
SPATIAL SENSOR DATA PROCESSING AND

ANALYSIS FOR MOBILE MEDIA APPLICATIONS

WANG Guanfeng

(B.E., ZJU, CHINA)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2015

DECLARATION

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

WANG Guanfeng Jan 20, 2015

A

ACKNOWLEDGEMENTS

This thesis is a summary of my four years research work. I am deeply grate-

ful to the school for its support throughout my whole Ph.D. programme and

more importantly, the wonderful research resources and brilliant people here

successfully equipped me with the knowledge and skills that made this work

possible.

I owe a double debt of gratitude to my supervisor, Roger Zimmermann. He

guided me each step of the way on how to do research and how to become an

eligible researcher. His advices on my work, commitment to academics and care

for students are always my source of inspiration and encouragement whenever

the difficulties seemed overwhelming.

I have also benefited greatly from the discussions and collaborations with

my colleagues. My sincere thanks go to Beomjoo Seo, Hao Jia, Shen Zhijie, Ma

He, Zhang Ying, Ma Haiyang, Fang Shunkai, Zhang Lingyan, Wang Xiangyu,

Xiang Xiaohong, Xiang Yangyang, Gan Tian, Yin Yifang, Cui Weiwei, Seon

Ho Kim, and Lu Ying from both NUS and USC.

I would also like to thank my flatmates, with whom I spent most of my

spare time in Singapore. We had great moments together and these cheerful

and precious memories will never fade away.

I dedicate this thesis to my parents and all my beloved friends. As an

East Asian, it is not always easy to express my feelings in words, but I know

for sure that I love them and I am forever grateful for their timeless love and

unconditional support.

I

CONTENTS

Summary v

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Overview of Approach and Contributions 9

1.2.1 Location Sensor Data Accuracy Enhancement 10

1.2.2 Orientation Sensor Data Accuracy Enhancement 11

1.2.3 Camera Motion Characterization and Motion Estimation

Improvement for Video Encoding 12

1.2.4 Key Frame Selection for 3D Model Reconstruction 12

1.3 Organization . 13

2 Literature Review 14

i

CONTENTS

2.1 Location Sensor Data Correction 15

2.2 Orientation Sensor Data Correction 20

2.3 Camera Motion Characterization and Motion Estimation in Video

Encoding . 22

2.4 Key Frame Selection for 3D Model Reconstruction 25

3 Preliminaries 28

4 Location Sensor Data Accuracy Enhancement 31

4.1 Introduction . 31

4.2 Location Data Correction from Pedestrian Attached Sensors . . 32

4.2.1 Observation of Real Sensors 32

4.2.2 Problem Formulation . 33

4.2.3 Kalman Filtering based Correction 35

4.2.4 Weighted Linear Least Squares Regression based Correction 37

4.3 Location Data Correction from Vehicle Attached Sensors 40

4.3.1 HMM-based map matching 44

4.3.2 Improved Online Decoding 48

4.4 Experiments . 60

4.4.1 Evaluation on Pedestrians Attached Sensors 60

4.4.2 Evaluation on Vehicle Attached Sensors 65

4.5 Summary . 73

5 Orientation Sensor Data Accuracy Enhancement 76

5.1 Introduction . 76

5.2 Orientation Data Correction . 77

5.2.1 Problem Formulation . 79

ii

CONTENTS

5.2.2 Geospatial Matching and Landmark Ranking 80

5.2.3 Landmark Tracking . 89

5.2.4 Sampled Frame Matching 91

5.3 Experiments . 93

5.3.1 Accuracy Enhancement 95

5.3.2 Performance . 97

5.4 Demo System . 99

5.5 Summary . 101

6 Sensor-assisted Camera Motion Characterization and Video

Encoding 102

6.1 Introduction . 102

6.2 Camera Motion Characterization 105

6.2.1 Subshot Boundary Detection 106

6.2.2 Subshot Motion Semantic Classification 107

6.3 Sensor-aided Motion Estimation 109

6.4 Experiments . 112

6.4.1 Camera Motion Characterization 112

6.4.2 Sensor-aided Motion Estimation 114

6.5 Demo System for Camera Motion Characterization 116

6.6 Summary . 118

7 Sensor-assisted Key Frame Selection for 3D Model Reconstruc-

tion 120

7.1 Introduction . 120

7.2 Geo-based Locality Preserving Key Frame Selection 123

7.2.1 Heuristic Key Frame Selection 125

iii

CONTENTS

7.2.2 Adaptive Key Frame Selection 126

7.2.3 Locality Preserving Key Frame Selection 129

7.3 3D Model Reconstruction . 132

7.4 Experiments . 133

7.4.1 Geographic Coverage Gain 134

7.4.2 3D Reconstruction Performance 139

7.5 Summary . 142

8 Conclusions and Future Work 143

8.1 Conclusions . 143

8.2 Future Work . 145

Bibliography 147

iv

SUMMARY

SUMMARY

Currently, an increasing number of user-generated videos (UGVs) are collected

and uploaded to the Web – a trend that is driven by the ubiquitous availability

of smartphones and the advances in their camera technology. Additionally, with

these sensor-equipped mobile devices, various spatial sensor data (e.g., data

from GPS, digital compass, etc.) can be continuously acquired in conjunction

with any captured video stream without any difficulty. Thus, it has become easy

to record and fuse various contextual metadata with UGVs, such as the location

and orientation of a camera. This has led to the emergence of large repositories

of media contents that are automatically geo-tagged at the fine granularity of

frames. Moreover, the collected spatial sensor information becomes a useful and

powerful contextual feature to facilitate multimedia analysis and management

in diverse media applications. Most sensor information collected from mobile

devices, however, is not highly accurate due to two main reasons: (a) the varying

surrounding environmental conditions during data acquisition, and (b) the use

of low-cost, consumer-grade sensors in current mobile devices. To obtain the

best performance from systems that utilize sensor data as important contextual

information, highly accurate sensor data input is desirable and therefore sensor

data correction algorithms and systems would be extremely useful.

In this dissertation we aim to enhance the accuracy of such noisy sensor data

generated by smartphones during video recording, and utilize this emerging

contextual information in media applications. For location sensor data refine-

ments, we take two scenarios into consideration, pedestrian-attached sensors

and vehicle-attached sensors. We propose two algorithms based on Kalman fil-

tering and weighted linear least square regression for the pure location measure-

v

SUMMARY

ments, respectively. By leveraging the road network information from GIS (Ge-

ographic Information System), we also explore and improve the map-matching

algorithm in our location data processing. For orientation data enhancements,

we introduce a hybrid framework based on geospatial scene analysis and im-

age processing techniques. After more accurate sensor data is obtained, we

further investigate the possibility of applying sensor data analysis techniques

to mobile systems and applications, such as key frame selection for 3D model

reconstruction, camera motion characterization and video encoding.

vi

LIST OF FIGURES

1.1 Most popular cameras in the Flickr community. 2

1.2 Map-based visualization of a sensor-annotated video scene cov-
erage. 3

1.3 Example of a comparison of inaccurate, raw camera orientation
data (red) with the ground truth (green). 7

1.4 An outline of the dissertation. 10

4.1 Visualization of weighted linear least squares regression based
correction model. 37

4.2 Visualization of weighted linear least squares regression based
correction model. GPS samples in the longitude dimension. . . . 38

4.3 Illustration of the map matching problem. 41

4.4 System overview of Eddy. 45

4.5 Illustration of state transition flow and Viterbi decoding algorithm. 47

4.6 An example of online Viterbi decoding process. 50

4.7 Illustration of the state probability recalculation after future lo-
cation observations are received. 55

4.8 A screenshot of our GPS annotation tool. 61

vii

LIST OF FIGURES

4.9 Corrected longitude value results of one GPS data segment. . . 62

4.10 Cumulative distribution function of average error distances. . . 63

4.11 Average error distance results between the corrected data and
the ground truth positions of highly inaccurate GPS sequence
data files. 65

4.12 Information entropy trends of 10 example location measurements. 67

4.13 The accuracy and latency of map matching results with 1 sample
per second and every 2 seconds, respectively. 69

4.14 The accuracy and latency of map matching results with 1 sample
every 3 seconds and 5 seconds, respectively. 70

4.15 The accuracy and latency of map matching results with 1 sample
every 10 seconds and 15 seconds, respectively. 71

4.16 The comparisons of map matching results’ accuracy under fixed
latency constraints. 72

5.1 The overall architecture and the process flow of the orientation
data correction framework. 78

5.2 Comparison of architectures around Singapore Marina Bay among
video frame, Google Earth and FOV scene model. 80

5.3 Image/video capture interface in modified GeoVid apps on iOS
and Android platforms. 82

5.4 Orientation estimation based on target landmark matching be-
tween the geospatial and visual domains. 88

5.5 Illustration of landmark matching technique. 91

5.6 Raw, processed and ground truth camera orientation reading
results. 94

5.7 Camera orientation average-error decrease and execution time
comparison. 95

5.8 Screenshot of the Oscor visualization interface. 99

6.1 The proposed sensor-assisted applications. 103

viii

LIST OF FIGURES

6.2 Overview of the proposed two-step framework. 104

6.3 Proposed camera motion characterization framework. 105

6.4 Illustration of the HEX Motion Estimation algorithm. Each grid
represents a macroblock in the reference frame. 110

6.5 ME simplification performance comparisons. 115

6.6 Architecture of the Motch system. 116

6.7 Screenshot of the Motch interface. 117

7.1 System overview and a pipeline of video/geospatial-sensor data
processing. 121

7.2 Illustration of geo-based active key frame selection algorithm in
2D space. 124

7.3 Illustration of heuristic key frame selection method. 126

7.4 The sample frames of the selected target objects. 135

7.5 Average expected square coverage gain difference on various sizes
of nearest neighbors. 136

7.6 Average expected square coverage gain difference of 12 target
objects. 136

7.7 Illustration of key frame selection results of No.1 objects in aerial
view. 137

7.8 Illustration of key frame selection results of No.2 objects in aerial
view. 138

7.9 Execution time of target object’s 3D reconstruction process. . . 139

7.10 Quality comparison between two 3D reconstruction results on
two frame sets for 12 target objects. 140

7.11 Illustration of 3D reconstruction results of 8 target objects. . . . 141

ix

LIST OF TABLES

3.1 Summary of symbolic notations. 30

5.1 Georeferenced video dataset description. 97

5.2 Target landmark ranking results from users’ feedback among 15
test videos. 98

6.1 Semantic classification of camera motion patterns based on a
stream of location L and camera direction α data. 107

6.2 Subshot classification comparison results of a sample video. The
first column was obtained from manual observations, while the
second column was computed by the proposed system. 113

6.3 Confusion matrix of our subshot classification method with nine
sample videos. G represents the user-defined ground-truth, while
E stands for the experimental result from our characterization
algorithm. D/I and D/O are short for Dolly in and Dolly out
respectively. 114

7.1 Statistics of video dataset. 133

7.2 The influence to Gdiff value by choosing different numbers of
nearest neighbors. 133

x

CHAPTER 1

Introduction

1.1 Background and Motivation

With today’s prevalence of camera-equipped mobile devices and their conve-

nience of worldwide sharing, the multimedia content generated from smart-

phones and tablets has become one of the primary contributors to the media-

rich web. Figure 1.1 illustrates the most popular cameras in the Flickr Commu-

nity 1. The top 5 cameras are all smartphones. The integration of astounding

quality embedded camera sensors and social capability makes the current mo-

bile device a premier choice as a media recorder and uploader. The extreme

portability also helps it to become an essential contributor to the existing large

amount of user generated media contents (UGC). Moreover, nowadays an in-

creasing number of these handheld devices are equipped with numerous sen-

sors, e.g., GPS receivers, digital compasses, accelerometers, gyros and so forth.

1www.flickr.com/cameras [Online; accessed Dec-2014]

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Most popular cameras trend in the Flickr community on temporal
dimension (until December 2014).

Sensor information is easy to obtain by means of such trend. In addition to

the media content, the success of Foursquare2 and Waze3 depicts the picture

that these mobile devices are also actively involved in and provide massive

amounts of spatial sensor data to Geographic Information System (GIS), In-

telligent Transportation System (ITS) and Location-based Services (LBS) ap-

plications. Capturing, uploading and sharing of sensor information in either

explicit or implicit way have become a routine part of daily life for quite a long

time [112].

The usage of such sensor information has received special attention in

academia as well. A growing number of social media and web applications

utilize the spatial sensor information, e.g., GPS locations and digital compass

orientation, as a complementary feature to improve multimedia content analysis

performance. Such surrounding meta-data provides contextual descriptions at

a semantically interesting level. The scenes captured in images or videos can be

characterized by a sequence of camera position and orientation data. Figure 1.2

2foursquare.com
3www.waze.com

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Map-based visualization of a sensor-annotated video scene coverage.

illustrates the scene coverage of a video on a map, based on the associated GPS

and compass sensor values. These geographically described (i.e., georeferenced)

media data contain significant information about the region where they were

captured and can be effectively processed in various applications. A study by

Divvala et al. [26] reported on the contribution of contextual information in

challenging object detection tasks. Their experiments indicate that context

not only reduces the overall detection errors, but more importantly, the re-

maining errors made by the detector are more reasonable. Many sources of

context provide significant benefits for recognition only with a small subset of

objects, yielding a modest overall improvement. Among the contextual items

evaluated by Divvala et al., most of photogrammetric and geographic context

information can be obtained from current sensors embedded in mobile devices.

Slaney also studied recent achievements in multimedia, e.g., music similarity

computation, movie recommendation and image tagging [108]. He concludes

that certain information is just not present in the signal and researchers should

not overlook the rich meta-data that surrounds a multimedia object, which can

help to build better feature analyzers and classifiers. Different types of sen-

3

CHAPTER 1. INTRODUCTION

sor information are also employed by various multimedia applications such as

photo organization and management [29, 109, 118], image retrieval [58], video

indexing and tagging [7, 104], video summarization [137, 41], video encoding

complexity reduction [21], mobile video management [85, 84], street navigation

systems [54], travel recommendation system [82, 35], and others.

However, the limitations of embedded sensors are also well known. For ex-

ample, accuracy issues of GPS devices have been widely studied as a research

topic for more than ten years. In the early stage of civilian GPS receivers, the

accuracy level was very low, on the order of 100 meters or more. This was due

to the fact that the U.S. government had intentionally degraded the satellite

signal, a method which was called Selective Availability and was turned off in

2000. At present, the best accuracy acquired by GPS can approach 10 meters

under excellent conditions. However, conditions are not always favorable due to

some factors that are affecting the accuracy of GPS during position estimation

such as: the GPS technique employed (i.e., Autonomous, DGPS (Differential

Global Positioning System) [87], WADGPS (Wide Area Differential GPS) [57],

RTK (Real Time Kinematic) [56], etc.), the surrounding environmental condi-

tions (satellite visibility and multipath reception, tree covers, high buildings,

and other problems [20]), the number of satellites in view and satellite ge-

ometry (HDOP (Horizontal Dilution of Precision), GDOP (Geometric DOP),

PDOP (Position DOP), etc. [113]), the distance from reference receivers (for

non-autonomous GPS, i.e., WADGPS, DGPS, RTK), and the ionospheric con-

dition quality.

The accuracy issue of other location sensors, such as WiFi and cellular

signal measurements (e.g., GSM), has also been extensively studied. Generally,

these techniques are feasible in urban environments, but their accuracy dete-

4

CHAPTER 1. INTRODUCTION

riorates in rural areas [24]. In addition, the use of low-cost, consumer-grade

sensors in current mobile devices or vehicles is another inevitable reason for the

accuracy degradation.

Since some of those factors (e.g., the multipath issue) cannot be eliminated

with the development of GPS hardware, some post-processing algorithms and

software solutions have been proposed to enhance data accuracy by a num-

ber of researchers [40, 44, 11, 1]. These methods, however, require additional

sources of data to determine a more accurate position in addition to the GPS

measurements, e.g., Vehicular Ad-Hoc Network or WLAN information. Dur-

ing the GPS data collection on a smartphone, such information is not always

available. Therefore, a post-processing correction method purely based on GPS

measurement data itself is desirable.

Another focus of location sensor measurement correction is map matching

techniques. If a mobile device collects location observations within a vehicle,

the digital road network could be a key component to facilitate location data

accuracy enhancement. Different from general location data, which could be

measured by pedestrian-attached smartphones that travel randomly, we know

for sure that the locations of vehicle-attached sensors should be observed on

road arcs. Thus, map matching algorithms integrate raw location data with

spatial road network information to identify the correct road arc on which a

vehicle is traveling and to determine the location of a vehicle on that road arc.

In contrast to location, the accuracy of orientation data acquired from dig-

ital compasses, which is also increasingly used in many applications, has not

been studied extensively. In most hand-held devices, the digital compass is ac-

tually a magnetometer instead of the fibre optic gyrocompass (as in navigation

systems used by ships). Our focus is on the sensor information collected from

5

CHAPTER 1. INTRODUCTION

mobile devices along with concurrently recorded multimedia content, and hence

we are interested in the accuracy of magnetometers. Generally, compass errors

occur because of two reasons. The first one is variation, which is caused by the

difference in position between the true and magnetic poles. As its name implies,

it varies from place to place across the world, however, nowadays the difference

is accurately tabulated for a navigator’s use. In most recent mobile devices, the

digital compass is able to correct this error by acquiring the current location

information from the embedded GPS receiver. The second of the two errors

which affect the magnetometer, deviation, is caused by a strong magnetic field

influence of anything near the digital compass. For example, someone placing a

metal knife alongside the magnetometer will cause a deflection of the compass

and result in a deviation error. Steel in the construction of a building, electric

circuits, motors, and so on, can all affect the compass and create a deviation

error. Additionally in some regions with high concentrations of iron in the soil,

compasses may provide erroneous information. Thus, when users are record-

ing a video and collecting the direction information of a video in a building

with lots of metal construction materials or in a city center with many metal

cars, the digital compass devices may generate inaccurate direction values for

the video content. Moreover, most of the sensors used in mobile devices like

smartphones are quite low cost, which may also result in decreased accuracy.

As exemplified in Figure 1.3, the red pie-shaped slice represents the raw, un-

corrected orientation measurement while the green slice indicates the corrected

data. As illustrated, the user is recording the tall Marina Bay Sands hotel struc-

ture towards the southeast direction, while the direct, raw sensor measurement

from the mobile device indicates an east direction and hence may later lead to

a completely incorrect scene expectation of a bridge (the Helix Bridge). We

6

CHAPTER 1. INTRODUCTION

Figure 1.3: Example of a comparison of inaccurate, raw camera orientation
data (red) with the ground truth (green).

found in our real world measurements that in some cases the discrepancy is

more than 50 degrees from the ground-truth value. Currently, a number of ex-

isting media applications that utilize this contextual geo-information have not

taken the inaccuracy problem into consideration. Thus, the algorithms that

enhance the sensor data accuracy beforehand would benefit a wide range of

such applications.

Given the issues outlined above, we believe that it is important and indis-

pensable to propose effective approaches to improve the accuracy of raw sensor

data collected from mobile devices.

In previously listed examples, higher level semantic results can be com-

puted from the very low level contextual information (i.e., sensor data). Here

we also explore the possibility of applying sensor analysis techniques to new

mobile media applications, such as video encoding improvement based on the

camera motion characterization. Camera motion is a distinct feature that essen-

tially characterizes video content in the context of content-based video analysis.

It also provides a very powerful cue for structuring video data and performing

7

CHAPTER 1. INTRODUCTION

similarity-based video retrieval searches. As a consequence it has been selected

as one of the motion descriptors in MPEG-7. Almost all existing work relies on

content-based approaches at the frame-signal level, which results in high com-

plexity and very time-consuming processing. Currently, capturing videos on

mobile devices is still a compute-intensive and power-draining process. One of

the key compute-intensive modules in a video encoder is the motion estimation

(ME). In modern video coding standards such as H.264/AVC and H.265/HEVC,

ME predicts the contents of a frame by matching blocks from multiple refer-

ences and by exploring multiple block sizes. Not surprisingly, the computation

and power cost of video encoding pose a significant challenge for video recording

on mobile devices such as smartphones. Thereby, we see great potential to clas-

sify the camera motion type with the assistance from sensor data analysis and

based on this intermediate result, encode mobile videos through light-weight

computations.

Another application that will benefit from our sensor data analysis is the

automatic 3D reconstruction from videos. Automatic reconstruction of 3D

building models is attracting an increasing attention in the multimedia com-

munity. Nowadays, a large market for 3D models still exists. A number of

applications and GIS databases provide and acquire 3D building models to-

wards and from users, such as Google Earth and ArcGIS. These 3D models are

increasingly necessary and beneficial for urban planning, tourism, etc. [114].

However, the adversity still lies in the fact that creating 3D objects by hand

is really problematic on a large scale, especially modeling from 2D image se-

quences. Therefore, we leverage our spatial sensor data analysis techniques to

improve the 3D reconstruction phase when the source data are videos. We ex-

plore the feasibility of using a set of UGVs to reconstruct 3D objects within an

8

CHAPTER 1. INTRODUCTION

area based on spatial sensor data analysis. Such a method introduces several

challenges. Videos are recorded at 25 or 30 frames per second and successive

frames are very similar. Hence not all video frames should be used — rather, a

set of key frames needs to be extracted that provide optimally sparse coverage

of the target object. In other words, scene recovery from video sequences re-

quires a selection of representative video frames. Most prior work has adopted

content-based techniques to automate key frame extraction. However, these

methods take no frame-related geo-information into consideration and are still

compute-intensive. Thus, we believe our idea with spatial data analysis is able

to efficiently select the most representative video frames with respect to the

intrinsic geometrical structure of their geospatial information. Afterwards, by

leveraging this intermediate result — the selected key frames — the 3D model

reconstruction performance can be significantly enhanced with the similar mod-

eling accuracy.

1.2 Overview of Approach and Contributions

In this dissertation, our research focuses on how to effectively enhance the

sensor data accuracy and how to utilize efficient low level sensor data analysis

techniques to achieve higher level semantic results and subsequently facilitate

mobile media applications. The outline of our dissertation is illustrated in

Figure 1.4. We next discuss each of these issues in more details.

Usually sensor information-aided applications would directly utilize the

sensor-annotated video, i.e., the video content and their corresponding raw

sensor data. The implicit assumption is usually that collected sensor data are

correct. However, given the real-world limitations we described above, this

9

CHAPTER 1. INTRODUCTION

Geo-sensor
annotated videos

Location sensor data
accuracy enhancement

Orientation sensor
data accuracy
enhancement

Video Encoding

Sensor-assisted
mobile media
applications

Mobile
videos

Location
sensor data

Orientation
sensor data

Chapter 4

Chapter 5

Chapter 6

3D Model
Reconstruction

Chapter 7

Key Frame
Selection

Camera Motion
Characterization

Low level
sensor data
processing

Sensor analysis-
based middle

layer

From low level signal processing to higher level semantic scenario usage

Figure 1.4: An outline of the dissertation.

assumption is generally not true. Thus, the role of our approach is to auto-

matically and transparently process the geo data of sensor-annotated videos

and then provide more accurate low level data to upstream applications. After-

wards, we analyze the processed sensor data to interpret higher level semantic

information, such as camera motion types of a mobile device and representative

key frames of a sensor-annotated video. Such intermediate results are later feed

into mobile media applications and greatly enhance their performances.

1.2.1 Location Sensor Data Accuracy Enhancement

In sensor-annotated videos, a sequence of location measurements is recorded

along with video timecode. Our approach to location sensor data accuracy en-

hancement contains two processing modules. For pedestrian-attached location

measurements, we model the positioning measurement noise based on the ac-

curacy estimation reported from the GPS itself, which is utilized to evaluate

the uncertainty of every location measurement sample afterwards. To correct

the highly unreliable location measurements, we employ less uncertain mea-

10

CHAPTER 1. INTRODUCTION

surements closely around these data in the temporal domain within the same

video to estimate the most likely positions they should have. We designed

two algorithms to perform accurate position estimation based on Kalman Fil-

tering and weighted linear least squares regression, respectively. To correct

vehicle-attached location measurements, we propose Eddy, a novel real-time

HMM-based map matching system by using our improved online decoding al-

gorithm. We take the accuracy-latency tradeoff into design consideration. Eddy

incorporates a ski-rental model and its best-known deterministic algorithm to

solve the online decoding problem. Our algorithm chooses a dynamic window

to wait for enough future input samples before outputting the matching result.

The dynamic window is selected automatically based on the current location

sample’s states probability distribution and at the same time, the matching

road arc output is generated with sufficient confidence.

1.2.2 Orientation Sensor Data Accuracy Enhancement

Since the digital compasses in most current mobile devices cannot report any

accuracy estimations of their direction measurements, we introduce a novel hy-

brid framework which corrects orientation data measured in conjunction with

mobile videos based on geospatial scene analysis and image processing tech-

niques. We report our observations and summarize several typical inaccuracy

patterns that we observed in real world sensor data. Our system collects visual

landmark information and matches it against GIS data sources to infer a target

landmark’s real geo-location. By knowing the geographic coordinates of the

captured landmark and the camera, we are able to calculate corrected orienta-

tion data. While we describe our method in the context of video, images can

11

CHAPTER 1. INTRODUCTION

be considered as a specific frame of a video, and our correction approach can

be applied there as well.

1.2.3 Camera Motion Characterization and Motion Es-

timation Improvement for Video Encoding

To address the compute-intensive challenges in camera motion characterization

and video encoding, our solution is to perform sensor-assisted camera motion

analysis and introduce a simplified motion estimation algorithm for H.264/AVC

video encoder. From our experiments, accurate sensor data efficiently provide

geographical properties which are generally quite intrinsic to device motion

characterization. Moreover, in many video documents, particularly in those

captured by amateurs, a global motion is commonly involved owing to camera

movement and shooting direction changes. In outdoor videos, e.g., videos cap-

turing landmarks or attractions, global motion contributes significantly to the

motion of objects across frames. Thus, as a key feature we only use geographic

information, camera location and orientation data, to detect subshot bound-

aries and to infer each subshot’s camera motion type from the collected sensor

data without any video content processing. With generated camera motion

information, we modify the HEX motion estimation algorithm used in H.264 to

reduce the search window size and block comparison time for different motion

categories, respectively.

1.2.4 Key Frame Selection for 3D Model Reconstruction

In the context of UGV-based 3D reconstruction, we propose a new approach

for key frame selection based on the geographic properties of candidate videos.

12

CHAPTER 1. INTRODUCTION

Our technique utilizes the underlying geo-metadata to select the most repre-

sentative and optimally sparse frames. Specifically, we first eliminate irrelevant

frames in which the target object does not appear. The concept of geographic

coverage gain is introduced and we formulate an objective function to model

the geospatial difference between the original frame set and the target key

frame set. A key frame subset with minimal spatial coverage gain difference is

subsequently extracted by analyzing the spatial relationship among the frames

based on a manifold adaptive kernel and locally linear reconstruction. In effect,

our approach enables the repurposing of UGVs for 3D object reconstruction

effectively and efficiently.

