
ANALYZING SOCIAL MEDIA CONTENTS

KANG WEI

(M.Sc., Northwestern Polytechnical University, 2009)
(B.Sc., Northwestern Polytechnical University, 2006)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE

SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2015

Declaration

I hereby declare that the thesis is my original work

and it has been written by me in its entirety. I have

duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any

degree in any university previously.

KANG Wei

25 February 2015

ACKNOWLEDGEMENTS

In memory of my mother for her everlasting love and encouragement.

This thesis would not have been accomplished without the love and help of many

people. Therefore, I would like to express my gratitude to them here in this section.

First of all, I am greatly indebted to my supervisor, Prof. Anthony K. H. TUNG, for

his precious guidance over the past few years. His creativity and devotion to research

have impressed me a great deal, which encourages me all the time during my entire PhD

study. Thank him for his discussion and inspiration so that I can always stay highly

motivated in research. I am also grateful to him for inviting us to dinner or karaoke

sessions from time to time, from which I have learnt the necessity and importance of

balancing work with life.

I would like to thank Prof. Kian-Lee TAN and Prof. Roger ZIMMERMANN to be

the members of my Thesis Advisory Committee (TAC). I am really grateful that they are

always willing to attend the regular TAC meetings. Their invaluable suggestions have

inspired and enlightened me on the formation of new ideas. I am also pretty grateful

to my thesis examiners, i.e., Prof. Stéphane BRESSAN, Prof. Roger ZIMMERMANN

and Prof. Guoliang LI, for their precious comments and suggestions, so that I can better

refine and polish my thesis after the oral defense. In addition, I would like to convey my

i

ACKNOWLEDGEMENTS

sincere gratitude to the NUS Graduate School for Integrative Sciences and Engineering

(NGS) for providing me with the generous scholarship.

My special gratitude goes to my friends in the Family of Christ church, especially

Prof. Kian-Lee TAN, WANG Zhengkui, XIAO Qian, WANG Huiju, ZENG Yong, CAO

Nannan and CHU Yan. Whenever I encounter any difficulties in either research or daily

life, they are always there, ready to help me and encourage me. Particularly, Prof. Kian-

Lee TAN, a respectable person with great humility, considerateness and wisdom, sets

an example to me not only as a prominent professor but also as a spiritual mentor and

sincere friend. Having these trustworthy friends is a big fortune and blessing to me,

making me feel the warmth and comfort like at home.

I am pretty grateful to the colleagues and labmates in the database research labs for

their kindly help. We have built a strong battle companion-like friendship by helping

and getting along with each other over the past few years. They are ZHOU Jingbo,

ZHENG Yuxin, TANG Ruiming, BAO Zhifeng, LI Lu, LI Hao, ZENG Zhong, ZHAO

Feng, SHI Lei, WANG Guoping, WANG Fangda, FAN Qi, GUO Qi, LIU Qing, LI

Meiying, LI Yuchen and so on. I would like to extend my gratitude to my collaborators

in these years, including ZHAO Feng, LI Xinyu, SONG Qiyue, Shubham GOYAL and

so on. I would also like to thank my friends LI Xinyang and DENG Linli for their

encouragement, and thank YUAN Xintong and her family for their hospitality.

Lastly, my deepest love is reserved for my beloved family, i.e., my father, my mother

and my brother, for their endless affections and support. Without their constant encour-

agement and confidence in me, I can never make any progress as such. I would like to

ascribe all my progress and achievements to my family, and dedicate this thesis to my

mother in memory of her and her everlasting affection for me.

ii

CONTENTS

Acknowledgements i

Summary vii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Research Problems and Challenges . 3

1.2.1 Generating and Visualizing Summaries 3

1.2.2 Generating Summaries with Semantic Meanings 4

1.2.3 Managing Information and Extracted Knowledge 6

1.3 Contributions . 7

1.4 Thesis Outline . 9

2 Related Works 11

iii

CONTENTS

2.1 Summarization . 11

2.1.1 Topic Discovery . 12

2.1.2 Topic Modeling . 13

2.1.3 Biclustering . 15

2.1.4 Event Detection . 16

2.1.5 Social Media Contents Summarization 17

2.2 Other Related Works . 18

2.2.1 Visualization with Tag Clouds 19

2.2.2 Multi-label/Hierarchical Classification 19

2.2.3 Knowledge Discovery in Social Media 20

3 Interactive Hierarchical Tag Clouds for Summarizing Spatiotemporal So-

cial Media Contents 23

3.1 Overview . 23

3.2 Problem Formulation . 27

3.2.1 Preliminaries . 28

3.2.2 Problem Definition . 29

3.3 Biclustering Approach . 30

3.3.1 Introduction to Formal Concept Analysis 30

3.3.2 Properties of Formal Concept 31

3.3.3 Generating Biclusters . 34

3.3.4 Relaxation . 35

3.4 Partition-and-Merge Scheme . 36

3.4.1 Offline Partitioning . 36

3.4.2 Offline Pre-computation . 37

3.4.3 Online Merging . 38

3.4.4 Ranking Merged Biclusters . 42

iv

CONTENTS

3.4.5 Mismatch Problem . 43

3.5 System Implementation . 45

3.5.1 System Architecture . 46

3.5.2 Visual Layout . 47

3.6 Experimental Study . 47

3.6.1 Data Sets and System Environment 48

3.6.2 Comparison of Different Summarization Methods 48

3.6.3 Partition-and-Merge Scheme Evaluation 54

3.6.4 System Scalability Analysis 57

3.7 Summary . 59

4 Hierarchical Summarization of Social Media Contents Based on DBpedia

Ontology 61

4.1 Overview . 61

4.1.1 Wikipedia Entity and Infobox 62

4.1.2 DBpedia Ontology . 63

4.1.3 DBpedia Ontology Based Summarization 65

4.2 Preliminaries . 68

4.3 Refinement of Classes of Entities . 70

4.3.1 Extraction of Entities . 70

4.3.2 Multi-level Naive Bayes Classifiers 71

4.4 Summarization . 81

4.4.1 Entity Mapping . 81

4.4.2 Summary Generation . 84

4.4.3 Top Entities Selection . 85

4.5 Experimental Study . 88

4.5.1 Data Sets . 88

v

CONTENTS

4.5.2 Evaluation of mNBC . 89

4.5.3 Evaluation of Summary Generation 97

4.5.4 Comparison with Vesta at System Level 99

4.5.5 Case Study . 102

4.6 Summary . 103

5 Trendspedia: An Internet Observatory for Analyzing and Visualizing the

Evolving Web 105

5.1 Overview . 105

5.2 System Architecture . 108

5.3 Data Analytics . 111

5.3.1 Hot URLs/Images Extraction 111

5.3.2 Tweets Summarization . 112

5.3.3 Emerging Event Detection . 113

5.3.4 Wikipedia Information Network Construction 114

5.4 System Design and Interface . 115

5.4.1 System Login . 116

5.4.2 Entity Search . 117

5.4.3 Web Page of Wikipedia Entity 118

5.4.4 Details of Analytics Tools . 119

5.5 Summary . 125

6 Conclusion and Future Work 127

6.1 Summary and Contributions of the Thesis 128

6.2 Future Directions . 129

Bibliography 133

vi

SUMMARY

The proliferation of social media services has led to the production of huge amounts

of data, which raises great challenges to information acquisition, integration and diges-

tion. To extract compact yet useful information, many algorithms have been proposed to

summarize social media contents, e.g., tweets and news feeds. However, it remains chal-

lenging to extract summaries efficiently and support the interactive exploration of such

data. Most existing methods also extract summaries without considering the semantic

meanings and relationships in those summaries. Even with the extracted information,

users may still find it hard to obtain knowledge in conformity with their preferences.

To tackle these challenges, we propose two novel summarization approaches in this

thesis to generating hierarchical summaries. One approach generates summaries from

spatiotemporal social media contents and builds a system to visualize the summaries in

hierarchical tag clouds. The other approach focuses on introducing semantics into each

summary. In addition, a system with four data analytics tools is built to manage social

media contents and extracted knowledge via Wikipedia.

Specifically, we first propose Vesta which enables users to extract and interactively

explore summaries of social media contents published in a certain spatiotemporal range.

vii

SUMMARY

These summaries are represented using a novel concept called hierarchical tag clouds,

which allows users to zoom in/out to explore more specific/general tag summaries. A

novel biclustering approach is proposed to extract summaries, from which topic hier-

archies are generated for partitions of data. At runtime, topic hierarchies in certain

partitions are merged to form tag hierarchies, which are used to construct hierarchical

tag clouds for visualization.

Next, we propose Heron to generate hierarchical summaries from any set of social

media contents. It makes use of the DBpedia ontology, through which semantically

hierarchical relationships are introduced into each summary. Specifically, a summary

consists of a set of semantically related Wikipedia entities which are extracted from

social media contents. The entities are further classified into different subsets, which

are mapped to the corresponding classes in a sub-hierarchy of the DBpedia ontology to

reveal subsumptive relationships. We propose a model named multi-level Naive Bayes

Classifiers to refine the classes of entities so as to reduce inaccuracies and inconsistency

in Wikipedia. Considering the probability that many entities may be mapped to a single

class, we further propose to select the top-ranked entities for each subset of a summary.

Finally, we present a novel system named Trendspedia, which brings proper context

to continuously incoming social media contents, so that massive amounts of information

can be indexed, organized and analyzed around Wikipedia entities. Four data analytics

tools are employed. With this system, users can easily pinpoint valuable information

and knowledge, and navigate to other closely related entities through an information

network for further exploration.

Extensive experimental studies have verified the efficiency, effectiveness and scal-

ability of our approaches. We believe that our summarization approaches, as well as

the Trendspedia system, can greatly promote and facilitate the exploration of insights

hidden in huge numbers of social media contents.

viii

LIST OF TABLES

3.1 Tag-level matrix . 41

4.1 Entities and their corresponding class chains 90

4.2 Improvement by mNBC . 96

ix

LIST OF FIGURES

3.1 Hierarchical tag clouds . 24

3.2 Formal concepts . 31

3.3 Bicluster merging example . 39

3.4 Two cases of the mismatch problem 43

3.5 System architecture . 46

3.6 Performance comparison . 50

3.7 Summary detection capability comparison 51

3.8 Precision and recall . 53

3.9 Assumption validation . 55

3.10 Mismatch evaluation . 56

3.11 Offline scalability . 57

3.12 Online scalability . 58

4.1 DBpedia ontology (partial) . 64

4.2 An example of a hierarchical summary 66

4.3 Structure of mNBC . 72

xi

LIST OF FIGURES

4.4 Histograms of properties for two class nodes 78

4.5 Entity mapping . 82

4.6 Summary generation . 84

4.7 Precision, recall and F1 score for different number of properties 91

4.8 Precision, recall and F1 score for different pmin 93

4.9 Distribution of probabilities . 94

4.10 Number of summary vs. average summary size 98

4.11 Summary generation . 100

4.12 Response time . 101

4.13 Case study: an exemplary summary 102

5.1 Google Knowledge Graph . 107

5.2 System architecture . 109

5.3 Login page . 115

5.4 Login with Twitter account . 116

5.5 Home page after login . 117

5.6 Searching results . 118

5.7 Snapshot of the “Singapore” page in Trendspedia 119

5.8 Hot URLs/images . 120

5.9 Tweets summarization . 121

5.10 Tweets summarization for “Egypt” . 122

5.11 Emerging events . 123

5.12 Information network . 124

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

As social media services have become ubiquitous nowadays, a huge number of so-

cial media contents, e.g., tweets on Twitter and news feeds on Facebook, are published

every single day. For instance, Twitter is seeing 500 million tweets per day in 20151.

Such a huge volume of data brings great challenges in terms of information acquisition,

integration and digestion. One may feel overwhelmed when facing mountains of data

every day, and may also miss important information in the data flow if one follows a

large number of people. In addition, while social media contents propagate and ex-

change information at an unprecedented speed, they are also characterized by noise and

redundancy. In response, much research effort has been invested in the summarization

of social media contents, with the aim of extracting useful and compact information

while filtering out the trivial. Popular methods include topic discovery [84, 63, 53],

1https://about.twitter.com/company

1

CHAPTER 1. INTRODUCTION

event detection [19, 102, 18], time-awareness summarization [81, 76] and so on.

Among various types of social media contents, geo-coded ones are increasingly be-

coming more common. These contents include both locational and temporal informa-

tion which greatly enriches the published posts. By exploring and summarizing these

contents, we can discover what people are talking about in certain regions during a cer-

tain period of time. For example, in the 2012 US presidential election, Obama and Rom-

ney tried to win voters in key swing states by getting their campaign staffers to analyze

newly published social media contents that were related to the election in each of these

states, and then adjusted their campaign strategies according to the analysis. Therefore,

summarizing social media contents with spatiotemporal information effectively and vi-

sualizing the resultant summaries wisely would definitely enhance the understanding of

massive amounts of data.

In addition to generating summaries from geo-coded contents, we believe that in-

troducing and exploring semantic meanings in summaries is also substantially impor-

tant for information extraction and digestion. However, most existing research efforts

mainly generate summaries for documents and social media data from statistical per-

spectives, thereby leaving the semantic meanings and relationships in summaries unex-

plored.

Furthermore, even with extracted information, users may still find it difficult to ob-

tain personalized knowledge in conformity with their preferences. This happens be-

cause of the lack of an effective and systematic mechanism to organize the massive

amount of information and extracted knowledge so that users can easily pinpoint what

they are interested in.

In this thesis, we extract knowledge by analyzing social media contents and propose

effective solutions to the above problems. Specifically, we first propose two summa-

rization approaches. One approach is used to generate summaries from spatiotemporal

2

1.2. RESEARCH PROBLEMS AND CHALLENGES

social media contents, and a system is implemented to visualize the summaries in hi-

erarchical tag clouds. The other approach tries to extract hierarchical summaries by

introducing semantic meanings and relationships into each summary. Besides the two

approaches, we also present a system named Trendspedia, which is designed to man-

age massive amounts of information and extracted knowledge effectively by leveraging

Wikipedia.

1.2 Research Problems and Challenges

Challenges in the summarization of social media contents mainly involve the ef-

ficiency and effectiveness of the approaches. To visualize the generated summaries

and enable interactive exploration of them, we need to figure out how to organize the

elements in each summary according to their meanings and importance. It is also chal-

lenging to introduce semantics to summaries when most existing efforts make use of

statistical information. With an abundance of information and extracted knowledge, an-

other problem is how we can effectively organize them and enable users to pinpoint the

knowledge they are interested in with great ease. Next, we briefly introduce the prob-

lems tackled in this thesis, as well as the challenges that we encountered when trying to

solve these problems.

1.2.1 Generating and Visualizing Summaries

The first problem that we address in this thesis is the extraction of summaries from

spatiotemporal social media contents, so as to help users explore what people are talk-

ing about in certain regions during certain periods of time. To provide interactive ex-

ploration of the summaries, we propose a new concept of the hierarchical tag cloud and

build a system named Vesta to visualize the summaries in hierarchical tag clouds. A

3

CHAPTER 1. INTRODUCTION

hierarchical tag cloud is a visualized form of a summary. Keywords in a summary are

called tags in the hierarchical tag cloud, which organizes the tags at different levels of

depth according to their degrees of generality. In this manner, users are enabled to ex-

plore and better understand the summaries by zooming in/out through the hierarchical

tag clouds interactively.

One big challenge associated with providing interactive hierarchical tag clouds is the

development of efficient methods to summarize social media contents. Latent Dirichlet

allocation (LDA) [15] is a popular topic model for summarizing and extracting topics

from documents, and various extensions [13, 12] have been studied, including extending

LDA to deal with short documents like tweets [71]. However, LDA-based methods

cannot handle huge amounts of data efficiently since they often perform inference by

adopting MCMC algorithms such as Gibbs sampling [28]. The streaming nature of

social media content data renders the summarization task even more challenging. Even

an efficient summarization method might not be able to handle huge amounts of data

easily when scaled up, and might not guarantee a relatively short response time.

Another challenge to providing hierarchical tag clouds is organizing the keywords

in each summary at different levels to reflect different degrees of generality. This is

important for users to gradually understand the meanings conveyed in a summary, level

by level.

1.2.2 Generating Summaries with Semantic Meanings

The existing summarization methods greatly promote information integration and

enable users to understand a large number of social media contents in a more concise

and effective manner. However, most of these methods leave the exploration of semantic

meanings and the relationships that summaries convey untouched, mainly because the

summaries are often generated based on statistical information such as co-occurrence

4

1.2. RESEARCH PROBLEMS AND CHALLENGES

and frequency of terms [15, 19, 84]. Therefore, the summaries generated by most exist-

ing methods fail to reveal insights hidden in social media contents for lack of semantic

information integration.

To tackle the second problem in this thesis, we propose an approach named Heron

to generate another type of summary, i.e., the hierarchical summary, in which semantic

meanings can be introduced and explored. A hierarchical summary consists of a set

of closely related Wikipedia entities which are extracted from social media contents.

The entities are divided into a few subsets, each of which contains entities classified

as the same class, by making use of the DBpedia ontology (a hierarchy of classes with

subsumptive relationships). The subsets of entities in a summary are connected in a

hierarchical structure, which corresponds to a sub-hierarchy of the DBpedia ontology

to reveal the semantic relationships among the subsets.

To generate high-quality hierarchical summaries, it is important to map entities

properly onto the DBpedia ontology based on the class labels of the entities. Al-

though the class information of entities is available in Wikipedia, i.e., the infoboxes

of Wikipedia entities, the crowdsourcing nature of Wikipedia inevitably leads to great

inconsistency and inaccuracy (refer to Section 4.1.1 for details) [11]. To reduce the

propagation of inconsistency and inaccuracy of class information from Wikipedia to

summaries, it is better to refine the classes of entities before performing the summariza-

tion.

Many classification algorithms have been proposed in the literature. However, the

characteristics of infoboxes in Wikipedia render traditional classification algorithms in-

efficient and impractical. These characteristics include high dimensionality (i.e., the

number of properties altogether is quite huge), sparseness (i.e., the number of proper-

ties for an entity is often small, from a few to a dozen), and low degree of property

overlap (i.e., different entities may have quite different sets of properties), all of which

5

CHAPTER 1. INTRODUCTION

present great challenges to the refinement of classes of Wikipedia entities.

Furthermore, many entities can be mapped to a single class node in the DBpedia

ontology because they may belong to the same class. Thus it is also important to rank

the entities properly according to some criteria, to provide users with the key entities.

1.2.3 Managing Information and Extracted Knowledge

Even with summaries generated to enable users to grip sketches instead of reading

huge numbers of social media contents, users may still feel overwhelmed by the in-

formation in which they have no interest at all. Most people actually have their own

preferences for knowledge within certain contexts, instead of the globally popular ones.

Consider, for instance, the scenario where a tourist is going to visit a place that he has

never been to before, or an investor plans to buy stocks of a certain company. It would

be greatly beneficial if both of them had access to some well organized and continu-

ously updated knowledge of how other people talk about their targets, and furthermore,

if they could also obtain similar knowledge of a few more closely related entities via

an information network. Such a demand for preference-based knowledge acquisition

brings great challenges to traditional means of information retrieval and integration,

such as search engines, whose users have to search for snippets of information that may

interest them, and integrate and analyze the information by themselves.

To tackle these challenges, we build a collaborative Internet observatory platform

named Trendspedia with the aim of bringing proper context to social media contents

which are streaming in from the Internet. With Trendspedia, we try to index, organize,

and analyze massive amounts of dynamic social media contents around Wikipedia enti-

ties, so that users can easily pinpoint useful information and analytical results by simply

navigating to the Wikipedia entities they are interested in. To facilitate the exploration

of relevant knowledge, users are empowered to navigate to closely related Wikipedia

6

1.3. CONTRIBUTIONS

entities effortlessly, through an information network.

1.3 Contributions

This section describes the contributions made in this thesis to the solving the above

problems.

In the first part of this thesis, we propose a new concept named hierarchical tag

cloud for the summarization and visualization of spatiotemporal social media contents.

Our contributions are as follows:

• We propose a novel way to explore spatiotemporal social media contents via hier-

archical tag clouds. Users are allowed to interactively drill down or roll up in the

hierarchical tag clouds to understand the corresponding summaries at different

levels of abstraction.

• We propose an efficient summarization approach by biclustering the social media

contents based on formal concept analysis. We then generate and merge topic

hierarchies to visualize the summaries in hierarchical tag clouds.

• To enhance the scalability, we further extend the summarization approach to a

disk-based partition-and-merge scheme. At the partitioning stage, which is done

offline, we split the spatiotemporal data space into partitions and generate sum-

maries and the corresponding topic hierarchies for each partition. At runtime,

topic hierarchies are merged to be visualized in hierarchical tag clouds.

• We implement all these mechanisms, and, based on them, build a semi-realtime

system called Vesta.

In the second part of this thesis, we propose Heron, a new type of summarization

7

CHAPTER 1. INTRODUCTION

approach with the aim of introducing semantics into summaries. Our contributions in

this respect are as follows:

• We generate hierarchical summaries, each of which not only contains semanti-

cally related entities but also has a hierarchical structure, corresponding to a sub-

hierarchy of the DBpedia ontology, to reveal subsumptive relationships among

subsets of entities.

• We propose a model named multi-level Naive Bayes Classifiers to refine the

classes of entities before mapping them onto the DBpedia ontology, so as to re-

duce the propagation of inconsistency and inaccuracy in Wikipedia.

• Considering the possibility that many entities may be mapped to one single class

in the DBpedia ontology, we introduce a ranking procedure to select the most

relevant entities based on a score formula.

• The hierarchical summaries can also be easily visualized in hierarchical tag clouds.

In the third part of this thesis, we try to manage massive amounts of information and

extracted knowledge effectively. Our contributions here are as follows:

• We build a system named Trendspedia to help users pinpoint information and

knowledge easily, according to their preferences.

• We index, organize, and analyze dynamic social media contents effectively around

Wikipedia entities.

• We implement four data analytics tools in Trendspedia and visualize the analytical

results for better exploration and understanding.

In addition, two papers have been published in international conferences based on

the first and third parts of this thesis [40, 39].

8

1.4. THESIS OUTLINE

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we review the re-

lated works. In Chapter 3, we propose to extract summaries from spatiotemporal social

media contents and we build a system for interactive exploration of the summaries in

hierarchical tag clouds. Chapter 4 introduces another summarization approach, so as

to generate hierarchical summaries which convey semantic meanings and relationships.

To effectively manage massive amounts of information and extracted knowledge, we

further present a system named Trendspedia in Chapter 5, to index, manage, and an-

alyze dynamic social media contents around Wikipedia entities. Finally, we conclude

this thesis and discuss possible future directions in Chapter 6.

9

CHAPTER 2

RELATED WORKS

In this chapter, we review and synthesize related works. First, we study the different

categories of summarization methods proposed in the literature. Then, we introduce

some other relevant fields, including tag clouds for the visualization of summaries,

multi-label classification and hierarchical classification, and knowledge discovery in

social media.

2.1 Summarization

Various summarization methods have been proposed over the past decades with

the aim of summarizing and extracting knowledge from large volumes of data. These

methods were initially designed for information retrieval from textual records such as

documents and news articles. Later, with the rapid development of many emerging

scientific/commercial fields, such as biological technology and social media services, a

large amount of data is produced every day, which thus demands efficient techniques

11

CHAPTER 2. RELATED WORKS

for the analysis of massive data. Summarization is consequently applied in these fields

to extract key features and important points. Summarization methods can be divided

into different categories according to the techniques adopted and objectives to achieve.

Next, we review these methods in terms of categories in detail.

2.1.1 Topic Discovery

One popular category of the summarization approaches is the topic discovery, which

attempts to extract different topics from textual records, such as a corpus of documents

or a collection of news articles. A topic usually consists of a group of keywords or

sentences describing one central fact or several closely related facts while keeping the

redundancy minimized.

Many efforts try to select the most important sentences by assigning scores to sen-

tences in documents. Barzilay and Elhadad [7] generated a summary for a text using

a model of the topic progression derived from lexical chains, without requiring the full

semantic interpretation of the text. They argued that lexical chains were a good indi-

cator of the central topic of a text and presented a new algorithm to compute lexical

chains in a text by merging multiple knowledge sources. With the lexical chains, they

scored them so as to identify the strong ones, from which significant sentences were

extracted. Gong and Liu [31] proposed two generic text summarization methods by se-

lecting sentences that were highly ranked and different from each other, with the aim of

achieving a wider coverage of a document’s main content and less redundancy. In [25],

an approach named LexRank was proposed to compute sentence importance based on

the concept of eigenvector centrality in a graph representation of sentences. Authors

in [97] first assigned a score to each term in a document cluster and then picked up

sentences that maximized the sum of the scores in the cluster. A Cluster-based Condi-

tional Markov Random Walk Model and a Cluster-based HITS Model were proposed

12

2.1. SUMMARIZATION

in [89] to support multi-document summarization using the link relationships between

sentences in a document set.

2.1.2 Topic Modeling

Some other researchers try to extract summaries through topic modeling approaches.

Latent Dirichlet allocation (LDA) [15] is one popular generative probabilistic model for

latent topic discovery in text collections. LDA is a three-level hierarchical Bayesian

model, which models each document of a collection as a finite mixture over a set of

latent topics. Each latent topic is characterized by a distribution over words. Since

exact inference is intractable for LDA, the authors presented approximate inference

techniques instead, based on variational methods and an EM algorithm for empirical

Bayes parameter estimation. Hierarchical LDA (hLDA) [13, 12] is an extension of LDA

to learn topic hierarchies through the Nested Chinese Restaurant Process. The authors

proposed a nested Chinese restaurant process and showed how to use the process to do

Bayesian nonparametric inference of topic hierarchies.

Inspired by LDA and hLDA, various other topic modeling methods have been pro-

posed, such as the correspondence LDA models [14] and the topic-sentiment models

[51]. Three hierarchical probabilistic mixture models were presented in [14] to model

the joint distribution of both types and the conditional distribution of the annotation

given the primary type in annotated data. To detect sentiment and topic simultaneously

from text, Lin and He proposed a probabilistic modeling framework called joint senti-

ment/topic model based on LDA [51]. To solve the topic-driven reader comments sum-

marization (TORCS) problem, Ma et al. in [53] introduced a Master-Slave Topic Model

(MSTM) and an Extended Master-Slave Topic Model (EXTM) to discover and summa-

rize topics in readers comments and the related news articles. Both models perceived a

news article as a master document and each of its comments as a slave document, and

13

CHAPTER 2. RELATED WORKS

grouped comments into topic clusters. Two ranking mechanisms were adopted to select

most representative comments from each comment cluster. In another work [22], the

authors proposed a model called Uni-Topical Blockmodels to capture topics from tweet

replies among groups of Twitter users. Unlike most LDA based methods which rely

on the bag-of-words assumption, some authors went further by taking word order and

dependency into consideration. Griffiths et al. presented the HMMLDA model in [32]

by taking care of both short-range syntactic dependencies and long-range semantic de-

pendencies between words. The authors in [90] proposed a topical n-gram model based

on LDA, with the aim of discovering topics and topical phrases. The model can auto-

matically determine unigram words and phrases according to context and then assign

mixture of topics to individual words and n-gram phrases.

