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SUMMARY 

Phosphatase of regenerating liver 3 (PRL-3) is a metastatic phosphatase localized on 

plasma and endosomal membranes. It functions to promote multiple oncogenetic 

processes such as cell proliferation, angiogenesis, invasion and metastasis. In this study, I 

report that PRL-3 could function to promote autophagy dependent on the activation of 

Unc-51-Like Kinase 1 (ULK1), a key initiator of the autophagic process. Specifically, 

overexpression of PRL-3 enhanced hVps34-Beclin-1-dependent canonical 

autophagosome formation; accelerated LC3-I to LC3-II conversion dependent on 

autophagy related gene 5 (ATG5) expression; and promoted the degradation of p62, a 

well-known autophagy substrate. Autophagy is a “self-eating” process, which has dual 

roles in promoting or suppressing tumor growth depending on cellular context. I found 

that PRL-3 required autophagy to promote the growth of ovarian cancer cell line A2780. 

Clinically, in the biggest publically available ovarian cancer cohort, the prognostic value 

of PRL-3 expression levels was also found to be dependent on the co-expression of high 

levels of autophagy related genes (including hVps34, Beclin-1, and ATG5).  

Surprisingly, both endogenous and exogenous PRL-3 protein were degraded specifically 

upon starvation induced autophagy, and accumulated upon chemically or genetically-

induced autophagic inhibition. Thus, the autophagy enhancer PRL-3 also acts as an 

autophagy substrate. PRL-3 and autophagy is likely to forms a negative feedback loop to 

fine-tune their activity. My results characterize that PRL-3 is a novel autophagic 

substrate, and it also sheds new insight into post-translational regulation of PRL-3 

expression. 

Finally, I showed that constitutively active mutations of KRas (specifically KRas-G12V 

or KRas-G13D), frequently seen in many human cancers, upregulated expression levels 

of PRL-3 protein, but not mRNA. KRas upregulation of PRL-3 could be abolished upon 

treatment with the MEK inhibitors U0126 or PD98059. Thus, constitutively activate 



 x 

KRas mutation is a novel post-transcriptional regulator of PRL-3, and this regulation acts 

through the RAF- MEK-ERK kinase cascade. Ultimately, the new mechanisms of PRL-3 

regulation unraveled here, as well as the signaling pathways affected by PRL-3, might 

facilitate development of better, more focused, and more specific therapy for tumors with 

high expression of PRL-3. 
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CHAPTER 1: INTRODUCTION 

1.1 General introduction of PRL family 

Protein phosphorylation, is essential for almost all aspects of cell life, including 

metabolism, cell-cycle progression, differentiation, cytoskeleton arrangement as well as 

cell motility (Johnson, 2009). The phosphorylation machinery within the cell involves a 

coordinate action of different kinases and phosphatases whose expression and activities 

are tightly controlled. Any deregulation in these enzymes has been known to contribute to 

a plethora of diseases, including cancer. One such group of enzymes is the phosphatases 

belonging to the Phosphatase of Regenerative Liver (PRL) family. The PRL phosphatases 

are classified as Protein Tyrosine Phosphatases (PTPs) with dual specificity. Which 

means they can dephosphorylate phosphorylated tyrosine as well as serine/ threonine 

residues in a protein (Alonso et al., 2004). Dual-specificity phosphatases are modulators 

of several critical signaling pathways (Patterson et al., 2009), and therefore understanding 

their mechanisms of action is of great significance. There are three members in PRL 

family, PRL-1 (PTP4A1), PRL-2 (PTP4A2), and PRL-3 (PTP4A3), which share at least 

70% homology and have many domains in common, including: 

1) a PTP domain required for phosphatase activity comprising of a WPD-loop, and a 

PTP-loop (CX5R) (Yang et al., 1998). The WPD-loop is important for substrate 

recognition and binding, whereas the PTP-loop functions to catalyze the hydrolysis of the 

phosphate group in the substrate (Doctoral Degree thesis of Zimmerman, 2013).  

2) a polybasic domain followed by a prenylation motif (CAAX box) at the C-terminus. 

The 6 basic amino acids in the polybasic domain provide a positive charge in this region. 

This contributes to the membrane- localization of PRL proteins. PRL proteins are 

prenylated at the C-terminus, by covalent addition of lipid side chains (Zhang and Casey, 



 2 

1996). Both domains contribute to the membrane association localization of PRL family 

members. The conserved domains in PRL family are summarized in Figure 1.  

 

 

 

Figure 1. Protein domains of PRL family members. The domains shared by PRL 
family members are show in the figure. The PTP domain needed for their phosphatase 
activity is comprised of a WPD loop and a PTP loop. The polybasic domain and CAAX 
prenylation motif contribute to membrane-associated localization of these proteins. 

 

 

During the last decade several reports have shown the involvement of all three PRL 

family members in multiple cancers of different tissue origins (Al-Aidaroos and Zeng, 

2010). Being the first PRL family member shown to take an active part in cancer 

progression, PRL-3 has attracted the most attention among this family. How PRL-3 

contributes to multiple aspects of cancer progression will be reviewed in this chapter. 
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1.2 The Roles of PRL-3 in Cancer 

PRL-3 was first found positively correlated with colorectal cancer metastasis in 2001 

(Saha et al., 2001). Since then, more and more research has been conducted to investigate 

the role of PRL-3 in cancer metastasis. PRL-3 was found to promote metastasis in tumors 

of different tissue origins (Al-Aidaroos and Zeng, 2010). 

PRL-3 not only drives cancer metastasis, but also actively takes part in multiple aspects 

of other carcinogenesis processes. The traditional hallmarks of cancer comprise six 

biological capabilities: sustaining proliferative signaling, evading growth suppressors, 

resisting cell death, enabling replicative immortality, inducing angiogenesis and 

activating invasion and metastasis (Hanahan and Weinberg, 2000). PRL-3 has been found 

to affect four out of these six hallmarks of cancer, which are sustaining proliferative 

signaling, resisting cell death, inducing angiogenesis, and activating invasion and 

metastasis. These will be reviewed in detail in the following sections. 

 

1.2.1 PRL-3 Sustains Proliferative Signals 

Normal cells precisely regulate growth-promoting signals and cell cycle checkpoints to 

control their production, and thus maintain tissue architecture and function (Hanahan and 

Weinberg, 2011). However, cancerous cells have the ability to deregulate these 

proliferation-restricting pathways, which enable them to divide uncontrollably. Having 

sustained proliferative signals is one of the fundamental characteristic of cancer cells, and 

such proliferative signals are regulated by several key signaling cascades including the 

p53 pathway, phosphatidylinositol-3-kinase/ protein kinase B (PI3K/AKT) pathway, and 

mitogen-activated protein kinase (MAPK) pathway (Lawlor and Alessi, 2001; Vogelstein 

et al., 2000; Zhang and Liu, 2002). Strikingly, PRL-3 has been shown to modulate all 
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these pathways to drive cell proliferation (Basak et al., 2008; Fagerli et al., 2008b; Liu et 

al., 2008; Qian et al., 2007b). The related results will be discussed below. 

p53, encoded by TP53 gene, is an important tumor suppressor. It functions as a cell cycle 

checkpoint causing cell cycle arrest for DNA repair (Vousden and Lu, 2002). PRL-3 

overexpression was shown to downregulate p53 protein levels which depended on its 

phosphatase activity and prenylation motif (Min et al., 2010). Interestingly, PRL-3 was 

also shown to be a p53 inducible gene, whose overexpression induced G1 arrest 

downstream of p53 (Basak et al., 2008). Surprisingly, attenuation of PRL-3 expression 

also elicits an arrest response. This study highlights the key dose-dependent function of 

PRL-3 in cell cycle regulation in non-cancer conditions. However, in cancerous tissues, 

where myriad mutations arise, a high level of PRL-3 expression may fail to trigger cell-

cycle arrest, thereby allowing other activities of PRL-3 to prevail (Basak et al., 2008). 

PRL-3 has been shown to activate the PI3K/AKT pathway in several cancers. By 

producing PtdIns(3,4,5)P3 (PIP3), PI3K promotes Akt translocation to the membrane for 

activation, which facilitates Akt to activate mammalian Target of Rapamycin (MTOR) to 

stimulate cell proliferation (Peltier et al., 2007; Rafalski and Brunet, 2011). Further, Akt 

phosphorylates cyclin-dependent kinase (CDK) inhibitor p21CIP/WAF1 and p27KIP1, which 

contributes to the degradation of these two proteins (Peltier et al., 2007; Shin et al., 2002). 

The expression of p21CIP/WAF1 and p27KIP1 leads to cell cycle arrest, so their degradation 

blocks cell cycle arrest. Simply put, the activation of PI3K/AKT pathway promotes cell 

proliferation and also blocks cell cycle arrest. PRL-3 has also been shown to 

downregulate Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN) 

in colorectal cancer, and PTEN is an important antagonist of PI3K. This could be 

abrogated by the PI3K inhibitor LY294002, implying that PRL-3 acted upstream of PI3K 

to enhance AKT activity, and thus led to increased cell proliferation (Wang et al., 2007). 
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RAF/MEK/ERK pathway is also modulated by PRL-3 to provide sustained proliferative 

signals in cancer tissues (Liang et al., 2007). RAF/MEK/ERK pathway is the best-studied 

MAPK pathway, and its deregulation has been found in approximately one-third of all 

human cancers (Dhillon et al., 2007; Hilger et al., 2002). On receiving extracellular 

stimuli such as mitogens, cytokines, and growth factors, MAPK pathway is activated, and 

follows a classic three tiered kinase cascade: MAPKKK (mitogen-activated protein kinase 

kinase kinase)  MAPKK (mitogen-activated protein kinase kinase) MAPK (mitogen-

activated protein kinase). Activated MAPKs leads to phosphorylation and activation of 

specific MAPK- activated protein kinases (MAPKAPKs). These activated MAPKAPKs 

regulate a broad range of biological processes such as growth, differentiation and 

development (Brunet et al., 1999). In RAF/MEK/ERK pathway, RAF functions as 

MAPKKK, MEK functions as MAPKK, and ERK functions as MAPK (Brunet et al., 

1999). Activated ERK regulates growth factor-responsive targets in the cytosol and also 

translocates to the nucleus, where it phosphorylates a number of transcription factors to 

regulate gene expression (Wortzel and Seger, 2011). The activation of ERK is essential 

for G1 to S phase progression (Villanueva et al., 2007). The phenomenon that PRL-3 

overexpression leads to increased ERK activity has been observed in multiple cell lines 

including: HEK293 human embryonic kidney cells (Liang et al., 2007), human leukemia 

cell line MOLM-14 (Zhou et al., 2011), and human epidermoid carcinoma cell line A431 

(Al-aidaroos et al., 2013). Such activation of ERK/ MAPK pathway modulated by PRL-3 

activates cell cycle progression, and sustains proliferative signaling. 

Although several studies have reported that PRL-3 functions to promote cell proliferation, 

some studies showed that PRL-3 expression had no effect on cell proliferation. For 

example, in Multiple Myeloma (MM) cell line INA-6, the overexpression / knock down 

of PRL-3 did not affect cell proliferation rate (Fagerli et al., 2008b). Thus, the function of 

PRL-3 in promoting cell proliferation is dependent on genetic background, and possibly 
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some other co-factors. Determining these variables is of great significance. I will discuss 

findings related these co-factors in the thesis. 

 

1.2.2 PRL-3 Induces Cell Death Resistance 

In addition to having sustained proliferative signaling, cancer cells also have to 

circumvent the strategies the body employs to eliminate them (Hanahan and Weinberg, 

2011). Apoptosis, a process of programmed cell death, is one of these strategies. Normal 

cells are able to sense genomic instability such as DNA damage, and initiate apoptosis. In 

this way, apoptosis serves to clear the cells with mutations and maintain genomic 

stability, forming a natural barrier to cancer development. By disrupting apoptosis, some 

oncogenic mutations can lead to tumor initiation and progression (Lowe and Lin, 2000).  

There are many studies showing that PRL-3 contributes to cell death resistance in 

different systems. Activation of PI3K/AKT signaling by PRL-3 was shown to promote 

resistance to stress-induced apoptosis (Jiang et al., 2011). In another study, knock down 

of PRL-3 using siRNA caused a dramatic increase in apoptosis in H1299 cell line (Lian et 

al., 2012). Human gastric carcinoma cell line SFC-7901 treated with Emodin, a medicinal 

plant product, showed downregulation of PRL-3 and a corresponding increase in 

apoptosis (Sun and Bu, 2012). TF-1 is a cytokine dependent leukemia cell line, which 

undergoes apoptosis upon cytokine withdrawal (Lin et al., 2007). Overexpression of PRL-

3 in this cell line was shown to inhibit apoptosis significantly upon cytokine withdrawal 

(Park et al., 2013). In addition, the overexpression of PRL-3 made it possible for non-

cancer cell line Chinese Hamster Ovary (CHO) cells to survive in vivo in mouse by tail 

vein injection, indicating the overexpression of PRL-3 promotes cell survival in foreign 

conditions (Guo et al., 2004a). All these studies showed the overexpression of PRL-3 

contributes to cell apoptosis resistance.  
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1.2.3 PRL-3 Promotes Tumor Angiogenesis 

Sustained proliferative signals and the ability to escape apoptosis make it possible to 

initiate solid tumors. However, they are not able to grow beyond a certain size without 

adequate blood supply (Hanahan and Weinberg, 2011). Thus, the ability to form new 

blood vessels is of great significance for solid cancer progression. Angiogenesis is the 

physiological process through which new blood vessels form from pre-existing vessels 

(Birbrair et al., 2014; Hanahan and Folkman, 1996). Generally in normal tissues of an 

adult, angiogenesis is “off”. However, during tumor progression, angiogenesis is always 

“on”, stimulating the sprout of new vessels that provide nutrient and oxygen for 

sustaining rapid neoplastic growth (Hanahan and Weinberg, 2011). Different groups have 

shown the ability of PRL-3 to promote angiogenesis in tumor. 

Guo et al. showed that PRL-3 protein expressed in developing blood vessels, but not in 

their mature counterparts, indicating that PRL-3 may be involved in the early 

development of the circulatory system. They also showed that PRL-3 overexpressing 

CHO or DLD-1 cells could redirect the migration of human umbilical vascular 

endothelial cells (HUVEC) to grow towards them, depending on the phosphatase activity 

of PRL-3. In addition, these cells could also enhance HUVEC vascular formation in vivo. 

PRL-3 drove this process by downregulating interleukin-4 (IL-4), which is an 

angiogenesis inhibitor (Guo et al., 2006). These results suggested that PRL-3 might direct 

angiogenesis in cancers. 

PRL-3 overexpression was also shown to be associated with increased vascular 

endothelial growth factor (VEGF) expression in tumor samples from patients with non-

small cell lung cancer (NSCLC). Moreover, blocking PRL-3 expression in lung cancer 

cell line A549 correspondingly reduced VEGF levels (Ming et al., 2009). The ligand 
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VEGF a signal protein produced by cells that have stimulated angiogenesis, and activates 

angiogenesis on binding to vascular endothelial growth factor receptor (VEGFR) 

(Neufeld et al., 1999). This suggests that PRL-3 induces microvascular vessel formation 

by facilitating VEGF expression in lung cancer tissues. Experiments done in transgenic 

mice also supported these in vitro results. Further, PRL-3 knockout mice exhibited 

reduced tumor angiogenesis, decreased VEGF-mediated endothelial cell motility and 

decreased vascular permeability (Zimmerman et al., 2014). 

In summary, multiple studies have shown PRL-3 to promote angiogenesis in vitro 

(including multiple cell lines), in vivo (including mouse models), as well as in human 

patients’ samples. Inhibiting angiogenesis is a promising strategy for cancer treatment, 

and PRL-3 appears to be an attractive molecular target for impeding angiogenesis in 

tumor progression. 

 

1.2.4 PRL-3 Promotes Tumor Invasion and Metastasis 

Tumor cells disseminate to various organs in the organism, searching for better 

environment with better supply of nutrients. This process of the spread of cells from 

primary neoplasm to distant organs is called metastasis (Hanahan and Weinberg, 2000).  

Evolving genetic instability in tumor tissues has made metastatic cells greatly diversified 

from the primary tumor, and therefore difficult to be targeted by chemotherapy. What is 

more, due to the huge amount, metastases are difficult to be completely removed by 

surgery. All of these made metastatic tumors resistant to conventional therapy (Gupta and 

Massague, 2006; Khan and Mukhtar, 2010). As a result, it is metastasis that causes 

greater than 90% mortalities in solid cancers (Gupta and Massague, 2006).  
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To successfully metastasize, cancer cells have to acquire the ability to degrade basement 

membrane, and become motile. Such stepwise processes constitute the “metastasis 

cascade” (Thiery, 2002). One critical step of this cascade is the epithelial to mesenchymal 

transition (EMT). In this process the epithelial cells lose their cell polarity and cell-cell 

adhesion, and gain migratory and invasive properties to become mesenchymal. Normal 

epithelial cells have abundant amount of cell junctions, and are arranged in a tight and 

organized order, thus lacking mobility. Conversely, mesenchymal cells are loosely 

organized and surrounded by large extracellular matrix, thus having the ability to be 

mobile (Thiery, 2003). Here are some of the examples of “How PRL-3 contributes to this 

process”. 

PRL-3 was first proposed as an oncogene due to its role in promoting metastasis. In a 

study published in 2001, Saha et al. compared the global gene expression levels of 

metastatic colorectal cancers with their counterpart primary cancers, benign colorectal 

tumors, and normal colorectal epithelium, and found that PRL-3 was the only gene that 

was specifically expressed at high levels in cancer metastases, but in lower level in non-

metastatic tumors and non-tumor tissues (Saha et al., 2001). This was a groundbreaking 

discovery, since the results came from an unbiased global gene expression profiling 

approach involving thousands of gene transcripts. The study suggests that PRL-3 plays a 

significant role in cancer metastasis. More recently, another study also analyzed the 

unbiased global gene expression profile between uveal melanoma patients who were 

diagnosed with liver metastasis and uveal melanoma patients without liver metastasis. 

Similarly, they pointed out that PRL-3 was upregulated specifically in the tumors from 

patients developed liver metastasis (Laurent et al., 2011). In addition, Zeng et al. found 

that stable overexpression of PRL-3 enhanced motility and invasive capability in CHO 

cells, and also induce metastatic tumor formation in mice dependent on its phosphatase 

activity (Zeng et al., 2003). PRL-3 has also been shown to promote cell motility and 
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metastasis in different systems including mouse melanoma cell line B16 (Peng et al., 

2006; Qian et al., 2007a), human gastric carcinoma cell lines (Li et al., 2006), and human 

myeloma cell line (Fagerli et al., 2008a). Importantly, PRL-3 has also been shown to 

promote metastasis in cancer patients. Specifically, PRL-3 promotes lymph node 

metastasis in colon cancer patients (Ooki et al., 2010), and peritoneal metastasis in gastric 

cancer patients (Li et al., 2007). 

Research to identify the signaling pathways regulated by PRL-3 in promoting invasion 

and metastasis showed that overexpression of PRL-3 resulted in upregulation of 

mesenchymal marker vimentin, and downregulation of epithelial marker E-cadherin in 

vivo (Liu et al., 2009). Similarly, in an in vitro system, PRL-3 overexpression was shown 

to upregulate mesenchymal markers fibronectin and Snail and downregulate epithelial 

markers E-cadherin and integrin β3, through PTEN-PI3K-AKT pathway (Wang et al., 

2007). 

Cell migration involves a great deal of remodeling of the actin cytoskeleton to ensure 

mobility (Ammer and Weed, 2008). Rho family GTPases are key regulators of this 

process (Maekawa et al., 1999). Interestingly, similar to PRL-3, Rho family GTPases 

expression also increased with tumor progression (Fritz et al., 1999). RhoA and RhoC are 

highly homologous members of the Rho family of GTPases. RhoA has been shown to 

contribute to cell motility by stimulating contractility and formation of actin stress fibers 

(Fritz et al., 1999). PRL-3 was shown to promote the activation of the Rho GTPases 

RhoA and RhoC, to increase invasion and cell motility in colorectal cancer cell line 

SW484 and DLD-1 (Fiordalisi et al., 2006; Wang et al., 2007). Further, PRL-3 also 

promoted invasion and metastasis through the regulation of integrin family. Integrins are 

a large family of cell surface receptors involved in adhesion, migration, and other crucial 

physical processes. CDH22, a member of the integrin family, is a known binding partner 

of PRL-3, however, the detailed function achieved by their binding needs further 
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investigation (Liu et al., 2009). Other than CDH22, PRL-3 has also been demonstrated to 

interact with or regulate other members of integrin family. Peng et al. showed that PRL-3 

interacts with integrin α1, and also down-regulates the tyrosine-phosphorylation level of 

integrin β1 (Peng et al., 2004). These studies give some clues on how PRL-3 regulates 

metastasis. However, the detailed mechanisms involved should be investigated in future 

studies. PRL-3 also modulated recycling of integrins α5 through the interaction with 

ADP-ribosylation factor 1 (Arf1) and promoted cell migration (Krndija et al., 2012). Arf1 

belongs to Arf family GTPase. Similar with Rho family GTPase, Arf family GTPases are 

also key players in actin cytoskeleton remodelling (D'Souza-Schorey and Chavrier, 

2006). All these studies showed that integrins are important effectors of PRL-3 in 

promoting tumour metastasis. 

