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Summary

Summary

Wireless power transfer (WPT) has received great interest by researchers
and industries since the beginning of 20th century. As the soaring market size
for portable electronic and communication devices, WPT as a novel charging
technology is applied due to many advantages. Inductive power transfer (IPT)
as one of the wireless charging methods, which delivers energy from a primary
side to a secondary side through an air gap by electromagnetic induction, is
widely investigated. The main objective of this thesis is to build an IPT system
with a specially designed resonant coil implemented, which has a significantly
high quality factor (Q), to charge portable devices at high power transfer

efficiency and good transmission capability.

Firstly, basic electromagnetic laws and circuit models for coupled
inductors are introduced. Based on the analysis using the reflected impedance
method, it is necessary to adopt capacitive compensation in both primary and
secondary side and operate at the resonant frequency to achieve maximum

power transfer efficiency and minimum VA rating of the supply.

Then, a novel design on the structure of resonant coil is proposed in order
for high Q. To overcome the disadvantages of low Q and high cost of traditional
resonant coil made of litz wire, the resonant coil has a structure of alternately
stacked C-shaped conductor layers and toroid-shaped dielectric layers. The
stack usually contains several repeating sections and only the top conductor
layer of each section has terminals connected to the external circuit. According
to the simulation results on current distribution, a lumped circuit model for the
defined unit structure is established and used as a basic component to build the

circuit model for the whole stack. Based on this model, the function between

Vi



Summary

resonant frequency and number of units is derived and verified by simulations
and experiments. A 16-unit, 8-section resonant coil with a measured Q of 1200

at the resonant frequency of 550 kHz is prototyped and applied to the IPT system.

Next, the IPT system for portable device charging is designed. It consists
of a primary circuit and a secondary circuit connected by inductive coupling.
Energy from a DC power supply at the primary side is converted by a half-
bridge circuit to a high-frequency magnetic field. The induced AC voltage
across the secondary coil is converted to a DC voltage by a four-diode full-wave
rectifier and further regulated by a DC/DC converter for a constant 5 V output.
Both primary and secondary coils are compensated by capacitors to a same
resonant frequency. A frequency tracking unit is implemented to cater the
change of the resonant frequency to keep resonant status and a standby unit is
implemented to reduce the power consumption when the secondary coil is

absent.

Finally, the hardware is built on two separate PCBs, 5 W power can be
delivered at the highest overall power transfer efficiency of 87% at the resonant
frequency of 106 kHz. The proposed IPT system, which has a maximum air-gap
distance to coil diameter ratio of 1.46, is compared with other related works to

demonstrate effective power transfer for portable device charging.
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Chapter 1 Background and Problem Definition

Chapter 1
Background and Problem Definition

1.1 Background

Wireless power transfer (WPT) is a power transmission technology to
transfer electrical power from a power source to an electrical load without using
solid wires or conductors. It has continuously attracted interest from both
academic and industrial communities since 19th centuries. In 1862 James Clerk
Maxwell derived Maxwell’s equation which is the basis for modern
electromagnetics, and in 1884 John Henry Poynting developed equations for the
flow of power in an electromagnetic field. At the turn of the 20th century,
Serbian-American inventor Nikola Tesla performed the first experiment in WPT
and successfully demonstrated the use of a pair of coils to wirelessly power a
lighting device [1]. In 1901, Tesla began construction of a large high-voltage
coil facility, the Wardenclyffe Tower at Shoreham, New York, intended as a
prototype transmitter for a "World Wireless System" which was to transmit
power worldwide, but by 1904 his investors had pulled out, and the facility was
never completed. The modern history of WPT began with the Raytheon
Airborne Microwave Platform (RAMP) Project initiated by the US Army in the
1950’s. The project was led to a demonstration of a helicopter platform which
flew at an altitude of 18 m while being powered exclusively through a
microwave beam from the ground [2]. In the past few decades, a considerable

amount of research has been done in the field of WPT. There are two distinct
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scenarios for WPT, namely near field and far field. The near field is referred to
as a non-radiative type which occurs at a distance smaller than one wavelength
between the transmitter and receiver, while the far field is considered to be a
radiative type which propagates starting from a distance equal to two
wavelengths to infinity between the transmitter and receiver. Different
technologies are used for WPT in these two regions. As for near field, inductive
coupling, capacitive coupling and magnetodynamic coupling are mainly applied.
For far field, microwaves and lasers are utilized. Table 1.1 compares the features
of these technologies. Since the 1990s, near field WPT systems have been
widely investigated, particularly for applications in charging electric vehicles
[3-10] and portable equipment, such as laptop computers [11-12] and mobile

phones [13-22]. Fig. 1.1 shows various applications using WPT technology

nowadays.

