
QUALITY IMPROVEMENT AND VALIDATION

TECHNIQUES ON SOFTWARE SPECIFICATION AND

DESIGN

LIU SHUANG

(B.Eng., Renmin University of China, 2010)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48809997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources

of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

LIU SHUANG

23 March 2015

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to those who assisted

me, in one way or another, with my Ph.D study in the past five years.

First of all, I would like to give my most sincere tribute and gratitude to my supervisors

Dr. Bimlesh Wadhwa and Dr. Jin Song Dong, for their guidance, encouragement and

insights, which guide me through my PhD life; and for their careful reading and constructive

criticisms and suggestions on drafts of this thesis. I will always be grateful for their timely

help and support during my hard days.

Furthermore, I would like to thank my mentors: Dr. Sun Jun and Dr. Liu Yang. Their

academic vision and timely discussions always inspire me. I own special thanks to Dr. Sun

Jun, for all the insightful guidance and inspiring discussions.

In addition, I would like to acknowledge the support of my thesis advisory committees: Dr.

Siau-Cheng Khoo and Dr. Wei Ngan Chin for their constructive comments on my research.

I would like to thank the numerous anonymous referees who have reviewed parts of this

thesis prior to publication in conference proceedings.

I would also like to thank all my lab mates in Programming Language and Software Engineer

Lab 1. Their help and friendship enriched my life in Singapore.

Last but not the least, I’d like to thank my parents Liu Zunli and Sha Guizhen, for all their

love and belief in me.

Contents

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Outline and Overview . 4

1.3 Acknowledgment of Published Work . 6

2 Background 7

2.1 Software Development Process . 7

2.2 Use Case . 8

2.3 UML State Machines . 11

3 Finding Intra-defects in Use Case Descriptions 15

3.1 Introduction . 15

3.2 Preliminary . 18

3.2.1 Definitions in Use Cases . 18

3.2.2 UML Activity Diagram . 20

3.3 Overview of Our Approach . 21

3.4 Approach Details . 26

3.4.1 Pre-processing Use Case Documents 26

3.4.2 Free Text Parsing . 26

3.4.3 Analyzing Parse Trees . 27

i

3.4.4 Building Activity Diagram . 32

3.4.5 Formal Definition for Use Case Defects 33

3.4.6 Finding Defects . 35

3.4.7 Training Dependency Parser . 38

3.5 Evaluation . 39

3.5.1 Accuracy of Free Text Parsing . 40

3.5.2 Accuracy of the Activity Diagram Builder 43

3.5.3 Accuracy of the Defect Finder . 43

3.6 Discussions . 45

3.7 Chapter Summary . 47

4 Improve Use Case Document Quality Through Active Learning 49

4.1 Introduction . 50

4.2 Running Example . 53

4.3 Preliminary . 60

4.4 Detailed Approach . 63

4.4.1 Natural Language Parsing and Analysis 64

4.4.2 Learn the DFAs . 66

4.4.3 Construct Relation Graphs . 72

4.4.4 Orchestrate EDFAs . 75

4.5 Evaluation . 77

4.6 Chapter Summary . 82

5 Model Checking Aided Design Verification 83

5.1 Motivating Example . 83

5.2 Introduction . 85

5.3 Basic Asumptions on UML State Machine Semantics 87

ii

5.4 Formal Syntax for UML State Machines . 88

5.5 Formal Semantics of UML State Machines . 93

5.5.1 Active State Configuration Changes 93

5.5.2 Behavior Execution . 94

5.5.3 The Run to Completion Semantics . 97

5.5.4 System Semantics . 99

5.6 USMMC: A Model Checker for UML State Machines 101

5.6.1 Architecture Design of USMMC . 102

5.6.2 Implementation Choices for USMMC 104

5.7 Evaluation . 106

5.8 Limitations . 107

5.9 Chapter Summary . 108

6 Related Work 111

6.1 Finding Defects in Use Cases . 111

6.2 Learning Behavior Models from Scenarios . 113

6.2.1 Learning Behavior Models from Scenarios Captured by Use Cases . . 113

6.2.2 Learning Behavior Models from Scenarios Captured by MSC 115

6.3 Model Checking on UML State Machines . 117

6.3.1 Translation based approaches . 117

6.3.2 Operational Semantics for UML State Machines 125

6.3.3 Summary . 128

6.4 Chapter Summary . 128

7 Conclusion and Future Work 129

7.1 Conclusion . 129

7.2 Future Work . 131

iii

Bibliography 133

Appendix A Auxiliary Definitions on UML State Machine Semantics 145

Appendix B Comaprison of Work on Model Checking UML State Machines155

iv

Summary

Requirements specification and system design models are the fundamental documents in
the software development life cycle. They are the major references for understanding user
requirements and to guide later system development and maintenance activities. It has been
reported that more than 60% of the errors in software products are introduced during the
design phase. Errors introduced in the early phases are much harder and more expensive
to detect than errors introduced in the coding phase. It is thus highly desirable to improve
the quality of software requirements specifications and design models by detecting software
defects as early as possible.

In this thesis, we are motivated to provide techniques to improve the quality of software
requirements specifications and design models. For software requirements specifications,
we propose two works that focus on improving the quality of use cases, which are widely
adopted by different software development methodologies to capture user requirements.

First, we propose to find defects in use case descriptions to improve the consistency and
integrity aspects of a single use case. We adopt advanced natural language processing
techniques to automatically extract action tuples and predicates from use case sentences. We
formally define common defects, e.g., inconsistency and incompleteness related defects, in
use case documents and propose algorithms to find those defects based on the automatically
extracted action tuples, predicates and the control flow related information. The found
defects are linked to the original descriptions in use cases to aid improving the quality of
the use case document.

Second, we propose to further improve the use case quality by finding missing scenarios and
preconditions/postconditions which involve multiple use cases. We adopt the active learning
techniques to learn a Deterministic Finite State Automaton (DFA) for each actor/agent in
a use case document. During the learning process, our method finds missing scenarios and
missing preconditions/postconditions through interactions with users. The missing scenario
is presented as a sequence of actions which is easy to be added to the use case document to
improve the integrity of the document.

To find sophisticated, nontrivial errors which may be introduced in the system design phase,
we propose to improve the quality of UML state machines models, which are widely adopted
to capture the dynamic behaviors of system designs. Our work focuses on finding safety and
liveness related defects in UML state machines automatically. We provide an operational
semantics for the complete syntax of UML state machines and implement the semantics into
the PAT framework, which enables model checking on UML state machines to find liveness
and safety related defects.

v

We evaluated all of our methods with real world documents or models. The evaluation
results show that our methods are effective in improving the quality of requirements speci-
fications and design models.

Keywords: Use Case, Natural Language Processing, Model Checking, Active
Learning, UML state machines

vi

List of Tables

3.1 Rules for extracting action tuples . 29

3.2 Templates for extracting condition predicates 30

3.3 Use Case documents statistics . 39

3.4 Accuracy of parsing . 41

3.5 Experiment results of defect detection . 44

4.1 Results of the case study . 79

5.1 Type notations . 88

5.2 Evaluation results . 105

B.1 Summary of translation based approaches . 156

B.2 UML state machines features supported by translation based approaches . . . 157

B.3 Syntax and Semantic domains of surveyed operational semantics 158

B.4 UML state machines features supported by semantic approaches 159

i

List of Figures

2.1 Common activities in software development 8

2.2 Example of use case description . 9

2.3 The RailCar state machine . 11

3.1 Example activity diagram . 21

3.2 Overview of the defect detection approach . 23

3.3 Example of a dependency tree . 24

3.4 Example of a phrase structure tree . 24

4.1 Overview of the quality improvement approach 52

4.2 Sample use cases . 54

4.3 (a) The NFA for use case 2 in Figure 4.2; (b) use case 3 in Figure 4.2; (c) the
merged NFA; (d) the corresponding DFA . 55

4.4 The partial DFAs for Ticket Monitor . 56

4.5 Relation graph of Ticket Monitor EDFAs . 57

4.6 The overall DFA for Ticket Monitor . 59

4.7 The observation tables (a) and (b) in the first learning round and the first
candidate DFA (c) . 62

4.8 The observation tables (a) and (b) in the second learning round and the
second candidate DFA (c) . 62

4.9 The observation tables (a) and (b) in third learning round and the third
candidate DFA (c) . 63

i

5.1 State machine for GSYS . 84

5.2 Illustration of transition execution sequence 87

5.3 The architecture of USMMC . 102

ii

List of Algorithms

1 Build Activity Diagram . 31

2 Check Unnecessary Strong Precondition . 35

3 Check Conflict Predicates . 37

4 Generate an NFA from a Structured Use Case 66

5 Candidate Query . 70

6 Build Relation Graph . 74

7 Build Overall EDFA . 76

i

Chapter 1

Introduction

1.1 Motivation and Goals

Software development, one of the key activities in Software Development Life-cycle (SDLC),

includes activities such as defining functional requirements, design, coding and testing.

Among these activities, capturing functional requirements and system design are the major

activities before the real coding phase. They are important for three reasons. Firstly,

they serve as the main activities to communicate with stakeholders to understand their

requirements. Secondly, they serve as the basis for the later system development phases,

e.g., coding, testing and verification. Last but not the least, they also serve as the key

reference in the process of maintenance and upgrade after software deployment. It is thus

highly desirable to maintain a good quality of the software requirement specifications and

design models.

The importance of finding defects1 in an early development stage and improving the quality

1We use the word defect to represent various problems, including inconsistency, incomplete description,
deadlock situation, etc., that may be introduced during requirement analysis and system design phase.

1

1.1. MOTIVATION AND GOALS 2

of requirement specification and system design models has been well recognized during the

past decade. It has been reported that “More than 60% of the errors in a software product

are committed during the design and less than 40% during coding.” [86], “Finding and fixing

a software problem after delivery is often 100 times more expensive than finding and fixing

it during the requirements and design phase” [31]. Therefore either for financial savings

or system robustness concerns, finding defects in an early stage is of great importance.

Actually, successful IT projects have spent about 28% of the effort on the requirement

phase [66], which reflects the importance of requirement analysis.

Jacobson et al. [68] proposed a use case driven approach to capture user requirements. Hav-

ing been pragmatically evolved based on more than 20 years of practices, use case 2.0 [69]

now seeks the benefits of “agile, iterative, incremental development at an enterprise level”.

Use cases have been adopted widely by various different software development methodolo-

gies, e.g., Model-driven Engineering and Object-Oriented Software Engineering (OOSE).

Use cases are also adopted by the Object Management Group (OMG) and have become

one of the UML [7] notations. The major part of a use case document is written in natural

language. UML use case diagram, UML activity diagram, UML sequence diagram and UML

state machine diagrams are (optionally) used as complements to visualize use cases.

Natural language is imprecise and ambiguous in nature, therefore, defects are inevitably

introduced into use case documents. These defects, including inconsistencies and incomplete

statements in each use case, may introduce barriers to understanding, which may further

lead to ambiguities in model design, failures of software development as well as maintenance

problems. Finding defects in use case documents is thus an important task. Traditionally,

defects in use cases are inspected manually, which is tedious and error-prone. Moreover,

manual inspection cannot meet the increasing demand on the short delivery time. Therefore

automatic defect detection in use cases is gaining increasing attention. Recently, several

works [55, 56, 118, 117, 134] are proposed to find consistency defects in use cases. The

1.1. MOTIVATION AND GOALS 3

completeness related issues, e.g., whether alternative flows/conditions and exceptions are

addressed thoroughly and clearly, are not considered. Moreover, existing approaches [118,

117, 134] apply document-specific templates on the results of the simple natural language

parsing technique, i.e., Part-of-Speech (POS) parsing. Since the templates are document

dependent, the application of those approaches are limited.

In addition to the incompleteness which exists within a single use case, there are also

incompleteness related problems involving multiple use cases. Since use case is a scenario

based technique to capture user requirements, it is always the case that only a partial

behavior of an actor/agent is properly described. Missing of scenarios may hinder the

understanding of the requirements and hide potential consistency related defects. There are

existing works [41, 97, 125, 132] which generate state based transition systems from scenarios

captured by Message Scequence Chart (MSC) [4]. However, MSC is a formal structure and

is not easy to obtain at the first hand. Usually strong knowledge and experience on UML

modeling are required to construct MSC from raw natural language descriptions, which

are the initial form of scenarios. Moreover, it is hard for stakeholders to get involved

with such a formal structure, which further raises difficulties for specification validation.

Another drawback of these approaches is that they all assume the scenarios, which need

to be synthesized, would start with the same preconditions. However this is usually not

true. In particular, preconditions and postconditions, which capture the valid starting and

ending status of a use case, should be properly considered.

In the design phase, various models are usually developed as an abstraction to reflect d-

ifferent aspects of a system. UML state machines are widely used to model the dynamic

behaviors of a system. Safety and liveness properties need to be verified on those models in

order to uncover design defects. Model checking [38], an automatic verification technique,

has shown its potential in automating the formal verification process on both hardware and

software designs, especially on verifying the system dynamic behaviors. There are approach-

1.2. OUTLINE AND OVERVIEW 4

es which provide model checking support for UML state machines. Those approaches either

are based on a formal operational semantics [51, 85, 128, 45] for UML state machines or

provide translation rules [22, 26, 33, 36, 84, 104, 139] from UML state machines to existing

formal languages such as Abstract State Machine (ASM) [48], Petri Nets [71] and specifi-

cation languages, such as Promela [13], CSP [3] and CSP# [120], of model checking tools.

The operational semantics in existing approaches only cover a subset of UML state machine

features. The translation-based approaches depend on the target language as well as the

tool support for the target language, thus are fragile to changes on target languages.

Motivated by the importance of improving the quality of requirement specification and

design models and the weaknesses of existing works, we are devoted to proposing methods

to improve the state of the art. Since we are focusing on a development phase where

stakeholders are expected to be actively involved, our methods take active consideration on

getting stakeholders to be involved and thus better improve the quality of the requirements

and designs.

1.2 Outline and Overview

The main contribution of our work is to propose methods to uncover defects introduced in

requirement and design phases early. Our methods reflect the found defects in formats that

are easily understandable by stakeholders, thus can directly help to validate and improve

the quality of requirement specification and design models.

The remaining of this thesis is organized as follows:

Chapter 2 provides the background knowledge, including basis on software development

process, use case and UML state machines, of this thesis.

1.2. OUTLINE AND OVERVIEW 5

In Chapter 3, we present our work on early intra-defects 2 detection in use case documents.

We explore advanced natural language processing techniques [140] to parse the sentences

in the use case descriptions. We then provide analysis rules to analyze the parsing results

and automatically extract entities from parse trees. The analysis rules we proposed are

based on the general English grammar and have good adaptability compared to document-

specific templates. We formally define common defects, considering both consistency and

completeness issues, in use case documents. Our methods successfully find defects in the

use case documents of a real system and provide defect reports which link the defects to the

original use case specification document. The found defects are confirmed by the developers

to be real defects.

In Chapter 4, we present our work on improving the quality of use case documents through

learning and user interaction. We adopt advanced natural language parsing techniques [140]

and active learning techniques [23] to incrementally learn a DFA from the behaviors in use

case scenarios. Our methods find potential missing scenarios, preconditions and postcondi-

tions during the process of active learning, through interactions with users. The interaction

with users is presented in the format of action sequences in natural language, which greatly

improves the involvement of users.

In Chapter 5, we present our work on model checking aided design validation. To be

specific, our focus is on UML state machines. We propose an operational semantics for the

complete syntax set of UML 2.4.1 [7] state machines. Our proposed semantics cover all

the syntax features of the latest UML state machine specifications and respect to the UML

state machine metamodel. We implement the semantics in a self-contained model checker

USMMC [92], which enables model checking on UML state machines. We compare our tool

with an existing UML state machine model checking tool HUGO [18] and the results show

that our tool outperforms HUGO on all the UML state machine models we adopted from

2defect within a single use case

1.3. ACKNOWLEDGMENT OF PUBLISHED WORK 6

the literature.

In Chapter 6, we review the existing approaches that are related to this thesis. We discuss

the differences between our work and those related work and summarize our improvements

on state-of-the-art techniques.

We conclude in Chapter 7. Future research directions are also discussed in this chapter.

1.3 Acknowledgment of Published Work

Most of the work in this thesis are published in international conference proceedings or

submitted for review.

• Automatic Early Defects Detection in Use Case Documents [93] is published

in Proceedings of the 29th ACM/IEEE International Conference on Automated Soft-

ware Engineering (ASE’14). This work is presented in Chapter 3.

• A Formal Semantics for Complete UML State Machines with Communi-

cations [91] is published in The 10th International Conference on integrated Formal

Methods (iFM’13). This work is presented in Chapter 5.

• USMMC: A Self-Contained Model Checker for UML State Machines [92] is

published in The 9th joint meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE’13). This work is presented in Chapter 5.

Moreover, the work related to improving use case documents through leaning and user

interaction, which is presented in Chapter 4, is submitted to a peer-reviewed conference for

review.

Chapter 2

Background

In this section, we briefly introduce the general background knowledge that is referred to in

this thesis.

2.1 Software Development Process

Software development, one of the key activities in Software Development Life-cycle (SDL-

C), includes activities such as defining functional requirements, creating high level/module

design, coding and testing. Among these activities, capturing functional requirements and

system design are the main activities which help to understand users’ requirements and link

user requirements with coding and subsequent development steps.

Due to the variety of software products, different software development models, such as

waterfall model [29], spiral model [32] and agile model [21] are proposed to fulfill software

development process. It is up to the software development teams to choose a proper mod-

el for their development. Although developers may choose different development models

according to their expertise or company convention, some development activities, such as

7

2.2. USE CASE 8

requirement capturing
and analysis

system design

implementation/coding

testing

deployment

Time

Chapter 5

Chapter 3 and Chapter 4

Figure 2.1: Common activities in software development

those shown in Figure 2.1, are commonly adopted in the software development process. In

Figure 2.1, the horizontal-axis represents time and the rectangles represents software de-

velopment activities. We do not use any arrows to link those activities since in different

software development models, different iterations and overlapping of those activities may

happen. However, the general ordering of activities follows what is shown in Figure 2.1.

In this thesis, we focused on the first two activities, i.e., requirement analysis and system

design, in the software development process. Chapter 3 and Chapter 4 discuss our work

on improving the quality of requirement specifications captured by use cases. Chapter 5

discusses our work on improving the quality of design models, specifically dynamic behavior

models captured by UML state machines.

2.2 Use Case

Use case, since proposed by Jacobson [68], has been adopted by many software development

methodologies. Use case is not only a technique to capture requirements, it is like the

hub of a wheel [67] which binds together many software development activities, including

2.2. USE CASE 9

Use Case 1: Receive the order with special group
Initiating Actor: Trader
Pre-Conditions
1. The order is legal.
Main Flow
41. GSYS receive the symbol of order.
42. Check the order.
43. If the order is legal, record values of the group.
44. Find the constraint in the system according to the group name.
45. Save the order into database.
46. Price the order.
47. During the processing, it could create matches only when the
constraints are permitted. For example, no match should be
created if there is not enough cash in the group.
48. This ends the use case.
Alternative Flow
In step 4, if there is no such constraint in the system, the system
will reject this order.
Post-Conditions
1. Order with special group is received by the system.

Figure 2.2: Example of use case description

requirements, analysis and design, testing, etc. A use case typically contains a list of steps

which define the interactions between an actor and a system. The major part of a use case

is described in natural language.

An example natural language use case description is shown in Figure 2.2. There are six major

sections, including use case name, actor/agent, precondition, main action flows, alternative

action flows and postcondition, in a use case description. The main flow section captures the

normal execution flows. The alternative flow section captures alternative execution flows

when certain conditions in the main flow are not satisfied.

There is no standard template for writing use case documents as concluded by Fowler [54].

The choice of use case styles may be highly project-dependent as affected by factors such as

the criticality and the number of people involved in the project. However, there are guide-

lines [39] in choosing different styles of use cases for different projects. It is recommended

that for small projects (4-6 people involved), a simple, casual use case template [39] can

2.2. USE CASE 10

be chosen. For large, life-critical projects, it is more appropriate to use a hardened, fancier

and fully-addressed template [39]. The casual use case template has a high tolerance in

writing styles and structures, thus is usually verified manually. In contrast to the casual

use case template, a fully-addressed use case template is less tolerant and requires people

to adhere to the template (structure, grammar, naming conventions, etc.) closely. Since

a fully-addressed use case template is usually adopted by large projects, which are often

life-critical, we focus on fully-addressed use cases in this thesis.

There is no strict, universally adopted fully-addressed use case templates. Various writing

styles [39] (e.g., Cockburn, RUP, one column table, 2-column table, If-statement style,

etc.) have been proposed. However, it has been reported by Cockburn [39] that “the

readers almost universally select the single-column, numbered, plain text, full sentence

form”. Therefore, in this thesis we focus on this most popular writing style in literature.

We checked the use case template used in industry [2] and found that those templates are

consistent with the template in [39] in majority of the sections which capture functional

requirements. Figure 2.2 is one use case for a stock trading system1 which follows roughly

the Cockburn style [39].

In addition to the natural language descriptions, UML diagrams, such as use case diagram,

activity diagram and sequence diagrams may be used to visualize a use case. For example,

use case diagrams provide a high-level view, which capture the interactions between actors

and the system as well as the relations (extension/inclusion/generalization) between use

cases. Activity diagrams are usually used to visualize the (conditioned) stepwise actions

of a use case. Sequence diagrams are usually used to describe the interactions between

different actors in one or multiple use cases.

1We omit the name of the system due to the confidentiality. The use case is modified to hide the sensitive
keywords.

2.3. UML STATE MACHINES 11

 stm Car

Idle Standby

Initial1

Operating

[RO]

WaitArriv alOK

[R1]

[R2] Departure

- :DepartureSM

Crusing

Choice2

Initial2

Watch

Alerted

+ do / PlaySound

Initial3

WaitEnter

- Defer: opend

Choice1

WaitDepart

WaitStop

- Defer:opend
Final1

Junction1

EntryP1

ExitP1

DepartureSM

[RD]
SubDepart

+ entry / Handler.departReq

[R3]

[R4]

WaitExit

SyncExit

WaitCruise

SyncCruise

Initial4

Initial5
Join1

EntryPoint1

ExitPoint1

Initial6

WaitPlatform WaitEnterParked WaitExit WaitComplete WaitDepart

Handler State Machine

Car State Machine DepartureSM State Machine

t6

t7

t16

t17

t13

t12

t0

moveCompleted

/Car.arriveAck

platformAllocated

departAck

setDest

/stopNum=stopNum+1;

t25

[stopNum!=0]

t21 [mode==false]

/stopNum=stopNum-1;

t18

[mode==false]

arriveAck

alert100

/Handler.arriveReq

opend

t22 [mode==true]

t11

t24

[stopNum==0]

progress1

t15
t10

t9

t8

t14
alert80

departReq

t4

exitAllocated

t23 [mode==true]

/Handler.departReq

alertStop

departAck

started

completed

/Car.departAck arriveReq

t3

t5

Figure 2.3: The RailCar state machine

2.3 UML State Machines

UML state machines [7], a variance of Harel statechart [61], are widely used to capture

the dynamic behaviors of a system design. Figure 2.3 shows a UML state machine for the

RailCar system (a modified version of the example used in [62]). The RailCar system is

composed of 3 state machines: Car, Handler and DepartureSM (referenced by the Departure

submachine state in the Car state machine). The Handler state machine models a part of

the terminal behavior, which is responsible for communicating with the Car state machine

when the car is approaching and departing the terminal. They communicate with each other

through synchronous event calls. We use the RailCar state machine as a running example

to illustrate the basic features of UML state machines.

UML state machines have three kinds of features/constructs, i.e., vertex, regions and tran-

sitions.

2.3. UML STATE MACHINES 12

Vertex. UML state machine uses the concept vertex to represent all nodes in the graphical

notation. Therefore a vertex is the general designation of state, pseudostate, final state and

connection point reference which are introduced below.

Transitions. A Transition is a relation between a source vertex and a target vertex. In

Figure 2.3, the arrow labeled t0 is a transition. Guards, triggers and effects are associations

of a transition. A guard (e.g., mode==true of transition t23 in Figure 2.3) is a boolean

constraint which must be evaluated to true in order to fire the corresponding transition. A

trigger (e.g., opend of transition t13 in Figure 2.3) relates an event to a behavior and will

cause execution of the behavior when the event specified by the trigger occurs. An effect

(e.g., stopNum = stopNum − 1 of transition t21 in Figure 2.3) is a behavior, which is a

sequence of actions 2. The container of a transition is the region which owns the transition.

A compound transition is composed of a multiple transitions joined via choice, junction,

fork and join pseudostates.

Regions. It is a container of vertices and transitions, and represents the orthogonal parts

of a composite state or a state machine. In Figure 2.3, the area [R1] is a region.

States. There are three kinds of states, viz., simple state (e.g., state Idle in Figure 2.3),

composite state (e.g., state Operating in Figure 2.3) and submachine state (e.g., state Depar-

ture in Figure 2.3). An orthogonal composite state (e.g., state WaitArrivalOK in Figure 2.3)

has more than one region. States can have optional entry/exit/do behaviors. A do behavior

(PlaySound in state Alerted) can be interrupted by an event. A state can also define a set

of deferred events ({opend} in state WaitEnter). A final state (Final1 in Figure 2.3) is a

special kind of state which indicates finishing of its enclosing region.

Pseudostates. Pseudostates, e.g., initial, join, fork, junction, choice, are introduced to

2Action is a basic unit of behavior specification. Actions include send/receive messages, update values
and so on.

2.3. UML STATE MACHINES 13

connect multiple transitions to form complex transition paths. An initial pseudostate (Ini-

tial1 in Figure 2.3) is used to indicate the default active vertex for each region of a composite

state, it cannot act as the target of a transition. A join pseudostate (join1 in Figure 2.3)

is used to merge transitions from states in orthogonal regions. A fork pseudostate is used

to split transitions targeting states in orthogonal regions. A Junction pseudostate is intro-

duced as syntactic sugar to merge/split incoming transitions into outgoing transitions. It

represents a static branching point. A Choice pseudostate (Choice1 in Figure 2.3) repre-

sents dynamic branching points, i.e., the evaluation of enabled transitions is based on the

environment when the choice pseudostate is reached.

Connection Point Reference. It is an entry/exit point of a submachine state and refers

to the entry/exit pseudostate of the state machine that the submachine state refers to. In

Figure 2.3, EntryP1 and ExitP1 in Departure state are connection point references.

Active State Configuration. An active State configuration is a set of active states of

a state machine when it is in a stable status3. In Figure 2.3, {Operating, Crusing} is an

active state configurations.

Run to Completion Step (RTC). It captures the semantics of processing one event

occurrence, i.e., executing a set of compound transitions (fired by the event), which may

cause the state machine to move to the next active state configuration, accompanied by

behavior executions. It is the basic semantic step in UML state machines. For example

in Figure 2.3, {Operating, WaitArrivalOK, Watch, WaitDepart,} opend−−−→ {Idle} is an RTC

step.

3The state machine is waiting for event occurrences.

2.3. UML STATE MACHINES 14

Chapter 3

Finding Intra-defects in Use Case

Descriptions

Use cases [67] are the main technique for understanding user requirements, which have been

widely adopted in the modern software development life cycle over the last two decades.

Driven by the necessity of communicating with stakeholders, the majority of a use case doc-

ument is written in natural language, which inevitably introduces defects. In this chapter,

we discuss our method on finding intra-defects 1 in natural language use case descriptions.

3.1 Introduction

A use case describes a sequence of interactions between a software system and an external

actor such that the actor is able to achieve some goal. Collectively, use cases are used to

define all the necessary system activities that have significance to the users. As use cases are

developed during a very early stage of the software development life cycle, they also serve as

1Defects present within a single use case description.

15

3.1. INTRODUCTION 16

the basis for developing detailed functional requirements, help in design development and

validation, system testing, maintenance of evolving of the software, and even in creating an

outline for user manuals. High quality use case documents can improve the sustainability

of software.

Use case documents are usually written in natural languages, which may inevitably intro-

duce defects like inconsistency, redundancy and incompleteness. Moreover, those defects are

hard to identify or verify due to their informal format. Software engineers actually enjoy the

flexibility of natural language descriptions on use cases (compared to formal descriptions)

since they can communicate more smoothly with stakeholders in this way. On the other

hand, natural language descriptions of use cases make it challenging to analyze and validate

the requirements, which are necessary in a mature requirement engineering methodology.

In the current practice, use case analysis is conducted manually, e.g., requirement analysts

manually extract analysis models (e.g., state machine, activity diagram and sequence dia-

gram) from the use cases, and then search for defects in the models or validate them against

test cases. Manual analysis is hardly ideal as it requires a lot of human efforts and is often

error-prone. As a result, use cases are much less useful than they could or should be.

There are existing works on automatic analysis of use cases [56, 77, 78, 118, 137]. But still,

we identify the following challenges which have not been addressed satisfactorily.

Firstly, actual use case documents are often larger and more complex than those have been

reported in existing works [77, 78, 137]. For large use case documents, the diversity of

grammar rules and ambiguities presented in the document raise great technical challenges

in automatically “understanding” them. For example, one of the documents that we used

for our evaluation2 contains 188 use cases and more than 1700 sentences. The diversi-

ty of sentence styles as well as the grammar errors in the sentences make it challenging

2This is a real system used for real-time stock trading in the amount of billions. The document is
provided by our industry collaborator.

3.1. INTRODUCTION 17

to provide templates for parsing. Some existing approaches rely on heuristics or human

intervention [77, 78], which may not be feasible for large use case documents.

Secondly, common problems in use cases are inconsistency and incomplete flows. Existing

approaches have so far mainly focused on analyzing inconsistency problems [56, 118] and

leave incomplete flows unconsidered. A further issue is that there have been limited formal

definitions on what is regarded as defects/errors.

Lastly, some existing approaches (e.g., [56, 134]) rely on users to provide use-case-specific

templates for parsing, which is ad-hoc and may require knowledge about shallow parsing

techniques. The most difficult challenge is to develop a method (and perhaps a tool) which

achieves good accuracy in understanding use cases and detecting problems, and at the same

time, is able to be generalized to work with use cases in different domains.

In this chapter, we are motivated to provide automatic techniques to identify defects, i.e.,

inconsistency and integrity related problems, in a natural language use case description. We

contribute in the following three aspects.

• We explore dependency parsing technique to help understand use case documents. We

provide 8 rules based on general English grammar to analyze the dependency parsing

results.

• We formally define common inconsistency and integrity related defects in use cases

and provide algorithms to automatically check those defects. Horizontal tractability

links to the original use case document are preserved for user consumption.

• We conduct experiments with use case documents of 5 different systems from different

application domains. The results show that our method can achieve good accuracy in

analyzing sentences from different domains as well as in finding defects.

Outline. Section 3.2 provides preliminaries used in this chapter. We briefly walk through

3.2. PRELIMINARY 18

our approach, with an example, in Section 3.3. The technical details of our approach

are then discussed in Section 3.4. The experimental results are reported in Section 3.5.

Section 3.6 discusses the limitations, manual efforts as well as theads to validity in the

evaluation. Section 3.7 provides conclusions.

3.2 Preliminary

This section introduces the preliminaries of definitions in use cases and the UML activity

diagram used in this thesis.

3.2.1 Definitions in Use Cases

As discussed in Section 2.2, there are a variety kind of use case templates. Our work do

not aim at handling all the possible writing styles of use cases. We are rather interested in

investigating advanced NLP techniques to aid defects detection in use case documents. In

this thesis, we are devoted to processing use cases following the fully-addressed use case tem-

plate (e.g., Figure 2.2), which is the most popular adopted template in practice. The issues

caused by different writing styles can be tackled by providing more robust pre-processing

steps. Our work focuses on the core sections, including use case name, actors, precondi-

tions, main flow, postconditions and alternative flow, in use case documents (following a

fully-addressed use case template). We formally define the concepts involved in use case

descriptions below.

Definition 1 (Action) The action is defined as A , (vb, sub, obj), where vb, sub, obj are

natural language phrases representing the main verb, subject and object of the sentence.

For example in Figure 2.2, the action tuple of the second sentence in main flow section is

(check , , order) (The subject is missing in an imperative sentence).

3.2. PRELIMINARY 19

Definition 2 (Predicate) The predicate is defined as P , (ar ,R, a1, a2), where ar ∈

{1, 2} is the arity of the predicate; R is the relation symbol of the predicate; a1 and a2 are

the arguments of the relation symbol.