Src is another PRL-3 effector in metastasis. Studies pointed out that PRL-3 promotes cell 

invasion by modulating Src activation. Src then activates its downstream targets such as 

ERK1/2 and Signal Transducer and Activator of Transcription 3 (STAT3). The activation 

of these genes promotes cancer invasion (Guarino, 2010). Similar results on PRL-3 

promotion of metastasis through ERK phosphorylation and Rho-A/C activation was also 

reported in lung cancers (Ming et al., 2009).  

PRL-3 also affects microRNA and calcium channels to regulate cancer metastasis. Zhang 

et al. showed in a miRNA array analysis, miR-21, miR-17 and miR-19a were upregulated 

by PRL-3. The group also pointed out that these miRNAs directly targeted PTEN to 

downregulate its expression, and promoted cell invasion as well as cell proliferation 

(Zhang et al., 2012a). By increasing expression of KCNN4 calcium channels, PRL-3 

increased intracellular calcium levels, activated GSK-3β, increased Snail expression, and 

down-regulated E-cadherin, leading to EMT (Lai et al., 2013). All these studies showed 

that PRL-3 has multiple functions and has different effectors to promote metastasis. 
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Thus, as a strong oncogene, PRL-3 promotes multiple oncogenesis processes, including 

sustained proliferation, cell death resistance, induction of angiogenesis, and activating 

invasion and metastasis. Although most studies on PRL-3 focused on its role in 

promoting carcinogenesis processes, other roles of PRL-3 had also been shown in 

different studies. 

 

1.3 The Roles of PRL-3 in Cancer Stem Cells 

Other than promoting traditional carcinogenic processes, PRL-3 has also been found to 

promote self-renewal of cancer stem cells. It is believed that cancer stem cells are 

resistant to chemotherapy, and can give rise to distant metastases (Jordan et al., 2006). 

Cramer et al. found that expanded cells from colon tumor of PRL-3 knockout mice have 

reduced clonogenicity and inability to form secondary tumor. In contrast, cells expanded 

from colon tumor of a wild-type mouse exhibited enhanced clonogenicity even at higher 

passages, and were ubiquitously CD133+ (Cramer et al., 2014). CD133 is being used 

extensively as a marker for cancer stem cells (Wu and Wu, 2009). These results indicated 

reduced self-renewal ability in PRL-3 knockout cancer cells. Thus, PRL-3 may also 

contribute to cancer carcinogenesis by maintaining cancer stem cell population. 

 

1.4 PRL-3 In Normal Physiological Functions 

The functions of PRL-3 in non-cancer conditions have also been investigated by the 

generation of PRL-3 knockout mice. Generally, these mice are healthy, fertile and 

phenotypically similar to wild type counterparts. The only difference is that adult male 

homozygous knockout mice exhibited a slightly decreased body mass (Zimmerman et al., 

2014). These results indicate PRL-3 may not be critical for normal physiological process. 

This may be due to compensation effects from PRL-1 and PRL-2. The three genes in PTP 
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family (PRL-1, PRL-2 and PRL-3) share at least 70% amino acid identity, and also have 

lots of consistent functional domains.  

Most of the studies on PRL-3 were done in mammalian models. However, recently, PRL-

3 was found to be required for Xenopus laevis cranial neural crest migration in vivo 

during embryonic development (Maacha et al., 2013). This study showed that PRL-3 also 

affected animal development other than cancer progression. Importantly, PRL-3 was 

shown to affect cell migration in non-mammalian animal model, suggesting a potential 

role for Xenopus laevis as a model to study the function of PRL-3. 

 

1.5 The Regulation Of PRL-3 

The excessive expression level of PRL-3 is a key element contributing to tumor 

metastasis, thus the investigation on how PRL-3 is regulated is of great significance to 

basic science as well as pharmaceutical research. PRL-3 expression level is regulated at 

multiple levels, including gene copy number amplification, RNA transcriptional, 

translational, and post-translational levels. 

1.5.1 PRL-3 Is Regulated By Gene Copy Number Amplification 

Gene amplification is a copy number increase of the restricted region in a chromosome 

arm. It may contribute to the overexpression of the amplified gene, and it is an important 

mechanism of oncogene activation (Albertson, 2006). PRL-3 gene amplification has been 

found both in primary colorectal cancers as well in liver metastasis of colorectal cancers 

(Buffart et al., 2005). Gene amplification of PRL-3 has also been found in several 

myeloma cell lines (Fagerli et al., 2008b).  Thus, gene amplificaiton may contribute to the 

overexpression of PRL-3 in cancers. 
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1.5.2 PRL-3 Is Regulated At Transcriptional Level 

Transcription regulation has been shown to affect PRL-3 levels significantly in different 

systems. Firstly, PRL-3 gene expression is regulated by extracellular stimuli transduced 

via growth factor signaling networks. Conditioned medium from carcinoma-associated 

fibroblasts (Molleví et al., 2009), or direct addition of mitogenic cytokines such as 

Phorbol ester phorbol 12- Myristate 13- Acetate (PMA), IL-6, TNF, and IL-21 (Fagerli et 

al., 2008a; Rouleau et al., 2006) regulates PRL-3 mRNA levels. Further, several 

transcription factor binding sites have been identified in the upstream regulatory site of 

PRL-3, including myocyte enhancer factor 2C (MEF2C) (Xu et al., 2011), Snail (Zheng 

et al., 2011), p53 (Basak et al., 2008), and STAT 3 (Zhou et al., 2011). These 

transcription factors have been shown to upregulate PRL-3 mRNA transcription. 

Interestingly, other than being transcriptionally upregulated by STAT 3, PRL-3 also 

contributes to the activation of STAT 3 (Zhou et al., 2011). Thus PRL-3 and STAT 3 

form a positive autoregulatory loop to promote cancer progression. 

Suppression of PRL-3 mRNA expression has also been identified. Specifically, TGFβ 

stimulation has been shown to suppress PRL-3 expression by inducing binding of Smad 

transcription factors to PRL-3 promoter (Jiang et al., 2011). TGFβ has been shown to 

suppress tumor initiation in a variety of cancers, and loss of TGFβ leads to malignancy 

(Wang et al., 1996; Wang et al., 1995; Ye et al., 1999). 

 

1.5.3 PRL-3 Is Regulated At Translational Level 

Transcriptional regulation of PRL-3 is important. However, PRL-3 overexpression is not 

directly associated with its transcript level in many cases, which indicates a post-

transcriptional regulation of PRL-3 (Wang et al., 2010). Wang et al. found that PolyC-

RNA-binding protein 1 (PCBP1) is able to bind to the triple six-base GC-rich cis-
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elements in the 5’ untranslated region (UTR) of PRL-3 mRNA, and suppress PRL-3 

translation in vitro. More importantly, they confirmed their finding in human cancer 

samples, showing an inverse correlation between PRL-3 and PCBP1. 

 

1.5.4 PRL-3 Is Regulated By Post-Translational Modifications 

Protein post-translational modifications are important regulators of biological activity, 

molecular interactions, localization, and dynamic stability (Walsh et al., 2005). PRL-3 is 

also regulated by post-translational modifications. Firstly, the localization of PRL-3 is 

regulated by post-translational modification. Being prenylated at the C-terminus, PRL-3 

localizes to the plasma membrane and early endosome. Prenylation is a lipid modification 

involving covalent addition isoprenoids to conserved cysteine residues at or near the C- 

terminus of the protein. With the addition of this hydrophobic lipid, prenylaiton not only 

enhances membrane interaction of the target protein, but also affects its interaction with 

other proteins (Zhang and Casey, 1996). This C-terminal prenylation-mediated 

localization of PRL-3 is very important for its function, since mutation in this domain 

altered its localization from the cytosolic membrane and to the nucleus (Zeng et al., 

2000). Secondly, the dynamic stability of PRL-3 is also regulated by post-translational 

modifications. For example, the peptidyl prolyl cis/trans isomerase FK506-binding 

protein 38 (FKBP38) was identified as a PRL-3 interacting protein, which promotes the 

proteasome-mediated degradation of PRL-3 (Choi et al., 2011).  Further, PRL-3 protein 

levels can be downregulated by Suberoylanilide hydroxamic acid (SAHA) treatment via a 

proteasome dependent pathway in AML cells with FLT3 mutations, thus inhibiting 

growth in these cells. SAHA is an anti-cancer drug for acute leukemia, functioning to 

inhibit histone deacetylases (HDAC), and this drug has already been approved by the 

Food and Drug Administration (FDA). This study also sheds light on the contribution of 

PRL-3 post-translational regulation on cancer therapy (Zhou et al., 2011). However, more 
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detailed mechanisms about the protein stability of PRL-3 are still lacking. There are two 

main pathways regulating protein stability: the proteasome degradation pathway and the 

autophagy degradation pathway. In this thesis, I will discuss more on the post-

translational regulation of PRL-3 through autophagy. 

The multi-level regulation of PRL-3 is summarized in Figure 2. 

 

 

Figure 2. The regulation of PRL-3 in multiple levels. PRL-3 is regulated by genomic 
amplification, transcription, translation, as well as post-translational mechanisms. 
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1.6 Clinical Relevance Of PRL-3 

PRL-3 is an important oncogene that promotes multiple carcinogenic processes and is 

regulated at multiple levels. It has already been shown as a prognostic biomarker in 

different cancer types. Further, higher expression levels of PRL-3 predict poorer survival 

in cancer patients. Thus, it is potentially a good target for cancer therapy. 

 

1.6.1 Prognostic Significance Of PRL-3 

Several studies have reported the importance of PRL-3 mRNA and protein levels for 

disease prognosis and metastasis prediction in patients with different types of cancers 

(Kato et al., 2004; Miskad et al., 2007; Mollevi et al., 2008; Sundar and Gnanasekar, 

2013; Tamagawa et al., 2012; Xing et al., 2009), including gastric cancer (Bilici et al., 

2012; Hu et al., 2013; Xing et al., 2013), nasopharyngeal carcinoma (Zhou et al., 2009), 

ovarian cancer (Huang et al., 2014; Ren et al., 2009), breast cancer (Hao et al., 2010; 

Radke et al., 2006; Ustaalioglu et al., 2012; Wang et al., 2006), uveal melanoma (Laurent 

et al., 2011), intrahepatic cholangiocarcinoma (Xu et al., 2010), esophageal squamous cell 

carcinoma (Liu et al., 2008; Ooki et al., 2010), oral squamous cell carcinoma (Hassan et 

al., 2011), endometrioid cancer (Guzinska-Ustymowicz et al., 2013), and acute myeloid 

leukemia (AML) with FLT3-ITD mutations (Park et al., 2013). Further, two studies 

showed high levels of PRL-3 in cancer metastases than primary tumor or non-metastatic 

tumor by unbiased global gene expression profile (Laurent et al., 2011; Saha et al., 2001), 

reinforcing PRL-3’s significance in metastasis prediction. 

Other than being an independent prognostic biomarker, PRL-3 has also been shown to 

have better prognostic value when combined with the expression levels of other genes. 

For example, combined analysis of synuclein-gamma (SNCG), a human homologue of 
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piwi (Hiwi), PRL-3, and arrest-defective protein 1 homolog A (ARD1) provides better 

prognosis value than PRL-3 alone in patients with colon cancer (Liu et al., 2012). In this 

thesis, I show that the combination of autophagy genes together with PRL-3 provides 

better prognostic value than using them separately (Huang et al., 2014). Being such an 

important predictor of cancer metastasis and general patient outcome, PRL-3 has good 

potential to be a therapeutic target. 

 

1.6.2 PRL-3 Serves As A Therapeutic Target 

Researchers have tried different ways to target PRL-3 for cancer therapy in vitro and in 

vivo. RNA interference based methods aimed at knocking down PRL-3 showed inhibition 

of cancer cell growth and metastasis. For example, the artificial miRNA based on murine 

miR-155 sequence, effectively silenced PRL-3 in SGF7901 gastric cancer cell line and 

significantly reduced cell growth, invasion and migration (Li et al., 2006). PRL-3 siRNA 

was also used as a molecular medicine to specifically reduce the expression of PRL-3 in 

B16-BL6 cells, a highly metastatic melanoma cell line. It showed both in vitro activities 

to inhibit cell migration and invasion, and in vivo activity to inhibit tumor progression in 

mouse models (Qian et al., 2007b).  

Chemicals that function to block PRL-3 expression also proved their anti-cancer value in 

vitro and in vivo. Curcumin is a component of the spice turmeric, which selectively 

downregulates the expression of PRL-3, and the treatment of curcumin was able to inhibit 

mouse melanoma cancer cell B16BL6 growth (Wang et al., 2009). Another chemical 1-4-

bromo-2-benzylidene rhodanine, as a PRL-3 inhibitor, was found to suppress metastatic 

properties of esophageal squamous cell carcinoma cell lines with PRL-3 overexpression 

(Ahn et al., 2006; Min et al., 2013). Rhodanine derivatives, such as CG-707 and BR-1, 
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inhibiting PRL-3 enzymatic activity strongly, also showed inhibition of the migration and 

invasion of PRL-3 overexpressing colon cancer cells (Min et al., 2013). 

Exogenous antibodies against PRL-3 inhibited PRL-3 positive cancer cell growth in 

mouse models (Guo et al., 2011b). Antibody is more specific than chemical based PRL-3 

inhibitors, causing less off-target and side effects in patients. Moreover, unlike RNA 

interference based methods, antibody therapy is a “DNA free” method, and therefore, 

safer to the patients. Being more specific and safer, antibody based methods to target 

PRL-3 is of great potential in clinical studies. Significantly, PRL-3 antigen induced host-

produced antibody also provided an effective therapy in mouse harboring PRL-3 positive 

cancers (Guo et al., 2011b). Recently, we also found that targeting PRL-3 overexpressing 

ovarian cancer using autophagic inhibition shows effective inhibition on tumor cell 

proliferation (Huang et al., 2014).  

Based on an immunohistochemistry screening assay, there are 22.3% PRL-3 positive 

cancers among 1000 cancer samples (Wang et al., 2010). Thus, PRL-3 is targetable in 

these large number of cancer patients. Finding more effective methods to target PRL-3 is 

of great value. 

 

 

1.7 Rationale And Hypothesis 

As a strong oncogene, PRL-3 promotes multiple carcinogenesis processes. More 

importantly, PRL-3 is specifically upregulated in cancers, making it a suitable target for 

cancer therapy. However, many studies showed that PRL-3 protein levels and RNA levels 

are not well correlated, indicating that post-transcriptional regulations of PRL-3 plays a 

significant role in determining its protein expression level. There is a study showing that 
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PRL-3 is regulated negatively by PCBP1 translationally, but the post-translational 

regulation of PRL-3 is still unclear.  

In mammalian cells, there are mainly two protein degradation pathways, namely 

lysosomal proteolysis pathway (autophagy) and ubiquitin-proteasome pathway. The 

endosomal localization of PRL-3 indicates that it may be correlated with autophagy, since 

endosome fuses with autophagosome, the organelle for autophagy degradation (Cai et al., 

2010; Hansen and Johansen, 2011; Razi et al., 2009). My initial hypothesis is: 

 

PRL-3 protein is degraded by autophagy.  

To investigate this hypothesis, I set the following aims: 

1. To test the localization of PRL-3, and its correlation with autophagosome, which is the 

organelle for autophagic degradation.  

2. To test the changes in the expression level of PRL-3 upon autophagic degradation 

inhibition / induction.  

3. To study the possible mechanisms for the degradation of PRL-3 by autophagy.  

Confirming the specific autophagosomal localization of PRL-3 by immunofluorescence 

imaging, I also found that with the overexpression of PRL-3, LC3 signals increased upon 

autophagic degradation inhibition. LC3 is an autophagosome marker. Thus the results 

suggest that the overexpression of PRL-3 contributes to increased autophagosome 

formation. This led to my second hypothesis: 

 

PRL-3 enhances autophagy. 
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To investigate this hypothesis, I set the following aims: 

1. To test the whether the overexpression of PRL-3 is able to speed up autophagy process 

including autophagosome formation and autophagy substrate degradation. 

2. To test the signaling pathways affected by PRL-3 to in promoting autophagy. 

3. To test the biological significance of PRL-3 in promoting autophagy. More specifically, 

to determine the role autophagy plays in PRL-3 mediated cancer cell proliferation.  

4. To test the clinical relevance of my in vitro finding in ovarian cancer patients’ cohort. 

According a screen of PRL-3 expression level in different cancer cell lines, we found that 

HCT116 cell line expresses relatively high level of endogenous PRL-3 protein, while 

PRL-3 protein expression level is significantly lower in Hkh-2 cell line. HCT116 is a 

human colorectal cancer cell line that harbors a constitutively activated mutant KRas 

allele (KRas-G13D), and Hkh-2 is an isogeneic cell line of HCT116. The only difference 

between HCT116 and Hkh-2 is that the mutant KRas allele (KRas-G13D) was disrupted 

in Hkh-2 cell line. Thus, Hkh-2 is a KRas wild type counterpart cell line of HCT116. The 

results suggest that constitutive mutant KRas expression is positively correlated with 

PRL-3 protein level. This led to my third hypothesis: 

 

PRL-3 expression level can be upregulated by constitutively activated KRas. 

To investigate this hypothesis, I set the following aims: 

1. To test whether PRL-3 protein level is affected by constitutively activated mutant 

KRas, by knocking down / overexpressing constitutive activated mutant KRas.  

2. To determine such regulation is through transcriptional level or post-transcriptional 

level.  
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3. Find out the signaling pathways that regulate PRL-3 expression level by KRas 

mutation. 

 

The results from my experiments investigating all three hypotheses above constitute the 

primary body of my thesis. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Reagents  

2.1.1 Chemicals  

Unless otherwise specified, chemicals were used at the following concentrations: 

Chloroquine diphosphate salt (CQ) (50 μM, Sigma-Aldrich, #C6628); Rapamycin (2 μM, 

Sigma-Aldrich, #R8781); E64D (10 μg/mL, Sigma-Aldrich, #E8640); Pepstatin A (10 

μg/mL, Sigma-Aldrich, #P5318); bafilomycin A1 (100 nM, Sigma-Aldrich, #B1793), 

U0126 monoethanolate (U0126) (10 μM, Sigma-Aldrich, #U120); PD98059 (50 μM, 

Sigma-Aldrich, #P215). 

 

2.2 Plasmids 

2.2.1 EGFP-tagged wild-type and mutant PRL-3 constructs 

EGFP-tagged wild-type and phosphatase dead (PDM) mutant PRL-3 constructs were 

generated previously (Al-Aidaroos, 2012). Simply put, cDNA of PRL-3 was cloned into 

pEGFP-C1 vector (Clontech USA), using forward and reverse primers containing EcoRI 

and BamHI restrictions sites. pEGFP-PRL-3-PDM was generated using  iNtRON Site-

Directed Mutagenesis Kit (iNtRON, #15071) according to the manufacturers’ manual. 

2.2.2 myc-tagged PRL-1 and PRL-3 constructs 

Myc-tagged PRL-1 and PRL-3 constructs were generated previously (Zeng et al., 2003). 

Simply put, Myc epitope (10 amino acid residues) was introduced at the N terminus of 

PRL-1 or PRL-3 by a PCR-based approach. The restriction sites EcoRI and BamhI were 

used to insert into vector pStar (Zeng et al., 1998b). 
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2.2.3 Untagged PRL-3 Construct pBabe-PRL-3 

RNA from human colorectal cancer cell line HCT116 was extracted using RNeasy Mini 

Kit (QIAGEN, 74104) according to the manufactures’ manual. cDNA of these RNA was 

generated using RevertAid Reverse Transcriptase (Thermo Scientific, #EP0441). cDNA 

corresponding to human PRL-3 was cloned into the pBabe-puro vector (Clontech, USA) 

using forward and reverse primers containing restriction sites BamHI or EcoRI. Phusion 

High-Fidelity DNA Polymerase (Thermo Scientific, F-534S) was used according to the 

manufactures’ manuals. The PCR cycling parameters were as follows: initial denaturation 

98 °C, (30 sec); amplification – 25 cycles of 98°C (10 sec), 55°C (15 sec), 72°C (15 sec); 

final extension 72 °C (5 min). PCR products were purified by 1% agarose gel, and gel-

extraction kit. Purified PCR product and pBabe-puro vector were digested with EcoRI 

(EcoRI-HF) and BamHI (BamHI-HF) restriction enzymes from New England Biolabs 

(NEB), followed by ligation using Quick Ligation Kit (New England BioLabs, M2200L) 

according to the manufacturers’ manuals. After incubation in room temperature for 10 

minutes, 2 μl of the ligation mixture was added to 50 μl competent cells in a 1.5ml 

microcentrifuge tube on ice. Incubate the competent cells on ice for 30 minutes, followed 

by 30 seconds heat shock at 42 °C. Add 950 μl LB to this microcentrifuge tube. Shake at 

37°C for 60 minutes. Spread the mixture from this tube onto agar plates containing 

antibiotics. Up to 5 single colonies were picked, and plasmids were extracted for DNA 

sequencing. Sequencing data were collected in an ABI prism 377 DNA Sequencer 

(Applied Biosystems, SUA) by the DNA Sequencing Unit of Institute of Molecular and 

Cell Biology (IMCB), Singapore. 

