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Summary

As individuals and enterprises are extensively entrusting their security-sensitive information
and core business to computer systems, it is imperative to formally verify the design and imple-
mentation of secure systems before they are deployed for real-life use. Unfortunately, existing
formal methods are unscalable and oen work with only highly abstract models, and thus they
are far from the expectations of industrial practitioners. As a result, although formal methods
have been proved powerful in some speciĕc areas, we still have not witnessed a wide range of
practical use. is thesis aims to enhance the practical use of formal methods for analyzing se-
cure system design and implementation by extending existing formalisms and combining pro-
gram analysis techniques with formal methods. We focus on three of the most security-critical
scenarios: trusted computing, web authentication and mobile computing.

Modern secure systems are too complex to be built from scratch, and they may import many
off-the-shelf components which provide particular security features. Focusing on the area of
trusted computing, we propose a formal foundation to facilitate model checking of the trusted
platforms which are based on Trusted Computing Module (TPM). In particular, we study three
problems: the logic and language for formally modeling trusted platforms, modeling of the
trusted computing techniques and attack surface, and the so-called confused responsibility prob-
lem. Further, we show the expressiveness of our formalism in formal modeling and effectiveness
in detecting security Ęaws through applying our formalism and toolkit to two concrete trusted
platforms.

Existing formal analysis approaches usually require a precise and complete formal speciĕ-
cation of the tested system. In reality, however, establishing such a formal model is not always
possible due to reasons like lack of documentation and partial availability of implementation.
A typical example is the web authentication systems which involve proprietary server-side im-
plementation. erefore, we investigate a complementary problem of automatically extracting
speciĕcations from implementations under such a constraint. We propose a novel hybrid infer-
ence approach to combine a blackbox differential fuzzing analysis with the whitebox program
analysis. We further apply our approaches to study several real-world web sites, including three
popular SSO protocols --- Facebook Connect Protocol, Browser ID and Windows Live Messen-
ger Connect, and demonstrate that extracted fragments of the protocols is of enough precision
for ĕnding interesting logic Ęaws.

Most of previous research, including our aforementioned two studies, analyzes the high-level
formal models, which are seldom equivalent to the implementation that the security eventually
relies on. Soware model checking is a relatively new approach that aims to directly verify im-
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plementations. As a meaningful attempt, we apply this approach to verify Android mobile ap-
plications, and we extend the approach with a targeted soware model checking technique, which
integrates static analysis to reduce the search space. In addition, we make efforts to address the
main challenges in verifying Android apps, such asmultiple entry points/event-driven execution,
GUI testing and path explosion. Our approach is applied to test both benign and malicious apps
and achieves an overwhelming precision and recall rate compared to state-of-the-art analysis ap-
proaches.
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Chapter 1

Introduction

1.1 Insecurity of Building Computer Systems

Individuals and enterprises are extensively entrusting their security-sensitive information and

core business to computer systems. Smart phones, online social services, wearable devices, stock

trading systems, e-commerce and online banking are merely a few examples. Security of these

systems, thus, has become a critical concern. Unfortunately, due to the complexity and the fast-

evolving nature of computer systems, building secure systems has been recognized as one of the

most difficult problems in computer science. Long-lasting and catastrophic bugs, Ęaws, errors

and vulnerabilities out of the security-critical systems are continuously reported. A notorious ex-

ample is that the Needham-Schroeder public-key protocol [168] was found vulnerable to a man-

in-the-middle attack [147] aer it had been published for 17 years. In addition, merely within

the single year of 2014, many severe vulnerabilities have been identiĕed from some soware sys-

tems and protocols which are serving as part of the cornerstone of worldwide computation and

communication. For example, the Heartbleed vulnerability, which exposes 66% of web servers

on the Internet at the risk of credential leakage [20], is identiĕed from the OpenSSL library,

the most popular implementation of the SSL/TLS protocol. As another instance, the recently-

revealed Shellshock bug, which leads to arbitrary-command-execution attack, has resided in the

widely-used Unix Bash shell since as early as 1992 [136].

1



1.2. USE OF FORMAL METHODS AS AN ENHANCEMENT OF SYSTEM SECURITY

e rapid growth of openness and interconnectivity of contemporary computer systems has

made the security problem even worse, as the systems are exposed to the increasingly hostile In-

ternet. Not surprisingly, anonymity on the Internet and the high revenue from the underground

economy marketplaces which facilitate the Internet miscreants to monetize the stolen data (e.g.,

credit card information and website accounts) and exploited computers, have given rise to nu-

merous worldwide cybercrimes [98, 72, 106]. As an example, it has been reported by IBM that

in 2013, there were approximately 1.5 million cyber attacks occurring in the US [127]. ese

cybercrimes account for large losses, such as ĕnance cost, business disruption, and reputation

damage. For example, the annual cost of security breaches to the UK is conservatively estimated

in the order of billions of pounds [12].

As a result, before the computer systems are released and used in practice, it is important and

necessary to analyze (and ideally, verify) the satisĕability of their security properties, including

conĕdentiality, authentication, information Ęow property, etc., against particular attack models.

For example, a trusted computing platform designed for high security assurance must achieve its

desired properties (e.g., attestability) even with the presence of sophisticated hardware attacks; a

mobile application must control its granted privileges and credentials against access from other

unauthorized authorities.

1.2 Use of Formal Methods as an Enhancement of System Security

1.2.1 Problems in Building Secure Systems

Security Ęaws can de introduced throughout the lifecycle of system development, typically design

phase and implementation phase.

• Designs of many security systems include Ęaws even though they are designed by security

experts. Besides the aforementioned example of Needham-Schroeder public-key proto-

col [168], other examples can be frequently seen: the Wired Equivalent Privacy (WEP)

protocol that is introduced in the 802.11 standard contains Ęaws leading to violations of

conĕdentiality due to themisuse of cryptographic functions [66]; because of several design

2



1.2. USE OF FORMAL METHODS AS AN ENHANCEMENT OF SYSTEM SECURITY

Ęaws, SSL version 2.0 was substituted by version 3.0 shortly aer it was released [163]; the

version 1.0 of OAuth protocol, one of the mostly used single sign-on (or SSO) protocols,

contains a Ęaw subject to a session ĕxation attack [17]; the ISO/IEC 9798 Standard, which

speciĕes a family of authentication protocols, was found subject to various attacks [58]

aer it had been extensively analyzed [43, 80].

• Even though the design of a system is correct, Ęaws still can be introduced during the

course of implementation. Besides the low-level programming errors like unchecked array

bound [20, 38, 25], implementation errors can lie in many other details. For example,

as revealed by a recent study [207], the authentication property can be violated in some

implementations of online authentication services based onGoogle ID, such asYahoo! and

zoho, because a step of correctly verifying a digital signature is neglected.

• Another type of errors, which we term as confused responsibility, are caused by the differ-

ent perspectives of the system designers and the programmers regarding the environments

within which the systems are run. At the design phase, the systems are usually designed

at a highly abstract level and without the implementation details considered. erefore

they are designed to be resistant to a set of explicitly-deĕned attacks and under particular

assumptions. However, aer the systems are implemented and used in reality, the behav-

iors of the adversary are unpredictable. In addition, the assumptions made on the design

phase may not be satisĕed in the real-life execution. A typical example is the renegotiation

vulnerability of the SSL/TLS [24], which is attributed to the incorrect assumption that the

client principal does not change in a single round of execution.

erefore, in order to building a secure system, security analysis should be conducted

throughout the whole lifecycle of system development.

1.2.2 Need of Formal Methods

A rich prior research, including whitebox analysis and blackbox analysis, has been conducted in

the literature for the purpose of security analysis. ose approaches based on whitebox analysis

3



1.2. USE OF FORMAL METHODS AS AN ENHANCEMENT OF SYSTEM SECURITY

mostly use conventional techniques in soware engineering, including program analysis [205, 45,

82], reverse engineering [96, 73], taint analysis [95, 44], etc., to extract and vet the behaviors of

a system or track the information Ęow throughout a system. On the other hand, those blackbox

analysis approaches oen use testing and fuzzing techniques [159, 154, 207, 197, 111]. ey infer

the system's internal logics from the observed interaction and communication behaviors of the

system.

ese existing approaches are limited in terms of three aspects. First, they largely rely on the

expert knowledge of the security analysts and their insights into the target system, and therefore

are error-prone and cannot be generalized. Second, they rarely focus on the design of the sys-

tems, whereas the Ęaws introduced in the design stage are highly likely to be transfered to the

implementation. Given that the design-level Ęaws mostly are logic Ęows, they are difficult to de-

tect by analysis on the implementation. ird, although these approaches have been shown to be

effective in identifying security violations out of the systems, they are only able to cover part of

the system behaviors. In other words, they are able to prove insecurity of a system by identifying

violations, but rarely prove the opposite.

erefore, formal methods, which apply mathematical techniques, such as languages, log-

ics and mathematical proofs, to rigorously specify, model, reason and verify computing systems,

have been attracting a wide attention of the security community since the 1990s [64]. A typi-

cal formal veriĕcation method consists of two main phases: speciĕcation and veriĕcation. e

speciĕcation refers to formally specifying and modeling the target systems, and three main types

of formalisms are mostly used: formal logics (e.g., BAN logic [71] and PCL [182]), process cal-

culi (e.g., pi-calculus [35] and CSP [123]) and diagrammatic formalisms (e.g., automata). e

veriĕcation refers to reasoning the desired security properties on the systems, and two cate-

gories of techniques are usually used: theorem proving and model checking. ese formal meth-

ods have been successfully applied to analyze and verify some commonly-used security proto-

cols [34, 32, 61, 49, 189, 190].

Most of the aforementioned formal methods focus on the design-level models, which are

signiĕcantly different from the system implementations. Recently, some approaches are proposed
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to formally analyze the implementation of secure systems, aiming to verify security properties of

the system implementation, or on the contrast, to identify vulnerabilities. ese studies can be

divided into two categories: speciĕcation extraction [74, 38, 39] and sowaremodel checking [130].

An introduction on these studies is presented in Chapter 2.

1.2.3 Challenges and Limitations in Practical Use of Formal Methods for Security

Ideally, secure system designs and implementations should be formally veriĕed before they are

deployed. In practice, however, formal methods still have not been widely used by industrial

practitioners, even in some of the most security-critical scenarios such as trusted computing, web

authentication andmobile computing. rough our investigation and experiments, we have expe-

rienced challenges as well as limitations of existing formalmethods that hinder their practical use,

and we have also observed that these problems are general problems for most of other scenarios.

Problems in Formal Analysis of System Design. Instead of being built from scratch, complex

systems oen import third-party components, for example, Trusted Computing Module (TPM)

[108, 109] andARMTrustZone [23], to reuse their security features. However, formost of the sce-

narios, there is still a lack of formal foundation including the formal models of those commonly-

used components, such that the security analysts have to formally specify the imported compo-

nents before they can analyze their own systems. In addition, most of the secure systems face a

large attack surface, whereas most of designs are analyzed without a comprehensive set of attack

models. In particular, most formalisms take into consideration only the Dolev-Yao model which

offers a limited behavior model of the adversary [57]. Furthermore, assumptions that are made

by system designers and are necessary to achieve the desired security goals are seldom evaluated

by previous formal analysis approaches.

Problems in Modeling Process. Previous formal analysis techniques usually rely on manually

constructing analyzable models. However, as a system evolves, manually modeling every new

version becomes infeasible. Moreover, the manual modeling process is tedious and error-prone.

On the other hand, in order to obtain a precise and complete system model, most of these tech-
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niques require full implementation of the analyzed system. In practice, however, it is highly un-

likely to obtain the complete information, such as source code of some participants. Extremely,

several custom systems have never been documented.

Problems in Soware Model Checking. Besides the inherent state explosion problem, existing

soware model checking techniques are still inadequate for general-purpose use. First, since

soware model checking needs to dynamically execute the analyzed systems, the incompatibility

problemmaybe raised. Furthermore, the asynchronicity and event-driven execution paradigmof

some systems (a typical example is themobile platform)make the traditional exploration strategy

which assumes a single entry point ineffective.

1.3 Overview ofisesis

e main objective of this thesis is to enhance the practical use of formal methods for secure sys-

tem design and implementation by extending existing formalisms and combining program analysis

with formal methods. In particular, we have focused on three security-critical areas which have

raised challenges as discussed in Section 1.2.3, including trusted computing, web authentication

andmobile applications. Our work in this thesis should facilitate the formal analysis of system de-

sign and implementation in these areas, and beneĕt the system designers, developers and security

analysts.

A Formal Foundation for Model Checking Trusted Computing Platforms. Trusted comput-

ing relies on veriĕed trusted computing platforms to achieve high security assurance. In practice,

however, new platforms are oen proposed without a comprehensive formal evaluation against a

broad spectrum of threat models. In addition, the underlying assumptions that are necessary to

achieve the desired security goals are seldom deĕned explicitly. We thus propose a formal foun-

dation formodel checking trusted computing platforms. e foundation includes amodel library

of formal models of security primitives, a model of trusted computing techniques and a broad

spectrum of threat models. It can be used to check the satisĕability of security properties (e.g.,

conĕdentiality and attestability) on the design of trusted computing platforms, and uncover the
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implicit assumptions (on the trusted computing base, use of the trusted computing techniques

and the network infrastructure) which must be satisĕed to guarantee the security properties. In

our experiments, we formally specify and model check two trusted platforms which have been

proposed by previous research.

Automatic Extraction of Web Authentication Protocols from Implementations. Numerous

high-proĕle vulnerabilities have been found in web authentication protocol implementations,

especially in single sign-on (SSO) protocols implementations recently. Much of the prior work on

authentication protocol veriĕcation has focused on theoretical foundations and building scalable

veriĕcation tools for checking manually-craed speciĕcations [211, 56, 62].

We address a complementary problem of automatically extracting speciĕcations from imple-

mentations. e main challenge we address is the aforementioned problem of partially-available

implementation. We propose a novel hybrid inference approach to combine a whitebox program

analysis with a blackbox differential fuzzing analysis. We aim to automatically recover web au-

thentication protocol speciĕcations from their implementations. In our experiments, we demon-

strate that our approach can recover fairly precise speciĕcations, ĕnd differences across multiple

implementations and uncover security Ęaws in real-world web authentication protocols.

Veriĕcation of Android Applications against Security Properties Using Targeted Soware

Model Checking. As numerous feature-rich Android applications (apps for short) are used in

security-sensitive scenarios, methods to verify their security properties are highly desirable. In

veriĕcation tasks, the precision offered by existing techniques are oen not enough. For instance,

static analysis oen suffers from a high false-positive rate, whereas approaches based on dynamic

fuzzing are limited in code coverage.

As a step towards the precise app veriĕcation, we propose a targeted soware model checking

technique and implement a general framework. Inheriting the intrinsicmerit of traditionalmodel

checking in exhaustiveness of exploring ĕnite state spaces, our technique yet veriĕes the apps

on their implementations (Java bytecode), rather than relying on high-level models. With the

support of our craedmock-up Android OS, our technique is capable of exploring the state space

in a systematic way using driver programs. e driver programs simulate user interaction and
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environmental input, and drive the dynamic execution of the apps. ey are generated along

with state-space minimization using a slicing-based pruning as well as by exploiting dependency

among events. In this work, we focus on checking security properties including sensitive data

leakage involving a non-trivial Ęow- and context-sensitive taint-style analysis. We evaluate our

technique with 70 apps, which include real-world apps, malware samples and benchmarks for

evaluating app analysis techniques like ours. Our technique precisely identiĕes nearly all of the

previously known security issues and four previously unreported vulnerabilities/bugs.

1.4 esis Structure

is section outlines the structure of this thesis.

Chapter 2. Background

is chapter presents a brief overview of formal methods for analysis of secure systems. It

introduces the security properties that are commonly targeted by existing formal analysis. In

addition, it describes the approaches for formal analyzing system design and implementation in

the literature.

Chapter 3. A Formal Foundation for Model Checking Trusted Computing Platforms

is chapter investigates the problem of model checking the designs of trust platforms. is

work highlights the need of a broad spectrum of attack models beyond the traditional Dolev-Yao

model. In addition, this work also studies the previously-neglected problem of confused respon-

sibility and as a consequence, we recommend that the assumptions regarding implementations,

which are made at design stage, should be validated.

Chapter 4. Automatic Extraction of Web Authentication Protocols from Implementations

is chapter presents the work of extracting analyzable models from implementations of web

authentication protocols. e main challenge this work address is the incomplete availability of

implementations. Our approach detect non-trivial security Ęows in real-world web sites, in-
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cluding several using important SSO protocols like Facebook Connect Protocol, BrowserID and

Windows Live Messenger Connect. e signiĕcance of this work is that it demonstrates the ad-

vantage and practicality of formal methods in violation detection even under the constraint of

imprecise and incomplete models, and therefore, we state that it is worth sacriĕcing soundness

and completeness when formal methods are used for violation detection rather than correctness

proving.

Chapter 5. Veriĕcation of Android Applications against Security Properties Using Targeted Soware

Model Checking

is chapter studies the problem of verifying Android applications. e main challenge this

work address is the path explosion problem, and we propose a novel targeted soware model

checking approach to alleviate it. e work highlights the necessity of directly verifying imple-

mentations which the security eventually relies on.

Chapter 6. Conclusion and Future Work

is chapter concludes the work conducted in this thesis, and presents possible future work

from this thesis.

1.5 Acknowledgement of PublishedWork

e following publications and work in submission are from this thesis.

• A Formal Foundation for Model Checking Trusted Computing Platforms [51]. is

work is presented in Chapter 3. It has been published at the 19th International Sympo-

sium on Formal Methods (FM'14). e foundation is also employed by our another work

vTRUST [118], which was published at the 15th International Conference on Formal En-

gineering Methods (ICFEM'13).

• Automatic Extraction of Web Authentication Protocols from Implementations [52].

e work is presented in Chapter 4. It has been published at the 20th Annual Network &

Distributed System Security Symposium (NDSS'13).
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• Veriĕcation of Android Applications against Security Properties Using Targeted So-

ware Model Checking [54]. It has been submitted for peer review and the work is pre-

sented in Chapter 5.

In addition, we have published three papers which are remotely related to but not presented

in this thesis. e research topics covered by these publications are as follows.

• Conĕning Android Malware via Resource Virtualization [141, 142]. We propose re-

source virtualization as a security mechanism to conĕne resource-abusing Android apps.

e physical resources on a mobile device are virtualized to a different virtual view for se-

lected Android apps. Resource virtualization simulates a partial but consistent virtual view

of the Android resources.

• DroidVault: A TrustedData Vault for AndroidDevices [143]. We introduce the concept

of the trusted data vault, a small trusted engine that securelymanages the storage and usage

of sensitive data in an untrusted mobile device. We design and build DroidVault---the ĕrst

realization of a trusted data vault on the Android platform. DroidVault establishes a secure

channel between data owners and data users while allowing data owners to enforce strong

control over the sensitive data with a minimal trusted computing base (TCB).
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Chapter 2

Background

Formal methods have been assisting on designing and implementing secure systems since

decades ago. In view of the effectiveness of formal methods in security analysis, this chapter

presents a brief survey on prior studies, including the target security properties, and formalmeth-

ods on the design and implementation of secure systems.

2.1 Security Properties

Design and implement of secure systems are required to achieve some particular security goals,

which are named as security properties. In prior studies, two security properties, namely secrecy

(or conĕdentiality) and authentication, are most commonly targeted.

Secrecy property is satisĕed if and only if sensitive information and data manipulated by a

computing system cannot be obtained by the adversary. Secrecy analysis is deĕned as querying a

term from the adversary Z's knowledge set. Formal analysis of this property was ĕrstly proposed

by Dolev and Yao [93] in 1983. Since then, the majority of formalisms, such as the Woo-Lam

model [211], the spi-calculus [35] and the applied pi-calculus [33], have supported secrecy spec-

iĕcation and analysis.

Authentication property is achieved if each participant in a system is sure about the identities

of other participants whom it is communicating with. is property was ĕrstly formalized and
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analyzed by Burrows et al. [71] in 1989, who explained how to analyze authentication protocols

with "belief " and identify design Ęaws from authentication protocols. Besides BAN logic [71,

36], many other formal methods, such as applied pi-calculus [33], have supported authentication

speciĕcation.

From the literature, it can be observed that formal analysis of secrecy and authentication

has been well developed. However, these two properties are the most basic ones required by

most computing systems. For a speciĕc system, more complicated and speciĕc properties are

required. For example, for a trusted computing platform, the attestability property is desirable;

for a mobile application, the privilege property is crucial; and for an e-commerce system, the

integrity property of the exchanged messages is important.

2.2 Formal Analysis of System Design

Many prior studies apply formal methods on verifying the satisĕability of the security prop-

erties at the system design stage. Generally, these studies consist of two steps: speciĕcation and

veriĕcation. is section presents a review of these two aspects.

Speciĕcation refers to formally specifying or modeling a system and the following three main

types of formalisms are mostly used.

• Finite state machines. A ĕnite state machine (FSM) is amodel to design the sequential logic

circuits. It consists of a set of ĕnite number of states, transition and triggering events. A

state machine models a system as an abstract machine which is in one of the states at any

particular time. e machine can transits its state when a triggering event occurs. Asyn-

chronous product automata (APA) [169] is one of the FSM formalisms and has been used

to analyze some cryptographic protocols [112, 113]. A related case study of applying this

formalism is the scenario-based formal security analysis of the Trusted Platform Module

(TPM) conducted by Gurgens et al.[114]. e main limitation of the FSM formalism is

that it lacks the notion of interaction, whereas a system usually has to interact with other
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systems during its execution.

• Formal logics. A formal logic usually consists of a set of terms, operators and inference

rules. e terms stands for the data, keys and participants in the systems. e operators

model the operations on the terms, such as cryptographic functions. e inference rules

enable to derive the properties of themodel. emostly used logics include BAN logic [71],

PCL [182] and LS2 [89].

• Process calculi. Process calculi aremostly used formodeling systemswith interaction, com-

munication and synchronization. Popular process calculi used in security analysis includes

CSP [123], CCS [160] and pi-calculus [35, 33].

Veriĕcation refers to reason and check the desired security properties on the system speciĕ-

cation. e veriĕcation approaches can be broadly categorized into model checking and theorem

proving.

• Model checking. Given a systemmodel whose state space is deĕned and ĕnite, model check-

ing approaches automatically and exhaustively explore the state space to check whether the

desired properties are satisĕed. If any property is violated, a counterexample containing

the path leading to the state where the violation occurs is generated. e advantage is that

the state space exploration can be systematic and fully automated, while the disadvantage

is that the state spaces of real-world systems can be extremely huge, whichmay lead to state

explosion problem.

A number of model checkers have been proposed for general-purpose analysis. e popu-

lar ones that are used in security analysis include PAT [195, 140, 139], USMMC [146, 145],

AVISPA [19], SPIN [125], FDR [9], Murphi [162], etc.

• eorem proving. Given a formal speciĕcation of the checked system, theorem proving ap-

proaches apply inference rules to derive new rules of interest step by step, until the derived

rules are sufficient to prove correctness or incorrectness of the desired properties. e

main advantage of theorem proving is scalability in large system because it is not based

on exhaustive exploration of the state space. Its main disadvantage is the lower automa-

tion thanmodel checking. It requires interaction and expertise of the analysts to generated
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non-trivial rules.

ere are alsomany theoremprovers available for security analysis, including Proverif [62],

CryptoVerif [4], Tamarin [157], Isabelle [14], etc.

Formal analysis on system design is effective in detecting security violations at an early stage.

However, most of these formalisms and tools require a manual modeling process, which is of-

ten error-prone and troublesome. Furthermore, these is still a gap between the veriĕcation of

the system design and the security of the system implementation, meaning that even if a system

design is proved secure, vulnerabilities/bugs may be still introduced during the course of imple-

menting the system. erefore, recent research attempts to apply formal methods directly on the

implementation level, and this is summarized in the next section.

2.3 Formal Analysis of System Implementation

Given the gap between design and implementation, some studies attempt to apply formal meth-

ods to verify the security properties of system implementations. ese studies use two different

approaches. One is to extract speciĕcations from the implementations, and then use the tech-

niques discussed in Section 2.2 to verify the extracted speciĕcations. e other approach attempts

to directly check the security properties on the execution of the implementations. is section

surveys these two approaches respectively.

2.3.1 Speciĕcation Extraction

We deĕne speciĕcation extraction by furthering its deĕnition by Avalle et al. [46]. A speciĕca-

tion is an abstract mapping α(·) which maps the implementation S to an abstract model α(S).

Verifying a security property φ on α(S) implies that φ is satisĕed on S, namely

α(S) � φ⇒ S � φ ,

if α is an over-approximation.
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Many studies have attempted to accomplish this "mapping" (extracting the speciĕcation) by

using techniques such as program analysis, compilation and testing. Lie et al. [144] proposed

a method to automatically extract speciĕcations from the program implementation of proto-

cols. e model is extracted using program slicing and veriĕed by the tool Murphi. In addition,

Aizatulin et al. [38, 39] proposed to use symbolic execution to extract protocol speciĕcations

from their C implementations. is work obtains both symbolic and computational models, and

checks them using Proverif and CryptoVerif, respectively.

Other studies attempt to translate source code into protocol speciĕcation using compiling

techniques. For example, the tools FS2PV [10] and FS2CV translate the programs written in F#

into the protocol models speciĕed in the typed pi-calculus, which are taken as inputs to Proverif

and CryptoVerif. is method has been applied to verify the TLS [61]. Other tools, like Eli-

jah [171], translate Java programs to a process calculus called LySa, and check the model us-

ing LySatool [83]. CSur [5] analyzes the secrecy property of the cryptographic protocols imple-

mented in C. It abstracts the program semantics using Horn clauses and uses the H1 prover to

prove the property. ASPIER [77] compiles the C implementation into a predicate abstraction, us-

ing the iterative abstract reĕnement technique. It then checks the authentication and the secrecy

properties. ASPIER has been used to analyze the OpenSSL implementation.

One limitation of speciĕcation extraction is that some security-related semantics, such as

memory access, object management and pointers, may be missed during the translation because

of the semantics difference between the implementation languages and highly abstracted model-

ing languages. In addition, these studies require the source code as input, while the source code

is not always available in reality.

2.3.2 Soware Model Checking

Instead of inferring system models and checking them using off-the-shelf tools, soware model

checking approach attempts to directly check the security properties on the execution of the im-

plementations.
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In the context of sowaremodel checking, a system is associated with a ĕnite state space. e

execution of the system, in turns, can be modeled as a labeled transition system (LTS) Lsys =

(S, init, Block, Tran), where S is the set of states, init is the initial state, Block is the set of

instruction sequences which lead to the change of states, and Tran ⊆ S × Block × S is the

set of transition relations. e main difference between soware model checking and traditional

model checking is that a state is the evaluation of the real variables in the program. Similar to the

traditional model checking, soware model checking exhaustively explores the state space of the

checked system to identify property violations.

