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Summary

This thesis is on full implementation theory. In this literature, the mecha-

nism is designed such that all its equilibria reveal players’ true information and

achieve a given social choice function. The fundamental question addressed in

this literature is that which social choice functions are implementable and un-

der what assumptions. Most of the first results is negative (e.g., Satterthwaite,

1975, and Gibbard, 1973, for implementation in dominant strategies). Start-

ing with Maskin (1977), who gave necessary and sufficient conditions for Nash

implementation, researchers have studied implementation problems under var-

ious solution concepts. Abreu and Matsushima (1992) made an important step

in this direction. They showed that almost any social choice function is vir-

tually implementable. We explicitly and fully exploit the power of monetary

transfers and lotteries which are usually used in virtual implementation.

The first chapter shows that in a complete-information environment with

two or more players and a finite type space, any truthfully implementable so-

cial choice function can be fully implemented in backwards induction via a

finite perfect-information stochastic mechanism with arbitrarily small trans-

fers. This provides an improvement from the virtual implementation result by

Glazer and Perry (1996). With arbitrarily small transfers only off the equilibri-
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um path, the mechanism we construct is much less susceptible to renegotiation

problem.

the second chapter, we provides a dynamic mechanism which fully im-

plements any social choice function under initial rationalizability in complete

information environments. Accommodating any belief revision assumption,

initial rationalizability is the weakest among all the rationalizability concepts

in extensive form games. This mechanism is also robust to small amounts of

incomplete information about the state of nature. That is, the mechanism

not only fully implements any social choice function in complete information

environments but also does so in all nearby environments where players’ values

are private. Although our mechanism allows for monetary transfers out of the

solution path, we can make them arbitrarily small and even achieve its budget

balance when there are more than two players.

In the third chapter, we further exploit the transfers in an incomplete

information environments and show in private-value environments that any

incentive compatible rule is implementable with small transfers. Our mecha-

nism only needs small ex post transfers to make our implementation results

completely free from the multiplicity of equilibrium problem. In addition, our

mechanism possesses the unique equilibrium that is robust to higher-order be-

lief perturbations. We also provide a sufficient condition for implementation

viii



in interdependent-value environments and discuss the difficulty of extending

our results to interdependent values environments in general.
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Chapter 1

Full Implementation in
Backward Induction

1.1 Introduction

In a complete-information environment with two or more players and a finite

type space, we show that any truthfully implementable social choice func-

tion1 can be fully implemented in backward induction using a finite perfect-

information stochastic mechanism. Our result is achieved by invoking (1) a

dynamic stochastic mechanism, (2) arbitrarily small transfers, and (3) the do-

main restriction which rules out identical preferences and preference orderings

with complete indifference over all outcomes.

It is known that subgame-perfect implementation is more permissive than

1A social choice function is truthfully implementable if there exists a direct revelation
mechanism where truth-telling (i) is a Nash equilibrium, and (ii) implements the social
choice function. It is well known that any Nash implementable social choice function is
truthfully implementable. In Section 3, we show that truthful implementability is also a
necessary condition for our notion of implementation. When there are three or more players,
any social choice function is truthfully implementable, that is, truthful implementability is
trivially satisfied.
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Nash implementation (Moore and Repullo (1988)). Our result can be contrast-

ed with two existing perfect-information mechanisms which implement an arbi-

trary social choice function in subgame-perfect equilibrium.2 The mechanism

in Moore and Repullo (1988, Section 5.1) (henceforth, the MR mechanism)

imposes large off-equilibrium transfers, while the mechanism in Glazer and

Perry (1996) (henceforth, the GP mechanism) requires at least three players

and that the implementation be virtual, i.e., the desirable social outcome is

obtained only with large probability.3 Both mechanisms have thus been criti-

cized for their susceptibility to renegotiation (see Jackson (2001, p. 690)). In

contrast, our mechanism is a finite stochastic game with perfect information,

which ensures full implementation via backward induction through arbitrarily

small transfers off the equilibrium path, and no transfers on the equilibrium

path.

In a generic perfect-information game, the backward induction outcome is

induced by several notions of extensive-form rationalizability.4 Since we allow

2See Glazer and Perry (1996, p. 28) for a discussion of practical and theoretical reasons to
favor sequential/perfect-information mechanisms. In particular, they argue that “sequential
mechanisms, with backward induction as their solution concept, seem to be more intuitive
and simpler to understand than their simultaneous counterparts.” Nevertheless, since the
length of our constructed game form will grow as the imposed transfers vanish, the simplicity
of solving the game is subject to debate.

3See also Osborne and Rubinstein (1994, pp. 193-195) for an exposition of the result in
Glazer and Perry (1996).

4These solution concepts include, for example, the subgame rationalizability in Bernheim
(1984) and the extensive-form rationalizability in Pearce (1984). See also Battigalli and
Siniscalchi (2002) for an epistemic characterization of extensive-form rationalizability.
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for small transfers, our mechanism can be made generic to implement any

truthfully implementable social choice function in these notions of extensive-

form rationalizability. In contrast, Bergemann et al. (2011) show that a

stronger version of the monotonicity condition due to Maskin (1999) is neces-

sary for implementation in normal-form rationalizability.

Our result can also be contrasted with the static mechanism in Abreu

and Matsushima (1994) which fully implements any social choice function in

iterated deletion of weakly dominated strategies.5 The GP mechanism is a

dynamic counterpart of the mechanism in Abreu and Matsushima (1992a)

which achieves virtual implementation for any social choice function in a stat-

ic mechanism; in contrast, our result provides a dynamic counterpart of the

mechanism in Abreu and Matsushima (1994) which fully implements an arbi-

trary social choice function in a static mechanism.6 Abreu and Matsushima

(1994) extend the result in Abreu and Matsushima (1992a) from virtual imple-

mentation to full implementation, but strengthen the solution concept from

5In Abreu and Matsushima (1994), implementation in iterated deletion of weakly domi-
nated strategies is achieved by one round of removal of weakly dominated strategies followed
by iterative removal of strictly dominated strategies. Since they study the implementation
problem in the environment with more than two players, truthful implementability is auto-
matically satisfied.

6Glazer and Perry (1996) make a simple modification of the normal form mechanism
in Abreu and Matsushima (1992), where the GP mechanism is an extensive form game
with the same outcome function. Nevertheless, the difficulty of modifying the normal form
mechanism in Abreu and Matsushima (1994) is due to their adopting an indication in their
outcome function, for which we know of no counterpart in an extensive form game except
for using the MR mechanism.
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iterated deletion of strictly dominated strategies in Abreu and Matsushima

(1992a) to iterated deletion of weakly dominated strategies. In contrast, we

achieve full implementation in the same solution concept as in Glazer and

Perry (1996), i.e., backward induction.

Glazer and Rubinstein (1996) argue that an extensive-form game provides

a “guide” for solving a normal-form game and thereby reduces the compu-

tational burden on the players. They define a solution concept called guided

iteratively undominated strategies and prove that a social choice function is

implementable in guided iteratively undominated strategies if and only if it is

implementable in subgame-perfect equilibrium in a perfect-information mech-

anism. It follows that our mechanism also implements any truthfully imple-

mentable social choice function in guided iteratively undominated strategies.

The paper is organized as follows. Section 2 describes the environment.

Section 3 presents the main result and the mechanism. Section 4 provides the

proof, and Section 5 concludes.

1.2 Environment

Let N = {1, 2, ..., n} denote the set of players. The set of pure social alterna-

tives is denoted by A, and ∆ (A) denotes the set of all probability distributions

over A with countable supports. In this context, a ∈ A denotes a pure social

4



alternative and l ∈ ∆ (A) denotes a lottery on A.

For each player i ∈ N , let Θi denote a finite set of types of player i. The

utility index of player i over the set A is denoted by vi : A × Θi → R, where

vi(a, θi) specifies the bounded utility of player i from the social alternative a,

when he is of type θi. Player i’s expected utility from a lottery l ∈ ∆ (A) under

type θi is ui(l, θi) =
∑

a∈A l (a) vi(a, θi), which is well defined since vi(a, θi) is

bounded.

Following Abreu and Matsushima (1992a) and Glazer and Perry (1996),

we assume that (i) for each θi ∈ Θi, vi (·, θi) is not a constant function on A;

and (ii) for any two distinct types θi and θ′i, vi(·, θi) is not a positive affine

transformation of vi(·, θ′i). This restriction guarantees the reversal property

which is used to elicit players’ true type (see (1.3)).

A planner aims to implement a social choice function that is a mapping

f : Θ→ ∆ (A), where Θ = Θ1×Θ2×· · ·×Θn.7 We assume that the true type

profile ψ ∈ Θ is commonly known to the players but unknown to the planner.

We assume that the planner can fine or reward a player i ∈ N, and we

denote by ti ∈ R the transfer from player i to the planner. We also assume

that player i’s utility is quasilinear in transfers, and is denoted by ui(l, θi) + ti.

A finite sequential stochastic mechanism is a finite perfect-information game

7Here we follow Abreu and Matsushima (1994) and Glazer and Perry (1996) in assuming
that the space of type profiles is a product space.
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tree Γ together with an outcome function ζ, including an allocation function

g which specifies for each terminal history a lottery l ∈ ∆ (A) and a transfer

rule t = (t1, t2, ..., tn). A sequential mechanism (Γ, ζ) has fines and rewards

bounded by t if |ti| ≤ t for every i ∈ N and every terminal history.

1.3 Mechanism

In this section, we provide a full characterization of social choice function-

s which are fully implemented in backward induction with arbitrarily small

transfers. It is well known that if f is implementable, then it must be truth-

fully implementable. That is, there must exist a “direct revelation mechanism”

f̃ : Θn → ∆ (A) , such that for any θ ∈ Θ, the following hold:

• P1 : f̃ (θn) = f (θ) , i.e., if all individuals announce θ, the outcome is

f (θ) .

• P2 : the unanimous announcement of θ is a Nash equilibrium at state θ.

That is, truth-telling is a Nash equilibrium. Observe that any social choice

function f can then be truthfully implemented when n ≥ 3. This can be

achieved by constructing a direct revelation mechanism with the following

property: if at least n− 1 individuals announce θ, then the outcome is f (θ) .

No individual can change the outcome by deviating from a unanimous an-

6



nouncement, so that truth-telling is clearly a Nash equilibrium. The restric-

tion n ≥ 3 is crucial because it allows the planner to identify a deviant from

a truth-telling strategy combination. If instead n = 2 and player 1 announces

θ and player 2, φ, then there is no way for the planner to ascertain whether

state θ has occurred and 2 is lying, or state φ has occurred and 1 is lying.

Clearly, if truth telling is to be sustained as an equilibrium, there must exist

an outcome which is simultaneously no better than f (θ) for 2 in state θ and

no better than f (φ) for 1 in state φ. That is, not every social choice function

is truthfully implementable when n = 2.8

Definition 1.1. A social choice function f is truthfully implementable if there

exists a direct revelation mechanism f̃ which satisfies P1 and P2.

It is well known result that any Nash-implementable social choice function

(even if only partially implementable) must be truthfully implementable (see

Dasgupta et al. (1979)). Proposition 1.1 states that truthful implementabil-

ity is a necessary condition for our notion of implementation which allows

arbitrarily small transfers off equilibrium path.

Proposition 1.1. Assume A is finite. Suppose that for any t > 0, there

exists a finite sequential stochastic mechanism with fines and rewards bounded

8Dutta and Sen (1991) have a detailed discussion in which they provide a full characteriza-
tion of the class of two-person social choice correspondences which are Nash-implementable.
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by t, such that for each type profile ψ, f(ψ) with no transfer is the unique

subgame-perfect equilibrium outcome. Then, f is truthfully implementable.

Proof. For convenience, let t̄ = 1
q

where q ∈ N. Suppose f : Θ → ∆ (A) is

implementable in SPE by a mechanism (Γ, ζ) with fines and rewards bounded

by 1
q
. Let gq be the function which specifies the lottery associated with the

terminal node and let tq be the transfer rule.

Let f̃t̄ be a direct revelation mechanism such that

f̃t̄

((
θi
)
i∈N

)
=
(
gq
((
mθi

i

)
i∈N

)
, tqi

((
mθi

i

)
i∈N

))
,

where θi denotes that player i announce θ for any θ ∈ Θ.

Suppose ψ is the true state. Let ψ−i denotes that all the players other than

i announce ψ. We have

ui

(
gq
(
mψ
i ,m

ψ
−i

)
, ψi

)
≥ ui

(
gq
(
mφ
i ,m

ψ
−i

)
, ψi

)
+ tqi

(
mφ
i ,m

ψ
−i

)
.

Note that this inequality holds for any q and tqi (m) < 1
q
. Since A is finite,

∆(A) is compact. There exists some g0
(
mφ
i ,m

ψ
−i

)
∈ ∆(A) such that

ui

(
gq
(
mφ
i ,m

ψ
−i

)
, ψi

)
→ ui

(
g0
(
mφ
i ,m

ψ
−i

)
, ψi

)
as q →∞.

That is, we have some f̃0 with no transfer such that,

ui

(
f̃0 (ψn) , ψi

)
≥ ui

(
f̃0

(
φi, ψ−i

)
, ψi

)
.

This completes the proof.
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Remark 1.1. The compactness of the set of alternatives is to guarantee the

existence of the limit of the bad outcomes as the bound of transfers approaches

zero. If A is compact, our result holds with two technical assumption: (1) ∆(A)

is the set of all probability measure over A; (2) vi(·, θi) is continuous.

Theorem 1.1. For any n ≥ 2, any truthfully implementable social choice

function f , and any t > 0, there exists a finite sequential stochastic mecha-

nism with fines and rewards bounded by t such that for each type profile ψ,

the outcome f(ψ) with no transfer is the unique subgame-perfect equilibrium

outcome.

1.3.1 The preliminaries

Given a social choice function f , since Θi is finite for any i, we let

ξ = max
θi∈Θi,θ,θ′∈Θ,i∈N

|ui(f(θ), θi)− ui(f(θ′), θi)| . (1.1)

That is, ξ is the maximal difference in payoffs of all implementable outcomes

for all players of all types. Choose an integer K and ε > 0 such that

ξ/K < ε < t/6. (1.2)

9



Hence, K is large when t is small. For any distinct types θi and θ′i, let xθi,θ′i

and xθ′i,θi be two lotteries such that

ui(xθi,θ′i , θi) > ui(xθ′i,θi , θi);

ui(xθi,θ′i , θ
′
i) < ui(xθ′i,θi , θ

′
i). (1.3)

The existence of xθi,θ′i and xθ′i,θi is guaranteed by the assumption on the pref-

erences. Let L ≡
{
xθi,θ′i , xθ′i,θi

}
θi 6=θ′i,i∈N

. Observe that L is a finite set since Θi

and N are both finite.

1.3.2 The Mechanism

The mechanism has K+ 2 rounds. In each round k ≤ K+ 1, the players move

sequentially. Player 1 moves first, player 2 moves second, and so on. In round

k ≤ K, each player i announces a type profile mk
i ∈ Θ.

In round K + 1, each player i announces his own type, mK+1
i ∈ Θi. Let

mK+1 =
(
mK+1

1 , ...,mK+1
n

)
.

Let

l =
K∑
k=1

1

K
f̃
(
mk
)

,

where f̃ satisfies P1 and P2.

Then, by the finiteness of L and Θi, choose pl ∈ (0, 1) such that for any

l′ ∈ L, any i ∈ N, and any θi ∈ Θi,

|ui(l, θi)− ui((1− pl)l + pll
′, θi)| < ε/2. (1.4)

10



Let

xl,θi,θ′i = (1− pl)l + plxθi,θ′i ;

xl,θ′i,θi = (1− pl)l + plxθ′i,θi .

Consequently, we have

ui(xl,θi,θ′i , θi) > ui(xl,θ′i,θi , θi); (1.5)

ui(xl,θi,θ′i , θ
′
i) < ui(xl,θ′i,θi , θ

′
i).

Remark 1.2. The conditions in (1.5) will guarantee that truth telling is strict-

ly better when players face the constructed lotteries (see the proof of Claim 3.1

in Section 4 below).

In round K + 2, in the order of player n+ 1(≡ 1), n,..., 2, player i has an

opportunity to announce his predecessor’s preference mK+2
i ∈ Θi−1 if and only

if mK+2
j = mK+1

j−1 for every j > i.9

• If mK+2
i 6= mK+1

i−1 , then player i− 1 chooses xl,mK+1
i−1 ,mK+2

i
or xl,mK+2

i ,mK+1
i−1

and the game ends;

• If mK+2
i = mK+1

i−1 , then the game continues and player i − 1 gets the

opportunity to announce his predecessor’s preference mK+2
i−1 ∈ Θi−2.

9Note that player 1 always has the opportunity to announce player n’s type.
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If mK+2
i = mK+1

i−1 for all i, then the social alternative is determined by the

lottery l and the game ends.

The transfers are specified as follows:

ti = ηi + τi + δi.

ηi =


−3ε, if mK+2

i 6= mK+1
i−1 , and i− 1 chooses xl,mK+1

i−1 ,mK+2
i

;

ε, if mK+2
i 6= mK+1

i−1 , and i− 1 chooses xl,mK+2
i ,mK+1

i−1
;

0, otherwise.

τi =

{
−2ε, if mK+2

i+1 6= mK+1
i ;

0, otherwise.

δi =

{
−ε, if i is the last person who chooses mk

i 6= mK+1 for some k ≤ K;
0, otherwise.

Note first that along any history, a player is fined at most 6ε and is rewarded

at most ε, which are bounded by t (by (1.2)). Second, when mK+2
i 6= mK+1

i−1 ,

player i− 1 will be fined 2ε regardless of her choice between xl,mK+1
i−1 ,mK+2

i
and

xl,mK+2
i ,mK+1

i−1
; on the other hand, whether i will get ε or −3ε depends on player

i− 1’s choice. We draw the game tree for rounds K + 1 and K + 2 in Figure

1 and highlight the equilibrium path in boldface.

Remark 1.3. The “direct revelation mechanism” f̃ works in the same way

as ρ (a majority rule), used in the GP mechanism.10 With this construction,

we generalize the implementation result in Glazer and Perry (1996) to a two-

10We restate the majority rule from Glazer and Perry (1996, p. 30) as follows:
For each stage k, k = 1, ...,K, a probability of (1−ε)/K is assigned to f (ψ) if mk

i = ψ, for
at least n− 1 players; otherwise, a probability of (1− ε) /K is assigned to some arbitrarily
chosen alternative b.
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person setting. Note that truthful implementability is trivially satisfied by the

majority rule when there are three or more players. The following corollary

holds immediately if we replace the majority rule in the GP mechanism with

f̃ .

Corollary 1.1. For any n ≥ 2, any truthfully implementable social choice

function f , ε > 0, and t > 0, there exists a finite sequential stochastic mecha-

nism with fines and rewards bounded by t for which the unique subgame-perfect

equilibrium outcome is such that for each type profile ψ, the outcome f(ψ) is

chosen with probability of at least 1− ε.

Remark 1.4. The main difference between our mechanism and the GP mech-

anism is that we adopt a modified MR mechanism to elicit the players’ true

types in round K + 1 and round K + 2. The modified MR mechanism further

differs from the MR mechanism in an essential way: by using randomization,

we can (by (1.4)) make the lottery assigned to each terminal history arbitrarily

close to lottery l, which is determined by the announcements from round 1 to

round K. Consequently, relative to the transfers, the announcement made in

either round K + 1 or round K + 2 has a negligible effect on the lotteries as-

sociated to terminal histories. We can therefore elicit each player’s true type

in round K + 1 without the large transfers required in the MR mechanism.

If we keep the first K rounds identical to the setting in the GP mechanism,
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we have the following corollary.

Corollary 1.2. For any n ≥ 3, social choice function f , and t > 0, there

exists a finite sequential stochastic mechanism with fines and rewards bounded

by t such that for each type profile ψ, the outcome f(ψ) with no transfer is the

unique subgame-perfect equilibrium outcome.

Remark 1.5. Moore and Repullo (1988) provide a necessary condition for

subgame-perfect implementation for general preferences. The necessary con-

dition is actually indispensable in quasilinear environment which our paper

studies. In their section 5, they construct a simple finite mechanism with per-

fect information in quasilinear environment. With sufficiently large transfers,

this simple mechanism can implement any social choice function (see the de-

tailed discussion on pp. 1214–1215 in Moore and Repullo (1988)). That is,

with large enough transfers, the necessary condition they identify in their The-

orem 1 is automatically satisfied. Our mechanism breaks up the large transfers

into a small scale by adopting a large horizon and making full use of lotteries.

See the detailed discussion in Appendix.

1.4 Implementation

Denote the true type profile by ψ.
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Claim 1.1. In any subgame-perfect equilibrium where player i moves in round

K+2, player i will announce mK+2
i = ψi−1 if mK+1

i−1 = ψi−1 and will announce

mK+2
i 6= mK+1

i otherwise.

Proof. First, consider player 2’s choice in round K + 2. This is the last move

in the game tree. There are two cases:

Case 1. mK+1
1 = ψ1: If player 2 announces mK+2

2 = ψ1, then l is implemented

and η2 = 0. If, instead, player 2 announces mK+2
2 6= ψ1, then by (1.5) player

1 will choose xl,mK+1
1 ,mK+2

2
, while player 2 will be fined η2 = −3ε. By (1.4),

player 2 will announce ψ1.

Case 2. mK+1
1 6= ψ1: If player 2 announces mK+2

2 = mK+1
1 , then l is imple-

mented and η2 = 0. If, instead, player 2 announces mK+2
2 = ψ1, then by (1.5)

player 1 will choose xl,mK+2
2 ,mK+1

1
, while player 2 will be rewarded with η2 = ε.

By (1.4), player 2 will announce some mK+2
2 6= mK+1

1 .

Similarly, since the payoff difference between any two lotteries in the set

{l}∪L is at most ε, each player i (where 2 ≤ i ≤ n) will confirm his predeces-

sor’s announcement in K+1 (i.e., mK+2
i = mK+1

i−1 ) if mK+1
i−1 = ψi−1; while player

i will challenge his predecessor’s announcement in K + 1 (i.e., mK+2
i 6= mK+1

i−1 )

if mK+1
i−1 6= ψi−1.

Now consider player 1 (i.e., player n+ 1)’s choice in round K + 2. Again,

there are two cases:
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Case 1. mK+1
n = ψn: If player 1 announces mK+2

1 = ψn, then one outcome

from {l} ∪ L is implemented, η1 = 0, and player 1 will be fined τ1 = −2ε if

he is challenged by player 2 later. In total, the potential loss from announcing

mK+2
1 = ψn is less than 3ε. If, instead, player 1 announces mK+2

1 6= ψn, then by

(1.5) player n will choose xl,mK+1
n ,mK+2

1
, while player 1 will be fined η1 = −3ε.

Therefore, player 1 will announce ψn.

Case 2. mK+1
n 6= ψn: If player 1 announces mK+2

1 = mK+1
n , then one outcome

from {l}∪L is implemented, η1 = 0. In total, the potential gain from announc-

ing mK+2
1 = mK+1

n is less than ε. If, instead, player 1 announces mK+2
1 = ψn,

then by (1.5) player n will choose xl,mK+2
1 ,mK+1

n
, while player 1 will be rewarded

with η1 = ε. Therefore, player 1 will announce some mK+2
1 6= mK+1

n .

Claim 1.2. In any subgame-perfect equilibrium, every player truthfully an-

nounces his own type in round K + 1, i.e., mK+1
i = ψi for all i ∈ N .

Proof. Consider player n first. Suppose that player n announces mK+1
n 6= ψn.

Since player 1 moves first in roundK+2, then by Claim 3.1, this announcement

will be challenged by player 1 and result in a penalty τn = −2ε. It follows

from (1.4) that by announcing mK+1
n 6= ψn, player n’s utility from the induced

lottery is affected by an amount less than ε. In addition, player n potentially

reduces the penalty δn = −ε. Therefore, player n will announce mK+1
n = ψn.

Thus, by Claim 3.1, player n will have an opportunity move in round K + 2,
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and by a similar argument, mK+1
n−1 = ψn−1. We can inductively argue that

mK+1
i = ψi for all i ∈ N.

Claim 1.3. In any subgame-perfect equilibrium, if player i is not the last one

to announce a type profile that is different from mK+1 along a history up to

round k ≤ K, then mk
i = ψ.

Proof. Note that by Claim 3.3 mK+1 = ψ in any subgame-perfect equilibrium.

Consider player n’s decision in round K. Suppose that player n is not the last

one who lies along a given history. Then, player n will be fined δn = −ε if he

lies by announcing mK
n 6= ψ, but will not be fined if he announces mK

n = ψ.

The maximal gain from the change in lottery chosen by lying is ξ/K. By (1.2),

he strictly prefers to tell the truth. Inductively we can show that any player

i ≤ n− 1 strictly prefers to tell the truth in round K if player i is not the last

one who lies along a given history.

Suppose that for any player i, he strictly prefers to tell the truth in round

k′ if player i is not the last one who lies along a given history for any k ≤ k′ ≤

K. We show that player i strictly prefers to tell the truth in round k − 1 if

player i is not the last one who lies along a given history for any player i.

If player i lies, then by the induction hypothesis, all the players will tell

the truth in the following histories. Thus, player i will be fined δ1 = −ε. The

maximal gain from the change in lottery chosen by lying is bounded by ξ/K
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in round k. From P2 of f̃ , the maximal gain from the change in lottery chosen

by lying is 0 in round k′′ ≥ k. If he tells the truth, instead of player 1, player

i′ will be fined δi′ = −ε. In total, the potential gain is less than the loss. It

follows that truth-telling is strictly better for player i in round k + 1.

This completes the proof.

Claim 1.4. In any subgame-perfect equilibrium, mk
i = ψ, for all i ∈ N, and

for all 1 ≤ k ≤ K.

Proof. No player has lied in round k = 1. It then follows from Claim 1.3 that

m1
i = ψ for all i. Inductively, mk

i = ψ for all i ∈ N and for all 1 ≤ k ≤ K.
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1.5 Concluding Remarks

Our result is proved by observing the complementarity between Moore and

Repullo (1988) and Glazer and Perry (1996). Specifically, we modify the MR

mechanism by allowing randomization on the pure outcomes. We can strength-

en the result of Glazer and Perry (1996) to full implementation from virtual

implementation, if we adopt the MR mechanism in the last two rounds, round

K + 1 and round K + 2. In addition, the result of Moore and Repullo (1988)

(which holds with large payments) can be proved with arbitrarily small trans-

fers, if we adopt the idea of Glazer and Perry (1996) (which is due to Abreu

and Matsushima (1992a)) in breaking the large fine into K small pieces.

If there are three or more players, our argument is essentially unaltered

if the fines (resp. rewards) imposed on some player are to be paid to (resp.

paid by) some other player instead of the planner. In other words, with three

or more players, we can achieve budget balance (i.e., the transfers add up to

zero) both on and off the equilibrium path.11

Our result crucially relies on the assumption of complete information and

is therefore subject to the criticism by Aghion et al. (2012), namely, that

our mechanism still admits undesirable sequential equilibria when some in-

11When there are only two players, as in Moore and Repullo (1988), there may be an
additional surplus generated off the equilibrium path.
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formation perturbation (as defined in Aghion et al. (2012)) is introduced to

the complete-information environment. An extension of our analysis to an

incomplete-information environment is left for future research.12

The finiteness of the mechanism relies crucially on the assumption that the

state space is finite. We cannot hope for a finite mechanism to fully implement

any social choice function when the state space is infinite. In addition, the

finiteness assumption guarantees the existence of lotteries to elicit the true

preference of each player. This is crucial for our result as well as for the

results in Abreu and Matsushima (1992a), Abreu and Matsushima (1994),

and Glazer and Perry (1996).

12Instead of using dynamic mechanisms, Chen et al. (2014) use a finite static mechanism
to show that, in incomplete information environments, any truthfully implementable so-
cial choice function is implementable in one round deletion of weakly dominated strategies
followed by iterative removal of strictly dominated strategies.
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1.6 Appendix

In this section, we restate the necessary condition, i.e., Condition C, in The-

orem 1 of Moore and Repullo (1988) and show that Condition C is trivially

satisfied in qusilinear environment. We incorporate their setting into our en-

vironment. In this section, f is a social choice correspondence from Θ to

∆(A).

Condition C For each pair of profiles θ and φ in Θ, and for each a ∈ f (θ)

but a 6∈ f (φ) , there exists a finite sequence

a (θ, φ; a) ≡ {a0 = a, a1, ..., ak, ..., ah = x, ah+1 = y} ⊂ A,

with h = h (θ, φ; a) ≥ 1, such that:

(1) for each k = 0, ..., h−1, there is some particular agent j (k) = j (k|θ, φ; a) ,

say, for whom

uj(k)(ak, θ) ≥ uj(k)(ak+1, θ); and

(2) there is some particular agent j (h) = j (h|θ, φ; a) , say, for whom

uj(h) (x, θ) ≥ uj(h) (y, θ) and uj(h) (y, φ) > uj(h) (x, φ) .

Further, h (θ, φ; a) is uniformly bounded by some h̄ <∞.

We first show that with sufficiently large transfers, Condition C is auto-

matically satisfied in qusilinear environment.
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To see Condition C is trivially satisfied when large enough transfers are

allowed, we consider a pair of states {(θi, θ−i) , (θ′i, θ−i)} and a ∈ f (θi, θ−i) but

a 6∈ f (θ′i, θ−i) .

Since the state space is finite, there exist a pair of outcomes x, y ∈ ∆ (A)

and a pair of transfers tx, ty ∈ R, such that

ui (x, θi)− tx > ui (y, θi)− ty,
ui (x, θ

′
i)− tx < ui (y, θ

′
i)− ty.

(1.6)

Furthermore, ui (a, θi) > ui (a
′, θi) − t, for all θi ∈ Θi, all a′ ∈ ∆ (A) and for

any t ∈ {tx, ty}.

