glycerol backbone with a normally unsaturated fatty acid at the 

carbon-2 position and a phosphobase at the carbon-3 position of the glycerol 

moiety which is made up of either ethanolamine, serine, inositol or choline 

(Farooqui et al., 2000a). They include 1-alkyl-2-acyl glycerophospholipid, 

1,2-diacyl glycerophospholipid and 1-alk-1’-enyl-2-acyl glycerophospholipid 

or plasmalogen (Farooqui et al., 2000a). The last type of glycerophospholipid 

consists of sphingomyelin which contains phosphocholine-linked ceramide at 

the primary hydroxyl group (Farooqui et al., 2000a). 

 Glycerophospholipids play an important role in neural membrane 

fluidity, stability and permeability (Farooqui et al., 2000a). They are involved 

in membrane molecular packing, charge and reactivity and are essential for 

regulation of membrane-bound ion channel and enzyme activity (Crews, 1982; 

Farooqui et al., 2000a). Besides their role in neural membranes, 

glycerophospholipids are important for membrane anchoring (Farooqui et al., 

2000a). Glycans, phosphoethanolamines and phosphatidylinositols (PIs) form 

glycosylphosphatidylinositol anchors that attach important proteins to 



Chapter 1: Introduction 

3 
 

biomembranes (Low, 1989; Englund, 1993). The attached proteins include 

enzymes such as aminopeptidase P, alkaline phosphatase, acetylcholinesterase, 

5’-nucleotidase and carboxypeptidase M which are present in all brain tissue 

and are essential for numerous metabolic activities (Hooper, 1997). Proteins 

such as axonin-1, transient axonal glycoprotein-1 (TAG-1) and the neural cell 

adhesion molecule are also linked to the glycosylphosphatidylinositol anchor 

and were found to activate axonal elongation and neurite outgrowth in PC12 

rat cells (Doherty and Walsh, 1993). Endocytosis, fusion and secretory granule 

formation are examples of several membrane trafficking processes that also 

involve polyphosphoinositides (Martin, 1997).  

 In addition, glycerophospholipids are involved in regulation of 

enzymatic functions and they are needed for a number of enzymes to carry out 

their activity (Farooqui et al., 2000a). Some of these enzymes require specific 

glycerophospholipids and one such example is protein kinase C (PKC) which 

is activated in the presence of phosphatidylserine (PS) (Spector and Yorek, 

1985; Yeagle, 1989; Farooqui et al., 2000a). PKC activation involves linkage 

with neural membranes via PS in the presence of calcium ions which will 

increase neural membrane surface pressure to help insert the protein domain of 

PKC into the membrane (Orr and Newton, 1992; Farooqui et al., 2000a). Once 

inserted into the membrane, PKC will then bind to diacylglycerol (DAG) to be 

fully functional (Farooqui et al., 1988; Farooqui et al., 2000a). 

Glycerophospholipids also act as precursors for DAG and it was suggested 

that DAG changes the membrane bilayer properties linked with lipid 

hexagonal-phase propensity in the activation of PKC (Senisterra and Epand, 

1993). Moreover, DAG promotes membrane fusion which is associated with 
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the release of neurotransmitters (Nieva et al., 1989). By regulating PKC 

function, PS can likewise affect the binding activity of AMPA receptors with 

subsequent effects on synaptic plasticity (Gagne et al., 1996). PS also 

regulates the activities of acetylcholine receptor channel, Na+/ K+-ATPase, B-

Raf protein kinase, dynamin GTPase and DAG kinase, while PC is needed for 

the activity of the inner mitochondria enzyme, β-Hydroxybutyrate 

dehydrogenase (Sunshine and McNamee, 1992; Farooqui et al., 2000a). 

Specific phospholipids are also needed by enzymes such as adenylate cyclase 

(AC) and Ca2+-ATPase which are involved in sustaining regular ion 

homeostasis in glial cells and neurons (Farooqui and Horrocks, 1985; Spector 

and Yorek, 1985). Any disease-induced changes in the composition of 

glycerophospholipids can potentially affect ion permeability and fluidity of the 

membrane which will subsequently induce unregulated influx of calcium ions 

(Mecocci et al., 1996). This, in turn, will lead to oxidative stress and 

inflammatory responses in the brain (Farooqui and Horrocks, 1994). 

Glycerophospholipids also act as a reservoir for the production of a 

number of bioactive mediators and lipid second messengers (Dennis et al., 

1991; Exton, 1994; Farooqui et al., 1995; Farooqui et al., 1997b). Different 

second messengers are produced depending on the type and activity of the 

phospholipase involved (Dennis et al., 1991; Exton, 1994; Farooqui et al., 

1995; Farooqui et al., 1997b). Phospholipases are a group of enzymes that 

hydrolyze glycerophospholipids and are classified according to their site of 

action (Fig. 1.1) (Farooqui et al., 2000a). The ester bond at the sn-1 position is 

acted on by phospholipase A1 (PLA1) to form a 2-acyl lysophospholipid and 

free fatty acid while phospholipase A2 (PLA2) hydrolyzes the fatty acid ester 
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bond at the sn-2 position to produce a 1-acyl lysophospholipid and free fatty 

acid (Farooqui et al., 2000a). The 1-acyl lysophospholipid produced by PLA2 

can then undergo subsequent acylation by acyl-Coenzyme A (acyl-CoA) in the 

presence of acyltransferase or it can be hydrolyzed by lysophospholipase to 

form a phosphobase and fatty acid (Farooqui et al., 2000a). The 

phosphodiester bond sn-3 position is cleaved by phospholipase C (PLC) to 

produce a phosphobase and DAG while phospholipase D (PLD) hydrolyzes 

glycerophospholipids to form a free base and phosphatidic acid (Farooqui et 

al., 2000a). The free fatty acids produced by phospholipase are active 

signaling molecules and their signaling actions are stopped by their conversion 

to fatty acyl-CoA (Horrobin, 2001). Acyl-CoA:lysophospholipid 

acyltransferase can then reacylate fatty acyl-CoA together with 

lysoglycerophospholipids to form glycerophospholipids (Lands, 1958). All 

four groups of phospholipases have several isoforms which are present in the 

brain and they have been purified and characterized from brain tissue 

(Hirashima et al., 1992; Rhee and Choi, 1992; Pete et al., 1994; Ross et al., 

1995; Negre-Aminou et al., 1996; Exton, 1997, 1999; Farooqui et al., 2000a). 

Phospholipase activity on glycerophospholipids to produce lipid 

second messengers are part of a signal transduction system which can 

potentially contribute to cross-talk between effector systems that are regulated 

by receptors and are important for regular glial cell and neuronal growth 

maintenance (Farooqui et al., 1992; Farooqui et al., 2000a). A common 

agonist was found to activate all four groups of phospholipases and the 

products of individual phospholipases were shown to stimulate other 

phospholipases, supporting the presence of a cross-talk between these 
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enzymes (Clark et al., 1995; Farooqui et al., 2000a). PLC activation produces 

DAG which translocates and stimulates PKC to activate both PLD and PLA2 

(Farooqui et al., 2000a). Besides producing DAG, PLC activity on PI 4,5-

bisphosphate also results in the production of inositol 1,4,5-trisphosphate (IP3) 

which is involved in intracellular calcium release and subsequent calcium 

signaling processes (Farooqui and Horrocks, 2007). PLC has been implicated 

in the maintenance of cell proliferation, secretion, contraction and 

phototransduction (Rhee and Choi, 1992). 

PLD-generated second messengers include phosphatidic acid and 

choline which are hydrolyzed from PC in response to a number of 

extracellular stimuli (Klein et al., 1995; Exton, 1997, 1999). Phosphatidic acid 

acts as a precursor for lysophosphatidic acid which has autocrine or paracrine 

signaling effects and can activate the G protein-coupled receptor mechanism 

to trigger tyrosine kinase activation and subsequent Ras-Raf-MAPK 

stimulation (Moolenaar, 1995). Lysophosphatidic acid is present in high levels 

in the brain and the highest level of lysophosphatidic acid binding proteins and 

receptors are found in brain tissue (Das and Hajra, 1989). Lysophosphatidic 

acid causes retraction of neurites and rounding of neuronal cells in 

neuroblastoma cells and reduced uptake of glucose and glutamate in astrocytes 

(Tokumura, 1995; Keller et al., 1996). AC activity is also inhibited by 

phosphatidic acid and lysophosphatidic acid via a pertussis-toxin sensitive 

procedure which, in turn, causes a decrease in cAMP levels (Farooqui et al., 

2000a). Besides acting as a precursor for lysophosphatidic acid, phosphatidic 

acid is involved in the activation of enzymes such as PLC, PKC, 

monoacylglycerol acyltransferase and PI 4-kinase (Farooqui et al., 2000a). 
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Moreover, phosphatidic acid was found to increase the GTP-bound form of 

Ras (Farooqui et al., 2000a). PLD also has a role in inflammation, cell 

proliferation, diabetes oncogenesis, secretion, mitogenesis and membrane 

trafficking (Exton, 1994; Liscovitch, 1996; Jones et al., 1999).  

PLA2 activity produces arachidonic acid (AA) which can be further 

metabolized into eicosanoids such as leukotrienes, prostaglandins and 

thromboxanes (Wolfe and Horrocks, 1994). AA is involved in pathological as 

well as physiological activities and it was shown to control ion channels and 

regulate DAG kinase, protein kinase A (PKA), PKC, Na+/ K+-ATPase and 

NADPH oxidase enzymatic activity (Dennis et al., 1991; Farooqui et al., 

1997a; Farooqui et al., 2000a). AA was also shown to affect excitatory amino 

acid transporter-mediated glutamate uptake (Volterra et al., 1994). 

Additionally, AA and eicosanoids are known to be involved in the activation 

of PLD (Klein et al., 1995). Eicosanoids also act as intracellular second 

messengers which are essential for oxidative stress, inflammation and cell 

proliferation regulation (Farooqui, 2009a). In addition, they are involved in 

blood flow regulation, behavioral control and regulation of immune and neural 

activities (Chiu and Richardson, 1985; Wolfe and Horrocks, 1994; Katsuki 

and Okuda, 1995). Furthermore, PLA2 is involved in the production of 

lysophospholipids which play important roles in membrane-membrane and 

membrane protein interactions (Fuller and Rand, 2001). Lysophospholipids 

also act as precursors for platelet activating factor (PAF) (Farooqui et al., 

2000a; Fuller and Rand, 2001). One of the lysophospholipids, 

lysophosphatidylcholine (LPC), was found to activate alkaline phosphatase, 

PKC, phenylalanine hydroxylase, glycosyltransferase, sialyltransferase and 
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3,5-nucleotide phosphodiesterase while inhibiting lysophospholipase, AC, 

acyl-CoA:lysophosphatidylcholine acyltransferase and guanylate cyclase 

(Weltzien, 1979). PLA2 is also involved in regeneration, apoptosis, 

neurodegeneration and neuritogenesis (Farooqui et al., 1997b). 

 

 

Fig. 1.1 Phospholipase enzymes and their site of action. Adapted from 

(Farooqui et al., 2000a) 

 

1.1. Phospholipase A2 

 Phospholipase A2 (PLA2, EC 3.1.1.4), as mentioned previously, 

comprises a group of enzymes that hydrolyze the acyl ester bond at the sn-2 

position to produce a 1-acyl lysophospholipid and free fatty acid such as AA 

from glycerophospholipids (Dennis, 1994; Farooqui et al., 2000a). They are 

commonly found in mammalian tissue and can be further divided into several 

groups depending on their enzymatic reaction, structure, cellular location and 
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function (Farooqui et al., 1997b). PLA2 enzymes include secretory 

phospholipase A2, cytosolic phospholipase A2, plasmalogen-selective 

phospholipase A2 and calcium-independent phospholipase A2 (Dennis, 1994; 

Farooqui et al., 1997b). There are different isozymes for each type of PLA2 

(Dennis, 1994; Farooqui et al., 1997b) 

 

1.1.1. Secretory phospholipase A2 

 Secretory phospholipase A2 (sPLA2) is produced intracellularly and is 

secreted to act on glycerophospholipids extracellularly (Farooqui and 

Horrocks, 2007). The sPLA2 enzyme family consist of eleven isozymes which 

can be found in mammalian tissues and they are named in the order of their 

discovery: sPLA2-IB, -IIA, -IIC, -IID, -IIE, -IIF, -III, -V, -X, -XIIA and -XIIB 

(Kudo and Murakami, 2002). It was suggested that each sPLA2 isozyme 

hydrolyzes specific phospholipid membrane moieties due to their distinct 

tissue expression patterns and diverse enzymatic activity (Murakami and 

Kudo, 2004).  

sPLA2 enzymes have low molecular mass (14-19 kDa), high content of 

disulfide bonds and are structurally related due to a common His-Asp catalytic 

dyad (Murakami and Kudo, 2004; Yang et al., 2009). Activation of sPLA2 

enzymatic activity requires Ca2+ in the millimolar range before they can act on 

the sn-2 ester bond without strict preference for any particular fatty acid side 

chain of the glycerophospholipids (Murakami and Kudo, 2002; Schaloske and 

Dennis, 2006; Farooqui and Horrocks, 2007; Burke and Dennis, 2009). sPLA2 

has low activity in the olfactory bulb and cerebellum, moderate activity in the 
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thalamus, hypothalamus and cerebral cortex, and has the highest levels of 

activity in the pons, hippocampus and medulla oblongata (Thwin et al., 2003).  

Certain sPLA2 isozymes, especially sPLA2-IIA, have been suggested to 

be involved in inflammation, given that sPLA2-IIA and sPLA2-V were found 

to be highly expressed during inflammation resolution (Gilroy et al., 2004). In 

addition to acting on glycerophospholipids such as phosphatidylglycerol, 

sPLA2-IIA is involved in the production of AA from cellular membranes, 

consequently enhancing the effects of AA on the inflammatory pathway 

(Hanasaki et al., 1999). sPLA2-IIA sera concentrations are linked with the 

seriousness of inflammatory disorders, which is exemplified by the high 

catalytic sPLA2-IIA level in the synovial fluids of rheumatoid arthritis and 

osteoarthritis patients (Nakano et al., 1990; Crowl et al., 1991; Oka and Arita, 

1991; Pruzanski et al., 1991; Pruzanski et al., 1995). Inflammatory responses 

were also increased after sPLA2-IIA injection into the hind paw of rats with 

adjuvant arthritis, further supporting the involvement of sPLA2-IIA in 

inflammatory pain (Murakami et al., 1990; Koike et al., 1997).  

 

1.1.2. Cytosolic phospholipase A2 

The enzymes in the cytosolic phospholipase A2 (cPLA2) family have 

high molecular weights (85-110 kDa) and consist of cPLA2α, cPLA2β, cPLA2γ, 

cPLA2δ, cPLA2ε and cPLA2ζ, where cPLA2α, cPLA2β and cPLA2γ are localized 

in brain tissue (Molloy et al., 1998; Pickard et al., 1999; Balboa et al., 2002). 

cPLA2α is primarily expressed in gray matter astrocytes while maintaining 

very low levels in glial and neuronal cells (Owada et al., 1994; Farooqui et al., 
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2000b; Ong et al., 2010). cPLA2β is predominantly present in the cerebellum 

while cPLA2γ is mainly found in the heart, skeletal muscle and brain (Pickard 

et al., 1999; Ong et al., 2010). All three isoforms were shown to be expressed 

in the amygdala, thalamus, corpus callosum, hippocampus, subthalamic 

nucleus and substantia nigra (Schaeffer et al., 2010). Although there are very 

low levels of cPLA2 present in the liver, kidney, pancreas and heart, cPLA2 is 

still found in most peripheral tissues (Molloy et al., 1998). cPLA2 expression 

was also shown to be localized in dendritic spines or dendrites in the spinal 

cord ventral and dorsal horn (Sandhya et al., 1998; Ong et al., 1999a).  

cPLA2 catalytic activity does require need Ca2+ but submicromolar 

concentrations of Ca2+ are necessary for its translocation to internal 

membranes from the cytosol so that it can undergo phosphorylation for its 

enzymatic activity (Farooqui et al., 2000b; Murakami and Kudo, 2002). cPLA2 

preferentially acts on AA at the sn-2 position as compared to other unsaturated 

fatty acids in phospholipid substrates to produce lysophospholipids and AA 

(Diez et al., 1992; Clark et al., 1995; Balsinde et al., 2006). As previously 

mentioned, lysophospholipids, AA and its metabolite eicosanoids, are highly 

involved in physiological and pathological processes. Hence, regulation of 

cPLA2 activity is necessary to maintain concentrations of lysophospholipids 

and AA for cellular homeostasis (Tanaka et al., 2012).  

Due to their role in producing AA, cPLA2 has been implicated in 

inflammatory processes (Leslie, 1997; Tanaka et al., 2012). Activation of 

cPLA2 by proinflammatory factors will lead to increased cPLA2 activity and 

higher levels of AA which can be further metabolized into eicosanoids that are 

involved in stimulation and maintenance of inflammatory responses (Farooqui 
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and Horrocks, 2007). Long term potentiation (LTP) induction in the dentate 

gyrus also leads to cPLA2 activation and AA generation from 

glycerophospholipids, in particular PCs (Clements et al., 1991). Depending on 

the type of cell or tissue, cPLA2 is involved in numerous other cellular 

processes such as mitogenesis, differentiation and cytotoxicity (Leslie, 1997). 

In addition, cPLA2 was suggested to have an important role in the pain 

pathway due to its localization in the brainstem’s facial motor nucleus and part 

of the ascending auditory pathway which includes the cochlear nuclei 

(Sandhya et al., 1998; Kishimoto et al., 1999; Ong et al., 1999b; Shirai and Ito, 

2004). Intrathecal administration of cPLA2 inhibitors significantly reduced 

cPLA2 activity in spinal homogenates, which suggest the involvement of 

cPLA2 in spinal processing of nociceptive inputs (Lucas et al., 2005). PLA2 

inhibitors similarly lessen the production of excitatory amino acids from the 

cortex after ischemia (Phillis and O'Regan, 1996). cPLA2 activity was also 

found to be elevated in the dentate granule gyrus after brain ischemia which 

could induce higher neural membrane phospholipid metabolism and 

subsequent production of AA-derived lipid metabolites leading to oxidative 

stress, neurodegeneration, nociception and neuroinflammation (Koike et al., 

1997; Ong et al., 2010). An increase in expression of both cPLA2 mRNA and 

protein was demonstrated after transient forebrain ischemia or excitotoxicity 

injury followed by increased concentration of a toxic lipid peroxidation 

product, 4-hydroxynonenal (Owada et al., 1994; Clemens et al., 1996; 

Sandhya et al., 1998; Ong et al., 2003). 4-hydroxynonenal level was reduced 

after cPLA2 inhibitor treatment which induced a neuroprotective influence on 

hippocampal neurons after excitotoxicity damage (Lu et al., 2001). cPLA2 
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inhibitor treatment also increased functional recovery in spinal cord damage 

and protected hippocampal neurons against oxygen-glucose deficit (Arai et al., 

2001; Huang et al., 2009). 

 

1.1.3. Plasmalogen-selective phospholipase A2 

Plasmalogen-selective phospholipase A2 (PlsEtn-selective PLA2) has a 

molecular weight of 39 kDa and is found in the cytosol (Yang et al., 1996). 

PlsEtn-selective PLA2 is involved in a receptor-mediated metabolism of 

plasmalogens in neural membranes and does not require Ca2+ for its enzymatic 

activity (Yang et al., 1996). PlsEtn-selective PLA2 preferentially acts on AA 

and docosahexaenoic acid (DHA) at the sn-2 position of plasmalogens to 

generate free fatty acids and lysoplasmalogens (Farooqui and Horrocks, 

2001a). The rate of release of DHA was found to be three to five times faster 

compared to AA (Ong et al., 2010). Plasmalogens contain a particularly high 

DHA content, where close to 70 % of plasmalogens in neuronal membranes 

possess DHA at the sn-2 position (Farooqui and Horrocks, 2001b). PlsEtn-

selective PLA2 is mainly linked with astrocytes due to its co-localization with 

glial fibrillary acidic protein (Farooqui and Horrocks, 2001a). Gangliosides, 

glycosaminoglycans and sialoglycoproteins were found to strongly inhibit 

PlsEtn-selective PLA2 and the interaction between glycoconjugates and 

PlsEtn-selective PLA2 is involved in the regulation of its enzymatic activity 

(Yang et al., 1996). PlsEtn-selective PLA2 hydrolyzes plasmalogen to generate 

second messengers such as eicosanoids under physiological conditions. 

However, PlsEtn-selective PLA2 was implicated to substantially release free 



Chapter 1: Introduction 

14 
 

fatty acid under pathological settings which may lead to significant cellular 

and tissue injury (Yang et al., 1996).  

PlsEtn-selective PLA2 activity was also suggested to have a role in 

Alzheimer’s disease, exemplified by the increased activity in the nucleus 

basalis and hippocampal areas in the brain of Alzheimer’s disease patients 

(Farooqui, 2010). PlsEtn-selective PLA2 was found to be activated by a 

sphingolipid metabolism lipid mediator, ceramide, in a dose-dependent 

manner (Latorre et al., 2003). It was then suggested that increased PlsEtn-

selective PLA2 activity in Alzheimer’s disease patients may be attributed to 

ceramide build-up in the brain (Han et al., 2002; Han, 2005; Farooqui, 2010). 

Increased PlsEtn-selective PLA2 activity may also lead to plasmalogen deficit 

and synapse loss in the brain of Alzheimer’s disease patients (Wells et al., 

1995; Ginsberg et al., 1998; Guan et al., 1999; Han et al., 2001; Pettegrew et 

al., 2001). Deficits in ethanolamine plasmalogen may induce destabilization of 

the neural membrane by affecting the core temperature needed for membrane 

lipid bilayer stability (Ginsberg et al., 1998; Farooqui, 2009b). Excessive 

PlsEtn-selective PLA2 activity may similarly cause an increase in 

lysoplasmalogen production which may affect membrane permeability and 

fluidity as well as permit calcium influx, leading to neural membrane 

destabilization (Farooqui et al., 2008). Serum plasmalogen concentrations are 

also associated with severity of dementia and Alzheimer’s disease 

neuropathology (Goodenowe et al., 2007). In addition to being associated with 

Alzheimer’s disease, PlsEtn-selective PLA2 activity was also found to be up-

regulated in neuronal cell cultures undergoing kainate-induced toxicity and 
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ischemic damage in heart disease (Farooqui et al., 2001; Farooqui et al., 

2008). 

 

1.1.4. Calcium-independent phospholipase A2 

 Calcium-independent phospholipase A2 (iPLA2) was originally 

purified and characterized from the murine P388D1 macrophage-like cell line 

and has a molecular weight of 80-88 kDa (Ackermann et al., 1994; Murakami 

and Kudo, 2002; Farooqui and Horrocks, 2007). Besides its phospholipase A2 

activity, iPLA2 has additional lysophospholipase activity and was 

demonstrated to have intricate interactions with interfaces (Lio and Dennis, 

1998). iPLA2 activity does not require Ca2+ but it utilizes a catalytic serine and 

can be affected by lipid coupled serine-reactive-type blockers (Ackermann et 

al., 1995; CondeFrieboes et al., 1996; Lio et al., 1996; Murakami and Kudo, 

2002; Farooqui and Horrocks, 2007). Although iPLA2 was suggested to not 

have a significant fatty acid selectivity, it has been shown to preferentially act 

on linoleic acid and DHA at the sn-2 position (Murakami and Kudo, 2002; 

Farooqui et al., 2006; Rapoport, 2013). iPLA2 is strongly inhibited by the 

blocker, bromoenol lactone, while its activity is enhanced by ATP (Farooqui 

and Horrocks, 2007). iPLA2 mRNA can be found in all tissues, with a higher 

expression in the central nervous system (CNS) and lower levels in the testes, 

pancreas and spleen at the periphery (Molloy et al., 1998; Lucas et al., 2005). 