2.2.4 pLKO.1 shRNA Constructs 

2.2.4.1 pLKO.1-shPRL-3, pLKO.1-shBeclin-1, pLKO.1-shhVps34, pLKO.1-shATG5  

All these shRNA constructs were purchased from Sigma-Aldrich. 
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2.2.4.2 pLKO.1-shKRas-1, pLKO.1-shKRas-2 constructs 

pLKO.1 - TRC Cloning Vector (Addgene, #10878) was used as backbone. The oligos 

contain shRNA specifically against KRas were cloned into this backbone according to the 

manuals from Addgene. Two target sequences of KRas were used. shKRas-1: 5′ 

GATACAGCTAATTCAGAATC 3′; and shKRas-2: 5′ 

AGGCTCAGGACTTAGCAAGA 3′. 

 

2.3 Cell Lines And Derivatives 

2.3.1 Cell Culture 

CHO (Chinese Hamster Ovary) -K1 cells (ATCC), human ovarian carcinoma cell line 

A2780 (ATCC), were cultured in RPMI-1640 medium supplemented with 10% fetal 

bovine serum (hyClone, SV30160.03), 2 mM L-glutamine (Life Technologies, 25030-

081), and 1% antibiotic/anti-mycotic (Life Technologies, 15140-122), which is defined in 

the text as “full media”. Human colorectal cancer cell line HCT116 (ATCC) was kept in 

Dulbecco’s Modified Eagle’s Medium (DMEM) - high glucose (4500mg/L) 

supplemented with 10% fetal bovine serum (hyClone, SV30160.03), 2 mM L-glutamine 

(Life Technologies, 25030-081), and 1% antibiotic/anti-mycotic (Life Technologies, 

15140-122). Cells were starved in FBS depleted medium (serum-free medium) or HBSS 

as indicated. The viral packaging cell line Phoenix Ampho (a gift from the Nolan 

Laboratory, Stanford University) and HEK 293T cells (ATCC) were also maintained in 

DMEM high glucose full media.  

HCT116 (active K-Ras mutant) and its wild-type isogenic counterpart Hkh-2 cancer cell 

lines were maintained in DMEM full media supplemented with sodium pyruvate. DLD-

1(active K-Ras mutant) and its wild-type isogenic counterpart DKO3 cells cancer cell 

lines were maintained in RPMI full media (Shirasawa et al., 1993) (all these four cell 
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lines are from Professor T. Sasazuki, Department of Genetics, Medical Institute of 

Bioregulation, Kyushu University, Higashi, Japan, and Professor S. Shirasawa, 

Department of Pathology, International Medical Center of Japan, Tokyo, Japan). All cells 

were maintained in a 5% CO2 atmosphere at 37 °C. 

2.3.2 Generation of CHO-K1 Cells Stably Overexpress PRL-1 or PRL-3 

CHO-PRL-1 and CHO-PRL-3 were generated previously (Zeng et al., 2003). 

2.3.3 Generation of A2780 Cell Line Stably Expresses EGFP, EGFP-PRL-3 or 

EGFP-PRL-3-PDM 

A2780-Vec, A2780-PRL-3 and A2780-PRL-3-PDM were generated previously (Al-

Aidaroos, 2012). 

2.3.4 Generation of cancer cell lines stably express untagged PRL-3 (retrovirus 

based method) 

The day before transfection, Phoenix Ampho were seeded in a 6-well culture plate (5 x 

105 cells/well). Transfection was achieved using JetPRIME according to the 

manufacturers’ instructions (Polyplus-transfection, 114-75). Detailed procedures are as 

below: change fresh DMEM for the cells to be transfected (2mL for each 6-well). 10 

minutes before transfecting cells, mixed pBabe-PRL-3 or pBabe-PRL-3-PDM plasmid 

DNA with 200 μL jetPRIME buffer. Mix by vortexing. After that, add 4 μL jetPRIME 

reagent, vortex for 10 seconds, and spin down briefly. Incubate at room temperature for 

10 minutes. Add the transfection mix drop wise and slowly to the cells in each 6-well 

(2μg DNA is sufficient for the transfection of one 6-well), and distribute evenly. Gently 

rock the plate back and forth and from side to side. Replace transfection medium after 4 

hours by fresh DMEM full-media. Cells were let grown for 48 hours. After 48 hours, 

supernatant containing retrovirus was collected, and filtered through a 0.45µm filter. 

Directly use it to infect target cells for making stable cell lines (see below). 
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24 hours before infection, around 3 X 105 of target cells were seeded in a well of a 6-

well-plate. Polybrene was added to the retroviral supernatant got in the previous step, the 

final concentration of polybrene was 6µg/mL. Viral supernatant from one 6-well is 

sufficient to infect target cells in one 6-well. Incubate target cells in viral supernatant 

overnight. After that, remove viral supernatant and recover cells in fresh full media. Let 

cells recover for 24 hours before antibiotic selection.  

The backbone of pBabe-PRL-3 and pBabe-PRL-3-PDM was pBabe-puro, which contains 

a puromycin resistant element. Target cells were selected using puromycin with the 

concentration of 0.5 µg/ml. 

2.3.5 Generation of Cancer Cell Lines Stably Knockdown PRL-3, hVps34, Beclin-1, 

ATG5, or KRas (lentivirus based method) 

The day before transfection, HEK293T were seeded in a 6-well culture plate (5 x 105 

cells/well, about 50% confluency). Transfection was achieved using JetPRIME 

transfection reagent according to the manufacturers’ instructions similar with the previous 

section. For each 6-well, mix 250ng pCMV-VSV-G (addgene, #8454), 750ng pCMV-

dR8.2 dvpr (addgene, #8455), and 1 µg pLKO.1-puro (addgene, #8453) containing 

shRNA sequence of indicated genes for transfection. Transfection and virus harvest 

procedures are similar as previous.  

Target cells were seeded 24 hours before infection. Similarly, supernatant containing 

lentivirus was added to target cells for overnight incubation. 
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2.4 Quantitative Real Time PCR (qRT-PCR) 

2.4.1 RNA Isolation 

Cellular RNA was extracted using RNeasy kit (Qiagen, USA). Briefly, cell monolayers 

(around 80% confluency) were lysed directly in 350 μL of Buffer RLT containing 1% β-

mercaptoethanol (v/v). Cell lysates were passed through a QIAshredder spin column in 

room temperature for homogenization. 350 μL of 70% ethanol (v/v) was added to the 

homogenized cell lysate, mixing by pipetting up and down. The mixed solution was 

passed through an RNeasy spin column. After centrifugation in room temperature, RNA 

will bound to the membrane of the RNeasy spin column. The column was washed by 

once with 700 μL Buffer RW1, twice with 500 μL Buffer RPE, and spun at full speed for 

2 minutes to complete dry it before elusion using 50 μL of RNase-free water. Eluted RNA 

was quantified using a Nanodrop spectrophotometer (Thermo Fisher Scientific). 

 

2.4.2 cDNA Synthesis  

RNA extracted according to the methods above was preceded for cDNA synthesis 

(Thermo Scientific, RevertAid Reverse Transcriptase, #EP0441) following the 

manufacturers’ manual. Briefly, 1 μg of total RNA sample were first mixed with 100pmol 

oligo(dT)20 , and RNase-free water in a 12.5 uL volume and heated at 65°C for 5 min. 

Subsequently, the mixture was chilled on ice for 2 minutes. cDNA synthesis mix 

(including: 5X Reaction Buffer, 4 μl; RNase inhibitor (Thermo Scientific RiboLock 

RNase Inhibitor, #EO0381), 20 u; dNTP Mix with the concentration of 10 mM, 2uL, 

RevertAid Reverse Transcriptase, 200 u) was added to the pre-chilled mixture of total 

RNA and Oligo(dT)20. Incubate 60 minutes at 42°C, followed by 10 minutes termination 

a 70°C. Synthesized cDNA can be kept in -20°C or used immediately for Real-Time 

PCR. 



 29 

 

2.4.3 Quantitative Real-Time PCR (qRT-PCR) 

For qRT-PCR, 50 ng cDNA was used in each reaction. Commercially optimized TaqMan 

Gene Expression Assay system was used for qRT-PCR according to the manufacturers’ 

manual. TaqMan Gene Expression Assay mix and primers specific for human PRL-

3(PTP4A3) or human GAPDH were all purchased from applied biosystems. To ensure 

reproducibility and robust statistical significance, biological triplicates were used, with 

each gene-specific qRT-PCR reaction done in triplicate in an Optical 96-Well Fast Plate 

(Applied Biosystems, USA). 

 

2.5 Immunoprecipitation (IP) 

IP reactions were done in spin columns (Thermo Scientific, USA) according to the 

manufacturers’ manual. Briefly, antibodies (for antibodies from Cell-signaling 

technologies, 4μL of antibody was used for each reaction) were first bound to 20 μL 

equilibrated Protein-A/G beads in the coupling buffer (0.01M sodium phosphate, 0.15M 

NaCl; pH 7.2) for 1 hour at room temperature, with gently rotation. Unbounded 

antibodies were washed away twice using coupling buffer, followed by centrifugation at 

1000g at 4°C. Antibodies were subsequently crosslinked to Protein-A/G beads using 450 

μM disuccinimidyl suberate (DSS) in coupling buffer for 45 minutes at room temperature. 

Low pH elution buffer (0.1 M glycine; pH 2.8) was used to remove unbounded 

antibodies. IP Lysis/ Wash buffer (0.025M Tris, 0.15M NaCl, 0.001M EDTA, 1% NP-40, 

5% glycerol; pH 7.4) was used to equilibrate the antibodies crosslinked beads for optimal 

binding with the antigens. After washing three times using 400μL of IP Lysis/ Wash 

buffer, antibodies crosslinked beads were further used for IP. 



 30 

For each IP reaction, cells grown in 10cm dishes were harvested in 800uL IP Lysis/Wash 

Buffer with the addition of protease inhibitor and phosphatase inhibitor. Lysates were 

incubated on ice for 15 minutes before centrifuged for 20 minutes at 16,000 X g at 4°C. 

Supernatants were collected, quantitated using BCA assay (Thermo Scientific). 1mg 

protein adjusted to 350~400 μL was used for each IP reaction, and 0.1 mg protein was 

saved as input control. The protein lysate was added to the agarose beads crosslinked with 

indicated antibodies for overnight night incubation with gentle rotation at 4°C. 

Immunoprecipitates were subsequently washed with 1X Tris-Buffered Saline (TBS) 

(0.025M Tris, 0.15M NaCl; pH 7.2) for 3 times, and once with 100μL of 1X Conditioning 

Buffer (neutral pH buffer). Elute first with 10 μL Elution buffer (pH 2.8), followed by 

second elution of 50 μL elution buffer. Lysates aliquots and eluted immunoprecipitates 

were immediately boiled for 10 minutes after the addition of 6X SDS loading dye. After 

denaturation, samples were stored in -20°C until use. 

 

2.6 Western Blotting 

2.6.1 Standard SDS-PAGE Preparation 

Cells were treated as indicated and harvested in RIPA buffer (10 mM Tris-Cl (pH 8.0), 1 

mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS (w/v), 140 mM 

NaCl) with protease inhibitor (Roche cOmplete Protease inhibitor cocktail tablets 

#11697498001), and phosphatse inhibitor (Nacalai USA, Phosphatase Inhibitor Cocktail 

(EDTA free) (100X)) freshly added. Protein amount was quantified using BCA protein 

assay kit (Thermo Scientific 23225) according to the manufacturer’s manual. Home-made 

acrylamide resolving gels were prepared using 30% Acrylamide/Bis Solution, 37.5:1 

(Bio-Rad, 161-0158), 10% sodium dodecyl sulphate (SDS) (w/v), 10% APS (w/v), 1.5M 

Tris-Cl pH8.8, Milli-Q H2O, and tetramethylethylenediamine (TEMED). I used 10% or 
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12.5% gel according to the molecular weight of target protein. For each 10% resolving 

gel, 3.9 mL H2O, 3.3 mL 30% bis-acrylamide (Bio-Rad), 2.5 mL 1.5 M Tris-Cl pH 8.8, 

100 uL 10% SDS, 100 uL 10% APS, and 10 uL TEMED were gently mixed together, and 

immediately poured in glass plates with 1.5 mm spacers (Bio-Rad). 2 mL H2O was 

layered above the gel to remove the bubbles. Wait for 30 minutes in room temperature for 

a complete polymerization of the resolving gel. The recipe for each 12.5% gel is as 

follows: 3.1 mL H2O, 4.2 mL 30% bis-acrylamide (Bio-Rad), 2.5 mL 1.5 M Tris-Cl pH 

8.8, 100 μL 10% SDS, 100 μL 10% APS, and 10 μL TEMED. Water above the resolving 

gel was removed using paper towels. Stacking gels were prepared according to the 

following recipes: for each gel, 0.53 mL 30% acrylamide, 1 mL 0.5 M Tris-Cl pH 6.8, 2.4 

mL H2O, and 40 μL 10% SDS, 40μL 10% APS, and 6 μL TEMED were mixed gently, 

and poured above resolving gels. Combs were immediately placed into the stacking 

buffer before polymerization. Keep in room temperature for 30 minutes for a complete 

polymerization before use. Samples with SDS loading buffer were boiled at 100 °C for 10 

minutes before loading to each well. Equal amount of protein was loaded to each well of 

a gel. Gels were run in 1 X SDS-PAGE running buffer (250 mM Tris, 250 mM glycine, 

0.1% SDS) at 80V for 20 minutes, followed by 120 V until the dye front reached the 

bottom of the gel. Protein markers (1st-base) were used as a reference of protein size. 

2.6.2 Gel Transfer 

SDS-PAGE gels were removed from glass plates and soaked in pre-chilled transfer buffer 

(25 mM Tris pH 7.3, 192 mM glycine, 20% methanol) prior to transfer. Pre-cut filter 

paper, nitrocellulose membranes (Pall Corporation) were also soaked in the transfer 

buffer. The transfer stack was subsequently assembled in ice-cold transfer buffer. The 

transfer was performed under 100 V in ice-cold transfer buffer for 1.5 hours.  
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2.6.3 Immunoblotting and Immuno-detection 

Membranes were blocked in 5% skim milk (sigma) in TBS-T (50 mM Tris, 150 mM 

NaCl, 0.05% Tween 20, pH adjusted to 7.5~7.6) for one hour in room temperature, with 

gentle shaking. For non-phosphorylated antigens, 5% skim milk in TBS-T was also used 

as buffer to dilute antibodies. Membranes were incubated with diluted primary antibodies 

overnight at 4 °C. Membranes were subsequently washed 3 times in TBS-T for 15 

minutes each before incubating with horse radish peroxidase (HRP)-conjugated 

secondary antibodies for one hour at room temperature. After that, membranes were 

washed 3 times again in TBS-T for 15 minutes each. 1:1 SuperSignal West Pico 

Luminol/Enhancer Solution and SuperSignal West Pico Stable Peroxide Solution were 

mix freshly (Thermo Scientific, USA). Membranes were incubated with the mixture for 5 

minutes in room temperature for 5 minutes with gentle shaking. X-ray films (Fujifilm, 

Japan) were exposed to the membranes in a dark room before developing in an X-OMAT 

processor (Kodak, USA). Developed films were scanned using scanner (Epson, USA).  

2.6.4 Band Quantification 

Band quantification was done using imageJ according to protocols available online 

(Using ImageJ to Quantify Blots, http://www.di.uq.edu.au/sparqimagejblots) 

 

2.7 Microscopy Analysis 

2.7.1 Immunofluorescence Imaging  

Cells were seeded on glass coverslips at relatively lower densities (about 20% - 30% 

confluency) 24 hours before treatment or transient transfection of plasmids. For 

experiments which requires both transient transfection of EGFP-LC3 and the treatment of 

CQ, cells were allow growth for 24 hours after the transient transfection before treatment. 

http://www.di.uq.edu.au/sparqimagejblots
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After indicated treatments/ transfections, cells were briefly rinsed in PBSCM (DPBS 

supplemented with 1 mM CaCl2 and 1 mM MgCl2) for 2 minutes, followed by fixation in 

4% formaldehyde for 15 minutes at room temperature. The 4% formaldehyde was diluted 

from methanol free 16% Formaldehyde (Polysciences, Inc. #50-00-0) with Dulbecco's 

phosphate-buffered saline (DPBS, 2.7 mM KCl, 1.5 mM KH2PO4, 136.9 mM NaCl, 8.9 

mM Na2HPO4•7H2O). Fixed cells were thoroughly washed with PBSCM 3 times, 5 

minutes each with gentle shaking. Cells were then permeabilized and blocked using 

blocking buffer (5 % BSA, 0.3 % Triton-X100 in DPBS) in room temperature for 1 hour. 

After washed 3 times in DPBS, coverslips were incubated in primary antibodies diluted 

by antibody dilution buffer (1 % BSA, 0.3 % Triton-X100 in DPBS) overnight at 4 °C. 

Anti-LC3 antibody (cell signaling technology, #3868) was used at a dilution of 1:200, and 

anti- PRL-3 antibody (Li et al., 2005) was used at a dilution of 1:400. Coverslips were 

then washed three times with DPBS again and then incubated with secondary antibody 

(1:400 dilution; Life Technologies, A10040, A10036) conjugated with appropriate 

fluorophore for 1 hour at room temperature in the dark. After the incubation of secondary 

antibodies, coverslips were washed with DPBS for 3 times, 5 minutes each. For F-actin 

staining, rhodamine-phalloidin (Life technologies) diluted in PBS was added to 

permeabilized cells for 20 min, followed by washing. Coverslips were wiped at the edges 

to remove excessive buffers before mounting. Each coverslip was mounted with 8 μL of 

VECTASHIELD mounting medium (Vector Laboratories, USA) on a slide with correct 

labeling. 

Edges of mounted coverslips were applied a layer of nail polish to avoid dryness, and the 

smashing between coverslip and the slide. Mounted coverslips were immediately 

analyzed using an LSM700 confocol microscope (Carl Zeiss AG). The average of LC3 

channel pixel intensity value within the cytoplasmic area pre cells was determined using 

Photoshop (Adobe system). The results were presented as mean ± SD. 
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2.8 Cell Proliferation Assays 

2.8.1 MTT Cell Growth Assay 

5000 cells were resuspended in full media (with 10% FBS), seeded triplicate well of a 96-

well plate, and allow to attach overnight. The media were replaced with full media / 

serum free media with different treatments as indicated, and left for incubation. MTT (3-

(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) reagent (#M5655, Sigma-

Aldrich) was added at a final concentration of 0.2mg/mL in each well. After that, cells 

were incubated in 37 oC with 5% CO2 for 3 hours. Media were completely removed and 

the retained formazan crystals were than dissolved in 150uL DMSO, and the absorbance 

at 595 nm was measured.  

2.8.2 Trypan Blue Viability Assay 

A2780 cells were seeded in full media into 6-wellplate and allowed to grow for 24 hours 

before treatment. Medium with indicated drug was added to each well. Cells treated with 

indicated drug were put back for incubation in 37°C. Cells were harvested by 

trypsinization and neutralized using full-medium, before counted with Vi-CELL XR cell 

viability analyzer (Beckman Coulter). The percentage of viable cell is recorded. Viable 

cells were distinguished from the dead cells since trypan blue is not able to penetrate the 

viable cell membrane. Thus, there is an absence of intracellular trypan blue staining in the 

viable cells. 

 

2.9 ULK1 Activity Assay 

Cells were lysed by RIPA buffer and concentration of protein was determined by 

Coomassie (Bradford) Protein Assay (Thermo-Pierce, Northumberland, UK) against a 

BSA standard curve. Immunoprecipitation was performed using 1 mg of total protein 
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lysate. Volume will be adjusted across samples and the samples were then incubated with 

2 μg of anti-ULK1 antibody (homemade sheep anti-ULK1 by Dr. James Murray) at 4oC 

on a vibrax shaker for overnight. Immunocomplexes were captured by adding 20 μl of a 

50% Protein-G Sepharose (GE Lifesciences, Buckinghamshire, UK) bead slurry and 

incubated for 1 hr at 4 ºC on a vibrax shaker. After incubation, beads were collected by 

centrifugation at 2,500 x g for 1 min, washed three times in Low Salt Buffer (50 mM 

Tris-Cl, pH 7.5, 1 mM EGTA, 1 mM EDTA, 0.3 % (w/v) CHAPs, 1 mM sodium 

orthovanadate, 50 mM sodium fluoride, 5 mM sodium pyrophosphate, 0.27 M sucrose, 

0.1 % (v/v) 2-mercaptoethanol) and two times in Assay Buffer (20 mM Hepes, ph 7.5, 

150 mM NaCl, 0.1 % β-mercaptoethanol, 25 mM β-glicerophosphate, 100 µM 

orthovanadate). The beads were collected again, re-suspended in 24 µL of Assay Buffer 

and processed for ULK1 kinase activity assay.  

ULK1 assay was made at 300C in Assay Buffer (above), containing immunoprecypitated 

ULK1, 10 mM MgAc, 3 µg myelin basic protein (MBP), 100 µM [32P] ATP (100-1000 

cpm/pmol) in final reaction volume 30 µl. The reaction was quenched after 30 min by 

addition of 10 µL of 4 x LDS sample buffer and heating samples for 10 min at 700C.  All 

samples were loaded on 8 % Bis-Tris gels and resolved in MOPS buffer. The whole gels 

were transferred onto Immobilon-P (Millipore). The upper part of membrane contained 

ULK1, was used for Western blot to estimate the level of immunoprecipitated enzyme.  