Now, let the finite sequence be

a (θ, φ; a) ≡ {a0 = a, a1 = {x, tx} , a2 = {y, ty}} .

Let j (0) = j (1) = i. We have

ui (a, θi) > ui (x, θi)− tx > ui (y, θi)− ty

that is, (1) in Condition C holds; morever, (2) follows from (1.6).

We show that we can make use of lotteries to decrease the large payments

into an arbitrarily small scale.

Recall that for any distinct types θi and θ′i, there exists a pair of lotteries{
xθi,θ′i , xθ′i,θi

}
such that

ui(xθi,θ′i , θi) > ui(xθ′i,θi , θi);

ui(xθi,θ′i , θ
′
i) < ui(xθ′i,θi , θ

′
i).
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For any t̄ > 0, we can find some small enough pa > 0, such that there exists

t < t̄,

ui
(
(1− pa)a+ paxθi,θ′i , θi

)
− t > ui((1− pa)a+ paxθ′i,θi , θi)− t;

ui((1− pa)a+ paxθi,θ′i , θ
′
i)− t < ui

(
(1− pa)a+ paxθ′i,θi , θ

′
i

)
− t.

In our mechanism, the finite sequence is

a (θ, φ; a) ≡
{
a0 = a, a1 =

{
(1− pa)a+ paxθi,θ′i ,−t

}
, a2 =

{
(1− pa)a+ paxθ′i,θi ,−t

}}
.
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Chapter 2

Robust Dynamic
Implementation

2.1 Introduction

Consider a society consisting of a group of individuals. Assume that this soci-

ety agrees upon some social choice rule (or welfare criterion) as a mapping from

states to outcomes where each state can be interpreted as the relevant informa-

tion needed to pin down desirable outcomes at that state. Then, the theory of

implementation and mechanism design poses the following institutional design

question: what class of social choice rules can be realized by mechanisms (in-

stitutions)? The answer to this question precisely relies on how we hypothesize

about the following two ingredients: (1) what class of mechanisms are we al-

lowed to use? (2) how does each agent behave in the mechanism? It is already

well known in the literature that one can obtain very permissive implementa-

tion results by using dynamic (or sequential) mechanisms and exploiting the
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assumption of complete information. In complete information environments,

Moore and Repullo (1988) construct a dynamic mechanism (henceforth, the

MR mechanism) that implements “any” social choice rule as the unique sub-

game perfect equilibrium.

Subgame perfect implementation is particularly successful because it shows

that most desirable outcomes are in fact uniquely implementable as subgame

perfect equilibria. Nevertheless, there remain several criticisms: (1) It relies

excessively on the agents’ rationality. For deviations are always considered to

be “one-shot deviations from rationality” that do not shatter the faith players

have in the subsequent rationality of their opponents; (2) The punishment of

all agents is often needed out of the equilibrium in the mechanism and this is

clearly not in their collective interest: what if the agents decided to abandon

the original mechanism after a Pareto inefficient outcome is realized as an out-

of-equilibrium outcome and they renegotiate this into a new Pareto efficient

outcome? (3) The introduction of even small information perturbations greatly

reduces the power of subgame perfect implementation. Aghion, Fudenberg,

Holden, Kunimoto, and Tercieux (2012, henceforth, AFHKT) show that under

arbitrarily small information perturbations the MR mechanism does not yield

(even approximately) truthful revelation and that in addition the mechanism

has sequential equilibria with undesirable outcomes.
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The main objective of this paper is to provide very permissive robust im-

plementation results via dynamic mechanisms. More specifically, this paper

proposes a two-stage mechanism which (1) has a unique truth-telling sequential

equilibrium in pure strategies that is robust to any “private-value perturba-

tion”; (2) is dominance-solvable in the weakest notion of “sequential ratio-

nalizability”; (3) is immune to renegotiation. Before getting into the details,

from the outset, we want to be clear about the domain of problems to which

our results apply. First, we consider environments where monetary transfers

among the players are available and all players have quasilinear utilities in

money. We focus on this class of environments because most of the settings in

the applications of mechanism design are in economies with money. Second,

we employ the stochastic mechanisms in which lotteries are explicitly used.

Therefore, we assume that each player has von Neumann and Morgenstern ex-

pected utility. Third, we focus on private values environments. That is, each

player’s utility depends only upon his own payoff type as well as the lottery

chosen and his monetary payment.

In a dynamic mechanism, agents could have multiple beliefs, one at each

information set. These beliefs are updated via Bayes’ rule whenever possi-

ble; however, if an agent is surprised by a zero-probability event, Bayesian

updating does not apply and the agent needs to revise her belief in another
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fashion. The assumption on how this belief revision proceeds is precisely what

distinguishes different existing solution concepts for dynamic games. Sub-

game perfection equilibrium entails backwards induction, which requires that

there be rationality and common belief in rationality at “every” information

set. This means that under backwards induction, each agent always attributes

any out-of-equilibrium behavior of the opponents to mere mistakes and main-

tains her initial hypothesis of rationality and common belief in rationality in

the subsequent stages of the game. Following Ben-Porath (1997), Dekel and

Siniscalchi (2013) introduce the concept of initial rationalizability, which we

take as this paper’s solution concept in extensive form games. Initial ratio-

nalizability is like rationalizability in normal-form games in that it iteratively

deletes strategies that are not best replies. Unlike backwards induction, initial

rationalizaiblity only requires that there be rationality and common belief in

rationality “at the beginning of the game.” Accommodating any belief revision

assumption at any subsequent stages of the game after a zero-probability event

occurs, we acknowledge that initial rationalizability is the weakest rationalaiz-

ability concept among all in extensive-form games. Hence, implementation

under initial rationalizability is the most robust concept of implementation

among the existing concepts for implementation in dynamic mechanisms.

Our first result shows that one can construct a two-stage mechanism which
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implements any social choice function under initial rationalizability. The re-

quirement of initial rationalizable implementation can be decomposed into the

following two parts: (1) there always exists an initial rationalizable strategy

profile whose outcome coincides with the given rule; (2) there are no initial

rationalizable strategy profile whose outcomes differ from those of the rule.

Since complete information entails common knowledge of states, which is

very demanding and at best taken to be a simplifying assumption, it is a sen-

sible exercise to ask for the robustness of the implementation results to small

amounts of incomplete information. To pursue this line of research, we are

motivated by the approach of Chung and Ely (2003), who consider the fol-

lowing scenario: if a planner is concerned that all equilibria of his mechanism

yield a desired outcome, and entertains the possibility that players may have

even the slightest uncertainty about payoffs, then the planner should insist

on a solution concept with closed graph. Specifically, our second result shows

that it is possible to construct a finite two-stage mechanism which not only

fully implements any social choice function under complete information but

also does so in all the nearby environments. Therefore our result generates the

following important corollary: any social choice function is implementable for

all types in the model under study and it continues to be implementable for

all types “close” to this initial model. Therefore, any social choice function
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is continuously implementable in dynamic mechanism where the concept of

continuity here is the same as the one proposed by Oury and Tercieux (2012).

This robustness result still holds if we instead adopt other solution concept-

s such as subgame perfect equilibrium, subgame rationalizability (Bernheim

(1984)), and extensive form rationalizability (Pearce (1984)) because these are

simply the refinements of initial rationalizability.

Our results narrow several open questions in the literature. First, we con-

tribute to the literature of rationalizable implementation. Bergemann, Morris,

and Tercieux (2011) investigate the implications of rationalizable implemen-

tation by employing infinite, static, stochastic mechanisms. They show that

strict Maskin monotonicity is a necessary condition. Note that Maskin mono-

tonicity is known to be a necessary condition for Nash implementation.1 Moore

(1992) proposes a simple sequential mechanism where every player moves only

once. His result does not rely excessively on the agents’ rationality, since even

when some player is surprised by his opponent’s behavior, it does not matter

whether he believes the one who surprised him is rational or not. However,

there is a cost associated with it: his simple sequential mechanism needs large

size of monetary penalties and this mechanism works only under a stringent

condition on the environment. Moore (1992) argues that the most natural

1See Maskin (1999) for this.
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examples where his simple mechanism works are either only one of the two

players has a state dependent preference, or both of their preferences are per-

fectly correlated. Clearly, the applicability of his result is very limited. On the

other hand, we obtain a very permissive implementation result in much more

general environments: any social choice function is fully implementable under

initial rationalizability by a finite dynamic mechanism.

Second, we contribute to the literature of the robustness of the implemen-

tation results to almost complete information. For instance, Chung and Ely

(2003) investigate the robustness of undominated Nash implementation and

AFHKT (2012) investigate the robustness of subgame perfect implementation.

Exploiting “interdependent” values perturbations, they both conclude that

Maskin monotonicity is a necessary condition for their robust implementation.

We investigate the robustness of implementation under initial rationalizaibili-

ty. Our result shows that any social choice function is robustly implementable

under “private” values perturbations. As shown by Qin and Yang (2013), the

perturbations in Chung and Ely (2003) and AFHKT (2012) are both consider

as order two perturbation; in contrast, our positive result extends to any high

order perturbation in universal type space.

Third, we contribute to the literature of implementation with renegotiation.

We sometimes interpret a mechanism as a contract between the agents. In
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this case, they will presumably choose a mechanism that will deliver a Pareto

efficient outcome in equilibrium. Suppose, for whatever the reason may be,

that play of the mechanism results in an out-of-equilibrium outcome and this

outcome is not Pareto efficient. Then, it is very likely that the agents tear up

the contract and negotiate a new Pareto efficient outcome. To prevent this

type of ex post renegotiation, Maskin and Tirole (1999) consider the buyer-

seller bilateral trading model and assume that the agents sign a contract that

uses a stochastic transfer from the seller to the buyer when out-of-equilibrium

outcome is realized. If the buyer is risk-averse, then this fine can be designed

so that it hurts both the seller and the buyer. However, this construction

does not work for risk-neutral parties. If parties are close to risk-neutral, the

stochastic fine that is required needs to have a very large variance, which is not

very credible as it will violate the wealth constraints. Thus the applicability

of their result is doubtful in this case. Our mechanism adopts the idea of

Abreu and Matsushima (1992) to transform the required large payments into

arbitrarily small scale. This makes our mechanism a lot more reasonable than

that of Maskin and Tirole (1999).

Fourth, we contribute to the literature of the hold-up problem. It is often

the case that, when two parties engage in a relationship, they are uncertain

about the values of some parameter which will affect their future payoffs. This
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uncertainty is represented by a set of parameters that take several values.

Although they will both learn the value of the parameter in the future, they

cannot write ex ante contracts contingent on the state of nature because this

state of nature is not verifiable by a third party. When two parties sign an

ex ante contract based on some parameter which will be realized ex post but

not verifiable by a third party, it might entail transaction cost (Williamson

(1975)). However, the mechanism we develop here can be used to ensure that

truthful revelation occurs in equilibrium. Therefore the unverifiability alone

does not create any transaction cost.

Our paper is also related to the literature motivated by King Solomon’s

dilemma. Qin and Yang (2009) provide a two-stage dynamic mechanism to

implement the social desired allocation in one round deletion of weakly dom-

inated strategy followed by iterative deletion of strictly dominated strategies.

They allow the information is incomplete among players and use an infinite

mechanism (the second stage they adopt second price auction to elicit players’

true type). When we focus the complete information environment, we can

adopt a much weaker solution to achieve the social desired allocation. The

common feature is that both their mechanism and ours are robust to private

value perturbations.

The robust dynamic implementation literature is also closely related to
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our work. Müller (2013b) studies robust virtual implementation using dy-

namic mechanism under common strong belief in rationality. Müller (2013a)

adopts the same solution as ours to study robust dynamic implementation.

The difference between the robustness notion and ours is that instead of pur-

suing a mechanism to work in any type space, we focus on the bench mark

type space and consider the class of type space around it.

The rest of the paper is organized as follows: Section 2 uses a simple

buyer-seller example to introduce the MR mechanism and the general criticism

on it. Then within the same example, we construct a two-stage mechanism

which is immune to many of the criticisms. In Section 3, we introduce the

preliminary notation and definitions. Section 4 provides our main results.

More specifically, we establish Theorem 1 for implementation under initial

rationalizability (Section 4.1); Theorem 2 for robust implementation to small

perturbations around the benchmark model (Section 4.2); Corollary 1 for the

robust implementation to small perturbations around complete information;

and Theorem 3 for implementation with arbitrarily small transfers (Section

4.3). In Section 5 we discuss several issues. First, we show that it is possible

to provide a perfect information mechanism based on the MR mechanism that

not only implements any social choice function under complete information

but also does so in all the nearby environments. However, the implementation
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under information perturbations is successful only if the players adopt mixed

strategies in the unique sequential equilibrium. This casts doubt on how the

MR mechanism being played by the real people because it is not cognitively

simple at all for a player to play mixed strategies. Finally, we propose a way

of making the transfer rule satisfying budget balance when there are at least

three individuals.

2.2 Illustration

To illustrate the main idea of this paper, we consider the following simple ex-

ample adapted from Hart and Moore (2003). There are two parties, a B(uyer)

and a S(eller) of a single unit of an indivisible good. If trade occurs then B’s

payoff is

VB = θ − p,

where p is the price and θ is the good’s quality. S’s payoff is

VS = p,

thus we normalize the cost of producing the good to zero.

The good can be of either high or low quality. If it is high quality then B

values it at θH = 14, and if it is low quality then B values it at θL = 10. We

seek to implement the social choice function f ∗ whereby the good is always
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traded ex post, and where the buyer always pays the true value of θ to the

seller.

2.2.1 Moore-Repullo Mechanism

Suppose first that the quality θ is observable and common knowledge to both

parties. The implementation of f ∗ can be achieved through the following

Moore-Repullo (MR) mechanism:

(1) B announces either a “high” or “low” quality. If B announces “high”

then B pays S a price equal to 14 in exchange of the good and the game

stops.

(2) If B announces “low” and S does not “challenge” B’s announcement, then

B pays a price equal to 10 and the game stops.

(3) If S challenges B’s announcement then:

(a) B pays a fine F = 9 to T (a third party)

(b) B is offered the good for 6

(c) If B accepts the good then S receives F from T (and also a payment

of 6 from B) and the game stops.

(d) If B rejects at 3b then S pays F to T .

(e) B and S each get the item with probability 1/2 and the game stops.
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Figure 2.1: The left is under θH and the right is under θL. The equilibrium
path is in boldface.

The game specified by the MR mechanism under different values are shown

in Figure 1. The MR mechanism is extremely successful because it shows

that most desirable outcomes are in fact implementable as a unique subgame-

perfect equilibrium. However, the way MR mechanism delivers such a good

performance is subject to several criticisms. First, the solution concept of

backwards induction relies excessively on the assumption of common belief of

rationality. For deviations are always considered to be “one-shot deviations

from rationality” that do not shatter the faith players have in the subsequent

rationality of their opponents (see Reny (1992), Ben-Porah (1997) and Bat-

tigali and Siniscalchi (1999) for more details on the criticisms on backwards

induction). Second, the punishment of all agents is often needed out of the

equilibrium in the mechanism and this is clearly not in their collective inter-
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est. This feature is particularly problematic if the agents can decide ex post

to abandon the original mechanism after a Pareto inefficient outcome is real-

ized as an out-of-equilibrium outcome so that they can renegotiate for a new

Pareto efficient outcome (see Laffont and Martimort (2002) and Bolton and

Dewatripont (2005) for the detailed discussion on renegotiation). Third, the

introduction of even small information perturbations greatly reduces the pow-

er of subgame perfect implementation. In particular, AFHKT (2012) show

that under arbitrarily small information perturbations, the MR mechanism

does not yield (even approximately) truthful revelation and that in addition,

the mechanism has sequential equilibria with undesirable outcomes.

The first two criticisms are well known and we see no strong reason to

illustrate them. However, we would like to illustrate the issues that come the

last criticism. To do so, we first make a brief review of AFHKT (2012). Players

have imperfect information about θ, which is generated from a common prior

µ with µ (θH) = 1−α and µ (θL) = α for some α ∈ (0, 1) . Each player receives

a draw from a signal structure with two possible signals sh or sl, where sh is a

high signal that is associated with θH , and sl is a low signal associated with θL.

We use the notation sB = shB (resp. sB = slB) to refer to the event in which

B receives the high signal sh (resp. the low signal sl) and similar notation

applies to S. The following table shows the joint probability distribution µ :
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µ shB, s
h
S shB, s

l
S slB, s

h
S slB, s

l
S

θH 1− α 0 0 0
θL 0 0 0 α

Let νε denote a perturbed information structure:

νε shB, s
h
S shB, s

l
S slB, s

h
S slB, s

l
S

θH (1− α) (1− ε− ε2) (1− α) ε (1−α)ε2

2
(1−α)ε2

2

θL
αε2

2
αε2

2
αε α (1− ε− ε2)

Note that as ε converges to 0, the marginal probability distribution of νε on

θ coincides with µ. That is, each player’s signal is almost correct under νε. The

second feature of νε is that when the agents receive different signals, B’s signal

becomes infinitely more accurate than S’s. This implies that when S and B

were informed of the signal, and the signals disagree, they will conclude that

with high probability the true state corresponds to B’s signal. This matters a

lot when S decides whether to challenge B.

AFHKT (2012) first show that truth telling cannot be (even approximately)

an equilibrium in pure strategies. This is easy to see in the previous example:

if S does not challenge when observing low signal, B would like to announce

“low” regardless of the signal he received. They also show that even allowing

for mixed strategies, the probability of truthful announcement never goes to 1

as ε goes to 0 (see Proposition 1 in AFHKT (2012) for details). Furthermore,
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under this information structure, there exists a persistently bad sequential

equilibrium. Suppose that B always announces “high” regardless of the signal

received. S always challenges when observing “low” regardless of her signal

too. In the last stage, B accepts the offer when his signal is high, and rejects

it otherwise. B holds his posterior belief given his private information and the

initial prior. We specify the following belief system at the last stage of the

game: S believes with probability 1 that B received high signal. Sequential

rationality is easy to check with this belief system, which is also consistent

indeed.

2.2.2 Two-Stage Mechanism

We will provide a sequential mechanism that implements the social choice func-

tion f ∗ under complete information. We also show that f ∗ is implementable

under all the nearby environments. We define the mechanism as follows.

(1) Both B and S announce “high” or “low” simultaneously. If both of them

announce “high” then B pays S a price equal to 14 in exchange of the

good and the game stops; if both of them announce “low” then B pays

S a price equal to 10 in exchange of the good and the game stops.

(2) If B announces differently from S’s announcement then:

(a) B pays a fine F = 9 to T (a third party).
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(b) B is offered the good for the price of 6.

(c) If B accepts the good, then S receives F from T (and also a payment

of 6 from B) and the game stops.

(d) If B rejects the offer made at 2 (b), then S pays F to T.

(e) B and S each get the item with probability 1/2 and the game stops.

θH , θH θH , θL

θL, θH θL, θL

0
14 B

−1
−9

θH

−2
15

θL

4
10

B

−1
15

θH

−2
−9

θL

Figure 2.2: The payoff is specified by the mechanism under θH .

First, we focus on complete information environments. The game specified

by two-stage mechanism under θH is shown in Figure 2. Since B is the sole

player in the second stage, knowing the state is high, he will accept the offer.

Therefore, the two stage game collapses into the following normal form game:
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shS slS
shB 0, 14 −1,−9
slS −1, 15 0, 10

Apparently, announcing high is a strictly dominant strategy for S. Knowing

this, B will announce high too. Similarly, when the state is low, S and B will

coordinate on low.

There is only one active player, B, in the second stage and B’s choice

only depends on her own type. This structure delivers a lot of advantages

over the existing mechanisms. First, we discuss the agents’ rationality in this

mechanism. Although the active player might be surprised by other players’

moves in the previous history, he will play in a rational way. Then, we can

show that when we adopt the solution which requires only rationality and

initial common belief of rationality, the outcome still coincides with the one

induced by subgame perfect equilibrium.

Second, we discuss the role of information perturbations. As long as the

active player almost knows his own payoff type (recall also that the buyer has

infinitely more accurate information than the seller) then it will not change the

outcome from subgame perfect equilibrium as well. Finally, all the payments

needed out of the equilibrium in this mechanism can be reduced to arbitrarily

small scale by adopting the idea from Abreu and Matsushima (1992), the

details of which will be discussed in Section 2.6.
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The key insights of this two-stage mechanism is as follows. First, we merge

the first two stages in the MR mechanism into one. This prevents the informa-

tion leakage from the buyer to the seller, which is the very reason that the MR

is not robust to even small information perturbations (see AFHKT (2012)). S-

ince S will not be influenced by whatever B announces, she will make decisions

based on his own posterior belief, which is almost accurate when information

is almost complete. Second, there is only one active player in the last stage.

This construction makes the mechanism work with the least requirement of

the active player. B chooses his type based on his own rationality no matter

how he is surprised by S’s previous choice. When the information structure

is only slightly perturbed, since we consider the perturbation where B almost

knows his own type regardless of what signal received by S, B will behave in

the same way regardless of whether he knows S’s signal or not.

The mechanism can be generalized to the environments where there are

I players and each player has J types. Our mechanism is still a two-stage

mechanism, while the MR mechanism needs I phases, which has 3I stages in

total. To avoid some technical details involved in more general mechanisms,

we will postpone the formal result until Sections 2.4, 2.5 and 2.6.
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2.3 Preliminaries

2.3.1 The Environment

Let I denote a finite set of players and with abuse of notation, we denote by

I the cardinality of I. Assume also that I ≥ 2. The set of simple lotteries

over an arbitrary set of outcomes is denoted by A. We assume that players’

values are private. That is, the utility index of player i over the set A is

denoted by a bounded utility function ui : A×Θi → R, where Θi is the finite

set of payoff types and ui(a, θi) specifies the utility of player i from the social

alternative a ∈ A under θi ∈ Θi. We assume that any two distinct types θi and

θ
′
i induce different preference orders over A and there is no total indifference

over the outcomes under any θi. We abuse notation to use ui(x, θi) as player i’s

expected utility from a lottery x ∈ ∆ (A) under θi. We also assume that player

i’s utility is quasilinear in transfers, denoted by ui(x, θi) + τi where τi ∈ R.

Lemma 2.1. (Abreu and Matsushima (1992)) For each i ∈ I, there exists a

function xi : Θi → A such that for any θi, θ
′
i ∈ Θi with θi 6= θ

′
i,

ui (xi (θi) , θi) > ui (xi (θ
′
i) , θi) .

Let u = supi,a,θi ui(a, θi) be a uniform upper bound of all players’ utility

functions. Similarly, let u be a uniform lower bound of all players’ utility

functions. We can choose a large enough money D ∈ R+ such that, D > u−u.

44



Until the end of Section 2.5, we assume that the true type profile θ∗ ∈ Θ

is commonly known to the players but unknown to the planner. This is what

we mean by complete information environments. We consider a planner who

aims to implement a social choice function f : Θ → A. We assume that the

planner can fine or reward a player i ∈ I and denote by τi the transfer from the

planner to player i. Throughout the paper, we define a dynamic mechanism

as a multistage with observed actions, which means that at each history h,

all players know the entire history of the play, and if more than one player

moves at h, they do so simultaneously. The class of mechanisms we consider

in the present paper is exactly the same as the one AFHKT (2012) allowed. A

dynamic mechanism is then an extensive game form Γ = (H,M,Z, g) where

(1) H is the set of all histories; (2) M = ×i∈IMi,Mi = ×h∈HMi(h) for all i ∈ I

where Mi(h) denotes the set of available messages for i at history h; (3) Z

describes the history that immediately follows history h given that the strategy

profile m has been played; and (4) g is the outcome function that maps the

set of terminal histories into the set of lotteries ∆ (A) with a transfer profile

τ = (τ1, τ2, ..., τI).

Let Γ(θ) denote an extensive form game associated with dynamic mecha-

nism Γ at state θ. Let σi : Θi → Mi be a strategy of player i. Let Σi denote

the set of strategies of player i and Σ = ×i∈IΣi denote the set of strategy
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profiles. A solution concept is a correspondence S : Θ ⇒ Σ as a mapping from

states to a subset of strategies. The outcome correspondence associated with

a solution S is a mapping OS from Θ to A× RI with the following property:

OS(θ)) =
{

(a, τ) ∈ A× RI |∃ m ∈ S(Γ(θ)) s.t. g (m) = (a, τ)
}

for each θ ∈ Θ.

We say that a mechanism Γ implements a social choice function f via

a solution concept S, if OS(θ)) = f(θ) for all θ ∈ Θ. Then, f is said to

be implementable via the solution S if there exists a mechanism Γ which

implements it via the solution S.

2.3.2 Mechanism

We shall construct a two stage finite dynamic mechanism and call it Γ∗.

The outcome

Let 1 = I + 1.

First Stage: Each player i announces a pair of types, his own and player

i− 1’s, that is

mi =
(
m0
i ,m

1
i

)
,

where m0
i ∈M0

i = Θi and m1
i ∈M1

i = Θi−1. We write m1 = (m1
i )i∈I .

If m0
i = m1

i+1, for all i ∈ I, then f (m1) is implemented. STOP. Otherwise,

we proceed to the Second Stage.
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Second Stage: Let i∗ = min1≤i≤I
{
i ∈ I|m0

i 6= m1
i+1

}
. Player i∗ announces

one of his types, that is,

m2
i∗ ∈M2

i∗ = Θi∗ ,

and xi∗ (m2
i∗) is implemented. STOP. Recall that xi∗ : Θi∗ → A is

constructed as in Lemma 1.

The transfer rule

The transfers are specified as follows:

• Player i∗ pays a penalty (I + 1− i∗)×D.

• If m1
i∗+1 = m2

i∗ then player i∗ + 1 gets a reward (I + 1− i∗)×D;

• if m1
i∗+1 6= m2

i∗ then player i∗ + 1 pays a penalty (I + 1− i∗)×D.

This two-stage mechanism is quite simple. In the first stage, each player i

announces a pair of types in the first stage, his own type and his predecessor’s

type (i − 1’s). For player i’s type, if i’s own announcement about his type is

the same as his successor (i+1)’s announcement about i (i.e., m0
i = m1

i+1), we

say this player’s announcement is consistent. If every player’s announcement

is consistent, then we implement f(m1).

Otherwise, we have a nonempty set of players whose announcements are

not consistent. We pick the smallest index of this set of players, denoted by
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i∗ who is the sole active player at the second stage and makes an additional

choice over the set of lotteries {xi∗(θi)}θi∈Θi . Then the lottery based on his

choice is implemented.

The transfers in this mechanism is specified in a straightforward way. First,

player i∗ is penalized by (I + 1− i∗)D because he is the smallest index which

exhibits an inconsistent announcement. Second, whether player i∗ + 1 is pe-

nalized or rewarded depends upon his announcement about i∗ (i.e., m1
i∗+1) and

player i∗’s second stage announcement (i.e., m2
i∗): if player i∗+1 made the same

announcement for i∗ as i∗’s second stage announcement (i.e., m1
i∗+1 = m2

i∗),

player i∗+1 will be rewarded by (I+1− i∗)D; if player i∗+1 made a different

announcement from i∗’s second stage announcement (i.e., m1
i∗+1 6= m2

i∗), player

i∗ + 1 will be penalized by (I + 1− i∗)D.

The size of the transfer is designed in a decreasing way with respect to the

index, while the priority of being player i∗ is given to the smaller index. This

construction will prevent players from triggering or not triggering the second

stage with the intention that he will be involved in the pair at the later stage.
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2.4 Complete information

2.4.1 Solution and implementation

A mechanism Γ together with a type profile θ defines a two-stage game denoted

by Γ (θ). The game proceeds as follows. At the initial history ∅, each player

chooses a message mi from his message space Mi (∅) = Θi × Θi−1, and we

write m for the message profile obtained at the first stage. Given any m,

there are two possibilities: (1) the game ends; (2) or the game proceeds to the

second stage, where there is a unique player “i∗”, who makes a choice out of

his message space, Mi∗ (m) = Θi∗ . Let M [i] denote the set of histories after

which player i is picked as the unique player “i∗”. We write m [i] ∈M [i] , and

Mi (m [i]) = Θi for all m [i] ∈M [i] .

Formally, each player’s strategy is a function

σi : {∅} ∪M [i]→Mi (∅) ∪
⋃

mi[i]∈M [i]

Mi (m [i])

where σi (∅) =
{
σii (∅) , σi−1

i (∅)
}
∈ Mi (∅) = Θi × Θi−1 and σi (m [i]) ∈

Mi (m [i]) = Θi. Given Γ (θ) , conditional on history h ∈ H, player i’s payoff

from a strategy profile σ is given by

vi (σ, θi|h) = ui (g(σ(θ);h), θi) + τi (σ(θ)) .

In particular, conditional on m [i] (a history where i’s the player i∗), player i’s

payoff from a strategy σi is given by
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vi (σi, θi|m [i]) = vi (σ, θi|m [i]) = ui
(
xi
(
σ2
i (m [i])

)
, θi
)

+ τi (m [i]) .

In order to analyze players’ reasoning at each point in the game, it is neces-

sary to adopt a model of conditional beliefs. Following Ben-Porath (1997) (see

also Battigalli and Siniscalchi, 1999), we adopt the following notion, originally

proposed by Renyi (1955).

Definition 2.1. Fix a measurable space (Ω,X ) and a countable collection

B ⊂ X . A conditional probability system, or CPS, is a map µ : X ×B → [0, 1]

such that:

1. For each B ∈ B, µ (·|B) ∈ ∆ (Ω) and µ (B|B) = 1.

2. If A ∈ Σ and B,C ∈ B with B ⊂ C, then µ (A|C) = µ (A|B) · µ (B|C) .

The set of CPSs on (Ω,Σ) with conditioning events B is denoted ∆B (Ω) .