Three iPLA2 isoforms have been found in brain tissues and they include 

iPLA2α, iPLA2β and iPLA2γ (Molloy et al., 1998; Zanassi et al., 1998; Balboa 

et al., 2002). There is a significantly higher expression of iPLA2 in the brain 
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compared to cPLA2, evidenced by iPLA2 immunohistochemical studies where 

dense staining of iPLA2 was observed in the striatum, cortex and hippocampus 

(Farooqui et al., 1999; Ong et al., 2005; Ong et al., 2010). Neurons and 

astrocytes have been shown to express iPLA2 in the brain (Ong et al., 2005; 

Sun et al., 2005) 

 iPLA2 is an important “housekeeping” enzyme. Studies showed that 

knockdown of the iPLA2 gene affected the incorporation of AA in 

phospholipids of the murine P388D1 macrophage cells, implicating its role in 

the maintenance and remodeling of phospholipids via constitutive deacylation 

of phospholipids (Balsinde et al., 1995; Balsinde et al., 1997). Besides its role 

in phospholipid remodeling, iPLA2 is also involved in the release of 

neurotransmitters, LTP, signal transduction, learning and memory (Winstead 

et al., 2000; Farooqui and Horrocks, 2007; Shalini et al., 2014). Bromoenol 

lactone treatment inhibited LTP induction in hippocampal slices and induced 

nuclear deterioration and neurite loss in cortical neurons (Wolf et al., 1995; 

Kurusu et al., 2008). Administration of bromoenol lactone at the hippocampus 

also affected short-term and long-term memory acquisition in inhibitory 

avoidance learning (Schaeffer and Gattaz, 2005). Similarly, iPLA2 knockdown 

in the prefrontal cortex abolished hippocampo-prefrontal cortex LTP induction 

and inhibited spatial working memory (Shalini et al., 2014). iPLA2 also has a 

possible role in the cortex-striatum-thalamus-cortex circuitry where inhibition 

of iPLA2 induced vacuous chewing movements in a rat model for tardive 

dyskinesia (Lee et al., 2007). Moreover, intrastriatal knockdown of iPLA2 

induced deficits in prepulse inhibition of the auditory startle reflex in rats, 

similar to the prepulse inhibition deficits observed in schizophrenic patients 
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(Braff et al., 1978; Braff et al., 2001; Lee et al., 2009). iPLA2 is also involved 

in the protection of mitochondrial processes from oxidative injury and in 

maintaining the structure of a mitochondrial membrane lipid component, 

cardiolipin, for the electron transport chain mechanism (Seleznev et al., 2006; 

Kinsey et al., 2008). In addition, prefrontal cortical iPLA2 activity was 

decreased in a frontal variant of Alzheimer’s disease (Talbot et al., 2000). 

 iPLA2 has another significant role in its capacity to generate DHA 

from brain glycerophospholipids where iPLA2 deficiency caused a decrease in 

brain DHA signaling and metabolism (Strokin et al., 2003, 2007; Green et al., 

2008; Basselin et al., 2010). Inhibition of iPLA2 using bromoenol lactone or 

small interfering RNA suppressed the release of DHA without affecting AA 

production in astrocytes after ATP stimulation (Strokin et al., 2003, 2007). 

DHA is metabolized into docosanoids such as resolvins and neuroprotectins 

which have anti-inflammatory actions and are involved in synaptic plasticity 

and cell survival signaling (Tassoni et al., 2008; Bazan, 2009; Xu et al., 2010; 

Park et al., 2011; Serhan and Petasis, 2011). They are also potentially involved 

in neuroprotective actions against ischemia-reperfusion injury (Marcheselli et 

al., 2003).  

 

1.2. Polyunsaturated fatty acids 

 Polyunsaturated fatty acids (PUFAs) are long-chain fatty acids that 

include omega-6 fatty acids and omega-3 fatty acids such as DHA (Fig. 1.2) 

(Farooqui, 2009b). They have more than one double bond in their backbone 

and are derived from the essential fatty acids, omega-3 α-linolenic acid (ALA; 
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18:3) and omega-6 linoleic acid (LA; 18:2) (Logan, 2003; Scorletti and Byrne, 

2013). Plants are able to synthesize ALA via the Δ-15 desaturase enzyme 

which is absent in mammals (Scorletti and Byrne, 2013). Thus, the 

aforementioned essential fatty acids must be obtained from dietary sources 

such as walnuts and fish as these fatty acids cannot be produced by the human 

body (Logan, 2003; Scorletti and Byrne, 2013). Elongase and desaturase 

enzymes are involved in the conversion of ALA and LA to PUFAs (Fig. 1.3) 

(Hulbert et al., 2005). ALA is first converted to eicosapentaenoic acid (EPA; 

20:5) which is subsequently converted to DHA (22:6) while LA is converted 

to AA (20:4), the primary omega-6 fatty acid which acts as a precursor for the 

proinflammatory series of eicosanoids (Kim, 2007; Farooqui, 2009b; Scorletti 

and Byrne, 2013).  

 

 

Fig. 1.2 Structure of several PUFAs. Adapted from (Farooqui, 2009b). 
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Fig. 1.3 Synthesis and metabolites of omega-3 and omega-6 fatty acids as well 

as the enzymes involved. Adapted from (Scorletti and Byrne, 2013).  

 

1.2.1. DHA in the brain 

 Although there is a high level of DHA in the brain which is 

accumulated in neuronal membranes, DHA cannot be produced de novo in the 

brain as the neurons lack the necessary desaturase enzymes (Glomset, 2006; 

Kim, 2007; Nguyen et al., 2014). DHA in the body is transported by liver-

formed plasma lipoproteins through the bloodstream, whereby some of the 

DHA is imported across the blood-brain barrier and esterified to the sn-2 

position of the glycerol backbone of membrane glycerophospholipids 

(Glomset, 2006). A recent study found that the major transporter involved in 

the uptake of DHA into the brain is Mfsd2a which is a member of the major 
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facilitator superfamily and was previously an orphan transporter (Nguyen et 

al., 2014). DHA is found to be especially enriched in glycerophospholipids 

such as PCs, PSs, phosphatidylethanolamines (PEs) and ethanolamine 

plasmalogens, and comprises up to 50 % of the total quantity of PUFAs 

esterified at the sn-2 position of brain glycerophospholipids (Garcia et al., 

1998; Kim, 2007; Farooqui, 2009b). DHA is produced from ethanolamine 

plasmalogens via the activity of PlsEtn-selective PLA2 and can also be 

generated from glycerophospholipids via iPLA2 activity as shown in several in 

vitro studies (Strokin et al., 2003, 2007; Farooqui, 2009b). As stated 

previously, brain imaging of iPLA2-deficient mice also revealed reduced DHA 

signaling and metabolism, supporting the role of iPLA2 in generating DHA in 

the brain (Basselin et al., 2010). 

 Both DHA and EPA have highly fluidizing characteristics and the 

presence of DHA at the sn-2 position of glycerophospholipids aids in the 

maintenance of membrane properties such as regulation of membrane fluidity 

(Salem et al., 1986). Administration of DHA/EPA increased brain 

phosphatides and synaptic protein concentrations while AA treatment did not 

induce any effects (Cansev and Wurtman, 2007). DHA was also shown to be 

important for initiation of LTP. Administration of DHA attenuated the 

inhibitory effects of iPLA2 inhibitors on LTP induction in rat hippocampal 

slices, demonstrating the importance of DHA for LTP initiation (Fujita et al., 

2001). In addition, as stated previously, our recent study showed that 

knockdown of iPLA2 in the prefrontal cortex abolished hippocampo-prefrontal 

cortical LTP induction and inhibited spatial working memory (Shalini et al., 

2014). Taken together, results from these studies suggest that iPLA2 activation 
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and subsequent production of DHA are highly involved in synaptic plasticity, 

learning and memory. In a 2006 Framingham Heart Study, higher plasma PC 

DHA level was found to be significantly linked with a decreased risk of 

dementia development in the study subjects (Schaefer et al., 2006). Moreover, 

dietary intake of fatty fish and marine omega-3 fatty acids in middle-age 

subjects was associated with a decreased risk of impaired cognitive function in 

a cross-sectional population-based study, indicating an important role of DHA 

in learning and memory (Kalmijn et al., 2004).  

Studies have also showed a possible role of PUFAs and DHA in pain. 

Patients with chronic pain were found to possess high levels of omega-6 fatty 

acids (Tokuyama and Nakamoto, 2011). Furthermore, patients with 

rheumatoid arthritis or joint pain caused by dysmenorrhea or inflammatory 

bowel disease reported reduced pain intensity after supplementation with 

omega-3 fatty acid such as DHA (Goldberg and Katz, 2007). Additionally, 

dose-dependent administration of DHA was shown to exert antinociceptive 

effects in animal pain models (Nakamoto et al., 2010). DHA, in turn, can be 

metabolized by the 15-lipoxygenase (15-LOX) enzyme to form docosanoids 

which comprise resolvins and neuroprotectins (Farooqui, 2011). 15-LOX is 

part of the LOX family of enzymes that is non-heme, contains iron, and has a 

molecular mass of approximately 75-78 kDa (Brash, 2001; Radmark and 

Samuelsson, 2009). Resolvins and neuroprotectins have anti-inflammatory as 

well as neuroprotective properties and are able to modulate the effects of AA-

derived proinflammatory eicosanoids (Hong et al., 2003; Bazan, 2009). One of 

the neuroprotectins, neuroprotectin D1 (NPD1), has been shown to stimulate 

anti-apoptotic gene and protein expression coupled with a decrease in pro-
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apoptotic proteins which may lead to suppression of amyloid-beta 

neurotoxicity in Alzheimer’s disease (Mukherjee et al., 2004; Lukiw et al., 

2005). Resolvins, including resolvin D1 (RvD1) and resolvin E1 (RvE1), were 

also reported to significantly reduce mice inflammatory pain behavior, 

whereas NPD1 was shown to effectively reduce neuropathic pain in mice, 

further highlighting the involvement of DHA and its metabolites in mediating 

neuroinflammation and pain (Yacoubian and Serhan, 2007; Nakamoto et al., 

2010; Xu et al., 2013).  

 

2. Pain 

According to the International Association for the Study of Pain 

(IASP), pain is defined as “an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage, or described in terms of such 

damage” (Bonica, 1979; IASP, 1979; Merskey et al., 1994). Pain is very 

complex as well as subjective and each individual acquires the knowledge or 

application of the word through personal experiences related to damage or 

injury in early life (IASP, 1979). Pain also has a robust motivational aspect 

which could encourage withdrawal reflexes in addition to highly ordered 

avoidance and escape actions (McNeill and Dubner, 2001). This motivational 

component is essential for organisms to survive (McNeill and Dubner, 2001). 

Pain can be categorized as acute pain or chronic pain. Acute pain lasts a short 

time and resolves quickly, whereas chronic pain lasts longer and can also be 

defined as “pain that extends beyond the expected period of healing” (Turk 

and Okifuji, 2001). Chronic pain may also last for a period of several months 
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or longer, or occurs frequently for at least several months. Epidemiologic 

studies revealed that pain is one of the main reasons that patients look for 

medical attention and that the lifetime prevalence of pain indications such as 

back pain, chest pain, headache and joint pain is around 24 to 37 % (Regier et 

al., 1984; Komaroff, 1990; Kroenke, 2001; Bair et al., 2003). In Singapore, a 

large epidemiological survey on the prevalence and impact of pain revealed 

that 8.7 % of the population, which translates to more than 300000 adults, 

suffer from chronic pain (Yeo and Tay, 2009). 

There are four components of the clinical occurrence of pain, namely 

nociception, pain, suffering and pain behavior (Loeser, 2006). Nociception is 

defined as the neural system of processing and encoding noxious or harmful 

stimuli (Merskey et al., 1994). Nociception does not equate pain as each can 

occur in the absence of the other (Loeser and Treede, 2008). Nociceptors are 

involved in nociception and they are sensory receptors which are particularly 

sensitive to noxious or harmful stimuli (Merskey et al., 1994). There are two 

main categories of nociceptors: A-delta fibers and C fibers. A-delta fibers are 

lightly myelinated and are involved in mediating fast, acute and sharp pain, 

whereas the unmyelinated C fibers facilitate slower, delayed, dull and more 

diffused pain (Julius and Basbaum, 2001). Threatened or actual injury to non-

neural tissue will lead to nociceptor stimulation and subsequent nociceptive 

pain which can be either somatic or visceral (Table 1.1) (Merskey et al., 1994; 

Jann and Slade, 2007). Suffering is a negative affective reaction in the brain to 

pain or other affective conditions such as depression (Loeser, 2006). Pain 

behaviors are closely associated with suffering and include things a person 

says, does or does not do that are attributed to injury or tissue damage (Loeser, 
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2006). All pain behaviors are genuine and can be measured in a clinical 

situation (Loeser, 2006). Examples of pain behaviors include moaning, 

grimacing, and limping (Loeser, 2006). 

 

Table 1.1 Differences between somatic and visceral pain. Adapted from (Bond 

and Simpson, 2006). 

Somatic Visceral 

Well localized at site of pain Poorly localized at site of pain 

May follow somatic nerve 

distribution 
Diffused radiation 

Definite and sharp pain Ambiguous and dull 

Linked with external causes Linked with internal causes 

Pain is often constant though may be 

periodic sometimes 

Pain is often periodic and leads to 

peaks though may be constant 

sometimes 

 

2.1. Orofacial pain 

Orofacial pain is defined as “pain within the structures of the oral 

cavity and face, usually of a diffuse pattern” (Zwemer, 1998). Orofacial pain 

includes pain disorders that are linked with the hard and soft tissues of the 

neck, head, face and all of the intraoral structures (American Academy of 

Orofacial Pain and Okeson, 1996). The trigeminal nerve forms the primary 

sensory supply to the orofacial area and has a big representation in the sensory 

cortex (Renton et al., 2012). Thus, any pain in the orofacial area can actually 

lead to substantial social and functional effects, where daily social activities 

such as eating, drinking or sleeping may be affected (Renton and Yilmaz, 

2011; Renton et al., 2012). Besides common conditions such as headaches, 
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toothaches and temporomandibular disorders (TMD), orofacial pain also 

includes other rare orofacial pain disorders (Shephard et al., 2014). TMD is 

one of the most common orofacial pain disorder and has similar intensity, 

persistence and psychological impact to that of back pain (Von Korff et al., 

1988; Manfredini et al., 2011). 

 

2.2. Pain pathway 

Pain pathways involve first-order, second-order and third-order 

neurons which convey nociceptive signals from the periphery to the brain (de 

Leeuw et al., 2005). Nociceptive input is transmitted to the spinal cord or 

brainstem via the spinal or trigeminal nerve and relay in the dorsal horn or 

spinal trigeminal nucleus, before onward transmission to the thalamus (Fig. 

1.4). The ascending pain pathway involves two main systems, namely the 

lateral and medial pain system (Brooks and Tracey, 2005; de Leeuw et al., 

2005). The lateral pain system transmits information to the ventral posterior 

lateral nucleus, ventral posterior medial nucleus, and ventral posterior inferior 

nucleus of the thalamus to the somatosensory cortex (de Leeuw et al., 2005). 

When stimuli travel through this lateral pain system, contralateral brain 

activation was observed (Treede et al., 1999; Rome and Rome, 2000). The 

medial pain system primarily involves medial thalamic structures which 

include the ventral part of the ventral medial nucleus, the ventrocaudal part of 

the medial dorsal nucleus, the intralaminar nucleus and the contralateral 

nucleus which eventually relays to the cingulate cortex (de Leeuw et al., 

2005). A descending pain inhibitory pathway originating from the brainstem 
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also exists, which involves relays in the brainstem nuclei and affect all sensory 

feedbacks going up into the brainstem (Basbaum and Fields, 1984; Pertovaara 

and Almeida, 2006). The periaqueductal gray (PAG) and the nucleus raphe 

magnus (NRM) are two important components of the descending pain 

inhibitory pathway where the PAG projects to the raphe nuclei in the 

brainstem (Okeson, 2005).  Serotoninergic neurons from the raphe nuclei 

project to the dorsal horn neurons in the spinal cord or the spinal trigeminal 

nucleus and act on opioid containing neurons to cause modulation of synaptic 

transmission between the first and second order sensory neurons in the pain 

pathway to modulate nociception (Pertovaara and Almeida, 2006). Besides 

these raphe neurons, noradrenergic neurons from the locus coeruleus also form 

a descending projection that inhibits pain transmission (Martin, 2003).  
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Fig. 1.4 Transmission of sensory inputs to the brain. Adapted from (Okeson, 

2005). 

 

2.3. Animal pain models 

 Scales and questionnaires in self-ratings of pain have been shown to be 

precise, dependable and versatile for both clinical and experimental pain 
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measurement in humans (Price et al., 1983; Mogil, 2009). However, unlike 

humans, animals cannot self-report and self-rate (Mogil, 2009). Nonetheless, 

their behavioral responses to noxious stimuli can be accurately and 

consistently scored although some behaviors such as licking an inflamed paw 

may appear to lack clinical face validity (Mogil, 2009). Some of the 

commonly used animal pain models include formalin, chronic constriction 

injury, carrageenan, spinal nerve ligation and complete Freund’s adjuvant 

(CFA) (Mogil, 2009; Hsieh et al., 2010; Jaggi et al., 2011). Formalin, CFA 

and carrageenan (Fig. 1.5) are used in inflammatory pain models where they 

are injected subcutaneously into rodents to induce orofacial pain or hind paw 

edema (Poh et al., 2009; Hsieh et al., 2010). Studies have utilized these animal 

pain models to investigate nociceptive functions of molecules or potential 

antinociceptive and anti-inflammatory effects of drug treatment which could 

shed light on the mechanisms and pathways involved (Honore et al., 2002; 

Lucas et al., 2005; Oliveira et al., 2007; Poh et al., 2012). 

 

 

Fig. 1.5 Basic structure of carrageenan. Adapted from (O'Sullivan et al., 

2010). 
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2.4. Prefrontal cortex in pain 

The prefrontal cortex is the anterior portion of the frontal lobe and 

includes Brodmann areas 9, 10, 11, 12, 46 and 47 (Fuster, 2008). The main 

role of the prefrontal cortex involves executive functions such as working 

memory, planning and decision-making (Fuster, 2008). The prefrontal cortex 

receives information from different parts of the brain such as the 

hypothalamus, the midbrain and the limbic cortex (Fuster, 2008). In turn, the 

prefrontal cortex sends fibers back to these structures with the exception of the 

basal ganglia and pontine nuclei (Fuster, 2008). For these two structures, the 

prefrontal cortex sends projections to them without receiving any in return 

(Fuster, 2008). Like the brainstem and spinal cord, the prefrontal cortex is also 

richly innervated with aminergic fibers (Jordan et al., 1994; Carvalho et al., 

2005). 

Besides being involved in executive functions, there is also evidence 

suggesting a potential role of the prefrontal cortex in pain and antinociception. 

The Brodmann areas 9 and 46 make up the dorsolateral prefrontal cortex 

which is vital for conservation of information in short-term memory, 

maintaining competent performance control in the incidence of interfering 

stimuli and constant monitoring of the external world (MacDonald et al., 

2000; Bunge et al., 2001; Sakai et al., 2002; Lorenz et al., 2003). Correlation 

analysis of functional neuroimaging studies suggest that the dorsolateral 

prefrontal cortex is involved in pain modulation (Iadarola et al., 1998; Baron 

et al., 1999; Bornhovd et al., 2002). Dorsolateral prefrontal cortex stimulation 

using the non-invasive repetitive transcranial magnetic stimulation (rTMS) 

was shown to increase tolerance to human experimental pain (Graff-Guerrero 
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et al., 2005). Other functional neuroimaging studies showed that there was 

increased activity in the prefrontal cortex during anticipation of analgesia with 

placebo treatment (Benedetti et al., 2005; Wager, 2005), and suggest that 

increased prefrontal cortical activity may modulate pain through activation of 

the descending pain inhibitory pathway (Valet et al., 2004; Ohara et al., 2005; 

Xie et al., 2009). In addition, electrical activation of prefrontal cortical fiber 

projections to the midbrain was found to induce antinociceptive effect in 

rodents (Hardy and Haigler, 1985; Zhang et al., 1998). Diffusion tensor 

imaging, a magnetic resonance imaging-based method to allow in vivo 

mapping of the anatomical connections in the human brain showed that tract 

paths could be defined between the PAG and the prefrontal cortex, amygdala, 

thalamus, hypothalamus and rostroventral medial medulla bilaterally 

(Hadjipavlou et al., 2006). In addition, retrograde tracing studies showed that 

the prefrontal cortex sends projections to the PAG mainly from the medial 

prefrontal cortical wall and a few other orbital/anterior insular prefrontal 

cortical regions, suggesting the possible involvement of the prefrontal cortex 

in a top-down modulation of pain through the PAG and subsequent activation 

of the descending pain inhibitory pathway (An et al., 1998; Floyd et al., 2000). 

 

3. Depression and pain 

Depression is defined as an ephemeral mood or emotional state which 

is experienced by almost everyone at some point in life (Fava and Kendler, 

2000). Depression can also be described as a clinical or medical syndrome 

termed as Major Depressive Disorder (MDD) (Fava and Kendler, 2000). MDD 
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is a major health problem which affects mood, cognition, neurovegetative 

activities as well as psychomotor function, and it also causes one of the 

highest levels of non-fatal burden and disability (Fava and Kendler, 2000; 

Chua et al., 2012; Ho et al., 2013). Epidemiological studies show a high 

prevalence of depression worldwide, with 9 % to 20 % of the population 

possibly being affected during their lifetime (Licinio and Wong, 1999; Chua et 

al., 2012). In Singapore, nationwide epidemiological studies in 2003/2004 

showed a 4.9 % prevalence of depression in adults and 3.1 % prevalence in 

elderly populations, while the Singapore National Mental Health Survey in 

2010 revealed that there is a 6.3 % lifetime prevalence of depression in adults 

(Chua et al., 2012). 

The monoamine hypothesis of depression was first suggested in 1965 

and states that depression is caused by a lack of monoamine neurotransmitters 

and function in the brain (Schildkraut, 1965). This theory was supported by 

the mechanism of action of antidepressants which involves increasing the 

levels of monoamine neurotransmitters, predominantly noradrenaline and 

serotonin, and improving depressive symptoms (Delgado, 2000; Hirschfeld, 

2000). However, studies on patients with depression suggest that this 

hypothesis may not be completely accurate and is insufficient to fully explain 

the actions of antidepressants (Delgado, 2000; Hirschfeld, 2000). An 

additional fact is that antidepressant drugs induce their direct biochemical 

effects rather rapidly but their antidepressant effects take weeks to develop 

(Rang et al., 2007). This led to the suggestion that instead of the primary drug 

effects on monoamines in the brain, the clinical improvement of depressive 

symptoms are a result of secondary adaptive responses induced by long-term 
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antidepressant treatment (Rang et al., 2007). Nonetheless, although the 

monoamine hypothesis is inadequate to fully explain depression, drugs 

affecting monoamine levels and functions remain the most effective 

therapeutic method to treat depression. 

