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SUMMARY 

Device performance of InAlN/GaN high electron mobility transistors (HEMTs) 

can be limited by the access resistance, including contact resistance and 

semiconductor resistance at access region. With the advancing of technology, the 

demonstration of lattice matched InAlN/GaN grown on 8-inch silicon wafer 

presents an opportunity for the fabrication of InAlN/GaN HEMTs in modern 

silicon foundries. To realize that, it is necessary to develop CMOS process 

compatible ohmic contacts scheme to avoid the widely used gold based contacts 

in traditional GaN HEMTs. Furthermore, high temperature treatment is normally 

involved for those contacts, causing rough surface morphology and edges and 

hence reliability issues.  In this research, we focus on the study on the reduction 

of access resistance in InAlN/GaN HEMTs in a perspective of CMOS 

compatibility and low thermal budget. 

In this work, first we examined the Ti/Al with two-step annealing and 

Hf/Al/Ni/Au ohmic contacts on n-GaN as the preliminary evaluation works for 

InAlN/GaN HEMTs. The results showed that Hf-based ohmic contacts are 

promising to obtain contacts with low thermal budget and low contact resistance.  

A systematic study has been conducted for Hf-based contact on In0.18Al0.12N/GaN. 

The Hf/Al/Ta contacts yielded the lowest ohmic transition temperature of 550 oC, 

compared to other transition counterparts (Ti, Ta, Zr, Nb, and V). The optimized 

Hf/Al/Ta (15/200/20 nm) contacts after annealing at 600 oC exhibited the 

minimum contact resistance (Rc) of 0.59 Ω.mm that was comparable to traditional 

Ti/Al/Ni/Au contacts. The RMS roughness of the Hf/Al/Ta contact surface was as 
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low as 7.6 nm for Hf/Al/Ta contacts compared to 159 nm for Ti/Al/Ni/Au 

contacts. The interface between HF/Al/Ta contact and In0.18Al0.12N/GaN was also 

found to be smooth, in contrast to that for Ti/Al/Ni/Au contacts, which is rough 

with contact inclusions formation. The aging test showed that Hf/Al/Ta contacts 

were stable at 350 oC in air for more than 200 hours. Thermionic field emission 

(TFE) was found to be the dominant carrier transport mechanism in the optimized 

Hf/Al/Ta (15/200/20 nm) contacts for carrier transport. An effective energy 

barrier height and carrier density of 2DEG was found to be 0.48 eV and 1.72 × 

1019 cm-3, respectively, leading to an efficient electron tunneling through the 

InAlN barrier. DC output and transfer characteristics for InAlN/GaN HEMTs 

with the Hf/Al/Ta contacts are comparable to the counterparts with Ti/Al/Ni/Au 

contacts. Furthermore, the three-terminal off-state breakdown voltage of the 

devices with Hf/Al/Ta contacts is improved significantly by ~100 V (~ 53.5 %) 

higher than those with Ti/Al/Ni/Au contacts.   

To further reduce the access resistance, LaAlO3 (LAO) passivation has been 

examined in InAlN/GaN HEMTs with Hf/Al/Ta source/drain ohmic contacts. The 

sheet resistance of InAlN/GaN can be reduced by 12% due to 25 nm LAO 

passivation. After an off-state voltage stress, the results show that current collapse 

can be sigificantly suppressed by LAO passivation. In terms of device DC 

performance, an increase of 21% in IDmax an 20% of gm,max have been achieved in 

the LAO-passivated InAlN/GaN HEMTs compared to the unpassivated ones.  

In conclusion, employing the Hf/Al/Ta ohmic contact scheme in InAlN/GaN 

HEMTs could realize CMOS compatibility and low thermal budget and also 
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effectively enhance the breakdown performance. In addition, the LaAlO3 

passivation could be a way to enhance device performance by reducing the 

semiconductor resistance of the access region in InAlN/GaN HEMTs.  
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dhkl inter-planar spacing of any lattice planes with Miller indices {h k l} 

tAl/tHf Al/Hf thickness ratio 

tAl/tTi Al/Ti thickness ratio 
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 Richardson constant (A·cm−2 ·K−2) 

 energy difference between the conduction-band edge and the Fermi level 

of the semiconductor (eV) 

Ron on-state resistance (Ω) 

Ra surface roughness (nm) 

Lg gate length (μm) 

Lgs gate-to-source distance (μm) 

Lgd gate-to-drain distance (μm) 

WG gate width (μm) 

VGS voltage between gate and source (V) 

VDS voltage between drain and source (V) 

VBK breakdown voltage (V) 

Vth threshold voltage (V) 

ID,max maximum drain current (A) 

gm,max maximum transconductance (mS) 
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Chapter 1  

Introduction 

An overview on gallium nitride (GaN) and its related heterostructures will be 

presented in this chapter. Section 1.1 will focus on the material properties of GaN, 

its related heterostructures and their possible applications. In Section 1.2, a brief 

introduction on the development of GaN based HEMTs will be given. After that, 

research work on access resistance on InAlN/GaN will be reviewed in Section 1.3. 

Finally, the motivation of this project and the scope of the thesis are described. 

1.1 Properties of Gallium Nitride  

GaN is considered one of the most important semiconductors after silicon. Since 

the successful synthesis of GaN demonstrated by Johnson et al. in 1932 [1] by 

means of heating purified gallium source in an ammonia ambient, it has been 

attractive to researchers in the fields of optoelectronics and microelectronics for 

more than eight decades. There are three types of GaN crystalline structures, 

namely zinc blende, rock salt and wurtzite. Under ambient conditions, the 

thermodynamically stable structure is wurtzite for GaN. In some cases, due to the 

compatibility with the topology of the substrate, the zinc blende GaN can be 

epitaxial grown on {011} crystal planes of cubic substrates like silicon [2], silicon 

carbide [3] etc. The rock salt structure for GaN is only realizable under high 

pressure and the structural phase change to rock salt form has been observed 

under the pressure of 52.2 GPa in experiment [4]. Therefore, the form of rock salt 
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GaN exists only in research laboratories, which also makes it impossible to be 

produced by any epitaxial growth techniques of low pressure.  Among these three 

phases of GaN, the main interest is in wurtzite structure, which has a hexagonal 

unite cell and thus two lattice constants, c and a. Specifically, the wurtzite GaN 

includes alternating biatomic close-packed (0001) planes of N and Ga pairs. A 

stick-and-ball illustration of wurtzite GaN structure is portrayed in Figure 1.1. 

Since there is lack of an inversion plane vertical to the c-axis, GaN has two 

different polarities, namely, the surface of GaN terminated either by Ga atoms 

(Ga-polarity) with a label of (0001) plane or N atoms (N-polarity) with a label of 

(0001 ) plane as shown in Figure 1.1. The discrepancy between these two 

directions of (0001) and (0001) is critical in wurtzite GaN because Ga polarity or 

N polarity implies the different polarities of the polarization charges respectively. 

The (0001) plane, also called basal plane, is the most commonly used surface for 

growth, which indicates that the GaN substrate with Ga polarity are often 

obtained more easily compared to that with N polarity. Accordingly, many studies 

associated to GaN growth and GaN-based devices have been carried out on the 

wurtzite structure GaN.  

Despite the fact that GaN is strategically important and has been extensively 

studied for a long time, further research is still required to approach the level of 

knowledge and application scope of other important semiconductors like silicon 

and gallium arsenide. Historically, the growth of GaN often encountered the 

challenges from large background n-type carrier concentrations owing to native 

defects and impurities. And the difficulty in realizing p-type doping in GaN 
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caused the limited applications and the slow progress of research in the early 

stage. However, much research on GaN growth has been conducted in the past 

tens of years, most of those challenges above have been well studied and 

understood, and some of them have been overcome or weakened. Therefore, the 

greatly improved GaN wafer quality due to the overcoming of those fundamental 

issues made it possible to fabricate GaN based devices in research level and also 

paved the way for their various applications. 

 

Figure 1.1 A stick-and-ball illustration of hexagonal structure for GaN [5]. 

 

First, one important area for GaN is the application of short-wavelength 

optoelectronics for the last few decades. Since the band gaps are not large enough 

(1.1 eV for Si and 1.4 for GaAs as shown in Table 1.1), silicon and traditional III-

V semiconductor materials like GaAs cannot meet the requirements for the 
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optoelectronic devices in the blue and violet spectrum. Furthermore, silicon also 

has an indirect bandgap that indicating a low recombination efficiency of 

electron-hole pairs. However, GaN and its related alloys are principally 

appropriate in these fields. As shown in Figure 1.2, the wurtzite III-nitrides can 

form continuous alloys (InGaN, InAlN and AlGaN etc.) [6, 7], whose direct 

bandgaps range from 1.9 eV for InN, to 3.42 for GaN, and to 6.2 eV for AlN. 

Here, it is noted that the bandgap for wurtzite InN has been calibrated and 

accepted to be 0.7 eV [8]. The wide range of bandgap, corresponding to the 

photon wavelength from 200 nm to 1.77 μm, spans from the infrared, including 

the entire visible spectrum, and extends into the ultraviolet region. Therefore, this 

makes GaN and its related nitride alloys as promising candidates for 

optoelectronic device applications, such as light emitting diodes (LEDs) [9], laser 

diodes (LDs) [10], and detectors operating in the green, blue or UV wavelength 

[11]. Particularly, the GaN-based blue and green LEDs combined with GaAs-

based red LEDs are essential to develop full-color displays and white light source 

for solid-state lighting (SSL) [12]. 

Furthermore, the unique physical and electrical properties of GaN have made it 

also promising for high-speed and high-power device applications, and these are 

summarized in Table 1.1, which shows a comparison of these material parameters 

for silicon (Si), Gallium arsenide (GaAs), silicon carbide (SiC), and GaN [12]. As 

seen, GaN possesses a wide bandgap of 3.4 eV, which indicates good resistance to 

the transition of intrinsic material characteristic and the increase of thermally 

generated leakage current at high-temperature. In addition, the high critical 
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breakdown field (around 4 MV/cm) allows GaN-based electronic devices/circuits 

(e.g., diodes, switches, amplifiers) to operate at high power. Furthermore, the 

good electron transport characteristics of GaN (high electron mobility of 1300 

cm2/V·s and high electron saturation velocity of 3×107 cm·s-1) are essential for 

electron devices working at high speed.  

 

Figure 1.2 Bandgap versus lattice parameters for wurtzite (α-phase) and zinc 
blende (β-phase) binaries of AlN, GaN and InN [12]. 
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Table 1.1 Material parameters for Si, GaAs, SiC and GaN [12]. 

Material Si GaAs 4H-SiC GaN 

Bandgap 	(eV) 1.12 1.42 3.25 3.4 

Dielectric constant ε 11.8 12.8 9.7 9.0 

Critical breakdown field  (MV/cm) 0.25 0.4 3 4.0 

Electron mobility μ  (cm2/V·s) 1350 6000 800 1300 

Thermal conductivity λ   (W/cm·K) 1.5 0.5 4.9 1.3 

Electron saturation velocity  (107 cm/s) 1 2.0 2.0 3.0 

 

Table 1.2 shows the power electronics figures of merit for for Si, GaAs, SiC, and 

GaN [13], where Chow and Tyagi proved theoretically the advantages of GaN 

over Si, GaAs, and SiC for high frequency and high power applications by means 

of Johnson, Keyes and Baliga figures of merit. These figures are related to critical 

breakdown field ( ), Dielectric constant (ε ), carrier mobility (μ ), thermal 

conductivity (λ ), and saturated electron velocity ( ), and are used to evaluate 

the ability of power handling and thermal dissipation for electron devices. Si 

based devices for RF and power applications are limited by material properties 

such as inversion layer mobility, saturation velocity and small bandgap, and 

silicon technology currently is approaching the theoretical limits of performance. 
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Although, GaAs-based materials have been widely used in high frequency field, 

the high power application is limited by the small breakdown voltage and low 

thermal conductivity compared to either GaN or SiC. GaN and SiC, having a 

large bandgap, can be used in high-power and high-temperature applications due 

to the lower intrinsic carrier generation, high electron saturation velocity and high 

breakdown voltage.  

However, the strongest advantage of GaN over SiC is that heterostructure 

technologies are available for GaN related alloys, which allows quantum well and 

hetero-junction realized in GaN material system to span new operation areas for 

GaN based high mobility electron transistors (HEMTs). To some extent, GaN 

based nitride electronics can be regarded as the wide bandgap counterpart of the 

AlGaAs/InGaAs system. Two dimension electron gases (2DEGs) with high 

electron density and high mobility can be achieved in GaN based heterostructures. 

This implies that coulomb scattering in a Si-doped GaN based heterostructure can 

be reduced because of the spatial separation of the electron carriers from the 

ionized dopants. For instance, in AlGaN/GaN heterostructure, the widely used 

structure in GaN electronic devices, a measured Hall electron mobility of 2019 

cm2/V·s at room temperature and 10250 cm2/V·s below 10 K has been reported in 

the 2DEG channel on 6H-SiC substrate [14]. Furthermore, owing to the strong 

polarization effects in GaN based heterostructure, device design options for 

HEMTs without introducing intentional dopants become possible. The total 

polarization charges in GaN based heterostructure arise mainly from two sources: 
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Table 1.2 Power electronics figures of merit (FOM) for various semiconductors at 
300 K for microwave power device applications. All FOMs are normalized with 
respect to those of silicon.  

Figures of 
merit 

Johnson Keyes 
Baliga-low 
frequencies 

Baliga-high 
frequencies 

Equation ∝ (E V )  ∝ λ Vε /
 ∝ εμE  ∝ μE  

Description 

Power 
handling 
at high 

frequencies 

Thermal 
dissipation 

Power 
handling 

at low 
frequencies 

Power 
handling 
at high 

frequencies 

Si 1 1 1 1 

GaAs 11 0.45 28 16 

4H-SiC 37 0.73 16 3.8 

GaN 790 1.8 910 100 

 

piezoelectric and spontaneous polarizations. The piezoelectric polarization results 

from the lack of center of inversion symmetry when III-nitride is strained along c 

axis in the wurtzite structure. The piezoelectric effect has two components: one is 

due to lattice mismatch strain while the other is due to the thermal strain caused 

by the thermal expansion coefficient difference between GaN and epitaxial layers 

grown in GaN (e.g., AlGaN). The spontaneous polarization effect happens owing 

to the non-centro symmetry wurtzite structure and the large ionicity of the 
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covalent III-nitrogen bond. For example, as shown in Figure 1.3, with different 

AlGaN compositions in AlGaN/GaN heterostructures, the piezoelectric 

polarization is negative for tensile and positive for compressive strained AlGaN 

barriers, respectively. The total macroscopic polarization of AlGaN layer is the 

sum of spontaneous polarization and strain-induced or piezoelectric polarization. 

Furthermore, at an abrupt interface (AlGaN/GaN), the difference in polarization 

of AlGaN and GaN will induce the positive sheet charge (+σ) for Ga-face and 

negative sheet charge (-σ) for N-face, an opposite sign of free charges (electron or 

holes) will tend to compensate the polarization induced charges at the interface. If 

the band offset at the abrupt interface of the heterostructure is high and the 

interface roughness is low, these accumulated free electrons or holes can be 

confined to form sheet charges in a potential well at the interface. Since 

polarization effects are large enough to produce 2DEGs confined in the 

AlGaN/GaN heterostructure as shown in Figure 1.3(c), a high sheet carrier 

concentration in the range of ~1013 cm-2 can be achieved, which is ten times 

higher than that in the doped GaAs material system, even without intentionally 

introduced dopants in the AlGaN barrier layer. 

In addition to its excellent optical and electrical properties mentioned above, GaN 

has a high hardness, heat capacity, thermal conductivity and superb chemical 

inertness, which allows GaN-based devices to operate well in harsh environments 

[15]. Furthermore, military and space applications could also benefit as GaN-

based devices have revealed robustness in radiation environments [16].  

 



10 
 

 

 

Figure 1.3 Polarization induced sheet charge density and directions of the 
spontaneous (SP) and piezoelectric (PE) polarizations in (a) Ga-face and (b) N-
face AlGaN/GaN heterostructures [17]. (c) The energy band diagram for the 
AlGaN/GaN heterostructure with Ga-face AlGaN barrier layer.  

 

1.2 GaN based High Electron Mobility Transistors  

1.2.1 GaN HEMT heterostructure growth 

Due to the lack of native GaN substrates in large quantities, researchers had tried 

nearly most of the crystal-growth technologies on different substrates and 

orientations to grow high quality GaN materials. With the great progresses 
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achieved in the past several decades, the epitaxial growth of GaN HEMT 

structures has been realized for both metal organic chemical vapor deposition 

(MOCVD) and molecular beam epitaxy (MBE) systems. Compared to MBE, 

MOCVD is the more popular method, accepted widely for GaN and its related 

alloys epitaxial growth due to the higher growth rate, multi-wafer capability easily 

achievable, higher temperature growth (growth process is thermodynamically 

favorable), equivalently good quality of layers and the lower cost structure (both 

process and ownership).  

The heterogeneous GaN epitaxy for HEMTs usually comprises three key elements 

shown in Figure 1.4: nucleation layer of the film, buffer layer structure, and 

device layer structure. The nucleation layer thin film is very essential for GaN 

hetero-epitaxial growth. At the early stage, the growth of GaN on foreign 

substrates had a rough surface mainly caused by the 3D-growth mode. Thus, a 

low-temperature AlN layer [18], prior to the high temperature growth of GaN, is 

first grown to serve as a template for the nucleation of growth, to accommodate 

lattice mismatch and promote lateral growth of the GaN film due to the decreased 

interfacial free energy between GaN and the substrate. Secondly, the buffer layer 

structure, typically a sequence of layers, is grown between the nucleation layer 

and the device layer structures. The principle functions of this structure are: 

coefficients of thermal expansion (CTEs) stress mitigation, threading dislocation 

density reduction, and electrical isolation. Mitigating the effects of the CTE 

mismatch is important to ensure crack-free epitaxy on a wafer that has wafer bow 

sufficiently low to allow for device fabrication on standard processing equipment. 
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The threading dislocation density benefits from the free energy reduction which 

drives the system toward the tendency to annihilate threading dislocations in the 

buffer layer structure. A highly semi-insulating buffer layer is also imperative to 

minimize device leakage by controlling the level of point defects such as impurity 

elements substituting for the Ga or N sites and lattice vacancies predominately 

determined the conductivity of the buffer material. Thirdly, the layers grown for 

the realization and optimization of the high electron mobility region consist of the 

device layer structure. Certain heterojunctions in the GaN material system 

produce a 2DEG with high mobility and unusually high charge due to band 

alignment that results in a dramatically downwards bending of the conduction 

band below the Fermi level as shown in Figure 1.3(c). The heterojunction to form 

2DEG was first demonstrated by AlGaN/GaN and then afterwards InAlN/GaN. 

Furthermore, a thin AlN interlayer is normally inserted between the barrier layer 

(AlGaN or InAlN) and GaN to enhance the conduction band discontinuity, which 

can significantly improve the 2DEG carrier density and mobility.  

 

Figure1.4 The schematic of a typical GaN epitaxial heterostructure for HEMT 
application 
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Table 1.3 summarizes the properties of various substrates for GaN epitaxial 

growth. Initially, GaN HEMT structures were grown on sapphire due to the fact 

that it is cheap with a good quality and available for 2 to 4 inch substrates. The 

main disadvantage of sapphire is the poor thermal conductivity, resulting in 

excessive heating of HEMT device, which in turn impedes performance. The 

other shortcomings for sapphire substrate include a large mismatch (~16%), 

leading to a high amount of dislocations and higher thermal expansion coefficient 

introducing stress to cause cracks in epitaxial layer and substrate, and the lack of 

large size substrate at present. SiC was the next substrate to be used and is still the 

best choice for high performance requirement due to its lower lattice mismatch 

(~3.5%) and good thermal conductivity. The drawbacks of SiC are high cost and 

also limited large diameter of the substrates. Si substrate is becoming more 

attractive at present due to its relatively high thermal conductivity, low production 

price, and also available in large wafer size with vast quantity. Epitaxial growth of 

GaN on Si is challenging due to its large lattice constant and thermal expansion 

coefficient mismatch to GaN buffer, but techniques to overcome this have been 

developed over the past decade, resulting in increased performance and reliability. 

The growth of GaN HEMT heterostructures on silicon (111) was demonstrated in 

1999 [19]. Recent developments in AlGaN/GaN and InAlN/GaN heterostructure 

epitaxy have also resulted in growth on 8-inch silicon substrates, compared to the 

maximum of 3 inches for SiC and 4 inches for sapphire [20-22]. This capability of 

growing GaN based heterostructure on large size silicon substrate could make 

huge step towards lower-cost GaN-on-silicon power devices.  
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Table 1.3 Comparison of substrates available for GaN epitaxial growth [23, 24]. 