Targeting different implementation language, different soware model checkers have been

proposed. Java Path Finder (JPF) [203] is a Java soware model checker. In this thesis, we use

it to analyze the Android app implementations for security properties. In addition, many other

implementation-level soware model checkers have been proposed. For example, VeriSo [102]

systematically searches concurrent reactive soware systems to detect errors including deadlocks,

divergences, livelocks and assertion violations; CMC [166] and MaceMC [134] check C and C++

implementations.

e soware model checking technique has been used to verify many real-world systems.

Musuvathi and Engler [165] use CMC to check the Linux TCP/IP implementation and detect er-

rors. Yang et al. use the soware model checking technique to successfully detect errors from ĕle

system implementations like ext3, JFS, and ReiserFS [215], and storage system implementations

like Berkeley DB, NFS and RAID [214]. Brat et al. [67] use JPF to identify subtle errors from

NASA's prototype Mars Rover controller.

Similar to traditional model checking, soware model checking also suffers from the state-

space explosion problem when applied on large-scale systems. In order to alleviate this problem,

traditional general-purpose reduction techniques such as partial order reduction [101] and sym-

metry reduction [129] can be used. On the other hand, reduction based on static analysis and

domain knowledge of the checked system are also necessary. With this in mind, we propose a

novel targeted soware model checking (detailed in Chapter 5) for Android app checking.

In addition, soware model checking only works on ĕnite-state systems, while real-world
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soware usually has inĕnite number of states. Abstraction, thus, becomes critical for model

checking soware. Predicate abstraction, which was ĕrst proposed by Graf and Säıdi [105], is

a promising approach to automatically generate abstractions. Predicate abstraction represents

the large set of concrete states with a signiĕcantly small set of abstract states, each of which corre-

sponds to an abstraction predicate which is over the variables in the program. It enables an more

efficient reasoning than exhaustively exploring the concrete state space. So far, predicate abstrac-

tion has been extensively studied [55, 60, 121, 155], and there are mainly two categories of tech-

niques for program veriĕcation based on predicate abstraction. e ĕrst is the Counterexample-

Guided Abstraction Reĕnement (CEGAR) [85], in which, if the counterexample generated by

model checking the abstraction does not exist in the soware, the generated counterexample is

used to yield new predicate and more precise abstraction. Since constructing the abstraction of

the full soware in CEGAR's each iteration is too expensive, other techniques use an incremen-

tal approach called lazy abstraction [121]. In lazy abstraction, the abstraction and reĕnement are

conducted on-the-Ęy during the course of model checking; the reĕnement only re-abstracts the

relevant parts, instead of the whole program.
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Chapter 3

A Formal Foundation for Model

Checking Trusted Computing Platforms

3.1 Introduction

e concept of trusted computing has been proposed for more than a decade. It introduces

hardware-support security, which takes tamper-resistant hardware techniques as the root of

trust, such as Trusted Computing Module (TPM) [108, 109], Intel's TXT [13], and ARM Trust-

Zone [23]. ese hardware techniques provide a physically isolated storage and computation

environment, based on which a chain of trust is set up to support the upper layer soware.

Beneĕted from the hardware support, trusted computing achieves an unprecedentedly high

security guarantee (i.e., trust) in systems involving multi-level trust domains. erefore, it has

been widely embraced by mainstream products. For example, more than 500 million PCs have

shipped with TPM [22] so far; Microso equips their recent products Windows RT and Win-

dows 8 Pro tablets with built-in TPM technology [152]. In addition, as we have witnessed, it has

been signiĕcantly inĘuencing the design of contemporary security systems and protocols---many

trusted platforms1 have been proposed both in industry [2, 21] and academia [153, 185, 59, 174,
1In this thesis, trusted platforms refer to the systems, infrastructures and protocols built on trusted computing

techniques.
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110].

Ideally, the design of the trusted platforms must be formally veriĕed before they are imple-

mented. However, there still lacks an analytical foundation to guide the formal analysis. New

trusted platforms are oen designed and built without comprehensive analysis against common

threat models, which oen results in vulnerabilities [114, 68, 210, 209, 81, 138].

Formally analyzing trusted platforms is notoriously challenging. First, a trusted platform

usually involves more than one component, including hardware, ĕrmware and soware, all of

which need to be evaluated. In addition, their conĕgurations and communication interfaces also

affect the security properties of the platform. Second, a security analyst has to become an expert

in the internals of the hardware-support techniques and formally model them before she is able

to model her own platform. However, the techniques are subtle and complicated. Taking TPM as

an example, the speciĕcation of TPM version 1.2 [108] from Trusted Computing Group (TCG)

has 800+ pages, and version 2.0 [109] has 1400+ pages. ird, the large attack surface on trusted

platforms requires a comprehensive consideration and understanding of themalicious behaviors.

In this work, we propose TF, a formal foundation for analyzing trusted plat-

forms. TF is designed for the trusted platforms based on TPM, and it could be further

extended to incorporate other platforms, such as mobile platforms equipped with TrustZone.

TF consists of a library of formal models of security primitives, a formal model of the

key techniques in trusted computing2 (e.g., TPM, static root of trust measurement, late launch

and the chain of trust), as well as a broad spectrum of threat models. It provides the platform

designers an interface named TrCSP# (CSP# for trusted computing) for modeling the trusted

platforms. By invoking TrCSP#, the security analysts can import the models provided by T-

F, and this prevents the analysts from stumbling into modeling the complicated internals

of the underlying infrastructure that the analyzed platforms depend on. In addition, the threat

models cover most of the known attack scenarios, including the hardware attacker, the system

attacker and the network attacker. For the security analysis, TF aims to 1) detect Ęaws

from the designs of trusted platforms using model checking, and 2) uncover the implicit under-
2e rest of this thesis refers this model as the TPM model.
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lying assumptions on the trusted computing base (TCB), using of trusted computing techniques

and network infrastructure, which must be satisĕed for the platform to guarantee the security

goals.

We implement TF as a framework in C# and CSP# [194] based on the model

checker PAT [195]. We apply TF to formally study two trusted platforms --- an enve-

lope protocol [37] and a cloud computing platform [86]. TF has found that 7 existing

attacks may break their security goals, and identiĕed six implicit assumptions for each of them.

Besides, it has detected two previous-unknown security Ęaws in them, which allow the attacker to

breach the desired security goals completely by simply rebooting the machine at certain timing.

3.2 Motivation & Overview

is section ĕrst introduces the key concepts in trusted computing. It then presents a protocol

based on the trusted computing as our motivating example.

3.2.1 Overview of Key Concepts in Trusted Computing

Trusted Platform Model (TPM). TPM [108, 109] is the root of trust for secure storage and

measurement, which is a tamper-free coprocessor that provides an isolated storage and compu-

tation environment. TPM implements the cryptography primitives such as encryption/decryp-

tion, signature, hash and key management. TPM provides a set of commands for the external

soware to implement functionality that cannot be achieved only using soware, such as build-

ing a chain of trust and remote attestation. TPM contains 24 internal Platform Conĕguration

Registers (PCRs). e only way to modify their content is through the command TPM Extend

(s) : PCRi ← hash(PCRi, s). erefore, the value of a PCR can be used to indicate the state

of the soware stack on a platform. A key can be sealed to a particular PCR value, such that the

key cannot be used (unsealed) if the content of the PCR is not in the sealed value. Two impor-

tant asymmetric key pairs are embedded in a TPM, namely the Endorsement Key (EK) and the

Storage Root Key (SRK). ese two keys are kept secret from the external soware.
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Figure 3.1: Sealing Envelope Process in the Envelope Protocol

Chain of Trust. In trusted computing, the chain of trust is a term used to describe the trust

relationship among entities in a system. A chain of trust is set up by validating each of the sys-

tem components from bottom up. ere are two ways to build a chain of trust. e ĕrst one is

the Static Root of TrustMeasurement (SRTM) which builds a static chain since the booting of the

machine; the other is Dynamic Root of TrustMeasurement (DRTM)which dynamically creates a

secure execution environment. In SRTM, the ĕrst soware component is the CRTM (Core Root

of Trust for Measurement), while in DRTM, the component is the Authenticated Code Mod-

ule (ACM).

Remote Attestation. Remote attestation [185] is a process by which a party proves its so-

ware/hardware state to another remote party (i.e., the attester). e goal of remote attestation

is to prove the attester the integrity and trustworthiness of the soware/hardware stack. When

the attestation is requested by the attester, the soware application can ask TPM to sign with the

EK the PCR content yielded in the SRTM/DRTM process and present it to the attester. Since no

entity except the TPM knows the EK, the signed PCR content can prove the state of the soware

stack to the attester.
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3.2.2 Motivating Example

Ables and Ryan [37] proposed a digital envelope protocol. is protocol has been analyzed and

proved correct under certain assumptions by the previous work [91]. Our work attempts to an-

alyze it against a broader range of threat models to uncover the underlying assumptions and if

possible, identify security Ęaws from its design.

Security Goal. e protocol allows Alice to send Bob an enveloped secret, achieving the goal

that Bob can either read the secret or revoke his right to unseal the envelope. More importantly,

if Bob revokes his right, he is able to prove that he has not accessed the data and will not be able

to aerwards.

Protocol Steps. e envelope protocol is designed to work as follows:

1) SealingEnvelope. Shown inFigure 3.1, Alice requests Bob to enter an attestablemode (mean-

ing that the state of Bob's machine is known by Alice) which runs a trusted block. Bob can achieve

this through either SRTM or DRTM. Aer this step, the PCR is in the state S0 (¬&­). Alice

then sends a random nonce n to the trusted block. e value of n is kept secret to Bob (®).

e trusted block extends the PCR with n, so its value becomes hash(S0, n) (¯). Bob cre-

ates an asymmetric key pair k (private key) and k−1 (public key). Bob seals k to the PCR value

hash(hash(S0, n), accept) (°) and generates a certiĕcate to prove this (±). Bob sends k−1 and

the certiĕcate to Alice, and Alice sends back the encrypted secret (²&³).

2) Unsealing Envelope or Revoking Right To unseal the envelope, Bob extends the TPM with

accept, such that the key can be unsealed for decryption. Alternatively, Bob extends the TPM

with reject (accept and reject are two different integers), and requests a TPM quote (a TPM

signed PCR value hash(hash(S0, n), reject))) as the evidence.

Possible Property Violations. is protocol is subject to several attacks, which may lead to the

violation of the security goal. In the following, we show two examples.

1) Nonce Stealing. e conĕdentiality of n is critical in this protocol. If it is obtained by Bob,

Bob can ĕrst choose to extend reject, and then reboot the machine and extend accept to unseal

the key. Here the problem is that it is impossible to set up an encrypted channel directly between
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Figure 3.2: Overview of TF

Alice and Bob's TPM. erefore, there must be particular soware and hardware involved to

bridge them, for example, network adapter, LPC bus (where the TPM chip is located), network

driver and SSL/TLS library. As a result, there are several existing attacks for malicious Bob to

obtain the value of n.

2) Forging Certiĕcate Attack. If Bob compromises a CA (Certiĕcate Authority) trusted by

Alice, an attack can be conducted at Step ². Bob can forge a certiĕcate for a key pair whose

private part is visible to him and deceive Alice into trusting that the key is sealed to the expected

PCR state.

Implicit Assumptions. Given the existence of these two possible violations, two underlying as-

sumptions must be satisĕed to achieve the security goal.

• A1: a Set of Trusted Components. e components that the n Ęows through, such as the

SSL library and the LPC bus, must be included in the TCB.

• A2: aTrusted andUncompromisable CA.AsecureCA is required to validate all certiĕcates.

3.2.3 Challenges and TF Overview

As shown by this example, the design of a trusted platform must be formally analyzed to reduce

possible Ęaws. However, it also shows that formally analyzing trusted platforms is challenging.

• Numerous System Details. Details of the related systems, such as the network and the

LPC bus in this example, must be speciĕed to make the analysis precise and practical.
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• Complexity in Trusted Computing. e semantics of the trusted computing techniques,

such as the TPM, SRTM and DRTM in this example, must be precisely and formally mod-

eled before modeling the protocol.

• Lack of Comprehensive reat Models. In order to achieve a comprehensive and con-

vincing evaluation on a trusted platform, we are concerned about the threat models. e

key challenge is to ĕgure out a broad spectrum of threat models for analytical use.

To overcome these challenges, we propose TF, an analytical formal foundation

and framework for model checking trusted platforms. Figure 3.2 shows the overall design of

TF. TF provides a comprehensive model library and an expressive inter-

face named TrCSP# for modeling trusted platforms (Section 3.3). Its model library contains a

TPM model such that the security analyst can include the models of trusted computing tech-

niques by simply invoking into the TPM model (Section 3.3.3). e platform model is checked

by model checker against a set of attacker models (Section 3.4) provided by the model library. If

an attack violates the speciĕed security properties, the model checker generates a counterexam-

ple. TF then infers security Ęaws and implicit assumptions based on the counterex-

ample (Section 3.4.4).

Scope & Assumptions. e core objective of TF is to identify whether the design of

a trusted platform guarantees the expected properties under a spectrum of attacks. We focus on

revealing the Ęaws and implicit assumptions in the platform designs. We do not target the de-

tection of attacks exploiting implementation vulnerabilities such as the BIOS attack [193], DMA

attack [184] and TPM reset attack [15], but we do take them into consideration when identifying

the implicit assumptions. We do not consider the DoS attack and side channel attacks such as

the timing attack [192]. We also make the following assumptions in TF:

• Perfectly Secure Cryptography. e cryptographic algorithms used by the platforms are

perfectly secure.

• Distinct Secret Keys and Nonces. e secret keys and nonces are secret and distinct

among different sessions.

• TPM in Compliance with Speciĕcations. e TPM used by the trusted platforms is
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implemented strictly in compliance with the TCG's speciĕcations. TF does not

consider the deviation between the implementation and the speciĕcation of the TPM3.

3.3 Modeling Trusted Platforms

is section presents the model library and its interface TrCSP#. e model library consists of

models of the security primitives, and these models essentially are the implementation of the

existing LS2 logic [89]. In addition, TrCSP# provides a set predeĕned keywords to model the

trusted platforms.

3.3.1 Overview of the Model Library Interface

We chose to develop TF based on CSP# because this not only allows us to inherit the

expressiveness of extensibility of CSP#, but also enables us to use the well-evolved model checker

PAT for automatic reasoning. In this section, we explain the syntax and semantics of CSP# in-

tuitively to ease understanding the rest of this thesis. en, we introduce how TF is

implemented in CSP#.

Overview of CSP#

e terms deĕned in CSP# and used in this thesis is underlined. We refer the reader to [194] for

the full syntax and semantics of CSP#.

Syntax. e crucial syntax of CSP# is as following.
3is deviation does exist as shown in [184]. Modularity design of TF allows to substitute the model of

a particular TPM implementation for TF's default one.
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Process P ::= Stop | Skip termination
| [b]P state guard
| e→ P event preĕxing
| e{program} → P data operation preĕxing
| c?d→ P (d) | c!d→ P channel input/output
| P ; Q sequence
| P �Q | P uQ | if b then P else Q choices
| P |||Q | P ||Q concurrency
| P 4 (e→ Q); interrupt

e core of CSP# is the concurrency and communication. A CSP# model is a 3-tuple

(V S, init, P ), where V S is a set of variables, init is the initial values of these variables, and P is

a process. e e is a simple event; program executes an atomic and sequential program when e

is executed; c is a synchronized communication channel. CSP# supports internal choice (P�Q),

external choice (P u Q) and conditional branch (if b then P else Q). Process P ;Q behaves

as P and aer P terminates, behaves as Q. Process P |||Q behaves P and Q simultaneously and

only synchronize through the channels, whileP ||Q requires synchronization over a set of events.

Process P 4 (e→ Q) behaves as P until e occurs and then behaves as Q.

Semantics. e semantic model of a CSP# model is a Labeled Transition System (LTS), which is

a tuple (S, init, Act, T ran) where S is a ĕnite set of states; init is the initial state and init ∈ S;

Act is a set of actions; Tran is a set labeled transition relations, each of whose elements is a

relation S ×Act× S. We use s e−→ s′ to denote (s, e, s′) ∈ Tran.

Reachability Checking. Since most of the security properties can be speciĕed in reachability,

we only use reachability checking in this work (Section 3.4.3), although other properties such as

reĕnement and linear temporal logic can be checked on an LTS. We deĕne a path as a sequence

of alternating states and events < s0, e0, s1, e1, ... >. A state sn is reachable if there exists a path

P such that s0 = init and si
ei−→ si+1 for all i < n.

TrCSP#: Interface of TF

Figure 3.3 presents the new keywords that are introduced by TF, which are twofold.

eĕrst is the interface formodeling the secure systems, including cryptographic operations, ma-
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Process TP ::= a{program} → TP data operation preĕxing
| P process in CSP#

data/variable d ::= n number
| c program
| k symmetric key
| sk | sk−1 private/public key
| d, d′ concatenation
| [d]k | [d]sk−1 ciphertext of symmetric/asymmetric encryption
| [d]sk signature
| h(d) hash
| TPM DATA TPM data

action a ::= new d generate new data object
| read l.d | write l.d read/write d from/to location l

| asymencrypt d.sk−1 | encrypt d.k asymmetric/symmetric encryption over d
| asymdecrypt d.sk | decrypt d.k asymmetric/symmetric decryption over d
| sign d.sk | verify d.sk−1 sign d with sk & verify signature d
| hash d hash over d
| TPM CMD TPM commands

location l ::= ROM@i |RAM@i | disk@i

Figure 3.3: Interface Used for Modeling Trusted Platforms

chines, network, programs, etc. (Section 3.3.2). e other is on modeling the trusted computing

techniques, which are modeled as a set of special data structures in CSP# and used as global vari-

ables (Section 3.3.3). anks to the expressiveness of CSP#, TF can be implemented

using CSP#. In particular, a process of in TF is a CSP# process; the data/variables and

locations are modeled as data structures in the program of CSP#; the actions are modeled by the

events in CSP#, with the semantics (e.g., how to perform encryption) implemented in the pro-

gram. By importing TF and invoking TrCSP#, the analyst is capable of capturing the

necessary details of the trusted platforms.
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3.3.2 Modeling Security Systems

Machines, Bus and Network. Figure 3.4 shows the abstraction of a machine in TF. A

machine is modeled as a process in CSP#. Each machine contains a CPU, a hard disk, a TPM,

a network adapter, ROM and RAM. By default, the ĕrmware such as BIOS and the CRTM are

located in the ROM. e hardware drivers and the soware, such as the bootloader, OS, network

driver and applications, are located in the hard disk. All of them are loaded into the RAM before

they can be executed. Figure 3.5(a) demonstrates a simpliĕed model of loading the OS from the

disk to the RAM. In this model, the keywords enum and var stand for enumeration and variable

respectively, same as that in other programing languages. By default, the enumeration starts from

the integer 0, so both os andCodeos are evaluated 0. e disk and the RAM are modeled by two

arrays DISK and RAM. e execution of the system starts with the process System() (line

a.8), which ĕrst loads the code of the OS from the disk into the RAM (line a.5), and then starts

executing the OS (line a.6 and a.7).

We emphasize the communication channel between the CPU and the TPM, namely the LPC

bus, because it is more vulnerable than other channels like the north bridge that is between the

CPU and the RAM. e LPC bus, actually, has been found vulnerable to an eavesdropping at-

tack [135] and the TPM reset attack [15].

TF models the communication channels among the components and among the

machines with channels. e sender uses ch!d to send out data and the receiver listens on the

channel using ch?d. In the real world, a communication channel can be a private/secure chan-

nel or a public/non-secure channel. erefore, TF introduces the concept of private

channel and public channel accordingly. e private channel is immune to the attacker's eaves-

dropping, for example, the SSL channel, while public channel leaks all transmitted messages to

the network attacker.

Data. Two categories of data are supported in TF. e ĕrst one is primitive data,

including the integer, boolean, cipertext, hash value, signature, encryption/decryption keys,

program and concatenated data. Each primitive data is represented symbolically as a 2-tuple
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Figure 3.4: Abstraction of a Machine

d = (type, expression), where type indicates the type of the data, such as nonce, program and

public key; the expressionmay be a number, the identity of a key or a ciphertext [d]k. e other

type is the TPM data, which is discussed in Section 3.3.3.

Cryptography Primitives. TF includes the standard cryptography primitives, such as

encryption/decryption, signing/signature veriĕcation, hashing, nonce (random number) gener-

ation. ese primitives take the symbolized data as operands. For example, signing a nonce

n = (nonce, 1) with key sk = (private key, 001) (001 is the identity of sk) generates

the signature sig = (signature, [n]sk), which can be veriĕed using sk's inverse key sk−1 =

(public key, 001−1).

3.3.3 Modeling the TPM

Since all the key concepts, such as the root of trust, chain of trust, SRTM and DRTM, are based

on the TPM, we detail the modeling of the TPM in this section.

Abstraction & Simpliĕcation. To reduce complexity in modeling and verifying process, a rea-

sonable abstraction and simpliĕcation is necessary. e challenge is that the semantics relevant

to the security properties cannot be excluded. TF preserves this semantics in the fol-

lowing three aspects.

• Functionality. e functionality of the TPM commands is preserved in a simulation way.

For example, the return value of the command TPM CreateWrapKey is a representation

of TPM key blob, which contains a symbolic representation of encryption key (discussed
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a.1 enum {os};
a.2 enum {Codeos};
a.3 var DISK = [Codeos];

a.4 var RAM = [0];

a.5 Config() = load{RAM@os = DISK@os} → OS;

a.6 OS() = OSbenign;

a.7 OSbenign() = /* model of the OS */;
a.8 System() = Config;

(a) Loading OS from the Disk

b.1 enum {os, osm};
b.2 enum {Codeos, Codeosm};
b.3 var DISK = [Codeos, Codeosm ];

b.4 var RAM = [0, 0];

b.5 Config() = load{RAM@os = DISK@os} → SystemAttacker;

b.6 SystemAttacker() = crackMemory{RAM@os = DISK@osm} → OS;

b.7 OS() = [RAM@os == Codeos]OSbenign u [RAM@os == Codeosm ]OSmalicious;

b.8 OSbenign() = /* model of the benign OS */;
b.9 OSmalicious() = /* model of the malicious OS */;
b.10 System() = Config;

(b) Compromising OS aer it is loaded (codeosm : the code of compromised OS)

Figure 3.5: Models of Loading OS and an Attack Compromising the OS

soon).

• Internal Semantics. e internal security semantics speciĕed by TCG is preserved.

For example, in the commands that use a sealed key, such as TPM Seal, TPM Unseal,

TPM Unbind, the content of the PCR is checked with the sealed value before the key can

be used.

• Internal State Transition. e internal state of the TPM changes accordingly when the

commands are invoked. For example, when the TPM Extend (index, value) is called, the

PCR[index] is extended with value; rebooting the machine and activating late launch set

the PCRs to a pre-deĕned value.

We make the following simpliĕcations on the authorization and the key hierarchy.

1) No Authorization Required. In a real TPM, the authorization protocols such as the OIAP
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(Object-Independent Authorization Protocol) and the OSAP (Object-Speciĕc Authorization

Protocol) are used to set up a session between the user and the TPM. Since authorization has

been well analyzed in previous work [90], we omit it.

2)NoKeyHierarchy. Based on our assumption that the cryptographic algorithms are perfectly

secure, we do not consider the key hierarchy in TPM. erefore, all the certiĕcates issued by the

TPM are signed using its EK, meaning we do not consider the AIK (Attestation Identity Key);

similarly, all the encryption operations for secure storage use the SRK.

Abstraction of TPM Data. TF models the data relevant to the TPM, including the

internal data structures (e.g., the PCR value, EK and SRK) and the data generated and consumed

by TPM (e.g., TPM certiĕcate, TPM quote, key blob and data blob). Each TPM instance has a

unique EK that can be used as its identity.

A TPM data is constructed from the primitive data. A PCR value includes the index of the

PCR and a hash value to indicate its value. e EK and SRK are asymmetric key pairs. A TPM

certiĕcate is a certiĕcate issued by a TPM to certify that a key is generated by the TPM and has

been sealed on a speciĕc PCR value. A TPM quote is a PCR value signed by the TPM. A key

blob, which is generated by the TPM CreateWrapKey command, includes the public part and

encrypted private part of the generated key. It also indicates the PCR value that the key is sealed

to. A data blob is returned by the TPM Seal command. e models of these TPM data can be

found in our implementation [51]. Here, we just take the TPM certiĕcate as an example to show

how the TPM data is modeled.

Example. A TPM certiĕcate is a 2-tuple (type, expression), where the type indicates that

the tuple is a TPM certiĕcate; the expression is a concatenation of a serial of other data: <

bool, sk−1, int, TPM PCRV alue, ek−1, [bool, sk−1, int, TPM PCRV alue, ek−1]ek >.

e ĕrst element indicates it is a key generated by the TPM; the second is the public part of

the certiĕed key; the third and the fourth indicate the PCR and PCR value the key is sealed to;

the ĕh is the public part of the EK and the last is a signature by EK.

FormalizationofTPM.eTPM is formalized as anLTSLT PM = (ST , initT , CmdT , T ranT ),

where
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sinit/si sin/si sout/si+1
Ch?index.d TPM_Extend Ch!0 sinit/si+1

si = {PCR, VM, {ek, srk}}, si+1= {PCR {index     hash(PCR[index]|d)}, VM, {ek, srk}}�

(a) TPM Extend (⊕ is function overriding and seq ⊕ {i 7→ v}means overrides seq[i] with v.)

sinit/si sin/si sout/si+1
Ch?keyblob TPM_LoadKey2 Ch!loc sinit/si+1

si = {PCR, VM, {ek, srk}}, si+1= {PCR, VM {(loc, (sk, sk -1))}, {ek, srk}}

(b) TPM LoadKey2

Figure 3.6: e State Transition Models of Two TPM Commands

• ST = ST
ctrl × ST

data is a ĕnite set of states, including control states and data states. e

ST
ctrl = {sinit, sin, sout}models the states regarding the input and output; each of ST

data is

a set of variables V T and their values (detailed later in this Section). An element of ST
data is

a set {PCR, VM, {ek, srk}}, where the PCR is a sequence which includes the values of

24 PCRs; the VM represents the volatile memory and contains indexed key pairs loaded

viaTPM LoadKey2, each of which is denoted by (location, {sk, sk−1}); ek and srk stand

for the EK and the SRK, respectively.

• initT ∈ ST is the initial state.

• CmdT is the set of the commands.

• TranT is the transition relations, each of which is a relation ST × CmdT × ST . TranT

deĕnes the semantics of the TPM commands, that is, the state transitions upon invoking

the TPM commands.

TPM Commands. We use the state transition models of TPM Extend (Figure 3.6(a)) and

TPM LoadKey2 (Figure 3.6(b)) to demonstrate how we model the TPM commands. e in-

terface TF provides to the security analyst are the commands same as those speciĕed

by TCG. ese commands take as input the symbolized TPM data. us, from the perspective of

the analyst, our TPM model can be regarded as a soware-based symbolic and abstract emulator

of TPM.