Depression is also associated with pain, given that both depression and 

pain symptoms are often found together and are mutually interacting (Bair et 

al., 2003; Williams et al., 2006). Studies showed a higher pain prevalence in 

patients with depression and a higher prevalence of depression in patients 

experiencing pain as compared to individual evaluation of depression and pain 

conditions (Bair et al., 2003). Depression induced a greater number of pain 

grievances and impairment in patients with pain while moderate to severe pain 

is linked to additional symptoms of depression and worse depressive outcomes 

such as reduced work functions (Bair et al., 2003). There are overlying 

neurobiology, biological pathways, therapy and phenomenology linking 

depression and pain (Bair et al., 2003; Williams et al., 2006). This interaction 

has significant implications on treatment and outcome of both depression and 

pain (Bair et al., 2003; Williams et al., 2006). 

 

3.1. Antidepressants  

 In patients with moderate to severe depression, antidepressants are 

generally recommended as the first line of treatment based on recent clinical 

practice guidelines (Chua et al., 2012). Most antidepressants increase the 

levels of monoamine neurotransmitters either by interacting with their 

receptors or affecting their metabolism (Fig. 1.6) (Owens et al., 1997; Coyle 
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and Duman, 2003). Antidepressants generally can be separated into 

monoamine oxidase inhibitors, monoamine reuptake inhibitors and other 

miscellaneous ‘atypical’ antidepressants which have non-selective receptor-

blocking effects and poorly understood mechanisms (Frazer, 1997a; Rang et 

al., 2007).  

Monoamine oxidases (MAOs) are a family of enzymes that are 

involved in the oxidation of monoamines and MAO inhibitors (MAOIs) are 

the first drugs that are used clinically as antidepressants (Edmondson et al., 

2004; Rang et al., 2007). MAO is present in nearly all tissues and there are 

two subtypes of MAO: MAO-A and MAO-B (Pletscher, 1991; Rang et al., 

2007). The main target for MAOIs is the subtype MAO-A which is involved 

in the oxidation of serotonin, noradrenaline and dopamine (Rang et al., 2007). 

MAOIs such as phenelzine and iproniazid generally work by binding 

irreversibly and indiscriminately to both MAO subtypes to inhibit their 

functions (Rang et al., 2007). MAOI were found to have a number of 

undesirable drug and food interactions which could lead to problems such as 

the ‘cheese reaction’ and subsequent acute hypertension (Pletscher, 1991; 

Rang et al., 2007). These unwanted side effects and interactions led to a 

decline in the clinical usage of MAOIs to treat depression. A newer class of 

reversible MAOIs such as moclobemide however, was developed and was 

shown to have fewer interactions and higher specificity for MAO-A compared 

to the older MAOIs (Lotufo-Neto et al., 1999). These new reversible inhibitors 

of monoamine oxidase type A (RIMAs) were suggested to potentially have a 

useful albeit limited role in the differential treatment of depressive disorders 

(Lotufo-Neto et al., 1999). 
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Monoamine reuptake inhibitors act by inhibiting the actions of 

monoamine transporters such as the serotonin transporter.  This will lead to an 

increase in extracellular monoamine neurotransmitter levels and subsequent 

monoaminergic transmission which in turn causes neurochemical changes that 

eventually induce the desired therapeutic effect in the CNS (Richelson, 2003; 

Walter, 2005). Monoamine reuptake inhibitors include selective serotonin 

reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors 

(SNRIs), noradrenaline reuptake inhibitors (NRIs) and tricyclic 

antidepressants (TCAs).  

 

 

Fig. 1.6 Sites of action of antidepressants.   

 

3.2. Pain and antidepressant treatment 

 Inhibitors of cyclooxygenase (COX) enzymes or opioids are used in 

pain conditions such as chronic inflammatory pain. However, long-term usage 

of these drugs is not without problems. Nonselective COX inhibitors may 
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induce gastrointestinal bleeding and kidney damage, while more selective 

COX-2 inhibitors increase cardiovascular disease risk (Mukherjee et al., 

2001). Even though opioids are effective and strong analgesics for acute pain 

treatment, long-term usage may require increasing doses leading to adverse 

effects such as sedation, cognitive disruptions, nausea and constipation (Noble 

et al., 2010). In addition to these serious side effects, major concerns 

surrounding opioid use include the risk of addiction, abuse, misuse and 

diversion.  

On the other hand, there are other drugs such as antidepressants and 

anticonvulsants which have attracted attention as alternative medication for 

pain (Lynch and Watson, 2006). Antidepressants have been observed to 

induce a distinct effect on pain. The dose to modulate pain are mostly found to 

be lower than the dose needed to treat depression and the onset of activity has 

also been shown to be faster (Ryder and Stannard, 2005). In addition, 

antidepressants are analgesic even in non-depressed patients with chronic pain 

and they are also shown to be effective in experimental and acute pain (Ryder 

and Stannard, 2005; Mico et al., 2006). Clinical studies on antidepressants 

found them to be effective in chronic pain conditions such as chronic lower 

back pain (Fishbain, 2000; Salerno et al., 2002; Staiger et al., 2003). 

Neuropathic pain was found to be most responsive to the analgesic and 

antinociceptive effects of antidepressants, whereas TCAs were shown to have 

the greatest analgesic efficacy in several different studies (Finnerup et al., 

2005; Mico et al., 2006).  

Antidepressant-induced antinociception is thought to be linked to the 

central inhibition of monoamine neurotransmitters reuptake, in particular 
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noradrenaline and serotonin, in the CNS (Jasmin et al., 2003; Ryder and 

Stannard, 2005). Besides inducing monoaminergic effects in other parts of the 

CNS, monoamine reuptake inhibition may also lead to increased monoamine 

levels and activity in the synapse which may stimulate descending inhibitory 

action in the spinal cord and affect nociceptive processing. (Jasmin et al., 

2003; Ryder and Stannard, 2005). Formalin tests in rats treated with 

antidepressants and monoamine receptors antagonists indicate that alpha-1 

adrenergic receptors and serotonin receptors in the brain have an important 

role in antidepressant-induced antinociception (Yokogawa et al., 2002). It was 

also suggested that functional interactions between serotonergic and 

noradrenergic neurons in the brain are involved in the antinociceptive effects 

of antidepressants (Yokogawa et al., 2002).  

Nevertheless, there is still a large gap in the knowledge of the actual 

mechanism in which antidepressants exert their antinociceptive effect. It has 

been shown that blockade of monoamine reuptake and subsequent increase in 

monoamine levels may not be the only mechanism involved as the 

antinociceptive effect of the antidepressant, fluvoxamine, was reliant on ATP-

dependent potassium channels activation (Hajhashemi and Amin, 2011) Thus, 

it is possible that the therapeutic effects of antidepressants not only involve the 

inhibition of monoamine neurotransmitters such as serotonin or noradrenaline, 

but also include other mechanisms and potential adaptive cellular changes 

caused by antidepressant treatment.  
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3.3. Tricyclic antidepressants 

 Tricyclic antidepressants (TCAs) are a group of heterocyclic chemical 

compounds that are used as antidepressants. TCAs contain three rings of 

atoms in their molecular structure which they are named after. A closely-

related group of antidepressant compounds are the tetracyclic antidepressants 

which contain four rings of atoms.  Psychopharmacological characterization of 

a series of structural analogs of phenothiazines that were being developed as 

potential antihistamines, sedatives, and analgesic drugs led to the initial 

development of the TCAs (Hollister, 1981; Baldessarini, 2006).  

One of the first few TCAs is a dibenzazepine analog, imipramine, 

which was shown to be ineffective in schizophrenia but had a notable effect in 

patients with depression (Kuhn, 1958). Subsequent findings on the 

effectiveness of imipramine in treating major depression led to the synthesis of 

other chemically related compounds such as desipramine and clomipramine 

(Thase and Perel, 1982; Potter et al., 1998; Baldessarini, 2006). Desipramine 

is the main active metabolite and secondary-amine congener of imipramine 

while clomipramine is its 3-chloro derivative (Baldessarini, 2006). In addition, 

there were also other similar compounds developed which include 

dibenzocycloheptadienes such as amitriptyline and its N-demethylated 

metabolite nortriptyline, along with the dibenzoxepine, doxepin and the 

dibenzocycloheptatriene protriptyline (Baldessarini, 2006). Other analogs 

include the tetracyclic antidepressant, maprotiline, which has an extra ethylene 

bridge across the central six-carbon ring, and amoxapine which is a 

piperazinyldibenzoxazepine with combined neuroleptic and antidepressant 

effects (Baldessarini, 2006). All these analogs possess the three-ring molecular 
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core and most have similar clinical and pharmacological properties 

(Baldessarini, 2006). They are thus collectively termed as “tricyclic 

antidepressants”. 

Antidepressants generally have a relatively good absorption rate after 

oral administration and the serum levels of most TCAs peak within a few 

hours (Baldessarini, 2006; Rang et al., 2007). TCAs are extensively distributed 

in the body once they are absorbed as they are rather lipophilic and can bind 

strongly to plasma albumin (Baldessarini, 2006; Rang et al., 2007). Most 

TCAs are bound up to 90-95 % at therapeutic plasma levels and they bind to 

extravascular tissue which contribute to their low elimination rate and high 

distribution capacity (Rang et al., 2007). However, TCAs and their relatively 

cardiotoxic metabolites tend to accumulate in the cardiac tissue of the heart 

which increase their cardiotoxic risks (Pollock and Perel, 1989; Prouty and 

Anderson, 1990; Wilens et al., 1992). Serum levels of TCAs higher than 500 

ng/ml can cause toxic effects while concentrations higher than 1 µg/ml can be 

lethal (van Harten, 1993; Catterson et al., 1997; Preskorn, 1998). TCAs are 

metabolized via oxidation by microsomal cytochrome P450 (CYP) enzymes  

in the liver followed by conjugation with glucuronic acid (Baldessarini, 2006). 

There are several preferred CYP enzymes for the metabolism of TCAs which 

include CYP1A2, CYP2D6, CYP2C19 and CYP3A3/4 (Table 1.2) 

(Baldessarini, 2006; Mays, 2006). CYP1A2 and CYP2D6 are generally 

involved in aromatic hydroxylation while CYP3A3/4 are essential for the N-

oxidation and N-dealkylation reactions (Baldessarini, 2006). Preferential 

oxidation of TCAs occurs at different positions depending on the 

antidepressant involved (Baldessarini, 2006). For example, oxidation of 
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imipramine and desipramine takes place at the 2-position while oxidation of 

amitriptyline and nortriptyline occurs at the 10-position (Baldessarini, 2006). 

The 10-hydroxy metabolites of amitriptyline and nortriptyline were found to 

be less cardiotoxic than the 2-hydroxy metabolites of imipramine and 

desipramine (Pollock and Perel, 1989; Baldessarini, 2006). Any residual 

biological activity of these metabolites are generally quenched by conjugation 

with glucuronic acid and subsequently excreted in the urine (Baldessarini, 

2006; Rang et al., 2007). It is noted that the N-methylated derivatives of a few 

TCAs still possess pharmacological activity and could potentially affect their 

pharmacodynamics if they accumulate to levels close to or more than the 

parent drug (Baldessarini, 2006). Metabolism and excretion generally take 

place over several days and most TCAs are almost entirely eliminated within a 

week (Baldessarini, 2006). However, there are a few exceptions in which the 

elimination half-life of the N-methylated metabolites of SSRIs and most 

secondary-amine TCAs are around twice that of the parent drugs (van Harten, 

1993; Baldessarini, 2006). 

 As mentioned earlier, the main mechanism of action of TCAs is to 

block the reuptake of monoamine neurotransmitters at the nerve terminals 

(Rang et al., 2007). They do so by competitive inhibition of the binding site of 

monoamine neurotransmitter transporter protein (Rang et al., 2007). TCAs 

generally do not directly affect the synthesis, storage and release of 

monoamine transmitters but some TCAs were found to block presynaptic 

alpha-2 adrenergic receptors and indirectly increase the release of 

noradrenaline (Rang et al., 2007). Most TCAs inhibit the noradrenaline and 

serotonin transporters while having much fewer effect on the dopamine 
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transporters (Richelson, 1996; Frazer, 1997b; Owens et al., 1997; Leonard and 

Richelson, 2000). It was postulated that the TCA-induced increase in 

serotoninergic transmission improves emotional indications while the increase 

in noradrenergic transmission modulates the biological symptoms of 

depression (Rang et al., 2007). Nonetheless, elucidation of the actual effects of 

TCAs continue to be challenging as the pharmacological activities of the main 

derivatives of TCAs are frequently different from the parent drug (Rang et al., 

2007). Besides affecting the monoamine neurotransmitter transporter, most 

TCAs also interact with other receptors such as histamine receptors and 

muscarinic acetylcholine receptors which also contribute to their various 

adverse effects (Frazer, 1997b; Leonard and Richelson, 2000). 

 Antidepressants commonly have significant side effects and TCAs 

predominantly induce adverse autonomic responses due to their relatively 

potent anti-muscarinic properties (Baldessarini, 2006; Rang et al., 2007). 

Atropine-like effects of TCAs include blurred vision, dry mouth, epigastric 

distress, constipation, palpitations, urinary retention and dizziness whereas 

cardiovascular effects include sinus tachycardia and orthostatic hypotension 

(Baldessarini, 2006; Rang et al., 2007). Other unwanted effects include 

postural hypertension, weakness, fatigue and sedation (Baldessarini, 2006; 

Rang et al., 2007). Interaction with other drugs also increases the probability 

of TCA-induced adverse effects. TCAs were found to interact with a number 

of antihypertensive drugs and potentiate the effects of alcohol (Rang et al., 

2007). In addition, drugs competing to bind to plasma proteins such as aspirin 

will increase the effects of TCA (Rang et al., 2007).  
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 TCAs were the main drugs used in depression treatment until the later 

development of SSRIs (Baldessarini, 2006). Besides treating depression, 

TCAs have been used in treatment of pain. TCAs, together with 

anticonvulsants, are considered to be first-line drugs for the treatment of 

neuropathic pain (Mico et al., 2006). However, as stated previously, the exact 

mechanisms involved in the antinociceptive effects of TCAs especially in 

nociceptive pain remain unclear. 

 

3.3.1. Amitriptyline 

Amitriptyline is one of the first ‘reference’ TCAs and is sold under 

brand names such as Elavil and Enovil (Fig. 1.7) (Mays, 2006). Even though it 

has been more than 50 years since amitriptyline was synthesized and approved 

in 1961, it was found to have at least equal or better efficacy against 

depression as compared to the newer classes of antidepressants such as SSRIs 

and is still commonly used (Barbui and Hotopf, 2001; Fangmann et al., 2008). 

Amitriptyline is predominantly a SNRI with strong effects on the serotonin 

transporter and weaker effects on the noradrenaline transporter (Table 1.2) 

(Frazer, 1997b; Owens et al., 1997; Tatsumi et al., 1997; Leonard and 

Richelson, 2000). It has very weak effects on the dopamine transporter and, 

thus, does not affect the reuptake of dopamine (Frazer, 1997b; Tatsumi et al., 

1997).  

Besides treating depression, amitriptyline is used for conditions such as 

attention-deficit hyperactivity disorder (ADHD), tension headache and post-

traumatic stress disorder (Lance and Curran, 1964; Davidson et al., 1990; 
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Banaschewski et al., 2004). Amitriptyline is also effective in modulating pain 

and symptoms in conditions such as post-herpetic neuralgia, diabetic 

neuropathy pain and ankylosing spondylitis (Watson et al., 1982; Max et al., 

1987; Koh et al., 1997). In addition, amitriptyline was shown to have analgesic 

activity in a mouse model of acute pain and a dose-response analgesic effect in 

chronic pain in human patients (McQuay et al., 1993; Paudel et al., 2007). 

Amitriptyline is also commonly used for treatment of chronic neuropathic pain 

and fibromyalgia (Moore et al., 2012). 

Patients taking amitriptyline have an increased risk for suicide and they 

need to be observed and monitored for clinical deterioration and suicidal 

tendencies (Murinson, 2013). Other side effects of amitriptyline include dry 

mouth and sedation (Baldessarini, 2006). Sedation caused by amitriptyline, 

however, can be used to provide greater relief and better sleep especially in 

patients who experience higher pain severity in the evening or at night 

(Nishishinya et al., 2008; Murinson, 2013).  

 

 

Fig. 1.7 Amitriptyline structure. Adapted from (Baldessarini, 2006) 
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3.3.2. Nortriptyline 

 Nortriptyline is a second generation TCA sold under brand names such 

as Aventyl and Pamelor (Fig. 1.8) (Mays, 2006). Nortriptyline is the active N-

demethylated metabolite of amitriptyline and is similar to amitriptyline 

(Baldessarini, 2006). Nortriptyline functions as a SNRI with weak effects on 

the dopamine transporter (Baldessarini, 2006). However, nortriptyline has 

much stronger effects on the noradrenaline transporter and weaker effects on 

the serotonin transporter as compared to amitriptyline (Table 1.2) (Frazer, 

1997b; Owens et al., 1997; Leonard and Richelson, 2000). Nortriptyline is 

also more selective for the inhibition of noradrenaline reuptake compared to 

amitriptyline (Fig. 1.10) (Baldessarini, 2006; Rang et al., 2007). 

 Nortriptyline is FDA-approved for the treatment of symptoms of MDD 

and besides treating depression, nortriptyline is also used in treatment of 

ADHD and irritable bowel syndrome (Wilens et al., 1993; Clouse, 2003; 

Murinson, 2013). In addition, nortriptyline has been shown to be effective in 

management for pain conditions such as chronic low back pain and is 

commonly used by pain specialists (Atkinson et al., 1998; Murinson, 2013). 

Nortriptyline showed comparable efficacy to morphine in post-herpetic 

neuralgia and has been found to have at least equal efficacy as gabapentin in 

treatment of diabetic polyneuropathy (Raja et al., 2002; Gilron et al., 2009). 

Furthermore, treatment with both nortriptyline and gabapentin led to better 

pain relief in patients (Gilron et al., 2009). 

 Similar to amitriptyline, patients treated with nortriptyline need to be 

monitored for clinical worsening and suicidal inclinations (Murinson, 2013). 
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However, the incidence of side effects associated with nortriptyline is lower 

compared to amitriptyline (Baldessarini, 2006; Mays, 2006). Nortriptyline also 

has lower sedating effects than amitriptyline (Murinson, 2013). 

 

 

Fig. 1.8 Nortriptyline structure. Adapted from (Baldessarini, 2006) 

 

3.3.3. Maprotiline 

Maprotiline is a tetracyclic antidepressant with an extra ethylene 

bridge across the central six-carbon ring (Fig. 1.9). It is pharmacologically 

related to the TCAs and is, thus, also termed as a “tricyclic antidepressant”. .It 

is sold under brand names such as Ludiomil and Psymion (Kessell and Holt, 

1975; Baldessarini, 2006). Maprotiline primarily functions as a strong 

inhibitor of noradrenaline reuptake with robust effects on the noradrenaline 

transporter and much weaker effects on the serotonin and dopamine 

transporter (Table 1.2) (Baldessarini, 2006; Rang et al., 2007). Maprotiline has 

a higher selectivity for noradrenaline reuptake inhibition compared to both 

amitriptyline and nortriptyline (Fig. 1.10) (Rang et al., 2007). 
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Maprotiline is effective in treating different forms and severity of 

depression such as depressive neurosis (Kessell and Holt, 1975; Pinder et al., 

1977). Studies also showed that maprotiline is effective in the treatment of 

chronic pain, chronic tension headache, painful polyneuropathy and chronic 

lower back pain (Fogelholm and Murros, 1985; Lindsay and Olsen, 1985; 

Vrethem et al., 1997; Atkinson et al., 1999). In addition, long-term combined 

treatment of maprotiline and diazepam significantly reduced the symptoms 

and signs of TMD (Ivkovic et al., 2008). Maprotiline was shown to be 

effective in post-herpetic neuralgia as well (Watson et al., 1992).  

Maprotiline has comparable side effects as the other TCAs which 

include dry mouth, dizziness and constipation (d'Elia et al., 1981; Vaz-Serra et 

al., 1994; Baldessarini, 2006). Similar to amitriptyline and nortriptyline, 

maprotiline treatment was found to increase the risk of suicidal tendencies 

(Pinder et al., 1977). Adverse skin reactions occurred more frequently with 

maprotiline treatment (Pinder et al., 1977). However, results from controlled 

trials showed that there are very few differences between maprotiline and 

amitriptyline in the general incidence and severity of adverse effects (Pinder et 

al., 1977). Nonetheless, maprotiline has been reported to have a higher risk of 

causing seizures than the other TCAs (Skowron and Stimmel, 1992; 

Baldessarini, 2006). 

The antidepressive effect of maprotiline was found to involve the 

phospholipase A2 enzyme, iPLA2, in the prefrontal cortex (Lee et al., 2012). 

Maprotiline treatment caused a significant increase in lysophosphatidylcholine 

levels coupled with a decrease in phosphatidylcholine levels, signifying 

increased PLA2 activity and endogenous release of long chain polyunsaturated 
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fatty acids (Lee et al., 2012). Inhibition of iPLA2 in the prefrontal cortex 

eliminated the change in lipid profile and abolished the antidepressive effect 

of maprotiline in a mouse forced swim test model of depression (Lee et al., 

2012). The results suggest that prefrontal cortical iPLA2 has an essential role 

in the antidepressive effect of maprotiline, potentially via the release and 

activity of long chain PUFAs (Lee et al., 2012). Thus, it is possible that the 

expression and activity of iPLA2 in the prefrontal may also have a role in the 

antinociceptive effect of maprotiline. 

 

 

Fig. 1.9 Maprotiline structure. Adapted from (Baldessarini, 2006) 
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Fig. 1.10 Selectivity for inhibition of noradrenaline reuptake by several TCAs. 

Adapted from (Rang et al., 2007) 

 



Chapter 1: Introduction 

48 
 

 

Table 1.2 Potencies and elimination profile of amitriptyline, nortriptyline and maprotiline based on radioactive ligand transport competition 

assays. Adapted from (Frazer, 1997b; Owens et al., 1997; Leonard and Richelson, 2000; Baldessarini, 2006). 

Drug 

Potencies at monoamine neurotransmitter 

transporter1 
Elimination profile 

Noradrenaline 

transporter 

Serotonin 

transporter 

Dopamine 

transporter 

Elimination 

half-life for 

parent drug 

(hours) 

Elimination 

half-life for 

active 

metabolite 

(hours) 

Usual serum 

concentrations 

(ng/ml) 

Preferred 

CYP 

isozymes 

Amitriptyline 34.5 4.33 3200 16 30 100 – 250 
2D6, 2C19, 

3A3/4 

Nortriptyline 4.35 18.5 1140 30 - 60 – 150 
2D6, 2C19, 

3A3/4 

Maprotiline 11.1 5900 1000 48 - 200 – 400 
2D6, 2C19, 

3A3/4 

1 Potency is expressed as inhibition constant (Ki) in nanomoles.
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Aims of Study 

 Clinical studies found that certain classes of antidepressants are 

effective in the management of pain conditions including lower back pain, 

migraine, tension headache, atypical facial pain and chronic orofacial pain 

(Lynch and Watson, 2006). However, the biological substrates through which 

antidepressants exert their effects are largely unknown. Studies found that 

antidepressants that are effective in antinociception are most commonly those 

that act on the noradrenergic system, or noradrenergic and serotoninergic 

system, whereas those that act solely on the serotoninergic system are 

generally less effective (Sansone and Sansone, 2008; Verdu et al., 2008).  