The lower part of the membrane, containing phosphorylated MBP substrate was exposed 

for 24-72 hours to a phosphoimager screen. Incorporated radiolabel was detected by 

phosphoimager using an FLA-7000 Phosphoimager system (Fujifilm UK, Bedford, 

Middlesex) and quantified using MultiGuage software. The ULK1 activity was 

normalized to levels of immunoprecypitated protein detected by immunoblot. Specific 

activity was expressed as a percent of control and plotted using GraphPad Prism 5.0.  
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2.10 Soft Agar Assay  

The soft agar assay for colony formation tests the anchorage independent growth ability 

of cells. Briefly, the procedures are as follows. Prepare 2.8 %, and 1.4 % low-melting-

point agarose (DNA grade) (Invitrogen) in serum-free media, and autoclave before first 

use. Heat autoclaved agarose until fully melted before use. Mix 1 mL 2.8 % low-melting-

point agarose, 0.9 mL RPMI full-media, and 0.1 mL FBS to make the bottom layer of the 

agarose (The mixture is 2 mL in total, with 10% FBS, and 1.4 % low-melting-point 

agarose). 2 mL mixture is enough for one well in a 6-well plate. Put the 6-well plate in 4 

oC until agarose get fully solidified. After the bottom layer of agarose solidified, start to 

prepare for the top layer of agarose. Mix 1 mL 1.4 % low-melting-point agarose, 0.9 mL 

full-media resuspending with 2X104 indicated cells, and 0.1 mL FBS to make the top 

layer of the agarose ( the mixture is 2 mL in volume, with 10% FBS, 0.7% low-melting-

point agarose, and 2X104 cells resuspending). Gently add the mixture on top of the 

bottom layer. Put in room temperature for several hours until fully solidified. Add 0.5 mL 

full-media on top of the agarose, and change fresh media every other day. Observe under 

microscope every day. Normally it takes one to two weeks to form cell colonies become 

visible to the naked eyes.  

After the formation of these naked-eye-visible colonies, take pictures of single colonies 

under microscope and picture of the whole well using normal digital camera. Colonies 

may need to be stained using crystal violet before images capturing by normal digital 

camera.  

Briefly, the processes of crystal violet staining are as follows: remove media and add 1 

mL DBPS containing 4% formaldehyde and 0.005% crystal violet to each well. Incubate 

overnight at 4 oC. After incubation, pipette off staining media and wash with DPBS 

gently. Take photos using normal digital camera. 
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2.11 Human Ovarian Cancer Microarray Dataset Analysis 

The biggest Gene Expression Omnibus (GEO) -accessible ovarian cancer database 

GSE9899 was used in this study. The database consists of microarray and survival data 

from 285 ovarian cancer patients. The microarray data were pre-processed using RMA 

algorithm in Bioconductor for normalization. Patients were divided into 4 subgroups 

based on their PRL-3 mRNA expression using quartiles as the cut-off point. The four 

groups are weak, moderate, strong, and very strong. For Kaplan-Meier survival analysis, I 

divided the patients into 2 groups, namely, high PRL-3 group (“very strong” PRL-3 

mRNA expression group), and low PRL-3 group (“weak, moderate, and strong” PRL-3 

mRNA expression groups). The association between PRL-3 expression and patients’ 

survival and clinical –pathological parameters was tested by Chi-Square, while the 

association between PRL-3 and patients survival was tested by Kaplan- Meier analysis 

together with log-rank test. I further divided high / low PRL-3 mRNA expression groups 

based on their hVps34, Beclin-1, or ATG5 mRNA expression levels using the median 

value as a cut-off point to distinguish a more autophagy competent subgroup, and a less 

autophagy-competent subgroup. 

 

2.12 Statistical Analysis 

For experiments other than statistical analyses in the clinical data, the Student’s t-test was 

used to test for significant differences. For qRT-PCR, the paired t-test was used to 

analyze the biological triplicates for significance. The statistical analyses in the clinical 

data were performed using SPSS19.0 software (IBM Corporation). One way ANOVA 

was performed for comparisons of means between groups. The P value for comparison of 

2 groups in the same experimental setting was generated by ANOVA post-hoc test, either 
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Tukey HSD or Games-Howell, depending on the results from the homogeneity test by 

Levene statistics, where applicable. A p value of < 0.05 was considered as significant in 

all tests. 
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CHAPTER 3: PRL-3 IS A NOVEL AUTOPHAGIC SUBSTRATE 

3.1 Background 

All cellular proteins undergo synthesis and degradation. Such renewal process is 

necessary for the regulation of protein level in cells, and fulfilling normal metabolism and 

homeostasis of functional cells. Protein synthesis can be regulated in multiple levels 

including RNA transcription and protein synthesis. Protein degradation is mediated by 

two major pathways: lysosomal proteolysis pathway (autophagy) and ubiquitin-

proteasome pathway (Korolchuk et al., 2009). 

The expression of PRL-3 has to be regulated very precisely since its upregulation may 

cause cancer by affecting multiple carcinogenesis processes (Al-Aidaroos and Zeng, 

2010). Moreover, the upregulation of PRL-3 also correlates with poor prognosis in 

multiple types of cancers (Al-Aidaroos and Zeng, 2010). Thus, understanding how PRL-3 

is regulated may shed lights on unveiling how PRL-3 promotes cancer progression as 

well as how to target PRL-3 in cancer therapy. 

PRL-3 was regulated by genomic amplification (Saha et al., 2001), transcription (Basak et 

al., 2008), and translation (Wang et al., 2010). Moreover some studies suggest that PRL-3 

is degraded through a proteasome pathway under special conditions. For example, Zhou 

et al. showed that Suberoylanilide hydroxamic acid (SAHA) triggers the proteasome 

degradation of PRL-3. SAHA is a histone deacetylase (HDAC) inhibitor. It has been 

approved by US Food and Drug Administration (FDA) for the treatment of T-cell 

lymphoma (Zhou et al., 2011). However, the mechanism of post-translational regulation 

of PRL-3 remains poorly understood. Lysosomal proteolysis pathway is the alternative 

post-translational regulation of proteins than proteasome degradation pathway, and 

autophagy is the major route for delivery of cellular proteins and RNAs into lysosomes 

for degradation (Dunn, 1994).  
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The term “autophagy” was derived from Greek, meaning “eating of self”. It was first 

described by Russell L. Deter and Christian de Duve about 50 years ago. They reported 

that mitochondria and other intracellular structures were degraded in lysosomes of rat 

liver (Deter and De Duve, 1967). Indeed, autophagy is an evolutionarily conserved 

process involved in selective degradation of cellular proteins and damaged organelles by 

lysosomes (Mizushima, 2007). There are three types of autophagy: micro-autophagy, 

chaperone-mediated autophagy, and macro-autophagy (Mizushima, 2007). Micro-

autophagy is the direct engulfment of cytoplasmic materials into the lysosome (Li et al., 

2012). Chaperone-mediated autophagy is a highly selective process, in which heat shock 

cognate protein of 70 kDa (Hsc70) containing complex recognizes the substrates, and 

sends them one by one to lysosome for degradation (Kaushik and Cuervo, 2012). Macro-

autophagy is the main autophagy pathway occurs in cells, and it is also the best-studied 

form of autophagy (Mizushima, 2007). In this thesis, I will focus on macro-autophagy, 

and it is referred to as “autophagy” hereafter.  

Although it was first reported almost half a century ago, the mechanisms of autophagy 

were only started to be revealed in the recent years, when the technique of molecular 

biology becomes much more advanced. Till now, 32 autophagy-related genes (ATG) 

have been identified by genetic screening in yeast, many of which are conserved in most 

eukaryotes, including yeast, plants, worms, flies and mammals. Such conservation 

suggests that autophagy is important in most living organisms (Nakatogawa et al., 2009). 

Autophagy is mainly governed by ATG proteins. The initiation of autophagosome 

formation starts with the activation ULK1 in mammals (Itakura and Mizushima, 2010). 

ULK1 is the mammalian ortholog of ATG1 in yeast, and it is a key regulator of 

autophagy in all eukaryotes (Mizushima, 2010). The formation of autophagosome starts 

after receiving the initiation signals. There are four steps of canonical autophagosome 

formation: 1) initiation; 2) nucleation; 3) elongation; and 4) closure. Nucleation, which 
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requires hVPS34-Beclin-1 complex, happens right after initiation of autophagosome 

formation. hVPS34 is the catalytic subunit of  phosphatidylinositol 3-kinase (PI3K), 

which belongs to the class III PI3K family, and it phosphorylates PtdIns to generate 

PtdIns3P, a lipid second messenger essential for autophagosome trafficking (Petiot et al., 

2000; Takegawa et al., 1995). Beclin-1 is the mammalian ortholog of yeast Atg6, and its 

interaction with hVps34 contributes to the recruitment of autophagy proteins to the 

nucleating phagophore assemble site (PAS) (He and Levine, 2010). This process is 

followed by autophagosome elongation and closure, in which the soluble LC3-I is 

conjugated to phosphatidylethanolamine (PE) to form a membrane-bound form of LC3, 

LC3-II. LC3 is the ortholog of yeast Atg8. This process is termed LC3 conversion, and it 

is essential for canonical autophagosome formation, which requires ATG5 (Hanada et al., 

2007; Weidberg et al., 2011). With all these steps, autophagosome, a double-membrane 

vesicle wrapping cellular components for degradation, will be formed. However, many 

studies showed that in some cases, autophagosome formation could also occur 

independent of some of these genes, or even bypass some of these steps (Codogno et al., 

2012). These special autophagosome formation processes are called “noncanonical 

autophagosome formation”. After closure, the complete and newly formed 

autophagosome, wrapped with all the unwanted organelles and autophagy substrates will 

fuse with lysosome, forming autolysosme for future degradation (Mizushima, 2007). 

Recent studies showed that before the formation of autolysosome, endosome might also 

fuse with autophagosome to form amphisome, suggesting that endosome is also playing a 

role in autophagy regulation (Cai et al., 2010; Hansen and Johansen, 2011; Razi et al., 

2009). Lysozyme in the autolysosme degrades the autophagic substrate, releasing 

digested short peptides, amino acids, and other nutrients to the cytosol for reuse 

(Mizushima et al., 2010). The process of canonical autophagy is summarized in Figure 3. 
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Figure 3. Canonical autophagy process. Details of the process were described in the 
text. 

 

 

Different chemicals and treatments are used to study autophagy. Since autophagy is 

initiated by the intracellular signals such as serum and amino acid starvation (He and 

Klionsky, 2009), Hank’s Balanced Salt Solution (HBSS) is broadly used to induce 

autophagy. HBSS is balanced solution consist of various salts and sugar, which is able to 

maintain suitable pH and osmotic balance to cells. Chloroquin (CQ), bafilomycin A1 (Baf 

A1), and the combination treatment of pepstatin and E64D (Pepstatin +E64D) are also 

widely used in autophagy studies. CQ is a lysosomal acidification inhibitor that blocks 

autophagic degradation (Amaravadi et al., 2011); Baf A1 functions to prevent maturation 

of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes 

(Weiss et al., 2012); while pepstatin and E64D are both lysosomal protease inhibitors that 

inhibit autophagic degradation (Amaravadi et al., 2011). Therefore, these chemicals are 

all known as inhibitors of the late phase of autophagy. Genetic manipulation of autophagy 

gene is also commonly used in autophagy studies. Knockdown of autophagy genes such 

as ATG5 (Mizushima et al., 2001), or Beclin-1 (Mizushima et al., 2001; Yue et al., 2003) 

leads to autophagy deficiency / reduction. 

PRL-3 and PRL-1 are two members of PRL family, which share 79% amino acid identity 

(Zeng et al., 1998a), and both of them localized to the cytosolic face of the plasma 

membrane and early endosome in a prenylation dependent manner (Zeng et al., 2000). 

Endosomes were reported to be involved in regulating autophagy since it may fuse with 

autophagosome before the fusion of autophagosome to lysosome for degradation (Cai et 

al., 2010; Hansen and Johansen, 2011; Razi et al., 2009). Thus, PRL-3, as an endosomal 

protein may also be related to autophagy. 
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In this chapter, I will focus on autophagy regulation of endosomal protein PRL-3. 

 

3.2 Outline of Experiments 

1. To test PRL-3 and PRL-1 localization upon autophagic degradation inhibition, PRL-1 

or PRL-3 overexpressing Chinese Hamster Ovary (CHO) cells were treated with 

autophagic degradation inhibitor CQ for 24 hours, followed by immunofluorescence 

imaging. PRL-1/ PRL-3 and LC3 were labeled by different fluorescent dye. Results 

were confirmed in human ovarian cancer cell line A2780, human colorectal cancer 

cell line DLD-1 and HCT116. 

 

2. PRL-1 and PRL-3 protein level changes after autophagic induction using HBSS were 

determined by western blotting. p62, a known autophagic substrate was used as a 

positive control. 

 

3. Autophagy degradation was blocked chemically (CQ, Baf A1 or Pepstatin+E64D) or 

genetically (autophagy gene knockdown). After that, PRL-3 protein level (both 

endogenous and exogenous expressed) changes were determined by western blotting, 

and p62 was used as a positive control.  

 

4. Immunofluorescence imaging was used to test whether PRL-3 and p62 may 

colocalize upon autophagic degradation inhibition. Immunoprecipitation was used to 

identify the interaction of PRL-3 and autophagic cargo receptor p62.  
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3.3 Results  

3.3.1 PRL-3 But Not PRL-1 Colocalizes With LC3 Puncta in CHO Cells  

To investigate whether endosomal protein PRL-1 or PRL-3 plays a role in autophagy, I 

co-labeled PRL-1 or PRL-3 together with autophagosome marker LC3. To achieve this 

goal, I used Chinese Hamster Ovary (CHO) cell line which stably overexpresses either 

myc tagged PRL-1 (CHO-PRL-1) or myc tagged PRL-3 (CHO-PRL-3). Upon 

autophagosome formation, the cytosolic form of LC3 (LC3-I) is conjugated to PE to form 

LC3-II, which is recruited to autophagosome membranes (Tanida et al., 2008). Thus, LC3 

positive signal in immunofluorescence imaging has been characterized as a signature of 

autophagosome (Berg et al., 1998; Kabeya et al., 2000). In order to have stronger signals 

of LC3, I transiently overexpressed Enhanced Green Fluorescent Protein (EGFP)-tagged 

LC3 in these two cell lines, and inhibited autophagosome degradation using the treatment 

of CQ.  

With CQ treatment for 24 hours, LC3 puncta accumulated clearly compared to untreated 

in both CHO-PRL-1 and CHO-PRL-3 cell lines. The localization of PRL-1 protein 

remained unchanged before and after CQ treatment (Figure 4A); however, PRL-3 protein 

accumulated and colocalized with LC3 positive puncta with CQ treatment (Figure 4B). 

To reaffirm that PRL-3 colocalized with LC3 puncta upon autophagic degradation 

inhibition, I overexpressed EGFP-tagged version of PRL-3 in CHO cells (CHO-GFP-

PRL-3), treated with CQ, and stained with endogenous LC3. Similarly, after CQ 

treatment, endogenous LC3 also formed puncta, and colocalized with PRL-3 (Figure 

4C). Thus, PRL-3 but not PRL-1 colocalized with autophagosome upon autophagic 

degradation inhibition. 
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Figure 4. PRL-3 but not PRL-1 colocalized with LC3-positive puncta upon 
autophagic degradation inhibition in CHO cells. (A-B) CHO cells overexpressing (A) 
myc-tagged-PRL-1 (CHO-PRL-1) or (B) myc-tagged PRL-3 (CHO-PRL-3) were 
transiently transfected with EGFP-LC3 construct, and allowed growth for 24 hours. 
Subsequently, the cells were treated with (CQ)/ without (control) CQ in full media (with 
10% FBS) for 24 hours before immunostaining with anti-myc antibody. (Scale bar 
20μm). (C) CHO cells with EGFP-PRL-3 overexpression were treated with (CQ) / 
without (Control) CQ for 24 hours, followed by immunostaining with anti-LC3 antibody 
to show the endogenous LC3 signals (red) in the cells. (Scale bar 20μm) 

 

3.3.2 PRL-3 Colocalizes With LC3 Puncta Independent Of Its Phosphatase Activity 

And Dependent On Its Prenylation Association Membrane Localization  

To gain more insight on the mechanism of the colocalization of PRL-3 and 

autophagosome, human ovarian cancer cell line A2780 was also used to overexpress 

EGFP-tag (Vec), EGFP-tagged PRL-3 (PRL-3), EGFP-tagged PRL-3-phosphatase dead 

mutant (PRL-3-PDM), or EGFP-tagged PRL-3 prenylation mutant (PRL-3-ΔPre). The 

consensus CAAX sequence in the C-terminal of PRL-3 enables it to be prenylated, where 

C is cysteine, A is an aliphatic amino acid, and X is any amino acid (Brown and 

Goldstein, 1993; Moores et al., 1991). To generate PRL-3-ΔPre, the cysteine-170 was 

replaced with a Serine residue in the C-terminus of PRL-3, and thus disrupts the 

prenylation. With such disruption of the prenylation, PRL-3 expresses in the nucleus 

instead of locating in the membrane. I treated the cells with CQ and monitored the 

immunofluorescence imaging of cells (Figure 5A-D). EGFP localized in the cytosol, and 

the location remains unchanged with or without CQ treatment (Figure 5A). Similar with 

the results obtained in CHO cells, wild type PRL-3 localized in autophagosome upon CQ 

treatment (Figure 5B). PRL-3-PDM had similar localization with wild-type PRL-3 

(Figure 5C), while, PRL-3-∆-Pre lost the ability to localize in autophagosome under CQ 

treatment (Figure 5D). The treatment of another late stage autophagy inhibitor 

Bafilomycin A1 (Baf A1) showed that PRL-3 started to colocalize with LC3 puncta as 
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Figure 5. PRL-3 colocalized with LC3 positive puncta in human cancer cell lines 
independent of its phosphatase activity, and dependent on its prenylation motif. (A-
D) A2780 cells overexpressing (A) EGFP-vector (Vec), (B) EGFP-tagged-PRL-3 (PRL-
3), (C) EGFP-tagged-PRL-3-phosphatase dead mutant (PRL-3-PDM), or (D) EGFP-
tagged-prenylation domain mutant (PRL-3-ΔPre) were treated with (CQ) / without 
(Control) CQ for 24 hours before immunostaining with endogenous LC3 (red) 
respectively. (E-F) DLD-1 cells overexpressing (E) untagged PRL-3 (DLD-1-PRL-3) or 
(F) untagged PRL-3-phosphatase dead mutant (DLD-1-PRL-3-PDM) were treated with 
CQ for 24 hours prior to immunofluorescence labeling with PRL-3 (green) and 
endogenous LC3 (red). (Scale Bar 20 μm) 
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early as 1 hour (Figure S1). The results suggest that the localization of PRL-3 in 

autophagosome is not a non-specific effect due to prolonged (24 hours) autophagy 

inhibition.  

In order to rule out the effects of epitope tags on PRL-3’s localization (EGFP or myc tag), 

I overexpressed untagged PRL-3 and PRL-3-PDM in a colorectal cancer cell line DLD-1, 

and then treated with CQ, and co-labeled both PRL-3 and endogenous LC3. Consistently, 

both untagged PRL-3 and untagged PRL-3-PDM colocalized with autophagosome upon 

CQ treatment (Figure 5E-F). The results had also been confirmed in another human 

colorectal cancer cell line HCT116 (Figure S2). Collectively, my results suggest that 

PRL-3 colocalizes with LC3 in autophagosome independent of its phosphatase activity, 

but dependent on its C-terminal prenylation.  

 

3.3.3 PRL-3 is Degraded Specifically Upon Autophagy Induction  

The localization of PRL-3 in the autophagosome suggests that PRL-3 may be playing a 

role in autophagy. One of the possibilities is that by locating to autophagosome, PRL-3 is 

degraded by autophagy. To test this hypothesis, I treated CHO-PRL-1 and CHO-PRL-3 

cells with Hanks' balanced salt solution (HBSS), and checked whether this treatment 

affect PRL-1 or PRL-3 protein level. HBSS is an amino acid-free media commonly used 

to create a starvation condition for autophagy induction (Mizushima, 2007). With the 

treatment of HBSS for 24 hours, PRL-3 protein level decreased dramatically while PRL-1 

protein level remained unchanged (Figure 6A). To confirm the results, I treated DLD-1 

Vector control (DLD-1-Vec) and DLD1 PRL-3 overexpressing cells (DLD-1-PRL-3) 

with HBSS for 24 hours. Similarly, PRL-3 protein level decreased significantly after 

HBSS treatment (Figure 6B). 
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Figure 6. PRL-3 was degraded specifically upon autophagic induction. (A) CHO-con, 
CHO-PRL-1 and CHO-PRL-3 were treated in full media (control) or HBSS as indicated 
for 24, before lysis for western blotting analysis. PRL-1 and PRL-3 protein levels were 
checked using antibodies as indicated. GAPDH was used as loading control. (B) DLD-1-
vector only (Vec) and DLD-1-PRL-3 cells were treated as indicated for 24 hours. Cells 
were lysed for Western blotting analysis to check the expression level of PRL-3. GAPDH 
was used as loading control.  