Correctness of TPM Model. One critical issue is that TF requires a complete and

sound TPM model to prevent false positives and negatives. However, verifying the equivalence
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of our TPM model and TCG's speciĕcation is a much more challenging task, and therefore is not

discussed within the scope of this thesis. Nonetheless, we show that this model can be effective

in detecting design Ęaws.

As futurework, a reference implementation can be one step towards a speciĕcation-equivalent

model. For example, Mukhamedov et.al [164] develop a reference implementation part of the

TPM (including authorization and encrypted transport session protocols) in F#. e F# model

can be automatically translated into Proverif model and veriĕed by Proverif. Aerwards, the F#

implementation can be automatically translated into C code.

3.4 reat Attacks and Security Goals

Aer coming up with the formal speciĕcation of a trusted platform, the next step is to evaluate

the expected security properties against threats models. is section deĕnes the modeling of the

attacks and security properties in TF.

3.4.1 Attacker's Knowledge and Knowledge Deduction

We deĕne a property called knowledge set AK ∈ V S for the attacker. e elements of AK are

the data that can be obtained by the attacker. e attacker can enlargeAK by eavesdropping on

the communication channels, generating data using a machine equipped with TPM (discussed

in Section 3.4.2) and deducing new knowledge based on the data known to him. We deĕne some

rules for the attacker to deduce new knowledge. As an example, Figure 3.7 demonstrates part of

the deduction rules for cryptography.

Two events activate the knowledge deduction. First, when a ciphertext is added intoAK, the

attacker actively tries to decrypt it using all the keys he possesses. Second, when a data of a par-

ticular type is required, for example, outputting a data to a process, the attacker constructs a new

data of the required type. e challenge in knowledge deduction is that applying cryptographic

functions unboundedly may leads to an inĕnite AK. erefore, we bound the nesting depth of

the encryption functions to be less than 3 by default, unless the attacker obtains or a receiver
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rule 1.1 : d ∈ AK ∧ k ∈ AK � [d]k ∈ AK Symmetric Encryption Rule
rule 1.2 : [d]k ∈ AK ∧ k ∈ AK � d ∈ AK Symmetric Decryption Rule
rule 2.1 : d ∈ AK ∧ sk−1 ∈ AK � [d]sk−1 ∈ AK Asymmetric Encryption Rule
rule 2.2 : [d]sk−1 ∈ AK ∧ sk ∈ AK � d ∈ AK Asymmetric Decryption Rule
rule 2.3 : d ∈ AK ∧ sk ∈ AK � [d]sk ∈ AK Signature Rule
rule 2.4 : [d]sk ∈ AK ∧ sk−1 ∈ AK � d ∈ AK Signature Veriĕcation Rule
rule 3.1 : d ∈ AK � hash(d) ∈ AK Hash Rule

Figure 3.7: Deduction Rules for Cryptography

expects data of deeper nest. In the case that data of deeper nest are required, TF in-

creases the bound such that the attacker can construct data with the same nest level. is strategy

is similar to the backwards reasoning used by other state-of-the-art veriĕers like Tamarin [157].

3.4.2 reat Models

We divide the threat models in trusted computing into three categories, namely the network at-

tacker, the system attacker and the hardware attacker.

Network Attacker. e network attacker is modeled using the Dolev-Yao model [93]. An active

network attacker is able to eavesdrop all messages and modify unencrypted messages on net-

work. We assume the SSL channel cannot be compromised; however, if the platform use SSL

as the communication channel, TF reports that the platform relies on two implicit

assumptions---the SSL library must be trusted and a trusted CA is required (uncovering the im-

plicit assumptions is discussed in Section 3.4.4).

A novel feature of the network attacker is that the attacker possesses a machine (denoted by

MA) equipped with TPM. During the knowledge deduction, the attacker can feed TPM with

forged data to generate TPM data expected by the victims. erefore, the attacker can commit

the masquerading attack [193], which forges PCR quote withMA to convince the attester that

the machine is in the expected state, while conducts malicious behaviors on another machine.

System Attacker. e system attacker can compromise all of the legacy soware, including the

bootloader, theOS and the applications. e attacker can read/write all the locations on hard disk

and RAM. Figure 3.5(b) demonstrates the model of an attack which compromises the OS aer it
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has been loaded to the RAM. Aer the benignOS is loaded into the RAM from the disk (line b.5),

the system attacker cracks thememory and replaces the benignOS (line b.6) with amalicious one,

such that the malicious OS will take control once the loaded OS is executed (line b.7).

In addition, the system attacker can invoke the TPM's commands with arbitrary parameters.

One possible attack is that the attacker invokes TPM Extend with the benign code to convince

the attester, but executes a malicious version of the code.

Hardware Attacker. e attacker on hardware level completely controls a machine. e attacker

can compromise the add-on hardware and ĕrmware, for example, DMA attack [120], compro-

mising bootloader and BIOS [133], TPM reset attack [15] and eavesdropping on LPC bus [135].

Compromising ĕrmware such as BIOS and bootloader can defeat the SRTM.eDMAattack can

modify the program aer it has been loaded into the memory, leading to the same consequence

as the system attacker. e TPM reset attack can reset the PCRs to the default state without re-

boot or late launch. e attacker, therefore, becomes capable of setting the PCR to an arbitrary

state as what the system attacker can do. e hardware attacker who can access the LPC bus is

able to eavesdrop the communication between the TPM and the CPU.

Note that TF also regards rebooting a machine as an attack, given it changes the

state of the system and TPM. We name this attack reboot attack.

3.4.3 Security Goals

e trusted platforms are designed to satisfy various security goals. is section discusses two

most commonly used ones. We also show that these two goals and other properties can be spec-

iĕed as reachability properties.

Conĕdentiality. Most of the time, a trusted platform needs to introduce some credentials,

whose conĕdentiality needs to be guaranteed, such as the n in our motivating example. To check

conĕdentiality property, TF queries a credential d from theAK aer the execution of

the platforms. If d ∈ AK, the conĕdentiality is violated.

Attestability. Attestability means if the attester believes the attested machine is in a state
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ST , then the machine must be in that state. Violation of attestability may completely violate the

design properties of a platform. As shown in Section 3.2.2, the forging certiĕcate attack manages

to break the protocol. e security analyst can deĕne this property with reachability, that is, it

cannot be reached that the state of the attested machine (in terms of the PCR value) is not equal

to the expected state ST .

Other security properties can also be speciĕed with reachability in TF. For exam-

ple, the security goal of our motivating example, can be speciĕed as

#define bothCan(isBobGetSec == true && isBobRvk == true);

#assert Protocol reaches bothCan;

where the isBobGetSec and isBobRvk are two variables in the CSP# model; isBobGetSec

is set to true whenever Bob reads the secret and isBobRvk is set to true once Alice receives the

TPM quote of hash(hash(S0, n), reject).

3.4.4 Uncovering Implicit Assumptions

Identifying those implicit assumptions is crucial for enhancing the security on the design

level, e.g., by decreasing the size of the TCB asmuch as possible, and guiding the implementation,

e.g., correctly using TPM. We propose a counterexample-guided inference algorithm to ĕgure

out those assumptions. TF applies each of the attacks and the combinations on the

components in the checked model. It uses the model checker to detect the security property

violation and generates counterexamples. In addition, it examines the channels and data used in

the model. Taking them as input to Algorithm 1, TF ĕgures out the assumptions on

the following three aspects.

• TCB. TF considers the components of hardware, ĕrmware and soware. If an

attack targeting a component violates the security goals, the component is added to the

assumptions of TCB (Line 3-6).

• Network Infrastructure. If TF ĕnds the platform uses a private channel, it as-
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Algorithm 1 Counterexample-guided Assumption Inference Algorithm
Input: CE: counter examples, D: used data set, CH : used channel set
Output: ASPT : assumptions
1: for all e in CE do
2: a← ResolveAttacker(e);
3: if a.isHdwareAtk() ∨ a.isSysAtk() then
4: m← a.attackComp();
5: ASPT.add(m) ;
6: end if
7: end for
8: for all d in D do
9: if d.type = certificate then

10: ASPT.add(CA) ;
11: end if
12: if d.type = TPM quote then
13: ASPT.add(usedPCR 6= 16 or 23) ;
14: end if
15: end for
16: for all ch in CH do
17: if ch.type = private then
18: ASPT.add(CA) ;
19: ASPT.add(SSL) ;
20: end if
21: end for
22: return ASPT ;

sumes the SSL is used, and thus the SSL library should be included in the TCB and a trusted

CA is needed (Line 16-21). In addition, if the platform uses any certiĕcate, a trusted CA is

required (Line 9-11).

• Use of TPM. TF considers the use of the PCRs. One important but likely to be

overlooked fact is that two PCRs (16 and 23) are resettable without a system reboot (using

theTPM PCR Reset command), meaning that the system attacker can generate any value

for those PCRs and do the same attack as the TPM reset attack. erefore, they cannot be

used for attestation (Line 12-14).
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3.5 Implementation and Case Studies

We have implemented TF in the PAT model checker [195], which is a self-contained

model checking framework for modeling and veriĕcation. We implement TF by inte-

grating into the existing CSP# model an external library. is library implements the model of

security primitives, TPMmodels and the threatmodels in approximately 4k lines of C# code [51].

As case studies, we apply TF on two existing trusted platforms.

3.5.1 Analysis of the Digital Envelope Protocol

We use TF to comprehensively analyze the envelope protocol presented in Sec-

tion 3.2.2. e protocol is modeled in less than 500 lines of CSP# code. is section summarizes

our ĕndings; the reader may refer to [51] for the complete models. Since violating either of con-

ĕdentiality and attestability leads to the violation of bothCan (deĕned in Section 3.4.3), we just

check the assertion of bothCan in our experiments.

reat Models. We deĕne the following attack scenarios based on the threat models.

Network Attacker. WedeĕneNA1 as a network attack which can record and replay the trans-

mittedmessages, andNA2 as a compromisedCAwho issues certiĕcate for a key pair (mk,mk−1)

whose private key is known by Bob.

System Attacker. We deĕne SA1 as a compromised BIOS who extends a benign OS but exe-

cutes another malicious one, and SA2 as a buggy soware component (e.g., the SSL library) who

can be compromised and cause the leakage of n. SA1 indicates the modules measured in S0 but

can be compromised at runtime, while SA2 indicates those that are not measured in S0 but in

fact, are sensitive.

Hardware Attacker. We deĕneHA1a as the TPM reset attack,HA1b as the TPM LPC attack,

HA2 as the DMA attack targeting loaded OS, and HA3 as the reboot attack.

Note that for all attackers, we model the protocol in a way that Bob can re-execute the protocol

and during re-execution, a fake Alice can feed Bob with data included in the attacker's knowledge

set.
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Table 3.1: Statistics in Experiment of Envelope Protocol

Attacks Statistics
#States #Transitions Time(s) Memory

NA1 3225 8336 2.18 29M
NA2 7023 13528 7.69 220M
SA1 47451 124680 24.35 198M
SA2 16744 43785 7.94 72M
HA1a 4993 11353 1.94 38M
HA1b 2662 6907 1.63 23M
HA2 47451 124680 21.14 186M
HA3 75110 210663 36.66 232M

Experiments. TF reports that NA1 can obtain n at Step ¬. Bob therefore can ĕrst ex-

tend reject and convince Alice with hash(hash(S0, n), reject), and then re-executes the pro-

tocol with the fake Alice and extends accept to get secret. Aer we change the channel to be

private, the data leakage is removed and TF ĕgures out two assumptions: A1 that SSL

library should be included in TCB and A2 that a trust CA is required. For NA2, TF

reports an attack on Step ². Bob forges a certiĕcate to convince Alice that the mk is sealed in

TPM. Alice then uses mk−1 to encrypt secret. Bob is able to decrypt the ciphertext with mk.

TF also ĕgures out A2 in this case.

For SA1 and SA2, TF reports the leakage of n. Bob can conduct the same attack

as that in NA1. We then extend SA1 to attack all the modules measured by SRTM and DRTM.

TF identiĕes A3 that for SRTM, the TCB should include the CRTM, the BIOS, the

bootloader, the OS and the trusted block, andA4 that for DRTM, the ACM and the trusted block

should be included in the TCB.

For HA1a, TF reports that Bob does not reboot the machine upon receiving Al-

ice's request at Step ¬. Bob then can execute the protocol with Alice and whenever a particular

PCR is required, he just resets the PCR and constructs the expected PCR value. HA1b eaves-

drops all command parameters transferring through the LPC bus, which allows Bob to obtain n.

Attack sequence is similar to NA1. Since the TPM reset attack and LPC attack are targeting the

physical interface, TF reports A5 that proper protection on physical interface should
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be in TCB.HA2 only works for SRTM since DRTM disables DMA for measured code by default.

TF reports that the attacker can modify the OS to the malicious one aer it has been

loaded, as SA1 does. erefore, it ĕgures outA6 that DMA-capable devicesmust be trusted when

SRTM is used.

A Logic Flaw in the Protocol. TF reports a severe logic Ęaw which makes the pro-

tocol vulnerable to HA3. Between the step ­ and step ®, malicious Bob can reboot his machine

to amalicious state and obtainn at step ®. enBob can conduct the same attack asNA1. T-

F raises it as a logic Ęaw because the property violation occurs without any component on

attack. is Ęaw happens because remote attestation only guarantees the integrity of the soware

stack at the attestation time. Aerwards, verifying whether the soware that the attester is inter-

acting with is the one that has been remotely attested has to be achieved by the protocol itself. We

propose a ĕxation which protects the conĕdentiality of n. In particular, aer step ­, the TPM

on Bob's machine generates a key pair (kn, k−1
n ) and seals it onto the PCR value which has been

extended the trusted block, such that only the trusted block can use it for decryption. e key

then can be used to protect n during the transmission.

Table 3.1 lists the statistics collected in our experiments. Our experiments were conducted

on a PC with Intel Core i7-940 at 2.93 GHz and 12GB RAM. As can be seen, it requires to explore

signiĕcant numbers of states to detect the security Ęaws, which is infeasible for manual analysis.

3.5.2 Analysis of a Trusted Grid Platform

We apply TF to another trusted platform for cloud computing [86], which can be ab-

stracted as the steps shown in Figure 3.8. Basically, Alice locates her encrypted sensitive program

in the cloud (¬). When the program needs to be executed, Alice attests the soware stack in the

cloud using a typical remote attestation protocol [193] (­-°). If Alice veriĕes that the cloud is

in an expected state, she sends the decryption key to the trusted block (similar to Fig. 3.1).

Experiments and Results. We model this platform in approximately 150 lines of CSP# code.

We use the same set of threat models as that in Section 3.5.1. Due to the similarity of these two
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Figure 3.8: A Trusted Grid Platform

platforms, we derive the same set of assumptions as we expected. Furthermore, TF

ĕnds the following logic Ęaw in this platform when we test the reboot attack (HA3).

A Logic Flaw in the Protocol. Aer Step °, the malicious cloud can reboot to an untrusted

mode, and communicate with Alice to obtain k. is Ęaw occurs because the attestability is

violated. Given the cloud is under complete control of the attacker, an authentication between

Step ° and ± (as suggested in [86]) cannot defeat this attack. To prevent this, Alice can request

a key which is bound to a expected PCR value from the cloud and encrypt k with this key before

sending it to the cloud.

3.6 RelatedWork

A few previous studies have been conducted to formally analyze trusted platforms in the liter-

ature. In these studies, trust platforms are manually modeled in different languages. en, the

models are analyzed with various formal analysis tools to check the satisĕability of the proper-

ties. During the analysis, the TPM is regarded as trustworthy and secure, and its functionalities

are modeled and emulated on a highly abstract level. Delaune et al. [91] present a Horn-clause-

based framework for trusted platform analysis, which is featured in sensitiveness of PCR states.

Namiluko andMartin [167] propose an abstract framework for TPM-based system based onCSP.

In their work, a trusted system is abstracted as composition of the subsystems, including the re-

sources and conĕgurations. e TPM is abstracted as a set of processes. Gürgens et al. [114]
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specify the TPM API using FSA (Finite State Automata). All of these works need to model the

TPM commands before analyzing the trusted platforms. erefore, TF can serve as a

foundation for them.

3.7 Summary

WepresentedTF, a formal foundation and framework formodel checking trusted plat-

forms. TF provides an expressive formalism, a formal model of the TPM, and three

categories of threat models. We successfully detect design-level Ęaws and a set of implicit as-

sumptions from two existing trusted platforms.

Similar to most previous formal analysis techniques, TF relies on manually con-

structing analyzable models. However, the manual modeling process is tedious and error-prone.

Even worse, as a system evolves, manually modeling every new version becomes infeasible. To

alleviate this problem, we further seek a way to directly extract analyzable models from the im-

plementations in an automatic way. Our study on themodel extraction is presented in Chapter 4.
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Chapter 4

Automatic Extraction of Web

Authentication Protocols from

Implementations

4.1 Introduction

Web authenticationmechanisms evolve fast. Manyweb sites implement their own authentication

protocols and rely on third-partymechanisms tomanage their authentication logic. For example,

recent single sign-on (SSO) mechanisms (e.g., Facebook Connect, SAML-based SSO, OpenID

and BrowserID) have formed the basis of managing user identities in commercial web sites and

mobile applications. For example, OpenID currently manages over one billion user accounts and

has been adopted by over 50,000 web sites, including many well-known ones such as Google,

Facebook and Microso [26]. As another example, Facebook Connect is employed by 2 million

web sites andmore than 250million people reportedly use it everymonth as of 2011 [28]. Ideally,

authentication protocols should be formally veriĕed prior to their implementations. However,

majority of web sites do not follow this principle. Authentication protocols have historically been

hard to design correctly and implementations have been found susceptible to logical Ęaws [206,
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148]. Web authentication protocols are no exception---several of these implementations have

been found insecure in post-deployment analysis [207, 131, 42, 196, 69].

ere are three key challenges in ensuring that applications authenticate and federate user

identities securely. First, most prior protocol veriĕcation work has focused on checking the high-

level protocol speciĕcations, not their implementations [211, 36, 71]. In practice, however, check-

ing implementations is difficult due to lack of complete information, such as missing source code

of some protocol participants. Second, verifying authentication using off-the-shelf tools requires

expert knowledge and, in most prior work, conversion of authentication protocol speciĕcations

to veriĕcation tools has been done manually. However, several custom authentication proto-

cols are undocumented. As new protocols emerge and the implementations of existing protocols

evolve, manual translation of every new protocol becomes infeasible. Moreover, manual transla-

tion is tedious and can be error-prone. Finally, the authentication of the communication between

protocol participants oen goes beyond the initial establishment of authentication tokens, which

the high-level speciĕcations dictate. In practice, checking the end-to-end authentication of com-

munication involves checking if the authentication tokens are actually used in all subsequent

communications and making sure they are not sent on public communication channels or stored

in persistent devices from which they can leak. Techniques to address these practical problems

of existing implementations are an important area which has received relatively lesser attention.

Our Approach. In this work, we present a framework called AS to automatically extract

the formal speciĕcations of authentication protocols from their implementations. en, these

speciĕcations are directly checked for authentication and secrecy properties using off-the-shelf

veriĕcation tools [62, 19, 87]. AS can automatically conĕrm the candidate attacks gen-

erated by the veriĕcation tools and report the true positives (conĕrmed attacks) in most cases we

study. In some cases, AS does not know the attacker's knowledge set enough to generate

conĕrmed attacks --- in such cases, it generates security warnings containing precise communi-

cation tokens that need to be manually reviewed by the security analyst.

We design an intermediate language TML to bridge the gap between the detailed implemen-

tation of an authentication protocol and its high level semantics that can be used by the veriĕ-
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cation tools. We show that TML is sufficient to capture the communications between protocol

participants and their internal actions. AS assumes no knowledge of the protocol being

inferred and does not require the full source code of the implementation. We propose a reĕne-

ment method to deal with partial availability of the code implementing the protocol (e.g., if the

code located on a web server is not available). It starts with an initial abstraction of the proto-

col speciĕcation, and iteratively reĕnes the abstraction until it reaches a ĕxpoint. To perform

this reĕnement, we propose a novel hybrid inference approach to combine a whitebox program

analysis with a blackbox differential fuzzing analysis. In particular, the whitebox analysis per-

forms dynamic symbolic analysis on the available code to extract precise data semantics and the

internal actions of the protocol participants. e blackbox analysis infers the protocol implemen-

tation by probing the protocol participants and comparing the changes in their response. Our

ĕnal inferred speciĕcation in TML can be directly translated into modeling languages used by

off-the-shelf veriĕcation tools and can be conĕgured to verify against a variety of attacker mod-

els [56, 93].

Our techniques focus on recovering as much protocol semantics as possible from dynamic

executions of the protocol; we do not aim to ĕnd complete speciĕcations. Instead, we aim to

recover fragments of the protocol with enough precision to ĕnd interesting logic Ęaws. We ap-

ply AS to study several real-world web sites, including three popular SSO protocols ---

Facebook Connect Protocol (2 web sites), Browser ID (3 web sites) andWindows LiveMessenger

Connect (1 web site). We also test several standalone web sites which implement their custom

authentication logic and have millions of users sharing personal information. AS suc-

cessfully recovers precise (but partial) models of their authentication logic, and formally veriĕes

their authentication and secrecy properties against a broad range of attacker models. We have

found 7 security Ęaws in these implementations without their prior knowledge---one of these was

found independently by a concurrent work [158] and the remaining are previously unknown. In

particular, we ĕnd two Ęaws in Facebook Connect Protocol and one Ęaw in BrowserID, which

arise because the freshness ofmessages is not guaranteed in the protocol implementations. An at-

tacker is thus able to perpetrate replay attacks to acquire unauthorized authentication credentials.
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Several other vulnerabilities are due to unsafe implementation errors in creating andmaintaining

secrecy of authentication tokens. For example, we ĕnd that a web site employing Windows Live

Messenger Connect grants the end user a publicly known value as a credential aer the user has

been authenticated to Windows Live.

4.2 Challenges & Overview

Security analysts oen need to guarantee the correctness of authentication protocol implementa-

tions without having complete access to the source code. In this section, we explain the problem

and its challenges with an example.

4.2.1 A Running Example

Consider one execution of a hypothetical single sign-on (SSO) protocol (similar to Facebook

Connect) as shown in Figure 4.1-(a). In our example, Alice wants to authenticate herself to a

service provider (SP) web site hosted at sp.com by using her login credentials with an identity

provider (IDP) hosted at idp.com1. is example shows that much of the communication be-

tween the IDP and the SP occurs through the web browser (using postMessage between client-

side iframes), which is similar to real-world protocols [207, 116]. is enables security analysts

to analyze protocol behaviors.

e authentication protocol, which the security analyst aims to infer, is as follows:

• Step ¬: When Alice visits the SP's site and initiates the intent to authenticate, the client-

side SP code sends the pre-registered ID and domain of the SP to the IDP's iframe. e

fact that each SP is pre-registered with the IDP is not known to the security analyst by

observing this protocol execution.

• Step ­: Assuming that Alice has already logged into the IDP, the IDP generates an HTTP

request to its backend server. e request contains a nonce (anti-CSRF) and the session ID

of Alice's ongoing web session with the IDP.
1One sample IDP is facebook.com in Facebook Connect and one sample SP is cnn.com which uses the Facebook

Connect protocol.
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    var idpPubKey=loadPubKey(); 
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(a)  The process of Alice authenticates herself to the SP though the IDP 

(b) Communication actions of the participants (IDP_C: IDP client 
code, IDP_S: IDP server, SP_C: SP client code, SP_S: SP server) (c) Parts of exchanged HTTP message and client code 

Figure 4.1: An SSO Example: Alice authenticates herself to the SP (sp.com) by using her login
credentialswith the IDP (idp.com). e circled numbers indicate the login process, and the capital
letters stand for client code.

• Step ®: e IDP replies with Alice's registered email identity uEmail and an authentica-

tion token authToken, which authorizes all access toAlice's personal information stored at

the IDP.e IDP creates a cryptographic signature over the terms uEmail and authToken

as an authentication credential to be veriĕed by the SP.

• Step ¯: Client-side IDP code (code A in Figure 4.1-(c)) relays the HTTP data received in

step ® to the SP's iframe.

• Step °: Client-side SP code (code B in Figure 4.1-(c)) veriĕes that the signature is valid

and extracts the uEmail and authToken. e SP's iframe sends Alice's identity and

authToken back to the SP's server. is allows the SP's server to access Alice's information

stored at the IDP, and allows the IDP to log all SP's actions on Alice's data for audit (not

shown).

47



4.2. CHALLENGES & OVERVIEW

e security analyst can only observe the network traffic and code execution at the browser

end; the server-side logic of the protocol participants is not available for analysis.

Security Flaws. e protocol has several vulnerabilities. We only describe three of them and they

can be found automatically if the protocol can be inferred precisely:

• Man-in-the-middle (MITM) Attack. e protocol is susceptible to several MITM attacks

by a web attacker. For example, consider the target of the postMessage call in the client-

side code (line 19). is target is derived from an HTTP parameter called next (at line

2 of Figure 4.1-(c)). A malicious SP, say Eve, can change the next parameter to its own

domain, leaving the spid parameter as it is. In this attack, the token granted to the sp.com

is actually sent to Eve by code labeled as A in step ¯. is attack is similar to a recently

reported real-world attack on the site zoho.com employing Facebook Connect [207].

• Replay Attack. e protocol is susceptible to a replay attack, as the IDP's server does

not use any nonce or timestamp to guarantee the freshness of the authentication token

authToken. If a malicious SP obtains the signed assertion in step ¯, it can replay the

message to sp.com in a new web session and log in as Alice.

• Guessable Tokens. Even if the authentication token is kept secret by carefully using only

secure (private) communication channels, additional problems can exist. For example,

authToken remains constant across all of Alice's sessions, which is not apparent from ob-

serving a single protocol run. We refer to such tokens as long-lived tokens. Long-lived

tokens may be used in replay attacks. Similarly, if the IDP uses a weak or guessable scheme

to generate authentication tokens, such as a sequentially incrementing counter, an attacker

can precisely guess the tokens used in other web sessions.

4.2.2 Challenges

is example shows that implementation-dependent security properties need to be checked in

real web applications, where the formal speciĕcations are required. In the following, we list a

number of practical challenges in inferring speciĕcations from their implementations.
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Figure 4.2: Overview of AS

Inferring Semantics. A key challenge is to infer the precise semantics of data elements exchanged

in the communication. For example, it is important to know that authToken remains constant

across all of Alice's sessions with the IDP and does not include a nonce or a timestamp. Inferring

this information is critical to discover the replay attack in the protocol. Similarly, identifying

that the communication target in ¯ is not a ĕxed domain but instead a variable derived from the

HTTP parameter next is crucial to ĕnd the MITM attack. ese semantics are not obvious from

the values observed in one message or even in one execution of the protocol.