At the supraspinal level, the prefrontal cortex has been shown to be 

involved in antinociception and may also be affected by antidepressant 

treatment. The frontal cortex is richly innervated by aminergic fibers (Jordan 

et al., 1994; Carvalho et al., 2005), and is activated in acute and chronic pain 

(Peyron et al., 2000; Maihofner et al., 2004; Maihofner and Handwerker, 

2005). Antinociception in rodents was found to involve electrical stimulation 

of prefrontal cortical fiber connections to the midbrain (Hardy and Haigler, 

1985; Zhang et al., 1998). 

Our recent study revealed an important role of prefrontal cortical 

iPLA2 in the effectiveness of maprotiline to treat depression (Lee et al., 2012). 

Besides treating depression, maprotiline was also shown to induce an 

antinociceptive effect in pain conditions, including chronic lower back pain 

and TMD (Atkinson et al., 1999; Ivkovic et al., 2008). Thus, the present study 

was carried out with three main aims in mind. The first main aim is to study a 
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possible role of prefrontal cortical iPLA2 in the antinociceptive effect of 

maprotiline and another TCA, amitriptyline. Secondly, we would like to 

investigate the effect of antidepressant treatment on iPLA2 expression and 

determine the possible mechanisms involved in iPLA2 expression. The third 

and final aim of this study is to examine the effect of antidepressant treatment 

on 15-LOX which metabolizes DHA to generate docosanoids such as 

resolvins (Farooqui, 2011). It is hoped that our results could provide insights 

into the brain regions involved in supraspinal antinociception as well as 

possible cellular mechanisms involved in iPLA2 expression and the 

antinociceptive effect of antidepressants. 
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1. Introduction 

The prefrontal cortex is part of the cerebral cortex which encompasses 

the anterior portion of the frontal lobe and includes Brodmann areas 9, 10, 11, 

12, 46 and 47 (Fuster, 2008). In addition to playing an important role in 

executive functions, the prefrontal cortex has been shown to be involved in 

antinociception by correlation analysis of functional neuroimaging studies 

(Iadarola et al., 1998; Baron et al., 1999; Bornhovd et al., 2002). Activation of 

the dorsolateral prefrontal cortex by rTMS activation also increased pain 

tolerance in human experimental pain studies (Graff-Guerrero et al., 2005). 

Studies suggest that increased prefrontal cortical activity may modulate pain 

through projections to the midbrain to stimulate PAG and subsequent 

activation of the descending pain inhibitory pathway (Hardy and Haigler, 

1985; Valet et al., 2004; Ohara et al., 2005; Xie et al., 2009). Similar to the 

brainstem and spinal cord, there are high levels of aminergic neurons and 

fibers in the prefrontal cortex (Jordan et al., 1994; Carvalho et al., 2005). 

Thus, the prefrontal cortex may also be affected by changes in the monoamine 

neurotransmitter levels after antidepressant treatment. 

Antidepressants such as TCAs have been shown to be effective in the 

management of pain (Lynch and Watson, 2006). However, the biological 

substrates and the mechanisms involved in antidepressant-induced 

antinociception remain largely unknown. Our recent study showed an 

important role of prefrontal cortical iPLA2 in the hippocampo-prefrontal 

cortical LTP and spatial working memory as well as in the antidepressive 

effect of maprotiline (Lee et al., 2012; Shalini et al., 2014). Besides its 
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antidepressive effects, maprotiline was also shown to possess antinociceptive 

properties in pain conditions such as TMD (Atkinson et al., 1999; Ivkovic et 

al., 2008). Thus, it is possible that prefrontal cortical iPLA2 may similarly 

have an essential role in the antinociceptive effect of maprotiline and other 

similar antidepressants. In this part of the study, we investigated a possible 

role of prefrontal cortical iPLA2 in the antinociceptive effect of maprotiline 

and another TCA, amitriptyline, using a carrageenan mouse model of 

inflammatory orofacial pain (Yeo et al., 2004; Poh et al., 2012). We also 

studied the effects of maprotiline treatment on prefrontal cortical iPLA2 

expression and the lipid profile of the prefrontal cortex. 

Pain behavioral assay was first carried out to examine the potential 

antinociceptive effect of antidepressant treatment on pain responses and 

whether knockdown of prefrontal cortical iPLA2 will affect the observed pain 

responses. The antinociceptive effect of maprotiline treatment was shown to 

be modulated by prefrontal cortical iPLA2 knockdown. Another set of pain 

behavioral assay was then carried out after iPLA2 knockdown at the 

somatosensory cortex to examine whether the effects of iPLA2 knockdown on 

maprotiline treatment is specific to the prefrontal cortex. Real-time RT-PCR 

and Western blot analyses were performed to investigate the effect of 

maprotiline treatment on iPLA2, specifically iPLA2β, which is involved in 

brain DHA signaling and metabolism (Basselin et al., 2010). Western blot 

analysis was also carried out to validate the efficacy of iPLA2 antisense 

oligonucleotide and this was followed by lipidomic analysis to study the 

effects of maprotiline treatment and iPLA2 knockdown on the lipid profile of 

the prefrontal cortex. 
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2. Materials and methods 

2.1. Experimental animals 

A total of 80 male C57BL mice weighing between 20 – 30 g each and 

around 6 – 8 weeks old were used throughout this study. They were obtained 

from NUS Comparative Medicine Animal Facility and were housed under 

defined conditions (65 % relative humidity, 22 °C room temperature and 12 

hours of lighting daily) with unrestricted access to water and food. All mice 

were randomized to treatment and all animal procedures were carried out in 

accordance to the approval and guidelines of the Institutional Animal Care and 

Use Committee of NUS. 

 

2.2. Pain behavioral studies 

2.2.1 Effect of antidepressant and oligonucleotide treatment on pain 

behavioral responses 

Pain behavioral studies were first carried out to study the effect of 

antidepressant treatment and iPLA2 knockdown on pain behavioral responses 

in a mouse model of inflammatory orofacial pain. There were two parts for the 

pain behavioral studies where the first part involved intracortical 

oligonucleotide injections at the dorsolateral prefrontal cortex while the 

second part involved oligonucleotide injections at the somatosensory cortex.  

For the first part of the pain behavioral studies involving intracortical 

(i.c.) injections at the dorsolateral prefrontal cortex, mice were divided into 
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seven equal groups (six mice per group) and given daily intraperitoneal (i.p.) 

injections of maprotiline (two groups), amitriptyline (two groups) or saline 

(three groups) throughout the duration of the study (Fig. 3.1). For maprotiline 

treatment, the chosen dose of 10 mg/kg was based on previous studies which 

showed both behavioral and neurochemical changes in animal models after 

maprotiline administration (Parra et al., 2000; Tan et al., 2006; Lee et al., 

2012). A dose of 10 mg/kg was likewise chosen for amitriptyline based on 

previous pain studies (Paudel et al., 2007). For the second part of the study 

involving somatosensory cortex (s.s.) injection, three groups of mice (six mice 

per group) were given daily i.p. maprotiline (two groups) or saline (one group) 

injections throughout the duration of the study (Fig. 3.1). Only one saline 

treatment group was used in the second part of the study as a baseline pain 

reference for comparison to the maprotiline treated groups after 

oligonucleotide injections at the somatosensory cortex and also to reduce the 

number of necessary animals used as accordance to the Institutional Animal 

Care and Use Committee of NUS guidelines. Our previous study had shown 

that the number of six mice per group was sufficient to display significant 

differences in nociceptive behavior between different treatment groups (Poh et 

al., 2011). 

 

 

 

 

 



Chapter 3: Role of Prefrontal Cortical iPLA2 in Antidepressant-Induced 

Antinociception 

57 
 

 

 

Fig. 3.1 Schematic flowchart of the experimental outline and animal grouping 

for the pain behavioral studies. 

 

2.2.2 Dorsolateral prefrontal cortex intracortical (i.c.) oligonucleotide injection 

On day 21 of maprotiline, amitriptyline or saline treatment, mice were 

anesthetized by i.p. injection of ketamine/medetomidine mixture and 
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positioned on a stereotaxic device (Stoelting, USA). Dorsolateral prefrontal 

cortex intracortical (i.c.) oligonucleotide injections were carried out one hour 

after maprotiline, amitriptyline or saline treatment. Antisense oligonucleotide 

(3 µg/µl), sense oligonucleotide (3 µg/µl) or sterile saline was stereotaxically 

administered into the right and left sides of the dorsolateral prefrontal cortex 

through small craniotomies on the skull (coordinates: 2.5 mm rostral to 

bregma, 1.5 mm lateral to midline and 1.5 mm from surface of cortex). A total 

volume of 1 µl was injected over 5 minutes on each side and the scalp was 

sutured after the injection was done. The antisense oligonucleotide used was a 

20-base oligonucleotide which corresponds to nucleotides 59–78 of the murine 

iPLA2 sequence (5’-CTCCTTCACCCGGAATGGGT-3’) and was shown to 

reduce iPLA2 expression in mouse P388D1 macrophage-like cells (Balsinde et 

al., 1997). Our previous study also showed the effectiveness of the iPLA2 

antisense oligonucleotide in decreasing iPLA2 expression in the mouse 

prefrontal cortex (Lee et al., 2012). Scrambled sense oligonucleotide was used 

as a control (5’-ACCCATTCCGGGTAAAGGAG-3’). Both antisense and 

sense oligonucleotides contained phosphorothioate linkages to prevent 

nuclease degradation.  

 

2.2.3. Somatosensory cortex (s.s.) oligonucleotide injection 

The procedures and timeline for somatosensory cortex oligonucleotide 

injections were similar to that of the prefrontal cortex injections, except that 

maprotiline or saline treated groups received sense or antisense 

oligonucleotides or saline in the somatosensory cortex at coordinates: 1.5 mm 
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caudal to bregma, 3 mm lateral to the midline and 1.5 mm from the surface of 

the cerebral cortex.  

 

2.2.4. Facial carrageenan injection and pain behavioral assay 

On day 24 of antidepressant or saline treatment, mice were first 

anesthetized and subsequently injected with 50 µL carrageenan (2 mg/50 µL 

of lambda carrageenan) in the subcutaneous tissue over the left maxillary, 

ophthalmic and mandibular region. Carrageenan administration resulted in a 

constant swelling of approximately 4 mm in diameter and induced allodynia in 

the days following the injection as shown in our previous study (Poh et al., 

2012). Mice were tested for pain behavioral responses before carrageenan 

injection, and once daily after carrageenan injection at one hour after daily 

antidepressant or saline i.p. treatment. Testing of pain behavioral responses 

was performed in a blinded manner and was carried out individually in a deep 

rectangular tank, sized (L x W x H) 60 × 40 × 25 cm (Vos et al., 1994; Poh et 

al., 2009). A von Frey hair filament (Touch-Test Sensory Evaluator, North 

Coast Medical, Morgan Hill, USA) delivering 1.4 g force (4.17 log units = 

13.725 mN) was used to test the pain behavioral responses. The von Frey hair 

was first reached into the tank for 5 – 10 minutes to ensure that the mice were 

familiarized with the reaching movements before testing. Mice were observed 

to confirm that they were able to move without restrictions during this period 

of time. Test stimuli using the von Frey hair was administered when the mice 

were neither freezing nor moving and with all four paws placed on the ground 

while displaying sniffing behavior. To acquire an adequate number of 
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responses for the reduction of variability among individual mice in each 

treatment group, the carrageenan-injected area of the face was probed 20 times 

with the von Frey hair. Each new stimulus with the von Frey hair was 

administered at least 30 seconds after the previous administration. Directed 

facial grooming (a continuous series of facial wash strokes directed to the 

stimulated facial area by the mice) was utilized as an indicator of unilateral 

facial pain in freely moving mice. The number of immediate asymmetric facial 

grooming/scratching strokes was then obtained to calculate the total number of 

facial strokes displayed by each animal after 20 stimulations using the von 

Frey hair filament. The mean and standard error of total facial strokes were 

calculated and possible significant differences studied using two-way mixed 

ANOVA to analyze the interactions between treatment and time on the mean 

pain behavioral responses, followed by two-tailed Student’s t-tests to compare 

the possible significant differences in the mean pain behavioral responses 

between the different treatment groups at each time point (IBM SPSS 

Statistics, Version 20.0, New York, USA). P < 0.05 was considered 

significant. 

 

2.3. Effect of maprotiline treatment on iPLA2 mRNA and protein expression 

in the prefrontal cortex 

This part of the study was then carried out to investigate the effect of 

maprotiline treatment on prefrontal cortical iPLA2 mRNA and protein 

expression. Two groups of mice (four mice per group) were given daily i.p. 

injections of either maprotiline (Sigma, St. Louis, USA) or saline for 28 days. 
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After 28 days, mice were sacrificed by i.p. injection of 

ketamine/medetomidine cocktail and decapitated, and the prefrontal cortex 

dissected out for subsequent Real-time RT-PCR and Western blot analyses 

(Fig. 3.2).  

 

2.4. Effect of iPLA2 knockdown on iPLA2 protein expression and lipid profile 

The antisense oligonucleotide to iPLA2 being used in this study was 

previously shown to successfully knockdown iPLA2 expression in the normal 

mouse prefrontal cortex (Lee et al., 2012). Thus, this part of the study was 

carried out to further validate the efficacy of this antisense oligonucleotide to 

similarly reduce iPLA2 levels in maprotiline-treated mice using Western blot 

analysis. Lipidomic analysis was also performed to study the effects of 

maprotiline treatment and iPLA2 knockdown on the lipid profile of the 

prefrontal cortex (Fig. 3.2). Three groups of mice (four mice per group) were 

given daily i.p. injections of either maprotiline (two groups) or saline (one 

group). On day 21 of i.p. injection, saline-treated mice received intracortical 

injection of normal saline to the prefrontal cortex, while one group of 

maprotiline-treated mice was intracortically injected with iPLA2 antisense 

oligonucleotide, and the other with scrambled sense oligonucleotide. Facial 

carrageenan injection was then administered to the above mice on day 24 of 

i.p. injection. Pain behavioral response testing was carried out daily until the 

time of sacrifice on 4 days after carrageenan injection. The prefrontal cortex 

was harvested for Western blot analysis to verify the efficacy of antisense 

oligonucleotide to iPLA2 and for lipidomic analysis. 
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Fig. 3.2 Schematic flowchart of the experimental outline and animal grouping 

for the real-time RT-PCR, Western blot and lipidomic analyses. 
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2.5. Real-time RT-PCR 

RNA was extracted from the prefrontal cortex and reverse transcribed 

using High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, 

CA, USA). The conditions for the reverse transcription reactions were 25 °C 

for 10 minutes followed by 37 °C for 120 minutes and 85 °C for 5 minutes. 

Quantitative real-time PCR amplification was then performed in the 7500 

Real-time PCR system (Applied Biosystems, CA, USA) using the converted 

cDNA together with TaqMan® Universal PCR Master Mix (Applied 

Biosystems, CA, USA) and TaqMan® probes for mouse iPLA2β and beta-actin 

(Mm01299491_m1 and #4331182 respectively, synthesized by Applied 

Biosystems). The conditions for real-time PCR amplification were initial 

incubation at 50 °C for 2 minutes and 95 °C for 10 minutes, followed by 40 

cycles of 95 °C for 15 seconds and 60 °C for 1 minute. All amplification 

reactions were carried out in triplicates. The number of reaction cycles at 

which the reporter fluorescence emission exceeds the preset threshold level is 

the threshold cycle, CT. There is an inverse correlation between the CT value 

and the levels of target mRNA. The amplified transcripts were then quantified 

using the comparative CT method with the formula for relative fold change = 

2−∆∆CT (Livak and Schmittgen, 2001).  The mean and standard error for each 

treatment group were calculated and possible significant differences analyzed 

using two-tailed Student’s t-test. P < 0.05 was considered significant. 
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2.6 Western blot analysis 

Proteins were first extracted from the prefrontal cortex using T-PER® 

Tissue Protein Extraction solution containing 1 % HaltTM protease inhibitor 

and 1 % EDTA solution (Thermo Fischer Scientific, Rockford, IL, USA). 

Concentrations of the protein obtained were measured using the Bio-Rad 

protein assay kit. Protein samples (30 µg) were then mixed with a loading dye 

consisting of SDS and DTT before undergoing denaturation at 95 – 100 °C for 

10 minutes and resolved in 10 % SDS-polyacrylamide gels under reducing 

conditions. A protein ladder containing molecular weight of 250, 150, 100, 75, 

50, 37, 25, 20, 15 and 10 kDa was also used to monitor the electrophoresis run 

and to check for protein size as well as protein transfer efficacy (Precision 

Plus Protein Dual Color Standards, Bio-Rad Laboratories, CA, USA). The 

resolved proteins were then electrotransferred to a polyvinylidene difluoride 

(PVDF) membrane and non-specific binding sites were blocked by incubation 

for 1 hour with 5 % non-fat milk in tris-buffered saline containing 0.1 % 

Tween-20 (TBST). After blocking, the PVDF membrane was incubated 

overnight with iPLA2 antibody (#sc-14463, Santa Cruz Biotechnology, CA, 

USA; diluted 1:2000 in 5 % non-fat milk in TBST) at 4 C. The PVDF 

membrane was then washed with TBST and incubated with horseradish 

peroxidase-conjugated anti-goat IgG (Thermo Fisher Scientific, Rockford, IL, 

USA; diluted 1:2000 in 5 % non-fat milk in TBST) for 1 hour at room 

temperature. The protein bands were visualized with an enhanced 

chemiluminescence kit (Supersignal West Pico, Thermo Fisher Scientific, 
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Rockford, IL, USA). For the loading controls, the membrane was incubated 

with a stripping buffer for 10 minutes at room temperature (Restore Western 

Blot Stripping Buffer, Thermo Fisher Scientific, Rockford, IL, USA). After 

stripping, the membrane was again blocked with 5 % non-fat milk in TBST 

before incubating with a mouse monoclonal antibody to beta-actin (Sigma-

Aldrich, St. Louis, MO, USA; diluted 1:10000 in 5 % non-fat milk in TBST) 

for 1 hour at room temperature. The membrane was then incubated with 

horseradish peroxidase-conjugated anti-mouse IgG (Thermo Fisher Scientific, 

Rockford, IL, USA; diluted 1:10000 in 5 % non-fat milk in TBST) for 1 hour. 

Visualization of the protein bands were then carried out as mentioned earlier. 

Visualized films containing the protein bands were scanned and their densities 

were measured using the Gel-Pro Analyzer 3.1 program (Media Cybernetics, 

Silver Spring, MD, USA). The densities of the target bands were normalized 

against those of beta-actin. The mean and standard error were then calculated 

and possible significant differences analyzed using two-tailed Student’s t-test 

or one-way ANOVA with Bonferroni multiple comparison post-hoc test. P < 

0.05 was considered significant. 

 

2.7. Lipidomic analysis 

Prefrontal cortex tissue samples were homogenized using a sonicator 

for 30 minutes at 4 ºC in 750 μL of chloroform/methanol, 1:2 (v/v) and 5 μL 

of an internal standards solution, containing N-lauroyl-D-erythro-

sphingosylphosphorycholine, N-heptadecanoyl-D-erythro-sphingosine and 

1,2-dimyristoyl-sn-glycero-3-phosphocholine, all from Avanti Polar Lipids 
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(Alabaster, AL, USA). Samples were then mixed with 250 μL chloroform and 

450 μL 0.88 % potassium chloride (KCl), vortexed and centrifuged at 9000 g 

at 4 °C for 2 minutes. The aqueous phase was re-extracted with 250 µl of 

chloroform and the extracted organic fractions pooled. Lipids were isolated 

from the organic phase, vacuum-dried (Thermo Savant SpeedVac, USA), and 

resuspended for analyses. An Agilent 1290 UPLC system connected with an 

Agilent 6460 Triple Quadrupole mass spectrometer (Santa Clara, CA, USA) 

was used for quantification of individual polar lipids. The column used was a 

Kinetex HILIC (150 X 2.10 mm) packed with 2.6 µM core-shell particles 

from Phenomenex (Torrance, CA, USA). Solvents used for the HILIC LC: 50 

% acetonitrile in water containing 25 mM ammonium formate pH 4.6 (solvent 

A) and 95 % acetonitrile containing 25 mM ammonium formate H 4.6 (solvent 

B). Analytes were eluted with the following gradient: 0.1 % solvent A and 

99.9 % solvent B from 0 to 6 minutes, 75 % solvent A and 25 % solvent B 

from 6 to 7 minutes, 90 % solvent A and 10 % solvent B from 7 to 7.1 

minutes, and 0.1 % solvent A and 99.9 % solvent B from 7.1 to 10.1 minutes 

with a constant flow rate of 0.5 mL/minute. MS source parameters: gas 

temperature 300 ºC with a flow of 5 L/minute and nebulizer at 45 psi. Sheath 

gas temperature 250 ºC with a gas flow rate of 11 L/minute. The Agilent 6460 

triple quadrupole was operated in positive mode for Multiple Reaction 

Monitoring (MRM). In the positive ion MRM mode, product ions at 184 m/z 

were monitored after CID of the lipid precursors for both cholines and 

sphingomyelins. Product ions at 262, 264 and 266 m/z were monitored for d18 

ceramides. Quantification was performed according to the internal standard 

method, comparing peak areas of the sample to the ISTD. All samples were 
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resuspended in solvent B before injecting the sample for LC-MS analyses. 

Data were extracted and analyzed using Agilent MassHunter Qualitative and 

Agilent MassHunter Quantitative software (Santa Clara, CA, USA). The mean 

and standard error for each lipid species were calculated and then analyzed 

using one way ANOVA with Bonferroni multiple comparison post-hoc test to 

check for possible significant differences. P < 0.05 was considered significant. 

 

3. Results 

3.1. Pain behavioral studies 

3.1.1. Antidepressant and prefrontal cortex oligonucleotide treatment groups 

A higher number of facial strokes indicate more pain and a higher pain 

behavioral response. Responses of the saline + iPLA2 antisense 

oligonucleotide, saline + scrambled sense oligonucleotide and saline + saline 

groups showed a similar trend and all three peaked at day 4 after carrageenan 

injection. Responses of the amitriptyline + antisense and amitriptyline + sense 

treatment groups also showed a similar trend and peaked at day 4 after 

carrageenan injection. Responses of the maprotiline + antisense 

oligonucleotide treatment peaked at day 5 while the maprotiline + sense 

oligonucleotide treatment peaked at day 3 after carrageenan injection. The 

maprotiline + antisense treatment group had a higher trend in pain behavior as 

compared to the maprotiline + sense treatment group. This trend by the 

maprotiline + antisense group was similar to that of the saline treatment 

groups (Fig. 3.3).  
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Two-way ANOVA indicated that the within subject effects were 

significant, F(14, 490) = 304.688, P < 0.001. This showed that there was a 

significant interaction between treatment and time on the pain behavioral 

responses. Further two-tailed Student’s t-test carried out to compare between 

the treatment groups showed no significant differences between the saline + 

saline and saline + antisense groups, indicating that antisense iPLA2 treatment 

to the prefrontal cortex in the absence antidepressant treatment did not have 

any effect on pain behavior (Fig. 3.3).  