Let B−i a collection of Σ−i and Ω = Σ−i. Due to the simplicity of the two

stage game, this is enough to characterize any conditional belief system.

Note that the unique active player after the first stage makes his choice

purely based on his own payoff type. Therefore, what kind of initial belief he

holds has nothing to do with his choice, as long as he knows his own payoff

type. This point is straightforward in the following definition. This will be

clear when we introduce the details of our mechanism.
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Definition 2.2. (Sequential Rationality) Fix a player i ∈ I, a CPS µ ∈

∆B−i (Σ−i) and a strategy σi ∈ Σi. Say that σi is a sequential best response to

µ iff, for all σ′i ∈ Σi, for all h ∈ H,

∑
σ−i

vi (σ, θi|h)µ [σ−i|Σ−i] ≥
∑
σ−i

vi ((σ
′
i, σ−i) , θi|h)µ [σ−i|Σ−i] .

We represent the definition of initial rationalizability given by Dekel and

Siniscalchi (2013). The epistemic foundation is rationality and initial common

belief of rationality, which is provided by Ben-Porath (1997) to study perfect

information games. The solution can be characterized via an iterative dele-

tion algorithm in Battigalli and Siniscalchi (1999) which deals with general

multistage games.

Definition 2.3. (Initial Rationalizability) Fix a multistage game Γ (θ) . For

every player i ∈ I, let R
Γ(θ)
i,0 = Σi. Inductively, for every integer k > 0, let

R
Γ(θ)
i,k be the set of strategies σi ∈ Σi that are sequential best replies to a CPS

µ ∈ ∆B−i (Σ−i) such that µ
(
R

Γ(θ)
−i,k−1|Σ−i

)
= 1. Finally, the set of initially

rationalizable strategies for i is R
Γ(θ)
i =

⋂∞
k=1R

Γ(θ)
i,k .

Definition 2.4. A social choice function f is implementable in initial ra-

tionalizable strategies if there exists a mechanism Γ such that, for all θ and

m ∈M , RΓ(θ) 6= ∅ and m ∈ RΓ(θ) ⇒ g (m) = f (θ) .
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2.4.2 Main result

Theorem 2.1. If I ≥ 2, any social choice function f is implementable in

initial rationalizable strategies.

We use the following claims to prove Theorem 2.1.

Claim 2.1. If σi ∈ RΓ(θ)
i,1 , then σi (m [i]) = θi.

Proof. From Lemma 2.1,

ui (xi (θi) , θi) + τi (m [i]) > ui (xi (θ
′
i) , θi) + τi (m [i]) ,

for any θ′i 6= θi.

As the game proceeds to the second stage, the outcome of the game purely

depends on player i∗’s choice. From the construction of the mechanism, the

transfers to (or from) player i∗ is regardless of his choice and the choice of

player i∗ is purely over his own payoff types. The Lemma 2.1 guarantees that

every player i will truthfully reveals his own payoff type whenever i = i∗.

Claim 2.2. If σ2 ∈ RΓ(θ)
2,2 , then σ1

2 (∅) = θ1.

Proof. If σ2 ∈ RΓ(θ)
2,2 , then µ2

((
R

Γ(θ)
j,1

)
j 6=2
|Σ−2

)
= 1, particularly,

µ1
2 (σ1 (m [1]) = θi|Σ−2) = 1

.(We write µji for i’s belief over Σj, µi for i’s belief over Σ−i.)

Consider the following two cases:
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Case 2.1 (σ1
1 (∅) = θ1). If σ1

2 (∅) 6= θ1, then the game proceeds to the second

stage and player 1 is the player i∗. From Claim 2.1, player 1 will announce

θ1 in the second stage. Since σ1
2 (∅) 6= σ1 (m [1]) , player 2 gets punished by

nD and the outcome is x1 (θ1) . If σ1
2 (∅) = θ1, the game will proceed in the

following possible ways: (1) Player 2 is the player i∗. Player 2 gets punished

by (I − 1)D and the outcome is x2 (θ2) . (2) Player 2 is not the player i∗ and

player 2 gets neither reward nor penalty and the outcome is in A.

In case (1), for player 2, consider {ID, x1 (θ1)} and {(I − 1)D, x2 (θ2)} ,

the potential gain from the different outcomes is bounded by the loss from the

different penalties by the construction of D. That is, player 2 gets strictly better

since the penalty is less. In case (2), it is straightforward that player 2 gets

strictly better since he avoids the penalty.

Case 2.2 (σ1
1 (∅) 6= θ1). If σ1

2 (∅) = θ1, the game proceeds to the second stage

and from Claim 2.1 player 2 gets rewarded by nD and the outcome is x1 (θ1) .

This is uniquely the best player 2 can expect in this game by the construction

of D. Obviously, any announcement of player 1’s type rather than θ1 delivers

a strictly worse payoff to player 2.

Therefore, for player 2, it is a strictly dominated strategy to announce

player 1’s type, θ1.

This completes the proof of Claim 2.
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Claim 2.3. If σ1 ∈ RΓ(θ)
1,3 , then σ1

1 (∅) = θ1.

Proof. If σ1 ∈ R
Γ(θ)
1,3 , then µ2

1 (σ1
2 (∅) = θ1|Σ−1) = 1. If σ1

1 (∅) 6= θ1, then the

game proceeds to the second stage and player 1 is the player i∗. Player 1 gets

punished by nD and the outcome is x1 (θ1) . If σ1
1 (∅) = θ1, the game will

proceed in the following possible ways: (1) Player I is the player i∗. The worst

situation for player 1 is that player 1 gets punished by D the outcome is xI (θI) .

This happens when I is the player i∗ and player 1 announces σI1 (∅) 6= θI ; (2)

Player I is not the player i∗. Thus player 1 gets neither reward nor penalty.

Clearly, in either case, player 1 gets strictly better if he announces θ1 rather

than any other type.

Claim 2.4. If σi+1 ∈ R
Γ(θ)
i+1,2(i−1), then σii+1 (∅) = θi; if σi ∈ R

Γ(θ)
i,2(i−1)+1, then

σii (∅) = θi.

Proof. We have established Claims 2.2 and 2.3. By induction, it suffices to

show if “If σi+1 ∈ R
Γ(θ)
i+1,2(i−1), then σii+1 (∅) = θi; if σi ∈ R

Γ(θ)
i,2(i−1)+1, then

σii (∅) = θi.” is true for all i ≤ j, then “If σj+2 ∈ RΓ(θ)
j+2,2j, then σj+1

j+2 (∅) = θj+1;

if σj+1 ∈ RΓ(θ)
j,2j+1, then σj+1

j+1 (∅) = θj+1.” is true.

First we show that if σj+2 ∈ RΓ(θ)
j+2,2j, then σj+1

j+2 (∅) = θj+1. If σj+2 ∈ RΓ(θ)
j+2,2j,

by the induction hypothesis, µj+2

(
σii+1 (∅) = σii (∅) = θi, ·|Σ−(j+2)

)
= 1 for all

i ≤ j.

Consider the following two case:
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Case 2.3 (σj+1
j+1 (∅) = θj+1). If σj+1

j+2 (∅) 6= θj+1, then the game proceeds to the

second stage and player j+1 is the player i∗. Since σj+1
j+2 (∅) 6= σj+1 (m [j + 1]) ,

player j + 2 gets punished by (I − j)D and the outcome is xj+1 (θj+1) . If

σj+1
j+2 (∅) = θj+1, the game will proceed in the following possible ways: (1)

Player j + 2 is the player i∗. Player j + 2 gets punished by (I − j − 1)D and

the outcome is xj+2 (θj+2) . (2) Player j + 2 is not the player i∗ and player

j + 2 gets neither reward nor penalty and the outcome is in A. In either case,

player j + 2 gets strictly better.

Case 2.4 (σj+1
j+1 (∅) 6= θj+1). If σ1

j+2 (∅) = θj+1, the game proceeds to the

second stage and from Claim 2.1 player j + 2 gets rewarded by (j + 1)D and

the outcome is xj+1 (θj+1) . This is the best player j+2 can expect in this game

by the construction of D.

Second we show if σj+1 ∈ RΓ(θ)
j,2j+1, then σj+1

j+1 (∅) = θj+1.

If σj+1 ∈ RΓ(θ)
j,2j+1, then µj+1

(
σii+1 (∅) = σii (∅) = θi, σ

j+1
j+2 (∅) = θj+1, ·|Σ−(j+1)

)
=

1. If σj+1
j+1 (∅) 6= θj+1, then the game proceeds to the second stage and player

j+ 1 is the player i∗. Player j+ 1 gets punished by (I − j)D and the outcome

is xj+1 (θj+1) . If σj+1
j+1 (∅) = θj+1, the game will proceed in a ways such that

player j + 1 will be neither i∗ nor i∗ + 1. In any possible outcome of A, play-

er j + 1 will get neither reward nor penalty. Therefore, player 1 gets strictly

better.
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This completes the proof of Claim 4.

Claim 2.5. If σ ∈ RΓ(θ), then σii (∅) = σii+1 (∅) = θi.

Proof. This follows directly from Claim 2.4.

As discussed in Section 2.2, one general criticism about subgame perfect

implementation is that many results rely on the heavy use of the power of

backwards inductions. Indeed, the mechanism employed here is immune to

this criticism. Although at this point, the size of transfers needed can be

large, we will show the transfers can be made arbitrarily small.

2.5 Almost complete information

2.5.1 Solution and implementation

Now we consider a situation where the designer (1) is willing to fully implement

in initial rationalizable strategies, and (2) wants to implement in a continuous

manner. More specifically, we require that, in any model that embeds the

initial model, initial rationalizable strategy exists and any initial rationalizable

strategy profile yields the desired outcome, not only at all types of the initial

model but also at all types “close” to initial types. We follow Oury and

Tercieux (2012) to define the notion of closeness in types, which formally

described by the product topology in the universal type space, captures the

restrictions on the modeler’s ability to observe the players’ (high order) beliefs.
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A model T is a pair (T, κ) , where T = T1 × T2 × · · · × TI is a countable

type space, and κ (ti) ∈ ∆ (Θ× T−i) denotes the associated belief for each

ti ∈ Ti. Let κ (ti) [E] denote the probability of any measurable set E ⊂ Θ ×

T−i given by κ (ti) . Let κΘ (ti) =margΘκ (ti) , κTj (ti) =margTj κ (ti) , and

κT−i (ti) =margT−iκ (ti) .

For two models T = (T, κ) and T ′ = (T ′, κ′), we will write T ⊃ T ′ if

T ⊃ T ′ and for every ti ∈ T ′i , we have κ (ti) [E] = κ′i (ti)
[
T ′−i ∩ E

]
for any

measurable E ⊂ T−i.

A planner aims to implement a social choice function that is a mapping

f : T → ∆ (A), where T = T1 × T2 × · · · × TI .

Given a model (T, κ) and any type ti in type space Ti, the first-order belief

of ti on Θ is computed as

h1
i (ti) = margΘκ (ti) .

Second-order belief of ti is his belief about (θ, h1
1 (t1) , ..., h1

I (tI)) , set as

h2
i (ti) [F ] = κ (ti)

[{
(θ, t−i) |

(
θ, h1

1 (t1) , ..., h1
I (tI)

)
∈ F

}]
,

where F ⊂ Θ×∆ (Θ)I is a measurable set. An entire hierarchy of beliefs can

be computed similarly. A type of a player i induces an infinite hierarchy of

beliefs
(
h1
i (ti) , h

2
i (ti) , ..., h

l
i (ti) , ...

)
. We denote by T ∗i the set of player i’s

hierarchies of beliefs in this space and write T ∗ =
∏

i∈I T
∗
i . T

∗
i is endowed with
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the product topology so that we say a sequence of types {ti [k]}∞k=0 converges

to a type ti, if, for every ` ∈ N, h`i(ti)[k] → h`i(ti) as k → ∞. We write

ti [k]→p ti for this class of convergent sequences.

A model T = (T, κ) is finite if each Ti is a finite set and suppκ (ti) is finite

for each ti ∈ Ti. In Section 2.4, we focused on the complete information

environment. In this situation, given a finite set of states of nature Θ, whenever

the true state is θ, it is assumed to be common belief among agents. To

incorporate this in our setting, we define the complete information finite model

T̄ = (T̄θ, κ̄) such that for each player i, for any t̄θ ∈ T̄θ, κ̄ (t̄i,θ) [(θ, t̄−i,θ)] = 1.

Now we are ready to define almost complete information formally. As play-

ers’ values are private, when we consider incomplete information, we sometimes

model the uncertainty from other players’ values while each player still knows

his own value. In the following lines, we consider a slightly more general in-

complete information environments around complete information. Specifically,

each player holds a small uncertainty about his own payoff types, that is, each

player almost knows his own payoff type. In addition, whether or not some

player knows other players’ type will not change his conjecture over his own

payoff type. We write κ (ti) [θi] =margΘiκ (ti) [θi] for the belief on his own

payoff type for player i with ti and κ (ti) [θi|t−i] =
(
margΘi×T−iκ (ti)

)
[θi|t−i]

for the belief conditional on some t−i. Formally, it is captured by the following
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definition.

Definition 2.5 (convergence in private values). Fix a model T . We say a

sequence of types {ti [k]}∞k=0 converges to a type ti in private values where

ti [k] ∈ Ti and ti ∈ Ti if, for any t−i ∈ T−i, such that κ (ti [k]) [t−i] > 0,

κ (ti [k]) [θi|t−i]→ κ (ti) [θi] as k →∞

We write ti [k]→pp ti for the class of convergent sequences which converge both

in product topology and in private values.

Now let us take a close look at the comparison between the perturbed

informations structure we defined and the one used in Theorems 1 and 2 from

AFHKT (2012). They define a small perturbation of the information structure

of the following form: each player i = 1, 2 receives a signal sk,li where k and

l are both integers in {1, ..., n} ; the set of signals of player i is denoted by

Si. We assume the prior joint probability distribution νε over the product of

signal pairs and state of nature is such that, for each (k, l) :

νε
(
sk,l1 , s

k,l
2 , θ

k
1 , θ

l
2

)
= µ

(
θk1 , θ

l
2

) [
1− ε− ε2

]
νε
(
sk,l11 , sk2,l

2 , θk1 , θ
l
2

)
= µ

(
θk1 , θ

l
2

) ε

n2 − 1
for (k2, l1) 6= (k, l)

νε
(
sk1,l1

1 , sk2,l2
2 , θk1 , θ

l
2

)
= µ

(
θk1 , θ

l
2

) ε2

n4 − n2
for k1 6= k or l2 6= l,

where µ is a complete information prior over states of nature and signal pairs

(i.e., a prior satisfying µ(sk1,l1
1 , sk2,l2

2 , θk1 , θ
l
2) = 0 whenever (ki, li) 6= (k, l) for
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some player i). In these expressions, we abuse notation and write µ
(
θk1 , θ

l
2

)
for the margΘµ

(
θk1 , θ

l
2

)
. This corresponds to an information perturbation with

the property that each player i’s signal is much more informative about his

own preferences than about the preferences of other player.

Let P denote the set of priors over Θ × S with the following metric d :

P × P → R+ :for any µ, µ′ ∈ P ,

d (µ, µ′) = max
(θ,s)∈Θ×S

|µ (θ, s)− µ′ (θ, s)| .

Obviously the perturbation νε → µ, as d (νε, µ)→ 0 as ε→ 0.

Aghion et al. (2012) model the incomplete information using a standard

type space. That is, there is an ex ante stage during which each player ob-

serves a private signal about the payoffs, and the joint distribution of signals

and payoffs is commonly known. Instead, we focus on the alternative class of

situations, genuine situations of incomplete information. There is no ex ante

stage; each player begins with some first order beliefs, some second-order be-

liefs and so on. This method is introduced by Harsanyi (1967) and developed

in Mertens and Zamir (1985). We follow the interim approach due to Wein-

stein and Yildiz (2007) and define the “nearby” types. This notion formally

described by the product topology in the universal type space.

The relation between our model and the structure in AFHKT (2012) is

summarized as follows. First, instead of assuming the joint distribution of
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signals and payoffs are common knowledge, we start with interim beliefs of

each player and also capture the restrictions on the modeler’s ability to observe

the players’ beliefs. Second, AFHKT (2012) fix a finite type space, where

the signal is a one-to-one mapping into the payoff types; while we model

the nearby types with belief hierarchy which allows for infinite types close

to the benchmark types. Third, both AFHKT (2012) and our model explore

the private values environment and naturally assume that players’ signals are

much more informative over their own payoff types than others’ payoff types.

We define initial rationalizability in a general model as follows. We model

player i’s uncertain over the states (payoff type profiles), other players’ types

and other players’ strategies, denoted by Ω = Θ×T−i×Σ−i. Let B−i a collection

of subsets of Σ−i conditional on which player i forms a belief over Ω. We say

that µ is consistent if
∑

σ−i
µ (ti) [θ, t−i, σ−i|Σ−i] = κ (ti) [θ, t−i] for any θ and t.

Note that throughout this paper, players’ values are private, that is Θ = ×iΘi

and each player i’s utility function is given as ui : ∆(A)×Θi → R. We write

µ [θi] =margΘiµ [θi] and in case player i knows other players types t−i, we write

µ [θi|t−i] for the conditional belief. The following definition is specifically given

under the game U (Γ, T ) .

When a strategy σi is used, player i’s type is ti, player i’s payoff type is θi,

player i holds CPS µ, and history h is realized, the expected payoff of player
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i is given as follows:

Vi(σi, ti, µ|h) =
∑
θ,t−i

∑
σ−i

{ui(g((σi(ti), σ−i(t−i));h), θi)+τi(σ(t))}µ [(θ, t−i, σ−i)|Σ−i(h)] .

Definition 2.6 (Sequential Rationality). Fix a player i ∈ I, ti ∈ Ti, a CPS

µ ∈ ∆B−i (Ω) and a strategy σi ∈ Σi. Say that σi is a sequential best response

to µ iff, for all σ′i ∈ Σi, for all h ∈ H,

Vi(σi, ti, µ|h) ≥ Vi(σ
′
i, ti, µ|h).

We know that for any active player in the second stage, his payoff is only

based on his own strategy and his own payoff type. Therefore, the requirement

is regardless of other players’ payoff types, types or strategies when player i

knows his payoff type. We can decompose the definition of sequential ratio-

nality into two parts.

Definition 2.7. Define

Σ∗i (ti) =
{
σi ∈ argmaxσ′i∈Σi

Vi(σ
′
i, ti, µ

′| m[i]), for any m [i] , for any µ′ ∈ ∆B−i (Ω)
}
.

Fix a player i ∈ I, ti ∈ Ti, a CPS µ ∈ ∆
(
Θ× T−i × Σ∗−i (T−i)

)
and a

strategy σi ∈ Σ∗i (ti) . Say that σi is a sequential best response to µ iff, for

all σ′i ∈ Σi

Vi(σi, ti, µ|∅) ≥ Vi(σ
′
i, ti, µ|∅).
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Therefore, the sequential best reply property coincides with the best reply

property in static games. The initial rationalizability collapses to interim

correlated rationalizability after we refine the strategy profiles according to

the sequential rationality in the second stage.

Definition 2.8 (Initial Rationalizability). Fix a multistage game form Γ. For

every player i ∈ I, let R0
i (ti|Γ, T ) = Σ∗i (ti) . Inductively, for every integer

k > 0, let

Rk
i (ti|Γ, T ) =

σi ∈ Σi :

there exists µ ∈ ∆
(
Θ× T−i × Σ∗−i (T−i)

)
such that

(1) µ [(θ, t−i, σ−i)] > 0⇒ σ−i ∈ Rk−1
−i (t−i|Γ, T )

(2) σi ∈ arg maxVi (σ
′
i, ti, µ|∅)

(3)
∑

σ−i
µ (ti) [θ, t−i, σ−i|Σ−i] = κ (ti) [θ, t−i]


and Ri (ti|Γ, T ) =

⋂∞
k=1R

k
i (ti|Γ, T ) .

Definition 2.9. A social choice function f is implementable in initial

rationalizable strategies if there exists a mechanism Γ such that, for all

t ∈ T and m ∈M , R (t|Γ, T ) 6= ∅ and m ∈ R (t|Γ, T )⇒ g (m) = f (t) .

Note that in complete information, the conjecture µ of player i of type ti,θ

is degenerate with respect to (θ, t−i) . The definitions above are the same as

defined in Section 2.4. Now we give the formal definition of robust implemen-

tation.

Definition 2.10. A social choice function f is robustly implementable if

there exists a finite mechanism Γ = (M, g) such that (i) for all t, R (t|Γ, T ) 6=
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∅; (ii) for any t̄ ∈ T̄ and any sequence t[k]→pp t̄, whenever t[k] ∈ T for each

k, we have g
(
mk
)
→ f(t̄), for any mk ∈ R (t [k] |Γ, T ) .

As discussed above, the perturbation in AFHKT (2012) is a special case

of nearby environment defined by the universal type space. In contrast to the

negative result AFHKT (2012) got using the MR mechanism, our mechanism

achieves robust implementation under the same perturbation. This is because

we take advantage of the simultaneous move in the two-stage game and make

full use of stochastic mechanisms.

2.5.2 Main result

Theorem 2.2. Suppose I ≥ 2, then any social choice function is robustly

implementable.

We use the following claim to prove Theorem 2.2.

Claim 2.6. For any t̄ ∈ T̄ and any sequence t[k]→pp t̄, whenever t[k] ∈ T for

k large enough, we have Σ∗i (ti (k)) = Σ∗i (t̄i) .

Proof. By convergence in private values, we know that, for any t̄i,θ ∈ T̄θ and

any sequence t[k]→pp t̄θ,

κ (ti [k]) [θi|t−i]→ κ (t̄i,θ) [θi] as k →∞ for any t−i.
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Recall the definitions of Σ∗(ti) and Vi(σ
′
i, ti, µ|m[i]):

Σ∗i (ti) =
{
σi ∈ argmaxVi(σ

′

i, ti, µ|m[i]) for any m [i]
}

Vi(σi, ti, µ|m[i]) =
∑
θ,t−i

∑
σ−i

{ui(g((σi(ti), σ−i(t−i));m[i]), θi) + τi(m[i])}µ [(θ, t−i, σ−i)|Σ−i(m[i])]

Σ∗i (ti) is the best response set of player i of type ti, which only depends up-

on what player i believes as his own payoff type. Hence, for each σi ∈ Σ∗i ,

Vi(σi, ti, µ|m[i]) can be rearranged as follows:

Vi(σi, ti, µ|m[i]) =
∑
t−i

∑
θi

ui
(
xi(σ

2
i (ti)), θi

)
µ [θi|t−i]

∑
σ−i

µ [t−i|σ−i]µ [σ−i|Σ−i (m [i])]+τi(m[i])

for any m [i] .

Note that no matter what other players’ types t−i are, we obtain

κ (ti [k]) [θi|t−i]→ κ (ti,θ) [θi] = 1 as k →∞.

This implies that for any t−i,

µ (ti [k]) [θi|t−i]→ 1 as k →∞.

From Lemma 2.1, we have that for all θi, θ
′
i ∈ Θi with θi 6= θ

′
i,

ui (xi (θi) , θi) > ui (xi (θ
′
i) , θi) .

Fix any such θi, θ
′
i. Then, there exists some k̄ such that for any k ≥ k̄,

∑
θ,t−i

∑
σ−i

ui (xi (θi) , θi)µ (ti [k])µ[t−i|σ−i]µ[σ−i|Σ−i(m[i])] [θi|t−i]

>
∑
θ,t−i

∑
σ−i

ui (xi (θ
′
i) , θi)µ (ti [k]) [θi|t−i]µ[t−i|σ−i]µ[σ−i|Σ−i(m[i])].
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That is, Σ∗i (ti (k)) = Σ∗i (t̄i) .

We then recall the following well known lemma.

Lemma 2.2. (Dekel, Fudenberg, and Morris (2006)) Fix any model T =

(T, θ, π) such that T̄ ⊂ T , and any finite mechanism Γ. (i) For any t̄ ∈ T̄ and

any sequence {t [k]}∞k=0 in T, if t [n] →p t̄, then, for k large enough, we have

R (t [k] |Γ, T ) ⊂ R (t̄ [k] |Γ, T ) . (ii) For any type t ∈ T, R (t|Γ, T ) is nonempty.

This lemma completes the proof with Claim 2.6.

2.6 Application

There are two players. We follow Maskin and Tirole (1999) to assume players

are risk averse, and follow their assumptions:

(a) for all θ ∈ Θ functions take the form

uθi (a, ti) = Ui (ui (a, θ) + ti) for i = 1, 2,

where Ui : R→ R is increasing and strictly concave;

(b) individual players’ transfers are denoted by

T = {(t1, t2) |t1 + t2 = 0} .

Contrast to Maskin and Tirole (1999), we drop the assumption that there is no

bound on the magnitude of the transfers. Instead, we will show that our result
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extends to the environment with restricted transfers T = {(t1, t2) |t1 + t2 = 0, and |ti| < τ̄}

for any τ̄ > 0. We use (Γ, τ̄) to denote a mechanism with transfers bounded

by τ̄ .

The renegotiation process can be expressed as a function: h : A×Θ→ Ã,

where Ã = A × R2 is the set of outcomes (alternatives A and transfers R2).

We write h (a, θ) for the equilibrium renegotiated outcome, starting from the

mechanism-prescribed outcome (a, t1, t2) in state θ. That is, we adopt the

assumption in Maskin and Tirole (1999) that renegotiation is independent of

(t1, t2) for expositional convenience. Given any (a, t1, t2) , any θ,

h (a, θ) =
(
aθ, t1 + ∆tθ1 (a) , t2 + ∆tθ2 (a)

)
,

where ∆tθi (a) is the renegotiation-transfer and ∆tθ1 (a) + ∆tθ2 (a) = 0. Let

uθi (h (a, θ)) = Ui
(
ui
(
aθ, θ

)
+ t1 + ∆tθ1 (a)

)
.

Remark 2.1. Note that when we say the transfer is arbitrarily small in our

mechanism, the transfer is specified by the mechanism. It is natural that the

renegotiation-transfer can be arbitrary subject to players’ wealth constraint. In

addition, if Γ implements f subject to renegotiation, the renegotiation-transfer

can be large. For example, if f (θ) is inefficient in φ and h (f (θ) , φ) =(
f (θ)φ ,∆tφ1 (f (θ)) ,∆tφ2 (f (θ))

)
, then it is possible that the maginitude of

∆tφi (f (θ)) is large for some player i.
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We follow Maskin and Moore (1999) to restate the assumptions about

h (·, ·) as follows.

Assumption A1 (Renegotiation is predictable). h (·, ·) is a function that is

common knowledge to the individuals.

Assumption A2 (Renegotiation is efficient). h (a, θ) is Pareto optimal for

all (a, t1, t2) ∈ Ã and θ ∈ Θ (that is, there does not exist (a′, t′) ∈ Ã such

that uθi (a′, t′i) ≥ uθi (h (a, θ)) for all i, with strict preference for some i).

Assumption A3 (Renegotiation is individually rational). For all (a, t1, t2) ∈

Ã and θ ∈ Θ, and all i, uθi (h (a, θ)) ≥ uθi (a, ti) .

Given a social choice function f and a renegotiation function h, we say

that f is implementable in SPE with renegotiation function h if there exists

a mechanism Γ such that f (θ) = h ◦ g
(
mθ
)
, where mθ is a subgame perfect

equilibrium in Γθ subject to renegotiation function h for any θ ∈ Θ.

For simplicity, we assume states are describle and show how our mechanism

works subject to renegotiation. By Maskin and Tirole (1999), indescribility

does not constrains the set of implementable social choice rules. It follows

immediately that if f is implementable subject to renegotiation, f (θ) must be

Pareto efficient in state θ for any θ.
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We adopt a modified version of individual players’ preference assumption

in the renegotiation environment.

For any state θ, player 1 has a preference ordering over the set of outcomes

{h (ã, θ)}ã∈Ã. We assume that under any two distinct state θ and θ′, player i

has two different preference orderings over the outcome set after renegotiation

and there is no total indifference over the outcomes under any θ. Formally, we

have the following assumption.

Assumption

(i) For any θ, θ′ ∈ Θ, uθi (h (·, θ)) is not a positive affine transformation of

uθ
′
i (h (·, θ′)) ;

(ii) For any θ, uθi (h (·, θ)) is not a constant function on A.

We abuse notation to use h (x, θ) to denote the lottery after renegotiation,

that is, with probability x [a] the outcome h (a, θ) is the one after renegotiation.

Thus, uθi (h (x, θ)) denotes player i’s expected utility from x subject to rene-

gotiation function h. Now we obtain an important lemma in the environment

allowing renegotiation. We consider Lemma 2.3 in renegotiation environment

as a counter part of Lemma 2.1.

Lemma 2.3. For any state θ, we construct a lottery xθ ∈ ∆ (A), such that

uθ1
(
h
(
xθ, θ

))
> uθ1

(
h
(
xθ
′
, θ
))

,
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for any θ′ 6= θ.

Remark 2.2. Maskin and Tirole (1999) assume that the efficient outcome in

any state is unique and adopt an implicit assumption that for any distinct pair

{θ, θ′} there exist a pair of outcomes {a, a′} ⊂ A such that ∆tθ1 (a) > ∆tθ1 (a′)

and ∆tθ
′

1 (a) < ∆tθ
′

1 (a′) .

Theorem 2.3. Assume that utility functions take the form ũθi (a, ti) = Ui
(
uθi (a) + ti

)
for i = 1, 2 with Ui increasing and strictly concave, and that f is Pareto-

optimal. Then for any τ̄ > 0, f is implementable in subgame perfect equilibri-

um by a mechanism (Γ, τ̄) subject to renegotiation.

