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ABSTRACT 

 

        The strong charge-spin-orbital-lattice couplings in strongly correlated systems have 

led to some exciting phenomena in condensed matter physics. Cuprates and manganites, 

the two well-studied materials, continue to present rich phenomena and new challenges. 

This thesis focuses on the study of electronic and magnetic structures of cuprates and 

manganites using synchrotron based X-ray absorption near edge spectroscopy (XANES), 

X-ray magnetic circular dichroism (XMCD), X-ray diffraction (XRD), spectroscopic 

ellisometry (SE) and other complementary methods.  

        The cuprates were studied by using a combination of XANES and SE. The evolution 

of electronic band structures as a function of doping for series of hole and electron doped 

Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO) films was studied. Furthermore, a mid-gap 

state accounting for the co-existence of a low energy antiferromagnetic state and a Mott 

state in ambipolar cuprates YLBLCO, was discovered and investigated through a 

theoretical model. This study provides important clues to the mechanisms of pseudogap 

and superconducting pairs. 

        In addition, a combination of ultraviolet–vacuum ultraviolet (UV-VUV) optical 

reflectivity and SE was applied to reveal the optical conductivity in an energy range up to 

32.5eV as a function of temperature and polarization up to very high accuracy. A strong 

temperature dependence of the optical conductivity was investigated in the insulating phase 

of the untwined single crystals of hole-doped cuprate of La1.95Sr0.05Cu0.95Zn0.05O4 (Zn-

doped LSCO). We argue that the hole-doped cuprates exhibit both singlet and triplet 
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contributions to the electronic wave function, as evidenced by the high-energy optical 

response in Zn-doped LSCO.  

        The temperature dependent evolution of electronic and spin structures of manganites 

and their effect on the macroscopic transport and magnetic properties in manganite ultra-

thin films on different substrates was studied using transport, SE, XANES, and XMCD 

techniques. It was demonstrated that the strong hybridization occurring between the 

manganite films and the substrates at the interface affects the optical conductivity spectra. 
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Chapter 1 

 

An Introduction to cuprates and manganites 
 

        Strong charge-spin-orbital-lattice couplings in strongly correlated systems lead to 

some of the most exciting phenomena in condensed matter physics, such as high-Tc 

superconductivity, multiferroicity and colossal magnetoresistance. The nearly degenerate 

multiple ground states are very sensitive to external stimuli. A subtle change in charge, 

spin, orbital or lattice could lead to exotic electronic phases. Cuprates and manganites, two 

well-studied and continuing to be explored examples speak volumes for the rich 

phenomenology and challenges. In this thesis, the electronic and magnetic properties of 

cuprates and manganites have been studied using synchrotron techniques.  

        This chapter consists of three main sections. Firstly, the crystalline and electronic 

structure of high transition temperature superconducting cuprates are characterized. The 

literature review and general problems about cuprates are then reported. In the second 

section, the structural, electronic and magnetic properties of colossal magnetoresistance 

(CMR) manganites are described. After that, the literature review and particular research 

motivations on manganites are presented. In the third section, the objectives for this 

thesis are described. 
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1.1 High transition temperature superconducting cuprates 
 

        The phenomena of superconductivity was discovered in 1911 by Kammerlingh 

Onnes, where the charge carriers can move in the lattice without resistance below a 

critical temperature Tc.
1 However, the highest Tc observed was only 23 K for Nb3Ge  

before the high Tc superconductor was found.2 In 1986, George Bednorz and Karl Alex 

Müller discovered a new class of superconductors in the La-Ba-Cu-O system with 

Tc~35K, which is termed high transition temperature (Tc) superconductor. This class of 

superconductors is copper oxide (cuprate) based. Some examples of the high-Tc 

superconducting cuprates are described in Table 1.1. 

Table 0.1 

Table 1.1. Some examples of high-Tc superconductors. 

Material Tc (K) 

Hole-doped 

Bi2Sr2CaCu2O8+δ (δ=0.15) 95K 

YBa2Cu3O7-x (x=0.07) 93K 

La2-xSrxCuO4 (x=0.15) 39K 

Electron-doped 

Nd2-xCexCuO4 (x=0.15) 24K 

 

        Conventional superconductors were already explained by BCS (Bardeen, Cooper, 

Schrieffer) theory, which was first proposed in 1957.3 The most essential concept in the 

conventional superconductor system is the Cooper pair, which is a pair of electrons with 
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opposite spin bound together at low temperature. The formation of the Cooper pair is due 

to the weak attractive potential from electron-lattice (phonon) interactions. These Cooper 

pairs in conventional superconductors form a collective condensate, which is difficult to e 

break. The Cooper pairs have no energy to exchange with the lattice (phonon) below a 

transition temperature, which means no electrical resistance.   

        However, the BCS theory cannot describe the high transition temperature 

superconducting cuprates. The mechanism behind the high transition temperature 

superconducting cuprates is not yet completely understood, and has been one of the most 

challenging research problem in modern condensed matter physics. 

 

1.1.1 The crystalline structure of cuprates 

 

        The structures of cuprates can be categorized according to the structural units: the 

perovskite-like CuO2 planes and the charge reservoir layers. The most studied 

compounds are La1-xSrxCuO4 (LSCO), YBa2Cu3O7-δ (YBCO), and Nd2-xCexCuO4 

(NCCO) as well as its various modifications which will be described in the following 

sections.  

 

The structure of La1-xSrxCuO4. The tetragonal structure of La1-xSrxCuO4 (two formula 

units, a body-centered tetragonal lattice) is shown in Fig. 1.1.4 The lattice parameters for 

different compositions and their temperature dependence are described by Hazen.5 The 

typical values of the lattice constants in the tetragonal phase are a=b=3.78 Å, c=13.2 Å. 

A structural phase transition from tetragonal to the low-temperature orthorhombic phase 



4 

 

takes place as the temperature decreases. It is noted that there is only a single CuO2 plane 

in one unit cell of La1-xSrxCuO4. 

 

Figure 1.2. The structure of La1-xSrxCuO4 in the tetragonal phase. 

Figure 0.1 

 

The structure of YBa2Cu3O7-δ. YBa2Cu3O7-δ is the first discovered high temperature 

superconductor which was found with Tc exceeding the boiling point of nitrogen. (See 

Table 1.1) Thus, a lot of literature is devoted to the study of the compound YBa2Cu3O7-δ 

and its various modifications.4-6 YBa2Cu3O7-δ presents two structural variations 

depending on temperature and oxygen content: orthorhombic phase, and tetragonal phase 

(shown in Fig. 1.2). The orthorhombic phase is observed at low temperature for δ≤0.6.7 
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The typical values of lattice constants at room temperature for δ≈0 are a=3.828 Å, 

b=3.888 Å, c=11.65 Å.7 In this phase, a single unit cell of YBa2Cu3O7-δ has two Cu–O 

sheets in the ab plane and Cu–O chains along the b-axis. The presence of oxygen atoms 

in the Cu–O chains is essential for superconductivity.5 The structural parameters in the 

tetragonal phase, when the oxygen content (7-δ) decreases, are close to those in the 

orthorhombic phase. Also, by changing the oxygen content, the physical properties of 

YBa2Cu3O7-δ vary over a wide range without any substantial changes in its structure (Fig. 

1.2). When the oxygen content increases, the oxygen is placing in the chains (Fig. 1.2). It 

is noted that there are two CuO2 planes in one unit cell of YBa2Cu3O7-δ, as compared to 

La1-xSrxCuO4 (only one CuO2 plane in one unit cell). Furthermore, with an increasing 

number of CuO2 planes, an increase in Tc is observed, with the maximum Tc usually 

attained for n = 3.7  
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Figure 1.2. The crystal structure of (a) YBa2Cu3O7 and (b) YBa2Cu3O6. The CuO2-plane and 

CuO3-chain are indicated by the yellow sticks. 

Figure 0.2 

The structure of Nd2-xCexCuO4. The crystal structure of Nd2-xCexCuO4 with electron 

carriers is similar to that of La1-xSrxCuO4 but without oxygen in the apical position,7 as 

shown in the Fig. 1.3. The typical values of the lattice constants in the tetragonal phase 

are a=b=3.94 Å, c=12.1 Å.8,9 In Fig. 1.4, the tetragonal structures of the T’ phase, T phase 

and T* phase are shown for comparison.9 The T’ phase presents the Nd (Ce) compounds 

with sheets of Cu-O squares; the T phase presents the La (Sr) compounds with Cu-O 

octahedra; and the T* phase presents the mixed compounds Nd (Sr, Ce) with Cu-O 

pyramids. In the T* phase, the apical oxygen atoms are preserved only in the layer Nd–Sr, 
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while in the layer Nd–Ce the oxygen atoms are shifted to the faces. The lattice constants 

of the T* phase are between those of the T’ and T phase.  

 

 

Figure 1.3 The crystal structure of Nd2-xCexCuO4 in the tetragonal phase. 

Figure 0.3 
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Figure 1.4 The tetragonal unit cells of (a) Nd2-xCexCuO4 (T’ phase), (b) La2-xSrxCuO4 (T phase) 

and (c) Nd2-x-zCexSrzCuO4 (T* phase). The red arrows are pointing at the apical oxygen position. 

Figure 0.4 

1.1.2 The electronic structure of cuprates 

        

        Soon after the discovery of high transition temperature cuprates, two competing 

schools of theories emerged: the strong coupling Mott paradigm and the weak-coupling 

Hartree-Fock theory. The theories used to describe the normal state properties and the 

subsequent proposals for the mechanism of superconductivity hinge on them. Both 

theoretical paradigms were primarily influenced by different notions of the authors on the 

nature of insulating state in the parent compound. With further study, the debate has 

accumulated evidence for both theories. 

        The first theory claims that the cuprates at half-filling (undoped) are Mott insulators 

(see the discussion below), in which double occupancy in each Cu site is prohibited by 

strong Coulomb interaction, and the antiferromagnetic (AFM) order that occurs below the 
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Néel temperature (the temperature above which an antiferromagnetic material becomes 

paramagnetic) is a consequence rather than a cause of the Mott insulating phase. We 

generally consider the basic electronic structure of the CuO2 plane first, even the charge 

reservoir layers also play a role in determining the transition temperature of cuprates.10 In 

the parent compounds (undoped) case La2CuO4, the chemical valences of the elements 

show: O2-; La3+; Cu2+ [3d104s → 3d9]. The formation of the electronic structure of CuO2 

plane is shown in Fig. 1.5.5,7 Due to the crystal field splitting and Jahn-Teller effect in the 

CuO2 planes, the 3d copper levels are degenerate into singlets d(x2-y2), d(3z2-r2), d(xy) 

and doublets d(xz), d(yz); the 2p oxygen levels are degenerate into p(π||), p(π⊥) and p(σ). 

The weak hybridization of the π orbitals with Cu states results in narrow π bands. Four 

oxygen σ orbitals around a d(x2-y2) show the strongest covalent bonding which form 

broad bonding and anti-bonding bands. Other configurations give rise to narrow 

nonbonding (NB) bands. From this picture of the electronic structure, the parent 

compound should be a half-filled metal (1/2 net spin). However, experiments 

demonstrate that the parent compound is an antiferromagnetic insulator with an energy 

gap of 1-2 eV.11 This situation was explained earlier by Mott and Hubbard, and the 

compound is known as the “Mott-Hubbard insulator”. 12,13 In the Mott-Hubbard model, 

the anti-bonding band splits into empty upper Hubbard band (UHB) and filled lower 

Hubbard band (LHB) separated by energy Ud, and it is assumed that Ud < Δ, where Δ is 

the charge transfer energy(Δpd=Ed-Ep). However, the situation in cuprates of Ud > Δ > W, 

where W is the width of the anti-bonding band, is possible. It means that there is an O 2p 

band between UHB and LHB. In this case, the insulator gap is defined by the charge 

transfer Δ, and such an insulator is called “charge-transfer insulator” in the Zaanen-
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Sawatzky-Allen scheme.14 The bonding band splits into a triplet (T, S=1) band and a 

singlet band. This singlet is labeled the “Zhang-Rice singlet band (ZRS, S=0)” due to 

strong d-d correlations and p-d hybridization15. The ZRS state is the spin local singlet 

state of the symmetric state with a net zero spin moment, formed by four oxygen hole 

states around a Cu2+ ion. The ZRS state lies below the UHB with a charge-transfer gap Δ 

(U >>Δ), as shown in Fig. 1.6.16 

 

 

Figure 1.5 Formation of the electronic structure in CuO2 planes. NB is non-bonding band. 

Figure 0.5 
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Figure 1.6 Illustration of the electronic structure of the charge-transfer model. Δ is the charge 

transfer and U is the on-site Coulomb repulsion. Upper Hubbard band (UHB), lower Hubbard 

band (LHB), nonbonding band (NB), Zhang-Rice singlet band (ZRS), triplet band (T) are also 

marked in the figure. 

Figure 0.6 

        On the other hand, in the Hartree-Fock school of theory, the AFM phase is driven by 

Fermi surface instability induced symmetry breaking, and the strong AFM interaction at 

half-filling leads to the insulating behavior. Over the years this itinerant picture has 

accumulated more attention due to the discovery of various competing orders,17 Hall-

effect, and quantum oscillation measurements.18,19 This points to the presence of coherent 

Fermi surface pockets in the low-energy spectrum.  

        The validity of the strong coupling Mott paradigm (the first one) is steadily 

maintained. This is due to the fact that optical conductivity data, consistent with other 

experiments, has shown that the Mott gap features persist even above the AFM Néel 

temperature, as well as at finite doping extending to the superconducting phase (see Fig. 

1.7).20 The spectral weight (the summed total intensity of the spectrum) transfer from the 

high- to low-energy scale in optical conductivity from the Mott energy scales to the 

quasiparticle states is estimated to be faster than what is predicted by the Mott theory.20 
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These apparently contrasting experimental behaviors call for further novel theoretical and 

experimental studies which can provide key parameters that interpolate between the 

strong and weak coupling scales.  

        Electronic structures of cuprates are strongly affected by substituting atoms in the 

buffer layer (LSCO and NCCO) or changing the oxygen content (YBCO). Moreover, 

different types of additional charge carriers are doped into the CuO2 plane: holes and 

electrons. Upon hole or electron doping, superconducting and metallic states will be 

observed. 

        The general phase diagram of both electron- and hole-doped cuprates is shown in 

Fig. 1.7.21 The example for electron-doped cuprates is NCCO and the one for hole-doped 

cuprates is LSCO (a similar phase diagram can be applied to the YBCO system).21,22 In 

the phase diagram, the parent compounds are both long-range ordered 

antiferromagnetism (AF) which is almost localized at Cu sites.   

        Upon hole doping, the long-range order AF will be rapidly destroyed (the Néel 

temperature TN drops), due to the holes hopping between Cu sites. Importantly, the spin-

glass (SG) phase turns up, as shown in Fig. 1.7. The study in chapter 4 is based on this 

phase. It is noted that the superconducting phase (SC) only occurs at low temperature at 

the right doping level. In general, Tc for cuprates has a parabolic dependence on doping p 

at an optimal doping popt. In the underdoped region (p<popt), the cuprates show a 

pseudogap state below a temperature T* and above Tc.
23,24 This pseudogap phenomenon 

has been attracting much attention.21,25 In the overdoped region (p>popt), the cuprates 

exhibit a “normal” metal state above Tc. Interestingly, the p=1/8 compound presents a 
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stripe state and exhibits a sharp reduction in Tc., as it hosts one-dimensional modulations 

of charge and spin.26-34  

 

Figure 1.7 The generic phase diagram of the hole- and electron-doped cuprates. 

AF=antiferromagnetic, SC=superconducting, SG=spin-glass. 

Figure 0.7 

        For electron-doped cuprates, the long-range order antiferromagnetic phase is sturdier 

with a higher doping level. Furthermore, the superconducting phase occurs in a narrower 

doping range than that for hole-doped cuprates. 
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1.1.3 Literature Review 

 

        Even though the high-Tc superconductors (HTSCs) cuprates was discovered more 

than two decades ago, the mechanism of the normal state (non-superconducting) in 

cuprates is not yet clear.35-38 As prominent ingredients of the electronic structure and of 

fundamental relevance for high-Tc superconductivity in the cuprates, magnetic and charge 

correlations in relation to the doped holes have been extensively studied.38-43
 Studying the 

electronic structures of high transition temperature superconductors is a good way of 

deciphering the mechanism of cuprates.16,44 Because of its importance in understanding 

the high temperature superconductivity in cuprates, the Zhang-Rice singlet (ZRS) state 

has been extensively studied.38-40 X-ray absorption investigations on La2-xSrxCuO4 by 

C.T. Chen et al. highlighted the two-peak structure: The lower-energy feature was 

assigned as the Zhang-Rice singlet, while the higher-energy peak was ascribed to the 

upper Hubbard band (UHB).41 The ellipsometry and optical reflectivity measurements on 

the insulating cuprates show a robust peak at 1.5-2.0 eV which is related to charge-

transfer transitions.45-54 Further investigation of the characteristics of ZRS in the 

insulating phase (or the underdoped region) and in the presence of impurities is needed. 

For example, the spin correlation within Zn-doped La2-xSrxCuO4 is expected to be 

modified55. Moreover, substituting Y in YBa2Cu3O7-δ by Pr would add a new state near 

the Fermi level due to the hybridization of Pr 4fz(x
2

-y
2

) - O 2pπ.
56,57 Recently, an “in-gap 

state” has been induced between the ZRS and UHB for light hole and electron doped 

cuprates, as suggested by x-ray photoemission spectra.58 However, this still is a 

controversial issue.59,60 
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        There is a general consensus that doped holes in cuprates reside mainly in O 2p 

orbitals39. Previous x-ray absorption spectroscopy studies on cuprates support the view 

that the holes predominantly dope in the CuO2 plane.41,61 However, several local 

descriptions on how the doped hole correlates with surrounding Cu spins are hotly 

debated using different theoretical models.15,59,62 Recently, the O K-edge x-ray absorption 

spectra measured by D. C Peets et al. demonstrated that the intensity of the pre-peak 

increases roughly linearly with doping at lower doping levels in La2-xSrxCuO4. However, 

it exhibits weaker doping dependence at higher doping levels, which is not consistent 

with the three-band Hubbard model.38 However, where these remaining holes have gone 

at higher doping levels is not clear.63  

    In general, the electron structures and superconducting properties of p-type and n-

type cuprates are different.22 Recently, using X-ray photoemission spectroscopy and 

XAS, M. Taguchi et al. demonstrated that holes are doped primarily onto the O sites for 

hole-doped (p-type) cuprates and electrons are doped mainly onto the Cu sites for 

electron-doped (n-type) cuprates, which can shift the Fermi level from O 2p states to Cu 

3d states.64 The comparisons of p-type and n-type cuprates could help us further 

understand the electron mechanism of superconductivity. Most of the electron-doped 

cuprate superconductors such as Ln2-xCexCuO4 (Ln=Nd, Pr) are Tʹ-phase structure. This 

indicates that they lack apical oxygens,9 which is the main difference in structure as 

compared with the hole-doped cuprates.65 Recently, it was shown that the charge carriers  

of an ambipolar Y1-zLaz(Ba1-xLax)2Cu3Oy (YLBLCO), for x=0.18 and z=0.62, can be 

changed from holes to electrons by removing the oxygen in the CuO chain.66 Thus the 



16 

 

cuprates can be either hole-doped or electron-doped in the low-doping region without 

changing the crystal structure.67,68 

    There are increasing indications that superconductivity in cuprates appears in 

competition with the symmetry breaking ground states such as antiferromagnetism, 

charge density wave (CDW), or spin density wave (SDW).17,29,69-79 As mentioned before, 

the charge order in a doping level ~1/8 per planar Cu atom with  a commensurate charge 

modulation of period 4a (a is the distance between Cu atoms in the Cu-O plane) is known 

as “stripe order”, which dramatically reduces Tc.
29,34,80,81 Quantum oscillation 

experiments on underdoped YBa2Cu3O7-δ have revealed that the CDW may result in at 

least one small Fermi surface pocket.18,82,83 These pockets are general features of the 

copper oxide planes of underdoped cuprates.19 Recently, in the studies of underdoped 

cuprates, a more complicated Fermi surface has been reported.84-86 The identification of 

the normal state in the underdoped regime is also a problem in the high Tc cuprates.16 

Upon doping to the overdoped region, a large hole-like Fermi surface is formed.87  

 

1.2  Colossal magnetoresistance manganites 
 

        Hole-doped manganites La1-xSrxMnO3 (LSMO) with perovskite structure, termed 

colossal magnetoresistance (CMR), have been a central theme of research in modern 

condensed matter physics due to their abnormal structural, electronic and magnetic 

properties.88-94 CMR is defined as the dramatic change in electrical resistance in the 

presence of an external magnetic field. The CMR effect and the half metallic 

ferromagnetic property (see the following section) make the manganites suitable for 
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applications such as magnetic sensors, spin injectors and detectors, and magnetic storage 

devices. 

 

1.2.1 Crystal structure of La1-xSrxMnO3 

 

        The cubic perovskite crystal structure of undoped LaMnO3 is shown in Fig. 1.8.88 

An octahedron of oxygen atoms surrounds the manganese atom. For parent compound 

LaMnO3, the manganese atoms are ionized to Mn3+. Upon doping (where some La3+ ions 

are replaced by Sr2+), some manganese atoms are ionized to Mn4+. The electrons in the 3d 

shell of the manganese atoms influence the electrical and magnetic properties of La1-

xSrxMnO3 (LSMO). Similar to the cuprates, the Mn 3d states split to eg and t2g because of 

crystal field splitting. Moreover, due to the strong Hund’s interaction (larger than crystal 

field splitting) in LSMO, the electrons in the 3d shell will only align spin-up. The 

undoped LaMnO3 is a Mott-insulator, as shown in Fig. 1.9. The hole-doped LSMO is 

known as a half metallic ferromagnet.95-97 The valence band for the majority spin (spin-

up) is partly filled, and there is a gap in the density of states for the minority spin (spin-

down). Thus, it acts as a conductor only for electrons in the majority spin, but as an 

insulator or semiconductor for electrons in the minority spin.  
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Figure 1.8 Unit cell of LaMnO3. The manganese atom (green) is surrounded by an oxygen 

octahedron (red). The atoms at the yellow sites are lanthanum. 

Figure 0.8 
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Figure 1.9 Schematic of the bands formed by the 3d orbitals of the manganese atoms in undoped 

LaMnO3. 

Figure 0.9 

 

 

1.2.2 The electronic structure and magnetism of LSMO 
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        The electrical and magnetic properties of manganites depend on the interactions 

between charge, spin, orbital and lattice degrees of freedom. Among them are four main 

well-known processes: Jahn-Teller effect, charge ordering, double exchange and super-

exchange interactions.  

 

Jahn-Teller Effect. The deformation of the octahedron structure causes the energy 

degeneracy of the Mn 3d eg and t2g electron states.88 The external strain can lead to Jahn-

Teller deformations and lift the degeneracy of Mn 3d states. The compressive strain 

makes the orbitals move to higher energy and tensile strain causes the orbitals to move to 

lower energy. This is shown in Fig. 1.10. There is another way to show Jahn-Teller 

distortion. For Mn3+ ions, there are four 3d electrons (3d4): three in t2g states, and one in 

the eg state. The half-filled eg shell will create a deformation of the octahedron because 

the energy of the orbitals will be at disequilibrium, and the odd electron will occupy the 

lower energy states. Recently, X-ray absorption linear dichroism (XLD) was used to 

examine the occupancy of 3d 3z2-r2 and x2-y2 orbitals in La0.7Sr0.3MnO3 thin films grown 

on different substrates for different strain effects.98,99 The Jahn-Teller deformation 

requires many half-filled eg states (Mn3+), making the effect doping dependent. Since the 

3d orbitals determine the direction dependence of hybridization with O 2p orbitals, the 

ferromagnetism of LSMO can be highly anisotropic.88  
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Figure 1.10 Jahn-Teller effect in LSMO. The deformation of the octahedron structure causes the 

energy degeneracy of the Mn 3d eg (x2-y2, 3z2-r2) and t2g (xy, yz, zx) electron states. And the 

Jahn-Teller deformations and lift the degeneracy of Mn 3d states. The odd 3d electron will 

occupy the lower energy states. 

Figure 0.10 

Charge ordering. Due to the strong Coulomb repulsion between eg electrons at different 

Mn atoms, the electrons are localized on different sites. That results in an ordered 

superlattice below a transition-temperature. Above this transition-temperature, the Mn 

atoms have a statistical distribution of Mn3+ and Mn4+. This phase transition is called 

charge ordering. The ordered supperlattice behaves in different patterns array such as 

horizontal, vertical stripes, or checkerboard-like patterns. Since charge ordering is only 

applicable for some electron-hole proportions, it is doping dependent. The important 

evidence for charge ordering was found in La0.5Ca0.5MnO3 by Chen and Cheong.100-102   
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Double exchange. The double exchange interaction is described in Fig. 1.11, which was 

proposed by Zener.103,104  For hole-doped LSMO, the Mn3+ ions have one of the eg states 

occupied, and the Mn4+ ions have empty eg states. The electron in the eg shell of Mn3+ 

ions can move to the empty eg states of Mn4+ ions through oxygen 2p orbitals (Fig. 1.11). 

The double exchange interaction would make the system electrically conductive 

(electron-hopping between adjacent Mn atoms). Most importantly, this interaction only 

occurs in the ferromagnetic phase since electrons keep their spin when hopping. 

Moreover, since the double exchange interaction requires Mn4+ as well as Mn3+ ions, the 

interaction is doping dependent. 

 

Figure 1.11 Double exchange in hole-doped LSMO. 