Partial Code. Only the part of the protocol implementation that executes in the web browser

is visible for analysis. For instance, we can infer using whitebox analysis over the client-side

code that idpSign is a cryptographic signature of uEmail and authToken under the IDP's pri-

vate key. is allows us skip generating random guesses about whether it is possible to forge

the (uEmail, authToken) pair by the attacker. is can signiĕcantly improve the precision,

which we discussed in Section 4.6. In other cases, the exact relationship between data elements

is not directly available via whitebox analysis. For example, no client-side code reveals whether

authToken is tied to sp.com or is the same for all SPs registered with the IDP. Our analysis needs

to infer if there is a one-to-one relation between them.

Redundant Message Elements. Numerous HTTP data elements are contained in the HTTP

traces, but most of them are irrelevant to the authentication protocol. e cookie cookie1 (line

10 in Figure 4.1-(c)) is one of such examples. Including redundant element when using off-

the-shelf veriĕcation tools can signiĕcantly increase the veriĕcation time or even lead to a non-
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termination. One of the challenges for scalability is to identify and eliminate irrelevant parame-

ters systematically from the traces.

4.2.3 AS Overview

To overcome these challenges, we develop a tool called AS which requires no prior

knowledge of the protocol. AS is a system that aids security analysts. It takes the fol-

lowing three inputs.

• Test Harness. e security analyst provides AS with at least one implementation

of the protocol and provides login credentials (such as username and password) of at least

two test accounts. e analyst can optionally provide additional test cases involving many

different users and/or different participants (such as different SPs) to utilize AS's

full capability---the more test cases, the more precise is the inferred protocol.

• Protocol Principals & Public keys. In each test case, the analyst speciĕes the principals

relevant to the protocol, such as the SP, the IDP and the user being authenticated in the run-

ning example. In addition, AS takes as inputs the interface APIs (web URIs) that

can be queried to obtain public keys of principals involved in the protocol. For instance,

JavaScript function loadPubKey at line 26 in the running example internally makes an

XmlHttpRequest (not shown) to retrieve the public key of the IDP; such web interfaces

need to be identiĕed by the analyst.

• Oracle. AS generates new protocol executions internally during testing. For each

internal run generated, AS needs to query a test oracle that indicates whether au-

thentication is successful or not. For AS, this is speciĕed as an HTTP request that

AS can make to verify a successful completion. In the running example, A-

S can generate anHTTP request to access Alice's personal information at the IDPusing

authToken to check if the protocol run succeeds.

Output. ASproduces two outputs. First, it produces a speciĕcation of the inferred proto-

col, which can act as a starting point for a variety of manual and automatic analysis [56]. Second,
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it produces a vulnerability report for all the attacks that it ĕnds.

Conĕgurable Options. AS is designed to enable checking a variety of security proper-

ties under several different attacker models. Additionally, it is designed to incorporate domain

knowledge that the security analyst is willing to provide to improve the precision. Wenext explain

these conĕgurable parameters of our system and defaults.

• Attacker Models. By default, AS checks for Ęaws against two standard attacker

models: the network attacker [93] and the web attacker [56, 40]. However, it is possible

to extend these models with new ones. For example, we can consider a ĕlesystem attacker

which steals authorization tokens stored on the client device. Such attacks have been found

recently on the Android DropBox application [29].

• Security Properties. By default, AS checks for authentication of the inferred pro-

tocols. Checking authentication corresponds to two precise, formal deĕnitions provided

in previous work: injective correspondences [149] and secrecy [211]. Additional properties

can be added to AS.

• Cryptographic Functions Names. AS needs to infer the functions which imple-

ment cryptographic primitives such as signature veriĕcation, hashes and so on, in the

executed client-side JavaScript code (e.g. verify at line 27 in Figure 4.1-(c)). By de-

fault, AS performs this automatically. It has a built-in list of browser APIs (such

as Window.postMessage()) and popular JavaScript libraries that provide such func-

tions (such as Node.js [16] and Mozilla jwcrypto [30]). In addition, it has a small set of

standardized cryptographic primitives. It can identify functions in the executed client-side

code that mimic the behavior of these standardized functions using blackbox testing2.

Security analysts can improveAS's precision and efficiency by providing additional

names of JavaScript source code functions that compute cryptographic function terms.
2Alternative heavy-weight methods (e.g., [208]) to identify cryptographic functions using whitebox analyses are

possible.
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4.3 AS System Design

In this section, we present an overview of our techniques and introduce an intermediate language

called TML to capture the full semantics of the extracted protocol.

4.3.1 Approach Overview

Figure 4.2 shows the internal design steps in our system. AS performs three high-level

steps: protocol extraction, protocol veriĕcation and attack conĕrmation.

In the protocol extraction step, AS iteratively processes test cases one-by-one from

its input test harness until the test harness is exhausted. For each test case, it records the network

HTTP(S) traffic and client-side JavaScript code execution traces through a web browser. Using

this information, AS generates an initial abstraction of the protocol speciĕcation. It then

performs a reĕnement process to subsequently obtain more precise speciĕcations3. In each re-

ĕnement step, AS employs a hybrid inference technique which combines both whitebox

program analysis on the JavaScript code (if available) and blackbox fuzzing. e reĕnement pro-

cess stops if a ĕxpoint is reached (i.e., no new semantics can be inferred). Our protocol extraction

techniques are detailed in Section 4.4.

At the end of the protocol extraction step, AS generates a protocol speciĕcation in an

intermediate language called TML, which can capture the actions executed by each participant

and the semantics of the data exchanged in the protocol execution. AS converts TML

to applied pi-calculus, which is a widely-used speciĕcation language for security protocols. is

protocol speciĕcation then can be automatically checked using off-the-shelf veriĕcation tools for

various security properties, against different attackers. In this work, we use ProVerif [62] and

PAT [195] as the veriĕcation tools because they can model an unbounded number of parallel ses-

sions4. AS models various semantic restrictions, such as the same-origin policy, HTTP

headers like Referrer, cookies, secure channels (HTTPS, origin-speciĕed postMessage),
3Byprecise, wemean that each reĕnement containsmore expressive semantics about actions performedbyprotocol

participants and more relationships between data terms exchanged in the protocol.
4In this thesis, we only use ProVerif to explain our idea. Bounded-state model checkers like AVISPA [19] can also

be used but are not implemented as backends yet.
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and insecure channels (HTTP, unchecked postMessages), before querying off-the-shelf ver-

iĕcation tools for precise reasoning, as detailed in [56]. Off-the-shelf veriĕcation tools verify

these security properties and generate counterexamples which violate the properties. e coun-

terexamples serve as unconĕrmed or candidate attacks.

e last step of AS is attack conĕrmation step. In principle, our techniques can

generate imprecise protocol speciĕcations; therefore, some of the candidate attacks may not be

true security Ęaws. AS can conĕrm HTTP attacks by converting counterexamples into

HTTP network traffic, relaying them in a live setting and conĕrming true positives using the

analyst-speciĕed oracle. In the cases where AS does not know the attacker's knowledge

set enough to generate conĕrmed attacks, it generates security warnings containing precise com-

munication tokens that need to be manually reviewed by the security analyst.

4.3.2 Target Model Language

esemantics of our inferred authentication protocol is represented in an abstract language called

Target Model Language (TML). TML serves as a bridge between protocol implementations and

formal models supported by veriĕcation tools. It captures enough implementation-level details

to check correctness, and at the same time, it can be translated into formal speciĕcations that can

be used as inputs to off-the-shelf security protocol veriĕcation tools.

We design TML based on the language proposed by Woo and Lam [211], referred as WL

model in this work; we add new extensions which are necessary for our protocol inference. We

explain the TML semantics in an intuitive way here to ease understanding; the terminology used

(underlined) has precise semantics as deĕned in WL [211]. e TML representation of our run-

ning example is shown in Figure 4.3.

TML Syntax. TML represents an authentication protocol as a protocol schema. AS ob-

serves several concrete executions of a protocol, each of which is an instantiation of the protocol

schema---for instance, our running example is an instantiation of our target protocol with two

speciĕc participants namely idp.com and sp.com. Formally, the protocol schema is a 2-tuple
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Initial Conditions
(I1) ∀x, y : x has y
(I2) ∀x, y : x has key(x, y) ∧ y has key(x, y)
(I3) ∀x, y : x has ky
(I4) r has sessionIDr ∧ p has sessionIDr

(I5) r has CSRFTokenr ∧ p has CSRFTokenr

(I6) Z has assoc(i, authtoken)
(I7) i has kB ∧ r has kB

SP C(i) Protocol
SC1: BeginInit(j)
SC2: NewAssoc({p, i}, assoc(j, spid))
SC3: Send(r,{[assoc(j, spid), next]}kB ) // Step ¬

SC4: Receive(r,{[M,N, {[M,N ]}
k−1
IDP S

]}kB ) //Step ¯

SC5: Send(j,[M,N ]) //Step °

SC6: EndInit(j)
SP S(j) Protocol

SS1: BeginRespond(i)
SS2: Receive(i,[M,assoc(M,N)]) //Step °

SS3: EndRespond(i)
IDP C(r) Protocol
IC1: Receive(i,{X,Y }kB ) //Step ¬

IC2: Send(p,{{X, sessionIDr, CSRFTokenr}}key(r,p))
//Step ­

IC3: Receive(p,{{M,N,P}}key(r,p))//Step ®

IC4: Send(Y,{[M,N,P ]}kB )//Step ¯

IDP S(p) Protocol
IS1: Receive(r,{{assoc(T, U), sessionIDr,

CSRFTokenr}}key(r,p)) //Step ­

IS2: NewAssoc({p, j}, assoc(i, authtoken))
IS3: Send(r,{i, assoc(i, authtoken),

{[i, assoc(i, authtoken)]}
k−1
IDP S

}key(r,p)) //Step ®

Figure 4.3: e TML Model of Running Example in Figure 4.1. M, N, P, T and U are variables. I2 and
the session keys in IC2, IC3, IS1 and IS3 model HTTPS communication. Cross domain restrictions
by the browser's SOP are modeled as encryption using the key kB (initialized in I7). j and p are identities
of SP and IDP respectively, i.e., their domains. e behavior of Alice is modeled together on SP client side,
thus i stands for Alice's uEmail which is Alice's identity. sessionID and CSRFToken have been inferred
to be nonces (I4 and I5). e authToken is inferred to be guessable (I6).

(Init, ProSet). e ProSet is a set of local protocols {P1(X1), P2(X2), . . . Pi(Xi)}, where

each local protocol Pi is executed by a protocol participant Xi. e local protocol speciĕes a se-

quence of actions that one participant can perform. e complete speciĕcation is characterized

by a set of local protocols to be executed by multiple participants. Xi are variables in the schema

that may be instantiated by concrete principals (such as idp.com) in a protocol instance. e

second part of the protocol schema is a set of initial conditions Init, such as the initial knowledge
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set of each protocol participant prior to the start of the protocol. In the TML of our running ex-

ample (Figure 4.3), we infer 7 initial conditions (I1-I7); we explain how these are derived during

protocol extraction in Section 4.4.

Actions. In executing a local protocol, the participant executes a sequence of actions. Actions

can be either communication actions, which send/receive messages with other participants, or

internal actions which result in updating local state (or, formally the knowledge set) of that par-

ticipant. ese actions are listed in Table 4.1. e semantics of these actions are fairly intuitive as

their names suggest, with the exception of NewAssocwhich is explained later in this section. For

example, BeginInit(r) states that an initiator of the protocol begins its role with a responder r.

EndInit(r) states that the initiator ends the protocol with the responder r; BeginRespond(i) and

EndRespond(i) are similarly deĕned with i being the initiator. Send(p,M) or Receive(p,M)

means sending or receivingM to/from p, respectively. NewNonce(n) is the action of generating

a nonce. NewKeyPair(k, k−1) is the action of generating an asymmetric key pair, where k is the

public key and k−1 is the private key. NewSecret(S, n) indicates the action of generating a secret,

which is intended to be shared with (or distributed to) a set of principals S. Secrets can be data

elements such as shared session keys. e secret distribution is only complete when all partici-

pants for whom the secret is intended have explicitly executed the Accept(N) action. Note that

a participant following a local protocol only executes an action aer it executes the preceding ac-

tion state in the schema. As a result of executing certain actions, such asNewNonce and Accept,

participants update their knowledge sets. Intuitively, a participant's knowledge set includes the

data terms that it possesses or can compute, which can be used by the participant in communi-

cation messages. e attacker, denoted by the principal Z throughout this thesis, is assumed to

follow no local protocol and is free to execute any action at any step under the constraints of its

knowledge set and the capability of the assumed attacker model.

Terms. We aim to recover as much semantics of the data exchanged and the internal state main-

tained for each participant as possible. To characterize these semantics, TML provides three

kinds of terms: constant symbols, function symbols and variable symbols5. Constant symbols
5is typesetting is kept consistent with theWLmodel paper [211]. e constant symbols are typeset in Sans Serif
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Table 4.1: e Action Schema in TML

BeginInit(r) NewNonce(n)
EndInit(r) NewSecret(S, n)
BeginRespond(i) Accept(N)
EndRespond(i) NewKeyPair(k, k−1)
Send(p,M) NewAssoc(S, assoc(m1, . . . ,mn) )
Receive(p,M)

include names of principals (web origins), nonces, keys and integer constants. Function sym-

bols include the encryption function {·} , the shared key function key(·, ·), the concatenation

function [·, ..., ·], the set construction function {·, ..., ·} and the arithmetic functions (+,−,/,∗,

and modulo). e public key and private key of a principal P are denoted by kP and k−1
P , re-

spectively. e symmetric key shared by principles P and Q is denoted by key(P,Q). A term is

ground if it only consists of constants and function symbols. Finally, variable symbols represent

terms which are not ground.

We aim to recover the precise relationships between terms exchanged in the protocol. For ex-

ample, our analysis infers that the value of idpSign is the signature of uEmail concatenatedwith

authToken, as can be seen at line 27 of the running example---this translates to the statement

labelled IS3 in Figure 4.3. If a participant receives a data element whose precise semantics is not

known by the receiver, we represent this data as a variable in TML. For example, consider SC4 in

Figure 4.3, we model the messages on the receiver side as variablesM andN ; the participantXi

executing local protocol Pi in the schema is a variable; the responder r in the BeginInit(r) is also

a variable which will be instantiated with concrete values in an execution instance of a protocol

schema.

New Extensions in TML. TML extends the WL model with three new extensions. e semantics

of other operations are deĕned in theWLmodel; we discusswhy these extensions are needed. e

ĕrst extension is arithmetic function symbols. ese operations are oen utilized in generating

sequence numbers from nonces, and, oen lead to weak or predictable tokens. Our TML can

capture such weak constructions and subject them to testing.

font, the adversary is referred to as the principal Z and the universe of principals is the set SYS. Lower case variables
stand for terms that are constant symbols, while upper case variables stand for arbitrary terms.
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e second extension is a function symbol called association relation, which is written as

assoc(m1, . . . ,mn) to associaten variables,m1 tomn. Association relation is necessary because

while reconstructing the semantics from implementations, we sometimes cannot infer the exact

relation between the terms even though we can infer that they are related. For instance, in the

running example, we can infer that authToken (line 14, Figure 4.1) does not change during the

sessions of the same user, and hence it is related to the user's identity, but the exact semantic

relation is unknown. In this scenario, AS generates an association assoc(i, authtoken)

to indicate that the two terms are related as a key-value pair, but without the exact relation known.

e third extension we introduce in TML is an internal action which is called NewAs-

soc(S, assoc(m1, . . . ,mn)). is action means that the association assoc(m1, . . . ,mn) is

known or becomes shared among the principals listed in the set S. To see why the sharing among

S is needed, consider the following scenario. Principals P and Q possess a mutual shared se-

cret k, that is known prior to the execution. P sends Q a message m in the client browser, both

participants send m back to their backend servers, and their servers later respond with entity

{m}k in subsequent HTTP messages observed in the browser. AS observes that P and

Q compute the same term from m in the code hidden on their servers, but it cannot infer the

exact relation between {m}k and m because it does not know that k is a pre-exchanged shared

secret. Under such situations, AS introduces aNewAssoc action in the inferred protocol

schema to specify that this association is known to both P and Q. e step SC2 in Figure 4.3

shows how this relation is captured at TML.

We deĕne the semantics for these extensions, which extends the original semantic model

of the WL model in the following way. We introduce an association table for each princi-

pal to record the principal's knowledge of associations. When a principal executes NewAs-

soc(S, assoc(m1, . . . ,mn)), the assoc(m1, . . . ,mn) is added into the association table of each

principal in S. Note that the attacker (i.e., Z) is not allowed to update the association table. When

a principal receives an association, it checks implicitly if the association is stored in its table.

Assumptions in TML. We make the following assumptions in TML.

• Correct Cryptographic Algorithms. TML assumes that the cryptographic algorithms
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used in the protocol are ideal. We do not aim to detect vulnerabilities in the implementa-

tions of the cryptographic primitives.

• Distinct Secret Keys and Nonces. TML assumes the encryption/decryption keys are kept

secret prior to the protocol, and are distinct (i.e., cannot be guessed).

• Knowledge of Principals. We make the assumption on the knowledge of the principals:

Each principal knows the identiĕers or names of other principals (represented as (I1) in

Figure 4.3). is assumes that the DNS infrastructure has no vulnerability.

4.4 Protocol Extraction Techniques

In this section, we give the details of the hybrid inference approach to address the challenges in

Section 4.2.2.

4.4.1 Overview of Protocol Extraction

Our protocol extraction technique operates on the input test harness, one test case at a time.

Figure 4.4 shows an overview of the protocol extraction process.

As the ĕrst step, the abstraction initialization component in our system creates an initial ab-

straction of the protocol from the ĕrst test case in the test harness. It takes HTTP traces (captured

by our trace capturing component shown in Figure 4.2) and the initial knowledge provided by the

analyst as inputs. e initial abstraction of the inferred protocol is in the form of a TML protocol

schema (Init, ProSet). By utilizing the test cases from the test harness one-by-one, AS

iteratively reĕnes the abstract protocol using our hybrid inference technique discussed in this sec-

tion. During each iteration of the hybrid inference, AS gradually reĕnes the semantics

of terms and actions of the protocol schema until no new semantics can be discovered.

4.4.2 Protocol Reĕnement Algorithm

e protocol reĕnement algorithm is shown in Algorithm 2. e inputs of the algorithm are

the initial knowledge InitK (i.e., the test harness, protocol participants & public keys of par-
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Figure 4.4: AS's Protocol Extraction Process

Algorithm 2 Abstraction Reĕnement Algorithm
Input: InitK : initial knowledge, t: test trace
Output: PS: protocol schema
1: (Init, ProSet)← absInit(t, InitK);
2: ProSetold ← null;
3: trPool: a trace list, initially empty
4: while ProSet 6= ProSetold do
5: ProSetold ← ProSet;
6: ProSet← JSAnalysis(t, ProSet);
7: (ProSet, T )← Blackbox(t, ProSet, InitK, trPool);
8: trPool.add(T );
9: end while

10: return (Init, ProSet);

ticipants and oracle, outlined in Section 5.3.3), and a trace t generated from one test case. A

trace is a sequence of messages (a0, a1, ..., an), where ai represents either an HTTP(S) request,

response (which may contain JavaScript programs), or a cross-domain communication message

over postMessage. We refer to all data exchanged in the trace as HTTP data, which includes

HTTP parameters, cookies, postMessage data, HTML form data, JSON data, and so on. A-

S's trace capturing step identiĕes the HTTP(S) request/response pairs from the trace. e

output of the algorithm is one inferred protocol schema.

Our reĕnement algorithm (Algorithm 2) has two steps: abstraction initialization (line 1) and

reĕnement process (line 4-9). e absInit method (line 1) returns an abstract protocol schema

(Init, ProSet). Init is a set of predicates, which stands for the initial knowledge of the prin-

cipals. Some of these are derived from the assumptions of TML (outlined in Section 4.3.2), e.g.,

I1 − I3 shown in Figure 4.3. Other TML terms model the communication channels that are
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used in the protocol. For example, to model the HTTPS channels and cross-domain commu-

nication channels, we internally introduce symmetric keys (I6 in Figure 4.3), as we explain in

Section 4.5.2. For every message a in test trace t, if the sender or the receiver of a is not con-

tained in ProSet, absInit inserts a new local protocol into the ProSet. en, absInit adds

two communication actions (Send and Receive) into the sender's and receiver's protocol, respec-

tively. In addition, absInit can identify some constant terms in the HTTP data, such as the

domains of principals, user accounts and public keys of web sites available as the security ana-

lyst's inputs to AS. AS identiĕes them by matching the value of HTTP data with

the values in the analyst's inputs. For example, i, r and kIDP S are identiĕed in this way; they

stand for the identity of SP, the identity of IDP and the public key of IDP, respectively. At the end

of this step, other HTTP data, which cannot be inferred here, are represented as variable terms

whose semantics are inferred in the reĕnement process explained next. e Begin* and End*

events are also inserted into the local protocols indicating the SP's client and server.

In the reĕnement step (line 5-8), AS reĕnes the initial abstraction by utilizing more

test cases. is step combines whitebox symbolic analysis (JSAnalysis at line 6) and a blackbox

analysis (Blackbox at line 7).

Whitebox Program Analysis. e JSAnalysis procedure uses dynamic symbolic analysis (at

line 6) to infer the function terms and the internal actions of the principals. Dynamic symbolic

analysis (similar to previous work [186]) is used to obtain symbolic formulae which capture the

relations among the HTTP data. ese symbolic formulae are over the theory of TML terms,

which include arithmetic operations, concatenation function, cryptographic operations and un-

interpreted functions. We introduce uninterpreted functions tomodel semantics unknown func-

tion calls, such as calls to browser APIs or JavaScript functions which have many arithmetic and

bitwise operations characteristic of cryptographic operations. For the code fragment marked B

in our running example (Figure 4.1), if the input value for the variable event.data is a string

"u&t&s", the following symbolic formulae are generated by this step:
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(1) uEmail := u; (2) authToken := t;

(3) idpSign := s; (4) data := [u, t];

(5) idpPubKey := loadPubKey();

(6) verify([u, t], s, idpPubKey);

(7) message := [u, t];

(8) request := $.ajax(login, [u, t]);

To precisely identify cryptographic function terms in the symbolic formulae, AS

needs to identify JavaScript functions implementing cryptographic signature, encryption, ran-

dom number generation, public key fetching functions and so on. From the above symbolic for-

mulae example,JSAnalysis can identify thatidpSign is the term {[uEmail, authToken]}k−1
IDP

,

once AS knows that the semantics of the JavaScript procedure verify(data, sig, key).

By default, AS identiĕes these functions based on its built-in list of browser APIs and

JavaScript libraries that provide such functions [16]. AS tries to concretely match the

semantics of all symbolic terms identiĕed as uninterpreted functions in the symbolic formulae

to one of known cryptographic functions in its built-in list. For example, AS can test

verify with the same inputs as the standard RSA signature veriĕcation function from its built-

in list and compare the outputs. Security analysts can also provide annotations for source code

functions to identify custom implementations of standard cryptographic primitives, in case the

default list is not sufficient. In this way, several variables are replaced with newly inferred TML

terms in this step. For an uninterpreted function whose semantics cannot be inferred in this step,

AS uses an assoc to represent it. e assoc associates the output of the function with

the inputs.

Based on the extracted symbolic formulae, JSAnalysis infers the function terms and some

internal actions in local protocols. For example, if an HTTP data is identiĕed as a session key,

AS treates the principal which ĕrst sends it in the communication as generator of this

session key. AS infers that this principal has performed a NewSecret action and the

principals which receive it have performed Accept actions. If a principal invokes an asymmetric

key pair generation function, AS adds a NewKeyPair action to the principal's protocol.

Blackbox Differential Fuzzing Analysis. e blackbox analysis (at line 7) further reĕnes the
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output of the whitebox analysis by trying to infer more TML terms and actions while treating the

participant implementations as a blackbox. Our blackbox differential fuzzing analysis takes as

input the trace t, the reĕned abstraction aerwhitebox analysis, and the initial knowledge InitK .

eĕrst substep in blackbox fuzzing is to remove certain redundant data tomake blackbox testing

more efficient. Next, the blackbox inference algorithm infers TML terms in two ways: for some

terms, it generates "probe"messages and compares the outputs, whereas for other terms, it merely

makes the inference based on the observed traces without generating new probes. We describe

the redundant data elimination, probe-based inference and non-probe-based inference substep

separately. In each iteration of the blackbox fuzzing step, AS internally generates new

traces and keeps them in a local trace pool (trPool in Algorithm 1). ese traces are not fed

back to the initial test harness, and are used only during the blackbox and whitebox steps.

Eliminating Redundant Data. e goal of this step is to identify HTTP data that do not

contribute towards the authentication protocol. In this step, we check each HTTP data element

by generating a probe message with this element removed. If the probe message results in a

successful authentication, we remove the element and all of its occurrences in previous messages.

AS performs this operation iteratively for each request/response pairs starting from the

last pair and proceeding backwards in t.

Probe-based Inference. e main idea of this fuzzing step is to mutate or remove the HTTP

data in the request messages of t, while keeping others unchanged. ese modiĕed "probe" mes-

sages are sent to the protocol participants and their responses are compared for differences. In

addition, to prevent the explosion of number of HTTP traces, we capture at most three traces for

each test user account and at most 10 test user accounts for each web site. AS identiĕes

the semantics of several types of HTTP data: URLs, HTTP parameters, web addresses, JSON

data, JSON Web tokens, and web cookies. To do this identiĕcation, it uses simple pattern match-

ing rules over the values of the data. For instance, a string which has sub-strings separated by

"&", with each segment as a key-value pair separated by a "=", is treated as an HTTP param-

eter list. Similar syntactic properties are used for common web objects such as JSONs, JWT,

cookies and so on. Once the HTTP data type is inferred, AS makes use of the type in-
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formation to speed up the fuzzing process. For example, if AS infers that a string is an

HTTP parameter-value list, it mutates each key value pair in this string separately. Similarly,

if AS infers that a string represents a user identity (like usernames) or a web address,

it mutates the value of this HTTP data into another user's ID or another web address, instead

of trying random modiĕcations. AS also incorporates simple pattern-matching rules to

identify if values are encoded using common encoding methods such as URLEncode/URLDe-

code, Base64-encode, HexEncode, HTMLEncode and JavaScript string literal encode, based on

the use of special characters. For anHTTP data with completely unknown semantics, AS

uses pattern-matching techniques to label it as one of primitive types (Integer, Bool, or String).

