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Summary 
 

Biologically and therapeutically relevant compounds include drugs, bioactive 

compounds, food ingredients and additives, agrochemicals, metabolites, natural 

products, and toxic substances, which occupy special places in the chemical space 

with specific structural and physicochemical features for producing physiological or 

therapeutic functions on living organisms or for the metabolism by living systems. 

These compounds have common features for binding to biological macromolecules 

that can be characterized by their structural features (e.g. compounds of similar 

structures or pharmacophores bind to similar macromolecules), target properties (e.g. 

structural and physicochemical complementarity to the target sites, and targets of 

similar sequences may accommodate similar compounds) and activity profiles (e.g. 

quantitative structure-activity relationships). Characterization of biologically and 

therapeutically relevant compounds has been extensively used in diverse tasks of 

molecular and chemogenomic studies in applications such as drug discovery, 

chemical space navigation, structure-target relationship investigation as well as 

cross-pharmacology profiling. 

The aims of this thesis are (1) to extend the coverage of structure similarity based 

structural characterization from compounds of individual target classes to the more 

comprehensive sets of biologically and therapeutically relevant compounds, (2) to 

improve the target structure based characterization of compounds in such applications 

as molecular docking, and (3) to explore combined structure similarity based and 

target sequence similarity based characterization of compounds of the same target 
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families for facilitating such applications as ligand discovery, scaffold hopping and 

target hopping. 

Although similarity based methods have been extensively used for classifying and 

analyzing compounds, these often restricted to subsets of compounds individual 

targets. For facilitating the characterization of biologically and therapeutically 

relevant compounds and the orderly management of known compounds with respect 

to their functional categories, there is a need to systematically organize more 

comprehensive sets of compounds into chemical families based on structural 

similarity. In this thesis, a method for comprehensive characterization of compounds 

based on their structural similarity for definition, generation and maintenance of a 

comprehensive set of chemical families was developed. In order to better understand 

the intrinsic relationship and hierarchy among biologically and therapeutically 

relevant compounds, efforts were devoted to systematically define chemical families 

and select family members relevant to both structural and chemical studies and 

applications in pharmaceutical, biomedical, agricultural and industrial research and 

development. A seed-directed strategy for hierarchically organize these compounds 

was implemented. The results were presented in a function-based chemical families 

database CFam. 

Characterization of compounds from target perspectives, particularly from the 

perspective of their interaction against molecular targets enables the elucidation of the 

mechanism of action and guides the ligand discovery efforts. Such characterization 

can be achieved by using physical energy-based scoring functions. Current 



xi 
 

generalized scoring functions had unsatisfactory performances in predicting the 

binding affinity of compounds to their targets in the cases where co-crystal structures 

of the compounds with their targets are not available, and target-specific approaches 

were found to be a promising improvement. A method of tuning target-specific 

empirical scoring function was developed to predict binding affinity of compounds 

targeting specific receptor family. 

Combined characterization of bioactive compounds of specific target families from 

structural similarity and target sequence similarity perspectives facilitates the 

application of chemogenomic approaches for ligand discovery. A two-dimensional 

characterization method linking target sequence similarity with structural fingerprint 

based ligand similarity was used to derive a two-dimensional characterization based 

on target biding-site sequence similarity and ligand similarity. The method developed 

was tested on human G protein-coupled receptors (GPCR) and their ligands. The 

usefulness of this method was evaluated for characterization of comprehensive 

compound activity profiles and unexpected target associations, and focused on 

potential interest of applying chemogenomic approaches including scaffold hopping, 

target hopping and polypharmacology for ligand discovery and target 

deorphanization. 
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Characterization of biologically and therapeutically relevant 

compounds from structure and target perspectives 

 

 

Chapter 1 Introduction 
 

1.1 Biologically and therapeutically relevant compounds 

 

Biologically relevant compounds occupy special places in the chemical space with 

specific structural and physicochemical features for producing physiological or 

therapeutic functions on living organisms or for the metabolism by living systems. 

These compounds either naturally occur in living organisms or the environment, or are 

synthetic by chemical or biological methods. Therapeutically relevant compounds are 

biologically active and have common features for binding to biological 

macromolecules, thus exhibit the property to regulate the physical or mental states, and 

can be used in the treatment of physical or mental disorders or display such potential. 

Therapeutically relevant compounds discussed in this thesis include FDA approved 

drugs, drugs in clinical trial, investigative drugs and biologically active compounds 

display similar property, such as recreational drugs. These compounds are usually small 

molecules with molecular weight of several hundred Daltons, with several exceptions 

such as antibodies, which are proteins produced by living organisms to identify and 

neutralize foreign objects with molecular weights of hundreds of thousands Daltons. 

The rest of biologically relevant compounds can be classified roughly by their 
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functions or origins, such as human metabolite, natural products, food additives, 

agrochemical compounds and patented agents relevant to biological functions. As 

stated by the similar property principle [1], similar chemical structures between 

compounds result in similar physicochemical properties and biological activities. The 

functional category of a biologically relevant compound is largely determined by its 

structural features. Characterization of these compounds in unit of group of structural 

similarity can provide useful insight of the nature of their function. 

 

The various functions, i.e. physiological effects, of biologically and therapeutically 

relevant compounds are achieved by interaction with biological macromolecules, 

mostly protein enzymes, as their molecular targets. Protein targets have unique spatial 

arrangement of amino acid residues of different physiochemical properties at their 

binding site, thus only compounds with favorable structural features can bind to their 

respective targets. A compound can either act as the substrate or product of the 

enzymatic activity of a protein target, or inhibitor or activator with competitive or 

allosteric regulation. The interaction between the target binding site and the compound 

can be characterized by interaction energy, with affinity resulted from the lowering of 

energy through binding, i.e. the change of Gibbs free energy. The activities of 

biologically relevant compounds are dose dependent, and often a compound can bind to 

different targets, while a target can accommodate different compounds, as long as the 

lowering of energy through binding permits these interactions. Thus by 

characterization of activity profiles of compounds, information of quantitative 

structure-activity relationship (QSAR) can be obtained whose most useful application 
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is the prediction of binding affinities for unknown potential interaction. 

 

The scientific community has accumulated vast amount of data on biologically 

relevant compounds. The most comprehensive biological activity database PubChem 

[2] now contains more than 51 million unique compounds in over 1 million biological 

activity assays. With this large repository of activity data, collections of activities 

between biologically relevant compounds against targets become useful resources in 

characterization of compounds from the activity perspective. The similar property 

principle [1] holds because of the common structural features shared among similar 

compounds, and the structural features determine the ability of a compound for target 

binding. Also, as discussed above, biological targets determine the chemical features of 

their ligands by the arrangement of amino acid residues of different chemical features. 

Thus the extension of the similar property principle to biological targets leads to the 

implication that targets with similar structural features would have similar ligand sets.  

Now the entities in this collective analysis become compound groups and protein target 

groups formed by structural similarity, and the activity relationship between the 

compound and target groups. Chemogenomic approaches [3], whose ultimate goal is to 

identify all possible ligands for all targets, make use of such activity data for integrated 

analysis for ligand discovery and target deorphanization. 

 

 

1.2 Existing methods of characterization of biologically and 

therapeutically relevant compounds 

 



4 
 

1.2.1 Characterization of compound based on compound structures 

Compound can be characterized by their structure and physiochemical properties. For 

example, molecular weights, number of heavy atoms and number of rotatable bonds 

characterize the size of a compound; while solubility, polarity, lipophilicity, 

polarizability captures the overall physiochemical property. On the other hand, 

substructures and functional groups such as carboxyl, amine, long carbon chains or 

aromatic rings contribute to the interaction between hydrogen bond donors and 

acceptors, charged groups and hydrophobic groups. Also compounds can be 

characterized by their structural scaffold, e.g. salicylic acid and its analogs are often 

found to have anti-inflammatory activity, and compound with steroid scaffolds form 

several hormone groups such as glucocorticoids, mineralocorticoids, androgens, 

estrogens, and progestogens and vitamin D. In drug discovery, several rules of thumb 

are used to quickly determine the druglikeliness of a compound with combination of 

simple criteria, such as Lipinski's rule of five [4] and Oprea’s rule of three [5]. 

 

  Based on the above idea of description of compounds with structural features or 

physiochemical properties, characterization methods based on similarity groups were 

developed. By defining similarity with comprehensive set of features, clusters of 

compounds can be created and used as the basic unit of the study. Details of the 

definition and measurement of similarities can be found in Chapter 2 of methods. 

Similarity-based clustering and classification of compounds have been extensively 

used in diverse tasks ranging from the search of bioactive agents for drug discovery 

[6-9] to the molecular and chemogenomic studies in applications such as chemical 
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space navigation and analysis [10, 11], structure-target relationship investigation 

[12-17], cross-pharmacology profiling of intra-family and cross-family targets [18, 19], 

and receptor deorphanization [20]. In these studies, subsets of the chemical space 

covering compounds of interest were selected and hierarchically organized, and useful 

information can be derived from by comparison of similarity groups and their links to 

target activities. 

 

1.2.2 Characterization of compound based on target structures 

 

Characterization of target-binding compounds by target structures in terms of the 

interaction between the compounds and their targets provides useful insight on the 

mechanism of target binding process. Such insight facilitates ligand discovery and 

rational drug design since favorable structural features and their geometrical 

arrangement can be derived. Structural features of the compounds and the target 

binding sites determine the binding modes and affinities. Depending on the 

granularity required for such characterization, pharmacophore analysis and scoring 

function are commonly used approaches. 

 

A pharmacophore is an abstract concept defined as “the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions 

with a specific biological target structure and to trigger (or to block) its biological 

response” [21]. Ligand-based pharmacophore method uses conceptual models to 

describe the relationship between molecular structure and the target binding affinity. 

This concept works by classifying atoms based on their atom type and chemical 
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environment into predefined types such as hydrophobic, hydrogen bond acceptor or 

acceptor, positively or negatively charged groups, without quantifying the strength of 

interactions. Successively, a large number of compounds which are related to a 

specific interest, usually the binders of a protein target, are used to derive the common 

pharmacophore features from their structures to identify the pharmacophore 

requirements for activity. Such process is usually achieved by superimposing the set 

of ligand to obtain maximal overlap of their chemical features [22]. Usually a number 

of non-binders are used in conjunction with binders to help to verify the 

pharmacophore hypothesis. Various software packages exist for ligand-based 

pharmacophore modeling, such as Catalyst [23] and Phase [24]. Pharmacophore 

matching methods can then be employed in screening for active compounds for the 

target of interest. Pharmacophore analysis is widely used in characterization of 

compounds for virtual screening [25-27] and rational ligand design [28-30]. Examples 

include the design of SR13650, a antitumor compound with activity of nanomolar 

level based on pharmacophores of four metabolites of indole-3-carbinol [31], and the 

discovery of HIV-1 integrase inhibitor with activity of micromolar level by database 

screening with pharmacophore hypothesis consisting of nanomolar inhibitors [32]. 

Figure 1-1 illustrates a common feature pharmacophore model built from the training 

set of a study which aimed for the discovery of HIV-1 integrase inhibitor of the 

quinolone 3-carboxylic acid class [32]. 
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Figure 1-1 A common feature pharmacophore model built from the training set of a 

study which aimed for the discovery of HIV-1 integrase inhibitor of the quinolone 

3-carboxylic acid class [32]. The colors indicate different types of pharmacophore 

features: green for hydrogen bond acceptor, blue for negatively ionizable group and 

cyan for hydrophobic features. 

 

In addition to pharmacophore models constructed for binder compounds, 

pharmacophore analysis can also work on protein target binding sites to derive the 

pharmacophore requirement for active compounds. Target-based pharmacophore 

methods make use of 3D crystal structures of target binding sites or target-ligand 

complex structures to derive pharmacophore models. To generate such models, grids 

can be defined within the binding sites and various types of probe atoms are used to 

scan and score the grids. Finally only selected positions of the grids are retained to 

represent essential interactions required for ligands to exhibit activity against the 

targets. By comparison of pharmacophore models for two or more different targets, 
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common pharmacophore models can be derived to screen for multi-target inhibitors 

[33]. Various software packages exist for target-based pharmacophore model 

generation, such as LigandScout [34] and Pocket [35]. Target-based pharmacophore 

models have been used in ligand discovery for various targets, such as 

17b-Hydroxysteroid dehydrogenase type 1 [36] and bacterial DNA gyrase B [37]. 

 

Being able to characterize compounds with qualitative but not quantitative atom 

typing, pharmacophore analysis is of coarse grain as compared to scoring function. A 

scoring function usually employs empirical force field parameters to evaluate the 

interaction forces between the atoms pairs of the compound against the target binding 

site. Current scoring functions usually calculate hydrogen bonding interactions, van 

der Waals interactions, electrostatic interactions, hydrophobic effect and many other 

energy terms for each atom pairs from the ligand and the receptor in order to cover the 

complicated interaction between the ligand and the receptor at the binding site. Such 

scores are positively correlated with the free energy change upon binding (ΔG). 

 

One important application of scoring functions is to predict and rank binding poses 

generated in molecular docking. Usually the scoring function is calibrated with 

receptor-ligand complexes with known 3D crystal structures. The ligand in the 

structure of the complex is extracted and docked. The predicted binding poses are then 

compared to the native one by calculating the root mean square deviation (RMSD) of 

atom positions with the native binding pose, where the accuracy of the method is 

assessed. After the method is verified for being able to reproduce the binding pose in 
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the crystal structure, it can be used to dock other molecules to predict their poses when 

binding to receptors. Additionally, scoring functions can be used to predict the binding 

affinity of a molecule to a receptor based on docked binding poses or those from 

co-crystal structures. The binding affinity of a ligand to a receptor is actually the 

numerical answer to the question “how good does it bind”, so scoring functions possess 

innate relation with binding affinity. Often the change of Gibbs free energy (ΔG) of the 

system before and after ligand bounding is usually used to measure the binding affinity, 

which may also be expressed in dissociation constant Kd which has the following 

relation with ΔG: 

                    ΔG = −RTlnKd 

where T is absolute temperature and R is gas constant. Most scoring functions in 

docking produce scores which are positively correlated with ΔG, but in term of 

prediction such correlation is preferred to be linear[38]. The accuracy of binding 

affinity prediction is measured by comparing the predicted and experimental values, 

where the mean square error (mse) and correlation coefficient (R) is calculated. 

 

Scoring functions are also extensively used in the task of virtual screening, through 

which new drugs can be discovered for a specific target. In such situation, the interest is 

to rank order the compounds, to identify binders in a high throughput manner, so a fast 

docking method and an easy-to-calculate scoring function are always employed in such 

occasion. In such tasks, discrimination between binders and non-binders is the most 

important, rather than to predict the correct binding affinity and binding pose. To 

evaluate how good a scoring function is in virtual screening, speed and performance are 
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usually of concern. The receiver operating characteristic (ROC) curve[39] is usually 

reported for a screening run, which graphically plots the true positive rate vs. false 

positive rate for this binary classifying system as the threshold is varied, one point at 

one threshold value (usually by considering the top n percentage of the rank list as 

“hits”). Sometimes the area under curve (AUC) is also used. The ROC curve is 

connected with the nonparametric Wilcoxon statistic[40]. For a given threshold the 

following metrics help to evaluate the performance: true positive rate, true negative rate, 

false positive rate and false negative rate. 

 

Recent advances and technical aspects of scoring functions are discussed in detail 

in Chapter 4. 

 

1.2.3 Chemogenomic characterization of compounds by target sequence 

similarity 

 

As discussed previously, similarity based compound clustering characterization 

organizes the chemical space and guides virtual screening in various aspects. Similarly, 

biological targets, i.e. proteins, are also related in form of phylogeny. Molecular 

evolution of biological targets results in similarity between sets of targets known as 

homology groups. By analysis of sequences, motifs or 3D structures, similarity of 

targets can be defined and compared, and characterized by grouping them into 

subclasses with common features. Many classification systems were created, such as 

seed sequence alignment based protein family classification system Pfam [41, 42], 

conserved domain profiling of sequence segments database PROSITE [43], structure 
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classification methods with the aim of revealing evolutionary relationships for all 

proteins with known 3D structure SCOP [44] and CATH [44, 45], and analysis 

combining structures and functions InterPro [46]. 

 

Characterization of ligands by their structures jointly with their target similarity is a 

promising approach, as compound activities against targets associate individual ligand 

and target, providing extra information compared to characterization of compounds or 

targets alone. When such relationship is backed with ligand similarity and target 

similarity, a network of interaction can be constructed, resulting in a joint 

characterization of targets and ligands for chemogenomic analysis. By investigation the 

activity patterns of similarity groups of biologically active compounds, novel links to 

targets can be established, leading to potential cross-activity and providing insight for 

rational drug design [20]. On the other hand, relationship between targets can be 

established by ligand-set similarity [19] or ligand-framework similarity [20] by 

summarizing the similarities between ligand sets of different targets, providing a useful 

point of view of target similarity other than structure based phylogenetic study, where 

novel targets can be suggested for known compounds and deorphanization of targets 

can be facilitated.  

 

The characterization of compounds based on target sequence similarity provides a 

useful resource for ligand discovery and target deorphanization. Observations from 

successful experiences of navigation through the network lead to several strategies for 

chemogenomic analysis. Polypharmacology of a biologically active compound, also 
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termed a multi-targeting compound, is the case when a compound targets several 

different proteins [47-51], and in such situation, compounds of the same similarity 

group are promising candidates of similar pharmacological profile. Scaffold hopping 

refers to the discovery of novel molecular scaffold for the same target by modification 

of existing ligand scaffolds [52-55], whose direction of modification is usually guided 

by structural features from several similarity groups of the target of interest. Target 

hopping [56, 57] is different from scaffold hopping that the modification aims to 

decrease the activity of the current target of a compound and enhance activity to 

another, i.e. “hopping” from one target to another.  

 

The concept of chemogenomics arises when comprehensive analysis of “all possible 

drugs of all possible drug targets” [3] becomes necessary and important in modern drug 

discovery. Drug targets naturally form functional groups, such as GPCR, kinases, 

proteases and ligand-gated ion channels, etc.; while for drugs, chemoinformatic 

approaches can define their similarities based on substructures or physiochemical 

properties and further cluster the drugs into groups of similarity properties. By linking 

target families to drug families with binding affinity records, a network between drug 

targets and drugs can provide insight on discovery of new drugs or previously unknown 

interactions. Such idea extends to non-drug receptors as well. In the following sections, 

a series of strategies used in exploring the interaction between clustered ligands and 

receptors are discussed. 

 

1.2.3.1 Polypharmacology 
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The concept of polypharmacology is to design a single drug molecule which binds to a 

selection of targets simultaneously in order to achieve better efficacy via synergistic 

effects on regulation of multiple targets [58]. This is different from the dominant 

paradigm in drug discovery which aims to obtain a molecule with maximal efficacy 

and selectivity against a single target. 