Figure 0.11 

Superexchange. The indirect exchange interaction between two Mn atoms is mediated 

by the intervening O atoms (spin-orbital model), which is called superexchange 

interaction.105 This is shown in Fig. 1.12. Because of p-d hybridization, an electron from 

the 2p orbital of O atoms can be excited to 3d orbital of Mn atoms. However, Hund’s rule 

only allows spin up 2p orbital to be excited to the empty spin up 3d orbital (left part in 
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Fig. 1.12) and spin down 2p orbital to be excited to the empty spin down 3d orbital (right 

part in Fig. 1.12). This induces antiferromagnetism. Importantly, the electrons do not 

need to hop between two Mn atoms (the occupancy of the d states keeps the same) in 

superexchange. In contrast, electrons actually hop between Mn atoms via oxygen in 

double exchange.  

 

Figure 1.12 Superexchange interaction in LSMO. 

Figure 0.12 

Electronic and magnetic phase transitions. The CMR manganites show rich phases, for 

example, ferromagnetic metal and insulator, antiferromagnetic metal and insulator phases 

at low temperatures, and paramagnetic metal and insulator at high temperatures.106-108  

For concentration x=0.3-0.4 of bulk La1-xSrxMnO3, the low temperature state behaves like 

a ferromagnetic metal, and the high temperature state is a paramagnetic insulator. Such 

electronic (metal-insulator) and magnetic transitions occur at a maximum Curie 

temperature Tc~370K (higher than room temperature), and it shows minimum electrical 

resistivity.109 Thus, this concentration (x=0.3-0.4) of LSMO has been studied intensively. 

Y. Konishi et al. and Z. Fang et al. demonstrated that the epitaxial strain (c/a ratio, where 



24 

 

a, b and c are the lattice constants of LSMO) of the manganite thin films imposed from 

the substrate also caused the metal-insulator and ferromagnetic-antiferromagnetic phase 

transitions due to strain-induced orbital ordering of eg states via the Jahn Teller 

effect.110,111 For La0.7Sr0.3MnO3 at room temperature, the film converts to the orbital-

disordered ferromagnetic metallic state (F-type FM) when there is small or no strain 

(c/a~1). The film will transit to a dx
2

-y
2 orbital-ordered antiferromagnetic metallic state 

(A-type AFM) under large in-plane tensile strain (c/a<1), and to a d3z
2

-r
2 orbital-ordered 

antiferromagnetic nonmetallic state (C-type AFI) under large in-plane compressive strain 

(c/a>1).110-112  Besides the strain effects, other effects such as film thickness, 

hybridization between film and substrate, and hybridization within the film itself, have 

not been much explored.  

 

1.2.3 Literature review 

 

        Transition metal oxides exhibit a wide spectrum of unique properties stemming from 

the strong couplings and the nearly degenerate multiple ground states. They have been 

heavily investigated for both applications and fundamental physics studies.88,90,91,93,113,114 

Among all the systems studied, complex oxides that contain 3d orbital transition metals 

are of particular importance. Hole-doped manganites R1-xAxMnO3 (where R and A denote 

a trivalent lanthanide and a divalent alkaline earth respectively) with perovskite structure 

have been attracting strong attention since reports of their unusual structural, electronic 

and magnetic properties.88-94 Due to the complex interplay between the charge, spin, 

orbital and lattice degrees of freedom, (ie. double exchange and superexchange 

interaction, Jahn Teller effect and charge ordering), manganites exhibit many competing 
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magnetic and electronic phases controlled by temperature, doping, magnetic and electric 

field, strain and shape of the sample.88,104,111,113-115 It is well-known that the physical 

properties of transition metal oxides depend strongly on the occupation of 3d 

orbitals99,111,113,116-120. However, the effect of the O 2p orbital has attracted much less 

attention so far. Also, electron-phonon interactions play an important role in the 

manganites, which present a polaron ordered phase below a certain temperature in low-

doped LSMO (x~0.1).121 

        Bulk LSMO is a large-bandwidth material with ferromagnetic (FM) metallic ground 

state and its physical properties can be described successfully by the double-exchange 

mechanism109. With the development of thin film technologies, more exotic properties 

have been observed in doped-manganites.99,120,122-124 The most intensively-studied effect 

for manganite thin films is the strain effect.110,125 Epitaxial strain ranging from 

compressive to tensile can be induced (see partly in Fig. 1.10) by depositing LSMO films 

on different substrates. Recently, by depositing La0.7Sr0.3MnO3 (LSMO) films on DyScO3 

(DSO) substrates (LSMO/DSO), the induced large lattice tensile strain (A-type 

antiferromagnetic phase at the ground state) has been shown to affect the electronic 

properties of films strongly and to exhibit a new phase with intrinsic transport 

anisotropy.126 In this study, detailed electrical characterizations, X-ray absorption 

spectroscopy investigations and first principles calculations were used to confirm that the 

anisotropy is driven by anisotropic occupation of the oxygen 2p orbitals, accompanied by 

anomalous spectral weight transfer as high as 15 eV. Furthermore, tuning the lattice or 

spin alignment has dramatic effect on the stability of the new phase, demonstrating the 

strong spin-orbital-lattice coupling in this system. However, why this macroscopic 
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property only occurs in films under large tensile strain is still an open question and 

further study is needed. H. Yoshizawa et al. has shown that the A-type antiferromagnetic 

state possesses static dx
2

-y
2 – type orbital order.112 Also, Y. Takamura et al. observed the 

effect of epitaxial tensile strain on the magnetic and magneto-transport properties of 

LSMO thin films.117 They proposed that large tensile strain causes the Curie temperature 

and the saturation magnetization to decrease, while it makes the resistivity increase by 

several orders of magnitude. Meanwhile, other factors such as dimensionality and the 

film-substrate interface have not been thoroughly explored. Instead of investigating each 

of these factors, in this thesis we propose to directly investigate the evolution of 

electronic and spin structures because they determine the macroscopic properties of 

strongly correlated systems.  

         

1.3 Research objectives 
 

        This thesis aims for a thorough understanding of the electronic and magnetic 

structures of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy/LaAlO3, La1.95Sr0.05Cu0.95Zn0.05O4 (Zn-doped 

LSCO) and LSMO thin films on DyScO3 and SrTiO3 substrates. The specific objectives 

are: 

1) To understand the origin of normal, insulating state and electronic structure in 

cuprates. 

2) To understand the mid-gap state observed in various hole and electron doped 

YLBLCO thin-films and the evolution of electronic band structures as functions 

of doping. 



27 

 

3)  To clarify where the holes and electrons are in p-type and n-type YLBLCO and 

the differences between YLBLCO and normal cuprates. 

4) To locally probe the interplay between doped hole and magnetic correlations in 

the Cu-O plane. 

5) To investigate hole-doped cuprates that exhibit both singlet and triplet 

contributions to electronic wave function as evidenced by the high-energy optical 

response in Zn-doped LSCO. 

6) To unravel how the electronic and spin structures control macroscopic properties 

in manganite ultra-thin films. 

7) To clarify how the hybridization between O 2p and Mn 3d states, as well as the 

Jahn-Teller effect, play an important role in the LSMO/DSO and LSMO/STO 

systems as temperature decreases. 

         

        In order to achieve these objectives, the electronic and magnetic structures of 

cuprates and manganites were studied by X-ray absorption near edge spectroscopy, X-ray 

magnetic circular dichroism, X-ray diffraction, Spectroscopy ellisometry and UVU 

Reflectivity. 

        The chapters in this thesis are organized as follows.  

        In this introductory chapter we have given a general overview of cuprates and 

manganites highlighting their unique and superlative properties. Electronic and magnetic 

mechanisms have been dealt with broadly.  

        In the second chapter, various experimental techniques are introduced, such as X-ray 

absorption near edge spectroscopy (XANES), X-ray magnetic circular dichroism 
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(XMCD), spectroscopic ellipsometry (SE), etc, with particular focus on the physical 

principles involved.  

        The third chapter describes our results of the electronic structure in ambipolar 

cuprates using both SE and XANES. 

        In the fourth chapter we report the results of our study of spin polarization induced 

by doped holes at the oxygen orbitals in cuprates. We use SE and VUV reflectivity for 

this comparative study. 

        In the fifth and sixth chapter we describe our results of combined SE as well as 

XMCD and XANES study of LSMO ultra-thin manganite films on DSO and STO 

substrates, respectively.  

        In chapter seven we summarize all the important findings of this thesis. A few 

important future directions, which could be explored as extensions to this thesis, are 

explained briefly. 
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Chapter 2 

 

Experimental techniques 

 

        The experimental investigation of the electronic structure is based on optical 

techniques. When an atom is exposed to a beam light, two processes of scattering and 

absorption may occur. Many theories and experiments were developed to explain these 

processes. This chapter will introduce the basic principles of experimental techniques 

used in this thesis. 

 

2.1 X-ray absorption spectroscopy and X-ray magnetic circular 

dichroism 
 

 

2.1.1 X-ray absorption spectroscopy 

 

        Depending on the photon energy range studied, the X-ray absorption spectroscopy 

(XAS) is separated into two regions of X-ray absorption near edge spectroscopy (XANES 

or X-ray near edge absorption fine structure (NEXAFS)) and extended X-ray absorption 

fine structure (EXAFS). 

        The X-ray absorption near edge spectroscopy (XANES) is a widely used technique 

that probes the unoccupied electronic states. When the material is exposed to x-rays, the 

radiation will either be scattered or absorbed by electrons bound in an atom and the 

electrons are photo-excited into an unoccupied final energy state. The absorption of X-

ray photons is dramatically enhanced when the energy of the incident photon just lies 



37 

 

between the core level (K, L, M, etc., shells of absorbing atoms) and the unoccupied 

state. In fact, being dependent on the binding energy of the core level, the absorption 

threshold energy is elemental specific, making it an important tool for determining 

elemental composition. The structure due to transitions from the core level to the 

unoccupied states close to the Fermi level is coined as XANES because the energy range 

is close to the absorption edge (including the pre-edge region). The dipole selection rule 

and density of final states play important roles in determining the intensity of the XANES 

spectrum. The near edge structure ends around 40-50 eV above the edge, where the 

wavelength of photoelectrons equals to the distance between two nearest neighboring 

atoms. In the XANES region, the kinetic energy of photoelectron is low and thus multiple 

scattering by neighbors is dominant.  

        While the kinetic energy of the photoelectrons increases with the increase of photon 

energy (50 - 1000 eV above the absorption edge), the photoelectrons are weakly scattered 

and single scattering by the nearest neighbor atoms is dominant. The absorption structure 

exhibits weak oscillation features and is known as the extended X-ray absorption fine 

structure (EXAFS). It is worth to note that the XAS measurements must be performed at 

a synchrotron facility because an intense and continuously tunable radiation source is 

required. In this study, we focus on the XANES region. 
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Figure 2.1 Schematic diagram and methods of x-ray absorption signals. (a) A typical XAS 

spectrum with distinguishable parts: the low-energy NEXAFS (or XANES) region with discrete 

structure originating from core electron transitions to unoccupied states (dotted lines shows the 

deconvolution fittings), the NEXAFS region with multiple scattering processes in the continuum 

states (between E0 and Ec), and the EXAFS region with single scattering processes at higher 

energies. (b) Transmission method. (c) Florescence yield method. (d) Electron yield method.  
Figure 0.1 



39 

 

        There are three different methods to measure XAS spectra (shown in Fig. 2.1).1 The 

direct and reliable measurement approach to quantify XAS is to detect the transmitted 

radiation It and compare it with the initial photon intensity I0 (equation 2.1) as shown in 

Figure 2.1 (b). An incident x-ray beam of intensity I0 transmitted through a sample of 

thickness t has a reduced transmitted intensity It and obeys the relation2: 

0

,ttI
e

I

                    (2.1) 

where µ is the linear absorption coefficient. However, the requirement of very thin 

samples prevents its widespread use. 

        Another approach is the electron yield method. The excited state, which is created 

due to electron transition from core level to unoccupied states, is unstable and the atom 

will eventually relax to a lower energy state. The process displayed in Fig. 2.1 (d) will 

create Auger electrons which escape from the atoms by absorbing the energy released by 

the relaxing atoms. The number of Auger electrons will follow the x-ray absorption cross 

section. An XAS spectrum obtained by measuring the Auger electron as a function of 

incident X-ray energy is known as Auger electron yield (AEY) detection. Some of the 

Auger electrons suffer energy loss, which decreases the kinetic energy. This inelastic 

Auger intensity will follow the elastic one. In this regards, the partial electron yield 

(PEY) detection detects the electrons whose their kinetic energy is larger than a threshold 

energy (elastic and part of inelastic Auger intensity) by an electron energy analyzer.1 The 

PEY detection can avoid some interference problems encountered in AEY detection. The 

simplest detection technique is the total electron yield (TEY) detection, which collects 
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electrons of all energies (a large contribution from scattered Auger electrons) from the 

sample by detecting the sample current. 

        The third approach is the fluorescence yield method as shown in Fig. 2.1 (c). 

Fluorescence is an alternate process for the relaxation of the atom from an excited to a 

lower energy state in which photons are emitted instead of electrons. The emitted photon 

has an energy approximately equal to the binding energy. In the soft x-ray region, the 

Auger electron process is dominant for lighter elements (Z<30), whereas at larger Z, 

more fluorescence photons are emitted.1 The intensity of the emitted photons also follows 

the x-ray absorption cross section.  

        The techniques mentioned above give yields that are proportional to the absorption 

cross section. However, these methods have different features. The transmission 

detection is the most reliable. It is not only sensitive to the surface, but probes the entire 

sample. However, a very thin sample is required because the penetration depth of x-ray 

near the absorption edge of the atoms is quite limited (strong absorption).1 The AEY and 

PEY detection methods have smaller probing depth of ~1nm, making them more surface 

sensitive.1 The fluorescence yield detection has a larger probing depth advantage over 

electron yield.3 However, in the soft x-ray energy range the fluorescence yield is much 

lower than the electron yield when the photons absorbed by lighter elements due to self-

absorption effects4. In contrast, the TEY detection is more bulk sensitive (~5-10nm) than 

AEY and PEY detections.1 It has excellent signal-to-noise ratio (S/N). However, if the 

resistance of the sample is large (say more than 10 MΩ), the emitted electrons will 

accumulate in the sample and cause the sample to charge, which can significantly quench 
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the intensity of XANES.1 In contrast, the fluorescence yield detection is unaffected by 

insulating samples. 

        In this thesis, we use TEY detection to measure the XANES and XMCD (X-ray 

magnetic circular dichroism) signals.  

 

2.1.2 X-ray magnetic circular dichroism 

 

        X-ray magnetic circular dichroism (XMCD) spectroscopy probes atomic magnetic 

properties with elemental specificity using circularly polarized x-ray (left and right). It 

probes magneto-optical effects in x-ray absorption spectroscopy as it is related to the 

interaction between the angular momenta of photons and electrons.  

        The principles of XMCD are shown in Fig. 2.2. It can be explained with a simple 

“two step model”.5 Due to the strong spin-orbital coupling, the 2p level is split to 2p3/2 

and 2p1/2 states. In the first step, the photoelectrons are excited from the initial states of 

2p3/2 and 2p1/2 to 3d orbitals. There is a preferential excitation of a particular spin 

between 2p3/2 and 2p1/2 states due to the dipole selection rules for linearly polarized light 

(left (right) circularly polarized light corresponds to a +1 (-1) helicity).5 In 2p1/2 states, 

the spin-up (spin-down) photoelectrons dominate the excitations with right (left) 

circularly polarized light. Due to opposite spin-orbit coupling, the excitations of the spin-

polarized photoelectrons from 2p3/2 states reverses. 

        In the second step, the 3d band is exchange split (by the magnetic field M) into spin-

up and spin-down bands and the imbalanced spin-up and spin-down electrons act as a 

“spin-detector” of the spin-polarized photoelectrons. For right circularly polarized light, 
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the photoelectrons excited from 2p3/2 (2p1/2) states probe mostly the spin-down (spin-up) 

unoccupied 3d states due to the spin-conservation (Fig. 2.2). Therefore, the intensity of 

XAS collected using right circularly polarized will decrease at the L3-edge and increase 

at the L2-edge due to the spin imbalanced 3d states. The reverse effect is predictable for 

left circularly polarized light. 

        The difference in the absorption of circularly polarized x-ray (left and right) is the 

X-ray magnetic circular dichroism (XMCD): 

,                       (2.2) 

where µ+ and µ- are the absorption cross sections of the left and right circularly polarized 

x-ray, respectively. Changing the direction of the magnetization instead of the helicity of 

x-ray can also generate circular dichroism signals.  
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Figure 2.2 Principles of x-ray magnetic circular dichroism (XMCD). 

Figure 0.2 

Magneto-optical sum rules. The magneto-optical sum rules derived by B. T. Thole and 

P. Carra and co-workers is applied to calculated the ground state orbital and spin 

moment.6,7 The orbital sum rule can be written as follows:6  
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and the spin sum rule can be written as:7  
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where c and l are the orbital quantum number of the initial state (core state) and the final 

state (valence state), respectively; j+ and j- are the two spin-orbit split edges (j± = c±1/2); 

µ±,0 denote the absorption cross section with the external magnetic field parallel, 

antiparallel and perpendicular to the photon angular momentum vector; 4l+2-n is the 

number of holes in the valence band which contains n electrons; <Lz>,  <Sz> and <Tz> 

are the orbital operator, the spin operator and the magnetic dipole operator, respectively. 

The magnetic dipole operator is defined as below: 

2

( )
3 .i i i

i

i ir


 

r r S
T S                       (2.5) 

Eqs. 2.3 and 2.4 become simpler for the case of L2,3-edges. Using c=1 (p core level) and 

l=2 (d final states) with the number of holes nh = 4l+2-n, the sum rules recast to: 
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2 7 ( L 2 L ),
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S T

N

     

        

                      (2.6) 

where ΔL2,3 are the integrated intensity of XMCD at L2,3-edges and N is written asbelow: 



45 

 

0( ).

j j

N d   
 

 



                                          (2.7) 

In experiments, this normalized integrated intensity is often approximated by:8 
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( ) ( ).
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   
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 

                 (2.8) 

It is worth noting that the contribution in the XAS spectrum due to 2p to 3s or even 

continuum level transition must be removed before integration. It is common to use an ad 

hoc step function of the Fermi-type to remove the continuum.8 The thresholds of energy 

for the step function are determined from the peak positions of the L3- and L2-edge, and 

the height of the L3(L2) step is set to 2/3(1/3) of the average intensity of the last 15eV of 

the spectra. For 3d elements, nh=10-n3d.  For La1-xSrxMnO3, n3d can be assumed to 

(4+Δn3d)×(1-x)+(3+Δ’n3d)×x, which is linearly interpolated from the calculated charge 

transfers.9 Δn3d = 0.5 is for LaMnO3 and Δ’n3d = 0.8 is for SrMnO3.
10-12  

        For cubic symmetry, the <Tz> part can be neglected. For an anisotropic system, 

through angle dependent XMCD measurements, Stöhr and König stated that the spin 

moment can be determined by measuring the XMCD under a magic angle (θ=54.7° from 

the surface normal) which gives  projections onto x-, y- and z-axis and leads to <Tz> 

=0.13  

        If the initial state level is not split, like that shown in the K-edge absorption 

spectroscopy, XMCD only obtains the orbital moment. In this case, c=0 and l=1, and 

from Eq. 2.3, the orbital moment can be obtained over the single edge j as: 
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        Several approximations have been made in the calculation of XMCD sum rules. The 

XMCD sum rules are derived under the single-ion model. Wu and Freeman argued that 

the energy dependence of the radial matrix element and the hybridization between 3d and 

4s states affect the accuracy of the sum rules applied to real solids.14,15 Another important 

assumption is that the spin-orbit coupling is dominant over other interactions. However, 

for lighter transition metals Ti and V, the disagreement of the spin moment obtained from 

the XMCD sum rule can be up to 80% due to strong core hole interaction.16 One 

challenging task for the calculation of the spin and orbital moment when using sum rules 

is the choice of the integration energy range and the definition of nh. Wu and Freeman 

proposed another sum rule which avoid the above problems by taking the ratio of the 

orbital and spin sum rules (Eq. 2.6),15 which can be written as: 

3 2

3 2

2( L L )
.

2 7 3( L 2 L )

z

z z

L

S T

  


       
                 (2.10) 

 

Saturation effects. For data collected at grazing incidence by TEY or by fluorescence 

yield methods, the proportionality between the measured spectra and the absorption cross 

section may be violated.1 In fact, if the attenuation length of the x-ray in the sample and 

the electron escape depth are comparable, the TEY measurements need to be corrected 

for the saturation effect.1 However, it is difficult to completely dismiss the saturation 

effect in TEY measurements. For ordinary XMCD measurements, we should try to avoid 

using large incident angles. 

 

2.2 X-ray diffraction 
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        X-ray diffraction (XRD) based on the scattering and interference of x-rays has been 

a well-established method in the field of structural studies for many years.17 If the regular 

arrays of atoms are arranged symmetrically with a separation d, the incoming beam light 

will add constructively only in directions where their path-length difference 2dsinθ (d is 

the distance between two crystalline planes) equals an integer multiple of the wavelength 

λ (as shown in Fig. 2.3). This is the Bragg’s law, which can be written as below: 

             2 sin .d n                              (2.11) 

 

 

Figure 2.3 Bragg’s Law. 

Figure 0.3 

2.2.1 Reciprocal lattice 

 

        For a unit cell in three-dimensional (3D) lattice, defined by its primitive base vectors 

(a1, a2, a3), the primitive reciprocal lattice base vectors can be written as below: 

http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Primitive_cell
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                  (2.12) 

The Miller indices (h, k, l) indicate a reciprocal lattice vector surface normal in 

the basis of the primitive cell which can be expressed as below: 

.h k l  1 2 3G b b b             (2.13) 

The plane spacing d between neighboring lattice planes is inversely proportional to the 

(shortest) reciprocal lattice vector orthogonal to the planes: 

2
.d




G
                                 (2.14) 

 

Four circle diffractometer. To obtain the 3D lattice vectors, the four circle X-ray 

diffractometer is used (shown in Fig. 2.4). As the name suggests, there are four circles in 

the diffractometer: ω, 2θ, χ, and Φ (labeled in Fig. 2.4). The sample stage can be rotated 

by an angle of ω (it is similar to θ in Fig. 2.3), and it can be rotated about the beam by an 

angle of χ. The sample stage can be rotated in the horizontal plane which gives the angle 

Φ. Then, by rotating the detector arm, it gives a 2θ angle between the incident beam and 

diffracted beam. The XRD measurements in this thesis were done in the X-ray 

Development and Demonstration beamline at the Singapore Synchrotron Light Source 

(SSLS). With the flexibility of the four circle diffractometer, four common types of scans 

can be made: (1) ω is fixed to be half of 2θ; (2) ω is kept as (2θ+δ)/2, where δ is a small 

deviation angle; (3) 2θ varies and ω is fixed; (4) ω varies and 2θ is fixed.  

http://en.wikipedia.org/wiki/Basis_(linear_algebra)
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Figure 2.4 Four circle X-ray diffractometer at the Singapore Synchrotron Light Source. 

Figure 0.4 

2.2.2 RSV measurements 

 

        With these four types of scans, the reciprocal space vectors (RSVs) G can be 

measured experimentally. By properly choosing three RSVs, such as, (00l), (k0l), and 

(0kl), three reciprocal lattice vectors b1, b2, b3 can be obtained from a linear combination 

of these three RSVs as below: 

1
[( 0 ) (00 )]

1
[(0 ) (00 )]

1
(00 ).

h l l
h

kl l
k

l
l

 

 



1

2

3

b

b

b

                  (2.15) 

Through the RSV method, the obtained b1, b2, b3 may not be for the primitive unit cell 

(the minimum volume one), which depends on the type of lattice of samples. As the 

lengths and orientations of the measured RSVs may differ from their correct values 

(systematic errors such as the light source, the machine, resolution), these RSVs should 

be corrected (see below). 
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        For a film-substrate sample, since the RSV of the film is close to that of the 

substrate, the error arising from the measurement of the film should be very close to that 

from the substrate measurement if the experimental conditions maintain the same. Hence, 

we should correct the substrate measurement first. The error can be divided into scaling 

and rotating parts.  

        For the substrate, if the corrected RSV (HsKsLs) and the measured RSV (hsksls) have 

the following relationship: 

 .

s s

s s

s scorrected measured

H h

K s k

L l

   
   

   
   
   

R                      (2.16) 

Here, s is the scale factor of the scaling part error, and R is the rotation matrix of the 

rotating part error. For the film, the RSV should be corrected as follows: 
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f f

f f

f fcorrected measured

H h
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   
   

   
   
   

R                            (2.17) 

The scale factor s is the length ratio of the corrected RSV (HsKsLs) to the length of the 

measured RSV (hsksls) for substrate. The subscripts s and f are corresponding to substrate 

and film. The rotation matrix can be written as below: 

( ) ( )H K R R R                                   (2.18a) 

 

1 0 0

( ) 0 cos sin
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R                                (2.18b) 

 



51 

 

cos 0 sin

( ) 0 1 0 .

sin 0 cos

K

 



 

 
 

  
  

R                                     (2.18c) 

 

Here, α and β are the angles of rotation of measured RSV (hsksls) about H and K axis, 

respectively (the counterclockwise direction is defined to be positive). Afterwards, the 

corrected lattice vectors can be calculated from the above equations.18 By combining any 

two of the four-circle scans, a 2D area in the reciprocal space can be formed 

experimentally, which is known as reciprocal space mapping (RSM). 