Similar to that of saline-treated mice, there were no significant 

differences between the two amitriptyline treatment groups throughout the 

duration of the study, which indicate that antisense treatment to the prefrontal 

cortex did not have any effect on the pain behavior of amitriptyline-treated 

mice. However, there were significant differences between both amitriptyline 

treatment groups and all three saline treatment groups from days 4 to 14 after 

carrageenan injection, highlighting the antinociceptive effect of amitriptyline 

treatment (P < 0.05) (Fig. 3.3). 

The maprotiline + sense treatment group had significantly lower pain 

behavioral responses from days 4 to 14 after carrageenan injection as 

compared to all three saline treatment groups (Fig. 3.3). Interestingly, the 

number of responses of maprotiline + antisense treatment group was similar to 

that of the saline treatment groups and had significantly greater responses 

compared to the maprotiline + sense treatment group from days 4 to 12 after 

carrageenan injection (P < 0.05) (Fig. 3.3). Overall, the maprotiline + sense 

treatment group showed a lower trend in the number of facial strokes as 
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compared to the other groups. The results indicate that maprotiline exerts an 

antinociceptive effect in the facial carrageenan pain model. Antisense 

oligonucleotide to iPLA2 treatment was found to abolish this antinociceptive 

effect and return the facial stroke values similar to that of saline treatment 

groups. The maprotiline + sense treatment group also showed significantly 

lower number of facial strokes as compared to both amitriptyline treatment 

groups on days 4, 5, 7, 9 and 12 after carrageenan injection which suggest that 

maprotiline treatment has a relatively stronger antinociceptive effect in this 

carrageenan mouse model of inflammatory orofacial pain. 

 

 

Fig. 3.3 Pain behavioral responses – antidepressant treatment and prefrontal 

cortex injection. Responses to von Frey hair stimulation after prefrontal cortex 

injection and facial swelling induced by carrageenan administration in 

addition to daily intraperitoneal injection of maprotiline (10 mg/kg), 

amitriptyline (10mg/kg) or saline. The Y-axis represents number of responses 

to von Frey hair stimulation of the carrageenan-injected areas of the face. Day 

0 refers to the day before carrageenan injection was carried out while Day 1 to 

Day 14 refers to 1 day to 14 days after injection. Asterisks (*) indicate 

significant differences at P < 0.05 between the two amitriptyline treatment 

groups and all three saline treatment groups as well as significant differences 

at P < 0.05 between the maprotiline + sense treatment group and all three 
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saline treatment groups. Symbol (#) indicate significant differences at P < 0.05 

between maprotiline + sense treatment group and maprotiline + antisense 

treatment group. Symbol (^) indicate significant differences at P < 0.05 

between maprotiline + sense treatment group and both amitriptyline treatment 

groups. Data represent the mean and standard error of six mice per treatment 

group. 

 

3.1.2. Maprotiline and somatosensory cortex oligonucleotide treatment groups 

Responses of the saline + saline treatment group peaked at day 4 after 

carrageenan injection. Responses of both maprotiline treatment groups showed 

a similar trend and peaked at day 4 after carrageenan injection. Both 

maprotiline treatment groups also showed a lower trend as compared to the 

saline + saline treatment group. Two way ANOVA indicated that the within 

subject effects were significant, F(14, 210) = 110.830, P < 0.001. This showed 

that there was a significant interaction between treatment and time on the pain 

behavioral responses. Further two-tailed Student’s t-test carried out to 

compare the treatment groups at each time point showed significant 

differences between the two maprotiline treated groups and the saline + saline 

group from days 4 to 14 after carrageenan injection, indicating antinociceptive 

effect of maprotiline treatment (P < 0.05). However, in contrast to iPLA2 

antisense oligonucleotide injection in the prefrontal cortex, no significant 

difference was detected between the maprotiline + antisense and maprotiline + 

sense treatment group, after oligonucleotide injection to the somatosensory 

cortex (Fig. 3.4). The results suggest that unlike the prefrontal cortex, 

administration of iPLA2 antisense oligonucleotide to the somatosensory cortex 

did not affect the antinociceptive effect of maprotiline. 
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Fig. 3.4 Pain behavioral responses - maprotiline treatment and somatosensory 

injection. Responses to von Frey hair stimulation after somatosensory cortex 

oligonucleotide injections and facial swelling induced by carrageenan 

administration in addition to daily intraperitoneal injection of maprotiline (10 

mg/kg) or saline. Asterisks (*) indicate significant differences at P < 0.05 

between the saline + saline group and both maprotiline treatment groups. Data 

represent the mean and standard error of six mice per treatment group. 

 

3.2. Effect of maprotiline treatment on prefrontal cortical iPLA2 expression 

3.2.1. Real-time RT-PCR 

Quantitative real-time RT-PCR using the iPLA2β probe showed a 

significant 1.59 fold increase in iPLA2 mRNA expression in the mouse 

prefrontal cortex after maprotiline treatment for 28 days as compared to saline 

treatment (P < 0.05) (Fig. 3.5). The results indicate that maprotiline treatment 

increased iPLA2 mRNA expression in the prefrontal cortex. 
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Fig. 3.5 Effect of maprotiline treatment on iPLA2 mRNA expression in the 

mouse prefrontal cortex. Real-time RT-PCR analysis on iPLA2 expression in 

the mouse prefrontal cortex after maprotiline treatment. Data represent the 

mean and standard error of four mice per treatment group. Asterisks (*) 

indicate significant differences at P < 0.05 when compared to saline control. 

 

3.2.2. Western blot analysis  

Western blot analysis of the mouse prefrontal cortex showed the 

presence of a band at around 85 kDa which corresponds to the band size of the 

iPLA2 protein. Densitometric analyses of the protein blots showed a 

significant 4.2 fold increase in iPLA2 protein expression in the mouse 

prefrontal cortex after maprotiline treatment for 28 days as compared to saline 

treatment (P < 0.05) (Fig. 3.6). The increase in iPLA2 protein expression is 

consistent with the increase in iPLA2 mRNA expression in the prefrontal 

cortex after maprotiline treatment. 
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Fig. 3.6 Effect of maprotiline treatment on iPLA2 protein expression in the 

mouse prefrontal cortex. (A) Western blot and (B) densitometric analysis of 

iPLA2 protein expression in the mice prefrontal cortex after antidepressant 

treatment. Asterisks (*) indicate significant differences at P < 0.05 when 

compared to saline control. 

 

3.3. Effects of maprotiline treatment and prefrontal cortical iPLA2 knockdown 

on iPLA2 protein expression and lipid profile 

3.3.1. Pain behavioral responses 

Responses of the maprotiline + antisense group and the saline + saline 

group showed a similar trend up to day 4 after carrageenan injection. 

Responses of the maprotiline + sense group showed a peak at day 3 after 
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carrageenan injection similar to the responses in Fig. 3.3 and the responses at 

day 4 was lower compared to the maprotiline + antisense group and the saline 

+ saline group. Two way ANOVA indicated that the within subject effects 

were significant, F(4, 36) = 546.781, P < 0.001. This showed that there was a 

significant interaction between treatment and time on the pain behavioral 

responses. Further two-tailed Student’s t-test carried out to compare between 

the treatment groups at each time point showed a significant difference 

between the maprotiline + antisense treatment group and saline + saline 

treatment group and also between the maprotiline + antisense treatment group 

and the maprotiline + sense treatment group on day 4 (Fig. 3.7) after 

carrageenan injection similar to the results in Fig. 3.3 (P < 0.05). The results in 

Fig 3.7 thus importantly showed the reproducibility of the pain behavioral 

responses as seen in Fig 3.3.  
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Fig. 3.7 Pain behavioral responses – maprotiline treatment and prefrontal 

cortex injection. Responses to von Frey hair stimulation after prefrontal cortex 

injection and facial swelling induced by carrageenan administration at up to 

day 4 after carrageenan injection and after daily intraperitoneal injection of 

maprotiline (10 mg/kg). Data represent the mean and standard error of four 

mice per treatment group. Asterisks (*) indicate significant differences at P < 

0.05 when comparing maprotiline + sense treatment group to both saline + 

saline and maprotiline + antisense treatment groups.  

 

3.3.2. Western blot analysis 

Western blot analysis of the mouse prefrontal cortex similarly showed 

the presence of a band at around 85 kDa which corresponds to the band size of 

the iPLA2 protein. Densitometric analyses of the protein blots showed a 

significant 3.0 fold increase in iPLA2 protein expression in the mouse 

prefrontal cortex after maprotiline + sense treatment as compared to the saline 

+ saline treatment (P < 0.05) (Fig. 3.8). This result is consistent with the 

increase in iPLA2 mRNA and protein after maprotiline treatment observed 

earlier. Administration of antisense oligonucleotide to iPLA2 to maprotiline 

treated mice, however, significantly abolished the increase in iPLA2 protein 
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expression. Results confirmed the effectiveness of antisense oligonucleotide to 

iPLA2 in reducing iPLA2 protein expression in maprotiline treated mice even 

at day 4 after carrageenan injection. 

 

 

 

Fig. 3.8 Effect of oligonucleotide treatment on iPLA2 protein expression in the 

mouse prefrontal cortex after maprotiline treatment. (A) Western blot and (B) 

densitometric analysis on the effect of oligonucleotide treatment on iPLA2 

protein expression in the mouse prefrontal cortex after maprotiline treatment. 

Asterisks (*) indicate significant differences at P < 0.05. 
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3.3.3. Lipidomic analysis 

 Lipidomic analysis results showed that maprotiline treatment had 

significant effects on several different lipid species which was abolished by 

antisense oligonucleotide to iPLA2 treatment. There was a significant increase 

in the PC 32:0 lipid species after maprotiline + sense treatment as compared to 

the other treatment groups, but concentrations of PC 36:1, PC 36:3, PC 38:3, 

PC 38:5, PC 40:4, PC 40:5 and PC 40:6 were significantly reduced after 

maprotiline + sense treatment (P < 0.05). Treatment with maprotiline + 

antisense abolished the changes in phosphatidylcholine lipid species (Fig. 3.9). 

Concurrently, maprotiline + sense treatment caused a significant increase in 

the LPC 16:0, LPC 18:0, 18:1 and LPC 20:4 species, and these were similarly 

abolished after treatment with antisense oligonucleotide (P < 0.05) (Fig. 3.10). 

The general decrease in PC species levels and the increase in LPC levels 

indicate an increased iPLA2 enzymatic activity as iPLA2 hydrolyzes PCs to 

form LPCs and fatty acids. The fatty acids produced was found to include 

DHA as shown by the decrease in PC 40:6 and the increase in LPC 18:0 to 

release a 22:6 fatty acid which is DHA. Similarly, EPA (20:5) was also one of 

the possible fatty-acid side chain released, based on the decrease of PC 38:5 

and the increase of LPC 18:0. In addition, maprotiline + sense treatment 

induced a significant increase in several ceramide species, including Cer 

d18:1/C20:0, Cer d18:1/C22:0, Cer d18:1/C24:0 and Cer d18:1/C24:1, and 

these were repressed by antisense treatment (P < 0.05) (Fig. 3.11). Maprotiline 

+ sense treatment also increased SM 18/16:0 species as well as decreased SM 

18/20:0 and SM 18/24:1 species levels and these changes were abolished by 

antisense treatment (P < 0.05) (Fig. 3.12). The changes in the ceramide and 
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sphingomyelin levels indicate an increased sphingomyelinase activity after 

maprotiline treatment. 

 

 

Fig. 3.9 Lipidomic analysis - phosphatidylcholine species. Lipidomic analysis 

of PC species in the mice prefrontal cortex after maprotiline and 

oligonucleotide treatment. Data represent the mean and standard error of four 

mice per treatment group. Asterisks (*) indicate significant differences at P < 

0.05 in the lipid concentration of maprotiline + sense compared to all other 

treatment groups. 
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Fig. 3.10 Lipidomic analysis - lysophosphatidylcholine species. Lipidomic 

analyses of LPC species in the mice prefrontal cortex after maprotiline and 

oligonucleotide treatment. Asterisks (*) indicate significant differences at P < 

0.05 in the lipid concentration of maprotiline + sense compared to all other 

treatment groups. 
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Fig. 3.11 Lipidomic analyses - ceramide species. Lipidomic analyses of Cer 

species in the mice prefrontal cortex after maprotiline and oligonucleotide 

treatment. Data represent the mean and standard error of four mice per 

treatment group. Asterisks (*) indicate significant differences at P < 0.05 in 

the lipid concentration of maprotiline + sense compared to all other treatment 

groups. 
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Fig. 3.12 Lipidomic analyses - sphingomyelin species. Lipidomic analyses of 

SM species in the mice prefrontal cortex after maprotiline and oligonucleotide 

treatment. Asterisks (*) indicate significant differences at P < 0.05 in the lipid 

concentration of maprotiline + sense compared to all other treatment groups. 

 

4. Discussion 

The present study was carried out to investigate the role of prefrontal 

cortical iPLA2 in the antinociceptive effect of maprotiline and amitriptyline as 

well as to examine the effect of maprotiline treatment on prefrontal cortical 

iPLA2 expression and lipid profile. Pain behavioral studies were first carried 

out to determine the effect of antidepressant treatment on nociception in a 

carrageenan mouse model of inflammatory orofacial pain. Behavioral analysis 

of mice that received daily intraperitoneal saline injection and facial 

carrageenan injection showed no difference in the number of facial strokes 

after intracortical injections of saline, sense oligonucleotide, or antisense 
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oligonucleotide to iPLA2 at the prefrontal cortex. A higher number of facial 

strokes indicate more pain and a higher pain behavioral response. Our results 

showed that non-specific effect of iPLA2 knockdown on cortical neurons is 

unlikely, and that inhibition of constitutive prefrontal cortex iPLA2 did not 

have a significant effect on pain behavior. This is consistent with our previous 

findings where inhibition of iPLA2 levels in the prefrontal cortex in the 

absence of antidepressant treatment did not affect despair behavior during the 

forced swim test (Lee et al., 2012).  

Both amitriptyline treatment groups showed significantly lower 

number of facial strokes as compared to the saline treatment groups, 

highlighting the antinociceptive activity of amitriptyline. The observed effect 

of amitriptyline on nociception is consistent with its clinical usage in 

managing pain conditions (Fishbain, 2000; Salerno et al., 2002; Staiger et al., 

2003). Similar to the saline treatment groups, administration of antisense 

oligonucleotide to iPLA2 did not affect the pain behavioral responses of the 

amitriptyline treatment groups. The maprotiline + sense treatment group also 

exhibited antinociceptive activity as demonstrated by the reduced number of 

facial wash strokes after von Frey hair stimulation of the carrageenan-injected 

area as compared to the saline treatment groups. In addition, the maprotiline + 

sense treatment group was found to have significantly lower pain responses as 

compared to the amitriptyline groups at several time points of the study which 

seem to suggest that maprotiline treatment is marginally more effective than 

amitriptyline in modulating nociception in the carrageenan mouse model of 

inflammatory orofacial pain. However, the reduction in facial wash strokes 

induced by maprotiline treatment was abolished when the prefrontal cortex 



Chapter 3: Role of Prefrontal Cortical iPLA2 in Antidepressant-Induced 

Antinociception 

83 
 

was intracortically injected with antisense oligonucleotide to iPLA2, 

suggesting that the loss of this enzyme could impact maprotiline-induced 

antinociception. Interestingly, our results showed that knockdown of 

prefrontal cortical iPLA2 only abolished the antinociceptive effects of 

maprotiline but not amitriptyline, suggesting that unlike amitriptyline, 

maprotiline-induced antinociception is highly dependent on prefrontal cortical 

iPLA2. Both maprotiline and amitriptyline are classified as TCAs 

(Baldessarini, 2006). However, amitriptyline has stronger effects on the 

serotonin transporter and weaker effects on the noradrenaline transporter as 

compared to maprotiline (Owens et al., 1997). Maprotiline also has a much 

higher selectivity for inhibition of noradrenaline reuptake as compared to 

amitriptyline (Rang et al., 2007). Thus, it is possible that the antinociceptive 

activity of other TCAs with similarly strong effects on the noradrenaline 

transporter may also involve prefrontal cortical iPLA2. Additional work, 

however, is needed to further investigate this possibility.   

To investigate whether the role of iPLA2 in antidepressant-induced 

antinociceptive effect is specific to the prefrontal cortex, iPLA2 antisense was 

injected into the somatosensory cortex of maprotiline-treated mice followed 

by pain behavioral analysis. Treatment with maprotiline significantly reduced 

pain behavior in mice compared to saline treatment, but in contrast to the 

prefrontal cortex, no significant differences in pain behavior was detected 

between the maprotiline + antisense and the maprotiline + sense groups after 

somatosensory cortex antisense injection. Results indicate that the effect of 

iPLA2 in antinociception is specific to the prefrontal cortex. These findings are 

consistent with the view that the prefrontal cortex and PAG, rather than the 
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somatosensory cortex, is a source of supraspinal antinociception (Sessle et al., 

1976; Christie et al., 1986; Floyd et al., 2000). 

We then studied the effect of maprotiline treatment to confirm that 

maprotiline does indeed affect iPLA2 expression in the prefrontal cortex. Real-

time RT-PCR showed a significant increase in iPLA2 mRNA expression in the 

mouse prefrontal cortex after maprotiline treatment and a similar significant 

increase in iPLA2 protein expression was shown by Western blot analysis. 

This increase in iPLA2 expression is consistent with the up-regulation in 

phospholipase A2 activity in the prefrontal cortex after maprotiline treatment 

as shown in our previous study, suggesting a potentially important role of 

iPLA2 in mediating the pharmacological effects of maprotiline (Lee et al., 

2012). Western blot analysis confirmed the efficacy of antisense 

oligonucleotide to iPLA2 in reducing prefrontal iPLA2 protein expression, as 

shown in our previous study on mice without carrageenan injection (Lee et al., 

2012). In that study, we also demonstrated that administration of iPLA2 

antisense oligonucleotide to the prefrontal cortex did not induce apoptosis in 

the prefrontal cortex (Lee et al., 2012). 

Increased iPLA2 expression in the brain may lead to endogenous 

release of DHA and EPA as shown in our previous study (Lee et al., 2012). 

Similar to our previous study on mice without carrageenan injection (Lee et 

al., 2012), lipidomic analysis of the prefrontal cortex in mice that received 

maprotiline and facial carrageenan injection showed significant increases in 

LPC lipid species and decreases in PC lipid species, suggesting increased 

iPLA2 activity. The fatty-acid side chain released by iPLA2 activity was found 
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to include DHA (22:6), based on the decrease of PC 40:6 and the increase of 

LPC 18:0. Similarly, EPA (20:5) was also one of the possible fatty-acid side 

chain released, based on the decrease of PC 38:5 and the increase of LPC 18:0. 

DHA is metabolized to D-series resolvins and neuroprotectins, while EPA is 

metabolized to E-series resolvins (Serhan et al., 2004). These metabolites have 

anti-inflammatory properties and effects on neural plasticity (Hasturk et al., 

2006; Sun et al., 2007; Xu et al., 2010; Cortina et al., 2013; Erdinest et al., 

2014). Resolvins and neuroprotectins also facilitate cell survival signaling and 

synaptic plasticity (Tassoni et al., 2008; Bazan, 2009; Park et al., 2011; Serhan 

and Petasis, 2011). It is possible that plasticity changes associated with 

increased resolvins and neuroprotectins in the dorsolateral prefrontal cortex 

may mediate the antidepressive and antinociceptive effects of TCAs, 

particularly those with strong noradrenaline reuptake inhibition activity. It is 

postulated that the antinociceptive effect of maprotiline involves the induction 

of iPLA2 activity and subsequent DHA and EPA release. Increased production 

of DHA, EPA and their metabolites may then facilitate activity or plasticity in 

the dorsolateral prefrontal cortex leading to activation of the PAG and 

subsequent descending pain inhibitory pathway. Thus, inhibition of prefrontal 

cortical iPLA2 may prevent activation of the prefrontal cortex and abolish 

PAG stimulation leading to decreased antinociceptive activity of 

antidepressants as shown by maprotiline in our study. 
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1. Introduction 

Induction of prefrontal cortical iPLA2 was previously revealed to be 

essential for the antidepressive effect of maprotiline, and iPLA2 activity is 

correlated with endogenous release of DHA (Lee et al., 2012). We have also 

shown earlier in the first part of our study that the antinociceptive activity of 

maprotiline also involves prefrontal cortical iPLA2 activity and expression, 

coupled with the production of DHA and EPA. Little, however, is known 

about the possible mechanisms and pathways involved in iPLA2 expression. 

Since maprotiline acts by inhibiting noradrenaline reuptake and increasing the 

level of noradrenaline, it is highly likely that induction of iPLA2 involves 

activation of adrenergic receptors. It is also possible that regulation of iPLA2 

expression induction involves the MAPK/extracellular signal-regulated kinase 

(MAPK/ERK) or cAMP-dependent PKA (cAMP/PKA) signaling pathways 

downstream from the adrenergic receptors. 

The second messenger cAMP/PKA cascade is linked with the 

pathophysiology and treatment of depression (Liu et al., 2012). AC-cAMP-

PKA signaling cascade dysfunction as well as reduced G-protein and cAMP 

levels were shown in patients with depression (Cowburn et al., 1994; Shelton 

et al., 1996; Dowlatshahi et al., 1999). Studies also revealed that chronic 

antidepressant treatment increases AC and GTP expression, induces the level 

and accumulation of forskolin-stimulated cAMP as well as augments PKA 

activity, leading to up-regulation of the cAMP/PKA signaling pathway 

(Nestler et al., 1989; Perez et al., 1989; Ozawa and Rasenick, 1991; Jensen et 

al., 2000). 
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In addition to the cAMP/PKA cascade, there is also evidence 

suggesting a possible role of the MAPK/ERK signaling pathway in the 

maprotiline-induced iPLA2 expression. The MAPK 1 and 3 (ERK1/2) 

activation pathway is one of the most researched alpha-1 adrenergic receptors-

stimulated pathways (Garcia-Sainz et al., 1999; Hague et al., 2002). Inhibition 

of MAPK signaling blocked the behavioral actions of antidepressants, 

resulting in a depressive-like phenotype (Duman et al., 2007). In addition, 

antidepressant efficacy is linked with altered limbic phosphorylated ERK1/2 

in an animal model of chronic depression (Gourley et al., 2008). Researchers 

also showed that the induction of PLA2 protein expression involves the 

MAPK/ERK cascade (Anfuso et al., 2007).  

Besides the cAMP/PKA cascade and MAPK/ERK signaling pathway, 

the sterol regulatory element-binding proteins (SREBPs), in particular 

SREBP-2, may also be implicated in the regulation of iPLA2 induction. 

SREBPs are transcription factors that bind to the SRE DNA sequence 

TCACNCCAC to regulate cellular fatty acid and cholesterol biosynthesis 

(Raeder et al., 2006). There exists two homologous SREBP proteins: SREBP-

1 and SREBP-2 (Raeder et al., 2006). SREBP-1 has two different isoforms, 

SREBP-1a and SREBP-1c, and is mainly involved in regulating genes 

required for fatty acid synthesis while SREBP-2 primarily controls the genes 

involved in cholesterol biosynthesis (Raeder et al., 2006). SREBPs are initially 

generated as inactive precursor proteins located in the membrane of the 

endoplasmic reticulum (ER) (Brown and Goldstein, 1997). Activation of the 

SREBP pathway will induce SREBP translocation to the Golgi apparatus 

where it will be proteolytically cleaved by site-1 protease (S1P) and site-2 
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protease (S2P) to release the cytoplasmic portion of SREBP, which then 

travels to the nucleus to activate transcription of target genes with the SRE 

sequence (Brown and Goldstein, 1997). Antidepressants such as imipramine 

were found to activate the SREBP system, leading to increased expression of 

downstream genes (Raeder et al., 2006). The iPLA2 gene was revealed to 

possess a putative SRE sequence which can bind to SREBP-2 (Seashols et al., 

2004). It was therefore suggested that induction of iPLA2 involves stimulation 

of adrenergic receptors followed by activation of either the cAMP/PKA 

cascade or MAPK/ERK signaling pathway to initiate the SREBP pathway and 

subsequent SREBP-2 binding to the iPLA2 gene. In this part of the study, we 

investigated the role of adrenergic receptors and the possible mechanisms and 

pathways involved in regulation of iPLA2 expression induction. 