Substrate GaN SiC Sapphire Si 

Thermal Conductivity 

(W/cm·K) 
1.3 3 0.5 1.5 

Resistivity 

(Ω·cm) 
>104 >104 >108 >104 

Diameter used for Epitaxy 

(in) 
2 2-3 2-4 2-8 

Lattice mismatch to GaN (%) 0 3.5 16 16.9 

Thermal expansion mismatch to 

GaN (αL(GaN) - αL(sub)/αL(sub)) 
0 18.9 -25.4 116 

Cost high high low low 

 

1.2.2 Development of GaN based HEMTs 

1.2.2.1 Conventional AlGaN/GaN HEMTs technology  

Benefiting from the excellent material properties of GaN and the advantages of 

heterojunctions, AlGaN/GaN HEMTs have been showing great potential for high-

power and high-frequency operations since the first demonstration in 1993 [25]. 

However, the reported values in terms of device performance (maximum drain 

current, maximum extrinsic transconductance, maximum current- and power-gain 

cutoff frequency, and maximum power density) are diverse due to many key 

factors. The performance of GaN HEMTs is mainly affected by GaN 

heterostructure quality (carrier concentration and mobility), the properties of 
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ohmic contact and gate stack, devise dimension, advance device structure design 

(e.g., field plate and sub-micro T-gate), advance processing (e.g., regrowth ohmic 

and recessed gate) and surface passivation. The major developments and 

milestones achieved for AlGaN/GaN HEMTs are summarized below.  

1. First demonstration of  AlGaN/GaN HEMTs: Khan et al. [25] reported that the 

AlGaN/GaN HEMTs, with a 250 nm gate length, exhibited a maximum current 

density of 180 mA/mm, a peak extrinsic transconductance of 23 mS/mm and 

an electron mobility of 563 cm2/V·s at 300 K. 

2. Advanced ohmic technology: Qiao el al. [26, 27] employed solid phase reaction 

between ohmic metals and AlGaN layer during rapid thermal annealing and 

Buttari et al. [28] adopted dry etch method to reduce the thickness of AlGaN 

layer to enhance tunneling through the high bandgap AlGaN barrier layer. 

Regrown ohmic structure was also used by N. Chen et al. [29] to reduce the 

ohmic contact resistance by providing a small barrier between the regrown n+-

GaN and AlGaN epilayer.  

3. Metal-oxide-semiconductor HEMTs (MOS-HEMTs): Khan et al. [30] first 

reported the MOS-HEMT design which combines the advantages of the MOS 

structure that suppresses the gate leakage, and an AlGaN/GaN heterostructure 

that provides high-density high-mobility 2DEG channel.  

4. Current collapse and passivation: Kohn et al. [31] first revealed current collapse 

on AlGaN/GaN HEMTs in 1999. The surface passivation technique by silicon 

nitride was proposed to prevent the positive charges at the surface from being 
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compensated [32]. Vetury et al. [33] proposed that current collapse during a 

microwave power measurement made on an AlGaN/GaN HEMT is the 

consequence of the creation of second virtual gate located between the gate 

and drain. This virtual gate is caused by the presence of states on the surface of 

AlGaN/GaN substrate. 

5. Field plates: Chini et al. [34] first demonstrated the use of an additional 

separate field plate to increase the device performance from 8 W/mm to 18.8 

W/mm. The improvement in the performance was due to the reduction of the 

peak field at the edge of the gate at drain side.  This supported both a higher 

operating voltage of the HEMT and a reduced dispersion which led to higher 

power added efficiencies. By optimization of the field plate, Wu et al. [35] 

achieved a device power density of 32 W/mm at 4 GHz.  

6. Reliability related to the reverse piezoelectric effect: Joh and Alamo first 

proposed [36, 37] and experimentally observed [38] the failure mechanism for 

AlGaN/GaN HEMTs that is based on crystallographic defect formation 

through the inverse piezoelectric effect due to high vertical electric field at the 

drain edge of the gate. When a high electric field is applied, the mechanical 

strain of the AlGaN barrier by this electric field can be produced due to the 

inverse piezoelectric effect. If the total strain exceeds a critical value, strain can 

relax through defect formation, such as dislocations.  

As the quality of AlGaN/GaN wafer and device processing technology 

continuously evolved, the current AlGaN/GaN HEMTs exhibit great 
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improvement, which could be comparable or better than other competing 

materials (e.g., Si, GaAs, and InP).  Chung et al. [39] reported that a maximum 

drain current density of 1.2 A/mm and peak extrinsic transconductance of 410 

mS/mm, an fT of 70 GHz and a high fmax of 300 GHz were obtained in 

AlGaN/GaN-on-SiC HEMTs with recessed ohmic contacts. Bouzid-Driad et al. 

[40] demonstrated that a maximum drain current density was 820 mA/mm, peak 

extrinsic transconductance of 440 mS/mm, and a fT of 100 GHz and a high fmax of 

206 GHz  were achieved in AlGaN/GaN-on-Si HEMTs. Selvaraj et al. [41] 

obtained that 1.4 kV of three-terminal off-state breakdown voltage for gate-drain 

distance exceeding 15 μm with a specific on-resistance of 9.6 mΩ·cm2 in 

AlGaN/GaN HEMTs on p-Si (111) substrate.  

1.2.2.2 Emerging InAlN/GaN HEMTs technology 

Although AlGaN/GaN HEMTs, the most popular GaN based electron devices, 

have demonstrated outstanding performance in the field of RF and power 

electronics in the last decade [42, 43], the reliability of AlGaN/GaN HEMT 

technology are still remaining, which has been explained by lattice defects 

introduced by the stress resulting from the mismatch and modulated by the 

inverse piezoelectric effect [36]. Based on this, InAlN/GaN heterostructures are 

emerging for RF and power electronic technology [44]. Simply, an In0.18Al0.82N 

epitaxial layer grown lattice matched to GaN was chosen by substituting the 

AlGaN barrier to attempt to solve this problem. With the InAlN barrier lattice 

matched to GaN, stress and piezoelectric polarization do not exist, possibly 

improving the stability of the GaN heterostructure. As shown in Table 1.4, even 



18 
 

without piezoelectric polarization, InAlN/GaN heterostructure with a thinner layer 

of InAlN can provide higher 2DEG carrier density due to the three times higher 

spontaneous polarization than that in the conventional AlGaN/GaN, which 

implies a higher output current density and even higher power density if the 

breakdown conditions can be maintained [45]. Experimentally, InAlN/GaN 

HEMTs have been proposed to provide higher polarization charges without the 

drawback of high strain [46]. Several groups have demonstrated devices based on 

InAlN/GaN [47-50] with maximum current capabilities surpassing those of 

AlGaN/GaN structures.  

Table 1.4 Spontaneous polarization (PSP) and piezoelectric polarization (PPE) and 
theoretical calculation of the free electron density (ns) in InAlN/GaN and 
AlGaN/GaN HEMTs [49]. 

Structure ΔPSP (cm-2) PPE (cm-2) ns (cm-2) 

Al0.3Ga0.7N/GaN -1.56 × 10-2 -9.8 × 10-3 1.58 × 1013 

In0.17Al0.83/GaN -4.37 × 10-2 0 2.73 × 1013 

 

Since most of the technologies developed for AlGaN/GaN HEMTs can be 

transferred to InAlN/GaN, the progress for InAlN/GaN research is developing 

very fast. The outstanding device performances have been reported and are 

summarized as follows. Yue et al. [51] achieved a maximum drain current density 

of 1.9 A/mm, a peak extrinsic transconductance of 653 m/mm and fT of 400 GHz 

in InAlN/GaN-on-SiC HEMTs. Schuette et al. [52] reported  fT / fmax of 359/347 

GHz for enhancement mode and fT / fmax of 302/301 GHz for depletion mode 
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InAlN/GaN-on-SiC HEMTs. Zhou et al. [53] demonstrated that a high three-

terminal off-state breakdown voltage of 650 V in InAlN/GaN-on-sapphire 

HEMTs with Schottky source/drain contacts. Lee et al. [54] reported a three-

terminal off-state breakdown voltage of 3 kV and a low specific on-resistance of 

4.25 mΩ·cm2 in InAlN/GaN HEMTs on SiC with an AlGaN back barrier. These 

results clearly demonstrate the potential of InAlN/GaN based devices for high 

frequency and high power applications. Further development of InAlN/GaN 

HEMTs depends on the improvement of material quality, the optimization of 

device structures and device processing technology. 

1.3 Access resistance in InAlN/GaN HEMTs 

 

Figure1.5 Components of access resistance in InAlN/GaN HEMTs, where 	is 
the resistance between metal contacts and InAlN barrier layer,  is the 
semiconductor resistance between Gate and source/drain ohmic contacts, and  
is the device channel resistance under the gate electrode. 

 

To fully utilize the advantages of emerging InAlN/GaN technology for HEMT 

application, one of the key factors is parasitic resistance. As show in Figure 1.5, 

the parasitic resistance consists of two major parts (Rc and Rext) in the device 
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access region. Rc refers to the contact resistance of the ohmic contacts in 

InAlN/GaN HEMTs while Rext is related to the semiconductor resistance between 

gate and source/drain contacts. Therefore, it is critical to enhance InAlN/GaN 

HEMTs performance by improving the properties of ohmic contacts and reducing 

the semiconductor resistance in the access region mentioned above.  

Firstly, a good ohmic should exhibits low contact resistance and contact resistivity, 

smooth surface as well as good thermal stability. To achieve such a high quality 

ohmic contact, several techniques have been employed in InAlN/GaN 

heterostructure. Table 1.5 summarizes the ohmic contact resistance, specific 

contact resistivity, contact scheme and technologies used that have been reported 

and investigated in lattice matched InAlN/GaN heterostructure. First of all, Ti/Al 

based alloyed contacts are widely used in InAlN/GaN HEMTs [55-58], since 

there were also the most popular ohmic contacts in AlGaN/GaN HEMTs. The 

ohmic behavior formation of Ti/Al based alloyed contacts was found to 

correspond to the formation of TiN at the metal-semiconductor interface and the 

formation of its inclusions down to the level of the 2DEG after a high temperature 

contact annealing (~800 oC) [59]. Tirelli et al. [55] reported that Ti/Al/Mo/Au 

annealed at 860 oC achieved a contact resistance of 0.3 Ω·mm on InAlN/GaN. Lo 

et al. [57] demonstrated that the contact resistance of 0.65 Ω·mm and contact 

resistivity of 2×10-5 Ω·cm2 for Ti/Al/Ni/Au contacts after 800 oC annealing. 

Recessed ohmic technology was also used to improve ohmic contact on 

InAlN/GaN [60-62]. K. Čičo et al. [61] utilized Ar-based sputtering process to 

recess the InAlN/GaN with a 15 nm barrier first and deposited traditional 
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Ti/Al/Ni/Au contacts. A low ohmic contact resistance of 0.39 Ω·mm was realized 

after annealing at 700 oC for 2 min. Pozzovivo et al. [62] used SiCl4 chemistry to 

etch away about 3 nm of the 9 nm InAlN barrier layer in InAlN/GaN, and this had 

yielded contact resistance and specific contact resistivity of 0.7 Ω·mm and 1.1× 

10−7 Ω·cm2, respectively, with 600 oC annealing for Ti/Al/Ni/Au ohmic contacts. 

Lee et al. [60] also used SiCl4 to etch InAlN/GaN with a etch depth around 15 nm, 

indicating full removal of the 9.8 nm thick InAlN barrier layer in InAlN/GaN and 

using Mo/Al/Mo/Au contacts with annealing at 650 oC achieved a minimum 

contact resistance of 0.15 Ω·mm and contact resistivity of 7.8 × 10−7 Ω·cm2. The 

researchers from University of Notre Dame developed a regrowth method to 

reduce contact resistance to InAlN/GaN [63-65]. First of all, a SiO2 hard mask 

was deposited using plasma-enhanced chemical vapor deposition (PECVD) and 

the regrowth region was defined by stepper lithography and etched away to form 

a well with 40 nm deep. A layer of 80 nm n+-GaN with a Si doping level of ~1 × 

1020 cm-3 was then regrown by MBE on the SiO2 mask patterned InAlN/GaN 

substrate. After the regrowth of n+-GaN, the undesirable polycrystalline GaN on 

top of SiO2 was lifted off by buffer HF. Lastly, nonalloyed ohmic contact of 

Ti/Au was formed by electron-beam evaporation. The Ti/Au-based regrowth 

ohmic contacts exhibited a total contact resistance of 0.16 Ω·mm. Overall, the 

development of good ohmic contact in InAlN/GaN HEMTs is still progressing 

since there are problems remaining which current method cannot to be solved. 

The recessed ohmic contacts always face the repeatability issues due to the lack of 

etching stop layer and difficulty of control etch rate in InAlN/GaN. The regrowth 
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technique is complicated and costly for mass production of InAlN/GaN HTMTs 

and also has the uniformity problem for large size wafer processing. Therefore, 

the traditional Ti/Al based alloyed contacts are most widely used in InAlN/GaN 

HEMTs, although they require high temperature annealing and thus cause a rough 

surface of ohmic contacts [59]. 

Table 1.5 Ohmic contacts to InAlN/GaN with their electrical results 

 

Secondly, to further improve the performance of GaN HEMTs, another approach 

is using device passivation techniques. Generally, passivation is very useful not 

Group Wafer 
Rsh 

(Ω/ 
□) 

Ohmic 
metal 
stack 

Rc 

(Ω·mm) 

ρc        

(10-7 
Ω·cm2) 

Method Temp. 
(oC) Ref. 

Uulm InAlN
/GaN - 

Ti/Al/
Ni/Cu/

Ta 
0.46 - - 900 [56] 

UF InAlN
/GaN 231 Ti/Al/

Ni/Au 0.65 200 - 800 [57] 

ETH 
InAlN
/GaN 

193 
Ti/Al/
Mo/Au 

0.3 - - 860 [55] 

Xidian 
InAlN
/GaN/
InAlN 

347 Ti/Al/
Ni/Au 0.33 - - 830 [58] 

UIUC InAlN
/GaN 241 Mo/Al/

Mo/Au 0.15 7.8 Recessed 
(SiCl4) 

650 [60] 

SAS InAlN
/GaN 255 Ti/Al/

Ni/Au 0.39 - Recessed 
(Ar) 700 [61] 

TU 
Wien 

InAlN
/GaN 237 Ti/Al/

Ni/Au 0.7 1.1 Recessed 
(SiCl4) 

600 [62] 

Notre 
Dame 

InAlN
/GaN 257 Ti/Al/

Ni/Au 0.4 - Regrown   
n+-GaN 850 [64] 

Notre 
Dame 

InAlN
/GaN 257 Mo/Au 0.25 0.11-

0.15 
Regrown   
n+-GaN 

Non-
alloyed [65] 

Notre 
Dame 

InAlN
/GaN 262 Ti/Au 0.16 - Regrown   

n+-GaN 
Non-

alloyed [63] 
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only in reduction of substrate sheet resistance but also suppression the current 

collapse in GaN HEMTs. Al2O3 and SiN are the most popular materials used for 

device passivation in InAlN/GaN HEMTs. J. Guo et al. [66] demonstrated that the 

sheet resistance of InAlN/GaN heterostructure was decreased from 425 to 382 

Ω/□ after 140 nm SiN passivation layer by PECVD and the current collapse was 

effectively suppressed in InAlN/GaN HEMTs. H. Wang et al [67] reported that 

the use of a 25 nm Al2O3 passivation by atomic layer deposition (ALD) could 

improve the sheet resistance of InAlN/GaN substrate from 220 to 206 Ω/□ and 

suppressed the current collapse of devices. Therefore, a proper passivation layer 

can be applied to enhance InAlN/GaN HEMTs further. 

1.4 Motivation and synopsis of the thesis 

As mentioned earlier, with the availability of InAlN/GaN-on-Si wafer with 

excellent quality and a diameter of 8 inches, it is desirable to develop GaN-on-Si 

device fabrication technology to allow its processing in incumbent Si 

complementary metal–oxide–semiconductor (CMOS) foundries, so as to lower 

the costs of productions. However, as mentioned before the widely used Au-based 

contacts in InAlN/GaN devices, gold acts as a deep level and also a fast diffuser 

in silicon and is therefore strictly forbidden in Si fabs. Therefore, the development 

of CMOS-compatible metallization with a sufficiently low contact resistance in 

InAlN/GaN HEMTs is crucial to enable the processing of these devices in Si 

foundries.  Gold is believed to prevent the oxidation of the metal surface during 

the rapid thermal annealing process and decrease the total contact resistance. 

Some experiments have, however, attributed the long-term degradation of ohmic 
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contacts to gold diffusion [68]. Therefore, a Au-free metallization scheme would 

also help to enhance the long-term contact reliability. 

Traditionally, GaN based HEMTs and MOS-HEMTs are fabricated using a gate-

last process, where the source/drain contacts are deposited and annealed before 

the gate contact or gate stack formation. This is different from the Si process, 

which is usually gate-first, where the gate stack is formed before the source/drain 

contacts. The gate-last process allows high thermal budget for the formation of 

good source/drain ohmic contacts, and at the same time, the preservation of the 

metal-semiconductor Schottky contact in HEMT (as high temperature anneal can 

degrade the properties of Schottky contact) or the use of various high-k dielectrics 

without the risk of recrystallizaion in MOS-HEMT (which can lead to higher gate 

leakage). In the gate-last process, Ti/Al based contacts with gold (e.g., 

Ti/Al/Ni/Au) are typically used, and after the necessary high temperature 

annealing (~ 800 oC) for good ohmic contact formation, they have rough surface 

morphology and edges [57] which could cause reliability issues. In addition, the 

gate-last process also limits the minimum source-to-gate distance (necessary 

distance or gaps are needed between gate and source/drain for gate alignment), 

which makes it difficult to achieve low source access resistance [53]. On the other 

hand, the gate-first process provides the possibility of self-alignment source/drain 

contacts to the gate stack, thus reducing drastically the source and drain access 

resistance. Although the gate-first process shows the advantage and capability for 

device scaling down, the high thermal budget of the widely accepted Ti-based 

contacts (e.g., Ti/Al/Ni/Au) can degrade the properties of the gate stack. In other 
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words, source/drain contacts with low thermal budget are desirable for the gate-

first process.   

In this thesis, one focus of the research is the evaluation and development of 

different ohmic contact schemes to achieve gold free and lower thermal budget 

for the compatibility of GaN based device fabrication in silicon foundries. More 

specifically, firstly for the preliminary studies, the gold-free Ti/Al contact on n-

GaN, where a two-step annealing process, involving an initial annealing at low 

temperature followed by a second annealing at high temperature was studied. 

Afterwards, another preliminary study was to explore the transition metal hafnium 

(Hf) as ohmic metal for the replacement of Ti. The workfunction of Hf (3.9 eV) is 

less than that of Ti (4.33 eV). Hence, it may be advantages to replace Ti by Hf in 

the Ti-based contacts, e.g., Ti/Al/Ni/Au. On the other hand, a higher enthalpy for 

Hf nitride formation (-369.03 kJ/mol) than that of Ti (-347.2 kJ/mol), indicates Hf 

nitride is more thermodynamically favorable than TiN. Thus, Hf with a low 

workfunction and large negative value of nitride heat formation are probably a 

promising candidate to low thermal budget for GaN based devices. Secondly, 

after the preliminary study of the ohmic contacts on n-GaN, we will focus on Hf 

based and its other transition counterparts on InAlN/GaN and carry out a 

comprehensive study including material selection, optimization and physics of 

Au-free ohmic contacts with low thermal budget.  Thirdly, a systemic comparison 

between the optimized Au-free contacts and traditional Ti/Al/Ni/Au contacts will 

be conducted in terms of morphology, microstructure, and device performance.  

Another focus is to look into the lanthanum aluminate (LaAlO3) as passivation for 
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InAlN/GaN HEMTs. Surface passivation by LaAlO3 is studied as an alternative to 

Al2O3 and SiN passivation, since LaAlO3 has high thermal stability (> 900 oC), 

and immune against moisture in the environment [69]. Therefore, the second 

focus for the current project was to preliminarily evaluate the feasibility of 

LaAlO3 as a passivation layer in InAlN/GaN HEMTs.  

Hence, with the objectives and overview of the project described above, this 

thesis is organized as follows.  

Chapter 2 gives a brief introduction to the physics of ohmic contact, the operation 

principles and surface states of GaN based HEMTs. The fabrication and 

characterization techniques used in this work are also described. This chapter 

provides the theoretical background and experimental fundamentals to this project. 