1.3 Organization

This thesis describes the current state of work related to the spatial sensor

data processing and analysis, and the problems and issues that we have mod-

eled and solved in this area. The remainder of this thesis is organized as fol-

lows. Chapter 2 provides a comprehensive literature survey on relevant existing

work. Chapter 3 introduces the symbolic notations, and the background model

to describe the viewable scene for sensor-annotated videos. Chapters 4 and 5

introduce the algorithms and systems for location and orientation sensor data

accuracy enhancement, respectively. The following two mobile media applica-

tions based on spatial sensor data analysis, camera motion characterization and

video encoding complexity reduction and key frame selection for 3D model re-

construction are detailed in Chapters 6 and 7, respectively. Finally, Chapter 8

concludes with a summary of the proposed research and outlines future work

in this direction.

13

CHAPTER 2

Literature Review

This chapter presents existing research work that are relevant to our study. This

review mainly focuses on four parts: location sensor data correction, orientation

sensor data correction, camera motion characterization and motion estimation

in video encoding, and key frame selection in 3D reconstruction.

There exist a few systems that associate videos with their corresponding

geo-information. Hwang et al. [46] and Kim et al. [60] proposed a mapping

between the 3D world and videos by linking objects to the video frames in

which they appear. However, their work neglected to provide any details on

how to use the camera location and direction to build links between video frames

and world objects. Liu et al. [77] presented a sensor enhanced video annotation

system (referred to as SEVA) which enables the video search for the appearance

of particular objects. SEVA serves as a good example to show how a sensor rich,

controlled environment can support interesting applications. However, it did

14

CHAPTER 2. LITERATURE REVIEW

not propose a generally applicable approach to geo-spatially annotate videos for

effective video search. In our prior and ongoing work [8, 6], we have extensively

investigated these issues and proposed the use of videos’ geographical properties

(such as camera location and direction) to enable an effective search of specific

videos in large video collections. This has resulted in the development of the

GeoVid framework based on the concept of georeferenced video. The concept

and framework we employed to link geospatial property to the mobile videos

will be detailed in Chapter 3.

2.1 Location Sensor Data Correction

There exists some existing work to improve the location accuracy. Among many

trajectory related research work and applications, map matching techniques are

commonly used to employ a road network as a constraint reference for accurate

location acquisition. A formal definition of map matching can be found in

[12, 128] and [39]. There are several different ways to match GPS observations

onto a digital map, such as geometric analysis, topological analysis, probabilistic

theory and so forth. The geometry-based map matching algorithms utilize

the shape of the spatial road network without considering its connectivity [12,

128]. Bernstein and Kornhauser examined three geometry matching methods:

point-to-point, point-to-curve, and curve-to-curve [12]. First two methods do

not make use of “historical” information and can be very unstable. In the

curve-to-curve method, given a candidate node, it constructs a piece-wise linear

curve from the set of paths that originates from that node. Then it calculates

the distance between this curve and the curves corresponding to the network.

White et al. also proposed and tested four algorithms targeting personal digital

15

CHAPTER 2. LITERATURE REVIEW

assistant (PDA) devices [128]. The main differences consist of the utilization

of heading information in their point-to-curve matching and calculating the

distance between “subcurves” of equal length in their curve-to-curve matching.

Since only the geometric information from the network is taken as a reference,

this kind of algorithm is very efficient and scalable. However, it is unable to

achieve a high accuracy and is greatly affected by measurement errors due to

the same reason.

To improve the matching accuracy, some researchers proposed graph-based

algorithms. They view the entire trajectory as a pure graphical curve and try

to find a path (composed of a sequence of road arcs) in the road network that

is as close as possible to the trajectory curve. Generally, this method employs

Fréchet distance or its variants to compare these two curves [3, 17]. Alt et

al. defined feasible distance measures (generalizations of Fréchet distance for

curves) that reflect how close two road patterns are [3]. They abstracted the

matching problem as a distance minimization problem and applied parametric

search, similar as in [4] to solve it. Brakatsoulas et al. proposed two global

algorithms that compare the entire trajectory to candidate paths in the road

network [17]. Two similarity measures are used, Fréchet distance and weak

Fréchet distance, resulting in two different map-matching algorithms which

guarantee to find a matching curve with optimal distance to the trajectory.

Computing the integral Fréchet distance was addressed in this work. They

also addressed the performance issue and reduced the entire matching time.

However, the disadvantage is also obvious. The graph-based algorithms are

usually global matching procedures and have difficulty to generate arcs in real-

time.

The topology-based map matching algorithms make use of the geometry

16

CHAPTER 2. LITERATURE REVIEW

as well as the connectivity and contiguity of the road arcs in the road net-

work [39, 97]. They leverage the topological information to reduce the candidate

matches for each location sample, and develop a weighting system to measure

the similarities between the geometry of a portion of the trajectory and candi-

date road arcs to find the most likely road arcs. Greenfeld and Joshua review

several matching algorithms and propose a weighted topological algorithm [39].

They only employ the coordinates of location observations without considering

the heading or speed information reported from GPS. Thus this approach tends

to be very sensitive to outliers due to the inaccurately deduced vehicle head-

ings. Especially at low speed, the uncertainty of the position information could

contaminate the derivation of the heading calculated by displacement. Quddus

et al. devised a weighting formula based on a priori knowledge of the statisti-

cal performance of the sensors and the topology of the network to choose the

correct link [97]. They determine the vehicle position on the selected link for

every two consecutive points. Their framework is simple and only uses a small

number of inputs. However, this category of algorithms is very sensitive to an

increase in sampling interval. The matching accuracy does degrade if two con-

secutive observations are not close enough to provide useful information that

can be used to match the road arcs topology. A comprehensive review of 35

map matching algorithms for navigation applications since 1989 is presented by

Quddus et al. [96].

Statistics-based map matching algorithms take advantage of statistical

models, such as Kalman Filter [62, 94], particle filters [73], Hidden Markov

Model (HMM) [13, 90, 117], etc., to solve various map matching problems.

These algorithms are able to cope with noisy location measurements effec-

tively. Kim et al. modeled the biased error of GPS into a fourth order Markov

17

CHAPTER 2. LITERATURE REVIEW

model in order to decrease the along-track error [62]. They also reduced the

cross-track error (i.e., the error across the width of the road) when the vehicle

runs at a crossroad or a curved road. Their initial matching step, a point-to-

curve method, is error-prone, especially in a dense urban spatial road network.

Pink and Hummel incorporated vehicular motion constraints into an extended

Kalman filter to improve the robustness of the matching system [94]. They

also interpolated the given road network using cubic splines in the preprocess-

ing phase and employed a Hidden Markov Model to represent road network

topological constraints. In addition to the road network topology, Billen et

al. included several features into the matching process using HMM, such as

position history and orientation history, which considerably increase the classi-

fication robustness [13]. Liao et al. used a hierarchical Markov model to learn

and infer a user’s daily movements in an urban environment. They proposed

to bridge the gap between location sensor data and high-level semantic infor-

mation base on a multi-level abstraction. At the signal level, they employed

Rao-Blackwellized particle filters (RBPF) for posterior estimation. Newson and

Krumm also proposed a HMM-based map matching framework, where the main

difference from others are the intuitive transition probability setting based on

the discovered pattern from their collected trajectory data [90]. They also make

their GPS data, ground truth, and relevant road network publicly available to

facilitate the fair comparison of other map matching algorithms. Similar to

Newson’s work, Thiagarajan et al. also performed a quantitative evaluation

of the end-to-end quality of time estimates from noisy and sparsely sampled

locations [117]. They collected a wardriving database for low accuracy WiFi

localization data, and discuss the accuracy-energy tradeoff between using WiFi

location data and GPS samples. However, only a few studies have focused on

18

CHAPTER 2. LITERATURE REVIEW

the real-time decoding issue of the HMM model. Goh et al. proposed a variable

sliding window scheme to provide an online solution while the delay bound of

the road arc generation is not guaranteed [37]. Additionally, the tradeoff rela-

tion between the accuracy and latency from online decoding strategies has not

been extensively studied yet.

In case of pedestrian-attached location sensor correction, the limitation of

these map matching techniques is that the positioned object has to move along

the road map, since the digital road network is considered as the only feasible

path. Thus, existing approaches mostly target vehicle positioning tasks or ve-

hicle navigation systems, while our approach processes location data generated

from any free movement. The raw location data as the input of our pedestrian-

customized system can be generated from the movement of cars, bikes, people,

etc. Our algorithms are able to improve the accuracy of those trajectories that

are not necessary to have corresponding roads.

In addition to map matching techniques, researchers also leverage multiple

information fused together to obtain more accurate locations. Hii and Zaslavsky

combine WLAN positioning and acoustic localization techniques to improve the

location accuracy [44]. Bell et al. validated Wireless Access Points (WiFi APs)

for determining location in their study [11]. Otsason et al. presented a GSM

indoor localization system for large multi-floor buildings [92]. However, these

information sources also have inevitable noises (the accuracy of WiFi and GSM

localization technologies are around 40 meters and 400 meters respectively [24]).

In data fusion approaches, to form hierarchical and overlapping levels of sens-

ing, the Kalman filtering method has been widely applied to GPS navigation

processing [53, 99]. However, those approaches all need additional data sources

coupled with GPS locations. Most of them acquire information from Inertial

19

CHAPTER 2. LITERATURE REVIEW

Navigation Systems (INS) for autonomous mobile vehicles, which consist of

motion sensors (accelerometers) and rotation sensors (gyroscopes). As a result,

their applications are also limited to vehicle location-aware systems, e.g., Intel-

ligent Transportation System (ITS). In our case, we adopt the Kalman filtering

method to improve the location accuracy without any assistance from other

sources of information, but purely based on the measured data acquired from

GPS receivers in smartphones. The moving “object”, not limited to vehicles,

could be anyone who holds the positioning sensor.

2.2 Orientation Sensor Data Correction

Researchers have leveraged various content-based computer vision techniques to

estimate the viewing direction of photos. They geo-locate a photo and estimate

the camera orientation by registering the image onto street level panoramas [64],

Google Street View and Google Earth Map [93]. In the image matching pro-

cess, feature matching happens for every candidate image individually, which

imposes a high computational cost and makes real-time applications unfeasible.

Luo et al. utilized a Scale-Invariant Feature Transform (SIFT) flow to match a

photo in a database followed by image geometry calculation, to determine and

filter the viewing direction [83]. However, these methods can be applied only

to individual photos and cannot be easily applied to video applications. More-

over, they all require either a constrained camera location (since a street view

is only applicable for photos taken on or near a road network) or a relatively

large image database (even satellite images) to perform the matching phase.

In addition to the absolute viewing direction estimation, other research

work also look into the relative camera orientation calculation problem, which

20

CHAPTER 2. LITERATURE REVIEW

is part of extrinsic camera calibration (deciding the positions and orientations

of the camera) [9, 49, 127]. However, these methods can only report the relative

angle between the main object in the image and the camera, while our target is

to estimate the real orientation (values with semantic meanings, such as north,

east, south and west).

Recently, the Structure from Motion (SfM) technique has been extensively

exploited to reconstruct 3D models from a collection of images [48, 70, 71, 100].

SfM estimates three-dimensional structures from two-dimensional image se-

quences which may be coupled with local motion signals. A set of images that

show an object from different directions are registered to 3D scenes by feature

point matching and the camera pose (including location and orientation) of each

image is estimated by image geometry calculation. Thus the camera viewing

orientation can be extracted from the camera pose parameters as one output

of the SfM procedure. However, the scene models are usually reconstructed

from the datasets at a scale of 103 to 105 photos acquired via text-based search

from the web or purposely captured [76]. Since these algorithms were not de-

vised for a dedicated sensor data correction purpose, they ignore all contextual

geo-information. As a result, the preliminary dataset requirements and exten-

sive processing time make these methods unsuitable for large-scale or real-time

camera orientation correction.

21

CHAPTER 2. LITERATURE REVIEW

2.3 Camera Motion Characterization and Mo-

tion Estimation in Video Encoding

Several approaches have been developed to estimate camera motion based on

the analysis of the optical flow computed between consecutive images [51, 25,

15]. Jinzenji et al. employed Hermart transform coefficients to describe camera

motions, including scaling, rotation and translation [51]. They proposed a new

scheme to produce layered sprites throughout a video shot with separated back-

ground and foreground information. Denzler et al. applied statistical methods

which are based on the normal optical flow field [25]. In order to avoid an ineffi-

cient global search, they divided the scenes into regions and extracted features

from a sparse normal optical flow field to train a Gaussian-distribution classifier

and a Kohonen feature map. Their model classified unknown camera motion

into nine classes based on different pan-tilt movements. Bouthemy et al. esti-

mated a 2D affine motion model between pairs of successive frames accounting

for the globally dominant image motion [15]. It detects both cuts and progres-

sive transitions. The significance of each component of the estimated global

affine motion model provides a qualitative description of the dominant motion.

However, the estimation of the optical flow, which is usually based on gradi-

ent or block matching methods, is computationally expensive [50]. Moreover,

when the camera moves fast, there will be significant displacement between

consecutive frames, which may lead to an inaccurate estimation of the optical

flow.

Considering that most videos are not provided in the form of image se-

quences, but rather as compressed formats, some approaches directly manipu-

late MPEG-compressed video to extract camera motion using the motion vec-

22

CHAPTER 2. LITERATURE REVIEW

tors as an alternative to the optical flow [126, 5, 59, 30, 43]. Wang and Huang

proposed a variation of the least-square principle that rejects outliers at each

iteration by using a Gaussian distribution to model how well the global motion

parameters match with the motion field [126]. Ewerth et al. also presented an

outlier removal algorithm by checking the change smoothness and the number of

supporting motion vectors from the neighborhood blocks [30]. They clearly dis-

tinguished the translational and rotational camera motions. Their system also

directly worked on motion data available from the compressed video stream.

Ardizzone et al. clustered the motion vectors in the compressed domain and

individuated the dominant regions for segment feature extraction [5]. Kim et

al. fit the motion vectors from an MPEG stream into a 2D affine model to

detect camera motions [59]. They filtered out noises and normalized various

types of motion vectors. Camera motions and segment boundaries are obtained

by interpreting the estimated model parameters and the homogeneity within

each unit. Heuer and Kaup proposed to perform linearization of the sine and

cosine terms in the affine model to make the parameter estimation both effi-

cient and reliable [43]. Nonparametric motion models have also been proposed

in the motion feature space [28]. Nevertheless, the MPEG motion vectors esti-

mated by video encoders are not always consistent with the actual movement of

macro-blocks since many of them correspond to the movements of foreground

objects. Thus, the effectiveness of these methods relies on their preprocessing

stages to reduce the influence of irrelevant motion vectors. When the video

contains significant camera or object motions, such irrelevant motion vectors

may be prevailing and interfering with the preprocessing stages. Furthermore,

accurately detecting camera zoom operations is difficult because of the noise in

motion vectors due to independent object motions in a frame or MPEG encod-

23

CHAPTER 2. LITERATURE REVIEW

ing properties, such as quantization errors, and other artifacts. Hence, these

methods usually only work well for videos with special encoding formats.

Lertrusdachakul et al. [68] analyzed camera motion by processing the tra-

jectories of Harris interest points that are tracked over an extended time. How-

ever, when the camera moves fast and the background content changes rapidly,

interest points in the background may not be tracked for long. Additionally,

the Harris interest point detector is not invariant to scale and affine transforms,

which may be significant between consecutive frames when the camera moves

fast. Battiato et al. [10] used motion vectors of SIFT features to estimate

the camera motion in a video, but inaccurate results were prone to be gener-

ated with their approach since foreground and background features are treated

without discrimination.

In video encoding, the key to the significant temporal compression is mo-

tion estimation, which seeks to identify blocks in a frame that match those in

a reference frame at different – but close – locations. To exploit the sensor in-

formation for an efficient video encoding purpose, Hong et al. [45] proposed an

accelerometer-assisted model to simplify the motion estimation part in the en-

coder. However, the authors only considered the horizontal and vertical move-

ments of the camera. Their experimental evaluations are based on MPEG-2,

which is no longer a state-of-the-art compression technique. Another sensor-

assisted motion estimation algorithm proposed by Chen et al. [22] employed

additional digital compass information and measurements were obtained with

H.264/AVC. Nevertheless, their work is still limited to rotational camera move-

ments. Both the above algorithms cannot handle linear camera movements,

which is very common in video clips taken by handheld devices. Furthermore,

the sensor information utilized by those algorithms only leveraged accelerom-

24

CHAPTER 2. LITERATURE REVIEW

eter and compass information, while there are other sensors available, which

could also improve the efficiency of video encoding. In addition, the European

patent application EP1921867 presents an idea of using vehicle movement in-

formation to assist in video compression [121]. However, this method focuses on

vehicle motion and a vehicle-mounted camera, and provides no implementation

or evaluation.

2.4 Key Frame Selection for 3D Model Recon-

struction

3D model reconstruction from images [36, 69, 33, 72] or videos [75, 91, 23] has

been of wide interest to the research community. Shum et al. [106] exploit the

information redundancy in images by using two virtual key frames to represent

a sequence, which indicats the importance of a key frame extraction procedure.

Other researchers [2, 89, 103, 102] have considered selecting key frames from a

video prior to initiating the reconstruction process. The existing selection tech-

niques extract key frames from one video source, while we propose selection

techniques from multiple crowdsourced UGVs. In the method from Ahmed et

al. [2], the selection mechanism of key frames is based on a) the number of

frame-to-frame point correspondences obtained from a geometrically robust in-

formation criterion (GRIC) [120], and b) the point-to-epipolar line cost for the

frame-to-frame correspondence set. Other work [102] considers more factors to

select key frames: the ratio of the number of point correspondences found to

the total number of point features found, the homography error, and the spatial

distribution of corresponding points over the frames. Seo et al. [103] use the

25

CHAPTER 2. LITERATURE REVIEW

ratio of the number of correspondences to the total number of features found.

When given an image sequence, Pollefeys et al. [95] select key frames based on

a motion model selection mechanism explored by [119]. They select key frames

only if the epipolar geometry model explains the relationship between the pair

of images better than the simpler homography model and all degenerate cases

are discarded.

Similarly, in real time localization and 3D reconstruction or visual Simul-

taneous localization and mapping (SLAM) systems, Mouragnon et al. [89] take

a new key frame if the number of matched points with the last key frame is

not sufficient or the uncertainty of the calculated camera position is too high.

Zhang et al. [135] employ five representative techniques in the content-based

image retrieval (CBIR) field for key frame detection to compare several per-

formance metrics in their systems. In Klein and Murray’s work, key frames

are added whenever the following conditions are met: a) the tracking quality

is good; b) the time since the last key frame was added exceeds twenty frames;

and c) the camera is a minimum distance away from the nearest key point on

the map [63]. Dong et al. [27] extract key frames from all reference images

to abstract the space with a few criteria: a) the key frames should be able to

approximate the original reference images and contain as many salient features

as possible; b) the common features among these frames are minimal in or-

der to reduce the feature non-distinctiveness in matching; and c) the features

should be distributed evenly in the key frames such that given any new input

frame in the same environment, the system can always find sufficient feature

correspondences and compute accurate camera parameters. One of the com-

mon characteristics of the existing techniques is that they select key frames

depending on different geometric models to score the correspondence of match-

26

CHAPTER 2. LITERATURE REVIEW

ing points between frames. All these methods focus on the frame content- or

point cloud-level processing which are still compute-intensive. Our method in-

stead focuses on UGV attached sensor data to choose the most representative

key frames in geographic space.

Mordohai et al. [88] also used GPS data within a real time 3D reconstruc-

tion approach from videos that makes use of location information to place the

reconstructed models in geo-registered coordinates on maps. However, their

acquisition system needs to be fully customized and they simply select the can-

didate frames whose baseline between two consecutive frames exceeds a certain

threshold for further 3D reconstruction. They also mention that the threshold

varies depending on the different objects’ scene depth. Instead, we employ GPS

information and more sophisticated algorithms to select a set of geographically

representative frames of the collected videos. To the best of our knowledge,

there exists no prior method that leverages crowdsourced videos that are con-

textually enriched at a very fine-grained level and extracts key frames based on

their geographic characteristics to reconstruct 3D models.

27

CHAPTER 3

Preliminaries

This chapter introduces a basic model that describes the viewable scene in

videos. The concept and framework we employed to link geospatial property

to the mobile videos are presented here.

The geo-sensor data utilized in our approach consists of a series of contex-

tual descriptions of mobile video content that reflects the geospatial properties

of the scenes it captures (as illustrated in Figure 1.2). To allow users to con-

veniently acquire geo-tagged videos, we leverage two custom recording apps,

GeoVid [101] and MediaQ [61], publicly available for both Android and iOS.

When a user begins to capture a video, the GPS and compass sensors start to

continuously record location and orientation information of the (moving) cam-

era. All the collected sensor data (i.e., camera location and orientation, the

corresponding frame timecode and video ID) are combined into a JSON format

and uploaded to a portal, to which users can also submit various spatial and

28

CHAPTER 3. PRELIMINARIES

contextual queries, browse, and retrieve the videos with their sensor data via

web APIs1.

We adopt the field-of-view (FOV, also called the viewable scene) model

introduced by Arslan Ay et al. [8]. An FOV describes a scene area captured

by a camera positioned at a given location. The description of a camera’s

viewable scene consists of three parameters: the camera location L, the camera

orientation θ, and the viewable angle α (defined in Equation 3.1). The camera

position L is composed of latitude and longitude coordinates provided by a

positioning device (e.g., GPS receiver) and the camera orientation θ is obtained

based on the direction angle value from a digital compass. The viewable angle

α is calculated based on the camera and lens properties at the current zoom

level.

FOV ≡ 〈L, θ, α〉 (3.1)

With this model and the application, we are capable of collecting and

managing sensor data in conjunction with video contents during the recoding

phase. Note, each mobile device model may use different sampling frequencies

for different sensors. Ideally we acquire one FOV triplet per frame. If that is

not feasible and the granularity is coarser due to the device limits, we perform

linear interpolation to generate triplets for each frame.

In Table 3.1, we also briefly present the important symbols and their mean-

ings used in this thesis.

1http://api.geovid.org

29

CHAPTER 3. PRELIMINARIES

Symbol Unit Meaning

l latitude, original reading from localization sensors
longitude

a accuracy level value of each GPS reading
θ degree original reading from orientation sensors
τ processed data
g ground truth data

L/L′ a sequence of original/
processed location data

S/S ′ a sub-sequence of original/
processed location data

E/E ′ average error of original/
processed data

e road arc
m latitude, match point

longitude
t/t′ s location measurement timecode/

map matching output timecode
M emission probability
T transition probability
π initial probability
δ hidden state probability
ψ backtracking pointer of

the selected hidden state
H accuracy penalty entropy
γ the parameter to control the tradeoff

between accuracy and latency
O visible buildings
P set of all frame geo-location data points
K key location set
K kernel function

Gdiff the average expected square
coverage gain difference

Table 3.1: Summary of symbolic notations.

30

CHAPTER 4

Location Sensor Data Accuracy

Enhancement

4.1 Introduction

In this Chapter we present two frameworks for pedestrians-attached and vehicle-

attached location sensor data, respectively. Since the pedestrian-attached lo-

cation sensor may not travel along the road network, we model the positioning

measurement noise purely based on the accuracy estimation reported from the

GPS itself, which is utilized to evaluate the uncertainty of every location mea-

surement sample afterwards. To correct the highly unreliable location measure-

ments, we employ less uncertain measurements closely around these data in the

temporal domain within the same video to estimate the most likely positions

they should have. On the other hand, for vehicle-attached location data, we

31

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

employ and improve the map matching techniques. Our framework associates

a sorted list of position data to the road network on a digital map in realtime.

Both the accuracy and latency of the map matching results outperform the

existing methods.

4.2 Location Data Correction from Pedestrian

Attached Sensors

First, to have a better understanding of the noisy sensor data and their typ-

ical error patterns, we collected and carefully examined more than 80 mobile

videos associated with sensor information, which are publicly available from

the Geovid website 1. We report our observations and summarize some typical

inaccuracy pattern that emerged in those real sensor data.

4.2.1 Observation of Real Sensors

To evaluate those location coordinates sequences, we display every location

measurement on a map interface and compare its coordinates with the ground

truth position. From manually analyzing those inaccurate location measure-

ments’ properties in GPS data sequences, we summarize two typical error pat-

terns of location measurements.

• Extreme inaccuracy at start. A standalone GPS system needs orbital in-

formation of the satellites to calculate the current position, which provides

the first position in approximately 30-40 seconds. To avoid empty mea-

surements in location data collection, many mobile devices combine A-

1http://api.geovid.org/

32

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

GPS [65], other location services including Wi-Fi Positioning System and

cell-site triangulation, and sometimes a hybrid positioning system [134]

to improve the startup performance of GPS receivers. However, those as-

sistant systems require additional network resources to provide locations

and still use the satellites in poor signal conditions. From our observa-

tions, since the network resources are not always available when users

start recording the video, some location data generated by GPS system

at the beginning of a location sequence file are extremely noisy.

• Sudden moderate inaccuracy. GPS operation uses radio signals from satel-

lites. In very poor signal conditions, for example in a city, these signals

may suffer multipath propagation where signals bounce off buildings, or

are weakened by passing through atmospheric conditions, walls or tree

cover. Thus, when users encounter these conditions during video recod-

ing, some GPS navigation devices without network connections may not

be able to work out a position due to the fragmentary signal, rendering

them unable to function until a clear signal can be received again. As a re-

sult, we observe some sudden moderate incorrect location measurements

generated in the middle of some location sequence files.

4.2.2 Problem Formulation

To filter out such noises, we employ two post-processing methods. Here we

begin by describing the problem in a formal way.

Problem Statement: Given a sequence of positions L and their cor-

responding timestamps and accuracy measurement sequence T and A, find a

sequence of estimated position coordinates, F : li → τi , such that the processed

33

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

position sequence L′ = {τ1, τ2, ..., τn} is more accurate in the sense of comparing

EL with E ′L, where E ′L = 1
n

∑n
i=1 δ

′
i and δ′i is each processed position’s distance

to the ground truth. Each τi also includes an updated longitude x′i and latitude

y′i.

An original GPS reading li always comes with an accuracy measurement

value ai. The accuracy sample indicates the degree of closeness between a GPS

measurement li and its true, but unknown position gi. If ai is relatively high,

it means that the actual position gi is far away from li. We utilize the model

of location measurement noise with li and ai [74], where the probability of the

real position data is assumed to be normally distributed with a mean of li and

its standard deviation σi. We then set σ2
i = g(ai), where the function g is

monotonically increasing.

Let a small sub-sequence of a given GPS dataset (termed GPS segment

or segment for short) be Sκ = {li, li+1, · · · , lj}. It has a relatively short duration

and its moving speed vκ is assumed constant. The original GPS readings can

also be expressed as a series of disjoint segments L = {S1, S2, ..., Sm} with their

corresponding velocity V = {v1, v2, ..., vm}. For a given segment Sκ, we can

estimate the accurate position τk based on the fusion of two sources of data:

(1) the measurement lk with noises directly from the GPS receiver and (2) the

displacement calculation based on the last estimated position τk−1, the velocity

vκ in this segment, and the time duration between tk and tk−1.

Both, the noisy measurement data and approximations in the uniform

motion model of each segment, however, introduce some uncertainty about

the inferred value of a position. To better estimate the position closer to the

real coordinates, it will be reasonable to trust values with a smaller estimated

34

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

uncertainty more than those with a larger one.

We propose two post-processing methods: a Kalman Filtering-based method

(detailed in Section 4.2.3) and a weighted linear regression-based method (de-

tailed in Section 4.2.4). These two methods have different assumptions on the

corrected trajectory. They assume a constant velocity and a linear movement

on each segment, respectively.