 

2.3 Singapore Synchrotron Light Source (SSLS) 
 

        Synchrotron radiation is an intense light source of electromagnetic radiation with 

tunable photon energy. When electrons which are accelerated at velocities close to the 

speed of light are forced to bend in their trajectories by strong magnetic fields, extremely 

bright light, known as synchrotron radiation, is emitted in a narrow cone in the forward 

direction tangent to the electron trajectory. Synchrotron radiation can provide various 

advantages including tunable photon energy ranging from infrared to hard X-ray, high 

brilliance, well-aligned, high polarization and short pulses. These unique properties make 

synchrotron radiation a powerful scientific tools with widespread applications in many 

scientific disciplines. The electron storage ring is the central part of a synchrotron 

facility, in which electrons circulate. Ultra-high vacuum (UHV) is required to minimize 

the loss of electrons due to collisions with molecules in the electron storage ring. Along 

the storage ring are the light emitting devices of bending magnet (or undulator). 
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Superconducting bending magnets bend the trajectory of the electrons and keep electrons 

traveling around the ring.  

        The SSLS is a second generation synchrotron facility comprising the Helios 2 (700 

MeV superconducting storage ring with 4.5 T bending magnets) located in the campus of 

National University of Singapore. The key parameters of the synchrotron facility are 

listed in Table 2.1. The radiation spectrum extends from about 10 keV down to the far 

infrared at wavenumbers of less than 10 cm-1.19  

Table 0.1 

Table 2.1 Key parameters of Helios 2.19  

ParaMeter VALUE 

Electron energy 700 MeV 

Magnetic field 4.5 T 

Charateristic photon energy 1.47 KeV 

charateristic photon wavelength 0.845 nm 

current (typical) 350 mA 

circumference 10.8 m 

Lifetime >10 h 

Emittance 0.5 μmrad 

source diameter horizontal 1.45-0.58 mm 

SOURCE DIAMETER VERTICAL 0.33-0.38 mm 

NUMBER OF BEAM PORTS 20 + 1 

HORIZONTAL ANGULAR APERTURE OF PORT 60 mrad 
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        The normal beam life-time is more than 10 hours. To date, six running beamlines 

have been built, and another new beamline named RXES is under design. The six 

existing beamlines include XDD beamline for X-ray diffraction (XRD), ISMI beamline 

for infrared spectroscopy, LiMiNT beamline for X-ray deep lithography and LIGA 

process, PCIT beamline for phase contrast image, SINS beamline for surface and 

interface studies with XPS (X-ray photoemission spectroscopy), XAS (X-ray absorption 

spectroscopy) and XMCD (X-ray magnetic circular dichroism), and finally XAFAC 

beamline for advanced x-ray absorption fine structure (XAFS).19  

 

SINS beamline and end-station. The Surface, Interface and Nanostructure (SINS) 

beamline provides synchrotron radiation in the range from 50 eV to 1200 eV.20 It is a 

typical dragon-type beamline21 with a mono-chromator including four inter-changeable 

gratings selecting photons energy in the ranges of 50-110 eV, 110-220 eV, 220-440 eV 

and 440-1200 eV, respectively. The schematic of the SINS beamline is shown in Fig. 2.5. 

Three separate mirrors are used for focusing the beam: the horizontal focusing mirror 

(HFM) and vertical focusing mirror (VFM) located in front of the monochromator to 

focus the x-ray into horizontal and vertical directions respectively, and the re-focusing 

mirror (RFM) behind the monochromator for small x-ray focusing adjustments before 

entering the end-station. The entrance and exit slits control the photon flux and the 

energy resolution. The beamline has an energy resolving power better than 2000 with a 

photon flux of about 1010 photons/s/100mA. The incident x-ray intensity I0 is collected by 

a Keithley electrometer which measures the photocurrent on the gold-coated RFM. The 

beam polarization can be tuned from linear polarization to circular polarization (left and 
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right helicity) by adjusting the polarization aperture and vertical position of the VFM. 

The size of the beam spot at the sample position is about 1.5 × 0.2 mm2 in the main 

chamber and 4 × 2 mm2 in the XMCD chamber (Fig. 2.6). The key specifications of the 

SINS beamline are summarized in Table 2.2. 

 

 

Figure 2.5 The schematic of the SINS beamline.19  

Figure 0.5 

 

Figure 2.6 The size of the beam spot in the main chamber and the XMCD chamber. 

Figure 0.6 
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Table 2.2 Key parameters of the optical elements of SINS beamline.19  

Table 0.2 

OPTICAL 

ELEMENT 

HORIZONTAL 

FOCUSSING 

MIRROR 

VERTICAL 

FOCUSSING 

MIRROR 

MONOCHROMATOR 

GRATING 

RE-FOCUSSING 

MIRROR 

SHAPE Plane-elliptical Spherical Spherical toroidal 

OPTICAL 

SURFACE 

940×20 mm2 260×40 mm2 180×40 mm2 450×15 mm2 

MATERIAL Si Zerodur® Si Zerodur® 

COATING 

MATERIAL 

Au Au Au Au 

DISTANCE TO 

SOURCE 

4400 mm 8700 mm 12625 mm 20610 mm 

MIRROR 

PARAMETERS 

A=8670 mm 

B=394.9 mm 

R=66494 mm R=57000 mm R=43301 mm 

r=82.4 mm 

DEFLECTION 

ANGLE 

174° 174° 174° 175° 
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Figure 2.7 The schematic drawing of the SINS end-station. 

Figure 0.7 

        The SINS end-station consists of two analytical chambers and two preparation 

chambers: One group for XMCD measurements (XMCD chamber) and the other for XPS 

and XAS measurements (main chamber) (Fig. 2.7). The base pressure of main chamber 

after baking out is better than 2.0×10-10 mbar. The main chamber is equipped with an ion 

sputtering gun to clean samples, a LEED (Low-Energy Electron Diffraction) optics and a 

SCIENTA R4000 hemi-sphere energy analyzer for high resolution angular resolved 

photoemission detection. A gold foil which can be sputter cleaned is fixed at the bottom 

of the manipulator to calibrate the energy scale. A transfer system with a load-lock 

installed beside the chamber can load/unload samples without breaking the vacuum (both 

main chamber and XMCD chamber). Sample annealing can be achieved using the 

heating filaments. The main chamber, the preparation chamber and the XMCD chamber 
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are interconnected via gate valves. The three long transfer arms allow the transfer of 

samples between the three end-station chambers. The superconducting magnet system 

installed in the XMCD chamber can generate magnetic fields as high as 2 Tesla. I was 

also involved to some extend with the upgrade of SINS beamline end-station as well as to 

help users. 

 

2.4 Spectroscopic ellisometry  
 

        Ellipsometry is a non-destructive and precise optical analytical technique that 

characterizes thickness, optical properties and surface morphology of samples. It is self-

normalizing without performing a Kramers-Kronig transformation. Light is shined from a 

light source and polarized by passing through a linear polarizer. The detector measures 

the change of polarization upon light reflection on a sample. The simple setup is shown in 

Fig. 2.8. Ellipsometry measures the two quantities (Ψ, Δ) by changing the wavelength of 

light, where Ψ represents the amplitude ratio and Δ is the phase difference between the p- 

and s-polarized light waves (p-polarized means the electric field vector is parallel with 

the plane of incidence, and s-polarized means the electric field vector is perpendicular to 

the plane of incidence, see Fig. 2.8).  
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Figure 2.8 Schematic of spectroscopic ellipsometry. 

Figure 0.8 

Fresnel coefficients. Light has the characteristics of electromagnetic waves (E for 

electric filed B for magnetic induction) which can be described as below: 

0
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                                        (2.19) 

When being reflected or transmitted by samples, p- and s-polarized light waves show 

different behaviors (see Fig. 2.9).  

        For p-polarized light, using Maxwell’s equations and boundary conditions, one 

obtains the amplitude reflection (rp) and transmission (tp) coefficients as shown below: 
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Similarly the amplitude reflection and transmission coefficients for s-polarized light can 

be obtained: 
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Eqs. 2.20 and 2.21 are known as Fresnel equations. Even if the refractive index is 

complex (N), the Fresnel equations still hold. Moreover, the complex dielectric constant 

can be obtained by 2N  . Using Snell’s law, for reflection, the Fresnel equations can be 

written as: 
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where /ti t iN N N . The reflectances for p- and s-polarized light are expressed by: 
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                                   (2.23) 

where 
2

I n E  is the light intensity. Since the difference between rp and rs is maximized 

at the Brewster angle,22 ellipsometry measurements are generally performed at this angle. 

θi is typically set to be 70-80° in spectroscopic ellipsometry measurements for 

semiconductor characterization.23  

        When light waves are reflected by multilayer systems, the phase differences of each 

wave and the interference effect need be taken into account. In this thesis, we consider 

the situation of thin film on substrate (air/film/substrate). According to the analysis of 
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wave propagation through stratified media,24,25 the reflectivity of the film on substrate 

can be expressed as: 
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Here, the subscripts multi and amb represent the film on substrate multilayer system and 

the ambient, respectively, while δfilm is the change in light phase as it travels through the 

film, dfilm is the thickness of the film, and λ is the light wavelength. For this, we can use a 

bulk substrate to measure the optical constants of bulk substrate. Then the complex 

dielectric function of the film is extracted from Ψ and Δ through fitting with Drude-

Lorentz oscillators according to:26  
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Here, the high frequency dielectric constant is denoted by ε∞; ωp,k, ω0,k, and Γk are the 

plasma frequency, the transverse frequency (eigen frequency), and the line width 

(scattering rate) of the k-th oscillator, respectively. The optical conductivity is obtained 

from dielectric function ε(ω) using    1 0 2      .                   
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Figure 2.9 Electric field and magnetic induction for (a) p-polarized and (b) s-polarized waves.  

 Figure 0.9 

Principle of ellipsometric measurement. The (Ψ,Δ) measured from ellipsometry are 

related to the ratio of the amplitude reflection coefficients for p- and s-polarized light as 

follows: 

tan exp(i ) .
p

s

r

r
                  (2.27) 

When (Ψ,Δ) are measured, the complex refractive index N of the sample can be obtained 

using Eqs. 2.27, 2.24, 2.25, and 2.22. The dielectric function is equal to √𝑁. 

A rotating-analyzer ellipsometry instrument is one of the various kinds of ellipsometer 

set-ups (using in the set-up). The light intensity measured by a detector can be expressed 

as: 

0(1 cos2 cos2 ).I I t t                       (2.28) 
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Here, I0 is the proportional intensity of the reflected light and ωt is the rotation speed of 

the analyzer.  
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are referred to as Fourier coefficients. Here, P is the polarizer angle of the light. Then one 

obtains 
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            (2.30) 

In this measurement method, (α, β) are determined first form the Fourier analysis of the 

intensity of reflected light, and then (Ψ, Δ) can be extracted from Eq. 2.30.  

 

Experimental set-ups. There are two spectroscopic ellipsometer set-ups in our 

laboratory, one is SE850 manufactured by SENTECH GmbH, and the other is V-VASE 

made by J. A. Woollam Co., Inc. 

 

SE850. The SE850 Ellipsometer is composed of a rotating analyzer with a compensator 

fitted on the polarizer arm after the polarizer (Fig. 2.6). The spectral range of the 

ellipsometer is ~0.5 eV (2500 nm) to ~6.3 eV (195 nm). There are three different kinds of 

light sources — deep UV (deuterium), UV-VIS source (Xe-lamp) and the near infra-red 

(NIR) source (Halogen lamp of the Fouier transform infra-red spectrometer (FTIR)) to 

cover three different regions of the spectrum. The Grating spectrometer (Detector) is used 

for all the three different energy ranges in the detector side for spectroscopic 
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measurement as wavelength varies. The spot size of the typical light beam is about a few 

millimeters. 

 

V-VASE. The Variable Angle Spectroscopic Ellipsometer (VASE) made by J. A. 

Woollam Co., Inc is shown in Fig. 2.10. The arc lamp provides broadband light for the 

HS-190 monochromator (Czerny-Turner Scanning Monochromator), which the computer 

uses to supply a selected wavelength of light for the system. The input unit includes a 

lens mount, polarizer stage, and an alignment detector socket. It detects the polarization 

state of the light beam before the light encounters the sample (on the sample stage) under 

computer control. The detector unit converts the reflected beam into a voltage and 

measures the polarization state of it. The software (WVASE32) can analyze the results to 

achieve the physical parameters of the sample. 
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Figure 2.10 The Variable Angle Spectroscopic Ellipsometer. 

Figure 0.10 

2.5 Reflectivity measurements - SUPERLUMI beamline  
 

        The reflectivity measurements in vacuum ultraviolet (VUV) region ranging from 4 eV to 

40 eV were carried out at the SUPERLUMI beamline I at HASYLAB/DESY, Hamburg. 
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Figure 2.11 Schematic of SUPERLUMI beamline at HASYLAB/DESY.27  

Figure 0.11 

        The schematic of the end station at the SUPERLUMI beam line is shown in Figure 

2.11.28 The incoming beam is focused vertically and horizontally by two mirrors labeled 

M1 and M2 respectively at the entrance slit of the primary monochromator . A gold 

mesh, which is placed in the sample chamber, is used for photon flux collection which is 

in turn used as to collect reference spectram for normalization of each raw reflectivity 

spectrum. For reflectivity measurements, the angles of incidence and reflection are 17.5° 

(path shown in yellow in Figure 2.11). The energy range is from 4 eV to 40 eV with energy 

resolutions up to 0.3 Å (wavelength) with proper exit slit configuration.29 A coating of 

sodium salicylate (NaC7H5O3) is used to detect the reflection, the primary photomultiplier 

(PMT) has to be calibrated with respect to the incoming reflected light. Thus, the 

calibration of the monochromator was done by measuring the luminescence yield of 

sodium salicylate and by detecting the incident photon flux after the slit of the 
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monochromator using a gold mesh. The temperature dependent measurement in the range 

of 4-400 K can be carried out using a He-flow CRYOVAC KONTI cryostat via a cold 

finger which is attached to the sample holder. 

 

Data analyses. Spectroscopic ellipsometry is a self-normalizing technique (only the 

intensity modulation is needed) to directly determine the complex elements of dielectric 

tensor from a single measurement without performing a Kramers-Kronig transformation. 

For example, the optical reflectivity measurements (in SUPERLUMI beamline), the 

dielectric function need to be calculated after using Kramers-Kronig transformation (see 

discussion below). From spectroscopic ellipsometry, we extract reflectivity (R) and use 

this to normalize the VUV-reflectance data. The normal-incidence reflectivity R(ω) is 

expressed via the dielectric function ε(ω) according to Eqs. 2.22 and 2.23 (θi=θt=0°, 

Ni=1-0i):  

21
( ) .
1

p sR R R





  


                                    (2.31) 

Using this method, we are further able to achieve a stabilized Kramers-Kronig 

transformation with high accuracy that yields the optical constants and reveals changes in 

the optical spectral weight up to 40 eV. The high-energy optical conductivity is an ideal 

tool for this because it has been shown to be extremely sensitive to changes of local 

magnetic correlations30 as well as charge distributions30,31. Because it is photon-in and 

photon-out measurement technique, there is no charging problem at all and depending 

upon the experimental geometry it can be selectively sensitive to surface as well as bulk 

properties.32 
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2.6 Sample preparation 
 

Pulsed laser deposition system. The pulsed laser deposition (PLD) is a high quality film 

deposition technique. The technique uses a high-power pulsed laser beam which is 

focused inside a vacuum chamber to melt, evaporate and ionize a target from its surface. 

When the target absorbs the photon energy, it leads to 

evaporation, ablation, plasma formation and even exfoliation. The ablated material is 

deposited as a thin film on the substrate.33 This procedure often takes place in high 

vacuum or in the presence of a background gas.  

 

Y0.38La0.62(Ba0.82La0.18)2Cu3Oy preparation by PLD system. The high quality of thin-

film samples Y0.38La0.62(Ba0.82La0.18)2Cu3Oy were grown on (001) LaAlO3 (LAO) by a 

pulsed laser deposition (PLD) system using the prepared target. The pure cation oxides 

powders of Y2O3 (99.999%), La2O3 (99.999%), BaCO3 (99.997%), and CuO (99.9999%) 

are used for the preparation of the ceramic target. According to the chemical formula of 

Y0.38La0.62(Ba0.82La0.18)2Cu3Oy, the materials were weighed and mixed. The thicknesses of 

the thin films are around 260 nm. The deposition temperature and the pressures of oxygen 

gas for all samples were 760 °C and 200 mTorr, respectively. Since we cannot precisely 

measure the oxygen content, we label the films annealed at different conditions by carrier 

concentrations (from Hall measurements). The carrier concentrations of four studied p-

type samples were measured to be P1= 2.21020 cm-3, P2=7.91020 cm-3, P3=1.31021 

cm-3, and P4=2.51021 cm-3. Sample P0~0 cm-3 is an insulator, as revealed from the 

transport measurement. Higher carrier concentration means more oxygen content for p-

type thin films. Four n-type samples with carrier concentration of N1=3.61020 cm-3, 
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N2=4.71020 cm-3, N3=71020 cm-3, N4= 2.31021 cm-3 are studied. Higher carrier 

concentration means less oxygen content for n-type samples. It is worth noting that the 

re-annealing process is critical for oxide reduction as confirmed by the expansion of the c 

axis (see in Chapter 1 and Fig. 1.2).  

 

La0.7Sr0.3MnO3 preparation with PLD system. High-quality epitaxial La0.7Sr0.3MnO3 

thin films are grown with PLD on atomically smooth [110]-orthorhombic oriented 

DyScO3 and [001]-cubic oriented SrTiO3 single-crystal substrates. The laser pulse (248 

nm) energy density was ~ 2 J/cm and the repetition rate was 3 Hz. The growth was 

carried out under 200 mTorr oxygen partial pressure at 800 ̊C and the growth rate was ~ 

0.8 nm/min.  

 

 

 

 

 

 

 

 

 

 

 

 



69 

 

References 
 

1 Stöhr, J. NEXAFS Spectroscopy.  (Springer, 1992). 

2 Koningsberger, D. C. X-ray absorption: principles, applications, techniques of 

EXAFS, SEXAFS, and XANES.  (John Wiley and Sons, 1988). 

3 Troger, L., Arvanitis, D., Rabus, H., Wenzel, L. & Baberschke, K. Comparative-

Study of Fluorescence-Yield and Electron-Yield Detection on YBa2Cu3O7-δ at 

The O K Edge Through X-Ray Absorption. Physical Review B 41, 7297-7300 

(1990). 

4 Krause, M. O. Atomic radiative and radiationless yields for K and L shells. 

Journal of Physical and Chemical Reference Data 8, 307-327 (1979). 

5 Stöhr, J. X-ray magnetic circular dichroism spectroscopy of transition metal thin 

films. Journal of Electron Spectroscopy and Related Phenomena 75, 253-272 

(1995). 

6 Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a 

probe of orbital magnetization. Physical Review Letters 68, 1943-1946 (1992). 

7 Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and 

local magnetic fields. Physical Review Letters 70, 694-697 (1993). 

8 Chen, C. T. et al. Experimental Confirmation of the X-Ray Magnetic Circular 

Dichroism Sum Rules for Iron and Cobalt. Physical Review Letters 75, 152-155 

(1995). 

9 Koide, T. et al. Close correlation between the magnetic moments, lattice 

distortions, and hybridization in LaMnO3 and La1-xSrxMnO3+delta: Doping-

dependent magnetic circular X-ray dichroism study. Physical Review Letters 87, 

246404 (2001). 

10 Saitoh, T. et al. Electronic structure of La1-xSrxMnO3 studied by photoemission 

and x-ray-absorption spectroscopy. Physical Review B 51, 13942-13951 (1995). 

11 Park, J. H. et al. Electronic Aspects of the Ferromagnetic Transition in 

Manganese Perovskites. Physical Review Letters 76, 4215-4218 (1996). 

12 Ju, H. L., Sohn, H. C. & Krishnan, K. M. Evidence for O 2p Hole-Driven 

Conductivity in La1-xSrxMnO3 (0≤x≤0.7) and La0.7Sr0.3MnOz Thin Films. 

Physical Review Letters 79, 3230-3233 (1997). 

13 Stöhr, J. & König, H. Determination of Spin- and Orbital-Moment Anisotropies in 

Transition Metals by Angle-Dependent X-Ray Magnetic Circular Dichroism. 

Physical Review Letters 75, 3748-3751 (1995). 

14 Wu, R., Wang, D. & Freeman, A. J. First principles investigation of the validity 

and range of applicability of the x-ray magnetic circular dichroism sum rule. 

Physical Review Letters 71, 3581-3584 (1993). 

15 Wu, R. & Freeman, A. J. Limitation of the Magnetic-Circular-Dichroism Spin 

Sum Rule for Transition Metals and Importance of the Magnetic Dipole Term. 

Physical Review Letters 73, 1994-1997 (1994). 

16 Scherz, A. et al. Limitations of integral XMCD sum-rules for the early 3d 

elements. Physica Scripta 2005, 586 (2005). 

17 Bowen, D. K. & Tanner, B. K. High Resolution X-Ray Diffractometry And 

Topography.  (Taylor & Francis, 2005). 



70 

 

18 Yang, P., Liu, H., Chen, Z., Chen, L. & Wang, J. Unit-cell determination of 

epitaxial thin films based on reciprocal-space vectors by high-resolution X-ray 

diffractometry. Journal of Applied Crystallography 47, 402-413 (2014). 

19 Singapore Synchrotron Light Source, <http://ssls.nus.edu.sg/>. 

20 Yu, X. et al. New soft X-ray facility SINS for surface and nanoscale science at 

SSLS. Journal of Electron Spectroscopy and Related Phenomena 144–147, 1031-

1034 (2005). 

21 Chen, C. T. & Sette, F. Performance of the Dragon soft x‐ray beamline. Review of 

Scientific Instruments 60, 1616-1621 (1989). 

22 Hecht, E. & Zając, A. Optics.  (Addison-Wesley Pub. Co., 1974). 

23 Fujiwara, H. Spectroscopic ellipsometry: principles and applications.  (John 

Wiley & Sons, 2007). 

24 Born, M., Wolf, E. & Bhatia, A. B. Principles of Optics: Electromagnetic Theory 

of Propagation, Interference and Diffraction of Light.  (Cambridge University 

Press, 2000). 

25 Harbecke, B. Coherent and Incoherent Reflection and Transmission of Multilayer 

Structures. Appl Phys B-Photo 39, 165-170 (1986). 

26 Kuzmenko, A. Kramers–Kronig constrained variational analysis of optical 

spectra. Review of scientific instruments 76, 083108 (2005). 

27 DESY-Photon Science, <http://photon-science.desy.de/>. 

28 Zimmerer, G. Status report on luminescence investigations with synchrotron 

radiation at HASYLAB. Nuclear Instruments and Methods in Physics Research 

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 

308, 178-186 (1991). 

29 Chen, Y. et al. Zero-phonon lines in the d → f luminescence of LiYF4 : Er3+. 

physica status solidi (b) 240, R1-R3 (2003). 

30 Rusydi, A. et al. Metal-insulator transition in manganites: Changes in optical 

conductivity up to 22 eV. Physical Review B 78, 125110 (2008). 

31 Asmara, T. C. et al. Mechanisms of charge transfer and redistribution in 

LaAlO3/SrTiO3 revealed by high-energy optical conductivity. Nat Commun 5, 

3663 (2014). 

32 Asmara, T. C., Santoso, I. & Rusydi, A. Self-consistent iteration procedure in 

analyzing reflectivity and spectroscopic ellipsometry data of multilayered 

materials and their interfaces. Review of Scientific Instruments 85 (2014). 

33 Chrisey, D. B. & Hubler, G. K. Pulsed Laser Deposition of Thin Films.  (Wiley, 

1994). 

 

 

 

 

 

http://ssls.nus.edu.sg/%3e
http://photon-science.desy.de/%3e


71 

 

Chapter 3 

 

Observation of coexistence of mid-gap 

antiferromagnetic and Mott states in undoped, hole- 

and electron-doped ambipolar cuprates 

 

In this chapter, we report the observation of the coexistence of a distinct mid-gap 

antiferromagnetic state, and a Mott state in undoped and in  electron and hole doped 

sides of ambipolar Y0.38La0.62(Ba0.82La0.18)2Cu3Oy films using high-resolution 

spectroscopic ellipsometry and X-ray absorption spectroscopies at the O-K and Cu-L3,2 

edges. Supported by self-consistent momentum-resolved density-wave fluctuation 

calculations, we find surprisingly that while the magnetic state collapses and its 

correlation-strength weakens with doping, in contrast the Mott state moves toward a 

higher energy and its correlation strength increases. This study provides important clues 

to the mechanism of pseudogap and superconducting pairs. 

 

My main contributions to this work are XANES, XRD and SE measurements, data 

taking and analysis. 
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3.1 Introduction 
 

        Soon after the discovery of high-transition-temperature superconductivity 

based on copper-oxide (cuprate),1 two parallel theoretical concepts were proposed for the 

mechanism of unconventional superconductivity, namely, a resonant valence bond 

(RVB) theory2-4 in the strong-correlation regime and spin fluctuation theory5-8 in the 

weak-correlation regime. These two theoretical paradigms were primarily influenced by 

the authors’ different notions on the nature of the insulating state in the parent compound. 