 

According to retrospective analysis on binding affinity records, it is not rare that a 

molecule is potent against multiple proteins; actually it is quite common. By reviewing 

annotated public repositories of activity, it is reported that molecular scaffolds 

interacting with different number of targets are found in known active compounds; and 

the number of reported multi-targeting molecules are growing steadily [59]. Cases that 

the multiple targets are from the same protein family, as well as from different families, 

are observed. The basis of polypharmacology lies in the similarity of target binding 

sites, as well as in structure and property similarities of molecules [60]. It is speculated 

from the evolutionary point of view that early biological systems tend to evolve to 

exploit of as many chemicals available in environment as possible, and also to achieve 

systems that can adapt to changes of the constantly changing environmental conditions. 

 

Polypharmacological drugs may have improved efficacy over single-target drugs 

due to additive or synergistic effects [50]. Undesirable target-related adverse effect can 

also be reduced by decreasing the potency for target accountable for the adverse effect 

while synergistically interact with new targets [61]. In case of diseases with polygenic 

cause in the complex biological network, the redundancy of such network often renders 
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the effort to shut down a specific enzyme no effect due to activation of escape pathways, 

while targeting multiple enzymes redundant to each other can effectively regulate the 

network to the intended status. Furthermore, interaction and inhibition against multiple 

targets of similarity functions make the network less prone to resistance mutations. 

 

In the treatment of cancer, polypharmacology plays an important role in the 

therapeutic effect of various drugs, which usually target the ATP-binding site of 

kinases. Protein kinases form a large family with more than 500 members in human. 

Kinases are involved in cell growth, proliferation and survival, and a number of kinases 

are famous cancer targets and are under intensive investigation, such as PIK3K, EGFR 

and BRAF [62]. Kinases share conserved ATP-binding sites, making it difficult to 

selectively inhibit a certain kinase. However, this is not a problem that the effectiveness 

of cancer drugs is determined by their multi-targeting characteristic. For example, 

sunitinib was approved by the FDA for the treatment of renal cell carcinoma and 

imatinib-resistant gastrointestinal stromal tumor, and was found to target at least 79 

kinases [62]. As another example, sorafenib, a drug used to treat renal and liver cancers, 

was originally designed to target Raf kinase isoforms, but was later shown to inhibit 

other receptor tyrosine kinases such as PDGF and VEGF receptor tyrosine kinases [63]. 

Identification of polypharmacology helps to clarify the mechanism of therapeutic 

effects against cancers and improve the successful rates of rational drug design. 

 

Another area of disease treatment involves polypharmacology is the central nervous 

system (CNS) diseases. Drugs for treatment of mental disorders target primarily the 
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GPCRs. The endogenous ligands of GPCRs cover a wide range of chemical types such 

as amines, adenosines, peptides and lipids, so it is unlikely for individual drug to 

interact with many GPCRs from different endogenous ligand type groups, which is 

different from the case for kinases. However, polypharmacology for receptors of a 

certain endogenous ligand type does exist. One example is Clozapine, a drug designed 

to treat schizophrenia via binding to serotonin and dopamine receptors. Among these 

two types of amine receptors it interacts with, histamine receptor H1, the 5-HT2C 

receptor and alpha1-adrenoceptor were found to cause weight gain and associated 

metabolic adverse effects [64]. In such case, efforts on improving current drugs or 

discovery of new drugs against schizophrenia should be directed to achieve high 

selectivity towards the desired therapeutic targets. 

 

Polypharmacological effect can be detrimental if a drug or bioactive molecule under 

investigation interacts with undesirable targets (often called off-target or anti-target). 

This is especially harmful if a drug is released to the market without awareness of its 

adverse effect caused by off-target effect. For example, antihistamine drug Astemizole 

was marketed for allergic rhinitis and chronic idiopathic urticaria and it was withdrawn 

due to its potentially fatal side effects of arrhythmias because of hERG potassium 

channel blockade [65]. Ergoline-based dopamine receptor agonist Pergolide was used 

for the treatment of Parkinson's disease, which was withdrawn in year 2007 as it 

increased the risk of valvular heart disease [66] due to serotonin receptor agonism [67]. 

Such cases necessitate the early identification of polypharmacology during drug 

development, as well as prediction and elaboration of potential side effects. 
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To detect detrimental polypharmacology in early stage of drug discovery, 

experimental screening as well as chemogenomic methods can be predictive. It is an 

established practice for research organizations to screen their candidates against panels 

of selected safety-relevant targets to detect severe adverse effect [51], which is named 

safety panel screening. Only frequently hit targets with clear relevance to adverse effect 

are screened, because the effort and cost are prohibitive to obtain the interaction profile 

of a potentially druggable candidate molecule against the human proteome. Also, 

targets sharing similar function or binding site structure naturally form target families 

or subfamilies, so representative targets can be picked instead of using the whole group 

to avoid redundancy [68]. On the other hand, computational methods help to predict 

off-target interactions based on prior knowledge and similarities among targets and 

their ligands. For example, an analysis on the binding cavity of GPCRs reveals the 

possibility to predict ligand-receptor interactions by receptor binding cavity features 

[69]. In another research, GPCRs were clustered by their sequence similarity as well as 

ligand set similarity with the aim of new ligand prediction and target deorphanization. 

 

Yet another aspect of polypharmacology is the potential opportunity of drug 

repurposing, often for drugs found to have detrimental off-target interactions. One 

example for drug repurposing based on off-target interaction is thalidomide, which was 

marketed as hypnotic since year 1957. Its efficacy in relief of pregnancy associated 

nausea making it frequently administrated to pregnant women in the first 4 years. 

However, it was revealed later that thalidomide was responsible for malformations in 
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fetal development. This teratogenic effect is possibly because of its induction of 

oxidative stress [70] or transcriptional interference [71]. Years after removal from the 

market, thalidomide was found to be active against tumor necrosis factor α (TNF-α) 

[72], which led to its repurposing into treatment of multiple myeloma. 

 

 

1.2.3.2 Scaffold hopping 

 

Scaffold hopping is a technique used to discover novel biologically active compounds 

based on a known active compound against the same target serving as a template. 

Starting from the template, structural variations are applied to the core structure, while 

maintaining feature essential to the desired activity, in hope of finding a new active 

compound with similar but new structure [52]. This concept was first introduced in 

1999 as a technique for discovery of novel calcium channel blocking agent [1], and 

application of scaffold hopping in drug discovery has been increasing ever since [73]. 

 

There are three major reasons for scaffold hopping being applied intensively [52]. 

First, physiochemical properties as well as pharmacokinetics of the template compound 

can be improved. For example, replacement of a lipophilic group into a polar one 

increases the solubility; in some other cases, modification of the central scaffold can 

increase the stability of an otherwise metabolically labile compound. Second, binding 

affinity can be improved by replacement or modification of functional groups or even 

the core scaffold. In this way potent compound with low binding affinity can be 
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optimized. Last, application of scaffold hopping on patented compounds can lead to the 

discovery of patentable novel structures. 

 

A scaffold representation scheme widely used in the area of drug discovery is the 

Murcko framework [74] proposed by Bemis and Murcko in 1996. This method focuses 

on the ring system of a compound. It dissects molecular structures into ring systems, 

linkers and side chain atoms. The ring systems are defined as single and fused rings, 

and the linkers are chains of atoms connecting the ring systems, and side chains are the 

rest atoms. The concept of scaffold in scaffold hopping is closely related to the above 

definition that it considers two scaffolds different as long as they are to be synthesized 

through different routines[52]; and this will usually results in different Murcko scaffold 

frameworks. As stated by the similar property principle[1], similar chemical structures 

between compounds results in similar physicochemical properties and biological 

activities. Thus the structural variation in scaffold hopping should maintain some key 

features to keep the desired activity while achieve a novel structure. 

 

Scaffold hopping can be classified based on the degree of changes made to the 

template compound, and a four degree classification system was introduced in a 

review[55]: 1° hop, replacing or swapping of carbon and heteroatom in ring systems; 2° 

hop, ring opening and closures; 3° hop, replacement of peptide backbones into 

non-peptide structures and 4° hop, completely new structure with interaction features 

retained. Examples of these 4 degrees of scaffold hopping are illustrated in Figure 1-2. 
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An example demonstrating the impact of 1° scaffold hopping is the discovery of 

DuP697 analogous diarylheterocyclic family of selective COX-2 inhibitors. DuP697 

(Figure 1-2 1a) was the first discovered selective COX-2 inhibitor[75], and served as 

building blocks for subsequence selective COX-2 inhibitor discovery. Rofecoxib and 

celecoxib (Figure 1-2 1b and 1c) differ from DuP697 and each other in the backbone 

heterocyclic ring, while all three selective COX-2 inhibitors share comparable 

activity[76]. Heterocyclic replacement has improved the pharmacology that although 

Dup697 and rofecoxib either failed to reach the market or withdrawn, celecoxib is still 

in the market for treatment of osteoarthritis, rheumatoid arthritis, and acute pain, etc. 

[76]. 

 

2° scaffold hopping is illustrated with a ring closure case, where the position of 

closure is hinted by intramolecular hydrogen bond. Hydrogen bond observed between 

o-alkoxy group and biaryl NH (Figure 1-2 2a) lead to the synthesis of a series of indole 

compounds for prostaglandin EP1 receptor inhibitor discovery [77]. One compound 

(Figure 1-2 2b) exhibited nanomolar level activity, which is partly due to the ring 

closure fixed the molecule at the active conformation. 

 

Peptidomimetic replacement is classified as 3° scaffold hopping. The second 

mitochondria-derived activator of caspases (Smac) interacts with X-linked inhibitor of 

apoptosis (XIAP) with four amino acid residues of its N-terminal sequences, inducing 

cell apoptosis. Starting from a tetrapeptide AVP-2,2-diphenylamine (Figure 1-2 3a) as 

potent template[78], a bicyclic motif was identified as replacement of one of the amino 
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acids through literature search[79]. The resulting azabicycloocatane compound (Figure 

1-2 3b) demonstrated binding affinity of nanomolar level against XIAP [78]. This 

peptidomimetic replacement strategy increases the drug-likeness of a compound 

compared to peptides, also the pharmacokinetic properties and bioavailability. 

 

As for 4° scaffold hopping, the topology or shape-based searching strategy usually 

results in completely new structure with interaction features retained. An example can 

be found in the pursue of antibiotics that interrupts bacterial cell wall biosynthesis by 

targeting the ZipA-FtsZ protein–protein interaction[80]. One of the initial hits from 

high-throughput screening (Figure 1-2 4a) with low binding affinity was found to have 

toxicity concern and intellectual property (IP) issue, so a shape-based Rapid Overlay of 

Chemical Structures (ROCS) search was carried out. The hit of ROCS had no toxicity 

or IP issue while retaining interaction features as compared with its template, and could 

serve as starting point of optimization[80]. 
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Figure 1-2 Examples for scaffold hopping 1°, 2°, 3° and 4°. Adapted from [55]. 

1a: cox-2 inhibitors DuP697; 1b: celecoxib; 1c: refocoxib; 

2a: biaryl amine series; 2b: indole series; 

3a: modified Smac tetrapeptide; 3b: an azabicyclooctane analog; 

4a: ZipA-FtsZ inhibitor pyridylpyrimidine template; 4b: ROCS hits. 
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As illustrated by the above examples of scaffold hopping, apart from literature search 

and the knowledge of experienced researchers, computational approaches may aid in 

the identification of suitable novel scaffolds. Four major approaches are widely used, 

namely shape matching, pharmacophore searching, fragment replacement and 

similarity searching. Shape matching is similar to pharmacophore searching that both 

methods requires the knowledge of the spatial arrangement of functional groups in a 

compound as well as 3D conformations. The difference is that, pharmacophore 

searching is based on the interaction features at the compound side such as hydrogen 

bond donor or hydrophobic groups, while shape searching does not emphasize the 

relative importance of functional groups. Fragment replacement can discover novel 

scaffolds for either 2D or 3D structures, but the level of novelty as well as the 

interaction features retained may vary depending on different criteria setting for the 

query. The last method, similarity searching, is an idea that abstracts the features of a 

compound into set of binary bits or descriptor values and retrieves hits based on the 

similarity of these bits or values. Software programs used in scaffold hopping may 

provide one of the above four approaches, or a combination of them. Commonly used 

software for scaffold hopping includes ROCS for shape matching[81], Catalyst for 

pharmacophore searching[23], CAVEAT for fragment replacement[82] and different 

fingerprint systems such as the widely used PubChem fingerprints[2] for similarity 

searching. 
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1.2.3.3 Target Hopping 

 

Target hopping is an approach to discovery novel interaction for one target starting 

from inhibitors of another target with similar interaction features. As can be explained 

by the principle of similarity, it is usually observed that a set of similar compounds 

bind to a set of targets with similarity interaction features, or more stringent, 

similarity binding sites. In such case, one can choose among the set of similar 

compounds and apply derivatization to enhance of obtain selectivity against one of the 

targets. 

 

The idea can be exemplified by the design of selective Factor VIIa tissue factor 

complex (FVIIa/TF) inhibitor from dual inhibitors for thrombin and FVIIa/TF [56]. 

An initial hit from screening (Figure 1-3 a) was identified as dual inhibitor of FVIIa/TF, 

with activity against FVIIa/TF and thrombin are 2400 nM and 88 nM, measured in 

IC50, respectively. In order to discover selective FVIIa/TF inhibitor from this 

compound as template, the interactions of this compound and the binding pockets of 

FVIIa/TF and thrombin were analyzed and a derivative, as shown in Figure 1-3 b, was 

designed and synthesized. Binding assay confirmed increased selectivity over thrombin 

as the binding affinities for FVIIa/TF and thrombin have changed to 25 nM and 150 nM, 

respectively. This is now a potent dual inhibitor for both of the targets. Based on this 

intermediate result, a second round derivatization was applied to further increase the 

selectivity. In the final results, one of the compounds (Figure 1-3 c) had binding 
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affinities against FVIIa/TF and thrombin of 30 nM and 25300 nM, which is a highly 

selective. The modified structure moieties were colored in red in Figure 1-3. 

 

Another recent example is the discovery of selective EphA2 receptor inhibitor 

lithocholic acid (LCA) derivatives using LCA, which is an endogenous ligand for the 

nuclear receptor FXR and the G-protein-coupled receptor TGR5 but also an antagonist 

of the EphA2 receptor, as template[57]. The derivatization procedures were guided by 

the difference of receptor-ligand interaction features, and a stilbene carboxylic acid 

compound was identified as a highly selective antagonist of EphA2. 

 

The target hopping approach emphasizes the comparative analysis of interaction 

features at the binding site of targets of interest, and the molecular design accordingly. 

 

 

 
Figure 1-3 Selected FVIIa/TF and thrombin dual inhibitors illustrating target hopping 

approach for selective FVIIa/TF inhibitor discovery [56]. 

 

 

 

 

1.3 The need for more comprehensive characterization 

 

As mentioned in previous sections, structure-based characterization of compounds 
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leads to the development of similarity-based methods for virtual screening and ligand 

discovery. However, previous efforts often focus on compounds of specific target 

activities [6, 8, 9] or specific combinatorial libraries in search for novel ligand of 

specific targets; or aims to map and navigate the chemical space by hierarchically 

organize a subset of the chemical space without discrimination of their functional 

categories [7, 10, 11]. For facilitating the characterization of biologically and 

therapeutically relevant compounds and the orderly management of known compounds 

with respect to their functional categories and the study of new compounds, it would 

be advantageous to organize the known compounds into chemical families based on 

structural similarity [83, 84]. This requires a method and resource for defining, 

generating and maintaining a comprehensive set of chemical families, and such a 

resource is not yet publically available. 

 

Current characterization of compounds with respect to their targets in terms of 

activities with scoring functions is yet to be a perfect method. The performances of 

scoring functions in prediction binding affinity for docked ligands are known to be 

unsatisfactory. A comparative assessment of 16 popular scoring functions in year 2009 

reported that the correlation coefficient R between predicted and experimental binding 

constants ranged between 0.545 and 0.644 [38]. Some other studies also discussed the 

poor performance of scoring function in predicting binding affinity [85, 86]. On the 

other hand, target specific approaches used in characterization of compounds with 

respect to target activities have gained increasing attention. A target specific scoring 

function is trained with data only within the target or target group of interest, and then 
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used to prediction the binding pose, binding affinity of new compounds, or to screen a 

library for potential binders. Such narrowing down of the training dataset selection 

allows better performance on the target group, compared with the generalized scoring 

functions, as exemplified by several successful attempts such as the AutoShim [87], 

and the POEM [88] methods. However, these methods either make use of in house 

activity data with recursive model construction, or derive their prediction model from 

limited number of co-crystal structures. Thus there is a need to develop a method 

which is able to predict large number of ligands without co-crystal structures available 

in a target specific manner with satisfactory performance, in order to better 

characterize compounds from the target interaction perspective. 

 

As discussed above, there is a need for characterization of compounds in terms of 

their individual target binding activity, and this is also the true for characterization of 

compounds from their target sequence similarity. Current methods of characterization 

of ligand sets and targets organize ligands by structural similarity or molecular 

scaffolds, and relationship between targets established by ligand-set similarity [19]. 

Target sequence similarity-based characterization of compounds enables 

chemogenomic analysis [20, 89-91] on both compounds and their targets. However, 

current methods sometimes inadequately reveal target associations of compounds, 

usually because that the analysis was based on ligand-set similarity and target 

similarity respectively, not making full use of their interaction information. 

Interaction between a certain target-ligand pair may seem isolated from another, but 

when inspected jointly with target and compound similarity groups, the previously 
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isolated interaction pairs may be found to relate to each other due to the similarity 

between the ligands and the targets, respectively. There is a need to comprehensively 

capture both primary and secondary target associations as well as characterize 

compounds by their activity profiles to facilitate the application of chemogenomic 

approaches for ligand discovery, such as scaffold hopping [52-55], target hopping [56, 

57], and polypharmacology [47-51]. 

 

1.4 Objectives and outline of this thesis 

 

The objectives of this thesis focus on extension and improvement of the methods 

which characterize biologically and therapeutically relevant compounds from various 

aspects. Ligand-based virtual screening methods require similarity information of 

ligands, so there is a need for comprehensive organization of functional compounds 

into similarity families, and such resource is not publicly available yet. On the other 

hand, compounds can also be characterized by interactions with their targets, where 

scoring functions with improved predictive power for binding affinity are required. In 

addition, the combination of compound similarity and target similarity in ligand 

discovery has led to successful applications of chemogenomic strategies such as 

scaffold hopping, target hopping and polypharmacology, thus a joint characterization 

method combining compound and target similarity information needs to be developed 

and evaluated for the revelation and summarization of the abovementioned 

chemogenomic strategies as well as prediction for novel activity based on those 

strategies. Achieving these objectives would help in the characterization of 
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biologically and therapeutically relevant compounds for virtual screening. 