4.2.3 Kalman Filtering based Correction

We model the process in accordance with the framework of the Kalman filter.

It operates recursively on two streams of noisy data to produce an optimal

estimate of the underlying positions. We describe the position and velocity of

the GPS receiver by the linear state space:

πk =

[
xk yk vκx vκy

]T
,

where vκx and vκy are the longitude and latitude component of velocity vκ. In

each segment Sκ, vκ can be estimated by some less uncertain coordinates and

their timestamp information. We define the state transition model Fk as

Fk =

1 0 ∆tk 0

0 1 0 ∆tk

0 0 1 0

0 0 0 1

,

35

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

where ∆tk is the time duration between tk and tk−1. We also express the

observation model Hk as

Hk =

1 0 0 0

0 1 0 0

 .
Hk maps the true state space into the measured space. For the measurement

noise model, we use ak to present the covariance matrix Rk of observation noise

as follows:

Rk =

g(ak) 0

0 g(ak)

Similarly, Qk can also be determined by a diagonal matrix but using the average

of g(aδ), whose corresponding position coordinates lδ and timestamp tδ were

used to estimate vκ in this segment.

We apply this process model to the recursive estimator by two alternating

phases. The first phase is the “prediction”, which advances the state until the

next scheduled measurement is coming. Second, we incorporate the measure-

ment value to update the state.

As reported by our real data observations, in many cases, the accuracy

measurements at the start of a GPS data sequence are worse than those at

the end. To efficiently correct those spotty GPS readings with significant un-

certainty, we start processing position data in a reverse way (i.e., from lj to

li in segment Sκ) with our recursive algorithm. Finally, after processing each

GPS segment Sκ from L, we obtain a series of updated position sequence seg-

ments S ′κ = {τi, τi+1, ..., τj}. The corrected result is composed of this series of

segments, L′ = {S ′1, S ′2, ..., S ′m}.

36

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

longitude

latitude

ak

lk

lj

li

lk-1

Figure 4.1: Visualization of weighted linear least squares regression based cor-
rection model. GPS samples in 2D dimension (green line indicates the original
trajectory).

4.2.4 Weighted Linear Least Squares Regression based

Correction

The second correction model is based on a piecewise linear regression analysis.

Since we post-process the GPS sequence data, we can fully utilize both previ-

ous and future GPS readings, from li to lj, to estimate the current position τk,

where i < k < j. The piecewise linear regression model computes several esti-

mated position data sequences S ′κ, which can later be linked into an integrated

sequence as corrected output L′.

Within a segment Sκ, different GPS readings contain varying accuracy

measurements. Figure 4.1 illustrates the concept of the linear regression for one

segment Sκ. For example, position li has ai = 5 meters, and another position lk

has ak = 600 meters. This indicates that these regressors have been observed

with certain errors and those errors have varying variances. Thus, when cal-

culating regression estimator for Sκ, the contributions of different points with

37

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 4.2: Visualization of weighted linear least squares regression based cor-
rection model. GPS samples in the longitude dimension.

varying accuracy measurements to the regression line should be unequal. With

the assumption that these errors are uncorrelated with each other and with

the independent variables li, we utilize the weighted least squares method to

generate estimators β̂κ for each Sκ, instead of standard regression models.

Since xi and yi are two independent variables, we estimate model function

parameters β̂κ for longitude and latitude values with respect to time separately.

We illustrate how the weighted least squares method works for the longitude

values regression in Figure 4.2. The goal is to find β̂κ for the model which

“best” fits the weighted data. By using the weighted least squares method, we

need to minimize R, where

R =

j∑
k=i

Wkkr
2
k, rk = xk − f(tk, β̂κ) (4.1)

Here rk is the residual defined as the difference between the original mea-

sured longitude value and the value predicted by the model. The weight Wkk

38

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

is defined as:

Wkk =
1

σ2
k

(4.2)

Here σk is the deviation of the measurement noise. Because it is proved that

β̂κ is a best linear unbiased estimator if each weight is equal to the reciprocal

of the variance of the measurement. As described in Section 4.2.2, we modeled

the measurement noise as a normal distribution with mean xk and standard

deviation σk = g(ak) in the longitude dimension.

Base on this model, measurements xk with a high ak value, which indi-

cates high uncertainty, will not have much impact on the regression estimation.

Usually, these uncertain measurements reflect many jumping GPS locations,

which are far away from where the real positions should be. Considering the

regression line is estimated mostly by the confidence data and these data are

almost consecutive in the temporal domain, we are able to correct those spotty

GPS locations to positions that are much closer to the real coordinates. Thus,

after we calculate the regression line β̂κ, we update the longitude values based

on the following rules:

x′k = xk, if ak < THa and ak < rk

x′k = f(tk, β̂κ), else

(4.3)

Here THa is the accuracy measurement threshold. We only update the latitude

value if its corresponding accuracy is measured as being considerably uncertain,

or its distance to the projection point on the regression line is less than its ac-

curacy measurement value (e.g., the latitude value xi and xk in Figure 4.2 will

be updated in S ′κ, while x′k−2 = xk−2). We do not use projection points on the

39

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

regression line for all xk, because some original longitude values have relatively

high confidence with their measurements, and keeping those extremely confi-

dent GPS raw data while updating the remaining uncertain data will generate

a more accurate position sequence according to the observation that the GPS

carrier may not move following a standard linear model.

Finally, by computing every longitude value x′k in each piece S ′κ, we can

link every approximate linear piece together and obtain an updated position

sequence L′.

4.3 Location Data Correction from Vehicle At-

tached Sensors

For the location data reported from vehicle attached sensors, we utilize the road

network information and map matching techniques to enhance the positioning

accuracy. There exist a number of statistical matching approaches that un-

fortunately either process trajectory data offline or provide an online solution

without an infimum analysis. Here we propose a novel statistics-based online

map matching algorithm called Eddy with a solid error- and latency-bound

analysis. More specifically, Eddy employs a Hidden Markov Model (HMM) to

represent the spatio-temporal data as state chains, which elucidates the road

network’s topology, observation noises and their underlying relations. After

modeling, we shape the decoding phase as a ski-rental problem, and propose

an improved online-version Viterbi decoding algorithm to find the most likely

sequence of hidden states (road routes) in real-time. We reduce the candi-

date routes search range during the decoding for efficiency reasons. Moreover,

40

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

r1

r2

r3

p’1

p’2

p’3

𝒑 1

𝒑 2

𝒑 3

Figure 4.3: Illustration of the map matching problem.

our deterministic decoder trades off latency for expected accuracy dynamically,

without having to choose a fixed window size beforehand. We also provide the

competitive analysis and proof that our online algorithm is error-bounded (with

a competitive ratio of 2) and latency-bounded.

The input of a typical map matching algorithm is a temporal sequence of

location points, i.e., a trajectory. In practice, most raw location information

provided from sensors is not highly accurate or not easily interpretable. There-

fore, a map matching algorithm is desirable to help improve the positioning

accuracy if the respective digital map is reliable, and to associate the coor-

dinates with the surrounding spatial entities seamlessly. The map matching

problem is illustrated in Figure 4.3. The red dots such as r1, r2 and r3 are the

measured raw location coordinates. The task of map matching is to find the

true roads that the moving object is on. As illustrated, it could be a challenging

problem since either the green-dots trajectory (p′1, p
′
2 and p′3) or the blue-dots

trajectory (p̂1, p̂2 and p̂3) can be the actual driving path, and it is impossible

41

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

to tell by only analyzing separate samples. A number of statistics-based map

matching algorithms were proposed and developed in recent years. They em-

ployed statistical models to solve various map matching problems and distinctly

showed the ability to cope with noisy GPS measurements effectively. Partic-

ularly, algorithms based on a Hidden Markov Model (HMM) and its variants

have been adopted due to their capabilities of concurrently evaluating multiple

hypotheses during the mapping procedure [79, 133, 90, 31]. They have also

been proven to be tolerant against highly noisy observations, e.g., the location

fingerprints from GSM towers [116], and the accuracy degradation owing to the

increase of a trajectory’s temporal sparseness [90, 79].

In the context of Markov information sources and hidden Markov models,

the Viterbi algorithm, a dynamic programming algorithm, is widely used for

decoding such models. This algorithm finds the most likely sequence of hidden

states for the given observation sequence [122]. It computes a forward pass

over the input sequence to compute probabilities, followed by a reverse pass to

compute the optimal state sequence. Therefore, all the data must be obtained

before any of the hidden states can be inferred. The result of the underlying

state chain is called a Viterbi path. However, when applied to a real-time or

an interactive system, one noticeable disadvantage of the Viterbi algorithm is

that the optimal state sequence cannot be computed until the entire input has

been observed.

For latency-sensitive applications such as route navigation and traffic in-

cident detection, it is unacceptable to receive map matching results, e.g., on

which road arc the truck is driving, after the whole itinerary is finished. In

HMM-based map matching, the key input and output of a traditional Viterbi

decoder are the location observations (e.g., GPS measurements) and the most

42

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

likely road trajectory of a moving object. Conceptually, the input observation

stream could be extremely long, or even infinite, which leads to a significantly

longer latency than a timely response that systems may require. Therefore, the

traditional Viterbi decoder is not suited for real-time applications where there

are strong latency constraints.

Meanwhile, accuracy is also another crucial factor for most location-based

applications. To shorten the mapping delay, a system has the freedom to match

raw location measurements greedily, mapping each sample immediately as an

extreme case, without waiting for enough future observations. However, it is

undesirable to give up the accuracy increase gained by map matching techniques

or even worse, pick an incorrect road path as output. The risk of selecting a false

road may cause serious issues in real system such as incident detection. Any

inaccurate output also raises the expected monetary cost in some enterprise

services, e.g., logistics truck monitoring, fleet scheduling and others. Thus,

an intelligent algorithm which understands and wisely practises the balance

between accuracy and latency is desirable.

Here we propose Eddy, a novel real-time HMM-based map matching sys-

tem by using our advanced online decoding algorithm. We take the accuracy-

latency tradeoff into design consideration. Our algorithm chooses a dynamic

window to wait for enough future input samples before outputting the match-

ing result. The dynamic window is selected automatically based on the current

location sample’s states probability distribution and at the same time, the

matching output is generated with sufficient confidence. Our contributions in

this work include:

• An improved real-time HMM-based map matching system is presented

43

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

which is novel with respect to its tradeoff analysis and dynamic window

selection algorithm during the decoding phase.

• A competitive analysis and proof illustrating that our online decoding

algorithm is error-bounded (with competitive ratio of 2) and latency-

bounded.

• Accuracy evaluation and latency comparison between our map matching

system results and existing online decoding algorithm outputs.

4.3.1 HMM-based map matching

We first give the preliminaries and the formal definitions of the map matching

problem using HMM.

Definition 1 (Road Network) : A road network G(V,E) represents a finite

street system which consists of a set of one-way or two-way road curves, called

road arcs, in 2D Euclidean space. Each road arc ei (ei ∈ E) is assumed to

be piecewise linear and can be characterized by a finite sequence of points

Ai = (ai1, a
i
2, ..., a

i
m). The end points here ai1 and aim are nodes and belong to

the vertex set V . Other points in the middle are referred to as shape points

and each ei has some properties such as speed constraints.

Definition 2 (Location Trajectory) : A location trajectory L = {l1, l2, . . . , ln}

is a sequence of measurements from localization sensors (such as GPS) accord-

ing to the time sequence T = {t1, t2, . . . , tn}. Each position measurement li

consists of a coordinate, i.e., longitude xi and latitude yi. We further denote

the ground truth of the position sequence data as Gl = {g1, g2, . . . , gn} and

their belonging road arcs Ge = {γ1, γ2, . . . , γn}, Ge ∈ E.

44

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Road network
states modeling	
using HMM and
probability
initialization	

Accuracy-‐‑latency
tradeoff analysis and
state decoding using
improved online
Viterbi algorithm	

EDDY

a)  Instant-‐‑upload raw location
measurements	

b)  Road network database	

Input Output

Associated road arc in real-‐‑time 	

Figure 4.4: System overview of Eddy.

Definition 3 (Match Point) : The match point mj
i of a location measure-

ment sample point li on a road arc ej is the point thatmj
i = argmin∀mjk∈Aj

dist(mj
k, li),

where dist(mj
k, li) returns the great circle distance between li and any point on

Aj, including end points and shape points.

Problem Statement: Given the road network G(V,E), and the trajec-

tory information L and T , find the most likely path P = {p1, p2, . . . , pn}, where

ai−1
m = ai1 and P ⊂ E, which is a subset of connected road arcs from G, along

with each pi’s mapping output time T ′ = {t′1, t′2, . . . , t′n}.

Figure 4.4 illustrates the system overview of Eddy. It takes the location

measurements and road network databases as input. The positioning data

should be instantly uploaded since we focus on the latency-sensitive applications

and services in this study. Eddy results in a real-time streaming of road arcs

with guaranteed accuracy and latency level.

Our system consists of two parts. We first present the road arc traveling

problem as a hidden states transition model. Based on the framework of HMM,

the random variable et and lt are a hidden state and an observation at time

t, respectively (see the state transition flow in Figure 4.5). In the context of

the map matching problem, we model every road arc ei as a hidden state and

each location measurement lt as an observation emitted by the hidden state.

45

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Two types of arrows in this figure (horizontal and vertical arrows) indicate

two important parameters in the model. The horizontal arrow represents the

transition probability between two consecutive hidden states. It quantifies the

likeliness that a vehicle is moving from road et−1 to road et. Each vertical

arrow represents the emission probability between the hidden state and the

observation. It represents how likely the measurement lt can be observed if the

vehicle is driving on a certain road arc.

The second part is the online Viterbi decoding algorithm (see the trellis

in Figure 4.5) which is improved based on our quantitative accuracy-latency

tradeoff analysis. During the decoding phase, candidate arc paths are sequen-

tially generated and evaluated on the basis of their likelihoods. Our goal is to

find the maximum likelihood path over the Markov chain that has the highest

joint emission/transmission probabilities and still holds the latency bound.

Formally, the map matching problem is modeled by transition, emission

and initial probability :

λ = (T ,M, π)

The state set is E and the observation set is L. In our model, the initial

probability πi of being in state ei is defined as the emission probability at this

state. The emission probabilityMi(lt) of observation lt from state ei is obtained

by modeling the positioning measurement noise as a Gaussian distribution [86]:

Mi(lt) = IP(lt|pt = ei) =
1

σ
√

2π
e
dist(ei,lt)

2

2σ2

where σ is the standard deviation of the positioning measurements. For ex-

ample, when the input location observations are a sequence of GPS collected

points, we use a standard deviation of 10 meters to estimate the noise distri-

46

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 4.5: Illustration of state transition flow and Viterbi decoding algorithm.

bution [66]. dist(ei, lt) represents the shortest distance from lt to the candidate

road arc ei, which is the great circle distance on the surface of the earth between

lt and its corresponding match point mi
t.

We also utilize the distance differences between the observation pairs and

match point pairs to estimate the transition probabilities based on the study

from Newson and Krumm [90]. Given two measurements lt−1, lt and their

match points mi
t−1, mj

t , the transition probability of moving from ei to ej is:

T ijt = IP(pt = ej|pt−1 = ei) = βe−β‖dl−dm‖

where dl is the great circle distance between two location measurements and

dm is the shortest route distance from mi
t−1 to mj

t .

47

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Within a dynamic window size, this model is later decoded by our improved

online algorithm and outputs pt = {ek, ek+1, . . . , ei}, where {ek, ek+1, . . . } is the

route path between ei−1 and ei determined by the selected state transition path.

This subset of candidate road arcs are generated as the most likely path for

given observation lt. It guarantees that the output paths are connected. In the

following descriptions, we omit the {ek, ek+1, . . . } part in equations while we

actually keep track of these connecting paths in the real system.

4.3.2 Improved Online Decoding

The aim of decoding is to discover the hidden state sequence that is most likely

to have produced a given observation sequence. In the context of map matching,

our algorithm needs to find the road arc sequence that is most likely to generate

the collected location measurements. The traditional Viterbi decoder is a trellis

algorithm (see Figure 4.5) defined as:

δt(i) = max
p1p2...pt−1

IP{p1, p2, . . . , pt−1, pt = ei, l1, l2, . . . , lt − 1|λ}

which gives the highest probability that partial observation sequence and state

sequence up to time step t can have, when the current state is i. The initial-

ization and recursion step of the decoding phase are defined as:

δ1(i) = πiMi(l1)

δt(j) = max
1≤i≤N

[δt−1(i)T ijt]Mj(lt)

where N is the cardinality of candidate state set S, S ⊂ E. Usually the scale

of the road network in modeling, card(E), is relatively large, which leads to

48

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

inefficiency in decoding. Eddy narrows down the set of candidate states within

S to accelerate the processing. We will elaborate on the details of downsizing

later.

In each time step, we normalize the probability distribution to ensure∑N
j=1 δt(j) = 1. The backtracking pointer of the selected hidden state in each

step is as follows:

ψt(j) = arg max
1≤i≤N

[δt−1(i)T ijt]

It terminates when the last observation is received and decoded by this proce-

dure. The optimal path can be obtained by backtracking from the last matching

result:

pT = arg max
1≤i≤N

[δT (i)]

pt = ψt+1(pt+1)

However, this traditional type of decoder is not suited for real-time systems

since the optimal state sequence cannot be computed until the entire input has

been observed. Thus, some HMM-based frameworks have proposed several

localizing strategies to fulfill the online output functionality. We first briefly

summarize two widely used online decoding techniques and their limitations.

Fixed Segment/Sliding-Window

One simple and straightforward approach is to divide the trajectory into fixed-

sized sequences and handle them independently. Given a desired latency Dd,

the system simply fixes the segment size or window size as ω ≤ Dd and applies

the Viterbi decoder to each segment/window to bound the maximum system

delay.

49

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 4.6: An example of online Viterbi decoding process.

For algorithms using a fixed segment (FS), the decoder waits for a segment-

length of observations before decoding on the time slice from t+ 1 to t+ω− 1.

In the sliding window method (FSW), the decoder considers only one new

observation and moves the window forward one step a time. In the example

illustrated in Figure 4.6, given ω = 2, FS first reads measurements from t1, t2 in

order, and generates the output path, say P = {e4, e4}. The next observation

input of FS is from t3. Thus, the matching output delays for the observations

within the same segment are different. FS outputs the result for l1 with 1 time

step delay (to wait l2 to fill the segment size) while the matching delay of l2 is

0 (we do not add the client-server transmission time and matching processing

time into the delay calculation since we focus on the decoding delay in this

study). Differently, given ω = 2, FSW takes l3 as input right after generate the

matching result of l1, by sliding the window from [t1, t2] to [t2, t3]. The matching

50

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

delay for all observations from this method is constant (except for the last ω

location measurements since there is no future room to slide forward).

Usually, a larger window size leads to a more accurate matching result but

a longer output delay, and vice versa [79, 133, 111]. In the previous example,

given ω = 3, the FS/FSW decoder can generate an arbitrary path for seg-

ment/window [t1, t3]. One plausible path could be P ′ = {e4, e4, e4}, illustrated

as a lattice-pattern circle sequence. However, when the decoder receives l4 ,

it would have enough knowledge to recognize that P ′ is not a possible output.

Although this example is only an undesirable case and may not be triggered

frequently in real scenarios, it illustrates the tradeoff we need to carefully deal

with between the accuracy and latency. This accuracy degradation occurring

from the sub-optimal path generation may arise due to certain pre-defined

segment- or window-size settings. Therefore, a decoding algorithm which can

intelligently choose a dynamic window size is preferred.

Convergence State Discovery

Some HMM-based applications adopted another technique named Convergence

State Discovery (CSD, also called fusion point finding), which is capable of

finding the optimal path before the entire trajectory is received [14, 37]. The

basic idea in this algorithm is to delay the label generation until encountering

a converging state like e2 at t3 in Figure 4.6. When CSD reads the input

observation l4 and calculates related probabilities, it sees that all backtracking

pointers point to the same state, e2. It is easy to prove that all future surviving

paths will contain the same sub-path before this convergence state. Thus at

time t4, CSD can output the matching result for observations l1, l2 and l3,

P = {e2, e2, e2} (the dot-filled circle chain).

51

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

This algorithm has the advantage of holding the promise that the gener-

ated output path is identical to the result from the original Viterbi decoder.

However, a serious issue that this algorithm may encounter is the absence of

a fusion point in some real problems or some pre-defined probability normal-

ization rules. The matching delay is prolonged if the convergence state comes

late, and may persist to the end of the observation sequence if no such point

exists. In other words, CSD is not delay-bounded and in the worst case degen-

erates to the original Viterbi algorithm. Therefore, for most latency-sensitive

applications, this decoding algorithm is unfit.

Improved Online Decoder based on Ski-rental Model

To better interpret the tradeoff between the map matching accuracy and la-

tency, we model the online decoding phase as a ski-rental problem in this study.

The ski-rental model, also known as “rent or buy” dilemma, is one of the fun-

damental problems in online algorithms. This problem was first abstracted by

Karlin et al. and used in a communication minimization algorithm [55]. In a

classic ski rental problem, a skier may rent skis for R per day or buy them for

B dollars. At the end of any day, the skier may break his legs along with the

skis, or in some other way irrevocably finish skiing. The goal is to develop an

online strategy minimizing the cost spent on skiing, where the cost is compared

to the cost of an optimal offline strategy for the same input. The worst-case

ratio between these two amounts is called competitive ratio.

Inspired by one of its variants, “Multislope Ski Rental” [78], we use a

generalized model with a inconstant buying price Bt that changes over time in

52

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

our case. Obviously, the total cost of skiing is

Cs = Bt̂ +R× t̂ (4.4)

where the skier decides to buy the skis in the evening of the t̂th day.

Similarly, in our scenario, we model the accuracy penalty and latency

penalty as the buying price and rental rate, respectively. We need to decide

whether to stay in the current decoding state and pay a certain amount of la-

tency cost per time unit, or output the present matching result and pay some

large accuracy penalties but with no further delay penalty. Without loss of gen-

erality, we assume the location observation l0 measured at t0 has been matched

to the road network and l1 from t1 is under the decoding phase currently. The

future information up to t̂ is observed and transferred to the decoding system

to help the joint probability computation. Moreover, the decoder decides to

output the matched result p1 at time t̂. Straightforwardly, the delay of decod-

ing l1 is t̂− t1, which is similar to the rental rate that a skier has to pay before

a buying decision. Meanwhile, to better estimate the accuracy of the matching

roads, we leverage the probability distribution δt1,t̂(j) which indicates the like-

lihood of each state ej being the matching road. Notably, this is different from

δt1(j) since the system involves future information into the inference chain. We

first calculate δt1(j) considering that the matching result p0 for the observation

l0 has been generated already,

δt1(j) = max
1≤i≤N

[δt0(i)T
ij
t1]Mj(l1)

53

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

δt0(i) =

1, if p0 ∈ ei.

0, otherwise.

where the distribution of δt0 is determined. With all the future observations we

waited and received from t1 to t̂, we afterwards obtain,

δt1,t̂(j) =
N∑
i=1

δt̂(i)

if ψt1,t̂(i) = j

where ψt1,t̂(i) is the backtracking function from time frame t̂ to t1

ψt1,t̂(i) = ψt1(ψt2(...ψt̂−2(ψt̂−1(i))))

Thus, δt1,t̂(j) is the sum of δt̂(i) where ej at time step t1 and ei at time step

t̂ are on the same candidate path connected by standard Viterbi backtracking

pointers. As illustrated in Figure 4.7, the probability that e1 is the output

matching result is the sum of δt4(e1), δt4(e2) and δt4(e3) when computing at

time t4. For each ej ∈ S, δt1,t̂(j) presents the probability that l1 should be

matched to ej after future observations up to t̂ are considered into the HMM

framework.

Intuitively, if only one state is calculated with a significantly high proba-

bility and the other states’ likelihoods are near zero, we can deduce confidently

that this state is the matching road and generate this road arc as the output

label. To better describe the distribution characteristics and incorporate this

into our decoding procedure, we use the information entropy of δt1,t̂(j) as a

proxy of the accuracy penalty.

54

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

t
1

t
2

t
3

t
4

e
1

e
2

e
3

e
4

Figure 4.7: Illustration of the state probability recalculation after future loca-
tion observations are received.

H(t1, t̂) = −
N∑
j=1

δt1,t̂(j) log δt1,t̂(j)

The entropy H(t1, t̂) is a logarithmic measure of the number of states with sig-

nificant probability of being occupied, which indicates the degree of uncertainty

at time step t1 after receiving future observations up to t̂. According to the def-

inition of entropy function, the larger the value H is, the higher the uncertainty

of this outcome state could be. The highest entropy outcome is achieved when

δt1,t̂(j) is evenly distributed among all candidate states. On the other hand,

if H is close enough to zero, it means that one state is extremely outstanding

within the candidate space. This plays the same role as the buying price Bt in

the ski-rental model. Therefore, in accordance with Equation (4.4), we derive

55

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

our objective cost function as the sum of the accuracy and delay penalties,

C(t1, t̂) = H(t1, t̂) + γ(t̂− t1)

where γ is the parameter to control the tradeoff between accuracy gain and

delay cost. If the real-time system is extremely sensitive to the latency, a larger

value of γ should be chosen. By contrast, if the monetary cost of false road

matching is expensive, a small γ should be considered to penalize more on the

accuracy part.

Similar to the ski-rental model, whose ultimate target is to determine the

buying date, here we need to provide a strategy to decide at which t̂ we should

stop delaying and output the matching result arg maxj[δt1,t̂(j)]. Thus, our on-

line system needs to choose an appropriate label generation time t̂ to minimize

the cost C.

Clearly, the delay cost accumulates linearly like a monotonically increasing

function. If the accuracy penalty H(t1, t̂) changes arbitrarily over time, its

sum C is difficult to be minimized. Thus, here we assume that given t1, H

is a monotonically decreasing function of variable t̂. The physical meaning of

this assumption is that we believe the uncertainty of the state outcome at a

certain time step would decrease as a growing number of future observations are

analysed within the decoding procedure. We will show in experimental section

that our assumption is reasonable across the entire test dataset.

Thereby, we need to minimize the sum of a decreasing function and an

increasing function. In the ski-rental model, the break-even algorithm is known

as the best deterministic algorithm for this set of problems [55]. We adopt a

similar idea and choose the time point t̂ when H(t1, t̂) is equal or less than the

56

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

value of γ(t̂ − t1), to output the matching road result. The intuition behind

this algorithm is to adaptively adjust the window size based on the uncertainty

of the state matching. If the uncertainty degree is high, the algorithm should

extend the window size to absorb more future location observations before

generating the road arc label. Conversely, if the initial H value is low enough

or the function H drops rapidly, the window should become smaller and the

matching output will be generated soon.

The pseudo-code for general cases is detailed in Algorithm 1. The “+”

operator on line 10 means to attach a new output to the global sequence. P

and T ′ can be implemented as a pipe with capacity of 1, so that once a new

output pi is generated, it can be consumed by an upstream real-time application

immediately, and the latency is exactly t′i − ti.