Real-time RT-PCR and Western blot analyses were carried out to 

investigate the effect of antidepressant treatment and selective pathway 

inhibitors on SREBP-2 and iPLA2 expression. Electrophoretic mobility shift 

assay (EMSA) was also performed to investigate the effect of maprotiline, 

alpha-1 adrenergic receptor agonist and inhibitor treatment on the binding of 

SREBP-2 to the SRE region of the iPLA2 gene. Lastly, immunocytochemistry 

was carried out to study the effect of maprotiline and inhibitor treatment on 

iPLA2 cellular staining and expression. 

 

2. Materials and methods 

2.1. Cells and treatment 

2.1.1. Cell culture 
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SH-SY5Y neuroblastoma cells obtained from ATCC (Manassas, VA, 

U.S.A.) were used for this part of the study. SH-SY5Y cells are derived from 

the parental SK-N-SH line and they are relatively easy to manipulate and work 

with (Kovalevich and Langford, 2013). Human neuroblastoma cells such as 

LA-N-1 cells and SK-N-SH cells have also been successfully used in previous 

studies that showed novel functions of iPLA2 (Sun et al., 2004). In addition, 

SH-SY5Y cells are shown to express alpha adrenergic receptors and are able 

to synthesize, store and release catecholamines such as noradrenaline 

(Atcheson et al., 1994; Ou et al., 1998; Parsley et al., 1999; Perez, 2005; 

Mathieu et al., 2010; Korecka et al., 2013). The cells were maintained in 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 1 % 

penicillin-streptomycin solution and 10 % fetal bovine serum (FBS) at 37 °C 

with 5 % CO2 aeration. They were cultured on 100 mm culture plates until 80 

% confluency and used for subsequent treatments.  

 

2.1.2. Treatment with antidepressants 

Treatment with different antidepressants was first carried out to 

investigate their effect on iPLA2 expression. Besides maprotiline and 

amitriptyline, another TCA with strong noradrenaline reuptake inhibiting 

properties, nortriptyline, was used in this part of the study. SH-SY5Y cells 

were separated into 4 groups: 1) Treatment with vehicle, dimethyl sulfoxide 

(DMSO) 2) Treatment with 25 µM maprotiline 3) Treatment with 25 µM 

amitriptyline 4) Treatment with 25 µM nortriptyline. Each group consisted of 

five 100 mm culture plates (n = 5). The in vitro concentrations of 
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antidepressants used are based on other studies (Liao et al., 2010; Hisaoka et 

al., 2011). Incubation was carried out for 24 hours, after which the cells were 

washed in phosphate-buffered saline (PBS) and harvested for real time RT-

PCR analysis. A 24 hour time point was carried out to emulate the chronic 

treatment of antidepressants in the in vivo part of our study. 

 

2.1.3. Treatment with maprotiline and alpha-1 adrenergic receptor blocker 

Treatment with maprotiline and alpha-1 adrenergic receptor blocker 

was carried out to examine their effect on SREBP-2 and iPLA2 expression.  

SH-SY5Y cells were divided into 4 groups: 1) Treatment with vehicle, DMSO 

2) Treatment with 10 µM alpha-1 adrenergic receptor blocker, prazosin 3) 

Treatment with 25 µM maprotiline 4) Treatment with 25 µM maprotiline and 

10 µM prazosin. The concentration of prazosin is based on previous cell 

studies (Segura et al., 2013). Prazosin pre-treatment was carried out for 1 hour, 

followed by maprotiline or vehicle incubation for another 24 hours, after 

which the cells were harvested for real time RT-PCR and Western blot 

analyses. 

 

2.1.4. Treatment with maprotiline and alpha-2 adrenergic receptor blocker  

Treatment with maprotiline and alpha-2 adrenergic receptor blocker 

was performed to study their effect on iPLA2 expression. SH-SY5Y cells were 

divided into 4 groups: 1) Treatment with vehicle, DMSO 2) Treatment with 10 

µM alpha-2 adrenergic receptor blocker, idazoxan 3) Treatment with 25 µM 
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maprotiline 4) Treatment with 10 µM idazoxan and 25 µM maprotiline. The 

concentration of idazoxan is similar to that used in previous studies (Hu et al., 

1996). Idazoxan pre-treatment was carried out for 1 hour, followed by 

maprotiline or vehicle incubation for another 24 hours, after which the cells 

were harvested for real time RT-PCR analysis. 

 

2.1.5. Treatment with maprotiline and non-selective beta adrenergic receptor 

blocker 

Treatment with maprotiline and non-selective beta adrenergic receptor 

blocker was carried out to examine their effect on iPLA2 expression. SH-

SY5Y cells were divided into 4 groups: 1) Treatment with vehicle, DMSO 2) 

Treatment with 10 µM non-selective beta adrenergic receptor blocker, nadolol 

3) Treatment with 25 µM maprotiline 4) Treatment with 10 µM nadolol and 

25 µM maprotiline. The concentration of nadolol used is based on previous 

studies (Cawley et al., 2011). Nadolol pre-treatment was carried out for 1 

hour, followed by maprotiline or vehicle incubation for another 24 hours, after 

which the cells were harvested for real time RT-PCR analysis. 

 

2.1.6. Treatment with maprotiline and serotonin receptor antagonist 

Treatment with maprotiline and serotonin receptor antagonist was 

performed to investigate their effect on iPLA2 expression. SH-SY5Y cells 

were divided into 4 groups: 1) Treatment with vehicle, DMSO 2) Treatment 

with 100 nM selective serotonin receptor antagonist, WAY100635 3) 
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Treatment with 25 µM maprotiline 4) Treatment with 100 nM WAY100635 

and 25 µM maprotiline. The concentration of WAY100635 is similar to that 

used in other cell studies (Jordan et al., 2002). WAY100635 pre-treatment was 

carried out for 1 hour, followed by maprotiline or vehicle incubation for 

another 24 hours, after which the cells were harvested for real time RT-PCR 

analysis. 

 

2.1.7. Treatment with nortriptyline and alpha-1 adrenergic receptor blocker 

Treatment with nortriptyline and alpha-1 adrenergic receptor blocker 

was carried out to study their effect on iPLA2 expression. SH-SY5Y cells were 

divided into 4 groups: 1) Treatment with vehicle, DMSO 2) Treatment with 10 

µM prazosin 3) Treatment with 25 µM nortriptyline 4) Treatment with 10 µM 

prazosin and 25 µM nortriptyline. Prazosin pre-treatment was carried out for 1 

hour, followed by nortriptyline or vehicle incubation for another 24 hours, 

after which the cells were harvested for real time RT-PCR analysis. 

 

2.1.8. Treatment with nortriptyline and serotonin receptor antagonist 

Treatment with nortriptyline and serotonin receptor antagonist was 

performed to determine their effect on iPLA2 expression, SH-SY5Y cells were 

divided into 4 groups: 1) Treatment with vehicle 2) Treatment with 100 nM 

WAY100635 3) Treatment with 25 µM nortriptyline 4) Treatment with 100 

nM WAY100635 and 25 µM nortriptyline. WAY100635 pre-treatment was 

carried out for 1 hour, followed by nortriptyline or vehicle incubation for 
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another 24 hours, after which the cells were harvested for real time RT-PCR 

analysis. 

 

2.1.9. Treatment with maprotiline, cAMP/PKA cascade inhibitors and 

MAPK/ERK signaling pathway inhibitors 

For this part of the study, PKA inhibitors were used to block the 

cAMP/PKA signaling cascade. Treatment with maprotiline, PKA inhibitors 

and MAPK/ERK signaling inhibitors was carried out to investigate their effect 

on SREBP-2 and iPLA2 expression. SH-SY5Y cells were divided into 6 

groups: 1) Treatment with vehicle, DMSO 2) Treatment with 100 nM PKA 

inhibitor, H-89 3) Treatment with 25 µM maprotiline 4) Treatment with 25 

µM maprotiline and 100 nM H-89 5) Treatment with 10 µM of the selective 

ERK inhibitor, FR180204 6)Treatment with 25 µM maprotiline and 10 µM 

FR180204. PKA and MAPK/ERK inhibitor pre-treatment was carried out for 

1 hour, followed by maprotiline or vehicle incubation for another 24 hours, 

after which the cells were harvested for real time RT-PCR analysis. The 

experiments were repeated using 10 nM of another PKA inhibitor, PKI, and 20 

µM of another MAPK/ERK pathway inhibitor, PD98059, to validate their 

effect on SREBP-2 and iPLA2 expression.  The concentrations of PKA 

inhibitors used are based on previous studies (Brigino et al., 1997; Collas et 

al., 1999; Harmon et al., 2005; Queen et al., 2006). The concentrations of 

MAPK/ERK inhibitors used are also similar to those used in previous studies 

(Singh et al., 2009; Volpi et al., 2011; Zeng et al., 2013). 
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2.1.10. Treatment with alpha-1 adrenergic receptor agonist and blocker 

Both maprotiline and nortriptyline have strong noradrenaline reuptake 

inhibition activity which will lead to increasing noradrenaline level and 

subsequent adrenergic receptor activation. Thus, to validate the involvement 

of adrenergic receptors, in particular the alpha-1 adrenergic receptor, in 

SREBP-2 and iPLA2 expression, treatment with alpha-1 adrenergic receptor 

agonist and blocker was carried out. SH-SY5Y cells were divided into 4 

groups: 1) Treatment with vehicle, DMSO 2) Treatment with 10 µM prazosin 

3) Treatment with 50 µM alpha-1 adrenergic receptor agonist, phenylephrine 

4) Treatment with 50 µM phenylephrine and 10 µM prazosin. The 

concentration of phenylephrine used is similar to other cell studies (Endoh and 

Blinks, 1988; Capogrossi et al., 1991). Prazosin pre-treatment was carried out 

for 1 hour, followed by phenylephrine or vehicle incubation for another 24 

hours, after which the cells were harvested for real time RT-PCR analysis. 

 

2.1.11. Treatment with alpha-1 adrenergic receptor agonist, cAMP/PKA 

cascade inhibitors and MAPK/ERK signaling pathway inhibitors 

Treatment with alpha-1 adrenergic receptor agonist, cAMP/PKA and 

MAPK/ERK pathway inhibitors was performed to study their effect on 

SREBP-2 and iPLA2 expression. SH-SY5Y cells were divided into 6 groups: 

1) Treatment with vehicle, DMSO 2) Treatment with 100 nM PKA inhibitor, 

H-89 3) Treatment with 10 µM of the ERK selective inhibitor, FR180204 4) 

Treatment with 50 µM phenylephrine 5) Treatment with 50 µM phenylephrine 

and 10 µM H-89 6) Treatment with 50 µM of phenylephrine and 10 µM 
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FR180204. Inhibitor pre-treatment was carried out for 1 hour, followed by 

phenylephrine or vehicle incubation for another 24 hours, after which the cells 

were harvested for real time RT-PCR analysis. 

 

2.1.12. Treatment with maprotiline and SREBP pathway inhibitors 

Treatment with maprotiline and SREBP pathway inhibitors was carried 

out to examine their effect on iPLA2 expression. The SREBP pathway 

inhibitors used were betulin and the SREBP S1P enzyme inhibitor, PF-

429242. SH-SY5Y cells were divided into 6 groups: 1) Treatment with 

vehicle, DMSO 2) Treatment with 10 µM betulin 3) Treatment with 10 µM 

PF-429242 4) Treatment with 25 µM maprotiline 5) Treatment with 25 µM 

maprotiline and 10 µM betulin 6) Treatment with 25 µM maprotiline and 10 

µM PF-429242. The concentrations of SREBP pathway inhibitors used are 

similar to previous cell studies (Hawkins et al., 2008; Tang et al., 2011). 

Inhibitor pre-treatment was carried out for 1 hour, followed by maprotiline or 

vehicle incubation for another 24 hours, after which the cells were harvested 

for real time RT-PCR analysis. 

 

2.1.13. Treatment with alpha-1 adrenergic receptor agonist and SREBP 

pathway inhibitors 

Treatment with alpha-1 adrenergic receptor agonist and SREBP 

pathway inhibitors was performed to investigate their effects on iPLA2 

expression. SH-SY5Y cells were divided into 6 groups: 1) Treatment with 
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vehicle, DMSO 2) Treatment with 10 µM betulin 3) Treatment with 10 µM 

PF-429242 4) Treatment with 50 µM phenylephrine 5) Treatment with 50 µM 

phenylephrine and 10 µM betulin 6) Treatment with 50 µM phenylephrine and 

10 µM PF-429242. Inhibitor pre-treatment was carried out for 1 hour, 

followed by phenylephrine or vehicle incubation for another 24 hours, after 

which the cells were harvested for real time RT-PCR analysis. 

 

2.2. Real time RT-PCR 

SH-SY5Y RNA samples were reverse transcribed using High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, CA, USA) as 

described previously. Quantitative real-time PCR amplification was then 

carried out in the 7500 Real-time PCR system (Applied Biosystems, CA, 

USA) using TaqMan® Universal PCR Master Mix (Applied Biosystems, CA, 

USA) and Applied Biosystem TaqMan® probes for human SREBP-2, iPLA2 

and beta-actin (Hs01081784_m1, Hs00185926_m1 and #4326315E 

respectively). All reactions were carried out in triplicates and the PCR 

conditions were as described previously.  

 

2.3. Electrophoretic mobility shift assay 

 SREBP-2 is a transcription factor that can bind to the SRE sequence 

present on the iPLA2 gene to induce iPLA2 expression (Seashols et al., 2004). 

Thus, electrophoretic mobility shift assay (EMSA) was performed to 

investigate the effect of maprotiline, alpha-1 adrenergic receptor agonist and 
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blocker treatment on the binding of SREBP-2 to the SRE region of the iPLA2 

gene. Two sets of cell treatment experiments were carried out. For the first set 

of cell treatment, SH-SY5Y cells were divided into 4 groups: 1) Treatment 

with vehicle, DMSO 2) Treatment with 10 µM prazosin 3) Treatment with 50 

µM phenylephrine 4) Treatment with 50 µM phenylephrine and 10 µM 

prazosin. For the second set, SH-SY5Y cells were divided into 4 groups: 1) 

Treatment with DMSO 2) Treatment with 10 µM prazosin 3) Treatment with 

25 µM maprotiline 4) Treatment with 25 µM maprotiline and 10 µM prazosin. 

Prazosin pre-treatment for both sets of cell treatment was carried out for 1 

hour, followed by maprotiline, phenylephrine or vehicle incubation for another 

24 hours, after which protein was extracted from the cells for subsequent 

EMSA analysis. iPLA2 oligonucleotides EMSA probe with the following 

sequences were then synthesized for EMSA analysis: 5′ ACG TCG GTG GTC 

AGG CCA TCA CGT GGC CCG AGG C 3′ and 5′ ACGT TGC CTC GGG 

CCA CGT GAT GGC CTG ACC ACC G 3′. They represent nucleotides -106 

to -77 pf the 5’ flanking region of the iPLA2 gene which contains a SRE 

binding site as shown in a previous study (Seashols et al., 2004). The 

LightShift Chemiluminescent EMSA kit (Thermo Fischer Scientific, IL, USA) 

for gel-shift assays without digoxigenin or radioisotopes was used for EMSA 

analysis. iPLA2 oligonucleotides were first tagged with biotin and 

subsequently annealed. Non-isotopic biotin labeling of the iPLA2 

oligonucleotides EMSA probe was carried out using the DNA 3' End 

Biotinylation Kit (Thermo Fischer Scientific, IL, USA). Binding reactions 

containing the biotin end-labeled iPLA2 oligonucleotides, protein extracts and 

other binding buffer solutions as according to the LightShift 
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Chemiluminescent EMSA kit were then incubated for 20 minutes at room 

temperature. After incubation, the binding reactions were mixed with 5X 

loading buffer, loaded onto a polyacrylamide gel and electrophoresed. The 

binding reactions were then transferred to a nylon membrane, UV cross-

linked, and the binding between biotin-labeled iPLA2 oligonucleotides EMSA 

probe and target SREBP-2 protein was then detected by chemiluminescence. 

Visualized films containing the EMSA blots were scanned and densities of the 

bands measured, using Gel-Pro Analyzer 3.1 program (Media Cybernetics, 

Silver Spring, MD, USA). To check the binding specificity of the iPLA2 

oligonucleotides EMSA probe containing the SRE region of the iPLA2 gene, 

excess unlabeled iPLA2 oligonucleotide was incubated together with the 

labeled iPLA2 oligonucleotide and protein followed by EMSA analysis. 

Binding reactions for control Epstein-Barr Nuclear Antigen (EBNA) system 

were also carried out to ensure that the kit components and overall EMSA 

procedure was working properly. 

 

2.4. Western blot analysis 

Proteins were extracted from SH-SY5Y cells and their concentrations 

were measured as stated previously. Subsequent western blot analysis was 

carried out as described earlier using 30 µg of protein and rabbit polyclonal 

antibody to SREBP-2 (ab30682, Abcam, New Territories, HK; 4 µg/mL).  

 

 



Chapter 4: Regulation of iPLA2 Induction by Adrenergic Receptors, 

MAPK/ERK and SREBP Pathways 

100 
 

 

2.5. Immunocytochemistry 

Treatment with maprotiline, alpha-1 adrenergic receptor blocker and 

SREBP pathway inhibitor was carried to examine their effect on iPLA2 

expression and immunolabeling. SH-SY5Y cells were cultured on poly-L-

lysine coated coverslips in 24-well plates and maintained in DMEM 

supplemented with 10 % fetal bovine serum, 1 % penicillin-streptomycin 

solution at 37 °C with 5 % CO2 aeration until reaching 80 % confluency. Cells 

were then separated into 6 treatment groups: 1) Treatment with vehicle, 

DMSO 2) Treatment with 10 µM prazosin 3) Treatment with 25 µM 

maprotiline 4) Treatment with 25 µM maprotiline and 10 µM prazosin 5) 

Treatment with 10 µM betulin 6) Treatment with 25 µM maprotiline and 10 

µM betulin. Prazosin and betulin pre-treatment were carried out for 1 hour 

followed by maprotiline or vehicle incubation for another 24 hours. Cells were 

then washed with PBS and fixed with 2 % paraformaldehyde. After fixing, 

cells were washed with PBS and reacted with 70 % formic acid for 20 minutes 

before undergoing permeabilization by TBS-Triton X for 15 minutes. Cells 

were then blocked in 1 % bovine serum albumin (BSA) in PBS for 1 hour and 

incubated with goat polyclonal anti-iPLA2 (sc-14463, Santa Cruz 

Biotechnology, CA, USA; diluted 1:100 in 1 % BSA) for 1 hour. Cells were 

subsequently washed with PBS and reacted with Alexa Fluor® 488 Donkey 

Anti-Goat IgG (H+L) Antibody (Applied Biosystems, CA, USA; diluted 1:200 

in 1 % BSA) for 1 hour at room temperature. ProLong Gold anti-fade reagent 

with DAPI (Invitrogen, USA) was used as a nuclear counterstaining and 
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mounting agent. Cells were mounted on to glass slides and examined using an 

Olympus FluoView FV1000 confocal microscope. The total cell fluorescence 

corrected for background was then calculated using ImageJ software.  

 

2.6. Statistical analyses 

The mean and standard errors of the values were calculated for each 

experimental group, and possible significant differences between the means 

were detected using one-way ANOVA with Bonferroni post-hoc test. P < 0.05 

was considered significant. 

 

3. Results 

3.1. Real time RT-PCR  

3.1.1. Effect of antidepressant treatment on iPLA2 expression 

 There were significant increases in iPLA2 mRNA expression in SH-

SY5Y cells after treatment with maprotiline (2.36 fold change) and 

nortriptyline (1.42 fold change) for 24 hours. In contrast, no significant 

increase in iPLA2 expression was detected after treatment with amitriptyline 

(1.26 fold change) (Fig. 4.1). 
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Fig. 4.1 Real time RT-PCR results. Effect of antidepressant treatment on 

iPLA2 mRNA expression in SH-SY5Y cells. Analyzed by one-way ANOVA 

with Bonferroni post-hoc test. Asterisks (*) indicate significant differences at 

P < 0.05. N = 5. 

 

3.1.2. Effect of maprotiline and alpha-1 adrenergic receptor blocker on iPLA2 

expression 

There was a significant increase in iPLA2 expression in SH-SY5Y cells 

after treatment with 25 µM maprotiline (2.15 fold change), consistent with the 

increase in iPLA2 expression after maprotiline treatment as shown previously. 

Co-treatment of maprotiline with the alpha-1 adrenergic receptor blocker, 

prazosin, significantly reduced the increase in iPLA2 expression (1.55 fold 

change) (Fig. 4.2). The results suggest the involvement of alpha-1 adrenergic 

receptors in maprotiline-induced iPLA2 expression. 
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Fig. 4.2 Real time RT-PCR results. Effect of maprotiline and alpha-1 

adrenergic receptor blocker, prazosin, on iPLA2 mRNA expression in SH-

SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.3. Effect of maprotiline and alpha-2 adrenergic receptor blocker on iPLA2 

expression 

There was a significant 1.8 fold increase in iPLA2 expression after 

treatment with 25 µM maprotiline (Fig. 4.3). Co-treatment with the alpha-2 

adrenergic receptor blocker, idazoxan, did not significantly affect the 

maprotiline-induced increase in iPLA2 expression (1.7 fold change).  
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Fig. 4.3 Real time RT-PCR results. Effect of maprotiline and alpha-2 

adrenergic receptor blocker, idazoxan, treatment on iPLA2 mRNA expression 

in SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc 

test. Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.4. Effect of maprotiline and non-selective beta adrenergic receptor blocker 

on iPLA2 expression 

There was a significant 1.9 fold increase in iPLA2 expression after 

treatment with 25 µM maprotiline (Fig. 4.4). Co-treatment of maprotiline with 

the non-selective beta adrenergic receptor blocker, nadolol, led to modulation 

of the maprotiline-induced iPLA2 expression although there was still an 

increasing trend at 1.48 fold change. 
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Fig. 4.4 Real time RT-PCR results. Effect of maprotiline and beta adrenergic 

receptor blocker, nadolol, treatment on iPLA2 mRNA expression in SH-SY5Y 

cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. Asterisks 

(*) indicate significant differences at P < 0.05. N = 5. 