Once the basic types are identiĕed, AS then infers the TML terms and actions. From

the traces in the local trace pool, AS attempts to ĕrst identify arithmetic function terms,

which in turn enables the modeling of weak or guessable tokens. For Integer- or String- typed

value of an HTTP data parameter that change across sessions, AS uses the following

mechanism to check if it is generated using a predictable arithmetic function. Given such a string

value (say str), AS ĕrst conducts a substring matching between its instances across vari-

ous traces and extracts the parts that are not common between these instances. AS then

checks if these values form simple arithmetic sequences adding or subtracting a constant. If the

function is identiĕed, AS treats it as a guessable token, and conĕrms it by predicating its

value and probing the server (discussed in Section 4.5.3). We plan to integrate more powerful

off-the-shelf tools, such as Wolfram Alpha, which take such value sequences as inputs and out-

put a closed form arithmetic expression to match it [31]. AS also marks any data value

which is too short (L ≤ 4 characters by default and conĕgurable) as guessable short-length to-

kens, as these values may be subject to exhaustive search. For example, in the case where L = 4,

the search space is less than 2 million ((10 + 26)4), assuming that the term only consists of

case-insensitive alpha-numeric characters; AS presently does not actually generate these

probes butmodels such values as attacker's knowledge (as detailed in Section 4.5.2), and generates

security warnings.

Next, AS infers two kinds of associations using techniques similar to those proposed
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by Wang et. al. [207]. One kind of association is among HTTP data. AS replaces the

value of an HTTP data x in message ai, while keeping the rest unchanged. en it sends this

"probe" message and compares the response message. If HTTP response ~y changes, AS

introduces an assoc(x, ~y). Other kinds of association relations are between HTTP data and a

web principal or users. Similarly, AS identiĕes these associations by using differential

analysis on multiple traces. e HTTP data which remain constant among the same user's mul-

tiple sessions are inferred to be associated to the user; those remaining constant among different

users' sessions are inferred to be associated with a web principal (such as the SP or IDP). All re-

maining HTTP data that change in all such probes are inferred to be nonces (NewNonce), such

as session IDs.

Identifying Association Principals. e S in NewAssoc(S,...) stands for the principals who

share the knowledge of the association terms. AS identiĕes these principals by observing

which terms in an assoc appear in the responses from the protocol participants. en, it probes

these participants by replacing the associated terms with random values. If a principal rejects the

fuzzing message, we infer that it knows how to compute the relationship, and add a NewAssoc

with these participants in S.

Non-Probe Based Inference. e non-probe based inference infers three kinds of function

symbols: cryptographic functions, set functions and concatenation functions. AS em-

ploys brute-force search to identify cryptographic functions. It takes every combination of all

HTTP data elements and checks if they can be used as inputs to a standard cryptographic prim-

itive to produce another data element. We bound the function nesting depth of terms to be less

than 5. In our experiments, we ĕnd that this bound is reasonable since all our analyzed protocols

do not use no more than 4 levels of nesting cryptographic constructions. is search strategy has

been sufficient in practice for our experiments on real-world protocols. For example, as discussed

in our BrowserID case study (Section 4.6), AS successfully identities that oneHTTP data

element is signed by the IDP, and that the signed elements are the ID and the user's public key.

AS identiĕes the concatenation functions by using a substring search over all combina-

tions of HTTP data elements. For the set construction functions, if a single message contains
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multiple data, AS assigns them to a set.

4.5 Protocol Analysis & Attack Conĕrmation

Aer extracting a TML model, AS translates it into applied pi-calculus, which is taken

as input to ProVerif [62] to check security properties against attack models. We leave the details

of this process to Appendix A; and in this section, we discuss the security properties, attacker

models and how candidate attacks are checked to conĕrm security Ęaws.

4.5.1 Security Properties

By default, AS checks the correctness of two essential security properties in its applied

pi-calculus version, authentication of an authentication protocol [211] and secrecy of credential

tokens. A protocol achieves authentication if each principal is sure about the identity of the

principal whom it is communicating with. Authentication is checked using injective correspon-

dence ( , or injective agreement) [211, 149, 65, 63], which can check whether two local proto-

cols are executing in "lock-step" fashion, i.e., whether there is an injective mapping between the

execution of two participant's protocols. For instance, in our running example, whenever ĕn-

ishing executing EndRespond(i), SP S believes that SP C has executed the protocol with him;

thus, to guarantee authentication, SP C must have executed BeginInit(j), i.e., EndRespond(i)

 BeginInit(j) (inj-event(EndRespond(i))==>inj-event(BeginInit(j)) in applied pi-

calculus). Authentication is violated if SP S believes SP C has executed the protocol with him,

but actually it is Z who has.

Additionally, an authentication protocol may introduce some credentials and thus secrecy of

them needs to be guaranteed. Secrecy is deĕned as querying a term from the attacker Z's knowl-

edge set [211]. e secrecy of a term a is speciĕed as Z has a (query attacker(a) in applied

pi-calculus), which queries whether a is derivable by Z aer the execution of the authentication

protocols. If Z has a aer the protocol, the protocol fails to guarantee the secrecy of a. By default,

AS checks the secrecy of terms used for authentication (such as the sessionID in the
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running example); the attack analyst can add more queries to check the secrecy of other terms,

for example, credentials for resource access (such as OAuth token in OAuth 2.0). For long-lived

tokens, AS adds them to Z's knowledge set before querying ProVerif. In general, Z may

know a long-lived token's value (through external knowledge) even if it is not sent on a public

channel; AS conservatively models this scenario and raises a security warning to alert

the analyst. For guessable tokens, AS adds the outputs of the arithmetic operations to

Z's knowledge set. In the attack conĕrmation step, these guessable values are computed and used

as we detail in Section 4.5.3.

4.5.2 Attacker Models

In this work, we consider two different attacker models, namely the network attacker [93] and

the web attacker [40]. Previous work (e.g., [56]) has shown that these attackers can be captured

in ProVerif. Hence, we ignore the detailed modeling and just give an overview in this section.

For example, attacker model in the running example is demonstrated in Appendix A. Note that

both the attacker models are checked individually in AS, since ProVerif terminates aer

ĕnding a counterexample.

Network Attacker. We model the network attacker using the Dolev-Yao model [93], that is, an

active network attacker is able to eavesdrop all messages and control the contents of unencrypted

messages in the public network under the constraints of cryptographic primitives. In TML, we

model HTTPS by assuming that the SSL certiĕcate checking and handshake are complete before

the protocol starts; we model the session key between the two communicating principals x and y

with a key function key(x, y) (I2 in Figure 4.3). In applied pi-calculus, we model HTTPS using

private channels, which are neither readable nor writable by the attacker (shown in Appendix A).

Note that modeling the HTTP network attacker is available from ProVerif directly.

Web Attacker. We also reuse web attacker models described in prior work [56, 40]. ese

models include modeling the same-origin restrictions; for example, the fact that client-side SP

code cannot intercept IDP server's messages is implied in the applied pi-calculus semantics that
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the local variables of a process are inaccessible by another process. We model HTTP headers

like Referrer which correspond to the client-side code sending its identity in the messages; of

course, if the header is not checked by the server, it will not be inferred in our speciĕcation as it is

removed as a redundant element. We also model the semantics of postMessage by encrypting

all messages transmitted through postMessage with a key (kB in IC4 and SC4, Figure 4.3). If

AS ĕnds (bywhitebox analysis) that the receiver or sender origin ĕelds are not checked,

it casts kB to the attacker such that the attacker is able to read and write the postMessage chan-

nel. e anti-CSRF tokens are not needed to be explicitly modeled in the attacker model as they

are observed in the HTTP network messages and are inferred to be nonces if they are relevant

to the protocol (I4 and I5 in Figure 4.3). We assume that the attacker has the ability to redirect

the user agent to a malicious web site. We do not model web attackers with the ability to perform

Cross-Site Scripting (XSS) attacks and complex social-engineering attacks in this work.

4.5.3 Candidate Attack Conĕrmation

AS conĕrms candidate attacks generated by ProVerif in this step. If a protocol fails to sat-

isfy the security properties, ProVerif generates a counterexample, which consists of the attacker's

actions, the attacker's input/output and details the terms computed by Z at each step using it's

knowledge set at that step. AS re-constructs the candidate attack probe from this infor-

mation. For all terms computed at each step, AS substitutes the concrete values for these

terms. For guessable tokens that are computed from arithmetic functions, AS evaluates

the function to calculate the next concrete value. For short-size guessable tokens, AS

only raises a security warning. To map symbols and variables in ProVerif counterexamples to

concrete values observed in the HTTP traces, AS maintains the mapping between the

original HTTP messages and the protocol statement generated during the protocol extraction.

us, AS maps back a ProVerif action sequence and terms in the ProVerif counterexam-

ple to the ProVerif input, which inturn is mapped to the raw HTTP message. Once the messages

are constructed, AS replays the candidate attack probe. During this process, it queries
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the oracle provided by the analyst to check whether the attack is successful.

Currently, AS automates conĕrmation of attacks overHTTP, over postmessage and

via a web attacker-controlled iframe. In cases which AS cannot conĕrm with concrete

attack instances, it reports security warnings containing the communicated data it suspects. Such

cases include the use of long-lived token in authentication, secrecy of which is not known in

the inferred protocol but conservatively modeled as discussed in Section 4.5.2, and the use of

guessable short-length tokens.

4.6 Evaluation

We have built an implementation of AS in approximately 5K lines of C# code, and 3K

lines of JavaScript code. e HTTP trace recording and blackbox fuzzing functionalities are im-

plemented in a Firefox add-on. e JavaScript trace extraction is implemented by instrumenting

the web browser to generate execution traces in a format similar to JASIL [187]. We developed

our own implementation of dynamic symbolic analysis for extracting the TML terms from the

execution traces.

4.6.1 Evaluation Subjects

To estimate the effectiveness of AS on real-world protocols, we test several implementa-

tions of popular SSO protocols and standalone web sites that implement their custom authenti-

cation logic. e inferred protocols are presented in Appendix B.2. Our results are summarized

in Table 4.2.

BrowerID. BrowserID [3] is an SSO service proposed by Mozilla, which is used by several

Mozilla-based services such as BugZilla and MDN, as well as some other service providers. We

test three different SP implementations of BrowserID. Although BrowserID is open-source, most

of protocols do not provide the detailed implementation on the server-side. To account for this,

we only take into consideration the client-side JavaScript code and HTTP messages to make our

analysis approach more general. AS manages to infer the general protocol speciĕcation
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Table 4.2: Statistics in Our Experiments

Column 2: ratio of messages ĕltered out by AS w.r.t. the total number of messages occurred in the protocol;
Column 3: ratio of parameters ĕltered out by AS w.r.t. the total number of parameters used in the messages;
Column 4: total execution time of AS; Column 5: veriĕcation time of running ProVerif without and with
ĕltering of the messages or HTTP data, under the network attacker, where "-" means nontermination in veriĕcation;
Column 6: number of rounds; Column 7: number of bugs found in each web site (with repeats); there are 7 distinct
(without over-counting) vulnerabilities.

Web Sites % Redundant % Redundant Time(s) Veriĕcation Time (s) Fuzzing Bugs
Msgs (Total) Elems (Total) WO / W Filter Rounds

myfavoritebeer.com 88% (80) 50% (12) 113 204/3.0 20 2
openphoto.me 82% (93) 75% (24) 72 726/3.0 22 2
developer.mozilla.org 87% (127) 74% (23) 96 -/3.0 28 0
ebayclassiĕeds.com 72% (58) 57% (152) 127a -/58.7 107 2
familybuilder.com 97% (290) 51% (144) 110a -/58.7 77 1
weibo.com 97% (176) 98% (52) 30 0.36/0.03 78 1
iyermatrimony.com 98% (120) 67% (9) 5.33 1.14/0.04 510 1
meetingmillionaires.com 96% (54) 0% (5) 4.72 1.05/0.04 30 1
a e period that AS halts until Facebook allows to resume fuzzing is not taken into account.

from these three implementations, ĕnding only one crucial difference across the implementa-

tions (explained in Section 4.6.2).

Facebook Connect. Facebook Connect [8] is one of the most widely used incarnations of the

OAuth 2.0 published by Facebook. We test two SP web sites using this protocol. e experiments

are conducted on the basis of client-side JavaScript code and HTTP messages. AS infers

the general protocol speciĕcation successfully.

Windows Live ID. Windows LiveMessenger Connect [27] is another SSO protocol derived from

the general OAuth 2.0 speciĕcation. We test its implementation using the Sina Weibo service---a

China-based web site similar to Twitter and has over 300 million users. AS successfully

extracts the protocol from this implementation; we skip the protocol diagram (which is similar

to Facebook Connect) for the sake of space.

StandaloneWebSites. We also test two standalone sites, where users share deeply personal infor-

mation, both of which have from hundreds of thousands to millions of users and utilize custom

authorization mechanisms. AS uncovers the custom authentication protocol for both

sites.
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4.6.2 Protocol Analysis and Vulnerabilities

We test AS on 8 implementations (as shown in Table 4.2). We successfully ĕnd 7 secu-

rity vulnerabilities, all of which we have responsibly disclosed to the developers of the web sites.

For the sake of space, we leave the details on how AS extracts protocol speciĕcation to

Appendix B.1; and in this section, we brieĘy present the found vulnerabilities in the protocol

implementations.

Setup. In our experiment, the input and conĕguration to AS include:

• Test harness. e security analyst is required to input two pre-registered user accounts (for

example, email and password in BrowserID), except for the IyerMatrimony case inwhich

ĕve are needed.

• Protocol principals & public keys. For the SSO implementation (including BrowserID, Face-

book Connect and Windows Live ID), the analyst needs to indicate domains of IDP and

SP (for example, in BrowserID case, persona.org and myfavoritebeer.org, respec-

tively). For the standalone web sites, the analyst needs to indicate the domains of the tested

sites. In both cases, the public keys of the participants need to be provided if HTTPS is used

in the implementation.

• Oracle. e analyst needs to provide an indication to represent the successful authenti-

cation. In our experiments, we provide unique strings on the response webpage from the

server such as "welcome user" to identify if the authentication succeeds.

• Cryptographic functions. We manually annotate the cryptographic functions in the Crypto

library of Node.js [16], for AS to identify the cryptographic functions. We also

annotate the functions in Mozilla jwcrypto [30], which is used in the implementation

of BrowserID. AS automatically infers cryptographic operations using its default

method in all other case studies.

For all cases, AS checks the authentication of the protocol and secrecy of the terms

used for authentication (such as the assertion in BrowserID, which is discussed later in this sec-

tion). ese properties are checked against the network attacker as well as the web attacker.
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Replay Attack in BrowserID. In two tested implementations of BrowserID, which use the

persona.org as IDP, AS identiĕes and generates a conĕrmed replay attack in the net-

work attacker model. AS generates an attack HTTP trace in which a malicious user logs

into the SP by replaying the token named assertion (message (7) in Figure B.2), without providing

login credentials to the IDP. e Ęaw leading to this attack is that the assertion is sent through an

insecure channel (HTTP) and it does not contain any session-speciĕc nonce. We have proposed

to add a nonce in the signature to solve this problem and notiĕed Mozilla about our ĕnding.

Mozilla acknowledged the security Ęaw.

CSRF Attack in BrowserID. AS identiĕes and conĕrms a replay attack in the web at-

tacker model. AS reports this attack on two of the BrowserID implementations, other

than the one from developer.mozilla.org. We have responsibly notiĕed the vendors of these

vulnerable implementations. Aer manual analysis of the inferred protocols, we ĕnd one crucial

difference between the vulnerable implementations from the developer.mozilla.org imple-

mentation. In the latter, SP client sends two anti-CSRF tokens (csrfmiddlewaretoken and

next which are inferred as nonces) in step 7 (Figure B.2), but these are absent from the protocol

schema of the vulnerable SPs implementation, permitting a CSRF attack. AS reports that

a malicious web site can send an HTTP POST request to the vulnerable SPs, which do not check

the Referrer ĕelds. Using this knowledge, we cra a script which can be used by the attacker to

modify the content on the web pages without Alice's approval.

Secret Token Leak in Facebook Connect. By following a similar procedure as illustrated in the

case of BrowserID, AS ĕnds one conĕrmed Ęaw in the implementation of FacebookCon-

nect, and another one in the usage of Facebook Connect by one out of the two SPs we tested. Both

attacks leak secret tokens in the network attacker model. In this case, we report that automatic

fuzzing was initially difficult because Facebook blocks login failure for a test username/password

aer 10 attempts. For this, we manually skipped fuzzing the initial login request to the IDP, but

tested the remaining protocol with the SPs.

In the implementation of Facebook Connect, most of the communications are through

HTTPS to prevent network attackers from stealing the authorization tokens. However, A-
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S reports that the message at step 4 of Figure B.2-(b) is readable to the network attackers

because they are transmitted through a non-HTTPS channel, so two credentials c_user and xs

can be obtained by the attacker. us, the protocol is subject to a replay attack similar to the one

in BrowserID. Aer our experiments, we discover that a similar attack against the previous ver-

sion of Facebook Connect has been reported by Miculan et al. recently [158]. We conducted our

tests in the end of April 2012; Facebook ĕxed this Ęaw in early May 2012 before we were able to

notify them. In Facebook's latest implementation6, the communication in this step is protected

with HTTPS. AS ĕnds the other Ęaw leading to replay attack when an SP called Ebay-

Classiĕeds uses the Facebook Connect. Aer completing the Facebook Connect, the SP sends

the user credentials which can be used to fetch session cookies. However, these credentials are

also sent through a non-HTTPS channel.

Non-secret Token in Using Windows Live ID. We tested AS on the authentication

mechanism of Sina Weibo, a web site with more than 300 million users. It employs the Win-

dows Live ID to authenticate users. In this experiment, AS initially reported a security

warning claiming that a long-lived token (non-nonce value) is used to authenticate the user. We

subsequently manually investigated this warning, and found that the long-lived token (named

msn cid) reported by AS is known publicly. For example, it can be obtained from var-

ious sources such as straight from the MSN user proĕle page (https://profile.live.com/

cid-xxxx). When we added this token to the attacker's knowledge set and re-ran the experi-

ment, AS was able to automatically generate an attack trace.

is Ęow occurs aer a user completes the authentication with Windows Live ID, which

demonstrates that AS is useful for ĕnding simple, but severe logic Ęaws beyond the ini-

tial SSO authentication token exchange. Note that manually ĕnding these attacks is not easy;

AS eliminated 18 redundant cookies with differential fuzzing. e ĕnal HTTP packet

which is sent from user to Weibo web site for authentication, as constructed by AS, sets

the msn cid value to the publicly known value as shown below.
6https://s-static.ak.facebook.com/connect/xd arbiter.php?version=9
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GET /msn/bind.php HTTP/1.1
Host: www.weibo.com
Connection: keep-alive
Cookie: msn_cid=xxxx

is vulnerability impacts all Weibo users who have ever logged in Weibo through Windows

Live Messenger. We have reported this security Ęaw to Sina Weibo. e security department of

Sina R&D has conĕrmed the exploit and posted us a gi for our contribution.

Guessable Token in Standalone Sites. AS detects one severe vulnerability in each of

the two standalone web sites: IyerMatrimony and MeetingMillionaries. Both of them have a

signiĕcant number of registered users, 220,000 and 1,275,000, respectively. e vulnerability

shows that both of these two web sites authenticate users by some guessable token. Exploiting

these vulnerabilities, the attacker can log into others' accounts and get full privilege of the victim

users.

In the case of IyerMatrimony, aer eliminating 7 redundant HTTP parameters with differ-

ential fuzzing, AS gets the following packet which can be used for a successful authenti-

cation.
http://www.iyermatrimony.com/login/intermediatelogin.php?sde=

U1ZsU01UZ3dOVE01&sds=QdR.j/ZJEX./A&sdss=Tf/GpQpvtzuEs

rough differential fuzzing, AS ĕnds that sds and sdss keep constant among differ-

ent accounts' multiple login sessions; for an individual account, the sde remains the same in its

multiple sessions. Among the test accounts, AS ĕnds that the 14-character preĕx of sde

remains constant and only the 2-character postĕx is incremented by one across accounts whose

IDs are consecutive numbers. AS conĕrms this Ęaw by predicting the value of sde for

our testing accounts and successfully logging into the account.

In theMeetingMillionaries case study, AS generates a security warning about a short-

length token used for authentication. We manually conĕrmed that this warning is a security Ęaw

and notiĕed the developers. In this site, a user can access his account information (including

password stored in plain text) by visiting the following URL.

http://app.icontact.com/icp/mmail-mprofile.pl?r=36958596&l=2601&s=21DS&m
=318326&c=752641
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AS ĕnds l, m and c are constant among different users' sessions and r is associated with

the user account. s is the only credential but due to its short length (4 characters), AS

raises a warning of guessable token. Upon our manual investigation, we ĕnd that s is an alpha-

numeric string. We believe that automating attack generation for such tokens may be possible

in the future; we tested that AS can send about 500 requests to the server within one

minute. With such capability, it would take an enhanced implementation of AS at most

56 hours to guess the right s.

4.6.3 Efficiency & Running Time

Running Time. e total analysis time for most cases is less than 2 minutes, and can be as low as

5 seconds. e veriĕcation time for ProVerif is within 1 minute in our case studies. It shows that

the security-relevant parts of the protocols generated are usually small. We ĕnd that additional

source code results in the reduced number of iterations in our blackbox fuzzing step. For exam-

ple, in BrowserID, the client-side code is available, therefore, the number of fuzzing iterations is

smaller (20-30 rounds) than other SSO protocols (30-500 rounds as shown in the sixth column,

Table 4.2). Our data shows that AS's protocol extraction step is sufficient to ĕnd Ęaws

even when much of the protocol implementation is unavailable as shown in the Facebook case.

Redundant Data Reduction. When querying off-the-shelf veriĕcation tools like ProVerif, it is

important to remove redundant terms for better scalability. As shown in Table 4.2, AS

ĕnds that the majority of the messages (more than 80%) and HTTP parameters (more than 50%)

are irrelevant to the protocol and AS can successfully ĕlter them out. is shows that an

automatic tool is helpful in constructing the models from the complicated implementation de-

tails. Furthermore, this reduction helps greatly in reducing the veriĕcation time. For BrowserID,

ProVerif does not terminate within one hour if we naively retain all terms exchanged in the com-

munication. In summary, we ĕnd the AS has promising scalability for real-world secu-

rity protocol implementations.
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4.7 RelatedWork

Protocol Extraction. Works on automatically extracting models from the protocol implemen-

tations are most related to this work. Lie et al. [144] have proposed a method to automatically

extract speciĕcations from the protocol code. e model is extracted using program slicing and

veriĕed byMurphi tool. Aizatulin et al. [38] have proposedmodel extraction using symbolic exe-

cution. ese works extract the protocol speciĕcations from the source code, while our approach

does not assume to have the source code and provides blackbox fuzzing to infer the semantics

when the source code is not available.

SecurityAnalysis on SSOProtocols. Extensive research has been conducted tomanually analyze

security of SSO protocols. By reverse enginerrring the client implementations, Hanna et al. [116]

have revealed that some SSO protocols, including Facebook Connect and Google Friend Con-

nect, use the cross-domain communication channel--postMessage insecurely, E.Tsyrklevich

and V.Tsyrklevich [199] have demonstrated several attacks such as CSRF against the OpenID

protocol. Wang et al.'s work [207] have conducted a ĕeld study on the commercially deployed

web SSO systems and discovered 8 serious logic Ęaws in many notable IDPs and SPs. Xing et

al. [212] have attempt to protect integrators for their integration of third-party SSO Web ser-

vices.

Some formal analysis approaches also have been used to analyze the security of SSOprotocols.

Miculan and Urban [158] manually extract speciĕcation of Facebook Connect Protocol from the

HTTPmessages exchaged. eymodel the protocol inHLSPL and check it usingAVISPA. Bansal

et al. [56] use applied pi-calculus and ProVerif to analyze the OAuth 2.0 protocol. eir work

focuses on constructing concrete attacks from the attack trace reported by ProVerif, and building

the operational web attacker model library called WebSpi to map the attack trace to web-site

actions. Sun et al. [196] alsomodel the web attacker precisely. Sun et al.manually extract OpenID

2.0 implementation inHLPSL and verify themodel usingAVISPA and foundCSRF attacks. ere

are also other formal analysis approaches on SSO protocol. Most of them model the protocol

manually based on the protocol documentation or speciĕcation, and take into consideration only
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the network attack model. For example, there have been several formal analysis approaches on

SAML SSO protocols [107, 117, 42]. In contrast to these work, AS looks at the security

Ęaws in the implementations.

4.8 Summary

In this work, we present AS, an end-to-end platform to automatically recover authenti-

cation protocol speciĕcations from their implementations. AS has successfully detected

7 security vulnerabilities in real-world applications automatically. Our techniques assume no

knowledge of the protocol speciĕcations being checked and rely on a small set of practical as-

sumptions.

AS proves that the analyzable speciĕcation can be extracted from real-world imple-

mentations. However, due to the semantic gap between the implementation and the high-level

modeling languages, some security-critical information may be missed during the course of ex-

traction. e extracted models are seldom equivalent to the implementations which the security

eventually relies on. erefore, we aggressively make an attempt of applying formal methods

directly on the implementations, which is presented in Chapter 5.
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Chapter 5

Veriĕcation of Android Applications

against Security Properties Using

Targeted Soware Model Checking

5.1 Introduction

Nowadays, numerous readily accessible Android apps with feature-rich functionalities have been

extensively used in security-sensitive scenarios. For example, mobile users (simply users here-

aer) heavily rely on them to handle personal data (e.g., contacts, ĕnancial data and geographic

location) and consumepremium services (e.g., online banking, online shopping and sending SMS

messages). Moreover, Android apps are playing an increasingly important role in enterprise, gov-

ernment and military bureaus. For example, it has been reported recently that the US military

is developing an app to enable drone control via Android phones [183]. Nevertheless, various

security issues of Android apps are continuously being discovered and discussed, ranging from

sensitive data leakage [220, 221, 104], to privilege escalation [150, 177, 70]. To enjoy the bene-

ĕt of apps while preserving security, verifying them ahead of releasing and installation becomes

imperative by market operators and users.
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Most of the prior studies rely on static analysis and dynamic testing for security analysis, for

instance, detecting sensitive data leakage [180, 44, 100, 99] and analyzing capability leakage [150,

103]. However, these approaches have their limitations. Static analysis may generate false alarms

due to its inherent limitations in capturing runtime context (e.g., actual parameters and index of

arrays) and tackling late-binding programming paradigms such as polymorphism and reĘection.

For instance, points-to analysis (which yields an over-approximation) is oen used so that all

potential violations are identiĕed. While having all potential violations reported and ĕxed might

be desirable for high-assurance government and military scenarios [97], it is nevertheless too

restrictive for common usage. In contrary, dynamic testing only executes selected program paths

and thus can precisely identify property violations [47, 119], but never proves their absence.