Accuracy and Latency Analysis

To better illustrate the advantage of our improved online decoding algorithm,

here we present a theoretical competitive and upper-bound analysis for accuracy

and latency, respectively. First we provide the competitive ratio of our decoder,

which is the worst-case ratio between the cost of the solution found by our

algorithm and the cost introduced by an optimal solution. Assume for a given

li received at ti, Eddy generates the according road arc label at time t. Two

situations need to be considered when analyzing the worst case — one is that the

actual optimal output time step To is earlier than t, and the other is To > t. The

cost of the optimal solution is H(ti, To) + γ(To− ti). If To < t, it indicates that,

even with more measurements adopted, the cost decrease from the accuracy

penalty H does not make up for the cost increase caused by the latency penalty.

In other words, the concentration expectation of the state distribution based

57

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

on future observations is not achieved. The worst case in this situation is that

H(ti, ti) = H(ti, t) + ε where ε is a real number approaching zero (it cannot be

zero since H is a monotonically decreasing function), and the optimal output

is To = ti. The optimal solution outputs the map matching result immediately

since the future observations benefit nothing to the decoding process in order

to involve no latency penalty to the cost function,

C(ti, To) = C(ti, ti) = H(ti, ti)

Since our algorithm generates a road arc result at t, not t− 1, we have

H(ti, t) < γ(t− ti)

H(ti, t− 1) > γ(t− 1− ti)

Also, H(ti, t)−H(ti, t− 1) < ε < γ, so we obtain

γ(t− 1− ti) < H(ti, t) < H(ti, ti)

Thus, the cost of our method is,

C(ti, t) = H(ti, t) + γ(t− ti)

= H(ti, ti) + γ(t− 1− ti) + ε+ γ

< C(ti, To) + C(ti, To) + ε+ γ

= 2C(ti, To) + ε+ γ

If To > t, the worst case is that To = t + 1 and H(ti, To) = 0 because this

is the lowest value pair for both two penalties and all other cases would achieve

58

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

a higher C(ti, To). Thus the cost of the optimal solution is,

C(ti, To) = C(ti, t+ 1)

= H(ti, t+ 1) + γ(t+ 1− ti)

= 0 + γ(t− ti) + γ

>
γ(t− ti) +H(ti, t)

2
+ γ

>
C(ti, t)

2

Thereby, we proved that the cost of our algorithm C(ti, t) is no more than

2 times of the cost introduced by all the other solutions plus a constant, and

thus our improved online decoder is a 2-competitive algorithm.

Next, we illustrate that our improved online decoding is latency-bounded.

Assume at time t, the algorithm has not generated the road arc output for

a given measurement li. Since we adopt the break-even condition, we have

H(ti, t) > γ(t− ti). In addition, H is a monotonically decreasing function and

of course t > ti because we cannot perform map matching without receiving

the measurement. Thus, we have H(ti, t) < H(ti, ti). Clearly, by the transitive

property of inequalities, we obtain γ(t − ti) < H(ti, ti). Therefore, the upper-

bound of map matching delay of li isH(ti, ti)/γ+ti, which is only determined by

the characteristic of distribution δti . The matching process of every incoming

observation would terminate for sure even if the entire measurement input is

infinite.

Candidate State Space Reduction

To make the decoding process more efficient, we narrow the range of candidate

states card(S) in our HMM model. Due to the fact that the vehicles usually

59

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

drive at a limited speed during the time interval between two consecutive sample

measuring locations, the current location measurement (except the first one)

should not be too far away from the previous one. It is very likely that all

candidate road arcs of the current location observation fall into a small area

around the previous sample point. Therefore, we employ the radial search

method proposed by Fang and Zimmermann, to find the candidate road arcs of

a location measurement point instead of using the traditional range query [31].

It utilizes the topological information of the road network to radially check

each candidate road arc in the vicinity., while employing the speed constraints

of previous road arcs to limit the search scope.

4.4 Experiments

4.4.1 Evaluation on Pedestrians Attached Sensors

We implemented both of our location data correction algorithms, and evalu-

ated them on a set of sensor-annotated videos publicly available at the Geovid

website. We first report the accuracy enhancement we achieved for location

measurements along with those video clips. We selected first batch of sensor-

annotated videos and their sensor dataset retrieved from the Geovid website,

using their provided APIs. Among these 87 videos, we perform experiments on

63 selected ones, since the other 24 videos contained only a few GPS samples and

had a relatively small recording duration (typically less than one minute). The

smartphones used in data collection range from various Apple iPhone devices

to a number of Android devices (Motorola droid, Samsung Galaxy S, ASUS

Transformer, HTC Desire). We illustrate the GPS data correction results of

60

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 4.8: A screenshot of our GPS annotation tool. It allows users to man-
ually modify an incorrect GPS location to a better-matching place. To assist
better estimating correct locations, it provides interactive frame-by-frame im-
age navigation, video playback, and current compass direction (depicted as pie-
slice). Yellow-colored circle area represents the accuracy range of an original
GPS sample.

one data segment and 63 GPS sequence data sequences by both algorithms we

proposed. In this experiment, we set function g(ai) = a2
i in terms of the physical

meanings of both standard deviation in the normal distribution and accuracy

measurements in GPS generated data. We use the threshold THa = 40 meters.

To establish the ground-truth dataset of individual GPS samples, we de-

veloped a web-based in-house utility (shown in Figure 4.8). It displays a video

frame at a specified time instant along with its corresponding GPS location on

the map. It also allows a user to freely select a specific location on the map,

61

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 103.8568

 103.8570

 103.8572

 103.8574

 103.8576

0 5 10 15 20

L
on

gi
tu

de

Time (seconds)

Original Measurements
Processed Data

(a) Kalman filtering based algorithm.

 103.8568

 103.8570

 103.8572

 103.8574

 103.8576

0 5 10 15 20

L
on

gi
tu

de

Time (seconds)

Original Measurements
Processed Data

(b) Weighted linear least squares regression based algorithm.

Figure 4.9: Corrected longitude value results of one GPS data segment.

where the user believes to be the correct location. The newly chosen location

was then automatically stored in our database system. To assist the users to

easily figure out the right location of the GPS sample, we also displayed the

accuracy range of the sample on the same map interface, using a yellow-colored

circle centered at its reported location. Using this utility, we collected 1679 an-

notated ground truth samples out of 10069 raw GPS samples for all 63 videos.

First we illustrate how our algorithms work for one piece of GPS sequence

data segment. We apply our approaches to a segment located in the beginning

20 seconds of a GPS data file, which contains the typical error pattern we

62

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

 C
D

F

Average error distances to the ground
 truth of each GPS sample (meters)

Original Measurements
Processed Data

(a) Kalman filtering based algorithm.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

 C
D

F

Average error distances to the ground
 truth of each GPS sample (meters)

Original Measurements
Processed Data

(b) Weighted linear least squares regression based algorithm.

Figure 4.10: Cumulative distribution function of average error distances.

mentioned earlier (See Figure 4.9. The height of each point represents the total

amount of GPS sequence data files whose average distance to the ground truth

positions is less then the given distance value.). As we can see, the origin GPS

longitude data before 6 seconds are very spotty and unreasonable, which cause

the jumping phenomenon on a map interface. After the correction phase by

our two algorithms, we find the processed GPS data approach the reasonable

longitude values by a distinct improvement.

63

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Afterwards, to quantitatively evaluate two proposed algorithms, we com-

pute the average distance between every processed sample and its corresponding

ground truth position for each GPS sequence data file, and compare these val-

ues to the average distance between every measurement sample and the ground

truth position. By comparing these two average error distances, we report the

correctness of processed data. On average, the Kalman filtering based algorithm

and the weighted linear least squares regression based algorithm improve the

GPS data correctness by 16.3% and 21.76%, respectively. Figure 4.10 illustrates

a Cumulative Distribution Function (CDF) for both algorithms. We increase

the proportion of GPS data with low average error distance and shorten the

largest sequence average error distance by around 30 meters (the line of pro-

cessed data meet y = 1 at x = 50, while the line of original measurements

achieve at x = 80).

Moreover, we apply our algorithms to 17 highly inaccurate datasets (i.e.,

the highest accuracy value max(ai) > 50 meters). We found our algorithms

reduce the average distances between the measured positions and the ground

truth data to a great extent. The Kalman filtering based algorithm and the

weighted linear least squares regression based algorithm reduce the average

error distances by 39.82% and 48.18%, respectively. The reason that the re-

gression model performs better here is the less assumptions it makes on the

trajectory. As we mentioned earlier, regression model assumes that each seg-

ment only contains linear movement, while the Kalman filtering model treats

each segment as a constant velocity (a stronger assumption). Figure 4.11 illus-

trates the average error distance reductions of every GPS data sequence file.

For some extremely inaccurate sequences like file 16, we significantly reduce the

error distance from near 80 meters to less than 20 meters.

64

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
ve

ra
ge

 d
is

ta
nc

es
 to

 th
e

gr
ou

nd

 tr
ut

h
of

 e
ac

h
G

PS
 s

am
pl

e
 (

m
et

er
s)

GPS sequence data file No.

Original Measurements
Processed Data

(a) Kalman filtering based algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
ve

ra
ge

 d
is

ta
nc

es
 to

 th
e

gr
ou

nd

 tr
ut

h
of

 e
ac

h
G

PS
 s

am
pl

e
 (

m
et

er
s)

GPS sequence data file No.

Original Measurements
Processed Data

(b) Weighted linear least squares regression based algorithm.

Figure 4.11: Average error distance results between the corrected data and the
ground truth positions of highly inaccurate GPS sequence data files.

4.4.2 Evaluation on Vehicle Attached Sensors

To evaluate our Eddy system, we implemented the other two online Viterbi

decoding strategies, FS and FSW, as comparisons. As previously described,

the CSD strategy always generates the optimal solution (identical to the offline

decoder’s result) but does not guarantee any delay upper-bound, which usually

involves a long latency (in the order of minutes) and is not applicable to real-

time services [37]. Thus we did not compare our algorithm with CSD in this

65

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

study.

In our experiments, we adopt the public real-world dataset collected in

Seattle provided by Newson and Krumm [90], including the relevant road net-

work, GPS trajectory data, and ground truth. The road network comprises

more than 150,000 road arcs. The raw GPS trajectory data is a 50-mile route

in Seattle which is sampled at 1 Hz and took about 2 hours to drive, giving 7,531

time-stamped latitude/longitude pairs. The ground truth contains a sequence

of road arcs with the directions in which the vehicle actually travelled. Since

it is impossible for us to know the exact actual location of the vehicle in the

road network corresponding to each GPS sample point, only the path taken by

the vehicle is viewed as the ground truth. We also adopt the underlying HMM

model parameters, σ and β, which have been tested and verified in their study.

We focus on two evaluation aspects, accuracy and latency, in these exper-

iments. First, we compute the actual trends of information entropy H for all

the location measurement points from the dataset. We show that our assump-

tion is reasonable that it is a monotonically decreasing function of variable t̂

. Afterwards, we apply our method and two baseline algorithms to the whole

dataset to compute and visualize the tradeoff between accuracy and latency.

Our improved online decoding algorithm and the other two comparison

methods are all implemented in C# and connected with a lightweight in-

memory database, SQLite. Since we focus on the road arc label generation

delay instead of thye real processing time, this database is completely stored

and processed in RAM.

66

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

In
fo

rm
at

io
n

E
nt

ro
py

Time Step

Location Measurement 1
Location Measurement 2
Location Measurement 3
Location Measurement 4
Location Measurement 5
Location Measurement 6
Location Measurement 7
Location Measurement 8
Location Measurement 9

Location Measurement 10

Figure 4.12: Information entropy trends of 10 example location measurements.

Accuracy Penalty Trend

We utilize the radial search method to reduce the candidate set of road arcs,

and we set the candidate state size parameter α = 1.8 in our experiments, which

has been empirically tested earlier [31]. This leads to the property that only

a small set of candidate states ei share the matching probability and thereby

the distribution concentrates more quickly than in the case where we use the

whole road network as the candidate set. We calculate the information entropy,

which is considered as the accuracy penalty proxy in our algorithm, for every

location measurement in the scope of the whole trip. For each measurement

li, we record and update its entropy value changes when future observations

li+1, li+2, . . . , ln are received.

Figure 4.12 illustrates 10 example trends of the location measurement’s

information entropy as the time elapses (one new observation received at every

time step). As shown, the value of entropy function H is relatively high when

67

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

only the current measurement is received and no future observation is incor-

porated into the model. It indicates the difficulty of generating the matching

result immediately. As the time step increases, H turns to be a monotonically

decreasing function as we hypothesized.

If the value of H increases as the time step moves forwards for a given li,

we judge that this entropy function is not a monotonically decreasing function,

and we also record the time step where the entropy value increases as the in-

creasing point. Among the entire trajectory dataset, we find that 91.53% of

the measurements’ entropy function is monotonically decreasing. Moreover, in

the remaining part of this dataset, 5.52% of functions’ increasing point appears

after receiving more than 400 future observations. It is very likely that the

system has already passed the break-even point before seeing such a large num-

ber of future observations. In other words, 97.05% of functions are actually

decreasing if the delay of a system is limited to less than 400 seconds, which

is a reasonable setting in the context of a real-time system. Additionally, if

the real-time system only considers future observations within the range of 50

samples, 100% of H satisfies our assumption. This result intuitively makes

sense because of the underlying logic in that the more future observations are

incorporated into the decoding model, the more confidently we can determine

which road the vehicle is driving on.

Error and Delay

To illustrate the tradeoff between the matching accuracy and latency, we apply

our system and two comparison algorithms to the Seattle trajectory dataset

with different γ values and window sizes w. Different sampling periods are

considered in our experiments as well to show the robustness of our algorithm

68

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(b)

Figure 4.13: The accuracy (in RMF) and latency (in seconds) of map matching
results on different location measurement sampling intervals: 1 observation
sample (a) per second, and (b) every 2 seconds.

under different location measuring rates. We adjust the γ value from 0.01 to

2 to tune the tradeoff between the road arc mismatch rate and delay time.

The parameter w varies according to the change of the location measurement

sampling intervals. For example, in order to obtain an accuracy change from

no delay at all to a latency of 120 seconds, we tune the w value from 0 to

120 for FSW, and from 1 to 241 for FS, with a sampling period of 1 second.

The reason is that FS generates labels for all location observations within the

current window at once (when the window is full), so that the location mea-

69

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(b)

Figure 4.14: The accuracy (in RMF) and latency (in seconds) of map matching
results on different location measurement sampling intervals: 1 observation
sample (a) every 3 seconds, and (b) every 5 seconds.

surements in the second half of the window have lower effective latency than

the measurements in the first half. Clearly, the road arc label of the last lo-

cation observation tucked into the window will be matched and generated by

FS immediately without any latency no matter how large the window size is.

Thus, we consider the average effective latency among the observations within

the same window, (w − 1)/2 ∗ (sampling period), as the average latency. Sim-

ilarly, when the sampling period becomes 10 seconds, we evaluate the w value

from 0 to 12 for FSW, and from 1 to 25 for FS, respectively, to compute the

70

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Average Matching Latency (seconds)

FS
FSW

EDDY

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120

R
ou

te
 M

is
m

at
ch

 F
ra

ct
io

n
(%

)

Average Matching Latency (seconds)

FS
FSW

EDDY

(b)

Figure 4.15: The accuracy (in RMF) and latency (in seconds) of map matching
results on different location measurement sampling intervals: 1 observation
sample (a) every 10 seconds, and (b) every 15 seconds.

mismatch percentage trend from no delay to a latency of 120 seconds.

The matching accuracy is measured by the Route Mismatch Fraction (RMF).

This fraction is the total length of a false positive route in P and a false negative

route in Ge divided by the length of the original route. We report RMF in per-

centage for each experiment and a higher RMF result indicates more erroneous

road arcs are generated by the online map matching algorithm.

As illustrated in Figure 4.13 to 4.15, we report the map matching accu-

racy trend from immediate label generation to a latency of 120 seconds, under

71

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Location Measurement Sampling Period (seconds)

FS
FSW

EDDY

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 2 4 6 8 10 12 14 16

R
o
u
te

 M
is

m
a
tc

h
 F

ra
c
ti
o
n
 (

%
)

Location Measurement Sampling Period (seconds)

FS
FSW

EDDY

(b)

Figure 4.16: The comparisons of map matching results’ accuracy for different
location measurement sampling intervals under fixed latency constraints of: (a)
10 seconds and (b) 15 seconds.

different measurement sampling periods. First, all figures show an overall de-

clining trend of road arc mismatch fraction, which is sensible in that less error

results are generated if more future location observations are analyzed within

the HMM model. Second, the output quality of the FS algorithm is much less

stable than the other two. Although the general trend of FS is descending as

well, more fluctuations arise when the latency increases. By contrast, FSW

and our algorithm are more stable, which means the matching results are con-

fidently expected to be more accurate if more future information is provided.

72

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Most importantly, it is also observable that the curve of Eddy is mostly below

FS and FSW. It indicates that our Eddy map matching system outputs better

results in most cases with respect to two aspects: a) under the same latency

constraints, the RMFs of Eddy are mostly the lowest one, especially for high

sampling rate location dataset. In the experiment using 1-second sampling rate

GPS data with latency constraint of 15 seconds , we decrease the route mis-

matching fraction from 5.7%(the result of FS) down to 1.3%. and b) under

the same accuracy constraints, Eddy is able to achieve the shortest latencies.

In the experiment using 1-second sampling rate GPS data with accuracy de-

mand of 2% mismatching fraction, we shorten the latency from more than 110

seconds(the result of FS) down to less than 20 seconds.

Figure 4.16 illustrates the online map matching accuracy improvements

under the same latency constraints, 10 seconds and 20 seconds respectively.

As shown, when applying our algorithm to the location measurement datasets

with different sampling rates, our matching result almost always outperforms

the other two methods with less error erroneous generations.

Moreover, we also notice from the experiments that the RMF value of Eddy

stably reaches 0 much earlier than FS and FSW (under different sampling rates

shown in Figure 4.13 to 4.15). It means that our system is able to achieve a

stable 100% accuracy of the road arc generation results with a much shorter

latency.

4.5 Summary

In this chapter we presented two frameworks for pedestrian-attached and vehicle-

attached location sensor data. First we analyzed several typical error pat-

73

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

terns for real-world pedestrian-attached positioning data, and proposed two

approaches to improve the location measurement accuracy while relying purely

on the GPS generated data. The experimental results show that our methods

are highly effective in enhancing accuracy by up to 48%. For vehicle-attached

trajectories, we presented a real-time HMM-based map matching system, Eddy,

based on an improved online Viterbi decoding algorithm. Our method analyzes

the tradeoff between the map matching accuracy and latency, and incorpo-

rates a ski-rental model and its best-known deterministic algorithm to solve

the online decoding problem. Therefore, our system is capable of dynamically

selecting the window size according to characteristics of the candidate state

probability distribution. In our future work we plan to explore the possibil-

ity of involving nondeterministic algorithms into the online decoding phase to

yield a better map matching accuracy and a shorter label generation delay. We

believe that such processed, highly accurate location sensor data are useful for

other sensor-aided mobile media applications.

74

CHAPTER 4. LOCATION SENSOR DATA ACCURACY
ENHANCEMENT

Input: A location trajectory L = {l1, l2, . . . , ln}, and its according time
sequence T = {t1, t2, . . . , tn}, both of which could be infinite. A
set of candidate road arcs (hidden states) E = {e1, e2, . . . , eN}.

Output: A sequence of path P = {p1, p2, . . . , pn}, where P ⊂ E, and
each pi’s mapping output time T ′ = {t′1, t′2, . . . , t′n}.

1 P ← {∅}, T ′ ← {∅}
2 t̂← t1
3 foreach ti ∈ T do
4 if ti ≥ t̂ then
5 t̂← t̂+ 1
6 end

7 while ti < t̂ do
8 if H(ti, t̂) ≤ γ(t̂− ti) then
9 t′i ← t̂

10 pi ← arg max1≤j≤N [δti,t′i(j)]

11 P ← P + pi, T
′ ← T ′ + t′i

12 tk ← ti + 1

13 while tk ≤ t̂ do
14 foreach ei ∈ E do
15 update δtk(ei)
16 update φtk(ei)

17 end

18 end
19 leave loop

20 end
21 else
22 t̂← t̂+ 1
23 foreach ei ∈ E do
24 update δti,t̂(ei)

25 end

26 end

27 end

28 end

Algorithm 1: Improved Online Viterbi Decoding

75

CHAPTER 5

Orientation Sensor Data Accuracy

Enhancement

5.1 Introduction

In addition to the location accuracy we have discussed in Chapter 4, orienta-

tion is another type of sensor data that is increasingly used in many application

and also has the necessity to enhance its accuracy. This chapter introduces a

novel hybrid framework which corrects orientation data measured in conjunc-

tion with mobile videos based on geospatial scene analysis and image process-

ing techniques. In particular, our system collects visual landmark information

and matches it against GIS data sources to infer a target landmark’s real geo-

location. By knowing the geographic coordinates of the captured landmark

and the camera, we are able to calculate corrected orientation data. While we

76

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

describe our method in the context of video, images can be considered as a

specific frame of a video, and our correction approach can be applied there as

well. Our contributions in this work include:

• Design and prototype implementation of algorithms to effectively enhance

the accuracy of noisy camera orientation data.

• Accuracy evaluation between the corrected results and the raw (uncor-

rected) data, and performance comparison between our framework and

existing state-of-the-art methods.

In most modern mobile operating systems, the camera orientation θ is

measured and presented by how many degrees a northward unit vector needs

to rotate to this vector clockwise in 2D geospace, i.e., θ ∈ [0, 360). For example,

if the camera is facing due east, then θ = 90, and if θ = 180, the camera is

shooting southward. The tilting operation of the camera is not covered in this

study. We plan to further elaborate on 6 degrees of freedom (DOF) camera

pose correction techniques in 3D geospace as part of our future work. The

phrases camera orientation and viewing direction are used interchangeably in

our study.

5.2 Orientation Data Correction

Figure 5.1 illustrates the overall process flow and how our proposed orientation

data correction module fits in. In the architecture, geospatial sensor data is

collected during the video recording on a mobile platform and uploaded to a

NoSQL database in the server side. Afterwards, most sensor-aided applications

would directly utilize the raw sensor data to guide the multimedia content anal-

77

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Retrieve

images/videos

Sensor data acquisition

during media recording

App for iOS and Android

Upstream GIS/social media systems

Geospatial Matching

and Landmark Ranking

Orientation Data Correction

Raw sensor data Processed sensor data

Upload sensor data

Upload

 images/videos

Processed sensor data Landmark List
User feedback

Sampled frames

NoSQL DB NoSQL DB

Multimedia DB

Landmark

Tracking

Sampled

Frame

Matching

Figure 5.1: The overall architecture and the process flow of the proposed frame-
work. Raw orientation sensor data is enhanced to provide more accurate direc-
tional information to upstream applications.

ysis and management as we exemplified in Chapter 1. The common implicit

assumption is that collected sensor data is correct. However, given the real-

world limitations we described earlier, this assumption is generally not true.

Thus, the role of our approach is to semi-automatically and transparently pro-

cess the orientation sensor data of the mobile videos and then provide more

accurate data to existing GIS/social media applications. Our processing sys-

tem works as a middleware layer (the dashed line box in Figure 5.1) between

the raw sensor database uploaded by mobile devices and the processed sensor

database used by upstream applications.

To filter out data noise, we design an effective correction algorithm based

on geospatial matching and optical flow analysis consisting of three steps.

• Step 1: For a specific frame, we first gather extra information, i.e., a

landmark position in the visual domain, from the mobile client. We match

this information against GIS data sources to infer the target landmark’s

geo-location with the highest probability. By knowing the most possible

78

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

geographic coordinates of the captured landmark and the camera, we

estimate an accurate orientation.

• Step 2: Subsequently, we process two more steps to propagate the cor-

rected orientation values from one specific frame to the whole video. By

leveraging its consistency in the temporal domain, we compute the hor-

izontal motion flows to interpolate highly accurate orientation data for

every frame.

• Step 3: In order to decrease the accumulative errors during interpolation,

we perform landmark matching between sampled frames to update the

target landmark’s visual position at a given rate.

5.2.1 Problem Formulation

In our context, orientation data of a mobile video is a time-series dataset

consisting of compass reading values. Let Θ = {θ1, θ2, · · · , θn} and F =

{f1, f2, · · · , fn} be the sequences of compass readings and their corresponding

video frames for every time instance T = {t1, t2, · · · , tn}, respectively. We de-

note the ground truth of the orientation sequence data as G = {g1, g2, · · · , gn}.

Both gi and θi have values in the range 0 to 360 degrees. The direction mea-

surement error for θi is the angle difference between its true and measured

orientation δi = min(‖gi − θi‖, 360 − ‖gi − θi‖). The direction error of Θ is

the average of every sample’s direction error, i.e., EΘ = 1
n

∑n
i=1 δi. In the still

image case, all data (orientation value Θ, frame content F and direction error

EΘ) only exist for one time instant T = {t1}.

Problem Statement: Given a sequence of orientation readings Θ and

their related timestamps T and frames F , find a sequence of estimated di-

79

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Target Landmark Target Landmark

Figure 5.2: LEFT: A snapshot from one video that shows an outstanding ar-
chitecture around Singapore Marina Bay; MIDDLE: the corresponding view
of Google Earth 3D buildings from the same location and camera orientation;
RIGHT: the FOV scene model of this frame illustrated on a 2D map synthesized
by the same location and camera orientation.

rectional values, F : θi → τi, such that the accuracy of processed orienta-

tion sequence Θ′ = {τ1, τ2, ..., τn} is enhanced by having EΘ 6≤ EΘ′ , where

EΘ′ = 1
n

∑n
i=1 δ

′
i and δ′i is each processed orientation’s distance to the ground

truth.

5.2.2 Geospatial Matching and Landmark Ranking

The orientation of a vector θ is determined by two distinct points in 2D ge-

ometry and we can obtain the position of the camera from the embedded GPS

receiver. Therefore, our key idea is to estimate the real geo-location of a spe-

cific building appearing visually in a given still image or a video frame. As

illustrated in Figure 5.2, by matching the building’s position in the image with

its position on a 2D map, the accurate orientation of the camera can be ex-

tracted through geometrical computations. Therefore, a landmark appeared in

the picture or frame is required to develop our approach. Next we explain the

detailed geospatial matching and landmark ranking procedure to determine the

most possible geo-location of the target landmark in the scene.

80

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Target Landmark Determination

It is fundamental to determine which landmark to match between the pixel and

the geospatial domains. As a first step we customized the recording app GeoVid

for both iOS and Android platforms. Our system includes a convenient interface

to let users indicate the target landmark, which could be any kind of structure,

with an easy touch-gesture input. For still image capture, we allow users to

indicate the width boundaries of a close and prominent structure by moving

their fingers along a landmark’s vertical edges on the just-taken picture (see the

yellow lines on the sides of the left tower in Figure 5.3). For video, users can also

indicate a pair of perpendicular lines with the same touch-and-move operation

at the beginning of a recording. Since we are concerned with the horizontal

direction and angle change, the vertical edges provide the best information to

track camera movements horizontally. Notably, through this user interface, we

not only gather the target identification, but also quantify the marked buildings’

visual width and degree of horizontal visibility with angle ranges, which will

later be used for landmark ranking. Moreover, the image position of the user-

indicated building is recorded as well to calculate the horizontal visual offset

distance later.