 

In this thesis, a method for comprehensive characterization of compounds was 

developed. In order to better understand the intrinsic relationship among biologically 

and therapeutically relevant compounds, efforts were devoted to systematically define 

chemical families and select family members by both structural and functional 

characteristics, to facilitate research and development in pharmaceutical, biomedical, 

agricultural and industrial applications. A seed-directed method to hierarchically 

organize these compounds was implemented, resulting in a database of 

similarity-based functional chemical families -- the Chemical Family database CFam. 

Such effort aims to extend the coverage of structural similarity based characterization 

from compounds of individual target classes to a more comprehensive set of 

biologically and therapeutically relevant compounds. The outcome as a database 

provided a useful resource in virtual screening by characterization of compounds by 

structural similarity, as well as a novel scalable algorithm to organize large number of 

compounds by their functions. 

 

In succession to characterization of compounds from the structural similarity 

perspective, it is desirable to characterize compounds from their target structures in 

terms of binding activities. As discussed previously, more accurate characterization 

can be achieved in a target-specific manner. A method of tuning target-specific 

empirical scoring function was developed to predict binding affinity of compounds 

targeting specific receptor family for ligands whose co-crystal structures with the 
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receptor are not available, to provide a useful method for characterization therapeutic 

compounds in a high throughput context. With this method, target-specific scoring 

functions were tuned for several target systems, and the predictive power of these 

models were compared with previous publications on target-specific scoring functions 

as well as with scoring functions of popular molecular docking programs. 

 

With characterization of compounds from structural and target-binding aspects, a 

more comprehensive characterization jointly considering target sequence similarity 

and compound structure similarity was developed to further characterize biologically 

and therapeutically relevant compounds. A two-dimensional characterization method 

linking target sequence similarity [20, 69, 92] with structural fingerprint [93, 94] based 

ligand similarity was used to derive a two-dimensional target-site sequence similarity 

and ligand-similarity characterization. The method developed was applied on human 

G protein-coupled receptors (GPCR) and their ligands. The usefulness of this method 

was evaluated for characterization of comprehensive compound activity profiles and 

unexpected target associations, and focused on potential interest of applying 

chemogenomic approaches including scaffold hopping, target hopping and 

polypharmacology for ligand discovery and target deorphanization. The usefulness of 

this method was validated by the experimental confirmation of novel activities 

discovered in a target hopping region observed with this two-dimensional approach. 
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Chapter 2 Methods used in this thesis 
 

2.1 Defining similarity for molecules 

 

Definition of similarity for molecules is the foundation of many applications of 

chemoinformatics in computational biology such as virtual screening and bioactive 

chemical space navigation. The similar property principle assumes that molecules with 

similar structures exhibit similar properties, and furthermore, bioactivity towards a 

certain target [95, 96]. This is the rational basis for the practice in the area of drug 

discovery, e.g. high throughput screening and lead optimization[97]. Given an active 

molecule as a reference, the molecules in a large database can be compared to the 

reference molecule in terms of structural similarity, and those with high similarity to the 

reference are more likely to be active. 

 

2.1.1 Molecular descriptors 

 

Molecular descriptors are mathematical values that describe the structure or shape of 

molecules [98] and used to represent or predict various properties of a molecule. The 

widely accepted definition was coined by Todeschini and Consonni in year 2000 as “the 

final result of a logic and mathematical procedure which transforms chemical 

information encoded within a symbolic representation of a molecule into a useful 

number or the result of some standardized experiment”[99]. Starting from molecular 

structure, molecular descriptors are calculated through application of different theories, 

such as graph theory, quantumchemistry, physical chemistry, etc. to represent 
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properties of various aspects of a molecule. A set of carefully selected molecular 

descriptors can uniquely represent a molecule in the chemical space in most cases. To 

date, thousands of molecular descriptors have been defined, and they can be roughly 

classified into six classes by their nature, namely constitutional descriptors, electronic 

descriptors, physicochemistry descriptors, topological indices, geometrical molecular 

descriptors, and quantum chemical descriptors[100]. 

 

There are a number of software packages and libraries available to calculate 

molecular descriptors, such as VCCLAB[101], DRAGON[102], Molconn-Z[103], 

JOELib[104], MODEL[100], PaDEL[105], CDK[106] and RDKit[105]. 

 

Since molecular descriptors capture the physiochemical aspect of molecular 

properties, it is widely used to predict binding affinities or physiochemical properties in 

chemical or biochemical scenarios such as QSAR modeling. As it helps to define 

distance and similarity, molecular descriptors are also used in virtual screening based 

on machine learning methods as well as partitioning of chemical space of interest. 

 

2.1.1.1 The need for feature selection 

 

Due to the individual consideration of the problem being modeled and different 

predictive ability and interpretability of different molecular descriptors, the set of 

molecular descriptors to be used should be carefully chosen. On the other hand, large 

number of molecular descriptors can bring in too many dimensions to the model and 

result in drastic increase in computational cost. Indiscriminative use of molecular 
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descriptors may also bring in excessive noise since chemical information useful to a 

specific problem can get overwhelmed by redundant or non-relevant properties. Thus it 

is often necessary to perform feature selection on the available molecular descriptors. 

The process of feature selection selects a subset of features (here the features are 

molecular descriptors) with strong statistical significance with various statistical 

methods, resulting in a model with more interpretability, better performance and less 

computation cost. 

 

In this study a set of 98 molecular descriptors were used, which were previously 

chosen and used in a series of virtual screening work [107-110] and has demonstrated 

good model performance. They are listed in the Table 2-1. 
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Table 2-1 Commonly used molecular descriptor set. 

 

Descriptor Class 
No of 

Descriptors 
Descriptors 

Simple molecular properties  18 Number of C, N, O, P, S, Number of total atoms, Number of rings, Number of bonds, 

Number of non-H bonds, Molecular weight, Number of rotatable bonds, number of H-bond 

donors, number of H-bond acceptors, Number of 5-member aromatic rings, Number of 

6-member aromatic rings, Number of N heterocyclic rings, Number of O heterocyclic rings, 

Number of S heterocyclic rings.  

Chemical properties 3 Sanderson electronegativity, Molecular polarizability, Alogp 

Molecular Connectivity and 

shape 

35 Schultz molecular topological index, Gutman molecular topological index, Wiener index, 

Harary index, Gravitational topological index, Molecular path count of length 1-6, Total path 

count, Balaban Index J, 0-2th valence connectivity index, 0-2th order delta chi index, 

Pogliani index, 0-2th Solvation connectivity index, 1-3th order Kier shape index, 1-3th order 

Kappa alpha shape index, Kier Molecular Flexibility Index, Topological radius, 

Graph-theoretical shape coefficient, Eccentricity, Centralization, Logp from connectivity. 

Electro-topological state  42 Sum of Estate of atom type sCH3, dCH2, ssCH2, dsCH, aaCH, sssCH, dssC, aasC, aaaC, 

sssC, sNH3, sNH2, ssNH2, dNH, ssNH, aaNH, dsN, aaN, sssN, ddsN, aOH, sOH, ssO, sSH; 

Sum of Estate of all heavy atoms, all C atoms, all hetero atoms, Sum of Estate of H-bond 

acceptors, Sum of H Estate of atom type HsOH, HdNH, HsSH, HsNH2, HssNH, HaaNH, 

HtCH, HdCH2, HdsCH, HaaCH, HCsats, HCsatu, Havin, Sum of H Estate of H-bond donors 
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2.1.2 Substructure fingerprint 

 

Substructure fingerprints is another way to describe a molecule and enable similarity 

searching. The main idea of substructure fingerprint is to encode the presence or 

absence of certain substructures in a molecule with bits with values 1 or 0, thus a 

substructure fingerprint of a molecule is actually a bit-string which enables simple and 

fast comparison between molecular structures. A carefully selected set of substructures 

efficiently capture the similarity and diversity of a group of molecules, thus facilitates 

screening and clustering. 

 

The first defined substructure fingerprint appeared in year 1985 as atom pairs used 

for similarity search and activity prediction [111]. Through years of application in the 

field of virtual screening, the substructure fingerprint commonly used today contains 

hundreds to thousands of bits, such as the MDL keys (MACSS structure-based) [112], 

the dictionary-based PubChem substructure fingerprint [2] and the Klekota-Roth 

fingerprint[113]. These fingerprint sets covers a wide range of substructures which are 

of interest to bioactivity, such as aromatic and non-aromatic rings of different sizes, 

rings with heteroatoms and substructures participating in hydrogen bonds. A lot of 

open-source software packages or libraries can be used to generate substructure 

fingerprints, such as PaDEL[105], Open Babel[114], CDK[106] and RDKit[115]. In 

this thesis the PubChem fingerprint is used. Selected bits from the PubChem 

fingerprints are described in Table 2-2. 
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Table 2-2 Selected bits from PubChem fingerprints from each section. Patterns are defined both descriptively and in SMARTS patterns. 

 

Section Bit Position Bit Substructure 

Section 1: Hierarchic Element 

Counts 

0 >= 4 H 

1 >= 8 H 

2 >= 16 H 

Section 2: Rings in a canonic 

Extended Smallest Set of Smallest  

Rings (ESSSR) ring set 

115 >= 1 any ring size 3 

116 >= 1 saturated or aromatic carbon-only ring size 3 

117 >= 1 saturated or aromatic nitrogen-containing ring size 3 

Section 3: Simple atom pairs 

263 Li-H 

264 Li-Li 

265 Li-B 

Section 4: Simple atom nearest 

neighbors 

327 C(~Br)(~C) 

328 C(~Br)(~C)(~C) 

329 C(~Br)(~H) 

Section 5: Detailed atom 

neighborhoods 

416 C=C 

417 C#C 

418 C=N 

Section 6: Simple SMARTS 

patterns 

460 C-C-C#C 

461 O-C-C=N 

462 O-C-C=O 

Section 7: Complex SMARTS 

patterns 

713 Cc1ccc(C)cc1 

714 Cc1ccc(O)cc1 

715 Cc1ccc(S)cc1 
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2.1.3 Measurement of similarity – Euclidean distance 

 

Since molecular descriptors are real numbers, a set of molecular descriptor values of 

a molecule can be considered a point in high-dimensional Euclidean space, and the 

commonly used distance metrics between two molecules represented by their 

molecular descriptors is the Euclidean distance: 

D(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

where x, y are molecules with n molecular descriptors each, D(x, y) is the Euclidean 

distance between them, and xi, yi are values of molecular descriptors at position i. The 

Euclidean distance meets the triangle inequality. 

 

2.1.3.1 Scaling of molecular descriptors 

 

Before using molecular descriptors in any modeling process, the values are usually 

scaled to make sure each descriptor contribute equally[116]. For example in the 

calculation of the aforementioned Euclidean distance, if a certain descriptor has a value 

range at an order of magnitude much larger than the other descriptors, it will 

dominantly determine the distance between the two molecule, rendering the 

contribution of other descriptors – which may be of great predictive power – negligible. 

The scaling method used in this thesis is range scaling as described in the following 

equation: 
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𝑑𝑖𝑗
′ =

𝑑𝑖𝑗 − 𝑑𝑗,𝑚𝑖𝑛

𝑑𝑗,𝑚𝑎𝑥 − 𝑑𝑗,𝑚𝑖𝑛
 

where dij’, dij are the scaled and original value of descriptor j of molecule i, dj,min and 

dj,max are the minimum and maximum values of descriptor j for all molecules, 

respectively. The scaled descriptor values fall between 0 and 1. 

 

2.1.4 Measurement of similarity – Tanimoto distance 

 

Since substructure fingerprints are set of 0 or 1 bits, the convenient way to measure 

similarity between two set of fingerprints is to consider the number of bits which are 1 

in both sets. Take the total number of bits into consideration, the Tanimoto 

coefficient[117], also called the Tanimoto similarity, which is actually the bit-string 

version of the Jaccard index[118], is used in this thesis for the measurement of 

similarity between fingerprints of two molecules: 

T𝑠(𝑥𝑖, 𝑦𝑖) =
∑ 𝑥𝑖 & 𝑦𝑖𝑖

∑ 𝑥𝑖  | 𝑦𝑖𝑖
 

where x, y are fingerprints for two molecules, and xi, yi are the ith bits in each 

fingerprint, while “&” and “|” denotes bitwise “and” and bitwise “or”, respectively. 

This value is the number of common substructure features divided by the total number 

of unique substructures existing in both molecules, and has the range (0, 1]. After this 

similarity, a distance called the Jaccard distance is defined as follows: 

J𝑑(𝑥𝑖, 𝑦𝑖) = 1 − T𝑠(𝑥𝑖, 𝑦𝑖) 

This distance has the same range of the Tanimoto similarity and is proven to meet the 

triangle inequality[119]. 
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It is reported that in selected datasets for study, a group of molecules with Tanimoto 

similarity larger than 0.85 to an active molecule against a certain target, are active for 

more than 85% of themselves[120]. This is termed the “neighborhood behavior” and 

has set a putative standard in virtual screening, which is an activity cut-off of similarity 

from the active molecule. The study was done with 166-bit MACCS keys, so when 

using the 881-bit PubChem fingerprint which captures more substructure 

characteristics this cut-off becomes more stringent. 

 

2.1.5 Molecular scaffolds and scaffold clustering 

 

2.1.5.1 Definition of molecular scaffolds 

 

The structure of a molecule can be viewed as a collection of components of three 

different types: ring systems, linker atoms and side chain atoms[74]. The ring systems 

are defined as individual cycles and cycles sharing edges, representing the rigid cores 

of a molecule. Linker atoms are atoms on a path connecting two ring systems. Side 

chain atoms are those neither in a ring system nor a linker atom. The scaffold of a 

molecule (also called framework) refers to all connected ring systems and linkers, as 

visualized in Figure 2-1. This scaffold definition emphasized the rigid cores – ring 

systems of a molecule, with linkers and side chains derived from the definition of ring 

systems. Generation of molecular scaffold from structure is also known as Murcko 

decomposition, which facilitates the comparison of shapes between molecules.  
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Figure 2-1 Definition of ring systems, linker atoms and side chain atoms using 

nucleoside analog reverse transcriptase inhibitor Abacavir as example. 

 

 

2.1.5.2 Comparing molecular scaffolds quantitatively 

 

Since molecular scaffolds are graphic representation of a molecule, it is not quantitative 

in nature. Efforts have been made to develop methods to compare molecules by their 

scaffolds quantitatively. One such method is SIMCOMP[121], which is based on 

maximal common subgraph (MCS) detection. The Jaccard coefficient between two 

molecules is defined on their molecular graphs as: 

Jc(𝐺1, 𝐺2) =
|MCS(𝐺1, 𝐺2)|

|𝐺1| + |𝐺2| − |MCS(𝐺1, 𝐺2)|
 

where |𝐺| is the cardinality of graph G. MCS detection can be time consuming, thus in 

order to speed up the calculation optimization and approximation were used to obtain 
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the Jaccard coefficient. This way a value between 0 and 1 is defined as similarity of two 

molecules base on their scaffolds, enabling the hierarchical clustering method on 

molecular scaffolds.  

 

2.1.5.3 Scaffold clustering methods 

 

Unlike the attempt of quantitatively defining similarity between molecular scaffolds, 

scaffold clustering methods derive the hierarchical relationship from molecular 

scaffolds directly. There are two types of approach to construct scaffold hierarchy: 

top-down and bottom-up. The top-down approach deconstructs one ring system at a 

time and group molecules at different level by matching the remaining structures at 

each step. The bottom-up approach first breaks apart scaffolds into individual minimal 

ring systems and then combines them exhaustively to generate all possible 

combinations and group molecules at different level of combination. These approaches 

can be substantially faster than quantitative comparison of scaffold pairs because no 

MCS detection is involved. 

 

Several software packages are available for scaffold clustering. One example is the 

popular Scaffold hunter[122] which uses the top-down approach. Starting from the 

scaffold of a molecule, by deconstruction of one ring at a time successively, virtual 

scaffolds of different deconstruction level can be obtained. The molecules are then 

grouped at different level of virtual scaffolds to form scaffold hierarchy. In this process, 

the pre-defined set of rules for choosing the next ring to dismantle is of crucial 

importance to the scaffold hierarchy generated and calculation speed. The set of rules 
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prefers small ring systems over large ones, and connected ring systems over fused ring 

systems. Such rules capture and preserve the core structure of a molecule and result in 

reasonable scaffold trees that are easy to interpret. 

 

Another example is the HierS method featuring a bottom-up approach[123], where 

all individual ring systems are considered the building blocks of molecules and defined 

as “basis scaffolds”. Starting from the scaffold of a molecule, every combination of 

basis scaffolds present in the molecule are generated and termed “intermediate 

scaffolds”. Given a set of molecule, all intermediate scaffolds from all molecules can be 

obtained. Within this list of all intermediate scaffolds, starting from the smallest ones, 

all intermediate scaffolds were used in superstructure search against all others. The 

scaffold hierarchy can then be determined according to membership between all 

intermediate scaffolds. Finally molecules are assigned to different levels of the 

hierarchy if a molecule is a superstructure of the intermediate scaffold at a certain level. 

 

There are still other software packages or implementations of scaffold clustering 

such as the proprietary software Molinspiration Clusterer [124]. Another in house 

implementation of scaffold tree employed a simplification scheme on fused ring 

systems using Molinspiration toolkit [125]. 

 

Scaffold clustering was applied intensively in chemical space navigation [122], as 

well as optimization of activity and structural diversity of high through-put screening 

[123]. This method is intuitive that the scaffolds are actually part of the molecular 

structure with shapes easy to recognize, making similarity search and analysis easy 
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when retrieval or enrichment of structures containing a certain core is desired, 

compared to substructure fingerprint approach which models molecules in an abstract 

and structural feature oriented way. 

 

2.2 Defining similarity for protein sequences 

 

2.2.1 Protein similarity based on protein sequence alignment 

 

2.2.1.1 Sequence alignment 

 

Sequence alignment is a method to arrange biological sequences, usually protein, DNA 

or RNA, to identify regions of similarity and guide the inference of functional, 

structural and phylogenetic relationship. When aligning protein sequences, a 

substitution matrix which defines the chance of occurrence of replacement of one 

amino acid to another, is used to score the aligned residues. Popular substitution 

matrices are the PAM (Point Accepted Mutation) matrices developed by Margaret 

Dayhoff [126] for scoring closely related sequences and BLOSUM (BLOck 

SUbstitution Matrix) series of matrices by Henikoff [127] for scoring of evolutionarily 

divergent sequences. In the simplest case, the alignment is pairwise, i.e. between two 

sequences. Having the scores defined, a dynamic programming algorithm can be used 

to complete the alignment in O(L
2
) time (L is the length of the longer sequence). 