Since LDA-based methods often perform approximate inference by adopting MCMC

algorithms such as Gibbs sampling, they are not able to handle huge amounts of social

media data efficiently. In Chapter 3, we propose an efficient summarization approach

by biclustering spatiotemporal social media contents. After the summaries are gener-

ated, we only adopt hLDA to generate tag hierarchies to help visualize the summaries.

We show in the experimental study that hLDA cannot handle large amounts of content

data directly for the analysis of topic hierarchies. Our work in Chapter 3 differs from

hLDA mainly in the following aspects. (1) We discover summaries and the related con-

tents from which the summaries are extracted simultaneously. (2) We generate discrete

summaries which capture various interesting topics while hLDA generates topics at dif-

ferent levels of abstraction. (3) We generate a tag hierarchy for each summary while

hLDA generates a topic hierarchy for a corpus of documents.

As the biclustering based summarization approach will be introduced in Chapter 3,

next we introduce the background of biclustering.

14

2.1. SUMMARIZATION

2.1.3 Biclustering

Biclustering [37] was first proposed decades ago and became popular after Cheng et

al. [20] adopted it for gene expression data analysis. Many approaches were proposed

in the field of Bioinformatics to do biclustering in both gene and condition dimensions

simultaneously to generate biclusters, each of which has a set of genes expressing co-

herently in a set of conditions [20, 94, 93]. It is also used in text analysis, referred

to as “co-clustering”, to analyze dyadic data [74, 83], e.g., the document and word

co-occurrence frequencies. Some research efforts were spent in extending existing co-

clustering to support constraints on both words and documents [83]. A two-dimensional

contingency table can be perceived as an empirical joint probability distribution of two

discrete random variables, which converts co-clustering to an optimization problem in

information retrieval. The optimal co-clustering results in the maximum mutual infor-

mation between the clustered random variables subject to constraints on the number of

row and column clusters. With this idea, an information theoretic co-clustering frame-

work was proposed in [23] to increase the preserved mutual information by interlacing

the row and column clusterings iteratively.

However, finding the largest bicluster is NP-complete for almost all variants of the

biclustering problem [20, 54]. As a result, most biclustering approaches are designed

with heuristics in a non-deterministic manner, thereby often taking a long time to con-

verge [54, 93]. Recently, some authors [30] applied biclustering to the analysis of social

media data. They proposed to do biclustering by means of formal concept analysis to

extract groups of users sharing similar interests and discover communities of users com-

ing from similar groups. Formal concept analysis [27, 70], or FCA for short, is a data

analysis method in growing popularity across various domains, which is widely used to

discover relationships between a set of objects and a set of attributes. Although biclus-

tering using FCA is more efficient than general biclustering approaches, this approach

15

CHAPTER 2. RELATED WORKS

is still unable to scale to huge amounts of social media data. Besides, it tends to gener-

ate sparse biclusters but miss the dense ones [30]. Our proposed biclustering method in

Chapter 3 also makes use of FCA to summarize social media data, but can handle large

dataset more efficiently and generate denser biclusters.

2.1.4 Event Detection

Event detection is different from most categories of summarization in that it aims

at discovering a significant or large-scale activity that is unusual with regard to normal

patterns of behavior [42]. Event detection has similar definitions in many other works

such as the discovery of abnormal aggregates in data streams [101], or looking for

something special that happens at some specific time and place [69]. In other words,

the major task of event detection is to detect or summarize abnormal things that are

considered as different from usual status.

Many early research efforts focused on detecting events from streams of news sto-

ries. Yang et al. [95] applied hierarchical and non-hierarchical document clustering

algorithms to a corpus of stories and found the resultant cluster hierarchies highly infor-

mative for the detection of previously unidentified events. Allan et al. in [2] conducted

event detection over a stream of broadcast news stories by adopting a single pass clus-

tering algorithm and a thresholding model incorporating the properties of events.

As social media services prosper nowadays, people often post real-time microblogs

to report significant or bursty events, including social events such as a political cam-

paign, a gun shot, as well as natural events such as an earthquake. By monitoring and

exploring social media streams, researchers are able to detect events and stories which

are characterized by a set of descriptive, collocated keywords. Sayyadi et al. [80] built

a network of keywords and made use of community detection methods to discover and

describe events in social streams. In [79], Sakaki et al. treated Twitter users as sensors.

16

2.1. SUMMARIZATION

They monitored tweets and detected events by a classifier of tweets based on features

such as the keywords, the number of words and the context. In addition to descriptive

keywords, events are also characterized by temporal/spatial features. By defining events

as an information flow between social actors on a certain topic during a certain time pe-

riod, authors in [100] detected events by exploring social media contents from temporal

and social dimensions. Another group of authors in [49] tried to detect the occurrence

of local events with geo-coded microblogs.

Different from event detection aiming at discovering abnormal/abrupt events, some

researchers work on general summarization solutions with temporal, spatial or evolu-

tionary characteristics. For instance, Yan et al. in [92] proposed a framework named

Evolutionary Timeline Summarization (ETS) so as to produce evolutionary timelines

consisting of individual yet correlated summaries given a collection of time-stamped

web documents.

2.1.5 Social Media Contents Summarization

Since this thesis focuses on analyzing social media data, we next give a brief re-

view of the related works on the summarization of social media contents exclusively.

Although the summarization of documents has been studied for many years, the sum-

marization of social media contents remains a new research direction and begins to

attract more and more research interests in recent years owing to the new characteristics

in social media contents, such as the limited length of a microblog and the streaming

nature of social media data. The summarization approaches for social media contents

can also be divided into specific categories, such as topic discovery and event detection

as discussed above.

TweetMotif [63] is an application for Twitter topic summarization based on tech-

niques such as near-duplicate detection, language modeling and set cover heuristics.

17

CHAPTER 2. RELATED WORKS

TUT [84] is a statistical model for the detection of interpretable trends and topics in

social media, where a topic is a cluster of frequently co-occurred words. McCallum et

al. [56] introduced an Author-Recipient-Topic (ART) model, based on latent Dirichlet

allocation and the Author-Topic model, to learn topic distributions according to the rela-

tionships between people. Besides topic generation, event detection from social media

data is another popular form of summarization [102, 18]. Authors in [19] summarized

tweets for highly structured and recurring events by learning the underlying hidden state

representation of events via Hidden Markov Models. Twevent [50] was proposed as a

segment-based event detection system for tweets, which can help users to understand

the topics attracting a large number of common Twitter actors. Other efforts are made

in time-aware summarization, such as producing timelines by summarizing dynamic,

quickly arriving, and large-scale tweet streams [81], and modeling tweet propagation to

generate time-aware tweets summaries based on users’ history and collaborative social

influences [76]. However, very few of the existing works take into consideration the ex-

ploration of semantic meanings and relationships in summaries, which will be discussed

in Chapter 4 of this thesis.

2.2 Other Related Works

Apart from summarization, this thesis is also relevant to several other research ar-

eas, including the visualization of summaries, multi-label/hierarchical classification as

well as knowledge discovery in social media. Next we briefly review each of them

respectively.

18

2.2. OTHER RELATED WORKS

2.2.1 Visualization with Tag Clouds

Tag clouds are visual presentations of a set of words, also called “tags”, selected by

some rationale, in which attributes of the text (e.g., size, color) are used to represent

features (e.g., frequency) of the associated terms. Kaser and Lemire [41] proposed

algorithms to improve the display of tag clouds and to achieve a general 2-dimensional

layout by using nested tables. Sinclair et al. [82] conducted an investigation to figure

out when participants preferred tag cloud to traditional search interface in information

query. The authors in [78] provided an extensive evaluation of tag clouds and introduced

some guidelines for tag cloud construction. Bielenberg et al. [10] presented their tag

cloud in a circular layout where tags locating nearer the center are more important.

Dubinko et al. [24] proposed to visualize the evolution of tags within the Flickr online

image sharing community. PubCloud [46] was built to summarize the query results in

the PubMed database of biomedical literature using tag clouds. A user study conducted

by the authors pointed out that tag clouds could better present descriptive information

than the standard result list. In Chapter 3, we combine tag clouds and topic hierarchies

to visualize the summaries of spatiotemporal social media contents in hierarchical tag

clouds, which is suitable for large-scale tag representation.

2.2.2 Multi-label/Hierarchical Classification

To generate high-quality summaries with semantics, in Chapter 4 we propose a

model named multi-level Naive Bayes Classifiers so as to refine the classes of enti-

ties. The model is related to both the multi-label classification [85] and the hierarchical

classification [38]. Most traditional classification algorithms fall into the multi-class

classification, which try to classify each of the instances under examination as only one

of the multiple classes. When it comes to the multi-label classification, each instance

can be associated with multiple labels or classes. To support multi-label classification

19

CHAPTER 2. RELATED WORKS

with a large number of labels, authors in [9] proposed to select a small subset of class

labels to approximate the original label space. A pruned sets method was presented in

[73], which took into account correlations between labels by treating sets of labels as

single labels. Hierarchical classification is a type of the multi-class classification, which

organizes the multiple classes to be predicted into a class hierarchy [3, 38, 75, 48]. For

instance, Kumar et al. [45] proposed a hierarchical method to solve the K-class prob-

lem by using K − 1 binary classifiers. The binary classifiers were organized in a binary

tree with K leaf nodes, each of which represented one of the K classes. Our model

of multi-level Naive Bayes Classifiers proposed in Chapter 4 is a combination of the

multi-label classification and the hierarchical classification, which is specially designed

to refine the classes of entities based on the DBpedia ontology.

2.2.3 Knowledge Discovery in Social Media

Nowadays, we have entered an era where a huge amount of data is continuously

produced every day. In addition to the efforts in developing summarization algorithms,

many studies have been performed to gain various insights from massive social media

data so as to move forward from data to information to knowledge.

Xiang and Gretzel [91] simulated the travel planning process of travelers to inves-

tigate the role of social media in online travel information search, and proposed sug-

gestions for better online marketing strategies based on their findings. Yates et al. [96]

studied social media as knowledge management systems for disaster and emergency

management, including the influence of social media on knowledge sharing, reuse, and

decision-making, and how knowledge can be effectively maintained in these systems.

Authors in [6] attempted to analyze and interpret the context of Twitter users, includ-

ing interests, intentions and activities, from the real-time data flow of Twitter messages.

Bandari et al. [5] leveraged a multi-dimensional feature space extracted from articles to

20

2.2. OTHER RELATED WORKS

predict the popularity of news items in social media.

Although the existing efforts successfully derive various knowledge from social me-

dia data, it is more desirable to provide users with effective means to locate knowledge

easily according to their preferences, considering the overwhelming data produced and

huge amounts of knowledge derived every day. In Chapter 5, we introduce a novel

system which organizes social media contents and the extracted knowledge around

Wikipedia entities, so as to help users pinpoint the information and knowledge in which

they are interested.

21

CHAPTER 3

INTERACTIVE HIERARCHICAL TAG

CLOUDS FOR SUMMARIZING

SPATIOTEMPORAL SOCIAL MEDIA

CONTENTS

3.1 Overview

In this chapter, we propose a system called Vesta1 that enables users to interactively

browse the summaries of social media contents of user-specified spatiotemporal regions.

To represent the summaries, we introduce the novel concept of the hierarchical tag

cloud, which organizes tags (keywords) of a summary at different levels of depth based

on their degrees of generality. In other words, tags at higher/lower levels have more

1Vesta stands for visual exploration of social media contents via tag clouds.

23

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

(a) Parameters (b) The first level

(c) The second level (d) The fourth level

Figure 3.1: Hierarchical tag clouds

general/specific meanings. Users can obtain a general idea of what is popular in a

specified spatiotemporal region at first glance, and then zoom in to lower levels if they

want to see more details. Therefore, the increasing depths of a hierarchical tag cloud

can effectively organize tags of a summary at different levels of abstraction and present

details to users step by step.

As an example, Figure 3.1 illustrates how users can interactively explore what were

happening in London during the 2012 Olympic Games via hierarchical tag clouds. By

setting a time range and selecting a geographic region as in Figure 3.1(a), the top 10

most interesting hierarchical tag clouds are displayed, where different colors represent

24

3.1. OVERVIEW

different topics. Initially, only tags at the first level of each hierarchical tag cloud are dis-

played (Figure 3.1(b)), with the largest font size conveying the most general meanings.

When zoomed in, tags at subsequent levels of each tag cloud are gradually displayed in

increasingly smaller font sizes around the first level tags to provide more specific mean-

ings (Figures 3.1(c) and 3.1(d)). This process of hierarchical browsing of tag clouds can

be repeated to trigger the display of the tags at any appropriate level.

As shown in Figure 3.1(b), one tag at the first level is “olympic”, which summarizes

the pink tag cloud and indicates that the tag cloud talks about the Olympic Games. To

explore the tag cloud more, we zoom into the second level, as in Figure 3.1(c). We can

see that more tags are displayed, including “bolt”, “stadium” and so on. Figure 3.1(d)

shows the pink tag cloud when we zoom into the fourth level, with even more tags

added around “olympic”, including “training” and “time” at the third level, and “price”

and “trial” at the fourth level.

Exploring social media contents interactively in hierarchical tag clouds is a novel

and useful operation. It assists users in exploring different topics by enabling them to

only view summaries instead of having to read plenty of contents directly. Users can

drill down or roll up in the tag clouds to better understand the discovered knowledge

interactively and hierarchically. They can also click any tag in a tag cloud to see the

related contents if they want to know the exact underlying context. Moreover, users are

allowed to specify two sets of spatiotemporal ranges to compare summaries of different

regions, for which common tags are highlighted in italic type.

To make interactive hierarchical tag clouds possible, one big challenge is to develop

efficient methods to summarize social media contents. In this chapter, we propose an

efficient biclustering approach based on formal concept analysis [27, 70]. The results

are called biclusters, and each consists of a set of tags (keywords in contents) and a

set of contents, with the tags frequently co-occurring in the contents. The contents are

25

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

clustered together due to the common tags they share, which means that they are quite

likely to discuss similar things. As such, tags in a bicluster serve as a summary of the

contents. Thus the summarization of social media contents is converted to the genera-

tion of biclusters. In addition, biclustering clusters tags and contents simultaneously, so

that each bicluster contains both tags as a summary and contents from which the sum-

mary is extracted, with the contents supplementing the tags to provide more context

for a summary. This distinguishes our approach from normal clustering that often clus-

ters in a single direction, and from LDA-based methods that generate only summaries.

Although finding the largest bicluster is NP-complete [20, 54] and many heuristic bi-

clustering methods converge slowly, our approach makes use of formal concept analysis

to generate “full-density” biclusters (i.e., each tag of a bicluster appears in each content

of that bicluster) very efficiently. “Full-density” biclusters can be strict, but it is easy to

relax a bicluster by adding more tags/contents or merging similar biclusters.

To further enhance the system scalability and visualize the summaries in hierar-

chical tag clouds, we propose an efficient two-phase, disk-based partition-and-merge

scheme in Vesta. The partitioning phase, which is done offline, consists of three steps.

In the first step, we split the spatiotemporal social media data into partitions. For in-

stance, each partition contains one day’s contents for a spatial region in our case. In the

second step, we summarize the social media contents using the proposed biclustering

approach. In the third step, we apply the hierarchical LDA (hLDA) model [13, 12] to

generate for each partition a topic hierarchy. Topic hierarchies will be merged in the

subsequent merging phase to form tag hierarchies, which organizes tags of merged bi-

clusters at different levels, from general to specific. In this way, users can visualize the

summaries in a hierarchical fashion. At the end of the partitioning phase, we have for

each partition a set of biclusters and a topic hierarchy generated by using the contents

in these biclusters. The partitioning phase can also be easily carried out in parallel.

26

3.2. PROBLEM FORMULATION

The merging phase is done at runtime when users query Vesta by specifying the

spatiotemporal ranges. Vesta first computes the partitions that are covered by the query

range and then proceeds to merge similar biclusters from the selected partitions. A

probabilistic merging algorithm is proposed to combine the corresponding topic hierar-

chies to form tag hierarchies for visualization purposes. Vesta is efficient as most of the

computationally intensive tasks are done offline in the partitioning phase; the runtime

merging phase is fast, making Vesta an effective interactive visualization tool.

To select the most interesting summaries, we propose a score function customizable

according to users’ preferences. We also evaluate the mismatch problem quantitatively,

so as to provide feedback to adjust the partition size adaptively.

To sum up, we make the following contributions in this chapter: (1) We propose a

novel way to explore spatiotemporal social media contents via hierarchical tag clouds.

(2) We propose an efficient summarization approach by biclustering the contents, and

further extend it to a disk-based partition-and-merge scheme for better scalability. (3)

We generate and merge topic hierarchies so as to visualize summaries in hierarchical

tag clouds. (4) We implement all these mechanisms in a system called Vesta.

The rest of the chapter is organized as follows. We introduce some preliminaries and

give the problem formulation in Section 3.2. Section 3.3 discusses our new biclustering

method. In Section 3.4, we propose a partition-and-merge scheme, followed by the

introduction of the system implementation in Section 3.5. Section 3.6 presents the

experimental study, and Section 3.7 summarizes this chapter.

3.2 Problem Formulation

In this section, we first provide some preliminaries and then give the problem defi-

nition.

27

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

3.2.1 Preliminaries

Definition 3.1. Social media contents (or contents for short) are textual microblogs,

such as tweets, published by users in social media services. Each content is denoted

by ci ∈ Ĉ, where Ĉ is the collection of all contents. Tags are meaningful keywords

in contents after stop words removal. Each tag is denoted by ti ∈ T̂ , where T̂ is the

collection of tags. A social media matrix MT̂ Ĉ is a |T̂ | by |Ĉ| matrix whose rows

represent tags and whose columns represent social media contents.

Definition 3.2. A bicluster, denoted by (T,C), is a pair consisting of a subset T of tags

T̂ and a subset C of social media contents Ĉ. The process of finding biclusters is called

biclustering. A bicluster corresponds to a submatrix MTC of the social media matrix

MT̂ Ĉ , where the tag set T of the bicluster corresponds to the row set of the submatrix

and the content set C to the column set.

The value of any elementMij inMT̂ Ĉ can be 1 or 0, indicating whether tag ti appears

in content cj or not. Therefore, biclustering in social media data analysis is the process

to explore the social media matrix MT̂ Ĉ to discover biclusters (submatrices) satisfying

certain criteria. Density is commonly used as an effective measure for determining the

quality of biclusters. Without loss of generality, we use density as one of the major

measures to assess the quality of a bicluster in this chapter. Users can easily replace it

with other measures such as variance [37] and mean squared residue [20].

Definition 3.3. The density of (T,C), denoted by den(T,C), is the non-zero rate of its

corresponding submatrix MTC , which equals the ratio of the number of 1’s to |T ||C|.

The size of (T,C), denoted by sz(T,C), is defined to be min(|T |, |C|).

In a bicluster, a set of tags co-occur in a set of contents such that the tags can be

viewed as a summary of the contents. The denser the bicluster, the more “consistent”

the contents in a summary. A density threshold δden and size threshold δsz can filter out

28

3.2. PROBLEM FORMULATION

sparse biclusters with very few tags or contents, thereby avoiding bicluster explosion.

Having the biclusters, we visualize them in hierarchical tag clouds, which calls for the

generation of tag hierarchy using the tags in each bicluster.

Definition 3.4. If a tag set T can be divided into a few non-empty subsets T1,T2,...,Tn

such that Ti ∩ Tj = ∅, ∪n
i=1Ti = T and Ti < Tj (i.e., every two different subsets follow

a total order) for any i, j ∈ {1, 2, ...n}(i < j), we say that T1,T2,...,Tn form a tag

hierarchyH for the tag set T and that Ti contains tags at the ith level of the hierarchy.

A tag hierarchy organizes the tags of a bicluster at different levels from general to

specific. A hierarchical tag cloud is actually the visualized form of a tag hierarchy while

a tag hierarchy defines the levels of tags for a hierarchical tag cloud. By showing the

tags level by level in a hierarchical tag cloud, users can better understand the meaning

of the tags and the relationships among them in an interactive way.

3.2.2 Problem Definition

By highlighting a geographic region Rgeo, our aim is to (1) generate the top-k most

interesting biclusters (Ti, Ci) (1 ≤ i ≤ k), where den(Ti, Ci) ≥ δden and sz(Ti, Ci) ≥

δsz, to summarize the set of social media contents Ĉ published within Rgeo during a

user-specified period of time Rtim, and (2) build a tag hierarchy Hi for each tag set Ti

so as to visualize these summaries in hierarchical tag clouds. The interestingness of the

biclusters is measured by a score function, which will be introduced in Section 3.4.4.

With hierarchical tag clouds, users are empowered to explore any geographic re-

gion of interest, or even discover commonalities and uniqueness by comparing different

regions.

29

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

3.3 Biclustering Approach

Most biclustering algorithms iterate many times prior to convergence, which renders

the execution time large and unpredictable. Besides, biclustering was initially proposed

to analyze gene expression data often in small size with no or a small number of empty

values. Social media content data, however, is usually large and sparse, further disqual-

ifying the application of common biclustering algorithms in social media data analysis.

Next, we propose an efficient and deterministic way of finding biclusters based on the

formal concept analysis (FCA).

3.3.1 Introduction to Formal Concept Analysis

Definition 3.5. A formal context is a triplet (Â, Ô, I) where Ô is an object set, Â

is an attribute set and I ⊆ Â × Ô represents the relationships of objects in Ô and

attributes in Â. A pair (A,O), where A ⊆ Â, O ⊆ Ô, is called a formal concept of the

formal context (Â, Ô, I) if it satisfies the fullness property: ∀a∈A,o∈O(a, o) ∈ I , and the

maximum property: ∀o/∈O∃a∈A(a, o) /∈ I and ∀a/∈A∃o∈O(a, o) /∈ I .

Every formal concept (A,O) is full and maximal: being full means that every object

in O has all attributes in A, while being maximal means that, if any attribute a /∈ A (or

any object o /∈ O) is added to A (or O), (A ∪ {a}, O) (or (A,O ∪ {o})) is not full and

thus not a formal concept any more.

Example 3.1. Figure 3.2(a) shows a formal context (Â, Ô, I) where Â = {a1, a2, a3, a4},

Ô = {o1, o2, o3, o4, o5}. The cells with Xij means ai is an attribute of object oj , i.e.,

(ai, oj) ∈ I . (A,O) is a formal concept where A = {a2, a3, a4}, O = {o2, o4}. (A,O)

is full because every object oj ∈ O has all the attributes in A. It is also maximal. If we

add in any attribute or object which is not in A or O, o5 for instance, (A,O) would not

be a formal concept because (a4, o5) 6∈ I .

30

3.3. BICLUSTERING APPROACH�� �� �� �� ���������� ������������ ������������������ ���
(a) Example

���������� ������ ����
(b) Change in shape

� �������� ����������������� �������� ������������ ����� ��� �	
(c) Four types

Figure 3.2: Formal concepts

Compared with the definition of social media matrix, it is obvious that a formal con-

text can also be perceived as a matrix M whose rows are attributes and whose columns

are objects. The value of an element Mij is set to 1 if the jth object has the ith attribute,

0 otherwise. Similarly, a formal concept (A,O) can be perceived as a “full-density”

bicluster whose density equals 1. From this perspective, (A,O) being full means the

submatrix of the bicluster has no empty value while (A,O) being maximal means the

submatrix will have empty value(s) if any a 6∈ A or o 6∈ O is added toA orO. Therefore,

the problem of generating biclusters now becomes the generation of formal concepts.

3.3.2 Properties of Formal Concept

A partial order “≤” can be defined in a formal context: given two formal concepts

(A1, O1) and (A2, O2), we have (A1, O1) ≤ (A2, O2) if O1 ⊆ O2 (or A1 ⊇ A2 equiv-

alently). This also implies a relationship between the object set and attribute set of a

formal concept in terms of set size. That is, the larger the size of the object set, the

smaller that of the attribute set, vice versa. This actually follows, according to Galois

theory, the antitone Galois connection [29] which is defined as a pair of antitone func-

tions F : A → B and G : B → A between two partially ordered sets A and B, such

that β ≤ F (α) iff α ≤ G(β) where α ∈ A, β ∈ B. Here F can be viewed as a function

31

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

mapping an attribute set to an object set while G as a function mapping an object set to

an attribute set. Next we introduce the Galois operators “′” and “′′” which work as the

above functions.

Given an attribute set A ⊆ Â and an object set O ⊆ Ô,

A′ = {o ∈ Ô|∀a∈A(o, a) ∈ I}

O′ = {a ∈ Â|∀o∈O(o, a) ∈ I} (3.1)

where A′ is an object set, every object in which has all attributes in A, and O′ is an

attribute set, every attribute in which is an attribute of all objects in O. Similarly, A′′ is

an attribute set by applying the Galois operator twice to A (or once to A′) and O′′ is an

object set by applying the Galois operator twice to O (or once to O′). The operator “′′”

is monotone (i.e., A′′ ⊆ B′′ if A ⊆ B), idempotent (i.e., (A′′)′′ = A′′), and extensive

(i.e., A ⊆ A′′) [30].

Lemma 3.1. Given any attribute set A ⊆ Â and any object set O ⊆ Ô, both (A′′, A′)

and (O′, O′′) are formal concepts.

Proof. We only prove that (A′′, A′) is a formal concept, (O′, O′′) can be proven simi-

larly. According to Eq. 3.1, it is easy to note thatA′′ ⊆ A,A′ ⊆ O and ∀a∈A′′,o∈A′(a, o) ∈

I . Next we prove (A′′, A′) is maximal by contradiction. Suppose the object set A′ is

not maximal. There must exist an object o′ /∈ A′ that has all attributes in A′′. Since

A ⊆ A′′ (“′′” is extensive), o′ has all attributes in A. This contradicts Eq. 3.1 stating that

A′ contains all objects having every attribute in A. Suppose the attribute set A′′ is not

maximal. There must exist an attribute a′ /∈ A′′ shared by all objects in A′. This con-

tradicts A′′ = {a ∈ Â|∀o∈A′(o, a) ∈ I} according to Eq. 3.1, meaning that all attributes

shared by every object in A′ are included in A′′. Hence the proof.

Example 3.2. Consider the formal context in Figure 3.2(a). Given A = {a2, a3}, we

32

3.3. BICLUSTERING APPROACH

have A′ = {o2, o4, o5}, where each object in A′ has all attributes in A, and A′′ =

{a2, a3}, where each attribute in A′′ is an attribute of any object in A′, by applying the

Galois operators. It is easy to know that (A′′, A′) is a formal concept according to its

definition.

This lemma provides a way to generate formal concepts. Given any attribute or

object set, we can apply the Galois operator once and twice respectively to generate the

attribute and object sets of a new formal concept. However, should we enumerate all the

possible attribute or object sets to generate formal concepts (which leads to 2|Â| + 2|Ô|

different sets for a formal context (Â, Ô, I) in the worst case)? Besides, the formal

concepts in a formal context can be ordered to form a concept lattice according to the

inclusion relationships of the object or attribute sets. The number of concepts in the

lattice is also up to 2min(|Â|,|Ô|) in the worst case.