In Chapter 3, the preliminary investigations of ohmic contacts on n-GaN are first 

presented. To achieve Au-free contact with good surface roughness, the first 

evaluation of feasibility for Ti/Al ohmic contacts with a two-step annealing 

processing are described here. And later the characteristics of Hf-based ohmic 

contacts on n-GaN compared to Ti-based contact are also shown in this chapter. 

In Chapter 4, a thorough study for Hf-based ohmic contacts on InAlN/GaN has 

been carried out here. For Hf-based contacts on InAlN/GaN, the comparison with 

other transition metals based contacts is conducted and the optimization of the 

Hf/Al thickness ratio is also performed. Furthermore, the contact formation and 

carrier transport mechanisms are investigated to reveal the physics of Hf/Al/Ta 

contacts.  
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In Chapter 5, the comparison between InAlN/GaN HEMTs with Hf- and Ti-based 

contacts is performed with respect to the ohmic contacts surface morphology, 

microstructure, DC performance and breakdown voltage.  

Chapter 6 provides the preliminary study and evaluation for LaAlO3 passivated 

InAlN/GaN HEMTs with Hf/Al/Ta contacts.  

Lastly, in Chapter 7, a summary of this work is provided, followed by a 

suggestion of the potential research to further development of InAlN/GaN 

HEMTs.  
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Chapter 2  

Physics in GaN-based devices, fabrication and 

characterization techniques 

This chapter provides the theoretical background of the study and also describes 

processes and apparatus that are employed for device fabrication and testing 

throughout this thesis. Section 2.1 focuses on the theory of metal-semiconductor 

contact, operation principle of GaN HEMTs, and effects of surface states in GaN 

HEMTs.  Section 2.2 describes the material structures and fabrication techniques 

used in this thesis. After that, several important characterization techniques used 

in this work are briefly described in Section 2.3, including transmission line 

method (TLM), Hall Effect measurement, secondary ion mass spectrometry 

(SIMS), transmission electron microscopy (TEM), X-ray diffraction measurement 

(XRD), and atomic force microscopy (AFM).  

2.1 Physics in GaN-based devices 

2.1.1 Metal-semiconductor contacts 

The model for metal-semiconductor contact formation [70] demonstrated first by 

Schottky and Mott has the basic assumption that the barrier at the 

metal/semiconductor interface is a  function of the difference between the work 

function of the metal and the electron affinity of the semiconductor. The Schottky 

barrier height (SBH) between the metal and n-type semiconductor is defined by 
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Eq. (2.1), where Ф ,Ф  and	 , are the SBH, the metal work function, electron 

affinity of the semiconductor, respectively. 

 Ф = Ф − 	  (2.1) 

When a weak dependence of the Schottky barrier on the work function of the 

metal was demonstrated, Bardeen established another model (the surface or 

interface state model) for the metal-semiconductor contact formation. In this 

model, due to a large number of surface or interface states (>1012 states cm–2), the 

Fermi level could be pinned and the SBH is totally independent of the work 

function of the metal. The SBH is subsequently expressed as the Bardeen limit, as 

given by Eq. (2.2), where Ф  is the neutral level and  is the semiconductor 

bandgap. 

 Ф = E −Ф   (2.2) 

However, resulting from the large amount of ionic bonds, metal-GaN related 

semiconductor contacts show a relatively strong correlation of the barrier height 

with the contact metal work function instead of surface states. As shown in Figure 

2.1, Kurtin et al [71] showed a plot of index of interface behavior versus the 

difference in electronegativity of constituent elements for different compound 

semiconductors to evaluate such kind of relationship. GaN and AlN has a Pauling 

electronegativity difference of above 1.0 [72], which means barrier height is 

mainly dependent on the difference between metal and GaN workfunction. In 

other words, the Fermi level pining effect does not affect much the properties of 

these ohmic contacts.  
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Figure 2.1 Index of interface behavior of various semiconductors (S) versus the 
difference in electronegativity of their constituent elements (ΔX) [71]. S is the 
pinning factor which is inversely proportional to the Fermi-level stabilization at 
the semiconductor-metal interface. 

 

The carrier transport mechanisms for a metal–semiconductor (n-type) are depicted 

in Figure 2.2 [73].  For lightly-doped semiconductors, the current flows as a result 

of thermionic emission (TE), namely electrons thermally excited over the barrier 

shown Figure 2.2 (a). In the intermediate doping range, thermionic-field emission 

(TFE) dominates with carriers thermally exited to a certain energy level where the 

barrier is sufficiently narrow for tunneling to take place. For high doping 

concentration, the barrier is sufficiently narrow at or near the bottom of the 

conduction band for the electrons to tunnel directly, known as field emission (FE). 

The three regimes can be differentiated by calculating the characteristic energy 

E00 defined by 
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 =	 ∗    (2.3) 

where N is the carrier concentration, m* is the effective mass of carrier. Normally, 

a comparison of E00 with respect to the thermal energy kT shows thermionic 

emission to dominate for kT >> E00, for thermionic-field emission kT ≈ E00 and 

for field emission kT << E00. For simplicity, we can consider for TE, E00 ≤ 0.5 kT; 

for TFE, 0.5 kT < E00 < 5 kT; and for FE, E00 ≥ 5 kT.  

 

 

Figure 2.2 Ohmic contacts to n-type semiconductor with different doping 
concentrations [73]. 

 

2.1.2 Operation principle of GaN HEMTs 

The most important feature of GaN HEMTs is the high sheet concentration and 

mobility of carriers confined at the interface of the heterostructure, which is 

induced by the strong spontaneous and piezoelectric polarization effect in GaN 

based materials. Figure 2.3 portrays the conduction band diagram of the 
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InAlN/GaN heterostructure with an AlN spacer and the formation of 2DEG. A 

heterojunction will be formed due to two semiconductors (e.g., InAlN/GaN) with 

different bandgaps joined together so that conduction band offset inevitably take 

place. Thus, this conduction band offset results in a triangle quantum potential 

well at the heterostructure interface, as shown in Figure 2.3. The electrons 

induced by the polarization effect will accumulate in this potential well and form 

a sheet charge, similar to the case of inversion channel in Si based MOFETs. The 

thickness of this channel is typically only several nanometers, which is much 

smaller than the de Broglie wavelength of the electrons in GaN given by =ℎ/ 2 ∗ , where ∗  is the effective electron mass of GaN, h is the Plank 

constant, k is the Boltzmann’s constant and T is the temperature. Hence, the 

electrons are quantized in a two-dimensional system at the interface, and the 

channel is in the form of a 2DEG.  

 

Figure 2.3 Conduction band diagram of InAlN/GaN heterostructure with an AlN 
spacer. 
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Figure 2.4 illustrates a schematic showing the cross section and top view of a 

typical GaN based HEMT structure in this study. Both the source and drain 

terminals are ohmic contacts, which provide the path of carrier flow in the  

 

(a) Cross section  

 

(b) Top view  

Figure 2.4 Cross section and top view of the conventional AlGaN/GaN or 

InAlN/GaN HEMTs. 
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direction parallel to the InAlN/GaN heterojunction. The source is typically 

grounded while a positive bias is applied to the drain, thus driving the carriers in 

2DEG channel to flow from source to drain. The applied voltage between the 

drain and source is named VDS, while the gate-to-source voltage is named VGS. 

The gate electrode can be either a metal-semiconductor rectifying contact (i.e., 

Schottky barrier contact) or metal oxide stack (i.e., MOS structure). The gate is 

used to modulate the conductivity of the 2DEG channel, since it can affect the 

field distribution of heterostructure below the gate and reduce or increase the 

carrier concentration through the application of a bias. By applying an appropriate 

gate bias, carriers in the channel can be fully depleted, and thereby no current 

canpass between the source and drain. The gate bias required to pinch-off the 

channel is termed the threshold voltage (VTH). If the threshold voltage is 

negative, the device is depletion-mode (D-mode); while the threshold voltage is 

positive, the device is enhancement-mode (E-mode). In this thesis, we focus on 

the traditional GaN HEMTs, namely the D-mode devices, which imply the 

channel is normally on and the gate is negatively biased. 

2.1.3 Effects of surface states in GaN HEMTs 

In InAlN/GaN or AlGaN/GaN heterostructures, polarization-induced charges 

constitute a dipole whose net contribution to the total space charge is exactly zero, 

which leads to the facts that the polarization-induced charges alone are not able to 

form the 2DEG channel. For a truly undoped barrier, it follows that any 2DEG 

electrons are due to donor-like surface states [74]. In other words, ionized donor-

like surface states can give rise to positive charges, which forms the 2DEG 
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channel in the GaN based heterostructures based on the charge neutrality 

conditions. Therefore, the surface states have a very crucial impact on the 

performance of GaN based HEMTs. 

Historically, the impact of surface states on device performance, known as current 

dispersion or current collapse [75], was first observed and studied in AlGaN/GaN 

HEMTs. If the positive charges are not enough or are neutralized, a depletion of 

2DEG is resulted proportional to the charge imbalance on the surface. In the case 

of device operation, the 2DEG channel will be depleted and an extension of the 

gate depletion region could be created, as shown in Figure 2.5 [33].  

 

Figure 2.5: The mechanism of current dispersion in AlGaN/GaN HEMTs: (A) 
device at off-state condition without trapped surface charges; (B) trapping 
mechanism: electrons leaking from the gate get trapped on the surface deep donor, 
thus reducing the net positive surface charge. Gate-drain depletion region extend 
toward the drain, also lowering the peak electric field; (C) device at off-state 
condition with trapped surface charge: due to the charge compensation induced by 
the trapped electrons, 2DEG density is reduced. When the device is turned on, 
electrons trapped on the surface cannot respond immediately due to their long 
time constant for de-trapping process. Consequently, 2DEG density in the gate-
drain access region is lower than its equilibrium value, inducing an increase in the 
parasitic drain access resistance.  
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Although this issue is still not fully understood, a model in terms of virtual gate 

was proposed by Vetury et al [33] , which has been widely accepted to explain the 

phenomena of current collapse in GaN HEMTs. In this model, an extension of the 

gate depletion region will be formed due to the trapped surface charges, as shown 

in Figure 2.5. Hence, the effect of surface negative charges is to act like a 

negatively biased metal gate, as shown in Figure 2.5. Namely, it seems that there 

exist two gates on the surface, between the source and drain, connected in series 

as shown in Figure 2.6.  

 

Figure 2.6 Model of the device showing (a) the location of the virtual gate, and (b) 
schematic representation of the device including the virtual gate. [33] 

2.2 Device fabrication techniques  

2.2.1 Material structure 

Three types of epi-wafers (n-GaN and InAlN/GaN, as shown in Figure 2.7) were 

used in the current work and were purchased from NTT AT, Japan. They were 

grown using metal-organic chemical vapor deposition (MOCVD) on highly 
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resistive silicon (111) substrate (> 6000 Ω·cm). The electrical properties of these 

wafers were characterized by Hall measurements at room temperature (RT). The 

carrier concentration (ns) and mobility (μ) for both structures are summarized in 

Table 2.1.  

For the n-GaN structure, as shown in Figure 2.7 (a), the epitaxial layers consist of 

(from bottom to top), a ~300 nm buffer layer and 700 nm n-GaN with Si doping 

concentration of 5 × 1018 cm-3. 

For the InAlN/GaN HEMT structure, as shown in Figure 2.7 (b), the epitaxial 

layers consist of (from bottom to top), a ~300 nm buffer layer, 1000 nm GaN 

channel layer, 1 nm AlN spacer, and 9 nm In0.18Al0.82N barrier. 

 

(a) n-GaN 

 

(b) InAlN/GaN Heterostructure 

Figure 2.7 Schematic cross sections for both the n-GaN and InAlN/GaN epitaxial 
wafer structure. 
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Table 2.1 Electrical Properties of n-GaN and InAlN/GaN wafer in this study. 

Material Wafer 

Structure 

Carrier 

Concentration 

Mobility 

(cm2/V·s)

Sheet Resistance 

(Ω/□) 

n-GaN (a) 3.5 × 1018 cm-3 220 84.38 

InAlN/GaN (b) 1.2 × 1013 cm-2 1112 458 

InAlN/GaN (b) 2.1 × 1013 cm-2 833 360 

 

2.2.2 Sample preparation 

Sample preparation started with cutting the n-GaN and InAlN/GaN wafers into 

small pieces by scribing the backside of the wafers with a diamond blade.  The 

resulting samples were cleaned in a standard surface degrease process with 

sequential cleaning by acetone, followed by isopropyl alcohol (IPA). All the 

organic solvent cleanings were conducted in an ultrasonic bath for 10 min to 

remove organic contaminations on the surface. The cleaning procedure was 

completed with a thorough rinsing of the sample in deionized (DI) water and then 

blown dry by nitrogen gun. Prior to the metal deposition, the sample was dip-

etched by HCl: H2O (1:10) solution for 15 s to remove the native oxide on the 

surface.  

2.2.3 Device isolation  

Conventional wet etching techniques used in traditional semiconductor processing 

have not been successful for GaN device fabrication owing to its chemical 

stability. For example, Maruska and Tietjen [76] reported that GaN is insoluble in 

H2O, acids or bases at room temperature, but does dissolve in hot alkali solution 
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at very slow rates. For GaN-based devices, ion implantation and mesa structure 

are normally used to realize the isolation for different device and testing structures 

between one another to avoid wet etching processing. In our study, the mesa 

isolation method was employed since it is much simpler than the ion implantation 

isolation. The mesa height needs to be carefully chosen to prevent leakage current 

between adjacent devices or testing structures. Mesa heights should be chosen 

carefully for device isolation as the current barrier effectively, and to prevent any 

possible discontinuity between the gate finger and gate pad across the mesa step 

[77]. Due to the resistance of GaN-based material to chemical acids, dry etching 

by inductively coupled plasma-reactive ion etching (ICP-RIE) was used to form 

mesa isolation. In this study, Plasmalab System 100 Cobra III-V Etcher from 

Oxford instrument was used to etch the substrate, which has a 600 W, 13.56 MHz 

RF power source coupled to a solid state matching network. In the machine, the 

active electrode is equipped with a heater/chiller and is capable of operating at 

temperatures varying from 0 to 80 oC. For our study, the etching conditions are as 

follows: etchant chemistry: BCl3/Cl2 (20/10 sscm), processing chamber pressure: 

10 mTorr, chiller temperature: 6 oC, ICP power: 100 W, and RIE power: 50 W. 

The average etching rate is ~22 nm/min for GaN.  

2.2.4 Photolithography 

In this study, the traditional photolithography was chosen to define the geometry 

of device and test structures. The photo resist AZ 5214E was used in the 

experimental procedure, which can be positive tone (comprising of novolak resin) 

or negative tone (comprising of naphthoquinone diazide as photoactive compound) 
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dependent on the post-baking process.  The method of using AZ 5214E to form a 

negative pattern of a mask is called the image reversal process. The image 

reversal capability by AZ 5214E is realized by a special crosslinking agent 

working (above 110 oC) only in the exposed areas of AZ 5214E.  The crosslinking 

agent together with exposed photoactive compound results in an insoluble 

material which becomes non-sensitive to light, while the rest of unexposed area 

still functions as a normal photoresist with positive tone. After an exposure 

without additional masking step required (known as flood exposure), these areas 

are dissolved in the AZ developer, however, the cross-linked areas after flood 

exposure remain to form the resultant pattern, which is the negative image of the 

mask pattern.  

Normally, the image reversal process includes: 1) normal exposure with mask, 2) 

post baking in oven, and 3) flood exposure without any masking procedure. The 

most important parameter of the image reversal process is the reversal 

temperature. If the post-baking temperature is too low (< 110 oC), crosslinking 

agent would not work. On the other hand, if the reversal baking temperature is too 

high (> 130 oC), cross-linking would happen in the unexposed area as well under 

high temperature, thus giving no pattern formation. The optimization should be 

done carefully to keep the reversal baking temperature within ± 1 oC.  In the study, 

we used AZ 5214E photoresist as both a positive resist and a negative resist.   

The experimental procedures for our photolithography are listed as follows.  After 

the sample cleaning, the photoresist is spin-coated to the wafer surface with a 

constant spinning speed at 500 rpm for 30 s. This results in a thickness of ~1.5 μm. 
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After the spin coating step, the sample is soft-baked at 105 oC for 1 min on the 

hotplate to remove the solvent from the resist and to increase resist adhesion to 

the wafer. Then, the sample is aligned with respect to the mask in a Karl Suss 

MA6 aligner machine using hard contact mode. The photoresist is exposed to the 

UV light (~4 W/cm2) for 10 s. After the first exposure, the sample is post-baked at 

110 oC for 5 min in an oven, followed by a flood exposure for 40 s (optional). 

Lastly, the sample is developed in diluted AZ developer with DI water (1:1) for 

50 s, then rinsed in DI water for 10 cycles and dried by nitrogen gun.  

2.2.5 Metallization 

Metallization schemes for the ohmic and gate contacts were deposited by two 

techniques: electron beam (e-beam) evaporation and DC magnetron sputtering, 

respectively. A BOC Edwards multi-hearth e-beam evaporator was used for many 

of the depositions. The equipment is capable of 3 kW, has a rotating sample stage 

and a four-stage hearth with each crucible being 4 cc in capacity. High purity 

metals are added to graphite crucibles as metal sources.   

A Denton vacuum system, with DC magnetron heads, each able to hold a circular 

2 × 0.125 inch target was used for sputter deposition. The transition metals that 

require sputter deposition were Ti, Al, Hf, Ta, Zr, Nb and V. All the sputtering 

targets were purchased from Kurt J. Lesker Company, except the Hf target, which 

was from KAMiS Company. The sample was secured to a sample holder, which 

was placed on a rotating stage during the deposition. The metal deposition was 



42 
 

conducted at a power of ~200 W, pressure of 4.2 × 10-2 Torr and flow rate of 10 

sccm using working gas Ar at room temperature. 

Table 2.2 Different metal deposition rates for electron beam evaporation and 
sputtering in this study. 

Electron Beam Evaporation 

Metal Beam current (mA) 
Deposition Rate 

(nm/s) 

Ti ~75 ~0.11 

Al ~70 0.2-0.4 

Ni ~125 ~0.12 

Au ~102 0.2-0.3 

Sputtering 

Metal Power (W) 
Deposition Rate 

(nm/min) 

Ti 200 ~21 

Hf 200 ~32 

Ta 200 ~18.2 

Zr 200 ~30.9 

Nb 200 ~21.5 

V 200 ~12.7 

Al 200 ~23.8 

W 200 ~20.3 

 

2.2.6 Lift-off technique 

In the study, the lift-off process was used for patterning deposited metal films, 

which refers to the creating pattern of a target material on the surface of a 

substrate by means of using a sacrificial material.  In this thesis, the substrate is n-
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GaN or InAlN/GaN wafer and the sacrificial material is AZ 5214E photoresist. 

Lift-off process was conducted after the metal deposition by e-beam evaporator or 

sputtering.  During the lift-off process, the remaining photoresist would dissolve 

in acetone in an ultrasonic bath, effectively lifting-off the metal layer on top of it, 

thus forming the desired metal pattern. The details about lift-off process are 

shown in the following Figure 2.8.   

 

Figure 2.8 Lift-off technique: (1) before photoresist coating, (2) after photoresist 
coating, (3) after exposure and development, (4) after metal evaporation, (5) 
removal of photoresist and lift-off of metal, and (6) metal pattern formation after 
DI water clean. 

 

2.2.7 Thermal annealing 
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Thermal annealing is used to realize ohmic contacts or to improve their electrical 

properties. The annealing ambient can be vacuum, nitrogen or air. If vacuum is 

used, the pressure is pumped down to 5 × 10-5 Torr.  The equipment used in this 

study is ULVAC MILA-3000 Mini-lamp annealing system. The temperature 

ramping rate is normally set to about 10 oC/s.  