Geospatial Matching

The next step is to determine all possible structures that may have been cap-

tured in the video, and rank those buildings to locate the one indicated by a user

in the first phase with the highest confidence. Then we can utilize two distinct

points, i.e., this building’s geo-location and the mobile device’s coordinates,

to compute the camera orientation. In our system, we retrieve geographic in-

81

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 5.3: Image/video capture interface in modified GeoVid apps on iOS and
Android platforms. The yellow lines are achieved through users’ gesture-input,
i.e., finger swiping.

formation about surrounding structures from OpenStreetMap which is an open

and free service built with voluntary contributions from users. This gazetteer

provides comprehensive information, e.g., name, type, location and polygon

outline of each building in geospace. In order to find all buildings that likely

appear in the scene, we query the geo-information service and retrieve all the

architectures within a bounded distance R around the camera location point

L.

However, not all buildings that are retrieved are visible from L, due to hor-

izontal and vertical occlusions. To filter out these fully or partially occluded

objects is a challenge. Inspired by the studies of Shen et al. [104] and Lee et

al. [67], we designed a 3D visibility filter to exclude obstructed objects and ob-

tain only the visible building candidates before the ranking step. Lee’s method

only considers the visibility occlusion relations within 2D space, based only on

the outline of the footprints of the objects. Thus in their algorithm, vertically

extensive (e.g., tall and prominent) buildings would be considered as occluded

by front objects and filtered out as noise. In Shen’s study, they utilized the 3D

context but did not consider the effects of horizontal occlusions. In our situa-

82

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

tion, users generally only mark a target building which is totally unblocked or

at least partially vertically visible, because they need to indicate the vertical

boundaries of the building. If an architecture is partially horizontally occluded,

either one or even both of the vertical edges are not drawable. Hence it is

necessary to improve Shen’s method to satisfy the requirements of our system.

In our filtering method, we first classify all retrieved buildings into four

categories according to their visibility levels:

• Category 1 – Unoccluded Building : A building to which we can cast a

line-of-sight horizontal tracing ray from the camera location which does

not intersect with any other objects and is completely visible by the lens.

• Category 2 – Partially Vertically Visible Building : A building which is

partially occluded but is vertically visible since its height exceeds any

front object blockage. When the vertical viewable angle of the object is

greater than the angle of the object right in front of it, the object will

be marked as partially vertically visible. Note that a building can be

occluded by several other objects but still by partially vertically visible.

• Category 3 – Partially Horizontally Visible Building : A building which is

partially occluded but is horizontally visible since its width exceeds what

the front object is blocking. When the horizontal viewable angle of the

object is greater than the angle of the object in front of it, the object

will be marked as partially horizontally visible. Again, a building can be

occluded by several other objects but still partially horizontally visible.

• Category 4 – Occluded Building : The building is neither unoccluded nor

partially visible, therefore it is considered completely occluded.

83

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Input: The camera location L of a FOV scene, and a finite set
B = {ω1, ω2, . . . , ωn} of retrieved buildings within distance R from L

Output: A set of visible buildings and their horizontal visible angle range
O = {(ω : [µ, ν])}

1: O ← {∅}
2: foreach ωi ∈ B do
3: if L ∈ ωi then
4: B ← B − ωi
5: end if
6: end for
7: foreach ωi ∈ B do
8: (µi, νi) ← HorizontalRange(L, ω)
9: (µ̂i, ν̂i) ← VerticalRange(L, ωi)

10: OccluF lag ← false
11: foreach ωj ∈ B & distance(L, ωj) < distance(L, ωi) do
12: (µj , νj) ← HorizontalRange(L, ωj)
13: if (µj , νj) ∩ (µi, νi) = ∅ then
14: go to next loop
15: end if
16: (µ̂j , ν̂j) ← VerticalRange(L, ωj)
17: if (µ̂i, ν̂i) ⊂ (µ̂j , ν̂j) then
18: OccluF lag ← true
19: leave loop
20: end if
21: end for
22: if OccluFlag = false then
23: O ← {ωi : [µi, νi]}
24: end if
25: end for
26: return O

Algorithm 2: 3D Visibility Filter

Given a set of retrieved buildings B, we filter out the third and fourth

categories as noise since these two types of buildings would not be marked

as target landmarks. The output of our filtering method is the set of visible

or partially vertically visible objects and their horizontal visible angle range,

i.e., O = {(ω : [µ, ν])}. Algorithm 2 sketches the overall procedure of our 3D

visibility filtering method. First, the buildings whose 2D footprint-polygons

contain the location of the camera are filtered from further computation to

84

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

improve the performance. Because these buildings that encapsulate the camera

location block almost 360 degrees of the horizontal angle range from a camera’s

FOV scene in 2D, while in the real case users are likely able to see the target

landmark which they indicated previously. Next, for each landmark candidate,

we examine whether they are horizontally occluded by the buildings which are

closer to the camera location. The occlusions are calculated by intersecting the

viewable ranges. If they are horizontally occluded, either partially or totally,

we further examine the vertical occlusiveness between each pair of buildings

with the occlusive relation. All structures determined as vertically invisible

by horizontally-occlusive front buildings in this step will be excluded. Thus,

only the buildings belonging to the first or second visibility category will be

extracted into the output set of our filtering method.

Landmark Ranking

The above filtering step produces a set of landmark candidates among which we

need to select the target landmark indicated by users. Given a building set O

and a camera’s raw sensor data triplets 〈L, θ, α〉, we devise a ranking algorithm

that computes for every building in O the probability of it being the target

landmark. First we assess and quantify the relevance of a visible structure in

each individual FOV scene according to the three relevance criteria below.

• Closeness to the camera location: A closer object is likely to be more

conspicuous in a FOV scene. We formulate the score for the distance

criterion as a Gaussian function [124]

pdω =
1

σd
√

2π
e
− 1

2

(
distance(center(ω),L)

σd

)2

,

85

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

where center() returns the coordinates of the building center, and distance()

computes the distance from L to the building center.

• Closeness to the initial FOV scene center : The raw sensor data is utilized

to increase the confidence of building candidates within a certain rotation

range. Additionally, according to an observation that people tend to

focus on the center of an image [52], we promote the candidates whose

horizontal visible angle range is closer to the raw camera orientation,

which is the center of the FOV scene, and score it with formula [84]

pcω =
1

σc
√

2π
e−

1
2(‖middle([µ,ν])−θ‖σc

)
2

,

where middle() returns the middle angle of the horizontal visible range

[µ, ν].

• Closeness to the real viewable range of the indicated building : Since the

user has indicated the horizontal edges of the target building in the pixel

domain, we are able to infer the viewable range of the target building

in 2D geometry space. We compare this information to the horizontal

visible angle range of all candidates. The more similar the visible range

between the target and the candidate, the higher the probability of the

candidate being the target.

prω =
1

σr
√

2π
e
− 1

2

(‖‖µ−ν‖−RGtarget‖
σr

)2

RGtarget =
Wtarget

Rh

α,

where Wtarget is the width of the target landmark measured in pixels, Rh

86

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

is the horizontal length in pixels of the image or video frame1, and α is

the viewable angle.

With the assumption that the above three criteria are independent, we

multiplicatively combine the obtained scores. Thus, the overall probability of

a building candidate ω is a three dimensional Gaussian function.

pω : R→ (0, 1), pω = pdω · pcω · prω

pω = A · exp

(
−distance(center(ω),L)2

2σd2

−‖middle([µ, ν])− θ‖2

2σc2

−‖‖µ− ν‖ −RGtarget‖2

2σr2

) (5.1)

Coefficient A is determined from the previous three criteria and the three

σ values have physical meanings. They indicate the amount of noise power in

the difference between the candidate measurements and the input values, and

also represent how sharp the probability curve decreases when the difference

becomes larger. In our implementation, we set σd = 2, 000, σc = 180 and σr = 1

empirically.

Finally we select and present the top K building candidates with the high-

est probabilities after the ranking step and let the user choose the true corre-

sponding target landmark among these K options. This simple user feedback

scheme improves the system’s target landmark determination accuracy. In our

1Rh is the resolution value on either the x− or the y−axis, depending on the recoding
pose which could be Portrait or Landscape mode.

87

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

δh

Figure 5.4: Orientation estimation based on target landmark matching between
the geospatial and visual domains.

experiments, we display the top 10 candidates to users, and in our experience

the target landmarks generally appear in the list.

The FOV scene information is calculated based on the sensor data which

identifies the geographic region covered in the image. Thus, vice versa, with

the known building reference in both the geospatial and pixel domains, we can

accurately estimate the camera orientation on a 2D map with the following

equation

τ = µk +
α

2
− δh
Rh

α (5.2)

where δh is the target landmark’s horizontal offset to the left boundary

in the image and µk is the viewable angle range’s left boundary of the target

landmark (see Figure 5.4). In Equation 5.2, α
Rh

indicates how many degrees the

camera needs to rotate to make one pixel move in the image, and δh
Rh
α presents

the degrees which the camera has to rotate to let the left edge of the target

building to move from the image left boundary to the current position.

88

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

5.2.3 Landmark Tracking

After performing the above geospatial matching and landmark ranking algo-

rithms, we are able to output one estimated directional value, θ1 → τ1, for a

still image or a specific video frame at time T = {t1}. During video record-

ing, in order to minimize a user’s required interaction, our system continues

to track the interesting feature points detected around the target landmark to

continuously calculate the position of this building in the next several seconds

of frames. Afterward we use an affine model to estimate the target landmark’s

2D transformation in the image and extract motion vector information on the

horizontal axis, termed xi · · ·xj, to compute camera orientation values τi · · · τj

for this portion of frames fi · · · fj (see Equation 5.3). Since we perform one

visual feature tracking procedure between every two GPS signal updates, it is

reasonable to assume that the camera location does not move too much within

the tracking (GeoVid app updates GPS location only when the camera moves

above 10 meters away from the previous record), and the camera is approxi-

mately performing a panning operation during the tracking period. Thus, we

can estimate the orientation values by the equation below,

τi =
−xi
Rh

α + τi−t (5.3)

Similar to Equation 5.2, we calculate the relative camera rotation first and

add it to the previous estimated directional value to obtain the current frame’s

camera orientation. In motion vector notation convention, if the reference ob-

ject moves towards the right in the image, the motion vector should be positive.

While in the orientation notation, this case indicates that the camera is panning

left (rotating counter-clockwise from an aerial view), which generates a negative

89

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

value accordingly. That is the reason why we change the sign to (-1) for the

horizontal motion vector. Due to performance concerns, we do not compute

the motion vectors between every two consecutive frames. Instead, we perform

such tracking computation every t frames.

We use the Kanade-Lucas-Tomasi feature tracker [105] to infer motion

vector xi between fi and fi−t. Our system chooses and locates features by ex-

amining the minimum eigenvalue of each 2×2 gradient matrix, and features are

tracked using a Newton-Raphson method of minimizing the difference between

the two windows. An affine transformation is fit between the image of the cur-

rently tracked feature fi and its image from a non-consecutive previous frame

fi−t. If the affine compensated image is too dissimilar, the previous extracted

features will be dropped and new qualified features will be selected based on

the same algorithm for substitution. Therefore in each motion vector calcula-

tion, we maintain a consistent number of tracking feature points FN through

abandonment and replacement operations. Our implementation uses t = 15

and FN = 150 by considering both image size and performance.

When one tracking step is finished, our system performs orientation re-

calculation (Equation 5.2) again based on an updated camera location and an

updated horizontal offset. We use the updated µk value by feeding the newest

camera location into the HorizontalRange() function (see Algorithm 2). The

horizontal offset value is refreshed by accumulating all horizontal motion vectors

x obtained in this procedure to the previous δh. When we detect that the

target landmark is moving out of the viewable scene, i.e., δh ≥ Rh −Wtarget

or δh ≤ 0, our system changes to track the feature points detected from the

whole frame and extracts motion vectors based on these extended features.

Lastly, all camera orientation values between τi and τi−t are estimated by linear

90

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 5.5: Illustration of landmark matching technique. Left: the original
frame in which a user indicates a landmark. Right: a later, sampled frame
in which the previously indicated landmark is expected to be recognized and
localized.

interpolation. Our system continues such operations until the end of the video

sensor file.

5.2.4 Sampled Frame Matching

Since the camera scenes are changing as time progresses and the estimated ori-

entation output based on the tracking algorithm is precise only for scenes with

the target landmark inside the image, our system needs to update the target

landmark’s visual position at a certain frequency in case the target moves in

and out of the viewable scene. Additionally, errors are inevitably accumulated

during the landmark tracking process. Such errors could be reduced by letting a

user indicate the landmark multiple times as the video is recorded, but it would

be too cumbersome for users. In order to maintain the correction accuracy over

time and not burden users, we apply an object recognition technique to locate

the target landmark in the sampled frames. If the target landmark is success-

fully recognized and localized in a frame, then it can be considered equivalent

to a user input that updates a landmark’s visual position. Hence, this termi-

nates the previous and restarts a new landmark tracking process based on the

re-estimated camera orientation.

We perform object matching through feature detection, extraction, and

91

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

matching followed by an estimation of the geometric transformation using the

RANdom SAmple Consensus (RANSAC) algorithm. As illustrated in Fig-

ure 5.5, on the left is the frame in which a user indicated a landmark, and

on the right is a sampled frame in which the landmark was automatically lo-

cated since it appears. To match the landmark, we extract keypoints from

both frames using SIFT descriptors [81]. A SIFT descriptor is a 128 dimen-

sional feature vector that encodes the image information in a localized set of

gradient orientation histograms. Sampling is performed in a regular grid of

16 × 16 locations covering the interest region. For each sampled location, the

gradient orientation is entered into a coarser 4× 4 grid of gradient orientation

histograms with 8 orientation bins.

After the SIFT feature extraction, we compute the bounding box of the

user indicated landmark in the left frame by adding a margin to the boundary

drawn by the user. Next, we find the best candidate match for each keypoint

within the bounding box by identifying its nearest neighbor among the key-

points from the right frame. However, local descriptor matching can produce

many false matches. In order to reject such false matches, we first compute

the ratio of the closest to the second-closest neighbors of each keypoint and

only accept matches in which the distance ratio is less than 0.8, as proposed by

Lowe [81]. Next we estimate the geometric transformation using the RANSAC

algorithm, which can robustly fit a model to data in the presence of outliers

and has been used to find correspondences in the presence of noise [32]. Iter-

atively, we randomly select a subset of keypoint matches, based on which we

compute the transformation matrix for affine homography. The affine homog-

raphy model is then tested against all the other keypoint matches. Matches

that fit the model are considered as hypothetical inliers while the others are

92

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

considered as hypothetical outliers. After a default number of iterations, the

model with highest number of hypothetical inliers is selected.

For the selected model, we use a threshold Th = 0.15 to determine whether

the target landmark is recognized in the right frame. If the number of inliers is

smaller than Th, the landmark is considered to be absent. Otherwise, the in-

liers can be regarded as true matches between local features and the landmark

is considered to be present. Next we translate the upper-left and lower-right

points of the bounding box in the left frame using the same affine model, and

regard them as the estimated boundary of the new bounding box for the rec-

ognized landmark in the right frame. Finally, we obtain the updated landmark

position, and are able to re-estimate the camera orientation for this sampled

frame.

5.3 Experiments

In our experiments, we utilize the publicly available real-world georeferenced

video dataset from the GeoVid website. We process the corresponding sensor

data of the videos with our proposed methods and compare the results with

Structure from Motion (SfM) and the ground truth, in terms of performance

and accuracy enhancement, respectively. We randomly select 15 georeferenced

videos recorded in Singapore where the sensor data is recorded by up-to-date

mobile hardware (see dataset description in Table 5.1).

To obtain the ground truth data we provide two alternative ways for users

to manually annotate true camera orientation values. For a given video frame,

we first provide multiple Google Street View images and a Google Earth 3D

synthesized view from the current GPS location. Users can compare the vi-

93

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

O
rie

nt
at

io
n

R
ea

di
ng

s
(d

eg
re

e)

Video Timecode (second)

Raw Orientation
Processed Orientation

Ground Truth Orientation

(a)

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

O
rie

nt
at

io
n

E
rr

or
s

(d
eg

re
e)

Video Timecode (second)

Raw Orientation Errors
Processed Orientation Errors

(b)

Figure 5.6: (a) Raw, processed and ground truth camera orientation reading
results of one sensor data file (θi, τi, and gi). (b) Raw and processed camera
orientation error of each sample in one sensor data file (δi and δ′i).

sual contents between the frame and the referenced views to determine the

orientation value. In addition, we also allow users to indicate the geographic

object that appears in the frame center on the Google Earth interface. The

coordinates of the indicated object as well as the camera location is later en-

tered into the Geotools library2 to calculate the true camera orientation. For

each experimental video, we sample frames every 3 seconds for users to perform

the ground truth annotation. We interpolate the orientation degrees between

2http://geotools-php.org/

94

http://geotools-php.org/

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 o
f e

ve
ry

 s
am

pl
e’

s
or

ie
nt

at
io

n
er

ro
r

(d
eg

re
e)

Video No.

Processed Orientation
Raw Orientation

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120

E
xe

cu
tio

n
tim

e
in

 a
 lo

ga
rit

hm
ic

 s
ca

le
 (

m
in

ite
)

video length (second)

SfM
Proposed Correction Method

(b)

Figure 5.7: (a) Raw and processed camera orientation average error results of
each video’s sensor data (EΘ and E ′Θ). (b) Execution time comparison between
our proposed orientation data correction method and the SfM technique on a
logarithmic scale.

sampled frames for later comparisons.

5.3.1 Accuracy Enhancement

We treat the first frame of each video clip as a still image and perform geospatial

matching and landmark ranking algorithms on it. To the following frames, we

apply the landmark tracking and sample frame matching methods. As will be

shown in our experimental results, the system works well for mobile media.

95

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

We employ the FFmpeg library3 to extract frames from the video dataset at a

chosen resolution of 360 × 240 per frame to reduce the time consumption for

image processing.

First we present the results for one camera orientation sequence. We apply

our approach to one video’s corresponding sensor data file. Figure 5.6(a) illus-

trates θi, τi, and gi of the mobile test video and Figure 5.6(b) illustrates the

errors δi and δ′i accordingly. As shown, the raw orientation readings along the

whole file are very much incorrect, which is causing the drift phenomenon when

displayed on a map interface. After the correction by our algorithm, we find a

distinct improvement such that the processed orientation data approaches the

ground truth values and the error of each sample is considerably reduced.

Next, to quantitatively evaluate the camera orientation accuracy enhance-

ment with our proposed method, we processed the sensor data of 15 videos

(each sensor data record contains a sequence of FOV scene triplets) and com-

pared the average direction error between the processed and raw orientation

readings (see Figure 5.7(a)). On average, EΘ of the raw orientation readings is

19.9 degrees and E ′Θ of the processed data is 6.76 degrees. Thus, our system

significantly increases the accuracy of the camera orientation data by up to

66%. For some videos, e.g., No. 7, 12 and 13, our correction algorithm en-

hances the accuracy from an approximately 40-degrees error to a level less than

10 degrees. However, in some other cases, such as No. 6 and 11, our method

does not improve the accuracy much. We also report the feedback ranking re-

sults of the user indicated target landmarks in Table 5.2. No target is reported

missing, which means users can always find their previously visually marked

geo-object among the top 10 candidates returned by our ranking algorithm.

3http://ffmpeg.org/

96

http://ffmpeg.org/

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Table 5.1: Georeferenced video dataset description.
Shortest video length Longest video length Average video length

11 sec 1 min 50 sec 23 sec
Light conditions Phone models

2 in evening, 13 during day iPhone 4S and HTC Desire S

The low average rank also indicates the high precision of our method for target

landmark determination in geospace.

5.3.2 Performance

To the best of our knowledge there exists no other system that estimates the

camera direction for the explicit purpose of camera orientation correction. We

found the SfM technique to be the closest, related method that can output es-

timated camera poses as an auxiliary effect during the 3D structure reconstruc-

tion from a set of images around a landmark. Hence, we measure and compare

the execution time between our method and an existing SfM system [109] to

evaluate the efficiency of our proposed approach. We process georeferenced

videos of different lengths with both systems. For our proposed orientation

data correction method, we perform all measurements on a 3.4 GHz Intel Core

i7-2600 CPU with 4 cores and 8 GB of memory.

We apply SfM on our dataset as follows. First, from the frame dataset we

extract features with the SIFT method from the VLFeat library. Afterwards,

feature matching and bundle adjustment are performed with the SfM bundler

library [109]. Next the output of the SfM step is fed into CMVS (Clustering

Views for Multi-view Stereo) to divide the image set into clusters of manage-

able size and allow them to be processed independently and in parallel [33].

Eventually the PMVS2 (Patch-based Multi-view Stereo) software is executed

97

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Table 5.2: Target landmark ranking results from users’ feedback among 15 test
videos.

Highest rank Lowest rank Average rank
1 (for 8 videos) 10 (for 1 video) 2.6

to produce a set of oriented points instead of a polygonal (or a mesh) model,

where both the 3D coordinates and the surface normals are estimated at each

oriented point [34].

Since the SfM technique requires much more computing resources (known

from reported experiments in other studies), we measure its performance with

the same dataset but on a 2.67 GHz Intel Xeon X5650 CPU with 12 cores

and 64 GB of memory. Figure 5.7(b) illustrates the execution time to process

videos of different input lengths. As shown, even though the SfM system utilizes

more hardware resources, it takes orders of magnitude longer to compute the

camera orientation compared to our method. For lengthy sensor data files,

e.g., videos longer than 100 seconds, the processing time of SfM is almost 3,000

times longer. Moreover, the camera orientation values from SfM (which can be

obtained by an “up-right” vector estimation and a 2D-2D transformation [115])

in the experiments are even less accurate than the raw data, i.e., EΘ′ > EΘ.

We believe the reason for this is that the frames from test dataset do not always

provide a good cover of the reconstructed object. Moreover, the requirement

of short-baseline stereo increases the difficulty of 3D model reconstruction and

image registration for the SfM technique. The results show the capability of our

system to perform correction effectively with a single video input in a reasonable

amount of time.

98

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

Figure 5.8: Screenshot of the Oscor visualization interface.

5.4 Demo System

We implemented our framework and introduce a demo system named Oscor,

which corrects orientation measurements for still images and video frames based

on geographic analysis and image processing. With regards to video recording,

in order to minimize the user interaction, we compute the horizontal motion

flows and perform landmark matching between sampled frames to interpolate

highly accurate orientation data for every frame.

Figure 5.1 illustrates Oscor ’s overall architecture. For media capture, we

provide a camera app which acquires location and orientation information con-

currently from multiple sensors while taking images or recording videos [123].

Moreover, our app presents a convenient interface to gather extra information,

e.g., a landmark scene position and its name, without requiring cumbersome

input from users. For still image capture, we allow users to indicate the width

boundary of a close and conspicuous structure by moving their fingers along a

building’s vertical edges on the just-taken picture. For the video, users can also

indicate a pair of perpendicular lines with the same touch-and-move operation

during recording. After receiving this edge information on the server side, we

convert the users’ input of a landmark’s position from the pixel index domain

99

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

into the geospatial domain, and subsequently perform GIS analysis.

We employ OpenStreetMap (OSM) as our GIS reference database and

query related building locations and their 2D shape polygons within a certain

distance range to the camera position [104]. From the 2D shape information,

our system computes each building’s width value in the image’s x-dimension

from the camera’s point of view. Afterwards, we utilize the building width

information extracted from pixel level, the building distance to the camera

from the GIS analysis, and the initial orientation measurement collected from

the mobile-embedded digital compass, to build a 3D Gaussian model calculating

each building’s probability of being the landmark in the user’s still picture or

video frame. Subsequently, Our system returns the top K landmark names back

to the user for selection of the correct one. With the known building reference in

both the geospatial and pixel domains, we can accurately estimate the camera

pose on a 2D map, and hence output the corrected camera orientation data for

the corresponding image/frame.

On the app we have added a transparent overlay on top of the camera

interface and leverage multi-touch gestures to collect the building position in-

formation indicated by users. After a user uploads the raw sensor data via

an HTTP link, the server efficiently stores and indexes this information into a

NoSQL MongoDB database.

The Oscor user interface visualizes the static or moving field-of-views of

images and videos, which allows users to experience fused video browsing based

on geographic properties. On a Google Maps canvas multiple images/videos are

presented as pins. When a user clicks or touches a pin, a map-overlay image

viewer/video player is launched and the video is rendered from the designated

starting location. During video playback, the camera’s current location and

100

CHAPTER 5. ORIENTATION SENSOR DATA ACCURACY
ENHANCEMENT

viewable scenes are animated along the corresponding GPS trajectory. To help

users visualize the corrected contextual information and how the erroneous data

possibly effects further processes, two viewable scenes based on asynchronously

retrieved raw and corrected camera orientation data are rendered on the same

interface (see Figure 5.8).

5.5 Summary

We presented an approach for camera orientation data correction based on

geospatial analysis and image processing techniques. We analyzed the view-

able scenes of mobile videos and devised algorithms to estimate more precise

orientation data. The experimental results demonstrate that our technique is

very effective (improve the accuracy by up to 66%) and efficient (up to 3000

times faster) compared with the ground truth and an existing system. One

limitation of our work is that the mobile media content must contain at least

one geo-object, such as a landmark, for our system to perform matching in

geospace, analysis and data correction. As part of our future work we plan to

investigate other visual features and sensors embedded in mobile platforms to

help with camera orientation correction without the restriction of a geo-object’s

presence.

101

CHAPTER 6

Sensor-assisted Camera Motion

Characterization and Video Encoding

6.1 Introduction

In existing multimedia applications listed in Chapter 1, higher level semantic

results can be computed from the very low level contextual information (i.e.,

sensor data). In this thesis, after we obtain more accurate and reliable sensor

information, we explore the possibility of applying sensor analysis techniques

to new mobile media applications, such as video encoding and 3D model re-

construction (see Figure 6.1). This Chapter describes how we leverage location

and orientation sensor data analysis in video encoding improvement based on

the camera motion characterization.

Camera motion is a distinct feature that essentially characterizes video

102

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Video Encoding

Sensor-assisted
mobile media
applications

Chapter 6

3D Model
Reconstruction

Chapter 7

Key Frame
Selection

Camera Motion
Characterization

Sensor analysis-
based middle

layer

Figure 6.1: The proposed sensor-assisted applications.

content in the context of content-based video analysis. Almost all existing

work relies on a content-based approach at the frame-signal level, which results

in high complexity and very time-consuming processing. Similarly, capturing

videos on mobile devices is also a compute-intensive and power-hungry process.

One of the key compute-intensive modules in a video encoder is the motion

estimation (ME). In modern video coding standards such as H.264/AVC, ME

predicts the contents of a frame by matching blocks from multiple references

and by exploring multiple block sizes. Not surprisingly, the computation and

power cost of video encoding pose a significant challenge for video recording on

mobile devices such as smartphones.

Our solution for addressing these two challenges is to perform sensor-

assisted camera motion analysis and introduce a simplified motion estimation

algorithm for H.264/AVC. We employ relatively low-power sensors to classify

103

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Camera Motion

Characterization

Sensor-aided Motion

Estimation

Single-shot

Video and Sensor

Information

Motion

Results

Figure 6.2: Overview of the proposed two-step framework.

camera motion types and subsequently apply the motion type information to

significantly simplifying motion estimation. Our approach is motivated by two

observations. First, modern smartphones include relatively low-power and low-

cost sensors, such as GPS and digital compass. The geographical properties are

provided by these sensors and their accuracy is enhanced by our post-processing

methods discussed in Chapter 4 and 5. The corrected geographical properties

are generally quite intrinsic to device motion characterization. Second, in many

video documents, particularly in those captured by amateurs, a global motion is

commonly involved owing to camera movement and shooting direction changes.