 

 

3.3.4 PRL-3 Protein Specifically Accumulates Upon Autophagic Degradation 

Inhibition 

CQ blocks autophagic degradation, and thus leads to the accumulation of autophagic 

substrates. I treated CHO-con, CHO-PRL-1 and CHO-PRL-3 cells with CQ to block 

autophagic degradation for 24 hours. With such treatment, p62/SQSTM1 (p62) protein 

accumulated dramatically (Figure 7A). p62 is a known autophagic substrate, which is 

degraded by autophagy (Bjorkoy et al., 2005; Pankiv et al., 2007). Similar with p62, PRL-

3 protein also accumulated after CQ treatment. However, PRL-1 protein level remained 

unchanged (Figure 7A). Pepstatin and E64D are lysosomal protease inhibitors, which 

also inhibit autophagic degradation (Amaravadi et al., 2011). Similar with CQ, the 

treatment of Pepstatin + E64D also led to an accumulation of p62. Importantly, both CQ 

and Pepstatain + E64D treatments caused PRL-3 protein accumulation in CHO-PRL-3 
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cells (Figure 7B). The results suggest that similar with p62, PRL-3 is also degraded by 

autophagy. According to Figure 5, PRL-3-PDM localized in autophagosome upon CQ 

treatment, which is similar with wild-type PRL-3. Next, I investigated whether the PRL-

3-PDM can also be degraded by autophagy. I overexpressed wild type PRL-3 or PRL-3-

PDM in A2780 and DLD-1 cells respectively, treated with CQ for 24 hours (Figure 7C). 

Similar to p62, exogenous PRL-3 and PRL-3-PDM accumulated with CQ treatment in 

both A2780 and DLD-1 cells (Figure 7C). HCT116 expresses detectable level of 

endogenous PRL-3, so I used this cell line to investigate whether endogenous PRL-3 is 

also degraded by autophagy. Similar with CQ, Bafilomycin A1 (Baf A1) is another late 

stage autophagy inhibitor, which inhibits autophagic degradation (Yamamoto et al., 

1998). The treatment of either CQ or Baf A1 led to dramatic accumulation of p62 as well 

as endogenous PRL-3 protein (Figure 7D). Band intensity quantification of PRL-3/ 

GAPDH was done using imageJ, and showed in the black bar. mRNA levels of the same 

samples were quantified by RT-qPCR. mRNA levels were shown in the white bar. There 

is no upregulation of endogenous PRL-3 mRNA after the treatment of either CQ or 

BafA1. Therefore, endogenous PRL-3 protein level increases upon CQ or BafA1 

treatment, and it was due to post-transcriptional regulation.  

More specific inhibition of autophagy pathway can be achieved by knockout or 

knockdown different autophagy genes (ATG) (Mizushima et al., 2010). What is more, it 

has been confirmed that cells lacking ATG5 (Mizushima et al., 2001) or Beclin-1 

(Mizushima et al., 2001; Yue et al., 2003) had a reduced / defective autophagy activity. 

Thus, I knocked down Beclin-1 using shRNA in A2780-PRL-3, DLD1-PRL-3, and 

HCT116 cells, and checked PRL-3 protein levels. With the knockdown of Beclin-1, p62 

as well as exogenous PRL-3 protein in A2780-PRL-3, DLD1-PRL-3 cells, and 

endogenous PRL-3 protein in HCT116 cells accumulated (Figure 7E). In a 

complementary approach, I knocked down ATG5 in A2780-PRL-3, DLD-1-PRL-3, and 
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HCT116 cells. Similar with Beclin-1 knockdown, ATG5 knockdown resulted in increased 

p62 and PRL-3 protein levels (Figure 7F). To sum up, exogenous PRL-3 and PRL-3-

PDM, as well as endogenous PRL-3 were all degraded by autophagy. Thus, like p62, 

PRL-3 is also an autophagic substrate. 
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Figure 7. PRL-3 protein specifically accumulated upon autophagic degradation 
inhibition. (A) CHO-con, CHO-PRL-1 and CHO-PRL-3 was treated as indicated for 24 
hours, prior to Western blotting analysis. (B) CHO-PRL-3 cells were treated in full media 
(Control), in the presence of CQ (CQ), or the combination treatment of Pepstatin and 
E64D (Pepstatin + E64D) for 24 hours. Different proteins were analyzed by Western 
blotting assay. (C) A2780-PRL-3, A2780-PRL-3-PDM, DLD-1-PRL-3, and DLD-1-PRL-
3-PDM were cultured in full media in the absence of (control), or in the presence of CQ 
for 24 hours before lysis for western blotting analysis. (D) HCT116 cells were cultured in 
full media in the absence of autophagic inhibitor (control), in the presence of CQ, or in 
the presence of Baf A1 for 24 hours before lysis for western blotting analysis or RT-
qPCR assay. (E-F) Exponentially growing A2780-PRL-3, DLD-1-PRL-3 or HCT116 
cells transfected with control shRNA (shScr), (E) Beclin-1 knockdown shRNA (shBeclin-
1), or (F) ATG5 knockdown shRNA (shATG5) were lysed for Western blotting analysis, 
and checked for expression levels of indicated proteins.  

 

 

3.3.5 PRL-3 Protein Interacts And Colocalizes With p62 

p62 is not only a selective substrate that is continuously degraded by autophagy, but also 

a cargo receptor for selective degradation of other autophagic substrates (Lamark et al., 

2009). Thus, one of the possible routes for the autophagic degradation of PRL-3 is 

through binding to cargo receptor p62. 

To test my hypothesis, I transfected CHO-PRL-3 cells with EGFP vector or EGFP-p62, 

and analyzed GFP immunocomplexes. I found that EGFP-p62 could co-

immunoprecipitated PRL-3 under CQ-treated conditions (Figure 8A). In a 

complementary experiment in A2780-GFP-PRL-3 cells, I also found that GFP-PRL-3 

could enrich for endogenous p62 (Figure 8B). Immunofluorescence data of these cells 

further supported an interaction between PRL-3 and p62 upon CQ treatment (Figure 8C, 

arrows). 
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Figure 8. PRL-3 protein was possibly degraded by autophagy through the 
interaction with p62. (A) CHO-myc-PRL-3 cells transfected with pEGFP-C1 vector 
alone (Vec) or EGFP-p62 (p62) was pretreated with CQ for 24 hours. Anti-EGFP 
immunoprecipitates from CHO-EGFP-Vec or CHO-EGFP-PRL-3 were probed with 
antibodies against GFP or PRL-3. (B) A2780 transfected with pEGFP-C1 vector alone 
(A2780-Vec) or pEGFP-PRL-3 (A2780-PRL-3) were pretreated with CQ for 24 hours. 
Anti-EGFP immunoprecipitates from both cell lines were analyzed by western blotting, 
and probed with antibodies against EGFP or p62 as indicated. (C) A2780-EGFP-Vec and 
A2780-EGFP-PRL-3 were pretreated in full media with (CQ) / without (control) CQ for 
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24 hours prior to fixation and immunolabeling with anti-p62 antibody (Red). White 
arrows show the colocalization of PRL-3 and p62 under CQ treatment. 

 

 

3.4 Discussion 

In the present chapter, I showed that PRL-3, but not PRL-1 localized to autophagosome in 

a prenylation domain dependent, and phosphatase activity independent manner, after the 

inhibition of autophagic degradation with CQ treatment. The discovery is surprising, 

since both of these proteins locate to cytosol membrane and endosome in a prenylation 

dependent manner, and they share 78% amino acid sequence identity (Zeng et al., 1998a). 

The results suggest that the autophagosome localization of PRL-3 is not merely caused by 

its endosomal localization. I did an amino acid sequence alignment of PRL-3 and PRL-1, 

and found that the biggest amino acid sequence difference between these two genes lies in 

two clusters (Figure 9, red boxes). Interestingly, one of these clusters is between their C-

terminal prenylation domain and polybasic domain, and both domains are important for 

their membrane bound localization. Thus the unique amino acid sequence of PRL-3 here 

might contribute to its unique localization in autophagosome. However, further studies 

are still needed to investigate the detailed mechanism of autophagosomal localization of 

PRL-3. 
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Figure 9. Amino acid alignment of PRL-3 (upper) and PRL-1 (lower). Two dots 
indicate same amino acid, one dot indicates the two amino acids are from the same group 
based on their physiochemical properties, and no dots between the two amino acid 
indicates the two amino acids have distinct properties. Red boxes indicate clusters with 
biggest difference between the two sequences. 

 

 

Such autophagosomal localization of PRL-3 strongly indicated that it might play a role in 

autophagy. p62, as a well-known autophagic substrate, also has autophagosomal 

localization (Itakura and Mizushima, 2011). Thus, I further investigate whether PRL-3, as 

an autophagosome protein can also be degraded by autophagy. Again, I used PRL-1, 

which doesn’t localize to autophagosome as a negative control. Unexpectedly, only PRL-

3 but not PRL-1 protein accumulated upon autophagic degradation inhibition (Figure 7). 

My results suggest that the localization in autophagosome is needed for protein to get 
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degraded by autophagy. CQ treatment may cause side effects to the cells other than 

autophagic degradation inhibition, such as the inhibition of protein synthesis (Ivanina et 

al., 1989). Thus, I used a more specific method to inhibit autophagy to confirm PRL-3’s 

role as a novel autophagic substrate. Knocking down autophagy genes has been reported 

to inhibit autophagy activity specifically (Mizushima et al., 2001). Thus, I stably knocked 

down ATG5 or Beclin-1 in multiple cell lines and checked the expression level of PRL-3. 

As expected, PRL-3 protein (both exogenous expressed and endogenous expressed), and 

p62 protein accumulated in multiple cell lines upon autophagy gene knockdown (Figure 

7). This discovery is important, since the degradation of endogenous PRL-3 by autophagy 

showed that autophagy is not only degrading PRL-3 due to the clearance of nonspecific 

affrication of overexpressed proteins (Kopito, 2000). According to my results, I 

concluded that PRL-3 is a novel autophagy substrate.  

Being an autophagic substrate, p62 binds to autophagy regulator LC3 through a region 

called “LC3-interacting region” (LIR), and this binding is essential for its degradation 

(Komatsu et al., 2007). What is more, p62 is also an autophagy cargo receptor that 

regulates the packing and delivery of polyubiquitinated, misfolded, aggregated proteins 

and dysfunctional organelles for their clearance (Kim et al., 2008; Kirkin et al., 2009; 

Nezis et al., 2008; Pankiv et al., 2007). Thus, it may bind to other autophagic substrates 

and target them for degradation. My results suggested that PRL-3 colocalized with, and 

co-immunoprecipitates with p62 upon CQ treatment (Figure 8). The interaction between 

PRL-3 and p62 may unveil a possible mechanism for how PRL-3 is degraded by 

autophagy specifically. Despite these data suggesting that PRL-3 binds to p62, it is 

notable that the interaction appears rather weak (Figure 8). It suggests that the two 

proteins might interact at low stoichiometry and/or that the interaction is transient. 

Alternatively, other autophagy cargo receptors such as NBR1 or VCP might play a role in 
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targeting PRL-3 for autophagic degradation. Thus, it is an interesting frontier for future 

study. 

Although the detailed study is still needed, my study firstly showed that PRL-3 is a 

substrate specifically degraded by autophagy. Autophagy has been shown to suppress 

tumor formation by removing damaged organelles and unwanted proteins (Mathew et al., 

2007). Such mechanisms might be utilized by normal tissues to remove excessive PRL-3, 

in order to maintain normal tissue homeostasis.  
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CHAPTER 4: THE ROLE OF AUTOPHAGY IN PRL-3-DRIVEN CANCER 

PROGRESSION 

4.1 Background 

Autophagy is an evolutionary conserved catabolic pathway where cells deliver their own 

cytoplasmic materials or organelles to lysosomes for degradation. After degradation, 

energy and nutrients are returned to the cytoplasm to be reused for vital biosynthetic 

reactions in the cell. (Mizushima et al., 2010). Autophagy is important in normal 

development and cell homeostasis, and thus, autophagy dysregulation has been shown to 

correlate with different diseases including cancer, diabetes, and neurodegeneration. In this 

chapter, I will discuss the novel correlations of autophagy and PRL-3, and their 

correlations in ovarian cancer progression. 

Nowadays, most researchers believed that autophagy is playing dual roles in cancer 

progression depending on genetic background and tumor stage (Janku et al., 2011; 

Morselli et al., 2009). In some cases, autophagy functions to promote tumor progression. 

With the accumulation of mutations, tumors may be formed (Loeb et al., 2003). The fast 

growing tumor tissues consume great amount of oxygen and nutrients. When the tumor 

tissues reach a certain size, the oxygen and nutrient supply become insufficient, especially 

for interior of these tissues. Therefore, autophagy is needed for these tissues to reuse 

energy and nutrients before the formation of new blood vessels. Indeed, it is documented 

that cells in the tumor interior, where oxygen and nutrients are more likely to be 

insufficient, has an increased autophagy activity compared to the tumor margins 

(Degenhardt et al., 2006). Thus, the activation of autophagy contributes to the survival of 

cancer tissues in extreme conditions. Other than promoting tumor progression, autophagy 

activation has also been shown to enable tumor cells survive anti-cancer treatment. Anti-

cancer treatment creates stress to induce cell death or inhibit cell survival. Autophagy, 

which attempts to maintain/ restore metabolic homeostasis, may help cancer cells to cope 



 60 

with therapeutic stresses upon anti-cancer treatment. Some studies showed that inhibition 

of autophagy sensitizes tumor cells to anti-cancer therapies (Chen and Debnath, 2010; 

Morselli et al., 2009) For example, chloroquine (CQ) and hydrocholoroquine (HCQ) are 

drugs that block lysosomal acidification and degradation of autophagosomes (Glaumann 

and Ahlberg, 1987; Poole and Ohkuma, 1981). Both drugs showed efficacy in 

combination with other anti-cancer drugs in preclinical models, and both of them are 

under clinical trials (Janku et al., 2011). Taken together, autophagy supports tumor 

progression by enabling tumor tissues survive in metabolic and therapeutic stresses. 

However, autophagy has also been shown to have a tumor suppressing function. 

Autophagy is able to clear unwanted protein and damaged organelles in the cells. The 

accumulation of these unwanted proteins and damaged organelles leads to an increased 

metabolic stress and chronic tissue damage, which, consequently, results in genetic 

instability (Janku et al., 2011). Genetic instability refers to a high frequency of mutations 

within the genome, which may contribute to carcinogenesis process. Thus, by clearing 

damaged and unwanted organelles, autophagy maintains genetic stability and suppresses 

cancer. Indeed, Beclin-1, an essential factor for autophagosome nucleation, is also a 

tumor suppressor gene. Clinical data showed that Beclin-1 is deleted in 75% of ovarian 

cancer, 50% of breast cancer as well as some cancer cell lines (Aita et al., 1999). Beclin-1 

functions as a tumor suppressor has also been proven in in vitro models as well as in 

animal models. Thus, autophagy also has an anti-cancer role (Eskelinen, 2011). 

To sum up, autophagy plays either tumor suppressing or tumor promoting role depending 

on cancer types and genetic backgrounds. In the previous chapter, when I analyzed the 

data of LC3 and PRL-3 colocalization, I found that CHO-PRL-3 has more LC3 puncta 

compared to CHO-PRL-1 cells, which may represent an increased number of 

autophagosome in CHO-PRL-3 cells. Moreover, both PRL-3 and autophagy are playing 

important roles in cancer progression. Thus I proceeded to investigate: 
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i) Whether PRL-3 has any effect on autophagic flux; 

ii) Whether PRL-3 regulates autophagy through the canonical pathway; and 

iii) What is the correlation of PRL-3 and autophagy in cancer progression. 

 

4.2 Outline Of Experiments 

1. Quantitation of LC3 puncta intensity of A2780-Vec, A2780-PRL-3 and A2780-PRL-

3-PDM by immunofluorescence. 

2. Quantitation of LC3 puncta intensity of A2780-Vec, A2780-PRL-3 and A2780-PRL-

3-PDM by immunofluorescence after knockdown of Beclin-1 and hVps34. 

3. Analysis of LC3 protein levels by Western blotting with or without CQ treatment in 

CHO and A2780 cells with / without the overexpression of PRL-3 to investigate 

autophagic flux 

4. Analysis of SQSTM1/p62 protein levels by western blotting upon CQ treatment in 

CHO and A2780 cells as an alternative readout of autophagic flux 

5. The effect of autophagy on PRL-3 mediated cell proliferation increase was 

investigated using MTT assays in A2780-Vec, and A2780-PRL-3, with or without 

autophagy inhibition 

6. To identify the clinical correlation of my in vitro discovery, I analyzed the GSE9899 

ovarian cancer patient cohort for the relationship between PRL-3, autophagy genes 

and survival. 
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4.3 Results 

4.3.1 PRL-3 But Not PRL-1 Promotes Autophagosome Formation Dependent On Its 

Phosphatase Activity 

The fact that PRL-3 colocalized with LC3 (autophagosome) implicated that PRL-3 might 

play a role in regulating autophagy. More importantly, in the previous experiments, I 

noticed that CHO-PRL-3 contained more endogenous LC3 puncta quantity compared to 

CHO-PRL-1. LC3 puncta indicate the location and amount of autophagosome, and thus 

the increased LC3 puncta may suggest an increased autophagosome number. I stained 

endogenous LC3 (green) and used actin (red) to mark the cell boundary in CHO-con, 

CHO-PRL-1 and CHO-PRL-3 cells after the treatment of CQ for 24 hours, and used 

Photoshop software to quantify the LC3 puncta intensity per cell, which is an indicator 

for autophagosome number (Figure. 10 A-B). Quantification of LC3 puncta intensity 

confirmed a significantly higher LC3 puncta intensity per cell in CQ-treated CHO-PRL-3 

compared to CQ-treated CHO-con or CHO-PRL-1 cells (Figure.10 B, p < 0.01), meaning 

more autophagosome were formed in CHO-PRL-3 cells than CHO-con or CHO-PRL-1. 

The results suggest that PRL-3 but not PRL-1 overexpression promotes autophagosome 

formation in CHO cells. 
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Figure 10. PRL-3 but not PRL-1 promotes autophagosome formation. (A) CHO 
control (CHO-con), CHO-PRL-1, and CHO-PRL-3 were treated without (Control) / with 
CQ for 24 h prior to immunostaining for LC3 (green) and actin (red). Representative 
images are shown (scale bar: 20 μm). (B) LC3 puncta intensity per cell were quantified 
and presented as a histogram in (mean ± S.D.). ***p < 0.001.  
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To confirm the results, I treated A2780-Vec, A2780-PRL-3, and A2780-PRL-3-PDM 

with CQ for 24 hours, and quantified LC3 puncta in these three cell lines (Figure 11 A-

B). LC3 signal is almost absent without CQ treatment, and this phenomenon may be due 

to the fast degradation of newly formed autophagosome (images not shown). Since 

autophagosomes are not degraded in the presence of CQ, the number of LC3 puncta 

indicates the autophagosome formed during period with CQ treatment. More importantly, 

A2780-PRL-3 cells had significantly more endogenous LC3 puncta than A2780-Vec or 

A2780-PRL-3-PDM (Figure 11B, black columns, p < 0.01). Although PRL-3-PDM still 

colocalized with LC3 upon CQ treatment, it lost the ability to promote autophagosome 

formation compared to wild type PRL-3. The results suggest that in addition to 

localization, phosphatase activity is required for PRL-3 to promote autophagosome 

formation.  
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Figure 11. PRL-3 promotes autophagosome formation dependent on its phosphatase 
activity. (A) A2780-EGFP (Vec), A2780-EGFP-PRL-3 (PRL-3), and A2780-EGFP-PRL-
3-PDM (PDM) cells were treated with CQ for 24 h before immunostaining with an anti- 
LC3 antibody. (B) LC3 puncta intensity value were quantified and presented as a 
histogram (mean ± S.D.) (***p < 0.001, **p < 0.01). 
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4.3.2 PRL-3 Promotes Autophagosome Formation Through The Canonical hVps34-

Beclin-1 Pathway 

To study whether PRL-3 promotes autophagosome formation through the canonical 

autophagy pathway, I stably knocked down hVps34 or Beclin-1, which are two upstream 

regulators of canonical autophagosome formation pathway (Russell et al., 2013) in 

A2780-Vec A2780-PRL-3 and A2780-PRL-3-PDM cells. The knockdown efficiency is 

shown in Figure 12A. The indicated cell lines were treated with CQ for 24 hours 

followed by immunofluorescence imaging (Figure 12B-D). LC3 puncta quantification 

was also performed by Photoshop software (Figure 12E). In agreement with my earlier 

results, significantly more LC3 puncta intensity per cell was observed in A2780-PRL-3 

cells with CQ treatment in the control knockdown group (shScr) (Figure 12E, first 3 

columns). Knockdown of either hVps34 or Beclin-1 abolished the LC3 puncta intensity 

difference between A2780-PRL-3 and A2780-Vec or A2780-PRL-3-PDM upon CQ 

treatment (Figure 12E, last 6 columns, difference not significant).   