The predicate can be monovalent or divalent, depending on the structure of the sentence.

Predicates of higher arity are not used as frequently as monovalentor/divalent predicates.

Therefore we do not consider predicates with more than two arities in our work. To gain

an intuitive view, a monovalent predicate (1, is legal , order)3 can be generated from the

sentence in the preconditions section in Figure 2.2. We extract predicates from the precon-

ditions and postconditions sections of the use case description. The guard condition of a

sentence is also represented as a predicate.

Definition 3 (Sentence) A sentence is defined as a tuple S , (s#, α, c,ns ,nj ,UCref),

where s# is the sentence number in the corresponding section of the use case; α ∈ A is the

action of the sentence; c ∈ P is the guard condition for executing the sentence; ns ∈ N and

nj ∈ N are the logical previous and succeeding sentence of the current sentence respectively.

UCref is the use case name that is referred to by the sentence.

For example the alternative flow sentence in Figure 2.2 corresponds to the following sentence

structure: (a1, (reject , system, order), (2, is no, there, constraint), 3,−1,NULL). a1 is the

step number of the sentence. (reject , system, order) is the action to be conducted in this

step. (2, is no, there, constraint) is the condition predicate which should be satisfied in order

to conduct the action. The number 3 indicates that the current alternative flow step starts

from main flow step 3. −1 indicates that there is no explicit assigned step after the current

step, then the flow goes to the next neighboring step. There is no use case associated

(through include/extend relation) with this use case, therefore the last field is NULL.

3We use underline to replace spaces.

3.2. PRELIMINARY 20

Definition 4 (Use Case) A use case is defined as a tuple UC , (UCName,PreC ,PostC ,MF ,

AF), UCName is the name of the use case; PreC ⊂ P and PostC ⊂ P are the predicates

extracted from sentences in the precondition and postcondition sections; MF and AF are

the list of sentences S in the main flow and alternative flow sections of the use case.

3.2.2 UML Activity Diagram

UML Activity Diagrams [7] are used to model the sequence and conditions for the purpose

of coordinating low-level behaviors. They are commonly adopted to describe the event flows

in use case documents. An action in an activity diagram represents a single activity. They

can be expressed in application-dependent languages. In this chapter, we use action tuples

(Definition 1) to represent actions.

Definition 5 (Activity Node) An activity node is defined as N , Na ∪ Nc where Na ,

(n, α) is action node and Nc , (n, t) is the control node. n is the name for each node.

α ∈ A is the action associated with the action node. t ∈ {decision,�nal , initial} is the type

of the control node.

In Figure 3.1, all the rounded rectangles are action nodes. A choice node is represented as

a diamond and the enriched circle represents the final node. The solid circle is the initial

node. They all belong to the control node set.

Definition 6 (Activity Edge) An activity edge is defined as E , (sn, tn, g), where

sn ∈ N , tn ∈ N and g ∈ P are the source, target nodes and the guard condition of the

activity edge.

The guard condition for an activity edge must be satisfied in order to fire the corresponding

edge.

3.3. OVERVIEW OF OUR APPROACH 21

42 Check(Order)

43 Record(Value)

44 Find(Constraint)

d44

45 Save(Order)

46 Price(Order)

a1 Reject (Order)

d43 Some operation
[legal]

[not legal]

[no constraint]

[constraint]

Nf

41 Receive(GSYS,Order)

Figure 3.1: Example activity diagram

Definition 7 (Activity Diagram) A UML activity diagram is defined as AD , (ADName,

PreC ,PostC , AN , AE), where ADName is the name of the activity diagram. AN ⊂ N

and AE ⊂ E are the set of activity nodes and activity edges in the diagram. PreC ⊂ P and

PostC ⊂ P are the preconditions and postconditions of the activity diagram.

In this chapter, we consider the subset of UML activity diagram features which are related

to control flows as defined in Definition 7. The features which capture object flows, such as

object nodes, are not considered since our defects detection methods utilize only the control

flow information in the activity diagram.

3.3 Overview of Our Approach

The overview of our approach is illustrated in Figure 3.2. The rectangles represent artifacts

that are produced as (intermediate/final) processing results. The ellipses represent the

3.3. OVERVIEW OF OUR APPROACH 22

processing steps. Our method consists of two phases. In the first phase, we take a use case

document as input and parse each sentence in the document into parse trees (dependency

tree and phrase structure tree). The second phase takes parse trees as input and generates

a UML activity diagram for each use case. Afterwards, defects in the use cases are checked.

The output of our method includes the UML activity diagrams and a defect report where all

defects with horizontal links to the original document are listed. There is also an optional

phase as enclosed in the dashed lined area. This phase provides a way to train a domain-

adaptive dependency parser in order to improve the accuracy of dependency parsing. In

this section, we illustrate our approach with the running example shown in Figure 2.2. We

discuss the details in Section 3.4.

Step 1: Pre-processing the document In this step, we remove the irrelevant information

and formatting symbols, such as parenthesized comments and bullets, which may affect the

parsing accuracy. For example, in Figure 2.2, sentence 41 in the main flow section will be

“41\n GSYS accepts the symbol of order .\n” after pre-processing. This is a general process

applicable to any document.

Step 2: Free text parsing We use an advanced statistical natural language (dependency

and phrase structure) parser ZPar [140] to parse the pre-processed sentences. The depen-

dency parser (Step 2.1) is used to extract bootstrap information for action tuples and the

phrase structure parser (Step 2.2) is used to identify the modified and supplement informa-

tion. The output format of the dependency parser is a dependency tree. Figure 3.3 shows

the dependency tree for the first sentence in the main flow section in Figure 2.2. The middle

row is the original sentence (in tokenized words). The last row is the Part-Of-Speech (POS)

tags of the corresponding words. The labeled links are dependency relations between two

words. For example, the link from the word “GSYS” to the word “accepts” labeled with

SUB represents that “GSYS” is the subject of “accepts”. The word “accepts” is the ROOT,

i.e., the main verb of the sentence. In addition to dependency parsing, we also utilize the

3.3. OVERVIEW OF OUR APPROACH 23

Use Case
Documents

sentences
in dep-tree

activity
diagram

use cases in
sentence struct

4 build activity
diagram

3 analysis of
dep/ps trees

5 find
defects

artifact

processing
step

Phase I

Phase II

defect report

Dictionary

6 train dep
 parser

2.1 dependency
parsing

use cases
separated

in sentences

1 Pre-
processing

2.2 phrase
structure
parsing

sentences
in ps-tree

Trained
dep parser

Optional Phase

with Zpar

with trained
dep parser

Figure 3.2: Overview of the defect detection approach

phrase-structure parser of ZPar to parse each sentence in the document. The parsing result

is a phrase structure tree as shown in Figure 3.4. The leaf nodes are the plain text tokens.

The non-leaf nodes are POS tags, where “S”, “VP”, “NP” represents a sentence, verb phrase

and noun phrase respectively. The phrase structure tree is used in combination with the

dependency tree in our analysis phase to obtain more accurate results. For example in

Figure 3.3, we identify that the object is “symbol” from the dependency tree. The phrase

structure tree in Figure 3.4 provides the complementary information that the “symbol” is an

attribute of the “order”. This kind of attributive information is useful in comparing action

tuples.

Step 3: Analyzing parse trees We analyze the dependency trees and the phrase struc-

ture trees to extract useful information, including the phrases that capture control flow

information, actions and conditions. For each sentence, we extract subject, object, main

verb, conditions, and the previous/next step of the current action. For example, for the sen-

tence in the alternative flow in Figure 2.2, 3, (reject , system, order) and (is no, constraint)

3.3. OVERVIEW OF OUR APPROACH 24

GSYS accepts the symbol of order
NNS VBP DT NN IN NN

ROOT

SUB

OBJ

NMOD NMOD PMOD

Figure 3.3: Example of a dependency tree

S
PPPPP

�����
NP

GSYS

VP
PPPP
����

VBP

accepts

NP
XXXXX
�����

the symbol of order

Figure 3.4: Example of a phrase structure tree

are identified as the previous step, the action and the condition information respectively.

The subject, object and main verb of an action tuple can be obtained immediately from

a dependency tree since they are captured by the dependency relations. For example in

Figure 3.3, “symbol” is identified as the object by analyzing the dependency tree directly.

However, identifying only this single word looses information, i.e., the attributive adjunct

of the word “symbol”, which we may need for the later defects detection. Therefore, we

query the phrase structure tree of the same sentence (in Figure 3.4) to obtain the noun

phrase that the word belongs to. After the adjustment, the action tuple corresponding to

the sentence in Figure 3.3 is (accepts,GSYS , symbol of order). We record such information

for each sentence so as to build activity diagrams in the next step.

Step 4: Building activity diagrams We build an activity diagram for each use case

based on the identified information in step 3. Figure 3.1 shows the activity diagram that

is generated from the use case in Figure 2.2 by our approach. The action node is labeled

with the step number and the action tuple extracted from the corresponding sentence. The

decision node (diamond) is labeled with the step number of the sentence in which it is

3.3. OVERVIEW OF OUR APPROACH 25

generated. For example the decision node labeled d43 is generated from the sentence with

step number 43. The guards, edges and nodes in dashed line in figure 3.1 represent the

missing flow step that our method detected. The main flow step labeled 47 in Figure 2.2

does not have a corresponding action node in the activity diagram. The reason is that it

specifies some constraint and example instead of describing an action step, thus is regarded

as irrelevant contents in the step flows and is removed during the activity diagram building

procedure.

Step 5: Finding defects We proposed defects detection methods for each defect type

defined in Section 3.4.5. Some defects can be found in the use case structure itself. The

others, which are related to control flow information are found in the activity diagrams

generated by our method. For example, in the use case shown in Figure 2.2, the sentence in

the alternative flow refers to “step 3”, which is not present anywhere in the use case. This

is detected as an inconsistent step numbering defect. As another example, the dashed edge

and node in Figure 3.1 show an missing alternative flow step of the use case in Figure 2.2.

The output of the defect finder is an error report which contains the error type as well as

horizontal links to the original document.

Step 6: Training Dependency Parser To handle the problem caused by document-

specific factors, such as grammar errors and specific sentence structures, we provide a way

to train a domain-adapted dependency parser. In the case of the stock trading system, we

manually labeled a small percent (to be precise, 6%) of wrongly labeled sentences randomly

selected from the document to train a domain-adapted dependency parser. This is shown in

the dashed box (step 7) in Figure 3.2. The trained dependency parser will replace the ZPar

dependency parser in the dependency parsing step. This is an optional step in our overall

procedure and is only needed in order to achieve higher accuracy on document specific

patterns.

3.4. APPROACH DETAILS 26

3.4 Approach Details

In this section, we discuss the details of each step in our approach.

3.4.1 Pre-processing Use Case Documents

This step is conducted to filter noises from the input document so as to improve the accuracy

of the dependency parser. The output text satisfies the following conditions.

1. Each sentence is stored in a separate line.

2. Each punctuation is preceded by a space.

3. Step index number is stored in a separate line.

4. Parenthesis are replaced by “–LBR–” or “–RBR–”.

5. There is no empty line in the document.

We utilized splitta [14] to process (1) and (2), and regular expression matching to perform

the other filtering tasks. Some information, such as the section indicator (Pre-Conditions,

Main Flow, etc.) shown in Figure 2.2, is use-case-specific. Different development teams may

use different notations for the same section. We thus allow use-case-specific-configuration on

those indicators so as to flexibly support use cases written by different development teams.

3.4.2 Free Text Parsing

In this chapter, we leverage on ZPar [140], a statistical dependency and phrase structure

parser, for analyzing syntactic information, as opposed to using Part-Of-Speech (POS)

tags adopted in existing approaches [77, 118, 117]. ZPar utilizes the Wall Street Journal

3.4. APPROACH DETAILS 27

sections of the Penn Treebank [98] as training data, deriving its disambiguation model using

supervised learning.

Dependency Parsing The dependency parser analyzes natural language texts according

to the dependency grammar proposed in [106]. It conducts statistical analysis on POS

tags based on a large data set, which guarantees that it provides more general results than

directly analyzing POS tags based on the templates extracted from the sample document.

The dependency parsing technique can also provide richer syntactic details, i.e., the depen-

dency relation between pairs of words, which provide the subject, object and main verb

information of a sentence directly and thus reduce the efforts of template matching on POS

tags to identify those composition. Moreover, when sentences have a variety of structures,

dependency parsing is more robust and more adaptive.

Phrase-structure Parsing Dependency parsing focuses on relations between words. Some-

times a single word cannot provide enough information for defects detection. Phrase struc-

ture parsing provides a parse tree in which sentences are parsed into noun/verb phrases

and sub-sentences based on the subordinating and modification relations, thus can provide

complete context information for an identified word. For each sentence, we analyze the de-

pendency tree to identify bootstrap indicators, i.e., subject and object. Then we use those

bootstrap indicators to identify the subordinating noun phrases in the the phrase structure

tree. This information is served as context information for our later analysis.

3.4.3 Analyzing Parse Trees

Before discussing the detailed analysis techniques, we formally define a dependency tree

first.

Definition 8 (Dependency Tree) A dependency tuple is defined as DT , (T ,POS ,PI ,L),

where T is the word text; POS is the part-of-speech tag for the word; PI is the parent index

3.4. APPROACH DETAILS 28

of the word and L is the dependency label. A dependency tree DTree is a list of dependency

tuples.

For the POS and L fields, we follow the Penn Treebank convention. The dependency tree

in Figure 3.3 can be represented as the list ((“GSYS”, NNS, 1, SUB), (“accepts”, VBP, -1,

ROOT), (the, DT, 3, NMOD), (“symbol”, NN, 1, OBJ), (“of”, IN, 3, NMOD), (“order”, NN,

4, PMOD)), where indices of the tuples start from 0.

The goal of analyzing a dependency tree is to extract the sentence structure S as defined

in Definition 3. The sentence step number (s#), step start (ns) and join (nj) nodes are

extracted based on keyword matching. We assume that a limited number of indicators, such

as “step”, “go to”, “return”, are usually used to indicate control flow changes. We achieve a

high accuracy by keyword matching on extracting those fields in all the 5 documents that

we used for our evaluation. The α field of a sentence captures the action that the sentence

should conduct and the c field is the condition predicate that must be satisfied in order to

conduct the action. We discuss the action extraction and predicate extraction method in

details.

Extract Action Tuples An action tuple, as defined in Definition 1, contains a subject, an

object and a main verb of a sentence. These parts are immediately available in a dependency

tree. For example, in Figure 3.3, the dependency labels SUB, OBJ and ROOT indicate that

the subject, object and main verb are“GSYS”, “symbol”and“accepts”respectively. However,

dependency parsing suffers from a common problem of natural language parsing, i.e., fragile

to ambiguities and noises. Thus relying only on the dependency labels may not provide good

accuracy. Directly applying ZPar dependency parser resulted in an accuracy of around 44%

in identifying action tuples. One reason is that the diversity of sentence patterns, tenses

and subordinate structures may cause deviations in the dependency trees. To improve the

parsing accuracy, we (1) provide 8 adjusting rules (shown in Table 3.1) based on general

3.4. APPROACH DETAILS 29

Table 3.1: Rules for extracting action tuples

Rules

Main Verb
(1) HAVE {ROOT}+(NOT)+BE +(JJ&)+ VB&
(2) BE {ROOT}+(NOT)+ (JJ&) + VB&
(3) BE {ROOT} +(NOT)+ JJ& {PRD}
(4) MODAL {ROOT}+(NOT)+BE+(JJ&)+ VB&
(5) ROOT {PI=-1}

Subject (6) PI .L = ROOT{SUB}

Object
(7) PI .L = ROOT{OBJ/PRD/PRP}
(8) PI .L = ROOT{SBAR/ VC/ VMOD}

English grammar. (2) rely on the phrase structure parsing result to identify related context

information. The rules, shown in Table 3.1, are general in the sense that they are based

on natural language grammars and do not contain any document-specific information, e.g.,

patterns and key words.

There are 3 kinds of information, i.e., plain text, POS tags and dependency label, used in

our rules. The plus symbol + composes constraints for consecutive words. We use braces {}

to represent compulsory information when more than one kind of information is used on one

word. Brackets () are used to represent optional information and the slash / symbol is used

to represent a choice among the candidates. For example in Table 3.1, rule (7) requires

that the parent of the word should be labeled as ROOT and the word itself should be

labeled as OBJ or PRD or PRP. The symbol & represents a group of POS tags, for example,

VB& represents the POS tags VB, VBD, VBG, VBN, VBP, VBZ, which are different formats

of verbs. The words HAVE, BE and NO in capital italic are plain word tokens, which

represent the set of all possible formats of a word. For example, HAVE represents the set

of words: “have, has, had”. PI .L =ROOT represents that parent of this node should be

labeled as the ROOT. We claim that these rules are general, i.e., not document specific. For

example, rules used to identify the main verb of a sentence (MainVerb) capture sentence

styles “have (not) been done”, “(may/must) (not) be done” and predictive phrases “be (not)

+ adjective”, which are very commonly used in written English. The rules to adjust the

3.4. APPROACH DETAILS 30

Table 3.2: Templates for extracting condition predicates

Templates

EX*/NN*/PRP*[a1] MD*VB* (not/no)[R] (DT*JJ*)NN*/PRP*[a2] (.)*

EX*/NN*/PRP* [a1] MD*VB* (not/no) VB*[R] (.)*

EX*/NN*/PRP* [a1] MD*VB* (not/no) (DT) NN*/JJ* [R] (.)*

extraction of object is a little complex since the composition of the object of a sentence is

usually complex. Each dependency tree obtained from sentences in the main/alternative

flow sections are analyzed with the adjusting rules. The accuracy of applying these rules

in extracting action tuples is increased by more than 21% on the documents we used for

evaluation. For subject and object extraction, the phrase structure tree of the same sentence

is queried to identify modifying/subordinating information.

Extract Condition Predicates We notice that sentences which contain conditions are

often complex, e.g., with sub-clauses. Therefore the dependency parser is likely to be less

accurate, especially for the condition sub-clause. We also notice that the condition sub-

clauses are usually written in simple formats. Therefore we extract the condition predicates

through template matching. The matching is conducted in two phases. We first identify

the condition-containing sub-clause by matching the sentence with condition indicators, e.g.,

“if, else, whether”. Then the condition sub-clause is matched with the predefined templates

shown in Table 3.2. The templates are defined based on POS tags. The label in the square

bracket [] represents the corresponding field, i.e., the field R, a1 and a2, of the condition

predicate (Definition 2). Words in the bracket are optional in the template. For example, to

process the alternative flow sentence in Figure 2.2, our method first truncates the condition-

containing sub-clause, i.e., “if there is no such constraint in the system”. The sub-clause

matches the first template in Table 3.2, and condition predicate (2, is no, there, constraint)

is obtained.

3.4. APPROACH DETAILS 31

Algorithm 1: Build Activity Diagram

Input : uc: a use case
Output: ad : an activity diagram

1 Initialize(pnode, source, target)
2 while Enumerate s in uc.MF . ∪ (uc.AF) do
3 if s is the last entry in uc.MF or uc.AF then
4 if There is no fnode then
5 Build a final node fnode

6 BuildEdge(pnode, fnode, ε)
7 continue

8 Build an action node anode for s
9 if s is the first entry in uc.MF then

10 Build an initial node inode
11 pnode← inode

12 if s.c 6= NULL then
13 Build a decision node dnode

14 if s.ns = NULL then
15 source← pnode
16 else
17 source← s.ns

18 if s.nj = NULL then
19 target← s

20 else
21 target← s.nj

22 if s.c 6= NULL then
23 BuildEdge(source, dnode, ε)
24 source← dnode

25 BuildEdge(source, target , s.c)
26 pnode← anode
27 append all generated nodes to ad .N
28 append all generated edges to ad .E

29 ad ← AD(uc.UCName, uc.PreC , uc.PostC , ad .N , ad .E)

3.4. APPROACH DETAILS 32

3.4.4 Building Activity Diagram

When building activity diagrams, we are only interested in the sentences which describe

real actions. However, there may be cases in which a sentence describes a constraint or

an example. For example in Figure 2.2, the sentences in step 47 are not action steps. We

noticed that most such sentences are either descriptive sentences which have modal verbs,

such as “would, could, should, must, may” or illustrative sentences containing key words

such as “for example, e.g.”. Our method removes this kind of sentences through keyword

matching. We found that the simple keyword matching achieves a good accuracy in filtering

such irrelevant sentences.

Algorithm 1 shows the procedure of building an activity diagram from a use case structure.

The main idea is to link action tuples based on control flow information. There are two kinds

of control flow indicators. One is the control flow information, such as “go/jump to step

#”, that we identified by analyzing the content of a sentence. The other is the structure of

use cases, i.e., consecutive sentences in each section of the use case represent the ordering in

the control flow. Sentences in the alternative flow section are the branch flows of sentences

in the main flow section.

Algorithm 1 takes a use case structure as input and produces an activity diagram. The

use case name, precondition, postcondition fields of them are identical (line 29). The nodes

and edges of an activity diagram are generated from the main flow and alternative flow

sections of a use case. The variables pnode, source, target are all of type Activity Node

(Definition 5). pnode represents the present node being processed; source and target are the

identified source and target node of an edge. The code in line 3-13 creates nodes, including

initial nodes (line 9-11), final nodes (line 3-7), action nodes (line 8) and decision nodes

(line 12-13), of the activity diagram. The code in line 14-25 creates edges for the activity

diagram. Line 14-17 identifies the source node of the edge. If the current sentence does not

3.4. APPROACH DETAILS 33

have a specified starting node (line 14), the source node of the edge is set to the previous

step (line 15) by default. Otherwise the source node is set to the specified starting node (line

17). Similarly, line 18-21 identifies the target node of the edge. If a choice node is created,

an edge from the identified source node to the choice node should be created (line 22-24).

For example in Figure 3.1, the edge from activity node (42, (Check , ,Order)) to decision

node d43 is build with the code in line 23. The edge from d43 to (43, (Record , , value)) is

built with the code in line 25. All the created nodes and edges are appended to the node

and edge field of the activity diagram ad (line 27-28). The ε field in the BuildEdge function

(line 6, 23) represents there is no guard condition on the edge.

3.4.5 Formal Definition for Use Case Defects

To guide our analysis towards finding defects in use cases, we formally define the defects

originally proposed by Töner et al. [121] and develop algorithms to systematically find them.

Specifically, we focus on defects which are objective and have high defect intensity, such as

missing elements, inconsistent step numbering, and misuse of preconditions. Defects, such as

clarity of contents, level of details in the description, which are subjective are not considered.

We focus on five types of defects, as defined below.

Inconsistent step numbering captures the situation where the sentence numbers of main

flow or alternative flow are not consistent. This may lead to incorrect step referencing. For

example in Figure 2.2, the step number 3 is missing in the main flow. As a result, the

alternative flow has referred to a non-existing main flow step.

Definition 9 (D1) Given uc ∈ UC , if ∃ s, (uc.MF .cont(s) ∨ uc.AF .cont(s)) : (s.ns 6=

NULL ∧ ¬ uc.MF .cont(s.ns) ∧ ¬ uc.AF .cont(s.ns)) ∨ (s.nj 6= NULL ∧ ¬ uc.MF .cont(s.nj)

∧ ¬ uc.AF .cont(s.nj)), the use case is said to have inconsistent step numbering defect. The

function cont() checks whether the item is a member of the list.

3.4. APPROACH DETAILS 34

In some use cases, the starting step (in main flows) of the alternative flow is not clearly

specified. This may lead to ambiguity when merging the alternative flows with the main

flow (to identify the overall flow information of the use case).

Definition 10 (D2) Given uc ∈ UC , if ∃ s, uc.AF .cont(s) : s.ns = NULL, then the use

case contains the unclear alternative flow starting step defect.

An overly-strong precondition is one such that inconsistencies between the precondition and

the guard conditions of an edge may occur. For example in Figure 2.2, the sentence in the

precondition has already restricted the order to be legal, thus the second sentence of the

main flow, which checks the validity of the order, is redundant. If there is an alternative

flow specifying the actions when the order is illegal, it is infeasible due to the precondition.

Definition 11 (D3) The precondition of an activity diagram ad is overly-strong if given

an activity diagram ad ∈ AD , ∀ prec ∈ ad .PreC ,∃ e ∈ ad .AE : Con�ict(e.g , prec), where

Con�ict is a function deciding whether two predicates conflict as defined in Algorithm 3.

Missing of alternative flows is the case when the main flow defines some action under some

specific condition, however not all the other possible conditions are addressed. We regard

this kind of situation as missing of alternative flows. For example in Figure 2.2, step 43 in

the main flow specifies the condition “if the order is legal”. But it is not specified what if

that condition does not hold.

Definition 12 (D4) Given an activity diagram ad ∈ AD , ∀n ∈ ad .N , if n ∈ Nc ∧

n.t = decision ∧ OutG(n) = 1. The use case contains the missing alternative flow de-

fect. OutG(n) ,| e ∈ ad .E ∧ e.sn = n | returns the number of edges out going from a given

node. | A | is the cardinal number operation on the set A.

3.4. APPROACH DETAILS 35

Algorithm 2: Check Unnecessary Strong Precondition

Input : ad : activity diagram
Output: whether find an over strong precondition or not

1 let n be the initial node
2 while There are unvisited nodes in ad do
3 mark n as visited
4 if n ∈ Na then
5 if InChangeStatusDict(n.α.vb) then
6 return false

7 if n ∈ Nc ∧ n.t = decision then
8 if guard condition of any edges outgoing from n is Conflict with any

p ∈ ad .PreC then
9 Report an over strong precondition defect

10 return true

11 set n to the next node following the edge in ad

12 return false

All the above types of defects are presented within one use case. There are also defects relat-

ed to the inter-inconsistency among use cases. This may happen in use cases with inclusion

relations, which require that the post-conditions of the included use case is comparable with

the pre-conditions of the including use case.

Definition 13 (D5) Let uc1, uc2 ∈ UC be two use cases. If ∃ prec ∈ uc1.PreC : prec.UCref ==

uc2.UCName, then ∀ postc ∈ uc2.PostC 6 ∃ prec ∈ uc1.PreC : Con�ict(prec, postc)

3.4.6 Finding Defects

Following the definitions in Section 3.4.5, we discuss each defect finding method in details

in this section. Notice that the focus of our work is not to find all possible defects (which

is impossible). We are interested in developing methods that can tolerant the inaccurate

natural language parsing results and detect highly likely defects.

Inconsistent step numbering (D1) is checked based on the use case structure. We check all

3.4. APPROACH DETAILS 36

the sentences in the MF and AF sections of a use case. If we find that an ns field refers to

a sentence that is neither in MF nor AF , an inconsistent step numbering defect is reported.

Unclear alternative flow starting step (D2) is also detected based on the use case structure

(Definition 4). We check all the sentences in the AF section of a use case. If we find a

sentence with its ns field not specified, an unclear alternative flow starting step defect is

reported.

The process of detecting unnecessary strong preconditions (D3) is shown in Algorithm 2.

The rationale is that the pre-condition of a use case is the required initial status of the use

case. If the status is not changed by the action steps, it should be preserved. The input

to Algorithm 2 is an activity diagram ad . We traverse the activity diagram ad (starting

from the initial node) in the while loop. For each node n, if it is an action node (line 4),

we first check whether the action verb n.α.vb associated with the node is a status-changing

verb (line 5). If yes, we stop and return false. Otherwise, if it is a decision node (line 7), we

further check all the predicates associated with the edges outgoing from the decision node

and see whether they conflict with any precondition predicate of ad (line 8). If yes, an over

strong precondition defect is reported.

To decide whether a verb is status-changing, we manually defined a status-changing dictio-

nary based on all the main verbs in the action tuples that we extract in step 3 (in Figure 3.2).

For example, the action “Save the order” may change the status of the order and “check the

order” will not change the order status. To avoid false positives, we only checks confliction-

s between the pre-condition predicates and the predicate (associated with an edge) when

there are no actions in-between that may change the status of the object. For example,

in Figure 3.1, the edges from the first decision node d43 will be checked, since the action

(check , , order) will not change the status of order. But (save, , order) is considered to be

able to change the status of an order. Therefore any decision nodes after action node 45 in

Figure 3.1 are not checked in our method.

3.4. APPROACH DETAILS 37

Algorithm 3: Check Conflict Predicates

Input : p1, p2: two predicates
Output: whether the predicates conflict or not

1 if p1.ar 6= p2.ar then
2 return false

3 if !Comparable(p1.R, p2.R) then
4 if p1.ar = 1 ∧ Sym(p1.a1, p2.a1) then
5 return true

6 if p1.ar = 2 ∧ Sym(p1.a1, p2.a1) ∧ Sym(p1.a2, p2.a2) then
7 return true

8 return false

Algorithm 3 shows the procedure of detecting conflicts on two predicates. To decide whether

two predicates conflict, we first check whether the two predicates have the same arity (line

1). If yes, we check whether the predicate verbs are comparable or not (defined in function

Comparable). If two verbs are comparable, the two predicates are comparable. Otherwise,

we further check whether the arguments have the same parameters as indicated in the syn-

onym dictionary (line 4 − 7), the function Sym checks whether two words are synonym

words. If not, the two predicates are decided to be comparable. Otherwise, we have found

conflicting predicate verbs on the same objects and thus the two predicates are not compa-

rable. There are two cases where two verbs are considered not comparable: (1) the verbs

have the same semantic meaning but one with negative modifiers such as “no, not”. (2) the

verbs are in the contradict dictionary. Similar with deciding the status-changing verbs, we

manually extracted two domain-specific dictionaries based on the action tuples extracted in

step 3. The manually dictionary defining process is liberated and reinforced by referring to

the WordNet [9] lexical database for English. Given a word, we first inspect the WordNet

database to find all possible synonyms/contradicts of it. Then we conduct a set conjunction

of the result provided by WordNet with all the verbs extracted form the document. These

are all processed automatically. The only manual work is to check the results produced by

the conjunction process and decide whether they are valid synonym/contradict words in our

3.4. APPROACH DETAILS 38

context.

To detect missing alternative flows (D4), we traverse each activity diagram to check all the

decision nodes and see whether they have branch edges. If no branch edge is present for

a decision node with guard conditions, a missing alternative flow error is reported. For

example in Figure 3.1, the dashed lined edge emanating from decision node d43 is reported.

If two use cases have inclusion relation, we need to check the consistency issues among

those use cases. The rationale is that the post-condition of the included use cases must be

comparable with the pre-condition of the including use case. We check all the post-condition

predicates of the included use case with all the pre-condition predicates of the including use

case using Algorithm 3 to find inter-inconsistency defects of use cases (D5).

3.4.7 Training Dependency Parser

ZPar provides an easy way to train a domain-adapted dependency parser. The users need

to provide dependency trees, shown in Figure 3.3, as input. In our work, we randomly

selected 18% of sentences in the stock trading system document, checked and labeled those

sentences that are not correctly parsed (90 in the 314). These sentences are used to train a

domain-adaptive parser for the stock trading system. The number of annotated sentences

is less than 6% of the total sentences in the document. To preserve the generality of the

trained parser, our training data set is merged with the Wall Street Journal sections of the

Penn Treebank. We use the trained dependency parser to replace the original dependency

parser in the process shown in Figure 3.2 and parsed the stock trading system again. The

results are reported in Section 3.5.1.

3.5. EVALUATION 39

Table 3.3: Use Case documents statistics

document type # document # use case # sentence ROOT accuracy

stock trading sys 1 188 1711 80%

academic sys 4 31 291 78.5%

3.5 Evaluation

We have implemented our approach in a prototype tool in Python. To test the applicability

of our approach, we evaluate our methods with 219 use cases, which cover different applica-

tion domains, ranging from financial, health care, machinery, monitoring and e-commerce

systems. These use cases are adopted from a real industry system as well as academic publi-

cations. The statistics of the use cases that are used for our evaluation is shown in Table 3.3.

The first row shows a use case document describing a real world stock trading system, with

188 use cases and 1711 sentences in total. This document is written by non-native English

speakers. It contains many grammatical errors, which raise great challenge for our parsing.

The second row is the statistics of 4 different system descriptions (i.e., a personalized health

informatics system, an automated guided vehicle system, an emergency monitoring system

and an online shopping system) from academic publications. There are 31 use cases with

291 sentences in total.