 

 

3.1.5. Effect of maprotiline with serotonin receptor antagonist on iPLA2 

expression 

There was a significant 2.05 fold increase in iPLA2 expression after 

treatment with 25 µM maprotiline (Fig. 4.5). Co-treatment with the serotonin 

receptor antagonist, WAY100635, did not affect the maprotiline-induced 

increase in iPLA2 expression (1.95 fold change). 
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Fig. 4.5 Real time RT-PCR results. Effect of maprotiline and serotonin 

receptor antagonist, WAY100635, treatment on iPLA2 mRNA expression in 

SY-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.6. Effect of nortriptyline with alpha-1 adrenergic receptor blocker on 

iPLA2 expression 

There was a significant increase in iPLA2 expression after treatment 

with 25 µM nortriptyline (1.87 fold change), consistent with the increase in 

iPLA2 expression after nortriptyline treatment as shown previously. Co-

treatment of nortriptyline with prazosin significantly reduced the increase in 

iPLA2 expression (1.44 fold change) (Fig. 4.6). Our results suggest that 

besides being involved in maprotiline-induced iPLA2 expression, the alpha-1 

adrenergic receptors also play a role in nortriptyline-induced iPLA2 

expression. 
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Fig. 4.6 Real time RT-PCR results. Effect of nortriptyline and alpha-1 

adrenergic receptor blocker, prazosin, on iPLA2 mRNA expression in SH-

SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.7. Effect of nortriptyline and serotonin receptor antagonist on iPLA2 

expression 

There was a significant 1.91 fold increase in iPLA2 expression after 

treatment with 25 µM nortriptyline (Fig. 4.7). Co-treatment of nortriptyline 

with the serotonin receptor antagonist, WAY100635, did not affect the 

nortriptyline-induced increase in iPLA2 expression (1.46 fold change). 
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Fig. 4.7 Real time RT-PCR results. Effect of nortriptyline and serotonin 

receptor antagonist, WAY100635, treatment on iPLA2 mRNA expression in 

SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.8. Effect of maprotiline, cAMP/PKA cascade inhibitors and MAPK/ERK 

signaling pathway inhibitors on iPLA2 expression 

There was a significant increase in iPLA2 expression in SH-SY5Y cells 

after treatment with 25 µM maprotiline (1.59 fold change). Co-treatment of 

maprotiline with the PKA inhibitor, H-89, did not affect the maprotiline-

induced increase in iPLA2 expression (Fig. 4.8). However, co-treatment of 

maprotiline with the ERK inhibitor, FR180204, significantly reduced the 

increase in iPLA2 expression (Fig. 4.8). 

In the second set of experiments, there was a significant 2.3 fold 

increase in iPLA2 expression after 25 µM maprotiline treatment. Co-treatment 
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with another PKA inhibitor, PKI, modulated the maprotiline-induced iPLA2 

expression although there was still an increasing trend in iPLA2 expression 

(1.45 fold change) (Fig. 4.9). Co-treatment with another MAPK/ERK pathway 

inhibitor, PD98059, significantly reduced the increase in iPLA2 expression 

(1.56 fold change) (Fig. 4.9). Together, results suggest that there is a stronger 

role for the MAPK/ERK signaling pathway than the cAMP/PKA cascade in 

regulating iPLA2 expression induction. 

 

 

Fig. 4.8 Real time RT-PCR results. Effect of maprotiline together with PKA 

inhibitor, H-89, and ERK inhibitor, FR180204, treatment on iPLA2 mRNA 

expression in SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni 

post-hoc test. Asterisks (*) indicate significant differences at P < 0.05. N = 5. 
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Fig. 4.9 Real time RT-PCR results. Effect of maprotiline together with PKA 

inhibitor, PKI, and MAPK/ERK pathway inhibitor, PD98059, treatment on 

iPLA2 mRNA expression in SH-SY5Y cells. Analyzed by one-way ANOVA 

with Bonferroni post-hoc test. Asterisks (*) indicate significant differences at 

P < 0.05. N = 5. 

 

3.1.9. Effect of alpha-1 adrenergic receptor agonist and alpha-1 adrenergic 

receptor blocker on iPLA2 expression 

There was a significant increase in iPLA2 expression in SH-SY5Y cells 

after treatment with 50 µM alpha-1 adrenergic receptor agonist, phenylephrine 

(1.67 fold change). Co-treatment of phenylephrine with the alpha-1 adrenergic 

receptor blocker, prazosin, significantly reduced the increase in iPLA2 

expression (1.14 fold) (Fig. 4.10). Results support the involvement of alpha-1 

adrenergic receptors in iPLA2 expression induction. 
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Fig. 4.10 Real time RT-PCR results. Effect of alpha-1 agonist, phenylephrine, 

and alpha-1 adrenergic receptor blocker, prazosin, on iPLA2 mRNA 

expression in SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni 

post-hoc test. Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.10. Effect of alpha-1 adrenergic receptor agonist, cAMP/PKA cascade 

inhibitors and MAPK/ERK signaling pathway inhibitors on iPLA2 expression 

There was a significant increase in iPLA2 expression in SH-SY5Y cells 

after treatment with 50µM alpha-1 adrenergic receptor agonist, phenylephrine 

(1.5 fold change). Co-treatment of phenylephrine with the selective ERK 

inhibitor, FR180204, abolished the phenylephrine-induced iPLA2 expression 

(1.04 fold change) while co-treatment of phenylephrine with the PKA 

inhibitor, H-89, also modulated the phenylephrine-induced iPLA2 expression 

although there was a higher trend present (1.29 fold change) (Fig. 4.11). 
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Fig. 4.11 Real time RT-PCR results. Effect of alpha-1 agonist, phenylephrine, 

and PKA inhibitor, H-89, and ERK inhibitor, FR180204, treatment on iPLA2 

mRNA expression in SH-SY5Y cells. Analyzed by one-way ANOVA with 

Bonferroni post-hoc test. Asterisks (*) indicate significant differences at P < 

0.05. N = 5. 

 

3.1.11. Effect of maprotiline and alpha-1 adrenergic receptor blocker on 

SREBP-2 expression 

There was a significant increase in SREBP-2 expression in SH-SY5Y 

cells after treatment with 25 µM maprotiline (4.07 fold change). Co-treatment 

of maprotiline with the alpha-1 adrenergic receptor blocker, prazosin, 

significantly reduced the increase in SREBP-2 expression (Fig. 4.12). Results 

suggest that alpha-1 adrenergic receptors also play a role in maprotiline-

induced SREBP-2 expression. 
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Fig. 4.12 Real time RT-PCR results. Effect of maprotiline and alpha-1 

adrenergic receptor blocker, prazosin, on SREBP-2 mRNA expression in SH-

SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.12. Effect of maprotiline, cAMP/PKA cascade inhibitors and MAPK/ERK 

signaling pathway inhibitors on SREBP-2 expression 

There was a significant increase in SREBP-2 expression in SH-SY5Y 

cells after treatment with 25 µM maprotiline (3.06 fold change). Co-treatment 

of maprotiline with the PKA inhibitor, H-89, did not affect the increase in 

SREBP-2 expression (2.99 fold change) (Fig. 4.13).  However, co-treatment of 

maprotiline with the selective ERK inhibitor, FR180204, significantly reduced 

the increase in SREBP-2 expression (Fig. 4.13).  

In a second set of experiments, co-treatment with another PKA 

inhibitor, PKI, modulated the increase in SREBP-2 expression (Fig. 4.14). Co-

treatment with another MAPK/ERK pathway inhibitor, PD98059, also 
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significantly reduced the maprotiline-induced SREBP-2 expression (2.65 fold 

change) (Fig. 4.14). Together, results suggest a stronger involvement of the 

MAPK/ERK signaling pathway as compared to the cAMP/PKA cascade in 

maprotiline-induced SREBP-2 expression. 

 

 

Fig. 4.13 Real time RT-PCR results. Effect of maprotiline together with PKA 

inhibitor, H-89, and ERK inhibitor, FR180204, treatment on SREBP-2 mRNA 

expression in SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni 

post-hoc test. Asterisks (*) indicate significant differences at P < 0.05. N = 5. 
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Fig. 4.14 Real time RT-PCR results. Effect of maprotiline together with PKA 

inhibitor, PKI, and MAPK/ERK pathway inhibitor, PD98059, treatment on 

SREBP-2 mRNA expression in SH-SY5Y cells. Analyzed by one-way 

ANOVA with Bonferroni post-hoc test. Asterisks (*) indicate significant 

differences at P < 0.05. N = 5. 

 

3.1.13. Effect of alpha-1 adrenergic receptor agonist and blocker on SREBP-2 

expression 

There was a significant increase in SREBP-2 expression in SH-SY5Y 

cells after treatment with 50 µM alpha-1 agonist, phenylephrine (1.67 fold 

change). Co-treatment of phenylephrine with the alpha-1 adrenergic receptor 

blocker, prazosin, significantly abolished the increase in SREBP-2 expression 

(0.99 fold change) (Fig. 4.15).  
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Fig. 4.15 Real time RT-PCR results. Effect of alpha-1 agonist, phenylephrine, 

and alpha-1 adrenergic receptor blocker, prazosin, on SREBP-2 mRNA 

expression in SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni 

post-hoc test. Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.14. Effect of alpha-1 adrenergic receptor agonist, cAMP/PKA cascade 

inhibitors and MAPK/ERK signaling pathway inhibitors on SREBP-2 

expression 

There was a significant increase in SREBP-2 expression in SH-SY5Y 

cells after treatment with 50 µM agonist, phenylephrine (1.43 fold change). 

Co-treatment of phenylephrine with the ERK inhibitor, FR180204, abolished 

the increase in SREBP-2 expression (0.97 fold change), whereas co-treatment 

with the PKA inhibitor, H-89, had no effect on SREBP-2 expression (2.05 fold 

change) (Fig. 4.16). Results further support the role of the MAPK/ERK 

signaling pathway in SREBP-2 expression. 
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Fig. 4.16 Real time RT-PCR results. Effect of alpha-1 agonist, phenylephrine, 

and PKA inhibitor, H-89, and ERK inhibitor, FR180204, treatment on 

SREBP-2 mRNA expression in SH-SY5Y cells. Analyzed by one-way 

ANOVA with Bonferroni post-hoc test. Asterisks (*) indicate significant 

differences at P < 0.05. N = 5. 

 

3.1.15. Effect of maprotiline and SREBP pathway inhibitors on iPLA2 

expression 

There was a significant increase in iPLA2 expression in SH-SY5Y cells 

after treatment with 25 µM maprotiline (2.25 fold change). Co-treatment of 

maprotiline with the SREBP pathway inhibitors, betulin and PF-429242, 

significantly abolished the increase in iPLA2 expression (0.97 fold change and 

1.25 fold change respectively) (Fig. 4.17). Results highlight the importance of 

the SREBP pathway in regulating iPLA2 expression induction. 
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Fig. 4.17 Real time RT-PCR results. Effect of maprotiline and SREBP 

pathway inhibitors, betulin and PF-429242, treatment on iPLA2 mRNA 

expression in SH-SY5Y cells. Analyzed by one-way ANOVA with Bonferroni 

post-hoc test. Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.16. Treatment with alpha-1 adrenergic receptor agonist and SREBP 

pathway inhibitors on iPLA2 expression 

There was a significant increase in iPLA2 expression in SH-SY5Y cells 

after treatment with 50 µM alpha-1 receptor agonist, phenylephrine (1.41 fold 

change). Co-treatment of phenylephrine with the SREBP pathway inhibitor, 

betulin significantly reduced the phenylephrine-induced iPLA2 expression 

(1.05 fold change). Co-treatment of phenylephrine with PF-429242 also 

abolished the phenylephrine-induced iPLA2 expression (0.91 fold change) 

(Fig. 4.18). Results further support that the SREBP pathway plays a role in 

iPLA2 expression induction. 
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Fig. 4.18 Real time RT-PCR results. Effect of alpha-1 adrenergic receptor 

agonist, phenylephrine, and SREBP pathway inhibitors, betulin and PF-

429242, treatment on iPLA2 mRNA expression in SH-SY5Y cells. Analyzed 

by one-way ANOVA with Bonferroni post-hoc test. Asterisks (*) indicate 

significant differences at P < 0.05. N = 5. 

 

3.2. Electrophoretic mobility shift assay 

3.2.1. Effectiveness and binding specificity of iPLA2 oligonucleotides EMSA 

probe to SREBP-2 

To check the effectiveness and binding specificity of the iPLA2 

oligonucleotides EMSA probe containing the SRE region of the iPLA2 gene, 

labeled iPLA2 oligonucleotides EMSA probe and protein were incubated 

together with and without excess unlabeled iPLA2 oligonucleotides followed 

by EMSA analysis. There was a shift present after labeled iPLA2 

oligonucleotides EMSA probe and protein incubation indicating binding of 

SREBP-2 to the SRE region of the iPLA2 oligonucleotides, consistent with the 

EMSA results in a previous study which showed binding of SREBP-2 to the 
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EMSA probe (Seashols et al., 2004). Competition with excess unlabeled 

iPLA2 oligonucleotide blocked this shift indicating binding specificity of 

iPLA2 oligonucleotides EMSA probe to SREBP-2 (Fig. 4.19). 

 

 

Fig. 4.19 EMSA blot showing the effectiveness and binding specificity of 

iPLA2 oligonucleotides EMSA probe to SREBP-2. In Lane 1, there is no 

protein for the iPLA2 EMSA probe to bind, thus no shift was observed. In 

Lane 2, there is protein present to effect the binding and shift of SREBP-2 and 

labeled iPLA2 EMSA probe. A shift was thus detected in Lane 2 as compared 

to Lane 1. In Lane 3, the signal shift observed in Lane 2 was blocked by 

competition with excess unlabeled iPLA2 EMSA probe indicating that the shift 

in Lane 2 is due to specific binding interactions between the target SREBP-2 

protein and labeled iPLA2 EMSA probe. 

 

3.2.2. Effect of maprotiline and alpha-1 adrenergic receptor blocker treatment 

on the binding of SREBP-2 to the SRE region of the iPLA2 gene 
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EMSA blot showed binding between SREBP-2 and labeled iPLA2 

oligonucleotides EMSA probe, similar to the EMSA blot presented earlier and 

consistent with a previous study (Seashols et al., 2004). Densitometric analysis 

found that there was a significant increase in SREBP-2 binding to the iPLA2 

oligonucleotides EMSA probe containing the SRE region of the iPLA2 gene 

after maprotiline treatment (Fig. 4.20). Pre-treatment with the alpha-1 

adrenergic receptor blocker, prazosin, significantly abolished this increase in 

SREBP-2 binding. Control EBNA system showed that the overall EMSA 

procedure was working properly.  
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Fig. 4.20 EMSA blot densitometric analysis results. (A) EMSA blot and (B) 

densitometric analysis on the effects of maprotiline treatment and alpha-1 

adrenergic receptor blocker, prazosin, on SREBP-2 binding to the SRE region 

of iPLA2 gene. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. 

 

3.2.3. Effect of alpha-1 adrenergic receptor agonist and alpha-1 adrenergic 

receptor blocker treatment on the binding of SREBP-2 to the SRE region of 

the iPLA2 gene 

EMSA blot showed binding between SREBP-2 and labeled iPLA2 

oligonucleotides EMSA probe, similar to the EMSA blot presented earlier and 

consistent with a previous study (Seashols et al., 2004). Densitometric analysis 

revealed that there was a significant increase in SREBP-2 binding to the iPLA2 

oligonucleotides containing the SRE region of the iPLA2 gene after treatment 

with alpha-1 adrenergic receptor agonist, phenylephrine (Fig. 4.21). Pre-

treatment with the alpha-1 receptor blocker, prazosin abolished the increase in 



Chapter 4: Regulation of iPLA2 Induction by Adrenergic Receptors, 

MAPK/ERK and SREBP Pathways 

123 
 

SREBP2 binding. Control EBNA system showed that the overall EMSA 

procedure was working properly. 

 

 

 

 

Fig. 4.21 EMSA blot densitometric analysis results. (A) EMSA blot and (B) 

densitometric analysis on the effect of alpha-1 adrenergic receptor agonist, 

phenylephrine, and alpha-1 adrenergic receptor blocker, prazosin, treatment on 

SREBP-2 binding to the SRE region of iPLA2 gene. Analyzed by one-way 

ANOVA with Bonferroni post-hoc test. Asterisks (*) indicate significant 

differences at P < 0.05. 
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3.3. Western blot analysis 

Western blot analysis showed the presence of a band at approximately 

55 kDa which corresponds to the band size of activated SREBP-2 protein. 

Densitometric analysis of the protein blots showed a significant 2.17 fold 

increase in SREBP-2 protein expression in the SH-SY5Y cells after 

maprotiline treatment, compared to vehicle controls. This increase in SREBP-

2 protein expression was significantly abolished after treatment with the alpha-

1 adrenergic receptor blocker, prazosin (1.11 fold change) (Fig. 4.22). 
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Fig. 4.22 Western blot densitometric analysis results. (A) Western blot and (B) 

densitometric analysis on the effect of maprotiline and alpha-1 adrenergic 

receptor blocker, prazosin, treatment on SREBP-2 expression in SH-SY5Y 

cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. Asterisks 

(*) indicate significant differences at P < 0.05. 

 

3.4. Immunocytochemistry 

iPLA2 immunofluorescence labeling showed localization of iPLA2 

protein in the cytoplasm (Fig. 4.23). A significant increase in fluorescence 

intensity was observed after maprotiline treatment, compared to vehicle 

control (Fig. 4.24). Blockade of alpha-1 adrenergic receptors by prazosin, or 

SREBP pathway by betulin, significantly abolished the maprotiline-induced 

increase in immunofluorescence.  
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Fig. 4.23 Immunocytochemistry photos of iPLA2 expression in SH-SY5Y cells after maprotiline, alpha-1 adrenergic receptor blocker, prazosin, 

and SREBP pathway inhibitor, betulin, treatment.
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Fig. 4.24 Fluorescence intensity of iPLA2 expression in SH-SY5Y cells after 

maprotiline, alpha-1 adrenergic receptor blocker, prazosin, and SREBP 

pathway inhibitor, betulin treatment. Analyzed by one-way ANOVA with 

Bonferroni post-hoc test. Asterisks (*) indicate significant differences at P < 

0.05. 

 

4. Discussion 

This part of the study was carried out to investigate the role of 

adrenergic receptors and the possible mechanisms and pathways involved in 

regulation of iPLA2 expression induction. Our previous study showed that 

maprotiline caused a significant increase in iPLA2 expression in the mouse 

prefrontal cortex (Lee et al., 2012), and this was supported by the first part of 

this study. Similarly, real-time RT-PCR results showed that iPLA2 expression 

in SH-SY5Y cells was significantly increased after maprotiline treatment. 

There was also a significant increase in iPLA2 expression after nortriptyline 

but not amitriptyline treatment. Nortriptyline is a TCA with serotonin and 
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noradrenaline reuptake inhibition activity but with stronger selectivity for the 

inhibition of noradrenaline reuptake (Baldessarini, 2006; Rang et al., 2007). 

Thus, it is possible that the increase in iPLA2 expression after maprotiline and 

nortriptyline treatment primarily involves inhibition of noradrenaline reuptake, 

leading to higher noradrenaline level and subsequent activation of the 

adrenergic receptors.  

The involvement of adrenergic receptors in the antidepressant-induced 

iPLA2 expression was further investigated, using adrenergic and serotonin 

receptor blockers. Treatment with the alpha-1 adrenergic receptor blocker, 

prazosin, significantly abrogated the maprotiline-induced increase in iPLA2 

expression. In addition, prazosin also significantly abolished the nortriptyline-

induced iPLA2 expression, suggesting that alpha-1 adrenergic receptors are 

essential for iPLA2 expression induction. Alpha-1 adrenergic receptors are 

mainly located on the postsynaptic membrane (Starke et al., 1989; Rang et al., 

2007). Neurotransmission facilitation by the alpha-1 adrenergic receptor has 

been found to be involved in the effect of antidepressant therapy (Vetulani, 

1984; Vetulani et al., 1984). Studies also revealed that chronic antidepressant 

treatment caused an eventual up-regulation of alpha-1 adrenergic receptors 

coupled with a down-regulation of alpha-2 and beta adrenergic receptors in the 

rat cerebral cortex (Vetulani, 1984; Vetulani et al., 1984). The importance of 

alpha-1 adrenergic receptors in depression and antidepressant therapy was 

further highlighted by a study showing that a reduction in alpha-1 

noradrenergic transmission resulted in depressive behavior (Stone and 

Quartermain, 1999). In comparison, treatment with idazoxan, a selective 

alpha-2 adrenergic receptor blocker, did not inhibit the increase in iPLA2 
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expression induced by maprotiline treatment in SH-SY5Y cells. We also 

investigated a potential role of serotonin receptors in the antidepressant-

induced iPLA2 expression using a serotonin receptor blocker, WAY100635 

(Fletcher et al., 1996). Treatment with WAY100635 did not significantly 

affect the increase in iPLA2 expression after maprotiline or nortriptyline 

treatment. Together, our results suggest that the alpha-1 adrenergic receptor 

has an important role in regulation of iPLA2 expression induction. This was 

further supported by our findings that treatment with the alpha-1 adrenergic 

receptor agonist, phenylephrine, also caused a significant albeit lower increase 

in iPLA2 expression as compared to antidepressant treatment. In addition, this 

increase in iPLA2 expression after phenylephrine treatment was significantly 

abolished by co-treatment with prazosin, further supporting the role of alpha-1 

adrenergic receptors in iPLA2 expression. 

Regulation of iPLA2 expression may also involve the MAPK/ERK or 

cAMP/PKA signaling pathways downstream from the adrenergic receptors. 

We then studied the potential roles of these signaling pathways in mediating 

iPLA2 expression induction using specific signaling pathway inhibitors. 

Treatment with MAPK/ERK pathway inhibitors significantly abolished the 

maprotiline-induced expression of iPLA2, indicating involvement of the 

MAPK/ERK signaling pathway in iPLA2 expression induction. As stated 

earlier, one of the most studied alpha-1 adrenergic receptors-stimulated 

pathways is the ERK1/2 activation signaling pathway (Garcia-Sainz et al., 

1999; Hague et al., 2002). Alpha-1 adrenergic receptors are G protein-coupled 

receptors and are activated by adrenaline and noradrenaline (Garcia-Sainz et 

al., 1999). Besides ERK1/2, alpha-1 adrenergic receptors are involved in 
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activation of PKC which was also shown to mediate iPLA2 expression and 

activity (Garcia-Sainz et al., 1999; Hu et al., 1999; Rohde et al., 2000; Steer et 

al., 2002; Meyer et al., 2005). Moreover, induction of PLA2 protein expression 

in endothelial cell-pericyte co-cultures was found to involve activation of PKC 

and the MAPK/ERK cascade, further supporting the involvement of the 

MAPK/ERK signaling pathway in mediating iPLA2 expression induction 

(Anfuso et al., 2007). Besides the MAPK/ERK signaling pathway, the cAMP-

dependent cascade which involves PKA activation could potentially have a 

role in the up-regulation of iPLA2 expression. However, treatment with PKA 

inhibitors failed to significantly abolish the increase in iPLA2 expression, 

suggesting that the cAMP/PKA pathway does not play a key role in iPLA2 

expression. Together, our results support a role of MAPK/ERK signaling 

pathway rather than the cAMP/PKA cascade in iPLA2 expression induction. 

SREBP-2 is a transcription factor and was previously shown to be 

involved in iPLA2 expression (Seashols et al., 2004). The effect of 

antidepressant and alpha-1 adrenergic receptor agonist treatment on SREBP-2 

expression was thus further elucidated. Treatment with maprotiline 

significantly increased SREBP-2 mRNA expression and this increase was 

abrogated by blockade of the alpha-1 adrenergic receptors with prazosin. 