To answer the above question, we need to investigate how the size of an attribute

or object set affects the size of its resultant formal concept. It is illustrated in Figure

3.2(b) where formal concepts are represented by rectangles with the length representing

the size of the object set and height representing that of the attribute set. Given three

attribute sets A1, A2 and A3 (A1 ⊆ A2 ⊆ A3), their formal concepts are (A′′1, A
′
1),

(A′′2, A
′
2) and (A′′3, A

′
3) which are denoted by rectangle 1234, 1′2′3′4′ and 1′′2′′3′′4′′ re-

spectively in Figure 3.2(b). Note that A′1 ⊇ A′2 ⊇ A′3 because a smaller attribute

set is likely to be shared by a larger object set and vice versa. Similarly, we have

A′′1 ⊆ A′′2 ⊆ A′′3. Thus, if we expand A1 to A2 and even to A3, the object set A′1 in the

corresponding formal concept starts shrinking and the attribute set A′′1 starts expanding.

This can be reflected in Figure 3.2(b) by changing the shape of the formal concept from

rectangle 1234 to 1′2′3′4′, and to 1′′2′′3′′4′′. Likewise, given any object set O, when

it expands by adding more objects in it, the process can be reflected by changing the

shape of the formal concept (O′, O′′) from 1′′2′′3′′4′′ to 1′2′3′4′ to 1234. The above dis-

33

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

cussion indicates that in a formal concept we can expand the attribute (or object) set

by shrinking the object (or attribute) set. In this chapter, we generate formal concepts

based on each attribute and object, which greatly reduce the number of formal concepts

to be generated to at most |Â| + |Ô|. Formal concepts with larger attribute (or object)

sets can be generated easily by shrinking their object (or attribute) sets.

3.3.3 Generating Biclusters

Given any attribute a ∈ Â and any object o ∈ Ô, we can find their corresponding

formal concepts (a′′, a′) (we write ({a}′′, {a}′) as (a′′, a′) for simplicity) and (o′, o′′),

which are shown in Figure 3.2(c) as rectangle 1234 and 1′2′3′4′ respectively. They can

be viewed as “full-density” biclusters according to the fullness and maximum proper-

ties. Besides, there are two other rectangles 1′′′2′′′3′′′4′′′ and 1′′2′′3′′4′′. The former is

the overlap of 1234 and 1′2′3′4′, which is too tight to be used as a bicluster since it often

leads to very small attribute set and object set. The latter is treated as extended formal

concept (by allowing the density less than 1) and used to generate biclusters in [30].

We find this form also less qualified since it often includes many empty values thus

greatly decreases the density. The authors in [30] set a threshold to filter out those with

small density. However, this causes a problem that when they filter out some less dense

extended formal concept 1′′2′′3′′4′′, they also discard the “full-density” formal concepts

1234 and 1′2′3′4′ that are within 1′′2′′3′′4′′.

Therefore, we use the two real formal concepts 1234 and 1′2′3′4′ to generate biclus-

ters in this chapter. They differ from each other in terms of shapes. Specifically, 1234

tends to have a larger object set and smaller attribute set while 1′2′3′4′ tends to have

a smaller object set and large attribute set. In terms of bicluster, 1234 corresponds to

biclusters with more contents and fewer tags while 1′2′3′4′ to those with fewer contents

and more tags. Users can generate different forms according to their requirements. We

34

3.3. BICLUSTERING APPROACH

refer to the methods generating biclusters in the form of 1234 and 1′2′3′4′ as ours tag

and ours content respectively below. Also note that many duplicate biclusters could

be generated because contents in a bicluster often have similar tags and each of the

tag-content pairs would be used to generate biclusters. To avoid duplication, we only

generate biclusters without overlap. That is, if a tag or content appears in the tag set or

content set of a bicluster, it will not be used to generate other biclusters.

3.3.4 Relaxation

Since the “full-density” biclusters are too strict, we can relax them through either

transformation or merging.

Transformation refers to adding tags or contents to a bicluster. We take the addition

of tags as an example. Given a bicluster (T,C), the contents in C may have another set

T ′ of tags which are not included in T because having those tags makes the bicluster no

longer satisfy the fullness property. We now break the property to enlarge T by adding

tags in T ′ to T . Tags in T ′ should be ordered so that each time the tag leading to the

least density decrease is added to T . This continues until the next tag to be added makes

the density of the bicluster less than a density threshold δden. To add even more tags, we

can delete a few contents which lead to the largest density increase after the deletion so

as to increase the bicluster density first.

Merging can also result in relaxed biclusters. In this chapter, we merge biclusters

sharing common tags since those biclusters are more likely to discuss similar topics and

may thus be merged. Readers can refer to Section 3.4.3 for details.

35

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

3.4 Partition-and-Merge Scheme

To further improve the scalability and reduce the system response time, we next

extend the proposed biclustering approach to a disk-based partition-and-merge (PM for

short) scheme. In the offline partitioning phase, we split the data space (all the content

data) into partitions and generate biclusters for each partition. Then biclusters in certain

partitions are merged efficiently at runtime given user-specified spatiotemporal param-

eters. To visualize the merged biclusters as hierarchical tag clouds, we adopt hLDA

to produce topic hierarchies for partitions in the partitioning phase and generate tag

hierarchies by merging the topic hierarchies at runtime.

3.4.1 Offline Partitioning

Three dimensions, i.e., longitude, latitude and time, need to be considered for par-

titioning. We first slice the data on a daily basis and then split the geographic space

for each day adaptively according to data density by using a space-partitioning data

structure such as kd-tree [8] or quadtree [26]. Note that the partitioning layout may be

different for each day since the data distribution varies every day. Also note that slicing

data on a daily basis is a tradeoff between two possible mismatches. Since the temporal

parameter can be set to any consecutive days, covering more than one day in a partition

may lead to a temporal mismatch between the parameter and partitions. On the other

hand, covering less than 24 hours may lead to larger spatial partitions and increase the

geographic mismatch discussed in Section 3.4.5.

36

3.4. PARTITION-AND-MERGE SCHEME

3.4.2 Offline Pre-computation

Pre-computation of Biclusters

Once the data space is split, we can generate biclusters for each partition using the

method proposed in Section 3.3. One potential problem is that partition-based biclus-

tering may leave out biclusters that can only be formed by using contents of multiple

partitions. This may arise if the number of contents regarding certain topics are small.

In this case generating biclusters in as small size as possible may relieve the problem.

However, this could produce uninteresting biclusters and lead to bicluster explosion.

Given this observation, we make an assumption that globally interesting summaries

are also interesting in certain partitions. Specifically, if a bicluster about an interesting

summary is generated from contents in some geographic region, biclusters about the

similar summary can also be generated from contents in certain partitions of that region.

We will introduce a score function to measure the interestingness of a summary later

and validate this assumption in the experimental study.

Pre-computation of Topic Hierarchies

hLDA is extended from LDA to generate topic hierarchies for documents. We apply

hLDA to social media contents in our context to generate topic hierarchies for differ-

ent partitions. Topic hierarchies are generated after the biclustering process for each

partition by using the contents of the biclusters. Topic hierarchies generated by hLDA

are trees, with a few closely related tags in each node [12]. The tags at higher level

nodes are more general and those at lower level nodes more specific, which provides

the possibility of generating tag hierarchies with different levels of tags by merging

topic hierarchies.

The pre-computation of biclusters and topic hierarchies can be done easily for dif-

37

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

ferent partitions in parallel.

3.4.3 Online Merging

Merging Biclusters

Given the spatiotemporal parameters, i.e., a time range Rtim measured in days and

a geographic region Rgeo measured in coordinates, biclusters in partitions falling within

Rtim and Rgeo need to be merged together to produce “unified” results. Note that if

two biclusters (T1, C1) and (T2, C2) are merged to form a new bicluster (T,C), it will

have all tags and contents from (T1, C1) and (T2, C2), i.e., T = T1 ∪ T2, C = C1 ∪ C2.

Suppose the corresponding matrix of (T,C) is denoted by MTC . The density of (T,C),

den(T,C) , is thus the non-zero rate of MTC . Next we give algorithm 1 for merging

biclusters sharing common tags.

Algorithm 1: The Bicluster Merging Algorithm
Input: a group P of biclusters (Ti, Ci)(i = 1, 2, ..., n) (use Bi to denote each

bicluster for short), a user-defined density threshold δden
Output: a merged bicluster set B
begin1

let Bused = ∅;2

foreach Bi ∈ P and Bi /∈ Bused do3

let Bused = Bused ∪ {Bi};4

find a subset P ′ of biclusters in P but not in Bused such that5

∀B∈P ′B
⋂
Bi 6= ∅;

sort B ∈ P ′ by |B
⋂
Bi| in descending order;6

let Bnew = Bi;7

foreach B ∈ ordered P ′ do8

merge Bnew and B to form a new bicluster Btmp;9

if den(Btmp) ≥ δden then10

let Bnew = Btmp;11

let Bused = Bused ∪ {B};12

add Bnew to B;13

end14

38

3.4. PARTITION-AND-MERGE SCHEME

Given a group P of the biclusters and a density threshold δden, the algorithm pro-

duces a set B of merged biclusters. We initialize a set Bused storing used biclusters to

empty in line 2 and start to merge biclusters by checking each bicluster in P but not in

Bused in line 3. When we start from Bi we first label it as used in line 4. Line 5 and 6

try to find a set P ′ of biclusters having common tags with Bi and sort them according to

the number of common tags in descending order so that those with more common tags

can be merged with Bi earlier. To accelerate the search for P ′, we build an inverted list

to map each tag to biclusters having that tag. Lines 7 to 13 merge Bi with the ordered

biclusters in P ′. At first, Bi is merged with the first bicluster in P ′ to form a new biclus-

ter Bnew. Then Bnew is merged with subsequent biclusters in P ′ in turn. Note that the

merging action only happens if the density of the new merged bicluster is no less than

δden (line 10) and that biclusters used to form Bnew are labeled as used (line 12). After

the merging phase finishes, Bnew is added to B (line 13). The algorithm continues until

all biclusters in P are used. We use an example below to illustrate the algorithm.��������������������
(a) Biclusters

B3

B2

B1
t1
t2
t3
t4
t5
t6
t7

t1: B3
t2: B3
t3: B1,B3
t4: B1
t5: B1,B2
t6: B1,B2
t7: B2

B3

Btmp

t1
t2
t3
t4
t5
t6
t7

(b) Merging

����������������������������	��������
�������������
(c) Inverted list

Figure 3.3: Bicluster merging example

Example 3.3. Consider the three biclusters B1, B2 and B3 only sharing common tags

(rows) in Figure 3.3(a). Suppose δden is 0.5. Algorithm 1 starts the merging from B1 by

searching for biclusters having common tags withB1 as candidates which isB2 andB3.

B2 and B3 should be sorted so that the one (B2 here) with more common tags is merged

with B1 first. To search more efficiently, we build an inverted list as in Figure 3.3(c)

showing which tag appears in which biclusters. SinceB1 have four tags, we can look up

39

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

them in the inverted list to generate an ordered candidate set {B2 : 2, B3 : 1} (note that

B1 is removed from the list) easily. Each bicluster in the set has a number which is the

frequency of the bicluster mapped to the four tags. This number also means the number

of common tags shared with B1 and thus can be used to sort the candidate biclusters.

B2 having more common tags is used to merge with B1 first to form a new bicluster

Btmp whose tag (or content) set is the union of the tag (or content) sets of B1 and B2, as

is shown in Figure 3.3(b). The density ofBtmp is (4×5+3×3)/(5×8) = 0.725 > δden,

meaning the merging of B1 and B2 is acceptable. Next we use B3 to merge with Btmp.

The new bicluster’s density is (5×8×0.725+3×4)/(7×12) = 0.488 < δden, meaning

that we should cancel merging Btmp with B3. Since no further merging can be done,

the algorithm outputs Btmp and B3 and terminates. In our system, we precalculate the

density by assuming two biclusters were merged. If the density is less than δden, we do

not merge them actually.

Merging Topic Hierarchies

When biclusters are merged together, the topic hierarchies for partitions having

those biclusters also need to be merged to form a tag hierarchy so as to visualize the

new bicluster. Given that the same tag can appear at multiple levels of the topic hi-

erarchies generated by hLDA, we next propose a probabilistic approach to generating

“unified” tag hierarchies in which each tag only appears at one level. Each of the resul-

tant tag hierarchies has one node containing several tags at each level, and each node

has at most one child in terms of the tree structure.

Given m topic hierarchies T i
1,T i

2,...,T i
ni

(1 ≤ i ≤ m) to be merged together, where

T i
j denotes the tag set at the jth level of the ith topic hierarchy which has ni levels in

total, we first construct a vote-based tag-level matrix shown in Table 3.1. Rows in the

matrix corresponds to tags while columns to levels. cij (1 ≤ i ≤ u, 1 ≤ j ≤ v) in the

40

3.4. PARTITION-AND-MERGE SCHEME

Table 3.1: Tag-level matrix
level1 level2 ... levelv

tag1 c11 c12 ... c1v
tag2 c21 c22 ... c2v
...
tagu cu1 cu2 ... cuv

ith row and jth column indicates the frequency of tag i appearing at level j throughout

the m topic hierarchies. Based on the tag-level matrix, we define a weight function for

each tag i at level j as follows.

weight(ti, lj) = c2ij/(ΣicijΣjcij) (3.2)

The weight has two factors. The first one cij/Σicij captures how likely different tags

are chosen for level j while the second one cij/Σjcij captures how likely different levels

contain tag i. The weight chooses tags for each level with the intuition that the larger the

weight for tag i and level j, the more likely the tag appears at that level. In algorithm

2, we normalize weight(ti, lj) for all tags at each level to select the most likely tags

hierarchically. The algorithm computes weight(ti, lj) using the tag-level matrix built

on the m topic hierarchies from line 1 to 6. Then, starting from the first level, it chooses

tags probabilistically for each level in turn from line 7 to 13. Note that by drawing tags

without replacement, we disallow one tag to be chosen for multiple levels (line 9 to 12).

After drawing tags for the n0 − 1 levels, we leave the unused tags in Tunused for the last

level directly (line 13).

41

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

Algorithm 2: The Topic Hierarchy Merging Algorithm
Input: m topic hierarchies T i

1,T i
2,...,T i

ni
(i ∈ {1, 2, ...,m}), the number of levels

n0 (n0 ≤ max(n1, n2, ...nm)) and the number of tags sl (l ∈ {1, 2, ..., n0})
at each level of the resultant tag hierarchy

Output: a tag hierarchyH : T 0
1 ,T 0

2 ,...,T 0
n0

begin1

let T 0
1 = T 0

2 = ... = T 0
n0

= ∅;2

build the tag-level matrix M using the m topic hierarchies;3

let Tunused = Tall ={1, 2, ...} be the set of all tag indexes in M ;4

let u = |Tall|, v = max(n1, n2, ...nm);5

compute weight(ti, lj) based on M according to Eq. 3.2 for all i and j where6

1 ≤ i ≤ u, 1 ≤ j ≤ v;
foreach level l ∈ {1, 2, ..., n0 − 1} do7

while |T 0
l | < sl do8

normalize weight(ti, l) such that
∑

iweight
′(ti, l) = 1 for each9

i ∈ Tunused;
draw a tag i according to the normalized probabilities;10

|T 0
l | = |T 0

l | ∪ {i};11

Tunused = Tunused\{i};12

let T 0
n0

= Tunused;13

end14

3.4.4 Ranking Merged Biclusters

Although the number of biclusters decreases after merging, there are still many bi-

clusters due to the abundance of various topics emerging in social media. Besides, users

may want to see the most interesting summaries, e.g., those discussed by more people

or providing more information. Below we propose a score function so that users can

rank all the biclusters to find the most interesting ones according to their preferences by

simply tuning a single parameter.

Score(T,C) = den(T,C) · log (|T ||C|) · (|C|/|T |)p (3.3)

42

3.4. PARTITION-AND-MERGE SCHEME

where |T | and |C| are the numbers of tags and contents respectively in a bicluster

(T,C) and p is an integer tuning parameter. In the score function, the first two factors

den(T,C) and log (|T ||C|) indicate that biclusters with larger density or size would be

ranked higher. The third factor (|C|/|T |)p incorporates users’ preferences by tuning

p ∈ {0,±1,±2, ...}. For instance, users can set p = 1 in favor of biclusters with more

contents or set p = −1 in favor of biclusters with more tags. The larger the absolute

value of p, the stronger users stress their preferences. However, the absolute value of p

should not be very large to avoid the dominance of the third factor.

3.4.5 Mismatch Problem

(a) Case one (b) Case two

Figure 3.4: Two cases of the mismatch problem

Recall that biclusters are merged when the corresponding partitions fall into the

user-specified spatiotemporal parameters Rtim and Rgeo. Since one partition can only

be associated with a certain date, it is easy to check whether a partition falls within

Rtim. Next we consider two different cases determining whether a partition falls in

Rgeo (dashed boxes in Figure 3.4): (1) the centroids of the partitions are within Rgeo

and (2) the partitions overlap Rgeo. Both cases can lead to mismatch problem. In case

one, biclusters in the shadowed partitions are merged because their centroids fall in

Rgeo. For instance, although the top-left partition is not entirely included in Rgeo, all

43

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

the biclusters in it are merged with other partitions (false positive). Similarly, although

part of the bottom-left partition is included in Rgeo, none of its biclusters are merged

(false negative). In case two, biclusters in the shadowed partitions overlapping Rgeo are

merged.

We cannot avoid the mismatch problem because a bicluster formed by various con-

tents in a partition has no geo-coordinates in itself. Thus merging should be performed

on the basis of partitions rather than biclusters. However, we can evaluate the degree

of the mismatch for quality control and use it as feedback to adjust the partitioning

parameter δcnt.

Definition 3.6. Given a user-specified geographical range Rgeo, the mismatch rate

ratemis of the PM scheme is defined as the ratio of nummis to numtp, where nummis is

the number of mismatched biclusters and numtp is the number of biclusters covered by

Rgeo.

Based on the above definition, the mismatch rate can be larger than 1, which is

indicative of a severe mismatch. Next we discuss how to compute the mismatch rate for

the two cases in Figure 3.4.

Firstly, we consider case one in Figure 3.4(a). Partitions covered by Rgeo, either

partially or entirely, form three different sets Pfp, Pfn and Pen. The first two contain

partitions partially covered by Rgeo: Pfp contains those whose centroids fall in Rgeo

while Pfn contains those whose centroids do not. Pen has partitions entirely falling in

Rgeo. For partitions in Pfp and Pfn, we estimate the number of mismatched biclusters

according to the coverage rate of the partitions as follows.

numfp =
∑

pa∈Pfp
num(pa) · (1− cov(pa))

numfn =
∑

pa∈Pfn
num(pa) · cov(pa) (3.4)

44

3.5. SYSTEM IMPLEMENTATION

where num(pa) is the number of biclusters in partition pa and cov(pa) is the percentage

of pa covered by Rgeo. Thus numfp is the estimated number of additional biclusters

(false positives) used in the merging phase while numfn is the estimated number of

missed biclusters (false negatives) falling in Rgeo but omitted in the merging phase.

Next we compute the estimated number of biclusters in Rgeo by

numtp =
∑

pa∈P num(pa) · cov(pa) (3.5)

where P = Pfp ∪ Pfn ∪ Pen. With the above equations, we can evaluate the quality of

the PM scheme by approximating the mismatch rate as follows.

ratemis =
nummis

numtp

=
numfp + numfn

numtp

(3.6)

For case two in Figure 3.4(b), Pfn is empty because biclusters in any partition over-

lapping the geographic region Rgeo are merged. However, the false positive partition

set, denoted by P ′fp, now contains all partitions partially overlapping Rgeo, including

those with centroids falling outside Rgeo. The mismatch rate in this case is as follows.

ratemis =
num′fp
numtp

=

∑
pa∈P ′

fp
num(pa) · (1− cov(pa))

numtp

(3.7)

3.5 System Implementation

Based on the PM scheme, we build a system called Vesta to browse and explore the

top-ranked summaries interactively.

45

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

3.5.1 System Architecture����������������	
�
� ���
�������	�������	
����������
�����	
�	���������������
�����	
 �
��
�������
��������������
��	������������������
��������������������������������	�����������
Figure 3.5: System architecture

Figure 3.5 shows our system architecture, consisting of data crawling, processing

and visualization components from bottom to top. The data crawling component keeps

crawling geo-coded social media contents, cleaning and storing the data in the database.

The processing component is the core of the system, including three parts which per-

form data partitioning, offline pre-computation and online merging respectively. The

data partitioning part starts splitting the data into partitions after the crawler finishes

preparing the contents of each day. Offline pre-computation is then performed to gener-

ate summaries and topic hierarchies for the partitions. Note that our PM scheme makes

it possible that the pre-computation can be done for different partitions in parallel. The

summaries and topic hierarchies in corresponding partitions will be merged respec-

tively in the online merging part once users specify the spatiotemporal parameters. The

merged summaries are finally passed to the visualization component to be displayed as

hierarchical tag clouds according to their corresponding tag hierarchies generated by

merging topic hierarchies.

46

3.6. EXPERIMENTAL STUDY

Although our system performs the partitioning and pre-computation on a daily basis

which leads to a one-day delay, we can reduce the delay to make Vesta a semi-realtime

system. For instance, we can process the data every 3 hours and merge the results

gradually until all contents of the day is processed.

3.5.2 Visual Layout

Next we illustrate the layout of the hierarchical tag clouds in the visualization com-

ponent, which is built based on Google Maps2 and D33. Recall the example in Figure

3.1, the first-level tags of the hierarchical tag clouds will be displayed first in the largest

font size. As users zoom in, tags at subsequent levels of each tag cloud will be placed

near and around their first-level tags in smaller size level by level. To reduce the possi-

bility of overlap among tags in different tag clouds and leave enough space to arrange

tags of the same tag cloud close to each other, we scatter the first-level tags evenly in

two concentric circular orbits. The radii of the two orbits can be adjusted to reduce the

overlap among tag clouds as much as possible. Collision detection is performed to help

determine the positions of the tags at subsequent levels when they are placed around the

corresponding first-level tags.

3.6 Experimental Study

In this section, we conduct an experimental study to assess the proposed methods

from different perspectives.

2https://maps.google.com/
3A JS library for data visualization (http://d3js.org/).

47

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

3.6.1 Data Sets and System Environment

The experiments are conducted over the real-world geo-coded tweets crawled using

the Twitter Streaming API4. Each tweet is associated with a pair of latitude-longitude

coordinates and a time. On average, we can receive 4.1M to 4.3M (million) geo-coded

tweets every day, among which about 0.7M are in English. The four data sets used in

the experiments contains 0.1M, 0.7M, 2.5M and 4.3M tweets respectively. As around

1% of tweets are geo-coded5, 4.3M is a proper approximation of the number of geo-

coded tweets published daily, given that 400M to 500M tweets are generated altogether

per day.

All the source code is written in Java, and the Twitter data is stored in MySQL

5.1.60. The experiments were conducted on Windows Server 2003 Enterprise x64 Edi-

tion with 16-core 2.29GHz CPU, 64GB RAM and JRE6.

3.6.2 Comparison of Different Summarization Methods

Firstly we compare our methods ours tag and ours content based on FCA with two

other biclustering methods (OABicluster [30] and FLOC [94, 93]) and two topic model-

ing methods (LDA [15] and hLDA [13, 12]). OABicluster was also proposed for analyz-

ing social media data based on FCA. It generates formal concepts for each tag-content

pair, without guaranteeing the bicluster quality. FLOC was originally proposed for ex-

pression data analysis. It first generates k initial biclusters randomly and then improves

their quality iteratively, by allowing missing values which correspond to the sparsity in

social media content data. It uses the residue and volume (i.e., the number of non-empty

values [93]) in a gain function to measure the bicluster quality. To make FLOC com-

parable, we replace the residue in the gain function with density instead, which does

4https://dev.twitter.com/docs/streaming-apis
5http://www.scotthale.net/blog/?p=307

48

3.6. EXPERIMENTAL STUDY

not affect the main procedure. The two topic modeling methods generate topics which

can also be perceived as summaries. We use MALLET6 which has implemented Par-

allelLDA and hLDA, where ParallelLDA is a parallel version of LDA to accelerate the

speed.

For the first four biclustering methods, we set the minimum density δden from 0.5 to

1.0 and the minimum size δsz from 3 to 5. Since different values of δden do not affect the

performance obviously, we only report the results with δden equal to 0.8 and δsz equal

to 3 and 5. Note that δden and δsz do not apply to ParallelLDA and hLDA. The execution

time and memory usage of ParallelLDA in Figure 3.6 are duplicated for different δsz

for comparison purpose only. For ParallelLDA, we set the topic number to 100 and

thread number to 4. For hLDA, we set the level number of the topic hierarchy to 5. The

iteration numbers for both are set to 1000.

Performance

Figure 3.6 shows the performance of the above methods over four data sets with

different number of tweets. We terminated FLOC and hLDA because they cannot finish

within 10 hours for any data set. They run slowly due to the iterative nature. The

density and volume parts of the gain function also decelerate FLOC probably because

the density part tends to shrink the bicluster size while the volume favors larger size.

To accelerate FLOC and make the densities of the initial biclusters increase faster, we

remove the volume part and denote the modified FLOC by FLOC modified. Although

we see some improvements, FLOC modified still cannot finish within 10 hours. hLDA

is even slower and cannot finish the first 10 of 1000 iterations within 10 hours. Although

we show later that hLDA works for the offline topic hierarchy generation in our system

where it usually handles only thousands of tweets for a partition, hLDA in itself cannot

6A java package for machine learning (http://mallet.cs.umass.edu/).

49

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

 1

 10

 100

 1000

 10000

 0.1 0.7 2.5 4.3

T
im

e/
s

Tweet number (×106)

ours_tag
ours_content

OABcluster
ParallelLDA

(a) Min size=3

 1

 10

 100

 1000

 10000

 0.1 0.7 2.5 4.3

T
im

e/
s

Tweet number (×106)

ours_tag
ours_content

OABcluster
ParallelLDA

(b) Min size=5

 5

 10

 15

 20

 25

 30

 0.1 0.7 2.5 4.3

M
em

or
y/

G
B

Tweet number (×106)

ours_tag
ours_content

OABcluster
ParallelLDA

(c) Min size=3

 5

 10

 15

 20

 25

 30

 0.1 0.7 2.5 4.3

M
em

or
y/

G
B

Tweet number (×106)

ours_tag
ours_content

OABcluster
ParallelLDA

(d) Min size=5

Figure 3.6: Performance comparison

scale to larger data sets containing hundreds of thousands of tweets. Thus hLDA cannot

be applied to large amounts of social media data for topic hierarchy generation directly.

We do not report the results for FLOC, FLOC modified and hLDA here.

Figure 3.6(a) and 3.6(b) show the execution time of the other four methods. When

δsz is 3, our proposed methods ours tag and ours content outperform ParallelLDA by al-

most an order of magnitude. When δsz is 5, the performance of ours tag almost remains

unchanged while the execution time of ours content approaches that of ParallelLDA for

tweet number larger than 0.1M. Note that ParallelLDA is set to generate only 100 top-

ics. It will take more time if generating as many as ours content does. For both values

of δsz, OABicluster can only finish running within 10 hours when the tweet number is

50

3.6. EXPERIMENTAL STUDY

0.1M.

Figure 3.6(c) and 3.6(d) show the memory usage. Almost all the methods consume

more memory when the tweet number gets larger, although some drops are observed

for OABicluster and ParallelLDA when the tweet number comes to 0.7M. ParallelLDA

uses less memory than other methods when the tweet number is 4.3M. This is probably

because we set the topic number to 100 which is a relatively small value. The memory

usage of our proposed methods increases linearly, which brings up concerns that they

may not fit into memory given even larger data sets. We will show later that our PM

scheme converts this memory-based problem to a disk-based problem so that memory

usage becomes manageable.