The RVB theory is based on the assumption that the cuprates at half-filling are Mott 

insulators in which double occupancy at each Cu site is prohibited by strong Coulomb 

interaction, and the antiferromagnetic (AFM) order that occurs below the Néel 

temperature is a consequence rather than a cause of the Mott insulating phase. On the 

other hand, the spin fluctuation theory proposed that the AFM phase is driven by Fermi 

surface instability induced symmetry breaking, and strong AFM interaction at half-filling 

leads to the insulating behavior. Even though experiments have shown evidence of each 

scenario independently, e.g. Mott gap features from optical conductivity9 and X-ray 

absorption spectroscopy10  measurements for the former and various competing orders11, 

Hall-effect and quantum oscillation measurements,12,13 for the latter, a direct experiment 

that can measure and simultaneously link the strong and weak coupling scales is still 

lacking. Another unresolved problem is the origin of the asymmetry between hole- and 

electron-doped cuprates in which, most studies were done on different parent compounds, 

which had a different crystallography. Such an experiment is then crucial for 

understanding the origin of normal, insulating state and its evolution as a function of both 

hole- and electron-doping in cuprates, particularly in low carrier-concentrations. 
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        Understanding electronic structures of cuprates as a function of doping, i.e. hole and 

electron, is essential for deciphering the mechanism of high-transition-temperature 

superconductors. In the past, the electronic structures of cuprates were studied on systems 

with different crystal structures.14-16 Due to the difference in crystal structure, 

understanding and comparison of electronic structures between hole- and electron-doped 

cuprates is complicated. Recently, a cuprate based-on Y1-zLaz(Ba1-xLax)2Cu3Oy (so-called 

ambipolar cuprate) which accommodates both hole and electron doping, simply by 

varying oxygen content without changing its crystal structure was found.17 Elastic 

neutron scattering and Hall-effect measurements showed that the antiferromagnetic 

ground state drastically changed between hole- to electron-doped systems, even at very 

low charge carrier concentrations.18 Furthermore, transport measurements confirmed the 

presence of superconductivity, even though it was only found in hole-doped ambipolar 

cuprates so far.17-19 Nevertheless, this ambipolar cuprate provides uniqueness to study 

evolution of electronic structures from hole- to electron-doped cuprates systematically in 

the same parent compound. 

        In this chapter, we design an experiment to comprehensively reveal the electronic 

structure of unique ambipolar cuprates Y1-zLaz(Ba1-xLax)2Cu3Oy (YLBLCO) in insulating, 

hole- and electron-doped cases, which have the same crystal structure, using a combination 

of high-resolution spectroscopic ellipsometry (SE) and X-ray absorption spectroscopic 

(XAS) at the O K and Cu L3,2 edges. This experiment is crucial for understanding the origin 

of normal, insulating state and its evolution as a function of both hole- and electron-doping 

in cuprates, particularly at low carrier-concentrations. Our detailed analysis is further 

supported by a self-consistent momentum-resolved density wave fluctuation (MRDF) 
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theory for calculating the self-energy correction which includes antiferromagnetic order 

and spin and charge density fluctuations.20  

 

3.2 Materials, Methods and Results 
 

Samples. The thin-film samples Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO) were grown 

on (001) LaAlO3 (LAO) using pulsed laser deposition.19 The thickness of the samples are 

about 200-300nm. We label the films by the carrier concentrations (from Hall-effect 

measurements). The four p-type samples have carrier concentrations of P1= 2.21020 cm-

3, P2=7.91020 cm-3, P3=1.31021 cm-3, and P4=2.51021 cm-3. P0~0 cm-3 is an insulator, 

as revealed from the transport measurement. Higher carrier concentration means more 

oxygen content for p-type thin films. The four n-type samples have carrier concentration 

of N1=3.61020 cm-3, N2=4.71020 cm-3, N3=71020 cm-3, N4= 2.31021 cm-3. Higher 

carrier concentration means less oxygen content for n-type samples. We note that only 

samples P3 (~8K) and P4 (~34K) are superconductors. Using the equation: 

max 2/ 1 82.6(p 0.16)c cT T     and 
max

cT  ~94 K for YBa2Cu3O6+x (obtained from Phys. Rev. 

B 73, 180505R, 2006), the doping of P3 and P4 can be estimated: p=0.055 for P3, and 

p=0.072 for p4. Details of the samples are shown in table 3.1. The sample P0 is highly 

insulating (out of the limit through transport measurement), and will become conducting 

similar to sample P1 and N1 if a tiny fraction of carrier density is added. Experimentally, 

we obtained P0 through annealing in a chamber at T=550 oC in oxygen pressure of PO2 

~ 5E-5 Torr. This oxygen pressure is not stable at the T=550 oC and it vary between ~1E-

6 Torr and ~1E-4 Torr. The unstability of oxygen pressure causes difficulty in 
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synthesizing systematic samples between P0 and P1 (or N1). Nevertheless, the high 

quality of sample P0 (through HR-XRD measurement) could be reasonable enough to 

reveal the change of optical properties from highly insulating states to slightly conducting 

states with increasing charge carriers. 

Table 0.1 

Table 3.1 The information of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy samples. 

Samples (with Tc) Carrier 

concentration (cm-3) 

Samples Carrier 

concentration (cm-3) 

P0 Cannot measure   

P1 2.21020 N1 3.61020 

P2 7.91020 N2 4.71020 

P3 (~8K) 1.31021 N3 71020 

P4 (~34K) 2.51021 N4 2.31021 

 

High-resolution X-ray Diffraction and Structure characterization. The 

crystallographic structure of n-type and p-type YLBLCO was investigated by high-

resolution X-ray diffraction from the X-ray Demonstration and Development (XDD) 

beamline at the SSLS. The crystal structure of YLBLCO is shown in Fig. 3.1. Two chain 

O atoms and two apical O atoms form a CuO3-chain plaquette with a Cu atom (Fig. 3.1a). 

It is tetragonal (see discussion below) and is similar to that of YBa2Cu3O7-δ .
21 This 

tetragonal structure is caused by the fact that the Cu-O chains are fragmented and 
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oriented randomly.18 Fig. 3.1b shows the in-plane Moment versus Magnetic field curves 

of P4 sample heterostructure measured by SQUID. It shows an abrupt decrease at ~34K 

and demonstrates the quality of the growth film. Figs. 3.1c and d show the in-plane 

resistivity as a function of temperature for p-type and n-type YLBLCO films. Samples 

with high hole-doping level show superconductivity. Both these evidences claim for high 

quality samples. 

 

Figure 3.1 (a) Crystal structure of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy. The CuO2-plane and CuO3-

chain are indicated by the yellow sticks. The “plane O” is located in the CuO2-plane, while the 

“chain O” is located in the CuO3-chain along the b axis. The “apical O” is located in the CuO3-

chain along the c-axis. (b) In-plane Moment vs Magnetic field curves of P4 sample 

heterostructure measured by SQUID. (c-d) In-plane resistivity as a function of temperature for (c) 

p-type and (d) n-type YLBLCO films.  

 

Figure 0.1 

        To obtain the crystal structure of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO), 

reciprocal space mappings (RSMs) are measured by coplanar diffraction geometry (see 

chapter 2). The lattice constants of YLBLCO are based on that of LaAlO3 (LAO) 
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substrate, pseudo-cubic crystal structure with the reciprocal lattice unit (r.l.u.) of 2π/3.79 

Å-1 along H, K and L, respectively. Taking P4 sample as an example, which has the 

highest hole carrier concentration and the highest oxygen content (largest y in YLBLCO). 

The RSMs of (002)HL, (002)KL, (1̅03)HL, and (013)KL for sample P4 are shown in Fig. 3.2. 

From Figs. 3.2 (a) and (b), we can see that the peaks for YLBLCO layer are directly 

below the LAO substrate peak. This means that there is no tilt between the YLBLCO 

layer and LAO layer. From Figs. 3.2 (c) and (d), we observe that the absolute value of H 

(in Fig. 3.2 (c)) and K (in Fig. 3.2 (d)) for YLBLCO peaks are equal and they are of the 

same height as L. These results suggest that the lattice constants, a and b, for P4 are 

equal. This indicates that the crystal structure of sample P4 is tetragonal. The spots from 

LAO and YLBLCO remain a single peak for all mappings, showing the high epitaxial 

quality of the thin-film layer. 

        For more precise measurements, the RSV method was used. The measured RSVs for 

LAO substrate are (0.0000  0.0000  2.0001), (-1.0000  0.0000  3.0000) and (0.0000  

1.0040  3.0000). They are corrected to (002), (1̅03) and (013). The measured RSVs for 

P4 film are (0.0000  0.0000  1.9425), (-0.9721  0.0000  2.9125) and (0.0000  0.9759  

2.9125). After correction, we get: a=3.8985 ± 0.0003, b= 3.8985 ± 0.0003, c=11.7071 ± 

0.0000, α=90.0000 ± 0.0217, β=90.0000 ± 0.0219, γ=90.0000 ± 0.0000. 

        Another example is N4, which has the highest electron carrier concentration  and the 

lowest oxygen content (smallest y in YLBLCO). The RSMs around of (002)HL, (002)KL, 

(1̅03)HL, and (013)KL for sample P4 are shown in Fig. 3.3. Similarly, it is tetragonal and 

has a high quality layer. From the RSV method, we obtained: a=3.8898 ± 0.0082, b= 
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3.8898 ± 0.0082, c=11.8236 ± 0.0000, α=90.0000 ± 0.0107, β=90.0000 ± 0.0010, 

γ=90.0000 ± 0.0000. 

        RSVs measurements of all YLBLCO samples demonstrate that the YLBLCO 

samples are tetragonal structure. Interestingly, we observed that the lattice constant 

change continuously as oxygen is removed (charge carriers from p-type to n-type): c-

lattice constant increases. The change of lattice constants with change of oxygen in 

YBCO system has also been confirmed in previous report.22,23 These suggest that the 

extrinsic issues related to the structure are not significant in our samples.  

 

Figure 3.2 Reciprocal space mappings (RSMs). RSMs around (a) (002)HL, (b) (002)KL, (c) 

(1̅03)HL, and (d) (013)KL are indexed in the lattice with a, b, and c for sample P4. 

Figure 0.2 
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Figure 3.3 Reciprocal space mappings (RSMs). RSMs around (a) (002)HL, (b) (002)KL, (c) 

(1̅03)HL, and (d) (013)KL are indexed in the lattice with a, b, and c for sample N4. 

Figure 0.3 

Spectroscopic Ellipsometry. In this chapter, spectroscopic ellipsometry measurements 

are performed using the Sentech SE850 ellipsometer in the photon energy range of 0.5 – 

5.85 eV. The measured Ψ and Δ spectra of the YLBLCO samples along with those of 

bulk LAO are shown in Fig. 3.4. The ε(ω) of bulk LAO substrate is obtained from Ψ and 

Δ (see detail in chapter 2), as shown in Fig. 3.5. 
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Figure 3.4 Ψ and Δ Plots of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). (a) Ψ and Δ Plots of p-

type YLBLCO for various carrier concentration and insulator P0, and (b) n-type YLBLCO for 

various carrier concentration and LaAlO3 substrates taken using SE at 70 degree incident angle. 

Figure 0.4 
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Figure 3.5 Dielectric function of LaAlO3 substrate. Extracted real (ε1) and imaginary (ε2) parts of 

the dielectric function. 

Figure 0.5 

To extract the ε(ω) of the YLBLCO films, the samples are modelled as having two 

layers: YLBLCO film on LAO substrate. According to the analysis of wave propagation 

through stratified media24,25, the reflectivity (and thus Ψ and Δ) of YLBLCO film on 

LAO substrate can be expressed as, 

    

YLBLCO

YLBLCO

2

amb,YLBLCO YLBLCO,LAO

multi 2

amb,YLBLCO YLBLCO,LAO1

i

i

r r e
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Since the ε(ω) of bulk LAO (Fig. 3.5), dYLBLCO, and θ are known, ε(ω) of YLBLCO film 

is extracted from Ψ and Δ through fitting26 with Drude-Lorentz oscillators according to: 

      ,

2 2

0,

p k

k
k ki


  

  
 

  
 .                  (3) 

The extracted ε(ω) of each YLBLCO film is shown in Fig. 3.6.  
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Figure 3.6 Dielectric function of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). Extracted real (ε1) 

and imaginary (ε2) parts of the dielectric function of (a) p-type YLBLCO for various carrier 

concentration and insulator P0, and (b) n-type YLBLCO for various carrier concentration. 

Figure 0.6 

        The real part of the complex dielectric function, ε1(ω), exhibits a zero crossing only 

for samples P4 and N4 at around 1 eV. From Eq. 3, it can be shown that the frequency at 

which the ε1(ω) crosses zero is equal to the plasma frequency ωp.
27 From the dielectric 

function spectra, we can observe that there is a Drude response peak for P1-P4 and N1-N4 

samples. In Fig. 3.6b, a very sharp peak around 4.1 eV for n-type YLBLCO is observed 
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and it has been assigned to the c-axis O-Cu-O dumbbell in the CuO3-chain.28,29 This is 

evidence by the fact that this sharp feature increases upon doping electron (or reducing O 

in chain). For further support, the sharp feature was absent for (Pr, Nd)2-xCexCuO4 because 

electron-doped cuprates have no apical oxygen.28,29  

To further confirm this, the energy-dependent loss function, 

  
 

 

   
2

2 2

1 2

1
Im

 

     

 
     

,                 (4) 

of each of the differently-doped YLBLCO films is shown in Fig. 3.7. From the figure, it 

can be seen that the loss function spectra of samples P4 and N4 indeed exhibits a peak at 

plasma frequency ωp typical of a normal metal. 
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Figure 3.7 Loss function of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). The loss function (Im (-

1/ε)) of (a) p-type YLBLCO for various carrier concentrations and insulator P0, and (b) n-type 

YLBLCO for various carrier concentration. 

Figure 0.7 

Optical conductivity spectra. Figures 3.8a and 3.8b show the optical conductivity derived 

from SE measurements. For P0, a peak (labelled b) near 1.6 eV is ascribed to the charge-

transfer transitions.9,30
 An important observation is that there is a distinct mid-infrared peak 

(labelled a) at 0.9 eV, which was not previously elaborated in other cuprates.9,30 

Intriguingly, peak a is very narrow, with half-width at half-maximum of ~0.06 eV, three 

times smaller than that of peak b (~0.17 eV). The maximum-intensity of peak a is ~500 Ω-
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1cm-1, surprisingly comparable to that of peak b (~700 Ω-1cm-1). We argue that peak a is 

ascribed to the antiferromagnetic gap, while peak b is related to the charge-transfer 

transition from the magnetic bands to the ‘Mott-Hubbard’ bands. These are consistent with 

our theoretical results (see later discussion). For both p-type and n-type samples, peak a 

shifts to lower energy and at the same time a Drude-response emerges as carrier-

concentration increases. Figures 3.8c and 3.8d show the optical conductivity derived from 

calculations (see section ‘Explanation on SE and XAS results’). The theoretical optical 

conductivity spectra are consistent with our measured SE results.  
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Figure 3.8 Optical conductivity of p-type and n-type Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). 

Real part of the optical conductivity σ1 of (a) p-type and (b) n-type YLBLCO for various carrier-

concentrations and insulator P0 from SE measurements. Real part of the theoretical Optical 

conductivity σ1 of (c) p-type and (d) n-type YLBLCO for various carrier-concentrations and 

insulator P0. 

Figure 0.8 

X-ray absorption near edge spectroscopy. The O 1s absorption spectra in the energy 

range 520-580 eV and Cu 2p absorption spectra in the energy range 920-980eV were 

obtained using linearly polarized X-ray Absorption Spectroscopy (XAS) from the 

Surface, Interface and Nanostructure Science (SINS) beamline at SSLS, via a total 
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electron yield (TEY) detection method. The X-ray incidence angle (θ) was varied by 

rotating the polar angle of the sample. They were normalized to the integrated intensity 

between 565 and 580 eV for O 1s spectra and between 965 and 980eV for Cu 2p spectra 

after subtracting an energy-independent background.  

 

 

Figure 3.9 Schematic of the X-ray absorption spectroscopy (XAS) and spectroscopic 

ellipsometry (SE) experimental measurement. 

Figure 0.9 
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Figure 3.10 X-ray absorption spectroscopy on Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). Low-

energy region of the O K-edge absorption spectra of (a) p-type and (c) n-type YLBLCO with 

various carrier-concentration including an insulator P0 for Ec. Cu L3-edge absorption spectra of 

(b) p-type and (d) n-type YLBLCO with various carrier-concentration including an insulator P0 

for Ec. 

Figure 0.10 

        XAS directly probes the unoccupied bands in YLBLCO. Figure 3.10 shows the in-

plane (Ec) O K-edge (low-energy region) and Cu L3-edge XAS spectra. Let us discuss 

the O K-edge spectra first. This transition is particularly sensitive to O 2p – Cu 3d 

hybridization, thus it probes Cu 3d orbitals. Interestingly, in P0 two pre-peaks are 
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observed: a new peak at ~528.4 eV (labelled A), and a peak at ~529 eV (labelled B). 

Peak B is known as the transition into the upper Hubbard band (UHB).10,31 For insulating 

sample P0, the energy difference between peaks A and B (Fig. 3.10) is the same as the 

energy difference between peaks a and b measured from SE (Fig. 3.8). According to our 

calculations (as discussed below) and comparing the SE and XAS data, peak A is related 

to the upper magnetic band (UMB). For p-type YLBLCO, as the carrier concentration 

increases, the peak A shifts towards lower energy and its intensity increases (Fig. 3.10a). 

Comparing to other XAS study,32 this peak A should be the mixing of Zhang-Rice singlet 

peak and UMB peak for hole doping samples P1-P4. The increase of the intensity of peak 

A for p-type YLBLCO as carrier concentration increases (Fig. 3.10a) indicates that these 

samples are indeed hole-doped. Peak B stays almost at the same energy but its intensity 

varies as a function of carrier concentration. We observe an unusual behavior of peak B 

in the p-type YLBLCO. In other cuprates, the intensity of peak B decreases upon hole-

doping due to the spectral weight transfer.10,31  However, the intensity of peak B for P2 is 

higher than that for P1 (Fig. 3.10a). These unusual increases can be explained by Cu L3-

edge XAS results as discussed next. For n-type YLBLCO, peak A decreases its intensity 

and shifts toward higher energy as carrier-concentration increases (Fig. 3.10c). The 

Zhang-Rice singlet states should be full occupied in n-type cuprates,33 and this peak A in 

n-type YLBLCO is a strong evidence of our conclusion. On the other hand, the intensity 

of peak B also reduces but its energy position retains. 

        Next, we move to the Cu L3-edge spectra. For p-type YLBLCO (Fig. 3.10b), a white 

line feature (labelled D) at ~931.1 eV increases in intensity as carrier concentration 

increases, while another distinct peak (labelled E) decreases. Note that peak D saturates 
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at certain carrier-concentration (P2). Also, a shoulder (labelled F) appears just below the 

white line feature (peak D), increases in intensity. According to previous XAS studies on 

other cuprates,33-37 the white line feature D is related to Cu-2p  3d transitions which 

involve Cu2+ ions, while peak E is ascribed to the hybridization of Cu-4s (Cu1+) with Cu-

3d states. Furthermore, the shoulder has been ascribed to “ligand hole states”.34,35 The 

increase of peak D and the decrease of peak E as carrier-concentration increases suggests 

that holes not only doped into O but also into Cu atoms in the YLBLCO case. It changes 

the valence of Cu from Cu1+ to Cu2+. This phenomena is different with regular 

YBa2Cu3O7- δ.
37 Now, the unusual increase of peak B (Fig. 3.10a) from P1 to P2 can be 

explained: Doped-holes go into Cu atoms and increases the UHB. In addition, this is also 

the reason that the spectral weight of peak b for P2 is higher than that for P1 (Fig. 3.8a). 

For n-type YLBLCO (Fig. 3.10d), the intensity of the white line feature D decreases as 

carrier-concentration increases, while the intensity of peak E increases. The result 

suggests that a part of the electrons are doped into Cu atoms, changing Cu2+ to Cu1+ ions. 

This is consistent with peak B decreasing as carrier-concentration increases in Fig. 3.10c. 

 

3.3 Discussion 
 

Calculation of y for P0. For insulating sample P0, using polarization dependent X-ray 

absorption and optical conductivity spectra, we estimate the value of oxygen content (y). 

First, XAS spectra at the O K-edge show an excess of holes as presented by peak A. 

Based on previous studies,10,38 this suggests that the number of holes in the P0 sample is 

about 0.01-0.02. Second, the relationship between intensity of X-ray absorption spectra 

(I) for different incident angles (𝜃) is given by: 
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I(θ) = 𝐼∥𝑐 sin2 𝜃 + 𝐼⊥𝑐 cos2 𝜃. 

In our case, the E||c Cu L-edge absorption spectra are estimated from 𝜃 = 0° 𝑎𝑛𝑑 70° 

data. After subtracting a step-function which is the simulation of the continuum 

contribution, the polarization dependent Cu L3 edge for P0 is separated into two peaks: 

one is attributed to Cu2+ ions (~931.1eV), while another is related to Cu1+ ions 

(~934.2eV). The ratio of the area of these two peaks (Cu2+/ Cu1+) is associated with the 

ratio of the two kinds of valence of Cu in each polarization spectrum. Here we obtain the 

ratio 23.3/4.88 for Ec spectra and 9.47/2.62 for E||c spectra. Note that the Ec spectra 

contain both information from CuO2-plane and CuO3-chain, while the E||c spectra 

include information only from the CuO3-chain. The ratio of Cu2+ to Cu1+ ions in both 

CuO2-plane and CuO3-chain can then be calculated by separating the CuO2-plane 

contribution from the Ec spectra. Therefore, by knowing that the excess of holes is 

about 0.01-0.02, y is estimated to be 6.45±0.02 for P0. Thus, for p-type YLBLCO the 

value of y is more than 6.45, while for n-type YLBLCO y is less than 6.45. Even though 

the exact value of y for others (P1-P4, N1-N4) is very hard to estimate at this moment, 

our analysis and main conclusion do not depend on this.  
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Figure 3.11 X-ray absorption spectra on Y0.38La0.62(Ba0.82La0.18)2Cu3Oy. L3 region of the Cu L-

edge absorption spectra of (a-b) p-type and (c-d) n-type Y0.38La0.62(Ba0.82La0.18)2Cu3Oy with 

various carrier concentrations for Ec and E~||c. 

Figure 0.11 
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Figure 3.12 Optical conductivity spectra of p-type and n-type Y0.38La0.62(Ba0.82La0.18)2Cu3Oy 

(YLBLCO). (a) Real part of the optical conductivity σ1 of p-type YLBLCO for various carrier-

concentrations and insulator P0 (b) Real part of the optical conductivity σ1 of n-type YLBLCO 

for various carrier-concentrations and insulator P0. 

Figure 0.12 

         As shown in a previous study,39 the 4.1eV feature was observed in YBa2Cu3O7-δ for 

δ0.5 and is stronger for larger δ (or smaller oxygen content). This feature was explained 

originally from the c-axis O-Cu-O dumbbell in the CuO3-chain. Thus, for lower oxygen 

content, the c-axis O-Cu-O dumbbell is dominating. This is consistent with our 

observations that the 4.1 eV feature is observed in sample P0 (y~6.45) and is stronger in 

n-type samples (see Fig. 3.12) because they have lesser oxygen content (y<6.45).  
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Explanation on SE and XAS results. To explain the data, we use a full momentum 

dependent self-energy formalism for a single CuO2 band within the Hubbard model by 

treating the Coulomb interaction as doping dependent.20 This theoretical work was done 

by Dr. Tanmoy Das and Prof. Lin Hsin. The theoretical results are shown in Fig. 3.13. 

The optical and x-ray absorption data shown above collectively indicate that an 

antiferromagnetic order occurs in the itinerant states, creating an insulating gap, while the 

localized states are already separated to higher energy before the magnetic ordering sets 

in. The dominant interaction that creates such an itinerant and localization duality is 

predominantly made of density fluctuations in the spin and charge sectors. The 

calculations show the dominance of dynamical correlation in the presence of a van-Hove 

singularity at k = (π,0). Such fluctuation dispersions have been observed by resonant-

inelastic x-ray scattering in La2-xSrxCuO4, from the undoped to the heavily overdoped 

regime.40 In turn, the strength of the correlation is also dominant in the momentum 

regions, as manifested in the computed k-dependent mass renormalization factor shown 

in Fig. 3.13d.  
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Figure 3.13 Theoretical results of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). (a) The computed 

self-energy dressed spectral weight spectrum for three representative dopings, P0, P3, and N3. (b) 

Real (Σ′) and (c) imaginary part of self-energy (Σ′′) of p-type (left) and n-type (right) YLBLCO 

for various carrier-concentrations and insulator P0. (d) The computed k-dependent mass 

renormalization factor for three representative dopings, P0, P1, and P2. (e) DOS of p-type (left) 

and n-type (right) YLBLCO for various carrier-concentrations and insulator P0. 

Figure 0.13 

        Our computed self-energy dressed spectral weight spectrum is presented in Fig. 

3.13a for three representative dopings. Four sub-bands are clearly visible at all dopings, 

where the low-energy two bands are split by magnetic order, while each magnetic bands 
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are split further by the anomalous energy dependence of the self-energies, shown in Fig. 

3.13b and 3.13c. The real-part of the self-energy (Σ′) has a positive slope in the low-

energy spectrum (in the range of < ±200 meV) which renormalizes the corresponding 

bands toward lower energy (with renormalization factor Z < 0). Away from the energy, 

the slope of Σ′ becomes completely negative, which means, the energy spectrum in this 

energy scale is pushed further to higher in energy [Z(ω ≥ ± 200 meV) > 1]. Due to 

causality, the corresponding imaginary part of self-energy, Σ″, shows prominent peaks in 

this energy scale. Due to their combined effects, the electronic spectrum is split into 

itinerant and localized states.  

        The doping dependence of the self-energy reveals a surprising trend. With 

increasing hole and electron doping, the correlation strength weakens, causing the self-

energy to reduce in amplitude. Since the overall shape of the self-energy remains very 

much same, as it becomes flatter with doping (i.e. the renormalization effect decreases), 

the energy scale where real-part changes slope and the imaginary part acquires peak 

gradually shifts to higher energy. As a result the self-energy generated localized ‘Mott’-

like band shifts to higher energy as the self-energy weakens. This a characteristically 

opposite behavior to what is expected within a typical Mott physics where weaker 

correlation strength means smaller Mott gap. In the former case, however, the spectral 

weight of the high-energy band loses intensity and the corresponding spectral weight is 

gradually shifted to the itinerant strength. This behavior of the self-energy is manifested 

in the doping dependence of the four peaks in the DOS, shown in Fig. 3.13e.  
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        We now turn to the theoretical optical conductivity. We computed this quantity 

using the Kubo formula of linear response theory. The calculated results are shown in 

Figs. 3.8c and 3.8d, and it is in good qualitative agreement with the experimental results. 