 67 

 

 

Figure 12. PRL-3 promotes basal autophagosome formation through the canonical 
hVps34-Beclin-1 pathway. (A-B) A2780-Vec, A2780-PRL-3, and A2780-PDM cells 
were infected with shRNA knockdown constructs with either a “scrambled” sequence 
against non-specific targets (shScr), (A) hVps34 (shhVps34), (B) or Beclin-1 (shBeclin-
1). After stable selection, exponentially growing cells were lysed for Western blotting 
analysis for indicated proteins. (C-E) Indicated cell lines were treated with CQ for 24 
hours prior to immunostaining with an anti- LC3 antibody (Red). Representative images 
are shown. (F) LC3 puncta intensity per cell quantified and presented as a histogram 
(mean ± S.D.) **p < 0.01, *p < 0.05, NS (not significant) p > 0.05 
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A key autophagy regulator, mammalian target of Rapamycin (MTOR), can be inhibited 

by the treatment of Rapamycin (Jung et al., 2010). MTOR inhibits autophagy, while the 

treatment of Rapamycin relieves suppression of autophagy by MTOR. 

Immunofluorescence was done after the combination treatment of Rapamycin and CQ for 

4 hours in the cell lines indicated (Figure 13A-C). Similar with CQ treatment alone, 

combined treatment of Rapamycin and CQ led to autophagosome accumulation 

(increased LC3 puncta intensity). According to the quantification of LC3 puncta, I found 

that the LC3 puncta accumulation was faster in A2780-PRL-3 cells than A2780-Vec or 

A2780-PRL-3-PDM (Figure 13D, first three columns). The knockdown of hVps34 or 

Beclin-1 abolished the LC3 puncta intensity difference between A2780-PRL-3 and 

A2780-Vec or A2780-PRL-3-PDM (Figure 13D, last 6 columns, difference not 

significant). My results suggest that PRL-3 activates autophagosome formation dependent 

on hVps34 and Beclin-1 through the canonical pathway. More importantly, since PRL-3 

is able to enhance autophagosome formation upon Rapamycin inhibition of MTOR, it 

might affect autophagy pathway downstream of MTOR. 
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Figure 13. PRL-3 promotes Rapamycin induced autophagosome formation through 
the canonical hVps34-Beclin-1 pathway. (A-C) Indicated cell lines were treated with 
Rapamycin and CQ for 4 hours prior to immunostaining with an anti- LC3 antibody 
(Red). Representative images are shown. (D) LC3 puncta intensity per cell were 
quantified using photoshop and presented as a histogram in the right panel (mean ± S.D.). 
***p < 0.001, NS (not significant) p > 0.05. 
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4.3.3 PRL-3 Overexpression Promotes Autophagy Flux Dependent On ATG5 

Expression 

The lipidation of soluble LC3-I to membrane bound LC3-II is associated with 

autophagosome elongation and vesicle completion (Mizushima, 2007). Hence, LC3 

conversion is used as another marker of autophagosome generation and accumulation 

(Meijer and Codogno, 2004). 

Immunoblotting was used to detect ‘autophagic flux’ by comparing LC3 conversion in 

cells treated with or without lysosomal inhibitor (I used CQ in this study). When cells are 

treated with CQ, LC3-II degradation is blocked, and it leads to LC3-II accumulation 

(Tanida et al., 2005). Thus, the differences in the LC3-II level with or without CQ 

treatment represents the amount of LC3-II that is delivered to lysosome for degradation 

during the treatment period (Mizushima et al., 2010). After CQ treatment for different 

time points (2 hours and 24 hours), LC3-II increased robustly. Moreover, the increase of 

LC3-II in CHO-PRL-3 cells was much more significant compared to CHO-con or CHO-

PRL-1 cell line (Figure 14A, lane 1 – 6; lane 7 – 12, red boxes), which indicated a faster 

autophagic flux in CHO-PRL-3 cell than CHO-con and CHO-PRL-1 cells. With the 

treatment of Rapamycin and the combined treatment of Rapamycin and CQ, LC3-II level 

was higher in CHO-PRL-3 cells than CHO-con or CHO-PRL-1. Thus, there was also a 

faster rapamycin induced autophagy flux in CHO-PRL-3 cells (Figure 14A, lane 7 - 18). 

My results suggest that the overexpression of PRL-3 (but not PRL-1) promotes both basal 

and rapamycin-induced autophagy flux. 

In the previous section, I showed the phosphatase activity of PRL-3 was not needed for its 

localization in the autophagosome, whereas prenylation dependent membrane association 

was. To examine whether the catalytic activity of PRL-3 is necessary in promoting 

autophagic flux, I treated A2780-Vec, A2780-PRL-3, and A2780-PRL-3-PDM with CQ, 

and found that A2780-PRL-3 had a higher LC3-II protein level than the other two cell 
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lines (Figure 14B, lane 1 – 6, red box). Rapamycin induced autophagy level was also 

examined in these three cell lines. LC3-II protein increased significantly in the 

combination treatment of rapamycin and CQ compared to rapamycin alone, and within 

the three cell lines, A2780-PRL-3 has the highest LC3-II level upon rapamycin CQ 

combined treatment in both 2 hours and 4 hours (Figure. 14B, lane 7 – 18, red boxes). 

Notably, PRL-3 also promoted autophagy flux under starvation condition (HBSS) in both 

CHO and A2780 cells (Figure S3). 

As predicted, A2780-PRL-3-ΔPre, which failed to localize in autophagosome, failed to 

promote autophagy flux (Figure S4). Thus, PRL-3 overexpression promotes basal as well 

as rapamycin and starvation induced autophagy flux, and this effect is dependent on its 

phosphatase catalytic activity and prenylation dependent membrane localization. 

ATG5 is an autophagy regulator, which plays an important role in LC3 lipidation and 

autophagosome formation (Kirisako et al., 2000). I stably knocked down ATG5 in 

A2780-Vec, A2780 -PRL-3 and A2780 –PRL-3-PDM. In cells with ATG5 knockdown, 

PRL-3 lost the ability to promote LC3 lipidation compared to Vec or PRL-3-PDM in 

A2780 cells with the treatment of CQ, Rapamycin, or the combination treatment of 

Rapyamycin and CQ (Figure 14C, red boxes vs blue boxes). Thus, my results show that 

the promotion of autophagic flux by PRL-3 is dependent on the expression of ATG5.  



 72 

 

 



 73 

Figure 14. PRL-3 overexpression promotes autophagic flux dependent on ATG-5 
expression. (A) CHO-con, CHO-PRL-1, and CHO-PRL-3 cells were cultured in full 
medium with indicated treatment for the indicated durations before lysis for Western 
blotting analysis. (B) A2780-Vec, A2780-PRL-3, and A2780-PDM cells were treated as 
indicated before lysis for Western blotting analysis. (C) A2780-Vec, A2780-PRL-3, and 
A2780-PDM cells stably expressing control shRNA (shScr) or ATG5 shRNA (shATG5) 
were treated as indicated, and lysed for western blotting analysis. All band quantifications 
of LC3-II/GAPDH were done using ImageJ. 

 

 

4.3.4 PRL-3 Promotes Autophagic Flux Through Increasing The Kinase Activity Of 

ULK1 

Atg1 is the first autophagy gene identified in yeast, and it is a protein kinase that receives 

signals of cellular nutrients status, and recruits downstream ATG proteins to the 

autophagosome formation site to induce autophagy (Nakatogawa et al., 2009). There are 

two orthologs of Atg1 in mammals, namely UNC-51-like kinase-1, and -2 (ULK1, and 

ULK2). ULK1 acts downstream of MTOR complex, and initiates autophagy when 

activated. The role of ULK2 is less clear (Mizushima, 2010; Young et al., 2006). 

In A2780 cells, PRL-3 overexpression resulted in increased ULK1 phosphorylation in 

Ser555 site, while PRL-3 knockdown resulted in decreased ULK1 phosphorylation in 

Ser555 (Figure 15A), indicating a positive correlation between ULK1 Ser555 

phosphorylation and PRL-3 expression level. The phosphorylation of Ser555 of ULK1 is 

positively correlated with its kinase activity, and is required for autophagy induction 

(Meijer and Codogno, 2011). Indeed, I found that ULK1 purified from PRL-3 

overexpressing cells had higher in vitro kinase activity than that ULK1 purified from 

control cells (Figure 15B). These results suggest that ULK1 might be an important node 

in regulation of autophagy by PRL-3, although much future work is needed to address the 

molecular detail regarding the activated phosphorylation of ULK1 in response to 

increased PRL-3 levels. 
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Figure 15. PRL-3 regulates ULK1 activity. (A) pULK1 (Ser 555) is increased in 
A2780-PRL-3 cells and (B) decreased in A2780-shPRL-3 cells compared to control cells 
when autophagy is induced. (C) ULK1 activity measured by ULK1 pull-down, and MBP 
substrate phosphorylation by immunoprecipitated ULK1. Right: mean ULK1 activity, 
Left: a representative Western blot (Top) and a phospho-image (Bottom). 

 

*Figure 15B is contributed by Dr. James Murray 

 

 

To confirm the role of ULK1 in PRL-3 promoted autophagy flux, I knocked down ULK1 

in A2780-Vec and A2780-PRL-3 cells. I treated the cell lines indicated with Rapamycin 

and CQ for 6 hours, and did Western blotting to detect LC3 protein levels (Figure 16). 

Similar with the results from Figure 13, in shScr cells, A2780-PRL-3 had a higher level 

of LC3-II compared to A2780-Vec. The knock down of ULK1 decreased LC3-II protein 

level under combination treatment of Rapamycin and CQ. Significantly, the difference 

between LC3-II levels in A2780-Vec and A2780-PRL-3 was abolished upon the 

knockdown of ULK1 (Figure 16, red box). The results indicated that PRL-3 promotes 

autophagy flux dependent on ULK1. 
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Figure 16. Knockdown of ULK1 abolished the LC3 conversion rate promoted by 
PRL-3. A2780-Vec and A2780-PRL-3 cells stably expressing knockdown constructs 
against nonspecific targets (shScr) or ULK1 (shULK1) were treated with Rapamycin in 
combination with CQ for 6 hours before lysis for western blotting analysis.  

 

 

4.3.5 The Overexpression Of PRL-3 Promotes Autophagic Degradation Of p62 

Being an autophagic substrate, p62 protein level accumulates when autophagy is inhibited, 

and decreases when autophagy is induced (Bjorkoy et al., 2005; Pankiv et al., 2007). 

Hence, p62 degradation is widely used as a marker to study autophagy flux (Bjorkoy et 

al., 2005). To study whether PRL-3 protein level affects p62 degradation, I stably 

knocked down PRL-3 in A2780 cells using shRNA. A2780-shPRL-3 showed an increase 

of p62 level compared to A2780-shScr cells (Figure 17A). I treated these two cell lines 

with CQ for different durations. p62 protein level increased upon CQ treatment in a time 

dependent manner. More importantly, the different p62 protein level was abolished with 

CQ treatment beyond 8 hours (Figure 17B, lane 9-12).  

Moreover, I also found that CHO-PRL-3 had lower p62 protein level compared to CHO-

con or CHO-PRL-1 cells (Figure 17C). With the treatment of CQ for 2, 4 or 24 hours, 
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p62 protein accumulated in all three cell lines in a time dependent manner. More 

importantly, the different level of p62 between CHO-PRL-3 and CHO-con or CHO-PRL-

1 was abolished after CQ treatment (Figure 17D). Band intensity of p62/GAPDH in 

Figure 17D with 24 hours treatment was quantified using imageJ (Figure 17E, columns 

show the results of 3 independent biological repeats). These results indicate a faster 

autophagic degradation rate in CHO-PRL-3 cells than CHO-con or CHO-PRL-1. The 

combination treatment of pepstatin and E64D, functions to inhibit lysosomal protease, is 

also widely used to inhibit autophagic degradation (Amaravadi et al., 2011).  
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Figure 17. PRL-3 promotes autophagic degradation of p62. (A) A2780 cells stably 
expressing shRNA knockdown constructs against nonspecific targets (shScr) or PRL-3 
(shPRL-3) were lysed and analysed for stable-state p62 and PRL-3 expression levels by 
western blotting assay. (B) A2780-shScr and A2780-shPRL-3 cells were treated with CQ 
for indicated durations before lysis for western blotting analysis. The band intensity of 
p62/GAPDH was quantified using imageJ. (C) Exponentially growing CHO-Con, CHO-
PRL-1, and CHO-PRL-3 stable cells were lysed for western blotting to analyse the stable 
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state p62 expression. (D) CHO-Con, CHO-PRL-1, and CHO-PRL-3 cells were cultured in 
full medium in the absence (control) or presence of CQ for indicated time points before 
lysis for western blot analysis.  (E) The band intensity of p62/GAPDH for 24 hours 
treatment in (D) was quantified using imageJ, and presented as a histogram. The results 
were from three biological repeats, and presented as mean ± S.D..  

 

 

According to the results, I proposed a model on how PRL-3 functions in canonical 

autophagy pathway as follows: 1) PRL-3 is an activator on canonical autophagosome 

formation dependent on hVps34-Beclin-1 complex; 2) PRL-3 promotes LC3-I to LC3-II 

conversion dependent on ATG5; 3) PRL-3 increases ULK1 activity; 4) PRL-3 promotes 

autophagic substrate p62 degradation; 5) PRL-3 itself functions as a novel autophagic 

substrate (results from the last chapter), thus forming a negative feedback loop to fine 

tune autophagy activity (Figure 18). 
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Figure 18. A model illustrates the involvement of PRL-3 in multiple steps of 
canonical autophagy pathway. 1) PRL-3 activates autophagy independent of MTOR 
and via activating ULK1; 2) PRL-3 promotes autophagosome formation in an hVps34- 
Beclin-1 dependent manner; 3) PRL-3 accelerates LC3 conversion dependent on ATG5; 
4) PRL-3 enhances p62 degradation, and p62 is a key autophagy substrate; 5) PRL-3 
itself is a novel autophagic substrate. Sites of action of chemicals used in the experiments 
(rapamycin, pepstatin and E64D, CQ, Baf A1) are also indicated. 
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4.3.6 PRL-3 Utilizes Autophagy To Promote Ovarian Cancer Cell Proliferation 

As an oncogene, PRL-3 promotes multiple process of cancer progression including cell 

growth, migration, invasion, angiogenesis as well as metastasis depending on genetic 

background and cancer types (Al-Aidaroos and Zeng, 2010). More specifically in ovarian 

cancer, PRL-3 has been proven to increase cell growth (Polato et al., 2005). Since my 

data suggested that PRL-3 could promote autophagic activity, and autophagy has been 

reported to play either tumor-promoting or tumor-suppressing role depending on cellular 

context (Janku et al., 2011), I further investigated the role autophagy plays in PRL-3 

mediated cancer cell proliferation. 

First of all, the proliferation of A2780-Vec and A2780-PRL-3 following shRNA 

knockdown of hVps34, Beclin-1, and ATG5 was compared. In control knockdown cells 

(shScr), PRL-3 overexpression promoted an increase in cell proliferation measured by 

MTT assay (Figure 19A-C, black lines). The knockdown of hVps34, Beclin-1 or ATG5, 

which results in an inhibition of autophagy, also leads to a decrease of proliferation in 

A2780-PRL-3 cells (Figure 19A-C, red vs. black dashed lines; p < 0.001). However, the 

knockdown of these genes had no significant effect on the proliferation rate of A2780-

Vec cells (Figure 19A-C, red vs. black solid lines, p > 0.05). My results are consistent 

with the previous finding that ovarian cancer cell line A2780 is not sensitive to 

autophagic inhibition in serum-replete condition (Zhang et al., 2012b). Thus, my results 

suggest that the inhibition of autophagy by knocking down autophagy genes inhibit cell 

proliferation promoted by the overexpression of PRL-3 in A2780 cells. 

Autophagy enables cells to grow in starvation conditions. I next tested the ability for cells 

overexpressing PRL-3 to survive and grow under serum and amino acid starvation 

condition. A2780-PRL-3 cells were able to survive and continue growth in the absence of 

serum and glutamine supplementation; in contrast, A2780-Vec cells could not (Figure 

19D-F, black lines; p < 0.001). Importantly, the knock down of hVps34, Beclin-1 or 
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ATG5 significantly reduced the proliferation of A2780-PRL-3 cells in serum and amino 

acid starvation (Figure 19D-F, red vs. black dashed lines. p < 0.001). However, 

autophagy genes knock down doesn’t have a significant effect on A2780-Vec cells 

(Figure 19D-F, red vs. black solid lines, p > 0.05). Thus, the overexpression of PRL-3 

promoted A2780 growth in serum replete as well as serum-depleted conditions in an 

autophagy dependent manner. 

To confirm the results, I chemically inhibited autophagy using lysosomal degradation 

inhibitor CQ. Consistently with my knockdown results, A2780-PRL-3 cells proliferate 

much faster than A2780-Vec in full media (Figure 19G, black lines). The treatment of 

CQ leads to a significant decrease of proliferation in both cell lines (Figure 19G, red 

lines). Critically, the enhanced cell proliferation by overexpression of PRL-3 was 

abolished by the treatment of CQ (Figure 19G, red lines). The results suggest PRL-3 

overexpressing cells are more sensitive to chemically autophagic inhibitor CQ treatment. 

PRL-3 enhances AKT activity by upregulating the phosphorylation on its Serine 473 site 

(Al-Aidaroos and Zeng, 2010; Wang et al., 2010). I found AKT-Ser473 phosphorylation 

(pAKT) level is higher in A2780-PRL-3 compared with A2780-Vec (Figure 19G, right 

panel, lanes 1-2). Significantly, CQ resulted in decreased pAKT level in A2780-PRL-3 

but not in A2780-Vec cells (Figure 19G, right panel, lanes 3-4). Similarly, A2780-PRL-3 

cells are able to survive and proliferate for up to four days in serum free media, while 

A2780-Vec cells cannot (Figure 19H, black lines). The addition of CQ also abolished the 

proliferation difference between the two cell lines in serum free condition (Figure 19H, 

red lines; p > 0.05). Again, I tested whether pAKT level was involved in PRL-3 

overexpressing cells in sustaining proliferation in serum deprived condition.  Indeed, 

A2780-PRL-3 did have a higher pAKT level than A2780-Vec in serum free condition, 

while the addition of CQ reduces the pAKT level difference between the two cell lines 

(Figure 19H, right panel).  
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Both decreased proliferation and increased apoptosis may contribute to a decreased MTT 

growth curve. To confirm whether CQ treatment affected cell proliferation but not 

apoptosis, I analyzed cellular viability under treatments in full medium or serum-free 

conditions shown in Figures 19G (Figure S5). According to the results, there was no loss 

of A2780 cell viability upon CQ treatment in the presence of serum, Thus, CQ treatment 

in A2780 cells mainly affected cell proliferation but not cell death. 

In summary, my data suggest that overexpression of PRL-3 upregulated autophagic flux, 

providing the cells with a growth advantage regardless of the presence of growth factor or 

amino acid, and this growth advantage can be diminished by the inhibition of autophagy, 

either genetically or chemically. 
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Figure 19. Overexpression of PRL-3 promotes cell proliferation in A2780 cells 
dependent on autophagy. (A–C) A2780-Vec and A2780-PRL-3 cells stably expressing 
shRNA against non-specific target (shScr), (A) hVps34 (shhVps34), (B) Beclin-1 
(shBeclin-1), or (C) ATG5 (shATG5) were cultured in full media. Relative proliferation 
rates were measured using MTT assay. (D and E) Cell lines used in (A–C) were cultured 
in serum-free and amino acid free RPMI media for an MTT assay. (G and H) A2780-Vec 
and A2780-PTP4A3 cells were cultured in (G) full media or (H) serum-free meida in the 
absence (control) or presence of CQ. Similarly treated cells were analyzed (48 h 
treatment) in parallel by western blotting for indicated protein levels, HSP60 is used as 
loading control (right panel). All results were shown as mean ± S.D. (NS P > 0.05, *P < 
0.05, **P < 0.01, ***P < 0.001) 
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4.3.7 PRL-3-Mediated Non-Adherent Growths of CHO Cells in Soft Agar Are 

Diminished Upon Autophagy Inhibition 

Our group previously showed that PRL-3 overexpression resulted in transformation of 

CHO cells, leading to an increase in anchorage-independent cell growth (Guo et al., 

2004b). Notably, Akt activation is critical for anchorage-independent cell growth (Liu et 

al., 2001; Nakanishi et al., 2002). In soft agar colony formation assays, I found that the 

ability of CHO-PRL-3 cells to form colonies could be abolished by CQ treatment (Figure 

20A-B).  

Importantly, the increase in pAkt level in PRL-3 overexpressing CHO cells in nutrient-

deprived conditions compared to control CHO cells was also abolished when autophagy 

was inhibited following CQ treatment (Figure 20C). Thus, in line with our earlier 

observations, PRL-3 is likely to promote anchorage-independent cell growth via Akt 

activation through increased autophagy. 
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Figure 20. PRL-3-promoted non-adherent growth of CHO cells in soft agar is 
diminished by inhibition of autophagy. (A-B) CHO-Con and CHO-PRL-3 cells were 
grown with or without the treatment of CQ. (A) Images were taken under phase-contrast 
microscope. (B)Images were taken after crystal violet staining using digital camera. (C) 
Indicated cells were treated as indicated for 24 hours before lysis for western blotting 
analysis. 
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4.3.8 PRL-3 Correlates With Ovarian Cancer Patient Survival In An hVps34, 

Beclin-1 And ATG5-Dependent Manner 

I showed that PRL-3 promoted proliferation in A2780 cells and anchorage-independent 

cell growth in CHO cells dependent on autophagy. To find out the clinical relevance of 

my in vitro findings obtained from CHO and A2780 ovarian cell lines, I extracted 

microarray and clinico-pathological data from an ovarian cancer patient cohort (GSE 

9899), the largest ovarian cancer dataset (n = 285) currently available in the GEO 

database. I found that mRNA expression level of PRL-3 in ovarian cancer specimens 

correlated with higher malignant potential compared to those with lower malignant 

potential (Figure S6A; p < 0.001). Moreover, increased PRL-3 mRNA expression was 

associated with not only higher histological grade (Figure S6B; p = 0.001), but also 

pathological stage (Figure S6C; p = 0.006), and shorter recurrence free survival in this 

cohort (Figure S6D; Kaplan-Meier analysis, log-rank test, p = 0.007). By Cox-regression 

analysis, increasing expression of PRL-3 mRNA was significantly associated with higher 

risk of recurrence-associated death (HR = 1.223, 95% CI = 1.051 – 1.424, p = 0.009). It is 

consistent with previous studies that PRL-3 overexpression promotes ovarian cancer 

progression (Kraft et al., 2012). 