2.2.8 Passivation 

The device passivation for HEMT devices in this study was realized by pulsed 

laser deposition (PLD) technique. PLD is thin film deposition method that based 

on material ablation by a pulsed laser source. The target material is evaporated 

and deposited as thin film on the substrate by high-power laser pulses. Laser 

pulses are absorbed by the solid surface of target leading to rapid evaporation of 

the target materials. The ejected matters expand into surrounding vacuum consist 

of highly excited and ionized species in the form of plume.  The plume expands 

away from the target with a strong forward-directed velocity distribution of 

different particles. The evaporated species finally condense on the substrate 

placed opposite to the target. Figure 2.9 shows the main components of a typical 

PLD system. As shown, there are several components of such a PLD system: 1) a 

target holder and a substrate holder in a vacuum chamber; 2) a high power laser 

source to produce laser beam focused by a set of optical components and guided 

through a quartz window into the chamber and onto the target surface; 3) a gas 

flow controller to provide the working gas during the process.  
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In this thesis, LaAlO3 thin film was deposited using PLD as a passivation layer in 

InAlN/GaN HEMTs. Specifically, the samples were loaded into a PLD growth 

chamber with a base pressure of 1×10–8 Torr, where the LAO deposition was 

performed using a pulsed KrF excimer laser (λ = 248 nm, pulse duration = 30 ns) 

as the ablation source. Prior to the deposition, the sintered LAO target (purity = 

99.9%, diameter = 1 inch) was cleaned by laser ablation under the deposition 

atmosphere with 500 laser pulses to remove possible surface contaminates and 

ensure a homogeneous surface morphology. The PLD parameters were fixed at: 

pulse energy of 180 mJ, repetition rate of 5 Hz, target-to-substrate distance of 6 

cm, and a substrate temperature of 300 °C. The oxygen partial pressure of 2.7 × 

10-4 Torr was chosen for the LAO deposition.  

 

Figure 2.9 The basic setup of a typical pulsed laser deposition (PLD) machine [78] 

 

2.3 Characterization methods 
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2.3.1 Transmission line method (TLM)  

Transmission line method (TLM) is a universal technique to study contact 

electrical properties and extract sheet resistance of substrate, contact resistance 

and specific contact resistivity. In this study, we first used circular transmission 

line method (CTLM) to study the ohmic contact on n-GaN, since it requires no 

mesa isolation and makes the processing simple.. For the contact on InAlN/GaN 

heterostructure, we used linear transmission line method to extract both the 

contact resistance and contact resistivity, which provides more accurate results 

than CTLM. However, this requires mesa isolation, thus more involved 

processing.   

Circular Transmission Line Method (CTLM) test structure [79] is used in our 

experiments to measure the specific contact resistivity of ohmic contacts to GaN. 

A typical circular test structures consists of a conducting circular inner region of 

radius L, a gap of width d, and a conducting outer region, as shown in Figure 2.10. 

The conducting regions are metallic and the gap typically varies form a few 

microns to tens of microns. For equal sheet resistances under the metal and in the 

gap, and for the geometry of the circular contact resistance structure in Figure 

2.10, the total resistance ( ) between the internal and the external contacts is  

                        = ( ⁄ )( ⁄ ) + ( ⁄ )( ⁄ ) + ln 1 +   (2.4) 

where  is the sheet resistance of the substrate,  	is the transfer length, and I 

and K denote the modified Bessel functions of the first order. For L >> 4  , the 

Bessel function ratios ⁄  and ⁄  tend to unity and  becomes 
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 = + + ln 1 +  (2.5) 

In the circular transmission line test structure in Figure 2.10, for L >> d, Eq. (2.5) 

simplifies to 

 = ( + 2 )  (2.6) 

where C is the correction factor 

 C = ln 1 +  (2.7) 

For ⁄ ≪ 1, Eq. (2.7) becomes 

 = ( + 2 ) (2.8) 

From Eq. (2.8), a linear relationship is seen between  and d. If we plot  

versus d, a straight line will be obtained and it intercepts the -axis at =	 and has a gradient of	 = . Since the transfer length is  = ⁄  , 

the specific contact resistance can be determined as follows, 

 = = (2 )⁄  (2.9) 

Eq. (2.9) can be used for calculating the specific contact resistance ( ), since , 

and  can be measured directly.  
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Figure 2.10 Circular transmission line method test structure with various spacing 
d and same radius L. The brown areas indicated metallic regions. 

 

Another test structure to measure the contact resistivity and contact resistance is 

shown in Figure 2.11. It is the linear transmission line method (LTLM) [73] test 

structure, which comprises several contacts with different spacing between 

adjacent contacts. For contacts with L ≥ 1.5 LT, the total resistance between any 

two contacts is given by 

 = × + 2 	 	 ( + 2 ) (2.10) 

where the approximation resulting from not considering the current flow around 

the contacts has a form similar to Eq. (2.8).  

The total resistance (RT) is measured between adjacent contacts with various 

contact spacing. Similar to the CTLM, when we plot  versus d, a straight line 

will intercept -axis at = , with a gradient of =  and =
⁄ . The specific contact resistance for LTLM test structure can be 

determined as follows, 

 = = (4 )⁄  (2.11) 
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Thus, sheet resistance, contact resistance and specific contact resistivity can be 

extracted from the RT -d plot, but no correction factor needs to be introduced for 

this method.   

 

Figure 2.11 Linear transmission line method test structure with various spacing d 
and metal contact pad size L × Z. 

 

In this study, the CTLM structure consists of ring patterns with an outer radius of 

90 µm and different inner radii varying from 85, 80, 75, 65, 55, 45 µm. For the 

LTLM structure, it has several rectangular contact pads with a width of 200 µm 

and a length of 80 µm, and the spacing between contact pads varies from 5, 10, 15, 

25, 35, 45, 60, 75, to 90 µm. In LTLM method, the unit of contact resistance is 

converted to Ω.mm, when it is normalized with respect to the width of contacts. 

2.3.2 Hall Effect measurement 

Since the Hall Effect was discovered, it has been widely used to determine the 

sheet resistance, mobility, carrier concentration and majority carrier type of a 

semiconductor material. Specifically, in a typical Hall measurement shown in 

Figure 2.12(a), when a constant current (I) is forced through the test sample 

within an orthogonal magnetic field (B), the free charge carriers (holes and 
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electrons) will experience a Lorentz force (FL) = q (v × B), where v is the drift 

velocity of the carriers and q is the electronic charge.  The carriers will flow in the 

opposite direction by the Lorentz force due to hole and electrons have opposite 

sign of charges. When either type of carrier is dominant, the accumulation of 

internal charge will induce a steady state Hall Voltage (VH). To balance the 

magnetic and electrostatic forces on a single mobile charge, the following 

equation can be expressed 

 = =    (2.11) 

The current can be calculated in terms of drift velocity, 

 I = n × q × v ×W× t (2.12) 

Where n is the density of charge carriers, W×t is the cross-section area through 

which the current passes through. The Hall coefficient RH can be defined by the 

equations (2.11) and (2.12), 

 = ∙ = ∙∙   (2.13) 

Thus, the sheet Hall coefficient RHS can be defined, 

 = = ∙   (2.14) 

The sheet carrier concentration ns can be calculated from the measured RHS, 

 = ∙   (2.15) 
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If the thickness t is known, the bulk carrier concentration can be given by		 =/ . 

To measure Hall mobility (us), the sheet resistivity of under testing sample will be 

determined by van der Pauw’s method, as shown in Figure 2.12(b). The current 

source is applied between contacts 1 and 2 and the voltage is measured between 

contacts 3 and 4, and we will obtain R12,34. Similarly, the current source is applied 

between contacts 1 and 4, and the voltage is measured between contacts 2 and 3, 

and we will obtain R14,23 . The sheet resistivity ρs of under testing sample can be 

calculated, 

 = 4.532 × , ,   (2.16) 

Thus, Hall mobility is calculated by 

 =   (2.17) 

In our experiment, a Bio-Rad HL5500PC Hall effect system was employed at 

room temperature to obtain the carrier concentration and mobility in n-GaN and 

InAlN/GaN heterostructure. 
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(a) Hall Effect schematic diagram 

 

(b) van der Pauw contacts geometry 

Figure 2.12 Schematic of the Hall Effect measurement: (a) Hall Effect schematic 
diagram and (b) van der Pauw contacts geometry 
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2.3.3 Secondary Ion Mass Spectrometry (SIMS) 

Secondary Ion Mass Spectrometry (SIMS) is a well-known technique that can 

detect all elements, especially some elements in the 1014 to 1015 cm-3 range if there 

is very little background interference signal. The principle of SIMS shown in 

Figure 2.13 is based on the process of destructively remove materials from the 

sample by sputtering and the analysis of the ejected material by a mass analyzer.  

Most of the ejected matters are neutral so that those cannot be detected by normal 

SIMS, but some are positively or negatively charged. The mass/charge ratio of 

these ions is analyzed, resulted in a mass spectrum.  The strength of SIMS is used 

to do quantitative depth profiling with one selected mass plotted as secondary ion 

yield versus sputtering time. In conventional SIMS, since electrostatic or 

magnetic spectrometer requires narrow slits for only those ions with the correct 

mass/charge ratio to be transmitted, the transmittance of the spectrometer 

significantly is reduced to values as low as 0.001%. However,  the time-of-flight 

SIMS (ToF-SIMS), consisting of pulsed ions from a liquid Ga+ gun with beam 

diameters as small as 0.3 µm, does not have this limitation in conventional SIMS 

system where  a continuous ion beam is used for sputtering. Therefore, ToF-SIMS 

can increase ion collection by 10-50%, indicating a lower incident beam current 

and sputtering rate compared to other SIMS techniques, to improve the sensitivity. 

In our project, ToF-SIMS was used for studying the reaction and inter-diffusion 

of different contact metals before and after annealing to understand the contact 

formation mechanism.  
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Figure 2.13 Schematic of a typical Secondary Ion Mass Spectrometry (SIMS) [73]. 

 

2.3.4 Transmission Electron Microscopy (TEM) 

The transmission electron microscopy (TEM) is a powerful technique which is 

capable of imaging the materials in atomic scale resolution. Similar to the optical 

microscope, the TEM also consists of a series of lens to magnify the sample. 

However, the transmission electron microscope has higher resolution to approach 

0.08 nm due to the smaller numerical aperture and shorter wavelength compared 

to the optical microscope. The schematic illustration of a typical transmission 

electron microscope is show in Figure 2.14. As shown, electrons generated from 

an electron source are accelerated by high voltage (normally 100 to 400 kV) and 

focused on the sample by a few sets of condenser lenses. The sample, placed on a 

small copper grid a few millimeters diameter, is intentionally prepared to be 

extremely thin (several tens to several hundred nm) to allow the electron beam to 

penetrate transparently and reduce the chance of spreading. The transmitted and 
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forward scattered electrons form a magnified image in the image plane and a 

diffraction pattern that indicating structural information in the back focal planet. 

The transmission electron microscope can operate in three modes, bright-field, 

dark-field and high-resolution mode (lattice imaging). Images formed with only 

the transmitted electrons are bright-filed images and images formed with a 

specific diffracted beam are dark-field images. Image contrast does not depend 

very much on absorption but rather on scattering and diffraction of electrons in 

the sample. Thus, dark-field images can provide a better image contrast. In 

scanning transmission electron microscopy (STEM), a fine electron beam (~0.1 

nm in diameter) is rastered across the sample. The objective lens recombines the 

transmitted electrons from the region scanned by the probing electron beam to a 

fix area in the back focal plane. One of the main advantages of STEM over TEM 

is that it is capable of allowing using other signals that cannot be spatially 

correlated in TEM, since the primary electrons in an STEM system also produce 

secondary electrons, back scattered electrons, characteristic X-rays, electron 

energy loss and cathodoluminescence.  In our project, we used TEM and STEM 

techniques to study the contacts before and after thermal annealing to evaluate the 

inter-diffusion and alloying among contact metals.  



56 
 

 

Figure 2.14 The principle of transmission electron microscopy (TEM) [73]. 
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2.3.5 X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a useful non-destructive technique for material 

characterization, which is able to identify material, crystalline quality, lattice 

constant, alloy phase and composition in the x-ray irradiated area.  

The principle of XRD operation is based on the Bragg’s law. We can express the 

relationship mathematically as follows. 

2 sin =  

where dhkl is the inter-planar spacing of any lattice planes with Miller indices {h k 

l}, θ is the relevant Bragg’s angle estimated from the peak of the XRD spectrum, 

n is an integer, and λ is the wavelength of the X-ray radiation source. The 

relationship between lattice constants (a, b, c) and the plane spacing dhkl can be 

precisely calculated based on {h k l} for different crystal structures (cubic, 

tetragonal, orthorhombic and hexagonal etc.). Thus, we can calculate the plane 

spacing, and thus the lattice constant by the Bragg angle θ and the X-ray 

wavelength. Accordingly, we can identify a particular phase by means of fitting 

both peak position and relative intensities which are corresponding to specific 

lattice plane and Miller indices of {h k l}. For hexagonal III-nitride materials, 

indices {h k i l} are normally used, where h + k + i = 0.  
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Figure 2.15 The principle of a typical X-ray diffraction system. 

 

A typical schematic of an x-ray diffraction system is shown in Figure 2.15.  As 

seen, the X-ray diffractometer has an X-ray source, a sample stage, an X-ray 

detector. The sample stage can rotate around the respective axe and also move 

along the x-y-z direction to position the sample. The x-ray source is usually 

generated from x-ray tubes, which consists of a metal target anode and a tungsten 

filament cathode with a high voltage between them. The filament is heated to emit 

thermal electrons, and the high electric field between the cathode and anode 

accelerates these thermal electrons towards the metal target. These high speed 

electrons will knock core electrons out of the metal target, and electrons in the 

outer orbitals relax to fill the vacancies, thus emitting x-rays. Afterwards, the x-

ray exits the tube through monochromator. When the X-ray diffractometer is 

working, the X-ray beam is focused on the sample mounted on the stage at an 

incident angle θ, while an X-ray detector is placed on the opposite side 2θ away 
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from the incident path of. When the measurement is continued, the incident angle 

is increased over time while the detector angel always keeps 2θ above the source 

path to receive the signals.  In our experiment, we used XRD to exam the phase 

formation and understand the reaction among contact metals and semiconductor 

substrate. The X-ray used in this study is Cu K-alpha with the wavelength of 

0.15418 nm. 

2.3.6 Atomic Force Microscope (AFM)  

The Atomic Force Microscope (AFM) was used to study the surface morphology 

of our ohmic contacts, which is suitable for conducting as well as insulating 

sample. Its microscopy works by measuring the force between a probe and the 

sample, where the force depends on the property of the sample, the distance 

between the probe and sample, the probe geometry, and sample surface condition.  

As shown in Figure 2.16, a schematic of an AFM, a cantilever with a sharp tip 

mounted on its end is normally used, which could made from silicon, silicon 

oxide or silicon nitride. To measure topography, the tip will make contact with the 

sample continuously or by scanning across the sample surface.  The piezoelectric 

scanner translates the signal which is correspondent to either the cantilever over 

the sample or the sample under the cantilever. A common technique used to sense 

the motion of the cantilever is to measure the light reflected from the cantilever in 

to a four-segment position sensitive photodiode.  The cantilever motion causes the 

reflected light to impinge on different segment of the photodiode. Vertical motion 

is detected by z = (A+C)-(B+D) and horizontal motion by x = (A+B)-(C+D). 

Keeping the signal constant, equivalent to constant cantilever deflection, by 
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changing the sample height through a feedback arrangement, indicates the sample 

height variation. AFM can operate in three modes, contact mode, non-contact 

mode and tapping mode.  In our project, we used AFM to exam the morphologies 

of contacts before and after thermal annealing. 

 

Figure 2.16 Schematic of an atomic force microscope [73]. 
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Chapter 3  

Preliminary Ohmic Contact Studies on n-GaN  

As discussed in Chapter 1, a good ohmic scheme is playing a vital role in high 

performance GaN based HEMTs. One of the objectives of this thesis is to develop 

gold-free ohmic contact metallization with low thermal budget for the fabrication 

of GaN HEMTs in silicon foundries.  In this chapter, the preliminary studies for 

ohmic contacts on n-GaN substrate will be presented and examined. First of all, in 

Section 3.1, our first attempt on Au-free contact is the Ti/Al bilayer without the 

Au capping layer. The Ti/Al bi-layer contact using a special two-step annealing 

process was evaluated. The special two-special annealing involves an initial 

annealing at low temperature (600 oC) followed by a second annealing at high 

temperature (700-900 oC) in vacuum. The electrical properties, surface roughness 

and contact formation mechanism for Ti/Al contacts with two-step annealing were 

also assessed. Afterwards, we report our first evaluation ohmic contact for low 

thermal budget purpose by introducing the Hf-based contacts. The preliminary 

comparison between Hf-based and the reference Ti/Al/Ni/Au contacts were also 

discussed.   

3.1 Ti/Al ohmic contacts on n-GaN by two-step annealing 

processing 

3.1.1 Introduction 
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Many experiments have been carried out to investigate the Ti/Al based ohmic 

contacts on GaN. Typically, Ti/Al covered by a diffusion barrier layer such as Ni 

[80], Ti [81] or Mo [82], and followed by a gold (Au) capping layer on the top 

(i.e., Ti/A/X/Au, where X is Ni, Ti, or Mo) is used in the GaN based devices for 

optoelectronic and power device applications. In order to obtain a low specific 

contact resistivity, the traditional ohmic contact scheme uses Au as a capping 

layer, which is helpful to prevent contact degradation resulting from oxidation. 

However, the surface morphology of the Au based ohmic contacts degrade after 

annealing due to the formation of Al–Au alloy phases caused by the melting of 

the alloy at low temperature (525 oC) [83]. This Al-Au alloy phase raises concerns 

about reproducibility or reliability issues, which may cause short circuit to 

electrical devices by the melting Al-Au alloys at elevated temperature. The other 

shortcoming of Au based contact is that it is highly diffusive in Si such that it is 

not compatible to the CMOS process in Si fabrication facilities. Hence, as an 

initiative of Au-free ohmic contacts, Ti/Al bilayer ohmic contacts on n-GaN are 

investigated. However, the contact resistivity of Ti/Al ohmic contact is not low 

enough compared to conventional Au-based ohmic contacts due to the fact that 

Ti/Al contact oxidizes easily. Its surface roughness degrades during high 

temperature annealing process since the melting point of Al is ~660 oC [84]. 

Recently, TiAl3 has been reported as a reasonably good capping layer for the 

Ti/Al contacts [85]. Indeed, TiAl3 is stable at high temperature and can be formed 

at around 500 oC [86]. In addition, TiAl3 can be a good capping layer due to the 

formation of a very thin but continuous protective Al2O3 layer at the surface. In 
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this study, a two-step annealing process is utilized for the Ti/Al bilayer contact in 

order to obtain a top TiAl3 layer first at a relatively low temperature (600 oC), 

lower than the melting point of Al, followed by a high temperature annealing to 

ensure low contact resistivity. Should the transformation to TiAl3 layer be 

successful, the need for the deposition of a capping layer for the Ti/Al contact is 

eliminated. We will also examine if an improvement in surface roughness of the 

Ti/Al contact can be achieved using the two-step annealing process. The electrical 

properties, surface roughness and contact formation mechanism for Ti/Al contacts 

with two-step annealing has been evaluated and studied. 

3.1.2 Experiment 

In this section, the wafer structure of n-GaN wafers and cleaning process, native 

oxide removing, and photolithography has been discussed in Chapter 2.  

Metallization for Ti/Al was done by sputtering. Several Ti/Al ohmic schemes to 

n-GaN were considered by choosing different Ti/Al thicknesses/ratios, e.g., 30/60 

nm, 30/90 nm, 30/120 nm, 30/150 nm and 30/180 nm, to fabricate the devices. 

For the two-step annealing, initial heat treatment was carried out in vacuum at 600 

oC for 2 min followed by a second annealing at various temperatures in the range 

between 700-900 oC for 1 min in vacuum. We also fabricate Ti/Al contacts using 

one-step annealing without the first initial heat treatment for comparison. Current-

voltage (I-V) characteristics were measured at room temperature using an Agilent 

B1500A semiconductor parameter analyzer. X-ray diffraction (XRD), time-of-

flight secondary ion mass spectroscopy (ToF-SIMS) and atomic force microscope 

(AFM) were used in order to investigate the metallurgical reactions, roughness 
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and electrical properties for the Ti/Al contacts by one-step and two-step thermal 

treatments. 

3.1.3 Electrical properties of Ti/Al contacts on n-GaN 

Figure 3.1 shows a comparison in contact resistivity ( ) between the two-step 

and one-step annealed samples with various Ti/Al thickness ratios (30/60, 30/90, 

30/120, 30/150 and 30/180). First of all, for one-step annealed contacts, it is 

observed that  demonstrates a strong dependence on the Ti/Al thickness ratio. 

More specifically,  decreases with increasing Al content. Meanwhile, low Al 

content sample (e.g., Ti/Al ratio of 30/60) exhibits a small variation in  during 

annealing from 700 to 900 oC, while those samples with Ti/Al thickness of 30/90, 

30/120 and 30/150 nm demonstrate a degradation trend at high temperature region. 