In this work, we seek a practical and credible approach for verifying Android apps against se-

curity properties. A potentially promising technique for solving this problem is soware model

checking [204, 55], which proposes an automatic way to verify properties of a ĕnite-state system.

e advantages of sowaremodel checking, compared with the abovementioned approaches, in-

clude that it does not generate false alarms if the model checker (e.g., Java Pathĕnder (JPF) [204]

for Java programs) actually executes the program under investigation and that it is capable of

proving the absence of violations with an exhaustive search. Inspired by soware model check-

ing, we started an effort to build an Android model checker named DPF upon JPF. e core

technique of soware model checking we use in this work is the dynamic state-space exploration

which runs through the possible executions of an app. In the exploration engine, we also im-

plement a taint-style system to track sensitive information Ęow for privacy property checking,

and additional reachability checking for the privilege properties (e.g., blocking incoming SMS

messages).

Using the state-of-the-art model checker JPF allows us to enjoy well-developed techniques of

JPF (e.g., partial order reduction), as well as the various evolving features from JPF's active devel-

oper community (e.g., efficient exploration [115, 88]). Nonetheless, the challenge when we apply

JPF to verify Android apps is at least threefold. First, unlike ordinary Java programs, Android

apps are tightly coupled with the Android OS which consists of a set of libraries containing both
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Java and native code, and complex inter-process communications. Although written in Java, the

apps are compiled to bytecode that only runs on the Dalvik virtual machine instead of the tradi-

tional Java virtual machine (JVM). erefore, it is hard for JPF to execute apps without using a

real device or an emulator, not to mention storing and recovering program states. Second, due

to the asynchronicity and event-driven execution paradigm, an app can have many entry points,

whereas JPF allows only one entry at a time. One way to solve this problem is to construct a

driver program that enumerates all possible event permutations, which would then activate all

possible paths within the app. However, this approach could lead to false positives because some

of the paths may never appear in practice. ird, same as the traditional model checking, there

exists the infamous state space explosion problem. erefore, verifying real-world apps calls for

effective reduction techniques.

In order to tackle the ĕrst challenge, DPF includes an extensible mock-up Android OS

that abstracts the Android OS using ordinary Java programs so that analysis techniques/tools

developed for ordinary Java can be employed. ere are techniques available to automatically

generate mock-ups of the environment [198, 76], but since the dependencies within the environ-

ment are complex, these techniques are not mature enough [200]. us, we create the mock-ups

manually, which is the same approach used by other tools that require a mock-up of their en-

vironment for model-checking purposes [204, 156, 201]. Although mocking up an entire OS

manually is a major effort, it is a one-time effort and DPF has supported a range of func-

tionalities of Android OS which allows us to verify a number of real-world apps. Furthermore,

DPF provides an extensible framework so that we can incrementally develop the mock-up.

In order to tackle the second challenge, we develop a technique called dependency-constrained

event permutation. is technique reduces the event permutations by excluding impossible event

sequences based on the dependency among the events (e details of this technique is introduced

in Section 5.6.1).

Lastly, in order to cope with the problem of state-space explosion, DPF uses a new tech-

nique called targeted model checking, which combines the virtue of both static and dynamic

analysis. e idea of targeted model checking is to apply static analysis ĕrst to reduce the app
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Figure 5.1: High-level Overview of Our Approach

and then model check (i.e., dynamically explore) only the remaining parts of the app. Figure 5.1

shows the high-level work Ęow of our approach, which consists of two stages. First, we obtain an

over-approximation of all program paths which might lead to property violations. e approxi-

mation is then used to reduce the program by removing the safe parts of the app. Aerward, we

model check the reduced app against the property. As a result, the efficient but imprecise static

analysis dramatically reduces the state space, which enhances the scalability of our approach,

whereas the precise dynamic exploration pinpoints the actual violations of the properties.

To summarize, our main contributions are threefold. First, we propose DPF, a veri-

ĕcation framework which employs the state-of-the-art soware model checking techniques to

Android apps. It enables JPF-based dynamic state-space exploration, by including an extensible

mock-up Android OS that provides the major OS functionalities. Second, we propose targeted

model checking and dependency-constrained event permutation for state space reduction. ird,

to the best of our knowledge, DPF is the ĕrst attempt to apply soware model checking to

verify security properties of Android apps.

We acknowledge that the effectiveness of DPF is limited by not only the underlying JPF

engine, but also the correctness and completeness of the mock-up OS. However, verifying the

equivalence of the mock-up and the Android OS, or the correctness of the mock-up is a far more

challenging task, and therefore is not discussed within the scope of this thesis. Nonetheless, we

empirically show that DPF not only can ĕnd bugs effectively but also verify apps in a number

of cases. We evaluate DPF using three sets (a total of 70) of apps: four real-world apps down-

loaded from Google Play and alternative app markets, four known malware samples from recent

research [220] and the DroidBench [44] which itself is a comprehensive benchmark (including

80



5.2. BACKGROUND

62 apps) built to evaluate information leakage analysis. DPF detects nearly all (except those

with implicit information Ęow) of the known security issues from the malware samples, a previ-

ously unknown data leakage from a third-party library embedded by benign apps, a use-aer-free

bug from the benchmark, and two soware bugs leading to app crash. We compare DPF

with state-of-the-art veriĕcation tools in terms of precision. Our experiments demonstrate that

DPF has low false negative rate and zero false positives.

5.2 Background

In the following, we present an overview of the Android framework and exemplify the difficulties

in verifying Android apps.

5.2.1 Overview of Android

Android apps consist of four types of app components: activity, service, content provider and

broadcast receiver. An activity implements the foreground logic, such as Graphical User Inter-

face (GUI); a service runs in the background; a content provider is devoted to data management,

which can use ĕles, SQLite databases or the web as its back-end persistent storage, and a broad-

cast receiver handles the broadcasts sent by the OS and other components. e app components

interact through inter-component communication (or ICC), and the exchanged messages are

called intents. e components included in an app can be either statically deĕned in its manifest

ĕle (AndroidManifest.xml) or dynamically created at runtime.

Unlike a traditional Java programwith a mainmethod as its only entry point, Android adopts

an event-driven execution mechanism, where an app implements a set of callbacks as event han-

dlers (which can be registered/unregistered either statically or dynamically). Whenever a par-

ticular event occurs (e.g., launching an app and clicking a button), the Android OS invokes the

corresponding callback methods. erefore, an app usually has multiple entry points and event

handlers (entry points and event handlers are used interchangeably). e events can be catego-

rized into three types.
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• Lifecycle Events. A component's lifecycle consists of multiple stages. As the user launches,

pauses and resumes an app, its components of the app change their stages accordingly.

When a component enters a new stage, the corresponding callback that is pre-implemented

by the app is invoked by the OS. For instance, an activity has multiple stages such as

launched, running, paused and stopped. When the user clicks the app's launcher icon,

the activity enters the launched stage. Accordingly, theOS ĕrst callsmethod onCreate()

and aerwards onStart().

• GUI Events. GUI events occur when the user interacts with the apps, which include two

types: data inputs from the user and actions taken by the user.

• ICC Events. e ICC events are mostly used for communication among apps. Besides,

when some particular events occur, the OS broadcasts a message or directly invokes the

callback methods implemented by the app. For example, when there is an incoming

SMS message, the OS broadcasts an intent to notify the apps. As another example, when

the system is running low on memory, the OS invokes onLowMemory() which is pre-

implemented by the apps.

5.2.2 An Example

In the following, we present a simple app and illustrate the challenges in verifying Android apps.

Figure 5.2 shows a made-up app which combines features of three apps in the DroidBench [44].

In this app, there exists a path through which the IMEI of the device is leaked, which is com-

monly seen in real-world malware samples [220]. Although we show source code in this section,

DPF directly works with the bytecode of the apps.

is app contains three components, i.e., two activity components MotivatingAct and

DummyAct, and a content provider component CProvider. e code of DummyAct and

CProvider is omitted in the ĕgure to save space. DummyAct does nothing but just displays an

empty canvas. Besides, two buttons are deĕned in the MotivatingAct's xml layout ĕle and their

click handlers are set as leak and noleak, respectively (Figure 5.3). When MotivatingAct is
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1 public class MotivatingAct extends Activity {
2 private String[10] array;
3 private com.droidpf.CProvider cp;
4 private String url = "content://com.droidpf.cp/test1";
5 protected void onCreate(Bundle b) {
6 setContentView(R.layout.DroidPF);
7 cp = new com.test.sqlite.CProvider();
8 }
9 protected void onStart(){

10 TelephonyManager mgr = (TelephonyManager) this.getSystemService(TELEPHONY_SERVICE);
11 String imei = mgr.getDeviceId(); //source
12 ContentValues values = new ContentValues();
13 values.put("theid", 10000);
14 values.put("thename", imei);
15 cp.insert(Uri.parse(url), values); //sink
16 }
17 protected void onRestart(){
18 Cursor cursor = cp.query(Uri.parse(url), null, null, null, null); //source
19 cursor.moveToFirst();
20 array[5] = cursor.getString(1);
21 array[4] = "no privacy";
22 }
23 /*leak() and noleak() are the callback functions of the buttons defined in MotivatingApp/layout/

DroidPF.xml*/
24 public void leak(View view){
25 SmsManager smsmanager=SmsManager.getDefault();
26 smsmanager.sendTextMessage("1234", null, array[indexLeak()], null, null); //sink
27 }
28 public void noleak(View view){
29 Intent intent = new Intent(this, DummyAct.class);
30 startActivity(intent); //sink
31 }
32 private int indexLeak(){
33 int index = Calendar.getInstance().get(Calendar.MONTH);
34 index = index/13; //index becomes 0
35 index += 5; // alternatively, index += 4;
36 return index;
37 }
38 private void onStop(){
39 ... // do nothing
40 }
41 }

Figure 5.2: Activity Component of the Illustrative App

started, it reads the IMEI by invoking getDeviceID() (line 11) and stores it in the database

maintained by CProvider (line 15). When MotivatingAct is restarted (onRestart() is in-

voked), the IMEI is read from CProvider (line 18-20). Aer that, once button1 is clicked, the

IMEI is sent to a particular phone number through an SMS message (line 26).

is example demonstrates several technical challenges that may lead to imprecision in app

veriĕcation.

• Dependency on the OS. e apps heavily depend on the Android OS---even a small app

contains multiple Android API calls. ese API calls are relevant to the app's behaviors

such as the event handlers, and thus cannot be simply ignored during the analysis. For
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1 <Button android:id="@+id/button1" android:text="@string/send" android:onClick="leak" />
2 <Button android:id="@+id/button2" android:text="@string/start dummy" android:onClick="noleak" />

Figure 5.3: Part of the xml Layout File

instance, if an analyzer does not examine the logic in setContentView (where the xml

layout in Figure 5.3 is registered), the binding between the button and the click handler

would be missed. As a result, the data leakage would not be detected because it is activated

by the onClick handler. An intuitive remedy would be to analyze the part of the OS which

becomes relevant given an API call. However, due to the complexity of the OS, even a

simple API call would imply that a big portion of the OS must be analyzed.

• Asynchronous Event Occurrences. Events in Android may asynchronously occur non-

deterministically, which may be relevant to the app's behavior. For example, the sequence

onRestart→onClick is safe but onStart→onRestart→onClick causes a leakage.

• Obfuscation. To obstruct malware detection, malware developers may employ obfusca-

tion techniques [181, 128]. e example shows a simple obfuscation. Line 26 invokes

sendTextMessage to send an SMS message. To decide whether this call leaks sensitive

information (i.e., the IMEI), the actual values of the parameters have to be examined. How-

ever, line 33-36 make it difficult to statically determine the value of index, imprecision

would be introduced into the approaches based on static analysis.

5.3 Overview of Our Approach

In this section, we deĕne the problem of app veriĕcation and present an overview on how

DPF solves the problem.

5.3.1 eModel

According to our study of the vulnerabilities impacting Android which are listed in CVE [6],

most (86.8% of 387) security threats on the Android platform reside in the apps. erefore, we

focus on application-level threats in this work (and exclude those in the OS) and verify one app
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content provider; the emphasized path (in bold) shows the shortest path leading to a violation of privacy property.)

Figure 5.4: Partial State Space of the Running Example

at a time. In order to model check an app, we formalize its behaviors as a labeled transition

system (LTS) Lapp = (S, init,Σ, T ran), where S is the set of states, init ∈ S is an initial state,

Σ is an alphabet, and Tran ⊆ S × Σ× S is the set of labeled transition relations.

States. e state that we consider includes the program state of an app. e program state is the

same as the state in JPF, which is a snapshot of the execution status. It consists of the status of the

heap (e.g., the values of the program variables), threads states and the program counter. We refer

the readers to [204] for details on how program states are represented and compared in JPF.

Transitions. A transition is a state change by executing an atomic sequence of instructions (i.e.,

a block). We assume that the transition label is a string presentation of the instructions. For

instance, if the transition is triggered by a method call Button2.onClick(), the label is simply

Button2.onClick().

Given the above LTS interpretation of an app, we then deĕne relevant terms in the standard

way. For instance, the execution of an app is formalized as runs, which are sequences of alter-

nating states and blocks τ = 〈s0, b0, s1, b1, ...〉; a slice ξ = 〈b0, b1, b2, ...〉 is a sequence of blocks

occurring in a run; and a state sn is reachable if there exists a run τ such that s0 = init and

(si, bi, si+1) ∈ Tran for all i < n. Furthermore, given a property (for model checking), the

truth value of the property is deĕned based on the above-deĕned LTS in the standard way.

Figure 5.4 shows partly the state space of our running example. Each state contains the pro-

gram state, i.e., values of the global variables (other information such as the program counter is
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not shown), and the system state, i.e., status of the database. At each state, there are multiple

choices for different behaviors. e different choices correspond to different thread schedul-

ing and different events. In order to systematically explore all the states, we need an environ-

ment which systematically generates not only all different scheduling and but also all events. e

former is solved by relying on JPF, which implements a backtrackable JVM that provides non-

deterministic choices and control over thread scheduling. e latter (speciĕc to the event-driven

nature of Android apps) is solved by constructing driver programs which generates all relevant

event sequences (detailed in Section 5.6). Figure 5.4 also suggests that the state spacemay quickly

grow if no reduction/abstraction is performed.

5.3.2 e Property

DPF focuses on checking the so-called privilege properties and privacy properties, which,

according to the research of Android Malware Genome Project [220], are the main concerns

of app veriĕcation. A privilege property is related to the use of the sensitive permissions, e.g.,

stealthily sending SMS messages, installing/uninstalling apps, deleting contacts and blocking in-

coming SMSmessages. A privilege property is violated if there is a ĕnite path inLapp which leads

to an invocation of the high-privileged APIs. is property can be checked through reachability

checking, i.e., whether a state where a high-priviledged API is invoked is reachable or not.

A privacy property is related to the actions of disclosing the private information, e.g., IMEI,

GPS location and contacts. Privacy properties are oen checked with the so-called taint analy-

sis [44, 95]. A private property is violated if there is a ĕnite path inLapp fromaprivate information

source (e.g., contacts) to an information sink (e.g., the invocation of messaging sending API), and

furthermore, the data at the sink must be tainted by the data at the source, i.e., there is a data de-

pendency between them. To model check privacy properties, DPF introduces an auxiliary

Boolean variables tainted (for each data variable in the app) whose truth value tells whether a

state in Lapp is tainted. Initially, tainted is false. For each transition (s1, b, s2) in Lapp, tainted

is true at s2 if and only if b is an information source, or there is a data-dependency between the
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data variable at s2 to a tainted variable at s1. As a result, checking private property is effectively

reduced to reachability analysis, i.e., whether a sink is reachable with tainted being true.

By focusing on the above-mentioned properties, DPF is effectively designed to copewith

the following attacker model. at is, the adversary is able to develop and release malicious apps,

or embed his malicious bytecode into benign apps. e adversary can also use advanced ob-

fuscation techniques, e.g., complicating code Ęow, inserting extraneous code blocks and using

reĘection.

5.3.3 eModel Checking

Based on the above discussion, the problem of verifying anAndroid app is reduced to reachability

analysis and thus can be solved using model checkers like JPF. In the following, we brieĘy intro-

duce how JPFworks. In order to systematically enumerate all states, at a programpoint where two

or more choices become possible, e.g., scheduling points, human interaction and random system

events, JPF records the current state and executes all choices separately, i.e., aer completing one

choice, it backtracks to the previous point and restores the state. In order to check whether a

target state (i.e., a state at which the property is violated) is reached, DPF uses the call-back

mechanism provided in JPF (i.e., by introducing listeners). For privilege properties, DPF

listens on the methodEntered callback to check if over-privileged APIs are invoked1. Checking

privacy properties is slightly more complicated. First, DPF listens on the methodExited

callback to detect the invocations to the information sources and then labels the return values of

those calls as tainted. Second, it listens on the instructionExecuted callback to track the taint

Ęow. ird, it listens on the methodEntered to check whether the parameters of the invocations

to the sinks contain tainted values. In order to precisely track the data Ęowing through the com-

posite data types, we adopt a ĕne-grained taint tracking. When sensitive data are transmitted

into a ĕeld of an object, DPF taints the speciĕc ĕeld instead of the whole object.

However, as discussed previously, there are three challenges that we need to solve before JPF
1To minimize false positives, we use context to determine whether a behavior is initiated by the user, similar to

prior research [78, 217].
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can be applied. In the following, we present an overview of how DPF solves the challenges

and leave the details in the following sections. e high-level workĘow of DPF is shown

in Figure 5.1. Firstly, given a privilege property or privacy property, DPF performs a static

analysis (i.e., program slicing) to identify all potential program paths which would lead to prop-

erty violation. For instance,in Figure 5.4, the state space contains some parts which are obviously

irrelevant, such as the state space of DummyAct, which can be identiĕed statically. Once the irrel-

evant parts are identiĕed, DPF modiĕes the app accordingly so that the irrelevant parts are

pruned and thus avoided during dynamic exploration later. e details of this step is presented

in Section 5.4. Secondly, DPF provides a mock-up of the Android OS so that JPF can dy-

namically execute the app. e details on how the mock-up OS in DPF is constructed is in

Section 5.5. Lastly, DPF incrementally constructs a driver program which would drive the

explosion of the app using JPF. On this step, we exclude the event sequences that are infeasible in

reality, e.g., onStart→ onCreate in the app shown in Figure 5.4. Notice that these infeasible

event sequences cannot be reduced by those general reduction techniques used in JPF.e details

on how the driver program is constructed is presented in Section 5.6.

5.4 Static App Reduction

e goal is to statically prune part of the app which is irrelevant to a given property. Recall that

the problem of verifying a privilege property or a privacy property is reduced to the problem of

checkingwhether any bad state is reachable or not. Intuitively, static reduction inDPFworks

by ĕrstly over-approximating the set of bad states and then using backward program slicing to

identify all potential program paths which would lead to any bad state. Since program slicing is

a relatively mature technique (see [124] for details), in the following we focus on how DPF

over-approximates the set of bad paths and how DPF makes sure all relevant program paths

are included. e slicing implemented in DPF is based a static slicing analysis framework

called SAAF [124].

Given an app, the potential bad states include the following.
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Button btn = new Button(this);
btn.setText("send");
btn.setOnClickListener(new View.OnclickLister(){

public void onClick(View v){
leak(v);

}
});

Figure 5.5: Dynamic Event Handler Registration

• Taint Sinks. Reaching a taint sink (e.g., an invocation of the system function to send an

SMS) would potentially violate a privacy property and thus all taint sinks are included.

In addition, we include taint sources in the set of bad states so that we can tell whether a

path reaching a sink goes through a source. Identifying all sources and sinks has been well

researched in the literature [124, 44, 179] and thus DPF simply uses those deĕned in

SAAF, which include ĕle/network/database I/O APIs (e.g., line 15&18 in Figure 5.2) and

ICC APIs (e.g., line 30).

• High-privileged APIs. All invocations of high-privileged APIs (e.g., abortBroadcast()

which may block incoming SMS) are included since reaching them may violate a privilege

property.

• APIs for ReĘection. Since the exact class/method/ĕeld accessed through reĘection is hard

to decide statically, reaching anAPI for reĘection, such asjava.lang.reflect.Method.

invoke(), might lead to violation of the property and thus they are included.

• APIs for Dynamic Registration. Android allows an app to register components and event

handlers both statically and dynamically. For example, Figure 5.3 shows how to register

the button and its onClick listener statically through a layout ĕle. Equivalently, the code

snippet in Figure 5.5 registers a button at runtime. Due to this Ęexibility, it is hard to

predicate statically whether the dynamic registration would lead to a property violation

and thus they are included.

We remark that the given propertymay be violated only if a bad state, as deĕned above, is reached

through a path in the app. us, next the set of bad states are used as slicing criteria so that

program slicing techniques are used to identify all paths in the appwhichwould lead to a bad state.
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In particular, DPF starts the backward slicing from each bad state in the set. It tracks both

intra- and inter-component data and Ęow dependency. For intra-component backward slicing,

DPF searches for use-def chains and call chains. e former captures data Ęow relationswhile

the latter captures call relations. First, based on the use-def chains, DPF identiĕes 1) all of

the registers and ĕelds that have data dependency with the criteria, and 2) all of the methods (we

call them relevant methods) in which the depended data are modiĕed. For instance, tracking

the parameter array in line 26 of Figure 5.2 leads to identiĕcation of the method onRestart.

Second, based on the call chains, DPF identiĕes the program slices which start from an event

handler and lead to the invocation of any relevant method.

e more precise the slicing is, the more we can prune statically from the app. Nonetheless,

because DPF relies on dynamic execution aerwards to ĕnd actual problems, we can afford

to over-approximate (without worrying about false alarms) when a precise points-to analysis is

expensive. In particular, the following strategies are adopted in DPF for efficiency. First,

once an element of an array/string becomes relevant, the array/string becomes relevant. Second,

once a ĕeld of an object becomes relevant, thewhole object becomes relevant. ird, for polymor-

phism and overriding, whenever we cannot decide precisely, all methods with the same signature

are included.

DPF tracks inter-component Ęow as well. Aer identifying relevant methods within

components, the next step is to collect the relevant components. e approach is to over-

approximate the receivers of each ICC. Although it is sometimes feasible to statically identify

the exact receivers of each ICC (e.g., using the approach in [170] which requires string analysis),

for the same reason above, we (soundly) approximate the ICC by treating all the components

which send/receive intents to be relevant.

We extract the components and event handlers from the slices and only execute them in the

dynamic exploration step. e irrelevant parts are replaced with noops so that they are skipped

by JPF. Taking the running example for instance, aer static reduction, the paths starting from

onStop and the state space of DummyAct can be excluded. Based on the above discussion, the

following is established.
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Proposition 5.4.1 None of the potential property violating behaviors is reduced during the reduc-

tion.

5.5 Mocking Up Android OS

In this section, we address the challenge of executing Android apps in a traditional JVM, which

is necessary for JPF. A straightforward way might be to use an Android emulator as a stub and

interact with DPF through JPF's native peer mechanism. However, DPF would not be

able to track the execution in the stub since from its perspective, the stub is a black box. As a

result, the logic in the OS which might be relevant to the checked property would be lost. One

such example, in the content provider (CProvider) of our running example, is the sensitive data

Ęow through the database ĕle. Without tracking the behaviors of the OS, the data Ęow would

become untraceable for DPF.

DPF's solution is to develop a set of mock-ups of OS functionalities in Java. e main

challenge of OS abstraction is to balance scalability and correctness. For instance, while it might

be feasible to mock-up all native code in the Android OS, it may not be easy to ensure that the

mock-up is correct, due to lack of speciĕcation of the native code. Rather, we choose to de-

velop the mock-up at such a level that the semantics relevant to the property is easy to under-

stand. For instance, instead of mocking up only the native code in the database component in

Android (which contains both naive code and Java code), we mock up the entire database com-

ponent instead (by implementing a HashMap essentially). In addition, instead of building the

mock-up OS from scratch, we reuse the source code of the Android OS as much as possible.

Table 5.1 lists the main modules of the Android OS that we have mocked up. DPF in-

tercepts the invocations to the native code and mocks-up their expected behavior in Java. Some

mock-ups are straightforward. For example, the resource managers (e.g., location manager and

SMS manager), can be substituted with dummy ones which simply return faked values without

invoking the real managers in native code. Some are rather complicated, including the GUI and

the I/O management. We have thus devoted most of our efforts to those.

91



5.5. MOCKING UP ANDROID OS

Table 5.1: Main Modules Modiĕed in DPF

Types Modules

Compo- android.app.(Activity|Service|ContextImpl|Dialog), android.content.

nents (BroadcastReceiver|ContextWrapper), android.content.pm.
PackageManager, android.os.(AsyncTask|Bundle|Looper)

GUI
android.widget.(TextView|Button|CheckBox|EditText|ImageView
|LinearView|Toast), android.opengl.GLSurfaceView,
android.view.(View|Surface|WindowManagerImpl)

ICC
android.content.Context.(startActivity|sendBroadcast|registerReceiver
|unregisterReceiver|startService|stopService|bindService|unbindService),
android.content.Intent

Resource android.location.LocationManager, android.net.ConnectivityManager
Manager android.telephony.(TelephonyManager|SmsManager)

I/O java.io.*, android.database.sqlite.*, android.content.SharedPreferences

GUI. GUI relies on enormous native code to render images and handle the user's interaction.

Its events include action events (e.g., clicking a button) and data inputs (for example, typing texts

through a TextEdit). DPFmocks them up in different ways. For an action event, it directly

invokes the event handler from the drivers. For the data inputs, DPF relies on the analyst

to conĕgure the range of the input values with a choice generator for high precision. Since most

of the GUI events are related to the actions in the mobile application domain, we consider this

approach practical.

I/O Management. As shown in the running example, the sensitive information can Ęow

through the database and ĕles, which may become untraceable. To address this challenge, we

simulate the database and ĕles I/O with in-memory data structures. When the app performs a

write operation to store a data item into an external ĕle, the item is written into an in-memory

buffer (under control of DPF). Similarly, ĕle-based SQL databases are simulated using in-

memory tables. With the interception and proper implementation of a set of I/O APIs, such as

read, cursor, uri and SQLiteOpenHelper, the mock-up I/O is completely transparent to the

apps.

Limitation. Mocking up the Android OS indeed requires a lot of engineering effort, as we have

experienced. However, this step is a one-time effort and as far as as we can tell, this is the only way
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to verify apps. Having said that, mocking up the whole OS before analyzing any app is perhaps

not smart. us, in our work, besides mocking up common used components like GUI and I/O

management, we always start with static app reduction and then focus on mocking up only the

revelent components, which based on our experience, are oen much reduced.

5.6 Driver Generation

e goal of driver generation is to construct a driver program which allows JPF to systematically

explore all states in the app. Furthermore, in order to tackle the state-space explosion problem,

DPF is designed to generated only feasible event sequences relevant to the app.

5.6.1 Dependency-constrained Event Permutation

One challenge for the driver generation is that events can occur asynchronously. An intuitive

but costly strategy is to enumerate all of the permutations of the events, which guarantees com-

pleteness but deĕnitely generates invalid sequences and leads to the notorious path explosion

problem. erefore, we introduce a dependency-constrained event permutation, which exploits

the dependency relations among the events to prune the exploration paths.