The optical conductivity at half-filling shows three peaks: the lowest energy peak reflects 

the magnetic gap; the intermediate energy peak stems from the optical transition across 

the magnetic bands to the ‘Mott’-like bands; the higher energy peak arises from the 

transition across the two ‘Mott’-like bands. It is interesting to note that the magnetic gap 

in the optical spectrum is relatively sharper in both theory and experimental data, yet it is 

been missed by earlier studies. Our high-resolution ellipsometry spectroscopy has made 

this mid-gap state possible to observe.  

        Given the fact that dynamically generated density fluctuations arise in the particle-

hole continuum, it is possible that the highest density of states for electrons and hole 

states may reside in different momentum space as in this compound. Therefore, the 

accurate description of the electron correlation effect requires to include the full 

momentum dependence of the self-energy.  
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Figure 3.14 Carrier concentration dependences of gaps and peaks, and pictorial model of 

electronic structures of Y0.38La0.62(Ba0.82La0.18)2Cu3Oy (YLBLCO). (a) Contrasting carrier 

concentration dependences of the magnetic and charge-transfer gaps in p-type and n-type 

YLBLCO. Present theoretical and experimental results (measured by spectroscopic ellipsometry). 

(b) Carrier concentration dependences of the energy position of peaks A, B, and C for p-type and 

n-type YLBLCO extracted from O K-edge X-ray absorption spectra (Fig. 2). The shadow of the 

dash lines are guides to the eye. (c) The approximate electronic structures model of samples N2, 

P0, P1, and P4, as derived from the analyses of X-ray absorption and spectroscopy ellipsometry 

data. The black bands are occupied by electrons. There are lower (LHB) and upper Hubbard band 

(UHB) separated by Mott-Hubbard gap, and lower (LMB) and upper magnetic band (UMB) 

separated by antiferromagnetic gap.  

Figure 0.14 
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Table 0.2 

Table 3.2 Theory parameters. The parameters using in the calculation. 

Sample Doping U (eV) Δmag (eV) ΔCT (eV) 

P0 0.0 1.45 0.89 1.54 

P1 -0.01 1.1 0.62 1.63 

P2 -0.02 0.9 0.57 1.64 

P3 -0.04 0.75 0.41 1.48 

P4 -0.05 0.75 ~0.1 1.48 

N1 0.03 0.9 0.65 1.60 

N2 0.06 0.8 0.58 1.65 

N3 0.09 0.7 0.55 1.66 

N4 0.10 0.7 0 1.52 

 

 

        We extract the energy position of the major peaks in Figs. 3.8 and 3.10, which are 

shown in Fig. 3.14, comparing with our theoretical results for p-type and n-type 

YLBLCO (see Table 3.2). In the low carrier-concentration regimes (for both p-type and 

n-type YLBLCO), the magnetic gap shows a rapid decrease, while the charge-transfer 

gap provide an opposite carrier-concentration dependence to the magnetic gap. In the 

intermediate and high carrier-concentration regimes, the magnetic gap is shifted down 

below 0.55 eV (measured limit) and the charge-transfer gap presents a decrease.  

Also, by combining the XAS results and optical conductivity results, we propose a 

pictorial model of electronic structures of the YLBLCO as a function of doping (N1, P0, 

P1, and P4). The unoccupied bands are related to the corresponding peaks in XAS spectra 

as discussed above, while the energy differences of each band are obtained from the 
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optical gap in optical conductivity spectra and energy difference of peaks in XAS spectra. 

These pictorial models is consistent with the calculated DOS, shown in Fig. 3.13e, and 

the theory and experiments are in good accord.   

 

3.4 Summary 
 

        A fascinating characteristic of the copper-oxide high-transition-temperature 

superconductors is that despite nearly three decades of extensive research,15 experiments 

are still able to discover new and exotic properties which challenge our hitherto achieved 

consensus.12,13,41,42 Soon after its discovery, essentially two competing schools of theory 

had emerged which are strong coupling Mott paradigm and weak-coupling Hartree-Fock 

theory to describe the normal state properties and the subsequent proposals for the 

mechanism of superconductivity hinges on them. With further research, the debate has 

intensified with evidence accumulating for both theories. The essential challenge is to 

reconcile the two contrasting experimental behaviors in that while diverse density-wave 

like features – characteristics of Hartree-Fock physics - have been discovered at low-

temperature in doped samples, a Mott-like gap persists in the high-energy spectrum at all 

doping. In this chapter, we report the first observations of the coexistence of an 

antiferromagnetic (AFM) gap, and a Mott gap in the undoped as well as in both electron- 

and hole-doping sides of the same single crystalline Y0.38La0.62(Ba0.82La0.18)2Cu3Oy films. 

Such an observation is made possible due to the development of high-resolution 

spectroscopic ellipsometry and X-ray absorption spectroscopy. We find a surprising 

dichotomy in the gap evolution in that while the magnetic gap collapses as a correlation 

strength weakens with doping, the satellite bands, reminiscent of Mott-Hubbard bands, 
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moves to higher energy – a behavior  expected for increasing correlation strength. The 

experimental results are explained with a self-consistent angle-resolved density wave 

fluctuation theory (MRDF) for calculating the self-energy correction by including the 

antiferromagnetic order and spin and charge density fluctuations. Our result unifies a 

long-standing puzzle of cuprates research, and provides important clues to the mechanism 

of pseudogap and superconducting pairs.  
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Chapter 4 
 

Unravelling local spin-polarization induced by doped hole at the oxygen 

orbitals in lightly doped cuprates 

 

In this chapter, using high-energy optical conductivity as a function of temperature 

and polarization, we observe a strong spin-polarization of the local “spin-singlet” with 

enhanced ferromagnetic correlations between Cu spins near the doped holes in 

La1.95Sr0.05Cu0.95Zn0.05O4. The changes of the local spin-polarization manifest strongly 

in the temperature-dependent optical conductivity at high energies of 7.2eV and 

21.8eV, with an anomaly near the magnetic ‘stripe’ phase (~25K), accompanied by 

anomalous spectral-weight-transfer in such a broad energy range. Our result shows 

the importance of strong mixture of spin singlet and triplet states in cuprates. 

 

My main contributions in this work are high-energy reflectivity and spectroscopic 

ellipsometry measurements. 
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4.1 Introduction 
         

        As fundamental ingredients in cuprate high-transition-temperature (Tc) 

superconductivity, magnetic and charge correlations have been extensively studied, with 

particular emphasis on doped holes.1-6 There is a general consensus that doped holes in 

cuprates reside mainly in the O 2p orbitals.3 This has been experimentally observed by a 

number of experimental techniques, including X-ray absorption spectroscopy and energy-

loss spectroscopy,4,7-10 angle-resolved photoelectron spectroscopy11, inelastic neutron 

scattering spectroscopy12 and resonant sound velocity measurements13. However, several 

local descriptions of how the doped hole correlates with the surrounding Cu spins are hotly 

debated.14-16 On one hand, Zhang and Rice15 proposed the idea of local singlet character 

for the doped hole in the CuO2 planes, the so-called Zhang-Rice singlet (ZRS), which 

consists of a doped hole on oxygen and an intrinsic local hole on Cu2+ in a singlet wave 

function with a net zero spin moment. On the other hand, Emery and Reiter17 proposed the 

three-spin polaron picture where the doped hole in oxygen can promote local ferromagnetic 

fluctuations of Cu2+ spins surrounding it in an otherwise antiferromagnetic background.  

From an experimental point of view, it has been challenging to clarify this 

fundamental problem for the following reasons. First, the key to distinguishing these two 

contradicting theoretical concepts15,17 lies in lightly hole-doped, high-quality single 

crystal cuprates. This is mainly because the system should contain charge carriers but 

without completely removing the antiferromagnetic background. This requires high-

quality samples with full control on a desired stoichiometry, which is difficult to achieve. 

Second, it has been challenging to experimentally probe short-range, local magnetic 

correlations around the small number of doped holes, given the overwhelming 
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contribution from the localized Cu spins well separated from the doped hole. Thus, a 

direct experimental technique that is able to locally probe the interplay between doped 

hole and magnetic correlations in the Cu-O plane without charging problem in lightly 

hole-doped cuprates is needed. Here, we employ a combination of synchrotron-based 

experimental techniques, i.e. ultraviolet–vacuum ultraviolet (UV-VUV) optical 

reflectivity and spectroscopic ellipsometry to reveal the optical conductivity (1) in an 

energy range up to 32.5eV as a function of temperature and polarization with very high 

accuracy.18,19 The combination of a synchrotron-based experimental technique allows us 

to reveal the optical conductivity (1) of cuprates in an unprecedented energy range up to 

32.5eV as a function of temperature and polarization with very high accuracy.18,20,21 This 

novel technique is applied to high quality untwinned single crystals of 

La1.95Sr0.05Cu0.95Zn0.05O4 (Zn-LSCO),22 and a reference sample of undoped Sr2CuO2Cl2 

(SCOC), to study the local electronic structure of the doped hole. Our analysis and 

assignments of optical transitions are supported with exact cluster diagonalizations and 

first-principles density functional calculations with local spin density approximation 

(LSDA+U).  

 

4.2 Materials, methods and results 
 

Samples. High-quality single crystals of La1.95Sr0.05Cu0.95Zn0.05O4 and Sr2CuO2Cl2 were 

grown by the traveling solvent floating zone method.22 X-ray and neutron scattering studies 

on these samples have shown that the structures of the crystals are single domain structures 

(>99%).22 Furthermore, the Zn-LSCO crystals have been characterized using neutron 

scattering revealing that our samples still show diagonal incommensurate spin correlations 
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(or “stripe” phase) below ~25 K (Ts)  and the role of Zn is to enhance the magnetic 

correlations.22 This physical property is particularly important because, first, the 

antiferromagnetic background is still present when there are excess charge carriers. Second, 

the existence of the stripe phase below Ts is an important model of spin structure that further 

verifies of our proposed model. Furthermore, because our samples are single crystalline, 

this allows us to also perform polarization-dependent studies in Zn-LSCO. This gives us 

important information with regard to the charge distribution in the Cu-O plane.  

        A reference system requires absolute (or near) zero concentration of doped holes in 

the CuO2 plane. Practically, it has been very challenging to achieve this in the La2CuO4+ 

parent compound because of the problem with non-stoichiometric oxygen, either at the 

surface or in the bulk of the samples. SCOC is a well-known parent material of copper-

oxide superconductors, which has similar CuO2 planes as in Zn-LSCO in which the apical 

oxygen is replaced by chlorine in the case of SCOC. For this reason, we can prevent any 

unintentional doping, i.e. holes or electrons, into the CuO2 plane. Hence the undoped CuO2 

plane in SCOC becomes an important reference for transitions especially to the doped hole 

of the oxygen orbitals. Note that since the high-energy optical conductivity is also sensitive 

to non-stoichiometric oxygen as shown in previous oxide studies,20,23 our high-energy 

optical characterization has further confirmed that our samples are zero doping. 

 

Optical conductivity measurements. The optical conductivity σ1(ω) as functions of 

temperature and polarization are obtained using a combination of spectroscopic 

ellipsometry (0.5 - 6.5 eV), and vacuum ultraviolet (VUV)-reflectance (3.7 - 32.5 eV) 

measurements.18 Spectroscopic ellipsometry is a self-normalizing technique to determine 
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the complex elements of the dielectric tensor from a single measurement without 

performing a Kramers-Kronig transformation. From spectroscopic ellipsometry, we extract 

reflectivity (R) and use this to normalize the VUV-reflectance data. Using this method, we 

are further able to achieve a stabilized Kramers-Kronig transformation with high accuracy 

that yields σ1 and reveals changes in the optical spectral weight up to 32.5 eV (see Chapter 

2). The VUV-reflectance measurements were carried out at Beamline I of HASYLAB24 

using linear polarized light with a normal incident angle of ~17.5o.  The calibration of the 

monochromator was done by measuring the luminescence yield of sodium salicylate 

(NaC7H5O3), and the incident photon flux after the monochromator slit was detected using 

a gold mesh for normalization and intensity calibration.18,24 The measurements were done 

in an ultrahigh vacuum pressure better than 10-9 mbar to ensure the surface cleanliness.  
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Figure 4.1 Reflectivity and optical conductivity (1), as function of temperature and incoming light 

polarization (E), for La1.95Sr0.05Cu0.95Zn0.05O4 and Sr2CuO2Cl2. Reflectivity and 1 at selected 

temperatures for different E as indicated in the figures. For comparison, the results for the parent 

compound Sr2CuO2Cl2 (or SCOC, undoped cuprate) for Ec are also shown in magenta lines. The 

vertical-dashed lines show the main excitations at 7.2 eV, 8.7 eV, 9.7 eV, 11.8 eV and 21.8 eV. 

The insets show an enlarged scale for photon energies between 5 to 13 eV. 

Figure 0.1         

        Figure 4.1 shows the measured reflectivity and the optical conductivity of Zn-LSCO 

for E||a* and E||b*, together with SCOC for Ec as reference. At low energies (< 3 eV), a 

well-known charge transfer gap is observed in both hole doped Zn-LSCO at ~2.5 eV and 

undoped SCOC at ~2.0 eV. This is consistent with earlier published data.25 However, only 
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in the doped Zn-LSCO did we observe a mid-infrared response (~0.7 eV), resulting from 

the holes in the system. The main observations are several new features that are clearly 

observed at high-energies (>3 eV), i.e. pronounced peaks at ~7.2, ~8.7, ~9.7, ~11.3 and 

~21.8 eV, which originate from excitations involving the doped holes as they are absent in 

the undoped reference sample SCOC. Supported by theoretical calculations, they are 

attributed to the doped hole in the oxygen orbitals of CuO2 plane (see discussion below). 
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Figure 4.2 Spectral weight analysis for different incoming light polarizations, E||(a*,b*), and 

different spectral regions of La1.95Sr0.05Cu0.95Zn0.05O4. (a) and (b) Change of optical conductivity 

∆𝜎1(𝑇)  defined as 𝜎1(𝑇) − 𝜎1(𝑇 = 300 𝐾)  and (c) and (d) relative change of the integrated 

spectral weight 
𝑆𝑊(𝑇)

𝑆𝑊(300𝐾)
 defined as  

∫ ∆𝜎1(𝜔,𝑇) 𝑑𝜔
𝜔2

𝜔1

∫ ∆𝜎1(𝜔,𝑇=300𝐾) 𝑑𝜔
𝜔2

𝜔1

, where T is temperature (in Kelvin) and 

𝜔1 (𝜔2 ) is the photon energy at 𝜔1 (𝜔2). We show the integrated spectral weight for seven 

different regions – SWI ((1 to 2) = (0.5 eV to 5.0 eV)), SWII (5.0 eV to 7.8 eV), SWIII (7.8 eV to 

9.2 eV), SWIV (9.2 eV to 18.0 eV), SWV (18.0 eV to 20.8 eV), SWVI (20.8 eV to 32.5 eV), and 

SWtotal (0.5 eV to 32.5 eV). ∆𝜎1(𝑇) and SW(T)/SW(300K) for different polarization and spectral 

regions are indicated in the figures. The critical temperature for the diagonal stripe order is indicated 

by Ts.18 The overall spectral weight SW(T) from 0.5 to 32.5eV is conserved within 0.2%. 

Figure 0.2 
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        The key observation of our measurement is the strong temperature dependence of 

these transitions that are due to doped hole in the oxygen orbitals as shown in Fig. 4.2. 

Supported by theoretical calculations, these transitions is due to doped hole in the oxygen 

orbitals of CuO2-plane (see discussions below). These transitions demonstrate strong 

temperature dependence as large as ~15% in a temperature range of 8 - 300 K in a broad 

energy range (Fig. 4.2). Correspondingly, in accordance to the first-moment sum rule, large 

temperature dependent spectral-weight loss is observed in the energy range of 7.6 - 20.9 

eV. Obviously, the energy scale of these effects is far beyond room temperature thermal 

fluctuations of ~30 meV, suggesting that strong electronic correlation plays important role. 

Importantly, when the extended high-energy range of the temperature dependent spectrum 

is considered, the integrated spectral weight is found to be conserved to within 0.2% (see 

SWtotal in Figs. 4.2 (c) and (d)) in agreement with the optical sum rule. The conservation of 

spectral weight allows us for the first time to study magnetic and charge correlations in 

cuprates. 

 

Theoretical calculations. In order to identify important energy regions, microscopic 

processes, and significant implications of the high-energy 1 in cuprates, we perform 

calculations based on exact cluster diagonalization and first-principles density functional 

calculations with local spin density approximation (LSDA+U). The simplest model to 

capture the main excitations is a single CuO4 cluster model (shown in Fig. 4.3), which 

includes five 3d orbitals (𝑑𝑥2−𝑦2, 𝑑𝑧2−𝑟2 , 𝑑𝑥𝑦, 𝑑𝑥𝑧 and 𝑑𝑦𝑧) of copper and three 2p 

orbitals (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) of each oxygen. The undoped case is thus described by the CuO4 

cluster with a single hole, and the additional hole doping simply increases the number of 
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holes in the cluster. The theoretical work were performed by Profs. Wei Ku, Tomonori 

Shirakawa, George A. Sawatzky and Seiji Yunoki. From the exact diagonalization 

calculations, which include correlation effects, we calculate the peak positions of related 

optical transitions within Cu-O plaquette precisely.  LSDA+U calculations give us a hint 

about local spin density of states of various orbitals. By combining exact cluster 

diagonalization and LSDA+U, we propose a pictorial model of electronic and spin 

structures of the CuO2 plane and use a phenomenological model to explain the high-

energy optical transitions. Note that, due to computational problem, it is challenging to 

calculate the shape of 1 in such a broad energy range. 

 

 

 

Figure 4.3 Schematic figure of a CuO4 cluster. Black and white circles indicate copper and oxygen, 

respectively. 

Figure 0.3 

4.3 Discussion 
 

        We start our discussion on the basic electronic band structure for undoped cuprates. 

It is generally accepted that the parent compound SCOC, which is similar to La2CuO4, is 
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an antiferromagnetic insulator with spin 1/2 on Cu and with a charge transfer type of 

conductivity gap of ~2eV (see Figs. 4.1 (c) and (d)). This fixes the energy scales of the 

first electron addition and removal states, consistent with in the pictorial model shown in 

Fig. 4.4 (a). The band width of the electron addition state is roughly 1eV as determined 

from LSDA+U calculations and the dispersion width of the first electron removal states 

determined from angular resolved photoelectron spectroscopy is about 0.3eV or roughly 

twice the superexchange interaction between the local Cu spins26. This narrow electron 

removal structure is referred to as a Zhang-Rice singlet (ZRS) and is composed of one 

hole in a Cu-𝑑𝑥2−𝑦2 orbital and one hole in a linear combination of bonding O-2p orbitals 

with also 𝑥2 − 𝑦2 symmetry about the central Cu (Fig. 4.4 (b)), as evidenced by 

polarization-dependent soft X-ray absorption spectroscopy27 and the cluster calculations. 

These holes are very strongly coupled into a singlet state in the ZR scenario15,28. At 

higher electron removal energies the remaining O-2p orbitals form bands, which are 

~5eV wide based on LSDA+ U calculations covering an energy range to ~5eV below the 

Fermi level that is fixed at the top of the valence band. The similar feature is also 

obtained in the cluster calculations. Interestingly, the LSDA+U calculations show that O-

2p is spin-polarized. At even higher electron removal energies ranging from ~3.5 to 

~12eV below the Fermi level, spin-resolved photoemission and Auger spectroscopies and 

satellite structures in photoemission spectroscopy 2,29 have been found and identified as 

Cu-d8 states, which are spread over an energy range ~8eV due to atomic multiplet 

structure resulting from the large atomic Coulomb and exchange-like interactions 

between the two d holes. 
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 We summarize this basic electronic structure information reducing the large 

number of d8 states to only two namely, a spin singlet composed of two holes in a 𝑑𝑥2−𝑦2 

orbital and a triplet state with one hole in a 𝑑𝑥2−𝑦2 and the other in a 𝑑3𝑍2−𝑟2 orbital  as 

shown in Fig. 4.4 (a).  In Fig. 4.4 (a), we show conceptual local density of states (LDOS) 

and schematic hole configurations for the doped hole system based on exact cluster 

diagonalization and first-principle density functional calculations. The Fermi level is 

located at 0 eV denoted by a vertical dashed line and S, T and ZRS denote for Singlet, 

Triplet and Zhang-Rice Singlet states, respectively. dn (pn) indicates the number n of d (p) 

electrons in Cu (O). The main point is that optical transitions involving the d8 states can 

result in either triplet or singlet local states, which is different from what can happen in 

the single-band Hubbard model. The energy scales of these states are taken from cluster 

calculations involving all the d8 states. The narrow band at ~18eV found in LSDA+U 

represents mainly the O-2s shallow core like band. In a one-band Hubbard model, one 

identifies the ZRS band as the lower Hubbard band (LHB) and the electron addition d 

band as the upper Hubbard band (UHB), which obviously is incapable of describing the 

physics and spectroscopy at energy scales of more than ~1-2eV.  

Upon hole doping, the ZRS feature just below the chemical potential becomes 

partly depleted with hole doping moving the chemical potential into it and resulting in 

low energy scale free charges as seen in mid-infrared of 1 (Figs. 4.1 (c) and (d)). The 

low-energy state according to the conventional, unpolarized ZR scenario has a singlet 

wave function shown in Fig. 4.4 (b), which involves the Cu-𝑑𝑥2−𝑦2 orbital and a 𝑥2 − 𝑦2 

symmetric superposition of O-2p orbitals surrounding it. We note that the coefficients of 

the terms in the singlet wave function indicates equal probability of spin polarization and 
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guarantees zero net spin moment of the isolated singlet.  Spin structure, LDOS and local 

wave function for stand-alone ZRS and mixed singlet triplet state (MST) by surrounding 

spins are shown in Figs. 4.4 (b) and (c), respectively.  

 

 

Figure 4.4 Pictorial model of the electronic band structure, a proposed unconventional local spin 

polarization induced by a doped hole in the copper-oxide system and high-energy optical transitions. 

(a) Conceptual local density of states (LDOS) and schematic hole configurations for the doped hole 

system based on exact cluster diagonalization and first-principle density functional calculations. 

The Fermi level is located at 0 eV denoted by a vertical dashed line and S, T and ZRS denote for 

Singlet, Triplet and Zhang-Rice Singlet states, respectively. dn (pn) indicates the number n of d (p) 

electrons in Cu (O). (b-c) Spin structure, LDOS and local wave function for (b) stand-alone ZRS 

and (c) mixed singlet triplet state (MST) by surrounding spins.  

Figure 0.4 
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The 7.2 eV optical transition. Based on our phenomenological model and supported by 

previous photoemission spectroscopy date2,29, the high-energy optical conductivity 

involves high-energy states like the Cu-d8 orbitals, which are well-known to exist in the 7 

to 15eV range, and can be understood via inter-site transitions involving O and the 

neighboring two Cu sites. Figure 4.5 illustrates the microscopic processes of the excitations 

involved in the 7.2 eV feature showing a strong temperature dependence. The 7.2 eV peak 

originates largely from excitations of a O 2p doped hole centered on one Cu (in a ZRS) to 

a neighboring Cu 3d orbital to form a singlet state d 8(S): | d 9 ZRS >  | d 8(S) d 9> (see 

Figure 4.5 and Ref. [16]). The strong temperature dependence of these features reveals an 

important and yet surprising nature of the ZRS, namely the Cu and O orbitals are actually 

spin polarized (Fig. 4.4(c)) and clearly not in a pure singlet form (Fig. 4.4(b)). Thus, we 

propose a mixed singlet and triple (MST) wavefunction. Indeed, from the 7.2 eV peak as a 

direct example, only the component of the wavefunction that would have ferromagnetic 

aligned (parallel) Cu spins contributes to the transition matrix element (c.f. Fig. 4.5a). 

Therefore, an increase of the spectral weight of this excitation with decreasing temperature 

indicates an increase of a ferromagnetic triplet component in the MST wavefunction 

describing the influence of the O 2p hole on its surrounding Cu spins. This implies that the 

MST wavefunction contains an increasing amount of a triplet component, yielding an 

increased net spin moment at the Cu site (c.f. Figs. 4.5(c) and (d)). 
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Figure 4.5 Pictorial model of the electronic band structure and optical transitions at 7.2 eV. (a) 

Schematic electronic and spin configurations of CuO4 plaquettes consisting of a doped hole forming 

a Zhang-Rice singlet (ZRS). Assuming each plaquette is independent, the optical excitation energy 

is easily estimated from the CuO4 plaquette model. The left (right) two CuO4 plaquettes represent 

the initial (final) state of the corresponding optical excitation. The d9 plaquette state corresponds to 

the ground state of the CuO4 plaquette with a single hole and the ZRS plaquette corresponds to a 

state with two holes, one in Cu and one in O sites. The hole on O represents the O 2p part of a 

doped hole state. The S denotes singlet configuration. Excitation spectrum for (b) transition to 

unpolarized ZRS and (c) transition to polarized mixed singlet and triplet state (MST). LDOS () 

and LDOS () and denote local density of state for spin-down and spin-up, respectively. (d) Change 

of total spectral weight as a function of temperatures expected from this model. Note that the more 

complete pictorial model of electronic band structure can be seen at Fig. 4.4(a). 