Similarly, phenylephrine significantly increased SREBP-2 mRNA expression 

and this increase was abolished when the alpha-1 adrenergic receptors were 

blocked with prazosin, highlighting the involvement of alpha-1 adrenergic 

receptors in both iPLA2 and SREBP-2 expression. MAPK/ERK pathway 

inhibitors also significantly abolished the increase SREBP-2 expression, 

indicating the involvement of the MAPK/ERK signaling cascade in SREBP-2 
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as well as iPLA2 expression. This was supported by a previous study that 

showed an association between SREBP-2 and the MAPK/ERK signaling 

cascade (Kotzka et al., 2000). In that study, a direct link was found between 

MAPK activity and SREBPs as ERK1 and ERK2 were shown to 

phosphorylate GST-fusion SREBP-2 protein in vitro, suggesting that SREBP-

2 is a direct substrate of ERK1 and ERK2. SREBP pathway inhibitors were 

then used to study the effect of SREBP inhibition on iPLA2 expression 

induction. Our results showed that treatment with SREBP pathway inhibitors, 

betulin and PF-429242, significantly abolished the maprotiline-induced 

increase in iPLA2 expression. SREBP pathway inhibitors also abrogated the 

phenylephrine-induced iPLA2 expression. Betulin inhibits the maturation of 

SREBP while PF-429242 selectively inhibits S1P, an enzyme involved in the 

release of mature activated SREBP (Hawkins et al., 2008; Tang et al., 2011). 

Based on our results, it was then suggested that SREBP-2 is essential for 

iPLA2 expression induction and is similarly regulated by alpha-1 adrenergic 

receptors and the MAPK/ERK signaling pathway. 

A previous study showed a link between SREBP-2 and the iPLA2 

promoter, which contains the SRE sequence. A mutant cell line that 

constitutively produces mature SREBP proteins showed increased iPLA2 

expression and activity (Seashols et al., 2004). EMSA analysis showed that 

mature SREBP-2 forms a complex with a 30-mer EMSA probe corresponding 

to the SRE sequence in the iPLA2 promoter region (Seashols et al., 2004). 

Based on these seminal findings, EMSA analysis was carried out in our study 

using a non-radioactive iPLA2 EMSA probe with the same oligonucleotide 

sequences as used in the aforementioned study (Seashols et al., 2004). Our 
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results confirmed that SREBP-2 indeed binds to the SRE region of the iPLA2 

promoter and treatment with both maprotiline and phenylephrine significantly 

increased this binding. The increase in binding was abolished by co-treatment 

with prazosin, consistent with a role of alpha-1 adrenergic receptors in causing 

an increase in SREBP-2 and iPLA2 expression. Results from our western blot 

analysis also confirmed that maprotiline treatment increased SREBP-2 

expression and this increase was significantly blocked by co-treatment with 

prazosin. Immunocytochemical staining showed an increase in iPLA2 

immunostaining after maprotiline treatment, and this increase was 

significantly abolished by blockade of alpha-1 adrenergic receptors with 

prazosin and inhibition of the SREBP pathway with betulin. These results 

corroborate the RT-PCR and EMSA findings and further emphasize the role of 

alpha-1 adrenergic receptors and SREBP pathway in iPLA2 expression. 

Overall, results from the present study indicate that stimulation of 

alpha-1 adrenergic receptors causes increased iPLA2 expression via the 

MAPK/ERK signaling pathway and SREBP-2 protein. It is important to note 

however, that this study was carried out under in vitro conditions and further 

study is needed to validate these findings in an in vivo setting. Nonetheless, 

our findings may potentially provide a basis for further research on the 

regulation of iPLA2 expression and possible crosstalk between sterol and 

glycerophospholipid mediators that may play a role in physiological or 

pathophysiological processes in the brain and other organs. 
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1. Introduction 

We have established earlier that antidepressant treatment, especially 

those with strong noradrenaline reuptake inhibition activity, induced an up-

regulation in iPLA2 expression. Increasing iPLA2 expression and activity will 

lead to enhanced production of DHA which can then be metabolized by 15-

LOX to produce resolvins and neuroprotectins (Farooqui, 2011). 15-LOX is a 

member of the non-heme LOX family of enzymes which have dioxygenase 

activity and a molecular weight of around 75-78 kDa (Radmark and 

Samuelsson, 2009). They are essential for the dioxygenation or the insertion of 

molecular oxygen into PUFAs in lipids (Radmark and Samuelsson, 2009). The 

molecular structure of LOX consists of a single polypeptide chain which folds 

into two domains (Brash, 2001). Besides 15-LOX, there are three other types 

of LOX: 5-LOX, 8-LOX and 12-LOX. LOX enzymes are categorized 

according to the position of oxygen insertion where the dioxygenation takes 

place, either at carbon 5, 8, 12, or 15 of the aliphatic chain (Phillis et al., 

2006). Out of the four different LOX enzymes, only three are present in the 

brain: 5-LOX, 12-LOX and 15-LOX. 

15-LOX is also known as arachidonate 15-LOX and is encoded by the 

ALOX15 gene. As stated earlier, 15-LOX catalyzes the metabolism of DHA 

into docosanoids consisting of resolvins and neuroprotectins. DHA is a 

precursor for the production of D-series resolvins and DHA is first converted 

into 17S-hydroperoxy-DHA (17S-H(p)DHA) with the involvement of 15-

LOX (Serhan and Chiang, 2008; Farooqui, 2011; Ji et al., 2011). 17S-

H(p)DHA is then catalyzed into several different bioactive compounds such as 

RvD1 (Fig. 5.1). 15-LOX is also involved in the conversion of NPD1 from 
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DHA in the brain via epoxide intermediates with the epoxy group located at 

the 16(17) position (Hong et al., 2003; Farooqui, 2011). Resolvins are 

suggested to act via specific receptors called resolvin D receptors which can 

be found in neural as well as non-neural cells and they are essential in 

stimulating strong immunoregulatory and anti-inflammatory activities (Serhan 

et al., 2008a; Serhan et al., 2008b). DHA and its metabolites have been shown 

to have a significant role on synaptic functions and resolvins were suggested 

to normalize the spinal synaptic plasticity linked with pain hypersensitivity 

(Xu et al., 2010; Farooqui, 2011). RvD1 was also shown to have pro-resolving 

and anti-inflammatory properties in ocular surface inflammation and cigarette 

smoke-induced lung inflammation (Hsiao et al., 2013; Erdinest et al., 2014). 

Furthermore, resolvins and neuroprotectins can modulate the effects of 

proinflammatory eicosanoids derived from AA (Hong et al., 2003). Any 

changes in 15-LOX expression will then impact the generation of resolvins 

and neuroprotectins, affecting their overall anti-inflammatory and 

neuroprotective effects. 

In view that iPLA2 expression was increased after maprotiline and 

nortriptyline treatment, leading to increased production of DHA which is the 

precursor for resolvins and neuroprotectins, it is possible that 15-LOX may 

also be affected by antidepressant treatment and regulated in a similar way as 

iPLA2. We then postulate that besides inducing iPLA2 expression, 

antidepressants especially those with strong noradrenaline reuptake inhibition 

activity will similarly stimulate the expression of 15-LOX enzyme. In this part 

of the study, we studied the effect of antidepressant treatment on 15-LOX 

expression. 
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Real-time RT-PCR and Western blot analyses were carried out to 

investigate the effect of antidepressant treatment on 15-LOX expression in 

SH-SY5Y cells. Co-treatment with alpha-1 adrenergic receptor blocker, 

prazosin, was also performed to study the involvement of alpha-1 adrenergic 

receptors in 15-LOX expression.  

 

 

Fig. 5.1 The metabolic steps involved in generation of neuroprotectin D1 

(NPD1) and resolvin D1 (RvD1) from DHA. Adapted from (Rius et al., 2012) 

 

2. Materials and method 

2.1. Cell culture 

 For this part of the study, SH-SY5Y cells were similarly obtained from 

ATCC (Manassas, VA, U.S.A.) and used for cell culture experiments. The 
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cells were cultured until reaching approximately 80% confluency and 

maintained in DMEM supplemented with 10 % fetal bovine serum, 1 % 

penicillin-streptomycin solution at 37 °C with 5 % CO2 aeration. Cells were 

then separated into treatment groups where each group consisted of five 100 

mm culture plates for subsequent analyses (n = 5). 

 

2.1.1. Treatment with antidepressants 

Treatment with different antidepressants was first carried out to 

investigate their effect on 15-LOX expression. SH-SY5Y cells were divided 

into 4 groups: 1) Treatment with vehicle, DMSO 2) Treatment with 25 µM 

maprotiline 3) Treatment with 25 µM amitriptyline 4) Treatment with 25 µM 

nortriptyline. Incubation was carried out for 24 hours, after which the cells 

were washed in PBS and harvested for real-time RT-PCR analysis. 

 

2.1.2. Treatment with maprotiline and alpha-1 adrenergic receptor blocker 

Treatment with maprotiline and alpha-1 adrenergic receptor blocker 

was performed to determine their effect on 15-LOX expression. SH-SY5Y 

cells were divided into 4 groups: 1) Treatment with vehicle, DMSO 2) 

Treatment with 10 µM prazosin 3) Treatment with 25 µM maprotiline 4) 

Treatment with 25 µM maprotiline and 10 µM prazosin. Prazosin pre-

treatment was carried out for 1 hour followed by maprotiline or vehicle 

incubation for another 24 hours, after which the cells were harvested for real-

time RT-PCR and Western blot analyses. 
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2.1.3. Treatment with nortriptyline and alpha-1 adrenergic receptor blocker 

Treatment with nortriptyline and alpha-1 adrenergic receptor blocker 

was carried out to study their effect on 15-LOX expression. SH-SY5Y cells 

were divided into 4 groups: 1) Treatment with DMSO 2) Treatment with 10 

µM prazosin 3) Treatment with 25 µM nortriptyline 4) Treatment with 25 µM 

nortriptyline and 10 µM prazosin. Prazosin pre-treatment was carried out for 1 

hour followed by nortriptyline or vehicle incubation for another 24 hours, after 

which the cells were harvested for real-time RT-PCR analysis. 

 

2.2. Real-time RT-PCR 

SH-SY5Y RNA samples were reverse transcribed using High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, CA, USA) as 

described previously. Quantitative real-time PCR amplification was then 

carried out in the 7500 Real-time PCR system (Applied Biosystems, CA, 

USA) using TaqMan® Universal PCR Master Mix (Applied Biosystems, CA, 

USA) and Applied Biosystem TaqMan® probes for human 15-LOX 

(ALOX15) and beta-actin (Hs00609608_m1 and #4326315E respectively). All 

reactions were carried out in triplicates and the PCR conditions were as 

described previously.  
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2.3. Western blot analysis 

Proteins were extracted from SH-SY5Y cells and their concentrations 

were measured as stated previously. Subsequent western blot analysis was 

carried out as described earlier using 30 µg of protein and mouse monoclonal 

antibody to 15-LOX (ab119774, Abcam, New Territories, HK; diluted 1:500). 

 

2.4. Statistical analysis 

The mean and standard errors of the values were calculated for each 

experimental group, and possible significant differences between the means 

were examined using one-way ANOVA with Bonferroni post-hoc test. P < 

0.05 was considered significant. 

 

3. Results 

3.1. Real time RT-PCR 

3.1.1. Antidepressant treatment 

 Real-time RT-PCR showed a significant increase in 15-LOX mRNA 

expression in SH-SY5Y cells after maprotiline (2.09 fold change) and 

nortriptyline (1.96 fold change) treatment for 24 hours. However, there was no 

significant increase in 15-LOX expression after amitriptyline treatment (0.96 

fold change) (Fig. 5.2).  
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Fig. 5.2 Real time RT-PCR results. Effect of antidepressant treatment on 15-

LOX mRNA expression in SH-SY5Y cells. Analyzed by one-way ANOVA 

with Bonferroni post-hoc test. Asterisks (*) indicate significant differences at 

P < 0.05. N = 5. 

 

3.1.2. Treatment with maprotiline and alpha-1 adrenergic receptor blocker 

Real-time RT-PCR showed a significant 1.7 fold increase in 15-LOX 

mRNA expression after maprotiline treatment (Fig. 5.3). Treatment with 

alpha-1 adrenergic receptor blocker, prazosin, significantly abolished this 

increase (0.96 fold change). Results suggest the involvement of alpha-1 

adrenergic receptors in 15-LOX expression induction. 
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Fig. 5.3 Real time RT-PCR results. Effect of maprotiline and alpha-1 

adrenergic receptor blocker, prazosin, on 15-LOX mRNA expression in SH-

SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.1.3. Treatment with nortriptyline and alpha-1 adrenergic receptor blocker 

Real-time RT-PCR showed a significant 1.79 fold increase in 15-LOX 

mRNA expression after nortriptyline treatment (Fig. 5.4). Treatment with 

alpha-1 adrenergic receptor blocker significantly abolished this increase (1.19 

fold change). Results showed that besides being involved in maprotiline-

induced 15-LOX expression, alpha-1 adrenergic receptors are also essential 

for the nortriptyline-induced expression of 15-LOX.  
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Fig. 5.4 Real time RT-PCR results. Effect of nortriptyline and alpha-1 

adrenergic receptor blocker, prazosin, on 15-LOX mRNA expression in SH-

SY5Y cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. 

Asterisks (*) indicate significant differences at P < 0.05. N = 5. 

 

3.2. Western blot analysis 

Western blot analysis showed the presence of a band at approximately 

75 kDa which corresponds to the band size of 15-LOX protein. Densitometric 

analysis of the protein blots showed a significant 2.10 fold change increase in 

15-LOX protein expression in the SH-SY5Y cells after maprotiline treatment, 

compared to vehicle controls (Fig. 5.5). The increase in 15-LOX expression 

was significantly abolished after treatment with the alpha-1 adrenergic 

receptor blocker, prazosin (0.47 fold change). 

 



Chapter 5: Effect of Antidepressant Treatment on 15-LOX Expression 

143 
 

 

 

Fig. 5.5 Western blot densitometric analysis results. (A) Western blot and (B) 

densitometric analysis on the effect of maprotiline and alpha-1 adrenergic 

receptor blocker, prazosin, treatment on 15-LOX expression in SH-SY5Y 

cells. Analyzed by one-way ANOVA with Bonferroni post-hoc test. Asterisks 

(*) indicate significant differences at P < 0.05. 

 

4. Discussion 

This part of the study was carried out to investigate the effect of 

antidepressant treatment on 15-LOX expression in SH-SY5Y cells. 

Administration of maprotiline significantly increased 15-LOX mRNA 

expression. Nortriptyline treatment showed a similar significant increase in 

15-LOX expression. Treatment with amitriptyline, however, did not affect 15-
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LOX expression. The effect of antidepressant treatment on 15-LOX 

expression was found to have a similar trend as the antidepressant action on 

iPLA2 expression where maprotiline and nortriptyline increased both iPLA2 

and 15-LOX expression but amitriptyline did not have any effect. Thus, it is 

possible that 15-LOX and iPLA2 both share common signaling pathways or 

mechanisms in regulating their expression induction. 

As stated previously, maprotiline and nortriptyline both have strong 

effects on the noradrenaline transporter and weaker activity on the serotonin 

transporter as compared to amitriptyline (Frazer, 1997a). Thus, like iPLA2, 15-

LOX expression was also suggested to involve activation of the alpha-1 

adrenergic receptors by maprotiline and nortriptyline treatment. This was 

further investigated using the alpha-1 adrenergic receptor blocker, prazosin. 

Blockade of the alpha-1 adrenergic receptor by prazosin significantly 

abolished maprotiline and nortriptyline-induced 15-LOX expression, thus 

suggesting that alpha-1 adrenergic receptor activation is indeed essential for 

antidepressant-induced 15-LOX expression. Real-time RT-PCR results was 

supported by Western blot results where maprotiline treatment increased 15-

LOX protein expression and this increase was abolished by prazosin 

treatment. 

Overall, our preliminary results showed an increase in 15-LOX 

expression after antidepressant treatment and this increase involved alpha-1 

adrenergic receptor activation. Increasing 15-LOX expression coupled with 

higher DHA production due to antidepressant-induced iPLA2 expression will 

subsequently lead to enhanced levels of resolvins and neuroprotectins, 

potentially enhancing neural plasticity. Antidepressant treatment has been 
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shown to enhance neurogenesis and increase plasticity in the adult human 

brain (Warner-Schmidt and Duman, 2006; Pittenger and Duman, 2008; 

Castren and Hen, 2013). In addition, RvD1 was shown to attenuate NMDA 

receptor phosphorylation and normalize the spinal synaptic plasticity under 

pain conditions (Xu et al., 2010; Quan-Xin et al., 2012). Together, our results 

suggest that besides inducing iPLA2 and increasing the production of DHA, 

antidepressants with strong noradrenaline reuptake inhibition activity also has 

an effect on enzymes affecting DHA, most notably 15-LOX. The increase in 

both iPLA2 and 15-LOX may then lead to an overall increase in DHA and its 

metabolites which may activate the prefrontal cortex to stimulate the PAG and 

subsequent descending pain inhibitory pathway. Thus, it is possible that 

besides involving iPLA2, the effects of antidepressants on plasticity and 

antinociception could also potentially include activation of 15-LOX and 

subsequent production of resolvins and neuroprotectins although additional 

work is needed to investigate this further. 
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Conclusions 

In the first part of this study, we investigated the role of prefrontal 

cortical iPLA2 in antidepressant-induced antinociception. Mice that received 

maprotiline injection showed increased iPLA2 mRNA and protein expression 

in the prefrontal cortex, and reduced nociceptive responses in a carrageenan 

mouse model of inflammatory orofacial pain. Injection of antisense 

oligonucleotide to iPLA2 in the dorsolateral prefrontal cortex abolished the 

antinociceptive effect of maprotiline. In contrast, iPLA2 antisense injection in 

the somatosensory cortex had no effect on antinociception. Lipidomic analysis 

showed decreased PC and increased LPC lipid species in the prefrontal cortex 

after maprotiline treatment, indicating increased iPLA2 enzymatic activity and 

endogenous release of DHA and EPA. These changes were blocked by 

intracortical iPLA2 antisense injection. Together, results from the first part of 

this study indicate an important role of prefrontal cortical iPLA2 in the 

antinociceptive effect of maprotiline, and suggest the involvement of iPLA2 

not only in the antidepressive, but also antinociceptive effects of maprotiline 

and possibly other similar antidepressants.  

In the second part of this study, we elucidated the potential cellular 

mechanisms involved in the regulation of iPLA2 expression induction. 

Treatment of SH-SY5Y neuroblastoma cells with maprotiline and another 

TCA with strong noradrenaline reuptake inhibition activity, nortriptyline, as 

well as the alpha-1 adrenergic receptor agonist, phenylephrine, resulted in 

increased iPLA2 expression. This increase was blocked by inhibitors of the 

MAPK/ERK signaling cascade, SREBP pathway and the alpha-1 adrenergic 

receptor. In addition, maprotiline and phenylephrine increased the binding of 
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SREBP-2 to the SRE region on the iPLA2 gene, as determined by EMSA. 

Together, our results indicate that stimulation of alpha-1 adrenergic receptors 

causes increased iPLA2 expression via MAPK/ERK and SREBP pathways. 

We have shown that stimulation of alpha-1 adrenergic receptors by 

maprotiline and nortriptyline led to an increase in iPLA2 expression and 

activity. Thus, in the third part of this study, we studied the possibility that 

other enzymes affecting DHA such as 15-LOX may also be regulated in the 

same way by maprotiline and other similar antidepressants. Overall, our 

results showed an increase in 15-LOX expression after maprotiline and 

nortriptyline treatment and this increase was suggested to be associated with 

alpha-1 adrenergic receptor activation. Increasing 15-LOX expression coupled 

with more DHA production due to antidepressant-induced iPLA2 expression 

may subsequently lead to enhanced levels of resolvins and neuroprotectins. 

In conclusion, it was suggested that prefrontal cortical iPLA2 has an 

important role in the antinociceptive effect of antidepressants especially those 

with strong noradrenaline reuptake inhibition activity such as maprotiline. Our 

results also showed that the induction of iPLA2 expression is potentially 

regulated by alpha-1 adrenergic receptors, MAPK/ERK signaling pathway and 

SREBP-2. Additionally, we found that 15-LOX is similarly increased by 

maprotiline and nortriptyline treatment. It is possible that antidepressant 

treatment with strong noradrenaline reuptake inhibition activity like 

maprotiline will first stimulate alpha-1 adrenergic receptors by increasing 

noradrenaline levels in the synaptic cleft (Fig. 6.1A). The stimulated alpha-1 

adrenergic receptors will lead to activation of the MAPK/ERK signaling 

pathway, in particular ERK1/2, which then induce phosphorylation of SREBP-
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2 as well as increase SREBP-2 expression and stimulate its transcriptional 

activity (Fig 3.47B). Activated SREBP-2 will enter the nucleus and bind to the 

SRE sequence on the iPLA2 gene promoter, increasing iPLA2 expression (Fig 

3.47B). Increased iPLA2 expression will lead to higher release of DHA from 

glycerophospholipids and the generated DHA can be further metabolized by 

15-LOX which undergoes a concurrent increase in expression after 

antidepressant treatment (Fig. 6.1B). Increased DHA and its metabolites may 

then potentially facilitate activity or plasticity in the dorsolateral prefrontal 

cortex to stimulate the PAG and descending pain inhibitory pathway (Fig. 

6.1C). The potential mechanisms and signaling pathways involved in 

antidepressant-induced antinociception is summarized in Fig. 6.2. 
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Fig. 6.1 Diagram showing the potential mechanisms and signaling pathways 

involved in antidepressant-induced antinociception in the (A) synaptic cleft, 

(B) neuronal cell and (C) brain. 
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Fig. 6.2 Summary of the potential mechanisms and signaling pathways 

involved in antidepressant-induced antinociception. 

 

Nonetheless, it is vital to bear in mind that there are some limitations to 

our current study and additional work is necessary to further validate the 

potential mechanisms as well as pathways involved in the antidepressant-

induced antinociception suggested above. Future research directions include 

trying out other different antidepressants to investigate their effects on iPLA2 

and whether their antinociceptive activities are similarly affected by prefrontal 

cortical iPLA2 knockdown. It is possible that nortriptyline, which was shown 

to increase iPLA2 expression and has a similarly strong activity on 

noradrenaline reuptake inhibition as maprotiline, may likewise be affected by 

prefrontal cortical knockdown of iPLA2. Our results also showed that the 
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antinociceptive effect of amitriptyline was unaffected by prefrontal cortical 

iPLA2 inhibition, suggesting an alternative pathway and mechanism for 

antidepressant-induced antinociception which does not solely rely on 

prefrontal cortical iPLA2. It is possible that the antinociceptive effect of 

antidepressants with strong noradrenaline reuptake inhibition activity such as 

maprotiline involves iPLA2 while antidepressants with weaker noradrenaline 

reuptake inhibition activity and stronger serotonin reuptake inhibition activity 

such as amitriptyline induces antinociception without involving iPLA2. Thus, 

it is imperative to examine other different antidepressants to study their effect 

on iPLA2 and whether prefrontal cortical iPLA2 is essential for their 

antinociceptive activities. We would also need additional in vivo prefrontal 

cortical data in the future to further support our in vitro findings. 

Another possible future study is to supplement DHA to maprotiline-

treated mice and determine whether supplementation of DHA can salvage and 

prevent the abolishment of maprotiline-induced antinociception when 

prefrontal cortical iPLA2 is inhibited. More work can also be done on 15-LOX 

to investigate its role in pain and whether knockdown of 15-LOX will affect 

nociception. In addition, direct measurement of the levels of DHA and its 

metabolites in the prefrontal cortex can be performed to further substantiate 

our results in this study. 
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