In outdoor videos, e.g., videos capturing landmarks or attractions, global mo-

tion contributes significantly to the motion of objects across frames.

Our method introduces a two-step process which is outlined in Figure 6.2.

First, as a key feature we only use geographic information to detect subshot

boundaries (within one shot, subshot is defined as a smaller unit, whose con-

tents only contain one motion type) and to infer each subshot’s camera motion

type from the collected sensor data without any video content processing. With

generated camera motion information, we modify the HEX motion estimation

algorithm used in H.264 to reduce the search window size and block comparison

time for different motion categories, respectively. Our experimental evaluations

show that our motion characterization method can accurately segment subshots

and label their classification, and our simplified motion estimation algorithm

104

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Shooting
Direction

Classi�cation

Camera
Motion

Classi�cation

Subshot
Boundary

Detection

Database

Subshot 1

Subshot 2

Subshot 3

Subshot n

Stationary
locations

Moving
locations

Static
directions

Changing
directions

Static
directions

Changing
directions

Single-
shot video

FOVs
Sensor Data

FOVs
GPS Data

FOVs Digital
Compass Data

Figure 6.3: Proposed camera motion characterization framework.

can reduce the complexity of the H.264/AVC motion estimation with the HEX

algorithm by up to 50% while speeding up the estimation component consider-

ably.

6.2 Camera Motion Characterization

We utilize a stream of sensor data which is simultaneously collected with video

frames to describe the geographic properties related to the camera view. In

Chapter 3 we describe the viewable scene model used and present how we

collected videos and their sensor measurements. This section describes our

sensor data based approach to subshot boundary detection and camera motion

characterization. Our simplified motion estimation algorithm that works by

reducing the number of candidate blocks is presented in Section 6.3.

105

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Our camera motion characterization system works in two steps as illus-

trated in Figure 6.3. First, we analyze all the sensor data of the acquired

single-shot video to detect subshot boundaries. For each subshot segment we

examine the camera location movement states and the shooting direction change

states. Then we determine the relationship between the camera trajectories and

way the the shooting direction changes. Using the interrelation analysis results,

we are able to characterize the camera motion type for every subshot.

6.2.1 Subshot Boundary Detection

A camera’s mobility is characterized as either moving or stationary. Similarly,

during a given period of time, the shooting direction of the camera can also be

either fixed or in motion. A specific camera motion type is a combination of

two state components. For example, Panning consists of a stationary camera

location and a particular change model the of shooting direction.

We first search subshot boundaries based on the camera location mobility.

We calculate the GPS speed value of each FOV sample and binarize them as

moving or stationary. To evaluate the direction state, we read the compass

values and compute their smoothed directions as defined in Equation 6.1 to

further seek for the subshot boundaries. The smoothed direction at time index

t is a weighted average of the previous w and the next w direction values. If

the processed direction exceeds a certain threshold Td, we consider them as in

motion. Next we select the start points of each group of consecutive frames

who share the same location movement and direction change status as the

boundaries of subshots. Using two different types of boundaries (the boundary

between moving and stationary camera location, and the boundary between

106

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

HHH
HHHL
α

Quasi-static Changing

Stationary Still Panning, Tilting
Moving Tracking, Dolly in/out Focusing, Scanning

Table 6.1: Semantic classification of camera motion patterns based on a stream
of location L and camera direction α data.

changing and static shooting direction), we divide the video into subshots and

classify each of them by its camera motion category. We further set a threshold

Ttemp as the minimum segment-duration by observing that a camera motion is

generally maintained for at least several seconds.

at =

∑w
i=−w pi × at+i

2w + 1
(6.1)

Here 2w + 1 is the window size and pi is the accuracy weight. If at ≥ Td, t is

chosen as one of the subshot boundaries.

6.2.2 Subshot Motion Semantic Classification

After a coarse classification on both location movement and shooting direction

change, we assign each subshot’s camera motion type further to fine-grained

classes. Specifically, we associate the relationship between the moving direc-

tions of the camera and its corresponding shooting directions. For each segment

we obtained from previous step, we first compute the directions of camera move-

ments. Along the trajectory, we employ the GPS values with a certain sampling

rate, and achieve the camera moving direction of every segment by calculating

the angle of vectors, which consists of a start location and an end location.

Afterwards we are able to compare the relation between the moving directions

of camera and their corresponding shooting directions.

107

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

If there exists no significant fluctuation in both locations and shooting

directions, we categorize it as Still. If only the shooting direction changes, a

detected subshot can be labelled as Panning or Tilting. With the help of the ac-

celerometer sensor, we can easily detect a change of the lateral axis (pitch) and

consider the shooting behavior as Tilting, otherwise, we mark it as Panning.

If the location moves while the shooting direction is rather quasi-stationary

(below a threshold) and the angle between several direction vectors is larger

than L but less than 180 − L degrees (L is the angle degree border that sep-

arates different classifications) we label the shooting behavior at this point as

Tracking. Otherwise, it will be considered a Dolly in (moving forward while

shooting in the same direction) or Dolly out (moving backward while shooting

in the opposite direction), respectively. When a camera’s direction and loca-

tion move simultaneously, it is difficult to clearly identify any useful patterns

except possibly Focusing (pointing to a specific object). In such cases we term

them as Scanning (our method does not distinguish those two at present time).

In the scope of one segmentation, the majority of shooting behaviors are con-

solidated into the classification label of this sub-shot. In view of the source

of sensor-tagged videos, which are mostly captured by smartphones, functions

like zoom-in or zoom-out are currently not available during video recording on

those devices.

After classification, each subshot belongs to one of the camera motion

patterns (Still, Panning, Tilting, Tracking, Dolly in/out) with the categories

listed in Table 6.1. Since we found the view direction values to be very noisy,

we use their exponential moving average during the data analysis, which assigns

higher weights to the latest measurement result.

108

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

6.3 Sensor-aided Motion Estimation

In video encoding phase, the camera motion information is mostly reflected

in the global motion estimation (GME) model. MPEG-4 ASP supports GME

with three reference points, although some implementations can only make

use of one. GME can perform good estimation for global frame changes and

supports different transformation types with very low complexity. However, it

does not compensate for some local changes within a frame. Thus, some widely

used video encoder implementations do not support GME well, e.g., x264, an

open source implementation for encoding video streams into the H.264/MPEG-

4 AVC format. Instead, block-based motion estimation (BME) is extensively

used in such software. Although BME is capable of achieving a good estimation

of the local movement, it also incurs extremely high computational complex-

ity. In order to shorten the processing time of BME, we apply the camera

motion information generated in the previous step to simplify the HEX motion

estimation, which is the default BME algorithm employed by x264.

In H.264, each macroblock is predicted from a block of equal size in the

reference frame. The blocks are not transformed in any way apart from being

shifted to the position of the predicted block. It is the motion estimation al-

gorithms’ responsibility to search and calculate this shift, which is represented

by a motion vector. As illustrated in Figure 6.4, the HEX algorithm starts

from the reference macroblock O predicted by the computed motion vector val-

ues of the left, top and top-right macroblocks of the prediction macroblock.

Afterwards HEX iteratively compares the macroblocks around O with the pre-

diction macroblock following the order from macroblock A to F , located in a

hexagonal shape. In one iteration, HEX performs six macroblock comparisons

109

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

B C

A DO

F E

Figure 6.4: Illustration of the HEX Motion Estimation algorithm. Each grid
represents a macroblock in the reference frame.

and considers the block with the minimum difference measurement result (e.g.,

SAD) as the new search center in the next iteration. This search phase ends

when the reference macroblock reaches the edge of the search window, or when

it encounters a macroblock whose difference value is lower than a configured

threshold.

Given the camera motion information computed earlier we reduce the

search window size for each motion type. The reduction speeds up the search

algorithm which is the most time-consuming part of the motion estimation.

• Class Panning and Tracking

Since the shooting direction change and camera location movement both

reflect horizontal translation of frames, the reference block stands a high

chance of being located at the left or right of the prediction block. Thus,

for these two classes, we narrow the search window into a flat rectangle

with the same x-axis value as the prediction block, instead of a 16 × 16

square by default. As a result, in every difference calculation iteration,

only blockA and blockD are compared with blockO and used as reference

block in the next iteration.

110

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

• Class Tilting

In this case, no location movement is involved and the shooting directions

include only tilts up and down, which results in a series of frames mostly

containing vertical translations. Based on this information, we reduce

the search window by ignoring the two blocks with the same x-axis index.

Inside the narrow window we select blocks B, C, E and F as comparison

blocks for the difference measurements in every iteration.

• Class Dolly in/out

With these two classes, we are concerned about the macroblocks in the

left half image and right half image separately. The rationale is that

users tend to focus on objects located at the median plane of the FOV.

Hence most of the blocks in the left part move towards straight left,

top-left or bottom-left corner for a Dolly in camera motion. Therefore,

when processing the macroblocks with an x-axis index less than half of

the frame’s width, we only estimate the left part of the search window,

namely blocks A, B and F in each iteration. Similarly, prediction blocks

located in the right half of the image would be compared with blocks C,

D and E during every local search. A Dolly out segment looks like a

reverse scan of the Dolly in motion. Accordingly, we switch the trimmed

search window for the left half and right half macroblocks in the Dolly in

case and apply them to the Dolly out pattern directly.

By simplifying the HEX algorithm with our method, most of the impor-

tant motions of objects can be estimated much more efficiently. From our

observation, in most of outdoor videos that capture landmarks or attractions,

the local motion does not contribute a lot in the video content. Hence we

111

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

sacrifice a slight decrease in video quality to accelerate the motion estimation

considerably. Since we apply different strategies to different motion patterns,

our experimental results show that our compromise is reasonable and beneficial.

6.4 Experiments

6.4.1 Camera Motion Characterization

In our experiments, we apply our algorithms to sensor-annotated video dataset

from the Geovid and we set parameters w=6 frames, and Td=0.0054 degrees/sec

empirically. We first compare the accuracy of our approach’s camera motion

classification to the ground-truth of the subshots, which was manually anno-

tated. We report both the accuracy of the subshot boundary detection and the

precision of the motion classification.

The first column in Table 6.2 shows the ground-truth time interval of

each subshot and the second column illustrates the boundary times detected

automatically by our system. The results match the ground-truth values very

well. By comparing the start and end times of each classification’s duration, we

can see that the inaccuracy of our approach is generally ≤ 1 second. Note that

some parts of the 1 second errors are contributed by rounding (because users

generally cannot cut the video with an accuracy of less than 1 second, and the

results of our approach need to be rounded off before the comparison). The

results in the sixth and seventh row are the only boundary errors which are

larger than 1 second compared to the ground-truth classification. The second-

to-last row in the table represents an over-detection of subshots in our system.

We observe that in the original video this part of the time interval does not

112

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Ground-truth Subshots detected Start time End time
subshots by our algorithm difference difference

0:00 - 0:13 0:00 - 0:12 0 -1
0:13 - 0:17 0:12 - 0:17 -1 0
0:17 - 0:22 0:17 - 0:23 0 +1
0:22 - 0:24 0:23 - 0:24 +1 0
0:24 - 0:33 0:24 - 0:35 0 +2
0:33 - 0:51 0:35 - 0:50 +2 -1
0:51 - 0:57 0:50 - 0:57 -1 0
0:57 - 1:04 0:57 - 1:03 0 -1
1:04 - 1:07 1:03 - 1:06 -1 -1
1:07 - 1:12 1:06 - 1:12 -1 0
1:12 - 1:15 1:12 - 1:15 0 0
1:15 - 1:23 1:15 - 1:22 0 -1
1:23 - 1:30 1:22 - 1:29 -1 -1
1:30 - 1:38 1:29 - 1:38 -1 0
1:38 - 1:39 1:38 - 1:39 0 0
1:39 - 1:44 1:39 - 1:44 0 0
1:44 - 1:46 1:44 - 1:46 0 0

1:46 - 2:37
1:46 - 2:22

0 +12:22 - 2:26
2:26 - 2:38

2:37 - 2:41 2:38 - 2:41 +1 0

Table 6.2: Subshot classification comparison results of a sample video. The
first column was obtained from manual observations, while the second column
was computed by the proposed system.

appear as scanning behavior, rather a strong camera shake occuring when the

operator climbs some stairs.

We apply our algorithm to nine sample videos randomly chosen from our

video database. A summary of the quality of our classification method is pre-

sented in the format of a confusion matrix. As we can see in Table 6.3, the

correctly classified outputs add up to 188 cases in total (the sum of the val-

ues across the diagonal) while incorrectly classified cases are 21. Therefore,

the classification accuracy our approach can achieve is about 88%. Among the

113

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

HHH
HHHG

E
Still Panning Tracking D/I Scanning D/O

Still 24 0 0 0 0 0
Panning 1 27 0 0 0 0
Tracking 2 0 16 1 2 0

D/I 0 0 1 49 6 1
Scanning 0 0 4 2 70 0

D/O 0 0 1 0 0 2

Table 6.3: Confusion matrix of our subshot classification method with nine
sample videos. G represents the user-defined ground-truth, while E stands for
the experimental result from our characterization algorithm. D/I and D/O are
short for Dolly in and Dolly out respectively.

classified results, 40% are evaluated as scanning, which means that we cannot

observe any meaningful semantics.

6.4.2 Sensor-aided Motion Estimation

The smartphones that we employed to record videos and sensor information

in our experiments included models from Apple, HTC and Motorola. Videos

captured by these mobile phones have a resolution of 720× 480 or 1920× 1080.

The frame rate is either 30 fps or 24 fps. Since smartphones do not support

raw video format recording, we converted the captured sequences into the YUV

format with the FFmpeg tool. To implement our simplified motion estimation

algorithm we modified the estimation functions in the source code of the x264

codec software.

We report the macroblock comparison times in the estimation step and

record the real time cost in the reference macroblock search and the block dif-

ference computation. Figures 6.5(a) and (b) show the results from our method

and the original HEX algorithm. For every motion type processed differently

by our approach, we successfully reduce the block comparison time and the real

114

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

Panning
Tilting

Tracking
Dolly in

Dolly out

B
lo

ck
 c

om
pa

ris
on

 ti
m

es

Motion Type

Original Motion Estimation
Simplified Motion Estimation

(a) Block comparison time

 10
 15
 20
 25
 30
 35
 40
 45
 50

Panning
Tilting

Tracking
Dolly in

Dolly out

T
im

e
(s

ec
on

d)

Motion Type

Original Motion Estimation
Simplified Motion Estimation

(b) Motion estimation time

 43
 44
 45
 46
 47
 48
 49
 50

Panning
Tilting

Tracking
Dolly in

Dolly out

P
S

N
R

 (
db

)

Motion Type

Original Motion Estimation
Simplified Motion Estimation

(c) PSNR

Figure 6.5: Macroblock comparison times, real time cost in the motion estima-
tion algorithm and PSNR results for the original and simplified methods.

time cost in the motion estimation. Although we sacrifice some video quality,

the results of the PSNR comparison (see Figure 6.5(c)) show that our method

only introduces a relatively small decrease in quality. The reason of this very

slight impact is that only minor local motion is involved in most of the outdoor

115

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Timecode

matching

Sensor data + Video clips

GeoVid app for iOS and Android

Video collection and upload Interface and visualization

Upload

videos

Stream

videos

Subshot Segmentation

Motion Type CharacterizationUpload sensor data

Automatic Motion Type Characterization

Query motion information

Analyzed

results

Database

Video Database

Figure 6.6: Architecture of the Motch system.

videos that capture landmarks and attractions.

6.5 Demo System for Camera Motion Charac-

terization

Our demo system, Motch, efficiently segments videos and classifies each sub-

shot’s motion type purely based on the geographic sensor information of a video

clip [125]. We utilize the open-source, NoSQL MongoDB database system 1 to

store and index video motion types, and all motion information is wrapped as

a RESTful service. When users upload sensor-rich videos to our server, the

system immediately processes the associated sensor data and produces motion

type results for these videos. Other applications are then able to utilize the

motion information through our APIs and based on given video IDs. Finally,

the Motch system provides an interactive interface compatible with browsers

on both PCs and tablets. We dynamically present the visualization of spa-

tial video scenes, motion type statistics and subshot details. Users are also

able to scan through a video based on motion segmentation. Unlike traditional

1http://www.mongodb.org

116

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

Figure 6.7: Screenshot of the Motch interface.

content-based methods, Motch does not analyze video content throughout the

described process and is hence very efficient and fast.

Figure 6.6 illustrates Motch’s overall architecture. When users upload a

video and its associated sensor measurements (in JSON format) to our GeoVid

server from a mobile app, the server processes the GPS location and the viewing

angle of every video frame and inserts them into a spatial database to make the

information searchable. To enable effective wide-area network transmissions we

transcode the videos to a lower 768 kbps bitrate and 480×360 pixel resolution.

The Motch user interface visualizes the processed motion type information

for different video subshots and allows users to experience fused video browsing

based on its geographic properties. Figure 6.7 illustrates the system interface.

On a Google Maps canvas multiple videos are presented as pins, which indicate

the beginning location of each video clip. The set of videos is automatically

updated whenever a user navigates across the map. When the mouse pointer

117

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

hovers over one of the video pins, the corresponding GPS trajectory and motion

type information are asynchronously retrieved from the server and displayed on

the map interface.

When a user clicks or touches a pin, a map-overlaid video player is launched

and the video is rendered from the designated starting location. During the

playback of the video, the camera’s current location and viewable scene are

animated along the corresponding GPS trajectory, using the Raphaël vector

graphics engine and HTML5 MediaElement APIs. Meanwhile, a motion clas-

sification statistics histogram of this video is presented below the player, and

different subshots with various motion types are marked with different colors.

All these results are computed and rendered in real time from our RESTful ser-

vice output data. Moreover, users are able to click the “fast forward” button in

the upper right corner of the player to directly jump to the next subshot with a

different motion type. We also expose the motion type and related video time

code information through web APIs to facilitate other video retrieval and anal-

ysis applications’ access. Other researchers can also submit their own motion

type characterization algorithms and hence visually evaluate their methods’

quality through our system. Our interactive interface enhanced with visual

features provides the user with a clear understanding of the various motion

types in the video.

6.6 Summary

We propose a novel camera motion type characterization framework purely

based on sensor data analysis, as well as a demo system, called Motch. Our

method processes the sensor data collect by mobile devices to automatically

118

CHAPTER 6. SENSOR-ASSISTED CAMERA MOTION
CHARACTERIZATION AND VIDEO ENCODING

detect motion transition boundaries and to precisely classify the motion type

of each video segment based on a camera movement and shooting direction

change analysis. The system achieves highly accurate classification results from

our experimental evaluation (around 88%). We also report on utilizing sensor

information to simplify motion estimation in the H.264/AVC codec. With the

proposed approach an almost equivalent PSNR performance can be maintained

even with a much smaller search window for motion estimation. This leads to

significantly reduced computations and therefore diminished hardware require-

ments and longer battery life for smartphones.

119

CHAPTER 7

Sensor-assisted Key Frame Selection for

3D Model Reconstruction

7.1 Introduction

Given the video contents that are automatically geo-tagged at the fine gran-

ularity of frames, another application that will benefit from our sensor data

analysis is the automatic 3D reconstruction from the geo-tagged videos. This

Chapter presents the methodology of the key frame selection from crowdsourced

videos and the effectiveness and efficiency of our approach in later 3D model

reconstruction phase.

Recently there has been significant progress in techniques that focus on

recovering 3D scene geometry from multiple 2D images. Traditionally the im-

ages used for such purposes are carefully and specifically recorded to show the

120

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

Geospatial Sensor Database

Video Database

Crowdsourced geo-tagged
 mobile video

c) Geo-based locality preserving
key frame selection

Extracted key frame set 3D model
reconstruction

b) Geo-based adaptive
key frame selection

a) Geo-based heuristic
key frame selection

Transcoding and
Management

Matching and
Indexing

Video upload

Sensor data
upload

Two public available apps,
Geovid and MediaQ

frames

Attached
sensor
data

a) SIFT by
VLFeat and

feature
matching

b) bundle
adjustment

c) CMVS

and PMVS2

Extracted key location set

Figure 7.1: System overview and a pipeline of video/geospatial-sensor data
processing.

candidate 3D object from different viewing angles while avoiding too much spa-

tial overlap. It is important to obtain a near-optimal number of images from

distinct viewing angles because too few images will result in visual “holes” in

the reconstructed object, while too many images will unnecessarily increase the

computational load and execution time and in some cases introduce artifacts.

Recently, many scenes (especially outdoors) are being captured from mul-

tiple viewpoints through UGVs. We explore the feasibility of using a set of

UGVs to reconstruct 3D objects within an area. Such a method introduces the

following challenges. First, videos are recorded at 25 or 30 frames per second

and successive frames are very similar. Hence not all video frames should be

used – rather, a set of key frames needs to be extracted that provide optimally

sparse coverage of the candidate object. Second, the camera position and visual

trajectory of UGVs are determined by the actions of an individual user. Such

121

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

videos are not usually captured with 3D reconstruction in mind.

To overcome above issues we leverage another technological trend – the geo-

spatial metadata attached to videos at a fine-granular frame level. Figure 7.1

illustrates the system overview of the proposed 3D model reconstruction frame-

work. We provide two mobile apps, GeoVid and MediaQ in the public market

for users to record geo-tagged videos. These crowdsourced videos are after-

wards uploaded to and transcoded in our cloud servers for 3D reconstruction

use. All related geospatial sensor data are processed and indexed in our NoSQL

database as well. For a given object, our key frame selection algorithms query

the according georeferenced data, compute the most representative key frames

and extract them from the video database. Finally, based on the informative

key frame set efficiently determined by our method, we leverage an open-source

structure-from-motion (SfM) library to reconstruct the 3D model of the target

object.

The main component of this video and geospatial sensor data processing

pipeline is the active key frame selection algorithm based on a manifold adap-

tive kernel and locality preserving reconstruction. To efficiently determine an

effective set of key frames, we leverage (a) the available crowdsourced UGVs

in the region and (b) the frame-attached geo-spatial metadata. In effect, our

approach enables the repurposing of UGVs for 3D object reconstruction. Our

algorithms select the most representative video frames with respect to the in-

trinsic geometrical structure of their geospatial data. We assume that each

UGV frame and its geospatial neighbors lie close to a locally linear patch of

the manifold. The manifold structure is characterized by the linear coefficients

that reconstruct each video frame’s geo-location from its neighbors. A trans-

ductive learning algorithm is applied to reconstruct the whole UGV set. The

122

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

most representative UGV frames are selected whose geo-location is chosen to

reconstruct the original frame set best. Our experimental results demonstrate

not only the computational feasibility of the proposed method but also the

output quality of the generated 3D models.

7.2 Geo-based Locality Preserving Key Frame

Selection

With the FOV model, each frame corresponds to a camera geo-location and

orientation. Here we focus on the frame’s location and viewing direction in the

geographic domain instead of the traditional pixel domain to extract the most

representative frames for 3D reconstruction. Since some UGVs in the candidate

area are not recording the target object, we first filter out all the frames that

do not contain the target

〈Li, θi, αi〉 : ‖D(Li, q)− θi‖ ≤
α

2
(7.1)

where 〈Li, θi, αi〉 is the FOV triplet of the ith frame, q is the geo-location of the

target object, andD is a direction function that calculates the viewing direction,

given two positions. ‖ ·‖ is the angular distance between the two directions. As

illustrated in Figure 7.2, the black points are the frames’ camera locations from

an aerial view. Without loss of generality, we assume that those frames record

the object in the center (denoted with a blue square) after the filtering phase.

The objective of our algorithm is to select a subset of frames (denoted with red

stars), which maintain a minimal, but full, coverage of the target object in the

geographic space. In other words, the information loss from any viewing angle

123

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.2: Illustration of geo-based active key frame selection algorithm in 2D
space. Black points indicate the frames’ geo-locations from aerial view. Red
stars describe the location of selected key frame subset. Blue square denotes
the location of the target object.

towards the target object is minimized by our key frame selection method.

Let P = {p1,p2, . . . ,pn} be the set of all frame geo-location data points

(every pi is equal to Li in frames’ FOV triplets) and K = {k1,k2, . . . ,kt} ⊂

P , termed key location set in this paper, be the set of the selected location

points. Each location data point consists of a coordinate in the World Geodetic

System 1984 [18]. Here we propose a coverage gain function in the geographic

space, g(p) = wTp, to quantify the target object’s viewing angle coverage.

Suppose l = g(p) + ε is a real-valued observation from the geographic coverage

relation between p and the target object’s location q, where ε ∼ N (0, σ2) is

the measurement error. Thus, the maximum likelihood estimate of w can be

obtained by

ŵ = arg min
w

t∑
i=1

(wTki − li)2 (7.2)

The key idea of our selection approach is to minimize the difference between the

coverage gain based on all frame locations and the key location set. Specifically,

the average expected square difference of the estimation function g needs to be

124

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

minimized. We start by stating the problem formally.

Problem Statement. Given a set of frames F = {f1, f2, . . . , fn} and their

corresponding geo-locations P = {p1,p2, . . . ,pn}, we find a key frame subset

F̃ whose corresponding geo-locations are K = {k1,k2, . . . , kt} ⊂ P , and the

average expected square coverage gain difference, Gdiff = 1
n

∑n
i=1E(li−ŵTp)2,

is minimized.

7.2.1 Heuristic Key Frame Selection

Intuitively, in 2D space of the World Geodetic System (usually an aerial view),

for the frames with the same viewing direction towards the target object, we

only select the ones in which the target object occupies the largest part of the

field-of-view. In other words, from a pixel domain perspective, from the same

viewing direction we choose the frame in which the target appears dominantly

in the image. This way we can theoretically extract the most diverse viewing

directions with a fixed number of frames. However, in a practical implementa-

tion, the “same viewing direction” needs to be quantified, which might be all

the frames within a certain degree range. Thus, this method has difficulty to

achieve a globally optimal solution.

The heuristic method is designed for a baseline comparison and it uses a

filter-refine paradigm. It first filters out all video frames that do not capture the

target based on their θ value in the accompanying sensor data, which is identical

to the step we performed in Equation(7.1). In the refinement step, as illustrated

in Figure 7.3(a), we equally divide 360 degrees into N directions around the

given object q and partition the frame set into N groups based on the camera

viewing directions θ. For each group, we select the most geographically covered

125

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

'
0

θ
'
1

θ
'
1-n

θ

q
L

……

(a)

2

α
1p
p

'p

q
L

f

(b)

Figure 7.3: (a) Divided direction groups. (b) Computation for the direction-
location combined score.

frame f〈p, θ, α〉 determined by a linear combination score of the distance and

the direction difference:

Iscore(f, q) = β × Dist(q,p′)

MaxDist
+ (1− β)× (1− cos(θ′j, θ)) (7.3)

As shown in Figure 7.3(b), the point p′ is obtained with a translation by the

Euclidian distance Dist(p,p′) = Dist(p1, q) = L/sin(α/2) along the viewing

direction θ of frame f . MaxDist represents the maximal euclidian distance

of pairs of distinct objects in F for normalization. The cosine cos(θ′j, θ) is the

direction similarity between the group direction θ′j and the viewing direction θ

of f . The tuning parameter β adjusts the balance between the camera location

distance and the direction difference. Finally, in each group, the highest scored

frame is extracted into the key frame set. We consider frames within a 10-

degree range as belonging to the same viewing angle bin; therefore N is set to

36 and β to 0.2 in our experiments.