 1

 10

 100

 1000

 10000

 100000

 1e+006

0.1 0.7 2.5 4.3

S
um

m
ar

y
nu

m
be

r

Tweet number (×106)

ours_tag
ours_content

OABcluster
ParallelLDA

(a) Min size=3

 1

 10

 100

 1000

 10000

 100000

 1e+006

0.1 0.7 2.5 4.3

S
um

m
ar

y
nu

m
be

r

Tweet number (×106)

ours_tag
ours_content

OABcluster
ParallelLDA

(b) Min size=5

Figure 3.7: Summary detection capability comparison

Summary Detection Capability

Figure 3.7 shows the number of biclusters/topics each method can generate, which

to some extent reflects their capability of detecting various summaries. Since OABiclus-

ter failed to finish within 10 hours for the other three data sets, we report the number of

biclusters it had generated when we terminated it. We omit FLOC and FLOC modified

again since they cannot finish running within 10 hours for any data set. Upon termina-

51

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

tion, FLOC generated no bicluster with density larger than 0.5 while FLOC modified

only generated several biclusters with density larger than 0.8 for the data set having

0.1M tweets. As the number of tweets increases, it is intuitive that more summaries or

topics will be covered. Our methods conform to this intuition and generate more biclus-

ters for larger data sets. ParallelLDA generates 100 topics for all data sets since we set

the topic number to 100.

We also conduct experiments given δden set to 0.5 to 1.0 over the 0.1M tweets where

OABicluster can finish running within 10 hours. OABicluster generates slightly more

than or comparable to the number of biclusters our methods generate when δden ranges

from 0.5 to 0.7. The number of biclusters generated by OABicluster decreases rapidly

when δden increases from 0.8 to 1.0, indicating that it tends to miss many high-density

biclusters. The number of biclusters generated by our methods does not drop obvi-

ously as δden increases. Because of space limitations, we omit to present the figures.

In addition, both OABicluster and FLOC may lead to cases that a single bicluster

covers multiple unrelated summaries for small δden. For instance, given two biclus-

ters ({t1, t2, t3}, {c1, c2, c3}) and ({t4, t5, t6}, {c4, c5, c6}), both with density equal to 1,

OABicluster and FLOC may generate a bicluster ({t1, t2, t3, t4, t5, t6}, {c1, c2, c3, c4, c5, c6})

with density equal to 0.5 but covering two unrelated summaries. Our methods can avoid

this problem since they first generate “full-density” biclusters and related biclusters will

be merged if the density of the resultant bicluster is larger than δden.

Precision and Recall

Evaluating the quality of summaries of social media contents quantitatively is often

hard because of the huge number of contents and lack of predefined summaries or topics

to compare against. Thus, we try to sample a small set of tweets by hand and predefine

summaries using the tweets in order for the evaluation. Specifically, we manually select

52

3.6. EXPERIMENTAL STUDY

82 out of the 0.1M tweets discussing 4 different topics to verify whether these methods

can generate proper summaries for the topics. The tweets fall into 4 groups according

to the topics they belong to. Common tags in all tweets of a group are chosen as the

summary (or ground truth) of that group. 18 other randomly selected tweets are added

as noise. All the 100 tweets are used to generate biclusters using different methods and

the results are compared with the group truth. The number of true positive tags and

tweets is divided by that of all positive tags and tweets to obtain the precision, and the

former again is divided by the number of all tags and tweets in the ground truth to obtain

the recall. Since ParallelLDA and hLDA cannot find the related tweets of the generated

topics, we exclude them from the comparison.

 0.85

 0.9

 0.95

 1

 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Min bicluster density (δden)

ours
OABicluster

FLOC_modified

(a) Precision

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Min bicluster density (δden)

ours
OABicluster

FLOC_modified

(b) Recall

Figure 3.8: Precision and recall

Figure 3.8 shows the results when δsz is 3 and δden varies from 0.5 to 1. Since the

results of ours tag and ours content overlap, we denote them as ours for simplicity. The

precision and recall of our methods are stable and larger than those of other methods for

most δden values. The recall of OABicluster is close to ours but drops suddenly when

δden comes to 1. The average precision of FLOC modified is competitive, however, the

precision fluctuates greatly and the recall is relatively low. Besides, FLOC modified

does not guarantee to find all four topics every time. We do not report FLOC as it often

53

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

discovers only one topic and mixes other topics together.

3.6.3 Partition-and-Merge Scheme Evaluation

Next we evaluate the effectiveness of our PM scheme, including assumption valida-

tion and mismatch evaluation.

Assumption Validation

We validate the assumption proposed in Section 3.4.2 that globally interesting sum-

maries are also interesting in certain partitions. In terms of biclusters, those generated

without partitioning the data space and highly ranked can also be generated in some

partitions of the data space. The validation can prove the validity of our PM scheme.

The validation is performed over the data set of 0.7M tweets. We first partition

the data space and generate biclusters by running ours tag and ours content for each

partition. δcnt, the largest number of contents in a partition, is set to 1000 or 1500.

The biclusters in all partitions form set Bpar. Then we generate biclusters, which form

set Bno, directly without partitioning and test whether the most interesting biclusters

in Bno also exist in Bpar. To find the most interesting biclusters in Bno, we rank them

according to our proposed score function with p set to 0. δsz for biclusters in Bpar and

Bno is set to the same value which is 3 or 5. We do not set δden as all biclusters in Bpar

and Bno are “full-density”.

Figure 3.9 validates our assumption. In Figure 3.9(a), we choose the top 50 biclus-

ters from Bno and compare them against biclusters in Bpar. For each bicluster b from

the top 50, we find a bicluster b′ in Bpar which shares the largest number of common

tags with b. The match percentage is the ratio between the number of common tags

and the number of tags in b, reflecting to what extent an interesting summary gener-

ated without partitioning can also be discovered when partitioning is performed. Figure

54

3.6. EXPERIMENTAL STUDY

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

B
ic

lu
st

er
 n

um
be

r

Match percentage (%)

δsz=3, δcnt=1000
δsz=3, δcnt=1500
δsz=5, δcnt=1000
δsz=5, δcnt=1500

(a) Number of top biclusters

 80

 85

 90

 95

 100

 10 20 30 40 50

H
al

f-
m

at
ch

ed
 p

er
ce

nt
ag

e
(%

)

Top bicluster number

δsz=3, δcnt=1000
δsz=3, δcnt=1500
δsz=5, δcnt=1000
δsz=5, δcnt=1500

(b) Half-matched percentage

Figure 3.9: Assumption validation

3.9(a) shows, for different parameter settings, most of the top 50 biclusters from Bno

can find a bicluster in Bpar which shares all the tags in the top biclusters, indicating

that many of them can be rediscovered using the partitioning scheme. A high match

percentage between 50% and 100% can also indicates that a summary is quite likely to

be rediscovered. Figure 3.9(b) shows the percentage of the top k biclusters that have

match percentage more than 50% when k is set to 10, 20, 30, 40 and 50. All the top

30 biclusters have match percentage more than 50%. As k increases, the half-matched

percentage begins to decrease. However, there are still more than 90% of the top 50

biclusters whose match percentage is over 50%, meaning summaries associated with

more than 45 out of 50 biclusters are highly likely to be discovered using the partition-

ing scheme. We also note that the results would be even better if biclusters in Bpar are

merged.

Mismatch Evaluation

Below we take a fixed geographic region containing 0.1M tweets as an example

to explain the mismatch problem. Figure 3.10 shows the mismatch rate ratemis and

bicluster number as δcnt varies when δsz = 3 and δden = 1. Note that ratemis for

55

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 300 500 700 900 1100 1300 1500
 2000

 2100

 2200

 2300

 2400

 2500

 2600

M
is

m
at

ch
 r

at
e

B
ic

lu
st

er
 n

um
be

r

Max no. of contents per partition (δcnt)

case one
case two

bicluster number

Figure 3.10: Mismatch evaluation

either case of the mismatch in Figure 3.4 can be larger than 1, indicating that a severe

mismatch occurs.

From Figure 3.10, we can see that ratemis for either mismatch case decreases as

δcnt drops and that the first case leads to a smaller ratemis. There are three stages for

the decrease, namely when δcnt is larger than 700, between 700 and 500, and smaller

than 500, where more obvious is the second stage. When δcnt decreases from 1500 to

700, ratemis reduces in a relatively fast speed, which means that any value between

1500 and 700 may not be proper for δcnt since ratemis is not stable enough. When δcnt

comes from 700 to 500, ratemis decreases less dramatically, indicating it is a reasonable

value range for δcnt. After δcnt drops below 500, ratemis decreases rapidly again. The

instability of ratemis in this stage is probably because δcnt becomes too small. A very

small ratemis is not always meaningful. It may cause loss of biclusters due to very small

partitions, which is reflected by the green bicluster number line in Figure 3.10. Another

strategy is to choose a value, 500 in Figure 3.10 for instance, for δcnt when the number

of biclusters reaches its peak. This is also consistent with choosing between 700 and

500, and more practical in case the second stage is less detectable. Consequently, users

do not have to set δcnt blindly by themselves. As δcnt can be determined automatically

by conducting the mismatch evaluation, different values of δcnt can be set for different

56

3.6. EXPERIMENTAL STUDY

geographic regions adaptively.

3.6.4 System Scalability Analysis

Vesta adopts the PM scheme which converts the in-memory biclustering to a disk-

based approach and makes it possible to parallelize the approach. Next we analyze the

system scalability for the partitioning and merging phases.

Offline Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0.1 0.7 2.5 4.3

T
im

e/
s

Tweet number (×106)

all time
hLDA time

all time(parallel)
hLDA time(parallel)

(a) Time

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0.1 0.7 2.5 4.3

M
em

or
y/

G
B

Tweet number (×106)

memory
memory(parallel)

(b) Memory

Figure 3.11: Offline scalability

The offline partitioning phase includes data space partitioning and pre-computation

of biclusters and topic hierarchies. We plot the execution time and memory usage over

different data sets in Figure 3.11 when δsz, δcnt and the number of iterations for hLDA

are set to 3, 1000, 1000 respectively. The blue line shows the execution time increases

almost in proportion to the data set size while most of the time is consumed by hLDA

(the red line) to generate topic hierarchies. The green line indicates a significant im-

provement when we parallelize the partitioning phase using 4 threads. Because we

simply add up the time consumed by hLDA in all threads without considering the over-

lap, the hLDA time under parallelism (the brown line) gets very large. This indicates

57

CHAPTER 3. INTERACTIVE HIERARCHICAL TAG CLOUDS

that hLDA can be parallelized to greatly accelerate the process. Through parallelism,

the overall time of the partitioning phase reduces from two and a half hours to less than

an hour for the data set with 4.3M tweets, which approximate the number of geo-coded

tweets published every day in reality.

Figure 3.11(b) shows the memory usage which decreases greatly compared with that

in Figure 3.6(c) and 3.6(d). The memory usage does not always increase as the data set

gets larger. Note that the amount of memory recorded here is the peak value which is

mainly caused by hLDA when faced too many tweets as input. That value often drops

after a short while during execution. Again, the parallelism also leads to less memory

usage. Thus Figure 3.11 indicates that the offline partitioning phase can scale to even

larger data sets especially through parallelism.

Online Scalability

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20 25 30
 0

 2

 4

 6

 8

 10

 12

 14

 16

T
im

e/
s

T
w

ee
t n

um
be

r
(×

10
6)

Days

USA
California & Nevada

Los Angeles
USA

California & Nevada
Los Angeles

(a) Time

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

B
ic

lu
st

er
 n

um
be

r

Days

USA
California & Nevada

Los Angeles
USA

California & Nevada
Los Angeles

(b) Bicluster number decrease

Figure 3.12: Online scalability

The online merging phase is done at runtime when users specify the spatiotemporal

ranges. The solid lines in Figure 3.12(a) show the response time for three geographic

areas on different scales w.r.t. various time ranges. The dotted lines show the corre-

sponding number of tweets involved in certain ranges. δden is set to 0.5, which is the

58

3.7. SUMMARY

lower bound density of merged biclusters. Given a geographic area, the response time

increases linearly with the number of days (also the number of biclusters to merge or

tweets). The response time is often small (e.g., 2 seconds for L.A. or 5 seconds for

California & Nevada over 30 days) when the geographic area is on a city or state scale.

When it comes to countries such as the entire USA, the response time is relatively longer

because of the huge number of tweets.

Although the number of biclusters to merge is often large, that of the merged bi-

clusters decreases greatly. This is exhibited in Figure 3.12(b) where solid (or dotted)

lines represent the number before (or after) merging, showing that this number can be

reduced by 63% ∼ 81%. It means that a large part of biclusters from different partitions

can be merged together and thus validates again the effectiveness of our PM scheme.

3.7 Summary

In this chapter, we proposed a system called Vesta which enables interactive ex-

ploration of different regions by summarizing and browsing social media contents via

hierarchical tag clouds. We proposed to generate summaries by biclustering the con-

tents based on FCA and then extended the approach by introducing a disk-based PM

scheme for better scalability. For visualization purposes, we adopted hLDA to gener-

ate topic hierarchies and merge them to form a tag hierarchy for each summary. The

experimental study demonstrated the efficiency and effectiveness of our methods.

59

CHAPTER 4

HIERARCHICAL SUMMARIZATION

OF SOCIAL MEDIA CONTENTS

BASED ON DBPEDIA ONTOLOGY

4.1 Overview

In Chapter 3, we proposed Vesta to generate summaries without taking into account

semantic meanings and relationships among keywords in a summary. To explore the

meanings of massive amounts of social media data, in this chapter we propose Heron1,

a novel summarization approach to generating summaries with clear and coherent se-

mantic meanings from social media contents. However, unlike most existing summa-

rization methods, our approach generates summaries by grouping entities with close

relationships according to the classes to which the entities are mapped in the DBpe-

1Heron stands for hierarchical summarization.

61

CHAPTER 4. HIERARCHICAL SUMMARIZATION

dia ontology2 [4, 11, 57]. A hierarchical structure is also built to reveal fine-grained

subsumptive relationships among subsets of entities in each summary. In this case, a

summary generated by our approach is also called a hierarchical summary, because it

not only consists of closely related entities but also has a hierarchical structure, which

is a sub-hierarchy of the DBpedia ontology, to capture subsumptive correlations among

the entities.

Since the entities in a summary are Wikipedia entities extracted from social media

contents, and the DBpedia ontology plays an important role in our approach, we next

provide a short introduction to them before elaborating on the DBpedia ontology based

summarization.

4.1.1 Wikipedia Entity and Infobox

Wikipedia3, as one of the most popular multilingual Internet encyclopedias, has al-

ready had 18 billion page views and nearly 500 million unique visitors every month as

of February 20144. The English Wikipedia has over 4 million articles, remaining the

largest among all the Wikipedias in over 200 languages5. Generally, each Wikipedia

article (except the functional pages such as talk pages, redirects, etc.) corresponds to a

Wikipedia entity, or entity for short, which is often represented using the title of the arti-

cle. For instance, the Wikipedia article (https://en.wikipedia.org/wiki/White House) en-

titled “White House” corresponds to the entity White House, where the words within

an entity are connected by underscore(s) for easier processing.

In some of the Wikipedia articles, especially those that are popularly viewed and

actively edited, an infobox is added to each article to represent a summary of information

2http://wiki.dbpedia.org/Ontology39
3https://www.wikipedia.org/
4http://www.nytimes.com/2014/02/10/technology/wikipedia-vs-the-small-screen.html
5https://en.wikipedia.org/wiki/English Wikipedia

62

4.1. OVERVIEW

regarding the corresponding entity [98]. An infobox is a piece of structured information

which is located in the top-right corner of an article, having a class label (indicating to

which class an entity belongs) and a group of property-value pairs. An infobox can be

created easily by choosing one of the various infobox templates and filling values of

properties in the selected template. In the English Wikipedia alone, more than 6,000

infobox templates have been created and reused by Wikipedia contributors [68]. This

crowdsourcing nature of Wikipedia inevitably brings about great challenges in terms

of the consistency and accuracy of how the templates are created and used. After all,

determining a proper template from among thousands of options is challenging enough

for most contributors. For instance, different contributors tend to choose different yet

related templates for the same entity, and may use different property names to describe

the same property in different templates [11].

4.1.2 DBpedia Ontology

Because of the inconsistency and redundancy in Wikipedia, the DBpedia project6

was initiated in 2007, with the aim of extracting structured content from vast amounts

of information (e.g., infoboxes) in Wikipedia. DBpedia allows users to issue sophisti-

cated queries against Wikipedia, and to link various data sets to Wikipedia. As of July

2014, The English version of the DBpedia knowledge base (DBpedia 3.9) describes 4.0

million Wikipedia entities, of which 3.22 million are classified in a consistent ontology7,

i.e., the DBpedia ontology. This ontology has been created manually based on the most

frequently used infoboxes in Wikipedia, and covers 529 classes, which are described by

2,333 different properties. Classes in the ontology form a subsumptive hierarchy.

6http://dbpedia.org/About
7https://en.wikipedia.org/wiki/DBpedia

63

CHAPTER 4. HIERARCHICAL SUMMARIZATION

Figure 4.1: DBpedia ontology (partial)

Figure 4.1 shows part of the DBpedia ontology8. The classes in the ontology form a

tree-like hierarchy, which is rooted at a general node “owl:Thing”. Note that “owl:Thing”

itself is not a class in the ontology, and thus we say that it is at level 0 and that the chil-

dren of it (e.g., “Activity” and “Agent”) are at level 1. All the classes are organized as

either internal or leaf nodes in the hierarchy, where classes at higher levels represent

more general meanings and are superclasses or ancestors of those appearing in the sub-

hierarchies rooted at these classes. For instance, “Activity” is the superclass of “Sport”,

which is again the superclass of “Athletics”, “BoxingStyle”, etc.

8The snapshot is taken from the ontology classes page at
http://mappings.dbpedia.org/server/ontology/classes.

64

4.1. OVERVIEW

4.1.3 DBpedia Ontology Based Summarization

By making use of the class information of Wikipedia entities, we are able to map the

entities appearing in social media contents to the DBpedia ontology. Because classes

in the ontology form a hierarchical structure which captures the subsumptive relation-

ships among the classes, entities mapped to the ontology will thus be naturally grouped

together according to where their corresponding classes are located in the ontology.

Specifically, entities having the same class label will be mapped to the same class

node in the ontology hierarchy, while those whose classes have certain parent-child (or

ancestor-descendant) relationships will also be mapped to reserve those relationships.

Therefore, we can “cluster” the mapped entities conveniently so that each “cluster” of

entities serves as a summary of their corresponding social media contents.

Such a summary not only consists of a group of related entities, but also captures

and reserves a hierarchical structure of them in terms of subsumptive semantics. In this

manner, we are able to enrich a summary in two respects. On the one hand, although

entities in a summary are closely related, we categorize them into several subsets so as

to better depict the similarities as well as the subtle distinctions among entities in the

same summary. The hierarchical relationships among the subsets, on the other hand,

represent the summary from a one-dimensional space (with only entities) to a two-

dimensional space (with both entities and correlations), to reflect the interconnections

among subsets of entities within a summary.

Example 4.1. Figure 4.2 shows an example of a hierarchical summary. The summary

consists of entities (e.g., Coral and Guava) belonging to the eukaryote class, one of the

major biological domains of organisms. The entities in the summary are divided into

more specific subsets, and the subsets further form a hierarchical structure according to

the relationships among the subsets of entities. Specifically, on the left is the hierarchy of

subsets of entities, while on the right is the corresponding sub-hierarchy of the DBpedia

65

CHAPTER 4. HIERARCHICAL SUMMARIZATION

Eukaryote

Animal Fungus Plant

Bird Insect Flowering
Plant

Coral,
Crinoid,

Sand_dollar

Yeast,
Jelly_fungus,

Puffball

Cumin,
Lavandula,

Coffea

Diatom,
GIardia,
Euglena

Ostrich,
Falcon,
Swan

Ant,
Mosquito,

Cicada

Mango,
Citrus,
Guava

Eukaryote

Animal Fungus Plant

Bird Insect Flowering
Plant

Coral,
Crinoid,

Sand_dollar

Yeast,
Jelly_fungus,

Puffball

Cumin,
Lavandula,

Coffea

Diatom,
GIardia,
Euglena

Ostrich,
Falcon,
Swan

Ant,
Mosquito,

Cicada

Mango,
Citrus,
Guava

Figure 4.2: An example of a hierarchical summary

ontology, based on which the left part is constructed. Each subset of entities is mapped

to a class node in the sub-hierarchy, as indicated by the dashed arrows. For instance,

a dashed arrow goes from the subset having entities Ant, Mosquito and Cicada to the

class “Insect”, meaning that the three entities are classified as insect.

In addition to the revelation of semantic correlations within each summary, sum-

maries generated from different data sets can also be utilized for the comparison of

the data sets (e.g., tweets about China and tweets about the USA) in terms of entity

distribution. For instance, users can generate a summary corresponding to the same

sub-hierarchy in Figure 4.2 using a set of tweets about China and another set about the

USA respectively. They can compare the two summaries to discover which eukaryotic

entities are frequently mentioned along with “China” and “USA”, and how they are dis-

tributed in each set of tweets. This can be achieved because the entities are mapped to a

central and stable ontology.

Another advantage of the proposed hierarchical summarization is that the summary

is quite convenient for visualization. We have entered the era of Big Data, which means

that the volume of data for processing is quite huge. It is therefore vital to present the

data properly and vividly, and to make it easily understandable. Tag cloud [10, 24,

66

4.1. OVERVIEW

78] is an appropriate and popular form to visualize entities, which are called tags in a

tag cloud. Tags are often rendered in different colors, font sizes and types to convey

certain meanings, such as frequency, importance, recency and so on. Recall that in

the previous chapter we proposed hierarchical tag clouds [40] for the visualization of

summaries extracted from spatiotemporal social media contents. The differences are

that those summaries are not composed of Wikipedia entities and that the hierarchies of

tags are generated based on some statistical method, thereby lacking a clear meaning of

the relationships among the tags. With enlightenment from these works, however, the

hierarchical summaries proposed in this chapter can be visualized in hierarchical tag

clouds to convey clearer semantic relationships among the entities in each summary.

In this chapter, we propose Heron to generate hierarchical summaries for social

media contents, which are capable of grouping entities in closely related classes and re-

vealing their interconnections by leveraging the DBpedia ontology. To accomplish our

goal, we first need to extract entities from the given social media contents and map those

entities onto the DBpedia ontology. As mentioned earlier, however, inconsistency and

inaccuracy widely exist in Wikipedia infoboxes, which renders the mapping of entities

and the subsequent summarization of social media contents inaccurate. Furthermore,

the presence of thousands of properties in total and the low degree of property over-

lap among entities also bring great challenges to traditional classification methods of

reclassifying the entities. To address this problem, we propose a model named multi-

level Naive Bayes Classifiers (mNBC) to refine the entities’ classes effectively before

mapping them. Besides the refinement, our model can also be used to make predic-

tions/classifications for new entities to aid the addition of infoboxes to Wikipedia, as

long as the properties are provided.

After entities are mapped to the DBpedia ontology, we then split it to generate hier-

archical summaries. The process is tunable to enable the granularity of the summaries

67

CHAPTER 4. HIERARCHICAL SUMMARIZATION

to be controlled. Since we take advantage of the structure of the DBpedia ontology for

the summary generation, the hierarchical relationships among entities are naturally re-

served within each summary. Note that in the mapping step, a great number of entities

might be mapped to a single class node. We further propose a ranking procedure for the

selection of the most important and relevant entities according to a score formula.

To sum up, we make the following contributions in this chapter: (1) We propose to

generate hierarchical summaries based on the DBpedia ontology to introduce semantics

into each summary. (2) To reduce the propagation of inconsistency and inaccuracy in

Wikipedia, we present a model named multi-level Naive Bayes Classifiers to refine the

classes of entities before mapping them. (3) We also propose a ranking procedure to

select the most relevant entities for each class.

The rest of this chapter is organized as follows. We first discuss the preliminaries

and problem definition in Section 4.2. In Section 4.3, we propose the model of multi-

level Naive Bayes Classifiers and present the refinement of entities’ classes based on the

model. In Section 4.4, we introduce the generation of summaries and the selection of

top entities. We then present the experimental study in Section 4.5. Lastly, we provide

a summary of this chapter in Section 4.6.

4.2 Preliminaries

In this section, we introduce some relevant concepts, followed by a formal problem

definition.

Definition 4.1. Given an entity e which is classified as cj ∈ C (C is the collection of all

classes in the DBpedia ontology). A sequence of classes ci, ci+1, ..., cj−1, cj (i ≤ j) is

called the class chain of e if (1) ci is a class at the first level of the DBpedia ontology,

(2) cp is the parent of cp+1 (i ≤ p < j) when i 6= j.

68

4.2. PRELIMINARIES

The class chain of an entity actually consists of all the classes along the path in the

DBpedia ontology from the root node to the class of the entity. For instance, since the

class of the entity Backstreet Boys is “Band”, the class chain of it will be “Agent,

Organisation, Band”. Note that a class chain not only contains a set of classes but also

reserves the order of the classes, from the topmost level to the lowest as in the ontology.

Although an entity can be classified as any class in its class chain, we often refer to the

last one (e.g., “Band” in the above example) whey saying that an entity is classified as

a class because the last one is the most specific and accurate class for the entity.

Definition 4.2. Given a setE of entities and a setC ⊂ C of classes where all the classes

in C corresponds to a sub-hierarchy h of the DBpedia ontology. If E can be divided

into |C| (i.e., the cardinality of C) subsetsE1, E2, ..., E|C| (some subsets may be empty),

where Ei ∩Ej = ∅ (i 6= j) and ∪|C|i=1Ei = E for any i, j ∈ {1, 2, ...|C|}, such that some

injective function f(·) can map each nonempty subset to a unique class in C (i.e., Ei 7→

ci and Ei 6= ∅ for i ∈ {1, 2, ..., |C|}), we say that the combination of all the subsets of

entities, the set of classes and the injective function defines a hierarchical summary,

or summary for short. A summary is denoted by S({E1, E2, ..., E|C|}, C, f(·))9, where

each nonempty subset Ei (i ∈ {1, 2, ...|C|}) is mapped to a class ci ∈ C in the sub-

hierarchy h according to f(·).

Note that f(·) in this definition is an injective function that maps any nonempty

subset Ei ⊂ E of entities to a class ci ∈ C because all the entities in Ei are classified

as ci. The function is injective in that it never maps distinct subsets to the same class

in C. In other words, each class has at most one subset mapped to it. Intuitively, this is

because entities mapped to a class in the sub-hierarchy are all grouped into one single

subset.

According to the above definition, a summary S({E1, E2, ..., E|C|}, C, f(·)) defined

9For simplicity, we also denote a summary by S in this chapter.

69

CHAPTER 4. HIERARCHICAL SUMMARIZATION

in this chapter therefore not only consists of several subsets of entities, but also has a

hierarchical structure which connects all the subsets. The hierarchical structure of a

summary is actually a sub-hierarchy of the DBpedia ontology, which is determined by

the classes in C. Next, we summarize our goals and define the problem to tackle in this

chapter.