2.6.1 Mechanism

The allocation

First Stage : Each player i announces K + 1 times the possible state, mi =(
m0
i ,m

1
i ...,m

K
i

)
, where mk

i ∈ Θ, for all k ∈ {0, 1, ..., K} . If m0
1 = m0

2,

then

l =
1

K

K∑
k=1

f̃
(
mk
)

(before renegotiation) is implemented. Otherwise, we proceed to the Sec-

ond Stage.

Second Stage : Player 1 announces mK+1
1 ∈ Θ, and

l
(
ε,mK+1

1

)
=

1− ε
K

K∑
k=1

f̃
(
mk
)

+ εx
mK+1

1
1
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(before renegotiation) is implemented.

2.6.2 The transfer

Let γ, ξ and η be positive numbers.

Second Stage

(i) Player 1 pays γ to player 2;

(ii) If mK+1
1 = m0

2, then there is no extra transfer;

If mK+1
1 6= m0

2 (let θ̂ ≡ m0
1 for simplicity of notation), then Q > 0 > L

are chosen so that for any θ′, θ

|1
2
U1

(
h
(
xθ
′

1 , θ
)
− γ +Q

)
+

1

2
U1

(
h
(
xθ
′

1 , θ
)
− γ + L

)
−U1

(
h
(
xθ
′

1 , θ
)
− γ
)
|

<
δ

2
;

and

1

2
U2

(
h
(
l
(
ε, θ̂
)
, θ̂
)
−Q+ γ

)
+

1

2
U2

(
h
(
l
(
ε, θ̂
)
, θ̂
)
− L+ γ

)
< U2

(
h
(
l, θ̂
)
− γ
)

; (2.1)

max {Q, |L|} < τ.

Remark 2.3. The “closeness” between l and l
(
ε,mK+1

1

)
guarantees that we

can choose Q and L to get the second inequality.
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First Stage

Player i is to pay player j 6= i:

1. • ξ if he is the first player whose kth announcement (k ≥ 1) differs

from his own 0th announcement (All players who are the first to

deviate are fined).

di
(
m0, ...,mK

)
=


ξ if there exists k ∈ {1, ..., K} s.t. mk

i 6= m0
i ,

and mk′
j = m0

j for all k′ ∈ {1, ..., k − 1} for all j;
0 otherwise.

(2.2)

• η if his kth announcement (k ≥ 1) differs from his own 0th an-

nouncement.

dki
(
m0
i ,m

k
i

)
=

{
η if mk

i 6= m0
i ;

0 otherwise.
(2.3)

Let

B = max
ã,ã′∈AΓ,θ∈Θ,i∈I

|Ui (h (ã, θ))− Ui (h (ã′, θ))| ,

where ÃΓ is the set of outcomes specified by the mechanism. For

any τ > 0, we can choose γ, ξ, and η such that
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τ > γ + ξ +Kη(
1− 1

K

)
{Ui (h (ã, θ))− Ui (h (ã, θ)− ξ)} >

1

K
B

η > 0

γ − ξ −Kη > 0 (2.4)

(1− ε) {Ui (h (ã, θ) + γ − ξ −Kη)− Ui (h (ã, θ))} > εB. (2.5)

Suppose the true state is θ.

Claim 2.7. At second stage, it is sequential rational for player 1 to choose

mK+1
1 = θ.

Proof. SupposemK+1
1 = θ′ 6= θ. Let m̄1 be such that m̄q

1 = mq
1 for all q 6= K+1,

and m̄K+1
1 = θ. For any h 6= ∅,

U1 (g (m̄1,m2) |h)− U1 (g (m1,m2) |h)

> ε

{ {
U1

(
h
(
xθ1, θ

)
− γ
)
− δ

2

}
−{

U1

(
h
(
xθ
′

1 , θ
)
− γ
)

+ δ
2

} }
> 0

Since m̄1 and m1 differs only at the second stage, the utility difference is

from the “ε′′ lottery and whether player 1 gets paid by the (Q,L) lottery.

We can only focus on this difference. The first inequality is from the fact

that U1

(
h
(
xθ1, θ

)
− γ
)
− δ

2
is the minimum payoff from playing m̄1, while
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U1

(
h
(
xθ1, θ

)
− γ
)

+ δ
2

is maximum payoff from playing m1; the last inequality

follows from Lemma 2.3. Therefore, it is sequential rational for player 1 to

choose mK+1
1 = θ.

Claim 2.8. If m is a SPE of Γθ, then m0
2 = θ.

Proof. We prove Claim 2.8 in the following two cases: (i) m0
1 = θ; (ii) m0

1 6= θ.

In case (i), suppose m0
2 6= θ, then the game proceeds to the second stage.

From Claim 2.7, player 1 will announce θ in the second stage. Since m0
2 6= θ,

player 2 will pay the lottery (Q,L) to player 1. In terms of the transfers in the

first stage, the possible gain from choosing m0
2 rather than θ is bounded above

by ξ+Kη. In total, the possible payoff for player 2 from m0
2 is bounded above

by

U2 (h (l, θ)− γ + ξ +Kη)

by (2.1), where l = 1
K

∑K
k=1 f̃

(
mk
)
. Let m̄2 be such that m̄q

2 = mq
2 for all

q 6= 0, and m̄0
2 = θ. The payoff from choosing m̄2 is

U2 (h (l, θ)) .

By (2.4), player 2 is worse off from choosing m0
2 6= θ rather than m̄2.

In case (ii), if m0
2 = θ, then the game proceeds to the second stage. From

Claim 2.7, player 1 will announce θ in the second stage. From the transfer

rule, player 2 gets paid γ. The possible loss is from “ε′′ lottery by triggering
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the second stage. The possible loss from choosing m0
2 = θ is bounded above

by ξ+Kη. Let m̄2 be such that m̄q
2 = mq

2 for all q 6= 0, and m̄0
2 = m0

1. In total,

the least possible payoff difference for player 2 from m0
2 rather than choosing

m̄0
2 is bounded below by

U2 (h (l (ε, θ) , θ) + γ − ξ −Kη)− U2 (h (l, θ))

≥ (1− ε) {U2 (h (l, θ)) + γ − ξ −Kη)− U2 (h (l, θ))}

+ε
{
U2

(
h
(
xθ1, θ

)
+ γ − ξ −Kη

)
− U2 (h (l, θ) , θ)

}
> (1− ε) {U2 (h (l, θ)) + γ − ξ −Kη)− U2 (h (l, θ))}

> 0

Therefore, player 2 is better off from choosing m0
2 = θ rather than telling a

lie. It is easy to check player 2 will get worse off if he chooses m0
2 6= m0

1, where

m0
2 6= θ.

Claim 2.9. If m is a SPE of Γθ, then m0
1 = θ.

Proof. From Claim 2.7 and Claim 2.8, if m0
1 6= θ, then the second stage is

triggered and player 1 pays γ to player 2. The minimum loss is γ, while the

possible gain is from “ε′′ lottery and the transfers in the first stage. Let m̄1

be such that m̄q
1 = mq

1 for all q 6= 0, and m̄0
1 = θ. In total, the least possible

payoff difference for player 1 from m0
1 6= θ rather than choosing θ is bounded
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above by

U1 (h (l (ε, θ) , θ)− γ + ξ +Kη)− U1 (h (l, θ))

≤ (1− ε) {U1 (h (l, θ)− γ + ξ +Kη)− U1 (h (l, θ))}

+ε
{
U1

(
h
(
xθ1, θ

)
− γ + ξ +Kη

)
− U1 (h (l, θ))

}
< 0

Therefore, player 1 is worse off from choosing m0
2 6= θ rather than telling the

truth.

Claim 2.10. If m is a SPE of Γθ, then mk
i = θ, for any i, any k ≥ 0.

Proof. We prove Claim 2.10 inductively. We have established that if m is a

SPE of Γθ, then m0
i = θ. Suppose m0

i = ... = mk−1
i = θ for all i. We show that

mk
i = θ for all i. Suppose not, let m̄i be the message such that m̄q

i = mq
i for

all q 6= k, and m̄k
i = θ. Suppose mk

j 6= θ for j 6= i. Then minimum loss from

playing mi is ξ+η by the transfer rule. In terms of allocation, the possible gain

from playing mi is 1
K
B. By (2.4), player i is worse off from playing mi rather

than m̄i. Suppose mk
j = θ for j 6= i. Then the minimum loss from playing

mi is η. In terms of allocation, player i cannot get better by the truthful

implementability of f. Therefore, player i is worse off from playing mi rather

than m̄i. This completes the proof.
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The existing literature is concerned about the renegotiation problem. Maskin

and Tirole (1999) introduce a stochastic transfer from the seller to the buyer.

If the buyer is risk-averse, then this fine can be designed so that it hurts both

the seller and the buyer. However, if parties are close to risk-neutral, the s-

tochastic fine that is required needs to have a very large variance, which is not

very credible as it will violate the wealth constraints. Thus the applicability

of the irrelevance theorem is doubtful in this case. Our mechanism adopts the

idea of Abreu and Matsushima (1992) to break up the large payments into

arbitrarily small scale. Therefore, this permissive mechanism is immune to

renegotiation with arbitrarily small cost.

2.7 Discussion

We first provide a way to achieve budget balance when there are at least three

players. We conclude with a comparison between dynamic mechanisms and

static ones.

2.7.1 Budget balance

When there are at least three players, the transfers specified at the last stage

can be made between the pair of players (i∗, i∗+1) and the other players. This

mild modification does not change the incentive of any players. Moreover, all

the arguments above still hold. Therefore we can achieve budget balance
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everywhere (both on and off the solution outcome).

2.7.2 Dynamic vs static mechanisms

Robustness of the implementation problem is studied by researchers recently.

The pioneering work of Chung and Ely (2003) shows that when players’ values

are interdependent if we adopt undominated Nash equilibrium as the solution

concept, then Maskin monontonicity is a necessary condition for robust im-

plementation. When players’ values are private, Chen et al. (2014) show that

any incentive compatible social choice function is robustly implementable if

we use the solution S∞W, which is obtained by deletion of weakly dominated

strategies followed by iterative deletion of strictly dominated strategies. Con-

sider dynamic mechanisms. Aghion et al. (2012) show that when players’

values are interdependent if we adopt subgame-perfect equilibrium as the so-

lution concept, then Maskin monontonicity is also a necessary condition for

robust implementation. This paper shows that if players’ values are private,

any social choice function is robustly implementable.
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Chapter 3

Implementation with Transfers

3.1 Introduction

The theory of implementation and mechanism design is mainly concerned with

the following question: what is the set of outcomes that can be achieved by

institutions (or mechanisms)? This institutional design problem is particular-

ly relevant when a group of individuals with conflicting interests has to make

a collective decision. The key question then becomes: when can individual-

s, acting in their own self-interest, arrive at the outcomes consistent with a

given welfare criterion (or social choice rule)? To characterize the set of Pare-

to efficient allocations, for instance, we must know the preferences of those

individuals, which is dispersed among the individuals involved. If Pareto ef-

ficiency is guaranteed, we must elicit this information from the individuals.

In what follows, an individual’s private information relevant to implementing

some welfare criterion is referred to as the individual’s type. Obviously, the
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difficulty of eliciting types lies in the fact that individuals need not tell the

truth.

For this elicitation, we start our discussion from the notion of partial im-

plementation. We say that a social choice rule is partially implementable if

there exists (i) a mechanism, and (ii) an equilibrium whose outcome coin-

cides with that specified by the rule. To understand the class of partially

implementable rules, we often appeal to the revelation principle, which says

that whenever partial implementation is possible, one can always duplicate

the same equilibrium outcome by using the truthful equilibrium in the direct

revelation mechanism. Thus, a necessary condition for the implementation of

any welfare criterion is its incentive compatibility, which is simply the proper-

ty such that the best thing for each individual to do in the direct revelation

mechanism is to report his true type as long as all other individuals truth-

fully announce their types. This fundamental insight allows us to transform

any implementation problem into the planner’s problem of maximizing a given

social welfare, subject to incentive compatibility-constraints. This is the stan-

dard constrained-optimization problem. Due to its tractability, this approach

turns out to be powerful enough to produce many applications–in auctions,

bargaining, organizational economics, monetary economics, and many others

domains.
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Although the revelation principle can be adopted in many applications,

it is important to realize that the direct revelation mechanism may possess

other untruthful equilibria whose outcomes are not consistent with the wel-

fare criterion. This problem of multiple equilibria is not merely hypothetical;

rather, it has been found by researchers in numerous contexts to be a severe

problem, as demonstrated by Bassetto and Phelan (2008) in optimal income

taxation, Demski and Sappington (1984) in incentive contracts, Postlewaite

and Schmeidler (1986) and Palfrey and Srivastava (1987) in Bayesian imple-

mentation in exchange economies, and Repullo (1985) in dominant-strategy

equilibrium implementation in social choice environments. In order to take

seriously the problems resulting from the multiplicity of equilibria, some re-

searchers have turned to the question of full implementation, and explored the

conditions under which the set of equilibrium outcomes coincides with a given

welfare criterion. The literature of full implementation proposes a variety of

mechanisms with the additional property that undesirable outcomes do not

arise as equilibria. These proposed mechanisms originally looked promising as

a way to fix the direct revelation mechanism. However, many of these mech-

anisms share one serious drawback: undesirable equilibria are eliminated by

triggering the “integer games” in which each player announces an integer and

the player who announces the highest integer gets to be a dictator. For exam-
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ple, Palfrey and Srivastava (1989) establish a very permissive implementation

result in private-value environments: any incentive compatible social rule can

be fully implementable in undominated Bayes Nash equilibrium. However,

their mechanism also employ the integer games. Many researchers consider

the integer game or any variant of it as an unrealistic device, presumably re-

lying on the argument that the truthful equilibrium is cognitively simple and

can be a strong focal point among the individuals involved; those researchers

confine themselves to characterizing incentive-compatible rules. Thus, there

is a clear divide between those who are content with partial implementation

and those who work on full implementation; moreover, there is unfortunately

little interaction between them.

The main objective of this paper is to build a bridge between partial and

full implementation. Before going into the detail of our results, we shall s-

tart by articulating the domain of problems to which our results apply. First,

we consider environments in which monetary transfers among the players are

available and all players have quasilinear utilities. We focus on this class of

environments because most of the settings in the applications of mechanism

design are in economies with money. Second, we employ the stochastic mech-

anisms in which lotteries are explicitly used. Therefore, we assume that each

player has von Neumann-Morgenstern expected utility. Third, we focus on
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private-value environments. That is, each player’s utility depends only upon

his own payoff type (but not the other players’ payoff types) as well as upon

the lottery chosen and his monetary payment (or subsidy). Fourth, we assume

that no players use weakly dominated actions in the game. An action ai is

weakly dominated by another action a′i if, no matter how other players play

the game, a′i cannot be worse than ai and sometimes it can be strictly better.

We consider eliminating weakly dominated actions as a minor qualification on

the players’ strategic behavior because most refinements of Nash equilibrium

do not involve weakly dominated actions. Finally, we adopt an approximate

version of full implementation, which aims at achieving the socially optimal

outcome together with some small ex post transfers. We say that a social

choice rule is implementable with arbitrarily small transfers if one can design a

mechanism whose set of equilibrium outcomes coincides with that specified by

the rule, which allows for arbitrarily small ex post transfers among the players.

Given the preparation we have made thus far, we are ready to state our

main result: a social choice rule is implementable with arbitrarily small trans-

fers if and only if it is incentive compatible (Theorem 2). This is quite consis-

tent with the idea of partial implementation because if the planner is content

with small ex post transfers, the only constraint for full implementation is

incentive compatibility. However, the mechanism we employ here is not the
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direct revelation mechanism. Rather, our mechanism is based on the mech-

anism in Abreu and Matsushima (1994), but we extend it to an incomplete-

information environment. We must also stress that our mechanism is finite

and uses no devices like integer games. Recall that Palfrey and Srivastava

(1989) use the integer games to show a similar permissive result. Although

our mechanism, unlike Palfrey and Srivastava (1989), exploits the power of ex

post transfers, we can make these transfers arbitrarily small. Since small ex

post transfers result in only an arbitrarily small cost for full implementation,

we believe that all individuals would be willing to accept this small cost as

a negligible entry fee to participate in the mechanism. We will show that all

these features of our mechanism are valuable ones, which remove it from the

scope of the criticisms usually made of full implementation.

Oury and Tercieux (2012) recently shed light on the connection between

partial and full implementation. They consider the following situation: The

planner wants not only one equilibrium of his mechanism to yield a desired

outcome in his initial model (i.e., partial implementation) but it to continue

to do so in all models “close” to his initial model. This is what they call con-

tinuous (partial) implementation. Oury and Tercieux show that when sending

messages in the mechanism is slightly costly, Bayesian monotonicity, which

is a necessary condition for full implementation, becomes necessary for con-
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tinuous implementation. Hence, continuous implementation can be a strong

argument for full implementation.

Like Oury and Tercieux (2012), we also show that our mechanism achieves

continuous implementation as long as the planner can allow for small ex post

transfers (Theorems 5 and 6). Recall that we assume that no players use

weakly dominated actions. In fact, this weak dominance will be highly sensitive

to payoff perturbations induced by the cost of sending messages. It is for this

reason that our continuous implementation result does not follow from Oury

and Tercieux (2012).

While the use of small ex post transfers strikes us as being innocuous, it

would still be interesting to know when we can avoid any ex post transfers “on

the equilibrium.” If there is no ex post transfers “on the equilibrium”, a social

choice rule is said to be implementable with no transfers. We propose two class-

es of environments in which we can achieve implementation with no transfers.

The first class of environments is the case of nonexclusive-information (NEI)

structures (Theorem 3). NEI captures the situation in which any unilateral

deception from the truth-telling in the direct revelation mechanism can be

detected. Furthermore, since complete-information environments can be con-

sidered a special case of NEI, our Theorem 3 can be considered an extension

of the result of Abreu and Matsushima (1994) to incomplete-information envi-
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ronments. The second class of environments is the case in which there are no

consumption externalities among the players and each player only cares about

his own consumption (Theorem 4). We can think of exchange economies as an

example of this situation. In this environment, however, we need to strengthen

incentive compatibility.

If the planner wants all equilibria of his mechanism yield a desired out-

come, and entertains the possibility that players may have even the slightest

uncertainty about payoffs, then the planner should insist on a solution concept

with a closed graph. Chung and Ely (2003) add this closed-graph property to

full implementation in undominated Nash equilibrium (i.e., Nash equilibrium

where no players use weakly dominated actions) and call the corresponding

concept “UNE-implementation”. They show that Maskin monotonicity, a

necessary condition for Nash implementation, becomes a necessary condition

for UNE-implementation. For their proof, Chung and Ely need to construct

a complete information environment nearby, in which some players have su-

perior information about the preferences of other players. Since we focus only

on private-value environments, their result does not apply to us. Instead, we

show that any incentive-compatible social choice rule is UNE-implementable

with no transfers (Corollary 2).

The rest of the paper is organized as follows: In Section 2, we introduce the
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preliminary notation and definitions as well as two assumptions (Assumptions

1 and 2) that we maintain throughout the paper. In Section 3, we construct

a mechanism and discuss some of its basic properties. Section 4 provides our

main results. More specifically, we establish Theorem 1 for implementation

with transfers (Section 4.1), Theorem 2 for implementation with arbitrarily

small transfers (Section 4.2), and Theorems 3 and 4 for implementation with

no transfers (Section 4.3). Section 5 discusses three applications of our re-

sults: we investigate the connection to continuous implementation (Section

5.1), to UNE-implementation (Section 5.2), and to the full surplus extraction

(Section 5.3). In Section 6, we provide some extensions of our results and

also discuss the limitations of our results. In particular, we discuss the role of

honesty and rationalizable implementation (Section 6.1); we identify a class

of interdependent-value environments to which our permissive results can be

extended (Section 6.2); we propose a way of achieving budget balance when

there are at least three individuals (Section 6.3); and finally, we compare our

results with those of virtual implementation, a process in which the planner

contents himself with implementing the social choice rule with arbitrarily high

probability.
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3.2 Preliminaries

3.2.1 The Environment

Let I denote a finite set of players and with abuse of notation, we also denote

by I the cardinality of I. The set of pure social alternatives is denoted by A,

and ∆ (A) denotes the set of all probability distributions over A with countable

supports. In this context, a ∈ A denotes a pure social alternative and x ∈ ∆(A)

denotes a lottery on A.

The utility index of player i over the set A is denoted by ui : A × Θi →

R, where Θi is the countable set of payoff types and ui(a, θi) specifies the

bounded utility of player i from the social alternative a under θi ∈ Θi. Denote

Θ = Θ1 × · · · ×ΘI and Θ−i = Θ1 × · · · ×Θi−1 ×Θi+1 × · · · ×ΘI .
1 We abuse

notation to use ui(x, θi) as player i’s expected utility from a lottery x ∈ ∆ (A)

under θi. We also assume that player i’s utility is quasilinear in transfers,

denoted by ui(x, θi) + τi where τi ∈ R.

A model T is a triplet (Ti, θ̂i, πi)i∈I , where T is a countable type space;

θ̂i : Ti → Θi; and πi(ti) ∈ ∆(T−i) denotes the associated belief for each ti ∈ Ti.

We assume that each player of type ti always knows his own type ti. For

each type profile t = (ti)i∈I , let θ̂(t) denote the payoff type profile at t, i.e.,

θ̂(t) ≡ (θ̂i(ti))i∈I . If Ti is a finite set, then we say (Ti, θ̂i, πi)i∈I is a finite model.

1Similar notation will be used for other product sets.
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Let πi (ti) [E] denote the probability that πi (ti) assigns to any set E ⊂ T−i.

Given a model (Ti, θ̂i, πi)i∈I and a type ti ∈ Ti, the first-order belief of ti

on Θ is computed as follows: for any θ ∈ Θ,

h1
i (ti)[θ] = πi (ti) [{t−i ∈ T−i : θ̂(ti, t−i) = θ}].

The second-order belief of ti is his belief about t1−i, set as follows: for any

measurable set F ⊂ Θ×∆ (Θ)I−1,

h2
i (ti)[F ] = πi(ti)

[
{t−i : (θ̂(ti, t−i), h

1
−i(t−i)) ∈ F}

]
.

An entire hierarchy of beliefs can be computed similarly.
(
h1
i (ti), h

2
i (ti), ..., h

`
i(ti), ...

)
is an infinite hierarchy of beliefs induced by type ti of player i. We assume the

belief hierarchy is coherent, that is, for any l, anyX =supp
(
hli (ti)

)
∩supp

(
hl−1
i (ti)

)
,

margXh
l
i (ti) = margXh

l−1
i (ti) .

Therefore, we assume it is common knowledge that each player of type ti

always knows his own payoff type and holds coherent belief hierarchy. We

denote by T ∗i the set of player i’s hierarchies of beliefs in this space and write

T ∗ =
∏

i∈I T
∗
i . T

∗
i is endowed with the product topology so that we say a

sequence of types {ti [n]}∞n=0 converges to a type ti (denoted as ti [n]→p ti), if

for every ` ∈ N, h`i(ti[n])→ h`i(ti) as n→∞. We write t[n]→p t if ti [n]→p ti

for all i.

89



Throughout the paper, we consider a fixed environment E which is a triplet(
A, (ui)i∈I , T̄

)
with a finite model T̄ =

(
T̄i, θ̄i, π̄i

)
i∈I and a planner who aims

to implement a social choice function (henceforth, SCF) f : T̄ → ∆ (A).2

3.2.2 Mechanisms, Solution Concepts, and Implemen-
tation

We assume that the planner can fine or reward a player i ∈ I by side pay-

ments. A mechanism M is a triplet ((Mi), g, (τi))i∈I where Mi is the nonempty

countable message space for player i; g : M → ∆ (A) is an outcome function;

and τi (m) : M → R is a transfer rule from player i ∈ I to the designer. A

mechanism M is finite if Mi is finite for every player i ∈ I. We say that a

mechanism M has fines and rewards bounded by τ̄ if |τi (m)| ≤ τ̄ for every

i ∈ I and every m ∈ M . Note that there is a class of such mechanisms given

τ̄ . We denote one of the mechanisms by (M, τ̄).

Given a mechanism M, let U(M, T ) denote an incomplete information

game associated with a model T . Fix a game U(M, T ), player i ∈ I and type

ti ∈ Ti. We say that mi ∈ Wi (ti|M, T ) if and only if there does not exist

2We will consider a countable model when we define and study continuous implementa-
tion in Section 5.1.
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m′i ∈Mi such that

∑
t−i,m−i

[
ui(g(m′i,m−i), θ̂i(ti)) + τi (m

′
i,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

≥
∑

t−i,m−i

[
ui(g(mi,m−i), θ̂i(ti)) + τi (mi,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

for all ν : T−i → ∆ (M−i) and a strict inequality holds for some ν : T−i →

∆(M−i). We set S1
i (ti|M, T ) = Wi (ti|M, T ). For any l ≥ 1, we say that

mi ∈ Sl+1
i (ti|M, T ) if and only if there does not exist m′i ∈Mi such that

∑
t−i,m−i

[
ui(g(m′i,m−i), θ̂i(ti)) + τi (m

′
i,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

>
∑

t−i,m−i

[
ui(g(mi,m−i), θ̂i(ti)) + τi (mi,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

for all ν : T−i → ∆(M−i) and for all t−i and m−i, ν(m−i|t−i)πi(ti)[t−i] > 0

implies that m−i ∈ Sl−i (t−i|M, T ) =
∏

j 6=i S
l
j (tj|M, T ). Let S∞W denote the

set of strategy profiles which survive one round of removal of weakly dominated

strategies followed by iterative removal of strictly dominated strategies, i.e.,

S∞i Wi (ti|M, T ) =
∞⋂
l=1

Sli (ti|M, T ) ,

S∞W (t|M, T ) =
∏

i∈I
S∞i Wi (ti|M, T ) .

Here we restrict attention to pure strategies, but without loss of generality.

In the mechanism we construct below, we have S∞W as a singleton; this con-

stitutes a unique, undominated Bayesian Nash equilibrium in pure strategies.

Moreover, this undominated Bayesian Nash equilibrium remains the unique

91



equilibrium in the mechanism even when mixed strategies are allowed. Sev-

eral foundations for S∞W in normal-form games are known in the literature.

We refer the reader to Börgers (1994) and Dekel and Fudenberg (1990) for its

foundations in complete information games, and to Frick and Romm (2014)

for its foundation in incomplete information games. The order of elimination

of strategies in S∞W generally matters, as WS∞ (the set of strategy profiles

which survive iterative removal of strictly dominated strategies followed by

one round of removal of weakly dominated strategies) may well be different

from S∞W . In the appendix, we show that W∞ generates the same outcome

as S∞W in our mechanism, regardless of the order of removal of strategies,

where W∞ denotes the set of strategies that survive the iterative removal of

dominated strategy profiles. We can also define S∞ as the set of strategy

profiles that survive the iterative removal of strictly dominated strategies. It

is already well known that S∞ is order-independent and equivalent to the set

of all rationalizable strategies in finite mechanisms. In Section 6.1, we will

discuss the role of S∞ in our mechanism.

We introduce the following definition:

Definition 3.1. Fix a model T̄ . We say that a mechanism (M, τ̄) implements

an SCF f in S∞W with transfers if, for any t ∈ T̄ and m ∈ S∞W
(
t|M, T̄

)
,

we have g(m) = f(t).
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We now formally state the definition of implementability in S∞W. First, we

impose no conditions on the magnitude of transfers and propose the concept

of implementation with transfers.

Definition 3.2 (Implementation with Transfers). An SCF f is implementable

in S∞W with transfers if there exists a mechanism (M, τ̄) which implements

f in S∞W with transfers.

It is often unrealistic to assume that the planner can impose large transfers

on the players. Hence, we only allow for arbitrarily small transfers and propose

the following concept.

Definition 3.3 (Implementation with Arbitrarily Small Transfers). An SCF

f is implementable in S∞W with arbitrarily small transfers if, for all τ̄ > 0,

there exists a mechanism (M, τ̄) which implements f in S∞W with transfers.

The concept of implementation with arbitrarily small transfers strikes us

being rather innocuous. Still, it is sometimes impossible to assume that the

planner can impose any transfers on the players in the equilibrium. Therefore,

we propose the concept of implementation with no transfers.

Definition 3.4 (Implementation with No Transfers). An SCF f is imple-

mentable in S∞W with no transfers if for all τ̄ > 0, it is implementable in

S∞W a mechanism (M, τ̄) and moreover, for any t ∈ T̄ , and m ∈ S∞W
(
t|M, T̄

)
,
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we have τi(m) = 0 for each i ∈ I.

Remark 3.1. The concept of implementation with no transfers does not ex-

clude a possibility that arbitrarily small transfers are made ex post out of the

equilibrium. This concept of implementation is used by Abreu and Matsushima

(1994) under complete information. We extend this to incomplete-information

environments with private values.

3.2.3 Assumptions

Throughout the paper we make two assumptions on the environments. First,

we follow Abreu and Matsushima (1992a) and propose the following assump-

tion.

Assumption 3.1. An environment E = (A, (ui)i∈I , T̄ ) satisfies Assumption

3.1 if the following two conditions hold:

1. for each ti ∈ T̄i, ui(·, θ̂i(ti)) is not a constant function on A;

2. for any ti, t
′
i ∈ T̄i with ti 6= t′i, ui(·, θ̂i(ti)) is not a positive affine trans-

formation of ui(·, θ̂i(t′i)).

Under Assumption 1, Abreu and Matsushima (1992a) show the following

important result. Lemma 3.1 guarantees the existence of a function that can

elicit each player’s type.
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Lemma 3.1. (Abreu and Matsushima (1992a)) Suppose that Assumption 1

holds. For each i ∈ I, there exists a function xi : T̄i → ∆(A) such that for any

ti, t
′
i ∈ T̄i with ti 6= t′i,

ui(xi(ti), θ̂i(ti)) > ui(xi(t
′
i), θ̂i(ti)) (3.1)

We next introduce the following assumption.