Table 1.1 Comparison of different WPT technologies.
Technology Range Frequency Antenna devices
Inductive coupling Short Hz-MHz Wire coils
Capacitive coupling Short kHz-MHz Electrodes
Magnetodynamic Short Hz Rotating magnets
Microwaves Long GHz Parabolic dishes, phased arrays, rectennas
Light waves Long >THz Laser, photocells, lenses, telescopes
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Fig. 1.1. Applications using WPT technology: (a) portable devices, (b) electric vehicles, (c)

implantable devices, (d) underwater environment, (e) industrial environment, and (f) outer
space.

1.2 Review on WPT for Portable Device Charging

The dawn of portable electronic and communication devices since the
1980s has brought huge benefits to human society [23]. A variety of portable
devices, such as smart phones, Bluetooth headsets and tablet computers, have
come out in the last ten years. The market size for a range of portable electronic
products from 2009 to 2016 are shown in Table 1.2. Among these portable
electronic products, the market size of mobile phones alone is expected to
exceed 2.2 billion by 2015, which is over 50% growth of that in 2009. The
emergence of tablets also accelerates the market expansion of portable

electronic products.
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Table 1.2. Market size for some portable electronic products [23].

Market Size (Million Units)
2009 2010 2011 2012 2013 2014 2015 2016

Portable Products

Mobile Phones 1421 1696 1841 1963 2069 2160 2236 2291
Bluetooth Headsets 62 65 45 50 60 85 110 150
Tablets 0 16.7 60 90 130 185 241 300
Notebook Computers 135 164 189 210 232 280 315 380

Digital Cameral 120 118 127 131 140 145 159 169
Portable DVD 22 20 27 32 28 34 38 43
Nintendo DS 31 27 17 14 12 10 10 10
PSP 16 14 9 15 18 18 18 18

However, booming consumption on portable battery-powered products
with private chargers comes along with an increasing electronic waste issue [24].
Great efforts have been made by the Groupe Speciale Mobile Association
(GSMA) in promoting the use of micro-USB to standardize the cord-based
charging interface. Besides the standard cord-based charging option, WPT
technology has emerged as an attractive and user-friendly solution to a common
charging platform for a wide range of portable devices. It offers advantages such
as minimum or no external charging accessories, availability for multiple
devices simultaneously and a lower risk of electric shock in harsh environment.
Such advantageous features have attracted over 135 worldwide companies to
form the Wireless Power Consortium (WPC), which launched the first interface
standard “Qi” for wireless charging in 2009 [25]. It marks that WPT technology
for portable device charging has reached commercialization stage. So far, WPT
has grown from a fledgling technological case to a $1 billion industry around
the world [26] and the world markets for WPT—encompassing mobile devices,
consumer electronics, industrial applications, infrastructure devices and electric

vehicles—will triple over the next few years, growing from $4.9 billion in
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revenue in 2012 to $15.6 billion in 2020, according to a report by Pike Research
as shown in Fig 1.2 [26].

16000 —————+—r——7——1——T1———7——T1—

14600 | WM Electric Vehicles -_
—_ | [ Infrastructure Devices B
E‘ 12000 - Industrial Applications . £ |
= . [ Consumer Electronics B N
2 10000 - M Mobile Devices N B -
S i OB 1
= = 1 B B B
o 6000 | -
= I
= :
S 4000 | - :
& i B e

ol B B ]

0
2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Fig. 1.2. World markets revenue in WPT by application [26].

In all near-field WPT technologies thus far, energy is coupled from a
primary side to a secondary side through an air gap. Especially in inductive
power transfer (IPT) systems, energy is transferred between inductively coupled
windings based on the principle of electromagnetic induction. An IPT system is
essentially a specially structured transformer which contains two or more
windings separated by air gaps instead of wrapped around a closed magnetic
core in a conventional transformer. When a varying current flows in the primary
winding, a varying magnetic flux is created throughout the winding and
impinges on the secondary winding. The varying magnetic flux induces a
varying electromotive force in the secondary winding. Thus, the energy
consumed by the load on the secondary side is from that of the source output on
the primary side which flows through the transmitter circuit, the air gap and the
receiver circuit, and finally reaches the load. A typical IPT system is illustrated

in Fig. 1.3.
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Fig. 1.3. Block diagram of an IPT system.

The overall efficiency of the IPT system greatly depends on the capability
of energy transmission from the primary winding to the secondary winding. Due
to a separation between these two windings, a larger portion of the magnetic
flux generated by the primary winding cannot be received by the secondary
winding. The portion will significantly increase if the windings are placed far
apart or aligned with an angle. Therefore, the overall efficiency of IPT systems
is not high when a large separation between the primary winding and the

secondary winding exists.