7.2.2 Adaptive Key Frame Selection

Since the heuristic selection method hardly achieves an optimal solution, we

turn to incorporate a manifold structure into reproducing a kernel Hilbert space

126

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

to analyze the spatial relationship among the frames. We derive the expected

square coverage gain difference as follows:

Gdiff =
1

n

n∑
i=1

E(ŵTpi − li)2

=
1

n

n∑
i=1

pi
T [E(w − ŵ)(w − ŵ)T]pi

(7.4)

By the Gauss-Markov theorem, the covariance matrix of (w − ŵ) is σ2 times

the inverted Hessian of
∑t

i=1(wTki − li)2. So Gdiff can be written as

Gdiff = σ2 + σ2Tr(P T (KKT)−1P)

where P = [p1, . . . ,pn] and K = [k1, . . . ,kt]. We find that the measurement l

does not appear in the equation, so the average expected square coverage gain

difference only depends on key location set K.

This mathematical structure and its semantic objective can be formulated

as Transductive Experimental Design (TED), an active learning model from

the machine learning community [130]. This problem is often referred to as

experiment design in statistics [16] and such an optimization has been verified

as being an NP-hard problem [131]. We employ a convex relaxation of the

minimization problem proposed by Yu et al. [132]:

min
β,αi∈IRn

n∑
i=1

‖pi −KTαi‖2 +
n∑
j=1

α2
i,j

βj
+ γ‖β‖1

where αi = [αi,1, . . . , αi,n]T and β = [β1, . . . , βn] are the auxiliary variables

to control the inclusion of examples into the key location set. This has been

proved to be a convex problem and a global optimal solution is guaranteed. All

127

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

candidates with βj = 0 can be rejected, since the l1-norm ‖β‖ enforces a sparse

β.

To achieve the best viewing angle coverage around the target object in

geographic space, intuitively we need to take the geometric structure of the

data points into consideration. Thus we adopt the Manifold Adaptive Ker-

nel [107] which incorporates the manifold structure into the reproducing kernel

Hilbert space (RKHS) to reflect the underlying geometry of the data. To model

the structure, we also construct a nearest neighbor graph whose weight matrix

elements Wij are 1 if two data points exist within each other’s t nearest neigh-

bors [19]. The graph Laplacian accordingly is defined as L = W ′ −W where

W ′ is given by W ′
ii =

∑
jWij. Denoting K as a commonly used kernel such as

Gaussian kernel, we obtain the manifold adaptive reproducing kernel as:

KM (p,k) = K (p,k)− λsTp (I + LH)−1Lsk

where sp = (K (p,p1), . . . ,K (p,pn)), I is an identity matrix, λ is a constant

controlling the smoothness of the functions and H is the kernel matrix in H. H

is a complete Hilbert space of functions E → IR, where E is a compact domain

in a Euclidean space or a manifold [107]. Cai et al. have shown that this

optimization problem can be solved by performing a convex TED in manifold

adaptive kernel space [19]. We utilize their model by initializing αi,j = 1 and

iteratively computing

βj =

√∑n
i=1 α

2
i,j

γ
, j = 1, . . . , n,

αi = (diag(β)−1 +H)−1ui, i = 1, . . . , n,

128

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

until convergence, where ui is the ith column vector of H and Hij = K (pi,pj).

The data points afterwards can be ranked in a descending order with regard to

βj and then selecting the top t as key location set K. However, after the convex

relaxation of the above problem, an optimal solution is also not guaranteed.

Moreover, the locality information can be better formulated into the solution.

7.2.3 Locality Preserving Key Frame Selection

Based on the locality of frames pointing at the same object, each frame location

can be linearly reconstructed by its spatial neighboring ones, where the optimal

reconstruction coefficients are calculated by [136]:

arg min
W

n∑
i=1

‖pi −
n∑
j=1

W ijpj‖

s.t.
n∑
j=1

W ij = 1, i = 1, . . . , n

W ij = 0 if pj /∈ SN (pi)

(7.5)

where W ij denotes the contribution of the jth frame to construct the ith frame

in terms of coverage gain and SN (pi) contains the spatial neighbors of the ith

location.

To evaluate the representativeness of the selected geo-location, we develop

a linear reconstruction approach. The reconstruction error reflects the quality

of the selected locations. Let {r1, r2, . . . , rn} be the constructed locations which

are determined by minimizing the following cost function:

ε(r1, r2, . . . , rn) =
t∑
i=1

‖rsi − psi‖
2 + µ

n∑
i=1

‖ri −
n∑
j=1

W ijrj‖2 (7.6)

129

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

where µ is the regularization parameter, t denotes the number of selected loca-

tions, and S = {s1, s2, . . . , st} is the set of indices of the selected frames. The

first term is the cost function to fix the coordinates of the selected locations.

The second term requires that the reconstructed locations share the same local

structure with the original ones.

Let P = [p1,p2, . . . ,pn], R = [r1, r2, . . . , rn] and Γ be an n × n diagonal

matrix whose diagonal entries Γii are 1 if i ∈ S and 0 otherwise. The above

cost function can be reorganized into a matrix form as:

ε(R) = tr((R− P)TΓ(R− P)) + µtr(RTMR) (7.7)

where M = (I−W)T (I−W). To minimize Equation (7.7), we set the gradient

of ε(R) to 0 and obtain:

Γ(R− P) + µMR = 0 (7.8)

Thus the reconstructed locations are given by:

R = (µM + Γ)−1ΓP (7.9)

Based on the derived reconstructions, the reconstruction error is measured

as:

ε(ps1 ,ps2 , . . . ,pst) = ‖P −R‖2
F

= ‖P − (µM + Γ)−1ΓP‖2
F

= ‖(µM + Γ)µMP‖2
F

(7.10)

130

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

where ‖ · ‖2
F is the matrix Frobenius norm.

Minimizing Equation (7.10) is computationally expensive due to its com-

binatorial nature. To accelerate the learning process, a sequential selection is

developed. Denote a set of selected locations as {ps1 ,ps2 , . . . ,pst′}. Let Λi be

an n×n matrix whose iith entries are 1 and all others are 0. The st′+1
th location

is determined by solving:

st′+1 = arg min
i/∈s1,s2,...,st′

‖(µM + Γ + Λi)
−1µMP‖2

F (7.11)

Since matrix M in Equation (7.11) is sparse, we leverage the Sherman-

Morrison-Woodbury formula to accelerate the matrix inversion computation [38]

and obtain:

(µM + Γ + Λi)
−1 = Q− Q∗iQi∗

1 +Qii

and Q = (µM + Γ)−1

(7.12)

where Q∗i and Qi∗ indicate the ith column and the ith row of Q respectively.

Thus the objective function in Equation (7.11) can be written as:

‖(µM + Γ + Λi)
−1µMP‖2

F = µ2tr(QMPP TMQ)− 2µ2MPP TMQQ∗i
1 +Qii

+
µ2Qi∗Q∗iMPP TMQ∗i

(1 +Qii)2

(7.13)

Let A = MPP TM , then the optimization problem in Equation (7.11) can

131

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

be reorganized as:

st′+1 = arg min
i/∈s1,s2,...,st′

1

1 +Qii

(
Qi∗Q∗iQi∗AQ∗i

1 +Qii

− 2Qi∗AQQ∗i

)
(7.14)

7.3 3D Model Reconstruction

We conduct the 3D reconstruction as follows. First, from the frame dataset

we extract features with the Scale-Invariant Feature Transform (SIFT) method

from the VLFeat library. Afterwards, feature matching and bundle adjustment

are performed with the SfM bundler library [109, 110]. Instead of estimating the

parameters for all cameras and tracks at once, an incremental approach is em-

ployed in this step. The parameters of one single pair of cameras are estimated

initially. To avoid the degenerate cases, the pair of images that has the highest

matches is chosen. New cameras are added cumulatively and their extrinsic

parameters are initialized by the direct linear transform (DLT) technique in-

side a RANSAC procedure. Meanwhile, the estimate of the intrinsic parameter

matrix is provided by DLT as well. This information is later used to initialize

the focal length of the new camera. Rather than involving a single camera at

a time into the optimization, multiple cameras are added at every increment.

When the camera with the greatest number of matches are located, then any

camera whose matches number is larger than 75% of the highest matches to

the existing 3D points are deemed as one adding batch [109]. For each camera

increment, the tracks observed by the new camera are added into the optimiza-

tion and the sparse bundle adjustment library of Lourakis and Argyros [80] is

utilized to minimize the objective function at every iteration. A track is added

if other recovered camera observes it, and a well conditioned location estimate

132

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

Total # of videos 345
Total # of video frames 77,642

Average length of video (seconds) 55

Table 7.1: Statistics of video dataset.

Object 1 Object 2 Object 3 Object 4
Average mean 3.961 7.069 11.742 4.663

Standard deviation 0.947 0.637 23.306 0.517
Object 5 Object 6 Object 7 Object 8

Average mean 5.090 2.438 1.429 4.161
Standard deviation 1.814 0.162 0.381 0.520

Object 9 Object 10 Object 11 Object 12
Average mean 6.280 13.079 3.196 3.891

Standard deviation 1.937 4.902 0.947 1.231

Table 7.2: The influence to Gdiff value by choosing different numbers of nearest
neighbors.

is given by triangulating. After every run of the optimization, a detection step

is followed to remove the outlier tracks that contain any keypoint with a high

reprojection error. The optimization is performed again until no more outliers

are detected.

Next the output of the SfM step is fed into the Clustering Views for Multi-

view Stereo (CMVS) tool to divide the image set into clusters of manageable size

and allow them to be processed independently and in parallel [33]. Eventually

the Patch-based Multi-view Stereo Software (PMVS2) is executed to produce

a set of oriented points instead of a polygonal (or a mesh) model, where both

the 3D coordinates and the surface normals are estimated at each oriented

point [34].

133

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

7.4 Experiments

The main purpose of our key frame selection strategy is to maintain as much

view coverage of the target object as possible with the minimally necessary

number of frames. Therefore, we focus on two aspects in our experimental

evaluation: (a) the geographic coverage gain difference obtained between the

original frame set F and the selected key frame set F̃ , and (b) the processing

time reduction achieved for the following 3D reconstruction phase based on

these two frame sets with different cardinalities.

In our experiments we utilize the public geo-crowdsourced UGV data from

the GeoVid app and portal. We retrieved a video dataset as well as its corre-

sponding geo-sensor dataset recorded in two cities, Los Angeles and Singapore.

Table 7.1 shows the statistics of the crowdsourced video dataset. Various mobile

devices were used for video recording, including the Motorola Milestone, HTC

EVO 3D, Samsung Galaxy S4, Asus Transformer and Google Nexus 4. The

video resolution is set to 720 × 480 by the app. We selected 12 target objects

(2 in Singapore and 10 in Los Angeles) to which we applied our active key frame

selection methods before the 3D reconstruction. Those target objects need to

be outdoor and there are relatively large amount of accumulated UGVs around

the objects, so that the 3D model reconstruction is feasible. Thumbnails of the

selected target objects are illustrated in Figure 7.4.

7.4.1 Geographic Coverage Gain

In order to evaluate whether our proposed algorithm is able to obtain a minimal

coverage gain difference, namely a coverage gain close to the one achieved with

the whole frame set, we implemented all three key frame selection strategies

134

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

Figure 7.4: The sample frames of the selected target objects.

based on geographic analysis for comparison.

In each experiment, we selected at most N (which is 36 described in sub-

section 7.2.1) frames as a subset (the number of frames may be less due to

the absence of coverage from a certain direction in the crowdsrouced UGVs).

135

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 9 12 15 18 21 24

A
ve

ra
ge

 E
xp

ec
te

d
S

qu
ar

e
 C

ov
er

ag
e

G
ai

n
D

iff
er

en
ce

Size of nearest neighbors

Obejct 1
Obejct 2
Obejct 3
Obejct 4
Obejct 5
Obejct 6

Figure 7.5: Average expected square coverage gain difference on various sizes
of nearest neighbors.

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 E
xp

ec
te

d
S

qu
ar

e
 C

ov
er

ag
e

G
ai

n
D

iff
er

en
ce

Object No.

Locality preserving key frame selection method
Adaptive key frame selection method
Heuristic key frame selection method

Figure 7.6: Average expected square coverage gain difference of 12 target ob-
jects.

We set t constant to ensure that the key frame sets have the same cardinality

for all three methods. For the adaptive method, we set all parameters at the

same values as tested in MAED [19]. For the locality preserving method, we

first evaluate the influence of choosing different nearest neighbor parameters.

Table 7.2 reports the average mean and standard deviation of Gdiff results for

136

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

−118.2904 −118.2903 −118.2903 −118.2902
34.0174

34.0174

34.0174

34.0175

34.0175

34.0175

34.0175

(a)

−118.2904 −118.2903 −118.2903 −118.2902
34.0174

34.0174

34.0174

34.0175

34.0175

34.0175

34.0175

(b)

Figure 7.7: Illustration of key frame selection results with two target objects
in aerial view. X- and y-axis denote latitude and longitude. (a) and (b) are
the selection results of object No. 1 with locality preserving algorithm and the
heuristic method, respectively. Black and red points indicate the geo-locations
of F and F̃ , respectively. The blue square indicates the geo-location of the
target object.

all experimental objects by using different numbers of neighbors. We tune this

parameter from t/4 to 2t/3 to see its effect to the final result. Except the ob-

servable change on Object 3 (see Figure 7.5), the other objects’ Gdiff standard

deviation is relatively small (near or less than 1) which indicates the stability

of our key frame selection algorithm.

Therefore, we set the number of nearest neighbors as one third of the

total candidate frames, n/3 and set the regularization parameter µ to 0.01

empirically. Figure 7.6 illustrates the average expected square coverage gain

difference, i.e., Gdiff , calculated between the key frame subset and the whole

frame set. The orange bar indicates the difference obtained by the key frames

selected with the heuristic method. The blue and black bars are the results

of F̃ extracted by our proposed algorithm, adaptive and locality preserving

methods, respectively. Considering all the twelve objects of the experiments,

our active selection method consistently achieves less difference, in other words,

137

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

−118.2874−118.2874−118.2873−118.2873−118.2873−118.2873−118.2873
34.0212

34.0212

34.0212

34.0212

34.0212

34.0213

34.0213

34.0213

(a)

−118.2874−118.2874−118.2873−118.2873−118.2873−118.2873−118.2873
34.0212

34.0212

34.0212

34.0212

34.0212

34.0213

34.0213

34.0213

(b)

Figure 7.8: Illustration of key frame selection results with two target objects
in aerial view. X- and y-axis denote latitude and longitude. (a) and (b) are
the selection results of object No. 2 with locality preserving algorithm and the
heuristic method, respectively. Black and red points indicate the geo-locations
of F and F̃ , respectively. The blue square indicates the geo-location of the
target object.

it is successful in finding a subset that achieves a very close coverage of the target

object in geographic space compared to the whole frame set. Moreover, for

some objects such as No. 12 and No. 4, the gain difference is notably decreased.

In the comparison between the adaptive selection algorithm and the locality

preserving selection method, since the locality information is well formulated

and included, we find the latter one always performs better (in term of lower

coverage gain difference), with the only exception of object No. 10.

Figure 7.7 and 7.8 illustrate two comparison results in detail, between the

heuristic method and the locality preserving method. We plot the camera loca-

tions of the selected key frames in an aerial view. As illustrated, the key frame

set selected by our method includes a wider viewing diversity towards the first

object compared with the heuristic method (Figure 7.7(a) and 7.7(b)). For the

second object, by contrast, the subsets of the two approaches overlap to a large

degree while the result from our method is still slightly better (Figure 7.8(a)

138

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5 6 7 8 9 10 11 12

P
ro

ce
ss

in
g

T
im

e
of

 3
D

 R
ec

on
st

ru
ct

io
n

(s
ec

on
ds

)

Object No.

Reconstruction on key frames
Reconstruction on fixed duration frame samples

Figure 7.9: Execution time of target object’s 3D reconstruction process.

and Figure 7.8(b)). On average, compared with the heuristic approach, our

locality preserving key frame selection algorithm decreases the expected square

coverage gain difference by 83.14%.

7.4.2 3D Reconstruction Performance

We performed all 3D reconstruction experiments on a 3.4 GHz Intel Core i7-

2600 CPU with 4 cores and 8 GB memory. Figure 7.9 illustrates the execution

time of the whole 3D reconstruction process for each object. Since the cardi-

nality of the extracted key frame set from all three methods are set to be the

same in our experiment, here we only use the key frames extracted by our lo-

cality concerned method (which obtains the lowest Gdiff) for 3D reconstruction

comparison. In order to show the efficiency and effectiveness of our active key

frame selection method, we sample the collected UGV frames at a fixed dura-

tion (1 second in this experiment) as a comparison. The black bar indicates the

processing time based on our extracted key frames F̃ , which is significantly less

139

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10 11 12

U
se

r
pr

ef
er

en
ce

 s
co

re

Object No.

User preference scores

Figure 7.10: Quality comparison between two 3D reconstruction results on two
frame sets for 12 target objects.

than the processing time based on frames sampled at fixed intervals described

in the orange bars. On average, the reconstruction time is shortened by around

15 minutes and the maximal number of frames in F̃ is only 34.

Since we currently do not have a ground-truth 3D model for the recon-

struction evaluation, we conducted a user study to compare the quality of the

dense point cloud results based on two frame sets. The participants were re-

quested to carefully examine the 3D scene results visualized via MeshLab1. For

each target object, two results built from a fixed duration sampled frame set

and F̃ were presented, respectively. After judiciously comparing two 3D scene

results, participants were asked to provide marks on the quality for both of

them (4 – the quality of the reconstruction result based on F̃ is much better,

0 – the quality of the reconstruction result based on fixed duration frame sam-

ples is much better). Twenty people participated in this study: 14 males and 6

females, including students, engineers, professionals, research staff and faculty.

1meshlab.sourceforge.net

140

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

(a)

(b)

Figure 7.11: Illustration of 3D reconstruction results of 8 target objects. The
top row shows the reconstructed 3D models based on the fixed duration sampled
frame set. The bottom row shows the results based on our active key frame
selection.

They were asked to consider the completeness of the target object and whether

artifacts were visible. We hid the frame set sources of the two results to ensure

an unbiased comparison. Figure 7.10 summarizes the results of the user study.

As shown, most reconstruction results based on two frame sets were almost

the same quality (scores near 2). The key frame set using the active selection

method performed slightly worse on objects No. 7 (scores below 2). On the

other hand, for some objects such as No. 1, the reconstruction results based on

141

CHAPTER 7. SENSOR-ASSISTED KEY FRAME SELECTION FOR 3D
MODEL RECONSTRUCTION

F̃ were much better than the other frame set. Some 3D reconstruction results

from the two frame sets are shown in Figure 7.11.

7.5 Summary

We presented a novel 3D model reconstruction framework based on the spatial

data analysis of the crowdsourced geo-tagged UGVs. As a key component, we

leveraged the geospatial properties of those video sources and devised active

key frame selection methods upon them. The concept of geographic coverage

gain was introduced and the gain difference between the original frames and

the key frames was minimized. Our algorithm also incorporates the manifold

adaptive kernel and locally linear reconstruction analysis to reflect the underly-

ing geometry. Therefore, the key frame set extracted by our methods maintain

the best coverage of the target object in geographic space. The experimental

results demonstrate both the effectiveness (averagely the same reconstruction

quality) and efficiency (much shorter execution time) of our approach. We il-

lustrate that the coverage difference between the key frames and the overall

frame set is reduced. Additionally, the execution time of the 3D reconstruc-

tion is shortened by using our selected key frames while the model quality is

preserved. Due to pervasive trends and scalability advances in processing con-

textual data, key frame selection based on geo-sensor data analysis is practical

and can complement a content-based approach. In our future work we plan to

combine visual features and more sensors to help with frame extraction.

142

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we examined how to effectively enhance the spatial sensor

data accuracy and how to efficiently analyze sensor data to facilitate more ver-

satile and accurate mobile media applications. Several methodologies related to

spatial sensor data processing and analysis in the mobile context are proposed.

We summarize our contributions as follows:

First, we presented two data correction frameworks for pedestrians-attached

and vehicle-attached location sensor data, respectively. We studied the data

characteristics and tackled the challenges with linear estimator based on stochas-

tic process and map matching techniques. Our solutions enhanced the location

accuracy purely relying on the positioning observations for pedestrians-attached

data. As a result, the proposed Eddy system is capable of dynamically selecting

143

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the window size according to the candidate state probability distribution. It

outperforms existing approaches on both accuracy and latency aspects.

Second, we presented the design and prototype implementation for camera

orientation data correction based on geospatial analysis and image processing

techniques. We analyzed the viewable scenes of mobile videos and devised

algorithms to estimate more precise orientation data. We demonstrated the

effectiveness and efficiency of our methods in experiments.

Afterwards, with more accurate and reliable sensor information obtained,

we explore the possibility of applying sensor analysis techniques to new mobile

media applications, such as video encoding and 3D model reconstruction. In

application part, we first improved the video encoding efficiency based on a

sensor-assisted camera motion type characterization framework. Our approach

automatically detects video subshot segment boundaries and precisely classifies

the motion type of each unit based on a camera movement and shooting direc-

tion change analysis. A real-time camera motion characterization demo system

was presented as well to show the efficiency advantage of our light-weight sen-

sor data based techniques. We also applied sensor data analysis to simplify the

motion estimation in H.264/AVC codec. The search window is decreased and

an almost equivalent PSNR performance is obtained. Consequently, the en-

ergy computation would be significantly reduced and therefore provide a longer

battery life for smartphones with video recording operations.

In the second application, we presented a sensor-assisted UGV-based 3D

model reconstruction framework. The system analyzes the spatial sensor data

from UGVs to select the most representative key frames as a 3D reconstruc-

tion input set. Inspired by the active learning theory, we devised an active

key location selection algorithm using a manifold adaptive kernel and locality

144

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

preserving reconstruction method. By leveraging the sensor data, our solution

provided a key frame set with an improved coverage of the target 3D object

from distinct viewing angles in geographic space, but with much fewer frames.

In experiments, we showed the significant decrease on the execution time of

the whole 3D reconstruction process, while the quality of output 3D models is

preserved.

8.2 Future Work

Our research has shown the great potential of leveraging spatial sensor data for

mobile media application use. For each proposed work, we listed some appli-

cable future directions can be done to make our system more robust or more

adaptable. For example, in video encoding complexity reduction application,

we would also look into the utilization of gyroscope which is a new emerg-

ing embedded device and has been widely equipped into current mobile phone

models. It is capable of measuring the orientation change and suits the mo-

tion prediction very well since it is very sensible to a slight movement and the

reported relative value is enough for the encoding purpose.

Moreover, there exist several other potential fields that the sensor data

analysis could also be applied. We surveyed and plan to extend our research

into the location-aware video delivery system. As a result of the pervasiveness of

wireless connectivity integrated handheld devices and the rapid deployments of

the wireless network technology, streaming multimedia content to mobile peers

becomes a popular service that is increasingly available everywhere. Mobile

data traffic, according to an annual report from Cisco Systems, continues to

grow significantly [47]. The forecast estimates that mobile data traffic will grow

145

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

at a CAGR of 61 percent from 2013 to 2018. Moreover, an increasing number

of users enjoy the multimedia content in the high-speed vehicular mobility,

such as on the public transportation during the daily commute or travelling.

The network condition, however, is not always stable along the whole journey

of the media content consuming trip. A number of studies have reported the

significant bandwidth variation over different geo-locations. Even within the

same area/cell site, the bandwidth may vary due to factors like the surrounding

environment and the time of day. One typical situation is that a user is watching

an online video in a fast-moving train, whose location is continuously changing.

The streaming service in this case may be effected or even disrupted due to

the perceptible bandwidth disparity. Meanwhile, it is extremely difficult for

providers to eliminate bandwidth variation across the entire service area in

geographic space.

Recently attention has focused on the Dynamic Adaptive Streaming over

HTTP (DASH) standard. Its main features consist of (a) splitting a large video

file into segments, (b) providing client-initiated flexible bandwidth adaptation

by enabling stream switching among differently encoded segments. Building on

this technique, we plan to investigate a smart media delivery system, with the

novel feature of future bandwidth prediction for mobile devices, in order to deal

with such available bandwidth variation phenomenon. Inspired by the corre-

lation, explored by several studies [98, 129, 42], between geospatial space and

bandwidth dimension, we plan to fuse the bandwidth map gathering function-

ality into our current community-driven spatial sensor data crowdsourced plat-

form. It will enable the near-future bandwidth availability estimation within

an accepted accuracy, and a media streaming system with quality adaptation

taking future bandwidth estimation into consideration.

146

Bibliography

[1] F. Ahammed, J. Taheri, A. Zomaya, and M. Ott. VLOCI2: Improving 2D Location

Coordinates using Distance Measurements in GPS-Equipped VANETs. In 14th ACM

International Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, 2011. 5

[2] M. T. Ahmed, M. N. Dailey, J. L. Landabaso, and N. Herrero. Robust Key Frame

Extraction for 3D Reconstruction from Video Streams. In International Conference on

Computer Vision Theory and Applications, pages 231–236, 2010. 25

[3] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching Planar Maps. In 14th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 589–598. Society for Industrial

and Applied Mathematics, 2003. 16

[4] H. Alt and M. Godau. Computing the fréchet distance between two polygonal curves.

International Journal of Computational Geometry & Applications, 5(01n02):75–91,

1995. 16

[5] E. Ardizzone, M. La Cascia, A. Avanzato, and A. Bruna. Video Indexing Using MPEG

Motion Compensation Vectors. In IEEE International Conference on Multimedia Com-

puting and Systems, volume 2, pages 725–729, July 1999. 22, 23

[6] S. Arslan Ay, S. H. Kim, and R. Zimmermann. Relevance Ranking in Georeferenced

Video Search. Multimedia Systems Journal, pages 105–125, 2010. 15

147

BIBLIOGRAPHY

[7] S. Arslan Ay, R. Zimmermann, and S. Kim. Viewable Scene Modeling for Geospatial

Video Search. In 16th ACM International Conference on Multimedia, pages 309–318,

2008. 4

[8] S. Arslan Ay, R. Zimmermann, and S. H. Kim. Viewable Scene Modeling for Geospatial

Video Search. In 16th ACM International Conference on Multimedia, pages 309–318,

2008. 15, 29

[9] P. T. Baker and Y. Aloimonos. Calibration of A Multicamera Network. In IEEE

Computer Vision and Pattern Recognition Workshop, volume 7, pages 72–72, 2003. 21

[10] S. Battiato, G. Gallo, G. Puglisi, and S. Scellato. SIFT Features Tracking for Video

Stabilization. In 14th International Conference on Image Analysis and Processing,

pages 825–830, Sept. 2007. 24

[11] S. Bell, W. Jung, and V. Krishnakumar. WiFi-based Enhanced Positioning Systems:

Accuracy through Mapping, Calibration, and Classification. In 2nd ACM SIGSPATIAL

International Workshop on Indoor Spatial Awareness, 2010. 5, 19

[12] D. Bernstein and A. Kornhauser. An Introduction to Map Matching for Personal

Navigation Assistants. 1998. 15

[13] R. Billen, E. Joao, and D. Forrest. Dynamic and Mobile GIS: Investigating Changes

in Space and Time. CRC Press, 2006. 17, 18

[14] J. Bloit and X. Rodet. Short-time Viterbi for Online HMM Decoding: Evaluation on

A Real-time Phone Recognition Task. In IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 2121–2124, 2008. 51

[15] P. Bouthemy, M. Gelgon, and F. Ganansia. A Unified Approach to Shot Change

Detection and Camera Motion Characterization. IEEE Transaction on Circuits and

Systems for Video Technology, 9(7):1030–1044, Oct. 1999. 22

[16] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004. 127

[17] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle Tracking

Data. In 31st International Conference on Very Large Data Bases, pages 853–864, 2005.