Depending on the aim of the alignment, an alignment method can either be global or 

local. Global alignment finds the optimal overall alignment for two sequences, while 

local alignment identifies certain conserved regions. A general and currently still used 
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algorithm for global alignment is the Needleman–Wunsch algorithm[128]. An example 

of local alignment is the Smith–Waterman algorithm [129]. 

 

It is worth mention that a local alignment algorithm optimized using heuristic 

method, BLAST (Basic Local Alignment Search Tool) [130], is now the most used 

search tool for large sequences databases. By locating short matches between two 

sequences, although optimal local alignment cannot be guaranteed, sequences 

containing similar regions to the query can be quickly located. The great increase on 

speed compared to full alignment methods, making searches in huge genomes practical. 

It is available on the website of National Center for Biotechnology Information (NCBI) 

as a family of programs to query different type of biological sequences. 

 

When it comes to identification of conserved regions of several sequences, the 

sequence alignment task becomes multiple sequence alignment (MSA). Similarly, the 

MSA problem can also be solved by naïve dynamic programming but the time 

complexity, O(L
N
), where L is sequence length and N is the number of sequences, can 

be prohibitive. Finding the global optimum of multiple sequence alignment has been 

proven to be NP-complete [131]. Thus the commonly used MSA programs employ the 

heuristic method of progressive alignment. Although global optimum cannot be 

guaranteed, the progressive algorithm reduces the time needed to polynomial. Several 

popular MSA packages using the progressive algorithm are available, such as ClustalW 

[132], T-Coffee [133] and PSAlign [134]. For improvement of alignment speed, the 

probabilistic Hidden Markov models (HMM) were introduced and several HMM based 
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MSA methods were developed. One of these programs, Clustal Omega [135], is used in 

this work. 

 

2.2.1.2 Distance derived from multiple sequence alignment 

 

Given a set of aligned protein sequences, distances of each protein pairs can be derived. 

Apart the aforementioned PAM and BLOSUM, many substitution models are 

developed for determination of distances, such as the Jones-Taylor-Thornton model 

[136] which is an expanded version of PAM, the Equal Input Model which corrects for 

different substitution rates among different site, and the straightforward p-distance 

which derives the distance from proportion of different amino acid sites [137]. The 

p-distance is used for phylogenetic analysis in this work. 

 

2.2.1.3 Phylogenetic reconstruction 

 

Once the pairwise distances between all protein pairs are determined, a distance matrix 

is obtained. The phylogenetic relationship between all protein sequences can then be 

inferred from the distance matrix and output in form of a phylogenetic tree. This 

process is termed phylogenetic reconstruction. Based on different evolutionary models, 

various methods for generation of phylogenetic trees exist, such as the neighbor-joining 

method [138], UPGMA and maximum-likelihood trees. Neighbor-joining method was 

created in 1987, and was a greedy approximation of the balanced minimum 

evolution[139] criterion that aimed to obtain a tree with minimal length. The UPGMA 

method is essentially the aforementioned hierarchical clustering with average linkage, 
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which assumes a constant rate of evolution in the context of phylogenetic 

reconstruction [140]. The maximum likelihood (ML) method [141] uses parametric 

statistical model to estimate the probability of evolutionary events, resulting in a tree 

that is of highest probability to produce the substitution of the sequences. The ML 

method works directly on a sequence alignment, without the need of a distance matrix. 

 

Several software packages are available for phylogenetic reconstruction, such as 

MEGA [142] and Phylip [143, 144]. 

 

It is worth mention that in case of absence of multiple sequence alignment, methods 

such as DendroBLAST [145] can use transformed pairwise BLAST scores to produce 

approximation of the phylogenetic relationship between sequences in forms of 

dendrograms. 

 

2.2.2 Protein descriptors 

 

Similar to molecular descriptors, protein descriptors are quantitative values 

characterizing properties of a protein, based on primary sequences or 3D structures. As 

for functional classification and prediction, commonly used protein descriptors include 

amino acid composition, dipeptide composition [146], physiochemical properties by 

amino acid type [147] (such as hydrophobicity scale, polarizability, solvation energy of 

amino acid, residue accessible surface area) and various forms of autocorrelations of 

physiochemical properties [148-150]. 
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Once we have values protein descriptors as feature vectors, Euclidean distance can 

be used to define a straightforward measurement of distance or similarity. Various 

machine learning can also be applied for prediction of functions [151], fold recognition 

[152], protein-protein interaction [153, 154] and family classification [155, 156]. 

 

2.3 Unsupervised machine learning methods related to this 

thesis 

 

Unsupervised machine learning is a type of machine learning methods that aims to 

discover structure from unlabeled data. Unlike supervised learning methods that try to 

discover a function or mapping between the input features and the label by training data, 

unsupervised learning usually does not require a training step but tries to find out the 

intrinsic structure within the data. 

 

The unsupervised machine learning method relevant to the work in this thesis is 

clustering. The task of clustering is to group individual objects so that objects inside a 

group resembles each other and inter-group objects have lower similarity between them. 

The groups are called clusters. In order to measure similarity between objects, the 

feature of each object needs to be defined and extracted, and similarity defined and 

computed. As mentioned earlier in this thesis, various approaches defined similarity 

between biological entities such as molecules and proteins, enabling application of 

clustering methods on them. Different clustering algorithms exist for different cluster 

models. Two basic algorithms among those are to be discussed below, namely 

hierarchical clustering and k-means clustering. 



48 
 

 

2.3.1 Hierarchical clustering 

 

Hierarchical clustering method aim to build a hierarchy of clusters based on 

connectivity – the similarity between objects. Hierarchical clustering can be done in 

two different strategies: agglomerative and divisive. In the agglomerative strategy, each 

object is assigned to a cluster, and cluster pairs are merged iteratively until all objects 

are in one cluster. In the divisive strategy, all objects start in one cluster and the cluster 

is divided into smaller clusters iteratively until all clusters contain one object each. In 

both strategies the hierarchy can be build, either top down or bottom up, from the 

merging and dividing events, resulting into equivalent hierarchy of objects termed the 

clustering tree. 

 

When merging into or dividing from a cluster, linkage criterion needs to be defined 

first to determine the distance between clusters based on individual object pairs from 

each cluster. Commonly used linkage criteria include complete linkage, single linkage 

and average linkage (also termed UPGMA, Unweighted Pair Group Method with 

Arithmetic Mean). These linkage criteria are defined as follows: 

Complete linkage d(A, B) = max *d(a, b): a ∈ A, b ∈ B+ 

Single linkage d(A, B) = min*d(a, b): a ∈ A, b ∈ B+ 

Average linkage d(A, B) =
1

‖𝐴‖‖𝐵‖
∑ ∑ d(a, b)b∈Ba∈A  

where d(A, B) is the distance of cluster A and B, d(a, b) is the distance between two 

objects a and b and ||A||, ||B|| are number of objects in cluster A and B, respectively. 
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We take the agglomerative strategy as example to illustrate the process of the 

hierarchical clustering algorithm. Detailed steps of the algorithm are listed below: 

 

By recording the merging events, a hierarchy of objects can be obtained. Cutting the 

clustering tree at desired level of similarity will result in a set of clusters. 

 

2.3.2 k-means clustering 

 

The classic iterative refinement algorithm of k-means clustering is the Lloyd’s 

algorithm[157]. The name k-means comes after the initial step, in which k mean values, 

i.e. centroids, which are not necessarily an actual object in each cluster, were chosen for 

desired k clusters. After initialization, each iteration consists of two steps: assignment 

step and update step, which are described below. 

 

The algorithm is said to converge when cluster assignment no longer changes. The 

result is a solution partitioning all these objects into k clusters, and is not guaranteed to 

be the global optimum. Practically a maximum number of iterations are set and the 

1 Assign each object to a cluster containing only itself, using similarity between 

objects as the similarity between clusters containing the individual object; 

 

2 Identify the closest cluster pair according to the linkage criterion and then merge 

them into a new cluster; 

 

3 Update similarities between the newly formed cluster and all other existing 

clusters; 

 

4 Repeat steps 2 and 3 until all objects are in a single cluster. 

Assignment step: each object is assigned its closest cluster, measured by the 

distance of the object to the cluster mean; 

 

Update step: calculate new means for each cluster as the new centroids. 
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algorithm is terminated if no convergence is achieved before the desired number of 

iterations. 

 

The method used for initialization may affect the final outcome. Commonly used 

methods are the Forgy method and Random Partition method [158]. 

 

2.4 Supervised machine learning methods related to this thesis 

 

Supervised machine learning is a class of machine learning methods that infers a 

function with training data including input and desired output. Such methods are 

suitable and widely used in calibrating scoring functions, both generalized and target 

specific, as the task here is to predict target values by deriving models from input 

features. Linear regression, support vector machine for regression, neural network and 

random forest are commonly used supervised machine learning methods for virtual 

screening [159], and are briefly described in the following sections with their 

advantages and limitations discussed. Choice of methods should be based on model 

performances, as well as the characteristic of the data. 

 

2.4.1 Linear regression 

 

Linear regression model assumes linear correlation between the input and output, 

which is usually the assumption used in empirical and force field-based scoring 

functions. The inputs are the energy terms for empirical or force field-based scoring 

functions, and the outputs are experimentally determined binding affinities. By fitting 

the training data, each term in the inputs are adjusted with scale factors or weights to 
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obtain best prediction in term of least squares. 

 

  Linear regression is suitable to model a wide range of linear systems. It is fast, and 

the theory associated with linear regression is well-understood, while its result is easy 

to interpret [160]. One limitation of linear regression is its sensitivity to outliers, as 

the present of outliers has great impact on the final model. Another is that linear 

regression cannot perform well on system with non-linearity [160]. 

 

 

2.4.2 Support vector machine 

 

Support vector machines (SVM) are a series of supervised machine learning methods 

used for classification and regression[161]. The input instances containing multiple 

features and a target value are considered a vector. A SVM classifier constructs a 

hyperplane in high dimensional space by identifying the vectors lying at the borders of 

different classes (which are called the support vector). Good separation is achieved by 

maximizing the distance between the hyperplane and the nearest support vectors. The 

version of support vector machine for regression is called support vector regression 

(SVR) [162]. Application of SVR in predicting binding affinity has been reported [163] 

for inhibitors of Mycobacterium tuberculosis InhA. The software used in this thesis is 

LIBSVM[164]. 

 

Support vector machine methods were first designed for linearly separable case, but 

they were then extended to work on non-linear cases by mapping the input data into a 

feature space of higher dimension with kernel functions [165, 166]. Support vector 
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machine was established on a sound theoretical foundation, and is considered robust, 

accurate and less prone to overfitting [167-170]. However, support vector machine is 

computationally expensive and requires relatively long training time [171]. 

 

2.4.3 Neural network 

 

Neural network is a mathematical tool used in machine learning. Inspired by the 

structure of biological neural networks, it usually contains an input layer, one or more 

hidden layer and one output layer. In a feed forward neural network each layer accepts 

input from its predecessor and passes the information forward. Each layer consists of 

several neurons, which is the basic unit in the model. Each neuron accepts inputs from 

neurons in the layer before it, then summarizes and passes the information processed by 

its activation function. Neural networks can be used to model complicated relations 

between the inputs and the outputs, especially when such relations are non-linear. 

 

The neural network method used in this thesis is specifically the back propagation 

feed-forward neural network [172]. Back propagation algorithm is one of the widely 

used algorithms for neural networks [171]. During its iterative model training process, 

each sample is processed and the network prediction is compared to the target value. 

The modifications to network weights to minimize the difference between the 

predicted value and the target value are then propagated backwards from the output 

layer throughout the network to the input layer [167]. 

 

Neural network can tolerate noise in the data, and can be applied when little 
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knowledge is available for the relationship between the input features and the target 

values. The downsides are that experience is required to choose a number of 

parameters empirically, and that the prediction models bear poor interpretability as 

knowledge is presented in the form of a network. Also, neural network requires long 

training time [171]. 

 

2.4.4 Random forest 

 

Random forest is an ensemble method for classification and regression. It works by 

building many decision trees at training time with each tree trained from a randomly 

sampled subset of the training samples, and the final output is taken as the mode of 

prediction from all decision trees for classification or mean for regression [173]. 

 

  A decision tree models is built through a process which iteratively splits the 

training data by finding the best separating feature among all input features at each 

level. Target value of an unknown sample can then be predicted by going down the 

splitting hierarchical of the tree and taking the value of a leaf, or mean of a group of 

leaves, depending on the pruning of the tree [174]. Random forest method uses a 

modified version of decision tree, where at each level splitting is done by finding the 

best separating feature from a subset of all features [173]. 

 

  Random forest is accurate, fast and protected against overfitting by the sampling 

process during tree growing [173]. Its major limitation is that due to the process of 

tree construction, it is unable to predict target values beyond those in the training data 
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[175]. 
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Chapter 3 Comprehensive characterization of 

biologically and therapeutically relevant 

compounds based on structural similarity 
 

 

3.1 Similarity-based characterization of compounds 

 

Similarity-based clustering and classification of compounds have been extensively 

used in diverse tasks ranging from the search of bioactive agents for drug discovery 

[6-9] to the molecular and chemogenomic studies in applications such as chemical 

space navigation and analysis [10, 11], structure-target relationship investigation 

[12-17], cross-pharmacology profiling of intra-family and cross-family targets [18, 19], 

and receptor deorphanization [20]. For facilitating the characterization of biologically 

and therapeutically relevant compounds and the orderly management of known 

compounds and the study of new compounds, it would be advantageous to organize the 

known compounds into chemical families based on structural similarity [83, 84] as well 

as molecular scaffold classification [10, 122, 176] and molecular descriptor projection 

[176, 177]. This requires a method and resource for defining, generating and 

maintaining a comprehensive set of chemical families. 

 

Characterization of large number of compounds relies heavily on automated 

algorithms for classifying large number of known compounds. Currently there are more 
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than 30 million compounds in the PubChem database [2], and among the compounds of 

functional category of interest, there are 1.4 million bioactive molecules in ChEMBL 

[178] and 760,000 patented agents in Pubchem [2]. Classification of such large quantify 

of compounds evokes two problems. The first is the difficulty to strictly use 

hierarchical clustering algorithm for grouping such a large number of known 

compounds, even though k-means hierarchical clustering algorithm is capable of 

clustering 800,000 compounds [7, 83] and none-hierarchical ones can cluster millions 

of compounds [179]. The second problem is the difficulty to systematically define 

chemical families and select family members relevant to both structural and chemical 

studies and applications in pharmaceutical, biomedical, agricultural and industrial 

research and development. These problems also arise in generating protein domain 

families, which have been resolved by selecting subsets of proteins of known functions 

as the seeds of protein domain families to both define functional and structural 

characteristics of each family and select family members by multiple sequence 

alignment against the seed proteins [41]. A similar strategy was employed for 

generating the chemical families. 

 

To make the generation of chemical families more relevant to the applications in 

pharmaceutical, biomedical, agricultural, material, and other industrial applications as 

well as to the research in chemistry and related scientific disciplines, the seeds of the 

families were iteratively selected from hierarchically clustered approved drugs, clinical 

trial drugs, investigative drugs, bioactive molecules, human metabolites, food 
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ingredients and additives, natural products, patented agents based on the 

literature-reported high-similarity measures [1, 180-182]. These families were further 

clustered into superfamilies and classes by hierarchically clustering the seeds based on 

the literature-reported intermediate similarity [16, 183, 184] and remote similarity [8, 

18, 184] measures. Although this iterative hierarchical clustering procedure seems 

similar to the incremental clustering algorithm used in selecting representative proteins 

for clustering proteins [185] and representative compounds for clustering large 

compound libraries [179], there are two significant differences. One is that the seed 

selection and clustering processes are based on hierarchical clustering algorithms. The 

second is the preferential selection of compounds of higher functional importance as 

the seeds in the order of drugs, bioactive molecules, human metabolites, natural 

products and patented agents. 

 

3.2 Generation of similarity-based seed-directed hierarchy of 

compounds 

 

3.2.1 Data collection and processing 
 

Because of the high computational cost of clustering large number of compounds, this 

work focuses on the following seven categories of compounds of functional 

significance: 1,691 approved drugs from the Therapeutic Target Database (TTD) [186] 

and Drugbank [187], 1,228 clinical trial drugs and 12,386 investigative drugs from 

TTD [186], 262,881 highly-active molecules (IC50 or Ki < 1μM against molecular 
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targets) from ChEMBL version 18 [178], 15,055 human metabolites from HMDB [188], 

80,255 ZINC processed and loaded natural products from ZINC [189], and 116,783 

patented agents from PubChem [2] databases, respectively. For database entries with 

multiple non-linked components, only the largest component was selected. Hydrogens 

were added and salt ions were removed by using Open Babel [114], and duplicates were 

identified and removed by comparing their InChIKeys, which is a hashed version of 

InChI [190] designed to be nearly unique for each individual compound with a collision 

resistance of 2.2×10
15

 [191].  

 

3.2.2 Generation of families of high similarity compounds 
 

Molecular similarity and analysis may be conducted from different structural, 

physicochemical and functional perspectives by using different types of molecular 

representations. These include molecular descriptors [176, 177, 192], molecular 

scaffolds [10, 122, 176], molecular fingerprints [8, 83, 84], and other molecular 

representations such as chemical graphs, pharmacophore patterns and molecular fields 

[193-196]. Multiple forms of chemical families can thus be generated from these 

molecular representations in a similar manner as the multiple forms of protein families 

generated from multiple-sequence alignment of protein domains [41, 42], conserved 

signature profiling of selected sequence segments [43], structure classification [44, 45] 

and combined analysis of these and other features [46]. Considering the efficiency and 

accuracy, one type of molecular representation -- the 2D molecular fingerprints 

(specifically, the 881-bit PubChem substructure fingerprints computed by using PaDEL 
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[105]) – was used for representing molecules, which was selected because of its 

computational efficiency, demonstrated effectiveness in similarity searching, and 

extensive applications in drug discovery [8, 197-201]. 

 

Seed compounds are used to define functional families, to represent certain parts of 

the bioactive chemical space for certain function. Thus seed compounds are selected 

from each subset of compounds of different functional categories while keeping in 

mind that they should cover a new part of the chemical space, compared to existing 

families. The seeds of the families were assigned and used to assemble compounds into 

families by the following iterative hierarchical clustering procedure. In the first 

iteration, 1,691 approved drugs were clustered by hierarchical clustering algorithm 

with the 2D fingerprint Tanimoto coefficient (2DF-TC) as the similarity metric and the 

complete linkage as the linkage criterion. Tanimoto coefficient was used because it is 

the most popular similarity metric for measuring compound similarity [8]. Complete 

linkage was used because of its relatively good performance in clustering bioactive 

compounds in a recent comparative study [202]. The criterion for grouping compounds 

into a cluster of high-similarity compounds is 2DF-TC >0.85, which was adopted 

because it is a widely used criterion for avoiding structural redundancy in selecting 

compound libraries for screening bioactive compounds [1, 180]. High-similarity 

compounds grouped by this criterion typically have 30%-81% chance of having the 

same activity in the same bioassay [1, 181, 182]. The drugs in each cluster were 

assigned as the seeds of an approved drug family with the family name systematically 
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characterized by the target/targets, activity type (e.g. inhibitor), molecular class/classes 

(e.g. benzisoxazole derivative) and drug names of the seeds.  