The experiments are conducted on a PC with Intel Core i7-2600 CPU at 3.4GHz and 4GB

RAM. Due to the space constraints, we put all the experiment data (documents, activity

diagrams and defect reports) and the implementation information (code, parser) on our

website4.

Since natural language parsing is highly sensitive to the writing styles of the sentences, in

order to show clearly how effective our analysis algorithm is, we first check the root accuracy

of ZPar on our documents, which in comparison with the root accuracy (90%) of ZPar on

4www.comp.nus.edu.sg/~lius87

www.comp.nus.edu.sg/~lius87

3.5. EVALUATION 40

the Wall Street Journal sections of the Penn Treebank dataset, acts as a measurement of

the difference in writing styles between our document and the training set of the parser.

The root accuracy of ZPar on the the stock trading system and the academic systems is

80% and 78.5% respectively, which reflect that our documents have different writing styles

with the data set used to train the dependency parser.

We try to answer three questions with the evaluation.

• How accurate is the dependency parser in identifying action tuples and predicates?

How much improvement can be achieved through our adjustment rules? How much

improvement can be achieved through training a domain-adaptive parser?

• What is the accuracy of the activity diagram generation method?

• Is our defect finding method effective and accurate for automatic defect detection?

We remark that, we manually check the processing results to decide whether they are correct

or not.

3.5.1 Accuracy of Free Text Parsing

The accuracy of the free text parsing is measured by the accuracy of the action tuples

and predicates generated. Table 3.4 shows the evaluation results. The columns, from left

to right, represent the document used (“doc”); the evaluation type (“type”); the number

of wrongly (“# wrong”), partially correctly (“# PC”) and correctly (“# correct”) identified

action/predicate; the total number of sentences (“# total”) and the precision (“prec(pprec)”)

of the corresponding evaluation type. The precision is calculated by the formula prec =

#correct
#total

and partial precision pprec = #correct+#PC
#total

. An action tuple is identified as correct

if all the three fields of it are correctly extracted. It is identified as partially correct iff it

3.5. EVALUATION 41

Table 3.4: Accuracy of parsing

doc type # wrong # PC # correct # total prec(pprec)

sts

Action(w/o) 155 22 137 314 43.6%(51.6%)
Action(w) 82 23 209 314 66.6%(73.9%)
Predicate 31 17 91 139 65.5%(77.7%)

as

Action(w/o) 105 52 131 291 45.0%(63.9%)
Action(w) 69 14 208 291 71.5%(76.3%)
Predicate 2 1 14 17 82.4%(88.2%)

has the main verb correctly identified and the subject/object incorrectly identified. We are

interested in the partial precision because in some cases of defects detection, only the main

verb information is critical. For example in Algorithm 3, only the verbs in the predicates

need to be checked if they are not conflicting. The two rows “sts” and “as” represent the

stock trading system and the academic systems respectively. Due to the large number of

sentences in the stock trading system, we randomly sampled 18% of the sentences in the

document to check the accuracy.

To show how robust/extensible the dependency parsing can be, we check the accuracy on

identifying action tuples based only on the dependency label, i.e., ROOT for main verb,

SUB for subject and OBJ for object. The results are shown in the “Action(w/o)” rows in

Table 3.4. We can see from the results that, even without applying any of the adjusting

rules, we can achieve more than 43% accuracy on identifying action tuples. The partial

accuracy is even higher if we can tolerant an inaccurate object/subject information. The

accuracy of the analysis results (Action(w)) with our provided adjusting rules is much

higher. Only 1/4 are wrongly generated. For the stock trading system, 2/3 of the action

tuples are correctly generated in the inspected sentences. The accuracy for the academic

systems is higher (71.5%). Remind that the root accuracy of ZPar on our documents are

around 80%. If we only consider those sentences which are assigned correct root by ZPar,

our adjusting rules achieves an accuracy of 83.25% and 91.1% for the industry and academic

systems respectively. This reinforce the claim that the rules we provided are general.

3.5. EVALUATION 42

For the stock trading system, since it is written by non-native English speakers, there are

many grammar errors, such as using noun and adjective words as verbs, which lead to

the incorrect result. There are also very long sentences with complex attributive/adverbial

clauses, which are usually colloquial and do not follow correct grammars. The dependency

parser is confused by the wrong grammar and provides wrong parsing results which further

lead to the wrong action tuples. The academic system documents are well written com-

pared to the stock trading system, thus ZPar achieves a higher accuracy. Among the 69

sentences which have action tuples wrongly identified, 63 of them are because of the wrong

ROOT labels. For the other 6 cases which have their root correctly labeled, the dependency

relation between the real main verb and the root is not correct. Thus they are not correctly

adjusted by our rules. For example, the sentence“The customer can either enter the account

information. . . ”, the modal verb ‘can’ is labeled as the ROOT of the sentence, however, the

real verb ‘enter’ is not labeled to have dependency relation with ‘can’. The main reason for

incorrectly identifying objects is because the complex sentence structures, for instance, the

object is a sub-sentence.

From the experiment results, we notice that (1) the rules (shown in Table 3.1) used to

adjust extraction of action tuples are indeed useful. An increase in accuracy of 23% for

the stock trading system and 26.5% for the those academic use cases is seen. (2) the rules

are generalizable to different documents written by different development groups. It is

promising to increase the accuracy by providing more rules.

We parsed the document with the trained parser, randomly sampled 18% of the results and

manually checked the their correctness. Interestingly, 67 out of 310 have the root wrongly

labeled, providing a precision of 78.4%, which is worse than the original parser. There are

two possible reasons which may lead to this result. (1) The sentence writing style of the

stock trading system is different from the Wall Street Journal dataset. (2) The wrongly

labeled sentences contain grammar errors and proper nouns (like “GETS”). Therefore when

3.5. EVALUATION 43

merging this dataset with the Wall Street Journal dataset, the parser is confused by such

“inconsistencies”.

3.5.2 Accuracy of the Activity Diagram Builder

We generate one UML activity diagram for each use case, the accuracy of the activity

diagram building method is measured by the accuracy of the control flow information of

the generated activity diagram. To be specific, we check (1) whether the nodes and edges

that are correctly generated and linked in the activity diagram and (2) whether the guard

conditions are correctly associated with the edges that are correctly generated in the activity

diagrams.

For the stock trading system, 166 out of 188 use cases have correct nodes and edges gener-

ated. All the guard conditions are correctly associated with those edges. For the use cases

which do not have activity diagrams correctly generated, 20 of them contain alternative flow

steps which do not have clear starting steps; 8 of them have multiple conditions described

within one step or in consecutive steps. Actually, this kind of writing style follows the

If-statement style, which is not consistent with the majority of other use cases in the docu-

ment, which follow the Cockburn style. For the academic use cases, 30 out of 31 use cases

are correctly generated. The use case which is not correctly generated is because of missing

of step information. This is caused by the over-strong filtering of irrelevant sentences.

3.5.3 Accuracy of the Defect Finder

To answer the third research question, we evaluate the accuracy of our defect finding meth-

ods. We adopt the standard metrics of precision (prec) and recall (rec) to evaluate the

accuracy and effectiveness of our methods. We define prec =
|If ∩Ir |
If

and rec =
|If ∩Ir |
Ir

, where

If represents the set of items automatically identified by our method and Ir represents the

3.5. EVALUATION 44

Table 3.5: Experiment results of defect detection

ID If Ir If ∩ Ir prec rec

D1 18 18 18 100% 100%

D2 22 20 20 90.9% 100%

D3 19 21 19 100% 90.5%

D4 83 59 59 71.08% 100%

set of defects that are manually detected from the document, which act as the baseline

in the evaluation. We manually compare Ir with If to decide whether the automatically

extracted item If is correct or not.

Table 3.5 shows the evaluation results on the stock trading system. There are 18 sentences

from 11 use cases which are detected to have inconsistent step numbering problem (D1).

This result is identical with our manually checking result. 22 alternative flow steps are

detected with defect type D2, i.e., do not have clear starting step number. Compared to

our manual detection results, 2 of them are false positives (i.e., correct but is identified as

a wrong case). The reason is because of the irrelevant sentence presented in that step. Our

method found 19 cases where the precondition is inconsistent with the guard conditions on

the flow. Our manual detection finds 21 such cases. Therefore there are 2 cases that are

missed by the automatic detection method. The reason is that our predicate extraction

method fails to extract the correct predicates for the two cases. For detecting missing

alternative flows (D4), our tool found 83 potential defects presented in 39 use cases. 59 out

of the 83 are real defects and 24 are false positives. The 24 false positives appear in 8 use

cases, which have different writing styles with the majority of the other use cases. Thus our

method failed to generate correct activity diagrams for those use cases, which further leads

to those false positives. Although those false positives are not real missing alternative flow

defects, they may cause potential maintenance problems, and thus are meaningful to be

highlighted. Our tool did not report any inter-inconsistencies in the use case document. We

did not find any such cases by manual detection either. Actually, the document is loosely

3.6. DISCUSSIONS 45

written such that use case preconditions and postconditions do not couple with each other

well. Therefore there are very limited information we can use to do the checking. This is

also the reason why the accuracy of the free text parsing does not affect too much on the

accuracy of the defects detection.

The academic use case documents are well written and our tool successfully confirmed that

there are no defects that we focus on.

3.6 Discussions

There are some limitations, manual efforts and threats to validity of our approach. We

discuss them in this section.

Limitations (1) Currently, the action tuple definition captures the basic key elements, i.e.,

subject, object and main verb of a sentence. The purpose is to identify primary intentions

of a sentence and enable automatic defects checking. For complex sentences which contain

sub-sentences, there maybe multiple actions present in one sentence. Although this is not a

recommended style of writing use cases [50], such cases may occur in a use case document.

Currently the meaning of the sub-clauses is not further analyzed and thus there may be

information loss. our method focuses on the main action of a sentence and may loose some

information for those complex cases. We do , but information loss may still happen for

complex sentences. For example, sentences like “Create two matches and send them to the

trader; or create three matches and . . . ”. The sentences indicates more than 3 actions.

Currently we just extract one action tuple, i.e., (create, two matches) from this sentence.

This can be improved by extending the action extraction rule sets in Table 3.1.

(2) We only assign coarse semantic meanings, such as synonym/conflict/status-changing, to

words in our method. This may lead to missing of cases in defect checking. For example, in

3.6. DISCUSSIONS 46

the over-strong precondition checking (D3), our method only conducts the checking when

we are sure that the actions in the flow do not modify the status of the object to be checked.

However, some words are status-changing, but the resulting status does not conflict with

the current status. Such cases will be missed by our method. For example, in Figure 3.1,

the action (save, , order) changes the status of the order, but does not affect the legality

of the order in this case. However, our method will ignore all the branch conditions after

the (save, , order) action node, since the verb “save” indicates changes of status on order.

Assigning fine-grained semantic meanings to words may solve this problem.

Manual Efforts In our approach, there are three steps which may require human inter-

vention.

(1) If the input use case document does not follow the Cockburn writing style [39], some

efforts of rewriting the use case document into the Cockburn style are needed in order to

correctly generate activity diagrams. It is a common assumption in model transformation

works [137] that the input model follows certain format.

(2) To decide conflict predicates, three domain-specific dictionaries, i.e., the synonym dictio-

nary, the conflict dictionary and the status-changing verbs dictionary, need to be manually

categorized. Our method provides all possible candidates for the dictionaries based on our

automatically extracted subject, object and main verbs for each sentence. Then the Word-

Net lexical database is inspected to provide the preliminary synonym/conflict dictionaries.

Therefore the only manual effort is to check and decide the dictionaries based on the pre-

liminary dictionaries. Our method generated 262 distinct main verbs, among which 214

are valid, for the stock trading system document. With the aid of WordNet, we identi-

fied 20, 8, and 14 groups of words for the synonym, conflict and status-changing dictionary

respectively. The whole procedure takes a PhD student around 2 hours.

(3) If a user wants to train a domain-adaptive parser, manual efforts on labeling sentences

3.7. CHAPTER SUMMARY 47

into dependency trees are required. The workload of this step depends on the number of

sentences that are to be labeled. However, this step is optional in our approach. Our

method achieves good accuracy without the training process.

Threats to validity There are some threats to validity in our evaluation of results.

(1) In the evaluation, we manually inspect each kind of defects and use the manual inspection

results as the baseline. The manual defects detecting is subjective to the experimenter’s

understanding. To reduce this factor in our evaluation, the documents are checked by two

PhD students in School of Computing, NUS, who have requirement engineering and natural

language processing background.

(2) For the stock trading system, since it has more than 1700 sentences, we did not check

all the sentences when evaluating the accuracy of free text parsing. To reduce the possible

threats to validity caused by this, we randomly sampled 18% of the sentences and manually

inspect the results.

3.7 Chapter Summary

In this chapter, we propose a method to automatically detect intra-defects in natural lan-

guage use case descriptions. Our method leverages on the dependency parsing technique

which allows document-independent rules to be provided. It is more adaptable to documents

of different writing styles than template matching based on shallow parsing techniques. We

proposed an algorithm to automatically generate an UML activity diagram, which captures

the control flow information, for each use case. We formally defined common use case de-

fects and defect detection techniques accordingly. The evaluation with 5 different use case

documents shows that our method is effective in finding potential defects. Our method

provides horizontal links to the original document to enable easy manual validation. The

3.7. CHAPTER SUMMARY 48

defect report is presented in natural language, which greatly improved the involvement of

stakeholders.

Chapter 4

Improve Use Case Document

Quality Through Active Learning

Validating and maintaining a high quality use case document is crucial, which unfortunately

is also subjective and labor-intensive, as we have discussed in chapter 3. One of the reasons

why it is hard to have high quality use cases is that stakeholders usually do not describe

the requirements clearly, consistently or completely [121]. Common problems with use cases

include ambiguity in the description, inconsistency in the requirements and, perhaps more

importantly, missing scenarios [53].

We have shown how to detect inconsistency defects and incompleteness related defects in a

single use case in chapter 3. In this chapter we aim to develop methods and tools which aid

finding potential missing scenarios and preconditions/postconditions that involve multiple

use cases.

49

4.1. INTRODUCTION 50

4.1 Introduction

As has been strengthened by Firesmith in his paper discussing “what makes good require-

ments”that“An entire requirements specification should be complete and contain all relevan-

t requirements” [53]. However, the reality is that people usually“take certain information for

granted and omit it, even though it is not obvious...” [53]. Through the working experiences

with our industry collaborators, we have the following observations about requirements:

• Requirements specifiers usually have strong assumptions on the background/domain

knowledge on the readers of the document. Sometimes they are just not careful

enough to think thoroughly about all possible cases of the requirements. Therefore

requirements are usually not completely specified.

• The incompleteness of requirements is especially obvious for use cases, which are

scenario-based techniques to capture requirements.

• We cannot completely eliminate user interactions. Given that many problems of the

use cases are caused by incomplete user requirements, and there is no better way to

obtain the information other than interacting with the stakeholders, we shall not try

to eliminate user interactions. Rather, we should ask only the right questions in a way

which is easy to understand by the stakeholders so that they are not overwhelmed or

confused.

Based on the above observations, we propose to improve the quality of use cases using

techniques including natural language processing and machine learning. Central to our idea

is to discover potential problems which would manifest during implementation and report

the problems at the level of use cases so as to improve the quality of use cases.

Figure 4.1 shows the high-level workflow of our approach. Firstly, we adopt advanced

natural language parsing techniques [140] to extract structured format from individual use

4.1. INTRODUCTION 51

case written in English, from which we obtain information on behavior of each actor in the

system in a particular scenario. Taking a system engineer point of view, next we attempt

to answer the question on whether there would be a concise implementation of the system

such that the requirements are satisfied. To do that, we need to, for each actor in the

system, not only figure out the relationship between its behavior in different use cases but

also check whether the behaviors in different use cases can be grouped into a meaningful

and succinct implementation. For the former, we extract predicates from preconditions and

postconditions of each use case and use those predicates as guidance to construct a use

case relation graph. For the latter, we adopt active learning techniques from the machine

learning community to incrementally learn a Deterministic Finite-state Automaton (DFA)

from the behaviors in individual use cases. The use case relation graph is then used to

compose the learned automata for every actor to obtain a plausible implementation for

the actor. We remark that the requirement engineer and stakeholder are involved along

the way in the process. For instance, we would automatically infer relationships between

preconditions and postconditions of different use cases as much as possible. When ambiguity

rises, we generate questions in English to consult the stakeholders, e.g., whether a certain

precondition is satisfied by certain postcondition; or whether a behavior anticipated through

learning (for instance, an implementation with a small number of states would probably

allow this additional behavior) is indeed allowed but is missing from the current set of use

cases.

In this way, we are able to elaborate the use cases interactively with the stakeholders to

improve their quality, for instance, by reducing ambiguity in precondition and postcondition

descriptions, or by identifying missing use cases. We remark while we attempt to synthesize

a plausible DFA implementation for each actor in the system, it is not the goal of this

work. Rather it is a way of identifying problems in use cases, which is a more realistic goal

from our point of view. Nonetheless, some of the artifacts generated in our method could

4.1. INTRODUCTION 52

 Knowledge
 Base

Use Case
Document

membership/
pattern
Query

 generate
 questions

 Construct
Relation Graph
3

 Learn DFAs
from use cases
2

 NLP and analysis1

 Orchestrate
EDFA

4

structured Use Cases

A set of EDFA
for an actor

(e.g., Figure 4)

Use Case Re-
lation Graph

(e.g., Figure 5)

Final EDFA
for an actor

(e.g., Figure 6)

Figure 4.1: Overview of the quality improvement approach

be useful on its own. For instance, the use case relation graph shares the same utility as

the use case charts or high-level Message Scequence Charts which are required as inputs

of existing scenario based requirement validation approaches [126, 131]. Therefore, our

approach can be used in combination with those approaches. We conduct a case study with

a real industry use case specification document (of a financial system actively used by a

financial institute in Boston), which contains more than 100 use cases describing the usage

scenarios of 7 actors. We identified more than a dozen missing scenarios and dozens of other

problems. The evaluation results show that our approach is effective in improving use cases

with a reasonable amount of user interaction.

Outline. The remainders of the chapter are organized as follows. Section 4.2 illustrates

our method with a running example. We provide background knowledge in Section 4.3.

Section 4.4 discusses the details of our approach. In Section 4.5, we conduct a case study.

We conclude this chapter in Section 4.6.

4.2. RUNNING EXAMPLE 53

4.2 Running Example

In this section, we illustrate the overall process of our approach through an example. The

example is adopted from our industry collaborator. For confidentiality, the use cases pre-

sented in this paper have been slightly modified, e.g., the sensitive words have been replaced.

Nonetheless, the use cases remain largely faithful. Many of the use cases describe the inter-

action between a client and a server, with a range of operations such as creation, deletion,

undo deletion. Figure 4.2 shows four sample use cases of the system, written in English.

All these use cases describe the valid behavior of the actor “Ticker Monitor” and serve as

input to our method.

There are four major steps in our approach. The first step is to“understand” the description

of the use cases, i.e., we adopt natural language processing techniques to parse the natural

language use case documents and obtain formal structures of the use case. In the second step,

we formalize the behaviors of each actor in the use cases using DFA and make reasonable

guesses on how the behaviors are to be realized. In particular, we adopt an active learning

algorithm L* [23] to learn an Extended Deterministic Finite Automaton (EDFA) which

is compatible with the behaviors. This step allows us to improve the use cases through

identifying missing scenarios. Different use cases might have very different preconditions

and postconditions, in order to understand the relations between different use cases, we

construct an use case relation graph (in Step 3) for each actor based on the preconditions

and postconditions of each EDFA and then (in Step 4) compose the EDFAs to obtain an

overall EDFA for each actor. This step allows us to reduce ambiguity in the use cases.

Step 1 : Natural Language Parsing We first adopt natural language processing tech-

niques, i.e., dependency parsing and phrase structure parsing [140], to parse the sentences

in a use case description into parse trees. Then we analyze the parse trees based on general

4.2. RUNNING EXAMPLE 54

Use Case 1: Ticker Monitor Connects to GSYS
Initiating Actor: Ticker Monitor
Pre-Conditions
1. The ticker monitor can monitor the change of tick
information and the connection status with TickFeed.
Main Flow
1. Ticker monitor connects to GSYS.
2. GSYS sends all Exch information and symbol
information records in the database to ticker monitor.
3. Ticker monitor displays the records.
4. This ends the use case.
Alternative Flow
N/A
Post-Conditions
N/A

Use Case 2: Delete a Symbol Information from
GSYS
Initiating Actor: Ticker Monitor
Pre-Conditions
1. The ticker monitor has connected to GSYS.
Main Flow
1. Ticker monitor selects a symbol information.
2. Ticker monitor sends a message to delete the
symbol information.
3. This ends the use case.
Alternative Flow
N/A
Post-Conditions
1. The symbol information is deleted.

Use Case 3: Update a Symbol Information in GSYS
Initiating Actor: Ticker Monitor
Pre-Conditions
1. The ticker monitor has connected to GSYS.
Main Flow
1. Ticker monitor selects a symbol information.
2. Ticker monitor update some fields of the symbol
information.
3. Ticker monitor sends the updated symbol information
to GSYS
4. This ends the use case.
Alternative Flow
N/A
Post-Conditions
1. GSYS update the symbol information in the database
if it is valid.

Use Case 4: Undo Delete a Symbol Information
from GSYS
Initiating Actor: Ticker Monitor
Pre-Conditions
1. The ticker monitor has connected to GSYS.
2. GSYS has deleted one or more symbol
information.
Main Flow
1. Ticker monitor undos delete the symbol
information.
2. Ticker monitor sends the most recently deleted
symbol information to GSYS.
3. This ends the use case.
Alternative Flow
1. In step 1, if ticker monitor has not deleted any
symbol information, do nothing.
Post-Conditions
1. GSYS restore the symbol information.

Figure 4.2: Sample use cases

grammar rules that are extracted from the documents (refer to Section 3.4.3). We identify

all the actions which are related to the actor of concern based on the parsed action tuples.

For example, in use case 2 of Figure 4.2, the action tuples for the main flow sentences

are selects(Ticker monitor, symbol information), sends(Ticker monitor, message to delete

symbol information). Both action tuples have actor “ticker monitor” as subject. We thus

consider all of them as actions related to the actor. We utilize the same natural language

parsing and analysis techniques with that we introduced in Chapter 3.

4.2. RUNNING EXAMPLE 55

d0

d1

d2

select s

delete s

(a)

u0

u1

u2

u3

select s

update s

send us

(b)

0

d0

d1

d2

u0

u1

u2

u3

ε ε

select s

update s

send us

select s

delete s

(c)

0

1

d2

u2

select s

delete s
update s

send us

(d)

Figure 4.3: (a) The NFA for use case 2 in Figure 4.2; (b) use case 3 in Figure 4.2; (c) the
merged NFA; (d) the corresponding DFA

Then the structured sentences are linked based on the control flow information (e.g., previ-

ous, succeeding relation or the “go to” statement) described in the flow steps to obtain a raw

Nondeterministic Finite State Automaton (NFA), which captures the actions of one actor

described in the use case. For example the NFAs1 shown in Figure 4.3 (a) and Figure 4.3 (b)

are constructed from use case 2 and use case 3 in Figure 4.2, respectively. We merge all

those NFAs which describe the actions of the same actor and share the same preconditions

to obtain one NFA. The NFAs in Figure 4.3 (a) and Figure 4.3 (b) are merged to obtain

the NFA shown in Figure 4.3 (c). Then we determinize the NFA in Figure 4.3 (c) to obtain

a DFA2 shown in Figure 4.3 (d), which serves as a part of the knowledge base during the

active learning process. In our approach, we learn the DFA which is prefix-closed with

the assumption that the system can stay in any of the status after conducting an action.

Therefore, we set all states in the obtained DFA to be accepting states.

1We simplify the action tuple representation to save space.
2We only show the transitions which lead to accepting states in the DFAs for clarity. The same applies

to Figure 4.4 and Figure 4.6.

4.2. RUNNING EXAMPLE 56

s0 s1 s2 s3
connect receive display

(a)

p0

p1 p2

p3

p4 p5

p6

p7

select s

select e

create s create e

cancel

cancel

update s

delete s

update e

delete e

send us

cancel

send s send e

send ue

cancel

(b)

q0 q1

q2

notd

undo s
send ds

(c)

r0 r1

r2

notd

undo e send de

(d)

Figure 4.4: The partial DFAs for Ticket Monitor

Step 2 : Learn Local EDFA We group those structured use cases based on their precon-

ditions and postconditions. For all the use cases which describe the actions of one actor, if

they have the same preconditions, they are put together as one group (e.g., use case 2 and

use case 3 in Figure 4.2). All the actions appear in those use cases in the same group are

fed to the L* algorithm as the alphabet to learn one local DFA. For example, in Figure 4.2,

use case 1 and use case 4 correspond to DFAs shown in Figure 4.4 (a) and Figure 4.4 (c)

respectively. The DFA in Figure 4.4 (b) is generated based on the traces from use case

2, use case 3 and some other use cases (we do not show them in Figure 4.2 due to the

4.2. RUNNING EXAMPLE 57

dfa1

dfa2

dfa3 dfa4

connected(TM,GSYS)

del SI

del EI

Figure 4.5: Relation graph of Ticket Monitor EDFAs

space limit) within the same group. We defer the detailed process to learn the DFA in

Figure 4.4 (c) to Section 4.3 when introducing the L* algorithm. One goal of the learning

is to gradually discover missing scenarios by generating questions to users. Using an active

learning algorithm allows to ‘control’ the number of questions required. For instance, the

dashed lines in the DFA shown in Figure 4.4 (b) represent the traces that are added during

the interactive learning process. These traces are generated by our learning algorithm and

are confirmed to be valid by users.

We then assign each DFA with preconditions and postconditions of the use cases that

compose it. The DFA with preconditions and postconditions is called an Extended DFA

(EDFA, refer to Definition 17). The postconditions of an accepting state are set on a trace

basis, i.e., only the accepting states, e.g., p7 in Figure 4.4 (b), which correspond to ending

of traces have postconditions. For the trace 〈select s, delete s〉, the postcondition is set to

be deleted(symbol informtion). The trace-based preconditions and postconditions are used

for the later use case relation graph generation and EDFA composition, when we decide

how to split the traces.

Step 3 : Construct Use Case Relation Graphs The relations such as “happen before”

or “in parallel” usually exist for use cases of one actor. Those relations can be inferred

from the precondition and postcondition sections in the use case documentation. On the

4.2. RUNNING EXAMPLE 58

other hand, those relations can be used to identify ambiguity in precondition/postcondition

descriptions as well. Recall that in step 2, we learn one EDFA for use cases with the same

precondition. Therefore usually multiple EDFAs are learned for one actor. In order to show

the overall view of all the valid behaviors of an actor, we build a usage relation graph for

those EDFAs based on their corresponding preconditions and postconditions. The usage

relation graph for the EDFAs in Figure 4.4 is shown in Figure 4.5. The nodes represent the

EDFAs and directed edges represent the precedence of usage relations between two EDFAs.

The labels on the edges are the conditions which the edge linkages are based on. For

example, dfa3 “happens after” dfa2 based on the common condition the symbol information

is deleted (represented by del SI in Figure 4.5), which is the postcondition of dfa2 and the

precondition of dfa3. Likewise, dfa2 and dfa4 are linked based on the common condition the

Exch information is deleted (del EI in Figure 4.5).

We construct one usage relation graph for each actor. For those use cases with trivial linking

conditions, we link them directly. For example dfa2 and dfa3 can be linked directly based

on the predicate del SI. For those use cases which do not have clear linking references, or

miss preconditions/postconditions, we raise natural language questions to query the users

about the relations between those use cases. For example, the EDFA in Figure 4.4 (a)

(corresponds to use case 1 in Figure 4.2) does not have postconditions specified. Our method

raises questions based on the preconditions of existing use cases for users’ confirmation. In

this example, the precondition connected(TM, GSYS) (“The ticker monitor has connected

to GSYS”), from all the existing use cases, is confirmed to be a legal postcondition for use

case 1.

Step 4 : Orchestrate Local EDFAs Afterwards, we orchestrate all the EDFAs based

on the usage relation graphs obtained in step 3. We traverse the usage relation graph in

a breadth-first manner and link a node with all its child nodes on the common conditions

4.2. RUNNING EXAMPLE 59

s0start s1 s2

p0

p1 p2

p3

p4 p5

p6

p7

p′7 p′′7

q2 r2

connect receive

display

select s select e

create s
create e

cancel

cancel

update s

delete s

cancel

update e

delete e

cancel
send us

send s send e

send ue

notd

undo s

send ds

notd

undo e

send de

Figure 4.6: The overall DFA for Ticket Monitor

labeled on the corresponding edges. For example, according to the relation graph shown in

Figure 4.5, dfa1 (Figure 4.4 (a)) and dfa2 (Figure 4.4 (b)) are linked based on the common

condition connected(TM, GSYS), which is the precondition of dfa2 and the post-condition

of dfa1.

There are cases where we need to split a final state during the orchestration. Since each

trace has a set of corresponding postconditions, those traces which have comparable post-

conditions with the preconditions of a given EDFA are split out to link with the initial state

of that EDFA. For example, according to the graph shown in Figure 4.5, dfa2 links with

dfa3 on the common condition del SI and link with dfa4 on the common condition del EI.

The result of the orchestration is shown in Figure 4.6. Traces 〈select s, delete s〉 is split out

to link with dfa3 based on the common condition del SI. Similarly traces 〈select e, delete e〉

is split out to link with dfa4. The orchestrated DFA is shown in Figure 4.6.

As illustrated in the running example, our approach is able to find missing scenarios, e.g.,

4.3. PRELIMINARY 60

the traces indicated in dashed lines in Figure 4.6, as well as missing preconditions/post-

conditions, e.g., the postcondition of use case 1 in Figure 4.2, through active learning and

interaction with stakeholders.

4.3 Preliminary

In this section, we present preliminaries on active learning and the L* algorithm that we

adopt in our approach.

Active learning refers to a model of instruction in which a student interacts with a teacher

by actively asking questions in order to learn the knowledge. Angluin proposed the L*

algorithm [23] to learn the unknown DFA U (i.e., the knowledge) from the teacher, who

knows the DFA, by asking membership queries and candidate queries. For a membership

query, L* asks the teacher whether a string s is a member of the accepted languages of

the unknown DFA, i.e., whether s is accepted by U . The teacher answers yes(1)/no(0)

accordingly. After a set of membership queries, L* conjectures a candidate DFA C from

his current knowledge and asks the teacher a candidate query whether the candidate DFA

is equivalent to the unknown DFA, i.e., C ≡ U . If the teacher answers yes, L* successfully

learned the DFA, which is equivalent to the current candidate DFA; If the teacher answers

no, it provides a counterexample trace which is either accepted by C or U but not both.

L* then extracts knowledge contained in the counterexample and starts asking membership

queries. L* is guaranteed to terminate and learns U within polynomial time (see the proof

in Angluin’s original paper [23]).

L* represents its current knowledge with an observation table K = (SK ,EK ,TK), in which

SK is a set of row index strings and EK is a set of column index strings. TK is a mapping:

SK × EK → {yes,no}, which contains the knowledge whether a string s · e concatenated

from s ∈ SK and e ∈ EK is accepted by U or not. In the following we abuse notation TK (s)

4.3. PRELIMINARY 61

to denote a row of | EK | number of yess or nos corresponding to a row index string s ∈ SK .

L* assumes the alphabet Σ of U is known beforehand. Both SK and EK are initialized

with the empty string λ. For each symbol a ∈ Σ, s ∈ SK , and e ∈ EK , if s · a 6∈ SK , it asks

the teacher a membership query whether the string s · a · e is accepted by U . If the string

is accepted by U it maps TK (s · a, e)→ {yes}; it maps TK (s · a, e)→ {no} otherwise. L*

asks membership queries until K is consistent and closed, i.e., for any s ∈ SK the row TK (s)

must appear more than once. If K is not closed, let s ∈ SK be a string for which TK (s)

appears only once, then for each a ∈ Σ and each e ∈ EK , it asks a membership query for

string s · a · e. When K is consistent and closed, L* conjectures a candidate DFA C from

K as the following:

• S (C) are the distinct rows TK (s) for all s ∈ SK .

• init(C) is the row corresponding to TK (λ).

• AS (C) are the rows TK (s) for which TK (s, λ)→ yes.

• δ(C) is defined as for si , sj ∈ S (C), δ(si , a) = sj if there is a TK (s) = si and

TK (s · a) = sj .