Assumption 3.2. An environment E satisfies Assumption 3.2 if, for all i ∈ I

and ti, t
′
i ∈ T̄i with ti 6= t′i, πi(ti) 6= πi(t

′
i).

Remark 3.2. Since T̄ is finite, if |Ti| = 1 or |T−i| ≥ 2, Assumption 3.2 gener-

ically holds in the space of the probability distributions over T̄ . Note, however,

that Assumption 3.2 fails to hold in the case of independent probability distri-

butions.

By Assumption 2, we can construct the following scoring rule d0
i : T → R:

Lemma 3.2. Suppose that an environment E satisfies Assumption 3.2. For

all i ∈ I and (ti, t−i) ∈ T̄ , define

d0
i (ti, t−i) = 2π̄i (ti) [t−i]− π̄i (ti) · π̄i (ti) ,

where π̄i (ti) · π̄i (ti) denotes its inner (or dot) product. Then, for all i ∈ I and

ti, t
′
i ∈ T̄i with ti 6= t′i,∑

t−i∈T−i

[
d0
i (ti, t−i)− d0

i (t′i, t−i)
]
π̄i (ti) [t−i] > 0. (3.2)
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Remark 3.3. Lemma 3.2 guarantees the existence of a proper scoring rule in

which each player will tell the truth whenever he believes that every other one

tells the truth. Such a constructed scoring rule is strictly Bayesian incentive

compatible. When there are more than two players, we can achieve budget

balance. (see the discussion in Section 3.6)

Proof. The construction of d0
i (ti, t−i) makes itself a proper scoring rule. By

Assumption 3.2, the strict inequality of (3.2) always holds.

3.3 The Mechanism and its Basic Properties

3.3.1 The Mechanism

We define the mechanism as follows.

1. The message space:

Each player i makes (K + 3) simultaneous announcements of his own

type. We index each announcement by −2,−1, 0, 1, . . . , K. That is, play-

er i’s message space is

Mi = M−2
i ×M−1

i ×M0
i × · · · ×MK

i = T̄i × · · · × T̄i︸ ︷︷ ︸
K+3 times

,

where K is an integer to be specified later. Denote

mi =
(
m−2
i , ...,mK

i

)
∈Mi, m

k
i ∈Mk

i , k ∈ {−2,−1, 0, ..., K} ,
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and

m =
(
m−2, ...,mK

)
∈M, mk =

(
mk
i

)
i∈I ∈M

k = ×i∈IMk
i .

We usemk/m̃i denote the message profile
(
mk

1, ...,m
k
i−1, m̃

k
i ,m

k
i+1, ...,mI

)
.

2. The outcome function:

Let ε ∈ (0, 1) be a small positive number.

Define e : M−1 ×M0 → R by

e(m−1,m0) =

{
ε if m−1

i 6= m0
i for some i ∈ I,

0 otherwise.

The outcome function g : M → ∆ (A) is defined as follows: for each

m ∈M ,

g (m) = e(m−1,m0)
1

I

∑
i∈I

xi
(
m−2
i

)
+
{

1− e(m−1,m0)
} 1

K

K∑
k=1

f
(
mk
)
,

(3.3)

The outcome function contains a “random dictator” component (recall

the function xi defined in (3.1)) which is triggered in the event that

some player’s −1th announcement does not equal his 0th announcement.

When this event does not happen, only the nondictatorial component is

triggered, which consists of K equally weighted lotteries the kth of which

depends only on the I-tuple of kth announcements.
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3. The transfer rule:

Let λ, ξ and η be positive numbers. Player i is to pay:

• −λd0
i

(
m−2
−i ,m

−1
i

)
(if d0

i

(
m−2
−i ,m

−1
i

)
is positive, it means player i is

paid);

• −λd0
i (m

−1
−i ,m

0
i ) (if d0

i (m
−1
−i ,m

0
i ) is positive, it means player i is

paid);3

• ξ if he is the first player whose kth announcement (k ≥ 1) differs

from his own 0th announcement (All players who are the first to

deviate are fined).

di
(
m0, ...,mK

)
=


ξ if there exists k ∈ {1, ..., K} s.t. mk

i 6= m0
i ,

and mk′
j = m0

j for all k′ ∈ {1, ..., k − 1} for all j;
0 otherwise.

(3.4)

• η if his kth announcement (k ≥ 1) differs from his own 0th an-

nouncement.

dki
(
m0
i ,m

k
i

)
=

{
η if mk

i 6= m0
i ;

0 otherwise.
(3.5)

In total,

τi (m) = −λd0
i

(
m−2
−i ,m

−1
i

)
−λd0

i (m
−1
−i ,m

0
i )+di

(
m0, ...,mK

)
+

K∑
k=1

dki
(
m0
i ,m

k
i

)
.

(3.6)

3The design of the two scoring rules is needed for establishing the order independence of
W∞ in the Appendix. The results in the main body of the paper still go through with one
scoring rule.
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4. Define Θ̄i = {θi ∈ Θi| θ̂i(t̄i) = θi for some t̄i ∈ T̄i}. We provide the

summary of conditions on transfers:

Let

E = max
m−2
i ∈M

−2
i ,mk∈Mk,θ̄i∈Θ̄i,i∈I

∣∣∣∣∣1I∑
j∈I

ui
(
xj(m

−2
j ), θ̄i

)
− ui

(
f
(
mk
)
, θ̄i
)∣∣∣∣∣ ;
(3.7)

D = max
m̄ki ∈Mk

i ,m
k∈Mk,θ̄i∈Θ̄i,i∈I

{
ui
(
f
(
mk
)
, θ̄i
)
− ui(f(mk

−i, m̄
k
i ), θ̄i)

}
,

(3.8)

where E multiplied by ε is the upper bound of the gain for any player

i, of triggering or not triggering the random dictatorial component; D

is the maximum gain for player i from altering the kth announcement,

where k ≥ 1.

We choose positive numbers λ, γ, K, ε, η, and ξ such that for every i ∈ I

and every ti, t
′
i ∈ T̄i with ti 6= t′i,

τ̄ > 2λd̄0
i + ξ +Kη; (3.9)

∑
t−i∈T̄−i

[
λd0

i (t−i, t
′
i)− λd0

i (t−i, ti)
]
π̄i (ti) [t−i] > γ; (3.10)

η > εE; (3.11)

ξ >
1

K
D; (3.12)
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γ > εE + ξ +Kη, (3.13)

where d̄0
i denotes an upper bound of d0

i (t) over t ∈ T̄ .4

3.3.2 Basic Properties of the Mechanism

In this section, we exploit some basic properties of the mechanism constructed

in the previous section. These properties play an important role in the rest of

the paper.

Claim 3.1. In the game U
(
M, T̄

)
, for every i ∈ I, t̄i ∈ T̄i, and mi ∈ Mi, if

mi ∈ S1
i

(
t̄i|M, T̄

)
, then m−2

i = t̄i.

Proof. We show that for any i ∈ I, t̄i ∈ T̄i, and mi ∈ Mi, if m−2
i 6= t̄i, then

mi 6∈ S1
i

(
t̄i|M, T̄

)
, i.e., mi is weakly dominated by some m′i. We construct

m′i as follows:

m′i =
(
t̄i,m

−1
i , ...,mK

i

)
.

Fix any conjecture ν : T̄−i → ∆(M−i).

The difference of the expected values between m′i and mi for player i of

4Given any τ̄ > 0 exogenously, we first choose λ small enough so that λd̄0i <
1
4 τ̄ . Second,

by (3.2), we can choose γ small enough so that (3.10) holds. Third, we choose K large
enough so that 1

KD < min
{

1
4 τ̄ ,

1
3γ
}
. Fourth, we choose ε small enough so that KεE <

min
{

1
4 τ̄ ,

1
3γ
}
. Therefore, we have τ̄ > 2λd̄0i + 1

KD+KεE and γ > εE + 1
KD+KεE. From

these two inequalities, we can thus choose η and ξ such that (3.9), (3.11), (3.12) and (3.13)
hold.
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type t̄i is shown as follows:

∑
t−i,m−i

{
ui
(
g (m′i,m−i) , θ̄i

)
+ τi (m

′
i,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

−
∑

t−i,m−i

{
ui
(
g (mi,m−i) , θ̄i

)
+ τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

e (m−1,m0)

I

{
ui
(
xi (t̄i) , θ̄i

)
− ui

(
xi
(
m−2
i

)
, θ̄i
)}
ν(m−i|t−i)πi(t̄i)[t−i](3.14)

=
∑

t−i,m−i

e (m−1,m0)

I
ν(m−i|t−i)πi(t̄i)[t−i]

{
ui
(
xi (t̄i) , θ̄i

)
− ui

(
xi
(
m−2
i

)
, θ̄i
)}

≥ 0,

where the first equality follows because the only difference lies in function xi

when m′i differs from mi only in the first announcement, (see the definition

of g in (3.3) and the definition of τ in (3.6)); by (3.1) the last inequality is

strict whenever e (m−1,m0) = ε for some m−i with
∑

t−i
ν(m−i|t−i)πi(t̄i)[t−i] >

0.

The next claim says that telling a lie in round −1 is strictly dominated by

telling the truth, given the hypothesis that no players choose weakly dominated

messages.

Claim 3.2. In the game U
(
M, T̄

)
, for every i ∈ I, t̄i ∈ T̄i, if mi ∈ S2

i

(
t̄i|M, T̄

)
,

then m−1
i = t̄i.

Proof. We show that for any i ∈ I, t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i, and mi ∈
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S1
i (t̄i|M, T̄ ), if m0

i 6= t̄i, then mi /∈ S2
i (t̄i|M, T̄ ). We construct m̄i as fol-

lows:

m̄i =
(
m−2
i , t̄i,m

0
i , ...,m

K
i

)
.

Then, for any conjecture ν : T̄−i → ∆(M−i), we have that, for each

(t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ S1
−i
(
t−i|M, T̄

)
.

The difference of the expected values under m̄i from mi for player i of type

t̄i is shown as follows:

∑
t−i,m−i

{
ui(g(m̄i,m−i), θ̄i) + τi (m̄i,m−i)

}
ν(m−i|t−i)πi(t̄i)(t−i)

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

{
e
(
m−1/m̄i,m

0
)
− e

(
m−1,m0

)}
×

{
1

I

∑
j∈I

ui(xj(t̄j), θ̄i)−
1

K

K∑
k=1

ui(f(mk), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

+
∑

t−i,m−i

{
λd0

i

(
m−2
−i , t̄i

)
− λd0

i

(
m−2
−i ,m

−1
i

)}
ν(m−i|t−i)πi(t̄i)[t−i]

Observe that when m̄i differs from mi only in the −1th announcement, the

difference in terms of g(·) (see the outcome function in (3.3)) lies in function

e(·) and the difference in terms of transfer is summarized in functions d0
i (see

the transfer rule in (3.6)).

Note that
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(i) In terms of outcomes, the possible expected gain of player i of type t̄i by

choosing mi rather than m̄i is

∑
t−i,m−i

{
e
(
m−1/m̄i,m

0
)
− e

(
m−1,m0

)}
×

{
1

I

∑
j∈I

ui(xj(t̄j), θ̄i)−
1

K

K∑
k=1

ui(f(mk), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

From (3.7), when playing mi rather than m̄i, this possible gain is bound-

ed above by εE.

(ii) In terms of payments, the expected loss by choosing mi rather than m̄i

is

∑
t−i,m−i

[
λd0

i

(
m−2
−i , t̄i

)
− λd0

i

(
m−2
−i ,m

−1
i

)]
ν(m−i|t−i)πi(t̄i)[t−i].

By Claim 3.1, we know that m−i ∈ S1
−i
(
t̄−i|M, T̄

)
implies m−2

−i = t̄−i.

Therefore, by (3.10), we obtain

∑
t−i,m−i

[
λd0

i

(
m−2
−i , t̄i

)
− λd0

i

(
m−2
−i ,m

−1
i

)]
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t̄−i∈T̄−i

[
λd0

i (t̄−i, t̄i)− λd0
i

(
t̄−i,m

−1
i

)]
π̄i (t̄i) [t̄−i]

> γ,

where γ is chosen such that γ > εE by (3.13).

Therefore, mi is strictly dominated by m̄i.
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Claim 3.3. In the game U
(
M, T̄

)
, for every i ∈ I, t̄i ∈ T̄i, if mi ∈ S3

i

(
t̄i|M, T̄

)
,

then m0
i = t̄i.

Proof. We show that for any i ∈ I, t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i, if m0
i 6= t̄i, then

mi /∈ S3
i (t̄i|M, T̄ ). We construct m̄i as follows:

m̄i =
(
m−2
i ,m−1

i , t̄i,m
1
i , . . . ,m

K
i

)
.

Then, for any conjecture ν : T̄−i → ∆(M−i), we have that, for each

(t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ S2
−i
(
t−i|M, T̄

)
.

From Claim 3.1, we know that for any j ∈ I, if mj ∈ S2
j

(
t̄j|M, T̄

)
, then

m−1
j = t̄j.

The difference of the expected values under m̄i from mi for player i of type
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t̄i is shown as follows:

∑
t−i,m−i

{
ui(g(m̄i,m−i), θ̄i) + τi (m̄i,m−i)

}
ν(m−i|t−i)πi(t̄i)(t−i)

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

{
e
(
m−1,m0/m̄i

)
− e

(
m−1,m0

)}
×

{
1

I

∑
j∈I

ui(xj(t̄j), θ̄i)−
1

K

K∑
k=1

ui(f(mk), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

+
∑
t−i

{
λd0

i (t−i, t̄i)− λd0
i

(
t−i,m

0
i

)}
πi(t̄i)[t−i]

+
∑

t−i,m−i

{
di
(
m0/m̄i,m

1, . . . ,mK
)
− di

(
m0, ...,mK

)}
ν(m−i|t−i)πi(t̄i)[t−i]

+
∑

t−i,m−i

K∑
k=1

{dki
(
m̄0
i ,m

k
i

)
− dki

(
m0
i ,m

k
i

)
}ν(m−i|t−i)πi(t̄i)[t−i]

≥ −εE + γ − ξ −Kη

> 0

Observe that when m̄i differs from mi only in the 0th announcement, the

difference in terms of g(·) (see the outcome function in (3.3)) lies in function

e(·) and the difference in terms of transfer is summarized in functions d0
i , di,

and {dki }k=1,...,K (see the transfer rule in (3.6)).

Therefore, mi is strictly dominated by m̄i.
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3.4 Main Results

There are three subsections here. In Section 4.1, we provide a result of imple-

mentation with transfers where very large transfers are allowed. In Section 4.2,

we make the size of transfers arbitrarily small and establish a characterization

of implementation with arbitrarily small transfers. Here, incentive compatibil-

ity is an important condition. Finally, in Section 4.3, we propose two classes

of environments in each of which we need no transfers on the equilibrium in

the mechanism.

3.4.1 Implementation with Transfers

The following theorem shows that if we impose no conditions on the size of

transfers, any SCF is implementable with transfers. In this case, a very large

size of transfers might be needed even on the equilibrium.

Theorem 3.1. Suppose that the environment E satisfies Assumptions 3.1 and

3.2. Assume I ≥ 2. Any SCF is implementable in S∞W with transfers.

We use the following claim to prove Theorem 3.1.

Claim 3.4. Let K = 1. In the game U
(
M, T̄

)
for every i ∈ I, t̄i ∈ T̄i, if

mi ∈ S4
i

(
t̄i|M, T̄

)
, then m1

i = t̄i.
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Proof. Fix i ∈ N , t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i. We shall show that

m1
i 6= t̄i ⇒ mi 6∈ S4

i

(
t̄i|M, T̄

)
.

That is, we shall show that mi is strictly dominated. Let m̃i be the dominating

strategy defined as follows,

m̃i =
(
m−2
i ,m−1

i ,m0
i , t̄i
)
.

Then, for any conjecture ν : T̄−i → ∆(M−i), we have that, for each

(t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ S3
−i
(
t−i|M, T̄

)
.

From Claim 3.3, we know that for any j ∈ I, if mj ∈ S3
j

(
t̄j|M, T̄

)
, then

m0
j = t̄j.

By choosing mi rather than m̃i, in terms of transfer rule, one possible loss

from reporting is

∑
t−i,m−i

{τi (m̃i,m−i)− τi (m)} ν(m−i|t−i)πi(t̄i)[t−i] = η + ξ, (3.15)

where player i of type t̄i will get punished by η according to rule d1
i (by (3.5))

and ξ according to rule di (by (3.4)).

Note that e (m−1,m0) = 0. In terms of outcome function g(·) (defined in

(3.3)): the possible gain from playing mi rather than m̃i is

∑
t−i,m−i

{
ui(f(m1), θ̄i)− ui(f(t̄i,m

1
−i), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i].
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From (3.8), we also have the following inequality on the expected gain of

type ti when playing mi rather than m̃i:

∑
t−i,m−i

{
ui(f(m1), θ̄i)− ui(f(t̄i,m

1
−i), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i] ≤ D. (3.16)

When K = 1, we know from Section 3.1 that ξ > D (see (3.12)).5 So, we

obtain

η + ξ > D. (3.17)

To sum up, we have

∑
t−i,m−i

{
ui(g(m̃i,m−i), θ̄i) + τi (m̃i,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

{
ui(f(m1

−i, t̄i), θ̄i)− ui(f(m1), θ̄i) + ξ + η
}
ν(m−i|t−i)πi(t̄i)[t−i]

≥
∑

t−i,m−i

{η + ξ −D} ν(m−i|t−i)πi(t̄i)[t−i]

> 0.

The first equality follows from the outcome function (3.3) and the transfer

rule (3.6); the second inequality follows from (3.16); the last inequality follows

from (3.17). Therefore, player i of type t̄i will report t̄i rather than m1
i .

5When K = 1, we can appropriately choose λ, γ, ε, ξ, and η to satisfy those conditions
on transfers and utilities in Section 3.3.1. This means that ξ can be a very large number.
Since we now impose no restrictions on the size of transfers, by choosing λ > 0 large enough,
we can choose γ arbitrarily large to satisfy γ > εE + ξ+ η (inequality (3.13)). Hence, ξ can
be chosen large enough to satisfy ξ > D (inequality (3.12)).
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3.4.2 Implementation with Arbitrarily Small Transfers

We shall show that if an SCF f is incentive compatible, our mechanism can

implement f in S∞W with arbitrarily small transfers. First, we introduce the

notation. For every i ∈ I, every ti, t
′
i ∈ T̄i, let

∑
t−i∈T̄−i

ui(f(t−i, t
′
i), θ̂i(ti))π̄i(ti)[t−i]

denote the expected utility generated by the direct revelation mechanism(
T̄ , f

)
for player i of type ti when he announces t′i and the other players

all make truthful announcements.

Definition 3.5. An SCF f : T̄ → ∆(A) is incentive compatible if, for all

i ∈ I and all ti, t
′
i ∈ T̄i,

∑
t−i∈T̄−i

ui(f(t−i, ti), θ̂i(ti))π̄i(ti)[t−i] ≥
∑

t−i∈T̄−i

ui(f(t−i, t
′
i), θ̂i(ti))π̄i(ti)[t−i].

We are now ready to state the main result of this section. The theorem

below shows that incentive compatibility is a necessary and sufficient condition

for implementation with arbitrarily small transfers.

Theorem 3.2. Suppose that the environment E satisfies Assumptions 3.1 and

3.2. Assume I ≥ 2. An SCF f is implementable in S∞W with arbitrarily

small transfers where S∞W
(
t|M, T̄

)
is a singleton if and only if f is incentive

compatible.
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Remark 3.4. Palfrey and Srivastava (1989) establish a very similar imple-

mentation result in their Theorem 2: any incentive compatible social choice

function is fully implementable in undominated Bayes Nash equilibrium. We

clarify a few differences between our result and that of Palfrey and Srivasta-

va (1989). Although Palfrey and Srivastava (1989) do not need ex post small

transfers, they use the integer games as part of their mechanism. On the other

hand, although our mechanism does not use any devices such as the integer

games, it exploits the power of ex post small transfers. In addition, our solu-

tion concept of S∞W is more robust (or permissive) than undominated Bayes

Nash equilibrium. Although Theorem 2 of Palfrey and Srivastava (1989) needs

at least three players, our result works even for the case of two players. One

common feature these two papers share is the difficulty of extending the results

to interdependent-value environments. The reader is referred to both Section

6.2 of our paper and Section 4 of Palfrey and Srivastava (1989) for appreciat-

ing this difficulty.

We use the following claim to prove the “if” part of Theorem 3.2.

Claim 3.5. Suppose that an SCF f is incentive compatible. For each k ≥

3, i ∈ I, and t̄i ∈ T̄i, if mi ∈ Ski (t̄i|M, T̄ ), then mk−3
i = t̄i.

Proof. Consider type t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i. When k = 3, the result follows

from Claim 3.3. Fix k ≥ 3. The induction hypothesis is that for every i ∈ I,
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t̄i ∈ T̄i, if mi ∈ Ski
(
t̄i|M, T̄

)
, then mk′

i = t̄i for all k′ ≤ k − 3.

Then, we show that if mi ∈ Sk+1
i (t̄i|M, T̄ ), then mk′

i = t̄i for all k′ ≤ k−2.

It suffices to prove mk−2
i = t̄i. Suppose not, let m̃i be the dominating strategy

defined as follows,

m̃i ≡
(
m−2
i , ...,mk−3

i , t̄i,m
k−1
i ...,mK

i

)
.

We let M∗
−i =

{
m−i ∈M−i : mk−2

−i = m0
−i
}
. Fix a conjecture ν : T̄−i →

∆(M−i). Note that, for each (t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ Sk−i
(
t−i|M, T̄

)
.

Thus, we obtain e (m−1,m0) = 0.

We will show that

∑
t−i,m−i

{
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi(mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i](3.18)

> 0.

Note the left hand side of inequality is equal to

∑
t−i,m−i 6∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i](3.19)

+
∑

t−i,m−i∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i].
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Step 1:

∑
t−i,m−i 6∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i] > 0.

From the induction hypothesis, for every i ∈ I and t̄i ∈ T̄i, if mi ∈

Ski (t̄i|M, T̄ ), then mk′
i = t̄i for all k

′ ≤ k − 3. When m−i 6∈ M∗
−i, there

exists some j ∈ I\{i} such that mk−1
j = m0

j . We compute the expected loss in

terms of payments for player i of type t̄i when playing mi rather than m̃i:

∑
t−i,m−i 6∈M∗−i

{τi (m̃i,m−i)− τi (m)} ν(m−i|t−i)πi(t̄i)[t−i]

By choosing m̃i rather than mi, player i will avoid the fine, η according to rule

dk−2
i (see (3.5) in Section 3.1) and ξ according to rule di (see (3.4)), that is,

τi (m̃i,m−i)− τi (m) = η + ξ.

In terms of g(·) (see the outcome function in (3.3)), we have

∑
t−i,m−i 6∈M∗−i

1

K

{
ui(f(mk−1), θ̄i)− ui(f(m̃k−1

i ,mk−1
−i ), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i] ≤

1

K
D.

(3.20)

This means that the possible gain from playing mi rather than m̃i is bounded

by D/K.

Since we have that ξ > D/K (see (3.12) in Section 3.1), we have

η + ξ >
1

K
D. (3.21)
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This completes Step 1.

Step 2:

∑
t−i,m−i∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i] > 0

When m−i ∈M∗
−i, for any j ∈ I\{i}, we have mk−1

j = m0
j . From the induction

hypothesis, for every i ∈ I, t̄i ∈ T̄i, if mi ∈ Ski
(
ti|M, T̄

)
, then mk′

i = t̄i, for all

k′ ≤ k− 3. We compute the expected loss in terms of payments for player i of

type t̄i when playing mi rather than m̃i:

∑
t−i,m−i∈M∗−i

{τi (m̃i,m−i)− τi (m)} ν(m−i|t−i)πi(t̄i)[t−i]

By choosing m̃i rather than mi, player i will avoid the fine, η according to rule

dk−2
i (see (3.5) in Section 3.1), the expected loss in terms of payments from

choosing mi rather than m̃i in terms of τ(·) (see (3.6) in Section 3.1) is

τi (m̃i,m−i)− τi (m)

= η + ξ − di
(
m0, ...,mk−1,mk−2/m̃i...,m

K
)

≥ η;

Therefore, when playing mi rather than m̃i, the expected loss in terms of

payments is bounded below:

∑
t−i

{τi (m̃i,m−i)− τi (m)} πi(t̄i)[t−i] ≥ η.
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In terms of g(·) (see the outcome function in (3.3)), the possible gain for player

i to report mi rather than m̃i is

1

K

∑
m−i

{
ui(f(mk−2), θ̄i)− ui(f(mk−2/m̃i), θ̄i)

}
πi(t̄i)[t−i],

Since m̃i differs from mi only in the (k − 2)th announcement.

That is, when playing mi rather than m̃i, the possible gain for player i of

type t̄i is which is bounded above by 0 from incentive compatibility of f. This

completes Step 2.

The “only if” part of Theorem 3.2 is proved as follows.

Proof. Fix τ̄ > 0 arbitrarily small. Given f : T̄ → ∆ (A) implementable in

S∞W with arbitrarily small transfers by a mechanism (M, τ̄), then for any

t ∈ T̄ and m ∈ S∞W
(
t|M, T̄

)
, we have g(m) = f(t) and τ(m) < τ̄ . Since

S∞W
(
t|M, T̄

)
is a singleton, we know that S∞W is a pure Bayesian Nash

Equilibrium in U(M, τ̄ , T̄ ). Then, we have for all m′i ∈Mi,

∑
t′−i

πi(ti)[t
′
−i]
{
ui(g(mi,m−i(t

′
−i)), θ̂i(ti)) + τi(mi,m−i(t

′
−i))

}
≥

∑
t′−i

πi(ti)[t
′
−i]
{
ui(g(m′i,m−i(t

′
−i)), θ̂i(ti)) + τi(m

′
i,m−i(t

′
−i))

}
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Let (T̄ , f) be a direct revelation mechanism such that

f(ti, t−i) = g(mi (ti) ,m−i(t−i)),

τi(ti, t−i) = τi (mi (ti) ,m−i(t−i)) ,

where g and τ is specified in (M, τ̄) . Then truth telling must be a Bayesian

Nash equilibrium. That is, for any ti, t
′
i ∈ T̄i,

∑
t′−i

πi(ti)[t
′
−i]
{
ui(f(ti, t

′
−i), θ̂i(ti)) + τi(ti, t

′
−i)
}

≥
∑
t′−i

πi(ti)[t
′
−i]
{
ui(f(t′i, t

′
−i), θ̂i(ti)) + τi(t

′
i, t
′
−i)
}

(3.22)

Note that (3.22) holds for any τ̄ since from “if” part, given any τ̄ we can

constructed a desirable (M, τ̄). Since τ̄ can be arbitrarily close to 0, we must

have

∑
t′−i

πi(ti)[t
′
−i]ui(f(ti, t

′
−i), θ̂i(ti)) ≥

∑
t′−i

πi(ti)[t
′
−i]ui(f(t′i, t

′
−i), θ̂i(ti)) (3.23)

That is, f is incentive compatible.

3.4.3 Implementation with No Transfer

In Theorem 3.2, we use arbitrarily small transfers to achieve implementation

of any incentive compatible SCF. In the mechanism, the ex post payment,

although we can make it very small, is still necessary on the equilibrium. We

will show that under some condition, the ex post payment is not required on

the equilibrium.
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Non-Exclusive Information (NEI)

Recall the following definition: an SCF f : T̄ → ∆ (A) is implementable

in S∞W with no transfers if it is implementable in S∞W with arbitrar-

ily small transfers by a mechanism (M, τ̄) such that for any t ∈ T̄ and

m ∈ S∞W (t|M, T̄ ), τi(m) = 0 for each i ∈ I. To discuss the result with

no transfers, we need some extra assumptions. We first use non-exclusive in-

formation structure (NEI) for implementation with no transfers. To the best

of our knowledge, NEI is first proposed by Postlewaite and Schmeidler (1986).

We provide a version of its definition as follows:

Definition 3.6. The environment E satisfies the non-exclusive informa-

tion structure (NEI) if, for each t̄ ∈ T̄ , i, j ∈ I, and tj ∈ T̄j,

π̄i(t̄i)[tj, t̄−ij] =

{
1 if tj = t̄j
0 otherwise

where t̄−ij denotes a type profile that is obtained from t̄ after eliminating t̄i

and t̄j.

When I = 2, NEI is equivalent to complete information. NEI captures

the idea that each agent is informationally negligible in the sense that any

unilateral deception from the truth-telling in the direct revelation mechanism

can be detected. Under NEI, we obtain the following result:

Theorem 3.3. Suppose that the environment E satisfies Assumptions 3.1 and
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NEI. Assume I ≥ 2. Any incentive compatible SCF is implementable in S∞W

with no transfers.

Proof. The mechanism is identical to the mechanism in Section 3.3.1 except

that we replace λd0
i

(
m−2
−i ,m

−1
i

)
and λd0

i

(
m−1
−i ,m

0
i

)
with new transfer rules as

follows:

d̂0
i (m

−2
−i ,m

−1
i ) =

{
γ if πi(m

−1
i )[m−2

−i ] = 0;
0 otherwise.

d̂0
i (m

−1
−i ,m

0
i ) =

{
γ if πi(m

0
i )[m

−1
−i ] = 0;

0 otherwise.

The proof then follows verbatim the proof of Theorem 3.2.

Strict Incentive Compatibility and Separability

Following Sjöström (1994), we introduce the following class of environments.

We assume the outcome space A = A1 ×A2 × ...×AI , and ui : Ai ×Θi → R.