 

In the second iteration, the 2DF-TCs of the 1,228 clinical trial drugs against the 

seed/seeds of the existing families were first computed. If the 2DF-TC of a drug 

is >0.85 with respect to all the seeds/seed of a family, the drug was assigned as a seed of 

that family. If the 2DF-TC of a drug is >0.85 to some but not all of the seeds of a family, 

the clinical trial drug was assigned as a member of that family. If the 2DF-TC of a 

clinical trial drug is >0.85 to the seeds of more than one family, the clinical trial drug 

was tentatively assigned to the family with the largest 2DF-TC and the remaining 

families were marked as cousin families to the assigned families so that the cousin 

families can be subsequently evaluated for possible merger into a combined family. The 

remaining unassigned clinical trial drugs were subject to the same procedure as that of 

the first iteration to cluster them as the seeds of clinical trial drug families for 

assembling subsequent compounds into the respective families.  

 

In the subsequent iterations, each set of 12,386 investigative drugs, 262,881 

highly-active molecules, 15,055 human metabolites, 80,255 ZINC-processed natural 

products, and 116,783 patented agents were in turn subject to the same procedure as 

that of the second iteration to assign compounds into the existing families or as the 

seeds of new investigative drug families, bioactive molecule families, human 

metabolite families, natural product families and patented agent families for 
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assembling compounds into the corresponding families respectively. If the 2DF-TC of a 

compound is >0.85 to the seeds of more than one family, it was preferentially assigned 

in order of priority to approved drug, clinical trial drug, bioactive molecule (currently 

highly active molecules), human metabolite, natural product and patented agent family 

respectively. Certain functional categories such as human metabolites and natural 

products are of special interests beyond one scientific discipline. Therefore, if a 

compound from these categories (e.g. a natural product) was preferentially assigned to 

a family of a different category (e.g. approved drug), that family was marked and is 

displayed as containing compounds from this special category (e.g. approved drug 

family with natural product). 

 

The iterative process described above is illustrated in Figure 3-1, followed by a 

summary of the workflow. 

 

 

Figure 3-1 Flowchart of the seed-directed iterative clustering algorithm used in 

organizing functional compounds into similarity families. 
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As illustrated in the flowchart, the first round of the whole process started with 

approved drugs. Because at the time there was no existing family to represent any part 

of the chemical space, all the approved drugs were assigned as seed compounds and 

the first batch of families were built from these seeds by hierarchical clustering. 

During the next round, a new compound set which consisted of drugs in clinical trial 

was to be added into the compound hierarchy. At this moment as there were already 

families built from seeds of the previous round, all compounds of the current set were 

“matched” based on structural similarity against seeds of existing families to decide 

membership. For those compounds which were not matched for any family, they were 

assigned as new seeds of this round as they were not structurally similar to any 

existing families, so they represented a new part of the chemical space. New families 

for this round were built from these new seeds. After this step, there were families and 

seeds of both the first and second compound sets in the hierarchy. This process was 

then repeated for several subsequent rounds, with each round incorporating a new set 

of compounds of a new functional category. In this way, all known compounds could 

be added to the chemical family hierarchy iteratively. 

 

While possible, the names of these families were systematically determined in a 

similar manner as those of approved drugs. Many clinical trial and investigative drugs 

have little molecular class information and large number of bioactive compounds and 

natural products are without a common name, which make it difficult to automatically 
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search for their molecular class names. Therefore, while possible, the IUPAC 

systematic names were used to extract common substructure names as putative 

molecular class names. Further efforts are required to determine the molecular classes 

of these families from the structure information of their seed/seeds. For the remaining 

families that retrieval of molecular class information was not possible, their family 

names were tentatively characterized by the names or external database IDs of their 

seeds. 

 

3.2.3 Generation of superfamilies of intermediate to high similarity 

compounds and classes of remote to intermediate similarity compounds 

 

The centroid seeds of the families were further clustered by hierarchical clustering 

algorithm with the 2DF-TC as the similarity metric and complete linkage as the linkage 

criterion, so that the families can be assembled into superfamilies and classes. The 

criterion for assembling families into a superfamily of intermediate to high similarity 

compounds is 2DF-TC >0.70, which was applied because compounds satisfying this 

criterion have been regarded as similar to one other [184, 203] and those with slightly 

lower similarity typically have remote similarity [183]. Compounds grouped by this 

intermediate-similarity criterion may have up to 30% chance of having the same 

activity in the same bioassay [16]. These superfamilies were systematically named 

from the common target classes, chemical classes and individual family names of the 

constituent family names. A superfamily is typically composed of compounds of the 
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same or highly similar molecular scaffolds targeting the same target, members of the 

same target subfamilies, or target sites accommodating similar molecular scaffolds. For 

instance, the cAMP-specific 3',5'-cyclic phosphodiesterase, TNF inhibitor xanthine 

derivative superfamily includes two families of xanthine derivatives against the two 

targets and three families of structurally similar purine derivatives, N-alkylguanine 

acyclonucleosides, and theobromines. 

 

The criterion for further assembling superfamilies into classes of remote to 

intermediate similarity compounds is 2DF-TC > 0.57, which was used because it can 

reasonably capture similarity compounds with cross-pharmacology relationships but 

not necessarily having the same activity [18]. A class typically consists of a large 

number of compounds that bind to multiple members of a target family or target 

families with binding sites accommodating similar molecular scaffolds, which makes it 

difficult to systematically name it. Therefore, classes were tentatively named by their 

class IDs only. Efforts will be made to manually determine their names. An example of 

a class is composed of the binders of GPCR Class A subfamilies A1 (C-C chemokine 

receptors), A9 (neuropeptide Y receptors), A13 (cannabinoid receptors), A17 

(dopamine receptors), A18 (muscarinic acetylcholine receptors) and A19 (5-HT 

receptors), cholinesterases, tryptases, dopamine transporters, and sodium channel 

proteins, etc. 

 

3.3 Chemical Family database CFam 
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In order to better store and represent the chemical families generated, the compound 

similarity hierarchy which is the result of characterization of compounds by similarity 

was deposited into a Chemical Family database named CFam. The CFam Chemical 

Family database was developed both as a database of function-based chemical families 

and as a resource for facilitating further development of chemical family databases. The 

database is publicly accessible at http://bidd2.cse.nus.edu.sg/cfam . 

 

3.3.1 Data model 
 

There are four major types of entities in the database, namely molecule, family, 

superfamily and class. Each type of entity corresponds to one level in the clustering 

hierarchy. For the relationship between entities of different levels, inclusions were 

recorded as molecule in family, family in superfamily and superfamily in class, 

respectively. Cousin families were recorded separately with each record consists of 

identifiers of the participating two families. 

 

Each record in the molecule, family, superfamily and class is assigned a unique 

CFAM ID, which is an integer indicating the internal entry number prefixed by 

CFAMM, CFF, CFS and CFC, respectively, for different entity types. Since each 

molecule entry has its database of origin, the external database identifier was recorded. 

In addition, standard InChI, standard InChIkey were calculated and assigned to each 

molecule. Where possible, molecule entries were mapped to PubChem compound IDs. 

 

http://bidd2.cse.nus.edu.sg/cfam
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3.3.1 Data content 
 

Entities in the CFam database include the seeds, members and names of families, 

superfamilies and classes functionally characterized by the approved drugs, clinical 

trial drugs, investigative drugs, highly-active molecules (IC50 or Ki < 1μM against 

molecular targets), human metabolites, ZINC processed and loaded natural products 

and patented agents. Table 3-1 provides the statistics of CFam seeds, compounds, 

families, superfamilies and classes with respect to the seven functional categories of 

compounds. 
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Table 3-1 The statistics of molecules, CFam seeds, seeds with members, families, superfamilies and classes with respect to the seven functional 

categories of compounds: approved drugs, clinical trial drugs, investigative drugs, bioactives (currently highly-active molecules), human 

metabolites, zinc-processed natural products and patented agents. The number of members of these families from the two categories of special 

interests, human metabolites (HM) and natural products (NP) are also provided. 

 

Functional Category 
Number of 

Molecules 

Number 

of Seeds 

Number of Seeds and 

Members 

Number of 

Families 

Number of 

Superfamilies 

Number of 

Classes 

Approved Drugs 1691 1691 95367 (4121 HM, 19408 NP) 1114 937 813 

Clinical Trial Drugs 1228 1168 38981 (551 HM, 3258 NP) 863 756 537 

Investigative Drugs 12386 11093 93191 (4321 HM, 11881 NP) 4226 2870 1700 

Bioactives 262881 98523 171162 (833 HM, 24439 NP) 29983 15088 4035 

Human Metabolites 15055 5229 10408 (5229 HM, 1820 NP) 2058 1377 709 

Natural Products 80255 19449 20821 4017 1517 394 

Patented Agents 116783 60349 60349 44875 12335 3455 

Total 490279 197502 490279 87136 34880 11643 
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Grouping of compounds at the family level captures the structural similarity between 

the seeds and members. Taking approved drug family CFFAD434 “cAMP-specific 

3',5'-cyclic phosphodiesterase 4A inhibitor xanthine derivative Dyphylline Family” as 

example, this family consists of three seed compounds, namely Dyphylline, 

Doxofylline and beta-hydroxyethyl theophylline, each containing a xanthine scaffold in 

the structure (Figure 3-2, structures of CFAMM00061165, CFAMM00061163, 

CFAMM00061168) with minor varieties for the side chains. Its members are 

structurally similar to the seeds (Figure 3-2, structures of CFAMM00061161, 

CFAMM00061166, CFAMM00061162) but with larger varieties in the structures. 

Cousin families such as approved drug family CFFAD2 “cAMP-specific 3',5'-cyclic 

phosphodiesterase 4A inhibitor xanthine derivative Enprofylline Family” is also a 

family of xanthine derivatives but with different structural features (Figure 3-3, 

selected seeds CFAMM00000062, CFAMM00000112, CFAMM00000056, selected 

members CFAMM00000225, CFAMM00000277, CFAMM00000093). These two 

families, CFFAD434 and CFFAD2, belong to the same superfamily CFSAD2 

“cAMP-specific 3',5'-cyclic phosphodiesterase, TNF inhibitor xanthine derivative 

Superfamily”, which consists of another xanthine derivative family CFFAD46 “Tumor 

necrosis factor inhibitor xanthine derivative Pentoxifylline Family” and other families 

from approved drugs (CFFAD90 “Theobromine Family”) or patented agents. Within 

this superfamily, three out of six families share the same target type, the 

phosphodiesterase; while another family targets the tumor necrosis factor. This is 

expected because certain type of tumor necrosis factor shares inhibitor with 
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phosphodiesterase [204]. In the class level, CFCAD2 “Class 2” is the class to which 

this superfamily belongs to, and it contains superfamilies remotely related to each 

other. 

 

 

 
Figure 3-2 Selected seeds and member compounds for family CFFAD434. Seeds are in 

the first row: CFAMM00061165 dyphylline, CFAMM00061163 doxofylline, 

CFAMM00061168 3-propyl-7H-purine-2,6-dione; member compounds are in the 

second row: CFAMM00061161 

7-[(2R)-2,3-dihydroxypropyl]-8-(dimethylaminodiazenyl)-1,3-dimethylpurine-2,6-dio

ne, CFAMM00061166 

8-(2-hydroxyethyl)-1,3,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione, 

CFAMM00061162 

3-methyl-7-[[2-(morpholin-4-ylmethyl)-1,3-dioxolan-4-yl]methyl]purine-2,6-dione. 
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Figure 3-3 Selected seeds and member compounds for family CFFAD2. Seeds are in 

the first row: CFAMM00000062 aminophylline, CFAMM00000112 enprofylline, 

CFAMM00000056 1-prop-2-enyl-3,7-dihydropurine-2,6-dione; member compounds 

are in the second row: CFAMM00000225 

8-(cyclopentylamino)-1,3-dipropyl-7H-purine-2,6-dione, CFAMM00000277 

8-(2-chloroethylamino)-1,3-dipropyl-7H-purine-2,6-dione; CFAMM00000093 

paraxanthine. 

 

 

 

3.3.2 Data access 

 

CFam is publicly accessible at http://bidd2.cse.nus.edu.sg/cfam . The database is 

accessible in three different modes from the homepage of the web interface (Figure 3-4). 

One can either search by keywords, browse by functional categories or search by 

molecular structures or fingerprints. 

 

 

http://bidd2.cse.nus.edu.sg/cfam
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Figure 3-4 CFam web interface. CFam is searchable by three modes: compound and 

family name and ID searching, browsing of CFam families, superfamilies and classes, 

and the alignment of a compound against CFam families.  

 

The first mode enables the search of CFam by inputting a compound name or ID, 

where the ID can be either CFam molecule ID or identifiers for external databases such 

as Pubchem, ChEMBL, ZINC, and TTD. The input keyword can also be part of a CFam 

family, superfamily or class name or ID. Search can be submitted by clicking one of the 

buttons “Molecule”, “Family”, “Superfamily” and “Class” to indicating the keyword 

type. For instance, inputting “aspirin” and then clicking “Molecule” leads to the CFam 

molecule CFAMM00072836 page which shows that aspirin belongs to the CFam 

CFFAD534 cyclooxygenase inhibitor salicylate derivative aspirin family (Figure 3-5). 
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Figure 3-5 A CFam page resulting from the name search by inputting “aspirin” and 

selecting “molecule”. 

 

 

The second mode enables browsing of CFam families, superfamilies and classes of 

any functional category, which can be selected by first clicking the “Family”, 

“Superfamily” or “Class” word in the section header titled “Browse CFam 

Family/Superfamily/Class by Functional Category”, and then clicking a specific 

functional category below the header. For instance, clicking “Family” and then 

“Approved Drug Families” leads to the page of CFam approved drug families list 

(Figure 3-6). One can also choose either to display all families, or those without 

members. Clicking family names in the list of families will lead to the pages showing 
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family information (Figure 3-7), where the family information as well as cousin 

families, seeds and members, are shown. Similarly, information of superfamilies 

(Figure 3-8) and classes (Figure 3-9) can be obtained in the same way, except the choice 

of superfamily or class is to be made. 

 

 

Figure 3-6 The CFam approved drug families browsing page resulting from the 

clicking of “Family” in the section header titled “Browse CFam 

Family/Superfamily/Class by Functional Category and “Approved Drug Families” in 

the section.  
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Figure 3-7 Family information showing family name, number of seeds and other 

members, functional category and the superfamily and class it belongs to, as well 

cousin families and part of the seeds. 
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Figure 3-8 Superfamily information showing superfamily name, functional category, 

number of member families and the class it belongs to. A list of member families with 

their numbers of seeds and other members is also provided. 

 

 

 

 

Figure 3-9 Class information showing functional category as well as a list of member 

superfamilies. The number of member families of each superfamily is also provided. 

 

 

The third mode facilitates the alignment of an input compound in form of SMILES or 

molecular fingerprint against CFam seeds to identify CFam families with high, 

intermediate and remote similarity to the input compound. The list of up to 30 CFam 

families with at least one seed having 2DF-TC > 0.85 (high similarity family), 
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0.85≥2DF-TC > 0.7 (intermediate similarity family) and 0.7≥2DF-TC > 0.57 (remote 

similarity) to the input compound is provided. Figure 3-10 shows the result page of the 

alignment of aspirin with CFam seeds. To facilitate the development of chemical family 

databases and the structural and functional analysis of molecules, CFam seeds can be 

downloaded from the CFam main page (Figure 3-4). 

 

 

Figure 3-10 The CFam result page of the alignment of aspirin with CFam seeds. 
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3.4 Achievements of the Chemical Family database CFam 

 

The work provided a practical and effective method to group compounds into families 

which were relevant to research and applications in drug discovery, chemical biology, 

metabolism, natural products, chemical engineering and industrial applications. By 

designing and implementing an innovative seed-directed iterative algorithm, 

compounds of very large quantity were organized into functional families based on 

structural similarity. 

 

Another significance was that, for the first time it enabled the establishment of a 

chemical family database based on similarity with functional annotation, just like the 

importance of protein family databases to protein research. It is a useful resource for 

similarity-based virtual screening applications, such as activity prediction for novel 

compounds and navigation of functional chemical space. 

 

 

3.5 Discussions and potential improvements 

 

Specialized chemical information resources such as the chemical family databases 

complement the general chemical databases for facilitating focused studies on the 

navigation, classification, and the structural and functional characterization of 

molecules. The chemical family databases that comprehensively cover the known 

chemical space and characterize molecules from different molecular representations are 
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increasingly needed given the rapidly expanding pools of molecules from synthetic and 

natural sources [205-207] and the increasing need to analyze higher number and more 

variety of compounds for diverse applications [18-20, 176]. To meet such a need, the 

CFam database needs be further updated to expand existing functional families and add 

new families of moderately-active molecules (IC50 or Ki 1-10 μM against molecular 

target), food ingredients and additives, flavors and scents, agrochemicals, natural 

products beyond ZINC processed ones, toxic substances, purchasable compounds, and 

other compounds. Although some of the CFam families are currently composed of 

seeds only, these seeds are nonetheless useful for facilitating further development of 

chemical families and function-based classification of compounds.  

 

In addition, hierarchical molecular classification based on structural scaffolds also 

captures an essential aspect of molecular structural similarity. Due to the computational 

burden as well as the popularity of molecular fingerprint based classification in virtual 

screening applications, scaffold clustering is not used for the current CFam. In future 

update and expansion, scaffold clustering can be built on the molecules in the database, 

and scaffold families can be mapped to similarity families based on fingerprints, in 

order to study and compare the difference between these two different classification 

systems as well as their impact in virtual screening and chemical space navigation. 
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Chapter 4 Characterization of biologically and 

therapeutically relevant compounds based on 

target structures 
 

 

4.1 Scoring functions as characterization methods of compound 

from the target structure perspective 

 

4.1.1 Current approaches in scoring 

 

Current scoring functions can be classified based on their approaches as 

knowledge-based, force field-based, and empirical scoring functions. A list of 

computational approaches among popular scoring functions is presented in Table 4-1. 

Scoring functions using the same approach may differ by their emphases as they are 

designed for specific kind of tasks, i.e. some are good at ranking and others are good at 

predicting binding affinities.
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Table 4-1 Comparison of computational approaches in current scoring functions [208]. For force field-based and empirical scoring functions, additivity of the 

terms is not always guaranteed [209]. 