We adopt the Rivest and Schapire approach [113] to handle a counterexample string ν

returned by the teacher when C 6≡ U . First we find the longest prefix u ∈ SK of ν, such

that ν = u · v and add all suffixes of v which do not exist in EK into EK . Then we fill up

TK by asking membership query for each string concatenated with each s ∈ SK and each

string in suffixes of v , and then check whether K is closed.

We illustrate how L* works to learn the DFA in Figure 4.4 (c). To simplify the presentation,

we use the symbol d , s, n to represent the alphabet symbol undo s, send ds and notd,

respectively. At the beginning, the observation table is shown in Figure 4.7 (a). This table is

4.3. PRELIMINARY 62

λ

λ 1

d 1
n 1
s 0

(a)

λ

λ 1
s 0

d 1
n 1
sd 0
sn 0
ss 0

(b)

0 1d ,n
s

n,d ,s

(c)

Figure 4.7: The observation tables (a) and (b) in the first learning round and the first
candidate DFA (c)

λ s

λ 1 0
s 0 0

d 1 1
n 0 0
sd 0 0
sn 0 0
ss 0 0

(a)

λ s

λ 1 0
s 0 0
d 1 1

n 1 0
sd 0 0
sn 0 0
ss 0 0
dd 0 0
dn 0 0
ds 1 0

(b)

0 1

2

n d

s

d ,n,s

n,d
s

(c)

Figure 4.8: The observation tables (a) and (b) in the second learning round and the second
candidate DFA (c)

not closed because row indexed by string s appears only once in the table. L* moves this row

to the upper part and extends the table with each alphabet symbol by asking membership

queries for strings sd , sn and ss. The extended table is shown in Figure 4.7 (b) which

is closed. The first candidate DFA constructed from the table is shown in Figure 4.7 (c).

Then L* asks a candidate query with the candidate DFA, for which the teacher returns a

counterexample string ds. The table contains string d which is the maximum prefix of ds.

Thus the suffixes of string s are {λ, s}. Only string s is added to the table column because

λ already exists in the column.

4.4. DETAILED APPROACH 63

λ s n

λ 1 0 1
s 0 0 0
d 1 1 0
n 1 0 0
sd 0 0 0
sn 0 0 0
ss 0 0 0
dd 0 0 0
dn 0 0 0
ds 1 0 0

(a)

λ s n

λ 1 0 1
s 0 0 0
d 1 1 0
n 1 0 0

sd 0 0 0
sn 0 0 0
ss 0 0 0
dd 0 0 0
dn 0 0 0
ds 1 0 0
nd 0 0 0
nn 0 0 0
ns 0 0 0

(b)

0 3 1

2

n

d

s

d ,n
s

n,d ,s

n,d ,s

(c)

Figure 4.9: The observation tables (a) and (b) in third learning round and the third candi-
date DFA (c)

Then L* asks several membership queries to fill up the cells due to the addition of the

column s. The observation table is shown in Figure 4.8 (a). This table is not closed because

the row with valuation 11 appears only once in. L* moves the row indexed by string d

(the first row corresponding to row 11) to the upper part and extends the table with rows

indexed by string dd ,dn and ds by membership queries. The extended table is shown in

Figure 4.8 (b), which is closed. Then L* constructs the second candidate DFA shown in

Figure 4.8 (c). For this candidate query, the teacher returns a counterexample string nn.

Then the string n is added to the table column. L* repeats the previous steps to obtain

the third candidate DFA shown in Figure 4.9 (c) and asks a candidate query. The teacher

finds that the candidate DFA is equivalent to the DFA to be leaned. Thus L* successfully

learns the DFA.

4.4 Detailed Approach

In this section, we present the details of the steps in our approach.

4.4. DETAILED APPROACH 64

4.4.1 Natural Language Parsing and Analysis

Recall that as we have discussed in Section 2.2, there is no standard template for writing

use case documents as concluded by Fowler [54]. We thus focus on one of the widely used

writing styles in the literature and practice, which is “the single-column, numbered, plain

text, full sentence form” [39]. Since the input of our approach is a use case specification

document written in English, we adopt advanced natural language parsing techniques, i.e.,

dependency parsing and phrase structure parsing [140] to parse the document. Then we

analyze the parse trees by rule matching to extract action tuples and predicates from the

flow steps and precondition/postcondition sections. The formal definition of an action tuple

and a predicate are defined in Definition 1 and Definition 2, respectively. After analyzing

the parse trees, each sentence in the use case description is mapped into the formal structure

as defined in Definition 3. The use case is organized based on the sections to which those

sentences belong, as is formally defined in Definition 4. The detailed steps of analyzing

parse trees have been discussed in Section 3.4.3 and thus we skip the details here.

Then an NFA is generated based on the control flow information extracted from the use

case. NFA is defined as the following.

Definition 14 (NFA) An NFA is defined as NFA, {S , Σ, δ, init , AS}, in which S is a

non-empty finite set of states; Σ is a non-empty finite set of alphabet; δ = S ×Σ→ PS is a

transition relations; init ∈ S is the initial state and AS ⊆ S is the set of accepting states.

A Deterministic Finite Automaton (DFA) is a special NFA where there is no ε in the alpha-

bet and the transition relation of a DFA is δ = S×Σ→ S . For example, in Figure 4.4 (a), the

DFA can be represented as {{s0, s1, s2, s3},{connect, receive,display},{s0
connect−−−−→ s1, s1

receive−−−−→

s2, s2
display−−−−→ s3},s0, {s0, s1, s2, s3}} by definition. DFA and NFA are proved to have the same

power of capturing regular languages and there is standard powerset construction algorithms

to construct an equivalent DFA from an NFA (see [110]).

4.4. DETAILED APPROACH 65

Recall that as we have discussed in Section 3.4.4, there are two kinds of control flow infor-

mation in a use case description, as is exemplified in use case 4 in Figure 4.2. The first kind

of control flow information is represented by the sequential ordering of sentences in each

section, i.e., the s# field in a sentenc S . The second kind of control flow information is

represented by the conditional statement, which are usually indicated by the keywords such

as “if”, “whether”, “else”, in a sentence. The control flow information is extracted during

the procedure of analyzing the parse trees (Section 3.4.3).

We then compose an NFA from a use case defined in Definition 4 following the steps shown

in Algorithm 4. We first create a state for each sentence (line 1-3). Then we link the states

based on the previous (ns) and succeeding fields (nj) of the corresponding sentences (line

4-11). If we find the sentence step number si .s# is the same with the succeeding node step

number sk .nj of another sentence; or the previous node step number of the sentence (si .ns)

is the same with another sentence step number sk .s#. then we add a transition between the

corresponding nodes accordingly (line 6-7)). All the actions labeled with transitions are

added into the NFA alphabet (line 8)). If the action field is empty, we label the transition

with ε. Lastly, we set the initial state and accepting states based on the sequence of the

sentences in the UC .MF section. The state corresponding to the first sentence in UC .MF

is set as the initial state, and the states corresponding to the last sentences in UC .MF and

UC .AF are set as the accepting states.

After obtaining an NFA for each use case, we construct an NFA for all the use cases sharing

common preconditions, by adding one unique initial state and an ε transition from it to each

initial state of the NFAs for those use cases. Then we convert the NFA to an equivalent

DFA with the anti-chain improved powerset construction algorithm [133], which is often

efficient despite its worst-case exponential complexity.

After this step, we obtain a set of DFAs for each actor. Each DFA corresponds to a set of

use cases which have the same preconditions. Those DFAs serves as part of the knowledge

4.4. DETAILED APPROACH 66

Algorithm 4: Generate an NFA from a Structured Use Case

Input : UC : a use case
Output: nfa: an NFA

1 for each s ∈ UC .MF ∪ UC .AF do
2 s ←create a state for s
3 nfa.S .add(s)

4 for each pair of states (si ,sk) from nfa.S do
5 Let si and sk be the corresponding sentences
6 if si .s# = sk .nj or sk .s# = si .ns then
7 nfa.δ.add(sk ,si ,sk .α)
8 nfa.Σ.add(sk .α)

9 else if sk .s# = si .nj or si .s# = sk .ns then
10 nfa.δ.add(si ,sk ,si .α)
11 nfa.Σ.add(si .α)

12 nfa.Σ.add(ε)
13 set nfa.init and nfa.AS
14 return nfa

base in our learning process.

4.4.2 Learn the DFAs

In the second step, we adopt the L* algorithm to learn a DFA representation of the actor’s

behavior, which we take as a hint on how the system can be possibly implemented. In

our setting, the teacher is composed of the structured use cases (i.e., the DFA we obtained

in step 1) and the user interacting with our tool. The alphabet is set as all the actions

extracted from the structured use cases.

L* is an active learning algorithm. Compared with the passive learning techniques, it has

the advantage of obtaining new knowledge incrementally from beyond the given set of traces,

and thus enables finding missing use cases interactively. In our approach, the membership

query is answered based on both the known traces from the use cases as well as suggestions

from the users. The candidate query is decided by checking the equivalence of two DFAs,

4.4. DETAILED APPROACH 67

i.e., the DFA learned with L* algorithm and the DFA we generated from the knowledge

base (in step 1).

4.4.2.1 Membership Query

The membership query checks whether a trace generated by the L* is a valid trace. To

answer the query, we first check whether the given trace is a valid trace in the DFA obtained

from step 1 by a depth-first search. If it is not, we raise a question to the user to ask whether

the trace should be accepted or not. If the user answers“no”, we reject the trace. Otherwise,

we accept the trace and add the trace to the DFA generated in step 1.

The number of membership queries generated by L* is linear to the size of alphabet, states

in the DFA as well as the length of the returned counterexample, and thus may be rather

large. We propose five filtering techniques to filter out those traces which are unlikely to be

valid so as to reduce the amount of user interactions required.

The first filter is that we only allow the traces that start with actions which are initial actions

of some known valid traces. For example, in the DFA of Figure 4.4 (c), only traces start

with actions in the set {undo s, notd} are raised as queries to the users. The justification

is these initial actions are often ‘special’ and it is unlikely that the user would completely

forget certain functionality of the system.

The second filtering technique is proposed based on the premise that the learned DFA is

prefix closed. Therefore we can conclude that if a prefix of a trace is not accepted, the trace

is not accepted. Thus we record all the traces that are denied by users for checking in later

rounds.

The third filtering technique is based on the conflicting actions extracted from use cases.

Actions or predicates with conflicting semantics are unlikely to reside in the same trace. For

example in use case 4 of Figure 4.2, the action “undo delete symbol information” in step 1 of

4.4. DETAILED APPROACH 68

the main flow and the predicate“not deleted (symbol information)” from the alternative flow

cannot reside in one trace since they have conflict semantics. We extract these conflicting

action/predicate pairs automatically from the use cases. Users can also provide conflicting

action/predicate pairs.

The fourth filtering technique is based on the precedence order between actions, as is for-

mally defined in Definition 16.

Definition 15 (Trace) A trace is defined as T ,{ < A >, PostC} where PostC is the

postconditions of the trace and < A > is a list of actions.

Definition 16 (Precedence Order) Two actions α1 and α2 are said to have a precedence

order relation α1 ≺ α2 iff ∃ t ∈ T : α1 ∈ t . < A >∧ α2 ∈ t . < A >∧ index (α1) < index (α2),

where the function index(α) returns the index of an action in the trace.

The precedence order is a partial order relation, which satisfies the transitive property, i.e.,

if we have two pairs of actions α1 ≺ α2 and α2 ≺ α3, both of which satisfy the precedence

order, then we can infer that the precedence order α1 ≺ α3 holds. In practice, events

in a systems are often ordered, for instance, login often precedes authenticate. Knowing

the ordering between different events would help to greatly reduce the number of user

interactions needed. In theory, only the user knows the ordering. Nonetheless, in our work,

we infer likely ordering based on the given use cases and only in the presence of conflicts,

we would consult the user.

We generate precedence order relations between actions in the alphabet based on their

sequential ordering in the use case flows. For example in Figure 4.4 (a), we can obtain the

partial order relation connect≺receive and receive≺display directly. We can infer the partial

order relation connect≺display from the two known partial order relations based on the

transitivity property. If, however we get two conflicting partial orders through either direct

4.4. DETAILED APPROACH 69

generation or inference, we may have encountered two possible situations. One situation

is that we have encountered a loop and the two actions are involved in the loop. We then

detect the loop and remove all the partial order relations involved in the loop. The other

situation is that we found a conflict in the action execution sequence. This can be raised

as a question for user decision. Any trace that contains a pair of actions which violates the

valid partial order relations is denied without querying the users.

All the previous filtering techniques are based on the static information extracted from the

use case descriptions. The last filtering technique is based on the answers provided by users

on the fly. During the process of membership query, we raise questions (in the form of a

sequence of actions) to users and users response with “yes” or “no”. From the sequences that

are rejected by users, i.e., the sequences that users answer “no”, we mine frequent patterns

with the Apriori algorithm [20]. We present the mined patterns to users for confirmations

as to whether such sequences which contain those patterns are always not accepted. Those

patterns that are confirmed by users are used in the membership queries for filtering.

All these filtering techniques are proposed based on the assumption that the valid traces in

the use cases should share common features, such as the partial ordering between actions,

common prefix, which can be mined from the existing knowledge. With all these filtering

techniques, the number of questions generated is often controlled in a reasonable amount.

If a trace generated in a membership query is confirmed to be valid by users, we merge the

valid trace with the existing DFA (generated from the knowledge base in Step 1). To do so,

we find the state which shares the longest prefix with the given trace t from the initial state

of the DFA by a depth-first search on the DFA. Then we add a sequence of transitions which

capture the suffix of t from the current state of DFA. The obtained DFA is not guaranteed

to be minimal, but is guaranteed to be deterministic. By interacting with the users, we are

able to find missing scenarios which are not captured by the use case documents.

4.4. DETAILED APPROACH 70

Algorithm 5: Candidate Query

Input : dfaa : the dfa that is generated by L*
dfab : the dfa constructed from the knowledge base

Output: A counterexample trace
1 if dfaa .AS .isEmpty() then
2 return any accepting trace in dfab

3 construct the product P×of dfaaand dfab
4 while traverse P× do
5 let (sa , sb) be a state in P×
6 if sa ∈dfaa .AS && sb 6∈dfab.AS or
7 sa 6∈dfaa .AS && sb ∈dfab.AS then
8 return counterexample(trace,P×)

9 trace.add(sa , sb)

10 return an empty trace

4.4.2.2 Candidate Query

To conduct candidate query, we check the equivalence of two DFAs, i.e, the DFA which is

learned by the L* algorithm and the DFA that is constructed from the knowledge base (in

step 1).

To check the equivalence of two DFAs, we construct a product P× of the two DFAs and

check whether the accepting states of the product DFA are composed of pairs of accepting

states from the two DFAs. If we find any state in P× which is composed an accepting state

from one DFA and a non-accepting state from the other, the two DFAs are not equivalent.

This is easy to prove since we have found a trace which is accepted by one DFA but not

the other. If the two DFAs are not equivalent, we need to return a counterexample to the

L* algorithm for refinement.

The algorithm to answer candidate queries is shown in Algorithm 5. We first check whether

the DFA learned by L* (dfaa) has accepting states (line 1-2). If not, we pick one trace

ending in an accepting state from the DFA constructed from the knowledge base (dfab) and

return it as a counterexample. Otherwise, we construct a product DFA P× of dfaa and dfab

4.4. DETAILED APPROACH 71

(line 3). We traverse the product DFA (P×) from its initial state (line 4-9). If we find a

state pair (sa , sb) in the product (P×) such that sa is an accepting state in dfaa while sb is

not an accepting state of dfab ; or sb is an accepting state in dfab while sa is not an accepting

state of dfaa , then a counterexample, which is the traversed trace in P×, is returned (line 8).

Otherwise we record the state pair (sa , sb) (line 9). If we do not find any counterexample,

an empty trace (line 10), which marks that the two DFAs are equal, is returned.

4.4.2.3 Set Precondition and Postcondition for EDFA

To enable the further orchestration of DFAs, we set preconditions and postconditions for

those DFAs learned by L* algorithm to obtain an Extended DFA (EDFA), which contains

preconditions and postconditions, as is formally defined in Definition 17.

Definition 17 (Extended DFA) An Extended DFA is defined as EDFA, {DFA, PreC ,

PostM }, where DFA is a DFA; PreC ⊂ P is the set of preconditions of the DFA; PostM

is a mapping from each final state in DFA to their trace based postconditions T̂ ⊂ T that

compose this DFA.

The precondition of a DFA is set as the union of the precondition sets of all the traces

which are used to generate the DFA. Recall that in our approach, all the use cases for an

actor which have the same preconditions are grouped to learn one DFA. Thus the precon-

dition of a DFA is identical to the precondition of use cases from which it is learned. The

postconditions of accepting states in the DFA are set to be the set of postconditions of the

traces reaching the accepting state. Note that the postconditions are set on a trace basis,

meaning each trace ending in the same accepting state has its own postconditions. For ex-

ample, in Figure 4.4 (b), only state p7 has postconditions and it is set as the set {〈〈select s,

update s, send us〉,update(GSYS, symbol information)〉, 〈〈select s, delete us〉,deleted(symbol

4.4. DETAILED APPROACH 72

information)〉,. . . }. The first two elements in the set represent the left-most two traces in

Figure 4.4 (b). We omit the postconditions for the other traces for confidentiality. Assigning

preconditions and postconditions correctly is critical for the splitting of traces during the

orchestration of DFAs.

4.4.3 Construct Relation Graphs

We first construct a usage relation graph based on the preconditions and postconditions

of EDFAs learned for an actor. A node in a usage relation graph represents an EDFA

which is learned with the L* algorithm. Initially, we have a set of nodes which represent

the EDFAs learned for a set of use cases describing the usage scenarios of one actor. We

link two EDFAs if the postconditions of an accepting state of an EDFA are comparable the

precondition of the other EDFA. This case represents a succession in behavior. The relation

graph is formally defined in Definition 18.

Definition 18 (Relation Graph) A relation graph is defined as G , {N ,ni}. where

ni ∈ N is the initial node of the graph and N is the set of nodes in the graph. Each node in

the graph is defined as n, {PreC , PostM , EDFA, cc, ch}, where PreC and PostM are the

precondition and postconditions of the EDFA the node represents. EDFA is the EDFA that

the current node represents. cc is the common condition that the current node shares with

its parent node. ch is the list of child nodes of the current node.

The relation graph is defined to capture the relations between different EDFAs. For example,

the relation graph in Figure 4.5 captures the relations of EDFAs in Figure 4.4. The first n-

ode of Figure 4.5 can be represented as {{can monitor(TM , changeoftickinformation)}, {(<

connect , receive, display >, {connected(TM ,GSYS))}}, dfa1,∅, {dfa2}} according to Defini-

tion 18.

4.4. DETAILED APPROACH 73

We decide whether two predicates are compatible based on a direct comparing on corre-

sponding fields of the predicates, as defined in Definition 2. We also rely on the semantic

dictionary to decide whether two words are semantically equal. This has been discussed in

Section 3.4.6 and we skip the details here. The necessary condition for the orchestration of

two EDFAs directly with succession behavior is defined as follows:

Definition 19 (Link Condition) Let dfaa , dfab∈ EDFA be two extended DFA, they can

be linked if and only if ∃ as∈ dfaa .AS: ∃t ends in as∧ t.PostC⊂dfab.PreC∨ ∃ as∈ dfab.AS:

∃t ends in as∧ t.PostC⊂dfaa .PreC

Given an EDFA, if we cannot find any other EDFA for the same actor that satisfies the

link condition, we raise natural language questions to ask users for suggestions. This case

usually implies there is some missing precondition/postcondition.

Algorithm 6 describes the procedure to construct a relation graph for a set of EDFAs. We

first construct a single-node graph for each input EDFA and add them to the set of graphs

Ĝ (line 1-3). While the graph set has more than one graphs and the graph set is not

stabilized (line 5-15), we try to find a pair of graphs which can be linked based on the link

conditions defined in Definition 19. The function Comp(condition, graph) checks whether

the given predicates “condition” are compatible with the postconditions of any node in the

given “graph”. If the two sets of predicates satisfies the conditions in Definition 19, they are

compatible. If the precondition is a subset of postconditions and users answer yes to our

raised questions, they are considered to be compatible. If such a pair of compatible graphs

(line 8, 12) is found, we set one graph as the child of another (line 9, 13) and remove the

child graph from the graph set (line 10, 14). As long as the graph set is changed, it is said

to be not stabilized. If there are more than one graph in the graph set after it is stabilized,

which indicates the preconditions and postconditions of those EDFAs are loosely coupled,

we raise questions (line 17) to query whether we can merge those graphs by adding a single

4.4. DETAILED APPROACH 74

Algorithm 6: Build Relation Graph

Input : a set of extended DFA D̂FA ={D1. . .Dn}
Output: an usage relation graph g for DFAs in D̂FA

1 for Di in D̂FA do
2 gi ←construct a single-node graph for Di

3 Ĝ .add(gi) . Ĝ is the set of graph nodes.

4 while true do

5 while | Ĝ |> 1&& !stabilized do

6 for (gi ,gj) in Ĝ do

7 stabilized←true
8 if Comp(gi .PreC , gj) then

9 gj .ch.Add(gi , cc)

10 Ĝ-{gi}
11 stabilized←false

12 else if Comp(gj .PreC , gi) then

13 gi .ch.Add(gj , cc)

14 Ĝ-{gj }
15 stabilized←false

16 if | Ĝ |> 1 then
17 ret←RaiseQuestion()
18 if ret=false then
19 modify the conditions based on answers from users
20 if find compatible graph pair then
21 stabilized←false
22 continue

23 break

24 else

25 g←Merge(∀ gi ∈ Ĝ)
26 break

27 else
28 break

29 return g

4.4. DETAILED APPROACH 75

root node. If the reply is negative, the user can modify the preconditions/postconditions of

the graphs, which can be traced back to the use case documents. If the modifications from

the user enable new parent-child relation between those graphs (line 20-22), we continue to

link those graphs. Otherwise we merge all the graphs in the graph set Ĝ to obtain a final

relation graph (line 24, 25).

During our study of the use cases, we observed that for most of the use cases, the authors

of the use case specifications tend to focus on documenting the action steps and ignore

the preconditions and postconditions. Consequently the use cases usually have their pre-

conditions and postconditions partially documented; missing or redundant conditions also

appear frequently. Therefore, it is extremely helpful to provide a way for the users to cor-

rect/complete the preconditions/postconditions in order to improve the integrity of the use

case document.

4.4.4 Orchestrate EDFAs

Given a set of EDFAs and the relation graphs for those EDFAs, we conduct a breadth-first

traverse on the relation graph and link the EDFA represented by a graph node with the

EDFAs represented by all its child nodes.

Algorithm 7 elaborates the procedure of building an overall EDFA from the set of EDFAs

of an actor based on its relation graph. The algorithm starts from the starting node of the

relation graph g (line 1). We use a queue Q to aid the breadth first search and the procedure

continues processing as long as there are elements in the queue (line 3-24). In each iteration,

we pick a node from the queue and check whether it has been processed before and whether

it has children. To avoid processing the same node multiple times (e.g., for nodes in a

cycle), we mark each visited node and skip the visited nodes during the processing (line 5).

We also skip nodes which do not have children nodes since they are leaf nodes and have

4.4. DETAILED APPROACH 76

Algorithm 7: Build Overall EDFA

Input : g: The relation graph for an actor

D̂FA: the set of EDFAs for the actor
Output: DFAn : the EDFA composed of EDFAs in D̂FA

1 Q.InQueue(g.ni)
2 DFAn← g.ni .EDFA
3 while Q.size()>0 do
4 curN←Q.DeQueue()
5 if visited(curN) || curN.ch.size()=0 then
6 continue

7 for n in curN.ch do
8 Q.InQueue(n)
9 as←FindFinalState(curN.EDFA, n.PreC)

10 T←FindRelatedTraces(curN.EDFA,n.cc, as)
11 α←T.PostC∪ n.PreC−n.cc
12 if needSplit then
13 create a new accepting state acceptn
14 DFAn .as.append(acceptn)
15 ChangeTransitionFunction(T, s, acceptn)
16 AddTransitionFunction(acceptn , n.EDFA.init , α)
17 DFAn .PostM←curN.PostM∪n.PostM−acceptn .PostC

18 else
19 AddTransitionFunction(as, n.EDFA.init , α)
20 DFAn .PostM←curN.PostM∪n. PostM−as.PostC

21 DFAn .S←DFAn .S∪ n.EDFA.S
22 DFAn .δ ←DFAn .δ ∪ n.EDFA.δ
23 DFAn .Σ←DFAn .Σ ∪ n.EDFA.Σ
24 DFAn .AS←DFAn .AS ∪ n.EDFA.AS

25 return DFAn

4.5. EVALUATION 77

been linked with their parent nodes. We link the current node curN with its children nodes

(line 7-24) and put all its children nodes into the queue (line 8). For each child node n

of the current node curN, we first locate the accepting state of the EDFA represented by

curN. The accepting state is to be linked with its child node n (line 9). Then we find the

traces T (recall that the postcondition of a EDFA is stored based on the traces) ending in

the accepting state as which should be linked with the child EDFA based on the common

conditions n.cc (line 10). If the set of traces T returned in this step is a subset of traces

which end in the accepting state as, then we need to split the accepting state as (line 12).

For example in Figure 4.4 (b), the accepting state p7 is split twice (into p′7 and p′′7) when

orchestrating with the EDFA in Figure 4.4 (c) and the EDFA in Figure 4.4 (d), respectively.

To do so, we first create a new accepting state, add it to the accepting state set of the result

EDFA, change all the transitions which ends in the original accepting state as to the newly

created accepting state (line 13-15). We then add a new transition from the accepting state

to the initial state of the child EDFA (line 16, 19) and adjust the postconditions for each

accepting state in the new EDFA. The action of the newly created transition is set in line

11. We add the states, transitions, alphabet and accepting states of the EDFA represented

by the child node to the new EDFA (lne 21-24).

The final EDFA is a visualization of the overall dynamic behavior of an actor. It can serve

as an initial behavior model for its corresponding actor, which can aid the system design

and specification based test case generation [90, 107].

4.5 Evaluation

We have implemented our method in a prototype tool in Java3. We adopt ZPar [140], a

statistical dependency and phrase structure parser, to analyze syntactic information. To

3The source code is available in http://www.comp.nus.edu.sg/~lius87

http://www.comp.nus.edu.sg/~lius87

4.5. EVALUATION 78

evaluate our approach, we conduct an experiment with a use case requirement specification

for a real world stock trading system. This use case document is reasonably well maintained,

as required to ensure certain level of rigorousness of such software systems. We do believe

it is representative of its kind. It contains more than 150 use cases, which is considerably

large. The grammar errors and the inconsistency in writing styles present in the document

reveals the reality in industry use cases, which also causes difficulties in parsing those

sentences. Nevertheless our method achieved good accuracy in natural language parsing. In

this chapter, we focus on the part of active learning and user interaction. We refer readers

to the Section 3.5 on the result of accuracy in natural language parsing. In this evaluation,

we try to answer the following questions:

1. Is our method helpful in improving the quality of use case specifications?

2. Is the amount of user interactions acceptable to specification engineers?

During the experiment, if a question is raised by the tool, we first screen the question to

see whether it has an obvious answer which is missed by the parser or it indeed requires

an answer from the author of the system. If it is the latter, the question is directed to the

right people for clarification. The experiment results are summarized in Table 4.1. The

first column shows the actors in the system. Columns 2-4 are the number of use cases for

the corresponding actor, the number of nodes of the generated use case relation graph, and

the number of states in the final DFA obtained for each actor. Columns 5-7 show the total

number of membership queries, the total number of pattern queries we raised to users during

the learning process, and the total number of queries we raised to users during generating of

use case relation graphs. Column 8 and 9 show the number of missing scenarios and other

problems (e.g., missing/redundant preconditions and postconditions) that we identified

(which have been confirmed by stakeholders) during the process.

4.5. EVALUATION 79

Table 4.1: Results of the case study

Actor UC node state Q(L*) Q(P) Q(G) miss s problem

Broker 3 3 8 0 0 2 0 0

C Monitor 3 2 6 2 1 2 0 0

Exchanger 3 3 12 5 5 1 0 0

T Monitor 10 5 17 34 23 1 2 1

E Monitor 16 4 15 28 15 2 0 14

Trader 58 27 79 141 79 11 5 14

Server 67 49 187 289 237 9 12 23

Question 1: Improvement on Use Case Quality

There are two commonly happened oversights which lead to missing scenarios. The first one

is that different ordering of some actions in a use case can lead to different results, however

not all possible orderings are considered. For example, for one certain trading strategy, the

ordering of “set timer” and “price order” may result in different pricing, and thus matches

of orders. However usually this kind of ordering-sensitive scenarios are not fully specified

and the reason, as confirmed with the authors of the use case document, is that they simply

did not consider all those situations. Five of the missing scenarios found by our approach

belong to this category. The second one is missing of some actions in a trace, such as the

dashed lines shown in Figure 4.4. We have found 14 this kind of missing scenarios in the

use case document. Those missing scenarios may cause barrier in understanding the system

functionality throughout the software development life cycle. The authors of the use case

document usually assume certain amount of background knowledge on the readers of the

document, which results in those missing scenarios.

Relying only on the preconditions and postconditions to obtain usage relations is inade-

quate, especially when the use cases are loosely coupled (which is usually the case). But

we can still find some cases where the conditions are missing or redundantly stated. Miss-

4.5. EVALUATION 80

ing preconditions/postconditions affect the integrity of use case specifications. Redundant

preconditions/postconditions, meaning we can infer the remaining preconditions/postcondi-

tions from one or a subset of the given preconditions/postconditions, may cause confusions

and understanding barriers. The reason is that not all repeated conditions are redun-

dant. For example, in one use case, the preconditions are {login(trader), create(Server,

match), receive(server, order)} and we can obtain the inference relations create(Server,

match)→login(trader) and create(Server, match)→receive(server, order) from some exist-

ing use cases. In this case, receive(server, order) is a redundant precondition for the use

case while login(trader) is not since login(trader) is the precondition for any operation the

trader can conduct in the system. Our method find this situation during the generation

of relation graphs and raise questions for user confirmation. Among all the 52 use cases

which have the stated problems, 50 use cases have missing preconditions, which should be

properly addressed, and 2 use cases have redundant preconditions stated.

The questions that our method raise are based on the information we extracted or inferred

from the use case document, as well as that provided by users. For some use cases, limited

information is provided in the document. For example, one common situation is that the

precondition of a use case is not specified and the postconditions of it do not provide enough

information for us to infer possible preconditions, which we can suggest to users, based on

other related use cases. We notice that the reason for this kind of incompleteness is that the

engineers who produce the use cases have certain assumptions on the background knowledge

of the readers of the use cases. It is more likely that those use cases describe similar functions

of the system and thus have similar preconditions. With this belief in mind, we raise one

question which include all the use cases of this kind rather than raising one question for each

use case, for the purpose of providing more information to the stakeholders to complete the

preconditions of those use cases. This is the reason that we have less questions compared

to the problems found during the use case graph generation phase.

4.5. EVALUATION 81

Question 2: Involvement of Manual Efforts To answer the second question, we discuss

the manual efforts involved in our approach. The major manual effort of our approach is

to answer three kinds of queries raised. (1) When the active learning algorithm reports

some likely missing scenarios, we need to manually check whether the scenario is a real

missing scenario or a false negative. The number of membership queries raised, polynomial

to the number of states in the DFA and the length of the counterexample [23], can be very

large. To reduce the number of membership queries raised to stakeholders, we proposed

filtering techniques to filter the traces returned by L* before raising it to the users, which

dramatically reduce the manual checking efforts. (2) We need to check the patterns mined

from the negative counterexamples rejected by users. In our evaluation, we set the support

value of the Apriori algorithm to be 20% (of total number of input traces). This is actually

the best practice that is from our experience of evaluation. There are two reasons for

this result. (a) The traces, i.e., the membership queries that are rejected by users, that

serve as input to the Apriori algorithm are not duplicate. (b) Our method mine patterns

incrementally, which means in each round of the mining process, we only have a subset of

traces which we can mine patterns from. Thus it is hard to get any meaningful patterns

with high support values. One problem with the low support value is that it is possible

that we will get more questions on the patterns that we mined. However, compared to

the membership queries reduced (by adopting the mined patterns), the number of pattern

questions raised is quite reasonable. (3) During the DFA orchestration, our method may

ask questions when we find potential missing or redundant preconditions/postconditions.