Problem Definition: Suppose that C is the collection of all classes in the DBpe-

dia ontology DO and that E is a collection of entities extracted from a set of social

media contents. Each entity e ∈ E is mapped to a class c ∈ C (i.e., e 7→ c) accord-

ing to the infobox information in Wikipedia. In this chapter, our aim is to (1) refine

the classes of the entities (i.e., redo the classification such that e 7→ c′, where c′ ∈ C)

by performing class prediction using our proposed model of multi-level Naive Bayes

Classifiers (mNBC), (2) generate hierarchical summaries S({E1, E2, ..., E|C|}, C, f(·))

using the entities with refined classes, and (3) find the most important entities, in terms

of coherence, mapped to each class in each summary.

4.3 Refinement of Classes of Entities

In this section, we discuss how to refine the classes of entities so as to reduce the

inaccuracy inherent in Wikipedia. To this end, we propose a lightweight yet effective

classification model named multi-level Naive Bayes Classifiers. However, as our goal

in this chapter is to generate summaries which consist of entities extracted from social

media contents, we briefly introduce the extraction of entities first.

4.3.1 Extraction of Entities

Extraction of Entities is commonly know as “Entity linking” or “named entity dis-

ambiguation/normalization” in natural language processing. To detect entities in textual

70

4.3. REFINEMENT OF CLASSES OF ENTITIES

documents, a knowledge base of entities is often required so that names in the docu-

ments can be linked to the entities of the knowledge base. A recently emerging direction

is to use Wikipedia as the knowledge base and cross-link names to Wikipedia entities

for entity extraction [43, 35, 60, 72], which is an instance of extremely fine-grained en-

tity linking. The process of entity linking using Wikipedia is also called “wikification”

[59]. DBpedia Spotlight [58] was proposed for annotating entities of DBpedia resources

in text, which performs entity detection and name disambiguation to link unstructured

information to the link data cloud via DBpedia. Despite various efforts made over the

recent years, the problem remains challenging because of the inherent ambiguity in

names/entities.

Since the extraction of entities stays beyond the focus of this work, we simply extract

entities from social media contents by adopting the existing methods.

4.3.2 Multi-level Naive Bayes Classifiers

As mentioned earlier, Wikipedia infoboxes possess great inconsistency and inaccu-

racy because the creation and maintenance of the information are manually done by

Wikipedia contributors, many of whom lack necessary knowledge and training on this.

After all, it is quite challenging for ordinary contributors to choose the best from among

thousands of infobox templates. For instance, a number of Wikipedia entities are labeled

as “Person” instead of more specific classes such as “Artist”, “Writer”, “Philosopher”.

Since the inaccuracy of classes of entities would propagate to the summarization of so-

cial media contents and lead to inaccuracy of summaries more or less, it is better to

refine the classes of entities to reduce the inaccuracy as much as possible.

To tackle this challenge, we propose a simple yet effective classification model

named multi-level Naive Bayes Classifiers (mNBC). Although researchers have pro-

posed various high-dimensional/hierarchical classification models [21, 52, 3, 38] and

71

CHAPTER 4. HIERARCHICAL SUMMARIZATION

even other variants of hierarchical Naive Bayes Classifiers [75, 48], our model is more

appropriate and especially designed to cater to the classification of Wikipedia entities

with the aforementioned characteristics. Specifically, we build mNBC based on the DB-

pedia ontology by integrating both of them seamlessly. That is, a single Naive Bayes

Classifier (NBC) is built for each set of classes sharing the same parent in the DBpedia

ontology, and these individual NBCs are then integrated together to form an mNBC as

a whole in accordance with the structure of the ontology.

R4 R5

R2 R3

R4

R3

R1

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

...

... ...

... ...

R1

R2

R5

(b) Ontology (c) mNBC

Agent

Organization Person Deity

Broadcaster Company Legislature ArtistPolitician

Airline Bank Actor Dancer MusicalArtist Painter

(a) Ontology (Original)
(a) A simplified DBpedia ontology

R4 R5

R2 R3

R4

R3

R1

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

...

... ...

... ...

R1

R2

R5

(b) Ontology (c) mNBC

Agent

Organization Person Deity

Broadcaster Company Legislature ArtistPolitician

Airline Bank Actor Dancer MusicalArtist Painter

(a) Ontology (Original)

(b) Formal representation

R4 R5

R2 R3

R4

R3

R1

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

...

... ...

... ...

R1

R2

R5

(b) Ontology (c) mNBC

Agent

Organization Person Deity

Broadcaster Company Legislature ArtistPolitician

Airline Bank Actor Dancer MusicalArtist Painter

(a) Ontology (Original)

(c) mNBC

Figure 4.3: Structure of mNBC

72

4.3. REFINEMENT OF CLASSES OF ENTITIES

Structure of mNBC

Figure 4.3 shows a typical structure of an mNBC model, where Figure 4.3(a) is a

simplified DBpedia ontology for illustration purpose, Figure 4.3(b) is its formal rep-

resentation and Figure 4.3(c) is the corresponding mNBC built for the ontology. In

the formal representation of the ontology, boxes in solid line represent classes, which

are connected by arrows. Classes sharing the same parent are put in one group and

highlighted by a dashed box. We have five groups of classes in Figure 4.3(b), namely

R1, R2, ..., R5 respectively, for each of which an NBC is built, as shown in Figure 4.3(c).

For each individual NBC, we assume that different properties are independent of each

other given a class [36, 77].

In Figure 4.3(b), we use “c” plus a suffix to denote a class (except the root node) in

the ontology in such a way that a suffix can reflect the level of a class and the relationship

with the other classes: (1) The length of a suffix indicates at which level of the ontology

a class is. For instance, c2 is at the first level while c121 is at the third level. (2) If the

suffix of classB has one more digit i at its end than that of classA, thenB is the ith child

of A. For instance, c122 is the second child of c12, and c122 and c121 are siblings. Since

the use of digits limits the number of children of a class to up to 10, in implementation

we use the type “char” instead. Because each instance of it can represent at least 256

numbers in most programming languages while the maximum number of children a

class has in the DBpedia ontology is less than 100. To avoid confusion, however, we

will explicitly mention this suffix notation in the sequel only when we are using it.

Otherwise, we do not determine the relationships among classes based on their suffixes.

For instance, ci and cj can be arbitrary classes in the DBpedia ontology.

73

CHAPTER 4. HIERARCHICAL SUMMARIZATION

Modeling of mNBC

Suppose we have a set E of entities and each entity e has a set P of properties

{p1, p2, ..., p|P |}. The class of e is denoted by ce. To avoid possible confusion between

the class label of an entity and a class node in the DBpedia ontology, we use nodc to

denote the class node representing class c. However, as for a class node and its corre-

sponding class, we use “node” or “class” interchangeably in the sequel if no ambiguity

arises. For instance, it is equivalent to say that an entity is mapped to either a class node

or a class in the DBpedia ontology. To build an mNBC model, each class node nodc

in the DBpedia ontology needs to maintain two statistics, one is the number of entities

mapped to that class, denoted by nodc.cnt, and the other is a property histogram, de-

noted by nodc.hist(). Given any property p, nodc.hist(p) returns the number of entities

that are mapped to nodc and have property p.

Since entity e is classified as ce, we can derive the entity’s class chain according to

the DBpedia ontology, so that both statistics of each class node in the class chain will

be updated. Specifically, for every nodc in the class chain, nodc.cnt and nodc.hist(p)

should all be increased by 1 for every property p ∈ P .

Example 4.2. Suppose that we have two entities e1 and e2, which are classified as c11

and c122 in Figure 4.3(b) respectively. e1 has two properties {p1, p2} while e2 has one

property {p2}. According to the class labels of the two entities, the class chain for e1 is

c1, c11 and that for e2 is c1, c12, c122 (note again that c0 is not considered as a class in this

work). Thus given e1 we update the statistics of class node nodc1 and nodc11 , and given

e2 we update those of class node nodc1 , nodc12 and nodc122 . After updating, we have (1)

nodc1 .cnt = 2, (2) nodc11 .cnt = nodc12 .cnt = nodc122 .cnt = 1, (3) nodc1 .hist(p1) =

nodc11 .hist(p1) = nodc11 .hist(p2) = nodc12 .hist(p2) = nodc122 .hist(p2) = 1, and (4)

nodc1 .hist(p2) = 2. Note that nodc1 .cnt = 2 because both e1 and e2 have c1 in their

class chain, and nodc1 .hist(p2) = 2 because both e1 and e2 have property p2.

74

4.3. REFINEMENT OF CLASSES OF ENTITIES

By updating the statistics of all the class nodes in the DBpedia ontology using enti-

ties in the training data set, we actually have already finished building the mNBC model.

The ontology with updated statistics will serve as the mNBC model for classification.

Classfication of Entities Using mNBC

Recall that we mentioned earlier that an NBC would be built for every set C of

classes sharing the same parent. Suppose we already have such an NBC which will be

used to classify an entity e with properties p1, p2, ..., p|P |, where |P | is the number of

properties e has. Let x = (p1, p2, ..., p|P |) be the property vector of e. The probability

for e to be classified as c given x is calculated as follows.

p(c|x) =
p(x|c) · p(c)

p(x)
(4.1)

=

∏|P |
i=1 p(xi|c) · p(c)

���p(x)
(4.2)

∝
|P |∏
i=1

p(xi|c) · p(c) (4.3)

Formulae 4.1 to 4.3 are standard solutions commonly used for an NBC model [77].

Formula 4.1 applies Bayes’ theorem to p(c|x). In Formula 4.2, p(x) is omitted because

it is a constant, so that p(c|x) can be written in a proportional form as in Formula 4.3.

Next, we rewrite the probabilities in Formula 4.3 as frequencies to further simplify the

calculation.

75

CHAPTER 4. HIERARCHICAL SUMMARIZATION

p(c|x) ∝
|P |∏
i=1

freq(xi|c)
freq(c)

· freq(c)∑
j freq(cj)

(4.4)

=

∏|P |
i=1 freq(xi|c)
freq(c)|P |−1

· 1

�������∑
j freq(cj)

(4.5)

∝
∏|P |

i=1 freq(xi|c)
freq(c)|P |−1

(4.6)

In Formula 4.4, p(xi|c) is written as freq(xi|c)/freq(c), where freq(xi|c) is the

number of entities having a certain property xi (i.e., pi) given that those entities are

classified as c and freq(c) is the number of entities classified as c. Besides, p(c) is

written as freq(c)/
∑

j freq(cj), where freq(cj) is the number of entities classified as

a certain class cj ∈ C. Note that in these formulae c is a random variable while cj is one

certain class in C. A factor freq(c) in the numerator is canceled with one same factor

in the denominator, so that Formula 4.4 is rewritten as Formula 4.5. Since
∑

j freq(cj)

is a constant with regard to any certain NBC, this factor is omitted and p(c|x) is finally

written as the one in Formula 4.6.

Recall that we maintain two statistics for each class node in the DBpedia ontol-

ogy. For any class node nodc and property xi, we have freq(xi|c) = nodc.hist(xi)

and freq(c) = nodc.cnt. Since nodc.hist(xi) and nodc.cnt are already known, we can

calculate the value of Formula 4.6 easily. Note that p(c|x) does not equal the value

of Formula 4.6 because we have omitted two constant factors in Formula 4.2 and 4.5.

Therefore, we first calculate the value of Formula 4.6 for every c ∈ C and then nor-

malize them to obtain the value of p(c|x). Although it is easy to find out the maximum

value of Formula 4.6 for all classes in C to determine the class of e, performing normal-

ization is still needed so as to terminate the classification process properly, which will

be discussed later.

76

4.3. REFINEMENT OF CLASSES OF ENTITIES

Through the above calculations, we can classify an entity e as a class c with the

highest p(c|x) in a single NBC model. After building an NBC for each set of classes

with the same parent in the DBpedia ontology, we build a collection of NBCs which

altogether form a model of multi-level Naive Bayes Classifiers, i.e., an mNBC as shown

in Figure 4.3(c). In mNBC, the set of classes are different for each individual NBC,

and the distribution of properties varies accordingly, which is reflected by the property

histogram of each class node.

Given an entity, we can classify it in an iterative manner so as to predict and refine

the class of the entity level by level, from top to bottom in the mNBC model. The

resultant predicted classes at different levels then form the class chain of the entity.

Example 4.3. Given an entity e and its property vector x, we illustrate the classification

process based on Figure 4.3. We start the classification from the top NBC highlighted by

dashed box R1 by applying Formula 4.6 three times to find the largest value. If p(c3|x)

is the largest, we classify e as c3 and terminate the classification because c3 has no

descendants in the ontology. However, if p(c1|x) is the largest, we then classify e as c1

at the first level, and come to the second level to classify e using the NBC highlighted by

dashed box R2 because R2 corresponds to the set of children of c1. Suppose this time e

is classified as c12. Since c12 still has children, we continue to classify e using the NBC

highlighted by dashed box R4. Suppose e is finally classified as c122, then we say that

the class of e is c122 with c1, c12, c122 as its class chain.

Zero Frequency Correction

Consider Formula 4.6 again. If, in the training data set, all the entities mapped to

class node nodc have no property xi, freq(xi|c) becomes 0. For an entity from the

testing data set which has this property, the situation will lead to p(c|x) = 0, even

if p(c|x) might be quite large if property xi is not considered for the calculation. In

77

CHAPTER 4. HIERARCHICAL SUMMARIZATION

this case, a zero freq(xi|c) will cancel the effect of all the other non-zero factors in

Formula 4.6. To avoid this problem, we can perform zero frequency correction, which

is inspired by the Laplacian correction [34], whenever freq(xi|c) equals 0. Next we use

an example to briefly illustrate how the correction is performed.

(a) nodc1.hist (b) nodc2.hist

p1 p2 p3 p4 p5 p6 p7 p1 p2 p3 p4 p5 p6 p7

Figure 4.4: Histograms of properties for two class nodes

Example 4.4. Figure 4.4 draws two curves reflecting the histograms of properties for

two class nodes nodc1 and nodc2 . The height of the curves indicates approximately the

distribution of entities in terms of properties. Suppose nodc1 .cnt = nodc2 .cnt = 10 (i.e.,

10 entities are mapped to class c1 and c2 respectively). For c1, we have nodc1 .hist(p2) =

9, nodc1 .hist(p5) = 8 and nodc1 .hist(p7) = 0. For c2, we have nodc2 .hist(p2) = 10,

nodc2 .hist(p5) = 2 and nodc2 .hist(p7) = 1. Given an entity e with property vector

x = (p2, p5, p7), we calculate the unnormalized probability according to Formula 4.6

for each class as follows: p(c1|x) ∝ (9 × 8 × 0)/10(3−1) = 0 and p(c2|x) ∝ (10 ×

2 × 1)/10(3−1) = 0.2. Since one probability is 0, we cannot normalize the two values.

But we can simply classify e as c2 because the value for c2 is larger. By comparing the

three properties of entity e against the two curves in Figure 4.4, however, we notice that

intuitively e is more likely to be classified as c1 instead, because most entities mapped

to c1 have both property p2 and p5 while most entities mapped to c2 only have property

p2. To avoid this misclassification, we assume that a new entity having all the seven

properties are added to the training data set to update the statistics of nodc1 . To achieve

this, we simply increase each factor in Formula 4.6 by 1 on the fly as long as any factor

78

4.3. REFINEMENT OF CLASSES OF ENTITIES

is 0. As a result, we have p(c1|x) ∝ ((9 + 1)× (8 + 1)× (0 + 1))/(10 + 1)(3−1) ≈ 0.74.

Now since 0.74 is larger than 0.2, entity e is classified as c1.

In reality, the number of entities mapped to a class node is so large that we can omit

the tiny effect introduced by performing the zero frequency correction.

Stop Condition

Recall that in Example 4.3, we classify entity e as c122 by following the hierarchical

structure of the ontology in Figure 4.3 from the first level to the last. This is not often

the case, however. We may have to terminate the recursive process after classifying e as

c1 and c12, because the probability for e to be classified as c122 may not be large enough.

Given a minimum probability threshold pmin, to determine whether the maximum prob-

ability p(c|x) is larger than pmin, normalization should be performed among the values

of Formula 4.6 for all c ∈ C.

In spite of normalization, we cannot rule out all the exceptions. This is because

the probability p(c|x) for a certain class c might be incorrectly scaled up to a large

value owing to the small probabilities of other classes during the normalization. Take

an extreme case as an example. If only one class c has non-zero unnormalized value

according to Formula 4.6, the normalization will lead to the probability of that class

being 1. This may not be true if there is only a small overlap between the properties

of entity e and those in the histogram of class node nodc. Therefore, to further validate

a classification, we multiply p(c|x) by a property proportion prop to obtain the revised

probability prev(c|x), which is used as the final probability to compare with pmin. The

formula is written as follows.

79

CHAPTER 4. HIERARCHICAL SUMMARIZATION

prev(c|x) = p(c|x) · prop (4.7)

= p(c|x) · |P ∩ pp(nodc.hist)|
|P |

(4.8)

where P is the set of properties of entity e, |P | is the cardinality of P and pp(nodc.hist)

is the set of properties in the histogram of node nodc. Therefore, the property proportion

prop is the percentage of the common properties shared by entity e and node nodc with

regard to all properties of e. Only if prev(c|x) is not less than pmin, we consider that

entity e is classified as c. With this stop condition, we give the algorithm of classifying

an entity using mNBC below.

Algorithm 3: The mNBC Algorithm
Input: the property vector x = (p1, p2, ..., p|P |) of entity e (P is the property set

of e), the DBpedia ontology DO with updated statistics, the probability
threshold pmin

Output: a class chain L of entity e
begin1

initialize C to be the set of classes at level 1 of DO;2

initialize L to be an empty list;3

while true do4

compute values of Formula 4.6 for all c ∈ C;5

normalize the values to obtain p(c|x) for all c ∈ C;6

let ctmp = arg max
c∈C

p(c|x);7

calculate prev(ctmp|x) according to Formula 4.8;8

if prev(ctmp|x) < pmin then9

return L;10

append ctmp to the end of L;11

let C be the set of children of c;12

if C = ∅ then13

return L;14

end15

Algorithm 3 performs a greedy search in the DBpedia ontology and returns the class

80

4.4. SUMMARIZATION

chain for an input entity, in which the last element is the class of the entity. It starts

from the classes at the first level of the ontology (line 1 to 4), finds a class ctmp with the

maximum probability p(c|x) and calculates its revised probability prev(c|x) (line 5 to

8). If this probability is less than the threshold pmin, the algorithm terminates (line 9 to

10). Otherwise, ctmp is appended to a list storing the class chain of the entity (line 11),

and the algorithm again starts to examine the children of ctmp (line 12) in a recursive

manner until there is no child for ctmp (line 13 to 14).

4.4 Summarization

In last section, we discussed how to build the mNBC model and refine the class

labels of entities based on this model. Next, we introduce how to generate hierarchical

summaries based on the DBpedia ontology given entities with refined classes. Firstly,

we map those entities onto the DBpedia ontology. Then we split the ontology into

multiple sub-hierarchies, each of which can be perceived as a summary. Considering

the fact that too many entities may be mapped to one class node, we further propose to

rank the entities so as to select the most important ones.

4.4.1 Entity Mapping

Mapping entities onto the DBpedia ontology can be done at the same time when

doing the classification. As described in Algorithm 3, we classify an entity e along the

hierarchical structure of the DBpedia ontology from top to bottom, until the stop con-

dition is satisfied. We can remember the last valid class node nodc which is appended

at the end of the class chain during the recursive process as the algorithm executes. At

the time of termination, nodc will be the very node to which entity e should be mapped.

In the sequel, when we say that an entity e is mapped to a class node nodc, the class

81

CHAPTER 4. HIERARCHICAL SUMMARIZATION

node refers to the one corresponding to the last class c at the end of the class chain of

the entity unless otherwise stated. That is, we map an entity e to its lowest class node

nodc in the ontology when generating summaries because c is the most specific class

to describe e, although e can also be classified as those classes corresponding to the

ancestor nodes of nodc.

To simulate the mapping operation, another two statistics of nodc need to be up-

dated, which are nodc.ent cnt and nodc.ent hist respectively. Note not to confuse

these two statistics with nodc.cnt and nodc.hist used for building mNBC. nodc.ent cnt

stores the number of entities mapped to class node nodc as well as those mapped to

the descendants of nodc, i.e., the total number of entities mapped to the sub-hierarchy

rooted at nodc. nodc.ent hist stores the histogram of entities only mapped to nodc,

where nodc.ent hist(e) returns the frequency that entity e is mapped to nodc. Thus

when entity e is finally mapped to class node nodc when Algorithm 3 terminates, we

update nodc.ent cnt and nodc.ent hist(e) by increasing them by 1. We should also

increase nodcanc .ent cnt by 1 for each canc ∈ ancestors(c) where ancestors(c) is the

set of ancestor nodes of c. This is because the statistic ent cnt of a node needs to store

the total number of entities mapped to the sub-hierarchy rooted at that node.

12

1 11
1

1

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

4

3

1 1
2

2

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

8

6

4

(a) Four entities mapped to the ontology

12

1 11
1

1

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

4

3

1 1
2

2

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

8

6

4

(b) Eight entities mapped to the ontology (4 6= 2+1
because one entity is mapped to nodc12)

Figure 4.5: Entity mapping

82

4.4. SUMMARIZATION

Figure 4.5 demonstrates the mapping of entities to the ontology shown in Figure

4.3. In Figure 4.5(a), four entities are mapped to four different class nodes, i.e., nodc11 ,

nodc12 , nodc13 and nodc21 . The number next to a class node indicates how many entities

are mapped to the sub-hierarchy rooted at that class node, while there is no number if no

entity is mapped. For instance, the number 1 next to nodc12 means nodc12 .ent cnt = 1,

i.e., only one entity is mapped to the sub-hierarchy rooted at nodc12 . Since the sub-

hierarchy has three class nodes nodc12 , nodc121 and nodc122 , and since there is no entity

mapped to the other two class nodes, we know that the single entity must be mapped

to nodc12 . The number 3 next to nodc1 means nodc1 .ent cnt = 3, i.e., three entities are

mapped to the sub-hierarchy rooted at nodc1 . Figure 4.5(b) shows the ontology after

four more entities are mapped. nodc.ent cnt is also updated accordingly for any c ∈ C,

where C is the set of classes in the ontology. Note that in the sub-hierarchy highlighted

by the dashed line in Figure 4.5(b), we have nodc12 .ent cnt = 4, nodc121 .ent cnt = 2

and nodc122 .ent cnt = 1. 4 6= 2+1 because an entity e is actually mapped to nodc12 . The

number of entities mapped to the sub-hierarchy rooted at a class node equals the sum

of the number of entities mapped to that class node and the number of entities mapped

to the sub-hierarchies rooted at the children of that class node. This relationship of

statistics among a class node and its children is captured by the formula as follows.

nodc.ent cnt =
∑
ei∈E

nodc.ent hist(ei)

+
∑

cj∈children(c)

nodcj .ent cnt (4.9)

where E is the set of entities mapped to class node c and children(c) is the set of

children of c.

83

CHAPTER 4. HIERARCHICAL SUMMARIZATION

4.4.2 Summary Generation

Once a set of entities have been mapped onto the DBpedia ontology, hierarchical

summaries can be generated naturally and easily by cutting off sub-hierarchies from the

ontology. Given a threshold δ which sets an upper bound for the number of entities al-

lowed to contain in each summary, the ontology is traversed to find a setCroot of classes.

For any c ∈ Croot, nodc.ent cnt is less than or equal to δ while nodparent(c).ent cnt

(parent(c) is the parent of c) is larger than δ if the parent of c exists. In this case,

each sub-hierarchy rooted at a class in Croot is then a hierarchical summary. Depth-first

search (DFS) can be performed for the traversal of the ontology. Recall Definition 4.2

that a summary S({E1, E2, ..., E|C|}, C, f(·)) consists of a set of classes, subsets of en-

tities corresponding the classes and an injective function mapping the entity sets to the

classes. The entities constitute the content of the summary while the classes and the

function reflect the organization and structure of the summary.

R2

R4

R3R2

R1

R1

12

1 1
2

2

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

8

6

4

12

1 1
2

2

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

8

6

4

(a) Two summaries when δ = 6

R2

R4

R3R2

R1

R1

12

1 1
2

2

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

8

6

4

12

1 1
2

2

c0

c1 c2 c3

c11 c12 c13 c21 c22

c121 c122 c221 c222 c223 c224

8

6

4

(b) Four summaries when δ = 4

Figure 4.6: Summary generation

Figure 4.6 demonstrates the generation of summaries given different values of thresh-

old δ. In Figure 4.6(a) with δ set to 6, we need to find the “uppermost” classes so that

the sub-hierarchies rooted at these classes contains at most 6 entities. A class c being

uppermost guarantees that nodc.ent cnt is less than or equal to the threshold while that

84

4.4. SUMMARIZATION

of its parent is not. Apparently, c1 and c2 satisfy the requirement. Therefore, we obtain

two sub-hierarchies, rooted at c1 and c2 respectively, which are the summaries when δ

is 6. The two summaries are highlighted in dashed line in Figure 4.6(a). Note that since

no entity is mapped to c22 and its descendants, we omit and remove them from the sub-

hierarchy rooted at c2, to make the corresponding summary (labeled R2) more compact.

When δ is set to 4, the resultant summaries are shown and highlighted in Figure 4.6(b).

Now there are four summaries in the ontology, three of which is generated by splitting

the one labeled R1 in Figure 4.6(a). Intuitively, decreasing the threshold δ will push

the uppermost class of a summary to lower levels and even split a large summary into

several smaller ones, thereby resulting in more or smaller summaries, which tend to be

more specific and coherent in terms of entities contained. In a word, the threshold δ

adjusts the granularity of generated summaries.

4.4.3 Top Entities Selection

The distribution of entities extracted from different sets of social media contents

often varies greatly. Entities in certain type of classes (e.g., “City” and “Artist”) are

more frequently mentioned, so that hundreds of entities or even more can be mapped

to one single class. To better distinguish among so many entities, we next propose

a ranking procedure in terms of coherence so that the most important entities can be

ranked higher than others. Before presenting the details, we introduce two new concepts

first.

Definition 4.3. Given two classes in the DBpedia ontology, we denote by comm the

number of their common ancestor classes (inclusive of the classes themselves) and by

dist the minimum number of hops (or edges) from one class to reach the other.

Example 4.5. Take the ontology in Figure 4.6 as an example. For classes c1 and c122,

comm is 1 because only c1 is their common class while dist is 2 because there are

85

CHAPTER 4. HIERARCHICAL SUMMARIZATION

two hops from c1 to c122 (i.e., c1 → c12 and c12 → c122). For c121 and c13, comm is

still 1 because only c1 is their common class while dist is 3 because there are three

hops from c121 to c13 (i.e., c121 → c12, c12 → c1 and c1 → c13). For another pair of

classes c121 and c3, comm is 0 because there is no common class for them (recall that

c0 is not considered as a class in this work) while dist is 4 because of four hops from

c121 to c3 (i.e., c121 → c12, c12 → c1, c1 → c0 and c0 → c3). Note that c0 should be

considered as a node when calculating hist, otherwise the path between two classes

will be disconnected.