However, a  value as low as 2.66 × 10-6 Ω·cm2 has been achieved for a Ti/Al 

thickness ratio of 30/180 nm, annealed at 850 oC.  

On the other hand, two-step annealed samples demonstrate lower  values 

compared to those for one-step annealing for all Ti/Al thickness ratios. The 

samples with Ti/Al thickness ratios of 30/120 nm and 30/150 nm show a 

minimum  of 4.87 × 10-6 Ω·cm2 and 4.9 × 10-6 Ω·cm2, respectively while the 

minimum  value as low as 2.19 × 10-6 Ω·cm2 is achieved for Ti/Al thickness 

ratio of 30/180 nm after the second-step annealing at 850 oC. Although the 30/180 

nm Ti/Al contacts with one-step or two-step annealing exhibit lower  than 

either the 30/120 nm or 30/150 nm Ti/Al contact with two-step annealing, it is 

seen in Figure 3.2 that the surface morphology of the former is worse. 
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Figure 3.1 Contact resistivity of Ti/Al contacts on n-GaN with different thickness 
ratios by one-step or two-step annealing under different annealing temperatures. 

 

3.1.4 Surface roughness of Ti/Al contact on n-GaN 

Figure 3.2 shows the root mean square (RMS) roughness measured by means of 

AFM for different Ti/Al thickness ratios, both for the one-step and two-step 

annealed contacts. It can be noticed that high Al content contacts have higher 

surface roughness and that there is no significant difference in the RMS values 

between contacts with one-step and two-step annealing. However, the contacts 

with Ti/Al thickness of 30/60, 30/90, and 30/120 nm with two step annealing 

exhibit a much lower RMS roughness, having a value of 14, 15.6 and 10.9 nm, 

respectively, compared to contacts with one-step annealing. Based on the above 

experimental results shown in Figure 3.2 and the results shown in Figure 3.1, it 

can be concluded that the Ti/Al thickness of 30/120 nm will provide a good 
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tradeoff between surface roughness and specific contact resistivity, which is 

consistent with the previous work [87]. Further investigations will be carried out 

for the 30/120 nm Ti/Al contact. 

 

Figure 3.2 RMS roughness as a function of Ti/Al thickness ratio for contacts by 
one-step and two-step annealing at 850 oC in vacuum. 

 

3.1.5 Contact formation for Ti/Al contacts on n-GaN 

In order to investigate the solid phase reaction during thermal treatment, ToF-

SIMS profiling was performed and XRD measurements are performed. Figure 3.3 

shows the SIMS depth profile information of Ti/Al thickness ratio of 30/120 nm 

contacts under different conditions: (a) as-deposited, (b) after first-step annealing 

at 600 oC for 2 min and (c) after first-step annealing at 600 oC for 2 min, followed 
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by second-step annealing at 800 oC for 1 min. The corresponding XRD results are 

shown in Figure 3.4 and Figure 3.5.  

As shown in Figure 3.3, after the first-step annealing at 600 oC for 2 min in 

vacuum, and Ga out-diffusion was observed and Ti and Al inter-diffusion also 

happened, which means that it is possible for Ti and Al to form some kinds of 

alloys at this condition. This is confirmed by the XRD result shown in Figure 3.4, 

with the formation of TiAl3 detected after the 600 oC annealing. Nitrogen out-

diffusion is also observed during the second-step high temperature annealing at 

800 oC, as shown in Figure 3.3(c), which leads to nitrogen vacancies being 

created at the interface between metal and GaN substrate, which is useful for the 

formation of ohmic contact. Although the nitride formation (Ti-Al-N alloy) was 

confirmed by XRD result in Figure 3.5, the contact resistivity does not change 

significantly, which may be due to the amount of Ti-Al-N alloy being inadequate 

to introduce a highly doped layer between GaN and metal contacts for the Ti/Al 

contacts with a thickness ratio of 30/120, as compared to the one with a ratio of 

30/180, which shows a significant improvement for  at 850 oC.  It is noteworthy 

that Ti does not diffuse to the surface of the contact after the second-step high 

temperature annealing at 800 oC, which could further indicate the formation of a 

thermally stable Ti-Al alloy. It will be seen in the following paragraph that the 

ToF-SIMS observation of formation of a stable Ti-Al alloy formation is consistent 

with the XRD results, where thermally stable TiAl3 phase is actually identified.  
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(a) as-deposited 

 

(b) First-step annealing at 600 oC for 2min 
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(c) After first-step annealing at 600 oC for 2 min followed by second-step 
annealing at 800 oC for 1 min. 

Figure 3.3 ToF-SIMS depth profile for Ti/Al (30/120 nm) at different annealing 
conditions: (a) as deposited, (b) first-step annealing at 600oC for 2min, and (c) 
after first-step annealing at 600 oC for 2 min, followed by second-step annealing 
at 800 oC for 1 min. 

 

As manifested by the TiAl3 peaks in Figure 3.4, we have confirmation of our 

intention of carrying out the first-step annealing at a lower temperature, of which 

the main purpose is to allow reaction that leads to the formation of a stable TiAl3 

alloy between Ti and Al. As a result of TiAl3 formation, the peaks corresponding 

to Ti have disappeared (which could signify full consumption of Ti), while the 

remaining Al is still detectable after the first-step annealing at 600 oC. Figure 3.5 

shows the XRD profiles for the 30/120 nm Ti/Al contact under different second-

step annealing conditions (the first-step annealing is 600 oC for 2 min in vacuum). 

It is noticed that after the second-step annealing at 700 oC, most of Al that 
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remained after the first-step annealing is 600 oC was consumed and converted to 

TiAl3. After the second-step annealing at 800 oC, additional peaks corresponding 

to the phase of Ti2AlN appear, this is consistent with the N2 out-diffusion from 

GaN observed in the ToF-SIMS result after annealing at 800 oC (see Figure 

3.3(c)). The out-diffused nitrogen reacts with Ti-Al alloy and leads to the Ti2AlN 

formation, which can be detected by XRD shown in Figure 3.5. With the second-

step annealing at a higher temperature of 850 oC, more peaks of Ti2AlN are 

observed, which may indicate increasing amount of Ti2AlN is formed (as a result 

of more N2 out-diffusion from GaN). The formation of Ti2AlN has also been 

reported elsewhere [86]. 

 

Figure 3.4 XRD scans of Ti/Al (30/120 nm) contacts: (a) as-deposited, (b) after 
the first-step annealing at 600 oC for 2 min in vacuum. 
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Figure 3.5 XRD scans of the Ti/Al (30/120 nm) contacts under various annealing 
conditions: (a)as-deposited, (b) first-step annealing at 600 oC for 2 min in vacuum, 
followed by second-step annealing at 700 oC for 1 min in vacuum, (c) first-step 
annealing at 600 oC for 2 min in vacuum, followed by second-step annealing at 
800 oC for 1 min in vacuum, and (d) ) first-step annealing at 600 oC for 2 min in 
vacuum, followed by second-step annealing at 850 oC for 1 min in vacuum.   

 

As shown in Figure 3.4, most of Al reacted with Ti during the first-step annealing, 

meanwhile leading the high thermally stable phase of TiAl3 formation. On the 

other hand, for Al rich samples (e.g., Ti/Al thickness of 30/150 nm and 30/180 

nm), a large amount of Al is expected to remain after the first-step annealing 

compared to the sample with Ti/Al thickness 30/120 nm which eventually will 

increase the surface roughness, hence leading to worse surface morphology after 

the second-step annealing, as shown in Figure 3.2. The similar mechanism for 

surface roughness has been explained in reference [86]. 
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A discussion is provided as follows, in terms of the Ti-Al binary phase diagram 

shown in Figure 3.6 [86] on the observed XRD results (Figure 3.4 and Figure 3.5) 

and surface morphology (Figure 3.2) after the first and second step annealing 

conditions. The amount of remaining Al after the first-step annealing plays a 

crucial role in determining the surface roughness of Ti/Al contacts after the 

second-step annealing. According to the Ti-Al phase diagram in Figure 3.6, for 

Ti/Al thickness of 30/60, 30/90 and 30/120 nm, most of Al is consumed by Ti 

during the first-step annealing to form relative Ti-Al alloys (e.g., AlTi, Al2Ti, 

Al5Ti2 and TiAl3 etc.), which are thermally stable at high temperature. 

 

Figure 3.6 Phase diagram of the Ti-Al binary system [86]. 

 

The mechanism about  dependent on Al composition was discussed by Daele et 

al [88, 89]. They showed that the voids existed at the interface between Ti and 

GaN for Ti-rich contacts, after thermal annealing, could lead to the degradation of 
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Ti/Al ohmic contacts. The role of Al in the Ti/Al system was shown to decrease 

the aggressive Ti-GaN reaction [90], thus reducing the formation of voids at the 

metal-GaN interface. Moreover, TiAl3, which can be formed for Al-rich (Al/Ti 

atomic ratio >3) contacts according to the Ti-Al binary phase diagram shown in 

Figure 3.6, could be used to reduce the oxidation of the bottom Ti layer [91]. 

Hence, in Figure 3.1 for Al-rich Ti/Al contacts (30/90, 30/ 120, 30/150 and 

30/180), the two-step annealing shows better results than the one-step annealing. 

This may be attributed to TiAl3, formed during the first-step low temperature 

annealing, which helps reduce contact metal oxidation in the subsequent second-

step high temperature annealing. For Al rich samples annealed using a one-step 

process, there is less TiAl3 existing before the high temperature annealing, so it 

could be easier for the Ti/Al contact to oxidize during the thermal treatment. 

3.1.6 Summary 

In this section, the two-step annealing has shown to be an effective method to 

obtaining good surface morphology for Ti/Al contacts, which require high 

annealing temperature (> 750 oC) to form low contact resistivity ohmic contact. 

Different thickness ratios between Ti and Al have been investigated. It has been 

confirmed that the first-step annealing at 600 oC has led to the formation of the 

stable TiAl3. Our results show that the 30/120 nm Ti/Al contact presents a 

tradeoff between surface roughness and specific contact resistivity, with a 

minimum contact resistivity of 4.87×10-6 Ω·cm2 and a RMS roughness less than 

10 nm obtained. However, the thermal budget for those contacts is still high (> 
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750 oC). To try to lower the annealing temperature, we attempt to introduce other 

transition metal to replace Ti in the following section.  

3.2 Hf-based ohmic contacts on n-GaN 

3.2.1 Introduction 

As discussed in Section 3.1, although Ti/Al contacts by two-step annealing 

processing shows a good tradeoff between surface roughness and contact 

resistivity, other ohmic metal could be introduced since the thermal budget 

required is still high (>750 oC). Generally, for ohmic contact formation at the 

metal-GaN interface, low work function of metal and formation of metal nitride, 

which leads to a heavily doped layer near the interface, are desired. Nitride 

formation is mainly driven by the change in enthalpy [92]. Hafnium (Hf) is 

attractive since it has a low work function of ~3.9 eV , close to the electron 

affinity of GaN  and is lower than that of Ti (work function ~4.33 eV) [93]. 

Furthermore, Hf has more negative enthalpy (-88.2 kcal/mol) [94] for nitride 

formation than GaN (-26.3 kcal/mol), which means the transition metal nitride 

formation is thermodynamically favorable. Therefore, it is expected that Hf could 

form an ohmic contact to GaN at low temperature. In this section, a preliminary 

examination by using Hf based contacts with Au capping layer, i.e., Hf/Al/Ni/Au 

(essentially replacing Ti in the Ti/Al/Ni/Au contact by Hf), to examine the 

electrical and structural properties the Hf based contacts on n-GaN is conducted.  

3.2.2 Experiment 
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In this section, the GaN wafer structure, cleaning process, native oxide removing, 

and photolithography are the same as those discussed in Section 3.1.2. Metal 

layers of Hf/Al/Ni/Au (20/100/25/50 nm) and Ti/Al/Ni/Au (20/100/25/50 nm) 

were deposited sequentially by e-beam evaporation. A rapid thermal annealing 

(RTA) process was carried out to do thermal annealing at various temperatures in 

the range between 600-900 oC for 1 min in vacuum for both Hf- and Ti-based 

contacts. Current-voltage (I-V) characteristics were obtained at room temperature 

using an Agilent B1500A semiconductor parameter analyzer. X-ray diffraction 

(XRD), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and cross-

sectional transmission electron microscope (TEM) were used in order to 

investigate the metallurgical reactions and the mechanism behind the ohmic 

contact formation for Hf/Al/Ni/Au based scheme. 

3.2.3 Electrical properties of Hf-based contacts on n-GaN 

Figure 3.7 shows the results of I-V characteristics as a function of annealing 

temperature for Hf/Al/Ni/Au (20/100/25/50 nm) contacts on n-GaN with the 

CTLM structure having a gap spacing of 10 μm. A rectifying behavior is observed 

for the 600 oC annealed sample, however, the contacts become ohmic for ≥ 630 

oC annealed conditions in which the steepest I-V slope is noted for the 650 oC 

annealed sample.  
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Figure 3.7 Typical I-V characteristics of Hf/Al/Ni/Au (20/100/25/50 nm) contacts 
on n-GaN as a function of annealing temperature performed in vacuum for 1 min. 

 

The specific contact resistivity was calculated from the linear curve fitting of the 

relationship between measured resistances versus gap spacing, as described in 

Chapter 2. Figure 3.8 shows the variation of specific contact resistivity as a 

function of annealing temperature for the Hf and Ti based contacts on n-GaN.  

For Hf based contacts, it is observed that the specific contact resistivity initially 

decreases to 1.09 × 10-6 Ω·cm2 upon annealing from 630 to 650 oC, and increases 

again to a value of 5.79 × 10-6 Ω·cm2 after annealing at 900 oC. On the contrary, 

Ti based contact exhibits a significant drop in specific contact resistivity beyond 

750 oC annealing temperature, in fact, demonstrates the lowest value of 8.65 × 10-

7 Ω·cm2 at 850 oC, and again shows an increasing trend at 900 oC, which is 

consistent with previous studies [95]. Therefore, from Figure 3.8, it is clear that 

Hf-based metal scheme can achieve a low specific contact resistivity at a 
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comparatively low annealing temperature of 650 oC, which is 200 oC lower than 

the 850 oC needed for the Ti/Al/Ni/Au contact. 

 

Figure 3.8 Variation of specific contact resistivity as a function of annealing 
temperature for Hf/Al/Ni/Au (20/100/25/50 nm) and Ti/Al/Nu/Au (20/100/25/50 
nm) contacts on n-GaN. 

 

3.2.4 Ohmic contact formation for Hf-based contacts on n-GaN 

In order to investigate the mechanism behind the low temperature formation of 

ohmic contact for the Hf-based metal scheme, several physical-chemical 

characteristics have been measured. Figure 3.9 shows the SIMS depth profiles of 

several constituent metals for the Hf/Al/Ni/Au based contacts for the as-deposited 

and 650 oC annealed samples. It can be observed that after 650 oC annealing, most 

of the four constituent metals are mixed together, especially the Hf and Al layers,  
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Figure 3.9 ToF-SIMS depth profiles of Hf/Al/Ni/Au on n-GaN (a) as-deposited, 
and (b) after annealing at 650 oC for 1min in vacuum. 
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which are completely mixed and have partly diffused into GaN while the out 

diffusion of nitrogen and gallium at the metal-semiconductor interface is also 

observed, as shown in Figure 3.9 (b). The out diffusion of nitrogen leads to 

vacancies that behave as donors, thus giving rise to a heavily n-doped layer near 

the surface of GaN, which is similar to the main reason for the formation of Ti 

based ohmic contacts to n-GaN [96, 97]. 

In order to identify the metal alloy phases formed, XRD analysis was performed. 

Figure 3.10 shows the XRD profiles of the Hf/Al/Ni/Au based contacts for the as-

deposited and annealed samples, where annealing is done at 650 oC in vacuum for 

1 min. It can be observed from the XRD scans in Figure 3.10 that the peaks 

corresponding to Au have disappeared after annealing at 650 oC, while new alloy 

phases corresponding to Au-Ni, Al-Au, Hf-Al and especially Hf0.78Al0.22N and 

Hf0.5Al0.5N alloy phases begin to appear. The observation of Hf-Al-N alloy phase 

has recently been reported [98]. Indeed, the formation of several Hf-Al 

intermetallic alloy phases at low temperature less than 400 oC has been reported 

earlier, as can be seen from the phase diagram and thermochemistry data of the 

binary Hf-Al system shown in Figure 3.11 [99]. It is anticipated that the existence 

of Hf-Al-N alloy similar to Ti-Al-N alloy for Ti based contacts [86] plays a 

crucial role to the formation of low temperature ohmic contact to n-GaN. Figure 

3.12 presents the cross-sectional TEM images of the Hf/Al/Ni/Au (20/100/25/50 

nm) based contact annealed at 650 oC. The interface between the metal and 

semiconductor can be seen clearly, which might be good to enhance the stability 

of Hf based contacts. 
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Figure 3.10 XRD scans of Hf/Al/Ni/Au (20/100/25/50 nm) contacts: (a) as- 
deposited, and (b) after annealing at 650 oC for 1 min in vacuum. 

  

Figure 3.11 Phase diagram of the binary Hf-Al system. 
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Figure 3.12 Cross-sectional TEM images of the Hf/Al/Ni/Au (20/100/25/50 nm) 
contact after annealing at 650 oC. 

 

3.5 Summary 

Hf/Al/Ni/Au based metal scheme was found to be able to form ohmic contact 

with low specific contact resistivity to n-GaN substrate at a relatively low 

annealing temperature of 650 oC (200 oC lower than the 850 oC required by the 

Ti/Al/Ni/Au contact). The SIMS and XRD results confirm the formation of Hf-Al 

and Hf-Al-N alloy phases which are likely to be responsible for the ohmic contact 

formation at low annealing temperature. The development of Hf-based 

metallization scheme to form low resistance ohmic contacts at an annealing 

temperature lower than the Al melting point could significantly reduce the risk of 

lateral overflow that often causes short-circuit between the gate and source/drain 

of the devices. Therefore, a low thermal budget contact could be achieved on 

InAlN/GaN heterostructure. The comprehensive investigations on Au-free Hf 

based contacts will be carried out later on InAlN/GaN-on-Si wafer in Chapter 4. 
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Chapter 4  

Hf/Al/Ta ohmic contacts on InAlN/GaN 

This chapter focuses on the realization of high performance ohmic contacts on 

InAlN/GaN heterostructures. From the work presented in Chapter 3, we have 

concluded that the Hf-based ohmic contact is a promising candidate and expected 

to serve well as the ohmic contacts on InAlN/GaN with lower thermal budget. 

Thus, this chapter first provides the comparison between Hf-based gold-free 

ohmic contacts and other transition metal based counterparts, which shows that 

Hf-based contacts are indeed the best. Following which, the optimization of Hf-

based contacts on InAlN/GaN will be conducted. The mechanisms of ohmic 

contact formation and carrier transport of the optimized Hf-based ohmic contacts 

are also investigated.  

4.1 Introduction 

Since the InAlN/GaN HEMT technology was developed after AlGaN/GaN, the 

most popular ohmic contact schemes were transferred from AlGaN/GaN HEMTs. 

Historically, Ti/Al/X/Au ohmic metallization scheme under high temperature 

annealing was widely used in InAlN/GaN HEMTs, where X could be Ni, Mo, Ti, 

etc [55, 59, 100-103] and it acted as a diffusion barrier layer to the Au cap layer. 

Furthermore, up to date Ti/Al/Ni/Au and Mo/Al/Mo/Au contacts on InAlN/GaN 

with annealed at low temperature (600-650 oC) have been reported [60, 62]. 

However, these contacts necessitate pre-metal deposition surface treatment by 

plasma to render ohmic properties. In this chapter, transition metals such as Hf, Ti, 
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Ta, Zr, Nb, and V have been selected for ohmic contact formation owing to their 

low work function and large negative enthalpies for nitride formation [93, 94, 

104-106].  And Ta, a refactory metal with high melting point (3017 oC), was used 

as the cap layer to prevent the surface oxidation of Al. We first examine a number 

of Au-free transition metal (TM) based ohmic contacts (TM/Al/Ta, where TM = 

Hf, Ti, Ta, Zr, Nb, and V) on InAlN/GaN, without the use of pre-metal deposition 

surface treatment by plasma, to identify the most promising candidate, i.e., one 

that requires the lowest annealing temperature to yield the lowest contact 

resistance. Subsequently, this transition metal based contact system is optimized 

with different thickness ratio. Lastly, the formation mechanism and carrier 

transport mechanism of the optimized ohmic contacts are studied. 