The number of this kind of questions raised is far less than the number of the other two

kinds of questions.

4.6. CHAPTER SUMMARY 82

As we can see from Table 4.1, the average number of all three kinds of questions raised for

each use case4 is around 6, which we consider as a reasonable amount of manual effort. We

can notice form Table 4.1, the average number of questions raised for the server use cases is

larger than the other use cases. The reason is that the use cases which describe the server

functions tend to be more complex, with more branch conditions and longer traces. We also

find more missing scenarios/traces in the server use cases. This also caused more questions

to be raised since adding a trace causes more membership queries to be raised in the L*

algorithm. Since the DFA learned by our method is prefix-closed, all the prefix traces of a

missing scenario would be raised as membership queries. That is one of the reasons why we

have more membership queries as compared to the missing scenarios found.

4.6 Chapter Summary

In this chapter, we propose methods to improve use case documents written in natural lan-

guage interactively with the guidance of users/stakeholders. Our method adopts advanced

natural language processing techniques and the active learning algorithms in the domain

of machine learning. Our method learns a DFA for each actor/agent in the use case de-

scription incrementally with the guidance of users. During the learning process, our method

finds potential missing scenarios and preconditions/postconditions of use cases. We conduct

evaluations with an industry case study and the results show that our method is able to

find missing scenarios and redundant conditions, and aids users to provide modifications

efficiently.

4Computed by (|Q(L*)|+| Q(P)|+|Q(G)|)/|UC|

Chapter 5

Model Checking Aided Design

Verification

We have shown how to find defects and improve requirement specifications in the previous

chapters. As another important activity, system design links the user requirement with

the coding phase. Considerable manual efforts are involved in the system design phase,

which inevitably introduce defects. Those defects are usually nontrivial and are hard to

detect manually, especially for complex systems. In this chapter, we explore an automatic

verification technique, i.e., model checking, to aid the verification on design models. Our

focus is on UML state machines, which capture the dynamic behaviors of system designs

and are more closely related to the actual implementation.

5.1 Motivating Example

In the designing phase of a system, behavior models, such as UML state machines are often

used to model the dynamic behavior of components of the system. For example, the state

83

5.1. MOTIVATING EXAMPLE 84

 Diagram: All

 stm All

Trader

Initial_t1

start_t login_t

OrderFilledOrderSent

SYS
initial_s1

P

[BrokerOperation]

[TraderOperation]

Initial_sP2

B_activ e

Initial_sP1 B_Login

B_updated

B_subscribed

B_start

T_start

T_activ e

T_login

OrderReceiv ed
MatchSav ed

MatchSent

tradeExecuted

SentMessage

[sentToTrader]

[sentToExec]

toTrader

toExec

fork1

Final_sP1

Final_sP2

Exchanger

Initial_e1

start_e

orderReceiv ed

connected

orderExec

Broker

Initial_b1

start_b login_b

subscribedupdated

Bsubscribe

TsendOrder

Tlogout

Tlogin

Blogout

Blogin

tradeExec

Bupdate
orderExec

/SYS.TsendOrder

setOrderInfo

/SYS.Tlogout

/SYS.Tlogin

connect2SYS

disconnected

/SYS.Bupdate

/SYS.Bsubscribe

/SYS.Blogout

/SYS.Blogin

/SYS.tradeExec

saveOrder

SsendOrder

/Exchanger.SsendOrder

/Exec.OrderMatched

/Trader.orderMatched

/SYS.Bupdate

execOrder

Figure 5.1: State machine for GSYS

machines shown in Figure 5.1 captures the dynamic behaviors of the stock trading system

at a fairly high abstraction level1.

There are certain properties that the system should preserve. For example, a safety property

of interest is that the system should be deadlock-free. Another example is related to liveness,

i.e., it is required that the broker can conduct the logout action after it had logged in. These

properties are not easy to verify manually. Both properties are violated by the state machine

in Figure 5.1. However, in the initial design of the stock trading system, the authors did

not realize these defects.

LTL Model checking [38] is an automatic verification technique to check a property/con-

straint specified in Linear Temporal Logic (LTL) against the model specified by Labeled

Transition System (LTS). Model Checking is known as a “click button” technique due to

1Since the detailed design is highly confidential, we only show an initial design of the system.

5.2. INTRODUCTION 85

its highly automatic verification procedure. It is suitable for checking safety and liveness

related constraints. Model Checking has shown its potential in verifying various systems,

including security systems [25], reliability systems [58] and Pervasive Computing System-

s [94, 95], etc. In this chapter, we explore to conduct model checking on UML state machines

to check those safety and liveness related properties in the system design.

5.2 Introduction

UML state machine diagrams are widely used to model the dynamic behavior of an object,

which serve as the basis for code development. However, UML specification is documented

in natural language, which introduces inconsistencies and ambiguities [52]. The benefit of

providing model checking support for UML state machines is two folds. Firstly, it allows

early detection of design related problems, such as deadlock, livelock, etc. This is especially

important for safety-critical systems. Secondly, it will encourage the consistency usages of

UML diagrams throughout the software development process and improve the maintain-

ability. Lacking of tool support is one of the reasons which prevents the usage of UML

throughout the software development process (Zeichick [138] found in their survey in 2002

that the reason for one-fourth of the investigated people that do not use UML is because

that “their tools do not support UML”). However, the semantics of UML is documented

in natural language, which is ambiguous. Fecher et al. [52] discussed 29 unclarities (that

is, inconsistencies and ambiguities) in UML 2.0 state machines. But there are still some

unclarities (such as the granularity of a transition execution sequence) that are not covered

in [52]. Therefore, the first step towards model checking UML state machines is to solve

those unclarities and formalize the semantics based on OMG UML specifications [7].

There were some approachs [35, 51, 85, 128] in the literature which provide formal semantics

for a subset of UML state machine features. Among all the related works, only a few [51]

5.2. INTRODUCTION 86

have considered UML 2.0 specifications, which has major changes compared to UML 1.x

specifications as discussed by [51]. All the related work which considered UML 2.0 speci-

fications cover only a subset of UML state machine features. Moreover, a few approaches

(see, e.g., [115, 128]) consider the non-determinism in the presence of orthogonal composite

states, which is an important modeling concept in UML state machines. Although extensi-

bility of the syntax structure is important due to the refinement operations on UML state

machines, the syntax formats defined in those works does not extend well. A semantics

able to support the full set of syntax features, including event pool mechanisms, will help

to bring the expressive power of UML state machines to life.

In order to bridge the gaps in the current approaches, we provide a formal operational se-

mantics for the complete set of UML state machine features, which includes formal definition

of non-determinism, event pool and the communication mechanisms between different state

machines. We also develop a tool which can bring model checking of UML state machine

diagrams into practice. The contributions of this work are summarized as follows.

• We provide a formal operational semantics for UML 2.4.1 state machines covering the

complete set of UML state machines features. In particular, our syntax structure is ex-

tensible to state machine refinement and future changes. Our semantics formalization

considers non-determinism as well as synchronous and asynchronous communications

between state machines.

• We explicitly discuss the event pool mechanisms and consider deferral events as well

as completion events.

• We report new unclarities in UML 2.4.1 state machines specifications.

• We develop a tool USMMC based on the semantics we have defined; it model checks

various properties such as deadlock-freeness and linear temporal logic (LTL) proper-

ties. We conduct experiments on our tool and results show its effectiveness.

5.3. BASIC ASUMPTIONS ON UML STATE MACHINE SEMANTICS 87

 stm TES

S1

+ entry / print(i)

S3

+ exit / i=0

S2

+ entry / i=i*2

S21

Choice

t3 /i- -

t2 [i==0]
t1 /i++;

Figure 5.2: Illustration of transition execution sequence

Outline. The rest of this chapter is organized as follows. Section 5.3 provides the prelimi-

naries of UML state machines. Section 5.4 and Section 5.5 define the syntax and semantics

for UML state machines, respectively. We introduce the tool USMMC that we developed

to conduct model checking on UML state machines in Section 5.6. Section 5.7 provides the

evaluation results. Section 5.8 addresses the limitations of our work. We conclude our work

in section 5.9.

5.3 Basic Asumptions on UML State Machine Semantics

We briefly sketch below some new unclarities we found in the UML 2.4.1 state machines

specification, as well as our assumptions in this chapter.

Transition Execution Sequence. Transitions and compound transitions are used in

interleaving in the descriptions of transition execution sequence, which raises confusions.

The transition execution ordering is important since different execution orders may lead

to different results. For example in Figure5.2, Suppose S3 is active and transition t1 is

fired. If we define the transition execution sequence based on the compound transition, the

behaviour execution sequence is “i = 0; i + +; i − −; print(i) ” and 0 should be printed.

If we define the transition execution sequence based on a single transition, the behaviour

execution sequence should be “i = 0; i + +; i = i ∗ 2; i − −; print(i)” and 1 should be

printed. In the first case, the entry behaviour of state S2 is not executed, which contradicts

5.4. FORMAL SYNTAX FOR UML STATE MACHINES 88

Table 5.1: Type notations

Symbol Type Symbol Type Symbol Pseudostate type

KS active state configuration B boolean DHps deep history

T̃ compound transition C constraints Ips initial
K configurations Sf final state Cps choice

〈T̃ 〉 compound transition list S state Jops join
V vertex Trig triggers Jups junction
KV active vertex configuration T transition Tps terminate
CR connection point reference E event Enps entry point
SM state machine R region Fps fork
B behaviours PS pseudostate SHps shallow history
〈B〉 behaviour list N natural number Exps exit point

the semantics of entry behaviours. We define the transition execution sequence based on a

transition to keep the semantics consistent with entry behaviours.

Basic Interleave Execution Step. If multiple compound transitions in orthogonal

regions are fired by the same event, it is unclear in what granularity should the interleaving

execution be conducted: either on transition or on compound transition level. The execution

order of the (behaviours associated with the) fired transitions may affect the value of global

shared variables. We decide to regard a compound transition as the interleaving execution

step, since a compound transition is a semantically complete path.

5.4 Formal Syntax for UML State Machines

In this section, we provide formal syntax definitions for UML state machines features and

abstractions of event pools. We define a self-contained model which includes multiple state

machines. Table 5.1 lists the basic notations of types defined in this chapter.

Our syntax definition preserves the structure specified by [7], which makes it suitable to

support refinement as well as future changes of UML state machines.

5.4. FORMAL SYNTAX FOR UML STATE MACHINES 89

Definition 20 (State) A state is a tuple s = (r̂ , t̂def , αen , αex , αdo, ên, êx , ĉr , sm, t̂)

where:

• r̂ ⊂ R is the set of regions directly contained in this state,

• t̂def ⊂ Trig, αen ∈ B , αex ∈ B and αdo ∈ B are the set of deferred events, the entry,

exit and do behaviours defined in the state, respectively.

• ên ⊂ Enps and êx ⊂ Exps are the set of entry point and exit point pseudostates

associated with the state.

• ĉr ⊂ CR is the set of connection point references belonging to the state. sm ∈ SM is

the state machine referenced by this state; the two fields are used only when the state

is a submachine state.

• t̂ ⊂ T is the set of internal transitions defined in the state.

There are four kinds of states, viz., simple state (Ss), composite state (Sc), orthogonal

composite state (So) and submachine state (Sm). In Figure 2.3, the submachine state

Departure is denoted as (∅,∅, ε, ε, ε,∅,∅, {EntryP1, ExitP1},DepartureSM,∅), where ε and ∅

denote the empty element and the empty set, respectively.

Definition 21 (Pseudostate) A pseudostate is a tuple ps = (ι, ĥ), where ι ∈ R ∪ SM is

the region or state machine in which the pseudostate is defined, and ĥ ∈ S is an optional

field which is used to record the last active set of states. This latter field is only used when

the pseudostate is a shallow history or deep history pseudostate.

The last column of Table 5.1 shows the notations of the ten kinds of pseudostates PS .

Definition 22 (Final state) A final state is a special kind of state, which is defined as a

tuple sf = (ι) where ι ∈ So ∪ Sc ∪ SM is the composite state or state machine which is the

direct ancestor of the container of the final state.

5.4. FORMAL SYNTAX FOR UML STATE MACHINES 90

Definition 23 (Connection Point Reference) A Connection Point Reference is defined

as a tuple (ên, êx , s) where ên ⊂ Enps and êx ⊂ Exps are the entry point and exit point

pseudostates corresponding to this connection point reference, and s is the submachine state

in which the connection point reference is defined.

For example, in Figure 2.3, EntryP1 is defined as ({EntryPoint1},∅,DepartureSM).

Vertex V , S ∪ Sf ∪ PS ∪ CR is an abstraction of all nodes.

Definition 24 (Transition) A transition is a tuple t = (sv , tv , t̂g, g, α , ι, t̂c) where:

• sv ∈ V , tv ∈ V are the source and target vertex of the transition, respectively.

• t̂g ⊂ Trig, g ∈ C , α ∈ B and ι ∈ R are the set of triggers, the guard, the associated

behaviour and the container of the transition, respectively.

• t̂c is a set of tuples of the form segt = (ss, αst , ιst). It represents the special situation

that a join or fork pseudostate2 connects multiple transitions to form a compound

transition. Each tuple represents a segment transition which ends in the join (resp.

emanates from the fork) pseudostate. ss ∈ S is the non-fork (resp. non-join) end of

the segment transition, αst ∈ B is the behaviour associated with the segment transition.

ιst ∈ R is the container of the segment transition.

We define the following functions on transitions for clarity sake. Functions isFork(t) and

isJoin(t) decide whether transition t is a fork transition and join transition, respectively.

For example, in Figure2.3, the join transition t10 is ({Join1}, {ExitPoint1}, ∅, ε, ε, RD,

{(SyncExit, ε, RD), (SyncCruise, ε, RD)}). We use t .α̃ to represent all possible action

execution sequences of t . Formal definition of t .α̃ is defined in Appendix A.

2We treat exit (resp. entry) point pseudostate the same way with join (resp. fork) pseudostate.

5.4. FORMAL SYNTAX FOR UML STATE MACHINES 91

Definition 25 (Region) A region is defined as a tuple r , (v̂ , t̂), where v̂ ⊂ (S ∪PS ∪Sf),

t̂ ⊂ T are the set of vertices and transitions directly owned by the region.

Definition 26 (State Machine) A state machine is defined as SM , (r̂ , ĉp), where

r̂ ⊂ R, ĉp ⊂ Enps ∪ Exps are the set of (directly owned) regions and the set of entry/exit

point pseudostates defined for this state machine.

For example in Figure 2.3, state machine DepartureSM is ({RD}, {EntryPoint1,ExitPoint1}).

Definition 27 (Compound Transition) A compound transition is a “semantically com-

plete” path composed of one or multiple transitions connected by pseudostates. The set of

compound transition T̃ = {t̃ | t̃ ∈ ST ∧ t̃ .ŝv ∈ S ∧ t̃ .t̂v ∈ S} where st ∈ ST ≡ (len(st) = 1 ∧

seg(st , 0) ∈ T) ∨ ∃ sti , stj ∈ ST : last(sti) = �rst(stj) ∧ st = sti _ stj .

The operator _ denotes the operation of connecting transitions in order. Notation len(t̃)

denotes the total number of segment transitions the compound transition is composed of.

seg(t̃ , i) denotes the ith segment specified by the natural number index i of a given com-

pound transition. We use �rst(t̃) and last(t̃) to denote the first and last segment of t̃ . We

define t̃ .ŝv = �rst(t̃).ŝv , t̃ .t̂v = last(t̃).t̂v for convenience sake. For example, in Figure 5.2,

the transition sequence t1 _ t2 is a compound transition.

Compositional Operators. The operator “; ” represents a sequential composition. Inter-

leave operation (‖|) represents a non-determinism in the execution orders. Interleave with

synchronous communications (‖|C) is a special case of interleaving: it requires the state

machines to synchronize on the specified event in C . Interruption (∇) is used to represent

interruption of a do activity by some event occurrence. Parallel composition (‖) represents

a real concurrency, i.e., execute at the same time.

5.4. FORMAL SYNTAX FOR UML STATE MACHINES 92

Definition 28 (System) A system is a set of state machines executing in interleaving

(with synchronous communications). sys , ‖|Ci∈[1,n]Smi where Sm , (sm,P ,GV). In Sm,

sm denotes the state machine, P the event pool associated with sm, and GV the shared

variables of sm. And n is the number of state machines within the system sys.

For example, the RailCar system in Figure 2.3 is defined by ‖|C (Car,Handler), where

C = {departReq, departAck, arriveReq, arriveAck}.3

Event Pool Abstraction. Change events, signal events, and deferred events are pro-

cessed differently in UML state machines. We provide for this purpose 3 separate event

pools, viz., completion event pool (CP), deferred event pool (DP), and normal event pool

(NP). P , (CP ,DP ,NP) represents the event pool, and we define two basic operations

on P . Merge(e,EP) merges an event e into the corresponding event pool represented by

EP , and Disp(P) dispatches an event from P . Since function Merge (formally defined in

Appendix A) is straightforward, we focus here on Function Disp.

Definition 29 The following function formally defines the event dispatch mechanism.

Disp(P , ks) ,

CP\{e}; CheckDP(P , ks) if CP 6= ∅ ∧ HighestPriority(e,CP) ∧ e ∈ E

DP\{e}; CheckDP(P , ks) if CP = ∅ ∧ DP 6= ∅ ∧!isDeferred(e, ks) ∧ e ∈ E

NP\{e}; CheckDP(P , ks) if CP = ∅ ∧ allDefer(DP , ks) ∧ NP 6= ∅ ∧ e ∈ E

ε otherwise

CheckDP(P , ks) , DP\E ; NP ∪ E , where E , {e | e ∈ DP ∧!isDeferred(e, ks)}.

The function guarantees that the precedence order CP ≺ DP ≺ NP is preserved (≺ denotes

the preceding partial order). But the order within each event pool is not specified. The

3We treat the state machine (DepartureSM) that is referenced by a submachine state (Departure) the
same way as a composite state.

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 93

macro HighestPriority(e,CP) denotes that event e has the highest priority in CP , which pre-

serves the priority order of a nested state over its ancestor states. In the deferred event pool,

only events that are not deferred in the current active state configuration (!isDeferred(e, ks))

can be dispatched. The macro allDefer(DP , ks) ⇔ ∀ e ∈ DP , isDeferred(e, ks) guarantees the

priority of deferred events over normal events. When an event is dispatched, we check all

the deferred events defined in the states of the current active state configuration, and re-

move those events that are not deferred any more from DP to NP ; this is accomplished

by CheckDP .

5.5 Formal Semantics of UML State Machines

This section devotes to a self-contained formal semantics for all UML state machines fea-

tures. We have adopted the semantic model of Labelled Transition Systems (LTS). The

dynamic semantics of a state machine is captured by the execution of RTC steps, which

have two kinds of effects, viz., changing active states and executing behaviours. We formally

define the two kinds of effects separately. Then the semantics of the RTC step is defined

formally. At last, we define the semantics of the system.

5.5.1 Active State Configuration Changes

An active state configuration KS is a set of states which are active at the same time. It de-

scribes a stable state status when the previous RTC step finishes. We use Active Vertex Con-

figuration KV (a set of vertices that are active at the same time) to represent the snapshot of

a state machine during an RTC execution. For example, in Figure 2.3, {Operating, Choice2}

is an active vertex configuration. KS and KV are defined in Appendix A.

Next Active State Configuration. NextK : KS × 〈T̃ 〉 → KS computes the next active

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 94

state configuration after executing the compound transition list indicated by 〈T̃ 〉. Formally:

NextK (ks, (t̃1; . . . ; t̃n)) , NxK (ksn , t̃n), where ∀ i ∈ [2,n], ksi = NxK (ksi−1, t̃i−1) ∧ ks1 =

ks. Function NxK : KS×T̃ → KS computes the next active state configuration after execut-

ing a compound transition indicated by T̃ . Formally: NxK (ks, t̃) , NxPK (kvn , seg(t̃ ,n)),

where n = len(t̃), kv1 = ks, and ∀ i ∈ [2,n], kvi = NxPK (kvi−1, seg(t̃ , i − 1)). Function

NxPK : KV × T → KV computes the next active vertex configuration after executing

a transition. Formally: NxPK (kv , t) , kv\Leave(kv , t) ∪ Enter(t). Functions Leave and

Enter represent the set of states left and entered after executing a transition and are defined

in Appendix A.

5.5.2 Behavior Execution

Another effect of executing an RTC step is to cause behaviors to be executed. We define

the following functions to collect the behavior execution sequence.

Exit Behavior. ExitBehaviour : KV × T → 〈B〉 collects the ordered exit behaviors of

states that a given transition leaves in the current vertex configuration. Formally:

ExitBehaviour(kv , t) = ExV (kv ,MainSource(t), t)

ExR(kv , r , t) ,

SH (h, v); ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧

v ∈ S ∧ ∃ h ∈ SHps : h ∈ r .v̂

DH (h, v); ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧ v ∈ S

∧ ∃ h ∈ DHps : isAncestor(h.ι, r)

∧ isAncestor(t .ι, h.ι)

ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv

∧ ∀ s ′ ∈ r .v̂ , s ′ 6∈ SHps

∧ @h ∈ DHps : isAncestor(h.ι, r)

∧ isAncestor(t .ι, h.ι)

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 95

ExV (kv , v , t) ,

‖|Cr∈v .r̂ExR(kv , r , t); exit(v) if v ∈ So ∨ (v ∈ Sm ∧ v .r̂ 6= ∅)

ExR(kv , r , t); exit(v) if v ∈ Sc ∨ (v ∈ Sm ∧ v .r̂ 6= ∅)

exit(v) if v ∈ Ss

ExV (kv , cr , t) if v ∈ Exps ∧

∃ cr ∈ CR : v ∈ cr .êx

ExV (kv , v .s, t) if v ∈ CR

Agn(v .r̂ , v .sm.r̂); ExV (kv , v , t) if v ∈ Sm ∧ v .r̂ = ∅

ε otherwise

The exit behaviours of executing a transition are collected recursively starting from the

innermost state. We define functions ExV and ExR to recursively collect exit behaviours.

All the regions of a composite state should be exited before it. If the region contains a

(shallow/deep) history pseudostate, the content of the history pseudostate should be set

properly (by functions SH and DH respectively) before exiting the region. Exiting simple

states means terminating the do behaviour (if any) and executing the exit behaviour, as de-

fined by exit(v) = v .αdo∇v .αex . If an exit point pseudostate is encountered, the associated

connection point reference is exited, which means the state defining the connection point

reference is exited. Exiting a submachine state means exiting all the regions in the state

machine it refers to. Function Agn(v .r̂ , v .sm.r̂) assigns the set of regions of a state machine

to the the of regions of a submachine state.

Entry Behaviour. EntryBehaviour : T → 〈B〉 collects the ordered entry behaviours of

the states a given transition enters. Formally:

EntryBehaviour(t) = EnV (MainTarget(t),Enter(t))

EnR(r , V̂) , EnV (s ′, V̂) where r ∈ R ∧ s ′ ∈ r .v̂ ∧ s ′ ∈ V̂

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 96

EnV (v , V̂) ,

v .αen ; (‖|Cr∈v .r̂EnR(r , V̂) ‖ v .αdo) if v ∈ So ∨ (v ∈ Sm ∧ v .r̂ 6= ∅)

v .αen ; (EnR(r , V̂) ‖ v .αdo) if v ∈ Sc ∨ (v ∈ Sm ∧ v .r̂ 6= ∅)

v .αen ; v .αdo if v ∈ Ss

GenEvent(v .ι) if v ∈ Sf ∧ ∀ r ∈ v .ι.r̂ ,

∃ s ′ ∈ r .v̂ : s ′ ∈ kv ⇒ s ′ ∈ Sf

Agn(v .r̂ , v .sm.r̂); EnV (v , V̂) if v ∈ Sm ∧ v .r̂ = ∅

EnV (v .s, V̂) if v ∈ CR

EnV (cr , V̂) if v ∈ Enps ∧ ∃ cr ∈ CR : v ∈ cr .ên

ε otherwise

Entry behaviours are collected in a similar manner to exit behaviours, except that the collect

starts from the outermost state. We define functions EnV and EnR to recursively collect

the entry behaviours of all the vertices in V̂ in order. States entered by firing transition t

are computed by function Enter(t). Starting from the main target state of a transition, all

regions of a composite state are entered in interleaving. Entering each state means executing

its entry behaviour followed by its do activities (s.αen ; s.αdo). Do activities of a composite

state should be executed in parallel (‖) with all the behaviours of its containing states.

Function GenEvent(s) generates a completion event for state s.ι and merges the generated

event in the completion event pool (CP).

Collect Actions. CollectAct : KS × T̃ → 〈B〉 collects the ordered sequence of behaviours

associated with the execution of the given compound transition. Formally:

CollectAct(ks, t̃) , Act(kv1, seg(t̃ , 1)); . . . ; Act(kvi , seg(t̃ , i)); . . . ; Act(kvn , seg(t̃ ,n)), and

Act(kv , t) , ExitBehaviour(kv , t); t .α̃; EntryBehaviour(t) where n = len(t̃), kv1 = ks and

kvi = NxPK (kvi−1, seg(t̃ , i − 1)) for i ∈ [2,n].

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 97

5.5.3 The Run to Completion Semantics

The effects of an RTC step execution include both active state changes and behaviour

executions which may cause the event pool and global shared variables to be updated. We

use the term configuration to capture the stable status of a state machine.

Definition 30 A configuration is a tuple k = (ks,P ,GV) where ks is the active state

configuration, P is the event pool and GV is the set of valuation of global variables.

For example, ({Idle}, (∅,∅, {setDest}), {stopNum = 0,mode = false}) is a configuration.

The execution of an RTC step can be depicted as moving from one configuration to the

next configuration. We provide the following rules to formalize an RTC step. We use the

RailCar system in Figure 2.3 to illustrate the following RTC step rules.

Wandering Rule. This rule captures the case where a dispatched event e is neither

consumed nor delayed. As a result, it is discarded.

e = Disp(P),P ′ = P\{e},∀ s ∈ ks, e 6∈ s.t̂def ,Enable((ks,P ′,GV), e) = ∅

(ks,P ,GV)
e−→ (ks,P ′,GV)

Event e is dispatched from event pool (Disp(P)), but no transition is triggered by e (i.e.,

Enable((ks,P ′,GV), e) = ∅), and no deferred event in the current configuration matches the

event e (i.e., ∀ s ∈ ks, e 6∈ s.t̂def).

Deferral Rule 1. This rule captures the case where a dispatched event is deferred by

some states in the current active state configuration, but does not trigger any transitions.

e = Disp(P),P ′ = P\{e},∃ s ∈ ks : e ∈ s.t̂def ,Enable((ks,P ′,GV , e) = ∅,
P ′′ = Merge(e,P ′.DP)

(ks,P ,GV)
e−→ (ks,P ′′,GV)

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 98

Since event e is deferred, it should be merged back to the deferred event pool (i.e., Merge(e,P ′.DP)).

So after the RTC execution, only the event pool is changed to P ′′.

Deferral Rule 2. This rule captures the case where the dispatched event e triggers some

transitions and it is also deferred by some states in the current active state configuration.

But there exists at least one state, which defines the deferred event, that has higher priority

than the source states of the enabled transitions.

e = Disp(P),P ′ = P\{e},∃ s ∈ ks : e ∈ s.t̂def , T̂ = Enable((ks,P ′,GV , e), T̂ 6= ∅,
∀ t̃ ∈ T̂ ⇒ deferralCon�ict(t̃ , (ks,P ′,GV), e),P ′′ = Merge(e,P ′.DP)

(ks,P ,GV)
e−→ (ks,P ′′,GV)

T̂ is the set of transitions enabled by the dispatched event e. Event e is also deferred by some

states in the current active state configuration and the event deferral has higher priority over

transition firing (∀ t̃ ∈ T̂ ⇒ deferralCon�ict(t̃ , (ks,P ′,GV), e))). As a consequence, only the

event pool of the state machine changes. For example, ({Operating,WaitArriveOK,Watch,

WaitEnter}, (∅, ∅, {opend}), Env1)
opend−−−→ ({Operating, WaitArriveOK, Watch, WaitEnter},

(∅, {opend}, ∅), Env1) illustrates the application of this rule, where Env1 denotes {stopNum =

1,mode = false}.

To increase readability, we use the following notations. A(t̃1, . . . , t̃n) = CollectAct(t̃1); ,

. . . , ; CollectAct(t̃n) denotes the behaviours collection along transitions t̃1, . . . , t̃n . Merge(A(〈t̃〉),P)

merges all events generated by actions inA(〈t̃〉) into event pool P . Function UpdateV (A(〈t̃〉),GV)

updates global variables GV by actions in A(〈t̃〉).

Progress Rule. This rule captures the case where a set of compound transitions are

triggered by a dispatched event e. There is no event deferred, or the fired transitions have

higher priority over event deferral.

e = Disp(P),P ′ = P\{e}, T̂ ∈ Firable((ks,P ′,GV), e), | T̂ |= n,

〈t̃〉 ∈ Permutation(T̂),P ′′ = MergeA(A(〈t̃〉),P ′),V ′ = UpdateV (A(〈t̃〉),GV)

(ks,P ,GV)
e−→ (NextK (ks, 〈t̃〉),P ′′,GV ′)

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 99

Function Firable((ks,P ′,GV), e) (defined in Appendix A) returns a set of maximal non-

conflicting subset of enabled transitions. The firable set of transitions4 will be executed

in an order specified by 〈t̃〉. Function Permutation (defined in Appendix A) computes all

possible total orders on the set of compound transitions T̂ . Behaviors are collected along

the transition execution sequence following the permutation order (indicated by A(〈t̃〉)).

Active state configuration is changed as computed by function NextK (ks, 〈t̃〉).

ProgressC Rule. This rule captures the case where choice pseudostates are encountered

during an RTC execution. Different from the RTC Progress rule, dynamic evaluation would

be conducted at the point where a choice pseudostate is reached.

e = Disp(P),P ′ = P\{e}, T̂ ∈ Firable((ks,P ′,GV), e), | T̂ |= n,

t̃1i ∈ T̂ , t̃1i .tv ∈ Cps , 〈t̃〉 = (t̃1, . . . t̃
1
i , . . . , t̃n) ∈ Permutation(T̂),

GV ′ = UpdateV (A(t̃1, . . . , t̃
1
i)),GV),P ′′ = MergeA(A(t̃1, . . . , t̃

1
i)),P ′),

t̃2i ∈ Firable(({last(t̃1i).tv},P ′′,GV ′), e),P ′′′ = MergeA(A(t̃2i . . . , t̃n),P ′′),
GV ′′ = UpdateV (A(t̃2i . . . , t̃n),GV ′)

(ks,P ,GV)
e−→ (NextK (ks, 〈t̃〉),P ′′′,GV ′′)

Compound transition ti is split by a choice pseudostate into t1
i and t2

i . The second half of ti

is evaluated based on environment GV ′. In Figure 2.3, ({Operating, WaitArriveOK, Watch,

WaitDepart}, (∅,∅, {opend}),Env1)
opend
99K ({Operating,Choice2}, (∅,∅,∅),Env0) 99K

({Idle}, (∅,∅,∅),Env0)5 illustrates the application of this rule.

5.5.4 System Semantics

A UML state machine models the dynamic behaviour of one object within a system. But

state machines representing different components of a system may interact with each other.

In order to verify the correctness of the overall system behaviours, we need to capture the

4We assume the UML state machines obey well-formedness rules. If more than one non-conflicting sets
of transitions are fiable, the choice of which set to execute is non-deterministic.

5We use Env0 to represent the set {stopNum = 0,mode = false}. The dashed arrow 99K represents an
instant stop in a choice pseudostate.

5.5. FORMAL SEMANTICS OF UML STATE MACHINES 100

message passing sequences between state machines in the system.

Definition 31 (Semantics of a system) The semantics of a system is defined as a La-

belled Transition System (LTS) L , (S,Sinit ,). In this expression, S is the set of states of

L. Each LTS state is a tuple (k1, . . . , kn) where ki is the configuration of the state machine

Smi within the system. Sinit is the initial state of L. And ⊆ S×S is the transition relation

of L, defined below.