For each SCF f and type t ∈ T̄ , we denote f(t) = (f1(t), . . . , fI(t)) where

fi(t) denotes the marginal distribution of f(t) on Ai where A = A1 × A2 ×

...× AI . The reader is referred to Sjöström (1994) to see when this separable

environment is valid. For example, we can consider an exchange economy

where each player i has a consumption set Ai and cares only about his own

consumption. We first introduce a stronger version of incentive compatibility.

Definition 3.7. An SCF f : T̄ → ∆(A) is strictly incentive compatible
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if, for all i ∈ I and all ti, t
′
i ∈ T̄i with ti 6= t′i,

∑
t−i∈T̄−i

ui(fi(t−i, ti), θ̂i(ti))π̄i(ti)[t−i] >
∑

t−i∈T̄−i

ui(fi(t−i, t
′
i), θ̂i(ti))π̄i(ti)[t−i].

In the theorem below, we can drop Assumption 2 but instead, we need to

strengthen incentive compatibility into strict incentive compatibility.

Theorem 3.4. Suppose that a separable environment E satisfies Assumptions

3.1. Assume I ≥ 2. Any strictly incentive compatible SCF is implementable

in S∞W with no transfers.

The corresponding mechanism is provided as follows. Basically, in a sepa-

rable environment, the strictly incentive compatible SCF replaces the role of

scoring rule (d0
i ) in the previous discussion. We can drop the assumption on

information structure, that is, players’ information can be independent.

1. The message space:

Each player i makes 4 simultaneous announcements of his own type. We

index each announcement by −2,−1, 0, 1. That is, player i’s message

space is given as

Mi = M−2
i ×M−1

i ×M0
i ×M1

i = T̄i × T̄i × T̄i × T̄i.

Denote

mi =
(
m−2
i ,m−1

i ,m0
i ,m

1
i

)
∈Mi, m

k
i ∈Mk

i , k ∈ {−2,−1, 0, 1} ,
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and

m =
(
m−2,m−1,m0,m1

)
∈M, mk =

(
mk
i

)
i∈I ∈M

k = ×i∈IMk
i .

We usemk/m̃i to denote the strategy profile
(
mk

1, ...,m
k
i−1, m̃

k
i ,m

k
i+1, ...,mI

)
.

2. The outcome function:

Let ε be a small positive number.

Define e : M−1 ×M0 → R by

e(m−1,m0) =

{
ε if m−1

i 6= m0
i for some i ∈ I,

0 otherwise.

The outcome function g : M → ∆(A) is defined as follows: for each

m ∈M ,

g (m) = e
(
m−1,m0

) 1

I

∑
i∈I

xi
(
m−2
i

)
+

{
1− e

(
m−1,m0

)}{
λ̃1f̃(m−1,m−2) + λ̃2f̃(m0,m−1) + (1− λ̃1 − λ̃2)f(m1)

}
,

where f̃(mk,mk−1) ≡ ×i∈Ifi
(
mk
i ,m

k−1
−i
)

and fi(m
k
i ,m

k−1
−i ) denotes the

marginal distribution of f(mk
i ,m

k−1
−i ) on Ai for k ∈ {−1, 0}.

3. The transfer rule:

Let η be positive numbers. Player i is to pay η if his 1st round announce-

ment differs from his own 0th round announcement.

τi
(
m0
i ,m

1
i

)
=

{
η if m1

i 6= m0
i ;

0 otherwise.
(3.24)
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The definitions of E and D are the same as in the previous section.

We choose positive numbers λ̃1, λ̃2, ε, η such that for every ti, t
′
i ∈ T̄i and

every i ∈ I,

τ̄i > η; (3.25)

λ̃q
∑

t−i∈T̄−i

[
ui(fi(ti, t−i), θ̂i(ti))− ui(fi(t′i, t−i), θ̂i(ti))

]
π̄i(ti) [t−i] > γ, for q ∈ {1, 2} ;

(3.26)

η > εE + (1− λ̃1 − λ̃2)D; (3.27)

and

γ > εE + (1− λ̃1 − λ̃2)D + η. (3.28)

Since f is strictly incentive compatible, the existence of γ is guaranteed in

(3.26).

Remark 3.5. In a separable environment, a proper adjustment of the weight

between the 0th round report and the 1st round report can decrease the payment

in a way that differs from that used in Abreu and Matsushima (1994). Specifi-

cally, given τ̄ , we can choose (1− λ̃1− λ̃2) small enough to make the weight of

the 1st round announcement small enough. Therefore, η can be chosen small

enough to prevent the deviation in the 1st round.

Remark 3.6. We omit the proof of Theorem 3.4 and rather provide a heuristic

argument of how the proof works. The first round deletion of weakly dominated
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strategies is the same as the procedure in the proof of Claim 1. Second, to elicit

the true type profile in the −1th and 0th rounds, the constructed SCF f̃ works

in a similar way as the scoring rule (d0
i ) did in the proofs of Claims 2 and

3. Specifically, the function f̃ is constructed such that each player i’s payoff

from f̃ is affected only by his own −1th (resp. 0th) round report and the other

players’ −2th (resp. −1th) round report. By the strict incentive compatibility,

each player will announce truthfully in the −1th (resp. 0th) round(given the

truth telling in the −2th (resp. −1th) reports for everyone). When all players

tell the truth in every round, the constructed function f̃ coincides with the SCF

f. This enables the mechanism to implement f without any ex post transfers.

Finally, the last round of elimination of strictly dominated strategies works in

a way that is parallel to the proof of Claim 4.

3.5 Applications

We now discuss the applications of our results. First, we connect our results to

continuous implementation, a concept proposed by Oury and Tercieux (2012).

In Section 5.1, we show that any incentive-compatible SCF is continuously

implementable with arbitrarily small transfers. Second, we discuss robust

undominated Nash implementation, which Chung and Ely (2003) call UNE-

implementation. Chung and Ely show that when UNE-implementation is
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defined to be robust to perturbations accommodating interdependent values,

Maskin monotonicity is a necessary condition. In contrast, when we require

UNE-implementation to be robust only to private-value perturbations, we

establish a very permissive result. That is, as long as we allow for a tiny number

of transfers out of equilibrium, any incentive-compatible SCF is shown to be

UNE-implementable. Finally, with ex post small transfers, we obtain a full

implementation result of the full surplus extraction in auctions environments.

3.5.1 Continuous Implementation

The mechanism design literature often deals with environments in which mon-

etary payments are available, and they are content to limit their analyses to

partial implementation. Partial implementation is a notion that requires the

planner to design a game in which only some equilibrium–but not necessarily

all equilibria–yields the desired outcome. Then, appealing to the revelation

principle, its analysis reduces to the characterization of incentive-compatible

direct revelation mechanisms. This means that the mechanism design liter-

ature discounts the possibility that undesirable equilibria exist in the game.

Full–as opposed to partial–implementation is a notion that requires that all

equilibria deliver the desired outcome. Although it is unfortunate that the

literature has thus far largely ignored the need to compare partial and full im-

plementation, Oury and Tercieux (2012) have recently built a bridge between
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these two notions. They consider the following situation: The planner wants

not only that the SCF be partially implementable, but also that it continue to

be partially implementable in all the models close to his initial model. That

is, the SCF is continuously (partial) implemented. Oury and Tercieux (2012)

show that Bayesian monotonicity (See definition on p. 1617 in Oury and Ter-

cieux (2012)), which is a necessary condition for full implementation, becomes

necessary even for continuous implementation; in light of this result, they argue

that continuous implementation is tightly connected to full implementation.

We shall show that as long as the planner is willing to allow for small ex

post transfers, any incentive-compatible SCF is continuously implementable

in private-values environments. This stands in sharp contrast with Oury and

Tercieux (2012) because our continuous implementation result does not need

Bayesian monotonicity but only incentive compatibility, which is a necessary

condition for partial implementation. Our result is consistent with Matsushi-

ma (1993), which shows that in Bayesian environments with side payments

under strict incentive compatibility, Bayesian monotonicity holds generically.

Therefore any incentive compatible SCF is fully implementable. Note that

if one is willing to settle for allowing small ex post transfers, one can always

transform any incentive-compatible SCF into a strict incentive-compatible one.

However, the mechanism which can fully implement any incentive-compatible
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SCF employs either large transfers (Matsushima (1991)) or infinite strategy

space (In the Bayesian environments with side payments, the set of allocation

rules is infinite in Jackson (1991)). We show that with arbitrarily small trans-

fers, any incentive-compatible SCF is fully implementable by a finite mecha-

nism, not only in the benchmark model but also in the nearby environment.

Given a mechanism (M, τ̄) and a type space T , we write U (M, τ̄ , T )

for the induced incomplete information game. In the game U (M, τ̄ , T ) , a

behavior strategy of a player i is any measurable function σi : Ti → ∆ (Mi) .

We follow Oury and Tercieux (2012) to write down the following definitions.

We define

Vi((mi, σ−i), ti) =
∑
t−i

πi(ti)[t−i]
∑
m−i

σ−i(m−i|t−i) {ui(g(mi,m−i), θi(ti)) + τi(mi,m−i))} .

Definition 3.8. A profile of strategies σ = (σ1, ..., σI) is a Bayes Nash

equilibrium in U(M, τ̄ , T ) if, for each i ∈ I and each ti ∈ Ti,

mi ∈ supp (σi (ti))⇒ mi ∈ argmaxm′i∈Mi
Vi ((m

′
i, σ−i) , ti) .

We write σ|T̄ for the strategy σ restricted to T̄ .

For any T = (Ti, θ̂i, πi)i∈I , we will write T ⊃ T̄ if T ⊃ T̄ and for every

ti ∈ T̄i, we have πi (ti) [E] = π̄i (ti)
[
T̄−i ∩ E

]
for any measurable E ⊂ T−i.

Definition 3.9. Fix a mechanism (M, τ̄) and a model T such that T̄ ⊂ T . We

say that a Bayes Nash equilibrium σ in U (M, τ̄ , T ) (strictly) continuously
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implements f : T̄ → ∆(A) if the following two conditions hold: (i) σ|T̄ is a

(strict) Bayes Nash equilibrium in U
(
M, τ̄ , T̄

)
; (ii) for any t̄ ∈ T̄ and any

sequence t[n]→p t̄, whenever t[n] ∈ T for each n, we have (g ◦σ)(t[n])→ f(t̄).

We introduce two variants of continuous implementation:

Definition 3.10. An SCF f : T̄ → ∆ (A) is continuously implementable with

transfers if there exists a mechanism (M, τ̄) such that for each model T with

T̄ ⊂ T , there is a Bayes Nash equilibrium σ in U(M, τ̄ , T ) that continuously

implements f .

Definition 3.11. An SCF f : T̄ → ∆ (A) is continuously implementable with

arbitrarily small transfers if for any τ̄ > 0, there exists a mechanism

(M, τ̄) such that for each model T with T̄ ⊂ T , there is a Bayes Nash equi-

librium σ in U (M, τ̄ , T ) that continuously implements f .

First, we establish the following important lemma.

Lemma 3.3. Fix any model T such that T̄ ⊂ T . There exists a finite mecha-

nism M. For any t̄ ∈ T̄ and any sequence {t [n]}∞n=0 in T, if t [n]→p t̄, then,

for each n large enough, we have S∞W (t[n]|M, T ) ⊂ S∞W (t̄|M, T ).

Let M be any one of the mechanisms used in Section 3.4. The proof of

Lemma 3.3 builds upon the following claims.
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Claim 3.6. Fix any model T such that T̄ ⊂ T . For any t̄ ∈ T̄ and any

sequence {t[n]}∞n=0 such that t [n]→p t̄, there exists N1 ∈ N such that for any

n ≥ N1, we have if mi ∈ W 1
i (ti [n] |M, T ), then m−2

i = t̄i.

Proof. Fix t̄ ∈ T̄ . Let {t[n]}∞n=0 be such that t [n]→p t̄. There exists a natural

number N1 ∈ N such that for each n > N1, we have θ̂i (ti [n]) = θ̂i(t̄i) = θ̄i

for some θ̄i ∈ Θi. This is due to the fact that Θi is finite and endowed with

the discrete topology. It follows immediately from Claim 3.1 that if m−2
i 6= t̄i,

then mi 6∈ W 1
i (ti [n] |M, T ) .

Fix a mechanism (M, τ̄) and a type space T̄ . For any t̄ ∈ T̄ , we define a

new iteration process. We say that mi ∈ W̃i

(
t̄i|M, T̄

)
if and only if m−2

i = t̄i.

We set S1
i

(
t̄i|M, T̄

)
= W̃i

(
t̄i|M, T̄

)
. Sl+1

i

(
t̄i|M, T̄

)
is defined in the same

way as in Section 3.2.2 for all l ≥ 1.

S∞i W̃i

(
t̄i|M, T̄

)
=
∞⋂
l=1

Sli
(
t̄i|M, T̄

)
,

S∞W̃
(
t̄i|M, T̄

)
=
∏

i∈I
S∞i W̃i

(
t̄i|M, T̄

)
.

Fix any model T such that T̄ ⊂ T , and a finite mechanism M, for any

t̄ ∈ T̄ and any sequence {t [n]}∞n=0 in T such that t [n] →p t̄, for any n > N1,

S∞W (t[n]|M, T ) ⊂ S∞W̃
(
t [n] |M, T̄

)
by Claim 3.6.

Claim 3.7. Fix any model T such that T̄ ⊂ T , there exists a finite mechanism
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M. For any t̄ ∈ T̄ and any sequence {t [n]}∞n=0 in T such that t [n] →p t̄, for

each n large enough, we have S∞W (t[n]|M, T ) ⊂ S∞W (t̄|M, T ).

Proof. From Claims 2, 3, and 5 in Section 3.3, we know that for any t̄ ∈ T̄ ,

S∞W̃ (t̄|M, T̄ ) = {(t̄, ..., t̄)} . Therefore, S∞W (t̄|M, T̄ ) = S∞W̃ (t̄|M, T̄ ). So

it suffices to show for each n large enough, S∞W (t[n]|M, T ) ⊂ S∞W̃ (t [n] |M, T ) .

That follows from showing that for each t̄ ∈ T̄ and sequence {t [n]}∞n=0 in

T such that t[n] →p t̄ as n → ∞, there exists a natural number Nk ∈ N such

that, for any n ≥ Nk, we have Sk (t [n] |M, T ) ⊂ Sk(t̄|M, T ), for all k. We

prove this by induction. From Claim 3.6, we know that for any large enough

n, θ̂i (ti [n]) = θ̂i(t̄i) = θ̄i for some θ̄i ∈ Θi. We fix such large n. By definition,

mi ∈ W̃i (ti [n] |M, T ) then m−2
i = t̄i. Thus, S1 (t [n] |M, T ) ⊂ W̃ 1(t̄|M, T ).

Suppose the claim is true for any k > 1. We then show that it is also valid for

k + 1.

Fix mi ∈ Sk+1
i (ti[n]|M, T ). Recall the notation in Section 2.2. Then, for

any m′i, there exists some ν [n] : T−i → ∆(M−i) such that

∑
t−i,m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
ν [n](m−i|t−i)πi(ti[n])[t−i](3.29)

≥
∑

t−i,m−i

[
ui(g(m′i,m−i), θ̄i) + τi (m

′
i,m−i)

]
ν [n](m−i|t−i)πi(ti[n])[t−i],

where ν [n](m−i|t−i)πi(ti[n])[t−i] > 0 implies that m−i ∈ Sk−i(t−i|M, T ). Let

Vi (mi,m−i) ≡
∑

t−i,m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
ν [n](m−i|t−i)πi(ti[n])[t−i].
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For any mi and m′i, we define βmi,m
′
i : T−i →M−i such that, for any t−i,

βmi,m
′
i (t−i) = arg max

m−i∈Sk−i(t−i|M,T )
{Vi (mi,m−i)− Vi (m′i,m−i)} .

We can interpret βmi,m
′
i as player i’s belief about the best possible scenario

for the choice of mi against m
′
i where other players use k-times iteratively

undominated strategies. Thus, we have

∑
m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
πi (ti [n])

[
{t−i ∈ T−i : βmi,m

′
i (t−i) = m−i}

]
≥

∑
m−i

[
ui(g(m′i,m−i), θ̄i) + τi (m

′
i,m−i)

]
πi (ti [n])

[
{t−i ∈ T−i : βmi,m

′
i (t−i) = m−i}

]
.

Note that this is where the assumption of private values becomes crucial. Since

t [n]→p t̄, for any n > 0, there exists εn > 0,

πi (ti [n]) [(t̄−i)
εn ]→ πi (t̄i) [t̄−i] , as n→∞,

where (t̄−i)
εn denotes an open ball consisting of the set of types t−i whose

(k − 1)-order beliefs are εn-close to those of types t̄−i.
6 It follows that the

following probability is well defined.

For any t̄−i ∈ T̄−i such that πi (t̄i) [t̄−i] > 0, and m−i, we define the follow-

ing:

β−i (t̄−i) [m−i] ≡ lim
n→∞

πi (ti [n])
[{
t−i ∈ (t̄−i)

εn : βmi,m
′
i (t−i) = m−i

}]
πi (t̄i) [t̄−i]

.

6This follows from the fact that the Prohorov distance between ti [n] and t̄i converges to
0 due to the finiteness of T̄−i. See Dudley (2002, pp. 398 and 411).
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Now we construct a conjecture ν : T̄−i → ∆(M−i) for type t̄i. For any

(t̄−i,m−i) , we set ν(m−i|t̄−i) = β−i (t̄−i) [m−i]. From the inequality above we

have

∑
m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

] ∑
t̄−i∈T

β−i (t̄−i) [m−i] πi (t̄i) [t̄−i]

≥
∑
m−i

[
ui(g(m′i,m−i), θ̄i) + τi (m

′
i,m−i)

] ∑
t̄−i∈T

β−i (t̄−i) [m−i] πi (t̄i) [t̄−i] .

Therefore,

∑
t̄−i,m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
ν(m−i|t̄−i)πi(t̄i)[t̄−i]

≥
∑

t̄−i,m−i

[
ui(g(m′i,m−i), θ̄i) + τi (mi,m−i)

]
ν(m−i|t̄−i)πi(t̄i)[t̄−i]

By construction, ν(m−i|t̄−i)πi(t̄i)[t̄−i] > 0 implies thatm−i ∈ Sk−i(t−i [n] |M, T ).

By our induction hypothesis, Sk−i(t−i [n] |M, T ) ⊂ Sk−i(t̄−i|M, T ). Thus, we

have m−i ∈ Sk−i(t̄−i|M, T ). Since the choice of m′i is arbitrary, so this com-

pletes the proof.

If we do not impose any conditions on the size of ex post transfers, we

obtain the following very permissive result.

Theorem 3.5. Suppose that the environment E satisfies Assumptions 3.1 and

3.2. Assume I ≥ 2. Any SCF f is continuously implementable with transfers.
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Proof. We employ the mechanism (M, τ̄) constructed in Section 2.1 and let

K = 1. Therefore, for all t̄ ∈ T̄ , m ∈ S∞W
(
t̄|M, T̄

)
⇒ g (m) = f (t̄) . Note

that S∞W
(
t̄|M, T̄

)
= {(t̄, ..., t̄)} . We write σ∗ such that σ∗i (t̄i) = (t̄i, ..., t̄i)

for all t̄i ∈ T̄i. Now pick any T such that T̄ ⊂ T . It is well known that

a trembling hand perfect equilibrium7 is always contained in S∞W . There-

fore, σ∗ is a trembling hand perfect equilibrium in U
(
M, τ̄ , T̄

)
. We show

that there exists an equilibrium that continuously implements f on T̄ . For

each player i and each type t̄i ∈ T̄i, restrict the space of strategies of play-

er i by assuming that σi (t̄i) = σ∗i (t̄i) for each t̄i ∈ T̄i. Because M is finite

and T is countable, standard arguments (see footnote 1 of online appendix

of Oury and Tercieux (2012)) show that there exists a Bayes Nash equilib-

rium in U(M, τ̄ , T ), which is denoted by σ. Thus, σ is a Bayes Nash equi-

librium in U(M, τ̄ , T ) and σ|T̄ is a Bayes Nash equilibrium in U
(
M, τ̄ , T̄

)
.

Now, pick any sequence {t [n]}∞n=0 such that t [n] →p t̄. It is clear that, for

each n : Supp(σ (t [n])) ⊂ S∞W (t [n] |M, T ) . In addition, for n large enough,

we know by Lemma 3.3 that S∞W (t [n] |M, T ) ⊂ S∞W
(
t̄|M, T̄

)
and so,

(g ◦ σ)(t[n]) = f(t̄) as claimed.

7We follow Osborne and Rubinstein (1994) and provide a version in our contex-
t. A profile of strategies σ = (σ1, ..., σI) is a trembling hand perfect equilibrium in
U (M, τ̄ , T ) if, for each i ∈ I and each ti ∈ Ti, there exists a sequence

(
σk
)∞
k=0

of
completely mixed strategy profiles that converges to σ such that, mi ∈supp(σi (ti)) ⇒
mi ∈argmaxm′

i∈Mi
Vi
((
m′i, σ

k
−i
)
, ti
)
, for every k.
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It is often unrealistic to assume that the mechanism can induce very large

transfers even out of equilibrium. Therefore, we obtain the following charac-

terization of continuous implementation with arbitrarily small transfers.

Theorem 3.6. Suppose that the environment E satisfies Assumptions 3.1 and

3.2. Assume I ≥ 2. An SCF f is continuously implementable with arbitrarily

small transfers if and only if f is incentive compatible.

Proof. For any τ̄ > 0, we employ the mechanism (M, τ̄) constructed in Section

2.1. The proof for “if” part is parallel to the proof of Theorem 3.5.

The “only if” part is proved as follows: Given f is continuously imple-

mentable with arbitrarily small transfers. Then, for any τ > 0, there is a

Bayes Nash equilibrium σ in U(M, T̄ ) such that (g ◦ σ)(t̄) = f(t̄) for any

t̄ ∈ T̄ and τ(σ(t̄)) < τ̄. By a similar argument in the proof of the “only if”

part of Theorem 3.2, we conclude that f is incentive compatible.

The next result is one of the main results of Oury and Tercieux (2012).

Proposition 3.1 (Theorem 2 of Oury and Tercieux (2012)). If an SCF f is

strictly continuously implementable, it satisfies strict Bayesian monotonicity.

Oury and Tercieux show that the condition for full implementation (i.e.,

Bayesian monotonicity) is necessary for “strict” continuous partial implemen-

tation. To drop this “strictness,” they assume instead that sending messages in
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the mechanism is slightly costly. Recall that our mechanism exploits the weak

dominance in round -2 announcement. This weak dominance will be highly

sensitive to payoff perturbations that are induced by the cost of sending mes-

sages. Therefore, Oury and Tercieux’s argument cannot apply here; as a result

the relation between Bayesian monotonicity and continuous implementation

disappears. However, as long as we allow for ex post small transfers and con-

sider private-values environments, we obtain yet another result that permits

continuous implementation and our result is as permissive as it can be. Oury

and Tercieux’s result also holds in any interdependent-value environments,

while our result can be extended to a particular class of interdependent-value

environments (see the discussion in Section 6.2).

3.5.2 UNE Implementation

Chung and Ely (2003) contemplate the following situation: if a planner wants

all equilibria of his mechanism yield a desired outcome, and if he entertains

the possibility that players may have even the slightest uncertainty about pay-

offs, then the planner should insist on a solution concept with a closed graph.

Chung and Ely then adopt undominated Nash equilibrium as a solution con-

cept and call the corresponding implementation concept “UNE implementa-

tion”. In particular, Theorem 1 of Chung and Ely (2003) shows that Maskin

monotonicity is a necessary condition for UNE implementation. For this
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proof, one needs to construct a near-complete information structure in which

some players have superior information about the state, and consequently,

about the preferences of other players. In their Section 6.2, Chung and Ely

restrict their attention to private-value perturbations8 in which each type may

be uncertain about the preferences of other players but always knows his own

preferences. Under such perturbations, they show that dominated strategies

under complete information continue to be dominated.

In their footnote 7 Chung and Ely (2003) observe that the continuity of

dominated strategies under private-value perturbations does not necessarily

guarantee that UNE implementation suffices for UNE-implementation. In

fact, we provide an affirmative answer to Chung and Ely’s question. That is,

our robustness argument can be adapted to prove that the mechanism provid-

ed in Abreu and Matsushima (1994) actually achieves UNE implementation.

Thus, if we consider private-value environments and allow for small ex post

transfers, we provide a permissive result for UNE-implementation.

Following Chung and Ely (2003), we now rephrase their definition of UNE-

implementation.

Definition 3.12. Fix a mechanism (M, τ̄) and a complete-information model

T̄ . We say that (M, τ̄) UNE-implements f : T̄ → ∆(A) if the following two

8The perturbation in Chung and Ely (2003) is a special case of the perturbation defined
in a universal type space that we formulate here.
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conditions hold: (i) there exists a strategy profile σ such that σ|T̄ is an un-

dominated Nash equilibrium in U
(
M, τ̄ , T̄

)
; (ii) for any t̄ ∈ T̄ , any sequence

t[n]→p t̄, any model T with T̄ ⊂ T , and any sequence of undominated Bayes

Nash equilibria {σn}∞n=0 of the game U(M, τ̄ , T ), whenever t[n] ∈ T for each

n, we have g(σn(t[n]))→ f(t̄).

Note that any complete-information model is a special case of an incomplete-

information model. By Theorem 3.5, we record the following result:

Corollary 3.1. Suppose that the environment E satisfies Assumption 3.1 and

T̄ is a complete-information model. Assume I ≥ 2. Any SCF f is UNE-

implementable with transfers.

More importantly, we obtain the following permissive result:

Corollary 3.2. Suppose that the environment E satisfies Assumption 3.1 and

T̄ is a complete-information model. Assume I ≥ 2. Any incentive-compatible

SCF f is UNE-implementable with no transfers.

Remark 3.7. Assume that there are at least three players. In this case, under

complete information, the planner can always detect any unilateral deviation

from a truthful announcement. Therefore, we simply construct a new SCF

that is the same as the original SCF, except that we simply ignore any such

unilateral deviation and assign the same lottery as if there were no deviation-
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s. This new SCF is equivalent to the original SCF under the hypothesis of

complete information so that we can make any SCF be incentive-compatible.

So, when I ≥ 3, we can drop incentive compatibility completely from Corollary

3.2. In fact, this is the main result of Abreu and Matsushima (1994). The

novel contribution here is to observe that the result of Abreu and Matsushima

(1994) can be adapted to establish UNE-implementation.

Proof. Note that complete-information environments trivially satisfy NEI (non-

exclusive information) assumption. So, we modify the scoring rule d0
i as we

did for Theorem 3.2. The rest of the proof is completed by Theorem 3.6.

Our result is consistent with Chung and Ely (2003). Theorem 1 of Chung

and Ely (2003) shows that Maskin monotonicity is a necessary condition for

UNE-implementation. Specifically, for the proof of this theorem, one needs

to exploit the interdependent values. It is also easy to show that Maskin

monotonicity is still necessary for UNE-implementation if players are not

very sure about their own payoff type in the case of private values. In the

present paper, we assume private values and it is also possible to extend our

continuous implementation result to a particular class of interdependent-value

environments. In Section 6.2 below, we elaborate more on the difficulty of

extending our results to general interdependent-value environments.
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3.5.3 Full Surplus Extraction

In a seminal paper, Crémer and McLean (1988) show that in a single object

auction with generic correlated types, it is possible to design a mechanism

(which we call a CM mechanism) in such a way that (i) each bidder earns an

expected surplus of zero in a Bayes Nash equilibrium and (ii) the object is

allocated to the agent with the highest valuation. This outcome is referred

to as the full surplus extraction (henceforth, FSE) outcome. Although this

is a surprisingly positive result, an FSE outcome is rarely observed in reality.

Many explanations have been proposed to resolve this discrepancy between

theory and reality, including risk neutrality, unlimited liability, the absence of

collusion among agents, a lack of competition among sellers, and the restric-

tiveness of a fixed finite type space. Although these are important issues, we

rather follow Brusco (1998) who points out another weakness of the FSE re-

sult. In particular, Brusco provides an example in which every mechanism has

the FSE property as a Bayes Nash equilibrium must have another Bayes Nash

equilibrium which is weakly Pareto superior for the agents. This implies that

the multiplicity of equilibria might be a reason why the FSE outcome is not

observed in reality, despite the fact that the FSE outcome is an equilibrium in

dominant strategies. Brusco shows that one can devise a two-stage sequential

mechanism that implements the FSE outcome in all perfect Bayesian equilib-
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ria. Chen and Xiong (2013) show that the FSE outcome is virtually Bayesian

fully implemented.

We can establish a similar result, by adopting a static mechanism to achieve

full implementation, as long as players do not use weakly dominated strategies.

First, we include the range of payment schemes of the CM mechanism as part

of A (the set of pure outcomes). Second, following Crémer and McLean (1988),

we observe that the social choice function that achieves the FSE outcome is

Bayesian incentive compatible, i.e., incentive compatible.9 So, by Theorem

3.2, we obtain the following:

Corollary 3.3. Suppose that the environment E satisfies Assumptions 1 and

2. Assume I ≥ 2. The FSE outcome is implementable in S∞W with arbitrarily

small transfers.

Therefore, we still obtain the FSE property even when we insist on full

implementation with small transfers. Note that we achieve full implementation

in a finite mechanism, whereas the mechanisms in Brusco (1998) and Chen

and Xiong (2013) are infinite and involve either integer games or an “open set

trick.” One crucial assumption that we adopt for this result is that no players

9Crémer and McLean (1988) show two main results: their Theorem 1 achieves FSE in
dominant-strategy incentive-compatibility when agents’ beliefs satisfy a full-rank condition,
whereas their Theorem 2 achieves FSE in Bayesian incentive-compatibility when agents’
beliefs satisfy a weaker spanning condition. Corollary 3.3 therefore strengthens only their
Theorem 2, while the results in Brusco (1998) and Chen and Xiong (2013) apply to their
Theorem 1 as well.
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use weakly dominated actions.