To investigate the role of autophagy in the prognostic effect of PRL-3 in this ovarian 

cancer patient cohort, I stratified the patients into two groups by using the median mRNA 

expression of hVps34 as cut-off points. In patients with a higher level of hVps34 mRNA 

level, higher PRL-3 mRNA level was significantly associated with pathological stage III 

and IV (Figure 21A; p = 0.002), histological grade 3 (Figure 21B; p < 0.001) and shorter 

recurrence-free survival (Figure 21C; p = 0.003). In contrast, with a lower level of 

hVps34 mRNA expression, PRL-3 mRNA level was not significantly associated with any 

of these clinco-pathological parameters (Figure 21D-F; p > 0.05). Cox-regression 

analysis revealed that increasing mRNA expression of PRL-3 was significantly associated 
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with a higher risk of recurrence-associated death only in patients with a higher level of 

hVps34 expression (Table 1). 

 

 

Figure 21. High PRL-3 expression levels predict poorer survival of ovarian cancer 
patients coexpressing high levels of hVps34. (A-C) In patients with higher levels of 
hVps34, higher PRL-3 expression levels were significantly correlated with (A) later 
pathological stage (p = 0.002), (B) higher histological grade (p < 0.001), and (C) shorter 
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recurrence-free survival (p = 0.003). (D-F) In patients with lower levels of hVps34, 
higher PRL-3 expression levels were not significantly correlated with (D) later 
pathological stage (p = 0.162), (E) higher histological grade (p = 0.571), or (F) 
recurrence-free survival (p = 0.450).  

 

Similarly, when Beclin-1 mRNA level was used to stratify the patients into higher Beclin-

1 mRNA level group, and lower Beclin-1 mRNA level group, higher PRL-3 mRNA level 

was only significantly associated with later pathological stage, higher histological grade 

and shorter recurrence-free survival in the higher Beclin-1 mRNA level group (Figure 

22A-C), but not in the lower Beclin-1 mRNA level group (Figure 22D-F). In addition, 

Cox-regression analysis revealed that increasing mRNA expression of PRL-3 was 

significantly associated with a higher risk of recurrence-associated death only in patients 

with a higher level of Beclin-1 expression (Table 2). 
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Figure 22. High PRL-3 expression levels predict poorer survival of ovarian cancer 
patients coexpressing high levels of Beclin-1. (A-C) In ovarian cancer patients with 
higher levels of Beclin-1, higher PRL-3 expression levels were significantly correlated 
with (A) later pathological stage (p = 0.003), (B) higher histological grade (p = 0.002), 
and (C) shorter recurrence-free survival (p = 0.001). (D-F) In ovarian cancer patients with 
lower levels of Beclin-1, higher PRL-3 expression levels were not significantly correlated 
with (D) later pathological stage (p = 0.388), (E) higher histological grade (p = 0.682), 
and (F) shorter recurrence-free survival (p = 0.748). 
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Stratifying patients into ATG5-high and ATG5-low groups resulted in a similar 

observation where a significant association between PRL-3 expression and patient 

recurrence-free survival was obtained in ATG5-high group patients but not in ATG5-low 

group patients (Figure 23). However, the mRNA expression level of hVps34, Beclin-1, 

or ATG5 alone is not able to predict patient prognosis in this cohort (Figure S7). 

 

 

Figure 23. High PRL-3 expression levels predict poorer survival of ovarian cancer 
patients coexpressing high levels of ATG5. (A) In ovarian cancer patients with higher 
levels of ATG5, PRL-3 expression levels were significantly correlated with recurrence-
free survival (p = 0.002) (B) In the same cohort with lower expression level of ATG5, 
PRL-3 expression levels were not significantly correlated with recurrence-free survival (p 
= 0.438). 

 

 

Taken together, my results strongly suggest that that the prognostic significance of PRL-3 

in ovarian cancer patients is highly dependent on the autophagy competency of the 

primary tumors, in which the associations between PRL-3 expression and clinico-

pathological parameters can only be significantly detected in patients with higher levels 

of expression of autophagy-related genes. 
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Table 1. Cox regression analysis of patient survival for PRL-3 stratifying 
patients by their hVPS34 mRNA expression 
 HR 95%CI P-value 
hVPS34 mRNA 
levels 

   

     
Lower Low 1.235 0.921 – 1.657 0.159 
Quartile High 1.207 1.008 – 1.446 0.041 
     
Median Low 1.182 0.941 – 1.485  0.150 
 High 1.228 0.997 – 1.512 0.053 
     
Higher Low 1.067 0.888 – 1.283 0.488 
Quartile High 1.722 1.214 – 2.441 0.002 
 

 

 

Table 2. Cox regression analysis of patient survival for PRL-3 stratifying 
patients by their Beclin-1 mRNA expression 
 HR 95%CI P-value 
Beclin-1 mRNA 
levels 

   

     
Lower Low 1.051 0.759 – 1.457 0.764 
Quartile High 1.277 1.079 – 1.513 0.005 
     
Median Low 1.060 0.837 – 1.342  0.627 
 High 1.347 1.110 – 1.633 0.002 
      
Higher Low 1.129 0.947 – 1.347 0.177 
Quartile High 1.557 1.142 – 2.124 0.005 
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4.4 Discussion 

This is the first study showing a novel correlation between autophagy, a dual player in 

cancer, and PRL-3, a multifunctional oncogene. In this study, I demonstrated that 

endosomal phosphatase PRL-3, which also localize in the autophagosome, upregulates 

autophagy activity in multiple levels dependent on the activation of ULK1: 1) PRL-3 

promoted canonical autophagosome formation dependent on hVps34-Beclin-1 complex; 

2) PRL-3 increased LC3 conversion dependent on ATG5 expression; 3) PRL-3 promoted 

p62 degradation (summarized in Figure 18).   

I found that phosphorylation of Serine 555 site of ULK1 was increased with the 

overexpression of PRL-3 in A2780 cells (Figure 15). The Phosphorylation of ULK1 at 

Ser555 is critical for starvation-induced autophagy, and also positively correlated with the 

kinase activity of ULK1 (Meijer and Codogno, 2011). ULK1 is an upstream activator of 

autophagy, which is under the regulation of many regulators including MTOR and AMP-

activated protein kinase (AMPK) (Alers et al., 2012).  PRL-3 functions as a phosphatase, 

which can dephosphorylate its substrate. Thus, its overexpression is likely to increased 

pULK1-Ser555 in an indirect way, perhaps by directly dephosphorylating an upstream 

inhibitor of ULK1, and consequently, increases pULK1-Ser555 level, to upregulate its 

activity. Since MTOR is one of the best-studied upstream regulators of ULK1, I checked 

the activity of MTOR and its downstream effectors. However, there was no significant 

activity difference of MTOR and its downstream effectors between A2780 control cells 

and A2780 PRL-3 overexpressing cells (data not shown). Rapamycin (MTOR inhibitor) 

treatment was not able to abolish PRL-3 promoted autophagy flux (Figure 14), 

confirming the finding that PRL-3 unregulated autophagy flux and ULK1 activity 

independent of MTOR. The activity of AMPK, another upstream regulator of ULK1, has 

also been checked. No significant difference in Phospho-AMPKα (Thr172), the essential 

activation site of the catalytic subunit of AMPK (Shaw et al., 2004), was found between 
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A2780-Vec and A2780-PRL-3 cells (data not shown). Thus, further studies are still 

needed to find out the direct effector of PRL-3 that induces an activation of autophagy.  

Interestingly, I previously showed that PRL-3 locates in autophagosome and it is 

specifically degraded by autophagy. Such regulation of PRL-3 and autophagy forms a 

highly tuned negative feedback mechanism: PRL-3 protein level accumulation leads to an 

enhanced autophagy activity, which accordingly contributes the degradation of PRL-3 

itself. As a results, autophagy activity and PRL-3 protein level is regulated to a 

homeostatic functional state. This may be utilized by normal tissue to maintain a steady 

functional state of autophagy activity as well as PRL-3 protein level. Indeed, ULK1 as an 

autophagy activator can also be degraded by autophagy (Yang et al., 2011). Such negative 

feedback loop of ULK1 and autophagy fine-tunes ULK1 protein level and autophagy 

activity, preventing constitutive progressive consumption of cellular components by 

prolonged over-activation of autophagy, which might lead to autophagic cell death (Guo 

et al., 2011a). My findings here suggest that PRL-3 may contribute to maintain a 

moderate level of autophagy, which supports tumor tissues through starvation; and 

prevents autophagic cell death caused by unrestrained autophagy (Guo et al., 2011a). 

More importantly, inhibition of autophagy chemically by CQ reduced the cell 

proliferation promotional effect of PRL-3 in ovarian cancer cell A2780, as well as its 

effect in enhancing Akt phosphorylation, suggesting that autophagy plays an important 

role in PRL-3 mediated cancer progression (Figure 19). Moreover, genetic inhibition of 

autophagy by knockdown of autophagy genes (including hVps34, Beclin-1 and ATG5) 

also effectively crippled the ability of PRL-3 to drive ovarian cancer cell proliferation. 

My results are supported by previous studies, showing that apoptosis and clonogenic 

potential of A2780 cells are not affected by treatment with CQ (Zhang et al., 2012b). In 

addition, in the same study, they showed that Beclin-1 or ATG5 knockdown also did not 

affect the clonogenic potential of A2780 cells. These results suggest that autophagy is not 
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the key pathway for survival of A2780 cells under normal conditions, an observation in 

line with my results. However, in my study, I report the novel finding that PRL-3 

overexpression increased the proliferation of A2780 cells in an autophagy-dependent 

manner. I did not observe increased proliferation upon autophagy gene knockdown in 

A2780 cells, despite my data showing that such knockdown would promote PRL-3 

protein accumulation. Here, I propose that PRL-3 requires fully functional, uninhibited 

autophagy to effect and support increased proliferation in the A2780 cell line. 

Physiologically, PRL-3 requires a higher autophagy activity to promote ovarian cancer 

progression. Significantly, I showed that clinical data support my finding. I found that 

higher expression level of PRL-3 predicts poorer prognosis only when autophagy genes 

(hVps34, Beclin-1, or ATG5) expressions are high. Taken together, my results suggest 

that autophagy plays a crucial role in PRL-3 mediated ovarian cancer progression and that 

autophagy inhibition may be a novel therapeutic target for PRL-3-positive ovarian cancer. 

Paradoxically, since autophagy is playing dual roles in cancer progression depending on 

genetic background, both inhibition and activation of autophagy have been documented to 

have positive effects on cancer therapy. Recently, there are more approximately 20 

ongoing clinical trials in multiple types of cancers (Mancias and Kimmelman, 2011). The 

identification of PRL-3 as a biomarker to predict favorable prognostic effect of autophagy 

inhibition is of significant clinical utility. 

PRL-3 has been reported to have multiple functions in cancer progression (Al-Aidaroos 

and Zeng, 2010). It functions to promote multiple carcinogenesis processes including 

proliferation, cell survival, angiogenesis, and metastasis. My study here shows another 

aspect of PRL-3 in fine-tuning the ability of cells to utilize energy and resource through 

autophagy. Moreover, PRL-3 depends on autophagy to promote carcinogenesis process in 

ovarian cancer. The study contributed to a better understanding of PRL-3 in cancer 
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progression, and also suggested that inhibition of autophagy may have positive effect on 

cancer patients with PRL-3 overexpression. 

Recently, activated KRas has been shown to increase tumorigenesis dependent on 

autophagy. In this case, there are several similarities between PRL-3 and KRas. 1) both 

PRL-3 and KRas function as oncogenes; 2) autophagy activation by PRL-3 or KRas are 

both critical for cancer cell proliferation under starvation condition; 3) both proteins are 

able to activate receptor tyrosine kinase signaling; 4) both proteins have similar 

membrane targeting domain -- polybasic domain and prenylation domain which locates in 

the C-terminus of the protein, which might lead to similar localization of both these two 

proteins. These striking correlations prompted me to study the possible relationships 

between the two genes further, and form the core of my focus in the next chapter. 
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CHAPTER 5: CONSTITUTIVELY ACTIVATED KRAS (G13D, G12V) 

UPREGULATES PRL-3 PROTEIN LEVEL 

5.1 Background 

The Ras superfamily includes over 150 members with GTPase activity. Based on 

similarities in sequences and functions, the Ras superfamily is further categorized into 

different subfamilies. Within the Ras subfamily, KRas is the best studied member due to 

the correlation of its mutations with human cancers (Wennerberg et al., 2005).  

The full name of KRas is V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, and it is 

encoded by the KRAS gene in human (McGrath et al., 1983). It functions as a molecular 

switch in the cells, and its activity depends on whether it is binding to a guanosine 

triphosphate (GTP) or guanosine diphosphate (GDP). KRas is activated when bound to 

GTP, whereas it stays inactive when bound to GDP. KRas itself has low intrinsic GTPase 

activity. Therefore, the exchanging of bound nucleotide (GTP or GDP) is facilitated by 

guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). 

GAP binds to KRas, and functions to stimulate GTPase activity of KRas. GEF catalyzes 

the release of GDP from KRas, which stimulates the exchange of GDP for GTP (Vigil et 

al., 2010). Thus, with the help of GAP and GEF, KRas is able to circle rapidly between 

their active GTP-bound and inactive GDP-bound status according to its upstream 

regulators (Schubbert et al., 2007). 

KRas functions downstream of several receptor tyrosine kinases (RTKs), including 

Epidermal Growth Factor Receptor (EGFR), Platelet Derived Growth Factor Receptor 

(PDGFR), and Vascular-Endothelial Growth Factor Receptor (VEGFR) (Wilhelm et al., 

2004). Ligand binding to the extracellular domain of these RTKs results in receptor 

dimerization and the phosphorylation of its intracellular domains. As a consequence, 

KRas gets GTP bound and activated. RAF proto-oncogene serine/threonine-protein 
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kinase (RAF) binds to GTP bound KRas specifically, and thus it is translocated to the 

plasma membrane (KRas itself has a membrane associated localization due to the C-

terminus prenylation) where it can be phosphorylated by different protein kinases. 

Phosphorylated RAF is fully activated to phosphorylate its downstream effectors (Marais 

et al., 1998). Activated RAF phosphorylates Mitogen/Extracellular signal-regulated 

Kinase 1/2 (MEK1/2), subsequently leading to the phosphorylation of ERK1/2. ERKs, as 

proline-directed protein kinases, phosphorylate proline-neighboring serine or threonine 

residues (Tanoue et al., 2000). Activated ERK regulates growth factor-responsive targets 

in the cytosol and also translocates to the nucleus where it phosphorylates a number of 

transcription factors (Wortzel and Seger, 2011). By phosphorylating their substrates, 

ERKs modulate a wide variety of stimulated cellular processes, mainly including 

proliferation, differentiation, survival, as well as apoptosis and stress response (Chambard 

et al., 2007; Wortzel and Seger, 2011). Dysregulation of the ERK signaling is known to 

result in various pathologies, inducing neurodegenerative diseases (Kim and Choi, 2010), 

developmental diseases (Tidyman and Rauen, 2009), diabetes (Tanti and Jager, 2009), as 

well as cancer. (Dhillon et al., 2007). Another important downstream effector regulated 

by KRas is PI3K. Activated GTP-bound KRas has been shown to bind to and activate 

PI3K directly (Castellano and Downward, 2011). With the activation of PI3K, PI(4,5)P2 

is phosphorylated to generate PI(3,4,5)P3, leading to an activation of AKT, which also 

plays important roles in KRas-mediated cell survival and proliferation (Jancik et al., 

2010; Vivanco and Sawyers, 2002). The two main signaling pathways downstream of 

KRas are summarized in Figure 24. The dysregulation of both pathways may contribute 

to cancer progression (Marc, 2012). 
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Figure 24. The two main downstream pathways of KRas. Figure Adapted from Marc 
Pusztaszeri (Marc, 2012). PI3K-AKT, and RAF-MEK- ERK are the two main 
downstream pathways of KRas.  

 

Indeed, mutations in some certain sites of KRas result in amino acid substitutions that 

reduce its intrinsic GTPase activity. Such mutations disable KRas to hydrolyze the GTP, 

therefore locks KRas in an activated GTP-bound state, regardless of the status of its 

upstream pathways. The constitutively activated mutation of KRas may result in the 

development of many human cancers (Jancik et al., 2010). Thus, KRas is a proto-

oncogene, and it is one of the most frequently mutant genes in human cancers. The 

majority of the KRas mutations in cancers are in codons 12, 13 (exon 2), and codon 61 

(exon 3) (Bos, 1989). Different KRas mutation variants show different preferences on the 

activation of its downstream effectors. For example, KRas-G12D, the most common 

KRas mutation in colon and pancreatic cancers (Brink et al., 2003; Kim et al., 2011; 

Neumann et al., 2009), primarily activates PI3K- AKT signaling pathway (Cespedes et 
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al., 2006; Ihle et al., 2012), and causes constitutive PI3K-mTOR activation, without 

affecting the activity of the RAF-MEK-ERK pathway (Cespedes et al., 2006). However, 

KRas-G12V, the second most common KRas mutation in colon cancers predominately 

functions on RAF-MEK-ERK pathway but not the PI3K-AKT pathway (Ihle et al., 2012). 

In addition, different mutations of KRas also have different oncogenic potentials. KRas-

G12V is associated with more aggressive cancer behavior and has more oncogenic 

potential than KRas-G12D (Andreyev et al., 1998; Cespedes et al., 2006). KRas-G13D is 

the third most common KRas mutation in colon cancers (Brink et al., 2003; Neumann et 

al., 2009). Colon cancer cells with the expression of this mutant form of KRas show 

anchorage-independent growth, and increased expression of growth promoting genes c-

myc (Shirasawa et al., 1993), but less oncogenic potential than mutations in codon 12 

(Guerrero et al., 2000). Notably, activating mutations of KRas are commonly found in 

multiple cancers including: pancreatic cancers (95%), thyroid cancers (55%), colorectal 

cancers (35%), and lung cancers (35%), and often constitute essential steps in cancer 

development (Kranenburg, 2005; Shirasawa et al., 1993). 

Interestingly, there are some similarities between KRas and PRL-3. Functionally, both of 

them are strong oncogenes that contribute to cancer progression. Also, both proteins have 

been shown to activate ERK and AKT to promote cell proliferation and inhibit apoptosis 

(Al-Aidaroos and Zeng, 2010). Structurally, both proteins have a polybasic domain 

followed by a prenylation domain in the C-terminus, contributing to membrane 

association localization. It is highly possible that their similar localization may enable 

them to interact or crosstalk with each other. According to the previous chapters, PRL-3 

is specifically degraded by autophagy, and PRL-3 requires autophagy activity to promote 

cancer progression. Interestingly, similar with PRL-3, activated KRas mutation has been 

shown to require autophagy to maintain its tumorigenesis ability (Guo et al., 2011a).  
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However, correlations between these two important oncogenes PRL-3 and KRas are still 

lacking, and therefore I will present some data related to the aspects in this chapter. 

 

5.2 Outline Of Experiments 

 

1. To test the correlations between constitutive activated KRas and PRL-3, I 

obtained 2 pairs of isogenic cell lines, with KRas status being the only difference 

between each pair. I checked PRL-3 protein levels in these cell lines. 

 

2. I stably knocked down KRas in HCT116 (KRas-G13D) and DLD1-PRL-3 (KRas-

G13D) cells, and check the changes of PRL-3 protein level as well as KRas 

downstream effectors. mRNA level of PRL-3 were also checked. 

 

3. KRas-G12V, one of most oncogenic KRas mutation was overexpressed in 

HCT116 and Hkh-2 cells. PRL-3 protein levels and mRNA level changes were 

determined by Western blotting and RT-qPCR. 

 

4. MEK inhibitors U0126 and PD98059 were used to investigate the role of RAF-

MEK-ERK pathway in KRas mediated upregulation of PRL-3 protein level. 
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5.3 Results 

5.3.1 The Knockout Of Constitutively Activated Kras-G13D Mutation Reduces 

Endogenous PRL-3 Protein Level 

Our group found that PRL-3 induced EGFR activation (Al-Aidaroos et al., 2013). KRas is 

an important downstream factor of EGFR. In order to investigate whether there are any 

other links among EGFR, KRas and PRL-3 activity / expression levels, the experiments 

below were performed.  