‖|Ci∈[1,n]Smi , kj −→ k ′j
[LTS1]

(k1, . . . , kj , . . . , kn) (k1, . . . , k
′
j , . . . , kn)

‖|Ci∈[1,n]Smi , kj −→ k ′j , e = SendSignal(j , l),Merge(e,EPl)
[LTS2]

(k1, . . . , kl , . . . , kj , . . . , kn ,) (k1, , . . . , k
′
l , . . . , k

′
j , . . . , kn)

‖|Ci∈[1,n]Smi , kj −→ k ′j , e = Call(j , l), e ∈ C , kl
e−→ k ′l

[LTS3]
(k1, . . . , kl , . . . , kj , . . . , kn) (k1, . . . , k

′
l , . . . , k

′
j , . . . , kn)

All the state machines in the system are executed non-deterministically. Rule LTS1 cap-

tures the normal situation that a single state machine is executed without communicating

with other state machines. The notation with prime, i.e., k ′j , represents the new configu-

ration after executing an RTC step. Rule LTS2 defines asynchronous communication, i.e.,

the executing state machine (Smj) sends an asynchronous message (e = SendSignal(j , l))

to another state machine (Sml). The state machine receiving the message merges the

message into its own event pool. Rule LTS3 defines synchronous communication. In this

case, the callee state machine (Sml) is triggered by the call event (e = Call(j , l), e ∈ C).

The caller state machine (Smj) cannot finish its RTC step until the callee has finished

5.6. USMMC: A MODEL CHECKER FOR UML STATE MACHINES 101

execution. For example in Figure 2.3, if state machine Car and Handler are in configu-

ration ({Operating, Crusing}, (∅,∅, {alert100},Env1), ({WaitDepart}, (∅,∅,∅),∅) sepa-

rately and event alert100 is dispatched and fires transition t12. The behaviour associated

with t12 invokes a call event (that is arriveReq = Call(Car,Handler)) in Handler state ma-

chine. The Handler state machine consumes the call event and execute an RTC step. After

applying rule LTS3, the system is (({Operating, WaitArriveOK, Watch, WaitEnter}, (∅,∅,∅),

Env1), ({WaitPlatform}, (∅,∅,∅),∅)).

5.6 USMMC: A Model Checker for UML State Machines

We have implemented the formal semantics presented in Section 5.5 in a tool USMMC [5],

which is a module in the PAT [120] framework. The tool supports model checking of safety

and liveness properties with different fairness assumptions [120]. We have implemented our

tool in a way that all the model checking details are hidden from the users so that users

without any model checking background are also able to use our tool. Our tool provides

user-friendly graphical interfaces. It takes as input a UML state machine diagram in xmi

format, which is compatible with existing UML case tools.

Our tool distinguishes itself from existing UML tools with the following features:

• It is a fully automatic tool for model checking UML state machine diagrams directly

and provides user friendly graphical interface.

• It supports model checking of safety and liveness properties with fairness assumptions.

• It supports simulation and verification of multiple UML state machines interactions.

• It reports violations directly in terms of UML state machine execution traces, which

are intuitive to follow.

5.6. USMMC: A MODEL CHECKER FOR UML STATE MACHINES 102

Verifier

Simulator

Editor

Parser

XML Parser Assertion Parser and Buchi Automata Translator

Counterexamples

Assertion
Collection

UML State
Machine

Collection

Simulator Graphical
Viewer

Reachability
Model Checker

DeadLock
Model Checker

Explicit On-the-fly Model Checking
Supporting Fairness Assumptions

UML State Machine
Models LTL Assertions Reachability

Assertions
DeadLock
Assertions

View BA

generategenerate

Figure 5.3: The architecture of USMMC

5.6.1 Architecture Design of USMMC

USMMC is a model checker for UML state machines, which consists of four components, i.e.,

Editor, Parser, Simulator and Verifier. Figure 5.3 shows the architecture design of USMMC.

The UML state machines and various assertions can be edited in the text editor component.

On clicking the simulation/verification button, the parser is first called to parse the UML

state machines and assertions into internal representations; then simulation/model checking

components are invoked to perform the simulation/model checking respectively. In the case

of an invalid assertion, a conterexample in terms of UML state machines execution trace

will be returned. In the following, we are going to introduce each component of USMMC

in details.

Editor The editor component provides a text editor which enables editing of both models

and properties. Since our tool focuses on providing model checking support for UML state

machines instead of graphical modeling, so it takes as input UML state machines in xmi

5.6. USMMC: A MODEL CHECKER FOR UML STATE MACHINES 103

format, which is exported from existing UML case tools. The editor also supports syntax

highlighting and multiple document editing.

Parser In USMMC, we have implemented a parser for UML state machines and a parser

for assertions. The xml parser parses UML state machines (in xmi format) into internal

representations, i.e., the syntax structure for UML state machines defined in Section 5.4.

The formal semantics of UML state machines is implemented to obtain the LTS models from

the internal representations. The LTL models will be consumed by simulation and model

checking components in later stages. The assertion parser parses LTL, liveness and deadlock

free assertions into internal representations. It supports an assertion language which allows

LTL formulae constituted with propositions and events, which compliments existing model

checkers. Buchi Automata can be generated from negations of LTL assertions.

Simulator USMMC provides a user friendly simulator which is capable of performing

automatic random walking or user-guided step-by-step simulations on UML state machines

executions. Since our implementation is based on the formal semantics and the LTS steps

are consistent with the UML state machine RTC steps, the LTS model generated by our

simulator actually directly reflects the execution of UML state machines. Thus the simulator

of USMMC provides good tractability to the original UML state machines model. The

simulator also provides other functionalities, such as complete state graph generation, trace

playback, counterexample visualization.

Verifier The verifier is capable of conducting on-the-fly explicit state model checking on a

variety of properties, including deadlockfree checking, reachability checking and refinement

checking [129]. Furthermore, it implements dedicated algorithms for model checking LTL

properties under a variety of fairness constraints, including global fairness, event/process

level weak fairness and event/process level strong fairness [120], which are often required

for verification of liveness properties. Counterexamples are returned as UML state machine

execution traces (instead of any intermediate formats), which are intuitive to follow.

5.6. USMMC: A MODEL CHECKER FOR UML STATE MACHINES 104

5.6.2 Implementation Choices for USMMC

There are many“semantic variation points” [52] in UML state machines specifications, which

introduce difficulties to the semantic formalization as well as tool implementation. We are

going to discuss our choices for implementing some of the important semantic variation

points in USMMC in this section.

Event Dispatching Mechanism The concept of event pool is introduced to control the

event consumption within a UML state machine and to enable communications between

different state machines. It guarantees the stabilization of the state machines within a

finite number of steps. But the concrete data structure to implement the event pool and

event dispatching order are not specified. Our implementation of event pool follows the

operational semantics of UML state machines defined in Section 5.5, where sets are used to

represent event pools. Completion and deferred events are properly considered according

to the specification [7].

Conflicting Transitions In UML state machines, multiple transitions can be enabled by

a single dispatched event. A maximal non-conflicting set of transitions should be decided

to execute and the OMG UML state machines documentation [7] has provided two priority

rules to deal with conflicts. However not all conflicts are solvable by the provided priority

rules. In our implementation, all the enabled maximal non-conflicting transition sets will

be enumerated if more than one maximal non-conflicting transition sets are triggered by

the same dispatched event and the priority of them cannot be solved.

Communications between State Machines USMMC supports verification and simu-

lation of multiple state machines communication through signal and call events. In our

implementation, signal events are processed asynchronously and call events are processed

synchronously, i.e., the caller state machine will be blocked until the callee state machine

finishes its execution and returns control. Recursive calls are supported in our implemen-

5.7. EVALUATION 105

Table 5.2: Evaluation results

Model Property
USMMC HUGO

Time(s) State Transition TTime(s) ETime(s) State Transition
RailCar Prop1 0.013 30 34 - - - -

RailCarO Prop1 0.011 44 54 - - - -
BankATM Prop2 0.009 25 28 0.231 0.050 578 1, 133
TollGate Prop3 0.110 36 50 0.197 0.505 61, 451 256, 807

DP2 deadlock 0.005 39 65 0.196 0.111 12, 766 42, 081
DP3 deadlock 0.039 237 589 0.242 379.009 4, 626, 838 23, 897, 077
DP4 deadlock 0.34 1, 519 5, 079 1.117 8944.754 57, 213, 708 339, 761, 530
DP5 deadlock 3.11 9, 634 40, 366 - - - -
DP6 deadlock 27.87 63, 069 324, 275 - - - -
DP7 deadlock 232.64 398, 101 2, 385, 361 - - - -

Prop1=�(alert100→ ♦arriveAck), Prop3=�(TurnGreen → ♦carExit),
Prop2=�(retain → ((!cardValid ∧ numIncorrect ≥ maxNumIncorrect))

tation.

We developed a model checker and simulator for UML state machines, which is able to

check safety and liveness properties and conduct step-wise simulation of UML state ma-

chines executions. Our tool is implemented based on a formal operational semantics defined

for UML state machines. The experiment results show the effectiveness and efficiency of

our tool. USMMC has been implemented as a stand-alone tool in C# with user-friendly

graphical interfaces. Starting from 2012, USMMC has come to a stable stage with solid

testing and 11 built-in examples. It has been applied to verify many real-time systems

ranging from classical concurrent algorithms, such as the dining philosopher problem, to

real world problems, such as the railcar system. Our future works include further reduc-

ing the state space through techniques such as partial order reduction. Detail information

about USMMC (including the video demonstration and the deliverable tool) can be found

in our website www.comp.nus.edu.sg/~lius87. We list some known issues about our tool

and possible solutions as follows.

www.comp.nus.edu.sg/~lius87

5.7. EVALUATION 106

5.7 Evaluation

In this section, we conduct verification on some commonly used examples with USMMC

and HUGO [75]. HUGO is a tool which translates UML state machines into PROMELA

models and utilizes Spin to perform model checking. The latest version of HUGO is based

on Spin4.3.0, which is out-of-date. HUGO has compatability problems with Spin5.x and

Spin6.x, as a result, the conterexample returned by Spin cannot be translated back to

UML execution traces and is hard for human to interpret. The examples we use are Rail-

CarO [62], RailCar [91] (modifies RailCarO to manually introduce bugs. Both examples

contain transitions emanating/entering orthogonal composite states, which are not support-

ed by HUGO.), BankATM [75], dining philosopher6 and TollGate [79]. The experiments

are conducted with an Intel Core i7 − 2600, 3.4GHZ CPU and 8GB memory machine.

Our tool works on Windows7, 64-bit operating system and HUGO works with Spin6.2.3 on

Ubuntu10.04 LTS operating system.

The verification results are shown in Table 5.2. TTime represents the time used to translate

UML state machines models into Promela. ETime represents the time used by Spin to do

model checking. Our tool finds the manually injected bugs in RailCar system, which is

out of the capability of HUGO since HUGO does not support transitions emanate/enter

orthogonal composite states, which are presented in the RailCar model. The results also

show that our tool out performs HUGO both in execution time and memory consumption

on all the examples.

The main reason is that the Promela code generated by HUGO has many local transitions,

(thus many local variables are introduced to record the status of the intermediate states,

which are memory consuming) which introduce overheads. For example, in the generated

TollGate promela code, 7 steps are conducted to move from an initial pseudostate to its

6We model forks and philosophers as separate UML state machines, which execute in parallel.

5.8. LIMITATIONS 107

target state, but it is actually within one RTC step in the UML state machines semantics.

Our tool strictly obeys the RTC semantics of UML state machines, where only one step is

taken for the above case. The costs introduced by local transitions are exponential in case

of non-determinism, such as the dining philosopher example.

The experiment also shows the scalability of USMMC. We check the deadlockfree property

(with breadth first search) on dinning philosopher models from n = 2 up to n = 77, and our

tool is capable of finding the deadlock within acceptable amount of time. Spin reports out-

of-memory error on the models generated by HUGO when n ≥ 4. The data in Table 5.2 for

n = 4 is obtained when we set the search depth as the default value, i.e. 1, 000, 000. We can

see from the result that USMMC can handle large state spaces caused by non-determinism.

Reducing further the state space through techniques such as partial-order reduction is the

subject of our future work.

5.8 Limitations

We discuss in the following limitations related to our work.

Compatability problem about XMI format Although OMG had released XML Inter-

change Format (XMI) as the standard exchange format of UML diagrams, different tools

adopt different versions of XMI, which causes compatability problems between the models

exported by different tools. The models exported by one case tool cannot be properly dis-

played by the other tools, as is reported by Lundell et al. [96]. This is a known open issue.

Since our tool takes the UML state machine models (in xmi format) exported by those tools

as input and it is infeasible for us to support all those incompatable formats, we support

the output format of Enterprise Architect in the current stage. Providing our own graphical

7n is the number of philosophers.

5.9. CHAPTER SUMMARY 108

modeling front-end for UML state machines may thoroughly solve the problem and this is

subject to our future work.

Structure of the Event Pool Currently, the event pool is implemented as a set in our

tool. We are planning to provide more structures, such as queue, bag, and user-defined

structures for the event pool implementation in order to meet more modeling requirements.

Action language In the current implementation, we do not provide any specific language

for modeling actions and behaviors of UML state machines, just a subset of Object Con-

straint Language (OCL), arithmetic and boolean calculations are supported. So we are

planning to support more complex languages, such as imperative programming languages

(C/C#/java), as the description language of events, actions and activities. This will make

our tool coincide with existing graphical UML editing tools and is capable of conveying

more meticulous system design concerns.

We believe that communications between objects are error-prone and hard to find manually.

The experiment results show that our method can find design errors in the presence of both

synchronous and asynchronous communications and is scalable.

5.9 Chapter Summary

In this chapter, we provide operational semantics for the complete set of UML state machines

features. Our semantics considers non-determinism as well as the communication aspects

between UML state machines, which bridge the gap of current approaches. We have imple-

mented a tool, USMMC, for model checking various properties for UML behavioral state

machines. Our tool, USMMC, is developed for the purpose of providing fully automatic

and direct model checking functionalities, which is efficient, user friendly and achieves a

good coverage of UML state machine features. Since the counterexamples are presented in

5.9. CHAPTER SUMMARY 109

terms of event execution traces in UML state machines instead of any intermediate formats,

USMMC provides good tractability of design flaws. The experiments show that our tool is

effective in finding bugs with communications between different state machines.

5.9. CHAPTER SUMMARY 110

Chapter 6

Related Work

We discuss the approaches that are related to this thesis in this chapter. In particular, we

review the existing work whose end results are related to the overall goal of this thesis.

Besides, we also discuss prior works in relation to the technical contribution made by this

thesis.

6.1 Finding Defects in Use Cases

There exists various approaches in the literature which address the problem of finding

software defects early, i.e., before implementation. In this section, we reviews the approaches

that address the problem of finding defects in use case documents (semi) automatically

with the aid of natural language processing (NLP) techniques . These approaches extracts

either UML models or other formal formats from the natural language descriptions. Then

methods are proposed to assess the quality of the documents and to provide hints to potential

inconsistencies/incompleteness within the document descriptions.

Gervasi and Zowghi [56] proposed to uncover inconsistencies in natural language use case

111

6.1. FINDING DEFECTS IN USE CASES 112

descriptions with formal reasoning techniques. Propositional logic formulas are adopted

to represent facts, hypotheses and constrains, which are extracted from natural language

use case descriptions. Then inconsistencies are checked by reasoning on the propositional

formulas. This work relies on a domain-specific natural language parser CICO [55], which

requires the MAS (Model, Action and Substitution) parsing rules to provide domain specific

patterns. This work aims at extracting fine-grained rules from use case documents, which

assumes the writing style of the sentences to be consistent with the provided MAS rules.

However, providing MAS rules for large documents, such as the stock trading system used

in our evaluation, would be infeasible due to the variety of sentence patterns. Our work

uses a dependency parser, which is trained with more than 200 thousand sentences based

on statistical machine learning techniques, thus is more robust in handling sentences with

different patterns and writing styles. Sinha et al. [117] proposed an analysis engine for use

cases. Shallow parsing techniques are used to analyze natural language sentences. Domain-

specific knowledge is required for annotating concepts and context information. The main

focus of the work is the accuracy of extracting actions in the form of first order logic. Fol-

lowing this work, Sinha et al. [118] developed a prototype tool called Text2Test, which aims

at assisting writing correct use cases. The evaluation showed that Text2Test contributes

to writing more compliant and complete use case documents. The works [118, 117] extract

subject, object based on patterns defined on already identified word tokens and POS tags.

The patterns are thus document dependent. We explore to use dependency parsing tech-

nique, which provides richer syntactic information and enables adjusting rules without any

domain specific information. Thus our approach is more adaptive.

Xiao et al. [134] extracted Access Control Policies (ACP) from software descriptions and

checked the validity of the policies against the use case steps within the same document.

Semantic patterns for ACP sentences are provided based on the manually defined verb

phrases and POS tags obtained from shallow parsing. ACP sentences indicate restrictions

6.2. LEARNING BEHAVIOR MODELS FROM SCENARIOS 113

on resource assessment and thus usually have specific key verbs, such as “allowed”, “can

read”, which indicate the actions. However, our work focuses on extracting action tuples

from use case sentences of general purposes, i.e., actions can be arbitrary verbs. It is thus

infeasible for us to identify actions based on pre-defined key verbs, especially for large

documents (e.g., the stock trading system used in our evaluation). Therefore, we provide

more general rules (without any document specific key words) based on natural language

grammar to process all possible cases.

6.2 Learning Behavior Models from Scenarios

Another kind of approaches that is related to this thesis is those which extract or learn

behavior models from scenarios captured by use cases or by Message Sequence Chart (MSC).

6.2.1 Learning Behavior Models from Scenarios Captured by Use Cases

Kof [77] proposed to generate MSC from natural language use case descriptions. The sen-

tences can be processed are restricted to the simple structure, i.e., subject + verb + object.

Passive sentences, subordinate sentences and sentences containing multiple actions (verbs)

are all considered as error cases. Then a method was proposed to identify missing objects

and actions by analyzing consecutive sentences. Another work [78] by Kof aimed at ex-

tracting automata from natural language use case descriptions. The method contains three

phases, i.e., identify states, assign categories to segments of sentences, generate transitions.

Both approaches identify useful information based on Part of Speech (POS) tagging and

several document-specific heuristics are used in the process, which make it hard to gener-

alize the approach to an arbitrary use case document. Both approaches are only evaluated

on three use cases. Raji and Dhaussy [111] proposed a framework which automatically

generate UML activity diagrams from extended use case descriptions. They first generate

6.2. LEARNING BEHAVIOR MODELS FROM SCENARIOS 114

an activity diagram for each use case and then synthesis those diagrams based on actors.

The main scenarios of the use case that can be processed are described in structured nat-

ural language [102]. Yue et al. [137] proposed a method to automatically generate activity

diagrams from Use Case Models (UCM, a set of use cases). They first manually re-write

the textual use case models in restricted use case modeling (RUCM [136]) format, which

composes of a use case template and 26 well-defined restriction rules. Then the UCM is

transformed into an instance of Use Case Meta (UCMeta) model, which is later trans-

formed into activity diagrams. In another work, Yue et al. [135] proposed to automatically

generate a system level UML state machines from the use case models for the purpose of

model-based test case generation. Both approaches focus on generation of models from the

UCMeta model. POS tags and grammatical dependence relations are only used to iden-

tify control flow information, i.e., relations between sentences. Fine-grained information,

such as actions and message passing information are not considered. Moreover, manual

efforts are required to rewrite use cases in natural language into the RUCM format. Gutiér-

rez [59] proposed a way to generate an activity diagram for a use case scenario described

in XML format. A metamodel for functional requirement and a subset of activity meta-

model are provided. The transformation rules from functional requirement memtamodel to

the activity diagram metamodel are described with QVT-Relationals [17]. Manual efforts

are required to rewrite a natural language use case description into XML format. Most

existing works [59, 102, 137] which generate UML activity diagrams do not process real

natural language, manual rewriting from natural language to some structured formats are

required. Moreover, these approaches do not analyze natural language sentences. Therefore

the actions of action nodes in the activity diagrams are represented by raw natural language

sentences from the use cases. However our focus is to identify defects from the use cases

based on activity diagrams. Therefore we explore more advanced NLP techniques to obtain

fine-grained information, i.e., action tuples and guard conditions for each sentence in use

case flows. Our method also has better generality as compared to approaches [77, 78] which

6.2. LEARNING BEHAVIOR MODELS FROM SCENARIOS 115

rely on heuristics and template matching on POS tags.

6.2.2 Learning Behavior Models from Scenarios Captured by MSC

Whittle et al. [132] proposed an approach to generate UML statechart from MSC. The MSCs

are explicitly annotated with state vectors which contain the valuations of state variables.

This information is crucial to their approach and must be provided by users. In [131],

Whittle et al. proposed to map a use case charts [130] to a hierarchical state machines. A

set of mapping rules are defined from the notation of each level of the use case charts to state

machine features. One potential problems with this approach is that the state machine may

have too many levels (at least three levels and easily exceeds to four or more levels), which

affects the readability. Our work complements with this work in the sense that the use case

relation graph generated by our approach can be used to construct the hierarchical structures

which serve as input to this approach. Uchitel et al. [125] proposed to synthesis behavioral

models from MSC. Similar to [132], this approach requires annotations, i.e., labeling states

and providing continuation relations, on the MSCs. In [124], Uchitel et al. proposed to

synthesis behavior models represented by Model Transition Systems (MTS) [83] from both

safety properties, which specify the upper bound of system behaviors, and scenarios, which

describe the lower bound of the system behaviors. MTS can properly capture the lower and

upper bound of system behaviors simultaneously, which provide guidance for requirement

elicitation. Mäkinen et al. [97] adopted the L* [23] algorithm to learn statecharts from

MSC. However the desired language is expressed as a set of traces, which is insufficient

to express loops. Moreover, their approach does not consider to reduce the number of

membership queries. Our approach capture the desired language with an automaton, which

naturally captures loops. We also propose filtering techniques to safely reduce the number

of membership queries raised to users.

The above approaches all take scenarios captured by MSC as input. However, MSC is a for-

6.2. LEARNING BEHAVIOR MODELS FROM SCENARIOS 116

mal structure and is not easy to obtain at first. Usually strong knowledge and experience on

UML modeling are required to construct MSC from raw natural language descriptions, which

is the initial form of scenarios. Moreover, it is hard for stakeholders to get involved with

such a formal structure, which causes difficulties of specification validation. Our approach

works directly on scenarios captured by natural language, which facilitate the involvement

of stakeholders. Another observation is that the above approaches assume the scenarios to

be synthesized start with the same preconditions. But this is usually not true in practice.

For example, the user login use case happens before any other user operations, and thus is

usually the preconditions of the other use cases. In our approach, we consider the relations

between use cases based on their precondition and postcondition relations.

Damas et al. [41] proposed to synthesize LTS from MSCs. They synthesis a global LTS and

then project it into local LTS based on different agents. The method modified an exist-

ing learning algorithm RPNI [108] to add interactions with users, thus help with scenario

elicitation. The learning algorithm does not conduct candidate query and thus suffers from

over-generalization problem. To overcome that problem, Damas et al. [42] proposed to in-

ject goals in the form of fluent-based assertions into the synthesize process. Sharing the

similar idea with the work by Uchitel et al. [124], the goals/constraints extracted from the

domain knowledge help to control the scale of the synthesized model and reduce the number

of membership queries. Uchitel et al. [126] proposed an approach which took scenarios in

MSC and relations between scenarios described in hMSC as input, then behavior models

are synthesized and are used to find implied scenarios.

Rather than generating models/prototype implementations, which is the main purpose of

the above revealed approaches, our work aims at improving the quality, especially com-

pleteness related aspects, of use case scenarios captured in natural language. We value the

involvement of stakeholders, which is critical to the completeness of use case specifications.

6.3. MODEL CHECKING ON UML STATE MACHINES 117

6.3 Model Checking on UML State Machines

In this section, we discuss works which provide model checking for UML state machines. The

first step towards model checking a UML state machine [7] is to provide formal semantics for

it since UML state machine is a semi-formal language with informally specified semantics in

natural language. Based on how the semantics are provided, the existing approaches can be

categorized into two categories i.e., those translate UML state machines into some existing

languages which have formal semantics and those directly define the operational semantics.

In this section, we discuss both kinds of approaches.

6.3.1 Translation based approaches

A popular approach to formalize UML state machines is to provide a translation to some

existing formal languages (such as Petri Nets [71] or Abstract State Machines (ASM) [48]), or

to the specification languages of model checkers (such as Spin [13], UPPAAL [16], SMV [37]

and PAT [120]). Those formal languages have their own operational semantics. This kind

of approaches can be regarded as an indirect way of providing formalization for UML state

machines, i.e., the translation based approaches. We categorize these approaches based

on the target formal languages they adopt, viz., abstract state machines, Petri Nets, and

translation to the specification languages of model checkers.

6.3.1.1 Translation into Abstract State Machines

Abstract State Machines (ASMs) [48] can offer a general notion of state (which abstract away

from graphical form) in the form of “structures of arbitrary data and operations which can

be tailored to any desired level of abstraction.” UML state machine configuration changes

are represented by transition rules, which consists of conditions and update functions. The

6.3. MODEL CHECKING ON UML STATE MACHINES 118

notion of multi-agent ASMs can naturally reflect the interaction between objects. In this

kind of approaches, model checking of UML state machines relies on the theoretical and tool

support for model checking abstract state machines that are provided by Spielmann [119],

Castillo and Winter [44] and recently Beckers et al. [28].

Börger et al. [33, 34, 35] are among the pioneers in formalizing UML state machines into

ASMs. Their work [33] adopted tuples as the syntax model, which captures the attributes

and associations of a construct (e.g., states, transitions). This approach covers most UML

state machines features, including deferred events, completion events and internal activities

associated with states. But pseudostates such as fork, join, junction, choice and terminate

are not considered. Another work [34] extended the work in [33] to support transitions

from and to orthogonal composite states in the context of event deferral. In 2004, Börger

et al. [35] provided some further discussions about the ambiguities in the OMG documen-

tation of UML state machines [6] (version 1.4) and their solutions. The work by Eörger et

al. [33, 34, 35] cover a large set of features and the formalization is easy to follow. However

no automatic translating tool has been developed based on their work so far. Compton et

al. proposed an approach [40] which translates UML state machines into extended ASM.

Extended ASM extends ASMs to represent inter-level transitions with multiple transitions

which do not cross any boundary of states. This extension makes it easier to deal with

interruptions. It also makes the formalization procedure more structured and layered (since

inter-level transitions break the hierarchical structure of UML state machines and the de-

composition of inter-level transitions into multiple transitions preserves such a hierarchical

structure). The work shares a similar idea with [33, 34] in the rest of the translation proce-

dure. Jürjens [73] provided a work, which focused on the communication aspects between

UML state machines. The work explicitly models the message (with parameters) passing

between state machines as well as the event queue. Jin et al. [72] provided an approach

which syntactically defined UML statecharts as attributed graphs which are described using

6.3. MODEL CHECKING ON UML STATE MACHINES 119

the Graph Type Definition Language (GTDL). The semantic model is an Object Mapping

Automaton (OMA [70]), which is a variant of ASM. However, this approach supports a

limited subset of UML statecharts 1 features, concurrent composite states as well as choice

vertex are not considered.

To summarize, approaches translating UML state machines into ASMs tend to support

more features such as orthogonal composite states, completion/defer events, fork/join/his-

tory/choice pseudostates and inter-level transitions (than other kinds of transition based

approaches). The reason may be that ASMs are more flexible in terms of syntax format as

well as update rules and are more suitable to express the non-structured feature of UML

state machines.

6.3.1.2 Translation into Petri Net

Petri Net [71] is a mathematical modeling language with formal semantics. They are always

used in modeling distributed systems where concurrency presents. Several approaches [22,

26, 36, 109] in the literature translate UML state machines into Petri Net.

Baresi et al. [26] proposed an approach to formalize UML diagrams, including class diagram-

s, state machine diagrams and interaction diagrams, with high-level Petri Nets. However,

the customization rules for each diagram are not formally defined, they are only illustrated

with the Hurried Philosopher Problem 2. Choppy et al. [36] proposed to translate UML

state machines to Hierarchical Colored Petri net (HCPN). They provide a detailed pseudo-

algorithm for the formalization procedure. States in UML state machines are mapped into

Petri Net places. Transitions are mapped to arcs in Petri Net and corresponding triggering

1We use UML state machines and UML statecharts in interleave in order to respect the notations used
in the surveyed works.

2The hurried philosopher problem extends the original dinning philosopher problem by allowing new
philosophers to be temporarily invited at the table

6.3. MODEL CHECKING ON UML STATE MACHINES 120

events are properly labeled. Though the mapping from UML state machines to HCPN is

clearly expressed, a very limited subset of UML state machines features (such as simple

state, composite state, transitions, triggering event and entry/exit actions) are supported.

How to type the events, and how to deal with concurrency invocations of a concurrent com-

posite state are not discussed. André et al. [22] proposed an approach which considered a

larger subset of UML state machine features (including state hierarchy, internal/external

transitions, entry/exit/do activities, history pseudostates, etc.) compared to the previous

work [36]. However, concurrency is not considered. Therefore fork and join pseudostates

as well as synchronous communication between state machines cannot be expressed. Petri

Net is used in modeling work flow in industry. However its notations are always hard for

non-experts to understand. With automatic translators from UML state machines to Petri

Net, we can benefit from the rigorous verification power of existing Petri Net verification

tools [127]. However, approaches translating UML state machines to Petri Net usually cover

a small subset of UML state machine features.

6.3.1.3 Translation into the Specification Language of Model Checkers

Another kind of approaches translate UML state machines into the specification language

of some model checkers (e.g., Spin, SMV, UPPAAL and PAT). Bhaduri et al. [30] provid-

ed a survey on this kind of approaches. But it focuses on many variants of Harel state-

chart [61, 63, 64], such as Requirement State Machine Language (RSML) [87] and Unified

Modeling Language (UML). We rather focus specifically on UML state machines, which

is the object-oriented variant of Harel statecharts. In this section, we discuss this kind of

approaches. We categorize the approaches based on the specification languages of model

checkers they adopted.

6.3. MODEL CHECKING ON UML STATE MACHINES 121

Approaches Based on Spin Latella et al. are pioneers who contributed to the formal verifi-

cation of UML state machines. They proposed a translation [84] from UML state machines

to Process/Protocol Meta Language PROMELA [11], the specification language of the Spin

model checker. The translation function takes a hierarchical automaton as input and gener-

ates PROMELA code as output. This approach uses STEP PROMELA process to simulate

a run to completion step in UML state machines. The translation process is structured

since it is based on the pre-defined formal semantics of EHA [85]. Schönborn et al. [114]

provided a method to model checking UML state machines as well as collaborations with

the other UML diagrams. They compile UML state machines into a PROMELA model and

collaborations into a set of Büchi automatas. Then the Spin model checker was invoked to

verify the Büchi automata against the model. Each state in the state machine is mapped

to an individual PROMELA process. The event queue is modeled as buffered channels and

communication among processes are modeled via unbuffered channels (synchronized). In

this way, the consistency of collaboration diagram with the state machine diagrams can

be checked. Jussila et al. [74] provided an approach to translate UML state machines into

PROMELA. The work considers communications between objects. It provided an action

language, a subset of the Jumbala [46] action language, that is used to specify guard con-

straints and behaviors. The authors implemented a tool called PROCO [10], that takes a

UML model in the form of XMI [8] formats and outputs a PROMELA model.

Approaches Based on SMV and its Variants Kwon [80] first provided a translation from

UML statecharts to the SMV [100] model checker by rule-rewriting systems. Compton

et al. [40] provided another approach which used SMV as the back end model checker to

automatically verify UML state machines. The work first translates UML state machines

into ASMs. Then model checking (with SMV model checker) is conducted relying on a

translation tool from ASMs to SMV [44]. Lam and Padget [81] proposed a symbolic encoding

6.3. MODEL CHECKING ON UML STATE MACHINES 122

of UML statecharts. The approach invokes NuSMV [37] to perform the model checking.

Beato et al. [27] also provided a translation from UML diagrams to the input language of

SMV model checker. This work focuses on the collaborations of different UML diagrams

such as class diagrams, state machine diagrams and activity diagrams. However, this paper

does not describe the detailed translation rules, it only illustrates the translation procedure

with an ATM machine example. Dubrovin and Junttila [47] provided a symbolic encoding

for UML state machines. Then they provided a translation from the encoding to the input

language of the NuSMV model checker. The detailed translation steps are not discussed

in the paper. An implementation (SMUML [15]) has been provided, and some experiment

results are reported.