Figure 0.5 
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        The somewhat unexpected conclusion (MST state) can be understood from the 

consideration of the correlation between the ZRS and the neighboring Cu spins. As 

illustrated in Fig. 4.4(b), in the absence of neighboring spins, the ZRS has a pure singlet 

wavefunction with equal |up down> and |down up> components that maximizes kinetic 

super-exchange effects (illustrated in purple arrows). However, the symmetry in the spin 

degree of freedom will be broken, if the surrounding Cu spins are strongly polarized in one 

direction. Consequently, the ferromagnetic aligned component between two different Cu 

sites increases. This would maximize the virtual kinetic hoping processes (c.f. purple 

arrows in Fig. 4.4(c)) between the doped hole at O sites and the intrinsic hole in the 

neighboring Cu sites. Hence, the process leads effectively to a mixing of a triplet 

component into the wave function. This is the same microscopic process that leads to the 

formation of the three-spin polaron model in the O-centered local picture.14,30 Obviously, 

the more the neighboring Cu spins align, the stronger this effect is, and the stronger the 7.2 

eV peak grows (c.f. Fig. 4.5) showing that the ferromagnetic alignment of the neighboring 

Cu spins seems to be the lowest energy state since the ferromagnetic correlations increase 

with decreasing temperatures. In this context, it is important to note that the transitions are 

suppressed when the system undergoes the transition into the diagonal spin order reducing 

the amount of ferromagnetic correlation. (Fig. 4.1) 

 

The 8.7 eV optical transition. The 8.7 eV feature (in Fig. 4.1) is an optical excitation 

involving a hole from a ZRS to a neighboring Cu which ends up in a d 8 (𝑑𝑥2−𝑦2and 𝑑3𝑧2−𝑟2) 

spin triplet state. Fig. 4.6 shows the pictorial model of the electronic band structure and 

optical transitions at 8.7 eV.  If we consider transitions into d 8 triplet states, this transition 
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is expected to show a quite different temperature behavior, i.e. 1 increases as temperature 

decreases. Transitions into d 8 triplet states are considerably weaker in intensity involving 

𝑑3𝑧2−𝑟2 orbitals, but more importantly the corresponding transition to a d 8 triplet state from 

the doped hole plaquette that has been influenced by the transition at 9.7 eV which is 

involving a d 8 singlet to the UHB and has an opposite temperature dependence in the 1 

(see discussion below). If, however, we could observe the transition to the d 8 triplet state 

we would be using the same arguments as above but expect it to have the reversed 

temperature dependence. 
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Figure 4.6 Pictorial model of the electronic band structure and optical transitions at 8.7 eV. (a) 

Schematic electronic and spin configurations of CuO4 plaquettes consisting of a doped hole forming 

a Zhang-Rice singlet (ZRS). The left (right) two CuO4 plaquettes represent the initial (final) state 

of the corresponding optical excitation. The d 9 plaquette state corresponds to the ground state of 

the CuO4 plaquette with a single hole and the ZRS plaquette corresponds to a state with two holes, 

one in Cu and one in O sites. Assuming each plaquette is independent, the optical excitation energy 

is easily estimated from the CuO4 plaquette model. The T denotes triplet configuration. Excitation 

spectrum for (b) transition to unpolarized ZRS and (c) transition to polarized mixed singlet and 

triplet state (MST). LDOS () and LDOS () and denote local density of state for spin-down and 

spin-up, respectively. (d) Change of total spectral weight as a function of temperatures expected 

from this model.  

Figure 0.6 
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The 9.7 eV optical transition. The 9.7 eV feature involves optical excitations of a hole 

from a central Cu in a d9 (𝑑𝑥2−𝑦2) state to a neighboring Cu which ends up in a d8 spin 

singlet state. Fig. 4.7 shows the pictorial model of the electronic band structure and optical 

transitions at 9.7 eV. The temperature dependence of 1 involving the d8 singlet and the 

Upper Hubbard band would obviously display an increase of 1 with decreasing 

temperature because here the low-temperature state would surely involve a strong 

antiferromagnetic alignment of the neighboring Cu spins. On the other hand, the 

ferromagnetic alignment has no contribution to this transition due to the Pauli principle.  
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Figure 4.7 Pictorial model of the electronic band structure and optical transitions at 9.7 eV. (a) 

Schematic electronic and spin configurations of CuO4 plaquettes. The left (right) two CuO4 

plaquettes represent the initial (final) state of the corresponding optical excitation. The d9 plaquette 

state corresponds to the ground state of the CuO4 plaquette with a single hole. Assuming each 

plaquette is independent, the optical excitation energy is easily estimated from the CuO4 plaquette 

model. The S denotes singlet configuration. (b) Excitation spectrum for transition to Upper 

Hubbard band in antiferromagnetic correlation. LDOS () and LDOS () and denote local density 

of state for spin-down and spin-up, respectively. (c) Change of total spectral weight as a function 

of temperatures expected from this model.  

Figure 0.7 
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The 11.3 eV optical transition. The 11.3 eV feature originates mainly from transitions of 

a hole from a central Cu in d9 without the presence of a ZRS to a neighboring Cu d8 spin 

triplet state involving the UHB. Fig. 4.8 shows the pictorial model of the electronic band 

structure and optical transitions at 11.3 eV. Here, we observe rather strong temperature 

dependence, i.e. the 1 decreases as temperature decreases. This requires a starting state 

with the Cu spins parallel for the largest 1. However the ground state is clearly one where 

these spins are antiparallel. The change of the spectral weight transfer of the 11.3 eV feature 

for T ≤ Ts is related to the stripe formation to compensate for the change of the spectral 

weigh transfer of the polarized mixed singlet and triplet (MST). The main point is that 

optical transitions involving the d8 states can result in either triplet or singlet local states, 

which is fundamentally different from what can happen in the single band Hubbard model. 
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Figure 4.8. Pictorial model of the electronic band structure and optical transitions at 11.3 eV. 

Schematic electronic and spin configurations within a CuO4 plaquette for (a) transition to upper 

Hubbard band with ferromagnetic correlations which occurs at Ts and (b) transition to Upper 

Hubbard band in antiferromagnetic correlation which occurs at low temperatures. In each set of 

figures, the left (right) two CuO4 plaquettes represent the initial (final) state of the corresponding 

optical excitation. The d9 plaquette state corresponds to the ground state of the CuO4 plaquette with 

a single hole. Assuming each plaquette is independent, the optical excitation energy is easily 

estimated from the CuO4 plaquette model. The T and S denote triplet and singlet configuration, 

respectively. Excitation spectrum for (c) transition in the phase with ferromagnetic correlations and 

(d) transitions in the phase with antiferromagnetic correlation. LDOS () and LDOS () and denote 

local density of state for spin-down and spin-up, respectively. (e) Change of total spectral weight 

as a function of temperatures expected from this model.  

Figure 0.8 
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The 21.8 eV optical transition. The 21.8 eV feature corresponds to excitation of a doped 

hole from ZRS to the neighboring O-s core level: | d 9 ZRS >  | s1d 9 d 9> (Fig. 4.9).  Fig. 

4.9 shows the pictorial model of the electronic band structure and optical transitions at 21.8 

eV. Similarly, with the help of an effective exchange coupling between the O-s level with 

the O 2p unpaired spin and indirectly with the Cu spin, the feature ~21.8 eV (seen in 1 of 

Figs. 4.1(c) and (d)), which shows a reduction at the lower energy side around 19.6 eV and 

an enhancement at the higher energy side around 21.8 eV (seen in 1 of Figs. 4.2(a) and 

(b)), can be understood from the illustration in Fig. 4.9. Using the proposed MST wave 

function, our model explains that transitions to local spin polarization and unpolarized ZRS 

result to a different sign in the change of the total spectral weight around 21.8 eV. Our 

observation establishes that the spectral weights of these excitations are extremely sensitive 

to the magnetic correlation surrounding the doped holes, and, thus, can be used as a novel 

probe of local magnetic correlations in doped strongly correlated materials. 
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Figure 4.9 Pictorial model of the electronic band structure and optical transitions at 21.8 eV. (a) 

Schematic electronic and spin configurations of CuO4 plaquettes. The left (right) two CuO4 

plaquettes represent the initial (final) state of the corresponding optical excitation. The d9 plaquette 

state corresponds to the ground state of the CuO4 plaquette with a single hole. Assuming each 

plaquette is independent, the optical excitation energy is easily estimated from the CuO4 plaquette 

model. Excitation spectrum for (b) transition to unpolarized ZRS and (c) transition to polarized 

mixed singlet and triplet state (MST). LDOS () and LDOS () and denote local density of state 

for spin-down and spin-up, respectively. Noting that the O 2s orbital corresponds to the 𝑑𝑥2−𝑦2 

symmetric superposition of four O s orbitals surrounding the Cu and thus is orthonormal between 

each site. It splits because of Hunds coupling and |d8 L> orbital. The Cu d and O p are both more 

occupied in the spin up channel, thus lowering the energy of O 2s in the spin up channel. (d) Change 

of total spectral weight as a function of temperatures expected from this model.  

Figure 0.9 
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        Specifically, to the Zn-LSCO of interest here, our measurements address an important 

issue on the low-temperature magnetic structure at T < Ts. The abrupt reverse of the trend 

in our spectral weight (e.g. 7.2 eV feature decreases at lower temperature) offers strong 

support to the “stripe” picture.22 In such a picture, the stripe correlation hosts an anti-phase 

boundary of the anti-ferromagnetic correlation across the doped hole.31-37 That is, the Cu 

atoms on the opposite side of the doped hole are correlated with opposite spin (c.f. Fig. 

4.4(c)). This leads to a compensation of the net magnetic moment of the surrounding spins 

of the doped hole, opposite to the enhancement from anti-ferromagnetic correlation. Our 

observed abrupt decrease of intensity in the 7.2 eV transition, therefore reflects that the 

stripe correlation starts to reduce the ferromagnetic correlation across the doped hole at T 

< Ts.  

        Another interesting result is the polarization dependent 1 (c.f. Fig. 4.2 (c) and (d)). 

While the spectral-weight of 7.2eV peak shows similar trend in both E||a* and E||c* upon 

cooling, the spectral-weight of 21.8eV peak displays different behaviors in which the 

temperature-dependent spectral-weight transfer for E||a* is more pronounces than E||b*. 

This may suggest that the hole doped is distributed rather uniformly in Cu 𝑑𝑥2−𝑦2 but it 

has clearly some preferential direction in the oxygen orbitals. As the temperature 

decreases, the hole doped is redistributed and preferred along E||a*, which is  

interestingly perpendicular to the observed diagonal incommensurate magnetic peak 

along Q = (H,K,L)= (1,±0.0489(7),0) as measured using elastic neutron scattering 

measurements38. Such an interplay of magnetism and charge is consistent within the 

stripe phases39. This result also implies that the optical transition from O 2s is 
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surprisingly sensitive to both charge and spin contributions. This is also new and has 

never been explored before.  

        More generally, the observed mixture of a ZRS component with a triplet component 

due to a polarization of surrounding spins implies that there are crucial ingredients missing 

in the current model for the cuprates. For example, upon integrating out the triplet states, 

one typically arrives at the so-called t-J model by dropping many “non-essential” high 

energy terms in the process.15,16 Our observation indicates that higher order processes 

would need to be included. Typically, such a tendency of ferromagnetic correlation is 

similar to double exchange and is derived from the kinetic motion of the doped holes, not 

the effective potential energy. By including such physics in the t-J model, one effectively 

reconciles the two leading competing pictures in the field: the Zhang-Rice Singlet15,16 

picture and the three-spin polaron picture14. 

 

4.4 Summary 
 

        An unresolved issue in high-temperature superconductivity based on copper-oxides 

(cuprates) is to understand how the magnetic correlations evolve in the vicinity of doped 

hole carriers. In this chapter, we observe new, novel optical transitions at 7.2eV and 21.8eV 

only in lightly hole-doped single crystal La1.95Sr0.05Cu0.95Zn0.05O4 but not in undoped 

Sr2CuO2Cl2 using a high-energy optical reflectivity coupled with spectroscopic 

ellipsometry. Surprisingly, these peaks show robust temperature dependences with an 

anomaly at a magnetic transition (~25K) accompanied by anomalous spectral-weight-

transfer as large as 15% in a broad energy range. Supported by theoretical calculations, 

these peaks are directly related to the doped hole at the oxygen orbitals in the Cu-O plane 
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and its temperature dependences originate from strong local spin-polarization enhanced 

ferromagnetic correlations between Cu spins near the doped holes at oxygen orbitals. Our 

results suggest the importance of local wave-function with strong mixture of spin singlet 

and triplet states in lightly hole-doped cuprates. Furthermore, our results also show potency 

of high-energy optical conductivity and a new strategy to probe the interplay of doped holes 

and magnetisms in cuprates and strongly correlated electron materials in general.  
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Chapter 5 
 

 

Unraveling the interplay of electronic and spin structures in controlling 

macroscopic properties of manganite ultra-thin films 

 

In this chapter, using a combination of transport, spectroscopic ellipsometry, X-ray 

absorption spectroscopy, and X-ray magnetic circular dichroism, we reveal directly 

how electronic and spin structures control macroscopic properties in ultra-thin 

La0.7Sr0.3MnO3 films on DyScO3 substrates. The key lies particularly in the coinciding 

temperature-dependence of both the O2p-Mn3d hybridization and the Jahn-Teller 

splitting. Our study demonstrates the necessity of combining such techniques to 

achieve a comprehensive understanding of La0.7Sr0.3MnO3 ultra-thin films. The 

methodology can and should be applied to other strongly correlated electron systems. 

 

My main contributions in this work are XANES, XMCD, XRD and SE measurements, 

data taking and analysis.  
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5.1 Introduction 

 
Perovskite manganites exhibit fascinating transport and magnetic properties, essential for 

fundamental research and applications.1,2 In particular, with the development of thin film 

nano-scale technologies, more exotic properties have been observed in doped-manganite 

thin films over a wide range of temperature.3-16 However, the origin of many fundamental 

phenomena remains unclear. For instance, it has been shown recently that the complex 

anisotropic transport phenomena in doped-manganite ultrathin films could not be 

explained by strain alone.15 As electrical transport and magnetic properties are directly 

controlled by electronic and spin structures, a direct, comprehensive measurement to 

probe electronic and spin structures in such ultrathin films is thus required. Here we 

propose to investigate directly the evolution of electronic and spin structures because 

these are controlling the macroscopic properties of strongly correlated systems. As a 

model system, we investigate the ultra-thin La0.7Sr0.3MnO3 (LSMO) films on DyScO3 

(DSO) substrates (LSMO/DSO). 

        Revealing the mechanism behind the exotic properties is crucial for understanding 

of strongly correlated systems. Here, using a combination of transport, spectroscopic 

ellipsometry, x-ray absorption spectroscopy, and x-ray magnetic circular dichroism, we 

observe two concomitant electronic and magnetic phases (insulator paramagnetic-like 

phase for T>195 K and insulator canted-ferromagnetic for T<140 K) with an intermediate 

metal-like state in ultra-thin La0.7Sr0.3MnO3 films on DyScO3 substrates. Surprisingly, the 

O2p-Mn3d hybridization strength reduces monotonically with decreasing temperature, 

driving the system to becoming more insulating and ferromagnetic. The Jahn-Teller 
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effect weakens drastically within the intermediate temperature range, turning the system 

into a metal-like state. Our methodology reveals how electronic and spin structure 

evolution control the macroscopic properties in manganite ultra-thin films. 

 

5.2 Materials, methods and results 

 

Sample growth. High-quality epitaxial La0.7Sr0.3MnO3 thin films are grown by pulsed 

laser deposition (PLD) on atomically smooth [110]-orthorhombic oriented DSO single-

crystal substrates.15 The laser pulse (248 nm) energy density was ~ 2 J/cm and the 

repetition rate was 3 Hz. The growth was carried out under 200 mTorr oxygen partial 

pressure at 800 ̊C and the growth rate was ~ 0.8 nm/min.  

 

High-resolution x-ray diffractometry (HR-XRD) and structure characterization. 

The crystallographic structure of La0.7Sr0.3MnO3 film on DyScO3 substrate was 

characterized by HR-XRD in the X-ray Demonstration and Development (XDD) 

beamline at the SSLS. To obtain the crystal structure of the LSMO film on [110]-

orthorhombic oriented DSO substrate, reciprocal space vectors and reciprocal space 

mappings are measured by coplanar diffraction geometry. The lattice constants of LSMO 

are based on the DSO substrate, which has a Pnma orthorhombic, rather than cubic 

structure. The lattice constants of DSO are a=0.5713nm, b=0.5440nm and c=0.7890nm. 

[110]o-oriented DSO has a square lattice referred to as a “pseudo-cubic” crystal: the 

growth direction [110]-orthorhombic direction is c*-axis, [11̅0]-orthorhombic direction is 

b*-axis and [001]-orthorhombic direction is a*-axis. After this transformation 
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(orthorhombic to pseudo-cubic), the lattice constants of DSO are a* = 
𝑐

2
 = 0.3945nm, b* = 

c* = 
√𝑎2+𝑏2

2
 = 0.3944nm, α = 2tan-1 

𝑏

𝑎
 = 92.80°, and β = γ = 90°. 

        Figure 5.1 shows the L-scan X-ray Diffraction patterns of the LSMO film grown 

directly on DSO substrate. The DSO peaks (002) and (003) correspond to the out-of-

plane lattice constant c* = 3.944 Å. The satellite peaks located around the main LSMO 

peaks, which are labeled by small arrows in Fig. 5.1, arise from the thickness fringes. The 

fringes indicate an extremely smooth surface and interface of the as-grown high 

crystallinity LSMO film. From the oscillation peak positions, the film thickness of LSMO 

film dLSMO is estimated to be 12.6±0.1 nm.  
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Figure 5.1 L-scan in high-resolution X-ray diffractometry (HR-XRD) measurements. L-scan 

corresponding the normal of La0.7Sr0.3MnO3 film on [110]-orthorhombic oriented DyScO3 

substrate. The arrows indicate thickness fringes, showing a quite coherent interface between the 

film and substrate, whose distance can be used to estimate the layer thickness. The directions of 

the reciprocal coordinates H, K and L are corresponding to [001], [1-10] and [110] of DSO 

respectively. 

Figure 0.1 
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Figure 5.2 Reciprocal space mappings (RSM) in high-resolution X-ray diffractometry (HR-

XRD) X-ray Diffraction measurements. RSMs around (a) (002)HL, (b) (002)KL, (c) (1̅03)HL, and 

(d) (013)KL were mapped for La0.7Sr0.3MnO3 (LSMO) film on DyScO3 (DSO) substrate. The 

directions of the reciprocal coordinates H, K and L are corresponding to [001], [1-10] and [110] 

of DSO respectively. 

Figure 0.2 

        The reciprocal space mappings around (002)HL, (002)KL, (1̅03)HL, and (013)KL for 

LSMO/DSO are shown in Figure 5.2. From Figs. 5.2 (a) and (b), we can see that the 

peaks for LSMO film layer are directly below the DSO substrate peaks. It means that 

there is no tilt between the LSMO layer and DSO substrate. The peaks around LSMO 
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feature along L scans arise from the thickness fringes which is the same as the satellite 

peaks (red arrows) shown in Fig. 5.1. The streaks around the DSO substrate in Fig. 5.2 

(a) and (b) are resulting from the diffraction system and beamline. The spots from LSMO 

a single peak for all mappings, indicating the high quality of epitaxial thin-film. The 

high-resolution X-ray diffractometry study reveals a perfectly coherent interface between 

the film and substrate. 

        To obtain the precise lattice constants, the reciprocal space vectors were measured. 

The measured reciprocal space vectors for DSO substrate are (-0.0004  0.0000  2.0012), 

(0.9995  0.0000  3.0018) and (0.0000  1.0000  3.0019). The measured reciprocal space 

vectors for DSO substrate are then corrected to (002), (1̅03) and (013) (see detail in 

chapter 2.2.2). The measured reciprocal space vectors for LSMO film are (0.0001  -

0.0037  2.0604), (-0.9963  0.0000  3.0900) and (0.0000  0.9960  3.0924). After 

correction, we obtain lattice constants of La0.7Sr0.3MnO3 film that are monoclinic: a = 

0.3955(3) nm, b = 0.3938(3) nm, c = 0.3831(1) nm, α = 92.79(8)°, and β = γ = 90°. Thus, 

there is a large tensile strain (c/a=0.968) for LSMO/DSO. 

 

Electrical measurements. In-plane transport property of the films was investigated using 

a low temperature probe station (Janis Pte Led) at temperatures ranging from 80 K to 300 

K. Pt electrodes with dimensions of 0.4 mm × 0.8 mm were deposited on the film (see 

Fig. 5.3a).  
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Figure 5.3 Schematic illustration of experimental measurements. Schematic illustration of the X-

ray absorption spectroscopy (XAS), electrical and spectroscopic ellipsometry experimental 

measurements.  

Figure 0.3 

        The temperature dependence of resistivity along the two orthogonal in-plane 

directions were measured simultaneously and shown in Fig. 5.4 (ch1 along [001]-

orthorhombic and ch2 along [1-10]-orthorhombic direction for DSO substrate), consistent 

with a previous study15. The first derivative is shown in the inset. For both ch1 and ch2, 

there are two extreme temperature points: Tmin and Tmax. For ch1, Tmin is about 140K and 

Tmax is about 195K. For ch2, Tmin is about 111K and Tmax is about 195K. Insulating 

behavior is observed both above Tmax and below Tmin, while a metal-like behavior 

appears in between. 
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Figure 5.4 Transport and optical conductivity spectra on La0.7Sr0.3MnO3 film. Resistivity (ρ) 

versus temperature curve for the La0.7Sr0.3MnO3 (LSMO) film on a DyScO3 (DSO) substrate 

(LSMO/DSO) along [001]-orthorhombic (ch1) and [1-10]- orthorhombic (ch2) direction for 

DSO. 

Figure 0.4 

 

 

 

        The transport data indicates that the large lattice tensile strain in LSMO/DSO affects 

the electronic properties of films strongly and exhibits a new phase with intrinsic 

transport anisotropy (Tmin<T<Tmax). Using XAS and ab-initio calculations, it is revealed 
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that the anisotropy in this A-type antiferromagnetic (AFM) phase manganite is driven by 

anisotropic occupations of the O 2p orbitals.15 

To reveal the driving force behind these transitions, we employ for the first time a 

combination of unique techniques including spectroscopic ellipsometry, x-ray absorption 

spectroscopy (XAS), and x-ray magnetic circular dichroism (XMCD) to probe the 

electronic and spin structures. 

 

Spectroscopic ellipsometry measurements and optical conductivity. Spectroscopic 

ellipsometry measurements are performed using the Variable Angle Spectroscopic 

Ellipsometer (VASE) made by J. A. Woollam Co., Inc in the photon energy range of 0.55 

– 6 eV. The incident angle is 70º from the sample normal and the incident light is 45º 

linearly polarized (see Fig. 5.3b). The measured Ψ and Δ spectra of the LSMO samples 

are shown in Fig. 5.5. 
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Figure 5.5 Ψ and Δ Plots. (a) Ψ and (b) Δ Plots of La0.7Sr0.3MnO3 film as a function of 

temperature taken using spectroscopy ellipsometry at 70 degree incident angle from 0.55 eV to 6 

eV. 

Figure 0.5 

 For isotropic bulk DSO substrate, the incident angle dependent (65°, 70°, 75°) 

measured Ψ and Δ spectra are shown in Fig. 5.6. Please see detail in chapter 2.4. 
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Figure 5.6 Ψ and Δ Plots of DyScO3 substrate. (a) Ψ and (b) Δ Plots of DyScO3 substrate taken 

using spectroscopic ellipsometry at 65, 70, and 75 degree incident angle from 0.55 eV to 6 eV. 

Figure 0.6 

Also, the ε(ω) of bulk DSO substrate can be obtained from Ψ and Δ (see chapter 2), 

as shown in Fig. 5.7.  
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Figure 5.7 Dielectric function of DyScO3 substrate. Extracted real (ε1) and imaginary (ε2) parts of 

the dielectric function of DyScO3 (DSO) substrate from 0.55 eV to 6 eV. 

Figure 0.7 

        To extract the ε(ω) values of the LSMO films, the samples are modelled as having 

two layers: LSMO film on DSO substrate (see chapter 2). The extracted complex 

dielectric function ε(ω) of LSMO film from 4 K to 350 K are shown in Figs. 5.8 (a) and 

(b). The low energy part (below 1.8eV) of ε1 and ε2 shows significant variation with 

temperature while the high energy part remains relatively unchanged. In Figs. 5.8(a) and 

(b), it can be seen that the spectral intensity of ε1(ω) below 1.8eV increases. In Fig. 

5.8(a), the ε1(ω) is above 0 and going higher as the photon energy decreases in low 

energy part, suggesting that the sample is more like an insulator or a semi-conductor 

rather than a metal in the whole temperature range (4-350K), consistent with our 

transport data (Fig. 5.4). This insulating phenomenon suggests that the Drude response 

should not play an important role in this system. 
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Figure 5.8 Dielectric function. (a) Real and (b) imaginary parts of dielectric constant (ε1(ω) and 

ε2(ω)) spectra in La0.7Sr0.3MnO3 film as functions of temperature from 0.55 eV to 6 eV. Contour 

plots of (c) ε1 and (d) ε2 in La0.7Sr0.3MnO3 film as functions of temperature and photon energy. 

Figure 0.8 

        The contour plots of ε1 and ε2 are shown in Figs. 5.8 (c) and (d). The low energy 

region (below 1.8 eV) shows a dramatic color (intensity) change at around 140 K as 

temperature decreases. This is consistent with the transport data (Tmin). In Figs. 5.8 (b) 

and (d), the peak near 1.0 eV has been ascribed to eg - eg transition with the parallel spin 

(Jahn-Teller effect).17,18 The intensity of this peak increases as temperature decreases, 

while the position of this peak shifts to lower energy. 
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Figure 5.9 Transport and optical conductivity spectra on LSMO/DSO. (a) Resistivity (ρ) versus 

temperature curve along [001]-orthorhombic direction. Region-1: T>Tmax (~195 K); Region-2 (or 

intermediate): Tmin (~140 K)<T<Tmax; Region-3: T<Tmin. (b) Optical conductivity (σ1(ω)) from 0 

eV to 6 eV as a function of temperature. The σ1 at energy between 0 eV (estimated from the 

conductivity in Fig. 5.9a) and 0.55 eV, is estimated using a linear interpolation. The two light 

green color arrows point to the energy position of Mn eg eg transition (~1 eV) and of O2p 

Mn-eg transition (~1.4 eV) at 300K. The inset is the imaginary part of the dielectric function ε2(ω) 

from 0.55 eV to 2 eV. The different color arrows point to the energy position of the eg - eg 

transition at 80 K (red), 160 K (purple), and 300 K (light green). (c) The number of effective 

charge (Neff) as a function of temperature for two different regions: 0-1.8 eV and 1.8-6 eV. (d) 

Energy position of the eg-eg transition versus temperature obtained from Fig. 1b. (e) Change of 

optical conductivity Δσ1(T) defined as σ1(T) - σ1(300 K). (f) Integrated spectral weight 
𝑆𝑊(𝑇)

𝑆𝑊(300𝐾)
 

defined as 
∫ 𝜎1(𝜔,𝑇) 𝑑𝜔

𝜔2
𝜔1

∫ 𝜎1(𝜔,𝑇=300𝐾) 𝑑𝜔
𝜔2

𝜔1

 in different spectral regions: SW1 (0-1.8 eV), SW2 (1.8-6 eV), and 

total energy range SWtotal (0-6 eV).  

Figure 0.9 
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        Resistivity (ρ) versus temperature curve for the La0.7Sr0.3MnO3 film on DyScO3 

substrate (LSMO/DSO) along [001]-orthorhombic direction for DSO is shown in Fig. 

5.9(a). There are three temperature regions: Region-1: T>Tmax (~195 K); Region-2 (or 

intermediate): Tmin (~140 K)<T<Tmax; Region-3: T<Tmin. The optical conductivity is 

obtained from dielectric function ε(ω) using    1 0 2      , which is shown in Fig. 

5.9(b). As shown in previous studies, by measuring σ1(ω) in a broad energy range, one 

can find the origin of charges that contribute to transport measurement.19,20 The 

enhancement of spectral weight of σ1(ω) below 1.8 eV upon cooling may be coming from 

spectral weight above 1.8 eV, implying the importance of electronic structure of higher 

energy bands determining low-energy transport properties. This will be clear in the 

following detailed analysis. For simplicity, σ1(ω) is divided into two regions: below 1.8 

eV (low-energy region, SW1 for spectral weight) and above 1.8 eV (high-energy region, 

SW2 for spectral weight). Let us first quantify the number of effective charges (Neff) as 

follows:  

2

1
2

2
( ')d 'e

eff

m V
N

e




  


         (1) 

In our measured spectral energy range, we find that the total number of charges is nearly 

constant (within ~1.2%) as a function of temperature (Fig. 5.9(c)). Charge conservation is 

important to validate our next analysis.19,20 As shown in Fig. 5.9(c), the enhancement of 

Neff (T) in SW1 as temperature decreases is accompanied closely by the reduction of Neff 

(T) in SW2. This tells us that the low-energy transport property is determined by 

electronic bands at higher energies.  

        To relate with the transport data, let us first discuss the low-energy region. Two 

peaks are observed at ~1.4 eV and ~1 eV, with different temperature-dependent 



149 

 

behaviors (see also inset of Fig. 5.9(b)). The ~1.4 eV peak is almost temperature-

independent. This peak has been ascribed to the O2p  Mn-eg excitations.21,22 The ~1 eV 

peak, on the other hand, increases its intensity dramatically as the temperature decreases. 

Interestingly, the position of this peak shows a red-shift between Tmax and Tmin, and 

remains almost unchanged outside this region (Fig. 5.9(d)). By comparing with previous 

studies, this ~1 eV peak is assigned to the Mn-eg  Mn-eg (or eg-eg) transitions with a 

parallel spin, which is directly related to the Jahn-Teller effect of the Mn3d states.17,22 

The red-shift of the ~1 eV peak shows that the dynamic Jahn-Teller splitting energy is 

significantly reduced as the temperature decreases and this happens in the intermediate 

temperature region (see Fig. 5.9(e)). As discussed later, the interplay between the 

dynamic Jahn-Teller splitting and hybridizations is responsible for the macroscopic 

property in the intermediate state. Together with the transport data, it is clear that the 

increase of SW1 does not develop into a Drude response, instead it reveals the dynamics 

of the eg - eg transitions, yielding to insulating behavior at lower temperatures. The 

features in the high-energy region (above 1.8 eV) in Fig. 5.9(b) arise from transitions 

between O2p and Mn3d as well as between lower and upper Hund’s rule split bands.18,23 

The detail discussion of the high-energy region need further calculation in the future. 

Owing to the Kramers-Kronig transformation, the advantage of the spectroscopic 

ellipsometry approach allows one to measure the charge transfer accurately using the 

optical f-sum rule.19,20 As temperature decreases, the increase of SW1 by as much as 

~33% below Tmax is accompanied by the decrease of SW2 spanning an energy range up to 

6 eV (Figs. 5.9(c), (e), and (f)). It is found that the total spectral weight (or Neff) is nearly 

conserved throughout the whole temperature range (Fig. 5.9(f) (or Fig. 5.9(c))). The 



150 

 

occurrence of spectral-weight transfer in such a broad energy range as a function of 

temperature is an important signature of strong electronic correlations and hybridization 

strength that drives the system from one phase to another.19,24,25  

        To directly probe the element-specific hybridization strengths and orbital 

occupancies24, we turn to temperature-dependent XAS. 

 

X-ray absorption spectroscopy. The O K-edge absorption spectra in the energy range 

520-580 eV and Mn L-edge absorption spectra in the energy range 630-680eV were 

obtained using linearly polarized x-ray absorption spectroscopy from the Surface, 

Interface and Nanostructure Science (SINS) beamline at SSLS, using a total electron 

yield (TEY) detection method. The X-ray incidence angle (θ) was varied by rotating the 

polar angle of the sample. The E||[001]-orthorhombic direction spectra were measured in 

a normal-incident alignment (θ=0°) (see Fig. 5.3(a)). The temperature was varied 

between 80K and 300K. The spectra were normalized to the integrated intensity between 

565eV and 580 eV for O1s spectra and between 670eV and 680eV for Mn2p spectra after 

subtracting an energy-independent background. Our main observation is shown in Fig. 

5.10, which displays the O K-edge and Mn L3,2-edge XAS and the change of XAS 

(Δµ(T), defined as µ(T) - µ(300K), where µ(T) is the XAS at temperature T) for E||[001]-

orthorhombic direction as functions of temperature.  
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Figure 5.10 X-ray absorption spectra on LSMO/DSO. (a) O K-edge and (b) Mn L3,2-edge x-ray 

absorption spectra as a function of temperature for E||[001]-orthorhombic direction. The change 

of absorption spectra Δµ(T) defined as µ(T) - µ(300K) is presented below each spectrum. (c) 

Integrated spectral weight 
𝑆𝑊(𝑇)

𝑆𝑊(300𝐾)
 defined as 

∫ µ(𝜔,𝑇) 𝑑𝜔
𝜔2

𝜔1

∫ µ(𝜔,𝑇=300𝐾) 𝑑𝜔
𝜔2

𝜔1

 in the energy range of 527-

533.5 eV for O K-edge spectra and in the energy range of 636-649 eV for Mn L3-edge spectra. 

Figure 0.10 
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A dramatic difference is observed between these two edges: the former shows 

surprisingly strong temperature dependency, while the latter is nearly temperature-

independent. Because the O K-edge XAS reveals transitions from O1s into unoccupied 

states directly related to O2p states hybridized with metal states, it is directly related to 

the corresponding hybridization strengths. In Fig. 2a, the O K-edge spectra is divided into 

three regions: (1) a pre-edge region attributed to O2p-Mn3d hybridization (527-533.5 

eV); (2) a broad structure associated with the hybridization of O2p-La5d and O2p-Sr4d 

states (533.5-538.5eV); and (3) a broad feature due to O2p hybridized with higher-energy 

metal states, like O2p-Mn4s,p and O2p-La6s,p (538.5-548.5eV). Thus, the strong 

reduction of spectral-weight by about ~34% in the pre-edge region as temperature 

decreases (Fig. 5.10(c)) corresponds to a decrease of O2p-Mn3d hybridization strength.26  

The Mn L3,2-edge XAS (Fig. 5.10(b)), on the other hand, reflects Mn2pjMn3d 

transitions, thus it is directly related to the occupancy of Mn3d orbitals.26 The spectra 

show two broad separated features at ~642 eV and ~653 eV due to strong spin-orbit 

coupling that splits the Mn2pj core level with j = 3/2 and 1/2.26 The change of Mn3d 

occupancy Δµ(T), is negligible as a function of temperature (Figs. 5.10(b) and (c)). The 

relative strength of O2p-Mn3d hybridization and the occupancy of Mn3d as functions of 

temperature are summarized in Fig. 5.10(c). They are closely related to the anomalous 

transport and magnetic properties as discussed later.   

 

X-ray magnetic circular dichroism measurements. The magnetic behavior of 

LSMO/DSO is probed by element-specific temperature-dependent XMCD at the Mn L3,2-

edges and O K-edge. The XMCD signal is the difference between absorption spectra 
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obtained with +1T and -1T magnetic field which was set parallel to the X-ray beam 

direction using plus helicities of circular polarized light. The grazing-incident spectra 

were measured at θ=60° (see Fig. 5.3(a)), which is estimated as the magic angle.27,28 The 

degree of circular polarization (Pc) was calculated to be 88%.   

        In Fig. 5.11, the grazing-incident Mn L3,2-edges XAS with the corresponding 

XMCD signal (µ+-µ-) at selected temperatures of 300 K (above Tmax), 160 K (between 

Tmin and Tmax), and 80 K (below Tmin) are shown. At 300 K, there is no observable 

XMCD signal. The system can be considered to be in a paramagnetic phase. Upon 

cooling to 160 K, the system behaves metal-like and the XMCD signal appears. This 

suggests the appearance of a net magnetic moment. At 80 K, the film displays further 

enhanced XMCD signal.  
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Figure 5.11 XMCD on LSMO/DSO. (a-c) Grazing incident (θ=60°) Mn L3,2-edges x-ray 

absorption spectra (two opposite magnetization directions relate to the fixed photon helicity (µ+ 

and µ-) ) at 300K, 160K, and 80K, respectively, with their corresponding XMCD signal (µ+ - µ-) 

at the bottom.  

Figure 0.11 
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As XMCD contains both net spin (mspin) and orbital (morb) magnetic moments, one 

can estimate the total magnetic moment, mtotal = mspin + morb.
29,30 The angle-dependent X-

ray magnetic circular dichroism (XMCD) sum rule27,29,30 states that the ratio of the net 

spin and orbital moments ( spinm  and orbm ) are: 

3 2

3 2

2[ 2 ]
7

[ ]
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

                  (2)                       

where 
3LA  and 

2LA  , 
3LA  and 

2LA  are the L3- and L2-edge integrated x-ray absorption 

spectra (XAS) and XMCD intensities, respectively; nh=10 - n3d where n3d is the 3d 

electron occupation number; Tm
 is the angular-dependent magnetic dipole moment. 

According to the angle-averaging spin sum rule,27 the value of Tm
 is equal to zero at the 

magic angle (θ=54.7°). Then spinm  can be approximately obtained in GI geometry (θ=60°) 

by applying the sum rule.28   

        We assume n3d=4.2931 and take into account the circular polarization degree to 

calculate spinm , orbm  and orb

spin

m

m
 , as shown in Table 5.1 (The Mn L-edge XMCD and its 

energy integral are shown in Fig. 5.12). It is noted that the magnetic moment at 300 K is 

undefined. Also note that the total magnetic moment of LSMO/DSO at 80 K is weaker by 

about half as compared to that of ferromagnetic bulk LMSO or other LSMO films.31-33  
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Figure 5.12 X-ray magnetic circular dichroism (XMCD) difference and their integrated spectra. 

Solid line: XMCD difference spectra of La0.7Sr0.3MnO3 film at 80K and 160K; dash line: 

integrated XMCD difference spectra at 80K and 160K. 

Figure 0.12 

Table 5.1 Magnetic moments. The net spin and orbital magnetic moments of LSMO/DSO in 

units of µB/atom 

Table 0.1 

TEMPERATURE 

(K) 

MSPIN(µB) MORB(µB) MORB+MSPIN(µB) 

80 1.011 0.190 1.201 

160 0.191 0.011 0.202 

 

 

        Furthermore, there is no observable XMCD signal at the O K-edge (Fig. 5.13), 

which suggests that the p-d hybridization is weaker in ultra-thin LSMO/DSO. 
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Figure 5.13 XMCD on LSMO/DSO. The grazing incident (θ=60°) O K-edges x-ray absorption 

spectra of the La0.7Sr0.3MnO3 film (two opposite magnetization directions relate to the fixed 

photon helicity (µ+ and µ-) ) at 300K, 160K, and 80K, respectively, with their corresponding 

XMCD signal (µ+ - µ-) at the bottom. 

Figure 0.13 
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5.3 Discussion 
 

         By combining spectroscopic ellipsometry and XAS, we uncover the following facts. 

As the temperature decreases, the O2p-Mn3d hybridization strength (tpd) decreases 

monotonically (as shown by the O K-edge XAS). The Jahn-Teller splitting of the eg 

bands remains relatively unchanged at high and low temperatures, but drops dramatically 

between Tmin and Tmax (as shown by spectroscopic ellipsometry).  
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Figure 5.14 Pictorial explanations for transport and magnetic properties of LSMO/DSO. (a) The 

schematic of the processes causing the change of the resistivity as temperature decreases, a1, b1, 

a2, b2, a3, and b3 temperature points are from the three different region in Fig. 5.9(a). The eg states 

near Fermi level (EF) are split by Jahn-Teller effect (EJT). The bandwidth (Γ) of the eg states is 

related to the O2p-Mn3d hybridization tpd. The resistivity () is roughly inversely proportional to 

the density of states at Fermi level (DOS(EF)). (b) The exchange spin coupling (Jex) versus 

hybridization (hopping) between the O2p and Mn3d orbitals (tpd). For double-exchange, JDE ∝ tpd. 

For super-exchange, JSE ∝ (tpd)2/U, where U is a Hubbard energy for Mn. 

Figure 0.14 
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The anomalous transport behavior (Fig. 5.9(a)) can now be explained. The pictorial 

explanations for transport and magnetic properties of LSMO/DSO are shown in Fig. 5.14. 

The p-d hybridization strength (tpd) determines the bandwidths () of the two Jahn-Teller-

split eg bands, between which the Fermi level is located. For T>Tmax (see left part of Fig. 

5.14(a)), as T decreases, tpd decreases causing  to decrease, which in turn decreases the 

density of states at the Fermi level (DOS(EF)). Since resistivity ( is inversely 

proportional to this quantity, thus  increases. For Tmin<T<Tmax (see middle part of Fig. 

5.14(a)), while tpd keeps decreasing, the Jahn-Teller effect weakens more rapidly (as 

indicated by the abrupt decrease in the Jahn-Teller splitting energy (EJT)), causing the 

DOS(EF) to increase, thus decreases, transforming the system to metal-like. For T<Tmin 

(see right part of Fig. 5.14(a)) tpd continues to decrease while EJT is almost unchanged, 

causing the DOS(EF) to decrease, thus increases, turning the system back to insulating. 

Clearly that it is the competition between O2p-Mn3d hybridization and dynamic Jahn-

Teller effect that sparks the non-monotonic temperature-dependent transport behavior. 

Neither one of them alone can explain the observation. 

Concomitantly, the change of magnetic behavior as T decreases is also determined 

by tpd. We argue that the magnetic phase depends on an interplay of super-exchange and 

double-exchange couplings in their close proximity. It is well-known that super-exchange 

(𝐽𝑆𝐸) and double-exchange (𝐽𝐷𝐸) couplings can be related to the hopping parameter (in 

our case tpd) following 𝐽𝑆𝐸 ∝  
𝑡𝑝𝑑

2

𝑈
 and 𝐽𝐷𝐸 ∝  𝑡𝑝𝑑. This is illustrated by Jex vs tpd sketch in 

Fig. 5.14(b), demonstrating that antiferromagnetism is favorable for large tpd (high T) 

while ferromagnetism is favorable for small tpd (low T). While super-exchange normally 

favors antiferromagnetism and double-exchange favors ferromagnetism, in their close 
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proximity the dominance of double-exchange over super-exchange may lead to a single 

phase of canted-ferromagnetic (or canted-antiferromagnetic) spin arrangement (the effect 

of spin canting).  

Note that in respecting the rather small total magnetic moment at low temperature, 

one might think of a phase separation between ferromagnetic and antiferromagnetic or 

other non-magnetic phases.34 We argue that this is not the case for LSMO/DSO for the 

following reasons. First, we do not observe XMCD signal at the O K-edge (see Fig. 5.13), 

suggesting that the local ferromagnetic regions are not present in our samples. In 

comparison, for ferromagnetic bulk LSMO (x=0.3), the dichroism at the O K-edge is 

significant emphasizing the important of the double-exchange mechanism.31 Second, the 

temperature-dependent resistivity measurements on similar LSMO/DSO ultra-thin films 

show no hysteresis upon cooling and heating at the low temperature region,15 which 

further supports a single phase character. Thus, the canted-ferromagnetic phase is the 

most plausible interpretation for the low temperature magnetic phase of LSMO/DSO 

ultra-thin films.  

As discussed above, at T = 300 K, the system is paramagnetic, suggesting that this is 

above any magnetic transition, probably due to the strong thermal fluctuation. Upon 

cooling, tpd decreases (Fig. 5.10(c)) accompanied by the appearance of the total magnetic 

moment (Figs. 5.11(b) and 5.11(c) and discussion above), while the orbital occupancy of 

Mn3d remains constant (Fig. 5.10(c)). This suggests that the spins are ordering in certain 

directions, yielding canted antiferromagnetism due to the competing mechanisms of 

super-exchange and double-exchange. With further cooling to 80 K, the enhancement of 
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net magnetic moment may be due to the canted tendency being reduced as JDE becomes 

more dominant over JSE at lower temperature.  

It may be worth mentioning previous studies of strain effects and compare our 

results to their magnetic phase diagrams.33,35 With the values of c/a=0.968 and x=0.3, our 

LSMO/DSO thin films fall into the point close to the boundary between ferromagnetic 

and A-type antiferromagnetic phases. Furthermore, according to their theory, this would 

imply that the samples are metallic. However, our samples show canted ferromagnetic (or 

canted antiferromagnetic) phase and insulating behavior at low temperature. This 

suggests that strain alone is not sufficient to predict the magnetic and transport properties 

of our samples. We suggest that it remain to be understood how strain evolves 

simultaneously with the electronic and spin structures as functions of temperature and 

how all these are related to the macroscopic behavior of the system. 

 

5.4 Summary 

 

In conclusion, by combining transport, spectroscopic ellipsometry, XAS and 

XMCD, we have revealed clearly the interplay of hybridization, orbital occupancy, and 

spin that determines macroscopic electronic transport and magnetic properties in ultra-

thin film LSMO/DSO. The key lies particularly in the coinciding temperature-

dependence of both the O2p-Mn3d hybridization and the Jahn-Teller splitting. 

Furthermore, the methodology presented here leading to our conclusion is valuable and 

can be applied for the study of other ultra-thin films of strongly correlated systems. 
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Chapter 6 

 

Unraveling the role of hybridizations in the transport, magnetic, and 

optical properties of ultrathin manganite films 

 

In this chapter, we report our SE, XANES, XMCD, and transport measurements and 

analyses of La0.7Sr0.3MnO3 (LSMO) ultrathin films on SrTiO3 (STO) substrates. We 

find that the bulk character of temperature-dependent transport and magnetic 

properties remain despite the ultrathin sample thickness. However, higher-energy 

excitation properties are significantly modified compared to that of thicker and bulk 

samples. In particular, the resonant excitonic characteristic of the STO is revealed in 

the optical conductivity spectra of LSMO. We argue that these new structures result 

from strong hybridizations between the atomic orbitals of LSMO and STO at the 

interface. In addition, we observe that O2p-Mn3d hybridization increases with 

decreasing temperature, and propose an explanation of its role in the concomitant 

ferromagnetic-paramagnetic and metal-insulator transition. 

 

My main contributions in this work are XANES, XMCD, XRD and SE measurements, 

data taking and analysis. 
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6.1 Introduction 
 

        Bulk La1-xSrxMnO3 is a large-bandwidth material with ferromagnetic (FM) metallic 

ground state and its physical properties can be described successfully by the double-

exchange mechanism1. By depositing LSMO films on different substrates, epitaxial strain 

ranging from compressive to tensile can be induced. It has been reported that depositing 

La0.7Sr0.3MnO3 films on DyScO3 substrates induces large lattice tensile strain, and 

showing unique electronic properties.2 However, it remains unclear whether strain effects 

are correlated to these unusual electronic properties. The unique electronic and magnetic 

properties of La0.7Sr0.3MnO3 films on DyScO3 substrates have been ascribed to the O2p-

Mn3d hybridization.3 

        Here, we use temperature-dependent transport, spectroscopic ellipsometry (SE), X-

ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD) to 

investigate the mechanism governing the electronic, optical, and magnetic properties of 

La0.7Sr0.3MnO3 (LSMO) films on SrTiO3 (STO) substrates (LSMO/STO). Our transport 

measurement shows a metal-insulator transition (MIT) at around 325K, and metallic 

behavior below 325 K. Furthermore, we observe that the O2p-Mn3d hybridization 

strength increases as temperature decreases from O K-edge XAS, while the Mn L-edge 

XAS data indicates that the occupancy of Mn 3d is nearly temperature independent. 

XMCD results reveal a transition from paramagnetic to ferromagnetic phase between 

360K and 300K, and the ferromagnetism is stabilized at lower temperatures. Our optical 

conductivity spectra demonstrate the influence of the STO substrate. In this chapter, we 

propose the role of O2p-Mn3d hybridization on the concomitant MIT and magnetic phase 
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transitions, and address the influence of the substrate on the optical conductivity spectra 

in terms of hybridization at the interface between the LSMO film and STO substrate.  

 

6.2 Materials, methods and results 
 

Sample growth. High-quality epitaxial La0.7Sr0.3MnO3thin films are grown by pulsed 

laser deposition (PLD) on atomically smooth [001]-cubic oriented SrTiO3 (STO) single-

crystal substrates. The laser pulse (248 nm) energy density was ~ 2 J/cm and the 

repetition rate was 3 Hz. The growth was carried out under 200 mTorr oxygen partial 

pressure at 800 ̊C and the growth rate was ~ 0.8 nm/min.  

 

High-resolution X-ray diffractometry (HR-XRD) and structure characterization. 

The crystallographic structure of La0.7Sr0.3MnO3 film on SrTiO3 substrate was 

characterized by HR-XRD in the X-ray Demonstration and Development (XDD) 

beamline at the Singapore Synchrotron Light Source (SSLS). The lattice constants of 

LSMO conform to that of the STO substrate which has a cubic structure with lattice 

constants: a=b=c=0.3905nm.  

        Figure 6.1 shows the X-ray Diffraction L-scan plot of the LSMO film (LSMO/STO). 

The peaks of STO substrate, (001) and (002) with blue arrows in Fig. 6.1, corresponds to 

the out-of-plane lattice constant c = 3.905 Å. The satellite peaks located around the main 

LSMO peaks, which are labeled by red arrows in Fig. 6.1, arise from the thickness 

fringes. The regular fringes indicate an extremely smooth surface and interface of the as-

grown high crystallinity LSMO film. From the oscillation peak positions, the film 

thickness of LSMO film dLSMO is estimated to be 11.2±0.1 nm.  
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Figure 6.1 L-scan in high-resolution X-ray diffractometry (HR-XRD) measurements. L-scan 

corresponding the normal of La0.7Sr0.3MnO3 (LSMO) film on [001]-cubic oriented SrTiO3 (STO) 

substrate. The red arrows indicate thickness fringes, showing a coherent interface between the 

film and substrate, whose distance can be used to estimate the layer thickness. The directions of 

the reciprocal coordinates H, K and L are corresponding to [100], [010] and [001] of STO 

respectively. 

Figure 0.1 

        The reciprocal space mappings around of (002)HL, (002)KL, (1̅03)HL, and (013)KL for 

LSMO/STO are shown in Fig. 6.2. From Figs. 6.2a and 6.2b, we can see that the peaks of 

the LSMO film layer are directly below the STO substrate peak. This means that there is 
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no tilt between the LSMO layer and STO substrate. The peaks around the LSMO feature 

along L scans arise from the thickness fringes which correspond to the satellite peaks 

shown in Fig. 6.2. The streaks around STO substrate in Fig. 6.2 are due to the diffraction 

system and beamline. The spots from LSMO remain a single peak for all mappings, 

showing a high quality of epitaxial growth of the thin-film layer. 

 

Figure 6.2 Reciprocal space mappings (RSMs) in high-resolution X-ray diffractometry (HR-

XRD) X-ray Diffraction measurements. RSMs around (a) (002)HL, (b) (002)KL, (c) (1̅03)HL, and 

(d) (013)KL are mapped for La0.7Sr0.3MnO3 (LSMO) film on SrTiO3 (STO)  substrate. The 

directions of the reciprocal coordinates H, K and L are corresponding to [100], [010] and [001] of 

STO respectively. 

Figure 0.2 
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        The reciprocal space vectors (RSVs) were measured to obtain the precise lattice 

constants. The measured reciprocal space vectors for STO substrate are (0.0006  0.0014  

3.0012), (-0.9995  0.0008  3.0007) and (-0.0012  1.0005  3.0026). The measured RSVs 

for STO substrate are corrected to (003), (1̅03) and (013). The measured RSVs for LSMO 

film are (0.0001  0.0002  3.0370), (-0.9995  -0.0004  3.0365) and (-0.0016  0.9994  

3.0376). After correction, we observe that the lattice constants of La0.7Sr0.3MnO3 film are 

tetragonal: a = b = 0.3903(1) nm, c = 0.3884(1) nm, and α = β = γ = 90°. The c/a ratio is 

slightly smaller than 1. The LSMO/STO system is under weak tensile strain. 

 

Electrical measurements. In-plane transport property of the films was investigated using 

a low temperature probe station system (Janis Pte Ltd) at temperatures ranging from 80 K 

to 350 K. Pt electrodes with dimensions 0.4 mm × 0.8 mm were deposited on the film 

(see Fig. 6.3).  
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Figure 6.3 Schematic illustration of experimental measurements. Schematic illustration of the X-

ray absorption spectroscopy (XAS), electrical and spectroscopic ellipsometry experimental 

measurements.  

Figure 0.3 

        The resistivity versus temperature curve for LSMO/STO is shown in Fig. 6.4a. The 

LSMO thin film on STO substrate shows metallic behavior with slightly reduced MIT 

temperature TMIT~325 K.4 In contrast, the LSMO thin film on DSO substrate shows a 

more complicated temperature-dependent transport behavior and becomes insulating at 

low temperatures.2,3 
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Figure 6.4 Transport and optical conductivity spectra on La0.7Sr0.3MnO3 film. (a) Resistivity (ρ) 

versus temperature curve for the La0.7Sr0.3MnO3 (LSMO) film on a SrTiO3 (STO) substrate 

(LSMO/STO). (b) Optical conductivity (σ1(ω)) from 0.6 eV to 6 eV as a function of temperature 

for LSMO/STO.(c) Integrated spectral weight 
𝑆𝑊(𝑇)

𝑆𝑊(300𝐾)
 defined as 

∫ 𝜎1(𝜔,𝑇) 𝑑𝜔
𝜔2

𝜔1

∫ 𝜎1(𝜔,𝑇=300𝐾) 𝑑𝜔
𝜔2

𝜔1

 in different 

spectral regions: SW1 (0.6-0.75 eV), SW2 (0.75-3.9 eV), SW3 (3.9-4.8 eV) SW4 (4.8-6eV) and the 

total energy range SWtotal (0.6-6 eV). T is temperature (Kelvin). (d) Change of optical 

conductivity Δσ1(T) defined as σ1(T) - σ1(350K) for LSMO/STO. 

Figure 0.4 
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Spectroscopic ellipsometry measurements. We use a spectroscopic ellipsometer with a 

photon energy of 0.6eV-6eV to measure the ellipsometry parameters  (the ratio between 

the amplitude of p- and s-polarized reflected light) and  (the phase difference between of 

p- and s-polarized reflected light) with a 70° incident angle and a 45° polarizer angle (see 

Fig. 6.3b). The dielectric function and optical conductivity (σ1) have been extracted from 

the parameters  and  by utilizing an air/La0.7Sr0.3MnO3/SrTiO3 multilayer model (see 

chapter 2 for details). The optical conductivity (σ1) spectra are obtained from 

spectroscopic ellipsometry and presented in Fig. 6.4b. At high temperature (350 K, above 

TMIT), there is a striking peak around 1.3 eV. The intensity of this peak decreases as 

temperature decreases. This peak has been ascribed to the onset O2pMn-eg charge-

transfer excitations.4,5 From 1.5 to 3.5 eV, there are a few broad structures, which may 

correspond to transitions from O2p hybridized with majority-spin Mn-eg states to 

minority-spin Mn3d states. Interestingly, the spectral weight of these structures change 

dramatically as a function of temperature, which is totally different compared to that 

found in bulk LSMO.4,6 There are four additional structures in the spectra at around 3.7, 

4.0, 4.5 and 5.1 eV.  

        Fig. 6.4c shows the relative change of the integrated spectral weight 
𝑆𝑊(𝑇)

𝑆𝑊(350𝐾)
 

defined as  
∫ 𝜎1(𝜔,𝑇) 𝑑𝜔

𝜔2
𝜔1

∫ 𝜎1(𝜔,𝑇=350𝐾) 𝑑𝜔
𝜔2

𝜔1

 (T is temperature (Kelvin) and ω is the photon energy 

(eV)) in five different energy regions: 0.6-0.75 eV (SW1), 0.75-3.9 eV (SW2), 3.9-4.8 eV 

(SW3), 4.8-6 eV (SW4) and total energy range 0.6-6 eV (SWtotal). SW1 consists of 

transitions between the two Jahn-Teller (JT) bands mediated by O2p states, which 

develop into Drude response at low temperatures. SW1 increases as temperature 
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decreases, and the decreases at low temperature (below 150 K). The abnormal decrease 

may be due to the spectral weight transfer to the 0-0.6 eV Drude region. The SW2 shows 

the charge-transfer transitions. It decreases as temperature decreases, most notably below 

TMIT. This trend looks consistent with that of the resistivity data (Fig. 6.4a). The charge-

transfer spectra SW3 increases slowly, while SW4 decreases slowly, as temperature 

decreases.  

        The difference in optical conductivity (Δσ1) at different temperatures using the 

optical conductivity at 350 K as reference (σ1(T)- σ1(350 K)) are presented in Fig. 6.4d. 

Clearly, we see the redistribution of spectral weights as temperature decreases. Most 

importantly, it demonstrates the increase in intensity of the ~1.3 eV structure, while 

keeping the energy position nearly unchanged.  

 

X-ray absorption spectroscopy and X-ray magnetic circular dichroism 

measurements. The O K-edge absorption spectra in the energy range 520-580 eV and 

Mn L-edge absorption spectra in the energy range 630-680 eV were obtained using 

linearly polarized x-ray absorption spectroscopy at the Surface, Interface and 

Nanostructure Science (SINS) beamline at SSLS, using the total electron yield (TEY) 

detection method. The Ec direction spectra were measured in a normal-incident 

alignment (θ=0°) (see Fig. 6.3a). They were normalized to the integrated intensity 

between 565 eV and 580 eV for O1s spectra and between 670 eV and 680 eV for Mn2p 

spectra after subtracting an energy-independent background. The XMCD signal is the 

difference between absorption spectra obtained with +1 T and -1 T magnetic field which 

was set parallel to the X-ray beam direction using plus helicities of circular polarized 
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light. The grazing-incident spectra were measured at θ=60° (see Fig. 6.3a), which is 

estimated as the magic angle.7,8 The degree of circular polarization (Pc) was calculated to 

be 88%.   
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Figure 6.5 X-ray absorption spectra of LSMO/STO. (a) O K-edge and (b) Mn L3,2-edge X-ray 

absorption spectra as a function of temperature for Ec direction. The change of absorption 

spectra Δµ(T) defined as µ(T) - µ(300K) is presented below each spectrum. (c) Integrated spectral 

weight 
𝑆𝑊(𝑇)

𝑆𝑊(300𝐾)
 defined as 

∫ µ(𝜔,𝑇) 𝑑𝜔
𝜔2

𝜔1

∫ µ(𝜔,𝑇=300𝐾) 𝑑𝜔
𝜔2

𝜔1

 in the energy range of 527-533.5 eV for O K-edge 

spectra and in the energy range of 636-649 eV for Mn L3-edge spectra. 

Figure 0.5 
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        Figures 6.5a and 6.5b show the O K-edge and Mn L3,2-edge XAS of LSMO/STO for 

polarization Ec (normal incidence) as functions of temperature. The change of 

absorption spectra Δµ(T) defined as µ(T) - µ(300 K) (µ(T) is the intensity of XAS at 

temperature T) are also included and presented below XAS spectra. The O K-edge XAS 

reveals transitions from O1s core level to O2p unoccupied states hybridized with metal 

states. Hence, its intensity manifests the corresponding hybridization strengths. For 

further analyses, we divide the spectra in Fig. 6.5a into two regions: (1) a pre-edge region 

attributed to the hybridization of the O2p and Mn3d states (527-533.5 eV); (2) broad 

structures due to the hybridizations of the O2p and higher-energy metal states. (533.5-

548.5 eV).3,9 Fig. 6.5b displays two broad separated structures at ~642 eV and ~653 eV 

corresponding to the spin-orbit split of Mn2pj core level with j = 3/2 and 1/2. Since the 

Mn L3,2-edge XAS reflects transitions from Mn2pj to Mn3d states, it is directly connected 

to the occupancy of Mn3d orbitals.9  

        Fig. 6.5c presents integrated spectral weight 
𝑆𝑊(𝑇)

𝑆𝑊(300𝐾)
 defined as 

∫ µ(𝜔,𝑇) 𝑑𝜔
𝜔2

𝜔1

∫ µ(𝜔,𝑇=300𝐾) 𝑑𝜔
𝜔2

𝜔1

 

from 527 eV to 533.5 eV for O K-edge spectra (Fig. 6.5a) and from 636 eV to 649 eV for 

Mn L3-edge spectra (Fig. 6.5b). The enhancement of spectral-weight by about ~11% in 

the pre-edge region (527-533.5 eV) of O K-edge XAS (black dots in Fig. 6.5c) as 

temperature decreases corresponds to an increase of O2p-Mn3d hybridization strength.9 

In contrast, the Mn3d occupancy (red squares in Fig. 6.5c) is almost unchanged as a 

function of temperature.  

        The magnetic behavior of LSMO/STO is probed by element-specific temperature-

dependent XMCD at the Mn L3,2-edges. We perform the XMCD on LSMO/STO from 80 

to 390 K. In Figs. 6.6a and 6.6b, the GI (θ=60°) Mn L3,2 edges XAS of LSMO/STO with 
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their corresponding XMCD signal (µ+ - µ-) at the bottom at 360 K and 80 K are shown, 

respectively. As XMCD contains both net spin (mspin) and orbital (morb) magnetic 

moments, using the angle-dependent XMCD sum rule,7,10,11 we can extract the mspin and 

morb of LSMO film. 

The net spin and orbital moments ( spinm  and orbm ) are presented by the angle-

dependent X-ray magnetic circular dichroism (XMCD) sum rule7,10,11 as: 

3 2

3 2

2[ 2 ]
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

.                                      (9)                       

Here, 
3LA  and 

2LA  , 
3LA  and 

2LA , are the L3- and L2-edge integrated x-ray absorption 

spectra (XAS) and XMCD intensities, respectively; nh=10 - n3d, where n3d is the 3d 

electron occupation number; Tm
 is the angular-dependent magnetic dipole moment. The 

value of Tm
 is equal to zero at the magic angle (θ=54.7°) according to the angle-

averaging spin sum rule,7. Therefore, by applying the sum rule, spinm  can be 

approximately obtained in GI geometry (θ=60°).8   

        Taking into account the circular polarization degree of the X-ray light and using 

n3d=4.2912, we can calculate spinm  and orbm  which are shown in Fig. 6.6c (The Mn L3,2-

edges XMCD and its energy integral are shown in Fig. 6.7). Above TMIT (360 and 390 K), 

the XMCD signal is small, hence the system can be considered to be in a paramagnetic 

phase. Upon cooling, the XMCD signal enhances dramatically at 300 K, and becomes 
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stronger as temperature decreases. Thus, the low temperature phase is ferromagnetic, and 

the Curie temperature (Tc) is around TMIT. 

 

 

 

Figure 6.6 X-ray magnetic circular dichroism (XMCD) of ultrathin La0.7Sr0.3MnO3 film (on 

SrTiO3). (a-b) Grazing incident (θ=60°) MnL3,2-edges X-ray absorption spectra at 360K and 80K 

(two opposite magnetization directions related to the fixed photon helicity (µ+ and µ-) ), 

respectively, with their corresponding XMCD signal (µ+ - µ-) at the bottom. (c) The net spin and 

orbital moments as a function of temperature. 

Figure 0.6 
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Figure 6.7 X-ray magnetic circular dichroism (XMCD) difference and their integrated spectra at 

Mn L3,2-edges. Solid line: XMCD difference spectra of La0.7Sr0.3MnO3 film at (a) 80, 160, 230 K 

and (b) 300, 360, 390 K; dash line: integrated XMCD difference spectra at (a) 80, 160, 230 K and 

(b) 300, 360, 390 K. 

Figure 0.7 

6.3 Discussion 
 

        We now address the temperature-dependent transport behavior. The resistivity (𝜌) 

versus temperature (T) data apparently is very similar to that of a bulk system4, which 

shows an MIT around 325 K, although this transition temperature (TMIT) is slightly lower 

than that for the bulk system. This indicates that the effects of the substrate to the dc 

resistivity of the LSMO film, such as tensile strain and possible electron penetration, are 
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minor despite the ultrathin thickness of the sample. The near absence of the tensile strain 

effect is supported by the similarity between the lattice constants of LSMO film and that 

of STO substrate (see the XRD measurement before).  

        In the following, we discuss the connection between MIT, the O2p-Mn-eg 

hybridization strength (tpd), and the ferromagnetic (FM) correlations. From the O K-edge 

XAS data (Figs. 6.5a and 6.5c) we see a direct signature increase of O2p-Mn3d 

hybridization strength. The temperature at which the O2p-Mn3d hybridization strength 

starts to increase as temperature decreases (see the black dots in Fig. 6.5c) seems to 

coincide with TMIT. Meanwhile, from the imaginary part of the dielectric function data 

(the inset of Fig. 6.4b) we see that the ~0.8 eV structure exists at 350 K but disappears at 

lower temperatures. Correspondingly, from the σ1 and Δσ1 spectra (Figs. 6.4b and 6.4d), 

a Drude peak develops as temperature decreases. We argue that at high temperature 

(~350 K), the dynamic Jahn-Teller (JT) distortion splits the Mn-eg band by JT~0.8 eV, 

then the two JT-split bands start to get closer to each other at T~325 K, and finally 

merges at low temperature. A similar situation is found in the LSMO ultrathin film on 

DSO substrate in the intermediate temperature range (140 K < T < 195 K).3 As the Fermi 

level (μ) is believed to lie between the two JT peaks, the merging of the two JT bands 

results in a transition from insulator to metal. There are two contributions causing the 

merging of the JT bands: the reduction of JT and the broadening of the two eg bands due 

to the increase of tpd. Furthermore, the XMCD data reveal that the Mn3d states start to 

become spin-polarized around TMIT, and the ferromagnetism is enhanced at lower 

temperatures. Thus, the FM transition occurs concomitantly with the MIT. We argue that 

this concomitancy arises due to the spin-correlation dependence of tpd as the double-
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exchange mechanism applies13. In mixed-valence manganites both double-exchange and 

super-exchange mechanisms may exist, but when tpd is not sufficiently large, the double-

exchange coupling dominates (see Fig. 6.8a). Above the Curie temperature Tc, tpd is too 

small for the double-exchange coupling to compete with thermal fluctuation, making the 

system paramagnetic.  

 

 

Figure 6.8 Hybridization dependence of magnetic exchange coupling and optical conductivity 

spectra of SrTiO3. (a) The exchange spin coupling (Jex) versus hybridization (hopping) between 

the O2p and Mn3d orbitals (tpd) in the LSMO/STO. For double-exchange, JDE∝ tpd. For super-

exchange, JSE∝ (tpd)2/U, where U is a Hubbard energy for Mn. Tc is the Curie temperature. (b) 

Optical conductivity (σ1(ω)) from 2.5 eV to 6 eV as a function of temperature for bulk STO. (c) 

Change of optical conductivity Δσ1(T) defined as σ1(T) - σ1(350K) for bulk STO. 

Figure 0.8 
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        Next, we elaborate the redistribution of spectral weight of the optical conductivity 

spectra as temperature decreases. The increase of tpd also implies the increase of the 

projection of O2p states which hybridize with eg bands, giving a contribution to the 

increase of SW1 (Fig. 6.4c). Meanwhile, SW2 decreases consequently, as there is now 

less opportunity for electrons from O2p states which hybridize with majority-spin Mn-eg 

states to excite the minority-spin Mn3d states. It is important to note that the optical 

conductivity values in the SW2 region of the ultrathin LSMO/STO film (Fig. 6.4b) are 

larger than that of the thicker LSMO film on STO,14 and much larger than that of bulk 

LSMO4. These thickness-dependent differences may be due to hybridizations between 

atomic orbitals of the STO substrate and those of the LSMO film.  

        To address the increase of SW3 as temperature decreases (Fig. 6.4c), we need to 

consider that the ultrathin LSMO sample has more structures in the SW3 region compared 

to that of the bulk sample4. The optical conductivity spectra (σ1) and their differences 

(Δσ1) of bulk STO as functions of temperature are shown in Figs. 6.8b and 6.8c, 

respectively. We can see that the band gap of STO is around ~3.8 eV. In addition, there 

are four temperature-dependent structures at ~4.1, ~4.4, ~4.7 and ~5.0 eV. Meanwhile, 

we observe structures around 4.5 eV in ultrathin LSMO films on STO substrates, which 

are absent in thicker LSMO films14 and bulk LSMO4. We argue that these also result 

from the hybridization between atomic orbitals of LSMO and STO at the interface, 

allowing for some high-energy states at the LSMO side to have a mixed character with 

that at the STO side. This in turn generates additional structures of the optical 

conductivity in our LSMO thin film at high energy compared to that of bulk LSMO.  
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6.4 Summary 
 

        Perovskite manganites exhibiting colossal magnetoresistance have attracted renewed 

attention due to their unique transport, magnetic, and optical properties as functions of 

temperature, doping, thickness, and substrate material. In this chapter, we report our 

measurements and analyses of temperature-dependent transport, x-ray absorption 

spectroscopy, x-ray magnetic circular dichroism, and spectroscopic ellipsometry of 

La0.7Sr0.3MnO3 (LSMO) ultrathin films on SrTiO3 (STO) substrates. We find that the bulk 

character of temperature-dependent transport and magnetic properties remain despite the 

ultrathin sample thickness. However, higher-energy excitation properties are significantly 

modified compared to that of thicker and bulk samples. In particular, the resonant 

excitonic characteristic of STO is revealed in the optical conductivity spectra of LSMO. 

We argue that these new structures result from strong hybridizations between the atomic 

orbitals of LSMO and STO at the interface. In addition, we observe that O2p-Mn3d 

hybridization increases with decreasing temperature, and propose an explanation of its 

role in the concomitant ferromagnetic-paramagnetic and metal-insulator transition. The 

increase of the p-d hybridization also affects the redistribution of spectral weight SW1 

and SW2. Furthermore, the strong hybridization occurring between the LSMO films and 

the STO substrate at the interface affect the optical conductivity spectra. 
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Chapter 7 

 

Thesis summary and outlook 

 

        In the last chapter, we conclude all the essential findings of this thesis with a 

combined perspective. We also summarize this chapter with essential directions for future 

work. 

 

7.1 Thesis summary 

 

        This thesis aims to study the electronic and magnetic structures of metal oxides 

using a combination of methods including X-ray diffraction (XRD), X-ray absorption 

spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and spectroscopic 

ellipsometry (SE). We summarize the main results presented in the thesis as follows. Two 

important systems: cuprates and manganites, are systematically investigated. The parent 

compounds in both cuprates and manganites are antiferromagnetism. Upon hole or 

electron doping, it leads to appearance of superconductivity in cuprates but 

ferromagnetism and colossal magnetoresistance in manganites for certain doping. The 

purpose is to understand the electronic and magnetic mechanism of cuprates and 

manganites, which will pave the way to future applications and deeper fundamental 

studies of strongly correlated materials. In fact, several aspects of these materials were 

properly understood because researchers in transport and high energy spectroscopic used 
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to work independently. In our thesis, we connect link between two different domains of 

experimental and theoretical research to characterize those samples. 

        The mechanism behind the high transition temperature superconducting cuprates is 

not yet completely understood, and has been one of the most challenging research 

problem in modern condensed matter physics. In our studies, we try to study the 

mechanism in cuprates using a combination of XAS and SE. In chapter 3, the electronic 

structures of series of hole- and electron- doped YLBLCO films are studied using 

synchrotron based XAS, XRD and SE. The evolution of the mid-gap state, which lies in 

the band gap of samples as a function of carrier concentration, was systematically 

investigated. We argue that this mid-gap state originates from the co-existence of a low 

energy antiferromagnetic state and a Mott state in YLBLCO. Also, we observed that the 

antiferromagnetic gap collapses and its correlation strength weakens with doping, in 

contrast the Mott states moves to higher energy which indicates increasing correlation 

and supports Mott-Hubbard scenario. These results help us further understand the strong-

correlation and the weak-correlation theories. Moreover, we estimated the value of 

oxygen content (y) in insulating YLBLCO using polarization dependent X-ray absorption 

and optical conductivity spectra (from SE measurements). Furthermore, we clarified 

where the doping-holes and -electrons in p-type and n-type YLBLCO are, and the 

differences between YLBLCO and normal cuprates. The experiment provides clues to the 

mechanisms of Mott-Hubbard gap and superconducting gaps.   

        In chapter 4, the optical characteristics in the insulating phase of untwinned single 

crystal La1.95Sr0.05Cu0.95Zn0.05O4 (hole-doped cuprate) were investigated by studying the 

temperature dependence of the optical conductivity (σ1) in a broad energy range from ~5 
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to ~32.5 eV. We argued that the hole-doped cuprates exhibit both singlet and triplet 

contributions to the electronic wave function as evidenced by the high-energy optical 

response in Zn-doped LSCO. The mixed singlet and triplet states is an important new 

scenario of the pairing mechanism in cuprates. Furthermore, we demonstrated that the 

stripe correlation reduces the ferromagnetic correlation across the doped hole below a 

critical temperature Ts in Zn-doped LSCO.  

        Perovskite manganites exhibit fascinating transport and magnetic properties, which 

are of great value for both fundamental research and practical applications. With the 

development of thin-film technologies, more exotic properties of manganites have been 

discovered in recent years. In chapter 5, we revealed the evolution of electronic and spin 

structure in ultra-thin films of manganites as a function of temperature, and demonstrated 

the critical roles they played in controlling the macroscopic transport and magnetic 

properties, using a combination of transport, spectroscopic ellipsometry, x-ray absorption 

spectroscopy, and x-ray magnetic circular dichroism. We investigated two concomitant 

electronic and magnetic phases (insulator paramagnetic-like phase for T>195 K and 

insulator canted-ferromagnetic for T<140 K) with an intermediate metal-like state in 

ultra-thin La0.7Sr0.3MnO3 films on DyScO3 substrates. We found that the O2p-Mn3d 

hybridization strength reduces monotonically with decrease of temperature, driving the 

system to become more insulating and ferromagnetic. While the Jahn-Teller effect 

weakens drastically within the ‘intermediate temperature range’ (140 K<T<195 K), 

turning the system into a metal-like state. 

In chapter 6, we present our study of LSMO ultra-thin films on SrTiO3 substrates 

(LSMO/STO). We found that the strength of p-d hybridization increases upon decrease of 
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temperature, despite the thin film being under tensile strain. This corresponds well with 

other observations that the resistivity decreases whereas magnetization increases when 

temperature decreases. This dependence is opposite to that in the LSMO/DSO system 

possibly due to the strong hybridization occurring at the interface between the LSMO films 

and the STO substrates which affects the optical conductivity characteristic. 

 

7.2 Outlook and future work 

 
 

        The possibility of further studies as extensions of the methods and ideas presented in 

this thesis in the strongly correlated systems. Here we propose several topics to be 

investigated in the future. 

        It is worth noting that only p-type YLBLCO with high doping displays the 

superconductivity at low temperature, and the transition-temperature Tc of p-type 

YLBLCO is lower than that of YBa2Cu3O7-δ with the comparable carrier concentration. 

Room temperature measurements of the high-Tc cuprates restrict the prediction capacity 

of the electronic mechanism to a superconductivity phase, because the cuprates would be 

at normal state at room temperature and become superconductors below the critical 

temperature Tc. Further research is therefore needed to develop the X-ray Absorption 

Spectroscopy and Ellipsometry Spectroscopy measurements at low temperature 

(including below Tc and above Tc). Based on these, the electronic mechanism for the 

superconductivity phase should be most straightforward. Moreover, to understand the 

physics behind superconductivity from electronic or magnetic properties is still a 

challenge. One possible avenue of future work is the extension of magnetic 

measurements using well-developed methods such as X-ray Magnetic Circular Dichroism 
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(XMCD) and Vibrating Sample Magnetometer (VSM). The temperature dependent 

XMCD is an ideal technique to understand the magnetic mechanism of the cuprates. 

        For manganites, thin films exhibit unique physical properties arising from effects 

absent in the bulk,7-11 among which the most intensively-studied is the strain effect.12,13 We 

can do temperature dependent XAS and SE measurements for LSMO films on different 

substrates (different strain) to study the electronic and magnetic properties. Furthermore, 

now we have observed that the in-plane transport anisotropy only occurs in films under 

large tensile strain in LSMO/DSO. The in-plane anisotropy may exist in other thin-films. 

Thus, we can grow different samples to discover the in-plane anisotropy in other systems, 

and study the physics behind it. In chapter 5, we unraveled that the mechanism behind the 

macroscopic properties is crucial for the understanding of manganites and other strongly 

correlated systems. We believe that these results and methodology reported in the thesis, 

are applicable to other strongly correlated systems, including high-temperature 

superconductors, and are thus of a broad interest. It remains to be inspected how strain 

evolves simultaneously with the electronic and spin structures as a function of temperature 

and how all these are related to the macroscopic behavior of the system. With regard to 

exploring the role of strain, we suggest a future study on the temperature dependent 

measurements of strain. For ultrathin film samples, it requires high-resolution, high photon 

intensity x-ray diffraction measurement as a function of temperature. The changes of 

crystal structure of thin film, substrate, and their interface, can be measured using x-ray 

diffraction. These issues can be further connected to our current results. 

 

 