We use deterministic ĕnite automata (DFA) to specify the dependency relations among the

events. An event sequence is valid if and only if it is accepted by the DFA. A DFA is a 5-tuple:

(Q,Σ,∆, q0, Sa), where Q is a ĕnite set of states; Σ is a ĕnite set of events (alphabet); ∆ is the

transition set; q0 is the start state and Sa is the set of ĕnal/accepting state.

We start with deĕning a full lifecycle DFA (L-DFA) for each of the four types of app compo-

nents, which is built based on the official documentations of Android [18]. e alphabet of the

full L-DFA includes all of the lifecycle event handlers. As an example, Figure 5.6 shows the full

L-DFA of the activity component.

Most of the time, not all of the lifecycle events are relevant to the checked properties. ere-

fore, at the second step, DPF projects the full L-DFA with respect to the app's alphabet using

algorithm 3. We call the obtained DFA a concrete L-DFA. Aer obtaining the concrete L-DFA,
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..q0.start . q1. q2. q3.

q5

.

q4

.

q7

.

q6

.

q8

.

q9

.

q10

. onCreate. onStart. onRestore.

onPostCreate

.

onResume

.

onStop

.

onPostResume

.

onPause

.

onStop

.

onRestart

.

onDestroy

.

onStop

.

onResume

.

onSave

q0: start state; q1: activity is launched; q2: activity is restoring saved state; q3: saved state is restored; q4:
activity is becoming visible; q5: activity is resuming; q6: activity is active in the foreground; q7: activity is
ĕnishing; q8: activity is not visible; q9: system is saving activity state; q10: activity is being destroyed by the
system. onSave stands for onSaveInstanceState and onRestore for onRestoreInstanceState

Figure 5.6: Full L-DFA of Activity Component

..q′0.start . q′1

. q′2

. onCreate.
onStart

.
onRestart

.
Button1.onClick

.

Button2.onClick

Figure 5.7: DFA of MotivatingAct in Figure 5.2

DPF extends it to incorporate those relevant GUI and ICC events identiĕed in static reduc-

tion. Our key insight is an invariant that an activity only handles GUI events and ICC events

when it is in active state (q6 in Figure 5.6). erefore, we add the permutations of these events to

the active state (availability of a GUI item is checked before invoking its handlers, which ensures

that it is not disabled). As an example, Figure 5.7 shows the ĕnal DFA specifying the dependency

relations of events in MotivatingAct.

Based on the DFA, DPF generates legitimate event sequences. e number of the se-

quences may be inĕnite due to the loops in the DFA (e.g., q′1q′2q′1 in Figure 5.7). However, we do

not have to restrict the number of loops as the state space exploration would terminate when all

states (not event sequences) are explored.
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Algorithm 3 L-DFA Projection Algorithm
Input: dfa−full L-DFA, EvntSet−lifecycle event set
Output: cdfa−concrete L-DFA
1: for all t = qi

e−→ qj in dfa.∆ do
2: if e /∈ EvntSet then
3: qi ← combine(qi, qj)
4: dfa.Q← dfa.Q− qj ;
5: dfa.∆← dfa.∆− t

6: for all t′ = qj
e′−→ qk do

7: dfa.∆← dfa.∆ ∪ {qi
e′−→ qk}

8: end for
9: for all t′ = qk

e′−→ qj do
10: dfa.∆← dfa.∆ ∪ {qk

e′−→ qi}
11: end for
12: end if
13: end for
14: dfa.Σ← EventSet
15: return dfa ;

5.6.2 Driver Generation Algorithm

Overview. Given the relevant components and events, DPF creates an initial driver which

only includes a set of relevant lifecycle event sequences of the app's main activity component (i.e.,

the ĕrst component invoked when the user launches the app). By dynamically executing the

created driver, DPF is able to reach more relevant components and events. When a rele-

vant event is reached, DPF constructs new event sequences which are accepted by the DFA,

and generates new drivers to drive the next-round execution. When a relevant component is

reached, DPF includes its lifecycle event sequences. By iteratively executing each of the

drivers, DPF gradually expands the driver set until nomore relevant components and events

can be reached (meaning a complete set of drivers are generated).

Example. We take our running example (Figure 5.2) for instance to show the generation process.

Initially, DPF generates a driver which only includes the three lifecycle events onCreate,

onStart and onRestart of MotivatingAct. It then dynamically executes the driver. When

executing the setContentView (line 6), it reaches two relevant buttons which are registered
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Algorithm 4Dynamic Exploration Algorithm
Input: App−app, RCmpSet−relevant components, REvntSet−relevant events, ED−dependency

DFA
Output: A driver set
1: EvntSet← drvInit(App,RCmpSet,REvntSet, ED)
2: CmpSet← EMPTY
3: DrvSet← drvGen(EvntSet, CmpSet, ED)
4: DrvSetold ← EMPTY
5: whileDrvSet 6= DrvSetold do
6: DrvSetold ← DrvSet
7: for all drv in DrvSet do
8: (EvntSet, CmpSet)← dynExplore(drv)
9: end for

10: (EvntSet, CmpSet)← filter(EvntSet, CmpSet,RCmpSet,REvntSet)
11: DrvSet← drvGen(EvntSet, CmpSet, ED)
12: end while
13: return (Init, ProSet);

in the layout xml ĕle. It thus includes the onClick events of the buttons into the new driver.

Later, it reaches the content provider CProvider which is dynamically registered in line 7. It

then includes the lifecycle events of CProvider and generates another driver which contains all

present components and events. When executing line 30, it parses the intent and identiĕes the

invoked component as DummyAct. Because DummyAct has been found irrelevant in the static

analysis step, DPF does not include it into the driver.

Algorithm. Algorithm 4 details our driver generation algorithm. e inputs of the algorithm

include the app, the relevant components/events and a DFA. e outputs of the algorithm are a

set of drivers. e algorithm consists of two steps: driver initialization (line 1-3) and expansion

process (line 4-10). e drvInit method (line 1) ĕrst identiĕes the main component by parsing

the app's AndroidManifest.xml ĕle. Aer obtaining the main component, DPF searches

its lifecycle event handlers from the relevant event set. e identiĕed events are taken as inputs

to the drvGen which permutates the events and generates a set of event sequences. Each of the

sequences (denoted by seq) is then used to generate a driver, which invokes the event handlers

in the order of seq.

In the expansion step (line 4-10), DPF expands the initial driver set. It starts from a

dynamic exploration (line 7-8). e dnyExplore method executes each of the drivers in the
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driver set DrvSet. During the execution, it identiĕes dynamically-registered components and

GUI elements.

• Components. DPF considers two types of registration: instantiation and invoca-

tion by ICC. First, once a component is instantiated dynamically, such as CProvider

in our running example (line 7, Figure 5.2), DPF adds it into CmpSet. Second,

when the program invokes a new component using ICC, such as startActivity() and

startService(), the invoked component is included.

• GUI Elements. For each GUI element that is registered dynamically, DPF adds its

event handlers into EvntSet.

Aer identifying new components and events, DPF only selects those relevant ones for

driver generation (line 9-10).

5.6.3 Correctness of Generated Drivers

Our driver generation algorithm preserves both soundness and completeness. Here soundness

means that all the event sequences generated can occur in the real-world execution, while com-

pleteness means all the sequences leading to property violations are included. Intuitively, the

soundness and completeness are based on proposition 5.4.1 and the following three rules.

Proposition 5.6.1 DFA-based sequence generation is sound and complete.

Proposition 5.6.2 e code executed by dynamic exploration is reachable in the real-world execu-

tion.

Proposition 5.6.3 Parsing manifest in drvInit (line 1) is able to precisely identify lifecycle events,

since they cannot be hidden or obfuscated by the adversary in order to be invoked by OS.

For soundness, initially, drvInit (line 1) is sound (rule 5.6.3) and the initial sequences gener-

ated in drvGen are sound (rule 5.6.1). In each iteration, expansion of relevant components

and events is sound (rule 5.6.2). For completeness, initially, drvInit (line 1) is able to iden-

tify all the relevant lifecycle callbacks (rule 5.6.3 and 5.4.1) and the initial sequence generation
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Table 5.2: Events Supported by DPF

Class Name Handlers

lif
ec

yc
le

android.app.Activity onCreate, onDestroy, onPause, onStop, onPostResume, onRestart, onResume,
onRestoreInstanceState, onPostCreate, onSaveInstanceState, onStart

android.app.Service onBind, onCreate, onStart, onDestroy
android.app.ContentProvider onCreate
android.app.Application onCreate, onTerminate, ActivityLifecycleCallbacks
android.preference.PreferenceActivity onCreate, onDestroy, onStop, onPreferenceTreeClick
android.app.Activity onCreateOptionsMenu, onPrepareOptionsMenu

G
U
I

android.widget.EditText getText, setText
android.widget.Button performClick
android.view.View.onClickListener onClick
android.view.View.onTouchListener onTouch
android.preference.Preference onPreferenceChange.OnPreferenceChangeListener
android.preference.Preference
.OnPreferenceClickListener onPreferenceClick

IC
C

android.app.Activity|Service onLowMemory
android.content.BroadcastReceiver onReceive
android.app.Application onConĕgurationChanged, onLowMemory, onTrimMemory
android.location.LocationListener onLocationChanged, onProviderEnabled, onProviderDisabled, onStatusChanged

in drvGen is complete (rule 5.6.1). In each iteration, since generation of event sequences are

complete (rule 5.6.1), all the dynamically-/statically-registered relevant components and events

can be reached (assumption, rule 5.6.2 and 5.4.1).

5.7 Implementation and Evaluation

DPF has been implementedwith approximately 20K lines of Java code, in addition to various

libraries that we employ. Most of our engineering efforts on implementing DPF are spent

on driver generation and mocking up the methods in Android OS. e static app reduction is

implemented based on SAAF [124]. We use apktool [1] to translate the DEX code of apps into

smali format, on which the static slicing is performed. Directly analyzing the bytecode instead of

source code allows us to avoid the imprecision of decompiling apps. e events that are taken into

consideration by driver generation are listed in Table 5.2. e mock-up Android OS is developed

based on the Framework of Android 4.0 (API Level: 14). We use dex2jar [7] to translate DEX

code of apps into Java code compatible with JPF.

In the following, we evaluateDPF in terms of its effectiveness and accuracy. In particular,

we investigate the following four research questions.
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• RQ1 Effectiveness: can DPF detect security and privacy property violations in real-

world apps, or prove their absence, and what is its efficiency?

• RQ2 Precision, can DPF achieve a more correct and precise analysis than the ad-

vanced static and dynamic analysis tools?

• RQ3 Is static app reduction effective for improving the scalability of state space exploration?

• RQ4Given that DPF has the mock-up OS to enable the execution of Android apps on

JPF's JVM, is it possible to support JPF's diverse set of property checkers for non-security

properties?

Our evaluation subjects include the following three sets. e ĕrst set consistes of four real-

world apps downloaded from Google Play and an alternative market in China, including an

ebook app (denoted by ebook), a scientiĕc calculator app and a location sharing app named

GPS Share [11] which allows users to share locations through SMS. ese apps represent real-

world applications which utilize a broad variety of core functionalities supported by Android,

such as accessing locations, accessing the IMEI and sending SMS messages. We select the ebook

app and the calculator app because we ĕnd that they request privileges that are not necessary

for their functionality; for example, the ebook app requests the permissions of INTERNET and

READ PHONE STATE. We use them to investigate whether DPF can identify malicious be-

haviors abusing these permissions. Our subject set also includes a complicated and realistic open

source app called InsecureBank [173]. It is embedded with harmful API calls and various behav-

iors of leaking information.

e second set consists ofmalware samples. We test four knownmalware samples released by

recent research [220], namely ZitMo, Geinimi, Spitmo and Zsone. ese samples violate the priv-

ilege property by sending premium SMS messages (Geinimi and Zsone) and blocking incoming

SMS messages (ZitMo and Spitmo), and privacy property by stealing the incoming SMS mes-

sages (ZitMo and Spitmo) and IMEI (ZitMo).

e third set of apps is a comprehensive benchmark called DroidBench [44], which has been

created to evaluate information Ęow analysis. It includes 62 open source apps, some of which

lead to violations of privacy properties. It contains a suite of challenges for analysis tools to check
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Table 5.3: Statistics in Our Experiments

LOC: lines of code in smali, including third-party libraries; #Components: number of relevant/overall components; #Events:
number of relevant/overall events; OM: out of memory; AC: app crashed. ose numbers in the brackets stand for the statistics in

the exploration without static reduction.
Subjects Static Reduction Dynamic Exploration

App name LOC #Components #Events Time(S) Exploration Memory #Backtracked
Times(S) (MBytes) States

Ebook 7.0K 2/2 7/9 10.6 2 (4) 188 (321) 1428 (3900)
Calculator (main Activity) 6.5K 3/4 3/26 3.4 1 (AC) 119 (AC) 8 (AC)

GPSShare 1.2K 1/3 8/17 2.4 3 (172) 366 (409) 2792 (49556)
InsecureBank† 2.3K 4/5 11/12 3.0 183 (184) 596 (596) 132307 (133809)

Youmi (main view) 15.6K 1/1 1/5 10.6 2 (13) 185 (590) 73 (5257)
ZitMo 576 1/3 3/4 2.3 6 (6) 111 (117) 393 (394)

Geinimi 13.0K 4/6 6/21 5.9 OM (OM) OM (OM) 2.5K (OM)
Spitmo 704 1/1 1/1 2.6 4 (4) 78 (78) 66 (66)
Zsone‡ 29.4K 2/4 3/10 30.5 3 (AC) 61 (AC) 113 (AC)

PrivateDataLeak1 50.8K 1/1 3/3 8.6 2 (2) 78 (78) 38 (38)
Button2 50.7K 1/1 4/4 9.0 2 (2) 78 (78) 41 (41)

AnonymousClass1 50.7 1/1 3/6 8.6 2 (2) 78 (78) 20 (177)
LocationLeak2 50.7K 1/1 3/6 8.7 2 (2) 78 (78) 20 (177)

† When fed with inĕnite event sequence, the exploration of InsecureBank did not terminate. e statistics in this row was obtained
by setting the length of sequence as 16.

‡ In the experiment of full permutations, Zsone crashed due to a null reference when its onResume() is called.

both false negatives and false positives, such as locations in arrays and lists, callbacks, ĕeld and

object sensitivity, ICC, obfuscation, reĘection and implicit Ęows. is benchmark is challenging

for the state-of-the-art static veriĕers such as FlowDroid [44], which partly motivates this work.

5.7.1 Effectiveness of DroidPF

In our experiments, we check both privilege and privacy properties. For privilege properties, we

focus on the sensitive behaviors that are not initiated by the GUI events (i.e., stealthy behaviors),

such as blocking incoming SMS messages and sending SMS messages. For privacy properties, we

check whether the sensitive data, including device ID, location and contacts are leaked through

the network, SMS and logs. Table 5.3 lists the statistics of our experiments (for the sake of brevity,

we omit most statistics of the DroidBench experiments). Our experiments were conducted on a

PC with Intel Core 2 DUO CPU E6550 at 2.33 GHz and 4GB RAM. e veriĕcation results using

DPF (i.e., the counterexamples or the correctness claim) have been conĕrmed by manually

analyzing the smali code.

DPF successfully veriĕes one of the real-world app samples and detects property viola-
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tions or bugs from the remaining three. DPF detects in GPS Share that the location infor-

mation is taken as a parameter to invoke Andoid's SMS activity, we do not regard it as a "sink"

since SMS activity prompts the user and will not send out the SMS messages without the user's

consent. Second, DPF detects that a library in the calculator app connects the server located

at http://58.221.57.115:81 to download app packages. ird, DPF reports leakage of

the device ID in the ebook app, which was previously unknown. Our investigation reveals that

its main components do not leak the device ID. Instead, the leakage occurs in an embedded ad-

vertising SDK named Youmi. Lastly, from the InsecureBank, DPF identiĕes the leakage of

sensitive data (phone number and input data) through the channels of HTTP, system logs and

SD card.

For the malware samples, DPF identiĕes data leakage from three of them. First, from

Zsone, DPF detects a trace which is initiated by the onCreate lifecycle event of its main

activity and leads to the invocation of sendTextMessage, which sends seemingly meaningless

SMS messages (e.g., aAHD) to four numbers (e.g., 10626213). Aer further investigation of the

phone numbers, we ĕnd that those messages are used to register premium services from the

Chinese mobile networks. DPF also identiĕes that one of Spitmo's broadcast receivers (i.e.,

SMSReceiver) blocks incoming SMS messages by invoking abortBroadcast. It also forwards

the messages to a phone number stored in the ĕle asset/settings.xml. In ZitMo, DPF

detects a similar trace. However, DPF does not terminate on Geinimi and we stop the explo-

ration when the machine is out of memory. Aer our manual investigation, we ĕnd that Geinimi

blocks on contacting the C&C server for commands, while the server is no longer active.

To investigate the effectiveness of the static path reduction, we test the main components

of the apps without applying the reduction (i.e., the numbers are in brackets in Table 5.3). As

shown in the table, when we take the full permutations of the events as input to the apps, the time

and space efficiencies decrease signiĕcantly. In addition, it the experiment on the calculator app,

DPF detected a soware bug. e app does not validate the input before parsing a value of

type double, which causes the crash of the app when DPF clicks button "=" aer clicking

button ".".
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Table 5.4: Comparison of Results on DroidBench

X= correct alarm, 7= false alarm, #= missed leak
multiple circles in one cell: multiple leaks expected
empty cell: no leaks expected and none reported

App Name FlowDroid TaintDroid DPF
Arrays, Lists and HashMaps

ArrayAccess1 7 7
ArrayAccess2 7 7
ListAccess1 7 7

HashMapAccess1 7 7
Callbacks

AnonymousClass1 XX XX XX
Button1-3 XXXX XXXX XXXX

LocationLeak1&2 XXXX XXXX XXXX
LocationLeak3 XX XX XX

MethodOverride1 X X X
MultiHandlers1 7

Unregister1 7
Field and Object Sensitivity

FieldSensitivity1&2&4 777
FieldSensitivity3 X X X
InheritedObjects1 X X X

ObjectSensitivity1&2 77
Inter-Component Communication

IntentSink1 # X X
IntentSink2 X X X

ActivityCommunication1 X X X
Lifecycle

BroadcastReceiverLifecycle1 X X X
ActivityLifecycle1-4 XXXX #X#X XXXX
ServiceLifecycle1 X X X

ApplicationLifecycle1-3 XXX XXX XXX
Ordering1 77

General Java
Loop1&2 XX XX XX

SourceCodeSpeciĕc1 X X X
StaticInitialization1 # X X
UnreachableCode
Exceptions1&2&4 XXX XXX XXX

Exceptions3 7
Obfuscation

Obfuscation1 X X X
ReĘection

ReĘection1-4 X### XXXX XXXX
Miscellaneous Android-Speciĕc

PrivateDataLeak1-3 XXX XXX XXX
DirectLeak1 X X X

InactiveActivity
LogNoLeak
Library1&2 X X X

Implicit Flow#### XX## ####ImplicitFlow1-4 #### #### ####
Sum, Precison and Recall

X, higher is better 39 44 44
7, lower is better 9 9 0#, lower is better 13 8 8

Precision p = X/(X+7) 81.3% 83.0% 100%
Recall r = X/(X+ #) 75.0% 84.6% 84.6%
F-measure 2pr/(p+ r) 0.78 0.84 0.92

102



5.7. IMPLEMENTATION AND EVALUATION

5.7.2 Precision of DroidPF

We use the DroidBench to evaluate DPF in terms of precision, which is the most critical

criteria for a veriĕcation tool. We compare DPF with state-of-the-art static information-

Ęow analysis tool FlowDroid [44] and dynamic taint analysis tool TaintDroid [95].

Table 5.4 summarizes the test results. Most of the statistics of FlowDroid is collected

from [44]. As DroidBench evolved, 25 new apps were newly added. We run FlowDroid to test

these new apps (results are in red font in the table). Overall, DPF achieves more precise

results than both FlowDroid and TaintDroid. ere are two factors why DPF outperforms

FlowDroid. e ĕrst reason is that some program paths leading to leakage is very hard to iden-

tify statically, for example, data Ęow through HashMaps, lists and arrays. e second reason is

that the dynamic feature of DPF makes it more capable in addressing the Android-speciĕc

event-driven execution feature. In particular, DPF can precisely bind event handlers, track

dynamic (un)registrations and order the occurrence of events. Compared with TaintDroid,

DPF adopts a ĕne-grained taint tracking on composite data types. erefore, it becomes

more precise in detecting taint Ęowing through these data types.

During the exploration of DroidBench, one event sequence causes one of the apps called

FieldAndObjectSensitivity FieldSensitivity1 to crash. Our examination conĕrms that

the crash is resulted by a use-aer-free vulnerability. We have report this vulnerability to the

author of DroidBench, who acknowledged our ĕnding and will rectify it in the upcoming Droid-

Bench 2.0.

5.7.3 Experiments on Non-security Properties

Given that DPF enables the execution of Android apps on JPF, we can compare it to JPF-

Android [201], another tool that veriĕes Android applications using JPF. JPF-Android makes use

of JPF's class modeling and native method modeling features to bound the environment of the

application created by the Android core libraries. To drive the execution of the application, users

script nondeterministic event sequences and can also set the state of the environment. is is
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a more manual approach to limit the number of input events than DroidPF where the tool can

slice away unimportant or uninteresting parts of the application to reduce the number of avail-

able events. JPF-Android supports detection of deadlock, race conditions and runtime errors

using the listeners provided by JPF. It does not, however, target security errors in Android appli-

cation but allows users to specify properties in the form ofChecklists to verify that the application

executes speciĕc event sequences [202].

We apply DPF on two apps tested by JPF-Android in the paper [201], an app contain-

ing deadlock and a calculator app. Since this experiment does not target the detection of security

errors, we directly apply driver generation and explorationwithout static reduction of the applica-

tion code. DPF successfully detects the deadlock which has been reported by JPF-Android.

It also detects an unreported bug in the calculator leading to an app crash. e bug is caused by

an unchecked array index, which occurs when the input box is empty and DPF "presses" the

backspace button. JPF-Android does not detect this bug because the triggering sequence was

not part of the script used to analyze the calculator.

5.7.4 Limitation and Discussion

We acknowledge that verifying Android apps is an extremely challenging task. DPF is only

a step towards that goal and it has its limitations.

Firstly, DPF is based onmodel checking and thus it has the limitation ofmodel checking,

i.e., the app (aer static reduction) must have only ĕnitely-many states and the number of states

is not beyond the capability of current model checking techniques. Since DPF leaves the

task of state exploration and state comparison (to avoid exploring the same state more than once)

to the underlying JPF, DPF can verify an app only if the app, aer reduction performed in

DPF, can be veriĕed by JPF.

Secondly, similar to most information Ęow analysis [191, 95], DPF cannot identify the

implicit leakage through control Ęow dependency; for example, the value of x is leaked implicitly

in this statement: if(x==1) y=1; else y=0;. A straightforward solution is to propagate the
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taint to y, but this may lead to over-tainting and false-propagation problems. For future work,

DPF can employ more advanced solution such as DTA++ [132].

irdly, DPF is perhaps not effective if the app contains behavior which is triggered by

data inputs and which cannot be pruned through static reduction, such as the attack behaviors

enabled on a speciĕc date and our Geinimi case study which launches attacks based on received

commands. In theory, we could always enumerate all possible values for the data input. In prac-

tice, a data input of type string or Ęoat would oen result in state space explosion. For future

work, techniques like symbolic execution [41, 217, 75, 48, 178] can be considered to alleviate this

problem.

Lastly, similar to related work in the literature, DPF cannot handle apps that include

native code (in the app itself not from the Android OS). In this work, we also do not consider

hardware attacks (e.g., cold-boot attack [172]) and side channels (e.g., Soundcomber [188]).

5.8 RelatedWork

Android Application Veriĕcation. DPF is not the ĕrst study on verifying Android apps.

Merwe et al. propose JPF-Android [201, 202] which veriĕes the Android apps also using JPF.

DPF is distinctly different from JPF-Android in terms of many aspects. First, JPF-Android

uses simpliĕed model of the Android Framework while DPF mostly reuses the source code

of the Framework to preserve the semantics. Second, JPF-Android requires the analysts to script

the input events while DPF attempts to generated the drivers automatically. ird, JPF-

Android currently checks common properties like deadlock or runtime errors while DPF

incorporates non-trivial security property checking.

Android Application Analysis. ere have been several approaches using program analysis to

analyze the security and privacy properties of Android apps [150, 44, 99, 78, 217, 126]. Flow-

Droid [44] is one of the most advanced approaches, which proposes a taint analysis featuring

in addressing Android's ubiquitous callbacks. Pegasus [78] checks apps for the properties that

can be speciĕed in Linear Temporal Logic (LTL). Similar to Pegasus, AppIntent [217] aims to
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detect malicious behaviors by identifying whether the suspicious behaviors are initiated by the

user. CHEX [150], SCandroid [99] and IccTA [137] are mainly devoted to inter-component Ęow

analysis. Although program analysis is mature and has been proven powerful in detecting vul-

nerabilities, its precision is limited by point-to analysis [122]. ere are several dynamic analysis

approaches to test the apps, which is either by instrumenting the Android OS [95, 218, 50] or

based on virtualization [213, 161]. TaintDroid [95] and VetDroid [218] dynamically track the

sensitive data Ęow through the OS and apps.

e precision of DPF depends on activating all application behaviors. Its dependency-

constrained event permutation approach aims to cover possible valid event sequences. ere are

a few studies also attempting to solve this challenge. SmartDroid [219] and O [216] com-

bines static and dynamic analysis to trigger UI events. SwiHand [84] uses an abstract-reĕnement

approach to generate sequences of test inputs. AppIntent [217] and [161] use symbolic analysis

to identify inputs to drive the analysis further. Dynodroid [151] uses an observe-select-execute

approach which selects event inputs based on observed states to improve the coverage. A3E [47]

explores app components andmimics user actions based on the strategy learned from the control

Ęow graphs.

5.9 Summary

We present DPF, which provides a framework for verifying Android apps against security

properties based on targeted soware model checking. We havemade efforts to address the main

problems in verifying Android apps, such as multiple entry points/event-driven execution, GUI

testing and path explosion. DPF shows that it is feasible to model check the soware imple-

mented in high-level language like Java and running on a complicatedOS.We hopeDPF can

inspire future research that brings the cutting-edge model checking techniques from the speciĕ-

cations to the implementations.
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Chapter 6

Conclusion and Future Work

ework conducted in this thesis has made some scientiĕc-technical contributions. is chapter

brieĘy summarizes these contributions and presents possible future work.