3.6 Discussion

Throughout our argument, the dominance is always strict except in round −2.

In Section 6.1, we introduce the concept of partial honesty and propose a way

of making the dominance in round −2 “strict.” This allows us to connect our

results to rationalizable implementation. In Section 6.2, we provide a sufficient

condition for our results in interdependent-value environments.

3.6.1 The Role of Honesty and Rationalizable Imple-
mentation

Following Matsushima (2008) and Dutta and Sen (2012), we depart from the

assumption that all players are motivated solely by their self-interest and in-

stead assume that they all have a small intrinsic preference for honesty. This

implies that such players have preferences not just on outcomes but also di-

rectly on the messages that they are required to send to the planner.

Fix the mechanism Γ = (M, τ̄) that we constructed in Section 3. First,

recall that each player i’s preferences are given by ui : ∆(A) × Θi → R.

Following the setup of Dutta and Sen (2012), we extend this ui(·) to vi : M ×

Θi → R satisfying the following two properties: for all T̄ = (T̄i, θ̂i, πi)i∈I , i ∈

I, t = (ti, t−i) ∈ T̄ , mi, m̃i,∈Mi, and m−i ∈M−i:
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1. If ui(g(mi,m−i), θ̂i(ti)) ≥ ui(g(m̃i,m−i), θ̂i(ti)), m
−1
i = ti, and m̃−1

i 6= ti,

then

vi((mi,m−i), θ̂i(ti)) > vi((m̃i,m−i), θ̂i(ti)).

2. In all other cases, vi((mi,m−i), θ̂i(ti)) ≥ vi((m̃i,m−i), θ̂i(ti)) if and only if

ui(g(mi,m−i), θ̂i(ti)) ≥ ui(g(m̃i,m−i), θ̂i(ti)).

The first part of the definition captures an individual’s preference for partial

honesty. That is, he strictly prefers (mi,m−i) to (m̃i,m−i) only if he thinks

g(mi,m−i) is at least as good as g(m̃i,m−i). We consider this to be a very

weak assumption, and this weakness makes the concept of partial honesty

particularly compelling. If all players are partially honest in this sense, we

can conclude that any message containing truth-telling in round −2 strictly

dominates any other message containing non-truth telling in round −2. Hence,

given partial honesty, every dominance becomes strict in our mechanism. This

means that we can improve upon our previous results by replacing S∞W

with S∞, which is the (interim correlated) rationalizability correspondence,

which maps each type profile to the set of message profiles that survive the

iterated deletion of never best responses.10 By Claim 7, we know that this

10In finite games, it is well known that an action is strictly dominated if and only if it is
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rationalizability correspondence is upper hemi-continuous. Hence, we obtain

the following result:

Proposition 3.2. Suppose that the environment E satisfies Assumptions 3.1

and 3.2. Assume I ≥ 2. Assume further that all agents are partially honest.

Then, any incentive-compatible SCF is implementable in S∞ with arbitrarily

small transfers. Moreover, any incentive-compatible SCF is “strictly continu-

ously” implementable with arbitrarily small transfers.

Proof. We simply combine all the arguments we made above for Theorems 2

and 5. This completes the proof.

Oury and Tercieux (2012) show in their Theorem 4 that an SCF f is contin-

uously implementable by a finite mechanism if and only if it is implementable

in rationalizable strategies by a finite mechanism. Although they do not need

ex post payments or partial honesty, without either of these we know of no

rationalizable implementation result with finite mechanism. For any SCF f ,

we denote by f τ the augmentation of f by ex post transfers τ . We interpret

f τ as an SCF that is very close to f . We show that when all players are par-

tially honest and an SCF f is incentive compatible, then f τ is implementable

in rationalizable strategies by a finite mechanism. Kunimoto and Serrano

a never best response.
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(2014) show that if an SCF is implementable in rationalizable strategies by a

finite mechanism, it satisfies interim rationalizable monotonicity. Combining

these results, we conclude that when all agents are partially honest, for any

incentive compatible SCF f , one can find a nearby SCF f τ such that f τ is

implementable in rationalizable strategies by a finite mechanism if and only if

it satisfies interim rationalizable monotonicity.

Since interim rationalizable monotonicity implies Bayesian monotonicity

(see Kunimoto and Serrano (2014)), as long as all agents are partially honest

and the planner can allow a tiny number of ex post transfers in designing the

mechanism, Bayesian monotonicity or any version of monotonicity condition

can be fully dispensed with for continuous implementation. However, this

argument applies only to private-value environments. In the next subsection,

we discuss to which extend we can extend our results to interdependent-value

environments.

Matsushima (2008) imposes more stringent structures on the players’ cost

function of sending messages than our partial honesty so that he can take care

of fully interdependent values. We believe that one of the strongest assump-

tions he made was that the cost of sending messages depends on the propor-

tion of a player’s dishonest announcements. This assumption is very specific

to the construction of our mechanism and that in Matsushima (2008) (and
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thus, to basically any mechanism that resembles the Abreu-Matsushima type

of construction) in the sense that each player is required to make a number of

announcements of his type in the mechanism. In other words, Matsushima’s

assumption no longer makes sense once we adopt a different construction of

the mechanism, according to which all players are not necessarily required to

report their types many times. Nevertheless, the concept of partial honesty

can still be valid as long as the messages in the mechanism contain the play-

ers’ types. The lesson we draw here is that there seems to be a clear trade-off

between the permissiveness of implementation results and more structures in

regard to the cost function of sending messages.

3.6.2 Private Values vs. Interdependent Values

We now deal with the case of interdependent-value environments in which each

player i’s utility function is defined as ui : A×Θ→ R. This section is organized

as follows: we first provide a class of interdependent-value environments to

which all our results in private-value environments can be extended. Such

an environment is said to satisfy Condition (S). Second, we elaborate on

the implications of Condition (S). Finally, we show by example that our

mechanism fails to work when Condition (S) is violated. We thus conclude

that we need a completely different mechanism if we want to deal with more

general interdependent-value environments.
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Condition (S) We say that an environment E satisfies Condition (S) if, for

each i ∈ I, there exist a function xi : T̄i → ∆(A) and ζ > 0 such that

for all ti, t
′
i ∈ T̄i with ti 6= t′i and t−i ∈ T̄−i,

ui(xi(ti), (θ̂i(ti), θ̂−i(t−i)))− ui(xi(t′i), (θ̂i(ti), θ̂−i(t−i))) > ζ. (3.30)

Although we can extend all our results to interdependent-value environ-

ments satisfying Condition (S), we restrict our discussion here to the extension

of Theorem 2.11

Proposition 3.3. Suppose that the environment E satisfies Condition (S) and

Assumption 3.2. Assume I ≥ 2. An SCF f is implementable in S∞W with

arbitrarily small transfers where S∞W (t|M, T̄ ) is a singleton for each t ∈ T̄

if and only if it is incentive compatible.

Proof. We only focus on the if-part of Theorem 2. From the proof of the

Theorem 2, we observe that the proof of Claim 1 exploits the private-value

assumption, while Claims 2, 3, and 5 hold even in interdependent-value envi-

ronments. Therefore, it suffices to show that Claim 1 still holds here.

In this class of interdependent-value environments,
{
ui(xi(t̄i), θ̄i)− ui(xi(m−2

i ), θ̄i)
}

in (3.14) is replaced by

ui(xi(ti), (θ̂i(ti), θ̂−i(t−i)))− ui(xi(t′i), (θ̂i(ti), θ̂−i(t−i))).
11This restriction is justified because one can easily see that all other results of our paper

crucially rely on the validity of Theorem 2. Note also that Theorem 1 can be seen as a
special case of Theorem 2.
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By inequality (3.30), the last inequality in (3.14) is strict whenever e(m−1,m0) =

ε for some m−i. This completes the proof.

To illustrate the strength of Condition (S), we use the concept of type

diversity, which is introduced by Serrano and Vohra (2005). Type diversity is

a natural counterpart of Assumption 1 in interdependent-value environments.

To define type diversity, I need to introduce some notation. Let A be a

finite set of alternatives. For each a ∈ A and i ∈ I, define uai (ti) to be the

interim utility of player i of type ti ∈ T̄i for a constant lottery which assigns a

in each state, i.e.,

uai (ti) =
∑
θ

ui(a, θ)h
1
i (ti)[θ].

Let uAi (ti) = (uai (ti))a∈A

Assumption 3.3. The environment E satisfies type diversity if the following

two properties hold12:

1. there does not exist i ∈ I, and ti, t
′
i ∈ T̄i with ti 6= t′i such that

uAi (ti) = αuAi (t′i) + β

12To be precise, the second property of our type diversity was not included in its original
definition of Serrano and Vohra (2005). Thus, our version of type diversity is slightly stronger
than theirs.
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for some α > 0 and β ∈ R.

2. for every i ∈ I and ti ∈ T̄i, there exist a, a′ ∈ A such that

uai (ti) 6= ua
′

i (ti).

Serrano and Vohra (2005) establish the following lemma, which can be

considered an extension of Lemma 1 of the current paper.

Lemma 3.4. (Serrano and Vohra (2005)) Suppose that the environment E

satisfies Assumption 3.3. Then, for each i ∈ I, there exists a function xi :

T̄i → ∆(A) such that for all ti, t
′
i ∈ T̄i with ti 6= t′i,

∑
θ

ui(xi(ti), θ)h
1
i (ti)[θ] >

∑
θ

ui(xi(t
′
i), θ)h

1
i (ti)[θ], (3.31)

where h1
i (ti) ∈ ∆(Θ) denotes the first-order belief of type ti.

Remark 3.8. It is easy to see that Condition (S) implies type diversity.

In Example 3.1 below, we will construct an interdependent-value environ-

ment satisfying type diversity but violating Condition (S) in which there exists

a message profile in S∞W but it induces an outcome different from the one

specified by the social choice function. The main difficulty lies in eliciting each

player’s true type in round -2 announcement.
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Example 3.1. A = {a1, a2}; I = {1, 2, 3}; T̄i = {t1i , t2i } for all i ∈ I. Define

a1 ≡ (1, 0); a2 ≡ (0, 1); t1i ≡ (1, 0); and t2i ≡ (0, 1). Let 3 + 1 ≡ 1. Let

πi : T̄i → ∆
(
T̄−i
)

be player i’s interim belief map from T̄i → ∆(T̄−i) :

πi(ti)[t−i] =

{
2/3 if ti+1 = ti+2 = ti;
1/3 if ti+1 = ti+2 6= ti.

That is, in player i’s view, player (i + 1)’s type and player (i + 2)’s type are

perfectly correlated but they are only partially correlated with player i’s type.

Each player i has the following preferences: for any a ∈ A and t ∈ T̄ ,

ui(a, t) = (1− δ)× a · ti + δ × a · ti+1,

where δ ∈ [0, 1] and a · ti denotes the dot (or, inner) product of the two vectors

a and ti. That is, player i’s preferences depend on his own type and player

(i+ 1)’s type, but not depend on player (i+ 2)’s type.

Consider the following incentive-compatible social choice function f ∗ : T̄ →

∆(A): for any t ∈ T̄ , f ∗(t) = a if and only if there exists a ∈ A such that

#{i ∈ I : ti = a} ≥ 2. We can interpret this f ∗ as the majority rule.

We parameterize the class of environments by the value of δ ∈ [0, 1]: when

δ = 0, the environment corresponds to a private-value one and also satisfies

Assumptions 1 and 2 so that our mechanism can implement f ∗; When δ ∈

(0, 1/2), it corresponds to an interdependent-value environment which satisfies

Condition (S) and Assumption 2 so that our mechanism can implement f ∗;
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and when δ ∈ [1/2, 1], it corresponds to an interdependent-value environment

which satisfies Assumptions 2 and 3, but violates Condition (S).

Consider Example 1 with δ = 1. By Lemma 3.4, we can find a set of lotteries

{xi(ti)}ti∈T̄i,i∈I satisfying inequality (3.31). Therefore, for any τ̄ > 0, we can

adopt the corresponding mechanism (M, τ̄) defined in Section 3.3.1 with this

set of lotteries. We claim that in the case of δ = 1, the mechanism generates a

strategy profile which survives S∞W but induces an outcome which is “not”

consistent with the one specified by the SCF f ∗. This shows some difficulty

of extending our results to general interdependent-value environments. We

formally state this claim as follows:

Claim 3.8. Consider Example 1 with δ = 1. Fix any set of lotteries {xi(ti)}ti∈T̄i,i∈I

satisfying inequality (3.31) and the corresponding mechanism (M, τ̄) defined

in Section 3.3.1. For any i ∈ I and any ti ∈ T̄i, we have that (t′i, . . . , t
′
i) ∈

S∞i Wi(ti|M, T̄ ) where t′i 6= ti.

Proof. See Appendix A.2.

In their Theorem 4 Oury and Tercieux (2012) show that a social choice

function f is continuously implementable by a finite mechanism if and only if

it is implementable in rationalizable strategies by a finite mechanism. They
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do not need any ex post payment, but assume that sending messages in the

mechanism is (slightly) costly. We assume that sending messages is costless,

but allow for small transfers. We show that all of our results can be extended

to the class of interdependent-value environments which satisfy Condition (S).

Bergemann and Morris (2009) show that their robust measurability, which

is a necessary condition for robust virtual implementation, is closely connect-

ed to the degree of interdependence of preferences. They also show that ro-

bust measurability is equivalent to requiring that the notion of measurabil-

ity originally suggested by Abreu and Matsushima (1992b)–henceforth, AM

measurability–holds on the union of all type spaces. Following this idea, in

our paper, AM measurability must be a necessary condition for (full) exact

rationalizable implementation in interdependent value environment.

This example satisfies type diversity. Under type diversity, we know that

every social choice function satisfies AM measurability (see Serrano and Vohra

(2005)). This means that the difficulty we encounter here has nothing to

do with the measurability condition. In other words, we must seek another

explanation if we consider (full) exact implementation, not virtual one.13

13For example, Artemov et al. (2013) show that robust measurability almost always be-
comes a vacuous constraint for robust virtual implementation. This seems to be consistent
with our finding in this example: AM measurability has nothing to do with the problem of
interdependent preferences, while Condition (S) indeed does.
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3.6.3 Budget Balance

Assume I ≥ 3. By constructing d0
i under a stronger (and yet still generic)

version of Assumption 2, following d’Aspremont et al. (2003), we can achieve

budget balance for d0
i . By allocating all the other transfers only across a-

gents, we can achieve budget balance everywhere (both on and off the solution

outcome).

3.6.4 Implementation with Arbitrarily Small Transfers
vs. Virtual Implementation

Virtual implementation means that the planner contents himself with imple-

menting the social choice rule with arbitrarily high probability. For example,

under complete information, Abreu and Sen (1991), Abreu and Matsushima

(1992a), and Matsushima (1988) all show that essentially any SCF is virtu-

ally implementable. While virtual implementation provides for an impressive

conclusion, it comes at the expense of some assumptions. In virtual imple-

mentation, the planner is willing to settle for implementing something that

is ε-close to the SCF. This implies that the planner is considered capable of

committing to any mechanism, which might assign a very bad outcome with

probability ε. In order for this argument to work, players must take these

small probabilities seriously and base decisions on them, with the rational ex-

pectation that these outcomes will be enforced if they happen to be selected
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by the mechanism. If we interpret a mechanism as a contract between the

two parties, it is natural to worry about the possibility of renegotiation and

seek to design renegotiation-proof mechanisms. This argument leads us to the

conclusion that virtual implementation will not be renegotiation-proof, which

potentially upsets its very permissive results. When we are satisfied with virtu-

al implementation, we might simply overlook a big cost of designing a credible

mechanism.

We propose the concept of implementation with arbitrarily small transfers;

this is another concept of approximate implementation, very much like virtual

implementation. The key feature of our mechanism, however, is that undesir-

able outcomes never occur with positive probability. Indeed, we need ex post

transfers but we can make them arbitrarily small. This makes our mechanism

less susceptible to renegotiation and therefore more credible.

.1 Appendix

There are two subsections in the appendix. In Section A.1, we show that our

mechanism also works under iterative deletion of weakly dominated strategies,

i.e., W∞ and moreover, the order of removal of strategies in W∞ is irrelevant

in our mechanism. In Section A.2, we prove the claim we have made in the

argument in Example 1 of Section 6.2.
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.1.1 Order Independence

We now define the process of iterative removal of weakly dominated strate-

gies. We seek to define mechanisms for which the order of removal of weakly

dominated strategies is irrelevant, that is, given an arbitrary type profile, any

message profile in the set of iteratively weakly undominated strategies can im-

plement the socially desired outcome at that type profile. Given a mechanism

M, let U(M, T̄ ) denote an incomplete information game associated with a

model T̄ . Fix a game U(M, T̄ ), player i ∈ I and type t̄i ∈ T̄i. Let H be a

profile of correspondences (Hi)i∈I where Hi is a mapping from T̄i to a subset of

Mi. A message mi ∈ Hi (t̄i) is weakly dominated with respect to H for player

i of type t̄i ∈ T̄i if there exists m′i ∈Mi such that

∑
t−i

[
ui(g(m′i, σ−i (t−i)), θ̂i(ti)) + τi (m

′
i, σ−i (t−i))

]
πi (ti) [t−i]

≥
∑
t−i

[
ui(g(mi, σ−i (t−i)), θ̂i(ti)) + τi (mi, σ−i (t−i))

]
πi (ti) [t−i]

for all σ−i : T̄−i → M−i such that σ−i (t−i) ∈ H−i (t−i) and a strict inequality

holds for some σ−i.
14

Let
{
W k
}∞
k=0

be a sequence of profiles of correspondences such that (i)

W 0
i

(
t̄i|M, T̄

)
= Mi; (ii) any mi ∈ W k+1

i

(
t̄i|M, T̄

)
\W k

i

(
t̄i|M, T̄

)
is weak-

ly dominated with respect to W k for player i of type t̄i; (iii) any mi ∈
14We consider player i’s belief over other players’ pure strategies. However, this formula-

tion is equivalent to taking player i’s belief as a conjecture over other players’ (correlated)
mixed strategies, i.e., σ−i : T̄−i → ∆ (M−i) such that σ−i (t−i) [H−i (t−i)] = 1.
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W∞
i

(
t̄i|M, T̄

)
is weakly undominated with respect to W∞ for player i of

type t̄i where W∞
i (t̄i|M, T̄ ) ≡

⋂∞
l=1W

l
i (t̄i|M, T̄ ).

Let W∞ (t̄|M, T̄
)

=
∏

i∈IW
∞
i

(
t̄|M, T̄

)
for any t̄ ∈ T̄ . Since M is finite,

W k
i

(
t̄i|M, T̄

)
is nonempty for any k. Thus, W∞ is nonempty-valued. Note

that W∞ (t̄|M, T̄
)

depends on the sequence
{
W k
}∞
k=0

. However, we will show

that for any t ∈ T̄ and m ∈ W∞ (t|M, T̄
)
, we have g(m) = f(t). That is, the

socially desired outcome achieved in W∞ is obtained by any elimination order.

We first establish the following claim.

Claim .9. Assume that the environment E satisfies Assumption 2. For γ′ > 0,

there exist λ > 0 and a proper scoring rule d0
i such that for any t′i, t

′′
i ∈ T̄i with

t′i 6= t′′i and any σ̂−2
−i : T̄−i → T̄−i, we have that

λ

∣∣∣∣∣∣
∑

t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
πi (ti) [t−i]

∣∣∣∣∣∣ > γ′. (32)

Proof. Fix any i. Let

D0
i =

d0
i ∈ RT̄ :

∑
t−i∈T̄−i

[
d0
i (t−i, ti)− d0

i (t−i, t
′
i)
]
π̄i (ti) [t−i] > 0, ∀ti 6= t′i

 .

D0
i is the set of proper scoring rules in RT̄ . By Lemma 2, D0

i is a nonempty

open set. Let

I0
i =

d0
i ∈ RT̄ :

∑
t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
π̄i (ti) [t−i] 6= 0,∀ti 6= t′i,∀σ̂−2

−i

 .

Since T̄ is finite, the complement of I0
i has measure zero in RT̄ .
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Therefore,
⋃
i∈I (D0

i ∩ I0
i ) has a positive measure in RT̄ . Thus we can find

a proper scoring rule d0
i such that for any σ̂−2

−i : T̄−i → T̄−i and t′i, t
′′
i ∈ T̄i with

t′i 6= t′′i ,

∑
t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
πi (ti) [t−i] 6= 0.

Finally, since T̄ is finite, for any γ′ > 0, we can find some λ > 0 such that

for any σ̂−2
−i : T̄−i → T̄−i and t′i, t

′′
i ∈ T̄i with t′i 6= t′′i , inequality (B.1) holds.

Proposition .4. Suppose that the environment E satisfies Assumptions 3.1

and 3.2. Assume I ≥ 2. Given any incentive compatible SCF f, for al-

l τ̄ > 0, there exists a mechanism (M, τ̄) such that for any t ∈ T̄ and

m ∈ W∞ (t|M, T̄
)
, we have g(m) = f(t).

Fix τ̄ > 0. Choose the mechanism (M, τ̄) defined in Section 3.3.1, with the

proper scoring rule d0
i given in Claim 8, and λ under γ′ = γ (which is defined

in Section 3.3.1). To prove Proposition B.1, it suffices to show that for any

i ∈ I and t̄i ∈ T̄i, if mi ∈ W∞
i

(
t̄i|M, T̄

)
, then m−1

i = t̄i. This is because from

here we can fill the gap of the argument by adapting the proof of Theorem 2.

The rest of the proof builds upon the following three claims.

Claim .10. Fix any player i of type t̄i. If mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

(
m−2
i , t̄i, ..., t̄i

)
∈

W∞
i

(
t̄i|M, T̄

)
.
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Proof. Let σi be defined such that σi (t̄i) = (t̄i, ..., t̄i) for player i of type t̄i.

Note that we use this notation throughout Section A.1. We prove this claim

in two steps.

Step 1: σi(t̄i) ∈ W∞
i (t̄i|M, T̄ ) for any i, and t̄i.

Fix t̄ ∈ T̄ . Note first that we trivially have σ(t̄) ∈ W 0(t̄|M, T̄ ). For any

k ≥ 0, assume that σ(t̄) ∈ W k(t̄|M, T̄ ). Then, we shall show that σ(t̄) ∈

W k+1(t̄|M, T̄ ). This is equivalent to showing the following: for any m̃i ∈Mi,

either σi(t̄i) is always at least as good as m̃i or σi(t̄i) is a strictly better reply to

some strategies of the other players than m̃i. We verify this by considering the

following two cases of m̃i: (i) m̃−2
i 6= σ−2

i (t̄i) and m̃k
i = σki (t̄i) for all k ≥ −1;

(ii) m̃k
i 6= σki (t̄i) for some k ≥ −1. In Case (i), due to the construction of

the mechanism, σi(t̄i) is at least as good as m̃i for any σ̂−i : T̄−i → M−i by

inequality (3.14). In Case (ii), against the conjecture σ−i, σi(t̄i) is a strictly

better message than m̃i by the argument in Claims 2, 3 and 3.5. Therefore, no

m̃i can weakly dominate σi(t̄i). Thus, σ(t̄) ∈ W k+1(t̄|M, T̄ ). This completes

the proof of Step 1.

Step 2: For any i ∈ I of type t̄i, if mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

(
m−2
i , t̄i, ..., t̄i

)
∈

W∞
i

(
t̄i|M, T̄

)
.

By Step 1, it suffices to show (m−2
i , t̄i, ..., t̄i) ∈ W∞

i

(
t̄i|M, T̄

)
even when

m−2
i 6= t̄i. We shall show that no m̃i can weakly dominate (m−2

i , t̄i, ..., t̄i) by
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considering the following two cases of m̃i: (i) m̃−2
i 6= σ−2

i (t̄i) and m̃k
i = σki (t̄i)

for all k ≥ −1; (ii) m̃k
i 6= σki (t̄i) for some k ≥ −1. In Case (i), due to the

construction of the mechanism, (m−2
i , t̄i, . . . , t̄i) is at least as good as m̃i for

any σ̂−i : T̄−i → M−i by inequality (3.14). In Case (ii),
(
m−2
i , t̄i, ..., t̄i

)
is a

strictly better message than m̃i against conjecture σ−i by the argument in

Case (ii) of Step 1. Thus, no m̃i can weakly dominate (m−2
i , t̄i, ..., t̄i). This

completes the proof.

Claim .11. Fix any player i and type t̄i. If mi ∈ W∞
i (t̄i|M, T̄ ), then (t̄i,m

−1
i , t̄i, ..., t̄i) ∈

W∞
i (t̄i|M, T̄ ).

Proof. By Step 1 in the proof of Claim B.2, it suffices to consider the case

that m−1
i 6= t̄i. By considering the following two cases, we shall show that no

m̃i can weakly dominate (t̄i,m
−1
i , t̄i, ..., t̄i): (i) m̃−1

i 6= m−1
i and m̃k

i = t̄i for all

k 6= −1; (ii) m̃k
i 6= t̄i for some k 6= −1.

In Case (i), we proceed in two steps.

Step 1: We show that for any m̃i , if m̃−1
i 6= m−1

i and m̃k
i = mk

i for all

k 6= −1, mi is strictly better than m̃i against some conjecture σ̂−i such that

σ̂−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for all t̄−i ∈ T̄−i.

Since mi ∈ W∞
i (t̄i|M, T̄ ), one of the following two cases must hold: (1)

player i of type t̄i is indifferent between m̃i and mi against any conjecture

σ′−i such that σ′−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ ) for all t̄−i; and (2) mi is strictly
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better than m̃i for player i of type t̄i against some conjecture σ̂−i such that

σ̂−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ ) for all t̄−i ∈ T̄−i.

By Claim B.1, Case (1) is impossible. Thus, we must have Case (2). Since

mi and m̃i only differ in round −1, the utility gain for player i of type t̄i

by using mi rather than m̃i is concentrated in the payment rule λd0
i , which

is larger than γ by inequality (B.1). Next, the utility loss comes from the

random dictator component of the outcome function, which is bounded above

from εE. By inequality (3.13), we know γ−εE > 0. Thus, mi is strictly better

than m̃i.

Step 2: We show that for any m̃i , if m̃−1
i 6= m−1

i and m̃k
i = t̄i for all k 6= −1,

(t̄i,m
−1
i , t̄i, ..., t̄i) is strictly better than m̃i against some conjecture σ̃−i such

that σ̃−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ ) for all t̄−i ∈ T̄−i.

Since m−1
i 6= t̄i and mi ∈ W∞

i (t̄i|M, T̄ ), by Claim B.1, there exist a

nonempty set of players J ⊂ I\{i} and a collection of strategies {σ̂j}j∈J such

that σ̂j(t̄j) ∈ W∞
j (t̄j|M, T̄ ) and σ̂−2

j (t̄j) 6= t̄j for all j ∈ J and t̄j ∈ T̄j. From

Claim B.2, we know that (σ̂−2
j (t̄j), t̄j, ..., t̄j) ∈ W∞

j (t̄j|M, T̄ ) for all j ∈ J. Let

σ̃−i be defined such that σ̃−2
−i (t̄−i) = σ̂−2

−i (t̄−i) and σ̃k−i(t̄−i) = σ−i(t̄−i) for all

t̄−i ∈ T̄−i and k ≥ −1. Thus, σ̃−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ ) for all t̄−i ∈ T̄−i.

Fix such conjecture σ̃−i. Since (t̄i,m
−1
i , t̄i, ..., t̄i) and m̃i only differ in round

−1, the utility gain for player i of type t̄i by using (t̄i,m
−1
i , t̄i, ..., t̄i) rather than
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m̃i is concentrated in the payment rule λd0
i , which is larger than γ. Next, the

utility loss through the random dictator component of the outcome function,

which is bounded above from εE. Since we know that γ − εE > 0 from the

proof of Step 1, (t̄i,m
−1
i , t̄i, ..., t̄i) is strictly better than m̃i against conjecture

σ̃−i.

In Case (ii), (t̄i,m
−1
i , t̄i, ..., t̄i) is strictly better than m̃i against some con-

jecture, as we can make an argument parallel to Step 2 in the proof of Claim

B.2.

Thus, no m̃i can weakly dominate (t̄i,m
−1
i , t̄i, ..., t̄i). This completes the

proof.

Claim .12. Fix any i ∈ I and t̄i ∈ T̄i. If mi ∈ W∞
i (t̄i|M, T̄ ), then m−1

i = t̄i.

Proof. Suppose not, that is, there exists some mi ∈ W∞
i (t̄i|M, T̄ ) with m−1

i 6=

t̄i. Then by Claim B.3, (t̄i,m
−1
i , t̄i, ..., t̄i) ∈ W∞

i (t̄i|M, T̄ ). Since the indicator

function e(·) has a positive weight in this case, by inequality (3.14), we conclude

that for any j ∈ I\{i} and t̄j ∈ T̄j, if mj ∈ W∞
j (t̄j|M, T̄ ), then m−2

j = t̄j.

Since mi ∈ W∞
i (t̄i|M, T̄ ), by Claim 3.2, whenever m−1

i 6= t̄i, mi is weakly

dominated by (m−2
i , t̄i,m

0
i , . . . ,m

K
i ). This is a contradiction.
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.1.2 Proof of Claim 3.8

Recall that T̄i = {t1i , t2i } = {(1, 0), (0, 1)} for each i ∈ I and A = {(1, 0), (0, 1)}.

Recall also that we set δ = 1 in Claim 3.8. So, player i’s preferences only

depend on player i + 1’s type. To simplify the notation, we write player i’s

preferences as follows: ui(a, t) ≡ ui(a, t−i) = a · ti+1, for any a ∈ A and t ∈ T̄ .