The variable comm measures the closeness between two classes in the DBpedia

ontology in terms of the number of common ancestors while dist measures the distance

of the classes. By combining these two variables, we introduce a new metric below to

reflect the compactness and coherence between two classes.

coh(ci, cj) =
commij

distij
(4.10)

where commij and distij are the values of comm and dist given two classes ci and cj .

The larger commij is (or the smaller distij is), the more coherent two classes ci and cj

are in the ontology. To calculate coh(ci, cj) efficiently, we propose to obtain commij and

distij by making use of the suffix notation of classes, which has been neatly designed.

We demonstrate the calculations using the following example.

Example 4.6. Recall that in Section 4.3.2 we design to use the suffix of a class to reflect

the position of the class and its relationship with other classes. For instance, c121 is at

the third level of the ontology because the length of the suffix is 3 while c12 is the parent

of c121 because c12 is at the second level and “12” is a prefix of “123”. In this case,

given any two classes, comm equals the length of the common prefix shared by their

86

4.4. SUMMARIZATION

suffixes, and dist equals the sum of the lengths of the rest suffixes. For instance, given

c121 and c13, comm is 1 because their suffixes share a 1-length common prefix “1”, and

dist is 3 because the remainders of the two suffixes after the removal of the common

prefix are “21” of length 2 and “3” of length 1 respectively. Note that the common

prefix must start from the very beginning of both suffixes. For instance, although c121

and c21 have a common substring “21” in their suffixes, “21” is not the prefix of c121,

thereby leading to comm = 0 and dist = 3 + 2 = 5.

Given two entities, we can evaluate the coherence of them by calculating coh(ci, cj)

if the entities are mapped to ci and cj respectively. Since our goal is to rank entities

mapped to a certain class c, next we introduce a formula to score these entities based on

Formula 4.10.

score(ei) = log(nodc.ent hist(ei) + 1) ·
n∑

j=1

commij + 1

distij + 1
(4.11)

where ei is the ith entity mapped to class c and n is the number of entities which are

extracted from the set of social media contents having ei and are contained in the same

summary as ei. This formula consists of two factors. The first factor is a logarithm

expression, the value of which is larger if ei appears in more social media contents. An

extra 1 is added to the frequency of ei to ensure that the whole factor is larger than 0.

The second factor is a revised version of Formula 4.10 by adding 1 to both commij

and distij of each fractional addend to avoid the numerator or denominator being 0. It

will be larger if more entities extracted from social media contents having ei are also

mapped into the same summary. In other words, entity ei will be scored higher if it

coexists in a summary with more entities from various social media contents. Note that

the n entities involved for the calculation of the second factor are those in the same

87

CHAPTER 4. HIERARCHICAL SUMMARIZATION

set of social media contents and summary as ei, including ei itself. We also define

that commij = distij = 0 if i = j. Thus when n = 1 (i.e., only one entity ei is

extracted from the set of social media contents having ei, which is an extreme case and

very rare), the second factor in Formula 4.11 becomes 1 and Formula 4.11 is reduced to

score(ei) = log(nodc.ent hist(ei) + 1). If n > 1, the second factor will be greater than

1. Since the first factor is always greater than 0 and the second one is always greater

than or equal to 1, score(ei) will always be positive, and be greater than or equal to the

first factor.

4.5 Experimental Study

4.5.1 Data Sets

In this section, we exploit the data sets in the English version of DBpedia 3.9 for the

experimental study. There are 529 classes in total described by 2,333 different proper-

ties. The English version contains 3.22 million entities which are classified and mapped

onto the DBpedia ontology, including 832,000 persons, 639,000 places, 372,000 cre-

ative works, 226,000 species, 209,000 organizations and so on10. Specifically, three data

sets in DBpedia 3.9 are used, which are “DBpedia Ontology”, “Mapping-based Types”

and “Mapping-based Properties” respectively. The first data set, in the OWL11 (Web On-

tology Language) format, describes the parent-child relationships between classes, from

which the hierarchical structure of the DBpedia ontology can be constructed. The other

two, in the Turtle12 format, record the entity-classes mappings and entity-properties

relationships respectively, which are extracted from corresponding English Wikipedia

articles/infoboxes. These two data sets are mapping-based in that the data is extracted

10http://wiki.dbpedia.org/Ontology39
11http://www.w3.org/2001/sw/wiki/OWL
12http://www.w3.org/TR/turtle/

88

4.5. EXPERIMENTAL STUDY

based on hand-generated mappings of Wikipedia infoboxes/templates to the DBpedia

ontology13. This standardizes the extracted classes and properties to avoid cases that

different infoboxes are used for the same class or different property names are used for

the same property. Note that in the “Mapping-based Types” data set, an entity may have

multiple classes, which is similar to the concept of class chain in this chapter.

To extract entities, we crawl various sets of tweets, i.e., the type of social media con-

tents published on Twitter, by setting different query strings based on Twitter’s REST

APIs14. All the tweets in each set contains a certain query string, such as “Singapore”,

“White House”, “Barack Obama”, to make sure that the tweets are all related to that

query string. For instance, we have crawled one set of tweets by specifying the query

string as “Singapore”, with around 1.867 million tweets crawled during a period of two

months. By default, we use this set of tweets to extract entities in this section unless

otherwise stated.

4.5.2 Evaluation of mNBC

The aim of proposing the mNBC model is to help refine the classes of entities so as

to generate high-quality summaries. In addition, the model can also be used to perform

class prediction for new entities as long as a set of properties are given. Therefore, a

high performance is vital for mNBC to achieve these objectives. Next, we conduct a

series of experiments to evaluate the performance of mNBC.

Precision and recall are two measures commonly used to evaluate models in pattern

recognition and information retrieval. However, they are usually adopted for the evalu-

ation of binary classifications. In our scenario, an entity e can be classified as multiple

classes in the class chain ci, ci+1, ..., cj−1, cj . Although the last class cj in the class chain

13http://wiki.dbpedia.org/Datasets
14https://dev.twitter.com/rest/public

89

CHAPTER 4. HIERARCHICAL SUMMARIZATION

Table 4.1: Entities and their corresponding class chains
Entity Class Chain
e1 c11, c12, c13, c14
e2 c21, c22, c23, c24, c25, c26
e3 c31, c32, c33

is the best and most specific class for e, we cannot say that it is completely wrong when

e is classified as some other class in the class chain. Suppose that Table 4.1 displays

a few entities and their class chains generated by Algorithm 3. Recall that each entity

in the training data set “Mapping-based Types” also corresponds to multiple classes.

We organize these classes for each entity in order according to the levels they are in

the DBpedia ontology to produce a training class chain for each entity, so that we can

make comparisons between the training class chains and those generated by our mNBC

model level by level. For an entity, we divide the number of true positive classes by the

number of classes in the class chain generated by mNBC to obtain the precision while

divide that by the number of classes in the training class chain to obtain the recall. We

call the two measures the horizontal precision/recall in the sequel because they are

calculated for every single entity in a certain row as shown in Table 4.1. Likewise, for

each level of the class chains, we divide the number of true positive classes at that level

by the number of classes in the class chains generated by mNBC at that level to obtain

the vertical precision while divide that by the number of classes in the training class

chains at that level to obtain the vertical recall. The horizontal precision and recall

evaluate our model in terms of each entity whereas the vertical ones evaluate it in terms

of each level of the class chains across all the entities. We perform 10-fold cross valida-

tion to avoid overfitting in the evaluation. Since the horizontal measures are calculated

for each entity, we average them to obtain the final horizontal precision/recall.

90

4.5. EXPERIMENTAL STUDY

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

P
re

ci
si

on
 /

R
ec

al
l /

 F
1

Property number

Precision
Recall

F1

(a) Horizontal measures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

P
re

ci
si

on

Level of class chain

Property #=1
Property #=3
Property #=5
Property #=7

(b) Vertical precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

R
ec

al
l

Level of class chain

Property #=1
Property #=3
Property #=5
Property #=7

(c) Vertical recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
1

Level of class chain

Property #=1
Property #=3
Property #=5
Property #=7

(d) Vertical F1 score

Figure 4.7: Precision, recall and F1 score for different number of properties

Effect of Different Number of Properties

Figure 4.7 shows the variation of horizontal and vertical precision/recall/F1 score15

with regard to entities with different number of properties. That is, the training enti-

ties are put into different groups according to how many properties they have and the

horizontal/vertical measures are calculated for each group. pmin is set to 0.7. In Figure

4.7(a), horizontal measures are presented when the number of properties ranges from

1 to 8. The three measures are relatively small when property number is 1. However,

when entities have more properties (from 2 to 8), the three measures increase signif-

icantly, with the values larger than 0.9 in most cases. This discovery indicates that

15F1 = 2 · precision · recall/(precision+ recall)

91

CHAPTER 4. HIERARCHICAL SUMMARIZATION

in order to obtain good classification result, more properties is needed for each entity.

Figure 4.7(b), 4.7(c) and 4.7(d) also confirm this indication by presenting the vertical

precision, recall and F1 score at different levels of class chains. The blue line represents

the measures when entities only have one property, which is beneath all the other three

lines representing measures when entities have more properties. With more properties,

the three measures are quite large at the first two levels of the class chains while the

fluctuation becomes obvious for the rest levels. This is because entities are more distin-

guishable in terms of classes at top levels of the DBpedia ontology. For instance, given

an entity Camel with five properties “phylum, order, kingdom, family, class”, it is easy

to classify it as “Species” rather than “Place” (“Species” and “Place” are classes at the

first level in the DBpedia ontology) while it is challenging when it comes to “Mammal”

and “Fish” (which are classes at the fourth level). However, we obtain high horizontal

and vertical measures for entities with more properties overall.

Effect of Different Values of pmin

Figure 4.8 shows the horizontal/vertical measures with regard to different values of

the probability threshold pmin. The larger pmin is, the more conservative the mNBC

model is, the earlier Algorithm 3 terminates. We use entities with at least three proper-

ties. Figure 4.8(a) presents the horizontal measures as pmin ranges from 0.4 to 1 with 0.1

as the step value. The horizontal precision always keeps increasing linearly as pmin in-

creases. The horizontal recall decreases also linearly but slowly as pmin increases from

0.4 to 0.9, leading to F1 score almost remaining unchanged during the process. Except

for the sudden drop of recall and F1 score when pmin = 1, the three measures stay with

high values for most cases. The sudden drop of recall is because the classification pro-

cess (i.e., Algorithm 3) is terminated so early that the class chains generated by mNBC

tend to be shorter than the training class chains. With the lower bound probability set to

92

4.5. EXPERIMENTAL STUDY

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on
 /

R
ec

al
l /

 F
1

pmin

Precision
Recall

F1

(a) Horizontal measures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

P
re

ci
si

on

Level of class chain

pmin=0.4
pmin=0.6
pmin=0.8
pmin=1.0

(b) Vertical precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

R
ec

al
l

Level of class chain

pmin=0.4
pmin=0.6
pmin=0.8
pmin=1.0

(c) Vertical recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
1

Level of class chain

pmin=0.4
pmin=0.6
pmin=0.8
pmin=1.0

(d) Vertical F1 score

Figure 4.8: Precision, recall and F1 score for different pmin

1, entities will not be classified as classes at lower levels of the DBpedia ontology, even

if the probability reaches as high as 0.99. As a result, pmin set to 1 should be avoided in

Algorithm 3.

Figure 4.8(b) to 4.8(d) show the vertical measures separately given different values

of pmin with regard to different levels of class chains. The vertical precision keeps

increasing as pmin increases in Figure 4.8(b) while the vertical recall decreases gradually

at the same time in Figure 4.8(c), leading to the F1 score not changing too much except

for the case when pmin = 1 as shown in 4.8(d). Similar to Figure 4.8(a), the values of

vertical recall and F1 score are small when pmin = 1. Again the fluctuation is observed

when it comes to lower level classes. The vertical measures drop obviously at the fourth

93

CHAPTER 4. HIERARCHICAL SUMMARIZATION

level in both Figure 4.7 and 4.8, probably because this level of the DBpedia ontology

has the largest number of classes, i.e., 195 out of 529. Note that sometimes the decrease

of the measures does not necessarily mean misclassification because the mNBC model

is capable of making refinement, which will be falsely regarded as misclassification

by using the training class chains as gold standard. Later, we will study how much

improvement can be made through the refinement of mNBC.

Distribution of Probabilities

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ou

nt

Probability range

Correct_1
Correct_3
Correct_5
Wrong_1
Wrong_3
Wrong_5

Figure 4.9: Distribution of probabilities

Algorithm 3 calculates a probability for every class in the class chain. We set pmin

to 0.7 and investigate the distribution of probabilities of the classes in each class chain

generated by mNBC, which is depicted in Figure 4.9. Note that the probability of a

class can be smaller than pmin here as long as it is not less than the probability of the

previous class in a class chain. That is, the probabilities of the classes in a class chain

monotonically increase from the first class to the last one. Each of the numbers along the

x-axis denotes a probability range from that number (inclusive) to the closest number

(exclusive) on the right. For instance, 0 denotes the range [0, 0.1) and 0.9 denotes

[0.9, 1). However, 1 denotes the case when the probability is 1. The y-axis indicates

94

4.5. EXPERIMENTAL STUDY

the number of classes falling into certain probability ranges. In the notations of the

six lines in Figure 4.9, “Correct” and “Wrong” indicate whether entities are classified

correctly or not, compared with the training class chains, while the numbers appended

to “Correct” and “Wrong” indicate the minimum number of properties entities have.

For instance, “Correct 3” shows the distribution of probabilities when entities having at

least 3 properties are correctly classified. We notice that the three solid lines have large

values for the probability ranges from 0.9 to 1 while they have quite small values for the

rest ranges. In addition, the three dashed lines also have small values for almost all the

ranges. Although we allow the probabilities in a class chain to increase monotonically

from a value smaller than pmin, which is less strict than the condition in Algorithm 3,

we still notice that all the six lines have quite small values for the probability ranges

from 0 to 0.8. In a word, most entities are correctly classified with high probability by

the mNBC model.

Improvement by mNBC

Previously we calculated the horizontal/vertical measures by considering the train-

ing class chains as the gold standard. However, these measures cannot reflect the capa-

bility of improvement or refinement made by the mNBC model. Besides, evaluating the

improvement in classification is also hard. Therefore, we next randomly select some

sample entities and try to manually evaluate the improvement made by mNBC. Specifi-

cally, we randomly select three sets of entities, with 300, 400 and 500 entities for every

set, where each entity has at least three properties. Then we generate class chains for

these entities using our mNBC model, and compare them with the training class chains

manually. We try to figure out the differences between the two group of class chains for

each entity and see whether our model can make any refinement. We set pmin to 0.5.

As shown in Table 4.2, there are 58, 78 and 98 entities respectively, in the three sets,

95

CHAPTER 4. HIERARCHICAL SUMMARIZATION

the generated class chains of which are different from the corresponding training class

chains. Among these entities, the class chains of 20 to 30 entities have been obviously

refined by our model after careful examination. The refine rate, calculated by dividing

the number of improved entities by that of different ones, shows that around 1/3 “dis-

putable” entities can be classified as a better or more proper class by using our model.

The overall accuracy is as high as 86% − 87.3%, which is the ratio of the number of

correctly classified entities (including those with the same class chains in both groups

and those that have been refined) to that of all the sample entities.

Table 4.2: Improvement by mNBC
Entity # Different Improved Refine Rate Accuracy

300 58 20 34.5% 87.3%
400 78 22 28.2% 86.0%
500 98 30 30.6% 86.4%

Next, we take two examples to illustrate the refinement achieved by mNBC. One en-

tity is Gyula Andrássy, who was a Hungarian politician. The training class chain for

this entity is “Agent, Person, Politician, President” while the one generated by mNBC

is “Agent, Person, Politician, PrimeMinister”. After careful examination, we confirm

that this person served as Prime Minister of Hungary, which validates our refinement to

this entity. Another example is Berry Berenson, who was an American actress. This

entity has a simple training class chain “Agent, Person”, while our generated class chain

is “Agent, Person, Artist, Actor”. Because the DBpedia ontology does not distinguish

between female and male (i.e., there is no class “Actress”), mNBC is considered to suc-

cessfully refine the classification of this entity by discovering two more specific classes

“Artist” and “Actor”. The two examples stand for two different types of refinement, i.e.,

replacement and extension. Namely, “President” is replaced by “PrimeMinister” in the

former example while “Agent, Person” is extended by appending “Artist, Actor” in the

latter example.

96

4.5. EXPERIMENTAL STUDY

Comparison with Other Classification Methods

To further evaluate the performance of mNBC, we also perform a comparison study

with several other popular methods, including Clus-HMC [88], RAkEL [87], MLkNN

[99], HOMER and HMC [86]. Clus-HMC is a decision tree based model for hierarchi-

cal multi-label classification while HOMER and HMC both build a hierarchy of multi-

label classifiers where each node is a classifier. RAkEL and MLkNN perform multi-

label classification without hierarchies. Since Clus-HMC is implemented in Clus16 and

the rest are implemented in Mulan17, we use the existing implementation of these meth-

ods directly.

Unfortunately, all these methods cannot finish the execution within 72 hours (3

days), after which we terminate them. In contrast, our mNBC model can finish the

classification within 189 seconds for all entities using 10-fold cross validation. As

mentioned in the introduction, the characteristics of Wikipedia infobox data (includ-

ing high dimensionality, sparseness and low degree of property overlap) indeed pose

great challenges for the existing classification methods. Most of them propose solutions

to handling only part of the characteristics. Our mNBC model, however, can perform

efficient and effective hierarchical multi-label classification by leveraging the DBpedia

ontology, which helps greatly reduce the property/class searching space and improve

the overall performance.

4.5.3 Evaluation of Summary Generation

In Section 4.4.2, we discussed how the threshold δ, which sets the maximum num-

ber of entities a summary can have, adjusts the granularity of generated summaries.

Next we evaluate how different values of δ affect the number of summaries as well as

16A decision tree and rule induction system (http://dtai.cs.kuleuven.be/clus/).
17A library for multi-label learning (http://mulan.sourceforge.net/).

97

CHAPTER 4. HIERARCHICAL SUMMARIZATION

 20

 30

 40

 50

 60

 70

 80

 90

 50 500 950 1400 1850 2300
 0

 20000

 40000

 60000

 80000

 100000

 120000

N
um

be
r

of
 s

um
m

ar
y

A
ve

ra
ge

 s
um

m
ar

y
si

ze
Threshold δ (×103)

Summary #
Average size

(a) δ < 2, 300, 000

 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 50 100 150 200 250 300
 0

 5000

 10000

 15000

 20000

 25000

 30000

N
um

be
r

of
 s

um
m

ar
y

A
ve

ra
ge

 s
um

m
ar

y
si

ze

Threshold δ (×103)

Summary #
Average size

(b) δ < 300, 000

 80

 85

 90

 95

 100

 105

 110

 115

 0 20 40 60 80 100
 0

 2000

 4000

 6000

 8000

 10000

 12000

N
um

be
r

of
 s

um
m

ar
y

A
ve

ra
ge

 s
um

m
ar

y
si

ze

Threshold δ (×103)

Summary #
Average size

(c) δ < 100, 000

 80

 85

 90

 95

 100

 105

 110

 115

 0 5 10 15 20 25 30
 0

 1000

 2000

 3000

 4000

 5000

 6000

N
um

be
r

of
 s

um
m

ar
y

A
ve

ra
ge

 s
um

m
ar

y
si

ze

Threshold δ (×103)

Summary #
Average size

(d) δ < 30, 000

Figure 4.10: Number of summary vs. average summary size

the average summary size in more detail. All extracted entities are used for the gener-

ation of summaries regardless of how many properties they have and pmin is set to 0.9.

The overall tendency is depicted in Figure 4.10(a), where the number of summaries in-

creases and the average summary size decreases as δ reduces gradually from 2,300,000.

As discussed earlier, this is because a large summary may split into more and smaller

summaries following the reduction of δ. After sharp changes when δ goes down from

2,300,000 to 1,850,000, the number of summaries and average size remain stable when

δ varies between 1,850,000 and 500,000. The changes become apparent again when δ

is below 500,000.

Although the overall tendency is clear, more detailed fluctuations are hidden due

98

4.5. EXPERIMENTAL STUDY

to the large step value of δ in Figure 4.10(a). In light of this, we further zoom in and

provide close-up changes given smaller ranges of δ in Figure 4.10(b) to 4.10(d). Figure

4.10(b) shows the tendency of the number of summaries and average size as δ decreases

from 300,000, which is similar to Figure 4.10(a) with some fluctuations as well as stable

stages. In Figure 4.10(c), we start to discern remarkable ups and downs for the number

of summaries when δ is less than 30,000. Figure 4.10(d) further enlarges the fluctuations

and we notice that the number of summaries no longer keeps increasing when δ becomes

relatively small. This happens because some potential summaries (i.e., those generated

when δ takes larger values) will not be generated for smaller δ. Despite the fluctuations

of the number of summaries, the average summary size keeps decreasing all the time.

4.5.4 Comparison with Vesta at System Level

Vesta is a system which generates summaries of social media contents based on a

biclustering approach. As reported in Section 3, Vesta outperforms several other sum-

marization methods. Next we conduct a comparison between Heron, the summarization

approach proposed in this chapter, and Vesta from several different aspects. To make the

comparison feasible, we use four data sets which contain 0.1, 0.7, 2.5 and 4.3 million

tweets respectively as in Section 3. Vesta has two ways to generate summaries, namely

tag-based and content-based. Since the tag-based method has better performance than

the content-based one, we only report the result of the tag-based method below. There

are two parameters in Vesta, δden and δsz, which control the minimum density and size

of a summary. We set δden and δsz to 0.8 and 3 respectively, which are consistent with

the settings in Section 3. For Heron, we use all extracted entities without filtering those

having a small number of properties. We also set pmin to 0.7 and δ to 100,000.

Figure 4.11 shows the scalability of Heron and Vesta in terms of the summary gen-

eration time and memory usage. From Figure 4.11(a), we can see that although the

99

CHAPTER 4. HIERARCHICAL SUMMARIZATION

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.7 2.5 4.3

T
im

e/
s

Tweet number (×106)

Vesta
Heron

(a) Generation time

 0

 5

 10

 15

 20

 25

 30

 0.1 0.7 2.5 4.3

M
em

or
y/

G
B

Tweet number (×106)

Vesta
Heron

(b) Memory usage

Figure 4.11: Summary generation

generation time of Vesta increases linearly as the number of tweets increases, it is quite

larger than that of Heron. When the number of tweets goes up from 0.1 to 4.3 million,

the generation time of Heron increases slowly, so that the increase is even negligible

when compared with that of Vesta. Figure 4.11(b) also reflects the similar pattern. That

is, the memory usage of Vesta increases linearly and apparently while that of Heron

is almost constant. Heron outperforms Vesta in both the generation time and memory

usage, which is mainly because Heron relies on the DBpedia ontology to generate sum-

maries. The number of tweets/entities in large part affects the granularity of the gener-

ated summaries instead of bringing about high computational cost in Heron. However,

a large number of tweets may lead to heavy burden to Vesta, which is sensitive to the

workload.

To accelerate the generation process, Vesta further adopts a partition-and-merge

(PM) scheme. The scheme puts the summary generation for smaller partitions at an

offline stage, and merges summaries of smaller size from partitions to form larger sum-

maries at runtime to speed up the system response time. Figure 4.12 shows the response

time for Heron and Vesta. With the PM scheme, the response time of Vesta becomes

less than that of Heron. However, considering that a set of tweets processed by Heron

100

4.5. EXPERIMENTAL STUDY

 0

 10

 20

 30

 40

 50

 0.1 0.7 2.5 4.3

T
im

e/
s

Tweet number (×106)

Vesta
Heron

Figure 4.12: Response time

in this chapter are often related to a query string and thus do not contain as many tweets

as 4.3 million (which is the approximated number of geo-coded tweets published every

day [40]), the response time of Vesta and Heron will not differ too much. For instance,

during a period of two months around 1.867 million tweets can be crawled for the query

string “Singapore” and around 1.76 million can be crawled for “United States”. What’s

more, the PM scheme makes Vesta a semi-realtime system because it cannot generate

summaries immediately with the newly crawled tweets before they are processed at the

offline stage, while Heron can process new tweets instantly and thus work in real time.

Except for the aforementioned aspects, the summaries generated by Heron and Vesta

are also disparate. (1) Vesta generates summaries on the basis of individual words while

Heron treats entities with multiple words as a whole. For instance, “White House” will

be split into two separate keywords “White” and “House” in Vesta while Heron treats

White House as a single entity. (2) The keywords of a summary in Vesta are orga-

nized at different levels where there are no relationships among keywords at each level,

while entities of a summary in Heron are organized in a sub-hierarchy presenting par-

ent/child/sibling relationships. (3) Vesta puts keywords of a summary at different levels

by doing statistical inference while Heron adds semantic relationships to entities of a

summary based on the DBpedia ontology. In a word, Heron and Vesta can be supple-

101

CHAPTER 4. HIERARCHICAL SUMMARIZATION

mentary to each other by generating summaries from different perspectives. Interested

readers are refer to Section 3 or [40] for more details about Vesta.

4.5.5 Case Study

Hotel

HospitalShoppingMall

Airport

Station

BuildingInfrastructure

ArchitecturalStructure

Sultan_Shoal_Lighthouse(1.09)
Raffles_Lighthouse(0.69)

Hwa_Chong_Institution_Boarding_School(0.69)

Singapore_Flyer(7.49)
Burj_Khalifa(6.58)
Suntec_City(6.34)

Marina_Bay_Cruise_Center_Singapore(2.56)

Tanjong_Pagar_Railway_Station(4.44)
Parkway_Parade(3.4)

Woodlands_Train_Checkpoint(2.49)

Singapore_Changi_Airport(7.86)
Haneda_Airport(7.47)

Incheon_International_Airport(6.89)

Nex(7.32)
Lot_One(6.49)

Plaza_Singapura(5.58)

Raffles_Hotel(6.09)
Conrad_Centennial_Singapore(4.75)

Royal_Plaza_On_Scotts(4.56)

Singapore_General_Hospital(5.52)
Changi_General_hospital(5.41)

Changi_Hospital(5.12)

Figure 4.13: Case study: an exemplary summary

In this section, we illustrate what a real hierarchical summary looks like using an

example as shown in Figure 4.13. This is one of the summaries generated from the set

of tweets crawled by specifying “Singapore” as the query string. Note that the summary

is a simplified version for demonstration purpose by cutting off part of the class nodes,

because the original summary has twenty different class nodes which are too many for

presentation.

There are eight class nodes shown in the exemplary summary. For each class node,

entities are displayed in a rectangle with the corresponding class shown above it. Ac-

cording to Formula 4.11 (i.e., the score formula), we rank all the entities mapped to

each class node and show the top three, if any, with the highest scores in Figure 4.13.

The score of an entity is shown in the parentheses next to the entity’s name. By looking

102

4.6. SUMMARY

down from the top level to lower levels along the sub-hierarchy (the structure is called

sub-hierarchy in contrast with the entire DBpedia ontology) of the summary, we note

that entities in the summary are organized in different subsets. Entities in each subset

are classified as the same class while different subsets are connected according to the

relationships of their corresponding classes. In this manner, our proposed hierarchical

summary not only groups relevant entities together but also reveals semantic relation-

ships among them.