Approaches Based on Other Model Checkers Gnesi and Latella et al. [57] proposed a trans-

lation from a hierarchical automaton into a labeled transition system (LTS). The translation

is based on the formalization of UML state machines in their early work [85]. Traoré [122]

and Aredo [24] proposed to translate UML state mcahines into PVS (Prototype Verification

System) [12], which is a specification language integrated with verification tools capable of

doing theorem proving, well-formedness checking and model checking. Knapp et al. [76] pre-

sented an approach to translate UML state machines into timed automata which is used by

the UPPAAL [16] Model Checker. Event queue and UML state machine are separately mod-

eled by timed automata and the communication is modeled with a channel. This approach

is implemented in a prototype tool named HUGO/RT [75], which can verify consistency of

collaboration diagrams with the corresponding set of timed UML state machines. Ng and

Butler [103, 104] proposed to translate UML state machines into CSP [65] and utilize the

FDR [3] model checker to conduct model checking. Due to the differences between CSP

and UML state machines, some features of UML state machines, such as the priority mech-

anisms, cannot be modeled. Hansen et al. [60] used another model checker, mCRL2 [19], to

perform model checking tasks. Their work translates Executable UML (xUML) [101] into

6.3. MODEL CHECKING ON UML STATE MACHINES 123

mCRL2 specifications. Zhang and Liu [139] provided an approach which translated UML

state machines into CSP#, an extension of the CSP language, which is as the specification

language of the PAT [120] model checker. An implementation of the translator was done

and experiment results of the verification of UML state machines with PAT were presented.

6.3.1.4 Tool Supports for Model Checking UML State Machines

There were some tools developed for model checking UML diagrams. vUML [89] is one of

the early tools which translates UML state machines into PROMELA models. It supports

checking of deadlock, livelock, and reachability properties. However, explicit annotating

of states with stereotypes and constraints are required to express these properties. Users

must understand the translated PROMELA model in order to provide LTL properties.

HUGO [75] is a tool which aims at verifying the consistencies of UML state machines with

properties specified by collaboration diagrams or sequence diagrams. It translates UML

state machines into PROMELA. It supports model checking of deadlock properties and

LTL properties. TABU [27] translates UML state machines into the specification language

of SMV [100] model checker. Different from vUML and HUGO, it can support verification

the of LTL properties by providing property patterns, which guides the writing of properties.

Another tool [116] is based on the Cadence SMV Model Checker [1]. It is capable of

checking both well-formed rules as well as liveness and safety properties, of UML state

machines. JACK [57] is an integrated environment based on the usage of process algebras,

automata and temporal logic. It supports many phases of system development process

by integrating different editing and verification tools. The AMC component inside JACK

is able to conduct model checking UML statecharts against ACTL [105] properties. But

the components of JACK use FC2 as exchange format, which is not widely supported by

the state-of-practice tools. Among all the tools discussed here, only HUGO is currently

6.3. MODEL CHECKING ON UML STATE MACHINES 124

available. All of them, except JACK, conduct a translation-based approach, which suffers

from efficiency and tractability problems. JACK, though directly implements the semantics,

is not fully automatic and is unavailable now.

6.3.1.5 Summary

The translation approaches aim at utilizing the automatic verification ability of different

model checkers. Therefore the advantage of these approaches is that most of them provide

the implementations of the proposed transition rules. However, we notice that translation-

based approaches suffer from the following weaknesses:

1. Due to the semantic gaps, it may be hard to translate some features of UML state

machines, introducing sometimes additional but undesired behaviors. For example

in [139], extra events have to be added to each process so as to synchronize the exiting

of multiple regions of an orthogonal composite state.

2. For the verification, translation approaches heavily depend on the tool support of the

target formal languages. Furthermore, the additional behaviors introduced during the

translation may significantly slow down the verification.

3. Lastly, when a counterexample is found by the verification tool, it is hard to map it to

the original state machine execution, especially when state space reduction techniques

are used.

Following these remarks, we believe that a direct implementation based on an operational

semantics will provide better solutions for model checking UML state machines in terms of

efficiency and tractability.

6.3. MODEL CHECKING ON UML STATE MACHINES 125

6.3.2 Operational Semantics for UML State Machines

Unlike translation based approaches, there are another kind of approaches which directly

provide operational semantics in inference rules. These approaches are of general purpose

and various verification techniques can be conducted based on the operational semantics.

The benefit of this kind of approaches are (1) they do not rely on the target specification

languages, thus no redundancies are introduced. (2) the semantic steps defined in the

operational semantics coincide with the UML state machines semantic step, i.e., the Run

To Completion (RTC) step. Moreover, approaches in this category usually adopt Labeled

Transition System (LTS) as the semantic model, which coincides with explicit state model

checking techniques.

Latella et al. [85] are among the pioneers who begin to focus on formalizing UML statechart

semantics. The semantic model their formalization adopted was Kripke structure. They use

a slightly modified variant of Extended Hierarchical Automata (EHA) as an intermediate

model and map the UML-statecharts into an EHA. The hierarchical structure of UML

statecharts and EHA make the translation structured and straightforward. Then they

define the operational semantics for EHA in the domain of Kripke structure. This approach

covers a quite restricted subset of UML state machine structures, no pseudostates (exclusive

of initial pseudostate) are considered. A problem aroused by using EHA as intermediate

model is that transitions from a state to its container composite state or from a composite

state to its substate cannot be represented properly. Hierarchical Automata requires a

strict hierarchical structure. The existence of inter-level (a transition which crosses multiple

states) transitions and local transitions break the hierarchical structure. EHA extends the

Hierarchical Automata to handle inter-level transitions by assigning the inter-level transition

to the outermost Sequence Automata. Since states in different hierarchies cannot appear in

a single Sequence Automata, it is hard (actually not supported in [85]) to express transitions

which have their source and target states in different hierarchies. The work [45] extended

6.3. MODEL CHECKING ON UML STATE MACHINES 126

Hierarchical Automata to support more features such as entry/exit actions, parameters in

actions and provided a formal semantics for a subset of UML statecharts based on the EHA.

It considered the non-determinism caused by multiple concurrent state machines, which was

not captured by previous approaches [85].

The work [128] formalized a subset of UML statecharts based partially on the work proposed

in [85]. However it supports some more features such as history mechanisms, entry and exit

actions compared to [85]. The syntax used in this chapter is called a term (Basic term,

Or-term and And-term), which contains basic information about a state such as an unique

ID, entry and exit actions, and sub-terms (for Or-term and And-term) which contains

the hierarchical information of a UML state machine. Inter-level transitions are captured

by explicitly specifying source restrictions and target determinations in an Or-term (this

notation follows the idea of Latella et al. [85]). The dynamic behaviors of UML statecharts

are represented by Configurations. A configuration captures the complete current status

of a given UML statecharts term, i.e., the hierarchical structure is considered, meaning

all currently active substates within the given term are computed. The semantic model is

Labeled Transition System (LTS). Kwon proposed an approach [80] which utilized Kripke

Structure as the semantic domain and aimed at model checking UML statecharts. Similar

to the work in [128], this work utilized term as the syntax model of UML statecharts. This

work [80] adopted the conditional rewrite rules to represent the transition relations in UML

statecharts. One limitation of this approach is that only a few features are considered and

adding the remaining features is not trivial.

Lilius and Paltor [88] provided an abstract syntax and semantics for a subset of UML state

machines. The work adopted terms as syntax model. It considered most features of UML

state machines. This work did not define a clear semantic model. It formalized the Run to

Completion (RTC) step semantics into an algorithm. However, the algorithm is highly ab-

stract and many concepts such as history pseudostates and completion events are described

6.3. MODEL CHECKING ON UML STATE MACHINES 127

informally. Eshuis and Wieringa [49] also utilized LTS as semantic model to provide an

operational semantics for UML statecharts. This work focuses more on the communication

and the timing aspect of UML statecharts. The approach also defines an action language,

which includes assignment, object creation/destruction, sequence operations, signal sending

operation and time expressions. Damm et al. [43] provided a formal semantics for a kernel

set of UML, including static and dynamic aspects of the UML models. The formalization

contains two steps. Firstly, real-time UML (rtUML) is represented in terms of the kernel

subset of real-time UML (krtUML). Then formal semantics of krtUML is provided. This ap-

proach provided a self-defined action language, which supports object creation/destruction,

assignment and operation calls. This work provides a good solution for communications be-

tween different objects as well as event dispatching and handling. Fecher and Schönbor [51]

used core state machine, which is a subset of UML state machines, as the semantic domain

for UML state machines. This work [51] firstly formalized both syntax and semantics of the

core state machine. Then it provided five steps to transform a UML state machine into a

core state machine. The transformation steps from a UML state machine to a core state

machine are provided informally. Moreover, the translation is very complex since a lot of

auxiliary vertices, such as enter/exit vertices, need to be added. Jens et al. [115] provid-

ed a very comprehensive discussion about UML 2.0 behavioral state machines, including

discussions about detailed semantics of each feature and the ambiguity statements. This

approach covers most features of UML2.0 state machines, except for junction and choice

vertices, which are considered as syntax sugar. However, choice vertex cannot be easily

represented with existing constructs since it represents a dynamic decision point. Termi-

nation pseudostates and completion events are not considered. The syntax model of UML

state machine is tuple, which captures the components of each construct. There is no clear

semantic domain and the semantics are provided by functions that define the RTC steps.

6.4. CHAPTER SUMMARY 128

6.3.3 Summary

We reviewed the works which are related to model checking on UML state machines. Ex-

isting approaches are categorized into two kinds, i.e., translation based approaches and

approaches which provide formal semantics for UML state machines. Translation based

approaches usually suffer from the weakness of efficiency and tractability problems. Those

approaches which provide formal semantics for UML state machines only consider a subset

of UML state machine features. The comparisons of the supported features of the surveyed

approaches are presented in Appendix B.

6.4 Chapter Summary

We discussed the existing approaches that are related to the focus of this thesis, i.e., finding

defects in software requirement specifications and design models. We briefly reviewed those

existing approaches and discussed our improvements on state-of-the-art.

To summarize, our approaches contribute mainly on two aspects. For requirement specifi-

cations, we improved the accuracy and adaptability of information extraction by adopting

advanced natural language parsing techniques and proposing grammar-driven rules. We

also contribute in finding more kinds of defects, especially incompleteness related defect-

s. We value the involvement of stakeholders, which is a critical factor in the success of a

project. For system design, we provide tool-supported model checking on UML state ma-

chines. Our approach considers the full set of syntax in the latest version of UML state

machines specification, with all the complex features that were not considered by existing

approaches.

Chapter 7

Conclusion and Future Work

In this chapter, we first summarize the contributions of this thesis in Section 7.1. Then we

discuss the possible future directions in Section 7.2.

7.1 Conclusion

This thesis contributes in providing techniques to improve the quality of software require-

ment specification and system design. To be specific, this thesis has the following contribu-

tions.

• We proposed methods to detect defects in natural language use case descriptions.

Compared to existing approaches [56, 134] which are based on document-specific tem-

plate matching, our work is more adaptable since we propose rules based on general

English grammars.

• In addition to inconsistency related defects, we also consider integrity related defects,

such as missing alternative flows and preconditions/postconditions, which are not

129

7.1. CONCLUSION 130

considered in existing works. We evaluated our method with a real system requirement

specification document and the results show that our method achieves good accuracy

in finding those defects. The found defects are confirmed by the developers to be real

defects.

• We proposed methods which adopt an active learning technique to find defects which

involve multiple use cases, e.g., find missing scenarios and missing preconditions/post-

conditions, through interactions with users. Compared to existing methods [42, 97]

which require MSC as input, our method works directly on use cases written in natural

language and has no assumption on users’ background knowledge, thus increases the

involvement of stakeholders, which is critical to improving the quality of requirement

specifications.

• We defined a formal operational semantics [91] for the latest version (v2.4.1) of UML

state machines. Our semantics cover all the non-time features of UML state machines

and respect the UML metamodel. Compared to existing works [51, 85, 128, 45] which

only cover a small subset of features of UML state machines, our work is more solid

in terms of feature coverage.

• Based on the operational semantics, we developed a domain-specific model checker

USMMC [92]. Our model checker supports simulation of UML state machine execu-

tions and explicit model checking of LTL properties. We evaluate our tool with 10+

UML state machines widely used in the literature. The evaluation reveals that our

tool can conduct model checking on those models efficiently. We also compared our

tool with an existing tool HUGO. The results show that our tool can handle more

features than HUGO and in all the models that can be processed by both tools, our

tool outperforms HUGO.

7.2. FUTURE WORK 131

This thesis provides methods and tools to help improve the quality of requirement specifi-

cation and system designs. For requirement specifications, we noticed the communication

barrier between stakeholders and formal specifications, therefore our work process natural

language directly to improve the involvement of stakeholders. For system designs, we provide

direct support of model checking on UML statemachines, which release users from learning

any formal languages. Our methods are believed to be effective in quality improvement as

confirmed with authors of the requirement specifications.

7.2 Future Work

In this section, we discuss the possible future directions that we are investigating.

We would like to improve the quality of artifacts, i.e., requirement specification and design

models. Such artifacts, which are produced early in the software development process, are

crucial to the success of the project.

In this thesis, we have explored techniques to improve the quality of both the requirement

specification and existing design models. It is promising to look into how we can guide the

process from requirement specifications to obtain design models and help to improve the

quality of the initially created design models.

In Chapter 4, we obtained a DFA for an agent from the scenarios that describe the dy-

namic behaviors of the agent. This can serve as an initial guidance for creating the design

models which capture dynamic behaviors, such as UML state machines. There are existing

works [125, 132] which generate UML state machines from scenarios captured by MSC with

the aid of manual annotation of invariants and states on MSC time lines. Inspired by their

works, we can explore to annotate invariants on the DFA that is generated by our approach,

which helps to group states with the same status and create hierarchy.

7.2. FUTURE WORK 132

Another interesting direction is to extract invariants and properties from the use case de-

scriptions , such as brief description sections, of use case documents. These invariants and

properties are constraints that should be or must be preserved by the systems and can act

as input to the model checking procedure. This further aids the improvement and valida-

tion process of system designs and can also be used together with approaches by Uchitel et

al. [124] to synthesize behavior models.

Bibliography

[1] The Cadence SMV Model Checker. http://www.kenmcmil.com/smv.html.

[2] CRaG Systems Use Case Template. http://www.cragsystems.co.uk/development_
process/docs/UseCaseDocumentTemplate.doc.

[3] The FDR Web Site. http://www.cs.ox.ac.uk/projects/concurrency-tools/.

[4] ITU-T Recommendation Z.120 Message Sequence Chart (MSC). http://www.itu.
int/rec/T-REC-Z.120-201102-I/en.

[5] USMMC, A UML State Machines Model Checker, http://www.comp.nus.edu.sg/
~lius87/.

[6] OMG Unified Language Superstructure Specification (formal). Version 1.4. http:

//www.omg.org/spec/UML/1.4/PDF/index.htm.

[7] OMG Unified Language Superstructure Specification (formal). Version 2.4.1. http:
//www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

[8] OMG: XML Metadata Interchange (XMI v2.0). http://www.omg.org/spec/XMI/2.
4.1/.

[9] Princeton University ”About WordNet.” WordNet. Princeton University. 2010. http:
//wordnet.princeton.edu.

[10] Proco Download Page. http://www.tcs.hut.fi/SMUML/.

[11] The Promela Manual Page. http://spinroot.com/spin/Man/promela.html.

[12] PVS Specification and Verification System. http://pvs.csl.sri.com/.

[13] The Spin Web Site. http://spinroot.com/spin/whatispin.html.

[14] Splitta (version 1.03), A Statistical Sentence Boundary Detection Tool. https://

code.google.com/p/splitta/.

[15] Symbolic Methods for UML Behavioural Diagrams, http://www.tcs.hut.fi/

Research/Logic/SMUML.shtml.

133

http://www.kenmcmil.com/smv.html
http://www.cragsystems.co.uk/development_process/docs/UseCaseDocumentTemplate.doc
http://www.cragsystems.co.uk/development_process/docs/UseCaseDocumentTemplate.doc
http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.comp.nus.edu.sg/~lius87/
http://www.comp.nus.edu.sg/~lius87/
http://www.omg.org/spec/UML/1.4/PDF/index.htm
http://www.omg.org/spec/UML/1.4/PDF/index.htm
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/XMI/2.4.1/
http://www.omg.org/spec/XMI/2.4.1/
http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://www.tcs.hut.fi/SMUML/
http://spinroot.com/spin/Man/promela.html
http://pvs.csl.sri.com/
http://spinroot.com/spin/whatispin.html
https://code.google.com/p/splitta/
https://code.google.com/p/splitta/
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml

BIBLIOGRAPHY 134

[16] UPPAAL Web Site. http://www.uppaal.org/.

[17] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification v1.1.
http://www.omg.org/spec/QVT/1.1/, 2007.

[18] Hugo/RT Website. http://www.pst.informatik.uni-muenchen.de/projekte/

hugo/, 2012.

[19] mCRL2, A Specification Language and Toolset. http://www.mcrl2.org/release/
user_manual/index.html., 2012.

[20] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Pro-
ceedings of 20th International Conference on Very Large DataBase, pages 487–499,
1994.

[21] S. Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. John Wiley & Sons, Inc., 2002.

[22] É. André, C. Choppy, and K. Klai. Formalizing Non-Concurrent UML State Machines
Using Colored Petri Nets. ACM SIGSOFT Software Engineering Notes, 37(4):1–8,
2012.

[23] D. Angluin. Learning Regular Sets from Queries and Counterexamples. Information
and computation, 75(2):87–106, 1987.

[24] D. B. Aredo. Semantics of UML Statecharts in PVS. In In Proceedings of the 12th
Nordic Workshop on Programming Theory (NWPT’00), 2000.

[25] G. Bai, J. Hao, J. Wu, Y. Liu, Z. Liang, and A. Martin. TrustFound: Towards a Formal
Foundation for Model Checking Trusted Computing Platforms. In 19th International
Symposium on Formal Methods (FM), pages 110–126. 2014.

[26] L. Baresi and M. Pezzè. On Formalizing UML with High-level Petri Nets. Concurrent
Object-Oriented Programming and Petri Nets, pages 276–304, 2001.

[27] M. E. Beato, M. Barrio-Solórzano, C. E. Cuesta, and P. de la Fuente. UML Automatic
Verification Tool with Formal Methods. Electronic Notes in Theoretical Computer
Science, 127(4):3–16, 2005.

[28] J. Beckers, D. Klünder, S. Kowalewski, and B. Schlich. Direct Support for Model
Checking Abstract State Machines by Utilizing Simulation. In Abstract State Ma-
chines, B and Z, volume 5238 of Lecture Notes in Computer Science, pages 112–124.
Springer Berlin Heidelberg, 2008.

[29] T. E. Bell and T. A. Thayer. Software Requirements: Are They Really a Problem?
In Proceedings of the 2Nd International Conference on Software Engineering, pages
61–68. IEEE Computer Society Press, 1976.

http://www.uppaal.org/
http://www.omg.org/spec/QVT/1.1/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.mcrl2.org/release/user_manual/index.html
http://www.mcrl2.org/release/user_manual/index.html

BIBLIOGRAPHY 135

[30] P. Bhaduri and S. Ramesh. Model Checking of Statechart Models: Survey and Re-
search Directions. arXiv preprint cs/0407038, 2004.

[31] B. Boehm and V. R. Basili. Software Defect Reduction Top 10 List. Computer,
34(1):135–137, 2001.

[32] B. W. Boehm. A Spiral Model of Software Development and Enhancement. Computer,
21(5):61–72, 1988.

[33] E. Börger, A. Cavarra, and E. Riccobene. Modeling the Dynamics of UML State Ma-
chines. In Abstract State Machines-Theory and Applications, pages 167–186. Springer,
2000.

[34] E. Börger, A. Cavarra, and E. Riccobene. Modeling the Meaning of Transitions from
and to Concurrent States in UML State Machines. In Proceedings of the ACM sym-
posium on Applied computing, SAC’03, pages 1086–1091, 2003.

[35] E. Börger, A. Cavarra, and E. Riccobene. On Formalizing UML State Machines Using
ASMs. Information Software Technology, 46(5):287, 2004.

[36] C. Choppy, K. Klai, and H. Zidani. Formal Verification of UML State Diagrams: A
Petri Net Based Approach. ACM SIGSOFT Software Engineering Notes, 36(1):1–8,
2011.

[37] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In Proceedings of the 14th International Conference on Computer Aided
Verification, CAV’02, pages 359–364. Springer-Verlag, 2002.

[38] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.

[39] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Publishing Co.,
Inc., 1st edition, 2000.

[40] K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An Automatic Verification Tool
for UML. Technical Report CSE-TR-423-00, University of Michigan, 2000.

[41] C. Damas, B. Lambeau, P. Dupont, and A. Van Lamsweerde. Generating Annotated
Behavior Models from End-User Scenarios. IEEE Transactions on Software Engineer-
ing, 31(12):1056–1073, 2005.

[42] C. Damas, B. Lambeau, and A. Van Lamsweerde. Scenarios, Goals, and State Ma-
chines: a Win-Win Partnership for Model Synthesis. In Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software engineering, pages
197–207. ACM, 2006.

BIBLIOGRAPHY 136

[43] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A Formal
Semantics of Concurrency and Communication in Real-Time UML. In Formal Methods
for Components and Objects, volume 2852 of Lecture Notes in Computer Science,
pages 71–98. Springer Berlin Heidelberg, 2003.

[44] G. Del Castillo and K. Winter. Model Checking Support for the ASM High-level
Language. Tools and Algorithms for the Construction and Analysis of Systems, pages
331–346, 2000.

[45] W. Dong, J. Wang, X. Qi, and Z.-C. Qi. Model Checking UML Statecharts. In Eighth
Asia-Pacific Software Engineering Conference, APSEC 2001., pages 363–370, 2001.

[46] J. Dubrovin. Jumbala — An Action Language for UML State Machines. Techni-
cal report, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, 2006.

[47] J. Dubrovin and T. Junttila. Symbolic Model Checking of Hierarchical UML State
Machines. Technical Report B23, Helsinki University of Technology, 2007.

[48] B. Egon and S. Robert. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag USA., 2003.

[49] R. Eshuis and R. Wieringa. Requirements-Level Semantics for UML Statecharts. In
Formal Methods for Open Object-Based Distributed Systems IV, volume 49 of IFIP
Advances in Information and Communication Technology, pages 121–140. Springer
US, 2000.

[50] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Applications of Linguistic Techniques
for Use Case Analysis. Requirements Engineering, 8(3):161–170, 2003.

[51] H. Fecher and J. Schönborn. UML 2.0 State Machines: Complete Formal Semantics
via Core State Machine. Formal Methods: Applications and Technology, pages 244–
260, 2007.

[52] H. Fecher, J. Schönborn, M. Kyas, and W. de Roever. 29 New Unclarities in the
Semantics of UML 2.0 State Machines. Formal Methods and Software Engineering,
pages 52–65, 2005.

[53] D. Firesmith. Specifying Good Requirements. Journal of Object Technology, 2:77–87,
2003.

[54] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Longman Publishing Co., Inc., 3 edition, 2003.

[55] V. Gervasi. The Cico Domain-Based Parser. Technical report, Technical Report
TR-01-25, University of Pisa, Dipartimento di Informatica, November, 2001.

BIBLIOGRAPHY 137

[56] V. Gervasi and D. Zowghi. Reasoning about Inconsistencies in Natural Language
Requirements. ACM Transactions on Software Engineering Methodololy, 14(3):277–
330, 2005.

[57] S. Gnesi, D. Latella, and M. Massink. Model Checking UML Statechart Diagrams
Using JACK. In Proceedings 4th IEEE International Symposium on High-Assurance
Systems Engineering, pages 46–55. IEEE, 1999.

[58] L. Gui, J. Sun, Y. Liu, Y. J. Si, J. S. Dong, and X. Y. Wang. Combining model
checking and testing with an application to reliability prediction and distribution. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis,
pages 101–111. ACM, 2013.

[59] J. Gutiérrez, C. Nebut, M. Escalona, M. Mej́ıas, and I. Ramos. Visualization of Use
Cases Through Automatically Generated Activity Diagrams. Model Driven Engineer-
ing Languages and Systems, pages 83–96, 2008.

[60] H. H. Hansen, J. Ketema, B. Luttik, M. Mousavi, and J. P. van de. Towards Model
Checking Executable UML Specifications in mCRL2. Innovations in Systems and
Software Engineering, 6(1-2):83–90, 2010. Open Access.

[61] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of computer
programming, 8(3):231–274, 1987.

[62] D. Harel and E. Gery. Executable Object Modeling with Statecharts. IEEE Computer,
30:31–42, 1997.

[63] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: A Working Environment for the Devel-
opment of Complex Reactive Systems. IEEE Transactions on Software Engineering,
16(4):403–414, 1990.

[64] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Trans-
actions on Software Engineering and Methodology, 5(4):293–333, 1996.

[65] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, 1978.

[66] H. F. Hofmann and F. Lehner. Requirements Engineering As a Success Factor in
Software Projects. IEEE Software, 18(4):58–66, 2001.

[67] I. Jacobson. Use cases – Yesterday, Today, and Tomorrow. Software and Systems
Modeling, 3(3):210–220, 2004.

[68] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering–A Use Case Driven Approach. Addison-Wesley, 1992.

BIBLIOGRAPHY 138

[69] I. Jacobson, I. Spence, and K. Bittner. Use Case 2.0 The Guide to Succeeding with
Use Cases. http://www.ivarjacobson.com/Use_Case2.0_ebook/, December 2011.

[70] J. Janneck and P. Kutter. Mapping automata: simple abstract state machines. TIK-
Report. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Insti-
tute of Technology Zürich (ETH), 1998.

[71] K. Jensen and L. Kristensen. Coloured Petri Nets: Modeling and Validation of Con-
current Systems. Springer-Verlag New York Inc, 2009.

[72] Y. Jin, R. Esser, and J. Janneck. A Method for Describing the Syntax and Semantics
of UML Statecharts. Software and Systems Modeling, 3(2):150–163, 2004.

[73] J. Jürjens. A UML Statecharts Semantics with Message-Passing. In Proceedings of
the 2002 ACM symposium on Applied computing, pages 1009–1013. ACM.

[74] T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, and I. Porres. Model Checking Dy-
namic and Hierarchical UML State Machines. Proc. MoDeV2a: Model Development,
Validation and Verification, pages 94–110, 2006.

[75] A. Knapp and S. Merz. Model Checking and Code Generation for UML State Machines
and Collaborations. In Proceedings of 5th Workshop on Tools for System Design and
Verification, volume 11, pages 59–64, 2002.

[76] A. Knapp, S. Merz, and C. Rauh. Model Checking - Timed UML State Machines
and Collaborations. In Proceedings of the 7th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’02), pages 395–416.
Springer-Verlag, 2002.

[77] L. Kof. Scenarios: Identifying Missing Objects and Actions by Means of Computa-
tional Linguistics. In 15th IEEE International Requirements Engineering Conference.
RE’07., pages 121–130. IEEE, 2007.

[78] L. Kof. Translation of Textual Specifications to Automata by Means of Discourse
Context Modeling. Requirements Engineering: Foundation for Software Quality, pages
197–211, 2009.

[79] J. Kong, K. Zhang, J. Dong, and D. Xu. Specifying Behavioral Semantics of UML Dia-
grams Through Graph Transformations. Journal of Systems and Software, 82(2):292–
306, 2009.

[80] G. Kwon. Rewrite Rules and Operational Semantics for Model Checking UML Stat-
echarts. In Proceedings of the 3rd International Conference on the Unified Modeling
Language: advancing the standard (UML’00), pages 528–540. Springer-Verlag, 2000.

[81] V. S. Lam and J. Padget. Symbolic Model Checking of UML Statechart Diagrams
with an Integrated Approach. In Proceedings. 11th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems., 2004.

http://www.ivarjacobson.com/Use_Case2.0_ebook/

BIBLIOGRAPHY 139

[82] V. S. Lam and J. Padget. An Integrated Environment for Communicating UML
Statechart Diagrams. In Proceedings of the ACS/IEEE 2005 International Conference
on Computer Systems and Applications, AICCSA ’05, pages 111–vii. IEEE Computer
Society, 2005.

[83] K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proceedings of the Third
Annual Symposium on Logic in Computer Science, LICS ’88., pages 203 – 210, 1988.

[84] D. Latella, I. Majzik, and M. Massink. Automatic Verification of a Behavioural Subset
of UML Statechart Diagrams Using the SPIN Model Checker. Formal Aspects of
Computing, 11(6):637–664, 1999.

[85] D. Latella, I. Majzik, and M. Massink. Towards a Formal Operational Semantics
of UML Statechart Diagrams. In Proceedings of the IFIP TC6/WG6.1 Third Inter-
national Conference on Formal Methods for Open Object-Based Distributed Systems,
volume 1, page 465, 1999.

[86] C. M. Y. Lawrence Bernstein. Trustworthy Systems Through Quantitative Software
Engineering. Wiley-IEEE Computer Society Press, October 2005.

[87] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Requirements Spec-
ification for Process-Control Systems. IEEE Transanctions on Software Engineering,
20(9):684–707, 1994.

[88] J. Lilius and I. P. Paltor. The Semantics of UML State Machines. Technical report,
Turku Centre for Computer Science, 1999.

[89] J. Lilius and I. P. Paltor. vUML: A Tool for Verifying UML Models. 14th IEEE
International Conference on Automated Software Engineering, pages 255–258, 1999.

[90] S. Liu. Automatic Specification-based Testing: Challenges and Possibilities. In Fifth
International Symposium on Theoretical Aspects of Software Engineering (TASE),
pages 5–8. IEEE, 2011.

[91] S. Liu, Y. Liu, É. André, C. Choppy, J. Sun, B. Wadhwa, and J. S. Dong. A Formal
Semantics for Complete UML State Machines with Communications. In Integrated
Formal Methods (iFM), pages 331–346, 2013.

[92] S. Liu, Y. Liu, J. Sun, M. Zheng, B. Wadhwa, and J. S. Dong. USMMC: A Self-
contained Model Checker for UML State Machines. In Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 623–626.
ACM, 2013.

[93] S. Liu, J. Sun, Y. Liu, Y. Zhang, B. Wadhwa, J. S. Dong, and X. Wang. Auto-
matic Early Defects Detection in Use Case Documents. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
pages 785–790. ACM, 2014.

BIBLIOGRAPHY 140

[94] Y. Liu, X. Zhang, J. S. Dong, Y. Liu, J. Sun, J. Biswas, and M. Mokhtari. Formal
Analysis of Pervasive Computing Systems. In Engineering of Complex Computer
Systems (ICECCS), 2012 17th International Conference on, pages 169 –178, july
2012.

[95] Y. Liu, X. Zhang, Y. Liu, J. Dong, J. Sun, J. Biswas, and M. Mokhtari. Towards
Formal Modelling and Verification of Pervasive Computing Systems. In R. Kowalczyk
and N. T. Nguyen, editors, Transactions on Computational Collective Intelligence
XVI, Lecture Notes in Computer Science, pages 62–91. Springer Berlin Heidelberg,
2014.

[96] B. Lundell, B. Lings, A. Persson, and A. Mattsson. UML Model Interchange in
Heterogeneous Tool Environments: An Analysis of Adoptions of XMI 2. In MODELS,
pages 619–630. 2006.

[97] E. Mäkinen and T. Systä. Minimally Adequate Teacher Synthesizes Statechart Dia-
grams. Acta Informatica, 38(4):235–259, 2002.

[98] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

[99] C. Mats and J. Lars. Formal Verification of UML-RT Capsules using Model Check-
ing. Master’s thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Sweden, 2009.

[100] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University Pittsburgh, 1992. UMI Order No.
GAX92-24209.

[101] S. J. Mellor and M. Balcer. Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., 2002.

[102] C. Nebut, F. Fleurey, Y. L. Traon, and J. M. Jézéquel. A Requirement-Based Ap-
proach to Test Product Families. In Proc. Fifth Workshop Product Families Eng,
pages 198–210. Springer Verlag, 2003.

[103] M. Y. Ng and M. Butler. Tool Support for Visualizing CSP in UML. In Formal Meth-
ods and Software Engineering, volume 2495 of Lecture Notes in Computer Science,
pages 287–298. Springer Berlin Heidelberg, 2002.