To investigate the correlation between KRas and PRL-3, I used two pairs of isogenic cell 

lines: DLD-1 and DKO-3; together with HCT116, and Hkh-2 (Shirasawa et al., 1993). A 

point mutation that converts Glycine (G) to Aspartic acid (D) in codon 13 (G13D) of 

KRas is present in one allele of DLD-1. Such amino acid replacement mutation reduces 

the intrinsic GTPase activity of KRas, and thus locked KRas in a GTP-bound status. 

Consequently, KRas is constitutively activated in DLD-1 cells. DKO-3 is an isogeneic 

counterpart of DLD-1, in which the constitutively activated KRas was disrupted by 

homologous recombination. Similarly, HCT116 also harbors a constitutively activated 

KRas-G13D mutation. Hkh-2 is its KRas wild-type isogeneic counterpart. Either DLD-1 

and DKO-3, or HCT116 and Hkh-2 are paired cell lines with identical genetic 

background, and different KRas status. The KRas status of these cell lines is summarized 

in a cartoon (Figure 25A). 

Western blottings were performed to examine and compared the endogenous PRL-3 

protein level among the four cell lines (Figure 25B). Consistent with our previous finding 

(Wang et al., 2010), endogenous PRL-3 protein was not expressed in DLD-1 cells, while 

there was relatively high expression level of endogenous PRL-3 protein in HCT116 cells. 

Significantly, Hkh-2 had lower endogenous PRL-3 protein level than its KRas mutant 
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counterpart HCT116. The results indicated that constitutively activated KRas might 

contribute to an upregulation of endogenous PRL-3 protein level.  

 

 

Figure 25. The knockout of constitutively activated KRas-G13D mutation reduced 
endogenous PRL-3 protein level. (A) KRas status of DLD-1, DKO-3, HCT116 and 
Hkh-2 cells. (B) Exponentially growing cells of indicated cell lines were lysed for 
Western blotting analysis for the expression level of endogenous PRL-3. GAPDH was 
used as loading control. 

 
 

5.3.2 The Knockdown of KRasG13D Decreases PRL-3 Protein Level 

To confirm the results acquired from Figure 25, I constructed two shRNAs specifically 

against KRas, and infected HCT116 cells with these shRNAs. Exponentially growing 

cells were lysed for Western blotting analysis after stable selection (Figure 26A). 

Phospho-ERK1/2 (Thr202/Tyr204) (pERK1/2), levels were checked in these cell lines, 

and decreased significantly with the knockdown of KRas (Figure 26A). Endogenous 

PRL-3 protein levels in HCT116 were downregulated upon the knockdown of KRas. 

Band intensity of PRL-3/GAPDH was quantified using imageJ according to Materials and 

Methods, and showed in white bar in the right panel (Figure 26B, white columns). RT-

qPCR was performed to check the transcript level of PRL-3 in these cell lines, and 
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GAPDH was used as the internal control. Transcript levels of PRL-3 are shown in the 

right panel (Figure 26B, black columns). The difference between the mRNA and protein 

levels of PRL-3 suggests that the regulation of PRL-3 by KRas knockdown is not due to 

the regulation of transcription (Figure 26B, white columns V.S. black columns).  

 

 

Figure 26. KRas knockdown led to downregulation of endogenous PRL-3 protein 
levels. (A) HCT116 cells were stably infected with shRNA against nonspecific target 
(shScr), or KRas (shKRas-1, or shKRas-2) as indicated. Exponentially growing cells were 
lysed for Western blotting analysis for indicated proteins. (B) the ratios of PRL-3/ 
GAPDH from (A) were quantified as described in materials and methods (white 
columns). mRNA levels of PRL-3 of indicated cell lines were quantified by RT-qPCR, 
and presented as a histogram as mean±S.D. (black columns). 

 

 

Since DLD-1 (KRas-G13D) showed undetectable endogenous PRL-3 protein levels, I 

stably overexpressed PRL-3 in this cell line. After stable selection, PRL-3 protein can 

easily be detected in DLD-1-PRL-3. Similarly, the knockdown of KRas significantly 

downregulated exogenous PRL-3 protein levels but left mRNA level unchanged in DLD-

1-PRL-3 cells (Figure 27A-B). My results suggest that constitutively activated mutation 

of KRas upregulates PRL-3 in a post-transcriptional level. 



 104 

 

 

 

Figure 27. KRas knockdown led to downregulation of exogenous PRL-3 protein 
level. 

(A) DLD-1-PRL-3 cells were stably infected with shRNA against nonspecific target 
(shScr), or KRas (shKRas-1, or shKRas-2). Exponentially growing cells were lysed for 
western blotting analysis for indicated proteins. (B) the ratios of PRL-3/ GAPDH from () 
were quantified as described in materials and methods (white columns). mRNA levels of 
PRL-3 of indicated cell lines were quantified by RT-qPCR, and presented as a histogram 
as mean±S.D. (black columns). 

 

 

5.3.3 Overexpression of constitutively activated KRas-G12V leads to upregulation of 

endogenous PRL-3 

In the previous section, I found that KRas-G13D, the third most common KRas mutation 

in colorectal cancer, positively correlated with PRL-3 protein levels by KRas knockout or 

knockdown approaches. Among the top three most common KRas mutations, KRas-

G12V has the highest oncogenic potential (Guerrero et al., 2000). Thus, I further 

investigate whether this KRas mutation is also positively related with PRL-3 protein 

levels. 
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I overexpressed KRas-G12V in HCT116 (KRas-G13D) and Hkh2 (KRas wild type) cells. 

After stable selection, exponentially growing cells were lysed for western blotting 

analysis. Endogenous PRL-3 protein level, pERK1/2, and pAKT(S473) levels were 

checked in these cell lines (Figure 28A). The KRas overexpression in HCT116 cells is 

not as clear as that in Hkh-2 cells, and this may be due to a high endogenous KRas level 

in HCT116 cells. The overexpression of KRas-G12V led to an upregulation of pERK1/2 

level in both cell lines, while pAKT levels remained unchanged. As introduced before, 

although both PI3K-AKT and RAF-MEK-ERK are both downstream pathways regulated 

by KRas, KRas-G12V affects RAF-MEK-ERK pathway more predominantly (Ihle et al., 

2012). Importantly, endogenous PRL-3 protein levels increased in Hkh-2 cells with the 

overexpression of KRas-G12V. The increase of PRL-3 endogenous protein level in 

HCT116 is not as clear as that in Hkh-2 cells, and this may be due to the originally 

existing KRas-G13D in HCT116 cells. 

To investigate if such regulation of PRL-3 is due to transcription level, RT-qPCR of these 

cell lines was performed (Figure 28B, black columns). The mRNA levels of PRL-3 were 

not significantly different between these four cell lines. Thus, the overexpression of 

KRas-G12V did not significantly affect PRL-3 transcript level, despite an increase in 

protein levels. My results suggest a post-transcriptional regulation of PRL-3 by KRas-

G12V. 
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Figure 28. Overexpression of constitutively activated KRas-G12V upregulated 

endogenous PRL-3 protein levels. (A)KRas-G12V was stably overexpressed in HCT116 

or Hkh-2 cells. Indicated cells were lysed for Western blotting analysis for indicated 

proteins. (B) The ratio of PRL-3/ GAPDH from (A) were quantified as descripted in 

materials and methods (white columns). mRNA levels of PRL-3 of indicated cell lines 

were quantified by RT-qPCR, and presented as a histogram as mean±S.D. (black 

columns). 

 

 

5.3.4 Inhibition of MEK activity downregulates PRL-3 protein level 

My previous results suggested a positive correlation of PRL-3 expression level and 

pERK1/2 level. To investigate whether mutation of KRas upregulates PRL-3 protein level 

through RAF-MEK-ERK pathway, I used two MEK inhibitors, U0126 and PD98059, for 

further experiments. U0126 is a highly selective inhibitor of MEK1 and MEK2. MEK1/2, 

also called MAP Kinase or ERK kinase, activates ERK by phosphorylating its activation 

site (Cobb and Goldsmith, 1995). Thus, the treatment of U0126 leads to inhibition of 

pERK1/2 level as well as ERK1/2 activity. Similarly, PD98059 is a MEK1 inhibitor that 
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binds to the inactive forms of MEK1 and prevents its activation, and the treatment of 

PD98059 similarly leads to the inhibition of ERK activity (Mandic et al., 2001).  

DLD-1-PRL-3 cells were treated with U0126 or PD98059 for indicated concentration and 

durations, before lysis for Western blotting analysis (Figure 29). The treatment of U0126 

with different concentrations (from 1 μM to 20 μM) for different durations (from 2 hours 

to 48 hours) led to a reduced pERK1/2 level, while left pAKT level unchanged (Figure 

29A). Importantly, the prolonged treatment of U0126 for 24 hours or 48 hours resulted in 

significantly downregulation of PRL-3 protein level, in a dose dependent manner (Figure 

29A, red boxes). Similarly, treatments of PD98059 for different durations resulted in a 

significant downregulation of pERK1/2 level in a dose dependent manner (Figure 29B). 

Importantly, prolonged high dose treatment (24 and 48 hours) of PD98059 downregulated 

PRL-3 protein level (Figure 29B, red boxes). My results here suggest that PRL-3 is 

downregulated with the inhibition of RAF-MEK-ERK pathway. 
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Figure 29. Inhibition of MEK activity downregulated PRL-3 protein levels. 

(A) DLD-1-PRL-3 cells were treated with/ without (Con) MEK inhibitor U0126 for 

indicated concentrations and durations before lysis for Western blotting analysis for 

indicated proteins. (B) DLD-1-PRL-3 cells were treated with/ without (Con) MEK 

inhibitor PD98059 for indicated concentrations and durations before lysis for Western 

blotting analysis for indicated proteins. 
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5.4 Discussion 

In this chapter, I found that the expression of constitutively activated mutant KRas 

(G13D/G12V) positively correlated with the up regulation of PRL-3 protein, without any 

effect on PRL-3 mRNA expression level. This is in accordance with an increase in RAF-

MEK-ERK signaling. ERK inhibition suppressed the upregulation of PRL-3 by mutant 

KRas. My results pointed to a novel post-translational regulation of PRL-3 by the Ras- 

RAF- MEK-ERK pathway. 

Approximately 17% - 25% human cancers are known to have a mutated KRAS allele 

(Kranenburg, 2005). Moreover, KRas mutation predicts poorer prognosis of patients with 

multiple cancers (Kranenburg, 2005). Thus, KRas plays a very important role in human 

cancers. Besides being a signal transduction switch that modulates the activity of various 

cellular signaling pathways, KRas also regulates the expression of many proteins. For 

instance, ERK, as a downstream effector of Ras genes (HRas, KRas and NRas), may 

translocate to the nucleus when activated, and therefore phosphorylates and activates 

different transcription factors. Thus, KRas is able to regulate a variety of proteins 

transcriptionally (Zuber et al., 2000). In addition, KRas also regulates protein levels by 

post-transcriptional mechanisms. Firstly, KRas-G12V upregulates basal autophagy (Guo 

et al., 2011a). However, it is unlikely that constitutively activated KRas mutation 

regulates PRL-3 protein level through increased basal autophagy activity, as my results 

show PRL-3 is an autophagic substrate. Secondly, KRas-G13D has been shown to 

activate ERK to protect p21Waf1/Cip1 from proteasome degradation through 

transcriptionally upregulation of cyclin D1. Specifically, increased ERK activity 

promotes cyclin D1 transcription, thereby increasing cyclin D1 binding and stabilization 

of p21Waf1/Cip1 from proteasome degradation by masking the p21Waf1/Cip1 proteasome-

binding motif (Coleman et al., 2003). A similar mechanism may be relevant in the case 

for activated KRas- RAF- MEK- ERK pathway upregulating PRL-3 protein level.  
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Indeed, PRL-3 was degraded by proteasome with SAHA (an HDAC inhibitor) treatment 

(Zhou et al., 2011). Therefore, it is possible that the status of ERK signaling determines 

whether PRL-3 is degraded by proteasome or not. Specifically, when ERK activity is low, 

PRL-3 gets degraded by proteasome and autophagy pathways; while with over activated 

ERK; PRL-3 is only degraded by autophagy but not proteasome, leading to an increase of 

PRL-3 protein level. Such transition may be fulfilled by a stabilizing modification of 

PRL-3 by over-activated ERK directly or indirectly. Further experiments are still needed 

to investigate how PRL-3 is upregulated by the activation of RAF-MEK-ERK pathway, 

including the knockdown of ERK itself. Understanding the mechanism of Ras-mediated 

stabilization of PRL-3 could reveal novel targets for inhibition of oncogenic PRL-3 

accumulation in cancers. 

It has been documented that PRL-3 upregulates the phosphorylation level of ERK (Liang 

et al., 2007; Park et al., 2013). Thus raises an intriguing possibility that PRL-3 and ERK 

activity might form a positive feedback loop. PRL-3 is a strong oncogene that contributes 

to multiple aspects of tumor progression (Al-Aidaroos and Zeng, 2010). RAF-MEK-ERK 

pathway is activated in more than 30% of human cancers, and the aberrant regulation of 

this pathway promotes cancers (Hatzivassiliou et al., 2012). Such a positive feedback 

loop of PRL-3 and ERK activity might strengthen the tumorigenic properties of each 

other. However, such feedback loop may also provide new targets for cancer therapy. For 

example, cancer patients with KRas mutations may have an over-activation of RAF-

MEK-ERK pathway, which may result in an upregulation of PRL-3 protein level. The 

upregulated PRL-3 may in turn, functions to further enhance ERK activity. If so, patients 

might be expected to be more sensitive to targeted therapy against PRL-3 or RAF-MEK-

ERK pathway due to addiction to such positive feedback loops.  

EGFR inhibitors such as Cetuximab and Panitumumab are widely used in colorectal 

cancer therapy (Adams and Weiner, 2005). However, patients with KRas mutations 
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respond poorly to EGFR inhibition (Amado et al., 2008), as oncogenic KRas lies 

downstream of this receptor. In contrast, inhibition of MEK and PI3K, which lies 

downstream of KRas, shows good therapeutic effect in cancers with KRas mutation 

(Engelman et al., 2008). Since my results suggest that PRL-3 also lies downstream of 

KRas, it is plausible that PRL-3 inhibition may likewise be a good target for cancer 

patients with KRas mutations. Importantly, our group showed that PRL-3, as an 

intracellular protein, is targetable by specific antibody (Guo et al., 2011b). Although 

further in vivo experiments are still needed to study the utility of PRL-3 inhibition in 

KRas mutant cancers, my study might shed light on new therapeutic approach for cancer 

patients with activating KRas mutations. 
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CHAPTER 6: CONCLUSION 

In this thesis, I described three novel findings on PRL-3 (PTP4A3) metastatic 

phosphatase: First, PRL-3 promoted canonical autophagy flux, and it depends on 

autophagy to promote cancer progression in ovarian cancer cells. Second, PRL-3 was 

specifically degraded by autophagy especially upon starvation conditions. Third, I also 

showed some important observations that PRL-3 protein levels were increased by 

constitutively activate KRas mutation (KRas-G13D or G12V). 

I further illustrate the detailed results in below cartoon (Figure 29). To activate autophagy 

activity, PRL-3: (1) upregulates the activity of ULK1, which is a key initiator of 

autophagy; (2) promotes hVps34-Beclin-1-dependent autophagosome formation; (3) 

accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner, and (4) enhances 

the degradation of p62, a key autophagy substrate (related regulations of 1, 2, 3, and 4 are 

also labeled in Figure 29). These functions of PRL-3 are dependent on its catalytic 

activity and prenylation-dependent membrane association. Following autophagy 

activation, PRL-3 unexpectedly serves as a novel autophagic substrate (No.5 in Figure 

29). It was specifically degraded by autophagy especially upon starvation condition 

thereby establishing a negative feedback-loop that may be required to fine-tune 

autophagy activity. The correlation between KRas and PRL-3 are also summarized in 

Figure 29, constitutively activate KRas mutation (KRas-G13D or G12V) stabilized PRL-

3 protein through RAF-MEK-ERK kinase cascade (No. 6 in Figure 29). In the contrary, 

PRL-3 has been documented to upregulate the activity of ERK (Liang et al., 2007; Park et 

al., 2013). Thus, PRL-3 and ERK may form a positive feedback loop. 
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Figure 30. A proposed model of coverage between PRL-3, KRas signaling, and 
autophagy signaling. PRL-3 activates autophagosome formation and is also degraded 
by autophagy. Constitutively active mutation of KRas stabilizes PRL-3 through the 
RAF/MEK/ERK kinase cascade. Solid lines indicate direct regulation, while dotted 
line indicated indirect regulation. Black lines are based on existing literature, and red 
lines show novel finding in this study.  

  

 

My study unveils a picture correlating PRL-3, autophagy, and the KRas pathway, as 

well as their roles in cancer. PRL-3 and KRas have several similarities including 

similar mechanism of membrane-associated localization; similar downstream 

effectors (AKT, ERK1/2); and a common role in promoting cancer progression. 

Similar to my observation where PRL-3 not only enhanced autophagy flux, but also 

promoted cancer progression dependent on autophagy activity in ovarian cancer cells, 

constitutively activate KRas was also shown to accelerate basal autophagy activity, 

and promoted cancer progression in an autophagy-dependent fashion (Guo et al., 
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2011a). Indeed, knocking down autophagy genes such as ATG5 or ATG7 abolishes 

the tumor promoting effect of mutant KRas (Guo et al., 2011a). There may be several 

possible explanations for this similarity between PRL-3 and mutant KRas. Mutant 

KRas triggers changes in metabolism to facilitate its cell transforming activities 

(Bryant et al., 2014). In this situation, autophagy providing new energy resources, 

might contribute to survival of cells with KRas mutations (Bryant et al., 2014). Given 

the similarities between PRL-3 and KRas, it may be interesting to study whether PRL-

3 may also cause changes in cellular metabolism to achieve its oncogenic effect. 

A previous study from our group showed that PRL-3 activates EGFR, an upstream 

regulator of KRas through downregulation of protein-tyrosine phosphatase 1B 

(PTP1B), an EGFR phosphatase. Taken together with my results showing that 

constitutively activated mutations in KRas can stabilize PRL-3 protein, it is likely that 

a positive feedback mechanism may exist between these oncogenes. Since PRL-3 

itself was upregulated by constitutively activated KRas mutant, upregulating the 

expression level of PRL-3 might serve as an alternative route for mutant KRas to 

accelerate autophagy flux. Moreover, since the blockage of autophagy inhibits 

tumorigenesis effects of both constitutively activated KRas mutation and PRL-3 

overexpression, it may also be possible that PRL-3 functions as an effector of mutant 

KRas to promote cancer progression. Further studies are warranted to find out the role 

of PRL-3 in constitutively activated KRas mutation in promoting cancer progression.  

KRas, HRas and NRas are three closely related genes in Ras subfamily. They are 

highly homologous, engage a common set of downstream effectors, and are able to 

exhibit oncogenic activity especially when mutant (Prior et al., 2012). Indeed, 

oncogenic mutations of KRas, HRas and NRas are frequently found in human cancers 

derived from different origins (Prior et al., 2012). Thus, it is of significant interest to 
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investigate whether the constitutive activate mutations in HRas and NRas may also 

cause upregulation of PRL-3. Investigate the correlations between PRL-3 and KRas, 

HRas and NRas, may help us understand the regulation of PRL-3 in cancers. In 

addition, given the large number of clinical studies underway targeting Ras signaling 

networks, establishing the importance of PRL-3 as an oncogenic Ras effector would 

potentially unravel new targets for therapy.  
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

Figure S1. Localization of PRL-3 with Baf A1 treatment for shorter durations. CHO-
PRL-3 cells were transiently overexpressed with GFP-LC3, and let grow for 24 hours 
before treatment and immunofluorescence assay. (A) Representative images with CHO 
cells treated for different time points. (B) Percentage of PRL-3 positive LC3 puncta were 
quantified manually in at least 20 cell, and shown as a histogram (mean± S.D.) 
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Figure S2. PRL-3 colocalized with LC3 upon CQ treatment in HCT116 cells. 
HCT116 cells overexpressed with PRL-3 (HCT116-PRL-3) were treated as indicated, 
before immunolabeling with PRL-3 and LC3. 
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Figure S3. PRL-3 overexpression promoted HBSS induced autophagy flux. Indicated 
cell lines were treated as indicated before the lysis for Western Blotting analysis. 

 

 

 

 

 

 

 

 

Figure S4. PRL-3 promoted autophagy flux dependent on its phosphatase activity as 
well as its prenylation domain. Indicated cell were treated with (CQ) or without CQ 
(Control) before lysis for Western blotting analysis. 
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Figure S5. A2780 Cell viability is not much affected upon prolonged CQ treatment 
in A2780 cells. Cells with the same treatments in Figure 19G were counted after the 
trysin blue staining.  
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Figure S6. The prognostic value of PRL-3 in ovarian cancer cohort GSE9899. (A) 
PRL-3 mRNA level was significantly higher in patients with malignant ovarian tumors 
compared to those with low malignant potential tumors. (B and C) PRL-3 mRNA level 
was significantly higher in tumors with higher (B) grades or (C) stage. (D) Expression 
level of PRL-3 predicts recurrence-free survival 
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Figure S7. Autophagy genes alone have no prognostic value for recurrence-free 
survival in ovarian cancer cohort GSE9899. (A) The expression level of (A) hVps34, 
(B) Beclin-1, or (C) ATG5 does not correlate with recurrence free survival (p > 0.05) 
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