Let σ′ be a strategy profile such that for each i ∈ I and ti ∈ T̄i, σ′i(ti) =

(t′i, ..., t
′
i) where t′i ∈ T̄i\{ti}. Then we show that σ′i(ti) ∈ S∞i Wi(ti|M, T̄ )

by the following lemmas. For each i ∈ I, we define αi : T̄i → T̄i such that

αi(ti) 6= ti for all ti ∈ T̄i.

First, we show that a non-truthful announcement by all players constitutes

a Bayes Nash equilibrium in the direct-revelation mechanism (T̄ , f ∗) in Lemma

B.5.

Lemma .5. For any player i of type ti,

∑
t−i∈T̄−i

ui(f
∗(t′i, α−i(t−i)), t−i)πi(ti)[t−i] ≥

∑
t−i∈T̄−i

ui(f
∗(ti, α−i(t−i)), t−i)πi(ti)[t−i].

(33)

Proof. In player i’s view, other players’ types are perfectly correlated. Besides,

f ∗ is a majority rule. Therefore, in player i’s view, player i cannot change

the outcome by his unilateral deviation when the other players are making a

consistent (false) announcement. Thus, we complete the proof.

158



Lemma .6. For any player i of type ti, ui(xi(t
′
i), t

′
i+1)− ui(xi(ti), t′i+1) > 0 if

ti 6= t′i = t′i+1.

Proof. Fix any outcome a ∈ A. Player i of type ti’s interim utility is given as

follows: ∑
t−i∈T̄−i

ui(a, t−i)πi(ti)[t−i] =
2

3
a · ti +

1

3
a · t′i,

where ti 6= t′i. Therefore, player i of type ti strictly prefers a to the other

outcome if and only if a = ti. Since {xi(ti)}i∈I,ti∈T̄i satisfies inequality (3.31)

and there are only two outcomes contained in A, it must be that xi(ti)[a] > 1/2

if and only if ti = a. Since ui (a, t−i) = a·ti+1, ui(xi(t
′
i), t

′
i+1)−ui(xi(ti), t′i+1) > 0

if ti 6= t′i = t′i+1.

Lemma .7. For every i ∈ I and ti ∈ T̄i, we have σ′i(ti) ∈ S∞i Wi(ti|M, T̄ ).

Proof. We prove Lemma B.7 in the following three steps.

Step 1: For every i ∈ I and ti ∈ T̄i, against conjecture σ′−i, σ
′
i (ti) is a strictly

better message than m̃i if m̃k
i = t′i for any k ≥ −1.

Fix any m̃i. First, consider the case that m̃k
i 6= t′i for some k ∈ {−1, 0}.

The utility gain in payment rule λd0
i from using σ′i(ti) rather than m̃i is

λ
∑

t−i∈T̄−i

[
d0
i (σ
′−1
−i (t−i), t

′
i)− d0

i (σ
′−1
−i (t−i), ti)

]
πi(ti)[t−i]

= λ
∑

t′−i∈T̄−i

[
d0
i

(
t′−i, t

′
i

)
− d0

i

(
t′−i, ti

)]
πi (t

′
i)
[
t′−i
]

> γ,
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where ti+1 = ti+2 = ti 6= t′i = t′i+1 = t′i+2 and the first equality follows

from that πi(ti)[t−i] = πi(t
′
i)[t
′
−i] in this example; the last inequality follows

from inequality (3.10). All the possible loss (from using σ′i(ti) rather than

m̃i) consists of (i) the utility loss in the random dictatorial component of the

outcome function weighted by e(·) function, which is bounded above from εE;

(ii) the utility loss in di, which is bounded above from ξ; (iii) the utility loss

in dki for all k ≥ 1. The total loss is bounded above from εE + ξ +Kη.

For any outcome that depends on kth message profile, if m̃k
i 6= t′i, σ

′
i(ti) is

at least as good as m̃i by inequality (B.2).

By inequality (3.13), we know γ > εE + ξ + Kη. Therefore, σ′i(ti) is a

strictly better reply to σ′−i than any such m̃i.

Finally, consider the case that m̃−1
i = m̃0

i = t′i and m̃k
i 6= t′i for some k ≥ 1.

For any k ≥ 1, in terms of the outcome that depends on the kth message

profile, if m̃k
i 6= t′i, σ

′
i(ti) is at least as good as m̃i by inequality (B.2). In terms

of payments, since σ′i(ti) = (t′i, ..., t
′
i) is a consistent message, the utility gain

(from using σ′i(ti) rather than m̃i) in the payment rules di and dki for all k ≥ 1

is bounded below by ξ + η. Therefore, σ′i(ti) is a strictly better reply to σ′−i

than any such m̃i. This completes the proof of Step 1.

Step 2: For every i ∈ I and ti ∈ T̄i, σ′i(ti) ∈ W 1
i (ti|M, T̄ ).

Fix any player i of type ti and m̃i 6= σ′i(ti). Then, it suffices to show that

160



no m̃i can weakly dominate σ′i(ti). More specifically, Taking the previous step

into account, we can decompose our argument into the following two cases of

m̃i:

Case (i) m̃−2
i 6= t′i and m̃k

i = t′i for all k ≥ −1.

Let m̄−i ∈M−i be defined such that m̄−1
j = m̄0

j for all j 6= i. Therefore, we

have e((m−1
i , m̄−1

−i ), (m
0
i , m̄

0
−i)) = 0 whenm−1

i = m0
i . Let m̃−i ∈M−i be defined

such that m̃−1
j 6= m̃0

j for some j 6= i. Then, we have e((m−1
i , m̃−1

−i ), (m
0
i , m̃

0
−i)) =

ε for all mi. Let ν be a conjecture of type ti such that ν(m̄−i|t−i) = 1 and

ν(m̃−i|t′−i) = 1 where ti+1 = ti+2 = ti 6= t′i = t′i+1 = t′i+2. Then, the utility net

gain for player i of type ti from choosing σ′i(ti) rather than m̃i is given:

{
0× ui(xi(t′i), t−i)πi(ti)[t−i] + ε× ui(xi(t′i), t′−i)πi(ti)[t′−i]

}
−

{
0× ui(xi(ti), t−i)πi(ti)[t−i] + ε× ui(xi(ti), t′−i)πi(ti)[t′−i]

}
= ε

{
ui(xi(t

′
i), t

′
−i)− ui(xi(ti), t′−i)

}
πi(ti)[t

′
−i]

> 0,

where the last inequality follows from Lemma B.6. Therefore, σ′i(ti) is a strictly

better reply to ν than any such m̃i.

Case (ii) m̃k
i 6= t′i for some k ≥ −1.
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By Step 1, we conclude that σ′i(ti) is a strictly better message to conjecture

σ′−i than any such m̃i. Thus, no m̃i can weakly dominate σ′i(ti) so that σ′i(ti) ∈

W 1
i (ti|M, T̄ ). This completes the proof of Step 2.

Step 3: For every i ∈ I and ti ∈ T̄i, we have σ′i(ti) ∈ S∞i Wi(ti|M, T̄ ).

Fix conjecture σ′−i and any m̃i. We first show that for each player i of type

ti, σ
′
i(ti) is a best response to σ′−i by considering the following two cases: (i)

m̃−2
i 6= t′i and m̃k

i = t′i for all k ≥ −1; (ii) m̃k
i 6= t′i for some k ≥ −1. In Case

(i), player i of type ti is indifferent between m̃i and σ′i(ti) since the indicator

function e(·) has a value of 0. In Case (ii), it follows immediately from Step

1. Thus, for every i ∈ I and ti ∈ T̄i, we have σ′i(ti) ∈ S2
i (ti|M, T̄ ). Fix

i ∈ I and ti ∈ T̄i. For each k ≥ 2, we assume by our inductive hypothesis

that σ′i(ti) ∈ Ski (ti|M, T̄ ). Then, we can conclude that σ′i(ti) ∈ Sk+1
i (ti|M, T̄ ),

since we can always fix σ′−i as a conjecture of player i of type ti. This completes

the proof of Step 3.
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Appendix A

Proofs of Chapter One

Revisit to the necessary condition in Moore and

Repullo (1988)

In this section, we restate the necessary condition, i.e., Condition C, in The-

orem 1 of Moore and Repullo (1988) and show that Condition C is trivially

satisfied in qusilinear environment.

Condition C For each pair of profiles θ and φ in Θ, and for each a ∈ f (θ)

but a 6∈ f (φ) , there exists a finite sequence

a (θ, φ; a) ≡ {a0 = a, a1, ..., ak, ..., ah = x, ah+1 = y} ⊂ A,

with h = h (θ, φ; a) ≥ 1, such that:

(1) for each k = 0, ..., h−1, there is some particular agent j (k) = j (k|θ, φ; a) ,

say, for whom

akR
j(k) (θ) ak+1; and
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(2) there is some particular agent j (h) = j (h|θ, φ; a) , say, for whom

[x =] ahR
j(h) (θ) ah+1 [= y] and [y =] ah+1P

j(h)ah [= x] .

Further, h (θ, φ; a) is uniformly bounded by some h̄ <∞.

We first show that with sufficiently large transfers, Conditon C is trivially

satisfied in qusilinear environment.

To see Condition C is trivially satisfied when large enough transfers are

allowed, we consider a pair of states {(θi, θ−i) , (θ′i, θ−i)} and a = f (θi, θ−i) 6=

f (θ′i, θ−i) .

Since the state space is finite, there exists a large enough bound T̄ ∈ R+,

and tx, ty ≤ T̄ , x, y ∈ A, such that {x, tx} and {y, ty} is a pair of outcomes,

satisfying

ui (x, θi)− tx > ui (y, θi)− ty,

ui (x, θ
′
i)− tx < ui (y, θ

′
i)− ty.

Further, ui (a, θi) > ui (a
′, θi)− t, for all θi ∈ Θi, for any t ∈ {tx, ty}.

Now, let the finite sequence be

a (θ, φ; a) ≡ {a0 = a, a1 = {x, tx} , a2 = {y, ty}} .

Let j (0) = j (1) = i. We have

ui (a, θi) > ui (x, θi)− tx > ui (y, θi)− ty
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that is, (1) in Condition C holds;

and

ui (x, θi)− tx > ui (y, θi)− ty,

ui (x, θ
′
i)− tx < ui (y, θ

′
i)− ty

that is, (2) in Condition C holds.

We show that with full use of lotteries, the large payments can be decreased

into arbitrarily small scale.

Recall that for any distinct types θi and θ′i, there exists a pair of lotteries{
xθi,θ′i , xθ′i,θi

}
such that

ui(xθi,θ′i , θi) > ui(xθ′i,θi , θi);

ui(xθi,θ′i , θ
′
i) < ui(xθ′i,θi , θ

′
i).

For any t̄ > 0, we can find some small enough pa > 0, such that there exists

t < t̄,

ui
(
(1− pa)a+ paxθi,θ′i , θi

)
− t > ui((1− pa)a+ paxθ′i,θi , θi)− t;

ui((1− pa)a+ paxθi,θ′i , θ
′
i)− t < ui

(
(1− pa)a+ paxθ′i,θi , θ

′
i

)
− t.

In our mechanism, the finite sequence is

a (θ, φ; a) ≡
{
a0 = a, a1 =

{
(1− pa)a+ paxθi,θ′i ,−t

}
, a2 =

{
(1− pa)a+ paxθ′i,θi ,−t

}}
.
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Appendix B

Proofs of Chapter Three

Order Independence

In this Appendix, we show that our mechanism also works under iterative

deletion of weakly dominated strategies, i.e., W∞ and moreover, the order of

removal of strategies in W∞ is irrelevant in our mechanism.

We now define the process of iterative removal of weakly dominated strate-

gies. We seek to define mechanisms for which the order of removal of weakly

dominated strategies is irrelevant, that is, given an arbitrary type profile, any

message profile in the set of iteratively weakly undominated strategies can im-

plement the socially desired outcome at that type profile. Given a mechanism

M, let U(M, T̄ ) denote an incomplete information game associated with a

model T̄ . Fix a game U(M, T̄ ), player i ∈ I and type t̄i ∈ T̄i. Let H be a

profile of correspondences (Hi)i∈I where Hi is a mapping from T̄i to a subset of

Mi. A message mi ∈ Hi (t̄i) is weakly dominated with respect to H for player
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i of type t̄i ∈ T̄i if there exists m′i ∈Mi such that

∑
t−i

[
ui(g(m′i, σ−i (t−i)), θ̂i(ti)) + τi (m

′
i, σ−i (t−i))

]
πi (ti) [t−i]

≥
∑
t−i

[
ui(g(mi, σ−i (t−i)), θ̂i(ti)) + τi (mi, σ−i (t−i))

]
πi (ti) [t−i]

for all σ−i : T̄−i → M−i such that σ−i (t−i) ∈ H−i (t−i) and a strict inequality

holds for some σ−i.
1

Let
{
W k
}∞
k=0

be a sequence of profiles of correspondences such that (i)

W 0
i

(
t̄i|M, T̄

)
= Mi; (ii) for any mi ∈ W k+1

i

(
t̄i|M, T̄

)
\W k

i

(
t̄i|M, T̄

)
, mi

is weakly dominated with respect to W k for player i of type t̄i; (iii) for

W∞
i

(
t̄i|M, T̄

)
=
⋂∞
l=1W

l
i

(
t̄i|M, T̄

)
, any mi ∈ W∞

i

(
t̄i|M, T̄

)
is weakly un-

dominated with respect to W∞ for player i of type t̄i.

Let W∞ (t̄|M, T̄
)

=
∏

i∈IW
∞
i

(
t̄|M, T̄

)
for any t̄ ∈ T̄ . Since M is fi-

nite, W k
i

(
t̄i|M, T̄

)
is nonempty for any k. Thus, W∞ is nonempty. Note that

W∞ (t̄|M, T̄
)

is dependent on the sequence
{
W k
}∞
k=0

. However, we will show

that for any t ∈ T̄ and m ∈ W∞ (t|M, T̄
)
, we have g(m) = f(t). That is,

the socially desired outcome achieved in W∞ is obtained by any elimination

order.

We first establish the following claim.

1We consider player i’s belief over other players’ pure strategies. However, this formula-
tion is equivalent to taking player i’s belief as a conjecture over other players’ (correlated)
mixed strategies, i.e., σ−i : T̄−i → ∆ (M−i) such that σ−i (t−i) [H−i (t−i)] = 1.
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Claim B.1. Assume that the environment E satisfies Assumption 2. Given

γ′ > 0. There exist λ > 0 and a proper scoring rule d0
i such that for any t′i,

t′′i ∈ T̄i with t′i 6= t′′i and any σ̂−2
−i : T̄−i → T̄−i, we have that

λ

∣∣∣∣∣∣
∑

t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
πi (ti) [t−i]

∣∣∣∣∣∣ > γ′. (B.1)

Proof. Fix any i. Let

D0
i =

d0
i ∈ RT̄ :

∑
t−i∈T̄−i

[
d0
i (t−i, ti)− d0

i (t−i, t
′
i)
]
π̄i (ti) [t−i] > 0,∀ti 6= t′i

 .

D0
i is the set of proper scoring rules in RT̄ . By Lemma 2, D0

i is a nonempty

open set. Let

I0
i =

d0
i ∈ RT̄ :

∑
t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
π̄i (ti) [t−i] 6= 0,∀ti 6= t′i,∀σ̂−2

−i

 .

Since T̄ is finite, the complement of I0
i has measure zero in RT̄ .

Therefore,
⋃
i∈I (D0

i ∩ I0
i ) has a positive measure in RT̄ . Thus we can find

a proper scoring rule d0
i such that for any σ̂−2

−i : T̄−i → T̄−i and t′i, t
′′
i ∈ T̄i with

t′i 6= t′′i ,

∑
t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
πi (ti) [t−i] 6= 0.

Finally, since T̄ is finite, for any γ′ > 0, we can find some λ > 0 such that

for any σ̂−2
−i : T̄−i → T̄−i and t′i, t

′′
i ∈ T̄i with t′i 6= t′′i , inequality (B.1) holds.
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Proposition B.1. Suppose that the environment E satisfies Assumptions 3.1

and 3.2. Assume I ≥ 2. Given any incentive compatible SCF f, for al-

l τ̄ > 0, there exists a mechanism (M, τ̄) such that for any t ∈ T̄ and

m ∈ W∞ (t|M, T̄
)
, we have g(m) = f(t).

Fix τ̄ > 0. Choose the mechanism (M, τ̄) defined in Section 3.3.1, with the

proper scoring rule d0
i given in Claim 8, and λ under γ′ = γ (which is defined

in Section 3.3.1). To prove Proposition B.1, it suffices to show for any i ∈ I

and t̄i ∈ T̄i, if mi ∈ W∞
i

(
t̄i|M, T̄

)
, then m−1

i = t̄i. The rest of the proof is

identical to the proof of Theorem 3.2. We prove this result in the following

two claims.

Claim B.2. Fix any player i of type t̄i. If mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

(
m−2
i , t̄i, ..., t̄i

)
∈

W∞
i

(
t̄i|M, T̄

)
.

Proof. Define σi such that σi (t̄i) = (t̄i, ..., t̄i) for player i of type t̄i. We prove

this claim in two steps.

Step 1: σi (t̄i) ∈ W∞
i

(
t̄i|M, T̄

)
for any i, any t̄i.

Note that σ (t̄) ∈ W 0
(
t̄|M, T̄

)
. Suppose σ (t̄) ∈ W k

(
t̄|M, T̄

)
, for some

k ≥ 0, we show that σ (t̄) ∈ W k+1
(
t̄|M, T̄

)
. For any m̃i ∈ Mi, we show

that m̃i cannot weakly dominate σi (t̄i) in two cases: (i) m̃−2
i 6= σ−2

i (t̄i) and

m̃k
i = σki (t̄i) for all k ≥ −1; (ii) m̃k

i 6= σki (t̄i) for some k ≥ −1. In Case

(i), σi (t̄i) is weakly better than m̃i for any σ̂−i : T̄−i → M−i by inequality
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(3.14). Therefore, m̃i cannot weakly dominate σi (t̄i) . In Case (ii), against the

conjecture σ−i, σi (t̄i) is a strictly better message than m̃i by the argument

in Claims 2, 3 and 3.5. Therefore, m̃i cannot weakly dominate σi (t̄i) . Thus,

σ (t̄) ∈ W k+1
(
t̄|M, T̄

)
. This completes the proof of Step 1.

Step 2: For any i ∈ I of type t̄i, if mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

(
m−2
i , t̄i, ..., t̄i

)
∈

W∞
i

(
t̄i|M, T̄

)
.

By step 1, it suffices to show
(
m−2
i , t̄i, ..., t̄i

)
∈ W∞

i

(
t̄i|M, T̄

)
for m−2

i 6= t̄i.

For any m̃i ∈ Mi, we show that m̃i cannot weakly dominate
(
m−2
i , t̄i, ..., t̄i

)
in two cases: (i) m̃−2

i 6= σ−2
i (t̄i) and m̃k

i = σki (t̄i) for all k ≥ −1; (ii) m̃k
i 6=

σki (t̄i) for some k ≥ −1. In Case (i), since m−2
i 6= t̄i, then we must have

that e (m̄0, m̄1) = 0 for any m̄ ∈ W∞ (t̄M, T̄
)
, for any t̄. (Note that mi is

weakly dominated whenever e (m̄0, m̄1) 6= 0 for some m̄ ∈ W∞ (t̄M, T̄
)
. See

inequality (3.14)). Therefore, player i of type t̄i is indifferent between m̃i and(
m−2
i , t̄i, ..., t̄i

)
. In Case (ii),

(
m−2
i , t̄i, ..., t̄i

)
is a strictly better message than

m̃i against conjecture σ−i by the argument in Case (ii) of Step 1. Thus, m̃i

cannot weakly dominate
(
m−2
i , t̄i, ..., t̄i

)
. This completes the proof.

Claim B.3. Fix any player i and type t̄i. If mi ∈ W∞
i

(
t̄i|M, T̄

)
, then(

t̄i,m
−1
i , t̄i, ..., t̄i

)
∈ W∞

i

(
t̄i|M, T̄

)
.

Proof. By Step 1 in the proof of Claim B.2, it suffices to consider the case

that m−1
i 6= t̄i. For any m̃i ∈ Mi, we show that m̃i cannot weakly dominate
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(
t̄i,m

−1
i , t̄i, ..., t̄i

)
in two cases: (i) m̃−1

i 6= m−1
i and m̃k

i = σki (t̄i) for all k 6= −1;

(ii) m̃k
i 6= t̄i for some k 6= −1.

In Case (i), we proceed in two steps.

Step 1: We show that for any m̃i such that m̃−1
i 6= m−1

i and m̃k
i = mk

i for all

k 6= −1, mi is strictly better than m̃i against some conjecture σ̂−i such that

σ̂−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for all t̄−i.

Since mi ∈ W∞
i

(
t̄i|M, T̄

)
, one of the following two cases must hold: (1)

player i of type t̄i is indifferent between m̃i and mi against any conjecture

σ′−i such that σ′−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for all t̄−i; and (2) mi is strictly

better than m̃i for player i of type t̄i against some conjecture σ̂−i such that

σ̂−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for all t̄−i.

By Claim B.1, Case (1) is impossible. Thus, we must have Case (2). Since

mi and m̃i only differs in round −1, the utility difference for player i of type

t̄i by using mi rather than m̃i is concentrated in the payment rule λd0
i (larger

than γ by inequality (B.1) together with a potential utility loss through e

function (bounded above by εE), which is at least larger than γ − εE. By

inequality (3.13), γ − εE > 0.

Step 2: We show that for any m̃i such that m̃−1
i 6= m−1

i and m̃k
i = t̄i for all

k 6= −1,
(
t̄i,m

−1
i , t̄i, ..., t̄i

)
is strictly better than m̃i against some conjecture

σ̃−i such that σ̃−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for all t̄−i.
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Sincem−1
i 6= t̄i andm ∈ W∞

i

(
t̄i|M, T̄

)
, by Claim 2, there exists a nonemp-

ty set of players J ⊂ I\{i} such that σ̂−2
j (t̄j) 6= t̄j for all j ∈ J, of type t̄j.

From Claim B.2, we know that
(
σ̂−2
j (t̄j) , t̄j, ..., t̄j

)
∈ W∞

j

(
t̄j|M, T̄

)
for all

j ∈ J. Define σ̃−i such that σ̃−2
−i (t̄−i) = σ̂−2

−i (t̄−i) and σ̃k−i (t̄−i) = σ−i (t̄−i) for

all t̄−i and k ≥ −1. Thus, σ̃−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for all t̄−i.

Fix conjecture σ̃−i. Since
(
t̄i,m

−1
i , t̄i, ..., t̄i

)
and m̃i only differs in round −1,

the utility difference for player i of type t̄i by using
(
t̄i,m

−1
i , t̄i, ..., t̄i

)
rather

than m̃i is concentrated in the payment rule λd0
i together with a potential

utility loss through e function, which is larger than γ − εE by the proof of

Step 1. Therefore, m̃i cannot weakly dominate
(
t̄i,m

−1
i , t̄i, ..., t̄i

)
.

In Case (ii), m̃i cannot weakly dominate
(
t̄i,m

−1
i , t̄i, ..., t̄i

)
, as we can make

an argument parallel to Step 2 in the proof of Claim B.2.

Thus, m̃i cannot weakly dominate
(
t̄i,m

−1
i , t̄i, ..., t̄i

)
. This completes the

proof.

Claim B.4. Fix any i ∈ I and t̄i ∈ T̄i. If mi ∈ W∞
i

(
t̄i|M, T̄

)
, then m−1

i = t̄i.

Proof. Suppose not, that is, there exists some mi ∈ W∞
i

(
t̄i|M, T̄

)
such

that m−1
i 6= t̄i. Then by Claim B.3,

(
t̄i,m

−1
i , t̄i, ..., t̄i

)
∈ W∞

i

(
t̄i|M, T̄

)
.

By inequality (3.14), we conclude that for any j ∈ I\{i} and t̄j ∈ T̄j, if

mj ∈ W∞
j

(
t̄j|M, T̄

)
, then m−2

j = t̄j. Suppose mi ∈ W∞
i

(
t̄i|M, T̄

)
. Then, by

Claim 3.2, we have m−1
i = t̄i. This is a contradiction.
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Proof of Claim in Example 1

Since now player i’s preferences only depends on player i+1’s type, for simplic-

ity of notation, we write player i’s preference as follows, ui (a, t) ≡ ui (a, ti+1) =

a · ti+1, for any a and any t.

For any τ̄ > 0, for Example 1, we adopt a mechanism (M, τ̄) defined

in Section 3.3.1. Let σ′ be a strategy profile such that σ′i (ti) = (t′i, ..., t
′
i)

such that ti 6= t′i for all player i ∈ I and all ti ∈ T̄i. We will show that

σ′i (ti) ∈ S∞i Wi

(
ti|M, T̄

)
, for all i and ti. We prove this in the following

claims. Throughout this section, we write ti = tj 6= t′j = t′i for all i, j ∈ I.

Therefore, t′−i 6= t−i if and only if t′j 6= ti for all j 6= i.

Claim B.5. For any player i of type ti,

∑
t−i∈T̄−i

ui (f (t′i, σ
′
i (t−i)) , ti+1) πi (ti) [t−i] ≥

∑
t−i∈T̄−i

ui (f (ti, σ
′
i (t−i)) , ti+1) πi (ti) [t−i] .

(B.2)

Proof. For any t′−i 6= t−i, πi (ti) [t−i] = πi (t
′
i)
[
t′−i
]

in this example. Therefore,

by the construction of f, f does not depend on player i’s type, from player i’s

perspective.

Claim B.6. Fix any set of lotteries {xi (ti)}i∈I,ti∈Ti such that satisfying in-

equality (3.31). For any player i of type ti, xi (ti) [a] > 1
2

if and only if ti = a.
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Proof. Consider any outcome a. Player i of type ti’s interim utility is as follows:

∑
ti+1

ui (a, ti+1) =
2

3
a · ti +

1

3
a · t′i.

Therefore, we can see player i of type ti strictly prefer a to the other outcome

whenever a = ti. Since {xi (ti)}i∈I,ti∈Ti is such that inequality (3.31) holds, and

there are only two outcome in A, we must have xi (ti) [a] > 1
2

if and only if

ti = a.

Claim B.7. In the game U
(
M, T̄

)
, for every i ∈ I, ti ∈ T̄i, σ′i (ti) ∈

S∞i Wi

(
ti|M, T̄

)
.

Note that σ′ (t) ∈ W 0
(
t|M, T̄

)
. Suppose σ′ (t) ∈ S k̃

(
t|M, T̄

)
, for some

k̃ ≥ 0, we show that σ′ (t̄) ∈ S k̃+1
(
t̄|M, T̄

)
. Consider player i of type ti. For

any m̃i ∈Mi, we show that m̃i cannot weakly dominate σ′i (ti) in the following

two cases.

Case (i) m̃−2
i 6= t′i and m̃k

i = t′i for all k ≥ −1.

Let m̄−i ∈M−i be such that m̄−1
j = m̄0

j for all j 6= i, therefore e(
(
m−1
i , m̄−1

−i
)
,
(
m0
i , m̄

0
−i
)
) =

0 when m−1
i = m0

i . Let m̃−i ∈ M−i be such that m̃−1
j 6= m̃0

j for some j 6= i,

therefore e(
(
m−1
i , m̃−1

−i
)
,
(
m0
i , m̃

0
−i
)
) = ε for all mi. Let ν be a conjecture of

type ti such that ν[m̄−i|ti+1, ti+2] = 1 and ν[m̃−i|t′i+1, t
′
i+2] = 1. The expected
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payoff gain for player i of type ti from choosing σ′i (ti) rather than m̃i is

{
0× ui(xi (t′i) , ti+1)πi (ti) [t−i] + ε× ui(xi (t′i) , t′i+1)πi (ti)

[
t′−i
]}

−
{

0× ui (xi (ti) , ti+1) πi (ti) [t−i] + ε× ui
(
xi (ti) , t

′
i+1

)
πi (ti)

[
t′−i
]}

= ε
{
ui(xi (t

′
i) , t

′
i+1)− ui

(
xi (ti) , t

′
i+1

)}
πi (ti)

[
t′−i
]

> 0.

The last inequality follows from Claim B.6. Therefore, m̃i cannot weakly dom-

inate σ′i (ti) .

Case (ii) m̃k
i 6= t′i for some k ≥ −1.

We show that against conjecture σ′−i, σ
′
i (ti) is a strictly better message than

m̃i. First, consider m̃k
i 6= t′i where k = 0 or 1. In terms of outcome dependent

on kth message profile where k ≥ 1, if m̃k
i 6= t′i, σ

′
i (ti) is better message than

m̃i by (B.2). Therefore, the utility difference for player i of type t̄i by using

σ′i (ti) rather than m̃i in the payment rule λd0
i together with a potential utility

loss bounded above by εE. From the construction of d0
i , we have

λ
∑

t−i∈T̄−i

[
d0
i

(
σ′−i (t−i) , t

′
i

)
− d0

i

(
σ′−i (t−i) , ti

)]
πi (ti) [t−i]

= λ
∑

t−i∈T̄−i

[
d0
i

(
t′−i, t

′
i

)
− d0

i

(
t′−i, ti

)]
πi (t

′
i)
[
t′−i
]

> γ,
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where the first equality follows because for any t′−i 6= t−i, πi (ti) [t−i] = πi (t
′
i)
[
t′−i
]

in this example; the last inequality follows from inequality (3.10). By inequal-

ity (3.13), γ > εE. Therefore, m̃i cannot weakly dominate σ′i (ti) .

Finally, consider m̃k
i 6= t′i for some k ≥ 1.In terms of outcome dependent

on kth message profile where k ≥ 1, if m̃k
i 6= t′i, σ

′
i (ti) is better message than

m̃i by (B.2). In terms of payments, σ′i (ti) is a strictly better message than m̃i

by the construction of σ′i (ti) .
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