6.1 Summary

is thesis aims to enhance the practical use of formalmethods for analyzing secure systemdesign

and implementation by extending existing formalisms and combining program analysis tech-

niques with formal methods. We have investigated three formal methods, i.e., symbolic model

checking, speciĕcation extraction and soware model checking, and focused on three security-

critical areas, i.e., trusted computing, web authentication and mobile applications. In addition,

we have proposed formalisms and techniques that assist designers, developers and security ana-

lysts on automating the formal analysis of the systems in these areas.

Observing that designing trusted platforms can be error-prone, we appliedmodel checking to

verify the security properties of trusted platforms on the design level. In particular, we proposed

TF, a formal foundation for model checking trusted platforms. It includes an interface

TrCSP# for modeling the trusted platforms, a formal model of the key techniques used in trusted

computing, as well as a broad spectrum of threat models. We implemented it as a framework in

C# and CSP# based on the model checker PAT. Our analysis on a digital envelope protocol and a
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cloud computing platform has detected two previous-unknown security Ęaws, thus demonstrat-

ing the power of model checking in detecting property violations. e digital envelope protocol,

which has been proved correct by a previous work [91], is found by TF to be subject to

a reboot attack. is is because TF embeds more comprehensive attack models. Due

to the expressiveness of TF and its comprehensive attack models, TF can

serve as a formal foundation for research on formal veriĕcation of trusted platforms.

In reality, establishing precise and complete formalmodels (that TF and other sim-

ilar studies require) of many secure systems is impossible due to factors such as lack of documen-

tation and partial availability of implementation. In order to extract analyzable models for the

use of formal methods in the area of web authentication, we proposed AS, an end-to-

end platform to recover authentication protocol speciĕcations from their implementations. We

applied AS to several real-world web sites, including several using important SSO proto-

cols like Facebook Connect Protocol, BrowserID and Windows Live Messenger Connect, and we

successfully detected 7 security Ęows in their implementations. Our work is signiĕcant because

it demonstrates the advantage and practicality of formal methods in violation detection even un-

der the constraints of imprecise and incomplete models. Consequently, it is worth sacriĕcing

soundness and completeness when formal methods are used for violation detection rather than

for correctness proving.

Both TF and AS analyzed the formal models translated from the checked

systems. However, there still exists gap between these formal models and the implementations

which the security eventually relies on. erefore, our work also made an attempt of applying

the formal methods directly on the system implementations. In particular, we targeted Android

mobile platform, one of the security-critical areas, and presented DPF which is a security

veriĕcation framework for Android apps based on targeted soware model checking. We have

made efforts to address the main problems in verifying Android apps, such as multiple entry

points/event-driven execution, GUI testing and path explosion. We evaluated DPF using

70 apps including both benign and malicious ones, and DPF detected nearly all (except

those with implicit information Ęow) of the known vulnerabilities from the malware samples,
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a previously unknown data leakage vulnerability from a third-party library embedded by benign

apps, and two soware bugs. DPF achieves overwhelming precision and recall rate than

static analysis approaches. is can be attributed to the particular features of our soware model

checking technique, such as the dynamic inherence which enables DPF to precisely detect

property violations that can only be determined at runtime and the event permutation method

which enables DPF to address the Android-speciĕc event-driven execution feature. Our

work on DPF suggests that it is feasible to model check the soware that is implemented in

advanced programming languages like Java and is running on a complicated OS.

6.2 Future Work

As it can be observed, there is yet a wide gap to be ĕlled before formal methods are widely and

extensively used in the real world. is section outlines possible future directions for research

related to this thesis.

As trusted computing techniques are increasingly employed in newly emerging areas (e.g.,

Smart Grid [176, 175] and Web of ings [53]), TF could be used as a foundation to

analyzing the security properties of these platforms. Currently, our work of TFmainly

targets TPM version 1.2, whereas TCG recently released the speciĕcation of TPM 2.0 for public

review. A necessary extension of TF, therefore, is to embed models of TPM 2.0, such

that TPM2.0 based platforms such as theDirect AnonymousAttestation (DAA) protocol [79] can

be supported. In addition, TPM is not the only hardware-based security feature used in trusted

computing. Another possible avenue of future research is to consider other features which are

signiĕcantly different from TPM, such as Intel's TXT and ARM TrustZone.

Although AS has been shown to be effective in identifying Ęaws in implementa-

tions of authentication systems, proving their correctness is impossible under the circumstance

of partially-available implementations. Given the wide employment and security sensitivity of

web authentication systems, future research on the veriĕcation of full implementations should

be conducted.
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e work of DPF targets the problem of exploring execution paths activated by events.

However, as discussed in Section 5.7.4, in order to completely verify the apps, another critical

problem is to explore the behaviors triggered by data inputs, such as the attack behaviors enabled

on a speciĕc date and ourGeinimi case studywhich launches attacks based on received commands.

As future work, we would introduce some advanced techniques, for example, symbolic execution

which identiĕes and solves the conditions to trigger those behaviors [41, 217], to alleviate this

problem.
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[59] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer, and

Leendert van Doorn. vTPM: Virtualizing the Trusted Platform Module. In Proceedings of

the 15th Conference on USENIX Security Symposium (USENIX Security), 2006. (Cited on

page 19.)

[60] Dirk Beyer and M. Erkan Keremoglu. CPACHECKER: A Tool for Conĕgurable Soware

Veriĕcation. In Proceedings of the 23rd International Conference on Computer Aided Veri-

ĕcation (CAV), pages 184--190, 2011. (Cited on page 17.)

117



BIBLIOGRAPHY

[61] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zalinescu. Crypto-

graphically Veriĕed Implementations for TLS. In Proceedings of the 15th ACM Conference

on Computer and Communications Security (CCS), pages 459--468, 2008. (Cited on pages 4

and 15.)

[62] Bruno Blanchet. An Efficient Cryptographic Protocol Veriĕer Based on Prolog Rules. In

Proceedings of the 14th IEEE Workshop on Computer Security Foundations (CSFW), pages

82--96, 2001. (Cited on pages 7, 14, 44, 52, and 65.)

[63] Bruno Blanchet. Computationally Sound Mechanized Proofs of Correspondence Asser-

tions. In Proceedings of the 20th IEEE Computer Security Foundations Symposium (CSF),

pages 97--111, 2007. (Cited on page 65.)

[64] Bruno Blanchet. Security Protocol Veriĕcation: Symbolic and Computational Models. In

Principles of Security and Trust (POST), pages 3--29. 2012. (Cited on page 4.)

[65] Bruno Blanchet and Avik Chaudhuri. Automated Formal Analysis of a Protocol for Secure

File Sharing on Untrusted Storage. In Proceedings of the 29th IEEE Symposium on Security

and Privacy (S&P), pages 417--431, 2008. (Cited on page 65.)

[66] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting Mobile Communications:

e Insecurity of 802.11. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking (MobiCom), pages 180--189, 2001. (Cited on page 2.)

[67] Guillaume Brat, Doron Drusinsky, Dimitra Giannakopoulou, Allen Goldberg, Klaus

Havelund, Mike Lowry, Corina Pasareanu, Arnaud Venet, Willem Visser, and Rich Wash-

ington. Experimental Evaluation of Veriĕcation and Validation Tools on Martian Rover

Soware. Formal Methods in System Design, 25(2-3):167--198, September 2004. (Cited on

page 16.)

118



BIBLIOGRAPHY

[68] Danilo Bruschi, Lorenzo Cavallaro, Andrea Lanzi, and Mattia Monga. Replay Attack in

TCG Speciĕcation and Solution. In Proceedings of the 21st Annual Computer Security Ap-

plications Conference (ACSAC), pages 127--137, 2005. (Cited on page 19.)

[69] Enrico Budianto, Yaoqi Jia, Xinshu Dong, Prateek Saxena, and Zhenkai Liang. You Can't

Be Me: Enabling Trusted Paths and User Sub-origins in Web Browsers. In International

Symposium on Research in Attacks, Intrusions and Defenses (RAID), pages 150--171. 2014.

(Cited on page 44.)

[70] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, omas Fischer, Ahmad-Reza Sadeghi,

and Bhargava Shastry. Towards Taming Privilege-Escalation Attacks on Android. In

19th Annual Network and Distributed System Security Symposium (NDSS), 2012. (Cited

on page 77.)

[71] Michael Burrows,Mart́ınAbadi, andRogerM.Needham. ALogic ofAuthentication. ACM

Transactions on Computer Systems, 8(1):18--36, 1990. (Cited on pages 4, 12, 13, and 44.)

[72] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring Pay-per-

install: e Commoditization ofMalware Distribution. In Proceedings of the 20th USENIX

Conference on Security (Usenix Security), 2011. (Cited on page 2.)

[73] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. Dispatcher:

Enabling Active Botnet Inĕltration Using Automatic Protocol Reverse-engineering. In

Proceedings of the 16th ACMConference on Computer andCommunications Security (CCS),

pages 621--634, 2009. (Cited on page 4.)

[74] JuanCaballero, HengYin, Zhenkai Liang, andDawn Song. Polyglot: Automatic Extraction

of Protocol Message Format Using Dynamic Binary Analysis. In Proceedings of the 14th

ACMConference on Computer and Communications Security (CCS), pages 317--329, 2007.

(Cited on page 5.)

119



BIBLIOGRAPHY

[75] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu, Koushik Sen,
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[145] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh Wadhwa, and

JinSong Dong. A Formal Semantics for Complete UML State Machines with Communi-

cations. In Integrated Formal Methods (iFM), volume 7940, pages 331--346. 2013. (Cited

on page 13.)

[146] Shuang Liu, Yang Liu, Jun Sun, Manchun Zheng, Bimlesh Wadhwa, and Jin Song Dong.

USMMC: A Self-contained Model Checker for UML State Machines. In Proceedings of the

2013 9th Joint Meeting on Foundations of Soware Engineering (ESEC/FSE), pages 623--

626, 2013. (Cited on page 13.)

[147] Gavin Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Protocol.

Information Processing Letters, 56:131--133, 1995. (Cited on page 1.)

[148] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using

FDR. In Proceedings of the 2nd International Workshop on Tools and Algorithms for Con-

struction and Analysis of Systems (TACAS), pages 147--166, 1996. (Cited on page 44.)

129



BIBLIOGRAPHY

[149] Gavin Lowe. A Hierarchy of Authentication Speciĕcations. In Proceedings of the 10th

IEEEWorkshop on Computer Security Foundations (CSFW), pages 31--43, 1997. (Cited on

pages 51 and 65.)

[150] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: Statically Vet-

ting Android Apps for Component Hijacking Vulnerabilities. In 19th ACM Conference

on Computer and Communications Security (CCS), 2012. (Cited on pages 77, 78, 105,

and 106.)

[151] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An Input Generation

System forAndroidApps. InProceedings of the 9th JointMeeting on Foundations of Soware

Engineering (ESEC/FSE), 2013. (Cited on page 106.)

[152] Kurt Mackie. Wave Outlines Windows 8 Mobile Device Management Alternative.

http://redmondmag.com/articles/2013/02/14/wave-outlines-windows-8-

mobile-device-management-alternative.aspx. (Cited on page 18.)

[153] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi

Isozaki. Flicker: an Execution Infrastructure for TCB Minimization. In ACM SIGOP-

S/EuroSys European Conference on Computer Systems (Eurosys), 2008. (Cited on page 19.)

[154] Gary McGraw and Bruce Potter. Soware Security Testing. IEEE Security and Privacy

Journal, 2(5):81--85, September 2004. (Cited on page 4.)

[155] Kenneth L.McMillan. Lazy Abstraction with Interpolants. In Proceedings of the 18th Inter-

national Conference on Computer Aided Veriĕcation (CAV), pages 123--136, 2006. (Cited

on page 17.)

[156] Peter Mehlitz, Oksana Tkachuk, and Mateusz Ujma. JPF-AWT: Model checking GUI ap-

plications. In 26th IEEE/ACM International Conference on Automated Soware Engineer-

ing (ASE), pages 584--587, 2011. (Cited on page 79.)

130

http://redmondmag.com/articles/2013/02/14/wave-outlines-windows-8-mobile-device-management-alternative.aspx
http://redmondmag.com/articles/2013/02/14/wave-outlines-windows-8-mobile-device-management-alternative.aspx


BIBLIOGRAPHY

[157] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. e TAMARIN Prover

for the Symbolic Analysis of Security Protocols. In Proceedings of the 25th Interna-

tional Conference on Computer Aided Veriĕcation (CAV), pages 696--701, 2013. (Cited

on pages 14 and 34.)

[158] M. Miculan and C. Urban. Formal Analysis of Facebook Connect Single Sign-On Au-

thentication Protocol. In 37th International Conference on Current Trends in eory and

Practice of Computer Science (SOFSEM), pages 99--116, 2011. (Cited on pages 45, 72, 75,

and 146.)

[159] Barton P. Miller, Louis Fredriksen, and Bryan So. An Empirical Study of the Reliability of

UNIX Utilities. Communications of the ACM, 33(12):32--44, December 1990. (Cited on

page 4.)

[160] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1982. (Cited on page 13.)

[161] Nariman Mirzaei, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani, and Riyadh Mah-
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Appendix A

TML to ProVerif Inputs

TML is an high-level abstract model language, which can be directly translated into applied pi-

calculus. We do not present the formal semantics translation between these two languages, but

intuitively explain the mapping between them. e applied pi-calculus model of the running

example (Figure 4.1 and 4.3) is shown in Figure A.1.

Conversion. Most syntax and semantics can be directly mapped to applied pi-calculus. e

initial conditions (initial knowledge of the participants) are represented with a set of global

variables (line 17-21), where the terms initially unknown to Z is labeled as private, such as

k IDP s (line 18), the private key of IDP S. e cryptographic functions are translated into

constructor (fun) and destructor (reduc) (line 6-15). e local protocols are represented with

the processes (line 33-82), whose identifers are represented with i,j,r,p (line 17) of Host

type (line 1). For the action schema, theBegin* and End* are mapped to event (line 67 and 57);

the Send and Receive are mapped to out and in; the assoc is represented with the table (line

22), andNewAssoc is mapped to insert a tuple into the table (line 34). However, one problem

is that ProVerif does not scale as the number of tables increases. To solve this problem, we also

can model the assoc using functions. In particular, AS uses the same modeling method

as modeling symmetric cryptographic primitives. For example, the assoc(i, authtoken) in Fig-

ure 4.3 is modeled as mysenc at line 13-15. Specially, if this assoc happens to be a long-lived or

140



guessable token which needs to be added into Z's knowledge set, AS just casts the en-

cryption key to the attacker (addattackerknow at line 77-78). e checking action is mapped

to the matching action, for example, let(=M, =N) = checksign(P, spk(k IDP s)) (line

42) checks whether P is a signature over (M, N) using the private key K IDP s. e chan-

nel is slightly different from TML because ProVerif supports both public and private channels.

AS translates HTTP into public channel (ch at line 23, 38 and 46) which is readable

and writable to the attacker; HTTPS and cross-domain communication is translated as private

channels (https at line 25 and 48, and browser at line 24 and 40).

For the syntax or semantics not supported by ProVerif, AS models them in alter-

native ways. For example, ProVerif does not support a writable but non-readable (for the at-

tacker) or a readable but non-writable channel. When AS ĕnds that the sender origin

of postMessage is not checked (such as Step­ in Figure 4.1), whichmeans this channel becomes

an attacker-writable channel (but remains unreadable), it turns the browser channel writable by

adding an input before out messages to browser, as shown at line 38-40. Conversely, if it ĕnds

that the channel is readable, it adds an out aer in message from the channel. Finally, aer we

ĕxing all the vulnerabilities, ProVerif reports that the protocol is veriĕed.

Detected vulnerabilities. ProVerif detects three attacks in this model. First, it reports that the

attacker can derive the token using the key k i j com cast to his knowledge set (line 77-

78). Aer "ĕxing" this Ęaw (Here ĕxing means correcting the Ęaw in the model instead of in the

implementation) as shown at line 74-78, it reports a replay attackwhere the attacker can obtain the

token from line 46, and then replay it to line 54. Aer "ĕxing" this Ęaw using HTTPS to replace

HTTP as shown at line 48 and 55, ProVerif reports the MITM attack shown in Section 4.2.1. e

attacker replaces mynext at line 38 and ĕnally gets the token from line 63.

1 type Host.
2 type key. (*symentric key*)
3 type spkey.(*public key*)
4 type sskey.(*pivate key*)
5

6 (* Shared key encryption *)
7 fun senc(bitstring, key):bitstring.
8 reduc forall x:bitstring,y:key;sdec(senc(x,y),y)=x.
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9 (* Signatures *)
10 fun spk(sskey):spkey.
11 fun sign(bitstring, sskey):bitstring.
12 reduc forall x:bitstring,y:sskey; checksign(sign(x,y), spk(y)) = x.
13 (*fun*)
14 fun mysenc(Host, key):bitstring.
15 reduc forall x:Host,y:key;mysdec(mysenc(x,y),y) = x.
16

17 free i, j, r, p:Host.
18 free k_IDP_s:sskey [private].
19 free k_i_j_com:key [private].
20 free sp:bitstring.
21 free sessionID, CSRFToken:bitstring[private].
22 table sp_table(Host, bitstring).
23 channel ch.
24 free browser:channel [private].
25 free https:channel [private].
26

27 event BeginInit(Host).
28 event EndResponse(Host).
29

30 query x:Host, y:Host; inj-event(EndResponse(x)) ==> inj-event(BeginInit(y)).
31 query attacker(mysenc(i, k_i_j_com)).
32

33 let SP_C = (*i*)
34 insert sp_table(j, sp);
35 (*******************************
36 3. Fix postmessage flaw
37 *******************************)
38 (*in(ch,(j:Host,sp:bitstring,mynext:channel)); *)
39 new mynext:channel;
40 out(browser,((j,sp),mynext));(*Step 1*)
41 in(mynext,(M:Host,N:bitstring,P:bitstring)); (*Step 4*)
42 let(=M, =N) = checksign(P, spk(k_IDP_s)) in
43 (*******************************
44 2. Fix HTTP replay attack
45 *******************************)
46 (*out(ch, (M,N))*)
47 in(ch, (M:bitstring, N:bitstring));
48 out(https, (M,N))(*step 5*).
49

50 let SP_S = (*j*)
51 (*******************************
52 2. Fix HTTP replay attack
53 *******************************)
54 (*in(ch,(M:Host,token:bitstring))*)
55 in(https,(M:Host,token:bitstring));(*step5*)
56 let (=M) = mysdec(token, k_i_j_com) in
57 event EndResponse(i).
58

59 let IDP_C = (*r*)
60 in(browser,(X:bitstring,Y:channel));(*step 1*)
61 out(https,(X,sessionID,CSRFToken));(*step2*)
62 in(https,(M:Host,N:bitstring,P:bitstring));(*step 3*)
63 out(Y, (M,N,P)). (*step 4*)
64
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65 let IDP_S = (*p*)
66 in(https, (X:bitstring, =sessionID, =CSRFToken)); (*step 2*)
67 event BeginInit(j);
68 let(M:Host, Mdomain:bitstring) = X in
69 get sp_table(=M, =Mdomain) in
70 let token = mysenc(i, k_i_j_com) in
71 let idpsign = sign((i, token), k_IDP_s) in
72 out(https, (i, token, idpsign)).(*step 3*)
73

74 (*******************************
75 1. Fix guessable token
76 *******************************)
77 let addattackerknow =
78 (*out(ch, k_i_j_com)*)
79 new padding:bitstring.
80

81 process
82 (!SP_C|!SP_S|!IDP_C|!IDP_S|!addattackerknow)

Figure A.1: Applied pi-calculus Model of the Running Example
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Appendix B

Protocol Extraction

B.1 Extracting BrowserID Protocol

In this section, we detail the process on analyzing myfavoritebeer.org to demonstrate how

AS extracts model from the implementation. As shown in Figure B.1, the traces cap-

tured by AS are listed in the ĕrst two columns, and the corresponding TML statements

inferred are placed in the third column. From message (2), AS infers the HTTP pa-

rameter csrf as a nonce. AS also associates user name (USER) and password (PWD) to

represent that they should be matching. From message (4), through white box analysis, A-

S infers that spkUser and spkUser−1 are an asymmetric key pair generated by function

generateKeypair(). In message (5), AS ĕgures out that the HTTP parameter cert

is encoded as a JSON Web Token (JWT) with each segment separated with "." and encoded

with Base64 encoding (as described in Section 4.4.2). When applying the signature veriĕcation

algorithm RSA over one of the segment (the brute-force search as discussed in Section 4.4.2),

AS ĕnds that it is a signature by IDP S over four data elements occurring previously:

{USER, spkUser, p, expire}k−1
IDP S

. Similarly, in message (6), AS identiĕes that func-

tion sign() is used to generate signature {j, expire1}spkUser−1 and this signature is concate-

nated with IDP's signature (i.e., cert) with function bundle(). Aerwards, this concatenation is

sent by invoking function Window.postMessage().
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# Input TML 

(2) 

HTTP Messages Javascript code snippet Initial Conditions 
r has csrf ˄ p has csrf  

IDP_C( r )  
    NewAssoc({r,p},  assoc (USER, PWD)) 
    Send( p, {assoc(USER, PWD ), csrf }) 
IDP_S( p ) 
    Receive( r, { assoc( M, N ),  csrf } ) 

POST 

https://login.persona.org/wsapi/authenticate_user  

Host: login.persona.org 

"email":"alicessotester@gmail.com",  

"pass":"alice",  

"csrf":"UaZWfqrQmYwemitM1U8nUw==" 

NONE 

(4) 

POST  

https://login.persona.org/wsapi/cert_key  

Host: login.persona.org 

"email":"alicessotester@gmail.com", 

"pubkey":"{\"algorithm\":\"DS\"……ϲϮϯϯϯ9ϳa\"}",  

"csrf":"UaZWfqrQmYwemitM1U8nUw==" 

syncEmailKeypair:function;…){…, 

d.withContext(function(){  

a.generateKeypair({ 

algorithm:"DS", 

keysize:c.KEY_LENGTH}, …Ϳ})} 

IDP_C ( r ) 
    NewKeyPair( spkUser,  spkUser -1)  
    Send( p, USER, spkUser, csrf ) 
IDP_S( p ) 
    Receive( r, M, Y, csrf ) 

(5) 

GET 

https://login.persona.org/wsapi/cert_key 

Host: login.persona.org 

"cert":"eyJhbGciOiJSUzI1NiJ9.eyJwdW....SfqAtϱ…" 
NONE 

IDP_C( r ) 
    Receive( p, X  ) 
IDP_S( p ) 
    NewNonce( expire ) 

Send( r, { M, Y, p, expire }         )    

(6) NONE 

assertion.sign( {},{audience:c,expiresAt:

j},g, function(d,g){ 

k=a.cert.bundle([f.cert],g),…}) 

b.window.postMessage( JSON.stringify(

a), b.origin)  

IDP_C( i ) 
NewNonce( expire1 ) 
Send( j, [X, { j, expire1 }                ] )   

SP_C( j ) 
Receive( i, R) 

—1 
IDP_S k 

spkUser -1 

Figure B.1: e HTTP Trace of BrowserID and the Corresponding TML Statements

B.2 Inferred Protocols

Figure B.2 demonstrates the protocols inferred using AS; the inferred models are sim-

pliĕed for readability.

B.3 Precision of Inferred Protocols

We investigate the precision of our inferred protocol, which is possible for two of our case studies,

to available documentation and manually-craed speciĕcations. We ĕnd that our protocols are

fairly precise, subject to our qualitative analysis.

BrowserID Precision. We compare our inferred speciĕcation to the documented description of

the protocol online [3]. Our inferred protocolmatches closely to the description in the documen-

tation. In some cases, it reveals useful information that is unspeciĕed in the documentation. For

instance, the documentation says that, the IDP returns a signed structure containing expiration

time in the Step 5 of Figure B.2-(a)), but documentation does not precisely specify the duration of

the "expiration time". AS ĕnds that the duration is large enough to permit replay attacks
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that are longer than 726 seconds. is intermediate result is useful for further analysis, such as

veriĕcation on time sensitive protocols [92].

We ĕnd the protocol to match the documentation exactly (subject to our manual interpreta-

tion), except for one additional difference. e document states that the SPs are allowed to send

the signed data to BrowserID for veriĕcation in the speciĕcation rather than local veriĕcation.

Since this message is sent between SP and IDP servers rather than been relayed in the browser, it

is not represented in our inferred speciĕcation.

Facebook Connect Precision. Facebook Connect originates from OAuth 2.0 authorization pro-

tocol [94]. In EbayClassiĕed case, our inferred protocol consists of 11 rounds and 65 parameters

(including cookies and GET/POST parameters), comparing to 7 rounds and 11 parameters in

the speciĕcation. e extra rounds and parameters, which shows our inferred protocol is more

precise, may be vulnerable to the protocol and have been analyzed by AS. Furthermore,

compared to recent work which manually extracts the Facebook Connect protocol, our model

has deĕned more precisely the terms exchanged in the protocol [158]. Our inferred speciĕcation

is also more detailed than the prior work of Hanna et al. [116]. Finally, we ĕnd that our Face-

book Connect model is different from the description in Wang et al.'s recent work [207]--- this is

because their work considers the Flash implementation whereas we analyze the JavaScript-based

implementation which works in today's web browsers by default.

146



B.3. PRECISION OF INFERRED PROTOCOLS

SP_S SP_C IDP_S

(3) {Ack} Key(IDP_C, IDP_S)

(8) Ack

IDP_C

(1) {SP_domain} K_B

(7) {USER, Ki, expire, IDP_domain}Ks
-1, {expire1, SP_domain}Ki

-1

(2) {assoc(USER, PWD), csrf} Key(IDP_C, IDP_S)

(4) {USER, Ki, csrf} Key(IDP_C, IDP_S)

(5) {{USER, Ki, expire, IDP_domain}Ks
-1} Key(IDP_C, IDP_S)

(6) {{USER, Ki, expire, IDP_domain}Ks
-1, {expire1, SP_domain}Ki

-1}K_B

(a) e Sequence Diagram of BrowserID

SP_C IDP_C IDP_connectIDP_rpIDP_loginIDP_OAuth

(1) assoc(SID, Domain)

(2) assoc(SID, Domain)

(3) {SID, assoc(SID, Domain), assoc(Email, password)}Key(IDP_C, IDP_login)

(4) assoc(SID,Domain), assoc(Email, c_user), xs)

(6) {access_token, signed_request, Domain}Key(IDP_C, IDP_rp)

(8) {access token, signed_request, Domain}Key(IDP_C, IDP_connect)

(5) assoc(SID,Domain), assoc(Email, c_user), xs)

(7) {access_token, signed_request, Domain}Key(IDP_C, IDP_connect)

(9) {access token, signed_request, Domain}K_B

IDP

(b) e Sequence Diagram of Facebook Connect

Figure B.2: e Sequence Diagrams Inferred from Implementations of BrowserID and Facebook
Connect
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