By ranking the entities in each class node, we also note that those closely related

to the query string are often ranked higher than others. For instance, in the original

summary, ten hospitals are mapped to class “Hospital”. Among them, all the top nine

are hospitals located in Singapore while the last one is Darent Valley Hospital which

is a hospital in England. In other words, our proposed hierarchical summary, with the

aid of the score formula, is capable of capturing the distribution of entities given any

set of tweets. This further provides the opportunity for comparing the distributions of

entities for tweet sets with different query strings easily.

4.6 Summary

In this chapter, we proposed Heron, a novel approach to the summarization of social

media contents that generates hierarchical summaries based on the DBpedia ontology.

A hierarchical summary not only groups closely related entities together, but also re-

veals semantic relationships by organizing subsets of entities in a hierarchical structure.

To obtain high-quality summaries, we proposed an mNBC model to refine the class

labels of entities. We then mapped entities with the refined classes to the DBpedia

ontology, and generated summaries based on the structure of the ontology. We also

proposed a score formula to rank the most relevant entities higher in each class node

103

CHAPTER 4. HIERARCHICAL SUMMARIZATION

of a summary. The experimental study was conducted from multiple perspectives, and

demonstrated the efficiency and effectiveness of our approach.

104

CHAPTER 5

TRENDSPEDIA: AN INTERNET

OBSERVATORY FOR ANALYZING

AND VISUALIZING THE EVOLVING

WEB

5.1 Overview

With an abundance of online information generated every day, users are often over-

whelmed in the data ocean and have no idea where to locate useful knowledge which

they are really interested in. Some social media services, such as Twitter, provide trend-

ing keywords1 by analyzing features, e.g., hashtag frequencies2, to help users obtain

1https://twitter.com/search-home
2http://trendsmap.com/

105

CHAPTER 5. TRENDSPEDIA

useful knowledge and find popular incidents. However, such preliminary analysis can

lead to bias. This concern is also supported by a discovery in [47] that the majority (over

85%) of trending topics are headline news or persistent news, indicating that many other

potentially interesting points are obscured by the globally hottest ones, and thus become

ignored forever.

Existing research efforts (e.g., [55, 17]) often try to obtain knowledge from massive

social media contents by summarizing the data, extracting trending topics, or even mak-

ing predictions. Unfortunately, many people, including ordinary and corporate users,

tend to have more interest in only topics or events within certain contexts, instead of the

globally significant ones. Although some researchers alleviate the problem by introduc-

ing constraints, such as allowing keyword filtering [33] and focusing on contents pub-

lished in specific geographic areas [61, 40], users may still find the discoveries pointless

in terms of their personal preferences.

To solve the problem, we propose to bring proper context to social media contents

which are streamed from the Internet. We try to index these dynamic contents via

Wikipedia, a well-established online encyclopedia which has entries for a large number

of entities and concepts. Organizing Internet contents around Wikipedia also creates

a new way to search for content on the Internet, compared with conventional search

engines such as Google3 and Baidu4. Emerging effort in the same direction is also taken

by Google in the form of Google Knowledge Graph5 (cf. Figure 5.1), which allows

users to browse other related entities by linking relevant entities in a graph. However,

unlike Google Knowledge Graph, we deal with dynamic information related to each

Wikipedia entity, and try to extract knowledge from it with analytics and visualization

tools for better exploration and understanding.

3https://www.google.com/
4http://www.baidu.com/
5http://www.google.com/insidesearch/features/search/knowledge.html

106

5.1. OVERVIEW

Figure 5.1: Google Knowledge Graph

Based on the aforementioned methodology, we present a novel system called Trend-

spedia6 in this chapter. Trendspedia aims to provide a collaborative Internet observatory

platform for users to fetch and digest the information flow on the Internet with great

ease. In Trendspedia, Wikipedia articles serve as a knowledge base, so that social me-

dia contents are crawled and then routed to the relevant Wikipedia articles for further

analysis.

We introduce four data analytics tools in Trendspedia. The first three tools aim

to enrich each target Wikipedia entity by extracting the hottest web contents, generat-

ing summaries and emerging events respectively through an analysis of relevant social

media contents. The last tool tries to build an information network that reflects the con-

nectivity among relevant Wikipedia entities centered with the target. To enhance user

experience, we visualize the analytical results so that users can explore them easily. For

instance, summaries of the related social media contents of a Wikipedia entity will be

6http://trendspedia.com/

107

CHAPTER 5. TRENDSPEDIA

depicted as hierarchical tag clouds to allow users to view the summaries in an interactive

manner.

By doing this, we effectively address the aforementioned challenge, enabling users

not only to pinpoint useful information and knowledge they really have an interest

in around Wikipedia, but also to navigate effortlessly to other closely related entities

through the information network. The contents are crawled against social media ser-

vices by using the entity name of a Wikipedia article as the query string for filtering.

Although we currently retrieve Twitter messages, i.e., tweets, as the major social media

contents, we envision that other content sources can be easily incorporated into Trend-

spedia for more diversified analysis.

To summarize, we make the following contributions in this chapter: (1) We build a

system named Trendspedia to help users to pinpoint information and knowledge easily,

according to their preferences. (2) With Trendspedia, we aim to index, organize and

analyze social media contents around Wikipedia entities. (3) We implement four data

analytics tools and visualize the corresponding analytical results for better exploration

and understanding.

The rest of the chapter is organized as follows. The system architecture is introduced

in Section 5.2. The data analytics tools are then discussed in Section 5.3. After that,

a more concrete introduction to the system design and interface is presented in Section

5.4. Lastly, a summary of this chapter is provided in Section 5.5.

5.2 System Architecture

The architecture of Trendspedia is shown in Figure 5.2, which consists of three

components in total, including the data storage component, the data processing com-

ponent and the visualization component. The data storage component aims to store the

108

5.2. SYSTEM ARCHITECTURE

Visualization

User Interface

Biclustering
Engine

Biclustering
Updater

Database

Data Collector

W
ikipedia A

P
Is

T
w

itte
r A

P
Is

Emerging Event Detection

Wikipedia Information
Network Construction

Tweets Summarization

Data Analytics

Hot URLs/Images Extraction

Ancillary Services (crawler, etc)

Database

Figure 5.2: System architecture

retrieved social media data efficiently to support fast data access for the analytics tools,

while the visualization component visualizes the results produced by these tools. The

data processing component is described in more detail below.

The dashed box highlights the core component of Trendspedia, i.e., the data pro-

cessing component, which provides ancillary services and performs different types of

data analytics jobs. The ancillary services run in the background, preprocessing raw

data, collecting statistics, and helping to ensure that the data analytics jobs are done

properly. The major ancillary services in Trendspedia include a Twitter Crawler, a Job

109

CHAPTER 5. TRENDSPEDIA

Scheduler and a Tweet Analyzer. By default, the Twitter Crawler alternates to retrieve

tweets containing the titles of different Wikipedia articles (i.e., entities), which have

been visited by users. In addition, the Twitter Crawler also works periodically for an

opened Wikipedia article, such that the more frequently an article is visited, the more

tweets related to the corresponding entity are crawled. The Job Scheduler maintains a

job queue so as to run multiple Twitter Crawlers simultaneously and balance the query

frequencies of these crawlers to avoid potential problems which may be caused by Twit-

ter’s API rate limits7 (rate limiting in version 1.1 of the Twitter API generally allows

a limited number of requests per rate limit window, i.e., 15 minutes, for each access

token). With new tweets crawled for a certain entity, the Tweet Analyzer updates statis-

tical information about the tweets continuously.

With the aid of the ancillary services, Trendspedia implements four useful data

analytics tools to enrich Wikipedia entities. The tools are designed to provide each

Wikipedia entity with (1) the most relevant and hottest URLs/images, (2) summaries of

related tweets, (3) recently emerging events, and (4) an information network connecting

relevant Wikipedia entities. The first three tools function by analyzing tweets relevant to

a target Wikipedia article while the last one works by analyzing the relationship between

the target and other related Wikipedia articles.

In the next section, we introduce the technical details of these data analytics tools in

Trendspedia.

7https://dev.twitter.com/docs/rate-limiting/1.1

110

5.3. DATA ANALYTICS

5.3 Data Analytics

5.3.1 Hot URLs/Images Extraction

As a growing number of tweets are crawled and attached to a certain Wikipedia

entity, popular URLs that are often mentioned in those tweets can be identified such

that the web contents linked to by the URLs can be retrieved and analyzed, in turn, to

enrich the corresponding Wikipedia entity. According to the statistics maintained in

Trendspedia, over 70% tweets crawled by the system have at least one URL. Extracting

and integrating the corresponding web contents of hot URLs will undoubtedly provide

supplementary and colorful information for each Wikipedia entity.

To present hot web contents, one challenge is to avoid information duplication. Al-

though some URLs are different, the contents of their web pages might be similar or

even exactly the same. This happens very likely especially when social media users

share breaking news or emergent events, such as an Apple new product launch event

and an earthquake, from popular news portals. In order to estimate the popularity and

remove duplicates of such URLs with identical contents, the web pages are crawled and

an analysis of similarity detection is conducted. Specifically, the content of a web page

is first extracted and converted to a sequence of q-grams, which are then transformed

into a vector of integers. Because the vectors of different web pages are often high-

dimensional and sparse, we further compress them to have shorter length but still pre-

serve the most important features by applying the min-wise independent permutations

approach [16]. After that, the compressed vectors are compared against one another

according to a similarity metric, such as the cosine similarity, to group URLs linked to

similar web pages together.

We then sort the groups in terms of group size in descending order, and choose

one URL from each of the top-ranked groups to form hot URLs. These hot URLs are

111

CHAPTER 5. TRENDSPEDIA

updated from time to time when more tweets with URLs are retrieved. The first few

images on the web page linked to each hot URL are also extracted and displayed as a

supplement to these hot URLs.

5.3.2 Tweets Summarization

Although only relevant tweets are routed and attached to each Wikipedia entity,

the continuously incoming tweets tend to discuss various aspects of the entity. This

demands Trendspedia to be able to summarize those recently published tweets in order

for users to easily get a multi-faceted understanding of what is going on as for each

Wikipedia entity.

To this end, we adopt the formal concept analysis based summarization approach

proposed in Section 3 for fast extraction of interesting summaries from a number of

recent tweets. We first make use of the tweets to build a tweet-keyword matrix, where

each element is either 1 or 0, indicating whether a tweet contains a keyword or not.

Based on this matrix, our approach can efficiently generate a set of formal concepts. A

formal concept is a sub-matrix containing a set of tweets and a set of keywords, where

the keywords frequently co-occur in these tweets. The tweets in a formal concept are

clustered together due to the common keywords they share, meaning that they are quite

likely to discuss similar things. Thus, keywords in a formal concept naturally serve as a

summary of the tweets. We select top summaries by ranking them based on the size and

density of the corresponding formal concepts according to Formula 3.3, and visualize

them in hierarchical tag clouds.

Our tweets summarization approach has the following characteristics: (1) Efficient.

Empirical experiment shows our approach runs at least an order of magnitude faster

than the popular topic modeling method LDA [15]. (2) Easy for understanding. In a

formal concept, the keywords and the tweets are generated simultaneously such that

112

5.3. DATA ANALYTICS

users can choose to view the relevant tweets if they want to explore more about the

summary (i.e., keywords). (3) Granularity customizable. Similar formal concepts can

be merged together to a certain extent according to a user-specified density threshold,

such that the resultant summaries are extracted from tweets that are of greater cohesion

or diversity. (4) Visually interactive. We visualize the summaries as hierarchical tag

clouds, which allows users to explore the summaries interactively by zooming in/out

through the tag clouds.

5.3.3 Emerging Event Detection

Another useful feature of Trendspedia is its ability of analyzing tweet streams to

detect emerging events for Wikipedia entities. The event detection tool enriches an

entity by filtering out meaningless Twitter messages and highlighting important emerg-

ing events happening recently. For instance, when users are browsing the Wikipedia

article of “Singapore”, Trendspedia augments the page by listing recent events (e.g.,

concerts, celebration gatherings, etc) that have happened there. Such events are not

readily available in the Wikipedia article, but can be mined out from the collection of

relevant tweets.

Specifically, we extract the top-k emerging events by performing temporal analysis

of relevant tweets in Trendspedia. The observation is that, with the outbreak of a cer-

tain event on a Wikipedia entity, the number of relevant tweets will increase sharply.

As an example, when the tragic bombing hit Boston on 15 April 2013, many Twitter

users were discussing this disaster online and a large number of tweets containing the

keyword “Boston” were created overnight accordingly. Therefore, given a collection of

relevant tweets that span over a time period [ts, te], we slice the time period on a daily

basis and utilize the following two criteria to quantify the importance of each slice: (1)

Popularity, the increase of tweet number compared to that of the previous slice, mea-

113

CHAPTER 5. TRENDSPEDIA

suring how influential an event is; (2) Freshness, the time span from the slice to current

time, measuring how recent an event is.

We linearly interpolates the normalizations of the above two measures to derive the

score of each slice. Then, k slices with the largest scores are selected out. We consider

these slices to represent k emerging events that have happened on this entity during

[ts, te]. To describe each of these k events, we further choose the top 10 words that

occur most frequently in the corresponding slice.

5.3.4 Wikipedia Information Network Construction

Since Wikipedia by itself is a collection of web pages linked to each other, we can

perceive it as an information network, where nodes in the network represent Wikipedia

entities while links indicate interconnectivity among different nodes. Users can make

use of such an information network to discover relationships of Wikipedia entities and

navigate from one entity to other closely related ones.

In trendspedia, we extract and build a sub-network for each Wikipedia entity. Specif-

ically, given a Wikipedia entity, by analyzing the content of its corresponding article we

construct a two-layer directed graph. Nodes in the first layer are Wikipedia entities

mentioned in the content of the Wikipedia article while those in the second layer are

mentioned in the contents of Wikipedia articles of the first-layer nodes. An edge be-

tween node a and b indicates a “contains” relationship of the two entities. Note that

the resultant graph may contains loops since a node might be contained in other nodes

in the same and/or a different layer. The graph we construct using Wikipedia entities

is similar to the web page linkage graph, thereby enabling us to run PageRank [64] to

allocate weights to different nodes.

By doing this, Trendspedia provides users a weighted graph centered with an entity,

the Wikipedia article of which they are reading. Although Wikipedia API can return

114

5.4. SYSTEM DESIGN AND INTERFACE

a list URLs of the relevant Wikipedia articles, the visualized information network in

Trendspedia allows users to grasp the semantic importance and interconnectivity of

relevant entities at a glance, such that it becomes much easier for them to decide which

entities to explore next.

5.4 System Design and Interface

In this section, we introduce the design and interface of every aspect of the Trend-

spedia system in more detail, from logging in to the system to pinpointing the informa-

tion regarding a specific Wikipedia entity, and from reading incoming tweets related to

an entity to exploring the results of the analytics tools.

Figure 5.3: Login page

115

CHAPTER 5. TRENDSPEDIA

Figure 5.4: Login with Twitter account

5.4.1 System Login

Figure 5.3 displays the login page of Trendspedia. Logging in to Trendspedia is

quite convenient. Users only need to use their Twitter8 or Weibo9 (the most popular

microblogging service in China) account to log in without creating any new account in

our system. Suppose users choose to log in using their Twitter account. By clicking on

the “Twitter Login” button, they will be directed to Twitter’s application authorization

page, as shown in Figure 5.4. After inputting the Twitter account and password and

clicking on the “Sign in” button, they will be directed back to Trendspedia’s home

page, as shown in Figure 5.5.

8https://www.twitter.com
9http://www.weibo.com

116

5.4. SYSTEM DESIGN AND INTERFACE���������� �	
�������

Figure 5.5: Home page after login

5.4.2 Entity Search

In Figure 5.5, in the top left-hand corner of the home page is the user name of the

account used to log in to Trendspedia, while in the top right-hand corner is a search

box. To pinpoint any interested Wikipedia entity and its relevant tweets as well as the

analytical results, users can search for that entity in the search box. Once users key

in some entity and press the “Enter” key, a list of candidate Wikipedia entities that are

closely related to the user input will be displayed. For instance, if one wants to search

for “Singapore”, a list of relevant Wikipedia entities, such as “Singapore”, “Singapore

strategy” and “Singapore dollar ”, as well as their corresponding descriptions will be

returned, as in Figure 5.6. Users can choose from among these candidate entities and

click the link “Click here” below each entity to view details of that entity.

117

CHAPTER 5. TRENDSPEDIA

Figure 5.6: Searching results

5.4.3 Web Page of Wikipedia Entity

Suppose we open the web page of “Singapore” from the searching results in the

previous figure in Trendspedia. What users will see is shown in Figure 5.7, where

the right panel shows the Wikipedia article of Singapore while the left panel presents

recently published tweets related to Singapore. As more relevant tweets are crawled,

the number of new incoming tweets will be shown to users on the big blue button. By

simply clicking on the button, users can load and read new tweets in the left panel. Once

a Wikipedia article is visited, the corresponding Wikipedia entity will be added to a job

queue so that more tweets related to that entity can be crawled for future analysis in

Trendspedia.

Different from the home page shown in Figure 5.5, two more functional links ap-

pear on top of the web page of each specific Wikipedia entity, which are “Article” and

“Analysis”. Users can click on “Analysis” to open a dropdown list of different analytics

118

5.4. SYSTEM DESIGN AND INTERFACE

��������������	��
�����������������
�	�	������
���������������

Figure 5.7: Snapshot of the “Singapore” page in Trendspedia

tools, and click again on the name of a certain analytics tool to see the visualized results

produced by that analytics tool. By clicking on the “Article” link, they can switch back

to the Wikipedia article.

5.4.4 Details of Analytics Tools

Clicking on a specific analytics tool in the “Analysis” dropdown list, users will be

presented with the corresponding visualized results.

Figure 5.8 shows the hot URLs/images produced by the first analytics tool. For each

hot URL, the title is displayed and a few sentences are excerpted from the content of

the corresponding web page to provide users with a short sketch. A few images are

extracted from each web page to give a more vivid impression of what is included in the

web page. If interested, users can simply click on the title of a hot URL to read details

of the corresponding web page.

119

CHAPTER 5. TRENDSPEDIA

Figure 5.8: Hot URLs/images

Since a large number of tweets can be crawled for a Wikipedia entity, we generate

summaries for the latest tweets so that users can grasp what is going on regarding an

entity without any effort. As shown in Figure 5.9, summaries of tweets are visualized

as hierarchical tag clouds. Different colors represent different summaries. In each sum-

mary, the font size of tags (keywords) indicates their generality in the set of tweets from

which the summary is generated. That is, the larger the size is, the more general the

tag is. Users can zoom in/out on the tag clouds interactively to view tags with more

specific/general meanings in each summary. To know more details of a summary, they

can read corresponding tweets by clicking on any tag in that summary, so that the tweets

can slide to appear on the left side of the current web page. Clicking on different tags of

the same summary will lead to different ordering of the tweets, where those containing

the clicked tag will be displayed on top. Clicking on the empty area instead of any tags

will hide the list of tweets.

120

5.4. SYSTEM DESIGN AND INTERFACE

Figure 5.9: Tweets summarization

As another example, Figure 5.10 shows the summaries of tweets for Wikipedia en-

tity “Egypt” using a different rendering scheme (e.g., different font, coloring and visu-

alization approach), which was first discussed in [39]. These summaries were generated

based on tweets crawled for “Egypt” in August 2013. As shown in Figure 5.10, the sum-

maries, such as (“morsi”, “brotherhood”, “elected”, “leader”, ...) and (“killed”, “cairo”,

“activist”, “police”, “reuter”, ...), successfully capture and summarize the uprising and

coup happening in Egypt in July and August 2013 from various aspects. Users may

refer to Chapter 3 and [39, 40] for details of tweets summarization and hierarchical tag

clouds.

Differently yet complementarily, the Emerging Event Detection tool provides a tem-

poral perspective to exhibit recently bursty events along a timeline. Figure 5.11 shows

the latest emerging events detected for the Wikipedia entity of “Singapore”. Emerging

events are discovered on a daily basis in Trendspedia. They are displayed as static tag

121

CHAPTER 5. TRENDSPEDIA

Figure 5.10: Tweets summarization for “Egypt”

clouds in chronological (descending) order, such that the latest event is shown at the top

of the list. Each event consists of a set of emerging keywords, the size of which indi-

cates the corresponding term frequency. In trendspedia, we present the top 10 keywords

for every event. Note that not all days have emerging events because of our assumption

that only those having a sharp increase in the number of tweets are likely to produce

events.

As an example of emerging events, let’s look at the third tag cloud which captures

an event happening on 21 February 2015, as shown at the bottom of Figure 5.11. The

event is regarding the news that Mr Lee Kuan Yew, the first Prime Minister of Singapore,

was hospitalized with severe pneumonia, which was announced by the Prime Minister’s

Office of Singapore on 21 February10. As Singapore’s founding Prime Minister, Mr

10http://www.straitstimes.com/news/singapore/more-singapore-stories/story/former-singapore-pm-
lee-kuan-yew-hospital-severe-pneumon

122

5.4. SYSTEM DESIGN AND INTERFACE

Figure 5.11: Emerging events

Lee is highly respected. Therefore, the announcement regarding his health condition

undoubtedly became an emerging event on that day in Singapore, which is successfully

detected by our system.

Finally, the information network centered with the target Wikipedia entity visualizes

the relationships with other entities, as shown in Figure 5.12. Each node in the figure

represents a Wikipedia entity. The size of a node indicates the relative term frequency of

the corresponding entity in the Wikipedia article of the target entity, while the distance

between the node and the central target Wikipedia entity indicates the PageRank value

of the two corresponding Wikipedia entities in the information network. To avoid a mess

in visualization, we do not show the edges of two connected nodes. However, hovering

the mouse over a certain node can highlight other nodes which are directly connected

with that node. Nodes in an information network are divided into five categories, in-

123

CHAPTER 5. TRENDSPEDIA

Singapore

Chinese people

Lee Kuan Yew

Malays in Singapore

Goh Chok Tong

Senior Minister

Indians in Singapore

Yusof bin Ishak

Winston Churchill

Malaysia
China

London

United States

Israel

Indonesia

New Zealand

Johor

People's Action Party

Non-Aligned Movement

Freedom House

Amnesty International

World Bank

East India Company

World Justice Project

Battle of Singapore

Operation Tiderace

Surrender of Japan

Communist Insurgency War

Hock Lee bus riots

Malay language

Multiculturalism

Westminster system

World War II

Financial centre

Chinese people

Terrorism

Financial centre

Figure 5.12: Information network

cluding people, location, organization, event and other entities. These categories are

distinguished by different colors, which are red, blue, green, purple and yellow respec-

tively.

As shown in Figure 5.12, there are three sliders in the top left-hand corner of the

information network. The sliders correspond to three parameters, including gravity,

distance and group, which are used to adjust the position and stability of the nodes in

the information network. Specifically, gravity is used to control the force of attraction

between surrounding nodes and the central target node. The larger the value of gravity

is, the stronger the attraction force of the central target node is. The second parameter

distance controls the relative distance among all the nodes. It works like a magnifier

in that increasing the value of distance can be helpful for easier inspection when some

nodes stay too close to one another. The last parameter group is used to control the intra-

categorical gravity, namely the force of attraction among nodes within each category.

124

5.5. SUMMARY

The larger the value of group is, the closer the nodes in the same category stay.

Clicking on any node leads to an expansion of the current information network by

adding in more nodes which are directly connected with the clicked one. Users are

also empowered to perform visualized join operation by only adding in nodes which

are directly connected with a few certain nodes in current information network. They

can select multiple nodes by pressing the “shift” key and clicking on the nodes that they

want to choose. After that, releasing the “shift” key and then double-clicking on any

empty area will lead to an expansion of the information network based on the selected

nodes.

5.5 Summary

In this chapter, we presented Trendspedia, an Internet observatory platform bring-

ing proper context to social media contents for analyzing and visualizing the web.

Trendspedia tries to index, organize and analyze massive social media contents around

Wikipedia entities so that users can pinpoint useful information and knowledge in terms

of their preferences. Four analytics tools are adopted, and the analytical results are visu-

alized in Trendspedia. A detailed demonstration of the system design and interface was

presented, which helps guide users to explore Trendspedia step by step, and showcases

how Trendspedia integrates Wikipedia and the Twitter message stream and performs

data analytics as an Internet observatory.

125

CHAPTER 6

CONCLUSION AND FUTURE WORK

The popularity of social media services has led to many innovations in information

acquisition in modern society. A huge amount of data is generated every single day,

which brings about great challenges to traditional information acquisition, integration

and digestion. Therefore, there is a very urgent need to extract compact yet informative

knowledge through efficient analysis of such massive amounts of data. Various types of

extracted knowledge also demand an effective means of organization and management,

so that ordinary users can easily obtain the information and knowledge that they are

interested in.

To tackle the challenges, in this thesis we proposed two summarization approaches

to the extraction of knowledge from social media contents, and presented one system

for effective management of the extracted knowledge. Both these summarization ap-

proaches try to generate summaries with hierarchical structures which can be easily

visualized for interactive exploration, although one focuses on the revelation of spa-

tiotemporal knowledge and the other attempts to introduce and integrate semantics in

127

CHAPTER 6. CONCLUSION AND FUTURE WORK

summarization. We also built a system as an Internet observatory platform to manage

and analyze social media contents around Wikipedia, thereby enabling users to pinpoint

information and extracted knowledge with great ease in accordance with their prefer-

ences. We next recapitulate the major contributions made in this thesis, and discuss

some possible future research directions.

6.1 Summary and Contributions of the Thesis

Firstly, we proposed a summarization approach to the generation of summaries from

spatiotemporal social media contents, so that users can discover what is happening in

certain geographical regions during certain periods of time. To enable interactive explo-

ration and better understanding of the summaries, we proposed a novel concept called

hierarchical tag clouds. A hierarchical tag cloud is the visualized form of a summary,

with more general tags displayed at higher levels and more specific tags displayed at

lower levels. By zooming in/out through hierarchical tag clouds, users are able to in-

teractively explore and understand the summaries at different levels of abstraction. To

support this, we proposed an efficient summarization approach by biclustering social

media contents. We also extended it to a partition-and-merge scheme to enhance the

scalability.

Secondly, we proposed to generate a new type of summary, namely the hierarchical

summary, which is especially designed to introduce and explore semantics. A hierarchi-

cal summary consists of a set of closely related Wikipedia entities extracted from social

media contents. Furthermore, according to their class labels, the entities are divided

into different subsets, each of which is mapped to a class node in a sub-hierarchy of

the DBpedia ontology. As a result, a hierarchical summary not only consists of closely

related entities, but also possesses a hierarchical structure which connects the subsets

128

6.2. FUTURE DIRECTIONS

of entities and reveals the semantic meanings and subsumptive relationships among the

subsets of entities. To reduce the propagation of inaccuracy in Wikipedia, we proposed

a model named multi-level Naive Bayes Classifiers to refine the classes of entities be-

fore mapping them onto the DBpedia ontology. Since a large number of entities might

be mapped to a single class, we also introduced a ranking procedure to select the most

important and relevant entities in each subset. The inherent structure of hierarchical

summaries enables the easy visualization of them in hierarchical tag clouds.