 

Type Computational nature Terms Advantages Drawbacks Examples 

Knowledge-based Pairwise potentials derived 

from the frequency of 

atom pairs in a database 

using the inverse 

Boltzmann relation 

Potentials of individual 

protein–ligand atom pair as a 

function of distance, based on 

number density 

Balanced 

between 

accuracy 

and speed 

accuracy and 

treatment of the 

reference state 

DrugScore, ITScore, PMF 

Force field-based physical atomic 

interactions; parameters 

from experiment and ab 

initio quantum mechanical 

calculations 

VDW interactions, 

electrostatic interactions, and 

bond stretching and torsional 

forces 

accurate Slow; treatment 

of solvent 

DOCK, AutoDock, GOLD 

Empirical Combination of a set of 

weighted simple energy 

terms; weights obtained by 

fitting a training dataset 

VDW energy, electrostatics, 

hydrogen bond, desolvation, 

entropy, hydrophobicity, etc. 

fast Double count 

issue; accuracy 

limited by 

training dataset 

ChemScore, FlexX, Glide, LUDI, 

SCORE, Surflex 
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4.1.2 Generalized and target-specific scoring functions 
 

Generalized scoring functions are trained on a dataset which tries to cover diverse 

receptor and ligand families in order to perform equally well among various systems. 

The training datasets are usually selections of 3D structures from PDB [210] database 

after considering several aspects of the structures, e.g. structure source, quality, type of 

ligand, etc. There are also putative datasets for calibrating and evaluating the 

performance of scoring functions such as the DUD [211] and ZINC [212]. However, 

only one target or target group is often studied at a time. In such case concern for the 

performance of the scoring function is within such specific target group, rather than the 

general performance among diverse targets. This allows the application of target 

specific scoring functions. A target specific scoring function is trained with data only 

within the target or target group of interest, and then used to predict the binding pose 

and binding affinity of new compounds, or to screen a library for potential binders. 

Such narrowing down of the training dataset selection allows better performance on the 

target group, compared with the generalized scoring functions. This trade-off is also 

justified by a number of “no free lunch” theorems [213-215], i.e. if a solution is 

optimized to perform better over one class of problems, its performance over another 

class will be brought down. In a study assessing the performance of 37 scoring 

functions over 7 types of proteins, there is no single scoring function which excels in all 

protein types [86]. 



82 
 

 

  A possible explanation to the lack of a good performing overall scoring function for 

docked ligand poses for all target types could be the insufficient characterization of 

target specific interaction features. In most cases docking programs cannot exactly 

reproduce the binding pose of a ligand in the co-crystal structure due to the limitation of 

the sampling granularity and the uncaptured induced-fit effect. So the predicted binding 

poses for ligands without known co-crystal structures with the receptors cannot be 

assumed to be exact. Some heavy atoms of the ligand forming weak interactions may be 

misplaced, while some strong interactions such as hydrogen bond and electrostatic 

interaction are likely to be identified. Furthermore, different interaction types in a 

specific receptor family are usually contributed by certain amino acid types in the 

receptor. For example, in the case of receptor CDK2 with ligand ATP, 3 hydrogen bonds 

at the binding site are always formed among different engineered structures, 

contributed by amino acids Glu81, Phe82 and Leu83 [216]; and for c-Kit tyrosine 

kinase with ligand sorafenib, residues Glu500 and Asp593 contribute stable hydrogen 

bonds [216]. 
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Table 4-2 Comparison of selected target specific scoring functions. 

 

Name Scoring Approach Objective Target 
R

2 

(Prediction) 

RMSD 

(Docking) 

AutoShim[87] E+P PLS predict IC50 (pIC50) CFS1R 0.5 
 

    PDK1 0.27  

BALLDock/SLICK[217] E GA, MLR predict binding pose lectin 0.27 0.85 

Hetenyi et al.[218] E+QSAR MLR predict ΔG β-secretase, peptide ligand 0.859 
 

AFMoC
con

[219] QSAR PLS predict pKi Thrombin 0.78  

Seifert[220] E Taboo search enrichment CDK2, ERα, COX2   

POEM[88] E DOE + ensemble regression predict binding pose kinase  2.97 

    ATPase  3.41 

SSM[221] E+RMSD Random Forest enrichment TK, ER, AChE,PDE5, and 

PPARγ 

  

DrugScoreRNA[222] KB KB docking, predict ΔG RNA-ligand 
 

 

FLAP[223] FP  enrichment FactorXa, TK, ERα   

IFS[224] FP  enrichment mGluR   

Kumar[225] P+FP Tanimoto coefficient screening TMPKmt   

TS-VS[226] Constraints+E filtering enrichment ERα   

Abbreviations: 

E -- empirical; KB -- knowledge-based; FP -- fingerprint; P – pharmacophore; 

PLS – partial least squares; GA – generic algorithm; MLR – multiple linear regression; DOE – design of experiment 
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  Several current target specific scoring functions are listed and compared in Table 4-2. 

They are optimized for various tasks, showing the feasibility of such strategy. 

 

Some review articles point out that current scoring functions are poor at predicting 

binding affinity[86], thus rescoring with other scoring functions over the poses 

generated by docking is recommended to obtain better accuracy[85]. It is also 

suggested that one rescore the poses with additional geometry-match-based scaling 

factor to scale the energy terms[227]. It is noteworthy that some empirical scoring 

functions are trained and validated over known structure for the ligand-receptor 

co-crystallization and can produce highly correlated prediction on binding affinities 

(Table 4-3). However, such kind of scoring functions are not suitable for the task of 

predicting binding affinity for compounds without known co-crystal structure, where 

the binding poses are predicted by docking programs and can be quite different from 

those co-crystal structures. 

 

Table 4-3 Selected generalized scoring functions good at predicting binding affinities. 

 

Name Scoring Approach Objective Target R
2
 

BAPPL[228] E MLR ΔG non-metallo 0.85 

PreDDICTA[229] E MLR ΔG DNA-ligand 0.9 

BAPPL-Z[230] E MLR ΔG Zinc-containing 0.77 

SFCscore[231] E+QSAR MLR pKi from AffinDB 0.72 

X-CSCORE[232] E MLR pKi 200 protein-ligand 0.591 
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4.2 Development of target specific scoring approach 

 

4.2.1 Protein structures 
 

Four protein targets, cyclooxygenase-2 (COX-2), colony stimulating factor 1 

receptor (CSF1R) , epidermal growth factor receptor (EGFR) and 3-phosphoinositide 

dependent protein kinase 1 (PDK1) were selected for this study. As tyrosine kinases, 

CSF1R and EGFR are involved in various signaling pathways related to development 

and certain types of cancers, and have large numbers of structures and inhibitor 

information. COX-2 is an enzyme responsible for inflammation, and drug discovery 

efforts of non-steroidal anti-inflammatory drug (NSAID) targeting COX-2 is an active 

research field. Also CSF1R and PDK1 were studied in a previously published method 

named AutoShim [87] where target-specific scoring functions were tuned for these 

two targets respectively, thus performances of the proposed method in this study on 

these two targets can serve as references for comparison of predictive power. 

 

  The structures are collected from the Protein Data Bank (PDB) [210]. Only structures 

of co-crystallization with ligands are interested because having a bound ligand can offer 

better approximation of the conformational change upon binding. We also considered 

the resolution of the structure and used a cutoff of 2.5 Å. Both natural forms as well as 

engineered structures are included in order to achieve a better diversity. The PDB codes 

of structures used for EGFR were: 1XKK, 2ITN, 2ITV, 2RGP and 3BEL. Selected 

structures for COX-2 were 3HS5, 3NT1, 3NTG, 3QH0, 3TZI, 4E1G, and for CSF1R 
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were 2I1M, 3BEA, 3DPK, 3KRJ, 3KRL.Selected complex structures are shown in 

Figure 4-1. 

 

 

Figure 4-1 (A) PDB code 1XKK, EGFR with ligand GW572016 (Lapatinib). 

(B) PDB code 2ITN, EGFR kinase domain G719S mutation in complex with 

AMP-PNP, shows a wider binding site opening. 

 

A 

B 
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4.2.2 Inhibitor dataset 
 

Inhibitors with experimentally determined IC50 values were collected from 

BindingDB [233], in addition with data manually collected from journal articles. The 

activity dataset for COX-2 had total 2347 compounds (after preparation by Sybyl [234]) 

in the dataset, whose binding affinity ranged from 0.001 nM to 60 mM, and molecular 

weight from 124 to 755 Da. For CSF1R, there were 318 ligands after preparation with 

activity ranging from 0.3 nM to 30 mM with molecular weight ranging from 210 to 583 

Da, and EGFR had total 1490 compounds, whose binding affinity ranged from 0.003 

nM to 6.5 mM, and molecular weight from 138.00 to 903.84 Da. 

 

4.2.3 Molecular docking 
 

In this study, two molecular docking programs were used, namely Surflex-dock in 

Sybyl-X [235] and Autodock4 [236]. 

 

  Before docking, active compounds of each target were preprocessed with Sybyl-X 

[234] ligand preparation tool, which filled valences, removed duplicates and produced 

a single least strained tautomer for each compound. Prepared compoundswere then 

processed with Open Babel [114] to add hydrogen atoms. Receptor structures were 

also prepared with the receptor preparation tool in Sybyl-X, where the ligands were 

extracted, water molecules removed and hydrogen atoms added. The ligand binding 
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sites were defined by the ligand in the co-crystal structure within the PDB file: in 

Sybyl-X, the binding site of each structure was generated by clipping the complex 

structure with its ligand in the vicinity of 10 Å (resulted in a “protomol”); while for 

Autodock4, the binding sites were automatically defined with the ligand in the 

complex structure. 

 

  These prepared compounds were docked to every selected PDB structures of their 

respective targets with Sybyl-X and Autodock4. For each compound, the pose with 

best docking score among all docked poses with all receptor structures used was 

selected for re-scoring. Docking scores from both docking programs were also 

recorded for comparison with the target-specific scoring function in this work, as well 

as for use as additional features for the scoring scheme used in this work. Docking 

score from Surflex-dock contained three terms: total score expressed as -log(Kd), 

crash score describing steric clash and polar score indicating contribution of the polar 

non-hydrogen bonding interactions [235]. Autodock4 output an “Estimated Free 

Energy of Binding”, along with Van der Waals interaction energy, electrostatic energy, 

total internal energy, torsional free energy and energy of unbound system. 

 

4.2.4 Re-scoring of docking results 
 

A set of empirical scoring terms were calculated including van der Waals, 

electrostatic, hydrogen bond and metal−ligand interaction energy, and also solvation 

free energy change (hydrophobic effect of the receptor), changes in conformational 
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entropy. The Amber force field [237] and Sanderson partial charges [238] were used in 

calculating the van der Waals and electrostatic interaction energy. Hydrogen bond 

interaction energy was calculated with Morse potential [239]. The hydrophobic effect 

was estimated by Eisenberg's method of atomic solvation parameters [240]. Changes of 

conformational entropy were estimated by an empirical formula [241]. 

 

  To adopt the scoring function for our new scoring scheme, the energy terms relevant 

to receptor were calculated and summed separately by amino acid types, i.e. the van der 

Waals interactions, electrostatic interactions, hydrophobic effect and hydrogen bond 

interactions. Each type of interaction term produces 20 output values for 20 

proteinogenic amino acid totaling 100 terms in addition with 3 terms: ligand-metal 

interactions, ligand-water interactions, and ligand conformational entropy change 

which were non-decomposable to amino acids, and an intercept term. The modified 

scoring function with amino acid type specific energy terms was used in the subsequent 

scoring process. 

 

To evaluating the binding affinity of docked ligands, only the top poses ranked by the 

docking software for each ligands were selected, which was assumed to be the most 

accurate prediction of the binding pose. 

 

4.2.5 Pharmacophore points interactions 
 

In order to ensure the scoring function includes important interactions between the 

ligand and the receptor, additional pharmacophore interactions were added to the score. 
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A pharmacophore is a necessary molecular feature for the interaction between a ligand 

and a receptor, which facilitates the binding of the two. In this study, we define five 

types of pharmacophore points and selected their interactions. The pharmacophore 

types used were: hydrogen bond donor (D), hydrogen bond acceptor (A), negatively 

charged (N) atom, positively charged (P) atom, aromatic (R) group. Based on the 

IDATM [242] atomic typing, an in-house program was written to assign 

pharmacophore types to atoms in the docking results. Interactions between 

pharmacophore points can be attractive, such as a hydrogen bond donor in the ligand 

adjacent to an acceptor in the receptor (DA), and vice versa (AD). Known repulsive 

interactions are NN and PP. In order to capture all possible interactions, a total number 

of 25 interaction types (five types from the ligand and five from the receptor) were 

counted and added as features for the scoring, as illustrated in Figure 4-2. 
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Figure 4-2 Pharmacophore points and interactions as illustrated by PDB structure 

1XKK and docked ligand ZINC41747194. Colored balls are pharmacophore points and 

the meanings of colors are: green D, red A, blue P, white N, yellow R. 

 

4.2.6 Model fitting 
 

  The binding affinity of the used compounds in this study is given in IC50, whose 

relation with inhibition constant Ki is described in the Cheng-Prusoff equation [243]: 

Ki =
IC50

1 + S/Km
 

and we also have the equation ΔG = RTlnKi, so the final conversion between IC50 and 

change of free energy is ΔG = RT[ln(IC50)-ln(1+S/Km)]. As the values of S and Km are 

often not reported, we use only the RTln(IC50) part as desired output of the data, which 

is linearly related to ΔG. Such approximation is commonly used when IC50 is the only 

available data for the ligand binding affinity [163].  
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  A number of supervised machine learning methods were used to build prediction 

models for binding affinity from energy terms from our amino acid type specific 

scoring function with pharmacophore point counts and docking scores. Predictive R 

squares were reported from cross validation. The methods used were: linear least 

squares, artificial neural network, support vector regression and random forest. The 

performance of each method were evaluated and compared. 

 

 

4.3 Performances for characterization of compounds based on 

target structures 

 

4.3.1 Model performances for different feature sets and their 

combinations 
 

The input features generated from the docked ligand poses for use in the scoring 

function can be grouped into three feature sets: the empirical features including atom 

pair interaction between ligand and the receptor (E), the pharmacophore features 

including all type of pharmacophore interaction counts (P), and the docking scores (S). 

To obtain the optimal predictive power and to compare models built from different 

feature sets, regression models were built on each feature sets as well as their 

combinations, and the values of test R square from ten-fold cross-validation were 

listed in Table 4-4. 

 

  Paired sample t-tests were used to compare performances of models built from 



93 
 

different feature sets. Feature set E performed better than P for all modeling methods 

(P<0.01 LS, SVR, RF and P<0.05 for NN), which was expected as feature set P 

contained counts of the interaction pairs and were not as precisely characterized by 

numerical empirical scoring terms broken down to amino acid types. Moreover, there 

was no significant difference comparing feature set E to the combination of E and P, 

which implied that no more information could be captured by feature set P. In other 

words, the empirical scoring terms were able to cover information of pharmacophore 

interactions derived from the docked structures. 

 

  In order to determine whether any improvement was achieved with the empirical 

feature set used in this study, the performances were compared between feature sets E 

and S for each modeling method. For the first and second best performing methods 

SVR and RF, the improvements for feature set E over S were significant (P<0.01for 

both), while the rest two methods LS and NN the differences were not significant. To 

compare the overall performance in predicting binding affinity between the two 

docking programs used and the target-specific empirical scoring function, the best 

performing models with RF should be compared to the LS models built with docking 

scores S, as these scores were designed to be linearly related to binding affinity. RF 

models built with feature set E performed significantly better than LS models built 

with feature set S for both docking programs (P<0.05). 
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4.3.2 Comparisons of performance of modeling methods and docking 

programs 

 

The modeling method with best performance in this study was RF (P<0.01 compared 

to SVR), followed by SVR (P<0.01 compared to NN), and the performance of NN 

models were slightly better than LS in term of averaged R square, although this 

difference was not statistically significant. 

 

  The performances of models grouped by the docking program used were also 

compared. It turned out that the effect of using different docking programs, 

Surflex-Dock and Autodock4, was not significant, i.e. the quality of docking results 

from both programs were comparable. 

 

  The highest R square achieved was with RF with combination of feature sets E, P 

and S with an average of 0.4351, which was much higher compared to previously 

published satisfactory R square for the performance of a scoring function in predicting 

binding affinity, 0.32 [86]. Compared with the AutoShim method [87], which tuned 

target-specific scoring functions for CSF1R and PDK1, where the test R square were 

reported to be 0.5 and 0.27, the results in this work were comparable or better, as the 

best RF models with combination of feature sets E, P and S achieved 0.5083 for 

CSF1R with Autodock4 and 0.4904 for PDK1 with Surflex-Dock, and the differences 

in predictive power compared to other feature sets and feature set combinations were 

significant. 
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Table 4-4 Model performances in terms of test R square from ten-fold cross-validation for models were built on each feature sets and their 

combinations. (Methods: LS, linear least squares; NN, artificial neural network; SVR, support vector regression; RF, random forest.) (Feature 

sets: E, empirical terms; P, pharmacophore point interaction; S, docking scores.) (Docking methods: Sybyl, Surflex-Dock of Sybyl-X; Autodock, 

Autodock 4.) 

  Sybyl_COX2 Sybyl_CSF1R Sybyl_egfr Sybyl_PDK1  Autodock_COX2 Autodock_CSF1R Autodock_EGFR Autodock_PDK1 Average 

 
E 0.1132 0.2401 0.1572 0.3312 

 
0.1519 0.2780 0.2070 0.2965 0.2219 

 
P 0.1197 0.1011 0.0724 0.1851 

 
0.1779 0.0979 0.0790 0.1891 0.1278 

LS E+P 0.1459 0.2837 0.1724 0.2759 
 

0.2069 0.3109 0.2604 0.3229 0.2474 

 
S 0.0709 0.2068 0.0365 0.3487 

 
0.1325 0.2365 0.0345 0.3926 0.1824 

 
E+S 0.1392 0.3043 0.1762 0.2896 

 
0.1871 0.2624 0.2150 0.3437 0.2397 

 
E+S+P 0.1901 0.2577 0.1883 0.3352 

 
0.2072 0.3158 0.2653 0.3580 0.2647 

 
E 0.1284 0.2703 0.1851 0.3100 

 
0.1757 0.2761 0.2056 0.2729 0.2280 

 
P 0.1406 0.1268 0.0956 0.2390 

 
0.2031 0.0840 0.1512 0.2471 0.1609 

NN E+P 0.1498 0.2980 0.1878 0.2871 
 

0.1934 0.3327 0.2665 0.3066 0.2527 

 
S 0.0819 0.2072 0.1135 0.3153 

 
0.1781 0.3207 0.1363 0.4018 0.2194 

 
E+S 0.1283 0.3061 0.2005 0.3531 

 
0.1739 0.2891 0.2183 0.3567 0.2533 

 
E+S+P 0.1431 0.3309 0.2115 0.3131 

 
0.1860 0.3286 0.2714 0.3105 0.2619 

 
E 0.2375 0.3721 0.3430 0.3956 

 
0.3037 0.4264 0.3867 0.3725 0.3547 

 
P 0.1282 0.2159 0.1747 0.2588 

 
0.1906 0.1404 0.1817 0.2052 0.1869 

SVR E+P 0.2695 0.4021 0.3500 0.3875 
 

0.3345 0.4202 0.3611 0.3226 0.3559 

 
S 0.1053 0.2151 0.1521 0.3605 

 
0.1955 0.3381 0.1731 0.4162 0.2445 

 
E+S 0.2288 0.3679 0.3401 0.3947 

 
0.3117 0.4162 0.4038 0.3791 0.3553 

 
E+S+P 0.2695 0.4031 0.3596 0.3897 

 
0.3294 0.4360 0.3701 0.3330 0.3613 

 
E 0.2438 0.4308 0.3787 0.4460 

 
0.3037 0.4451 0.3960 0.4208 0.3831 

 
P 0.2498 0.2534 0.2106 0.3260 

 
0.3088 0.1841 0.2518 0.3196 0.2630 

RF E+P 0.2982 0.4582 0.3884 0.4141 
 

0.3772 0.4872 0.4221 0.4193 0.4081 

 
S 0.1023 0.2268 0.1319 0.3913 

 
0.2027 0.3841 0.2333 0.4557 0.2660 

 
E+S 0.2646 0.4328 0.3617 0.4774 

 
0.3318 0.4652 0.4295 0.4729 0.4045 

 
E+S+P 0.3039 0.4705 0.3976 0.4904 

 
0.3896 0.5083 0.4366 0.4840 0.4351 
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4.3.3 Difficulties in the current approach 

 

  The docking software Surflex-Dock of Sybyl-X employs an exhaustive search 

strategy when sampling the ligand position and conformation, and its ability for 

approximating the native binding pose outperforms some popular docking programs. 