[104] M. Y. Ng and M. Butler. Towards Formalizing UML State Diagrams in CSP.
Third IEEE International Conference on Software Engineering and Formal Methods,
SEFM’03, 0:138, 2003.

[105] R. Nicola and F. Vaandrager. Action Versus State Based Logics for Transition Sys-
tems. In Semantics of Systems of Concurrent Processes, volume 469 of Lecture Notes
in Computer Science, pages 407–419. Springer Berlin Heidelberg, 1990.

BIBLIOGRAPHY 141

[106] J. Nivre. Algorithms for Deterministic Incremental Dependency Parsing. Computa-
tional Linguistics, 34(4):513–553, 2008.

[107] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating Test Data from State-
based Specifications. Software Testing, Verification and Reliability, 13(1):25–53, 2003.

[108] J. Oncina and P. Garcia. Identifying Regular Languages In Polynomial Time. In
Advances in Structural and Syntactic Pattern Recognition, volume 5 of Machine Per-
ception and Artificial Intelligence, pages 99–108. World Scientific, 1992.

[109] R. G. Pettit, IV, and H. Gomaa. Validation of Dynamic Behavior in UML Using
Colored Petri Nets. In Proceedings of UML’ 2000 workshop, Dynamic behavior in
UML models: semantic quesions, volume 1939, pages 295–302. Springer Verlag, 2000.

[110] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM
journal of research and development, 3(2):114–125, 1959.

[111] A. Raji and P. Dhaussy. User Context Models - A Framework to Ease Software Formal
Verifications. In ICEIS (3), pages 380–383. SciTePress, 2010.

[112] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active
Classes and Associated State Machines - A Lightweight Formal Approach. In Proc.
FASE 2000, number 1783 in Lecture Notes in Computer Science, pages 127–146.
Springer Verlag, 2000.

[113] R. L. Rivest and R. E. Schapire. Inference of Finite Automata Using Homing Se-
quences. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of
Computing, pages 411–420. ACM, 1989.

[114] T. Schäfer, A. Knapp, and S. Merz. Model Checking UML State Machines and Col-
laborations. Electronic Notes in Theoretical Computer Science, 55(3):357–369, 2001.

[115] J. Schönborn. Formal Semantics of UML 2.0 Behavioral State Machines. Technical
report, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-
University of Kiel, 2005.

[116] W. Shen, K. Compton, and J. Huggins. A Toolset for Supporting UML Static and Dy-
namic Model Checking. In Proceedings. 26th Annual International Computer Software
and Applications Conference. (COMPSAC 2002), pages 147–152, 2002.

[117] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev. A Linguistic Analysis Engine
for Natural Language Use Case Description and its Application to Dependability Anal-
ysis in Industrial Use Cases. In IEEE/IFIP International Conference on Dependable
Systems & Networks, 2009. DSN ’09., pages 327 – 336, 2009.

[118] A. Sinha, S. M. Sutton, and A. Paradkar. Text2Test: Automated Inspection of Nat-
ural Language Use Cases. In Proceedings of the 2010 Third International Conference
on Software Testing, Verification and Validation, ICST ’10, pages 155–164. IEEE
Computer Society, 2010.

BIBLIOGRAPHY 142

[119] M. Spielmann. Model Checking Abstract State Machines and Beyond. In Abstract
State Machines - Theory and Applications, volume 1912 of Lecture Notes in Computer
Science, pages 323–340. Springer Berlin Heidelberg, 2000.

[120] J. Sun, Y. Liu, J. Dong, and J. Pang. PAT: Towards Flexible Verification Under
Fairness. In Computer Aided Verification, pages 709–714. Springer, 2009.

[121] F. Törner, M. Ivarsson, F. Pettersson, and P. Öhman. Defects in Automotive Use
Cases. In Proceedings of the 2006 ACM/IEEE International Symposium on Empirical
Software Engineering, ISESE ’06, pages 115–123. ACM, 2006.

[122] I. Traoré. An Outline of PVS Semantics for UML Statecharts. Journal of Universal
Computer Science, 6:2000, 2000.

[123] J. Trowitzsch and A. Zimmermann. Real-Time UML State Machines: An Analy-
sis Approach. Object oriented software design for real time and embedded computer
systems, 2005.

[124] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of Partial Behavior Models from
Properties and Scenarios. IEEE Transactions on Software Engineering, 35(3):384–406,
2009.

[125] S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models from Scenarios.
IEEE Transactions on Software Engineering, 29(2):99–115, 2003.

[126] S. Uchitel, J. Kramer, and J. Magee. Incremental Elaboration of Scenario-based
Specifications and Behavior Models Using Implied Scenarios. ACM Transactions on
Software Engineering Methodololy, 13(1):37–85, 2004.

[127] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. Prod Reference Manual.
Technical report, Helsinki University of Technology, Department of Computer Science
and Engineering, Digital Systems Laboratory, 1995.

[128] M. Von Der Beeck. A Structured Operational Semantics for UML Statecharts. Soft-
ware and Systems Modeling, 1(2):130–141, 2002.

[129] T. Wang, S. Song, J. Sun, Y. Liu, J. S. Dong, X. Wang, and S. Li. More Anti-chain
Based Refinement Checking. In ICFEM, 2012.

[130] J. Whittle. Specifying Precise Use Cases with Use Case Charts. In Satellite Events at
the MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer Science,
pages 290–301. Springer Berlin Heidelberg, 2006.

[131] J. Whittle and P. Jayaraman. Generating Hierarchical State Machines from Use Case
Charts. In Proceedings of the 14th IEEE International Requirements Engineering
Conference, number 16-25. IEEE Computer Society, 2006.

BIBLIOGRAPHY 143

[132] J. Whittle and J. Schumann. Generating Statechart Designs from Scenarios. In
Proceedings of the 22Nd International Conference on Software Engineering, ICSE ’00,
pages 314–323. ACM, 2000.

[133] M. Wulf De, L. Doyen, T. Henzinger, and J.-F. Raskin. Antichains: A New Algorithm
for Checking Universality of Finite Automata. In Computer Aided Verification, volume
4144 of Lecture Notes in Computer Science, pages 17–30. Springer Berlin Heidelberg,
2006.

[134] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie. Automated extraction of se-
curity policies from natural-language software documents. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
FSE ’12, pages 12:1–12:11. ACM, 2012.

[135] T. Yue, S. Ali, and L. Briand. Automated Transition from Use Cases to UML S-
tate Machines to Support State-based Testing. In Proceedings of the 7th European
conference on Modelling foundations and applications, ECMFA’11, pages 115–131.
Springer-Verlag, 2011.

[136] T. Yue, L. Briand, and Y. Labiche. A Use Case Modeling Approach to Facilitate
the Transition towards Analysis Models: Concepts and Empirical Evaluation. In
Model Driven Engineering Languages and Systems, volume 5795 of Lecture Notes in
Computer Science, pages 484–498. Springer Berlin Heidelberg, 2009.

[137] T. Yue, L. Briand, and Y. Labiche. An Automated Approach to Transform Use Cases
into Activity Diagrams. Modelling Foundations and Applications, pages 337–353,
2010.

[138] A. Zeichick. Modeling Usage Low; Developers Confused About UML 2.0, MDA.
Technical report, BZ Research, 2002.

[139] S. Zhang and Y. Liu. An Automatic Approach to Model Checking UML State Ma-
chines. In Fourth International Conference on Secure Software Integration and Reli-
ability Improvement Companion (SSIRI-C), pages 1–6. IEEE, 2010.

[140] Y. Zhang and S. Clark. Syntactic Processing Using the Generalized Perceptron and
Beam Search. Computational Linguistics, 37(1):105–151, 2011.

BIBLIOGRAPHY 144

Appendix A

Auxiliary Definitions on UML

State Machine Semantics

We provide the auxiliary functions and definitions that are used in Chapter 5 in this ap-

pendix.

Since UML state machine has a hierarchical structure, we define functions isAncestor which

decide the ancestor/decedent relations between states and regions.

isAncestor : S ∪ R × S ∪ R ∪ PS ∪ Sf → B is defined as follows:

isAncestor(s, s ′) ,

True, if (s ∈ S ∧ ∃ r ∈ s.r̂ : isAncestor(r , s ′)) ∨

(s ∈ R ∧ ∃ s0 ∈ s.v̂ : isAncestor(s0, s
′)) ∨ s == s ′

False, otherwise

where isAncestor(s, s ′) == T represents that s is the ancestor of s ′. The isAncestor relation

is transitive.

Definition 32 (Sequence Transition) A sequence transition(st) is an ordered list of tran-

sitions. It is defined as: (1)∀ t ∈ T , t ∈ ST ; (2)∀ sti , stj ∈ ST : last(sti) = �rst(stj) ⇒

145

Appendix A. Auxiliary Definitions on UML State Machine Semantics 146

sti _ stj ∈ ST .

A sequence transition is an ordered list of transitions such that the sibling transitions are

linked head-to-tail. The compound transition is a special case of sequence transition where

the sources of the first transition and the targets of the last transition are constrained to be

states.

Least Common Ancestor (LCA) is an operation defined for a state machine. It returns the

smallest common ancestor of the given set of vertices.

Definition 33 (Least Common Ancestor) LCA : PV → R ∪ So ∪ PS Formally,

LCA(V̂) ,

s, if ∃ s ∈ V̂ : (s ∈ So ∧ (∀ s ′ ∈ V̂ , isAncestor(s, s ′)))

r , if @s ∈ V̂ : s ∈ So ∧ (∀ s ′ ∈ V̂ , isAncestor(s, s ′)) ∧

∃ r ∈ R ∧ (∀ s ∈ V̂ , isAncestor(r , s)) ∧

(∀ r ′ ∈ R : ∀ s ∈ V̂ , isAncestor(r ′, s))⇒ isAncestor(r ′, r)

LCA of a set of vertices can be a region or an orthogonal composite state. We need to

guarantee “least” in both situations. If a region is the LCA of a set of states, we guarantee

“least” by constraint ∀ r ′ ∈ R : ∀ s ∈ V̂ , isAncestor(r ′, s)) ⇒ isAncestor(r ′, r). This con-

straint indicates that if both region r and r ′ are ancestors of the set of vertices V̂ , then r ′

must also be the ancestor of r , which implies that r is the “least” among all the ancestors

of V̂ .

Main Source/Target The Main source of a transition is the outermost vertex exited by

the transition on firing and is defined by function MainSource : T → V

Definition 34 (Main Source) Let S (t) = t .ŝv ∪ t .t̂v

MainSource(t) ,

Appendix A. Auxiliary Definitions on UML State Machine Semantics 147

LCA(S (t)), if LCA(S (t)) 6∈ R

s, if LCA(S (t)) ∈ R ∧ ((!isJoin(t) ∧ ∃ s ∈ LCA(S (t)).v̂ : isAncestor(s, t .sv)) ∨

(isJoin(t) ∧ ∃ s ∈ LCA(S (t)).v̂ : (∀ s ′ ∈ t .ŝv\{t .sv} ⇒ isAncestor(s, s ′))))

The Main target of a transition is the outermost vertex entered by a transition on firing

and is defined by function MainTarget : T → V

Definition 35 (Main Target)

MainTarget(t) ,
LCA(S (t)), if LCA(S (t)) 6∈ R

s, if LCA(S (t)) ∈ R ∧ ((!isFork(t) ∧ s ∈ LCA(S (t)).v̂ ∧ isAncestor(s, t .tv)) ∨

(isFork(t) ∧ s ∈ LCA(S (t)).v̂ ∧ (∀ s ′ ∈ t .t̂v\{t .tv} ⇒ isAncestor(s, s ′))))

Main source and main target are defined to capture the ordering of the set of states exited

and entered when firing a transition. If the LCA of the source and target states of a

transition is an orthogonal composite state, then the main source/target is the orthogonal

state. Otherwise, it is the direct subvertex of the LCA that contains the all the source states

of t.

Enable: K × E → PST is a function which evaluates the enabled compound transitions

under the current configuration and triggering event.

Definition 36 (Enable)

Enable(k , e) , {st |st ∈ T̃ ∨ (st ∈ ST ∧ st .tv ∈ Cps ∧ st .ŝv\sv ⊂ S ∪ Cps) ∧
st .ŝv ⊂ k ∧ (∀ i ∈ [1, len(st)] : enable(seg(st , i), e, k .V))}

enable(t , e,GV) ,

True, if Evaluate(t .g ,GV) == T ∧ (e ∈ t .t̂g ∨ t .t̂g = ∅)

False, otherwise

Enable(k , e) returns the set of sequence transitions of which all the guards of all its segment

transitions are evaluated to true under the current configuration k , and the dispatched event

Appendix A. Auxiliary Definitions on UML State Machine Semantics 148

matches its triggering event e. Choice pseudostate requires explicit information to continue

the current RTC step and is considered as a temporal stop. When a compound transition

with n choice vertices is encountered, n + 1 times of Enable function is called. The function

enable(t , e,V) determines whether the transition t can be triggered by event e under the

current shared variable values GV .

Definition 37 (Leave) KV × T → PS ∪ Sf ∪ PS maps a transition to the set of vertices

it leaves on firing. Formally:

Leave(kv , t) ,

∅, if isAncestor(t .sv , t .ι)

Lv(MainSource(t), t .ŝv , kv), otherwise

Lv(s, ŝ, kv) ,

{s ′′} ∪ Lv(s ′′, ŝ, kv), if s ∈ R ∧ {s ′′} = s.v̂ ∩ kv

{s} ∪
⋃

r∈s.regions Lv(r , ŝ, kv), if s ∈ Sc ∨ s ∈ So

s ′ if s ∈ CR ∧ ∃ ex ∈ s.êx ∧ ∃ s ′ ∈ S : ex .ι ∈ s ′.r̂

{s}, otherwise

For internal (transitions which do not leave or enter any states) and local transitions (both

satisfies the constrain isAncestor(s, t .ι)), the set of vertices they left is empty set (indicated

by ∅). For external transitions, starting from the main source state, function Lv recursively

compute the set of vertices left on firing the transition. If a region is exited by a fired

compound transition, then all the current active vertices within the region are exited in an

innermost-out order. If a composite state is exited, all its (orthogonal) regions are exited

in an innermost-out order. If a connection point reference is exited, the submachine state

it is defined is exited, which means the state machine or composite state represented by

the submachine state is exited. For simple states, final states and all the other kinds of

pseudostates, only the vertex itself is exited.

Definition 38 (Enter) T → P(S ∪ Sf ∪ PS) maps a transition to the set of vertices it

Appendix A. Auxiliary Definitions on UML State Machine Semantics 149

enters on firing. Formally,

Enter(t) ,

 ∅, if isAncestor(t .tv , t .ι)

enter(MainTarget(t), t .t̂v), otherwise

where enter : (S ∪ Sf ∪ PS ∪ RCR) × P(S ∪ Sf ∪ PS) → P(S ∪ Sf ∪ PS) returns all the

transitively activated states due to execution of a transition. Formally,

enter(ms, ŝ) ,

{ms} ∪
⋃

r∈s.r̂ enter(r , ŝ), if ms ∈ Sc ∨ ms ∈ So

enter(s ′, ŝ), if ms ∈ R ∧ (∃ s ∈ ŝ : isAncestor(ms, s)) ∧

∃ s ′ ∈ ms.v̂ ∧ isAncestor(s ′, s)

enter(initial(ms), ŝ), if ms ∈ R ∧ (∀ s ∈ ŝ, !isAncestor(ms, s))

defhistory(ms), if (ms ∈ SHps ∨ ms ∈ DHps) ∧

(ms.ĥ = ∅ ∨ ∃ s ∈ ms.ĥ : s ∈ Sf)

ms.ĥ if (ms ∈ SHps ∨ ms ∈ DHps) ∧

ms.ĥ! = ∅ ∧ @s ∈ ms.ĥ : s ∈ Sf)

ms.s if ms ∈ CR ∧ ∃ en ∈ ms.ên ∧ ∃ s ′ ∈ S : en.ι ∈ s ′.r̂

{ms}, otherwise

• For orthogonal (composite) states, the state is entered followed by all its containing

regions.

• If the region contains one of the target states1 of the transition, then the substate of

the region which is the containers of the target state of the transition is entered.

• If the region does not contain any target states of the transition, then the state indi-

cated by its initial pseudostate is entered.

• If a history state is encountered, and it is the first time for its containing state to be

activated, or the last accessed state is a final state, the default history state will be

entered.

1For a fork transition, there are multiple target states.

Appendix A. Auxiliary Definitions on UML State Machine Semantics 150

• If a history state is encountered and it is not the first time for its containing state to

be activated, and the deepest contents2 recorded by the history pseudostate are not

all final states, then the recorded states will be entered.

• If a connection point reference is encountered, then the submachine state in which it

is defined is entered, which indicates that the composite state/state machine referred

to by the submachine state is entered.

• For simple states, final states and all the other kinds of pseudostates, only the vertex

itself is entered.

Definition 39 (Conflict) KS × T̃ × T̃ → B is a function which decides whether two

compound transitions conflict with each other.

Con�ict(ks, t̃ , t̃ ′) ,

True, (
⋃

i∈[1,len(t̃)] Leave(ks, seg(t̃ , i)) = ∅ ∨

(
⋃

i∈[1,len(t̃)] Leave(ks, (seg(t̃ ′, i)) = ∅) ∧ t̃ .ŝv ∩ t̃ ′.ŝv 6= ∅) ∨

(
⋃

i∈[1,len(t̃)] Leave(ks, seg(t̃ , i)) ∩ (
⋃

i∈[1,len(t̃)] Leave(ks, (seg(t̃ ′, i)) 6= ∅)

False, otherwise

There are two situations for two compound transition to be defined as conflicting:

“Two transitions are said to conflict if they both exit the same state, or, more

precisely, that the intersection of the set of states they exit is non-empty.”

[7, Chapter 15.3.12, Semantics, Conflicting transitions, p.575]

This is captured by

(
⋃
i∈[1,len(t̃)] Leave(ks, seg(t̃ , i)) ∩ (

⋃
i∈[1,len(t̃)] Leave(ks, (seg(t̃ ′, i)) 6= ∅.

“An internal transition in a state conflicts only with transitions that cause an exit

from that state.”

[7, Chapter 15.3.12, Semantics, Conflicting transitions, p.575]

2The innermost states that is in the state hierarchy of the recorded states.

Appendix A. Auxiliary Definitions on UML State Machine Semantics 151

This is captured by

(
⋃
i∈[1,len(t̃)] Leave(ks, seg(t̃ , i)) = ∅ ∨ (

⋃
i∈[1,len(t̃)] Leave(ks, (seg(t̃ ′, i)) = ∅) ∧ t̃ .ŝv ∩

t̃ ′.ŝv 6= ∅).

T̃ × T̃ × KS is a partial relation between two compound transitions. A pair of transitions

(t̃ , t̃ ′) ∈ Priority in the current active state configuration ks means that the first segment of

transition t̃ has a smaller distance to the innermost simple state in the current active state

configuration than the first segment of transition t̃ ′.

Definition 40 (Priority)

Priority , {(t̃ , t̃ ′, ks) | ∃ s ∈ t̃ .ŝv : ∀ s ′ ∈ t̃ ′.ŝv ,
distance(s, Innermost(ks) < distance(s ′, Innermost(ks)}

where Innermost(ks) , {s | s ∈ Ss ∧ s ∈ ks}, distance(s, ŝ) , n,

if ∀ s ′ ∈ ŝ,max | s, s ′ |= n.

Operation | s, s ′ | represents the levels of regions between the two states s, s ′ in the state

hierarchy. If both s and s ′ are simple states, the value of | s, s ′ | is 0 regardless of whether

s and s ′ are the same states or not. In this case, the priority cannot be decided. This is

a semantic variation point in UML state machine v2.4.1 specification. In our approach, we

consider such situation as a non-determinism and enumerate all possibilities. The distance

operator returns the maximum distance between a composite state s and all simple states

in the set ŝ, which are transitively contained in the composite state s. Since states from

orthogonal regions are not comparable, this function guarantees that the distance com-

putation is consist with the algorithm described in [7, Chapter 15.3.12, Semantics, Firing

Priorities, p.576]. The Priority of two compound transitions are decided by the priority of

their first segment transitions.

Appendix A. Auxiliary Definitions on UML State Machine Semantics 152

Deferral conflict is the conflict about whether an event should be consumed or not. It is

between a state which has deferral event defined and a source state of a transition which

consumes the event.

Definition 41 (deferral Conflict) Formally, function deferralConflict: T × K × E is

defined as

deferralCon�ict(t , k , e) , True, ∃ s, s ′ ∈ k .ks : (e ∈ s.t̂def ∧ s ′ ∈ t .ŝv\t .sv ∧ isAncestor(s ′, s))

False, otherwise

In our definition, we try to solve the conflict following the UML state machine specifications

of [7], which is described as follows:

“In case of a composite orthogonal state, substates of orthogonal regions may also

introduce deferral conflicts. The conflict resolution follows the triggering priorities,

where nested sates override enclosing states. In case of a conflict between states

in different orthogonal regions, a consumer state overrides a deferring state”

[7, Chaperer 15.3.11, Semantics, Deferred events]

Therefore in our definition of deferral conflict, we consider two situations.

• If the confliction does not involve orthogonal composite state, which means that the

involved states must be in the same branch of state hierarchy, then we give higher

priority to substates. This is captured by the first condition.

• If the confliction involves orthogonal composite state, we directly give higher priority

to transitions which consumes the current event.

Definition 42 (Firable Transitions) The function FirTrans :K×Trig → P T̃ returns the

set of enabled transitions of which conflicts are solved by priority rules. Formally, we define

Appendix A. Auxiliary Definitions on UML State Machine Semantics 153

Firable Transitions FirTrans(k , e) , {t̃ | ∃ t̃ ∈ Enable(k , e) ∧!deferralCon�ict(�rst(t̃), k , e) ∧

(@t̃ ′ ∈ FirTrans(k , e) : Con�ict(k .ks, t̃ , t̃ ′)) ∧ (@t̃” ∈ Enable(k , e)\FirTrans(k , e) : Con�ict(k .ks, t̃ , t̃”) ∧

Priority(t̃”, t̃ , k .ks))}

The purpose of the function Firable Transition is to select the largest non-conflicting subset

from Enabled transitions such that transitions in the selected subset are non-conflicting

and have higher priorities over the conflicting ones in the remaining part. The first step

of deciding firable transitions is to check the deferral conflict. !deferralCon�ict(�rst(t̃), k , e)

means there is no such confliction or the source state of the (compound) transition is as-

signed higher priority over the states which have the events deferred. This is the basic

condition before we proceed to check conflicts between enabled transitions. The function

is defined in a incremental way, i.e., selecting a subset from the set of Enabled transitions

gradually, from the highest priority to the lowest priority. Condition @t̃ ′ ∈ FirTrans(k , e) :

Con�ict(k .ks, t̃ , t̃ ′))guarantees that the newly selected compound transition does not con-

flict with existing compound transitions in the Firable transition set. Condition @t̃” ∈

Enable(k , e)\FirTrans(k , e) : Con�ict(k .ks, t̃ , t̃”) ∧ Priority(t̃”, t̃ , k .ks) guarantees that

each time a transition with the highest priority is selected.

Appendix A. Auxiliary Definitions on UML State Machine Semantics 154

Appendix B

Comaprison of Work on Model

Checking UML State Machines

We provide a comparison on the supported features1 of the translation-based approaches

(Section 6.3.1) in Table B.2. The symbol “
√

” denotes that the feature is supported, “×”

means the feature is not supported,“◦”means the featured is discussed in the paper, however

not all possible situations are considered. For example, for “conflict/priority”, some works

considered conflict among enabled transitions, but did not discuss conflicts due to deferred

events. In this case, we regard the features to be partially supported.

We can conclude from the table that in the translation based approaches, time, submachine

state, entry/exit pseudostate and junction pseudostate are the least commonly supported

features. Less than 5 out of all the surveyed approaches support these features. No approach,

which uses ASM as target language supports, choice or time features. But they almost

all support orthogonal composite state, completion event and entry/exit behaviors. All

1For space consideration, we remove the features that are commonly supported by all approaches, such
as simple state, transitions, initial pseudostate, etc.

155

Appendix B. Comaprison of Work on Model Checking UML State Machines 156

Work Target Language Tool developed UML version

[33] Abstract state machines × 1.3

[34] Abstract state machines × 1.3

[73] Abstract state machines × 1.4

[40] Abstract state machines
√

<= 1.3

[72] GDTL
√

(Moses) 1.5

[109] Colored Petri net
√

<= 1.3

[26] High-level Petri net × −
[36] Colored Petri net

√
(CPN-AMI) −

[22] Colored Petri net × 2.2

[123] Stochastic Petri net × 2.0

[84] PROMELA × 1.1

[74] PROMELA
√

(PROCO) 1.4

[114] PROMELA
√

(HUGO) 1.4

[99] PROMELA
√

(RSARTE) −
[80] SMV input language × 1.3

[47] NuSMV input language
√

−
[27] SMV input language

√
< 1.3

[82] NuSMV input language
√

(SC2PiCal) 1.5

[139] CSP#
√

2.2

[76] Timed automata
√

(HUGO/RT) 1.4

[60] mCRL2 × 2.2

[104] CSP
√

1.4

[24] PVS × 1.3

[122] PVS
√

(PrUDE) 1.3

Table B.1: Summary of translation based approaches

approaches use Petri Net as target language do not support priority mechanism, defer and

completion events. Seen from Table B.1, we can notice that only 5 surveyed translation

approaches focus on UML2.x state machine specifications and only one tool is developed

for model checking UML2.x state machines.

A
p
pen

d
ix

B
.

C
o
m

a
p
riso

n
o
f

W
o
rk

o
n

M
od

el
C

h
eckin

g
U

M
L

S
ta

te
M

a
ch

in
es

1
5
7

work multiple conflict time entry/exit states pseudostates events
charts (priority) behaviors orthogonal submachine fork/join junction choice history entry/exit defer comp call

[33] ×
√

×
√

◦ × × × ×
√

×
√ √

×
[34] ×

√
×

√ √
× × × ×

√
×

√ √
×

[73]
√

× ×
√ √

× × × × × × × ◦
√

[40] × × × ×
√

× × × × × × ×
√

×
[72] ×

√
×

√ √
×

√ √
×

√
×

√ √
×

[109]
√

× × × × × × × × × × × ×
√

[26]
√

× × × × × × × × × × × ×
√

[36] × × × ×
√

× × × × × × × × ×
[22] × × ×

√
× × × × ◦

√
× × × ×

[123] × ×
√

× ◦ ×
√ √ √

× × × × ×
[84] × ◦ × ×

√
× × × × × × × ×

√

[74]
√ √

× ×
√

× × ×
√

× ×
√ √

×
[114]

√ √
×

√ √
×

√
×

√
× × ×

√ √

[99]
√

×
√

× × × × × × × × × × ×
[80] × ◦ × ×

√
× × × × × × × × ×

[47]
√

× × ×
√

× × ×
√

× ×
√ √

×
[81]

√ √
× × × × × × × × × × × ×

[139] × × ×
√ √ √ √

× ×
√ √

×
√

×
[76] × × ×

√
× × × ×

√
× × ×

√
×

[24] × × ×
√ √ √ √ √ √ √ √

× ×
√

[122] ×
√ √

×
√

×
√ √ √ √

× ×
√ √

Table B.2: UML state machines features supported by translation based approaches

Appendix B. Comaprison of Work on Model Checking UML State Machines 158

work syntax domain action language semantic domain event queue UML version
[85] EHA − Kripke Structure × 1.1
[128] term − Kripke Structure × 1.4
[45] EHA self-defined Kripke Structure × 1.1
[88] term − − × 1.3
[80] term abstract notation Kripke Structure × 1.3
[49] set with functions self-defined LTS × 1.3
[112] − − LTS

√
<= 1.3

[43] krtUML self-defined STS
√

1.4
[51] core state machine − − × 2.0
[115] tuple − − × 2.0
[47] tuple abstract notation first-order logic

√
2.0

Table B.3: Syntax and Semantic domains of surveyed operational semantics

Table B.4 summarized the supported features of the approaches in Section 6.3.2.
√

means

the feature is supported, × means the feature is not supported, ◦ means the featured is

discussed in the paper, however does not consider all the possible situations. ⊕ represents

the situation that the corresponding feature is not directly formalized, but it is represented

with other formally defined features in the semantics.

Table B.3 provides the syntax/semantic modals and action languages used by approaches

which provide formal semantics for UML statemachines (Section 6.3.2).

A
p
pen

d
ix

B
.

C
o
m

a
p
riso

n
o
f

W
o
rk

o
n

M
od

el
C

h
eckin

g
U

M
L

S
ta

te
M

a
ch

in
es

1
5
9

work multiple conflict time entry/exit states pseudostates events
charts (priority) behaviors orthogonal submachine fork/join junction choice history entry/exit defer comp call

[85] × ◦ × ×
√

× × × × × × × ×
√

[128] × ◦ ×
√ √

× × × ×
√

× × × ×
[45]

√
◦ ×

√ √
× × × × × × ×

√
−

[88] ×
√ √ √ √

× × × ×
√

×
√ √ √

[80] × ◦ × ×
√

× × × × × × × × ×
[49] × ◦ ×

√ √
× × × × × × ×

√ √

[112]
√

◦
√

× × × ×
√

× × ×
√

×
√

[43]
√

×
√

× × × × × × × × × × ×
[51] ×

√ √
× ⊕

√
⊕ ⊕

√
⊕ ⊕

√ √
×

[115] ×
√

×
√ √

×
√

× ×
√

×
√

× ×
[47]

√
no × ×

√
× × ×

√
× ×

√ √
×

Table B.4: UML state machines features supported by semantic approaches

	1 Introduction
	1.1 Motivation and Goals
	1.2 Outline and Overview
	1.3 Acknowledgment of Published Work

	2 Background
	2.1 Software Development Process
	2.2 Use Case
	2.3 UML State Machines

	3 Finding Intra-defects in Use Case Descriptions
	3.1 Introduction
	3.2 Preliminary
	3.2.1 Definitions in Use Cases
	3.2.2 UML Activity Diagram

	3.3 Overview of Our Approach
	3.4 Approach Details
	3.4.1 Pre-processing Use Case Documents
	3.4.2 Free Text Parsing
	3.4.3 Analyzing Parse Trees
	3.4.4 Building Activity Diagram
	3.4.5 Formal Definition for Use Case Defects
	3.4.6 Finding Defects
	3.4.7 Training Dependency Parser

	3.5 Evaluation
	3.5.1 Accuracy of Free Text Parsing
	3.5.2 Accuracy of the Activity Diagram Builder
	3.5.3 Accuracy of the Defect Finder

	3.6 Discussions
	3.7 Chapter Summary

	4 Improve Use Case Document Quality Through Active Learning
	4.1 Introduction
	4.2 Running Example
	4.3 Preliminary
	4.4 Detailed Approach
	4.4.1 Natural Language Parsing and Analysis
	4.4.2 Learn the DFAs
	4.4.3 Construct Relation Graphs
	4.4.4 Orchestrate EDFAs

	4.5 Evaluation
	4.6 Chapter Summary

	5 Model Checking Aided Design Verification
	5.1 Motivating Example
	5.2 Introduction
	5.3 Basic Asumptions on UML State Machine Semantics
	5.4 Formal Syntax for UML State Machines
	5.5 Formal Semantics of UML State Machines
	5.5.1 Active State Configuration Changes
	5.5.2 Behavior Execution
	5.5.3 The Run to Completion Semantics
	5.5.4 System Semantics

	5.6 USMMC: A Model Checker for UML State Machines
	5.6.1 Architecture Design of USMMC
	5.6.2 Implementation Choices for USMMC

	5.7 Evaluation
	5.8 Limitations
	5.9 Chapter Summary

	6 Related Work
	6.1 Finding Defects in Use Cases
	6.2 Learning Behavior Models from Scenarios
	6.2.1 Learning Behavior Models from Scenarios Captured by Use Cases
	6.2.2 Learning Behavior Models from Scenarios Captured by MSC

	6.3 Model Checking on UML State Machines
	6.3.1 Translation based approaches
	6.3.2 Operational Semantics for UML State Machines
	6.3.3 Summary

	6.4 Chapter Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	Appendix A Auxiliary Definitions on UML State Machine Semantics
	Appendix B Comaprison of Work on Model Checking UML State Machines

		2015-06-04T17:33:48+0800
	Shuang Liu