Finally, we presented a novel system which brings proper context to continuously

incoming social media contents, such that massive information can be indexed, orga-

nized and analyzed around Wikipedia entities. Four analytics tools are employed in the

system. The first three tools aim to enrich Wikipedia entities by analyzing the relevant

social media contents, while the fourth one builds an information network among the

most relevant Wikipedia entities. With the assistance of this system, users are empow-

ered to pinpoint valuable information and knowledge they are interested in, as well as

to navigate to other closely related entities through the information network for further

exploration.

6.2 Future Directions

In this thesis, we proposed to interactively explore the summaries by zooming in or

out through the hierarchical tag clouds. During the process, the tags are displayed or

hidden at different levels while the corresponding summaries actually remain the same

throughout. This is because the summaries are fixed and will never change once they are

generated for visualization. One possible improvement might be enabling summaries to

update themselves adaptively when users zoom in or out over the map. In other words,

summaries can be generated based on which part of the map is currently displayed,

129

CHAPTER 6. CONCLUSION AND FUTURE WORK

and can expand or shrink automatically and adaptively whenever the map is panned

or zoomed. The summary updates will be triggered because the set of spatiotemporal

social media contents change when the map is changed. Accordingly, the summary

updates will be reflected and visualized instantly in the hierarchical tag clouds. This

new type of visualization will inevitably lead to the generation of summaries on the

fly, instead of the pre-computation of them as done in Section 3. Possible operations

may include splitting, merging and regenerating summaries when the map is zoomed

in/out and panned. Although this visualization results in higher computational costs and

demands more sophisticated summarization approaches, it is able to present extracted

information adaptively and thus can greatly enhance the understanding of knowledge.

To introduce semantics, we proposed to generate hierarchical summaries which are

designed to reveal semantic meanings and relationships among subsets in each sum-

mary. Before generating the summaries, we group entities according to the classes to

which they belong in the DBpedia ontology. Since this ontology has only a few hun-

dred classes, to generate summaries reflecting more delicate semantic relationships, an

alternative is to use a more complex and well-defined ontology, such as YAGO1 which

combines the taxonomy of WordNet and the Wikipedia category system, and thus covers

over 350,000 classes. Given so many classes, however, a big challenge to hierarchical

summarization might be the sparseness of entities and the complexity of the relation-

ships among the classes. Besides the ontology based summarization, other types of

semantics can also be introduced, such as sentiment. Many algorithms have been pro-

posed for sentiment analysis and opinion mining [44, 66, 67], some of which focus on

sentiment analysis of social media contents [62, 65, 1]. Introducing sentiment analysis

to the hierarchical summarization of social media contents can reveal fine-grained cat-

egories of various sentiments, instead of merely “thumbs-up” and “thumbs-down”, or

1http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/

130

6.2. FUTURE DIRECTIONS

“happy” and “upset”.

To effectively integrate and manage massive amounts of information and extracted

knowledge, we built a platform to index and analyze social media contents around

Wikipedia entities. The social media contents mentioned in this thesis are mainly tex-

tual microblogs. Apart from this, many other types of posts published in social media

services, such as images and videos, can be integrated together to enrich the discoveries

and derived knowledge from various aspects. Possible challenges in this respect include

the linkage among different types of posts/entities, the integration of various sources,

and user-friendly visualization.

131

BIBLIOGRAPHY

[1] Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca Passon-

neau. Sentiment analysis of twitter data. In Proceedings of the Workshop on

Languages in Social Media, LSM ’11, pages 30–38. Association for Computa-

tional Linguistics, 2011.

[2] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection and

tracking. In SIGIR ’98: Proceedings of the 21st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, August 24-

28 1998, Melbourne, Australia, pages 37–45, 1998.

[3] Mohamed Aly. Survey on multiclass classification methods. Neural Networks,

pages 1–9, 2005.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The

Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic

Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15,

2007., pages 722–735, 2007.

133

BIBLIOGRAPHY

[5] Roja Bandari, Sitaram Asur, and Bernardo A. Huberman. The pulse of news in

social media: Forecasting popularity. In Proceedings of the Sixth International

Conference on Weblogs and Social Media, Dublin, Ireland, June 4-7, 2012, 2012.

[6] Nilanjan Banerjee, Dipanjan Chakraborty, Koustuv Dasgupta, Sumit Mittal,

Anupam Joshi, Seema Nagar, Angshu Rai, and Sameer Madan. User interests

in social media sites: an exploration with micro-blogs. In Proceedings of the

18th ACM Conference on Information and Knowledge Management, CIKM 2009,

Hong Kong, China, November 2-6, 2009, pages 1823–1826, 2009.

[7] Regina Barzilay and Michael Elhadad. Using lexical chains for text summariza-

tion. Advances in automatic text summarization, pages 111–121, 1999.

[8] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9), 1975.

[9] Wei Bi and James Kwok. Efficient multi-label classification with many labels. In

Proceedings of the 30th International Conference on Machine Learning, ICML

2013, Atlanta, GA, USA, 16-21 June 2013, pages 405–413, 2013.

[10] Kai Bielenberg. Groups in social software: Utilizing tagging to integrate indi-

vidual contexts for social navigation. Master Thesis, 2005.

[11] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. Dbpedia-a crystallization point for

the web of data. Web Semantics: science, services and agents on the world wide

web, 7(3):154–165, 2009.

[12] David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. The nested chi-

nese restaurant process and bayesian nonparametric inference of topic hierar-

chies. Journal of the ACM (JACM), 57(2), 2010.

134

BIBLIOGRAPHY

[13] David M. Blei, Thomas L. Griffiths, Michael I. Jordan, and Joshua B. Tenen-

baum. Hierarchical topic models and the nested chinese restaurant process.

In Advances in Neural Information Processing Systems 16 [Neural Information

Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler,

British Columbia, Canada], pages 17–24, 2003.

[14] David M. Blei and Michael I. Jordan. Modeling annotated data. In SIGIR 2003:

Proceedings of the 26th Annual International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, July 28 - August 1, 2003,

Toronto, Canada, pages 127–134, 2003.

[15] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

[16] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.

Min-wise independent permutations. Journal of Computer and System Sciences,

60(3):630–659, 2000.

[17] Mario Cataldi, Luigi Di Caro, and Claudio Schifanella. Emerging topic detection

on twitter based on temporal and social terms evaluation. In Proceedings of

the Tenth International Workshop on Multimedia Data Mining, pages 4:1–4:10.

ACM, 2010.

[18] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross Maciejewski,

David S Ebert, and Thomas Ertl. Spatiotemporal social media analytics for ab-

normal event detection and examination using seasonal-trend decomposition. In

2012 IEEE Conference on Visual Analytics Science and Technology, VAST 2012,

Seattle, WA, USA, October 14-19, 2012, pages 143–152, 2012.

135

BIBLIOGRAPHY

[19] Deepayan Chakrabarti and Kunal Punera. Event summarization using tweets. In

Proceedings of the Fifth International Conference on Weblogs and Social Media,

Barcelona, Catalonia, Spain, July 17-21, 2011, 2011.

[20] Yizong Cheng and George M. Church. Biclustering of expression data. In

Proceedings of the Eighth International Conference on Intelligent Systems for

Molecular Biology, August 19-23, 2000, La Jolla / San Diego, CA, USA, pages

93–103, 2000.

[21] Dongjun Chung and Sunduz Keles. Sparse partial least squares classification

for high dimensional data. Statistical applications in genetics and molecular

biology, 9(1), 2010.

[22] Bing Tian Dai, Ee-Peng Lim, and Philips Kokoh Prasetyo. Topic discovery from

tweet replies. In MLG: The Workshop on Mining and Learning with Graphs,

2012.

[23] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.

Information-theoretic co-clustering. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Washing-

ton, DC, USA, August 24 - 27, 2003, pages 89–98, 2003.

[24] Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak, Prabhakar

Raghavan, and Andrew Tomkins. Visualizing tags over time. In Proceedings of

the 15th international conference on World Wide Web, WWW 2006, Edinburgh,

Scotland, UK, May 23-26, 2006, pages 193–202, 2006.

[25] Günes Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality

as salience in text summarization. Journal of Artificial Intelligence Research

(JAIR), 22(1):457–479, 2004.

136

BIBLIOGRAPHY

[26] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for re-

trieval on composite keys. Acta informatica, 4(1):1–9, 1974.

[27] Bernhard Ganter, Rudolf Wille, and Rudolf Wille. Formal concept analysis,

volume 284. Springer Berlin, 1999.

[28] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and

the bayesian restoration of images. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 6(6):721–741, 1984.

[29] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott.

Continuous lattices and domains, volume 93. Cambridge University Press, 2003.

[30] Dmitry Gnatyshak, Dmitry I. Ignatov, Alexander Semenov, and Jonas Poelmans.

Gaining insight in social networks with biclustering and triclustering. In Per-

spectives in Business Informatics Research - 11th International Conference, BIR

2012, Nizhny Novgorod, Russia, September 24-26, 2012. Proceedings, pages

162–171, 2012.

[31] Yihong Gong and Xin Liu. Generic text summarization using relevance measure

and latent semantic analysis. In SIGIR 2001: Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA, pages

19–25, 2001.

[32] Thomas L. Griffiths, Mark Steyvers, David M. Blei, and Joshua B. Tenenbaum.

Integrating topics and syntax. In Advances in Neural Information Processing

Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-

18, 2004, Vancouver, British Columbia, Canada], pages 537–544, 2004.

137

BIBLIOGRAPHY

[33] Adrien Guille, Cécile Favre, Hakim Hacid, and Djamel A. Zighed. Sondy: an

open source platform for social dynamics mining and analysis. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, SIGMOD

2013, New York, NY, USA, June 22-27, 2013, pages 1005–1008, 2013.

[34] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan kaufmann, 2006.

[35] Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text: A

graph-based method. In Proceeding of the 34th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR 2011,

Beijing, China, July 25-29, 2011, pages 765–774, 2011.

[36] David J Hand and Keming Yu. Idiot’s bayes–not so stupid after all? International

statistical review, 69(3):385–398, 2001.

[37] John A Hartigan. Direct clustering of a data matrix. Journal of the american

statistical association, 67(337):123–129, 1972.

[38] Carlos Nascimento Silla Jr. and Alex Alves Freitas. A survey of hierarchical

classification across different application domains. Data Mining and Knowledge

Discovery, 22(1-2):31–72, 2011.

[39] Wei Kang, Anthony K. H. Tung, Wei Chen, Xinyu Li, Qiyue Song, Chao Zhang,

Feng Zhao, and Xiajuan Zhou. Trendspedia: An internet observatory for ana-

lyzing and visualizing the evolving web. In IEEE 30th International Conference

on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,

pages 1206–1209, 2014.

[40] Wei Kang, Anthony K. H. Tung, Feng Zhao, and Xinyu Li. Interactive hierar-

chical tag clouds for summarizing spatiotemporal social contents. In IEEE 30th

138

BIBLIOGRAPHY

International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,

March 31 - April 4, 2014, pages 868–879, 2014.

[41] Owen Kaser and Daniel Lemire. Tag-cloud drawing: Algorithms for cloud visu-

alization. CoRR, abs/cs/0703109, 2007.

[42] Mitchell C Kerman, Wei Jiang, Alan F Blumberg, and Samuel E Buttrey. Event

detection challenges, methods, and applications in natural and artificial systems.

Technical report, DTIC Document, 2009.

[43] Mahboob Alam Khalid, Valentin Jijkoun, and Maarten de Rijke. The impact of

named entity normalization on information retrieval for question answering. In

Advances in Information Retrieval , 30th European Conference on IR Research,

ECIR 2008, Glasgow, UK, March 30-April 3, 2008. Proceedings, page 705–710.

Springer, 2008.

[44] Soo-Min Kim and Eduard Hovy. Determining the sentiment of opinions. In

COLING 2004, 20th International Conference on Computational Linguistics,

Proceedings of the Conference, 23-27 August 2004, Geneva, Switzerland. As-

sociation for Computational Linguistics, 2004.

[45] Shailesh Kumar, Joydeep Ghosh, and Melba M. Crawford. Hierarchical fusion of

multiple classifiers for hyperspectral data analysis. Pattern Anal. Appl., 5(2):210–

220, 2002.

[46] Byron Yu-Lin Kuo, Thomas Hentrich, Benjamin M. Good, and Mark D. Wilkin-

son. Tag clouds for summarizing web search results. In Proceedings of the

16th International Conference on World Wide Web, WWW 2007, Banff, Alberta,

Canada, May 8-12, 2007, pages 1203–1204, 2007.

139

BIBLIOGRAPHY

[47] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. What is twit-

ter, a social network or a news media? In Proceedings of the 19th International

Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA,

April 26-30, 2010, pages 591–600, 2010.

[48] Helge Langseth and Thomas D Nielsen. Classification using hierarchical naive

bayes models. Machine Learning, 63(2):135–159, 2006.

[49] Ryong Lee and Kazutoshi Sumiya. Measuring geographical regularities of crowd

behaviors for twitter-based geo-social event detection. In Proceedings of the

2010 International Workshop on Location Based Social Networks, LBSN 2010,

November 2, 2010, San Jose, CA, USA, Proceedings, pages 1–10, 2010.

[50] Chenliang Li, Aixin Sun, and Anwitaman Datta. Twevent: segment-based event

detection from tweets. In 21st ACM International Conference on Information and

Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02,

2012, pages 155–164, 2012.

[51] Chenghua Lin and Yulan He. Joint sentiment/topic model for sentiment analy-

sis. In Proceedings of the 18th ACM Conference on Information and Knowledge

Management, CIKM 2009, Hong Kong, China, November 2-6, 2009, pages 375–

384, 2009.

[52] Le Luo and Li Li. Defining and evaluating classification algorithm for high-

dimensional data based on latent topics. PLoS ONE, 9(1):e82119, 01 2014.

[53] Zongyang Ma, Aixin Sun, Quan Yuan, and Gao Cong. Topic-driven reader com-

ments summarization. In 21st ACM International Conference on Information and

Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02,

2012, pages 265–274, 2012.

140

BIBLIOGRAPHY

[54] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological

data analysis: A survey. Computational Biology and Bioinformatics, IEEE/ACM

Transactions on, 1(1):24–45, 2004.

[55] Michael Mathioudakis and Nick Koudas. Twittermonitor: trend detection over

the twitter stream. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June

6-10, 2010, pages 1155–1158, 2010.

[56] Andrew McCallum, Xuerui Wang, and Andrés Corrada-Emmanuel. Topic and

role discovery in social networks with experiments on enron and academic email.

J. Artif. Intell. Res. (JAIR), 30:249–272, 2007.

[57] Pablo N Mendes, Max Jakob, and Christian Bizer. Dbpedia: A multilingual

cross-domain knowledge base. In Proceedings of the Eighth International Con-

ference on Language Resources and Evaluation (LREC-2012), Istanbul, Turkey,

May 23-25, 2012, pages 1813–1817, 2012.

[58] Pablo N. Mendes, Max Jakob, Andrés Garcı́a-Silva, and Christian Bizer. Db-

pedia spotlight: shedding light on the web of documents. In Proceedings the

7th International Conference on Semantic Systems, I-SEMANTICS 2011, Graz,

Austria, September 7-9, 2011, pages 1–8, 2011.

[59] Rada Mihalcea and Andras Csomai. Wikify!: linking documents to encyclopedic

knowledge. In Proceedings of the Sixteenth ACM Conference on Information and

Knowledge Management, CIKM 2007, Lisbon, Portugal, November 6-10, 2007,

pages 233–242, 2007.

[60] David N. Milne and Ian H. Witten. Learning to link with wikipedia. In Proceed-

ings of the 17th ACM Conference on Information and Knowledge Management,

141

BIBLIOGRAPHY

CIKM 2008, Napa Valley, California, USA, October 26-30, 2008, pages 509–

518, 2008.

[61] Mor Naaman, Hila Becker, and Luis Gravano. Hip and trendy: Characterizing

emerging trends on twitter. Journal of the Association for Information Science

and Technology (JASIST), 62(5):902–918, 2011.

[62] Brendan O’Connor, Ramnath Balasubramanyan, Bryan R Routledge, and

Noah A Smith. From tweets to polls: Linking text sentiment to public opinion

time series. In Proceedings of the Fourth International Conference on Weblogs

and Social Media, ICWSM 2010, Washington, DC, USA, May 23-26, 2010, 2010.

[63] Brendan O’Connor, Michel Krieger, and David Ahn. Tweetmotif: Exploratory

search and topic summarization for twitter. In Proceedings of the Fourth Inter-

national Conference on Weblogs and Social Media, ICWSM 2010, Washington,

DC, USA, May 23-26, 2010, 2010.

[64] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-

ank citation ranking: Bringing order to the web. Technical Report 1999-66,

Stanford InfoLab, November 1999.

[65] Alexander Pak and Patrick Paroubek. Twitter as a corpus for sentiment analysis

and opinion mining. In Proceedings of the International Conference on Lan-

guage Resources and Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta,

2010.

[66] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts. In Proceedings of the 42nd

Annual Meeting of the Association for Computational Linguistics, 21-26 July,

142

BIBLIOGRAPHY

2004, Barcelona, Spain., pages 271–278. Association for Computational Lin-

guistics, 2004.

[67] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations

and trends in information retrieval, 2(1-2):1–135, 2008.

[68] M. Cristina Pattuelli and Sara Rubinow. The knowledge organization of dbpedia:

A case study. Journal of Documentation, 69(6):762–772, 2013.

[69] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Streaming first story detec-

tion with application to twitter. In Human Language Technologies: Conference

of the North American Chapter of the Association of Computational Linguis-

tics, Proceedings, June 2-4, 2010, Los Angeles, California, USA, pages 181–189,

2010.

[70] Jonas Poelmans, Paul Elzinga, Stijn Viaene, and Guido Dedene. Formal con-

cept analysis in knowledge discovery: A survey. In Conceptual Structures: From

Information to Intelligence, 18th International Conference on Conceptual Struc-

tures, ICCS 2010, Kuching, Sarawak, Malaysia, July 26-30, 2010. Proceedings,

pages 139–153, 2010.

[71] Daniel Ramage, Susan T. Dumais, and Daniel J. Liebling. Characterizing mi-

croblogs with topic models. In Proceedings of the Fourth International Confer-

ence on Weblogs and Social Media, ICWSM 2010, Washington, DC, USA, May

23-26, 2010, 2010.

[72] Lev-Arie Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and

global algorithms for disambiguation to wikipedia. In The 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Technolo-

143

BIBLIOGRAPHY

gies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA,

pages 1375–1384, 2011.

[73] Jesse Read, Bernhard Pfahringer, and Geoffrey Holmes. Multi-label classifica-

tion using ensembles of pruned sets. In Proceedings of the 8th IEEE International

Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy,

pages 995–1000, 2008.

[74] Manjeet Rege, Ming Dong, and Farshad Fotouhi. Co-clustering documents and

words using bipartite isoperimetric graph partitioning. In Proceedings of the 6th

IEEE International Conference on Data Mining (ICDM 2006), 18-22 December

2006, Hong Kong, China, pages 532–541, 2006.

[75] Jiangtao Ren, Sau Dan Lee, Xianlu Chen, Ben Kao, Reynold Cheng, and David

Cheung. Naive bayes classification of uncertain data. In ICDM 2009, The Ninth

IEEE International Conference on Data Mining, Miami, Florida, USA, 6-9 De-

cember 2009, pages 944–949, 2009.

[76] Zhaochun Ren, Shangsong Liang, Edgar Meij, and Maarten de Rijke. Person-

alized time-aware tweets summarization. In The 36th International ACM SIGIR

conference on research and development in Information Retrieval, SIGIR ’13,

Dublin, Ireland - July 28 - August 01, 2013, pages 513–522, 2013.

[77] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–

46, 2001.

[78] A. W. Rivadeneira, Daniel M. Gruen, Michael J. Muller, and David R. Millen.

Getting our head in the clouds: toward evaluation studies of tagclouds. In Pro-

144

BIBLIOGRAPHY

ceedings of the 2007 Conference on Human Factors in Computing Systems, CHI

2007, San Jose, California, USA, April 28 - May 3, 2007, pages 995–998, 2007.

[79] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter

users: real-time event detection by social sensors. In Proceedings of the 19th

International Conference on World Wide Web, WWW 2010, Raleigh, North Car-

olina, USA, April 26-30, 2010, pages 851–860, 2010.

[80] Hassan Sayyadi, Matthew Hurst, and Alexey Maykov. Event detection and track-

ing in social streams. In Proceedings of the Third International Conference on

Weblogs and Social Media, ICWSM 2009, San Jose, California, USA, May 17-20,

2009, 2009.

[81] Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen. Sumblr: continuous

summarization of evolving tweet streams. In The 36th International ACM SIGIR

conference on research and development in Information Retrieval, SIGIR ’13,

Dublin, Ireland - July 28 - August 01, 2013, pages 533–542, 2013.

[82] James Sinclair and Michael Cardew-Hall. The folksonomy tag cloud: when is it

useful? J. Information Science, 34(1):15–29, 2008.

[83] Yangqiu Song, Shimei Pan, Shixia Liu, Furu Wei, Michelle X. Zhou, and Wei-

hong Qian. Constrained coclustering for textual documents. In Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, At-

lanta, Georgia, USA, July 11-15, 2010, 2010.

[84] Xuning Tang and Christopher C Yang. Tut: a statistical model for detecting

trends, topics and user interests in social media. In 21st ACM International Con-

ference on Information and Knowledge Management, CIKM’12, Maui, HI, USA,

October 29 - November 02, 2012, pages 972–981, 2012.

145

BIBLIOGRAPHY

[85] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An

overview. International Journal of Data Warehousing and Mining, 3(3):1–13,

2007.

[86] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective and ef-

ficient multilabel classification in domains with large number of labels. In Proc.

ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD08),

pages 30–44, 2008.

[87] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Random k-

labelsets for multilabel classification. IEEE Trans. on Knowl. and Data Eng.,

23(7):1079–1089, July 2011.

[88] Celine Vens, Jan Struyf, Leander Schietgat, Saso Dzeroski, and Hendrik Block-

eel. Decision trees for hierarchical multi-label classification. Machine Learning,

73(2):185–214, 2008.

[89] Xiaojun Wan and Jianwu Yang. Multi-document summarization using cluster-

based link analysis. In Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR 2008,

Singapore, July 20-24, 2008, pages 299–306, 2008.

[90] Xuerui Wang, Andrew McCallum, and Xing Wei. Topical n-grams: Phrase and

topic discovery, with an application to information retrieval. In Proceedings of

the 7th IEEE International Conference on Data Mining (ICDM 2007), October

28-31, 2007, Omaha, Nebraska, USA, pages 697–702, 2007.

[91] Zheng Xiang and Ulrike Gretzel. Role of social media in online travel informa-

tion search. Tourism management, 31(2):179–188, 2010.

146

BIBLIOGRAPHY

[92] Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming Li, and Yan

Zhang. Evolutionary timeline summarization: a balanced optimization frame-

work via iterative substitution. In Proceeding of the 34th International ACM SI-

GIR Conference on Research and Development in Information Retrieval, SIGIR

2011, Beijing, China, July 25-29, 2011, pages 745–754, 2011.

[93] Jiong Yang, Haixun Wang, Wei Wang, and Philip S. Yu. Enhanced biclustering

on expression data. In 3rd IEEE International Symposium on BioInformatics and

BioEngineering (BIBE 2003), 10-12 March 2003, Bethesda, MD, USA, pages

321–327, 2003.

[94] Jiong Yang, Wei Wang, Haixun Wang, and Philip S. Yu. delta-clusters: Capturing

subspace correlation in a large data set. In Proceedings of the 18th International

Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1,

2002, pages 517–528, 2002.

[95] Yiming Yang, Thomas Pierce, and Jaime G. Carbonell. A study of retrospective

and on-line event detection. In SIGIR ’98: Proceedings of the 21st Annual Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval, August 24-28 1998, Melbourne, Australia, pages 28–36, 1998.

[96] Dave Yates and Scott Paquette. Emergency knowledge management and social

media technologies: A case study of the 2010 haitian earthquake. International

Journal of Information Management, 31(1):6–13, 2011.

[97] Wen-tau Yih, Joshua Goodman, Lucy Vanderwende, and Hisami Suzuki. Multi-

document summarization by maximizing informative content-words. In IJCAI

2007, Proceedings of the 20th International Joint Conference on Artificial Intel-

ligence, Hyderabad, India, January 6-12, 2007, pages 1776–1782, 2007.

147

BIBLIOGRAPHY

[98] Liyang Yu. A Developers Guide to the Semantic Web. Springer Berlin Heidel-

berg, 2011.

[99] Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning approach to

multi-label learning. Pattern Recognition, 40(7):2038–2048, 2007.

[100] Qiankun Zhao, Prasenjit Mitra, and Bi Chen. Temporal and information flow

based event detection from social text streams. In Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver,

British Columbia, Canada, pages 1501–1506, 2007.

[101] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detection in data streams.

In Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003,

pages 336–345, 2003.

[102] Arkaitz Zubiaga, Damiano Spina, Enrique Amigó, and Julio Gonzalo. Towards

real-time summarization of scheduled events from twitter streams. In 23rd ACM

Conference on Hypertext and Social Media, HT ’12, Milwaukee, WI, USA, June

25-28, 2012, pages 319–320, 2012.

148

	Acknowledgements
	Summary
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Problems and Challenges
	Generating and Visualizing Summaries
	Generating Summaries with Semantic Meanings
	Managing Information and Extracted Knowledge

	Contributions
	Thesis Outline

	Related Works
	Summarization
	Topic Discovery
	Topic Modeling
	Biclustering
	Event Detection
	Social Media Contents Summarization

	Other Related Works
	Visualization with Tag Clouds
	Multi-label/Hierarchical Classification
	Knowledge Discovery in Social Media

	Interactive Hierarchical Tag Clouds for Summarizing Spatiotemporal Social Media Contents
	Overview
	Problem Formulation
	Preliminaries
	Problem Definition

	Biclustering Approach
	Introduction to Formal Concept Analysis
	Properties of Formal Concept
	Generating Biclusters
	Relaxation

	Partition-and-Merge Scheme
	Offline Partitioning
	Offline Pre-computation
	Online Merging
	Ranking Merged Biclusters
	Mismatch Problem

	System Implementation
	System Architecture
	Visual Layout

	Experimental Study
	Data Sets and System Environment
	Comparison of Different Summarization Methods
	Partition-and-Merge Scheme Evaluation
	System Scalability Analysis

	Summary

	Hierarchical Summarization of Social Media Contents Based on DBpedia Ontology
	Overview
	Wikipedia Entity and Infobox
	DBpedia Ontology
	DBpedia Ontology Based Summarization

	Preliminaries
	Refinement of Classes of Entities
	Extraction of Entities
	Multi-level Naive Bayes Classifiers

	Summarization
	Entity Mapping
	Summary Generation
	Top Entities Selection

	Experimental Study
	Data Sets
	Evaluation of mNBC
	Evaluation of Summary Generation
	Comparison with Vesta at System Level
	Case Study

	Summary

	Trendspedia: An Internet Observatory for Analyzing and Visualizing the Evolving Web
	Overview
	System Architecture
	Data Analytics
	Hot URLs/Images Extraction
	Tweets Summarization
	Emerging Event Detection
	Wikipedia Information Network Construction

	System Design and Interface
	System Login
	Entity Search
	Web Page of Wikipedia Entity
	Details of Analytics Tools

	Summary

	Conclusion and Future Work
	Summary and Contributions of the Thesis
	Future Directions

	Bibliography