In order to increase the overall efficiency of IPT systems, researchers focus
on two main aspects. One is to improve the design of windings [27-48]. For
example, a uniform magnetic field distribution in a planar wireless charging
platform contributes to small efficiency discrepancy between best and worst
positions of secondary windings. As for the shape of planar windings, X. Liu
investigated the magnetic field distribution of both circular structure and
rectangular structure [27]. W. X. Zhong derived optimal dimensional
relationship between the planar transmitter winding array and the receiver
winding to achieve effective area coverage [28]. U. M. Jow presented an optimal
design methodology for an overlapping hexagonal planar winding array for
creation of a homogenous magnetic field [29]. The structure of magnetic core
is also an important part of coil design. Pot type [30], plate type [31], bar type
[33], cylinder type [32], E type [34], loop type [35] and dipole type [36] of

ferrite cores are implemented in different applications to maximize power
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transmission efficiency, respectively. Besides magnetic structure, enhanced

magnetic material is a topic in IPT [48].

The other aspect is to improve the circuit design of IPT systems [49-61].
Inan IPT system, compensating circuits are always implemented in primary and
secondary to achieve resonant status. Characteristics of different structures of
compensating capacitors are presented and their influence on power
transmission efficiency is analyzed [49-51]. In [51], Q. W. Zhu proposed a
method to optimize four compensating capacitors used in a 3.3 kW IPT system
for electric vehicle. The structure of four compensating capacitors were also
used by R. Azambuja [52] and their value were computed using a search
algorithm based on Monte Carlo, which significantly improved the efficiency
and output power. Moreover, an IPT system is typically operated at from several
hundred kHz up to tens of MHz. Therefore, soft switching technique contributes
greatly to the decrease of switching losses. Zero voltage switching (ZVS) or

zero current switching (ZCS) is widely applied in many applications [54-58].

1.3 Problem Definitions and Research Objectives

Unlike charging with wires, the design of an IPT system has many special
considerations. Major requirements for an IPT system for portable device

charging applications are summarized as follows:

1) High efficiency: Power transfer efficiency is the most important
parameter and determines the performance of an IPT system. High

power transfer efficiency is a basic requirement.

2) High transmission capability: Higher transmission capability means

further transmission distance with the same coil dimension. It is a
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3)

4)

5)

6)

typical feature of wireless charging and useful when a large air gap

between the primary and secondary coil exists.

Operating at resonance: At resonant status, a strong magnetic field
links the primary and secondary coil so that energy is transferred from

the source to the load to its greatest extent.

Coil aligning: Guided positioning uses magnetic attraction to align and
fix the secondary coil with the primary coil. Free positioning uses
either a mechanically movable primary coil underneath the surface of
charging platform, or a primary winding array to align an arbitrarily

placed secondary coil.

Low weight and small volume suitable for embedded in portable

devices.

Low cost and easy fabrication.

In existing research, coils implemented are made of litz wire, which usually

have a quality factor (Q) of several hundred. It limits both power transfer

efficiency and fabrication cost. Moreover, resonance are not effectively

preserved when operating conditions, such as the distance between the primary

and secondary coils, change. To overcome these disadvantages, this research

has the following specific objectives:

1)

2)

Design a novel structure of resonant coil to achieve a significantly high
value of Q. Based on simulations and circuit analysis, prototypes are

fabricated to verify predicted properties.

Design an IPT system with the proposed high-Q resonant coil
implemented for portable device charging applications. It has both a

high power transfer efficiency and a good transmission capability.



3)

4)
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Apply a frequency control unit in the IPT system to maintain resonant
status by adjusting the operating frequency following the varying

resonant frequency when working conditions change.

Apply a standby unit in the IPT system to minimize energy

consumption when the secondary side is absent.

1.4 Thesis Contributions

The major contributions of the thesis are summarized as follows:

1)

2)

A novel design on the structure of resonant coil is proposed. This new
structure is a stack of thin conductor and dielectric layers filling the
winding area of an open pot core. It helps greatly to increase the Q of
resonant coil over 1000, which is significantly higher than the Q of
several hundred of conventional windings made of litz wire. It reduces
the fabrication cost of the resonant coil, since litz wire is more
expensive than cooper sheets to mitigate the skin effect and proximity
effect losses, especially when the strand diameter is required below 50

um at high frequencies of MHz.

An IPT system for portable device charging application is proposed.
The system consists of a primary circuit subsystem and a secondary
circuit subsystem, both compensated by capacitors in order to
maximize the power transfer efficiency at the resonant frequency. A
frequency tracking unit is implemented in the primary circuit to tune
the operating frequency following the varying resonant frequency,
which is caused by changing working conditions. With the specially
designed resonant coil applied in the primary circuit, energy can be

transferred from the primary side to the secondary side at a high
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