16

148

BIBLIOGRAPHY

[18] R. K. Burkhard. Geodesy for the Layman. US Department of Commerce, National

Oceanic and Atmospheric Administration, 1985. 124

[19] D. Cai and X. He. Manifold Adaptive Experimental Design for Text Categorization.

IEEE Transactions on Knowledge and Data Engineering, 24(4):707–719, 2012. 128,

135

[20] S. S. Chawathe. Segment-based Map Matching. In IEEE Intelligent Vehicles Sympo-

sium, pages 1190–1197, 2007. 4

[21] X. Chen, Z. Zhao, A. Rahmati, Y. Wang, and L. Zhong. SaVE: Sensor-assisted Mo-

tion Estimation for Efficient H.264/AVC Video Encoding. In 17th ACM International

Conference on Multimedia, pages 381–390, 2009. 4

[22] X. Chen, Z. Zhao, A. Rahmati, Y. Wang, and L. Zhong. SaVE: Sensor-assisted Mo-

tion Estimation for Efficient H.264/AVC Video Encoding. In 17th ACM International

Conference on Multimedia, pages 381–390, 2009. 24

[23] A. R. Chowdhury, R. Chellappa, S. Krishnamurthy, and T. Vo. 3D Face Reconstruction

from Video Using a Generic Model. In IEEE International Conference on Multimedia

and Expo, volume 1, pages 449–452, 2002. 25

[24] I. Constandache, S. Gaonkar, M. Sayler, R. Choudhury, and L. Cox. EnLoc: Energy-

Efficient Localization for Mobile Phones. In 31st IEEE International Conference on

Computer Communications, pages 2716–2720, 2009. 5, 19

[25] J. Denzler, V. Schless, D. Paulus, and H. Niemann. Statistical Approach to Classifi-

cation of Flow Patterns for Motion Detection. In International Conference on Image

Processing, pages 517–520, 1996. 22

[26] S. Divvala, D. Hoiem, J. Hays, A. Efros, and M. Hebert. An Empirical Study of

Context in Object Detection. In IEEE Conference on Computer Vision and Pattern

Recognition, 2009. 3

[27] Z. Dong, G. Zhang, J. Jia, and H. Bao. Keyframe-based real-time camera tracking. In

12th International Conference on Computer Vision, pages 1538–1545. IEEE, 2009. 26

149

BIBLIOGRAPHY

[28] L. Duan, J. Jin, Q. Tian, and C. Xu. Nonparametric motion characterization for robust

classification of camera motion patterns. IEEE Transaction on Multimedia, 8(2):323–

340, 2006. 23

[29] B. Epshtein, E. Ofek, Y. Wexler, and P. Zhang. Hierarchical Photo Organization Using

Geo-relevance. In 15th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2007. 4

[30] R. Ewerth, M. Schwalb, P. Tessmann, and B. Freisleben. Estimation of Arbitrary Cam-

era Motion in MPEG Videos. In 17th International Conference on Pattern Recognition,

volume 1, pages 512–515, Aug. 2004. 22, 23

[31] S. Fang and R. Zimmermann. Enacq: Energy-efficient GPS Trajectory Data Acqui-

sition based on Improved Map Matching. In 19th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pages 221–230, 2011. 42,

60, 67

[32] M. A. Fischler and R. C. Bolles. Random Sample Consensus: a Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography. Communi-

cations of the ACM, pages 381–395, 1981. 92

[33] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Towards Internet-scale Multi-

view Stereo. In IEEE Conference on Computer Vision and Pattern Recognition, pages

1434–1441, 2010. 25, 97, 133

[34] Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multiview Stereopsis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 1362–1376, 2010.

98, 133

[35] Y. Gao, J. Tang, R. Hong, Q. Dai, T. Chua, and R. Jain. W2Go: a Travel Guidance

System by Automatic Landmark Ranking. In 18th ACM International Conference on

Multimedia, pages 123–132, 2010. 4

[36] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-view Stereo

for Community Photo Collections. In International Conference on Computer Vision,

pages 1–8, 2007. 25

150

BIBLIOGRAPHY

[37] C. Y. Goh, J. Dauwels, N. Mitrovic, M. Asif, A. Oran, and P. Jaillet. Online Map-

matching based on Hidden Markov Model for Real-time Traffic Sensing Applications.

In 15th IEEE International Conference on Intelligent Transportation Systems, pages

776–781, 2012. 19, 51, 65

[38] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

131

[39] J. S. Greenfeld. Matching GPS Observations to Locations on A Digital Map. In

Transportation Research Board 81st Annual Meeting, 2002. 15, 17

[40] A. Gros, A. Goldwurm, M. Cadolle-Bel, P. Goldoni, J. Rodriguez, L. Foschini,

M. Del Santo, and P. Blay. The INTEGRAL IBIS/ISGRI System Point Spread Func-

tion and Source Location Accuracy. Arxiv preprint astro-ph/0311176, 2003. 5

[41] J. Hao, G. Wang, B. Seo, and R. Zimmermann. Keyframe Presentation for Browsing

of User-generated Videos on Map Interfaces. In 19th ACM International Conference

on Multimedia, pages 1013–1016, 2011. 4

[42] J. Hao, R. Zimmermann, and H. Ma. GTube: Geo-Predictive Video Streaming over

HTTP in Mobile Environments. In 5th ACM Multimedia Systems Conference, 2014.

146

[43] J. Heuer and A. Kaup. Global Motion Estimation in Image Sequences Using Robust

Motion Vector Field Segmentation. In 7th ACM International conference on Multime-

dia, pages 261–264, 1999. 22, 23

[44] P. Hii and A. Zaslavsky. Improving Location Accuracy by Combining WLAN Position-

ing and Sensor Technology. In 1st Workshop on REALWSN, 2005. 5, 19

[45] G. Hong, A. Rahmati, Y. Wang, and L. Zhong. SenseCoding: Accelerometer-assisted

Motion Estimation for Efficient Video Encoding. In 16th ACM International Confer-

ence on Multimedia, pages 749–752, 2008. 24

[46] T.-H. Hwang, K.-H. Choi, I.-H. Joo, and J.-H. Lee. MPEG-7 Metadata for Video-based

GIS Applications. In Geoscience and Remote Sensing Symposium, pages 3641–3643,

2003. 14

151

BIBLIOGRAPHY

[47] Index, Cisco Visual Networking. Global Mobile Data Traffic Forecast Update, 2013–

2018, Cisco White Paper, Feb. 5, 2014. 145

[48] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From Structure-from-Motion Point

Clouds to Fast Location Recognition. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 2599–2606, 2009. 21

[49] J. Jannotti and J. Mao. Distributed calibration of smart cameras. In Workshop on

Distributed Smart Cameras, 2006. 21

[50] R. Jin, Y. Qi, and A. Hauptmann. A Probabilistic Model for Camera Zoom Detection.

In 16th International Conference on Pattern Recognition, volume 3, pages 859–862,

2002. 22

[51] K. Jinzenji, S. Ishibashi, and H. Kotera. Algorithm for Automatically Producing Lay-

ered Sprites by Detecting Camera Movement. In Intl. Conference on Image Processing,

volume 1, pages 767–770, Oct. 1997. 22

[52] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to Predict Where Humans

Look. In 12th International Conference on Computer Vision, pages 2106–2113, 2009.

86

[53] D. Jwo, M. Chen, C. Tseng, and T. Cho. Adaptive and Nonlinear Kalman Filtering for

GPS Navigation Processing. Kalman Filter: Recent Advances and Applications, 2009.

19

[54] L. Kaminski, R. Kowalik, Z. Lubniewski, and A. Stepnowski. “VOICE MAPS” -

Portable, Dedicated GIS for Supporting the Street Navigation and Self-dependent

Movement of the Blind. In 2nd International Conference on Information Technology,

pages 153–156, 2010. 4

[55] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive Snoopy

Caching. Algorithmica, 3(1-4):79–119, 1988. 52, 56

[56] T. Kato, Y. Terada, M. Kinoshita, H. Kakimoto, H. Isshiki, M. Matsuishi,

A. Yokoyama, and T. Tanno. Real-time Observation of Tsunami by RTK-GPS. Earth

Planets And Space, 52(10):841–846, 2000. 4

152

BIBLIOGRAPHY

[57] C. Kee and B. Parkinson. Wide Area Differential GPS as A Future Navigation System

in The US. In IEEE Position Location and Navigation Symposium, 1994. 4

[58] L. Kennedy and M. Naaman. Generating Diverse and Representative Image Search

Results for Landmarks. In 17th International World Wide Web Conferences, pages

297–306, 2008. 4

[59] J. Kim, H. Chang, J. Kim, and H. Kim. Efficient Camera Motion Characterization for

MPEG Video Indexing. In IEEE International Conference on Multimedia and Expo,

pages 1171–1174, 2000. 22, 23

[60] K.-H. Kim, S.-S. Kim, S.-H. Lee, J.-H. Park, and J.-H. Lee. The Interactive Geographic

Video. In Geoscience and Remote Sensing Symposium, pages 59–61, 2003. 14

[61] S. H. Kim, Y. Lu, G. Constantinou, C. Shahabi, G. Wang, and R. Zimmermann.

MediaQ: Mobile Multimedia Management System. In 5th ACM Multimedia Systems

Conference, pages 224–235, 2014. 28

[62] W. Kim, G.-I. Jee, and J. Lee. Efficient Use of Digital Road Map in Various Positioning

for ITS. In IEEE Position Location and Navigation Symposium, pages 170–176, 2000.

17, 18

[63] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces. In

6th IEEE International Symposium on Mixed and Augmented Reality, pages 225–234,

2007. 26

[64] M. Kroepfl, Y. Wexler, and E. Ofek. Efficiently Locating Photographs in Many Panora-

mas. In 18th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, pages 119–128, 2010. 20

[65] J. LaMance, J. DeSalas, and J. Jarvinen. Assisted GPS: A Low-Infrastructure Ap-

proach. GPS World, 13, 2002. 33

[66] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott, T. Sohn,

J. Howard, J. Hughes, F. Potter, et al. Place Lab: Device Positioning Using Radio

Beacons in the Wild. In Pervasive Computing, pages 116–133. Springer, 2005. 47

[67] K. C. Lee, W.-C. Lee, and H. V. Leong. Nearest Surrounder Queries. IEEE Transac-

tions on Knowledge and Data Engineering, pages 1444–1458, 2010. 82

153

BIBLIOGRAPHY

[68] T. Lertrusdachakul, T. Aoki, and H. Yasuda. Camera Motion Estimation by Image

Feature Analysis. Pattern Recognition and Image Analysis, pages 618–625, 2005. 24

[69] M. Lhuillier and L. Quan. A Quasi-dense Approach to Surface Reconstruction from Un-

calibrated Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(3):418–433, 2005. 25

[70] X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Modeling and Recognition of

Landmark Image Collections Using Iconic Scene Graphs. In European Conference on

Computer Vision, pages 427–440. 2008. 21

[71] Y. Li, N. Snavely, and D. P. Huttenlocher. Location Recognition Using Prioritized

Feature Matching. In European Conference on Computer Vision, pages 791–804. 2010.

21

[72] H.-H. Liao, Y. Lin, and G. Medioni. Aerial 3D Reconstruction with Line-constrained

Dynamic Programming. In International Conference on Computer Vision, pages 1855–

1862, 2011. 25

[73] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and Inferring Transportation

Routines. Artificial Intelligence, 171(5):311–331, 2007. 17

[74] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy Aware Local-

ization for Mobile Devices. ACM International Conference on Mobile Systems, 2010.

34

[75] L. Ling, I. S. Burrent, and E. Cheng. A Dense 3D Reconstruction Approach from

Uncalibrated Video Sequences. In IEEE International Conference on Multimedia and

Expo Workshops, pages 587–592, 2012. 25

[76] H. Liu, T. Mei, J. Luo, H. Li, and S. Li. Finding Perfect Rendezvous on the Go:

Accurate Mobile Visual Localization and Its Applications to Routing. In 20th ACM

International Conference on Multimedia, pages 9–18, 2012. 21

[77] X. Liu, M. Corner, and P. Shenoy. SEVA: Sensor-Enhanced Video Annotation. In 13th

ACM International Conference on Multimedia, pages 618–627, 2005. 14

154

BIBLIOGRAPHY

[78] Z. Lotker, B. Patt-Shamir, and D. Rawitz. Rent, Lease or Buy: Randomized Algorithms

for Multislope Ski Rental. SIAM Journal on Discrete Mathematics, 26(2):718–736,

2012. 52

[79] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for Low-

sampling-rate GPS Trajectories. In 17th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, pages 352–361, 2009. 42, 51

[80] M. Lourakis and A. Argyros. The Design and Implementation of a Generic Sparse

Bundle Adjustment Software Package based on the Levenberg-Marquardt Algorithm.

Technical report, Technical Report 340, Institute of Computer Science-FORTH, Her-

aklion, Crete, Greece, 2004. 132

[81] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International

Journal of Computer Vision, pages 91–110, 2004. 92

[82] X. Lu, C. Wang, J. Yang, Y. Pang, and L. Zhang. Photo2Trip: Generating Travel

Routes from Geo-tagged Photos for Trip Planning. In 18th ACM International Con-

ference on Multimedia, pages 143–152, 2010. 4

[83] Z. Luo, H. Li, J. Tang, R. Hong, and T.-S. Chua. ViewFocus: Explore Places of

Interests on Google Maps Using Photos with View Direction Filtering. In 17th ACM

International Conference on Multimedia, pages 963–964, 2009. 20

[84] H. Ma, R. Zimmermann, and S. H. Kim. HUGVid: Handling, Indexing and Querying

of Uncertain Geo-tagged Videos. In 20th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, pages 319–328, 2012. 4, 86

[85] J. W. Mills, A. Curtis, B. Kennedy, S. W. Kennedy, and J. D. Edwards. Geospatial

Video for Field Data Collection. Applied Geography, 30(4):533–547, 2010. 4

[86] A. Mohamed and K. Schwarz. Adaptive Kalman Filtering for INS/GPS. Journal of

Geodesy, 73(4):193–203, 1999. 46

[87] L. Monteiro, T. Moore, and C. Hill. What is The Accuracy of DGPS? Journal of

Navigation, 58, 2005. 4

155

BIBLIOGRAPHY

[88] P. Mordohai, J.-M. Frahm, A. Akbarzadeh, B. Clipp, C. Engels, D. Gallup, P. Merrell,

C. Salmi, S. Sinha, B. Talton, et al. Real-time Video-based Reconstruction of Urban

Environments. ISPRS Working Group, 2007. 27

[89] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real Time Local-

ization and 3D Reconstruction. In IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, pages 363–370, 2006. 25, 26

[90] P. Newson and J. Krumm. Hidden Markov Map Matching Through Noise and Sparse-

ness. In 17th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, pages 336–343, 2009. 17, 18, 42, 47, 66

[91] D. Nistér. Automatic Dense Reconstruction from Uncalibrated Video Sequences. PhD

thesis, KTH, 2001. 25

[92] V. Otsason, A. Varshavsky, A. LaMarca, and E. De Lara. Accurate GSM Indoor

Localization. 7th International Conference on Ubiquitous Computing, 2005. 19

[93] M. Park, J. Luo, R. T. Collins, and Y. Liu. Beyond GPS: Determining the Camera

Viewing Direction of a Geotagged Image. In 18th ACM International Conference on

Multimedia, pages 631–634, 2010. 20

[94] O. Pink and B. Hummel. A Statistical Approach to Map Matching Using Road Network

Geometry, Topology and Vehicular Motion Constraints. In Intelligent Transportation

Systems, pages 862–867, 2008. 17, 18

[95] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and

R. Koch. Visual Modeling with A Hand-held Camera. International Journal of Com-

puter Vision, 59(3):207–232, 2004. 26

[96] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current Map-Matching Algorithms

for Transport Applications: State-of-the Art and Future Research Directions. Trans-

portation Research Part C: Emerging Technologies, 15(5):312–328, 2007. 17

[97] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B. Noland. A General Map Matching

Algorithm for Transport Telematics Applications. GPS Solutions, 7(3):157–167, 2003.

17

156

BIBLIOGRAPHY

[98] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen. Video Stream-

ing Using a Location-Based Bandwidth-Lookup Service for Bitrate Planning. ACM

Transactions on Multimedia Computing, Communications and Applications, 2012. 146

[99] J. Sasiadek, Q. Wang, and M. Zeremba. Fuzzy Adaptive Kalman Filtering for INS/GPS

Data Fusion. In IEEE International Symposium on Intelligent Control, 2000. 19

[100] T. Sattler, B. Leibe, and L. Kobbelt. Fast Image-based Localization Using Direct

2D-to-3D Matching. In IEEE International Conference on Computer Vision, pages

667–674, 2011. 21

[101] B. Seo, J. Hao, and G. Wang. Sensor-rich Video Exploration on a Map Interface. In

19h ACM International conference on Multimedia, 2011. 28

[102] J. K. Seo, S. H. Kim, C. W. Jho, and H. K. Hong. 3D Estimation and Key-Frame

Selection for Match Move. In International Technical Conference on Circuits Systems,

Computers and Communications, pages 1282–1285, 2003. 25

[103] Y.-H. Seo, S.-H. Kim, K.-S. Doo, and J.-S. Choi. Optimal Keyframe Selection Algo-

rithm for Three-dimensional Reconstruction in Uncalibrated Multiple Images. Optical

Engineering, 47(5), 2008. 25

[104] Z. Shen, S. Arslan Ay, S. H. Kim, and R. Zimmermann. Automatic Tag Generation

and Ranking for Sensor-rich Outdoor Videos. In 19th ACM International Conference

on Multimedia, pages 93–102, 2011. 4, 82, 100

[105] J. Shi and C. Tomasi. Good Features to Track. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 593–600, 1994. 90

[106] H.-Y. Shum, Q. Ke, and Z. Zhang. Efficient bundle adjustment with virtual key frames:

A hierarchical approach to multi-frame structure from motion. In IEEE Conference on

Computer Vision and Pattern Recognition, volume 2, 1999. 25

[107] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the Point Cloud: from Transductive

to Semi-supervised Learning. In International Conference on Machine Learning, pages

824–831, 2005. 128

[108] M. Slaney. Web-scale multimedia analysis: does content matter? IEEE Multimedia,

18(2):12–15, 2011. 3

157

BIBLIOGRAPHY

[109] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism: Exploring Photo Collections

in 3D. In ACM Transactions on Graphics, volume 25, pages 835–846, 2006. 4, 97, 132

[110] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the World from Internet Photo

Collections. International Journal of Computer Vision, pages 189–210, 2008. 132

[111] R. Šrámek, B. Brejová, and T. Vinař. On-line Viterbi Algorithm and Its Relationship

to Random Walks. arXiv:0704.0062, 2007. 51

[112] S. Steiniger, M. Neun, and A. Edwardes. Foundations of Location Based Services.

Lecture Notes on LBS, 1:272, 2006. 2

[113] M. Sturza. GPS Navigation using Three Satellites and A Precise Clock. NAVIGATION:

Journal of the Institute of Navigation, 30, 1983. 4

[114] I. Suveg and G. Vosselman. 3D reconstruction of Building Models. International

Archives of Photogrammetry and Remote Sensing, 33(B2; PART 2):538–545, 2000. 8

[115] R. Szeliski. Image Alignment and Stitching: a Tutorial. Foundations and Trends in

Computer Graphics and Vision, 2006. 98

[116] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, L. Girod, et al. Accu-

rate, Low-Energy Trajectory Mapping for Mobile Devices. In 8th USENIX Conference

on Networked Systems Design and Implementation, pages 20–33, 2011. 42

[117] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo,

and J. Eriksson. VTrack: Accurate, Energy-Aware Road Traffic Delay Estimation

Using Mobile Phones. In 7th ACM Conference on Embedded Networked Sensor Systems,

pages 85–98, 2009. 17, 18

[118] C. Torniai, S. Battle, and S. Cayzer. Sharing, Discovering and Browsing Geotagged

Pictures on the World Wide Web. The Geospatial Web, Advanced Information and

Knowledge Processing, 1:159–170, 2007. 4

[119] P. Torr, A. W. Fitzgibbon, and A. Zisserman. Maintaining Multiple Motion Model

Hypotheses over Many Views to Recover Matching and Structure. In 6th International

Conference on Computer Vision, pages 485–491. IEEE, 1998. 26

158

BIBLIOGRAPHY

[120] P. H. Torr. Geometric Motion Segmentation and Model Selection. Philosophical Trans-

actions of the Royal Society of London. Series A: Mathematical, Physical and Engi-

neering Sciences, pages 1321–1340, 1998. 25

[121] M. Ulrich and S. Martin. Sensor Assited Video Compression. European Patent Appli-

cation EP1921867. 25

[122] A. J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm. IEEE Transactions on Information Theory, pages 260–269, 1967.

42

[123] G. Wang, B. Seo, Y. Yin, R. Zimmermann, and Z. Shen. Oscor: An Orientation Sensor

Data Correction System for Mobile Generated Contents. In 21st ACM International

Conference on Multimedia, pages 439–440, 2013. 99

[124] G. Wang, B. Seo, and R. Zimmermann. Automatic Positioning Data Correction for

Sensor-annotated Mobile Videos. In 20th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, pages 470–473, 2012. 85

[125] G. Wang, B. Seo, and R. Zimmermann. Motch: an Automatic Motion Type Charac-

terization System for Sensor-rich Videos. In 20th ACM International Conference on

Multimedia, pages 1319–1320, 2012. 116

[126] R. Wang and T. Huang. Fast Camera Motion Analysis in MPEG Domain. In Inter-

national Conference on Image Processing, volume 3, pages 691–694, 1999. 22, 23

[127] Z. Wang, L. Sun, and S. Yang. Efficient Relative Camera Orientation Detection for

Mobile Applications. In 1st ACM International Workshop on Mobile Location-based

Service, pages 53–62, 2011. 21

[128] C. E. White, D. Bernstein, and A. L. Kornhauser. Some Map Matching Algorithms

for Personal Navigation Assistants. Transportation Research Part C: Emerging Tech-

nologies, 8(1):91–108, 2000. 15, 16

[129] J. Yao, S. S. Kanhere, and M. Hassan. Improving QoS in High-Speed Mobility Using

Bandwidth Maps. IEEE Transaction on Mobile Computing, 2012. 146

[130] K. Yu, J. Bi, and V. Tresp. Transductive Experiment Design. 2005. 127

159

BIBLIOGRAPHY

[131] K. Yu, J. Bi, and V. Tresp. Active Learning via Transductive Experimental Design. In

International Conference on Machine Learning, pages 1081–1088, 2006. 127

[132] K. Yu, S. Zhu, W. Xu, and Y. Gong. Non-greedy Active Learning for Text Catego-

rization Using Convex Ansductive Experimental Design. In ACM SIGIR Conference,

pages 635–642, 2008. 127

[133] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun. An Interactive-voting based

Map Matching Algorithm. In 11th IEEE International Conference on Mobile Data

Management, pages 43–52, 2010. 42, 51

[134] P. Zandbergen. Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi

and Cellular Positioning. Transactions in GIS, 13, 2009. 33

[135] H. Zhang, B. Li, and D. Yang. Keyframe Detection for Appearance-based Visual

SLAM. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 2071–2076, 2010. 26

[136] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang. Active Learning Based on

Locally Linear Reconstruction. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(10):2026–2038, 2011. 129

[137] Y. Zhang, G. Wang, B. Seo, and R. Zimmermann. Multi-video Summary and Skim

Generation of Sensor-rich Videos in Geo-space. In 3rd Multimedia Systems Conference,

pages 53–64, 2012. 4

160

	Summary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Overview of Approach and Contributions
	1.2.1 Location Sensor Data Accuracy Enhancement
	1.2.2 Orientation Sensor Data Accuracy Enhancement
	1.2.3 Camera Motion Characterization and Motion Estimation Improvement for Video Encoding
	1.2.4 Key Frame Selection for 3D Model Reconstruction

	1.3 Organization

	2 Literature Review
	2.1 Location Sensor Data Correction
	2.2 Orientation Sensor Data Correction
	2.3 Camera Motion Characterization and Motion Estimation in Video Encoding
	2.4 Key Frame Selection for 3D Model Reconstruction

	3 Preliminaries
	4 Location Sensor Data Accuracy Enhancement
	4.1 Introduction
	4.2 Location Data Correction from Pedestrian Attached Sensors
	4.2.1 Observation of Real Sensors
	4.2.2 Problem Formulation
	4.2.3 Kalman Filtering based Correction
	4.2.4 Weighted Linear Least Squares Regression based Correction

	4.3 Location Data Correction from Vehicle Attached Sensors
	4.3.1 HMM-based map matching
	4.3.2 Improved Online Decoding

	4.4 Experiments
	4.4.1 Evaluation on Pedestrians Attached Sensors
	4.4.2 Evaluation on Vehicle Attached Sensors

	4.5 Summary

	5 Orientation Sensor Data Accuracy Enhancement
	5.1 Introduction
	5.2 Orientation Data Correction
	5.2.1 Problem Formulation
	5.2.2 Geospatial Matching and Landmark Ranking
	5.2.3 Landmark Tracking
	5.2.4 Sampled Frame Matching

	5.3 Experiments
	5.3.1 Accuracy Enhancement
	5.3.2 Performance

	5.4 Demo System
	5.5 Summary

	6 Sensor-assisted Camera Motion Characterization and Video Encoding
	6.1 Introduction
	6.2 Camera Motion Characterization
	6.2.1 Subshot Boundary Detection
	6.2.2 Subshot Motion Semantic Classification

	6.3 Sensor-aided Motion Estimation
	6.4 Experiments
	6.4.1 Camera Motion Characterization
	6.4.2 Sensor-aided Motion Estimation

	6.5 Demo System for Camera Motion Characterization
	6.6 Summary

	7 Sensor-assisted Key Frame Selection for 3D Model Reconstruction
	7.1 Introduction
	7.2 Geo-based Locality Preserving Key Frame Selection
	7.2.1 Heuristic Key Frame Selection
	7.2.2 Adaptive Key Frame Selection
	7.2.3 Locality Preserving Key Frame Selection

	7.3 3D Model Reconstruction
	7.4 Experiments
	7.4.1 Geographic Coverage Gain
	7.4.2 3D Reconstruction Performance

	7.5 Summary

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography

