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Summary

More and more autonomous underwater vehicles (AUVs) are designed to

be modular, where their payload configuration can be changed frequently

depending on the mission requirements. When an AUV is reconfigured with

different payloads, its dynamic characteristic is affected. Since the dynamic

model underlies the design of its navigation, guidance and control systems, any

deviation from the nominal model would potentially degrade the performance

or in the worst case, cause critical safety issues.

In this thesis, an online method is developed to identify and validate

the dynamics of a newly configured AUV. The AUV is programmed to

perform a compact set of maneuvers where the vehicle’s response is measured

under known excitation. The method is composed of two stages. In the

training stage, a State Variable Filter and Recursive Least Square (SVF-RLS)

estimator is used to estimate the model parameters. In the validation stage,

the prediction capability of the identified model is checked using a fresh data

set. Compared to the conventional offline identification method, the SVF-RLS

estimator is better in terms of prediction accuracy, computational cost, and

training duration. We illustrate how the identified model can be used to

estimate the turning radius of an AUV at different speeds and to design a

gain-scheduled controller.

In order to meet the decoupling assumption, the roll angle of an AUV has

to be kept small. To tackle this problem, we develop an internal rolling mass

mechanism to actively stabilize the roll motion. We rotate a custom-made

electronics tray, which has an off-centric center of gravity, to produce the

required torque to stabilize the roll motion. The mechanical design of such a

mechanism and its dynamic model and control are discussed in detail. The

effectiveness of the mechanism in regulating the roll motion is shown in both

tank tests and field experiments.

As the dynamic model is scheduled according to the vehicle’s forward speed,

the operating range of the speed need to be known. The minimum speed is



not zero, but a certain speed at which the AUV must travel for depth keeping.

When the fins lose their effectiveness at low speed, the extra buoyancy will

bring the AUV up to the surface. To understand the mechanism behind

the occurrence of the minimum speed, we start by analyzing a nonlinear

depth dynamic model of an AUV. First, we give formal definition to the

minimum speed and then derive the solution together with its condition

of existence. Through the solution, we gain insight on how the minimum

speed of an AUV could be altered in practice. Next, a minimum speed

seeking algorithm is developed under the framework of extremum seeking.

We extend the framework by introducing a new definition of steady-state

mapping which imposes a new structure on the seeking algorithm. The

proposed algorithm employs a fuzzy inference system, which is driven by the

real-time measurements of pitch error and elevator deflection. Finally, the

effectiveness of the algorithm in seeking the minimum speed is validated in

both simulations and field experiments.
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Chapter 1

Introduction

1.1 Motivation

The oceans cover 71% of the earth’s surface and play an important role in the

earth’s climate and weather systems. However, many scientific investigations

of the oceans are hindered by the lack of samples in both space and time.

Unmanned underwater vehicle (UUV) is one of the emerging technologies

that is believed to be able to change the landscape of the decade-long problem

of under-sampled oceans [1].

There are two classes of UUVs: remotely operated vehicles (ROVs) and

autonomous underwater vehicles (AUVs). ROVs are tethered vehicles with

umbilical cables that transfer power, sensor data and control commands

between the surface ship and the vehicles. They are tele-operated by human

pilots and hence able to perform complicated tasks such as underwater

structure installations and underwater sample collections. As they enjoy an

unlimited power source from a surface ship, ROVs usually have an open-

frame design and are equipped with multi-thrusters for greater maneuvering

capability.

On the other hand, AUVs are tether-less vehicles and have to carry their

own on-board energy source. Due to the limited energy supply, AUVs are

usually designed to have a streamlined shape (torpedo-like) in order to reduce

drag. They are often propelled by a single thruster and maneuver via the

1



1.1 Motivation

control of multiple fins. As the number of actuators is less than the degrees

of freedom (DoF), AUVs are under-actuated. In contrast to ROVs, AUVs are

more mobile and can be used to survey a large area in a shorter time frame.

Hence, they are the main workhorses for oceanographic surveys, sampling

and monitoring [2].

In order to perform any useful work, the AUVs must be able to follow

an instructed trajectory or motion precisely. This capability relies on the

dynamic control of the vehicle. The dynamic control of an underwater vehicle

is difficult due to the following reasons:

� Hydrodynamic forces and moments are highly nonlinear and coupled

between degrees of freedom.

� Unpredictable external disturbance such as wave and current.

� Time-varying model (hydrodynamic coefficients) which vary depending

on the operating conditions.

� No access to fine-tune the controller gains during the autonomous cruise

underwater.

Most of the AUV controllers are model-based. So its performance depends

highly on the accuracy of the model parameters. Traditionally, those para-

meters are obtained through tow-tank experiments using a planner motion

mechanism (PMM) or by employing computational fluid dynamics (CFD)

analysis. Both methods are time-consuming and expensive to be carried out.

In the current trend, AUV is designed to be modular where its payload con-

figuration could be changed frequently depending on the mission requirement.

So, it is practically infeasible to employ these two methods every time there

is a change in the payload configuration.

The task of designing a controller is becoming more challenging when

an AUV is reconfigurable with different payloads. Changing payload config-

uration affects the length, weight, shape of an AUV, and thus its dynamic

characteristics. As the dynamic model underlies the design of its navigation,

guidance and control systems, any deviation from its nominal model would

2



1.1 Motivation

potentially degrade its performance [3] or in the worst case, cause critical

safety issues.

There are two approaches to tackle the uncertainty in the dynamic model of

an AUV. The first approach is to design a controller that takes the uncertainty

into consideration. The second approach is to reduce the uncertainty via

system identification by conducting experiments on the AUV. Under the first

approach, the problem has been widely studied by the control engineering

community and the solution could be classified into robust control [4], adaptive

control [5] and intelligent control [6]. Each of these control methodologies

has their strengths and limitations, which we will discuss in detail in the

literature review chapter. But, by and large, this approach focuses on the

controller design to mitigate the negative effect of the uncertainty on the

control performance.

In this thesis, we opt for the second approach, which aims to obtain

the updated model via field experiments of the actual AUV. Before running

an actual mission, the newly configured AUV is programmed to perform a

compact set of maneuvers. The vehicle’s response is then measured using the

on-board sensors. Based on the vehicle’s response under the known excitation,

the unknown parameters of the dynamic model are determined. Such an

approach, which allows the AUV dynamics to be identified, is called on-board

system identification by Caccia et al. [7], or in-field identification by Mǐsković

et al. [8].

The second approach is chosen because of a number of reasons. Firstly,

when the updated model is obtained, it can be used not only for controller

design, but also on the design of guidance law and the health monitoring of

the AUV. For example, we could estimate the turning radius of the AUV

under different operating speeds based on the model. The understanding of

such performance limit enables us to plan the AUV path that is achievable in

practice. The model could also be used to monitor the health status of the

AUV, allowing early fault detection prior to running an actual mission [9].

Secondly, a simple controller design methodology, such as the linear control,

can be employed because once the accurate dynamic model becomes available,

the controller gains can be adjusted on-the-fly. Thirdly, there is nothing that
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1.1 Motivation

stops us from employing a more advanced control techniques such as those

developed in the first approach, and the resulting controller will perform

better since the uncertainty in the model has been reduced.

Most of the on-board system identification methods reported for unmanned

underwater vehicles are offline operated. The current state of the art of the

system identification process requires inputs from a control engineer in data

selection and solving of the unknown parameters via optimization [10]. Hence,

in this thesis, we aim to develop an online method to automate the whole

system identification procedures. By automating the process, we hope to save

expensive ship-time and resources and also improve the system performance

of the AUV.

In order for the system identification to work in practice, the structure of

the dynamic model should be sufficiently simple such that the parameters of

the model can be uniquely determined from the experimental data. Otherwise,

one will suffer from the identifiability issue [11]. The dynamic model of a six

degrees of freedom underwater vehicle, as described in [12] consists of more

than a hundred unknown parameters. However, for a slender shape AUV, the

dynamic model is usually divided into three subsystems (steering, diving and

speed) by assuming the dynamics of different axes can be decoupled from one

another [13, 14], and thus reducing the unknown parameters to a reasonable

size. Furthermore, the dynamic model is a function of the vehicle’s speed.

We handle this non-linearity by adopting a multiple-model approach in which

the model parameters are scheduled based on the vehicle’s forward speed. In

short, we use a simplified model based on the decoupling assumption, and

the model parameters are a function of the vehicle’s forward speed.

In order to meet the decoupling assumption, the roll angle of an AUV has

to be kept close to zero [15], otherwise the dynamics between yaw and pitch

will be coupled. In addition, it is desirable to keep the roll angle small without

using the existing control fins. Because the control fins will be used during

the open-loop identification, any overloading of the control fins with roll

control task will complicate the identification result. To tackle this problem,

we have proposed the use of an internal rolling mass (IRM) mechanism to

actively stabilize the roll motion of an AUV. Such a mechanism is useful in
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stabilizing the AUV for underwater survey activities like bathymetry survey

and side-scan imaging.

As the dynamic model is scheduled according to the vehicle’s forward

speed, the operating range of the speed needs to be known. The maximum

speed is the speed when the maximum thrust is given, whereas the minimum

speed is not zero, but a certain speed at which the AUV must travel for

stable depth control. Otherwise, the extra buoyancy will bring the AUV up

to the surface when the control fins lose their effectiveness at low speeds.

Hence, in this thesis, we also develop an online algorithm such that the AUV

is automatically controlled to travel at its minimum speed while maintaining

a constant depth. Such capability is important in a number of practical

scenarios, such as underwater loitering with minimum energy consumption,

underwater docking with minimum impact, and high-resolution sensing at

minimum speed.

1.2 Objectives

The objectives of this thesis can be summarized as follows:

� To develop an online system identification system that produces an

updated dynamic model of an AUV, such that it can be used in the

design of control, navigation and guidance system.

� To develop a solution that stabilizes the AUV’s roll dynamics without

using the control fins. This is to meet the decoupling assumption made

in simplifying the dynamic model.

� To understand the mechanism behind the minimum speed, and to de-

velop an online algorithm such that the AUV is automatically controlled

to travel at its minimum speed while maintaining a constant depth. As

the dynamic model is scheduled according to the vehicle forward speed,

the minimum achievable speed needs to be known.
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1.3 Main Contributions

The principal contributions of this dissertation are:

1. We have proposed an economic and feasible method to obtain a reas-

onably accurate dynamic model of an AUV via in-field experiments.

Compared with the previous works, the proposed method allows identific-

ation to be done more rapidly. The identification results will be available

immediately after the experiment run, and hence can be utilized in

designing a controller and guidance law without human intervention.

This results in considerable improvements in system performances and

substantial saving in ship time.

2. We have tackled the unwanted roll motion of an AUV through active

roll stabilization by using an internal rolling mass mechanism. We are

the first to report the use of internal moving mass to stabilize the roll of

an AUV. The mechanical design of such a mechanism and its dynamic

modeling are discussed in detail. The effectiveness of the mechanism

in regulating the roll motion of the AUV is demonstrated in tank tests

and field experiments.

3. We have posted a new problem of minimum speed seeking for non-

hovering AUV, which is of practical relevance to a number of operational

scenarios. By analyzing the dynamic depth model of a typical AUV,

we explain the mechanism behind the minimum speed and derive its

solution together with its condition of existence. Then, a novel minimum

speed seeking algorithm is proposed. Its performance was first studied

in simulation and later validated in the lake and sea experiments.

1.4 Research Platform: The STARFISH

AUV

The STARFISH AUV, our in-house build AUV, serves as an ideal platform

for academic research. Similar to most of the AUVs, STARFISH is propelled
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Figure 1.1: STARFISH AUV equipped with DVL and LEDIF payload
at the Pandan Reservoir.

by a single thruster, use elevators and rudders as control surfaces, and is

torpedo in shape. It is positive buoyant to facilitate easy recovery during

the case of emergency. Its nominal speed is 1.5 m/s when operating at 70%

thrust and its top speed is 2.4 m/s.

The STARFISH AUV is highly modular in design which allows easy

reconfiguration of vehicle’s payloads according to mission requirement. In

Figure 1.1, the STARFISH AUV is equipped with LED induced fluorescence

(LEDIF) payload for in-situ real-time optical sensing of the water chemistry

and Doppler Velocity Log (DVL) payload for enhanced navigation capability.

The mass of the vehicle is 65 kg and it is 2.3 m long with a diameter of 0.2 m.

Currently, we also have Side-Scan payload, Voith Schneider Propeller (VSP)

payload, and Thin-Line Array (TLA) payload in our lineup (see Figure 1.2).

Depending on the payload configuration, we would expect changes in vehicle

geometry and its dynamics.

The base STARFISH is equipped with a number of sensors. As far as

this work is concern, we use a compass module for attitudes measurement, a

pressure sensor for depth measurement, and a Doppler Velocity Log (DVL)
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Figure 1.2: The STARFISH AUV is highly modular in design which
allows easy reconfiguration of vehicle’s payloads according to mission

requirement.

for speed measurement. Their details are tabulated in Table 1.1.

Table 1.1: Sensors

Sensor Measurement Model Manufacturer
Compass Roll, Pitch & Yaw HMR3500 Honeywell
Pressure Depth PDCR 1830 General Electric

DVL Speed Explorer Teledyne

1.5 Organization

This dissertation is organized as follows. In Chapter 2, we survey the related

previous works on our targeted areas of research. In Chapter 3, we develop

a method to enable a rapid identification of AUV dynamics via on-board
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system identification. First, we construct the yaw dynamics model of an AUV.

Then, the online system identification and the experiment procedures are

described in detail. Next, experimental results are presented. We compare

the proposed method with the conventional offline method and finally, discuss

two applications of the identified models.

In Chapter 4, we tackle the unwanted roll motion through active roll

stabilization by using the IRM mechanism. First, we illustrate the mechanical

design of the IRM mechanism followed by the dynamic modeling. Next, we

present the results of system identification. Then, we show how a controller

was designed to regulate the roll motion. Results from tank tests and open-

field tests demonstrate the effectiveness of the mechanism in regulating the

roll motion of the AUV.

Minimum speed seeking control is discussed in Chapter 5. We construct a

depth dynamic model to explain the existence of the minimum speed, and

show how it is affected by the extra buoyancy, righting moment and fin’s

effectiveness. Next, we design a minimum speed seeking algorithm that is

driven by online measurement of pitch error and elevator deflection. The

effectiveness of the algorithm in seeking the minimum speed was illustrated

in simulations and experiments in both lake and sea.

Chapter 6, we conclude the important results in this thesis, pointing out

potential future works.
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Chapter 2

Literature Review

In this chapter, we review the current state of the art in five areas of AUV

research. They are system identification, control methodology, roll control,

moving mass mechanism, and minimum speed seeking control algorithm. By

understanding the current state of the art of the respective areas, we hope

to identify the gaps and potential areas that advancement can be made in

knowledge and technology.

2.1 System Identification

Most of the AUV controllers are model-based. So their performance highly

depends on the accuracy of the nominal model. Traditionally, parameters of

a nominal model are obtained through tow-tank experiments using a planner

motion mechanism (PMM) or by employing computational fluid dynamics

(CFD) analysis. Both methods are time-consuming and expensive to carry out.

In the current trend, the AUV is designed to be modular where its payload

configuration can be changed rapidly depending on the mission requirements.

So, it is practically infeasible to employ these two methods every time there

is a change in the payload.

For a modular AUV, one would like to have an updated dynamic model

after each change in payload configuration or vehicle geometry. One effective

method to obtain the dynamic model is via field experiments of the actual
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AUV. Before running an actual mission, the AUV is programmed to perform a

compact set of maneuvers. Vehicle response is then measured using on-board

sensors. Based on the vehicle response under known excitation, the unknown

parameters of the dynamic model are determined. Such an approach, which

allows AUV dynamics to be identified more rapidly, is called on-board system

identification by Caccia et al. [7], or in-field identification by Mǐsković et

al. [8].

Most of the on-board system identification methods reported for unmanned

underwater vehicles (UUVs) are offline operated and mostly applied to open-

frame vehicles. Caccia et al. [7] identified a lump parameter model of an open-

frame remotely operated underwater vehicle (ROV), using the least squares

method and took into consideration the propeller-hull and propeller-propeller

interaction effect. Ridao et al. [16] compared two identification methods using

the URIS UUV: one is based on the minimization of the acceleration prediction

error, and the other, on the minimization of the velocity one-step prediction

error. An online adaptive identification technique had been proposed by

Smallwood and Whitcomb [17] for application in their ROV. For applications

on streamlined AUVs, work had been done by Rentschler et al. [10] where

parameter estimation was performed offline using an optimization technique.

Tiano et al. [18] proposed to use an observer Kalman filter identification

method to identify yaw dynamics of the Hammerhead AUV. Both simulation

and experimental results were presented, but the online implementation of

their algorithm was not discussed in detail. Recently, Petrich et al. [19]

studied the identification of the pitch axis of Virginia Tech 475 AUV. They

argued that the linear second order pitch model suffices for the attitude

control design purpose. Offline result was presented.

From the literature review, we see that there is a need to develop an

economical and feasible method such that a reasonably accurate dynamic

model of the AUV could be obtained via field experiments. Compared with

previous works, the proposed method should allow identification to be done

more rapidly. The identification results are available immediately after each

experimental run, and hence can be utilized in the design of the controller and

guidance law without human intervention. This could result in considerable
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improvements in system performances and substantial savings in ship time.

However, performing an identification task in practice requires a human

operator to make some important decisions that are highly dependent on

one’s experience, intuition, and insights. Since our aim is to automate the

identification process, the main challenge would be on the development of a

set of procedures which can replace human operator in the decision-making,

and result in a consistent estimation of the parameters.

2.2 Control Methodology

What has been discussed so far is about system identification, and the focus is

on obtaining an accurate model as much as possible. There is another aspect

of the problem: the controller design. Controller designer usually assumes

the model at hand is only a nominal plant which is subjected to uncertainty

and other modeling errors. Several advanced control techniques have been

developed for AUVs, with the main concern being on the robustness of the

controller. Typical techniques include sliding mode control, nonlinear control,

adaptive control, neural network based control and fuzzy control and also the

combinations among them.

2.2.1 Robust Control

� Robust Linear control

Besides inherent nonlinearity of the AUV dynamics, previous works

had shown some success in designing control laws based on linearized

models [20, 21, 13, 19]. However, due to the difficulty of deriving an

accurate model of an AUV system, most of the works were restricted to

a particular operating condition. In order to operate in wider regimes, a

gain-scheduled trajectory-tracking controller was proposed by Silvestre

and Pascoal [22]. The time-invariant plant was obtained by linearizing

the system dynamics about a finite number of representative points.

Then, a linear controller was designed for each linearized plant. A family

of linear controllers was generated by interpolating the parameters of
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the linear controllers designed previously. Interpolation was performed

base on external scheduling variable (vehicle’s forward speed). H-∞
robust controller methodology was applied in designing each linear

controller. This approach highlights the need for identification of the

AUV dynamics at the different operating points, which is what we are

pursuing in this thesis.

� Sliding mode control

Sliding mode control (SMC) has been widely used in the design of AUVs’

controller [23, 24, 25, 14]. The main attractive property of SMC is its

robustness against parameter uncertainties. By employing a high gain

feedback at the switching surface, the controller restricts the system

states to stay inside a designed subspace. The states converge asymp-

totically to the subspace even under the presence of model uncertainties,

parameter variations, and disturbances. However, high gain feedback

at the switching surface results in the chattering phenomenon, which is

highly undesirable. It reduces the lifespan of the actuator by increasing

the wear and tear. It also consumes more energy. There are a few

remedies to the chattering problem. The most common remedy is by

forming a boundary layer around the switching surface, such that the

controller output is continuous[26]. Yoerger et al. [23, 27] introduced

the basic methodology of using sliding mode control for an AUV ap-

plication, and later Yoerger and Slotine [28] developed an adaptive

sliding mode control scheme, in which a nonlinear system model was

used. When the generalized disturbance makes the system state exceed

the sliding mode tolerance layer, the exceeding value is used to update

the nonlinear model parameters and the control input. Others have

suggested the use of sliding modes with adaptivity, as in Cristi et al.

[29] where the sliding surface is based on the system state rather than

on the output error. The chattering problem could also be solved by

having a better model that describes the plant more accurately. In this

sense, the controller designer could select a smaller gain feedback at

the switching surface and thus reducing the chattering effect. Online
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system identification is one way to obtain better dynamic model of the

plant rapidly.

2.2.2 Adaptive Control

Adaptive control modifies the controller gains according to the changes in

the process dynamics and the disturbances. Since there are parameter un-

certainties in the hydrodynamic coefficients, many researchers use adaptive

control to address the AUV control issues. However, adaptive control may

fail when the dynamics changes faster than the adapting capability. Cristi et

al. [29] proposed a model-based adaptive controller. Assuming that the vehicle

dynamics is linear within the range of its operating conditions, the controller

uses the RLS method for system parameter estimation and pole placement

technique for controller design. Yuh [30] proposed a discrete-time adaptive

controller using a parameter adaptation algorithm. Yuh and Nie [31] proposed

a nonregressor-based adaptive control scheme that uses parametric bound

estimation, instead of system parameter estimation, to tune the controller

gains. For adaptive control, dynamic feedback loop is used for generating the

estimates of unknown controller parameters for compensation [32]. Although

adaptive laws are effective in the control of AUVs in the presence of large para-

meter uncertainties, their synthesis is complicated because a large number of

control parameters must be adapted in the dynamic feedback loop. Moreover,

adaptive systems are extremely sensitive to unmodeled dynamics [5].

2.2.3 Intelligent Control

Neural Networks and Fuzzy Logic belong to a family of techniques known

as soft computing. Both methods can achieve nonlinear mapping from the

system input space to the system output space. This makes them suitable

for nonlinear system control. Neural Networks controller is constructed by

training the layers of neurons with the experimental data. Fuzzy Logic

controller is built based on the rule of thumb and the linguistic expression

of an expert who understands the process well. Thus, both methods

have the advantage that the dynamics of the control system need not be
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completely known. The downside is no formal mathematical characterization

exists for the closed-loop system behavior, and the validation of the final

design can only be demonstrated experimentally. It is also hard to design

the controller to meet certain requirements such as response time and

stability. Related works using the Neural Networks controller for AUV

control are [33, 30]; and for Fuzzy Logic controller [34, 35]. In Wang and

Lee [36], authors discussed a combination of both methods for control of

the ODIN AUV. The major drawback of intelligent control such as the

neural network is the requirement of large training data set, and thus

the training speed becomes the bottleneck of the motion controller design [37].

In this study, we do not focus on control methodology, as we will show

in the coming chapter that when the system identification could give us a

reasonably accurate model of the AUV dynamics, then a simple controller

design methodology such as linear control could be employed to control the

AUV.

2.3 Roll Control

As mentioned in the previous chapter, system identification requires a simple

decoupled dynamic model to be used. The decoupling assumption is only

valid when the AUV’s roll is small. Furthermore, as the control fins are under

open-loop control during the identification process, they could not be used

concurrently for the roll regulation. From the literature survey, an unwanted

roll motion is also a source of other problems.

The problem is becoming more prominent as AUVs are smaller nowadays.

Smaller AUVs are built to reduce manufacturing costs and ease of deployment

by one or two operators. Smaller AUVs pose constraints in placement of

internal components and cause reduction in the metacentric height of the

AUVs. This affects the inherent self-stabilization in the roll-axis. As a result,

smaller AUVs are vulnerable to oscillatory roll motion.

A stable autonomous underwater vehicle (AUV) is essential for the under-

water surveys such as the seafloor imaging using a side-scan sonar, bathymetric
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mapping using a multi-beam sonar, and photo mosaicking using an under-

water camera. As compared with yaw and pitch, the roll of a torpedo-shape

AUV has a smaller moment of inertia and drag. So, the roll dynamics is

oscillatory when the AUV is subjected to induced propeller torque, unknown

disturbances and banking motion during turns. Without roll stabilization,

the unwanted roll motion of an AUV can be problematic [38].

Singh, et al. [39], stated in their bathymetry paper, the roll bias is the

most dominant error source as it directly affects the slope of the area being

surveyed. Kirkwood, et al. [40] stated that the roll stability is critical to

the multibeam mapping, and it is of high priority. For a side-scan sonar

application, the AUV roll motion may cause layover to occur [41]; the affected

samples are hard to interpret and need to be discarded. The unwanted roll

motion can also affect both diving and steering performance of the AUV. This

is because most feedback controllers are designed on the assumption that yaw

and pitch motion are decoupled. When the roll of the AUV is non-zero, the

assumption is violated and thus the performance of a decoupled controller

will be affected [15].

2.4 Moving Mass Mechanism

In this thesis, we investigate the use of an internal rolling mass mechanism

to actively stabilize the roll motion of an AUV. Internal actuators have a

few appealing features. Firstly, they can be used at low speeds when the

control fins lose their effectiveness. Secondly, they can be housed completely

inside the vehicle and therefore are less prone to damage due to impact or

corrosion [42]. Thirdly, they do not create external drag.

The use of an internal moving mass is not new in underwater vehicle

applications. It has been used in underwater gliders such as SLOCUM, the

Spray glider, and the Seaglider [43]. The use of internal moving mass is

also found in some AUVs. One example is the hybrid AUV – eFolaga [44]

where the battery is moved along the longitudinal axis to provide pitch

control. However, the use of an internal mass for roll control is challenging

because of the limited lateral space available for any significant linear motion.
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Furthermore, the use of linear motion requires a runway for the moving mass

which is practically infeasible as the internal space is already crowded with

the essential components.

In summary, we foresee a large potential of such a mechanism in stabilizing

the roll of an AUV despite the challenges of developing one in practice.

2.5 Minimum Speed Seeking Control

Non-hovering AUVs are controlled by fins, which lose their effectiveness at

low speeds. Hence, there is a minimum speed at which the AUV must travel

before losing its maneuvering capability. Traveling at low speeds is desired in

a number of practical scenarios. An AUV consumes less energy when it travels

slowly and hence maximizing its endurance. This contributes greatly to the

long-term deployment of the AUV in environmental monitoring applications.

The second scenario occurs when the AUV needs to perform underwater

docking for battery charging and data transmission. In this case, the AUV

should travel as slowly as possible so that the mechanical impact on the

docking system is minimized. As pointed out by LeBas [45], traveling slowly

also improves the final homing maneuver effectiveness. The third scenario

happens when the AUV is required to conduct close observations of particular

areas of interest, such as mines, coral reefs, and offshore installations. For

example, in the case of sidescan sonar, the slower the AUV travels, the more

scanlines can be acquired from the same target, which gives a higher image

resolution.

The potential benefits of operating the AUV at low speeds have attracted a

number of researchers. Liu et al. [46] improved the low speed maneuverability

of the Delphin AUV by adding four thrusters to provide hovering capability

to the AUV. In his master thesis, Helgason [47] examined ways to overcome

the limitation that requires the Gavia AUV to cruise at speeds above 1.5 m/s.

He focused on deriving the equation of motion for the AUV when external

thrusters are attached to excite the respective DoF (surge, sway, heave and

yaw). In [48], the authors investigated the use of a moving mass actuator to

augment the existing fins to achieve a lower minimum speed. In the master
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thesis of Lebas [45], a new robust controller was proposed to handle the change

of the hydrodynamic characteristic when the speed is varied. Furthermore, a

speed-dependent pitch limit was introduced so that the stall condition at low

speed could be avoided.

In [49], the author derived the minimum speed based on the mass, the

equilibrium angle of attack and some other hydrodynamic coefficients of

the AUV. However, it is not easy to find the exact minimum speed as the

hydrodynamic coefficients are not known to high accuracy. In fact, the

minimum speed attainable by an AUV is also affected by its surroundings

such as the water density and other disturbances. Therefore, an algorithm

that automatically tracks the minimum speed in real-time is desirable. Adding

thrusters or actuators might not always be a feasible option for existing AUVs,

but implementing a minimum speed seeking algorithm is possible without

any change in the hardware.

In the system identification process, we model the non-linearity of the

dynamics by having the model parameters scheduled according to the vehicle

speed. This motivates us to figure out the minimum speed of the AUV,

without which our description of the dynamic model would not be complete.

From the literature survey, it was understood that the ability to travel at the

minimum speed has many practical advantages and an automatic algorithm

that enables such behavior has not been developed. Hence, in this thesis, we

aim to introduce a new behavior to the class of non-hovering AUVs: while the

AUV maintains a certain depth and heading, its cruising speed is continuously

regulated in real-time to its minimum.
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Chapter 3

Online System Identification

and its Applications

The dynamic characteristic of an autonomous underwater vehicle (AUV) is

affected when it is reconfigured with different payloads. It is desirable to have

an updated model, such that the control and guidance law can be redesigned

to obtain better performance. We have developed an economical and feasible

method to obtain a reasonably accurate dynamic model of the AUV via in-field

experiments. Compared with previous works, the proposed method allows

identification to be done more rapidly. The identification results are available

immediately after each experimental run, and hence can be utilized in the

design of the controller and guidance law without human intervention. This

results in considerable improvements in system performances and substantial

savings in ship-time.

The identification process has two stages. In the training stage, a State

Variable Filter and Recursive Least Square (SVF-RLS) estimator is used to

estimate the unknown parameters. In the validation stage, the prediction

capability of the model is checked using a fresh data set. The parameters

converged within 12 s in the experiments using five different thrusts. Val-

idation results show that the identified models can explain 78% to 92% of

the output variation. Next, we compare the SVF-RLS estimator with the

conventional offline identification method. The comparison shows that the
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SVF-RLS estimator is better in terms of prediction accuracy, computational

cost and training time. The usefulness of the identified models is highlighted

in two applications. We use it to estimate the turning radius of the AUV at

different speeds and to design a gain-scheduled controller.

3.1 Modeling of Yaw Dynamics

Generally, the motion of an AUV can be described using six degrees of

freedom differential equations of motion [20]. These equations are developed

using two coordinate frames shown in Fig. 3.1. Six positions and attitudes

components [x, y, z, φ, θ, ψ] (surge, sway, heave, roll, pitch, yaw) are defined

in the earth-fixed frame, while the corresponding velocity and angular rate

components [u, v, w, p, q, r] are defined in the body-fixed frame.

When designing a controller for the AUV, we follow the conventional

control philosophy which divides the AUV into three subsystems [13]. They

are the:

1. steering subsystem, which controls the heading by using the rudder;

2. diving subsystem, which controls the depth and pitch by using the

elevator;

3. speed subsystem, which controls the vehicle speed by varying the pro-

peller speed.

The divide-and-conquer methodology works well in practice for streamlined

AUVs when the coupling between subsystems is weak.

From [13], the yaw dynamics has the following state-space representation

using state variables v(t), r(t), ψ(t): v̇ṙ
ψ̇

 =

a11 a12 0

a21 a22 0

0 1 0


vr
ψ

+

b1

b2

0

 δr, (3.1)

where aij and bi are hydrodynamic coefficients, and δr is rudder deflection.
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Figure 3.1: Reference frame of STARFISH AUV.

Specifically, yaw dynamics is described by the following equation:

ṙ = a21v + a22r + b2δr. (3.2)

Sway velocity v is small during maneuvering of the AUV. This is due to the

large body drag that resist any motion in the y-axis. So, the sway motion

is considered to be insignificant and neglected from subsequent analysis. In

addition, the coefficient a21 is also small for torpedo-shaped AUV since it is

almost symmetrical in the y-z plane (bow and stern). Thus, the yaw dynamics

can be further simplified to:

ψ̇ = r, (3.3)

ṙ = a22r + b2δr. (3.4)

We extend the model by adding an extra term, called the steady state rudder

deflection δ0 as shown below:

ψ̇ = r, (3.5)

ṙ = a22r + b2(δr − δ0). (3.6)

In particular, δ0 is the rudder deflection when the yaw angle is constant.
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Under normal condition, δ0 should be equal to zero. However, it can be

non-zero under the following circumstances.

1. When there is some misalignment between the rudder zero position and

vehicle vertical plane. This misalignment can be due to calibration error

or accidental impact on the rudder.

2. When there is strong cross-current. In this case, sway velocity v is not

small, such that δ0 will capture the ignored term a21 in (3.1).

3. When there is asymmetry in x-z plane (port and starboard) of the AUV.

The asymmetry causes higher drag on one side of the AUV, resulting in

a yaw moment that needs to be compensated by rudder deflection.

Rewriting (3.6), we have linear-in-parameters model with three unknowns:

ṙ =
[
r δr −1

] a22

b2

C0

 (3.7)

where C0 = b2δ0.

The three unknown parameters are: rotational drag coefficient a22, rudder

control authority b2, and steady state rudder deflection δ0. For easy reference,

hereafter, we denote the unknown parameters as the following parameter

vector

Θ = [a22, b2, C0]>. (3.8)

Applying Laplace Transform and a change of variable to (3.6), we have:

ΨΨΨ(s)

∆∆∆′(s)
=

b2

s2 − a22s
, ΨΨΨ(s) = L{ψ(t)}, ∆∆∆′(s) = L{δr(t)− δ0}. (3.9)

We address the non-linearity of the AUV dynamics by approximating the

nonlinear model via parameter scheduling technique. The AUV speed is used

to characterize the scheduling: a local linear time-invariant (LTI) model (3.7)

is identified at a particular speed, then several LTI models are identified

across speeds of interest, resulting in a global model. In other words, for each
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particular speed u, we have a set of three parameters:

Θu = [a22, b2, C0]>. (3.10)

3.2 Identification Method

Fig. 3.2 gives an overview on how Θ(tk) is generated at every sampling instant,

tk by feeding rudder deflection δr(tk) and yaw measurement ψ(tk) into the

SVF-RLS estimator. A state variable filter (SVF) is used to produce filtered

signals, ψ̈f(tk), ψ̇f(tk) and δf(tk). The filtered signals are later used in a

recursive least square (RLS) estimator to produce Θ(tk).

3.2.1 Problem Formulation

Equation (3.7) can be written in the following form:

d2ψ

dt2
− a22

dψ

dt
= b2δr(t) + C0. (3.11)

The equation describes a single-input, single-output, linear, time-invariant,

continuous-time system having noise-free input δr(t) and output ψ(t). The

system is proper. It is assumed that the input and output signals are sampled

at time instants {tk}Nk=1. The sampled input and output signals at instant k

are denoted by δr(tk) and ψ(tk) respectively.

The identification problem consists of using input/output discrete data

{δr(tk);ψ(tk)}, k = 1....N , to determine the values of parameters a22, b2, and

C0 while satisfying certain goodness-of-fit constraints between predicted data

and measurement. N is the total number of samples available. Then Θ>

Figure 3.2: Data flow in SVF-RLS estimator.
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could be solved as:

arg min
Θ>=[a22,b2,C0]

J(Θ) =

√√√√ 1

N

k=N∑
k=1

[ψ̈(tk)−Θ>Φ(tk)]2

subject to a22, b2, C0 ∈ <

(3.12)

where

Φ(tk) = [ ψ̇(tk) δr(tk) −1]>. (3.13)

For the cost function J(Θ) defined in (3.12), we have two time derivatives:

ψ̈(tk) and ψ̇(tk), which are not available from any instrument. We employ a

state variable filter to reconstruct the two time derivatives from ψ. So, Θ>

could be solved as:

arg min
Θ>=[a22,b2,C0]

J(Θ) =

√√√√ 1

N

k=N∑
k=1

[ψ̈f(tk)−Θ>Φf(tk)]2

subject to a22, b2, C0 ∈ <

(3.14)

where

Φf(tk) = [ ψ̇f(tk) δf(tk) −1]>. (3.15)

3.2.2 State Variable Filter

Reconstructing the time derivative from sampled data is an important step in

direct continuous-time model identification. It is well known that numerical

computation of the derivative via finite difference method is very sensitive to

measurement noise. The problem is overcome by traditional SVF approach by

passing both input/output signals through an all-pole filter F (s) of minimum

order n. It is preferable to choose F (s) such that it has n similar poles [50]:

F (s) =
λn

(s+ λ)n
. (3.16)
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The numerator is chosen to be λn instead of 1 such that the filter has a unity

dc gain. λ has to be chosen to match the bandwidth of the system dynamics.

In particular, λ has to be chosen large enough, such that the filtered signal

contains useful information of the dynamics, and small enough to filter out

the measurement noise. According to [51], state variable filter serves as a

pre-filter, and selection of λ allows one to emphasize certain frequency regions

where model mismatch should be small.

Let

ψfψfψf(t) =
[
ψ̈f(t) ψ̇f(t) ψf(t)

]>
. (3.17)

(3.18)

Denote the Laplace transforms of ψ(t) and δr(t) as

ΨΨΨ(s) = L{ψ(t)}, (3.19)

∆∆∆(s) = L{δr(t)}. (3.20)

Then:

ΨfΨfΨf(s) = L{ψfψfψf(t)}

=
λ2

(s+ λ)2

[
s2 s 1

]>
ΨΨΨ(s). (3.21)

∆f∆f∆f(s) = L{δf(t)}

=
λ2

(s+ λ)2
∆(s). (3.22)

Note that the above filters are causally implementable. Here, we give a specific

example on numerical implementation of the filter. The implementation is

adopted from [50]. To obtain time-derivative of order two, we need the

following filter:

F(s) =
[

λ2s2

(s+λ)2
λ2s

(s+λ)2
λ2

(s+λ)2

]>
. (3.23)

Let us denote the input signal to the filter as w(t). The following state-space
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equations written in controllable canonical form can be used to obtain the

filter output:

y(t) =
[
w

(2)
f w

(1)
f w

(0)
f

]>
. (3.24)

x(t) =
[
w

(1)
f w

(0)
f

]>
. (3.25)

where w
(2)
f , w

(1)
f and w

(0)
f are the second, first and zeroth derivative of the

filter input w(t) respectively:

ẋ(t) = Ax(t) + Bw(t), (3.26)

y(t) = Cx(t) + Dw(t), (3.27)

with

A =

[
−2λ −λ2

1 0

]
,B =

[
1

0

]
,

C = λ2

 −2λ −λ2

1 0

0 1

 ,D = λ2

 1

0

0

 . (3.28)

Under zero order hold (ZOH) assumption and with sampling interval, hk =

tk+1 − tk, the above state-space can be discretized into:

ẋ(tk+1) = Adx(tt) + Bdw(tk), (3.29)

y(tk) = Cdx(tk) + Ddw(tk), (3.30)

with

Ad = eAhk ,Bd =
[
eAhk − I

]
A−1B,

Cd = C,Dd = D. (3.31)

Fig. 3.3 illustrates the experimentally measured yaw ψ and its correspond-

ing filtered output for λ = 1.

26



3.2 Identification Method

0 5 10 15 20 25 30 35

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Time [Sec]

Y
a

w
 [

d
e

g
]

 

 

ψ− ψ(0)

ψf − ψ(0)

ψ̇f

ψ̈f

Figure 3.3: Input and Output of the SVF filter for λ = 1.

3.2.3 Recursive Least Square (RLS)

Parameters in the optimization problem of (3.14) can be identified experi-

mentally using the standard least square method. Let N denote the total

number of measurements available, and we define:

Q =
[
ψ̈f(t1) ψ̈f(t2) . . . ψ̈f(tN)

]>
, (3.32)

and

Φ =


ψ̇f(t1) δf(t1) −1

ψ̇f(t2) δf(t2) −1
...

...
...

ψ̇f(tN) δf(tN) −1

 . (3.33)

Thus if Φ is full rank, then the least square solution is given by the standard

Moore-Penrose pseudoinverse:

Θ̂ = (Φ>Φ)−1Φ>Q. (3.34)
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The idea behind RLS is to compute the parameters update Θ̂(t) at each

time instant t when measurements become available, by adding a correction

term to the previous estimate Θ̂(t−1). This saves a lot of computational effort

as compared to the use of (3.34) with the entire measurement. It reduces the

computational complexity from O(N3) to O(N2). For time-invariant system,

the system parameters Θ are constant.

A typical RLS algorithm consists of the following recursive equations [52]:

Θ̂(tk) = Θ̂(tk−1) +K(tk)ε(tk),

ε(tk) = ψ̈f(tk)− Θ̂>(tk−1)Φf(tk),

K(tk) =
P (tk−1)Φf(tk)

1 + Φ>f (tk)P (tk−1)Φf(tk)
,

P (tk) = [1−K>(tk)Φf(tk)]P (tk−1).

The algorithm requires an initial guess of Θ(t) and the error covariance

matrix P . The initial guess of Θ(t) is the zero vector and P is 100I3, where

I3 is the identity matrix of dimension 3.

3.2.4 Validation Method

Model validation is one of the important steps in any identification process.

One needs to be assured that the identified model is an accurate representation

of the system. One commonly seen method is to perform identification

(training) on all the repeated experiments and then compare the identified

parameters for consistency. In our opinion, this is not a test on the validity

of the model, but rather a test on the repeatability of the experiment. In

order to test the predictability of the model, one needs to test the model on

fresh or untrained data set. As pointed out by [53, pg. 500],

It is not so surprising that a model will be able to reproduce

the training data. The real test is whether it will be capable of

also describing fresh data sets from the process.

The experiments are designed to collect two different data sets: training data

are the data that would be used to estimate unknown parameters; validation
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3.3 Field Experiments

data are fresh data that have not been used for parameter estimation. Using

the validation data, simulated yaw responses, ψsim are generated by feeding

the real rudder inputs into the identified model. Then it is possible to know

how well the identified model can predict the measured yaw responses ψreal

by comparing ψsim to ψreal. The goodness-of-fit between the two is measured

using the coefficient of determination, R2, defined as:

R2 = 1− Jk

V ar(ψreal)
(3.35)

where

Jk =
1

n

n∑
i=1

(ψsim − ψreal)
2 (3.36)

and

V ar(ψreal) =
1

n

n∑
i=1

(ψreal − ψ̄real)2. (3.37)

Basically, R2 indicates what fraction of the variance of the experiment data

is explained by the simulated response. An R2 value of 1 means a perfect fit

and the model has captured 100% of the output variation.

3.3 Field Experiments

3.3.1 Experimental Setup & Procedure

After changing the payload, the newly configured AUV needs to be trimmed

for buoyancy, static pitch and roll angle. This is normally done by resting

the AUV in a water tank. Then, the AUV is trimmed to have 7 N positive

buoyancy1 and static pitch and roll angle around zero by adding or changing

the weight distribution of the vehicle. The purpose is to configure the AUV

to a default state, so that an initial conservative controller is capable of

controlling it to the operating condition where identification can be carried

out. Such an initial controller is not difficult to find heuristically, as pointed

out by Rentschler et al. [10].

1It is the buoyancy required to keep the AUV communication tower above water surface.
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Figure 3.4: Experimental run for identification of yaw dynamics at
100% thrust. Plot of roll, pitch, yaw and rudder.

In the following, we will discuss different stages executed by the AUV

during a typical identification run. In stage 1, the AUV is commanded to

perform a straight run at a depth of 2 m with a constant thrust. It is allowed

to settle down into the steady state (maintaining a constant heading, velocity

and depth) within 40 s.

In stage 2 (training stage), the SVF-RLS estimator is turned on to start

the estimation of the parameters. After 2 s, an excitation signal (doublet) of

amplitude 0.26 rad for a period of 4 s is injected into the rudder deflection

(Fig. 3.4d). The deflection generates a moment around the yaw axis and

excites the yaw dynamics dramatically (Fig. 3.4c). After the excitation, the

yaw controller is re-engaged to return the AUV to the desired heading. The

SVF-RLS estimator is stopped after 10.5 s from the end of excitation. Stage

2 takes 16.5 s in total, with 330 data points processed at the rate of 20 Hz.

The identification is only enabled during the resultant zig-zag maneuvering to

fulfill the persistent excitation condition and to have a better signal-to-noise

ratio (SNR). The unknown parameters, namely a22, b2, C0 are estimated on-

the-fly at every sampling instant (Fig. 3.5). The unknown parameters would
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Figure 3.5: Online parameter estimation of yaw dynamics at 100%
thrust. Unknown parameters a22, b2 and C0 have initial values of zero.

converge and the last values are taken to be the final results. The results are

then stored in the database for that particular thrust, and Θ(t) and P (t) in

RLS are reinitialized.

In stage 3 (validation stage), the second excitation signal (doublet) of

amplitude2 0.15 rad for a period of 4 s is injected into the rudder deflection

(Fig. 3.4d). It is important to point out that there is no parameter estimation

in this stage. The whole purpose is to collect a fresh data set for cross-

validation. We generate the simulated yaw response, ψsim by feeding the real

rudder inputs into the model defined by the parameters estimated in stage 2.

Stage 3 takes 16.5 s in total, with 330 data points recorded. Measured yaw

responses, ψreal, are recorded to calculate the coefficient of determination, R2,

at the end of stage 3.

During the identification process, the depth (Fig. 3.6a) and pitch (Fig. 3.4b)

are kept approximately constant, and the roll is small (Fig. 3.4a) to minimize

2Different amplitudes are used to excite the dynamics. We would like to test whether
the dynamics remain the same under different excitation.
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Figure 3.6: Experimental run for identification of yaw dynamics at
100% thrust. Plot of depth, x-y position, velocity and thrust settings.

the coupling effect. The AUV is moving in a straight path as shown in

Fig. 3.6b except when the excitation signal is injected. The identification

procedures are repeated for five different thrust values: 60%,70%,80%,90%

and 100% before the AUV is commanded to the pre-set home location.

3.3.2 Experimental Results

The results presented in this section were collected at Pandan Reservoir3,

Singapore. The base STARFISH AUV is equipped with a DVL payload and a

Side-Scan payload. Identification was done under five different thrust settings:

ranging from 60% to 100%. Fig. 3.7 shows online parameter estimation of

the three unknown parameters for five different thrust settings. For every

thrust setting, all three parameters converged after about 12 s. The results

are summarized in Table 3.1. The negative value of rotational drag coefficient

a22 indicates that the yaw dynamics is inherently stable (poles are in the

left-half plane). The a22 values have small variation around its mean value of

3Pandan Reservoir located in the western region of Singapore.
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Figure 3.7: Online parameter estimation of yaw dynamics for different
thrusts.

1.1 when thrust setting is varied.

The rudder control authority b2 increases with speed due to higher dynamic

pressure at the control surfaces. Theoretically, the gain b2 should vary linearly

with the square of speed, u2. This is verified in Fig. 3.8 which plots b2 against

u2. The positive value of b2 indicates that a positive rudder input creates a

positive moment in yaw and vice versa. The steady state rudder deflection

δ0 reduces with increase in speed. This is due to the increase of control

authority which requires smaller fin deflection to overcome the same yaw

disturbance. The value of δ0 is almost zero. This indicates that there was

no significant misalignment of fins. This corresponds with the fact that the

rudder position was calibrated before the trial. In addition, there was no

significant cross-current at the reservoir and the AUV is symmetrical in port

and starboard.

From the last column of Table 3.1, it is observed that R2 ranges from

0.780 to 0.916, which indicates that the models are able to explain 78% to

92% of the yaw output variation. The variation of R2 values is expected

as the experiments were conducted in unstructured real world environment,
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Table 3.1: Parameters Identified Through the SVF-RLS Estimator at
Five Different Thrust Settings with AUV Configuration: (Base + DVL +

Side-Scan).

Thrust Speed a22 b2 C0 δ0 R2

(%) (m/s) (1/s) (1/s2) (rad/s2) (rad)
60 1.07 -0.95 0.60 0.0072 0.012 0.780
70 1.36 -1.12 0.87 0.0107 0.012 0.916
80 1.63 -1.07 1.08 0.0120 0.011 0.890
90 1.92 -1.14 1.37 0.0054 0.004 0.900
100 2.19 -1.21 1.77 0.0049 0.003 0.852

subjected to unknown disturbance and measurement noise. Nevertheless, the

overall prediction capabilities are satisfactory as one can see in Fig. 3.9, which

overlays both ψreal and ψsim for thrust 60% to 100% and their corresponding

R2 values. The simulated response ψsim is able to describe the measured

response very well for all thrust settings. From the results, we are convinced

that the identified models have captured the dominant dynamic characteristic

of the process.

Based on all experiments that we have conducted, the smallest R2 obtained

is 0.61, in which the corresponding identified parameters are still reasonably

accurate. If the R2 of an identification is less than 0.61, we consider it as

an outlier and recommend one to repeat the experiment. In practice, the

determination of this threshold is a trade off. Setting a high threshold gives

us confidence in the accuracy of the parameters. However, it potentially

causes one to repeat the identification unnecessary, as the parameters might

be accurate, but have low R2 due to measurement noise. On the other hand,

setting the threshold too low might cause one to accept inaccurate parameters.

So, we set the threshold to 0.61 to achieve balance between safeguarding of

the estimation accuracy and avoiding unnecessary repetition.
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3.4 Comparison with Conventional Offline

Method

From Section 3.3.2, we have validated the accuracy of the model identified by

the SVF-RLS estimator based on R2 values. However, it is interesting to study

how the SVF-RLS estimator performs when compared to other identification

methods. Here, we compare our online identification method against the

conventional offline identification method that requires optimization via

simulation.

The simulation takes in rudder input δr(tk) along with the AUV initial

states (yaw angle and yaw rate) and simulates the vehicle’s response ψsim

using (3.11), which is defined by an initial guess of Θ. At the end of every

simulation, the following cost function is calculated:

Joffline(Θ) =

√√√√ 1

N

k=N∑
k=1

[ψreal(tk)− ψsim(tk)]2. (3.38)

It is important to note that the online identification is not the “online”

version of the offline identification. They are two different methods employing

two different objective functions. Online identification tries to minimize

the error in term of yaw acceleration, whereas offline identification tries to

minimize the error in term of yaw.

The optimization process searches iteratively for Θ that minimizes the

cost function by repeating the simulation with different Θ. The optimization

was conducted in Matlab/Simulink�using the Parameters Estimation Toolbox

in this study. The optimization method is a Simplex search [54]. The initial

guess of the parameters Θ is the zero vector. There are two stopping criteria.

The first criterion is to set the parameter tolerance to 0.01 as it is the accuracy

of the parameters reported in this thesis. The second criterion is to set the

function tolerance to 0.0001 to prevent the search algorithm from stopping

prematurely.

The algorithm does not require the time derivative of the yaw. However, it

is important to note that the simulation can only be run after the entire data
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set is collected. Hence, identification via simulation can only be executed

offline. If the solution space is convex, the numerical optimization will

produce an optimal Θ that minimizes the cost function for that particular set

of training data. But, this optimality is generally not true for validation data

which are not used in the optimization.

Table 3.2: Parameters Identified Through the Conventional Offline
Method at Five Different Thrust Settings with AUV Configuration: (Base

+ DVL + Side-Scan).

Thrust a22 b2 C0 δ0 R2 Number
(%) (1/s) (1/s2) (rad/s2) (rad) Iteration

60 -0.98 0.61 0.0078 0.013 0.888 103
70 -1.20 0.88 0.0125 0.014 0.741 81
80 -1.19 1.12 0.0149 0.013 0.756 67
90 -1.32 1.48 0.0072 0.005 0.957 137
100 -1.42 1.85 0.0073 0.004 0.941 125

Table 3.2 reports the Θ obtained through the offline identification method.

From Tables 3.1 and 3.2, the parameters are close to each other when com-

paring the coefficients. However, this is only a qualitative comparison. For

quantitative comparison, we should compare the R2 values produced by

both methods. The R2 for both methods are tabulated in the last column

of Table 3.1 and Table 3.2 respectively. The offline identification method

achieved on average an R2 value of 0.857 whereas the online identification

method achieved on average an R2 value of 0.868. Hence, both methods

achieve similar performance in terms of the accuracy of the prediction.

The difference in Θ estimation can be explained by the difference in cost

functions used. The cost function for the offline method (3.38) is defined as

the mean square error between the simulated yaw response and measured yaw

response, whereas the cost function for the online method (3.14) is defined as

the mean square error between the predicted yaw acceleration and measured

yaw acceleration4. Fig. 3.10 overlays ψsim for both online and offline methods

4The measured yaw acceleration is generated from measured yaw via state variable
filter.
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Figure 3.10: Fitting of identified and measured yaw angle at 100%
thrust for both online and offline methods.

for training data and validation data respectively. The offline method achieved

better overall fit but the online method had better fit when the AUV was

turning. By the definition of the cost function, the online method puts

more weight on the portion of data where the AUV experienced larger yaw

acceleration. Since the interest is in the dynamic part of the yaw response,

the online method produces better estimates in this aspect.

In terms of computational cost, the online method is much cheaper than

the offline method. The offline method requires simulation of the whole

data set at each search iteration. In each simulation run, the simulated

yaw response ψsim is computed using the fourth-order Runge-Kutta ordinary

differential equation (ODE) integrator. Table 3.2 shows that it took around

100 iterations on average for the parameters to converge.

Online identification allows one to monitor the convergence of the para-

meters on-the-fly. Some stopping criteria can be used to stop the parameter

training once it is believed that the parameters have attained the desired

accuracy. One such criterion is by monitoring the Euclidean norm of the
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change of the parameter estimate in every time instance to be less than a

specific value, such as 0.001. In mathematical notations, the criterion is

expressed as:

‖Θ(tk)−Θ(tk−1)‖2 < 0.001 (3.39)

Fig. 3.11 shows that the criterion was first met from 12 s onward for all

five thrust settings. In practice, the criterion should be met consecutively

for a certain number of times before the training is stopped. This is to

prevent the premature termination of the training. The ability to determine

parameter convergence online allows training to be stopped early and hence

saves valuable experiment time. As shown in Fig. 3.11, training could be

stopped as early as 12 s instead of 16.5 s.

From the above discussions, we conclude that the online identification

method compares favorably against the conventional offline method in terms

of accuracy, computational cost and capability to stop training early.
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3.5 Discussion

3.5 Discussion

In the following, we discuss some key features of our proposed method:

� We address the non-linearity of the AUV dynamics by approximating

the nonlinear model via parameter scheduling technique. The AUV

speed is used to characterize the scheduling, where a local linear time-

invariant (LTI) model is identified at each speed. Then, several LTI

models are identified at speeds spanning the whole operating range,

resulting in a global model.

� We construct the LTI model in continuous-time domain, instead of

a discrete-time domain, as used in [18]. This preserves the physical

meaning of the identified parameters, which turns out to be extremely

useful in analysis and application. From the analysis perspective, it

allows easy verification of the result by comparing it against our physical

understanding of the AUV. From the application point of view, we

could identify the model for two extreme speeds and obtain models for

intermediate speeds via interpolation. The dynamic behavior of the

AUV can be approximated beyond the identified range, assuming that

the model can be extrapolated.

� While the state variable filter (SVF) and recursive least-square (RLS)

estimator (SVF-RLS) approach to continuous-time model identification

is well known [55], the application to AUVs and the experimental

evaluation reported here are new. The proposed method is simpler to

implement and requires fewer design parameters to be selected when

compared to existing methods using adaptive identifier [17] and nonlinear

observer [56].

� We validate the method through extensive field experiments on our

in-house built STARFISH AUV [57]. Similar to many other available

AUVs, the STARFISH AUV is torpedo in shape, has a single thruster

and four control fins at the rear. The identification method requires

limited instrumentation; in fact, it only requires a compass module,
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which is a standard equipment among AUVs. Hence, we believe the

proposed method is widely applicable.

� While only yaw dynamics is discussed here, the proposed method can

be extended to pitch dynamics as well, as reported in [58]. Discussion

of pitch dynamics is omitted here for simplicity and clarity.

� The proposed identification process has two main stages. Unknown

model parameters are estimated in the training stage, and then validated

in the validation stage. Prediction capability of the identified model is

checked using a fresh validation data set instead of the old training data

set. Such procedures, known as cross-validation, make sense without

any probabilistic arguments and without any assumptions about the

true system [53].

3.6 Applications

In this section, we discuss two applications of the identified model.

3.6.1 Turning Radius of AUV at Different Speeds

The yaw identification results can be used to estimate the turning radius

of the AUV at different speeds. An understanding of the turning radius is

especially important during maneuvering of the AUV for obstacle avoidance.

It is also useful during path planning so that the achievable turning angle is

taken into consideration (See Dubins curves in [59]).

We assume that the AUV has completed the yaw identification such that

the information present in Table 3.1 is available. For each speed, we require

information on travel speed V , control authority b2, and linear damping a22.

The rudder has a maximum deflection δmax of 0.26 rad to avoid stalling.

Fig. 3.12(a) illustrates an AUV making a U-turn with radius R. The

perimeter of the half circle is πR. Let Tπ denote the time taken to make a
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3.6 Applications

Figure 3.12: (a) Turning Radius R of an AUV traveling at speed, V
and (b) Trapezoidal Profile for Yaw Angular velocity.

180 deg turn. Then, we have:

πR = V Tπ. (3.40)

Fig. 3.12(b) shows a trapezoidal profile for yaw angular velocity. In order

to make a U-turn, the AUV will start turning from zero yaw angular velocity

to critical yaw angular velocity, ψ̇max. The acceleration process takes t1 s.

Then, it maintains the turning rate at ψ̇max for t2 s before decelerating to

zero. The deceleration process takes another t1 s, and so

Tπ = t1 + t2 + t1. (3.41)

The area under the curve is the total heading change of π rad. So,

1

2
ψ̇max(t2 + t1 + t2 + t1) = π, (3.42)

which gives

ψ̇max(t2 + t1) = π. (3.43)

From (3.9), we know that the transfer function of yaw angular velocity to
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rudder is a first-order system:

sΨ(s)

∆′(s)
=

b2

s− a22

. (3.44)

Under the step input of rudder at magnitude (δmax − δ0), the step response is

C(s) =
b2

s− a22

· δmax − δ0

s
. (3.45)

Taking the inverse transform, the step response is given by

c(t) =
b2(δmax − δ0)

−a22

(1− ea22t). (3.46)

By letting t→∞ in (3.46), ψ̇max is given by

ψ̇max =
b2(δmax − δ0)

−a22

. (3.47)

The time t1 is approximated by the time taken to reach 100% of the final

value [60, pg. 180]:

t1 =
4

−a22

. (3.48)

Substituting (3.43), (3.47) and (3.48) into (3.41), we have:

Tπ = −π
(

a22

b2(δmax − δ0)
+

4

a22π

)
, (3.49)

and

R = −V
(

a22

b2(δmax − δ0)
+

4

a22π

)
=
V Tπ
π

. (3.50)

From Table 3.1, we assume that a22 stays constant at −1.1. From Fig. 3.8,

we have the following relationship between speed V and b2 (sign of b2 is

dropped as the absolute value of b2 is used):

b2 = 0.31V 2 + 0.26. (3.51)
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Figure 3.13: Turning radius of AUV at different speeds.

With δmax = 0.26 rad and δ0 = 0, we have:

R = V

(
1.1

(0.31V 2 + 0.26)(0.26)
+

4

(1.1)π

)
. (3.52)

Similarly, we have ψ̇max and Tπ as follows:

ψ̇max =
0.26(0.31V 2 + 0.26)

1.1
, (3.53)

Tπ =
1.1π

0.26(0.31V 2 + 0.26)
+

4

1.1
. (3.54)

Fig. 3.13 predicts how R,Ψmax and Tπ change with speed. It is important

to note that yaw identification was only performed for a speed range from 1

to 2.2 m/s but the plot shows the results for speeds from 0.5 to 5 m/s. The

result is only valid if (3.51) and the assumption a22 = −1.1 holds also for

speeds ranging from 0.5 to 5 m/s.

The critical yaw angular velocity ψ̇max increases with speed. From (3.47),

ψ̇max is linearly proportional to b2, which in turn is linearly proportional to
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Table 3.3: Turning Radius for AUV: A Case Study with AUV Config-
uration: (Base + DVL).

a22 b2 δ0 ψ̇max (deg/s) Tπ (s) R (m)

-1.62 1.25 0.04 9.90 20.65 9.20

the square of speed. As expected, the time taken to complete a U-turn, Tπ,

reduces with speed as the AUV turns at a faster rate.

The results show that in order to achieve a smaller turning radius, the

AUV should travel at lower speeds. For example, at speed 0.25 m/s, the

turning radius is 4 m. The trade-off is that it takes about 48 s to complete a

U-turn. For the higher speed region, the minimum achievable turning radius

is 5.9 m at a speed of 4.25 m/s. The turning radius increases with speed

after that. There is a minimum value for Tπ despite an increase in speed. As

R ∝ V Tπ, when V increases faster than the decrease in Tπ, the turning radius

will increase with speed.

A field experiment was carried out to compare the measured turning

radius against the predicted turning radius. A base AUV with a Doppler

Velocity Log (DVL) payload was used in this experiment. The AUV was

commanded to a constant depth of 2 m. It was commanded to thrust at

70% with an average speed of 1.4 m/s. Yaw identification was executed to

identify parameters a22, b2 and C0. Then the AUV was commanded to make

a U-turn before returning to the surface. The turning radius of the AUV was

found by fitting a circle on the x-y position plot as illustrated in Fig. 3.14(a).

Table 3.3 shows the identified parameters and the predicted ψ̇max, Tπ and R.

It is interesting to note that δ0 is not equal to zero. In this case, the effective

maximum rudder deflection δmax is 0.26 − 0.04 = 0.22 rad. The predicted

turning radius is 9.2 m which is close to the measured turning radius of 9.9 m.

The prediction is accurate as a result of good modeling of the yaw rate6 as

can be seen in Fig. 3.14(b).

5The STARFISH AUV design top speed is only about 2.5 m/s, so this speed is not
achievable in practice.

6Measured yaw rate is derived from yaw measurement using Savitzky-Golay filter.
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Figure 3.14: (a) Turning radius of AUV during the case study (b)
Measured yaw rate and modeled yaw rate during the U-turn.

In this subsection, we have illustrated how the turning radius can be

calculated from the identified parameters. By postulating that the model can

be extrapolated, we study the turning radius of the AUV beyond the speed

region where it was identified. The results indicate that the turning radius

has a local minimum at the high speed region where we cannot reduce the

turning radius by increasing the speed further. On the other hand, traveling

slowly is the way to reduce the turning radius, but this is at the expense of

longer turning time. Lastly, via a field experiment, we show that the turning

radius can be predicted accurately based on the identified parameters.

3.6.2 Gain-Scheduled Controller Design

The main purpose of system identification is to reconfigure the controller

according to the system dynamics. We next present some results on the

steering control of the STARFISH AUV at different speeds. We would like to

demonstrate the ease of controller synthesis after the parameters are obtained

and highlight the performance improvements after reconfiguration.

Fig. 3.15 shows the block diagram of the steering control system. We

close the loop using a simple proportional (P) controller with a feedforward

term. There are two main problems in steering control at different speeds.

The yaw dynamics changes with speed. One possible solution is to use

robust control design methodology which results in selecting a constant

gain, Kp that minimizes the norm of the closed-loop transfer function under
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Figure 3.15: Block Diagram for Heading Control.

parametric uncertainty. However, a constant gain robust controller can be

very conservative as compared to a gain-scheduled controller that can adapt

itself to the change in system dynamics. Another problem in steering control

is the steady state error caused by non-zero rudder offset. We handle the

problem by feed-forwarding δ0 to neutralize the offset.

From the block diagram, the closed-loop transfer function from the desired

yaw ψd to yaw output ψ is:

ψd(s)

ψ(s)
=

Kpb2

s2 − a22s+Kpb2

. (3.55)

The closed-loop poles are:

p1,2 =
a22

2
±
√
a2

22 − 4Kpb2

2
. (3.56)

We select gain Kp such that the closed-loop poles lie in the line of constant

damping ratio ζ in the s-plane. For a second order system, the overshoot

percentage is only a function of damping ratio. So, we choose ζ to be 0.7071

which is equivalent to approximately 5% overshoot. In the s-plane, constant

damping ratio line of 0.7071 corresponds to the y = −x line. Hence, we

require:

−a2
22 = a2

22 − 4Kpb2 =⇒ Kp =
a2

22

2b2

. (3.57)

As shown in Table 3.4, a22 and b2 which are functions of speed, were
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Table 3.4: Parameters identified through the SVF-RLS estimator at
different thrust settings with AUV configuration: (Base + DVL + TLA).

Thrust Speed a22 b2 C0 δ0 R2 Kp

(%) (m/s) (1/s) (1/s2) (rad/s2) (rad)

60 1.05 -1.28 0.65 0.0129 0.016 0.614 1.26
70 1.32 -1.51 1.04 0.0169 0.020 0.977 1.09

80 1.60 -1.70 1.41 0.0274 0.019 0.973 1.02
80 1.60 -1.54 1.30 0.0273 0.021 0.848 0.91

90 1.87 -1.69 1.85 0.0163 0.009 0.911 0.77
100 2.13 -1.48 2.02 0.0312 0.016 0.911 0.54

identified prior to the design of the gain-scheduled controller. At different

speeds, the gain Kp will be adjusted accordingly as tabulated in the last

column of Table 3.4.

We repeated the identification experiment twice for 80% thrust to

check the repeatability of the experiment. We observed a small differ-

ent in the estimation of the parameters; the first experiment estimated

Θ̂1 = [−1.70, 1.41, 0.0274] and the second experiment estimated Θ̂2 =

[−1.54, 1.30, 0.0273]. We should set the gain, Kp to 1.02 if based on the

Θ̂1 , and set the Kp to 0.91 if based on the Θ̂2. Both experiments also give

very close prediction on the turning radius (3.50), they are 9.20 m and 9.25 m

for Θ̂1 and Θ̂2 respectively. Although there are some small variations in

the identified parameters, which is expected due to measurement noise and

disturbances, both Θ̂ give consistent suggestion on the controller gain Kp and

the turning radius.

The experimental results obtained using the gain-scheduled controller

with feedforward are shown in Fig. 3.16 with comparison to a constant gain

controller. The AUV was first commanded to maintain a constant depth

and heading. Then the AUV was commanded to turn ±20 deg from the

current heading while the thrust was increased from 60% to 100%. The

constant gain controller performed satisfactorily at the lower speed as the

constant gain was determined based on manual tuning when the AUV was

operating at 60% thrust. In the higher speed region (90% and 100% thrust),
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Figure 3.16: Experimental results for heading control under constant
gain controller and gain-scheduled controller.

the heading response became oscillatory. In contrast, the gain-scheduled

controller consistently performed well over the entire speed envelop.

3.7 Summary

In this chapter, we have developed a method to enable rapid identification

of AUV dynamics via in-field experiments. Compared with previous works,

the proposed method allows identification to be done more rapidly. The

identification results are available immediately after each experimental run,

and hence can be utilized in the design of the controller and guidance law

without human intervention. This results in considerable improvements in

system performances and substantial savings in ship-time.

The identification results indicate that the rotational drag coefficient a22

has a small variation around its mean when the speed varies. The rudder

control authority b2 varies linearly with the square of speed u2 which matches

well with our physical understanding.

We compare the SVF-RLS estimator against a conventional offline identi-
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fication method that requires numerical optimization. The comparison shows

that the SVF-RLS estimator outperforms the offline method in terms of

the prediction accuracy, computational cost and shorter training time by

detecting parameter convergence online.

The usefulness of the identified parameters is highlighted in two applica-

tions. We illustrate how the yaw identification results can be used to estimate

the turning radius of the AUV at different speeds. The accuracy of the estim-

ation is validated in a field experiment. The understanding of yaw dynamics

at different speeds allows easy implementation of a gain-scheduled control-

ler. The experimental results indicate that the gain-scheduled controller

achieved better system performance compared with the existing constant-gain

controller.

50



Chapter 4

Roll Control using an Internal

Rolling Mass

When the roll angle is not small, the lift force generated by the rudder

will affect the motion in the vertical plane (vehicle’s diving subsystem) and

vice versa, the lift force generated by the elevator will affect the motion

in the horizontal plane (vehicle’s steering subsystem). In order to meet

the decoupling assumption, the roll angle of an AUV has to be kept small.

To tackle this problem, we have developed an internal rolling mass (IRM)

mechanism to actively stabilize the roll motion. To the best of our knowledge,

we are the first to report the use of internal moving mass to stabilize the

roll of an AUV. The use of linear motion requires a runway for the moving

mass which is practically infeasible as the internal space already crowded

with the essential components. We got around this limitation by designing a

rolling mass mechanism that made use of the whole electronics tray (including

batteries) as a moving mass. The moving mass is capable of rotating with

respect to the longitudinal axis of the AUV – hence we call it as an internal

rolling mass mechanism. The center of gravity (CG) of the IRM is off-centric.

By rotating the IRM, we are effectively changing the CG of the AUV . By

using the gravity force that is acting through the CG, we can generate the

required torque to stabilize the roll dynamics.
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Figure 4.1: Mechanical design of the Internal Rolling Mass (IRM)
mechanism. Pictures on the right show the tail electronic tray which has

a battery tray that attached to its bottom half.

4.1 Mechanical Design

4.1.1 Design Requirements

We need a mechanism that is able to shift the CG of the AUV in the sway

axis such that the roll equilibrium of the AUV can be changed by ±5◦. In

order to shift the CG, we need some form of moving mass. So, it can be

either a linear moving mass or a rotating mass. Our implementation using a

rotating mass is illustrated in Fig. 4.1.

The actuation is provided by a servomotor mounted at the bottom end of

the tail section through a bracket. It has a maximum torque of 1.92 Nm and

maximum speed of 6.16 rad/s. Two timing belt pulleys are used for power

transmission from the servomotor to the central axis. The drive pulley ratio

is 1:2, thus increasing the output torque by a factor of two. Guide pins are

used to guide the assembly of the whole tail tray (nickel bright in the figure)

into the hull. Two coupling pins are used to transmit the torque from the

central pulley to the tail tray. As the mass of the tail tray is contributed

mainly by the battery placed in the bottom half, we are changing the CG of

the AUV when the tail tray is rolling inside the hull.

This design fulfills the following requirements :
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4.1.1.1 Space Constraint

Constrained by the AUV diameter of 200 mm, there is no sufficient runway

for a linear moving mass to cause an effective change in CG. In addition, the

existing components, such as electronics and battery, have already taken up

most of the space in the tail section. So, without affecting components in

other AUV’s sections, we consolidate all the existing components in the tail

section onto a tail tray, and make the tail tray as our moving mass. We were

able to find space for a servomotor, two pulleys and a timing belt without

making any change to the existing tail section (such as elongating it).

4.1.1.2 Energy Consumption

By having the mechanism at the tail section, we make use of the existing

micro-controller to control the servomotor. The same micro-controller is used

for thruster and fins control. Six ball transfer units are located on the outer

ring of the tail tray. This effectively uses the ring as a bearing and allows

low friction rotational motion. In order to provide the required torque and

accuracy, we used a Futaba digital servomotor which consumes maximum

12 W. We use a timing belt drive system which has a low power transmission

loss.

4.1.1.3 Ease of Assembly

Ease of assembly is one of the important design criteria. We occasionally

need to disassemble the vehicle for routine maintenance and repairs. With

the design, the assembly and disassembly work can all be performed by a

single engineer in our laboratory within half an hour.

4.1.1.4 Effective change of CG

The servomotor has a usable range of 80◦. After the pulley ratio, the range

reduces to 40◦. By placing the IRM at the center, we are able to roll the IRM

to ±20◦; this translates to an effective change of CG to give a roll of ±5◦1 at

1Depending on the vehicle payload configuration, this range might change.
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equilibrium.

4.2 Modeling of Roll Dynamics

In this section, we derive the dynamic model for the AUV’s roll under

consideration of CG shift due to the IRM. A six degree-of-freedom (DOF)

dynamic model of an AUV is commonly described by a set of nonlinear

equations with respect to two coordinate frames as indicated in Fig. 4.2(a).

Detailed discussion on the modeling can be found in [20, 21]. However, for

the purpose of this study, we restrict our analysis only on rolling motion and

treat coupling torque induced by others DOFs to be disturbances.

In Fig. 4.2(a), we have the body-fixed frame at the center of buoyancy

(CB) of the AUV. So the CB is located at zb = 0 and yb = 0 with respect

to body-fixed frame. The CG is located below the CB in order to provide

righting moment. So the CG location (yg, zg) has negative zg with respect to

body-fixed frame.

From Newton’s Second Law of Motion (rotation), we can write the net

total torque as the product of the moment of inertia Ixx and roll angular

acceleration φ̈. ∑
τ = Ixxφ̈. (4.1)

The sum of the external torque consists of the following components:

Figure 4.2: (a) Coordinate Reference Frame (b) Free Body Diagram.
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4.2.1 Hydrostatic Righting Moment

The hydrostatic righting moment is the combined effect of the vehicle’s weight

W and buoyancy B. The STARFISH AUV is slightly positively buoyant but

as we put the body-fixed frame at the CB, buoyancy does not play a role in

the equation. The roll torque due to the hydrostatic righting moment is

τHydro = −ygW cosφ+ zgW sinφ. (4.2)

The IRM is treated as a point mass with effective length l from the center.

The effective length l is the distance from the CB to the CG of the tail

tray. Let α denote the angular position of the point mass as illustrated in

Fig. 4.2(b). When the point mass is rolling in the AUV, it is effectively

changing the CG of the AUV. The new CG position (y′g, z
′
g) is described in

following two equations:

y′g = yg +
m

M
l sinα (4.3)

z′g = zg −
m

M
l cosα (4.4)

where m is the mass of tail tray and M is the mass of the whole AUV.

By substituting (4.3) and (4.4) into (4.2), the hydrostatic righting moment

becomes

τHydro = −(yg +
m

M
l sinα)W cosφ+ (zg −

m

M
l cosα)W sinφ. (4.5)

It is useful to note that the hydrostatic moment stabilizes the roll motion as

the moment always acts against any deflection in roll. So the roll dynamics

are self-stabilized in this sense.

4.2.2 Rolling Drag

As a streamlined AUV, the main rolling drag of the STARFISH AUV comes

from the four fins that protrude out from the center axis. We model the drag
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as a quadratic drag:

τDrag = Kppp|p| (4.6)

where Kpp is the rolling quadratic drag coefficient and p is the angular velocity

of the roll. Since we restrict our discussion in roll axis only, we have p = φ̇.

4.2.3 Rolling Added Mass

Added mass is a measure of the mass of the moving water when the vehicle

accelerates. For a streamlined AUV, rolling added mass due to the AUV hull

is small. So the main rolling added mass is again due to the fins. We model

the moment due to the added mass as follows:

τAM = Kṗṗ (4.7)

where Kṗ is the rolling added mass coefficient and ṗ is the angular acceleration

of roll. Similarly, we have ṗ = φ̈.

4.2.4 Propeller Induced Torque

When the propeller rotates clockwise to provide the forward thrust, it also

creates an anti-clockwise torque acting on the AUV. This is commonly known

as the torque effect. The magnitude of the torque depends on the power

output of the thruster, P and propeller revolution, ω in the following equation:

τprop =
P

ω
. (4.8)

Power produced by the thruster is the product of thrust F , and speed of

the AUV V . However during steady state (constant velocity) AUV motion,

thrust is equal to the drag force, Fdrag, and therefore

P = FV = FdragV (4.9)

Fdrag =
1

2
ρACdV

2 (4.10)
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Figure 4.3: Propeller induced torque versus propeller revolution

where ρ is the sea water density; A is the frontal area; Cd is the drag coefficient.

So, by running different constant thrusts experiments, we plot the induced

torque against the propeller revolution in Fig. 4.3. The data best fits a

quadratic equation showing τprop ∝ ω2.

In our subsequent analysis, we omit the induced torque and treat it as

a disturbance to the system. However, we pre-roll the AUV to +5◦ during

weight trimming to compensate for the thruster torque at nominal speed.

When the AUV moves at its nominal speed of 1.4 m/s with 1400 rpm, the

induced torque will roll back the AUV to zero roll position and thus leave

sufficient room for IRM to compensate for the rest of the variations.

By substituting (4.5), (4.6), (4.7) and (4.8) into (4.1) and rearranging the

terms, we have

(Ixx −Kṗ)φ̈ = −(yg +
m

M
l sinα)W cosφ

+(zg −
m

M
l cosα)W sinφ

+Kppp|p|
+τprop. (4.11)
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We obtain the transfer function of roll φ, as a function of α in (4.12) by

first linearizing (4.11) at the operating point φ = 0. At this point cosφ ' 1

and sinφ ' φ. α can be assumed to be small. Therefore cosα ' 1 and

sinα ' α. Next, we approximate the quadratic drag Kppp|p| as linear drag

Kpp. By trimming condition, yg is close to zero and thus ignored. Lastly,

τprop is treated as disturbance and is not included in the equation.

Φ(s)

α(s)
=

−
[

(m
M

)lW

Ixx −Kṗ

]
s2 −

[
Kp

Ixx −Kṗ

]
s−

[
(zg − (m

M
)l)W

lxx −Kṗ

] . (4.12)

By assigning the constant parameters k, a, and b to its corresponding coeffi-

cient respectively, (12) becomes:

Φ(s)

α(s)
=

k

s2 + as+ b
. (4.13)

4.3 System Identification

In this section, we estimate the three unknown parameters a, b and k of the

linear second-order roll-axis model presented in (4.13). We also identify Kṗ,

Kpp, and l for the nonlinear equation (4.11). Parameters such as Ixx, yg, zg, m,

M , W can either be measured directly or calculated through computer-aided

design (CAD) softwares. Numerical values for these parameters are tabulated

in Table 4.1.

We need to perform open-loop testing by changing α using a step function

between ±20◦ and then record the roll response. Ideally, the test should be

carried out while the AUV is maintaining constant thrust, depth, and heading.

This will minimize the coupling torque generated by those degrees of freedom.

However, the open loop tests might pose a danger to the operation of the

AUV as we are testing some unknown behavior of the roll dynamics. A more

natural choice would be to carry out the open-loop test while AUV is at rest

in a water tank. This turns out to be sufficient to obtain a nominal model
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4.3 System Identification

Table 4.1: Model parameters

Calculated Values Identified Values
Parameters Parameters

Ixx 0.474 kg m2 a 0.24
yg 0 mm b 5.21
zg -3.4 mm k -0.61
m 2.00 kg Kṗ -0.08 kg m2

M 61.41 kg Kpp -1.21 Nms2

W 602.5 N l 43.36 mm

for the roll dynamics for the following reasons. First, in our model, we treat

the propeller induced torque as a disturbance. So, whether the thruster is

running or not, it is not included in the model. Second, the roll dynamics

model is derived under a decoupling assumption and therefore it is free from

excitation from the other axis. Third, the tank test underestimates the drag

coefficient as the conning tower and the top fin are not fully submerged in the

water. However, it is better to underestimate the drag in our case as higher

drag will make the roll dynamics more stable. It will also ensure that the

designed controller will also work properly when the vehicle is on the surface

before it starts diving.

While the AUV is static in the tank, we command three step inputs of α

(-20◦, 0◦ and 20◦) and observe how the roll responds to the step change of

α. Sufficient time was allowed for the roll response to decay before another

step change. The results are shown in Fig. 4.4. The simulated roll response

is overlaid together with the experimental measured roll response. The result

shows a good match between the two. The simulated roll is generated from

the nonlinear model after the unknowns are identified. The three unknown

parameters were identified by numerically minimizing the root mean square

error φrms defined as:

Φrms =

√∑n
i=1(φi − φ̂i)2

n
. (4.14)
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Figure 4.4: Simulated and measured roll response under step input. The
simulated roll response matched closely with the measured roll response

despite small differences in amplitude and phase

where φ̂ is the simulated roll response and n is the number of samples. The

Nelder-Mead simplex method was used to search for the optimal parameters

set in the sense of least squares.

It is important to note that the α is the command given to the servomotor.

There is no instrument to measure the position of the rolling mass. So, some

latency is expected between the commanded α and the actual α. We model

the latency by a first order system with a time constant τdelay. In order to

identify the time constant, we perform a dynamic test by commanding α

randomly between ±20◦ to obtain the response shown in Fig. 4.5. Similarly,

the time constant is identified by minimizing φrms. The resultant transfer

function in (4.13) becomes:

Φ(s)

α(s)
=

(
1

τdelays+ 1

)(
k

s2 + as+ b

)
(4.15)

with τdelay = 0.5 s.
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Figure 4.5: Simulated and measured roll response under random input.

4.4 Controller Design

In this section, we design a Proportional-plus-Integral (PI) controller that

stabilizes the AUV’s roll motion. The PI controller is used to reduce the roll

oscillation by increasing the damping of the system and at the same time

maintain zero steady state error. The controller was synthesized base on root

locus design (Fig. 4.6). The open loop transfer function has a pair of complex-

conjugate poles close to the imaginary axis in the s-plane. This indicates the

system is lightly damped with a damping ratio of 0.07. Fig. 4.6 also shows

that the system is only stable for a small region of the root locus; it is stable

for closed-loop gain range between (0 < Kp < 8.50). The region that is stable

appears to be lightly damped as well. By increasing the gain, we bring the

pair of complex-conjugate poles to a region of higher damping. However, the

third pole moves closer to the right-half plane as the gain increases. As the

poles are close to each other, we cannot analyze the system purely based on

a second-order approximation. Instead, we simulate the nonlinear model and

fine tune the controller gain using the simulation results. An ideal integral

was added with a zero at 0.01. The fourth closed-loop pole is found at -0.0144,
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4.4 Controller Design

Figure 4.6: Root locus plot for compensated system.

which is close enough to the zero to cause pole-zero cancellation. All poles and

zero of the open and closed-loop plant are tabulated in Table 4.2. Integrator

windup is avoided by preventing the integral term from accumulating above

or below 20◦.
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Table 4.2: Open and Closed Loop Plants

Open loop Closed loop

Plant
K

(s+ 2)(s2 + 0.24s+ 5.21)

K(s− 0.01)

s(s+ 2)(s2 + 0.24s+ 5.21)
K -1.22 -6.10
Kp - 5

Poles −0.12 + 2.2794i −0.617 + 2.0077i
−0.12 + 2.2794i −0.617 + 2.0077i

−2 −0.9609
−0.0144

Zeros - 0.01
System Type 0 1

4.5 Result and Discussion

The performance of the internal rolling mass in controlling the roll was first

studied in a tank test and later at an open-field trial. For the tank test, we

gave an impulse to the AUV by pushing AUV to roll to 25◦ and observed

how the roll decays for open-loop and closed-loop control respectively. The

results are shown in Fig. 4.7. The closed-loop response settled down within 4

seconds whereas the open-loop system takes more than 10 seconds to settle

down. Fig. 4.7 also shows how the α changes with time in order to damp

down the roll. For the open-loop test, α was kept at a constant 0◦.

Fig. 4.8 shows the AUV’s roll response during a constant 2 m diving

mission at the speed of 1.4 m/s when traveling on a straight path. When

the IRM mechanism was turned off (open loop), the AUV’s roll response was

oscillatory with the standard deviation of 1.02◦. On the contrary, when the

IRM mechanism was turned on (closed loop), the oscillatory roll motion was

damped. The moving mass rolls to negative alpha region to neutralize the

induced propeller torque. The standard deviation of roll reduced to 0.393◦.

Table 4.3 summarizes the test results into two statistics: mean and standard

deviation. The mean value of the roll response shows that the oscillation

was centered at zero. In short, the result shows that the IRM mechanism

suppressed the unwanted roll oscillation to a smaller amplitude with center
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Figure 4.7: Tank Test Result. The result shows that despite actuator
saturation, the IRM mechanism manages to damp down the oscillation

faster.

Table 4.3: Open and Closed Loop Performance

Open loop Closed loop
Mean -2.808 ◦ 0.039 ◦

Standard Deviation 1.023 ◦ 0.393 ◦

around zero.
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Figure 4.8: Field Experiment Result.

4.6 Summary

In this chapter, we have demonstrated the use of an internal rolling mass

mechanism for active roll stabilization in the STARFISH AUV. A nonlinear

model was first developed to describe the dynamics of the AUV’s roll. The

model was later linearized to obtain a transfer function for controller synthesis.

The model parameters were identified through open-loop testing in the water

tank. A PI controller was then designed to increase the damping of the overall

system and to remove the steady state error. The capability of the IRM

mechanism to stabilize the roll motion was demonstrated in both tank tests

and field experiments.
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Chapter 5

Minimum Speed Seeking

Control

As the dynamic model is scheduled according to the vehicle’s forward speed,

the operating range of the speed needs to be known. The maximum speed

is determined by the maximum thrust produced by the thruster, whereas

the minimum speed is not zero, but a certain speed at which the AUV must

travel for depth keeping. When the control fins lose their effectiveness at low

speed, the extra buoyancy will bring the AUV up to the surface.

In this chapter, we will explain the mechanism behind the phenomenon

of the minimum speed. We first define the minimum speed formally and

then derive the solution together with its condition of existence. Next, we

introduce a new behavior to the AUVs: while the AUV maintains a certain

depth, its cruising speed is continuously regulated in real-time to its minimum.

This behavior is totally new and has not been developed previously, and it

is useful when we require minimum energy consumption, minimum impact

when docking the AUV, and slowest passage over the target of interest.

From the simulation studies and experimental results, we find that the

proposed minimum speed seeking algorithm is robust to changes in the

vehicle dynamics as well as environmental disturbances. We recommend

implementation of the algorithm on existing AUVs and hope that this will

open up new possibilities in the operation and application of the AUVs.
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5.1 Dynamic Model - Dive Plane

Figure 5.1: Free body diagram in dive-plane.

5.1 Dynamic Model - Dive Plane

In this section, the dynamical model of a streamline, tail-controlled AUV is

constructed by restricting the the motion of the AUV to the dive-plane. By

deriving the dynamic model, we try to understand the underlying interaction

of forces and moments, and thus the mechanism behind the existence of the

minimum speed. The model is also used later in a simulation to study the

performance of the proposed minimum speed seeking algorithm.

Dynamic modeling of the underwater vehicle can be found throughout the

literature [61, 14, 20]. Here, we adopt the model developed by [19], in which

the equation of motions are written in the stability-axis frame of the AUV.

This enables the hydrodynamic forces and moments to be more conveniently

expressed.

Figure 5.1 shows three reference frames that are used to describe the

motion of the AUV. They are labeled in green. First, the body-axis frame is

centered at the vehicle center of buoyancy (CB) and the xb axis is running

along the longitudinal axis of symmetry with positive pointing toward vehicle

nose. The yb axis is pointing at the starboard side of the AUV, and the zb

axis which is orthogonal to both xb and yb, is pointing toward bottom of

the vehicle. Second, the inertia-axis frame is defined by pointing the Z with

the gravitational force and aligning the Y with yb. Finally, stability-axis

frame has its xv axis placed along the vehicle velocity and aligning the yv

with yb. The body-axis and inertia-axis frame are related through a rotation

about the common y axis with the pitch angle θ; whereas the body-axis and

stability-axis frame are related through the angle of attack α about the same
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5.1 Dynamic Model - Dive Plane

y axis. According to the defined frames, θ is positive when AUV is upward

pitching and negative when it is downward pitching. Similar sign convention

apply for α as well.

We assume sway velocity v and vehicle roll φ to be zero. This is

in alignment with the widely used decoupled assumption for streamlined

AUVs [14, 13]. We are interested to model the vehicle states: depth Z,

vehicle speed V , angle of attack α, pitch θ and pitch rate q, given the elevator

deflection δ and thruster force Ft as the inputs.

5.1.1 Kinematics

From a kinematics analysis of Figure 5.1, the rate of change of depth, ż is

ż = V [− cosα sin θ + sinα cos θ] (5.1)

The vehicle speed V is related to body-axis surge velocity u and heave

velocity w as

u = V cosα and w = V sinα (5.2)

Vehicle speed V, is the vehicle speed relative to the surrounding water,

which determines the hydrodynamic forces acting on the vehicle body and

fins. Thus, it is invariant under the effect of underwater current. On the

other hand, the vehicle ground speed, which is the resultant of vehicle speed

V and underwater current, is affected by the current.

5.1.2 Equations of motion

From [19], the equations of motion containing state vector x = [V, α, q, θ] and

input u = [δ, Ft] can be written as

ET(x)ẋ = R(x) + F(x,u) (5.3)
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The transformation matrix T(x) is given by

T(x) =


cosα −V sinα 0 0

sinα V cosα 0 0

0 0 1 0

0 0 0 1

 (5.4)

and the inertia matrix E is given by

E =


mx 0 mzcg 0

0 mz −mxcg 0

mzcg −mxcg Jy 0

0 0 0 1

 (5.5)

The right hand side terms are

R(x) =


−mzqV sinα−mxcgq2

mxqV cosα +mzcgq
2

(mz −mx)V
2 cosα sinα−m(xcg cosα + zcg sinα)qV

q

 (5.6)

and

F(x,u) =


Fx(x,u)

Fz(x,u)

My(x,u)

0

 (5.7)

where m is the dry mass of the vehicle. mx and mz denote the dry mass

plus added mass in surge and heave direction respectively. The vehicle’s

moment of inertia around the pitch axis including added moment of inertia is

Jy. The distance vector from the center of gravity to the center of buoyancy

is rcg = [xcg ycg zcg].
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5.1 Dynamic Model - Dive Plane

External forces and moments are of the form

Fx(x,u) = cosαFD(V, α, δ)− sinαFL(V, α, δ)− (FW − FB) sin θ + Ft

(5.8)

Fz(x,u) = sinαFD(V, α, δ) + cosαFL(V, α, δ) + (FW − FB) cos θ (5.9)

My(x,u) = Mq(V, α, q, δ)− (xcg cos θ + zcg sin θ)Fw (5.10)

Fw and FB are vehicle’s weight and buoyancy forces respectively. The

extra buoyancy is calculated by finding the difference between the weight

and buoyancy is (Fw − FB). The last term in (5.10), (xcg cos θ + zcg sin θ)Fw

is the hydrostatic righting moment. Thrust force is denoted as Ft. The

hydrodynamic drag, lift force and pitch moment generated by the vehicle’s

body and fins are FD(V, α, δ), FL(V, α, δ) and Mq(V, α, q, δ) respectively. They

are modeled as follows:

FD(V, α, δ) =
1

2
ρV 2AbCD0 (5.11)

FL(V, α, δ) =
1

2
ρV 2{AbCLαα + AfCLδδ} (5.12)

Mq(V, α, q, δ) =
1

2
ρV 2{AbL[Cmαα + Cmqq] + AfxfCLδδ} (5.13)

ρ is the water density. Ab and Af are the reference surface area for body

and fins respectively. L is the reference length of the vehicle, whereas xf is

the distance between the fins and center of buoyancy (see Figure 5.1). The

hydrodynamic coefficients, for drag, body lift and fins lift are CD0 , CLα and

CLδ respectively. As for pitch moment, the hydrodynamic coefficients Cmα

accounts for the body’s restoring moment and Cmq accounts for the viscous

damping.

5.1.3 Maximum elevator deflection, δmax

A typical lift curve is shown in Figure 5.2 for the NACA-0012 fin profile. From

zero deflection, the coefficient of lift increases with the elevator deflection.

The trend continues up to a critical angle, also known as the fin stall angle
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Figure 5.2: Typical lift coefficient versus fin deflection for NACA-0012
fin profile at Reynolds number 500 k. (Source: Airfoil tool generator at

http://airfoiltools.com/airfoil/details?airfoil=n0012-il)

which produces maximum lift coefficient. Beyond this critical angle, the upper

surface flow becomes more separated and the fins produce less coefficient

of lift. Hence, the AUV is said to be in a stall condition when the elevator

operates above the fin stall angle, δStall.

According to the lift equation, Lift L produced by a fin is equal to the lift

coefficient CL times the density ρ times half of the velocity V squared times

the wing area Af .

L =
1

2
AfCLρV

2 (5.14)

As the CL varies linearly with the elevator deflection δ, the lift coefficient is

approximated as

CL = CLδδ, (5.15)

where CLδ is the slope of the lift curve (Figure 5.2). This gives rise to the lift

force generated by fins at (5.12).
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Figure 5.3: Relationship between thrust ratio TR and thrust force Ft

for Tecnadyne Model 520 underwater thruster.

Most controller designs require the fins to work within the linear region

and thus fin stall has to be avoided. Hence, we introduce a saturation block

which sets the maximum elevator deflection from the pitch controller to δmax.

The value of δmax is normally chosen to be less than or equal to δStall.

5.1.4 Thruster model

We normalize the thrust force Ft into a scale from 0 to 1, and it is denoted

as thrust ratio TR. The relationship between TR and the actual thrust force

produced by the thruster is shown in Figure 5.3. There is a dead zone from

0 to 0.28 where no thrust is generated. From 0.28 onward, the thrust force

increase quadratically with the thrust ratio as shown by Figure 5.3.

Ft = 120T 2
R − 31TR + 0.53 (5.16)

Equation (5.16) is obtained by best fit the quadratic equation on the

measurements made by the thruster manufacturer. The value 0.28 is obtained
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5.2 Minimum Speed and its Characteristics

Figure 5.4: Depth Subsystem with dual closed-loop control: inner pitch
control and outer depth control.

at the intersection between the best fit curve and the x-axis.

5.1.5 Depth closed-loop system

Dual loop control is implemented to regulate the AUV depth. We have pitch

control in the inner-loop and depth control in the outer loop. The dual-

loop implementation is widely used for depth control of the torpedo-shaped

AUV [13, 21, 62]. The torpedo-shaped AUV is underactuated, such that the

depth and pitch cannot be controlled independently. Hence, given a desired

depth, the outer depth control loop is used to generate the desired pitch angle,

which is then fed into the inner pitch control loop to generate the elevator

command.

Here, the Proportional-Integral (PI) controllers are employed in both the

inner and outer loops. Integral controller is needed in order to remove the

steady state error when a step input is fed. We assume that the depth and

pitch controllers will stabilize the plant when the AUV’s operating speed is

larger than the minimum speed. This is a reasonable assumption, as such

controllers should already be functioning in basic AUV operations.

5.2 Minimum Speed and its Characteristics

In this section, we begin with the calculation of the minimum speed based

on the model described in Section 5.1. First, the formal definition of the

minimum speed is given. Next, we derive the equations for two important
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curves: maximum required pitch curve and achievable pitch curve. We then

argue that the minimum speed occurs at the intersection of these two curves.

The final solution of the minimum speed is then derived together with its

condition of existence. By analyzing the maximum required pitch curve and

the achievable pitch curve, we study how the buoyancy, righting moment, and

the fin’s effectiveness affect the minimum speed. In Section 5.2.2, we observe

how the STARFISH AUV loses its pitch-controllability when it cruises below

the minimum speed. There are two strong indications when the AUV loses

its pitch-controllability: the pitch response deviates from the desired pitch,

and the elevator deflection becomes saturated.

5.2.1 The minimum speed

Let first define the minimum speed of an AUV. The minimum speed is the

vehicle’s speed when

1. Depth rate defined by (5.1) equal to zero, Ż = 0

2. Elevator deflection δ is at its maximum value, δ = δmax

3. The AUV is at an equilibrium point of (5.3), ẋ = 0.

To maintain depth, the depth rate should be equal to zero. So from (5.1),

we solve for the relationship between α and θ:

ż = V [− cosα sin θ + sinα cos θ] = 0⇒ α = θ, (5.17)

which mean for constant depth maneuver, the angle of attack is equal to pitch

angle.

When the AUV is at equilibrium, we have

R(x) + F(x,u) = 0 (5.18)

because ET(x) in (5.3) is nonsingular for a slender vehicle at non-zero speed

as pointed out by [19].
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Then, (5.18) is expanded to
−mzqV sinα−mxcgq2

mxqV cosα +mzcgq
2

(mz −mx)V
2 cosα sinα−m(xcg cosα + zcg sinα)qV

q

 = −


Fx(x,u)

Fz(x,u)

My(x,u)

0


(5.19)

The last row requires pitch rate to be zero, q = 0, and (5.19) becomes

Fx(x,u) = 0 (5.20)

Fz(x,u) = 0 (5.21)

My(x,u) = −(mz −mx)V
2 cosα sinα (5.22)

Calculating (5.20)× cos θ + (5.21)× sin θ, and knowing α = θ, we have

FD(V, α, δ) = −Ft cos θ (5.23)

(5.24)

and substitute FD(V, α, δ) from (5.11), we obtain

1

2
ρV 2AbCD0 = −Ft cos θ (5.25)

Calculating (5.20)× sin θ − (5.21)× cos θ, and knowing α = θ, we have

FL(V, α, δ) + (Fw − FB) = Ft sin θ (5.26)

and substitute FL(V, α, δ) from (5.12), we obtain

1

2
ρV 2{AbCLαα + AfCLδδ}+ (Fw − FB) = Ft sin θ (5.27)

By combining (5.25) and (5.27), and knowing α = θ, δ = δmax, and

assuming θ to be a small angle (sin θ ≈ θ, tan θ ≈ θ), we solve θ as a function
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of V as

θmax req =
FB − Fw

1
2
ρAb(CLα + CD0)V

2
− AfCLδδmax

Ab(CLα + CD0)
(5.28)

We denote the pitch angle calculated from (5.28) as θmax req because it is

the pitch angle that is required to overcome the positive buoyancy of the AUV

during level flight at various speeds. During level flight, the AUV needs to

maintain negative pitch angle (pitch down) to overcome the positive buoyancy.

As the buoyancy does not change with speed, the AUV needs more downward

pitching to produce the required downward force when the speed V is low (at

low thrust ratio) as shown in Figure 5.5.

In addition, θmax req is the maximum angle because δ is set to its maximum

value δmax in (5.28). Let us explain this with an example: if the AUV is

traveling at 1 m/s, Figure 5.5 indicates that the θmax req = −5 deg. However,

in reality, as the minimum speed is not 1 m/s and thus δ is not at its maximum

value, the AUV is pitching down at a smaller1 pitch angle during level flight.

So, in this sense, the maximum required pitch curve indicates the largest

pitch angle that is required to maintain level flight, which only occurs at the

minimum speed.

Next, we calculate the achievable pitch angle θach by solving pitch moment

balance in (5.22) when the elevator deflection δ is set to its maximum, δmax.

Substitute (5.10) and (5.13) into (5.22), we have

1

2
ρV 2{AbL[Cmαα + Cmqq] + AfxfCLδδ} − (xcg cos θ + zcg sin θ)Fw

= −(mz −mx)V
2 cosα sinα (5.29)

Given α = θ, q = 0, δ = δmax, and assuming θ to be a small angle and xcg = 0,

we solve θach as a function of V as

θach =
1
2
ρAfxfCLδδmaxV

2

zcgFw − [1
2
ρAbLCmα + (mz −mx)]V 2

(5.30)

1in term of magnitude
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Figure 5.5: The maximum required pitch curve.

We denote the pitch angle calculated from (5.30) as θach because it is the

achievable pitch angle when elevator deflection is commanded to its maximum

value. As the vehicle’s speed V becomes smaller, the achievable pitch angle

becomes smaller as shown in Figure 5.6. The achievable pitch angle increase

with the vehicle speed due to the Munk moment [63, pg. 56]:

Mmunk = (mz −mx)V
2 cosα sinα (5.31)

The Munk moment is destabilizing as it acts in the opposite direction of body

restoring moment and hydrostatic righting moment. At high speed and a

large angle of attack, the Munk moment becomes larger than the sum of body

restoring moment and hydrostatic righting moment.

The minimum speed is found by equating (5.28) and (5.30). The concept

is visualized through Figure 5.7, where θmax req and θach are plotted against

speed. The minimum speed occurs at the intersection of the two curves. It

occurs at the largest θmax req that is achievable. By equating (5.28) and (5.30),
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Figure 5.6: The achievable pitch curve.

we obtain

1
2
ρAfxfCLδδmaxV

2

zcgFw − [1
2
ρAbLCmα + (mz −mx)]V 2

=
FB − Fw

1
2
ρAb(CLα + CD0)V

2
− AfCLδδmax

Ab(CLα + CD0)

(5.32)

Define the following variables:

β1 =
1

2
ρAfxfCLδδmax (5.33)

β2 = zcgFw (5.34)

β3 =
1

2
ρAbLCmα + (mz −mx) (5.35)

β4 = FB − Fw (5.36)

β5 =
1

2
ρAb(CLα + CD0) (5.37)

β6 =
AfCLδδmax

Ab(CLα + CD0)
(5.38)
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5.2 Minimum Speed and its Characteristics

Figure 5.7: The minimum speed. Minimum speed is found at the
intersection of the required pitch curve and achievable pitch curve.

and thus simplify (5.32) to

β1V
2

β2 − β3V 2
=

β4

β5V 2
− β6 (5.39)

Then (5.39) is rewritten as a quadratic equation by treating V 2 as a

variable:

V 4 +
β3β4 + β2β5β6

β1β5 − β3β5β6

V 2 − β2β4

β1β5 − β3β5β6

= 0 (5.40)

Since the square of the minimum speed should be a real number, the

discriminant of the quadratic equation need to be greater or equal to zero.(
β3β4 + β2β5β6

β1β5 − β3β5β6

)2

+ 4

(
β2β4

β1β5 − β3β5β6

)
≥ 0 (5.41)
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5.2 Minimum Speed and its Characteristics

For a positive buoyant (FB > Fw) AUV with center of gravity below the

center of buoyancy (zcg > 0), we have

β2β4 = zcgFw(FB − Fw) > 0 (5.42)

So, in order to fulfill (5.41) and has a finite minimum speed, we need to

satisfy

β1β5 − β3β5β6 > 0 (5.43)

(5.44)

As β5 < 0,

β1 − β3β6 < 0 (5.45)

By substituting the corresponding βi, (5.45) becomes

1

2
ρAfxfCLδδmax −

[
1

2
ρAbLCmα + (mz −mx)

]
AfCLδδmax

Ab(CLα + CD0)
< 0 (5.46)

Given CLα < 0, CD0 < 0, and (mz > mx) for slender AUV, we then obtain

Cmα >
xf
L

(CLα + CD0)−
(mz −mx)

1
2
ρAbL

(5.47)

By its definition of the body restoring moment, we know Cmα < 0. Finally,

for the existence of minimum speed, it is required that

xf
L

(CLα + CD0)−
(mz −mx)

1
2
ρAbL

< Cmα < 0 (5.48)

Figure 5.8 illustrates the non-existence of minimum speed when the inequal-

ity (5.48) is not satisfied. The θach curve and the θmax req curve do not intersect

one another even when the speed goes to infinity. It is because the restoring

moment is too large that the AUV could not even pitch down at the required

angle to maintain depth.
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Figure 5.8: Non-existence of the minimum speed.

If the minimum speed exists, it can be calculated by solving the quadratic

equation (5.40), so that

V 2
min = −

(
β3β4 + β2β5β6

2(β1β5 − β3β5β6)

)
±
√(

β3β4 + β2β5β6

2(β1β5 − β3β5β6)

)2

+

(
β2β4

(β1β5 − β3β5β6)

)
(5.49)

The solution consists of three important group of terms:

β3β4 + β2β5β6 =

(
1

2
ρAbLCmα + (mz −mx)

)
(FB − Fw) +

1

2
ρzcgFwAfCLδδmax

(5.50)

β1β5 − β3β5β6 =

(
1

2
ρAb(CLα + CD0)

)(
1

2
ρAfxfCLδδmax

)
(5.51)

−
(

1

2
ρAbLCmα + (mz −mx)

)(
1

2
ρAfCLδδmax

)
β2β4 = zcgFw(FB − Fw) (5.52)
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The corresponding pitch angle at Vmin can be calculated by substitute

Vmin into (5.28):

θ∗ =
FB − Fw

1
2
ρAb(CLα + CD0)V

2
min

− AfCLδδmax

Ab(CLα + CD0)
(5.53)

and the corresponding thrust force at Vmin is given by (5.25) as

F ∗t = −1

2
ρV 2

minAbCD0 cos θ∗ (5.54)

The minimum thrust ratio T ∗R is then given by substituting F ∗t into (5.16)

and solving it:

F ∗t = 120(T ∗R)2 − 31T ∗R − 0.53 (5.55)

The following statements can be deduced from analyzing both the max-

imum required pitch curve and achievable pitch curve.

� The minimum speed is proportional to the buoyancy of the AUV. If the

AUV is more buoyant, the minimum speed will increase. The buoyancy

affects only the θmax req curve as shown in Figure 5.9. The increase of

minimum speed is coupled with the decrease of the pitch angle, θ∗.

� The minimum speed is proportional to the meta-centric height, zcg. The

greater the meta-centric height, the greater is the righting moment and

thus, the higher the minimum speed. Meta-centric height affects only

the θach curve as shown in Figure 5.10. The increase of minimum speed

is coupled with the increase of the pitch angle, θ∗.

� The minimum speed is inversely proportional to fin’s effectiveness,

xfAfCLδ . The larger the xf , Af , and CLδ will reduce the minimum

speed. Fin’s effectiness affects both the θmax req curve and θach as shown

in Figure 5.11. The reduction of minimum speed is coupled with the

decrease of the pitch angle, θ∗.

� It is also noticed that the minimum speed is independent of the viscous

drag coefficient (Mq) and moment of inertia (Jy).
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Figure 5.9: Effect of buoyancy on minimum speed.

In practice, one could reduce the minimum speed of an AUV by reducing

the buoyancy, and the meta-centric height, or by increasing the fin’s effect-

iveness. From the analysis, manipulating the buoyancy is a better option

because the reduction of the minimum speed by means of buoyancy is coupled

with the smaller pitch down angle. On the contrary, reduction of minimum

speed by means of meta-centric height or fin’s effectiveness is coupled with

bigger pitch down angle, which is undesirable due to a larger drag.

In reality, there are physical constraints on how much one can manipu-

late buoyancy, meta-centric height and the fin’s effectiveness. For example,

buoyancy cannot be reduced to zero, as the AUV needs to float to the surface

for easy recovery under power failure or other emergency conditions. The

meta-centric height is needed to make sure that the AUV is always upright,

and to keep the roll of AUV small. It is to be noted that when one factor

is changed, the rest of the factors might be affected simultaneously. For

instance, changing the buoyancy of the AUV by adding weight might affect

the meta-centric height concurrently.
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Figure 5.10: Effect of meta-centric height on the minimum speed.
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Figure 5.11: Effect of fin’s effectiveness on the minimum speed.
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Figure 5.12: Characteristic of losing pitch-controllability. From 40 s
onwards, the pitch response deviated from the desired pitch and the

elevator became saturated.

5.2.2 Characteristic of losing pitch-controllability

An experiment was conducted to investigate the phenomenon of losing pitch-

controllability when the AUV’s speed drops below its minimum speed. There

were three stages in this experiment (see Figure 5.12):

� Stage 1 (0 s ≤ t < 12 s): The AUV was driven at a speed of u0 = 1.4 m/s

until it reached a depth of 2 m.

� Stage 2 (12 s ≤ t < 40 s): The speed was reduced gradually up to a

point just before the AUV lost its pitch-controllability.

� Stage 3 (t ≥ 40 s): The speed was reduced beyond its minimum speed,

causing the AUV to lose its pitch-controllability.

Consider the transition between Stage 2 and Stage 3. From the pitch

response in Stage 2, it is observed that the pitch response followed the desired

pitch angle θd closely and the pitch error2 θe was close to zero. In Stage 3,

2pitch error θe
.
= θ − θd.
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5.3 Minimum Speed Seeking Algorithm

the pitch error grew significantly, indicating the loss of pitch-controllability as

the pitch response deviated from the desired pitch. In the elevator plot from

Stage 2 to Stage 3, it is observed that the elevator was becoming saturated

at its maximum value. In the depth response plot, it is observed that the

AUV was losing depth gradually, but its effect was not as fast and significant

as seen in the pitch response plot. In summary, it is observed that when the

AUV was losing its pitch-controllability, the pitch response deviated from the

desired pitch and the elevator became saturated.

5.3 Minimum Speed Seeking Algorithm

In this section, we discuss the minimum speed seeking algorithm under the

framework of Extremum Seeking (ES) [64]. There is difficulty in applying the

existing methods in ES to solve the minimum speed problem. The problem

violates important assumptions that the steady state characteristic of the

plant be well defined and stable, regardless of the input parameter. We relax

these assumptions by introducing a new definition of steady state mapping

which imposes a new structure on the seeking algorithm. This leads naturally

to the detailed discussion on the proposed seeking algorithm in Section 5.3.2.

5.3.1 Extremum Seeking

The minimum speed seeking problem could be studied under the framework

of Extremum Seeking (ES). Typically, ES is employed to find the optimal

operating condition for industrial processes to produce better outcomes, pro-

ductivity or yield. The optimal operating condition is not known analytically

or might change with time. Hence, optimization has to be performed online

to search for the optimal point by making use of real-time measurement of

the actual process [65].

We describe a typical extremum seeking problem using a single-input

single-output system as shown in Figure 5.13. The dynamic plant has a

real value input parameter, denoted by τ ∈ <. For any fixed τ , the system

converges to a steady state uniquely determined by τ . In other words, under
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5.3 Minimum Speed Seeking Algorithm

Figure 5.13: Input-output system with a steady state map.

a fixed input, the cost output yp = h(x), as a function of system state x,

converges to a constant value. In this case, a function g : < → <, given as a

limit

g(τ) := lim
t→∞

yp(t)
∣∣∣
input fixed at τ

(5.56)

is well defined and this function g(·) is called a readout map [66]. The

goal of extremum seeking is to drive the input/output pair from the initial

(τ0, g(τ0)) to the optimal (τ ∗, g(τ ∗)) given measurements of input τ and output

y = yp + d, where d is a bounded disturbance. Starting from some initial

values, the ES algorithm modifies the input parameter, monitors the plant’s

response to obtain the gradient of g(τ), and then adjusts the parameter

towards the optimal point. The most popular scheme of ES is the method of

sinusoidal perturbation where the input parameter is perturbed and updated

continuously. Alternatively, the input parameter could be updated in a

discrete manner. A step change is made on the parameter, and then the

algorithm takes some time to measure the steady state response before another

step change. The stability proof of the first and second methods is given in

[67] and [66] respectively.

Unfortunately, the stability analysis requires the system to be locally

87



5.3 Minimum Speed Seeking Algorithm

Figure 5.14: Readout map for g(TR). The readout map is not well
defined for inputs less than T ∗

R.

exponentially stable for every point in the readout map. Specifically, the

input parameter in our study is the AUV thrust, and there exists a range of

thrusts3 that will cause the AUV to lose controllability and become unstable.

Define

yp = TR + kθe, (5.57)

where k is a positive constant and the negative value of pitch error θe is

truncated to zero so that θe ≥ 0. Then

g(TR) := lim
t→∞

[TR(t) + kθe(t)]
∣∣∣
input fixed at TR

(5.58)

will result in a readout map as shown in Figure 5.14. This is because

lim
t→∞

θe(t)
∣∣∣
input fixed at TR < T ∗R

= +∞, (5.59)

and

lim
t→∞

θe(t)
∣∣∣
input fixed at TR ≥ T ∗R

≈ 0. (5.60)

The readout map in Figure 5.14 is not well defined and is unstable for inputs

3All values of thrust that have corresponding speeds less than the minimum speed.
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Figure 5.15: Readout map for g̀(TR). A change in the definition of g(·)
results in a well defined readout map.

less than T ∗R. Since the required assumptions are violated, the stability of

existing ES methods is not guaranteed. However, a change in the definition of

g(·) could result in a well defined and stable readout map. Instead of letting

time go to infinity, define g(·) by having the time approach a finite value T ,

where 0 < T <∞. To uniquely determine the value of such a definition, the

value of the input parameter at time t = 0 needs to be fixed. We choose that

value to be T ∗R . So, we have

g̀(TR) := lim
t→T

[TR(t) + kθe(t)]
∣∣∣
input fixed at TR, and at t = 0, TR = T ∗R

. (5.61)

Figure 5.15 shows the plot of g̀(·) for T = T1, T2, and T3 where T1 < T2 < T3.

At time t = 0, TR is equal to T ∗R and thus the pitch error θe(0) ≈ 0. For the

case of T = T1 → 0+, there is no time for the pitch error to grow even though

TR < T ∗R. Hence g̀(TR) = TR. The larger the value of T , the more time

there is for the pitch error to grow and if T →∞, then g̀(TR) is equivalent

to the original definition of g(TR). In summary, we are able to construct a

well defined and stable readout map by selecting a proper value of T . The

definition of g̀(TR) requires TR = T ∗R at t = 0 but the value of T ∗R is not known.

This requirement can however be fulfilled by performing the following steps.

First, discretize the solution space of TR into a finite number of possible points

separated by a constant step size, ∆T. If the step size is small enough, it is

reasonable to assume that T ∗R is equal to a particular point. Then start the
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search from an initial TR(0), where TR(0) > T ∗R, and make ∆T change to TR

at every iteration. Each iteration is time-separated by a seeking period T .

Such a seeking method will ensure that TR = T ∗R before entering the region of

TR < T ∗R. Hence, by restricting the search to a small step at every interval of

properly selected T , the unstable map (Figure 5.14) can be transformed to a

stable one (Figure 5.15).

Before describing the seeking algorithm in Section 5.3.2, the problem

is first posed formally. The task of the minimum speed seeking algorithm

is: given real-time measurement of pitch error θe and elevator δs, force the

solution of the closed-loop AUV depth subsystem (Figure 5.4) to eventually

converge to the optimal states where V = Vmin from (5.49) and θ = θ∗

from (5.53) by manipulating the thrust ratio TR, and to do so without any

precise knowledge of the AUV depth subsystem and the optimal states.

The algorithm resides in the minimum speed seeking subsystem, which

augments the AUV depth subsystem by changing the thrust ratio, such that

the AUV cruises as slowly as possible while maintaining the desired depth (see

Figure 5.16). It is assumed that when the minimum speed seeking algorithm

is turned on, the AUV depth subsystem has already reached steady state at

the desired depth and is cruising at a certain speed larger than the minimum

speed.

5.3.2 Seeking Algorithm

Figure 5.17 illustrates how the seeking algorithm determines the output TR

based on two inputs θe and δs. A Fuzzy Inference System (FIS) is used to

map the two inputs to three decisions: to keep the current TR, to increase or

to decrease the current TR by a constant step gain ∆T. Mathematically, the

algorithm can be described as follows:

At every seeking interval k (each interval is separated by seeking period

TS), the thrust ratio is determined by

TR(k) = TR(k − 1) + ∆TR, k = 1, 2, 3, ... (5.62)
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Figure 5.16: Problem formulation. The block diagram shows the
interaction between the AUV Depth Subsystem and Minimum Speed
Seeking Subsystem. The minimum speed seeking subsystem sends thrust
command to the AUV depth subsystem and receives pitch error θe and

elevator deflection δs in return.

Figure 5.17: Block diagram of seeking loop. Fuzzy Inference System
determines whether to maintain, decrease or increase TR by a constant
step gain ∆T based on two inputs, θe and δs at every seeking interval.

where

∆TR =



−∆T if FIS output = −1

0 if FIS output = 0

+∆T if FIS output = +1

(5.63)

The seeking algorithm starts to search from an initial thrust ratio TR(0),

a nominal thrust ratio that the AUV normally operates at. It is obvious that
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TR(0) is greater than T ∗R.

The period of the seeking loop, denoted by TS determines how frequent

TR is changed. The searching algorithm should run at a much slower rate in

order to achieve time-scale separation between the nonlinear system dynamics

and the seeking loop. This is because the seeking algorithm assumes that

the dynamic system functions as a static map, which can be justified only if

the time between the change in input parameter is sufficiently long compared

to the dynamics of the system. However, Ts also cannot be too large. The

seeking algorithm should react fast enough to bring TR out of the unstable

region (TR < T ∗R), or else θe may grow unbounded.

From (5.62), the algorithm generates a new thrust ratio TR(k) recursively

by adding ∆T, 0 or −∆T to the previous thrust ratio TR(k−1). In other words,

the thrust ratio is restricted by the maximum change of ∆T per iteration.

As the algorithm drives a dynamical system, a large step will cause a large

transient, which is undesirable. By having a known constant step change of

thrust ratio ∆T, there is better control over the time taken for the transient

to fade. Furthermore, ∆T will determine the resolution of the solution by

dividing the whole solution space with a step size of ∆T.

5.3.2.1 Fuzzy inference system (FIS)

The fuzzy inference system is chosen because it is a universal mapping tool

that allows incorporation of the expert’s knowledge via its If-Then rules. In

this study, the FIS is designed as a switching control system where it only

yields three crisp output levels for all input values. This is done by using the

Mamdani-type fuzzy inference system with the Largest of Maximum (LOM)

defuzzification method. The design of such a switching control system using

fuzzy set theory is discussed in [68].

In this section, we discuss mainly how to determine a set of fuzzy rules,

design the input and output membership functions and the resulting input-

output mapping. For more information on FIS, one could refer to [69].

As discussed in Section 5.2.2, when the AUV travels below its minimum

speed, the pitch response deviates from the desired pitch and the elevator
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becomes saturated. Therefore, as long as the elevator is not saturated, TR

could be decreased. When the elevator is saturated and the pitch error is

small, it is desirable to keep the current TR. However, when the elevator

is saturated and the pitch error is big, TR should be increased. The above

knowledge is translated to the following fuzzy rules:

1. If (δ is NotSaturated) then (∆T is decreased).

2. If (θe is Small) and (δs is Saturated) then (∆T is kept).

3. If (θe is Big) and (δs is Saturated) then (∆T is increased).

Figure 5.18 illustrates the active region of each fuzzy rule in the readout

map. When TR >> T ∗R, this belongs to the blue region and δs is far from

saturation. Hence, rule 1 is active and TR is decreased. When TR < T ∗R, this

belongs to the red region and δs should become saturated, and θe starts to

grow significantly. Then rule 3 is activated and TR is increased. Apparently,

rule 1 and rule 3 together will force TR into the green region, where rule 2

is active and TR is kept unchanged. In practice, T ∗R is changing with time

when the AUV is subjected to the disturbance. The cost-driven algorithm

will try to track T ∗R by changing TR continuously and causing TR to oscillate.

In contrast, the proposed algorithm will operate the AUV at a constant TR

that is slightly larger than T ∗R, which is a more desirable behavior.

If we know only the fin saturation without the knowledge of pitch error,

we could construct two rules: decrease the TR when fin is not saturated, and

increase the TR when fin is saturated. This will cause the green region R2

to disappear from Figure 5.18. In this circumstance, the TR is never kept at

a constant value, but will oscillate around the T ∗R and forming a limit cycle,

which will affect the controller performance of the AUV. On the other hand,

one could keep the TR constant when fin is saturated, instead of increase

the TR. In this construction, the seeking algorithm will lost its ability to

increase TR when conditions are not favorable such as the AUV encounter

a lager disturbance or increase of buoyancy. These are the reasons why the

knowledge of pitch error is useful in the algorithm.
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Figure 5.18: Fuzzy Rules and the readout map.

Next, all the linguistic terms that are used in the rules need to be defined

via membership functions. Two fuzzy sets are used for each input as shown in

Figure 5.19. The membership functions of pitch error are characterized by the

pitch error threshold θTS
e which determines the intersection of the two fuzzy

sets. For θe < θTS
e , the error is considered relatively Small and acceptable;

otherwise it is considered as Big. Note that θe is considered small when it

is negative. The AUV speed needs to be increased when more downward

pitching is required (when θe is positive). With the increase of speed, the

elevator will gain more control authority to close the pitch error gap. On the

other hand, when the AUV is pitching down too much (θe is negative), there

is no need to increase the speed, as the gap can be closed by reducing the

elevator deflection. The pitch error threshold θTS
e is obtained by examining

the usual bound of the pitch error during normal AUV maneuvers. One

example is given in Figure 5.20 showing the pitch error changing within a

range of 0.01 rad.

Based on the second input δs, it is of interest to know how close the elevator

is to saturation. The intersection between Saturated sets and NotSaturated

sets is determined by subtracting the elevator fin budget, δFB from the

maximum elevator angle δmax. The fin budget δFB is allocated such that there

is enough control authority for the elevator to overcome the environmental

disturbance and to keep the pitch at the desired pitch angle. One can select

94



5.3 Minimum Speed Seeking Algorithm

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

 θ
e

D
eg

re
e 

of
 m

em
be

rs
hi

p

Small Big

Input 1

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26
0

0.5

1

δ

D
eg

re
e 

of
 m

em
be

rs
hi

p

NotSaturated Saturated

Input 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

∆
T

D
eg

re
e 

of
 m

em
be

rs
hi

p

decreased kept
increased

Output

δ
max

 − δ
FB

θTS
e

Figure 5.19: Membership functions of the two inputs and one output.
The membership functions of the two inputs, θe and δ are characterized
by θTS

e and δFB respectively. We use triangular or trapezoidal shapes as
the type of membership function because they are simple to implement

and fast for computation

δFB based on past experiments by looking at the range of the elevator within

which the depth is maintained. One example is given in Figure 5.20 showing

the elevator changing within a range of 0.05 rad.

The output consists of three fuzzy sets: decreased, kept and increased

corresponding to values −1, 0 and 1 respectively as shown in Figure 5.19.

The design of such an output membership function together with the LOM

defuzzification method restricts the output value to three levels similar to a

bang-off-bang controller output. This is best illustrated by the output surface

map (Figure 5.21). The output surface has only three distinct colors: red

for 1, green for 0 and blue for −1. The output surface map shows that the

seeking algorithm will reduce TR whenever δs is not saturated and θe is small

(blue region). Reduction in TR will cause δs to become saturated eventually.
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Figure 5.20: A snapshot of steady state elevator and pitch error when
the AUV is operating under nominal thrust. This figure is the zoom-
in of the first 10 s of Figure 5.12. The top figure shows the elevator
operating within the range of 0.07-0.12 rad which leads to the assignment
of δFB = 0.05 rad. The bottom graph shows the corresponding pitch
error which leads to the assignment of θTS

e = 0.01 rad. The figure also
shows how the filter smooths θe and removes the spikes in δs.

If δs is saturated and θe is small (green region), TR will be kept. If the AUV

experiences a disturbance that is larger than expected, θe will become large.

The current TR is not sufficient to overcome the disturbance and thus TR

needs to be increased (red region). When the disturbance fades away, the

vehicle goes back to the blue region. Then the seeking algorithm will reduce

TR until the green region is reached again.

5.3.2.2 Filtering

Both elevator δs and pitch error θe are filtered using a low pass filter [70] of

the following form:

y(n) = (1− r)x(n) + ry(n− 1), 0 < r < 1, r = exp(−1/d) (5.64)
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Figure 5.21: Output surface map of the Fuzzy Inference System. The
plot displays the dependency of the output ∆T on the two inputs: pitch

error θe, and elevator deflection δ.

where y is the filtered output, x is the input and d is the filter time constant. In

the actual implementation, filtering is performed in the AUV depth subsystem,

which runs at 20 Hz, before the data is fed into the minimum speed seeking

subsystem. r is chosen as 0.95 which corresponds to d ≈ 20 samples, equivalent

to TS = 1 s. As shown in Figure 5.20, the signals are filtered to average out

the measurement noise and to remove spikes.

5.4 Simulation Results

A simulation model was built in Matlab/Simulink environment based on the

AUV depth subsystem described in Section 5.1, and the minimum speed

seeking subsystem described in Section 5.3. The two main objectives of

performing the simulation are:

� The theoretical minimum speed is known in simulation. It is of interest

to find out via simulation how close the seeking algorithm approaches

the minimum speed.
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� Simulation allows trials of different sets of design parameters rapidly,

hence enabling the study of the impact of individual design parameters

on the seeking performance.

All relevant parameters used in the simulation are listed in Table 5.1.

Table 5.1: Simulation parameters

Design Initial Controller
Parameters Value Units Parameters Value Units Parameters Value Units

θTs
e 0.01 rad TR(0) 0.7 - Kpz -0.15 rad/m
δFB 0.05 rad Z0 2 m Kiz -0.01 rad/m
TS 1 s θ0,α0,q0 0 rad, rad/s Kpθ -20 -
∆T 0.01 - V0 1.4 m/s Kiθ -0.1 -

Model Model Hydrodynamics
Parameters Value Units Parameters Value Units Parameters Value Units

ρ 1000 kgm-3 Jy 40 kgm2 CD0 -1.2 -
m 66 kg zcg 0.01 m CLα -1.5 -
mx 70.2 kg xcg 0 m CLδ -0.3 -
mz 128.8 kg Ab 0.0314 m2 CMα -1.8 -
Fw 647.5 N Af 0.0431 m2 CMq -0.8 -
FB 649.4 N L 2 m δmax 0.26 rad
g 9.81 ms-2 xf 1 m

Figure 5.22 shows the trajectory of the simulated thrust and speed with

respect to time. Initially, the AUV is commanded to thrust at 0.70 until

100 s, which is when the seeking algorithm is turned on. The thrust ratio is

reduced to 0.44, which is very close to the optimal thrust ratio (T ∗R = 0.433

from (5.55)). The thrust ratio takes 50 s to settles down despite a small

fluctuation seen in the transition stage. A similar response is seen in the

speed, where it settles down to 0.69 m/s, just above the minimum speed

(Vmin = 0.678 m/s).

Figure 5.23 illustrates how the output of the FIS is driven by the two

inputs, δs and θe. Initially, since δs is not saturated, TR is reduced. In order

to maintain its depth, the AUV needs more downward pitching when the

speed is reduced consecutively from 100 s to 130 s. θd decreases faster than

θ, causing θe to grow. At the interval 131 s-139 s, TR is increased for nine

consecutive steps. Then, θe becomes smaller as the pitch response manages

to catch up with the desired pitch. TR is reduced from 0.49 back to 0.44 and
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Figure 5.22: Simulated thrust ratio and speed.

stable after 50 s.

As shown in Figure 5.24, to maintain its depth, the AUV needs to pitch

at -1.4 deg when cruising at 1.4 m/s. While the speed is reduced, the pitch

angle decreases and settles down to -7.8 deg. There is a small oscillation in

pitch seen in the transition stage, but in general the pitch response follows the

desired pitch closely. The depth is kept at the desired value of 2 m throughout

the entire period despite small oscillations during the transition stage.

The minimum speed that can be attained by the seeking algorithm depends

on the allocated fin budget δFB (see Figure 5.25). The smaller the fin budget,

the closer the attainable minimum speed approaches the minimum speed

Vmin, but this is achieved at the expense of robustness against disturbance.

In practice, the disturbance always exists; if there is not enough fin budget to

overcome the disturbance, fuzzy rule 3 will be triggered periodically, causing

TR to oscillate. Hence, the selection of the fin budget is a trade-off between

optimality and robustness.

Figure 5.26 shows the convergence of thrust ratio corresponding to different

seeking periods TS. The seeking period determines how frequent the seeking

algorithm is executed. In order to achieve time-scale separation between the
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Figure 5.23: Simulated elevator and pitch error and the corresponding
FIS output.

pitch dynamics and the seeking dynamics, TS has to be many times larger than

the time constant of pitch dynamics. The simulation results show that the

seeking algorithm is unstable for TS = 0.5 s, which causes bounded oscillation

of the thrust ratio. As TS is increased, the response becomes more stable

but the convergence time is longer. TS = 1 s is ideal as it strikes a balance

between stability and convergence time. In addition, the results show that

the choice of TS does not affect the optimality.
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Figure 5.24: Simulated pitch and depth responses.
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5.5 Experiment Results

In this section, we verify the minimum speed seeking algorithm via field

experiments conducted in both the lake and sea environment. First, we

start with the lake experiments where the water is considered static and

the underwater disturbance is relatively small. As there is no underwater

current, the AUV speed relative to the surrounding water is equal to its

ground speed, which is measured by the DVL. Compared to experiments

in the lake, the experiments conducted at the sea, especially in the case

of shallow water, belong to the other extreme. The AUV is subjected to

waves, tides, weather conditions, air and water interactions, and commercial

and recreational navigations when operating in the shallow water region [71].

Therefore, the lake experiments allow us to investigate the performance of

the algorithm without worrying about the effects of the disturbance, while

the sea experiments provide a real test on the robustness of the algorithm.

5.5.1 Lake Experiments

The lake experiments were conducted at Pandan Reservoir4 with the STAR-

FISH AUV, equipped with DVL and an in-situ water particle sensing payload.

Figure 5.27 shows the trajectory of the thrust and speed with respect to

time. Initially, the AUV was commanded to cruise at a speed of 1.4 m/s until

the seeking algorithm was turned on at 50 s. The thrust ratio was reduced

gradually to 0.47 from 0.70. A small transient of TR was seen in the transition

stage. However, the fluctuation was so small that it did not affect the speed,

which settled down to 0.75 m/s in 23 s. We observed the same behavior when

we compare the experimental results with the simulated ones. The thrust

ratio reduced gradually to a minimum point, followed by a small increase, and

settled down quickly thereafter. This similarity gives a very strong assurance

to the model, in the sense that the characteristic of the dynamics is modeled

correctly although the model parameters are not known precisely.

The fact that the thrust ratio settles down to a constant is an appealing

4Pandan Reservoir is located in the western region of Singapore.

103



5.5 Experiment Results

0 50 100 150 200 250

0

0.5

1

1.5

2

Time (s)

S
p

e
e

d
 V

 (
m

/s
)

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Time (s)

Th
ru

st
 R

a
ti
o

 T
R

Figure 5.27: Lake experiment: thrust ratio and speed.

feature because this results in a constant speed operation. The settling down

of the thrust ratio is not due to the termination of the seeking algorithm. In

fact, the algorithm is still active and will modify the thrust ratio if there is

any change in the operating condition. For example, if the AUV experiences a

sudden disturbance that affects the pitch error, its speed will be increased to

generate more lift to overcome the disturbance. When the disturbance fades

away, the seeking algorithm will bring back the thrust ratio to its minimum

again.

The STARFISH AUV is normally operated at a nominal thrust ratio of

0.70, which requires a thrust power of 145 W. If the thrust ratio is reduced

to 0.47, the thrust power will be reduced to 43 W, giving a savings of 102 W.

If we have 1 kW hour of battery energy for propulsion, traveling at TR =

0.47 instead of 0.70 will increase the vehicle’s endurance from 7 hours to 23

hours. 5

Figure 5.28 illustrates how the elevator and pitch error evolved with time,

and the corresponding FIS output. The data was logged in the seeking

algorithm and only available from 50 s onwards. Both the inputs and the FIS

5For illustration purpose only; the hotel load is not included in the calculation.
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Figure 5.28: Lake experiment: elevator and pitch error.

output exhibited similar response to their simulated counterparts. However,

since the AUV experienced disturbance in the real world environment, the

pitch error fluctuated even after the speed has settled down. As a result,

the elevator changed rapidly to overcome the disturbance and to keep the

pitch error small. Enough fin budget needs to be allocated to counteract the

disturbance; otherwise the pitch error will grow and lead to oscillations in

the thrust ratio.

As shown in Figure 5.29, the AUV pitched at -2 deg and cruised at 1.4 m/s

just before the seeking algorithm was turned on. As the speed was decreased

from 50 s to 73 s, the pitch angle decreased and settled down to -10 deg.

Throughout the process, the pitch response followed the desired pitch closely.

The depth plot shows how the AUV breached the surface and settled down

to 1.5 m depth at 50 s. The depth response displayed a steady state error

because the integral control had not yet been implemented. In other words,

the depth controller was a pure proportional controller where steady state

error was expected. Nevertheless, this did not affect the minimum speed
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Figure 5.29: Lake experiment: pitch and depth responses.

seeking algorithm as depth measurement was not used in the algorithm.

The results that we discussed above are based on experiment 1 which

δmax = 0.26. We repeated the experiments twice for δmax = 0.35 and twice for

δmax = 0.40. They are labeled as experiment 2 & 3, and as experiment 4 & 5

respectively as indicated in Table 5.2. Table 5.2 summarizes the important

vehicle’s states such as depth, pitch angle, thrust ratio, surge speed, heave

speed and elevator deflection by taking the average of the last one hundred

seconds of data (from 150 s to 250 s). Their respective standard of deviation

are indicated in the bracket shown underneath their average value.

Let first look at the experiment 2 and 3. They are repeated experiment for

δmax = 0.35. During the steady state, the AUV was pitch at around -12 deg,

traveling at TR = 0.44 with the resultant surge speed around 0.67 m/s for

both experiments. This indicates consistency in term of the behavior of

the minimum speed seeking algorithm despite working in an unstructured

environment that is full of unknown disturbance. Similarly, the results of

experiments 4 and 5 for δmax = 0.40 are also consistent. During the steady

state, the AUV was pitch at around -13 deg, traveling at TR = 0.43 with the

resultant surge speed around 0.62 m/s for both experiments. We also overlay
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Figure 5.30: Thrust and speed response for two repeated experiments
with δmax = 0.35.

the trajectory of thrust ratio and vehicle speed for experiment 2 & 3, and

experiment 4 & 5 in Figure 5.30 and 5.31 respectively. The results match

each and other very closely for the repeated experiments.

The results in Table 5.2 also show the effect of fin’s effectiveness on the

minimum speed. Analysis in Section 3.1 claims that the minimum speed is

inversely proportional to fin’s effectiveness, and the reduction of the minimum

speed is coupled with the decrease of the pitch angle (see also Figure 5.11). In

this case, increase of δmax from 0.26 to 0.40 has a similar effect of increasing

fin’s effectiveness, as the δmax produces lift force only by multiplication with

fin’s effectiveness xfAfCLδ . The results indicates that the minimum speed

reduces and the pitch becomes more negative when the δmax increases. This

matches the theoretical analysis made in Section 3.1.

When the δmax is set to a larger value, the average thrust ratio and hence

the average speed is reduced. At the lower speed, the vehicle needs more

downward pitching in order to maintain depth, as indicated by the decrease

of pitch angle. However, for δmax = 0.40, the thrust ratio and the speed of

the vehicle is in fact oscillatory as shown in Figure 5.31. This phenomenon is

discussed further in detail in Section 5.6.1.
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Figure 5.31: Thrust and speed response for two repeated experiments
with δmax = 0.40.

Table 5.2: Summary of experiment results during steady state for
different δmax

Experiment δmax Depth Pitch TR u w δ
No. (rad) (m) (deg) (m/s) (m/s) (rad)
1 0.26 0.89 -9.86 0.47 0.76 -0.14 0.25

(0.013) (0.220) (0.000) (0.009) (0.005) (0.019)
2 0.35 1.10 -12.86 0.44 0.66 -0.16 0.33

(0.035) (0.458) (0.007) (0.015) (0.005) (0.029)
3 0.35 1.22 -11.97 0.44 0.67 -0.15 0.31

(0.095) (1.013) (0.018) (0.042) (0.012) (0.063)
4 0.40 0.91 -13.70 0.43 0.61 -0.16 0.36

(0.157) (2.169) (0.031) (0.061) (0.016) (0.062)
5 0.40 0.80 -13.63 0.43 0.63 -0.16 0.35

(0.170) (2.251) (0.032) (0.066) (0.016) (0.073)
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5.5.2 Open Sea Experiments

The sea experiments were conducted at Selat Pauh6 with the STARFISH

AUV equipped with a DVL payload (see Figure 5.32).

Figure 5.32: STARFISH AUV was towing a float during the open sea
experiment. The picture was taken when the AUV was breaching the

surface after completing a dive at 1.5 m depth.

Before the start of the mission (0 s - 25 s), the AUV was at rest on the

surface and facing the opposite current. The current has a magnitude of

0.5 m/s, indicated by the initial speed in Figure 5.33. Then, the AUV was

commanded to cruise at 1.2 m/s until the seeking algorithm was turned on

at 75 s. The algorithm started seeking from TR = 0.70, which explained

why there was a sudden drop of thrust ratio at 75 s. After that, the thrust

ratio was reduced gradually to 0.43. At the same time, the ground speed was

reduced to zero. Based on equation (5.54) and (5.55), at TR = 0.43, the AUV

should cruise at 0.67 m/s, which was canceled by the opposing current.

Figure 5.34 illustrates how the elevator and the pitch error evolved with

time and the corresponding FIS output. The data was logged in the seeking

algorithm and was only available from 50 s till 275 s. For sea experiments, the

disturbance was expected to be large as the AUV was subjected to underwater

currents, surface waves, and external forces and moments introduced by the

towing buoy (see Figure 5.32). As a result, the pitch error fluctuated beyond

6Selat Pauh is a strait between Hantu Island and Sudong Island, located south-west of
mainland Singapore. The area is characterized by strong currents which could run up to 4
knots.
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Figure 5.33: Sea experiments: thrust ratio and speed.

the expected bound of 0.01 rad. This triggered fuzzy rule 3 and led to the

oscillation of the thrust ratio. An examination of the pitch error in an early

run at sea revealed that θTS
e should be set to 0.02 rad instead of 0.01 rad.

However, since the main aim of this experiment is to test the robustness of

the algorithm, the design parameters determined from the lake experiments

were maintained here despite changes in vehicle configuration, buoyancy, and

operating condition. The pitch error threshold θTS
e could easily be calibrated

in the future by examining the expected pitch error when the AUV is cruising

at nominal speed at the sea.

As the ground speed is decreased from 1.2 m/s to almost zero, the pitch

angle decreased and settled down at around -10 deg (see Figure 5.35). Similar

to the lake experiment, the pitch response followed the desired pitch closely.

The depth plot shows how the AUV breached the surface and overshot to

2 m before reaching the desired depth of 1.5 m. In contrast to the lake

experiments, integral control was implemented during the sea experiments,

causing the depth to be changed slowly to remove the steady state error.

Small oscillations in both the pitch and depth responses were observed and
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Figure 5.34: Sea experiments: elevator and pitch error.

these were due to the oscillation of thrust ratio explained earlier. The mission

ended at 275 s and the AUV was commanded to the surface.

Figure 5.36 plots the x and y positions of the AUV with timing indication.

From 0 s to 25 s, the AUV traveled to the east, carried by the current. From

25 s to 75 s, the AUV traveled to the west for about 50 m. After that, the

speed of the AUV was reduced gradually to almost zero at 100 s. From

125 s to 275 s, the AUV moved just 10 m to the north for the duration of

150 s, with a speed averaging at 0.07 m/s. The AUV maintained a west

heading throughout the whole experiment; the northward motion is due to

the underwater current causing a small sway velocity. The results show the

possibility that non-hovering AUVs like the STARFISH AUV can indeed

hover underwater when facing the opposite current.

In order to study the repeatability of the proposed solution, second

experiment was conducted immediately after the first experiment using the

same set of design parameters. We overlay the trajectory of thrust ratio and

vehicle speed for the both experiments in Figure 5.37. Once again, the results

match each and other very closely for the repeated experiments.
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Figure 5.35: Sea experiments: pitch and depth responses.
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Figure 5.37: Thrust and speed response for two repeated open sea
experiments.
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5.6 Discussion

5.6.1 Effect of δmax

The seeking algorithm requires one to know the value of δmax. The value of

δmax should have been decided earlier when designing the depth and pitch

controller. It is understood that when deciding the value of δmax, controller

designers tend to be more conservative to ensure that the fins work within

the linear region and away from stall. Here, we investigate the consequence

of changing δmax on the optimality of the solution.
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Figure 5.38: Thrust ratio and speed for different δmax.

Figure 5.39: Effective fin angles δse.

We repeated the lake experiments presented in Section 5.5.1 for three
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different δmax and the results are presented in Figure 5.38. At δmax = 0.26,

TR settled down to 0.47 and the corresponding speed was 0.75 m/s. At

δmax = 0.35, TR settled down to 0.44 and the corresponding speed was

0.66 m/s. TR could not settle down and was in a limit cycle when δmax = 0.40.

The results show that the gain in thrust deduction is only marginal even

though the change in δmax is large (from 0.26 to 0.35). When δmax is set too

large, the seeking algorithm will reduce TR beyond T ∗R. Then, θe becomes

larger than the θTS
e , causing the seeking algorithm to increase TR. When TR

becomes larger than T ∗R, θe returns to the normal region. The process repeats

itself, forming the limit cycle.

It is of interest to know why the elevator stalls at a much higher value

of δmax. As shown in Figure 5.39, there is a difference between the elevator

incidence angle relative to the incoming flow, δse and the elevator angle relative

to the vehicle hull, δs. During a constant depth maneuver, the AUV pitches

down at a certain angle βse to maintain depth. This causes the stall to occur

at a larger δmax, extended by βse.

5.6.2 Choice of input parameter: thrust or speed

In the initial design, a speed control system which allowed the desired speed

to be specified was included in the depth subsystem. The inclusion was found

to be a poor choice. Firstly, it is desirable to have the algorithm independent

of the Doppler Velocity Log (DVL), since the DVL is an expensive sensor

and not all AUVs are equipped with it. Secondly and more importantly, the

speed measured by the DVL is with respect to the ground. Minimizing the

AUV speed in terms of ground speed should be avoided because the ground

speed is affected by underwater currents. On the other hand, the minimum

speed of the AUV should be defined in terms of the relative speed to the

surrounding water, which determines the hydrodynamic forces acting on the

vehicle body and fins. The AUV’s relative speed to the surrounding water is

purely a function of AUV thrust ratio. Hence, instead of minimizing speed,

we solve the equivalent problem of minimizing thrust ratio which is invariant

under the influence of the current.

115



5.7 Summary

5.7 Summary

Since it is useful for AUVs to move as slowly as possible in some scenarios,

we develop an online minimum speed seeking algorithm. While previous

research works focused on extending the minimum speed by adding actuators,

we propose algorithmic enhancements without the need for any hardware

changes. This algorithm is applicable to non-hovering AUVs, which are widely

in service nowadays.

We constructed a depth dynamic model for a typical torpedo-shaped AUV.

Through the model, we explained the mechanism of the minimum speed

and identified three major factors (buoyancy, righting moment and the fin’s

effectiveness) that affect the value of the minimum speed. A minimum speed

seeking algorithm was then developed under the framework of extremum

seeking. We extend the framework by introducing a new definition of steady

state mapping which imposes new structure on the seeking algorithm.

We verified the seeking algorithm in the lake experiments using the

STARFISH AUV. The STARFISH AUV is normally operated at 0.70 thrust

ratio with a nominal speed of 1.4 m/s. The seeking algorithm managed to

reduce the thrust ratio to 0.47 with the corresponding speed of 0.75 m/s,

while maintaining the depth of the AUV. We repeated the experiment in a

sea environment with the same set of design parameters to demonstrate the

robustness of the algorithm. The thrust ratio converged to 0.43 despite a

small oscillation. The results from the sea experiments show the possibility

that the non-hovering AUV can indeed hover underwater when facing opposite

currents.
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Chapter 6

Conclusions and Future

Research

6.1 Conclusions

AUVs have a wide range of applications in ocean research and are increasingly

being used for different scientific, military, and commercial purposes. In order

to achieve different tasks, AUVs are designed to be modular, where their

payload configuration can be changed frequently depending on the mission

requirements. However, the changing of the payload configuration will affect

the dynamic characteristic of an AUV. Since the dynamic model underlies the

design of its navigation, guidance and control systems, any deviation from

the nominal model would potentially degrade the vehicle’s performance.

Therefore, we have developed a method to enable rapid identification

of AUV dynamics via field experiments. The method can be employed to

obtain an updated dynamic model economically whenever there is a change

in payload configuration or vehicle geometry. The newly configured AUV is

commanded to perform a compact set of maneuvers where doublet excitation

is used to excite the dynamics. The identification process has two main

stages. In the training stage, the control fins and attitude measurements are

processed online by the SVF-RLS estimator to produce an estimation of the

unknown model parameters. In the validation stage, the prediction capability
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of the identified model is checked using fresh validation data sets.

For experiments on five different thrust settings, the parameters showed

fast convergence within 12 s. Validation results showed that the identified

models can explain 78% to 92% of the output variation, and hence we are con-

vinced that the identified models have captured the dominant characteristics

of the dynamics. The identification results indicated that the rotational drag

coefficient a22 has a small variation around its mean when the speed varies.

The rudder control authority b2 varies linearly with the square of speed u2

which matches well with our physical understanding. These observations are

important because they allow us to predict the dynamic model beyond those

identified, via interpolation or extrapolation.

We have compared the SVF-RLS estimator against a conventional offline

identification method that requires numerical optimization. The comparison

showed that the SVF-RLS estimator outperforms the offline method in terms

of prediction accuracy, computational cost, and shorter training time by

detecting parameter convergence online. The usefulness of the identified

parameters was highlighted in two applications. First, we illustrated how the

yaw identification results can be used to estimate the turning radius of the AUV

at different speeds. The accuracy of the estimation was validated in a field

experiment. Second, the understanding of yaw dynamics at different speeds

allows easy implementation of a gain-scheduled controller. The experimental

results indicated that the gain-scheduled controller achieved better system

performance compared with a constant gain controller.

In order to meet the decoupling assumption, the roll angle of the AUV has

to be kept small. Hence, we have demonstrated the use of an internal rolling

mass mechanism for active roll stabilization in a typical AUV. We are the first

to report on the use of such mechanism for roll stabilization. The mechanism

was designed and implemented in the STARFISH AUV. A nonlinear model

was first developed to describe the dynamics of the AUV’s roll. The model

was later linearized to obtain a transfer function for controller synthesis. The

model parameters were identified through open-loop testing in a water tank.

A Proportional-Integral controller was then designed to increase the overall

system damping and remove the steady-state error. The capability of IRM to
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6.1 Conclusions

stabilize the roll motion was demonstrated in tank tests and field experiments.

As the parameters of the dynamic model are scheduled according to

the vehicle’s speed, the operating range of the speed need to be known, in

particular, the minimum achievable speed. We have explained the mechanism

behind the phenomenon and also developed a novel algorithm such that

the AUV is automatically controlled to travel at its minimum speed while

maintaining a constant depth. It is the first time that such an algorithm is

developed.

First, we have analyzed a depth dynamic model for a typical torpedo-

shaped AUV. Through the model, we gave a formal definition of the minimum

speed. Next, we derived the equations for two important curves: maximum

required pitch curve and achievable pitch curve. We then argued that the

minimum speed occurs at the intersection of these two curves. The final

solution of the minimum speed was then derived together with its condition of

existence. By analyzing the maximum required pitch curve and the achievable

pitch curve, we studied how the buoyancy, righting moment, and the fin’s

effectiveness affect the minimum speed. This understanding provides us

with an insight into how the minimum speed of an AUV could be altered in

practice.

However, the model is not useful in predicting the exact value of the

minimum speed as the model parameters (hydrodynamic coefficients) are not

known with high accuracy. In addition, the minimum speed is also affected

by the environmental disturbance. Therefore, any prior determination of

the minimum speed would be either highly conservative or else, it runs the

risk of the AUV losing its controllability. We have developed a minimum

speed seeking algorithm under the framework of extremum seeking. Online

measurements of the elevator and the pitch error is fed to a fuzzy inference

system, which in turn decides whether to increase, decrease or keep the thrust

ratio at every seeking interval. The design of the seeking algorithm does not

require accurate modeling of the dynamics of the AUV. Instead, the design

parameters can be determined based on some known characteristic of the

AUV and some available measurements.

The effectiveness of the algorithm in seeking the minimum speed was first
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studied by simulation. Through simulation, we also investigated the effect

of the design parameters on the stability and the optimality of the solution.

Next, we verified the seeking algorithm in the lake experiments using the

STARFISH AUV. The STARFISH AUV is normally operated at 0.70 thrust

ratio with a nominal speed of 1.4 m/s. The seeking algorithm managed to

reduce the thrust ratio to 0.47 with the corresponding speed of 0.75 m/s while

maintaining the depth of the AUV. The seeking algorithm worked consistently

in a number of repeated experiments. We also repeated the experiment in

a sea environment with the same set of design parameters to demonstrate

the robustness of the algorithm. The thrust ratio converged to 0.43 despite a

small oscillation was observed. The results from the sea experiments showed

the possibility that the non-hovering AUV can indeed hover underwater when

facing opposite currents.

The availability of such an algorithm as a built-in function of an AUV,

will open up new possibilities in a number of operation scenarios such as

underwater loitering with minimal energy consumption, underwater docking

with minimal impact, target scanning with minimum speed, and hovering

with the help of underwater current.

6.2 Future Research

1. The online system identification might be expanded in the future to

detect potential faults that could occur, such as fin stuck due to the

malfunction of a servomotor, and fin offset due to a collision. In order to

capture the fault, fault detection system needs to be turned on during

normal operation of the AUV. However, data collected during the normal

operation (for example, when running on a straight path) have very low

signal to noise ratio and could result in erroneous parameter estimation.

Hence, an intelligent filter needs to be designed so that the dynamic

model is updated only if the data contain useful information.

2. Through the sea experiments, we have shown the potential of an AUV

performing hovering with the help of underwater current. However, in
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order to hover, the direction and magnitude of the underwater current

need to be estimated. If the underwater current has a magnitude larger

than or equal to the minimum speed of the AUV, then the AUV can be

commanded at the particular thrust to cancel the opposite current.

3. We have demonstrated the effectiveness of the internal rolling mass

in regulating the roll of the AUV. However, since the controller was

designed based on the decoupling technique, it does not tackle directly

the moment generated when the AUV is turning. The coupling effect

between yaw and roll during the turn could be studied in the future,

and a controller could be designed to suppress the coupling effect.
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in IEEE Journal of Ocean Engineering.

� Y. H. Eng, M. Chitre, K. M. Teo, and K. M. Ng, “Minimum speed

seeking control for non-hovering autonomous underwater vehicles”, in
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Appendix B

Online Identification Result for

Pitch Dynamics

In this appendix, we present the identification result for pitch dynamics of

the AUV. First, we start with the development of pitch dynamics model.

Once the dynamics is described in a linear parameter model, one then apply

method developed in chapter 3 to identify the four unknown parameters for

different thrust settings.

B.1 Pitch Dynamics

By making the following assumptions, we restrict the motion of the AUV in

the diving plane (x-z plane):

1. sway velocity v = 0.

2. roll φ = 0.

3. constant heading ψ = ψo ⇒ yaw rate ψ̇ = 0.

The equations of motion for heave and pitch are:

m(ẇ − u0q) = Z (B.1)

Iy q̇ = M (B.2)
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B.1 Pitch Dynamics

The heave external force Z and pitch moments M consist of hydrodynamic

added mass, linear damping, cross flow drag, Munk moment and effect of

elevator plane deflection. In addition, there is righting moment in pitch due

to the vertical distance between the center of mass and the center of buoyancy

BGz = zG − zB. There is also excessive positive buoyancy of the vehicle

∆B = B −mg that acts in z-axis.

Z = Zẇẇ + Zq̇ q̇ + Zww + Zqq + Zδδs + ∆B (B.3)

M = Mẇẇ +Mq̇ q̇ +Mww +Mqq

−mg(zG − zB) sin θ +Mδδs

' Mẇẇ +Mq̇ q̇ +Mww +Mqq

−mgBGzθ +Mδδs (B.4)

From kinematics analysis in x-z plane with assumption of small pitch angle,

we have:

θ̇ = q (B.5)

ż = −θu0 + w (B.6)

Substituting (B.3) and (B.4) into (B.1) and (B.2) respectively and combining

with (B.5) and (B.6), we can write the following state space representation

using state variable w(t), q(t), θ(t), and z(t):
ẇ

q̇

θ̇

ż

 =


−c11 −c12 −c13 0

−c21 −c22 −c23 0

0 1 0 0

1 0 −u0 0



w

q

θ

z



+


d1

d2

0

0

 δs +


e1

e2

0

0

∆B (B.7)
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B.1 Pitch Dynamics

By assuming the value of c21w to be constant as heave velocity does not

fluctuate significantly during a run, the linear model in (B.7) reduces to:q̇θ̇
ż

 =

−c22 −c23 0

1 0 0

0 −u0 0


qθ
z



+

d2

0

0

 δs +

c21w + e2∆B

0

0

 (B.8)

Thus, the pitch dynamics are:

θ̇ = q (B.9)

q̇ = −c22q − c23θ + d2δs + Cb (B.10)

where

Cb = c21w + e2∆B (B.11)

The above derivation of the depth subsystem model follows the derivation

in [13] closely but takes into the consideration that the AUV is positive

buoyant. From experimental measurements, the resulting heave velocity is

around 0.13 m/s and therefore it is not negligible. In [13], the heave velocity is

small (less than 0.05 m/s). The heave velocity introduces cross flow drag and

Munk moment which result in an offset term Cb that needs to be compensated

by the pitch controller.

Rewriting (B.10), we have four parameters to be identified:

q̇ =
[
−q −θ δ 1

]

c22

c23

d2

Cb

 (B.12)
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Equation (B.10) can also be rewritten in the following form by introducing a

new term, steady state elevator deflection δs0 :

q̇ = −c22q − c23θ + d2(δs +
Cb
d2

) (B.13)

q̇ + c22q + c23θ = d2(δs + δs0)

Applying Laplace Transform and a change of variable, we have:

θ(S)

δ′s(S)
=

d2

s2 + c22s+ c23

, δ′s(S) = L(δs + δs0) (B.14)

B.2 Identification Results and Discussion

B.2.1 Experimental Procedure

The AUV was commanded to perform a straight run of 100 m at a depth of

2 m. When the AUV reached steady state (maintaining constant heading

and depth), the excitation signal of ±0.26 rad for 2 seconds respectively was

injected into elevator deflection (Fig. B.2d). The deflection generates moment

in pitch axis and excites the pitch dynamics dramatically (Fig. B.2b). After

the excitation, the depth controller was switched on to return the AUV to

the desired depth. The whole process was repeated for the second time for

the richness of the data set. During the data collection, it is important to

monitor the AUV’s roll and yaw angle. Roll should be maintained near zero

(Fig. B.2a) and yaw angle should be maintained constant (Fig. B.2c) in order

to minimize the coupling effect. This is also illustrated in Fig. B.1b where

the AUV was moving in a straight path in the x-y position plot.

B.2.2 Identification Result

The results of identification are summarized in Table B.1 and Fig. B.3 shows

how the parameters evolve with time. The linear damping term c22 and

righting moment term c23 have values range between 2.1 to 2.6 and 0.02 to
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B.2 Identification Results and Discussion

Figure B.1: Experiment run for identification for pitch dynamics at
thrust ratio 70%. Plot of depth, x-y position, velocity and thrust ratio

0.05 respectively with varying speeds. The positive value of both c22 and

c23 indicate that the pitch dynamics is inherently stable (poles are in the

left-half plane) over the entire speed range. The elevator control authority d2

increases with speed due to higher dynamic pressure at the control surfaces.

Theoretically, the gain d2 should vary linearly with the square in speed, u2.

This is verified in Fig. B.4 which plot d2 against u2. The negative value of

d2 indicates that the positive rudder input creates negative moment in pitch.

The magnitude of steady state elevator fin deflection δs0 reduces with increase

of speed. In order to maintain a constant depth, AUV needs to pitch down

slightly to overcome its own buoyancy. The net buoyancy stays constant.

However, when AUV’s thrust increases, the required pitch down angle θ0 is

reduced and thus the steady state elevator deflection.

From the last column of Table B.1, it is observed that R2 ranges from

0.83 to 0.93, which indicates that the models can explain 83% to 93% of

the pitch output variation. The variation of R2 values is expected as the

experiments were conducted in unstructured real world environment, subjected

to unknown disturbance and measurement noise. Nevertheless, the overall
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B.2 Identification Results and Discussion

Figure B.2: Experiment run for identification for pitch dynamics at
thrust ratio 70%. Plot of roll, pitch, yaw and elevator

prediction capabilities are satisfactory as one could see in Fig. B.5, which

overlays both θreal and θsim for thrust 60% to 100% and their corresponding

R2 values. The simulated response ψsim is able to describe the measured

response very well for all thrust settings. From the results, we are convinced

that the identified models have captured the dominant dynamic characteristic

of the process.

Table B.1: Parameters identified for Pitch dynamics at different thrust

Thrust Speed c22 c23 d2 Cb δs0 θ0 R2

(%) (m/s) (rad) (deg)

60 1.09 2.13 0.052 -0.94 0.089 -0.095 -2.72 0.87
70 1.37 2.34 0.057 -1.34 0.100 -0.075 -1.53 0.90
80 1.67 2.31 0.031 -1.58 0.081 -0.051 -0.94 0.83
90 1.93 2.43 0.021 -1.91 0.102 -0.054 -0.40 0.93
100 2.23 2.57 0.033 -2.39 0.099 -0.042 -0.06 0.90
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B.2 Identification Results and Discussion

Figure B.3: Online parameters estimation of pitch dynamics for differ-
ent thrusts

Figure B.4: Plot of elevator control authority d2 against speed2
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