However, deviation is still unavoidable in such process, and such inaccuracy, though 

small, necessitates the robustness of the scoring function. 

 

  Quality of the binding affinity of the ligand dataset also affects model performance. 

In most occasions of the inhibition assay the results are reported as IC50. The 

conversion from IC50 to deltaG through the Cheng-Prusoff equation [243] involves 

extra parameters, which are usually not reported. Such approximated conversion is 

resulted from the lack of detailed experiment settings, as well as the effort required to 

examine the ligand data one by one. The inaccuracy and noise introduced by this 

approximation may further compromise the correlation. Various studies have been 

addressing this issue, bringing forth discussions on the derivation of inhibition 

constants and suggesting alternatives or improved methods [244-246]. 

 

4.4 Potential improvements 

 

4.4.1 Improving the prediction model 

 

  As shown in the results and comparison with other work, this scoring function and the 

prediction models still have the potential to be further improved. One possible approach 
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is the refinement of the compound dataset. As IC50 values are measured with various 

experiment conditions, we can specially select a group of compounds with IC50 

measured in similar conditions to reduce noise. In the second place, as this research is 

mainly focused on drug discovery, some filters for drug-like properties can be applied 

on the ligand dataset before they are docked and scored, which will result in converged 

characteristics of the instances in the training dataset and possibly a better-performing 

model. Thirdly, some other empirical energy terms can still be considered, such as π-π 

stacking and π-cation interactions, which may compensate for the neglected 

interactions in the current model. In addition, as different docking methods employ 

different search protocol and scoring functions, other docking software can be tried out 

to find even better prediction of binding poses. Finally, the docking procedure can be 

further optimized by sampling the side chain conformations of the receptors in advance, 

leading to more accurate docking results [247]. Several packages are available for this 

task, such as SCWRL4 [248], SCAP[249] and NCN [250]. 

 

4.4.2 From target specific to target family specific 

 

  The improvements in predicting binding affinity for selected protein targets were 

encouraging. As we assumed that the most contributing amino acid types differ among 

different targets, such assumption may also hold true upon a family of receptors. The 

scoring function can be targeted to receptor families and trained to be target 

family-specific scoring function. 

 

4.4.3 Recalibration for virtual screening 
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Currently the amino acid type-based scoring function is calibrated to predicting 

binding affinity. The idea can also be applied in virtual screening, i.e. ranking the 

compounds or discriminate between binders and non-binders instead of predicting the 

binding affinity. To achieve such recalibration, a SVM classifier can be intuitively 

employed. 
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Chapter 5 Two-dimensional characterization 

of G protein-coupled receptors and their 

ligands based on target binding site sequence 

similarity and ligand-set similarity 
 

5.1 Characterization of G protein-coupled receptors 

 

5.1.1 The G Protein-Coupled Receptor superfamily and its phylogenetic 

study 

 

The G Protein-Coupled Receptors (GPCRs) are a large group of proteins located on 

cell surface and are responsible for transduction of an extracellular stimulant into an 

intracellular response. These proteins share a conserved seven transmembrane (7TM) 

sequence motif where the ligand binding site is located. GPCRs are involved in 

various signal transduction events such as sense of light, odor and taste, 

neurotransmission, hormone signaling and cell-cell communication. 

 

Being one of the largest families in the human genome[251] with over 800 members 

identified [252, 253], the GPCR superfamily are large in number , diverse in sequences 

at the ligand binding site, and targeted by large number of ligands of different chemical 

nature including peptide, ions, amines, adenosines and lipids, etc.[19]. Thus, in order to 

facilitate characterization of different GPCRs, identification of novel GPCRs and 

deorphanization of existing GPCRs, classification and phylogenetic study of GPCRs 
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has been of considerable interest [252, 254-258]. These methods based on ligand 

binding mode as well as structural and physiological features, with both alignment and 

alignment-free approaches. Frequently used classification systems include the A, B, C, 

D, E, F clan system [254] and the GRAFS system [252]. The former is designed to 

cover GPCRs from both vertebrates and invertebrates, and not all clans are present in 

human. The latter studied only GPCRs in human and is of greater value for human 

disease mechanisms and drug discovery. 

 

The name GRAFS stands for the five main families into which more than 800 human 

GPCR sequences are clustered into 5 families: glutamate, rhodopsin-like, adhesion, 

frizzled/taste2 and secretin. Detailed information of these families can be found in 

Table 5-1. 

 

The GRAFS system was based on phylogenetic analysis on the sequences truncated 

to include only the conserved 7TM domain. The truncated sequences were then 

permuted to overcome the effect of input order of sequences on the alignment. For each 

permutation, the sequences went through alignment and bootstrapping, and finally tree 

generation with neighbor-joining method. The final tree is the consensus of all trees. 

Based on the bootstrap values the five aforementioned families were established. 
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Table 5-1 Selected GPCR members and functions for each family. The numbers of members are the numbers in human genome as of year 2014. 

 

Family Name Number of Members  Selected Functions Selected Members 

Glutamate 22 modulation of synaptic plasticity 

[259]; sweet taste sensing [260] 

Metabotropic glutamate receptor 1 (GRM1), extracellular 

calcium-sensing receptor (CASR), taste receptor type 1 

member 1 (TAS1R1) 

Rhodopsin-like 296 (not including 

olfactory receptors) 

widespread functions include sense of 

extracellular hormones, 

neurotransmitters, and light 

Rhodopsin (RHO), 5-hydroxytryptamine receptor 1A 

(HTR1A), neuropeptide Y receptor type 1 (NPY1R) 

Adhesion 33 immune repsonse [261]; neuron 

development [262] 

EGF-like module-containing mucin-like hormone 

receptor-like 2 (EMR2), G-protein coupled receptor 126 

(GPR126) 

Frizzled/Taste2 36 bitter taste sensing [263]; embryonic 

development, tissue and cell polarity 

[264] 

Taste receptor type 2 member 1 (TAS2R1), frizzled-1 (FZD1) 

Secretin 15 response to peptide hormones [265, 

266] 

Secretin receptor (SCTR), calcitonin receptor (CALCR) 
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5.1.2 Rhodopsin family and its clinical significance 

Being the largest family of GPCR, Rhodopsin-like receptors have gain great attention 

due to their participation in a wide range of physiological process and involvement in 

various types of diseases, while still being relatively close in binding site similarity. 

The Rhodopsin like receptors has been the focus of drug discovery. There are total 92 

receptors of this family with FDA-approved drugs (data from Therapeutic target 

database [186]. Till year 2005, 26.8% FDA-approved drugs target Rhodopsin family 

GPCRs [267]. Among the top 100 best-selling drugs, more than 20 target the 

Rhodopsin family as of year 2001 [268] with indications for diseases such as 

hypertension, allergies and asthma. Thus the Rhodopsin family receptors are 

considered highly potent for drug discovery. 

 

5.1.3 Sequence-based and ligand-based classification studies for 

Rhodopsin family 

 

Phylogenetic studies focusing on sequence feature for Rhodopsin family have proposed 

several classification system, the frequently cited one was the 19 subgroups system 

[269] based on sequence similarity, in which receptors with similarity functions were 

group together. Further studies focused on target deorphanization and ligand-based 

target characterization, so efforts were devoted to obtain accurate analysis on the ligand 

binding site, rather than on the relatively large 7TM domain with length of a few 

hundreds amino acid residue. Researches aiming to identify the ligand binding site have 
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proposed different set of residues on the target, namely the reference set. For example, 

the Novartis reference set covers ligand binding sites of aminergic receptors with 20-25 

residues [270]; Hoffman-La Roche reference set covers the 7TM pocket of Rhodopsin 

family with 28 residues [271]. The reference set used in this study is the GSK reference 

set [256], which is based on analysis on the 7TM pocket of crystal structures of 

Rhodopsin family and characterizes pharmacological relationships while minimizing 

evolutionary influence from non-ligand-binding residues. The resulted phylogenetic 

tree based on this reference set has a tendency to group receptors with same 

endogenous ligand types together. 

 

On the other hand, ligand set based characterization of the Rhodopsin family has 

revealed links between targets by the characteristics of their ligands, both within the 

Rhodopsin family [256] and with targets from other families [19]. Such efforts 

complement the sequence based phylogenetic analysis and uncover relationships 

among targets that are otherwise not obvious, and facilitate ligand repurposing, ligand 

design with desired activity profile as well as target deorphanization [20]. 

 

 

5.1.4 Recent advancement in target sequence similarity and ligand-set 

similarity based characterization of GPCR and scope of this work 

 

Characterization of protein families based on ligand set similarity is a promising 

approach in chemogenomic analysis [20, 89-91] and pharmacological classification [18, 

19] of target families, thus facilitates target deorphanization and ligand discovery [19, 
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89-92]. In such characterization efforts, relationship between targets can be established 

by ligand-set similarity (LSS) [19] or ligand-framework similarity (LFS) [20]. 

Ligand-set similarity between two targets can be defined as the summarized similarities, 

calculated by their physiochemical descriptors or substructure fingerprints, between all 

possible ligand pairs of ligand set of the two targets, and such summarization can be 

naïve summation or average, or complicated statistical method such as the Similarity 

Ensemble Approach (SEA) [272]. Ligand-framework similarity tries to mine the 

frequently-occurring substructures of ligand sets between targets in order to capture the 

difference of targets in terms of their favorable ligand scaffolds [20]. From the target 

aspect, the characterization of target-site sequence similarity (TSS) revealed the 

phylogenetic relationship between targets, which guided the classification and 

deorphanization of targets. For example, target-site sequences of GPCRs were studied 

extensively, leading to the widely adopted GRAFS classification system and numerous 

efforts for ligand discovery and target deorphanization [19, 69, 252, 254-258]. These 

three methods together captured the primary association of targets which aided in the 

chemogenomic analysis of targets of interest. 

 

There are cases the above methods are not enough to reveal secondary connections 

between targets, usually due to the diversity and minority of ligands these connections 

are based on. For instance, the members of GPCR superfamily muscarinic receptors 

have been linked to receptors of different endogenous ligands within the superfamily, 

such as certain neuropeptide, chemokine and biogenic amine receptors by LSS method 

[19], opioid and chemokine receptors by LFS method [20] and biogenic amine, 
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melatonin, and melanocortin receptors by the TSS [19, 20] method. These 

observations can be justified that some muscarinic receptors and the primarily 

associated targets share ligands of the same molecular scaffolds. In addition, chemical 

analogs of the same molecular scaffolds are also known to interact with muscarinic 

receptors as well as those receptors deemed distantly related by the LSS, LFS and TSS 

methods.  

 

The work described in this thesis is inspired by the insufficient coverage of 

secondary target associations. There is a need to comprehensively capture both primary 

and secondary target associations to facilitate the application of chemogenomic 

approaches for ligand discovery, such as scaffold hopping [52-55], target hopping [56, 

57], and polypharmacology [47-51]. In this work, a combinatorial method linking 

target-set sequence similarity [20, 69, 92] with structural fingerprint [93, 94]based 

ligand similarity was used to derive a two-dimensional target-site sequence similarity 

and ligand-similarity (2D-TSSaLS) characterization for human GPCRs and their 

ligands. Comprehensive characterization of compounds activity profiles as well as  

unexpected target associations which were neglected by previous methods was 

achieved, focusing on potential interest of applying chemogenomic approaches 

including scaffold hopping, target hopping and polypharmacology for ligand discovery 

and target deorphanization. Experimental assays were conducted to validate the 

predicative ability of the 2D-TSSaLS method for identifying new associations between 

targets which are previously unrelated. 
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5.2 Two-dimensional characterization method of GPCRs and 

their ligands 

 

5.2.1 GPCR sequence collection, binding site identification and 

phylogenetic analysis. 

 

The sequence of 296 human GPCR Rhodopsin family members were obtained from 

UniProt [253], The target sites of the members of this family have been defined by the 

GSK reference set of residues at the transmembrane ligand-binding sites [256]. For 

GPCRs included in the GSK reference set, the ligand-binding site residues were 

directly extracted from the set. For the remaining GPCRs, their sequences were first 

aligned against the reference set by using Clustalw Omega [135] and the residues 

mapped to the GSK reference set residues were subsequently chosen as the binding 

site residues. The sequence segments covering the binding site residues were used for 

generating a TSS phylogenetic tree, with the pairwise sequence distances computed 

and the UPGMA phylogenetic tree generated by using the MEGA 5.1 [142] software. 

The derived TSS phylogenetic tree was rendered in radical form by using an R 

package APE [273] with colored leaf nodes indicating the chemical type of 

endogenous ligands for each GPCR. The nomenclature of each receptor is based on 

gene name recorded in the UniProt database to eliminate confusions among different 

names used historically for each receptor.  

 

5.2.2 GPCR ligand collection, processing and clustering   
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A total of 77,370 ligands of 184 GPCRs in the Rhodopsin family with activity values 

(IC50, Kd, Ki, EC50) < 10μM were collected from CHEMBL version 18 [178] with 

an additional requirement that the relevant records are from published literatures. 

Based on the information from the Therapeutic Target Database [186] and DrugBank 

[187], there are 538 approved, 151 clinical trial and 3115 investigative drugs targeting 

157 GPCRs in the Rhodopsin family, which were added into the ligand set. In 

processing these ligands, hydrogens were added and salt ions were removed by using 

Open Babel [114]. Duplicate compounds were identified and removed by comparison 

of their InChIKeys, which is a hashed version of InChI [190] designed to be nearly 

unique for each individual compound with a collision resistance of 2.2×10
15

 [191]. 

 

The Pubchem 881-bit molecular fingerprint [2] of each ligand was computed using 

PaDEL version 2.18 [105], and its molecular scaffold was extracted by using the 

Murcko decomposition method [74] implemented in RDKit [115]. The extensively 

used hierarchical clustering algorithm [8, 184] was used to cluster the ligands into 

ligand set (LS) clustering trees with the similarity metric of the Tanimoto coefficient 

[117] and complete linkage. Because of the practical difficulty in displaying and 

visualizing the 2D-TSSaLS graph of the 77,370 ligands with respect to 184 targets, 

highly similar ligands (Tanimoto similarity coefficient > 0.85) of the same molecular 

scaffold were combined into scaffold-subgroups, so that the dendrogram of the LS 

clustering tree displays significantly less number of leaf nodes. As a result, the 77,370 

ligands were clustered into 37,352 scaffold-subgroups. 
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5.2.3 Generation of two-dimensional target-ligand interaction graphs 

 

The 2D-TSSaLS graph shows the distribution of the ligands with respect to their 

targets (the dots) with the dendrogram of the target TSS phylogenetic tree and 

dendrogram of the ligand scaffold-subgroup LS clustering tree displayed on the 

left-hand side and top side respectively. Each dot in the graph represents a 

scaffold-subgroup with its y coordinate represents the projected location of a target of 

the scaffold-group in the dendrogram of the TSS phylogenetic tree, while the x 

coordinate represents the projected location of the ligands of the scaffold subgroup in 

the dendrogram of the LS clustering tree. In order to ease display and manipulation, the 

whole graph was split into subgraphs with the separations defined by major branches of 

the ligand tree. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Characterization results 

 

5.3.1 Phylogenetic analysis of rhodopsin-like GPCR based on target 

binding site sequence similarity 
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The computional method used in this work was previously described and used for 

analysis of 143 rhodopsin-like GPCR sequences [19]. In order to ensure the 

equivalence of our method, the phylogenetic tree of previously studied 143 

rhodopsin-like GPCRs is replicated and turned out to be the same as previously 

reported, as seen in Figure 5-1. Based on the same method, a more comprehensive 

phylogenetic tree of rhodopsin-like GPCRs consists of 296 sequences which were all 

rhodopsin-like GPCRs except the olfactory receptors available in the UniProt database, 

was generated (Figure 5-2). 

 

GPCRs tend to group by their subfamilies. For example, serotoninergic receptors, 

adrenergic receptors, dopaminergic receptors, histamine receptors as well as the trace 

amine-associcated receptors are all bioamine receptors and appear in adjacent branches, 

and closely neighbored by muscarinic receptors whose ligands contain quaternary 

ammonium cationsamine group. Other receptor subfamilies such as adenosine 

receptors, chemokine receptors, opioid receptors and sphingosine-1-phosphate 

receptors, all have their members grouped together respectively. From a more 

coarse-grained level, receptors of same endogenous ligand types were closely related to 

each other, implying consistency with ligand type organization of GPCRs. 

 

Compared to phylogenetic tree previously reported in Figure 5-1, newly added 

sequences were placed in vincinity of their respective receptor subgroups, proving the 

robustness of this phylogenetic reconstruction method. 
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Figure 5-1 Phylogenetic tree of 143 rhodopsin-like GPCR used in a previous study 

[19]. Similar method is used to replicate the phylogenetic tree previously reported. 

Colors of leaf nodes indicate the chemical types of their endogenous ligands: blue for 

bioamines, dark blue for purinergics, light blue for adenosines, green for lipids, black 

for peptides, gold for melatonins, purple for retinal and red for orphans. 
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Figure 5-2 Phylogenetic tree of 296 rhodopsin-like GPCRs used in this study. Colors 

of leaf nodes indicate the chemical types of their endogenous ligands: blue for 

bioamines, dark blue for purinergics, light blue for adenosines, green for lipids, dark 

yellow for peptides, gold for melatonins, purple for retinal and red for orphans. 