4.2 Experiment 

The InAlN/GaN heterostructures used in our experiments was shown in Figure 

2.7(b). The sheet resistance of the epiwafer is 458 Ω/□, the 2DEG carrier mobility 

and concentration are  1112 cm2/Vs and 1.2×1013 cm-2 respectively, as determined 

by room-temperature Hall measurement. The cleaning process, native oxide 

removing, photolithography and lift-off process are as those described in Chapter 

2. Mesa isolations were realized using the BCl3/Cl2 gas chemistry in an ICP-RIE 

system. The ohmic contact metals were deposited in a sputtering system. To 

compare the transition metal based ohmic contacts, we studied the following 

metallization schemes, namely TM/Al/Ta (15/200/20 nm), where TM=Ti, Ta, Zr, 

Nb, V and Hf. All the transition metal based ohmic contacts were annealed at 

temperatures ranging from 550 to 700 oC for 60 s in vacuum. The most promising 
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transition metal based ohmic contact system identified (i.e., Hf/Al/Ta) was 

optimized subsequently. The current-voltage (I-V) characterizations of Hf/Al/Ta 

ohmic contacts were carried out at room-temperature using a semiconductor 

parameter analyzer (Agilent B1500A) by the four-point method. Based on the I-V 

results obtained, the contact resistance (Rc), contact resistivity (ρc) and substrate 

sheet resistance (Rsh) were extracted for the Hf based ohmic contacts annealed at 

different temperatures by linear transmission line method (LTLM). Time-of-flight 

secondary ion mass spectroscopy (ToF-SIMS) was performed to investigate the 

metal inter-diffusion before and after the thermal treatment. In addition, high-

angle annular-dark-field (HAADF) scanning transmission electron microscopy 

(STEM) and energy-dispersive X-ray (EDX) spectroscopy were used to study the 

interface between the Hf-based ohmic contact and InAlN/GaN heterostructure. 

Besides, the I-V characteristics of the Hf/Al/Ta contact annealed at the optimum 

temperature were measured as a function of the sample temperature (from ~300 to 

500 K) to analyze the contact carrier transportation mechanism. Finally, 

preliminary thermal aging tests were conducted at 350 oC in air for more than 200 

hours to assess the Hf/Al/Ta contact thermal stability. 

4.3 Au-free transition metal based contacts on InAlN/GaN 

To evaluate the ohmic transition temperature of various transition metal (TM) 

based contacts on InAlN/GaN: TM/Al/Ta (15/200/20 nm), where TM = Hf, Ti, Ta, 

Zr, Nb, and V, annealing of these contacts was carried out in the temperature 

range from 550 to 700 oC. As shown in Figure 4.1, it has been found that 

Hf/Al/Ta contact demonstrated the lowest ohmic transition temperature and 
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became ohmic after annealing at 550 oC. On the other hand, the Ti, Ta, Zr, Nb 

based contacts become ohmic at a higher annealing temperature of 650 oC, while 

V based contacts attain ohmic properties at an even higher annealing temperature 

of 700 oC. It is also seen that the minimum Rc achieved is ~0.58 Ω·mm after 

annealing at 600 oC. The minimum Rc of Ti, Ta, Zr, Nb, and V based contacts, 

typically achieved at a temperature higher than their respective ohmic transition 

temperature, are found to be at least 115% higher than that of Hf/Al/Ta contacts. 

 

Figure 4.1 Contact resistance (Rc) and ohmic transition temperature for transition 
metal based ohmic contacts: TM/Al/Ta (15/200/20 nm), where TM= Hf, Ta, Zr, 
Nb, Ti and V. The contacts are annealed in vacuum for 60 s. 

 

4.4 Optimization of Hf/Al/Ta contacts on InAlN/GaN 

From the preceding discussion in Section 4.2, Hf/Al/Ta contact has been 

identified as the most promising candidate among the transition metal based 

contacts investigated. To optimize the ohmic contact properties, the effects of the 
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thickness of Hf and Al in the Hf/Al/Ta contacts on InAlN/GaN heterostructure are 

investigated by 1) varying the Hf layer thickness from 5 to 35 nm, while keeping 

the Al layer thickness constant at 200 nm; and 2) varying the Al layer thickness 

from 100 to 400 nm, while keeping the Hf layer thickness constant at 15 nm. The 

results (Rc) for the former as a function of annealing temperature are shown in 

Figure 4.2(a), and those for the latter are shown in Figure 4.2(b). In general, the 

Rc of Hf/Al/Ta contacts are sensitive to both the Hf and Al layer thicknesses, as 

seen in Figures 4.2(a) and 4.2(b). The Rc versus annealing temperature curves for 

Hf/Al/Ta contacts with different Hf and Al thicknesses exhibit similar trends, i.e., 

ohmic transition at 550 oC followed by a  decrease of Rc up to 550 or 600 oC, and 

a slight increase of Rc beyond that. From Figures 4.2(a) and 4.2(b), the optimized 

Hf/Al/Ta contact is identified to have thickness of 15/200/20 nm. 

Specifically, the I-V characteristics for optimized Hf/Al/Ta (15/200/20 nm) 

contacts with 5 µm spacing were measured and shown in Figure 4.3(a). It is 

observed that the I-V curve of the as-deposited contacts exhibit a very low current 

(~1.3 μA at 2 V). With increasing annealing temperature, Hf/Al/Ta contacts 

became ohmic at 550 oC and allow a much higher (by 4 orders of magnitude) 

current flow than that under as-deposited condition. The highest current is 

obtained for Hf/Al/Ta contacts under thermal annealing at 600 oC, which indicates 

an optimal annealing condition. The contact resistance (Rc) and contact resistivity 

(ρc) of Hf/Al/Ta (15/200/20 nm) contacts on InAlN/GaN are shown in Figure 

4.3(b), as a function of annealing temperature. As seen, the Rc and ρc values of 

Hf/Al/Ta contacts decrease sharply with increasing annealing temperature from 
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550 to 600 oC, and beyond that, they increase slightly with increasing temperature. 

The best values are Rc of 0.59 ± 0.03 Ω.mm and ρc of 6.7 ± 0.58 × 10-6 Ω.cm2 

achieved after annealing at 600 oC.  

 

Figure 4.2 Effect of variation in (a) Hf and (b) Al thickness on the contact 
resistance (Rc) as a function of annealing temperature for the Hf/Al/Ta contacts 
annealed at 600 oC. 
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Figure 4.3 Electrical characterizations of Hf/Al/Ta (15/200/20 nm) contacts on 
InAlN/GaN heterostructure: (a) current-voltage (I-V) characteristics for a contact 
spacing of 5 µm, and (b) contact resistance (Rc) and contact resistivity (ρc) as a 
function of annealing temperature. The contacts were annealed in vacuum for 60 s. 
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The Rc for Hf/Al/Ta contacts annealed at the optimum temperature of 600 oC are 

also plotted as a function of Al/Hf thickness ratio (tAl/tHf) in Figure 4.4, which 

shows that tAl/tHf of 13.3 may be close to the optimum that yields the lowest Rc.  

This observation of dependence on tAl/tHf is similar to that reported earlier for 

Ti/Al based ohmic contacts on (Al)GaN [86, 89, 107], where it was proposed that 

the aggressive reaction between Ti and (Al)GaN substrate could degrade the 

ohmic contact properties. To mitigate this, an Al layer was employed to reduce 

the aggressive Ti-(Al)GaN reaction. In the meantime, too much of Al was also not 

desirable as this would leave insufficient Ti to form Ti(Al)N at the (Al)GaN 

interface, which could  lead to increased Rc. Thus, there was a need to optimize 

the Al/Ti thickness ratio (tAl/tTi) in Ti/Al based ohmic contacts. 

 

Figure 4. 4 Dependence of Rc on Al/Hf thickness ratio (tAl/tHf) for the samples 
annealed at 600 oC. 
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We believe that similar to the case of Ti-Al based contacts on (Al)GaN, the Al 

layer in our Hf/Al/Ta contacts is needed to limit the reaction between Hf and 

InAlN/GaN (so as to limit HfN formation) to improve the ohmic contact 

properties, by forming Hf-Al alloy. As discussed above, the HfN phase is 

necessary for good ohmic contact but too much of it may not give better electrical 

properties owing possibly to the interface degradation induced, similar to that 

reported by Van Daele et al. for Ti-Al based contacts [89].  The Hf-Al alloy has 

been reported to form even at the low temperature of 350 oC [108], while HfN has 

been reported to form in the higher temperature range of 450-1200 oC by different 

methods [109-111]. Therefore, we believe the formation of HfN phase at 550 oC 

(the ohmic transition temperature for the Hf/Al/Ta contact) is limited by Hf-Al 

phase alloying. In our Hf/Al/Ta contacts, the optimum tAl/tHf ratio was found to be 

13.3. It is anticipated that for tAl/tHf greater than 13.3, the amount of Hf remaining 

after Hf-Al alloy formation is not sufficient to form HfN phase, which is essential 

to induce a highly doped layer near the metal-semiconductor interface desired for 

good ohmic contact. However, for tAl/tHf lower than 13.3, excessive HfN phase is 

formed, thus leading to increased Rc.  

Figure 4.5 shows the XRD spectra for Hf/Al/Ta (x/200/20 nm, where x = 5, 15 35 

nm) on InAlN/GaN after annealing at 600 oC. The spectrum for Hf/Al/Ta 

(15/200/20 nm) without annealing is also shown, where the peaks can be indexed 

corresponding to Hf, Al, and Ta element phases. The formation of Hf-Al alloy, 

i.e., HfAl3, is evident after annealing at 600 oC. Moreover, with increasing Hf 

layer thickness, the amount of HfAl3 phase also increases. This observation points 
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to the significant role of tAl/tHf discussed above. In addition, it is noted that the 

formation of HfN (which is critical to good ohmic contact formation) is not 

evidenced in the XRD measurements. We believe this could be due to the 

incomplete reaction at the metal-semiconductor interface or suppressing of signal 

by upper metal layers. 

 

Figure 4.5 XRD spectra for Hf/Al/Ta contacts: as-deposited and annealed at 600 
oC with different Hf layer thickness on InAlN/GaN. 

 

4.5 Ohmic contact formation for Hf/Al/Ta contacts on InAlN/GaN 

To examine the details of the reaction between contact metals and InAlN/GaN 

heterostructure, ToF-SIMS, STEM and EDX measurements were carried out. 

Figures 4.6(a) and 4.6(b) show the ToF-SIMS depth profiles of Hf/Al/Ta contacts 

on InAlN/GaN under the as-deposited and 600 oC annealing conditions. In general, 

as seen in Figure 4.6(b), changes in the profiles of Al, Hf, In, and N are clearly 
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noticeable after annealing at 600 oC compared to the as-deposited sample. The Hf 

and Al (from both the contact and InAlN/GaN heterostructure) inter-diffusion 

could signify the formation of Hf-Al alloy at 600 oC, which was confirmed by 

XRD (as shown in Figure 4.5). The Hf-Al alloy formation has also been reported 

to form at a low temperature of 350 oC. Furthermore, similar to the formation of 

Ti-Al alloy in the Ti/Al based ohmic contacts on GaN based heterostructures, the 

Hf-Al alloy formation could play a critical role (i.e., to limit HfN formation) to 

yield good ohmic contact properties. In our case, the possible formation of HfN 

can be linked with the observed out-diffusion of N, which can be understood as 

follows. The out diffusion of N at 600 oC as seen in Figure 4.6(b) is possibly due 

to the breaking of In-N bonds rather than Al-N bonds, since the bond strength of 

In-N bond (1.93 eV) is lower than that of Al-N bond (2.88 eV) [112]. At 600 oC 

annealing temperature, the In-N bonds could have been broken, owing to lower 

dissociation temperature of In-N bonds (~430 oC) [113] than Al-N bonds (~1800 

oC) [114] in vacuum, thus allowing N to react with Hf to form HfN.  Physically 

this process is triggered by the negative heat of formation of HfN (-88.2 kcal/mol) 

[94]. In addition, the out-diffusion of N could leave donor-like N-vacancies in 

InAlN/GaN, similar to the Ti-based ohmic contact on GaN and related materials 

[115-117], thus forming a thin heavily doped layer at the interface of Hf-based 

ohmic contact and InAlN/GaN substrate to reduce the barrier width, which is 

essential for efficient electron tunneling. Additionally, Ga out-diffusion is 

observed, which could be due to the breaking of Ga-N bonds, as the onset of 
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thermal dissociation of GaN around 600 oC annealing in vacuum has been 

experimentally evidenced [118].    

 

 

Figure 4.6 ToF-SIMS depth profiles of Hf/Al/Ta contact on InAlN/GaN (a) for 
the as-deposit condition, and (b) after annealing at 600 oC in vacuum for 60 s. 
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Figures 4.7(a) and 4.7(b) show the HAADF STEM images of Hf/Al/Ta contact on 

InAlN/GaN before and after 600 oC annealing, respectively. Although inter- and 

out-diffusion are observed in the ToF-SIMS profiles in Figure 4.6, the interface 

between Hf/Al/Ta contact and InAlN/GaN remains smooth after 600 oC annealing, 

as seen in figure 4.7(b). However, significant interface contrast changes are 

observed in Figure 4.7(b), suggesting that reaction between ohmic metal and 

semiconductor has occurred. It is also noted that the change in InAlN/AlN layer 

thickness is insignificant before and after 600 oC annealing, which implies 

minimal of InAlN/AlN has been consumed during annealing. This is also 

confirmed by the estimation of the InAlN/AlN layer thickness using the EDX line 

profiling across the interface between the Hf/Al/Ta contact and InAlN/GaN 

heterostructure, as shown in Figures 4.7(c) and 4.7(d). The InAlN/AlN layer 

thickness is estimated, by means of full width at half maximum (FWHM) of the 

Al peak, to be 10.5 and 10.0 nm before and after 600 oC annealing, respectively. 

Furthermore, Ta signal is not detected in Figure 4.7(d), which indicates Ta has not 

diffused to the interface between Ta/Al/Hf and InAlN/GaN after annealing at 600 

oC, which means the ohmic contact formation is mainly dependent on the Hf/Al 

layers and Ta serves essentially as a cap layer to prevent the oxidation of contact 

layers, in particular, Al. This is consistent with the ToF-SIMS result for Hf/Al/Ta 

annealed at 600 oC, as shown in Figure 4.6(b), where no significant Ta signal is 

observed at the metal-semiconductor interface.  
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Figure 4.7 HAADF STEM images of Hf/Al/Ta contact on InAlN/GaN (a) for the 
as-deposited condition, and (b) after annealing at 600 oC in vacuum for 60 s. EDX 
line scans across the interface between Hf/Al/Ta contact and InAlN/GaN for the 
sample (c) before and (d) after 600 oC annealing, where the line scan position and 
direction are indicated in (a) and (b). 

 

Figures 4.8(a) and 4.8(b) show the high resolution bight-field STEM images 

across the interface between Hf/Al/Ta contact and InAlN/GaN before and after 

600 oC annealing. It is noted that the contrast at the interface, as shown by arrows 

in Figures 4.8(a) and 4.8(b), is different between the as-deposited and annealed 
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samples, which could point towards the formation of Hf(Al)N after thermal 

treatment.  Moreover, broadening of the Hf layer and the region at the proximity 

of metal-semiconductor interface after annealing seen in Figure 4.8(b) indicates 

the inter-diffusion between Al and Hf. As the inter-diffusion of Al and Hf, and the 

formation of Hf-Al alloy have been clearly evident from ToF-SIMS in Figure 4.6 

and our previous XRD results in Figure 4.5, we believe the bright region within 

the metal near the InAlN layer in Figure 4.8(b) corresponds to an intermediate 

density Hf-Al alloy. The formation of this alloy is confirmed by spot EDX 

spectrum (O: 45.6, Al: 16.4 and Hf: 38.1 in atomic percentage), as show in Figure 

4.8(c). The high amount of oxygen observed here could be due to the oxidation 

during sample preparation. On the other hand, a dark region next to the bright 

region towards the metal-semiconductor interface, as shown by the arrow in 

Figure 4.8(b), could result from the reaction between metal and InAlN/GaN after 

annealing, which is most likely due to the formation of Hf-N, as a result of 

nitrogen out-diffusion observed in SIMS results.  
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Figure 4.8 High resolution bright-field TEM images across the interface between 
Hf/Al/Ta contact and InAlN/GaN (e) before and (c) after 600 oC annealing. (c) 
The spot EDX spectrum at O1 indicated in (b).       
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4.6 Carrier transport in Hf/Al/Ta contacts on InAlN/GaN 

As shown the TEM results before, the metal-semiconductor interface for the 

sample after annealing at 600 oC shown in Figure 4.8(b) is found to be smooth. 

This is in contrast to traditional Ti-based contacts (e.g., Ti/Al/Ni/Au) annealed at 

higher temperature (> 800oC), where spike formation or ohmic metal penetration 

(i.e., contact inclusions) through the InAlN barrier layer was detected, thus 

leading to a rough metal-semiconductor interface and forming a direct carrier 

transport path [59, 119, 120] between the contact and semiconductor. Owing to 

the existence of contact inclusions, a parallel network of low resistive paths has 

been proposed to understand the transport mechanism for these spike-based 

contacts [121]. For Hf/Al/Ta ohmic contacts on InAlN/GaN with a smooth metal-

semiconductor interface, the carrier transport mechanism could be different and 

this was investigated by means of the I-V-T measurements, as follows. 

To investigate the carrier transport mechanism for the samples annealed at 600 oC, 

I-V measurement was carried out at various sample temperatures, ranging from 

~300 to 500 K, as shown in Figure 4.9(a). The extracted values for Rc, ρc, and Rsh 

are plotted in Figure 4.9(b).  As seen in Figure 4.9(a), the current decreases with 

increasing sample temperature, which means the total resistance between two 

contacts increases with increasing temperature. This is due to the increase in Rsh, 

as shown in Figure 4.9(b), as ρc decreases with increasing temperature. As a result, 

Rc has a marginal temperature dependence since Rc = (Rsh × ρc)
1/2. The above 

phenomenon of Rsh increasing with increasing temperature was also widely 

reported for AlGaN/GaN heterostructures [122-124]. It is known that Rsh is 
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determined by the 2DEG density (ns) and the mobility (μ), i.e., Rsh ∝ 1/(nsμ). 

Since ns has a very weak temperature dependence [125, 126], the increase in Rsh is 

therefore believed to be mainly contributed by reduced μ, owing to lattice 

vibration at high measurement temperature, i.e., the optical phonon scattering 

[127, 128]. This conclusion could also be supported by the successful fitting, as 

shown in Figure 4.10, of Rsh to the following power-law relation with temperature 

[121, 122], 

 Rsh = Rsh0 ( ) ,  (4.1) 

where Rsh0 is the Rsh at T0 = 300 K and γ is the power index. The Rsh0 obtained 

was 525 Ω/□, and the γ was -1.55 from curve fitting. The discrepancy observed in 

the value of Rsh0 obtained from curve fitting and that from Hall measurements 

(~458 Ω/□) is likely due to the increased sheet resistance of InAlN/GaN after 

annealing at 600 oC [57]. It is noted that the γ value obtained is very close to those 

previously reported in InAlN:Mg/GaN systems (-1.57) [121]. Furthermore, this 

amplitude of γ is lower than that of AlGaN/GaN heterostructures (~-2.18-3.42) 

[122-124, 129], which indicates a weaker temperature dependence of Rsh (and 

2DEG mobility, μ, as well) in the InAlN/GaN substrate.  
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Figure 4.9 (a) Typical I-V curves for a contact spacing of 5 µm, and (b) Rsh, Rc 
and ρc of Hf/Al/Ta (15/200/20 nm) contacts on InAlN/GaN annealed at 600 oC as 
a function of measurement temperature. 
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Figure 4.10 Rsh-T graph for the Hf/Al/Ta contacts on InAlN/GaN annealed at 600 
oC. 

 

The measured ρc as a function of temperature for the 600 oC annealed samples are 

shown in Figure 4.11. It is obvious that the ρc is temperature dependent and it 

decreases with increasing temperature. To understand the carrier transport for 

Hf/Al/Ta ohmic contacts on InAlN/GaN with a smooth metal-semiconductor 

interface, we fit our ρc data to three well known carrier transport models [130] for 

metal-semiconductor contacts, i.e., thermionic emission (TE), thermionic field 

emission (TFE), and field emission (FE). It is found that our data fit well the TFE 

model, 

 = ( ) ℎ( ) ℎ( ) exp	( − ),  (4.2) 
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as shown in Figure 4.11. In the above expression, = ℎ/4 ∗⁄ ,	 =coth( ⁄ ), and = 4π ∗ ℎ⁄ is the Richardson constant. Here, h 

is the Planck constant, q is the electron charge, k is the Boltzmann constant, m∗  

and ε are the effective electron mass (0.22me) and dielectric constant of GaN 

(8.9ε0), respectively,  is the barrier height to carrier transport,  is the 

electron carrier concentration, and  is the energy difference between the 

conduction-band edge and the Fermi level of the semiconductor. The Richardson 

constant was calculated to be 26.64 Acm−2K−2 for GaN. The other parameters 

including ,  and  are derived from best fitting to the experimental data. 

The fitted values of   of 0.48 eV,  of 1.72 × 1019 cm-3 and  of 0.055 eV 

and the theoretical curve are shown in Figure 4.11.  is 1.72 × 1019 cm-3 derived 

from = ℎ/4 ∗⁄  . The characteristic energy E00 is related to the 

tunneling probability for electrons in ohmic contacts [131]. It should be noted that 

TE dominates when E00/kT ≤ 0.5, TFE dominates when 0.5 < E00/kT< 5, and FE 

dominates when E00/kT≥ 5. Here, for our case, E00/kT is 2.13 at 300 K, which lies 

in the TFE regime, thus suggesting that our fitting results are reasonable. 

Additionally, a high carrier concentration ND of 1.72 × 1019 cm-3, which is related 

to the 2DEG, is obtained and this corroborates well with efficient tunneling 

process through the thin InAlN layer. This also agrees with the study of Kim et al., 

where a similar order of magnitude of ND ~ 2.3 × 1019 cm-3   resulted in an 

significant tunneling process [121].  
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Figure 4.11 ρc –T graph for the Hf/Al/Ta contacts on InAlN/GaN annealed at 600 
oC. 

 

Furthermore, based on the observation in Figure 4.7, no spikes or contact 

inclusions were found through the InAlN barrier layer. This indicates that the 

tunneling of electrons from 2DEG has to overcome an effective barrier of 	~0.48 eV to transport through the InAlN barrier via the TFE process. This is 

different from the study of Kim et al.[121], where the contact inclusions (TiN) 

penetrate through the InAlN barrier layer, forming a parallel network of low 

resistive paths of TiN to allow direct carrier transport between the contact and the 

2DEG channel in GaN. As seen in Figure 4.3(a), the current for the as-deposited 

sample shows a very small current passing through the contacts before annealing, 

whereas a significant current was obtained after 600 oC annealing. This dramatic 

change of electrical property for the Hf-based ohmic contacts after annealing can 
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be understood through the series two-barrier model [122]. Figure 4.12 shows a 

schematic based on this model for our Hf/Al/Ta contacts on InAlN/GaN.  Before 

annealing, there is a relatively thick physical barrier of 10 nm InAlN/AlN 

between the metal and 2DEG ( ), thus resulting in limited chances for 2DEG 

to tunnel through it. However, as discussed earlier, a modified InAlN layer with a 

high density of donor-like N vacancies is formed in the proximity of the metal-

semiconductor interface (region 5 shown in Figure 4.12) after annealing at 600 oC. 

This could lead to the formation of two energy barriers, as shown in Figure 4.12, 

with  between metal and modified InAlN, and  between unaltered InAlN 

and 2DEG. The modified energy barrier  is likely to be very thin, thus 

allowing easy tunneling of electrons, leaving the carrier transport predominantly 

limited by the other barrier ( ) via TFE process. The barrier height obtained 

from TFE curve fitting of 	~0.48 eV is probably that of , or an effective 

value of the 2 energy barriers (  and ) in series. 

 

Figure 4.12 The energy band schematics of ohmic metal and InAlN/AlN/GaN for 
the samples before and after annealed at 600 oC. 
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4.7 Thermal stability of Hf/Al/Ta ohmic contact on InAlN/GaN 

The thermal stability of ohmic contacts is also a concern for electron devices in a 

long-term operation. Hence, as an evaluation of enduring reliability, preliminary 

thermal aging test at 350 oC in air of the Hf/Al/Ta (15/200/20 nm) contacts on 

InAlN/GaN was also carried out. The result is shown in Figure 8 with no 

significant change in Rc observed after 200 hours at 350 oC in air, indicating a 

thermally stable property for the Hf/Al/Ta contacts. 

 

Figure 4.13 Preliminary thermal stability testing in air for Hf/Al/Ta (15/200/20 
nm) contacts on InAlN/GaN at 350 oC. 

 

4.8 Summary 
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In this chapter, Hf/Al/Ta contact on InAlN/GaN was found to exhibit the lowest 

ohmic transition temperature of 550 oC compared to other transition metals (Ti, 

Ta, Zr, Nb, and V). A minimum contact resistivity of 6.7 ± 0.58 × 10-6 Ω·cm2 and 

contact resistance of 0.59 ± 0.03 Ω·mm are achieved for the optimized Hf/Al/Ta 

(15/200/20 nm) ohmic contact with annealing at 600 oC in vacuum. STEM and 

ToF-SIMS results have revealed that the contacts have a smooth metal-

semiconductor interface, and the formations of HfN and Hf-Al alloy near the 

interface, and these could be crucial to achieving good ohmic properties. The 

current-voltage-temperature (I-V-T) measurements have indicated a significant 

temperature dependence of the sheet resistance (Rsh) of InAlN/GaN and contact 

resistivity (ρc). The former follows a power-law (i.e., Rsh ∝ T1.55), owing possibly 

to optical phonon scattering, while analysis of the latter has shown that thermionic 

field emission (TFE) is the dominant carrier transport mechanism in the Hf/Al/Ta 

ohmic contacts on InAlN/GaN. The effective barrier height and carrier density of 

2DEG are found to be 0.48 eV and 1.72 × 1019 cm-3, respectively, leading to an 

efficient electron tunneling through the InAlN barrier. In addition, the carrier 

transport through the Hf/Al/Ta ohmic contacts on InAlN/GaN with a smooth 

metal-semiconductor interface can be understood using a series two-barrier model. 

Last but not least, the Hf/Al/Ta contacts on InAlN/GaN have been found to be 

stable at 350 oC in air for more than 200 hours. 
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Chapter 5  

Performance comparison between InAlN/GaN HEMTs 

with Hf/Al/Ta and Ti/Al/Ni/Au ohmic contacts 

From the experimental results presented in chapter 4, we can observe that 

Hf/Al/Ta ohmic contacts on InAlN/GaN exhibit good electrical properties with 

low thermal budget. In this chapter, we will investigate the effects of Hf/Al/Ta 

ohmic contacts with such low thermal budget on the device electrical 

characteristics with respect to comparable transistor with conventional 

Ti/Al/Ni/Au ohmic contacts.  

5.1 Introduction 

As we discuss in Chapter 4, the traditional Ti/Al/X/Au contacts usually need high 

annealing temperature (> 800 oC) to achieve a low contact resistance. At such 

high temperatures, the sheet resistance (Rsh) of the GaN based heterostructures 

can increase [57, 121], which may lead to higher on-state resistance (Ron) and 

limit the current delivery capability of transistors. In addition, the high annealing 

temperature can lead to spike formation across the interface between ohmic metal 

and semiconductor, thus leading to a lower device breakdown voltage [53, 132]. 

The high annealing temperature also causes the balling of molten Al due to its low 

melting point (660 °C), which leads to a rough contact surface. Furthermore, the 

formation of Al4Au alloy, which has a low melting point of 525 oC, in the 

Ti/Al/X/Au contacts results in an even worse contact surface roughness [83, 133]. 

The rough surface may cause reproducibility and reliability issues, especially in 
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highly scaled devices. Lastly, it is noted that Au is not compatible with the Si 

CMOS process, owing to its high diffusivity in silicon. Therefore, in this section, 

we will conduct a systematic comparison between Hf/Al/Ta and Ti/Al/Ni/Au 

contacts in terms of contact properties and device performance. 

5.2 Experiment 

The InAlN/GaN-on-Si heterostructure and ohmic contact fabricated are the same 

as the procedures described in Chapter 4. Hf/Al/Ta (15/200/20 nm) contacts were 

prepared at 600 oC in vacuum for 60 s, namely, under the optimal condition. The 

conventional Ti/Al/Ni/Au (25/200/40/100 nm) contact system was also deposited, 

by means of electron beam evaporation, to serve as a reference for comparison. 

The Ti/Al/Ni/Au ohmic contacts were annealed at 800 oC for 60 s in vacuum. 

Finally, two types of InAlN/GaN-on-Si HEMTs with either Hf/Al/Ta or 

conventional Ti/Al/Ni/Au (25/200/40/100 nm) source/drain ohmic contacts were 

fabricated, with Ni/Au (30/80 nm) as the Schottky gate metal. All the devices in 

the present study were not passivated. The DC current–voltage (I–V) 

characterizations and breakdown measurements of the InAlN/GaN HEMTs were 

carried out using an Agilent B1505A semiconductor parameter analyzer. Optical 

microscope and atomic force microscope (AFM) were used to examine the edge 

acuity and surface morphology of the contacts. Cross-sectional transmission 

electron microscopy (TEM) was used to investigate the interface between 

substrate and ohmic metals. 

5.3 Electrical properties comparison for LTLM structures 
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Figure 5.1(a) shows the I-V curves of Hf- and Ti-based contacts are linear, 

indicating their ohmic behavior and a higher current for Hf/Al/Ta contacts. Figure 

5.1(b) shows the total resistance (RT) between two contact pads, as a function of 

the contact pad spacing (d) of the LTLM structure, for the optimized Hf/Al/Ta 

(15/200/20 nm) and conventional Ti/Al/Ni/Au (25/200/40/100 nm) ohmic 

contacts on InAlN/GaN. The Rc, ρc and Rsh values extracted from the best linear 

regression fit of the RT-d for Hf/Al/Ta and Ti/Al/Ni/Au contacts are summarized 

in Table 5.1. The Ti/Al/Ni/Au contacts exhibit a Rc of 0.51 Ω.mm and ρc of 

4.75×10-6 Ω.cm2 after annealing at 800 oC for 60 s in vacuum, while the Hf/Al/Ta 

(15/200/20 nm) contacts show a slightly higher Rc of 0.58 Ω.mm and higher ρc of 

6.75×10-6 Ω.cm2 after annealing at 600 oC for 60 s in vacuum. Although the 

Ti/Al/Ni/Au contacts show a lower Rc and ρc after annealing, the higher annealing 

temperature has led to an increased Rsh of 566 Ω/□ (by ~13.4 %), compared to 495 

Ω/□ for the substrate with Hf/Al/Ta contacts annealed at a lower temperature of 

600 oC. The high annealing temperature induced Rsh degradation was also 

observed by other researchers [57, 121]. Therefore, the Hf/Al/Ta contact with a 

lower thermal budget can suppress the Rsh degradation of the InAlN/GaN 

heterostructure and could lead to a lower parasitic access resistance for HEMTs 

when used to replace the Ti/Al/Ni/Au contact. This is desirable, especially for 

high power HEMTs, which usually have several tens of microns of source-to-

drain spacing. 
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Figure 5.1 (a) I–V curves of the TLM patterns with a pad spacing of 5 μm for 
Hf/Al/Ta (15/200/20 nm) and Ti/Al/Ni/Au (25/200/40/100 nm) ohmic contacts. 
(b)Total resistance as a function of pad spacing of TLM patterns for Hf/Al/Ta 
(15/200/20 nm) and Ti/Al/Ni/Au (25/200/40/100 nm) ohmic contacts on 
InAlN/GaN 
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Table 5.1 The contact resistance, specific contact resistivity of Hf/Al/Ta 
(15/200/20 nm) and Ti/Al/Ni/Au (25/200/40/100 nm) contacts, and the sheet 
resistance of InAlN/GaN-on-Si substrate. The contact annealing temperatures are 
also shown. 

 

Annealing 

temperature 

(oC) 

Contact 

resistance 

(Ω.mm) 

Specific contact 

resistivity 

(Ω.cm2) 

Sheet 

resistance 

(Ω/□) 

Hf/Al/Ta 600 0.58 6.75×10-6 495 

Ti/Al/Ni/Au 800 0.51 4.75×10-6 566 

 

5.4 Contact surface morphology comparison 

Figures 5.2(a)-5.2(d) show the optical and AFM images of the surface for the 

Ti/Al/Ni/Au (25/200/40/100 nm) and Hf/Al/Ta (15/200/20 nm) contacts after 

annealing. Compared with Ti/Al/Ni/Au, Hf/Al/Ta possesses a much smoother 

surface. The root-mean-square (RMS) surface roughness (Ra) decreases 

drastically from 159 nm for Ti/Al/Ni/Au to 7.6 nm for Hf/Al/Ta. The much 

improved surface morphology for the Hf/Al/Ta contact is likely owing to its low 

annealing temperature (600 oC), which prevents the Al balling effect, and the 

absence of Al4Au formation. The high thermal budget of the Ti/Al/Ni/Au contacts 

(800 oC) has led to a rough surface morphology, which may cause problems of 

reproducibility and reliability when scaling down the devices as the ohmic 

contacts could not sustain good edge acuity at such a high temperature treatment. 
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Figure 5.2 Optical microscope and AFM images of the ohmic contact surface for 
InAlN/GaN HEMTs: (a) optical and (c) AFM images of Hf/Al/Ta (15/200/20 nm) 
after annealing at 600oC in vacuum for 60 s; (b) optical and (d) AFM images of 
Ti/Al/Ni/Au (25/200/40/100 nm) after annealing at 800 oC in vacuum for 60 s.  

 

5.5 Metal-semiconductor interface comparison 

Figures 5.3(a) and 5.3(b) show the cross sectional TEM images of Ti/Al/Ni/Au 

(25/200/40/100 nm) and Hf/Al/Ta (15/200/20 nm) on InAlN/GaN heterostructure 

after thermal annealing. In the Ti/Al/Ni/Au contact, as shown in Figure 5.3(a), 

significant metal inter diffusion has happened among the various metal layers 

after 800 oC annealing. It is seen that Al and Ni has reacted and out diffused to 

yield Ni-Al alloy on the top, while most of Au has in diffused and reacted with Al 

to form Au-Al alloy, which shows that Ni is not an effective Au diffusion barrier.  
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Ti and/or Ti-Al alloy has reacted with the substrate, leading to contact inclusions 

or spikes formation. Furthermore, it is seen that the contact inclusions penetrate 

through the InAlN barrier layer and are in direct contact with the GaN channel 

layer. This indicates that two electron transport mechanisms are probably 

responsible for the Ti/Al/Ni/Au ohmic contact formation[59, 119]: 1) a tunneling 

mechanism as a result of Ti reacting with the InAlN layer, thus forming Ti(Al)N 

and leading to a large number of donor-like nitrogen vacancies being formed in 

the proximity of the metal-semiconductor interface that helps reduce the width of 

the Schottky barrier; and 2) a direct electron transport path via the localized 

contact inclusions that penetrate the InAlN barrier layer. The two mechanisms are 

usually observed in the Ti/Al/Ni/Au contact after high temperature annealing. The 

contact inclusion transport mechanism should dominate over the tunneling 

mechanism, since it allows electrons to flow freely between the contacts and 

2DEG channel. This has been confirmed by the study for mechanism of carrier 

transport in Chapter 4. In the case of Hf/Al/Ta contact, as shown in Figure 5.3(b), 

all the metal layers (Hf, Al and Ta) do not mix well together due to the low 

annealing temperature, and no contact inclusion formation and penetration 

through the InAlN barrier layer is observed.  As demonstrated in Chapter 4, the 

main electron transport mechanism in the Hf/Al/Ta ohmic contact is thermionic 

field emission. 
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Figure 5.3 Cross-sectional TEM images of metal contacts on InAlN/GaN: (a) 
Ti/Al/Ni/Au (25/200/40/100 nm) after annealing at 800 oC, and (b) Hf/Al/Ta 
(15/200/20 nm) after annealing at 600 oC. 
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5.6 Device performance comparison 

5.6.1 DC characteristics 

To examine the impact of Hf/Al/Ta ohmic contacts, compared to conventional 

Ti/Al/Ni/Au ohmic contacts, on device performance, two types of InAlN/GaN-on-

Si HEMTs with either Hf/Al/Ta (15/200/20 nm) or Ti/Al/Ni/Au (25/200/40/100 

nm) source/drain ohmic contacts were fabricated. The Schottky gate metal used 

was Ni/Au (30/80 nm). The Hf/Al/Ta (15/200/20 nm) contacts were annealed at 

600 oC in vacuum for 60 s and the Ti/Al/Ni/Au (25/200/40/100 nm) contacts were 

annealed at 800 oC in vacuum for 60 s, while the Ni/Au Schottky contacts were 

not given any annealing. Figure 5.4 shows the typical DC output and transfer 

characteristics of the two types of HEMTs. The measured HEMTs have a gate 

length, LG = 1 μm; gate-to-source distance, LGS = 2 μm; and gate-to-drain distance, 

LGD = 4 μm. The gate width is WG = 2 × 50 μm. As shown in Figures 5.4(a) and 

8(b), a similar threshold voltage (Vth) of approximately -3 V is observed, which is 

expected since the Schottky contact metal is identical in the two types of HEMTs; 

a similar maximum drain current (ID,max) of 740 mA/mm at VGS = 1.5 V and a 

comparable maximum transconductance (gm,max) of 175 mS/mm at VDS = 10 V are 

obtained for the two types of HEMTs. On the other hand, the on-state resistance 

for Hf/Al/Ta HEMTs is 7.1 Ω.mm, which is slightly better than that of 

Ti/Al/Ni/Au HEMTs at 7.8 Ω.mm. This probably results from the increased Rsh of 

the substrate with Ti/Al/Ni/Au contacts, as shown in Table 5.1. Therefore, there is 

insignificant difference between InAlN/GaN HEMTs with Hf/Al/Ta (15/200/20 

nm) and Ti/Al/Ni/Au (25/200/40/100 nm) ohmic contacts, which means the Au-
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free Hf/Al/Ta ohmic contact is a good candidate to replace the traditional 

Ti/Al/Ni/Au contacts, thus allowing the fabrication of InAlN/GaN-on-Si HEMTs 

(using a Au free Schottky gate metal) in a CMOS process line. 

 

Figure 5.4 Measured DC I-V characteristics of InAlN/GaN HEMTs with 
Hf/Al/Ta and Ti/Al/Al/Au source/drain ohmic contacts: (a) IG-VGS characteristics 
measured at VDS = 10 V, and (b) ID-VDS curves. The device dimensions of the 
InAlN/GaN HEMTs are Lg/Lgs/Lgd/Wg = 1/2/4/2×50 μm. 
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5.6.2 Breakdown voltage  

Figure 5.5(a) shows the two-terminal and three-terminal off-state breakdown 

measurements for Hf/Al/Ta (15/200/20 nm) and Ti/Al/Ni/Au (25/200/40/100 nm) 

ohmic contacts based InAlN/GaN HEMTs. Here, we define the breakdown 

voltage, VBK, as the VDS when the off-state drain current exceeds 1 mA/mm. For 

both the Hf and Ti based metallization schemes, a higher breakdown voltage is 

observed in the two-terminal measurements, as shown in Figure 5.5(a), where the 

breakdown is induced by the gate leakage. The results indicate that the three-

terminal off-state breakdown is not induced by the gate injection as the Ni/Au 

Schottky gate allows only a low leakage through it for both the Hf/Al/Ta and 

Ti/Al/Ni/Au ohmic contact based HEMTs. To study the mechanisms of the three-

terminal off-state breakdown in the Hf/Al/Ta and Ti/Al/Ni/Au based InAlN/GaN 

HEMTs, the leakage current through the gate, source and drain contacts were 

measured during the breakdown measurements and these are presented in Figure 

5.5(b). For both types of HEMTs, the drain breakdown is mainly contributed by a 

much higher source current compared to a small gate leakage current, which 

means the three-terminal off-state breakdown could be attributed to the source-

carrier-injection induced breakdown mechanism [132, 134, 135]. In GaN HEMTs, 

the GaN buffer layer is slightly n-doped due to the background doping from 

intrinsic nitrogen vacancies or oxygen impurities during the buffer growth by 

MOCVD. Therefore, at a high enough drain bias, the electrons could be injected 

from the source into the GaN buffer layer, which subsequently drift to the peak 

electrical-field region at the drain-side gate edge to trigger impact ionization in 
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the channel, and eventually, lead to the source-carrier-injection induced 

breakdown. As shown in Figure 5.5(b), the InAlN/GaN HEMTs with 

Ti/Au/Ni/Au contacts exhibit a higher source leakage than HEMTs with Hf/Al/Ta 

contacts. As a result, the latter achieve a higher breakdown voltage of 280 ± 20 V, 

a significant improvement of ~ 53.3% over that of the former, 187 ± 36 V. 

The preceding discussion indicates that Hf/Al/Ta contacts could suppress the 

carrier injection from the source much better than Ti/Au/Ni/Au contacts. In 

InAlN/GaN HEMTs with Ti/Al/Ni/Au contacts, formation of contact inclusions or 

spikes has been observed due to metal diffusion under high temperature annealing, 

as shown in Figure 5.3(a). It is reasonable that the electric-field lines concentrate 

at the spikes and lead to a high electric-field region in the GaN buffer layer such 

that a local carrier injection into the GaN buffer layer is possible. In the case of 

InAlN/GaN HEMT with Hf/Al/Ta contacts, the interface between the source/drain 

ohmic contact and substrate is smooth, as seen in Figure 5.3(b), thus yielding a 

more uniform electric field distribution and suppressing the source carrier 

injection into the GaN buffer, therefore leading to an enhanced breakdown 

voltage. Replacing the Ni/Au gate by a gold-free gate, e.g., Ni/W, fully gold-free 

InAlN/GaN-on-Si HEMTs with improved three terminal off-state breakdown 

voltage can be realized using the Hf/Al/Ta source/drain ohmic contacts. 
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Figure 5.5 (a) Two-terminal and three-terminal off-state breakdown 
measurements, and (b) gate, drain, and source leakage currents (IG, ID, and IS) 
versus drain bias (VDS) in the off-state breakdown voltage measurement (VGS = 
−8 V) of InAlN/GaN HEMTs with Hf/Al/Ta (15/200/20 nm) and Ti/Al/Ni/Au 
(25/200/40/100 nm) contacts. The device dimensions of the InAlN/GaN HEMTs 
are Lg/Lgs/Lgd/Wg = 1/2/4/2×50 μm. 
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5.7 Summary 

In this chapter, a comprehensive comparison between InAlN/GaN-on-Si HEMTs 

with Hf/Al/Ta ohmic contacts and conventional Ti/Al/Ni/Au ohmic contacts have 

been studies in terms of TLM I-V results, contact surface morphology, metal-

semiconductor interface, and device performance. The RMS roughness of the 

contact surface is found to be as low as 7.6 nm for Hf/Al/Ta based contacts 

compared to 159 nm for conventional Ti/Al/Ni/Au contacts. TEM images show a 

smooth interface between the Hf/Al/Ta contact (with 600 oC annealing) and 

InAln/AlN/GaN heterostructure, in contrast to spikes formation for the 800 oC 

annealed Ti/Al/Ni/Au contacts. Moreover, insignificant changes are observed in 

terms of the DC output and transfer characteristics for InAlN/GaN-on-Si HEMTs 

with either the Hf/Al/Ta or Ti/Al/Ni/Au source-drain ohmic contacts. Whereas, 

the three-terminal off-state breakdown voltage of the former is improved 

significantly by ~100 V (~ 53.5 %) compared to the latter. This enhancement is 

possibly due to the absence of contact inclusions or spikes formation in the 

Hf/Al/Ta contacts, thus reducing source-carrier-injection induced breakdown 

mechanism. Based on our studies, the low thermal budget Hf/Al/Ta contact is a 

promising candidate to replace the Ti/Al/Ni/Au ohmic contact in InAlN/GaN-on-

Si HEMTs. 
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Chapter 6  

DC performance of InAlN/GaN HEMTs using LaAlO3 for 
surface passivation 

From the device results presented in the Chapter 5, the unpassivated InAlN/GaN 

HEMTs with Hf/Al/Ta contacts shows good performance. In this Chapter, the 

research work focuses on the evaluation of LaAlO3 as a surface passivation layer 

in InAlN/GaN HEMTs with the optimized Hf/Al/Ta contacts. 

6.1 Introduction 

As discussed in Chapter 1, InAlN/GaN HEMTs are promising for their excellent 

properties. However, applications of InAlN/GaN HEMTs are mostly restricted by 

surface trapping effects through drain current collapse. RF power is also much 

lower than that expected from the device DC characteristics due to the electron 

trapping states at the active surface region, which leads to dramatic degradation in 

the output power and the power-add efficiency (PAE) [136, 137].  Therefore, a 

passivation layer is necessary to reduce the density of surface states so as to 

mitigate the current collapse issue. The LaO3 [138] and Al2O3 [67] have been 

reported to be effective for suppressing current collapse by surface states 

passivation on InAlN/GaN HEMTs. However, there is no report available for the 

surface passivation studies on InAlN/GaN with LaAlO3. Furthermore, the LaAlO3 

has high thermal stability (>900 oC), and good immunity against moisture in the 

environment [69]. Hence, we will preliminarily examine the surface passivation 
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by LaAlO3 and the feasibility as an alternative to popular Al2O3 [67] and SiN [66] 

passivation in this work. 

6.2 Experiment 

The InAlN/GaN-on-Si devices fabricated used the same procedures described in 

Chapter 5. The DC current–voltage (I–V) characterizations of the InAlN/GaN 

HEMTs were carried out using an Agilent B1500A semiconductor parameter 

analyzer. Hf/Al/Ta (15/200/20 nm) contacts by sputtering were annealed at 600 

oC in vacuum for 60 s. The measured contact resistance is around 0.6 Ω.mm by 

using linear transmission-line method structure (LTLM) at room temperature. 

Schottky gate metallization was realized by sputtering, consisting of Ni/W (50/50 

nm) layers. The surface of HEMTs was then passivated by 25 nm LaAlO3 (LAO) 

deposited by PLD. DC characteristics measurements were measured and 

compared.  

6.3 Device performance 

6.3.1 Hall measurements 

Hall measurements were carried out on both LAO-passivated and unpassivated 

InAlN/GaN-on-Si HEMTs at room temperature and the results are summarized in 

Table 6.1. It was found that the unpassivated HEMTs yielded a sheet carrier 

density (ns) of 2.1×1013 cm-2, carrier mobility (μ) of 833 cm2/V·s and sheet 

resistance (Rsh) of 360 Ω/□. As for the LAO-passivated HEMTs, the electron 

carrier mobility decreased to 810 cm2/V·s, by around 3% after the 25 nm LAO 
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deposited. This decease of carrier mobility in the 2DEG channel after LAO 

passivation is probably due to an enhanced electron-electron coulomb scattering 

with a higher electron sheet density ns in InAlN/GaN heterostructure, which was 

increased to 2.43×1013 cm-2, almost by 16% compared to the unpassivated sample. 

This could be due to positive charges induced by LAO passivation layer at 

dielectric/InAlN interface, which is similar to other dielectric passivation in GaN 

HEMTs [139-141]. However, the real cause is still unclear in this preliminary 

work at this moment. Consequently, a 12% improvement of sheet resistance (∝ 

1/(ns × μ)) in InAlN/GaN was obtained in InAlN/GaN HEMTs with 25 nm LAO 

passivation compared to the unpassivated HEMTs. This indicates a lower 

resistance in the access region between the gate and source/drain, and hence better 

device performance for LAO-passivated devices is expected.  

Table 6.1 Properties of InAlN/GaN-on-Si wafer before and after 25 nm PLD 
LaAlO3 passivation. 

Passivation 
Carrier 

Concentration 

Mobility 

(cm2/V·s)

Sheet Resistance 

(Ω/□) 

Before 2.1 × 1013 cm-2 833 360 

After 2.43 × 1013 cm-2 810 317 

 

6.3.2 DC characteristics 

Two-terminal gate leakage current (IGS) of the unpassivated and 25 nm LAO 

passivated InAlN/GaN HEMTs was measured are shown in Figure 6.1. As seen, 

LAO-passivated HEMTs exhibit a gate leakage of ~2.22 × 10-2 mA/mm at VGS = -

10 V, which is similar to that of the unpassivated devices ~2.16 × 10-2 mA/mm at 
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the same bias. This shows that 25 nm LAO passivation does not degrade the 

Schottky gate performance.  

 

 

Figure 6.1 Two-terminal gate leakage current (IGS) measured on Schottky diodes 
before and after 25 nm LAO passivation.  

 

Figures 6.2(a) and 6.2(b) show the typical DC output and transfer characteristics 

of LAO-passivated and unpassivated InAlN/GaN-on-Si HEMTs, respectively.  

The measured devices have a gate length of 2 μm; gate-to-source distance of 2 μm 

and gate-to-drain distance of 10 μm. The gate width is 2 × 50 μm. As shown in 

Figure 6.2(a), where IDS-VDS characteristics with the gate biased from 1.5 V to -

6.5 V in steps of 1 V are shown, both types of HEMTs exhibit good IDS-VDS 

pinch-off and saturation characteristics. The maximum drain current density (IDmax) 
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of the LAO-passivated HEMTs is about 21% higher relative to the unpassivated 

HEMTs, increasing from 570 to 690 mA/mm. This improvement of device 

performance corresponds well to the decease of sheet resistance of the substrate in 

the access region of the LAO passivated HEMT. Similarly, as seen from Figure 

6.2(b), the peak extrinsic transconductance (gm,max) also increases by 20% from 

120 mS/mm for unpassivated device to 144 mS/mm for the HEMTs with LAO 

passivation. This demonstrates that a better gate control has been resulted from 

passivation of the surface states and the virtual gate effect could be mitigated by 

the LAO passivation. In addition, we observed a negative shift in the threshold 

voltage (Vth) of the LAO passivated HEMTs compared to the unpassivated 

devices from -3.3 to -3.7 V. This corresponds to the higher carrier concentration 

in the 2DEG channel originated from surface passivation, as shown from Hall 

data in Table 6.1.  
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Figure 6.2 Measured DC I-V characteristics of InAlN/GaN HEMTs without 
passivation and with 25 nm passivation layer: (a) IDS-VDS curves and (b) IDS-VGS 
characteristics measured at VDS = 10V. The device dimensions are Lg/Lgs/Lgd/Wg 

= 2/2/10/2 × 50 μm. 
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To exame the current collapse under large drain bias, the devices were first biased 

at the off-state by applying a gate bias, VGS = -15 V, at VDS = 50 V for 100 s. 

Immediately after that, the devices were switched to the on-state by applying VGS 

= 0 V and VDS = -1 V to measure the IDS-VDS curves. Figure 6.3 shows the IDS-VDS 

results for both the passivated and unpassivated devices. For the unpassivated 

devices, current collapse is clearly seen after the voltage stress, as indicated by the   

decrease in the saturation current and the increase in the on-resitance, as shown in 

Figure 6.3(a).  This could be caused by the trapping of electrons, from the reverse 

gate leakage under stress condition, by surface states in the proximity of gate 

region to form a virtul gate. This resultant virtual gate effect could cause the 

depletion of carriers in the 2DEG channel and thereby increase the parastic 

resistance.  On the other hand, for the LAO passivated devices shown in Figure 

6.3(b), the current collapse is suppressed significantly since no obvious changes 

are observed for the saturation current and on-resistance before and after voltage 

stress.  This indicates that the virtual gate effect is greatly mitigated and the 

surface states can be effectively passivated by LAO. For instance, the change in 

the on-resistance (ΔRon) for passivated devices is reduced to 0.5%, much lower 

than that for unpassivated devices of 28.5% at VGS = 0 V, which means LAO 

could be a good passivation layer to improve the performance of InAlN/GaN 

HEMTs.  
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Figure 6.3 Measured IDS-VDS curves for (a) unpassivated and (b) passivated 
InAlN/GaN HEMTs before and after under voltage stress. The stress condictions 
are VGS = -15 V and VDS = 50 V for 100 s. The device dimensions are 
Lg/Lgs/Lgd/Wg = 2/2/10/2 × 50 μm. 
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6.4 Summary 

In this chapter, the effects of surface passivation on DC performance of 

InAlN/GaN HEMTs have been investigated using PLD LAO layer. Hall 

measurements have shown a 12 % improvement of sheet resistance of InAlN/GaN 

substrate with LAO passivation relative to the unpassivated InAlN/GaN. As for 

the gate leakage, no obvious difference was observed between unpassivated and 

passivated device, indicating LAO passivation did not weaken gate performance 

in InAlN/GaN HEMTs. Furthermore, an increase in IDmax (21%) an gm,max (20%) 

has been observed in the LAO-passivated InAlN/GaN HEMTs compared to the 

unpassivated, which implies the effective passivation for surface states from LAO 

passivation. Lastly, the suppressing of virtual gate effect in InAlN/GaN HEMTs 

has been demonstrated by LAO passivation after voltage stress. 
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Chapter 7 

Summary and suggested future works 

7.1 Summary 

In the last decade, significant progress in InAlN/GaN HEMTs has been achieved.  

However, Au-free with low thermal budget ohmic contact schemes are still highly 

demanded to enable InAlN/GaN HEMTs device fabrication in silicon fab and 

hence lower the cost. The current work was thus motivated by the realization of 

the CMOS compatibility and improvement of device performance by reducing the 

access resistance for InAlN/GaN HEMTs. We looked into the investigation of 

gold-free low-thermal budget ohmic contacts and also passivation techniques.      

7.1.1 Ti/Al and Hf-based ohmic contacts on n-GaN 

We first studied the Ti/Al contacts with 2-step annealing and Hf/Al/Ni/Au 

contacts on n-GaN, which are the preliminary evaluation works for the fabrication 

of high performance GaN-based HEMTs.  First, the feasibility of Ti/Al contacts 

on n-GaN processed by a two-step annealing was examined. The two-step 

annealing method was effective to achieve a good surface morphology but 

requires high annealing temperature (> 750 oC) to form low contact resistivity. It 

has been evident that the first-step annealing at 600 oC leads to the formation of 

stable TiAl3 phases.  The 30/120 nm Ti/Al contact on n-GaN shows the tradeoff 

between surface roughness and specific contact resistivity, with a minimum 
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contact resistivity of 4.87×10-6 Ω·cm2 and a RMS roughness less than 10 nm 

obtained.  

However, although the two-step annealing method shows a good tradeoff between 

surface roughness and contact resistivity, the thermal budget (~750 oC) is still not 

low enough to benefit device applications. Considering the lower workfunction of 

Hf (3.9 eV) than that of Ti (4.33 eV), and a higher enthalpy for Hf nitride 

formation (-369.03 kJ/mol) than that of TiN (-347.2 kJ/mol), Hf nitride is 

expected to be more thermodynamically favorable than TiN.  Thus, Hf-based 

ohmic contact on n-GaN has been introduced and the comparison to traditional 

Ti/Al/Ni/Au contact was also carried out. It has been confirmed that Hf/Al/Ni/Au 

metallization can form ohmic on n-GaN with a low specific contact resistivity at 

650 oC.  

7.1.2 Hf/Al/Ta ohmic contact on InAlN/GaN heterostructures 

Hf/Al/Ta contacts on InAlN/GaN were found to exhibit the lowest ohmic 

transition temperature of 550 oC compared to other transition metals (Ti, Ta, Zr, 

Nb, and V). A minimum contact resistivity of ~6.7×10-6 Ω·cm2 and contact 

resistance of ~0.59 Ω·mm are achieved for the optimized Hf/Al/Ta (15/200/20 nm) 

ohmic contact with annealing at 600 oC in vacuum. The mechanisms of ohmic 

contact formation and carrier transport of low temperature (600 oC) annealed 

Hf/Al/Ta on InAlN/GaN heterostructure have been investigated. The Hf/Al/Ta 

ohmic contacts have a smooth interface with InAlN/GaN, and the formations of 

HfN and Hf-Al alloy near the metal-semiconductor interface are critical to 
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achieving good ohmic contact. Thermionic field emission (TFE) is found to be the 

dominant carrier transport mechanism in the Hf/Al/Ta ohmic contacts on 

InAlN/GaN and analysis of the TFE model has revealed a high carrier density of 

1.72 × 1019 cm-3 and an effective barrier height of 0.48 eV.  The sheet resistance 

of the InAlN/GaN substrate is shown to increase with temperature by the power-

law (∝ T1.55). A series two-barrier model has been used to explain the carrier 

transport through the Hf/Al/Ta ohmic contacts on InAlN/GaN with a smooth 

metal-semiconductor interface. Furthermore, it has been shown that the Hf/Al/Ta 

contacts on InAlN/GaN are stable at 350 oC in air for more than 200 hours, 

indicating a good thermal stability for potential device applications. 

7.1.3 Performance comparison between InAlN/GaN HEMTs with Hf/Al/Ta 

contacts and Ti/Al/Ni/Au contacts 

A comparative study was conducted between InAN/GaN HEMTs with Hf/Al/Ta 

source/drain contacts and those with traditional Ti/Al/Ni/Au contacts in terms of 

TLM I-V results, contact surface morphology, metal-semiconductor interface, and 

device performance. The RMS roughness of the contact surface is found to be 

much smoother for Hf/Al/Ta based contacts compared to that for conventional 

Ti/Al/Ni/Au contacts. TEM images show a smooth metal-semiconductor interface 

for Hf/Al/Ta contacts, which is different from spikes formation for the 800 oC 

annealed Ti/Al/Ni/Au contacts. The InAlN/GaN HEMs with Hf/Al/Ta contacs 

shows a comparable DC performance to those InAlN/GaN HEMTs with 

Ti/Al/Ni/Au contacts. More importantly, the three-terminal off-state breakdown 

voltage of the device with Hf-based contacts is improved significantly by ~100 V 
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(~ 53.5 %) compared to those with Ti-Au based contacts. This enhancement is 

possibly due to the smooth meta-semiconductor interface in Hf/Al/Ta contacts, 

thus suppressing source-carrier-injection induced breakdown mechanism. 

7.1.4 InAlN/GaN HEMTs with LaAlO3 passivation 

A preliminary study of LaAlO3 (LAO) passivation has been examined in 

InAlN/GaN HEMTs with Hf/Al/Ta contacts.  The sheet resistance of InAlN/GaN 

heterostructure can be reduced by 12% due to 25 nm LAO passivation.  For the 

device performance, no obvious difference between unpassivated and passivated 

device implies that LAO layer did not degrade gate performance in InAlN/GaN 

HEMTs after passivation. Moreover, it indicates the effective passivation for 

surface states from LAO layer due to the fact that an increase of 21% in IDmax and 

20% of gm,max have been obtained in the LAO-passivated InAlN/GaN HEMTs 

compared to the unpassivated. 

7.2 Suggested Future works 

7.2.1 Gate-first InAlN/GaN HEMTs with self-aligned source/drain 

With the Au-free low-thermal budget Hf/Al/Ta contacts on InAlN/GaN developed 

in this thesis, it is natural to apply this contact scheme into the gate-first 

InAlN/GaN HEMTs with self-aligned source/drain. Due to the low thermal 

budget needed for Hf/Al/Ta contacts on InAlN/GaN, the Schottky gate or gate 

stack could be survive after the ohmic contacts annealing, which make it possible 

to realize the gate-first process. The gate-first process combined with the self-

aligned source/drain contacts will further decrease the access resistance coming 
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from the semiconductor resistance in the access region between gate and 

source/drain. Therefore, with this approach aforementioned, the device 

performance could be improved dramatically in terms of high-power and high-

frequency application for InAlN/GaN HEMTs.  

7.2.2 Optimization of LAO passivation in InAlN/GaN HEMTs 

As shown in Chapter 6, the LAO passivation is promising in terms of the 

preliminary results of InAlN/GaN HEMTs.  Thus, a few futures works below 

could be carried out based the preliminary studies in Chapter 6. 

(1) In the future, the optimization of LAO passivation technique is necessary, 

which could be carried out by varying a series of parameters including the layer 

thickness, post-deposition annealing and so on.  Based on the optimized LAO 

passivation, gate-lag and drain-out lag output characteristics of InAlN/GaN 

HEMTs could be studied. Furthermore, the dynamic on-resistance (Ron) transients 

also could be investigated by time-dependent measurement [142]. Using this 

time-dependent measurement for Ron at different temperatures, the mechanism of 

LAO passivation could be studied quantitatively in terms of time constants and 

energy levels for the surface traps on InAlN/GaN.  

(2) The effects of LAO passivation on the InAlN/GaN HEMTs frequency 

performance could be investigated also since the surface states have a significant 

influence on InAlN/GaN HEMTs especially for the high-frequency capability.  

For instance, small signal measurements could be performed before and after 

passivation to study the passivation effect on fT and fMAX.  The passivation effect 
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on microwave noise performance could also be explored. Large signal 

measurements could be employed to study the effects of LAO passivation on 

output power and power-added efficiency.  

(3) Recently, a simulation study by H. Hanawa proposed a way to improve the 

breakdown voltage by introducing a high-k passivation layer, which could smooth 

the electric field profiles between gate and drain in GaN HEMTs [143]. Therefore, 

it could be interesting to investigate the breakdown behavior of InAlN/GaN 

HEMT devices under high-k LAO passivation.  
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