 

 

5.3.2 Interest of ligand discovery observed from two-dimensional plots of 

ligand-target interactions 

 

The two-dimensional interaction plots provided useful resource for investigation of 

potential drug repurposing, ligand discovery and target deorphanization. Compound 
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subgroups along the x axis were connected continuous structural variation between 

adjacent groups, with exception that at the separation of two branches of higher level of 

the clustering tree, the structures of the subgroups at both sides of the separation may 

different significantly. Similar situations were expected from the y axis of phylogenetic 

tree of rhodopsin-like GPCRs. According to the principle similarity, similar 

compounds bind to similar targets, which can be observed in the plots as enriched 

points in certain regions. However, there are situations that one molecular scaffold is 

active against a broad spectrum of targets and that large structural variations in 

compound structures result in no or minor target changes. These observations provide 

clues of potential areas for ligand discovery with different chemogenomic approaches, 

which are discussed in the following sections. 

 

5.3.2.1 Structural features of compounds of polypharmacology 

 

In the two-dimensional interaction plots, scaffold subgroups with multiple targets were 

often observed within certain target subclasses, such as dopamine receptors, serotonin 

receptors and muscarinic receptors. These activity records are usually resulted from 

unsuccessful efforts to design selectivity inhibitors for the respective subclass. Such 

cases are examples to avoid when selectivity is desirable, and derivatization of such 

compounds may result in novel selective inhibitors. In other cases, certain scaffold 

subgroups were found to inhibit targets from different subclasses, providing valuable 

clues for drug repurposing. 
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One case of cross-subclass inhibitor scaffold subgroups observed is scaffold 

subgroup 4438_1117 which contains compounds CHEMBL114484 and 

CHEMBL146054. This scaffold subgroup targets 14 GPCRs from serotoninergic, 

adrenergic, muscarinic, dopaminergic and opioid receptor subclasses. 

Two-dimensional interaction plot for scaffold subgroup 4438_1117 is shown in Figure 

5-3. The structures of compound within this and adjacent scaffold subgroup are listed in 

Table 5-2. Compound CHEMBL114484 was previously reported in a pharmacological 

profiling study of CNS related receptors [274], and contributed to the activities to all 

target subclasses for the scaffold subgroup. From pharmacophore analysis of the target 

subclasses, structural features of this compound explaining its polypharmacology can 

be observed and identified. As previously reported, pharmacophore models of 

serotoninergic [275], dopaminerginc [276], adrenergic receptors [277, 278] and opioid 

receptors [279] all shared similar geometrical arrangements of hydrogen bond 

acceptors, aromatic groups and a basic tertiary amine centers, in accordance to the 

structure of CHEMBL114484. The pharmacopohore model of muscarinic receptors 

[280] showed different relative position of the hydrophobic group to the aromatic ring, 

which partly explained the relatively low affinity to muscarinic receptors. With 

difference of only one methyl group, CHEMBL146054 was reported in a search for 

opioid receptor inhibitors [281] to be non-selective. 

 

As shown in Table 5-2, scaffold subgroups within the same similarity cluster as 

4438_1117 displayed structural difference of different extent. They share parts of the 

activities of scaffold subgroup 4438_1117, depending on their structural variations. 
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Derivatives of these neighbor scaffold subgroups may be investigated for potential 

polypharmacology and reposition of bioactive compounds. 

 

Multi-targeting scaffold subgroups appear in the plots as dotted vertical lines. There 

are about 30 scaffold subgroups having at least 10 targets in our compound dataset. 
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Figure 5-3 Part of two-dimensional interaction plot for scaffold subgroup 4438_1117. 

Dots along the vertical line to the left are activity records for the compounds in this 

subgroup. Targets corresponding to the position of the dots are circled on the target 

phylogenetic tree and the name of targets displayed. 

 

 

 

 

 

4438_1117 
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Table 5-2 Selected compound structures of scaffold subgroup 4438_1117 and its 

neighbors within the same similarity cluster. 

 

Scaffold subgroups Compound structures 

4438_7088 

 

4438_7822 

 

4438_1764 

 

4438_1117 
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5.3.2.2 Patterns of structural changes of compounds for scaffold hopping 

 

Scaffold hopping is a useful strategy to discover novel active scaffolds based on known 

active scaffolds. In the two-dimensional interaction plots, consecutive horizontally 

arranged dots were observed. There are cases where several horizontal lines of dots 

neighboring each other, which indicates a series of active scaffold groups against a 

target subclass. Such observations were of great interest to scaffold hopping strategy 

because they provide actual examples of how a scaffold can be modified while 

retaining activity. 

 

  A series of scaffold subgroups which are active against the adenosine receptor a2a are 

discussed to illustrate the usefulness of the plots. The positions of these consecutive 

horizontal dots are illustrated in Figure 5-4. Selected compound structures of each 

scaffold subgroups are shown in Table 5-3 in order of appearance from left to right. 

Adenosine is the endogenous ligand of adenosine receptor a2a, which is responsible for 

regulating myocardial blood flow [282]. The selected scaffold subgroups are from two 

similarity clusters with similarity cutoff of 0.85 measured by Tanimoto coefficient of 

fingerprints, and the two clusters are number 6639 and 6640. For scaffold subgroups of 

cluster 6639, as shown in Table 5-3, every structure contains the adenine (CID 190) 

moiety as in adenosine, connected to a furan group (CID 8029) with a hydrogen bond 

acceptor resembling the ribose moiety in adenosine. Mild variations of side chain 

groups do not affect the ability of binding. For similarity cluster 6640, the situation is 

similar that the core pharmacophores persist while variations on the side chains occur. 
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Scaffold hopping strategy is exemplified by the change of these structures. For example, 

among structures in cluster 6639, methyl is replaced with cyclopropyl on a connector 

nitrogen atom, as those are both small hydrophobic groups; and for structures in cluster 

6640, the terminal piperidine moiety replaced by morpholine, demonstrating with a 

case of heterocycle replacement. 

 

 

 

Figure 5-4 Part of two-dimensional interaction plot for scaffold subgroup from 

6639_2548 to 6641_2509, which are all active against adenosine receptor a2a. Dots 

along the horizontal red line are activity records for these subgroups. Targets 

corresponding to the position of the dots are circled on the target phylogenetic tree. 
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Table 5-3 Selected compound structures of scaffold subgroup formed 16 consecutive 

dots in the plot targeting adenosine receptor a2a. Scaffold subgroups range from 

6639_2548 to 6641_2509. Adenosine, as the endogenous ligand of adenosine receptor 

a2a, was added at the first row. 

 

Scaffold subgroups Compound structures 

adenosine 

 

6639_2548 

 

6639_2550 

 

6639_2545 
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6640_34062 

 

6640_34091 

 

6640_2798 

 

6641_37277 

 

6641_34247 
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6641_34062 

 

6641_34091 

 

6641_34212 

 

6641_34213 

 

6641_34273 
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6641_36265 

 

6641_2798 

 

6641_2509 

 

 

 

  Another example is a series of scaffold subgroups targeting the cannabinoid receptor 

type 2, whose endogenous ligand is 2-arachidonoylglycerol. These scaffold subgroups 

are found to form a horizontal line in the plot (position in plot not shown), and within 

these subgroups two of them show the application of ring open and closure technique in 

scaffold hopping (as shown in Table 5-4). One of the methoxy groups of compound in 

subgroup 8845_8053 was changed to form a fused ring system with the neighboring 

benzene ring. Such change in structure can lock the compound into certain 

conformation. 
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Table 5-4 Selected compound structures of scaffold subgroups targeting the 

cannabinoid receptor type 2. These two scaffold subgroups within the same similarity 

cluster form an example of scaffold hopping technique ring open and closure. 

 

Scaffold subgroups Compound structures 

8845_8053 

 

8845_4058 

 

 

 

5.3.2.3 Patterns of structural changes of compounds for target hopping  

 

Applying modification on compound scaffold may sometimes result in decreased 

activity towards its target but novel activity against another target. Such target hopping 

strategy is often used for ligand discovery when active compounds against close related 

targets are available. Such cases appear in the two-dimensional plots as diagonal 

arrangement of dots. As an example, the area shown in Figure 5-5 is discussed. 

 

  The scaffold subgroups in this area target niacin, muscarinic and adenosine receptors, 

and their structures are shown in Table 5-5. The scaffolds of similarity cluster 7016 

targeting niacin receptors share a benzoic acid moiety resembling the niacin structure. 

The two compounds were reported to be full agonists [283]. Compared with cluster 
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7016, scaffolds in cluster 7017 have the benzoic acid moiety substituted at both sides, 

resulting in several different complex scaffolds that match the pharmacophore model of 

muscarinic receptors, which is a hydrogen bond acceptor center connected to an 

aromatic ring neighbored by hydrophobic groups [280]. Based on similar central 

structure with hydrogen bond acceptor nitrogen atoms, scaffolds in cluster 7023 have 

smaller volume and hydrophobic terminal aromatic rings, which fit into the 

pharmacophore model of adenosine receptor inhibitors xanthine derivatives [284], 

explaining the transition of targets. 

 

It is clear that from the above observation, target hopping requires knowledge of 

pharmacophore model of the desired target. By changing the structure towards 

appropriate pharmacophore model of choice, desired activity profile can be obtained. 
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Figure 5-5 An area from the two-dimensional interaction plot for closely neighboring 

scaffold subgroups targeting niacin receptors, muscarinic receptors and adenosine 

receptors, respectively. Dots within the red circles are activity records for these 

subgroups. Targets corresponding to the position of the dots are indicated on the plot. 

 

 

 

 

 

 

 

muscarinic receptors 

adenosine receptors 

niacin receptors 
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Table 5-5 Selected compound structures of scaffold subgroups of similarity clusters 

7016, 7017 and 7023 targeting niacin, muscarinic and adenosine receptors, 

respectively. 

 

Scaffold subgroups Compound structures 

niacin 

 

7016_34656 

 

7016_34814 

 

acetylcholine 

 

7017_24393 

 

7017_23020 

 



127 
 

7017_23019 

 

7017_23018 

 

adenosine 

 

7023_21958 

 

7023_21961 

 

7023_21939 
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7023_21963 

 

7023_18713 

 

 

 

5.3.3 Experimentally validated activity of novel scaffold inspired by 

two-dimensional characterization 

 

Manual examination was performed on ligand structures of areas rich in activity 

records on the plots for selected targets. Among those, a series of scaffolds with highly 

similar DABCO and quinuclidine substructures were found to be active against 

serotonin receptor 4 (structures 1 through 5 in Table 5-6). These two substructures are 

rarely found in our ligand dataset, thus it is possible to obtain novel ligand scaffolds 

with structural modification of these ligands. As there are existing scaffold subgroups 

targeting both serotonin and dopamine receptors, it is possible to modify the structure 

of a serotonin receptor inhibitor to achieve target hopping to dopamine receptors, or to 

be active against both receptor subclasses. After comparing structures in Table 5-6 with 

pharmacophore models of dopamine receptors [276, 285], a series of compounds with 

the DABCO substructure connected to compact aromatic ring with hydrogen bond 

donor and acceptor were selected a vendor catalog. Preliminary binding assays 
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identified one of them, compound 1, to be active against several dopamine receptors 

and serotonin receptor 2A at micromolar level (as shown in Table 5-7). The structure of 

compound 1 is not shown here due to considerations for intellectual property. 

 

 

 

Table 5-6 Structures with DABCO and quinuclidine substructures which were found to 

be active against serotonin receptor 4 (structure 1 to 5), along with the structure of 

dopamine (6). 

 

 Structure 

1 

 

2 

 

3 
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4 

 

5 

 

6 

 

 

 

Table 5-7 Activities of compound 1 against selected dopamine and serotonin receptors. 

DRD1, DRD3, DRD4: dopamine receptor 1, 3, 4; 5HT2A: serotonin receptor 2A. 

 

Target Activity 

Average of all 

activities for 

this target 

DRD1 38,000 nM 705.91nM 

DRD3 23,000 nM 652.55nM 

DRD4 37,000 nM 561.16nM 

5HT2A 19,000 nM 609.15nM 
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5.4 Potential improvements 

 

5.4.1 Pharmacophore analysis for elucidation of mechanisms of 

observations in this work 

 

Pharmacophore analysis has been widely used in virtual screening and ligand 

characterization [286-288]. Structural features critical for interaction against protein 

targets can be extracted and used to elucidate the mechanism of binding. In different 

types of structural modifications applied in chemogenomic approaches for ligand 

discovery or repositioning, change of pharmacophore type or positions can result in 

different activity profiles. In this work, we focus on the patterns of structural changes of 

compounds. For further investigation of the mechanisms of activity profile change 

related to the structural changes, pharmacophore alignment of the structures of interest 

against the pharmacophore model of various targets should be analysis to expand the 

understanding of those observations described in previous sections. 

 

5.4.2 Scaffold based approach for potential scaffold hopping 

identification 

 

Scaffold hopping usually results in the separation of novel and original scaffolds into 

different similarity groups, making them hard to identify from the two-dimensional 

interaction plots. Similarity method based on scaffold may solve this problem by 

grouping similar scaffold together [122-124]. However, popular scaffold based 

hierarchical characterization methods of compounds have developed various rules for 
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determination of scaffold hierarchy, making it hard to compare the accuracy and 

performance among different methods. Definition of molecular scaffold with graph 

theory has resulted in quantitative similarity value, but such approaches can require 

large computational cost. There is a need for robust and stable algorithms for further 

development of scaffold based similarity characterization. 
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Chapter 6 Cross-linking biomarkers and 

targets with disease codes to facilitate 

personalized medicine 
 

6.1 Integration of information of targets, biomarkers and drugs 

by disease to facilitate personalized medicine 

 

Apart from development of methods for virtual screening, it is also important to link 

information and knowledge generated in research in therapeutic agents to the fields of 

diagnostics and theragnostics, thus to facilitate the application of such knowledge 

towards personalized medicine. Entities in therapeutics and diagnostics include targets, 

biomarkers, drugs and diseases, whose information can all be linked together by 

disease. 

 

  Personalized medicine integrates unique clinical, genetic, genomic and 

environmental information of each patient to achieve precise and individualized 

treatment and prescription [289]. Thus one important aspect is to precisely define 

each disease condition based on individual differences, where biomarkers play a vital 

role in disease subtyping. A biomarker is defined as “a characteristic that is 

objectively measured and evaluated as an indication of normal biologic processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention” [290]. 

Biomarkers are useful in disease diagnostics and prognostics, as well as determination 

of disease subtypes and classification of patient subpopulation [291], providing 
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information for characterization of disease heterogeneity of each individual patient. 

 

On the other hand, access and application of information and knowledge of targets, 

biomarkers and drugs for personalized medicine require a disease coding system 

which codes disease conditions unambiguously. One such disease coding system is 

the International Classification of Diseases (ICD) [292]. ICD is one of the most 

widely used standard disease classification system for defining, studying and 

managing diseases and treatments [292], which is developed and curated by the World 

Health Organization (WHO). The classification of disease in ICD is based on the 

organ and tissue systems which are affected by the disease, paralleled by the 

pathogenic or molecular causes describing systematic diseases. Various symptoms, 

injuries by external causes, treatment and historical health events are also included. 

The current ICD version is ICD10 version 2010, while ICD9 is still widely used and 

ICD11 in development. 

 

The ICD system organizes diseases hierarchically based on the aforementioned 

features and codes them into alphanumeric identifiers by manual curation. ICD 

employs three levels in its classification system with the lowest level indicates the 

basic disease unit. A typical path of the hierarchy looks like this: first level “V Mental 

and behavioural disorders”, second level “F30-F39 Mood [affective] disorders” and 

third level “F30 Bipolar affective disorder”. Under each basic unit, subunits are 

defined by particulars of symptoms.  

 

Linking ICD codes of diseases to biomarkers, as well as targets and drugs 
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enables easy cross-links to bioinformatics resources for genomic and functional 

information, and provides a useful resource for implementation of personalized 

medicine. This result was presented in the recent update of the Therapeutic Target 

Database [186]. 

 

6.2 Data collection and curation 

 

Disease indications for biomarkers, targets and drugs were extracted from TTD. A 

computer program was created to automatically match the disease names to those of 

the basic units in ICD9 and ICD10. As indication data were derived from literature of 

various sources, several different descriptions for the same condition may exist. All of 

the matches were manually inspected to unify different descriptions of the same 

disease, fix ambiguous names and correct errors from the automatic matching process. 

The final matches between ICD identifiers and disease names were mapped back to 

biomarkers, targets and drugs and populated into the database. As results, there were 

1,755 biomarkers, 893 targets and 5,697 drugs mapped to ICD identifiers by their 

disease indications. Furthermore, external identifiers from biological databases such 

as UniProt [253], GeneBank [293] and Gene Expression Atlas [294], were linked to 

biomarkers, targets and drugs. 

 

6.3 A resource for facilitating the implementation of 

genomics-informed personalized medicine 

 

Information of biomarkers, targets and drugs linking to ICD identifiers can be 
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accessed at http://bidd.nus.edu.sg/group/ttd/ttd.asp . It is possible to search the 

database for diseases, targets and drugs with ICD identifiers, in addition to drug and 

target names which were previously available. ICD identifiers uniquely identify 

diseases and symptoms without ambiguity, thus are able to standardize diseases 

references, providing a fast and accurate way of navigating the database. To facilitate 

the searching of the database by ICD identifiers, links organized in cascade lists were 

developed for both the ICD9 and ICD10 systems. By navigating through the disease 

hierarchy, one can easily locate the disease of interest and retrieve relevant 

information from the database. The cascade lists for ICD10 is shown in Figure 6-1 as 

an example. 

 

 

Figure 6-1 Part of the cascade lists for ICD10, showing basic units under first level 

category “C00-D49 2. Neoplasms” as an example. 

 

 

The result of searching an ICD identifier for biomarkers is a list of all biomarkers 

http://bidd.nus.edu.sg/group/ttd/ttd.asp
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related to the disease indicated by the ICD identifier. Part of the search result for 

searching with ICD identifier C43 for malignant melanoma of skin is shown in Figure 

6-2. Information on biomarkers, diseases and related targets and drugs are listed, with 

external database cross-links for these entities. 

 

 

 

Figure 6-2 Result for searching with ICD identifier C43 for malignant melanoma of 

skin. 

 

 

 

6.4 Towards a more refined disease classification system for 

personalized medicine 

 

Current ICD classification system organizes diseases based on symptoms and the part 
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of the body where the symptoms are found. Such classification of diseases ignored the 

most important information for diseases in the modern targeted therapeutic paradigm 

for medicine – the molecular mechanism of the disease identified by biomarker and 

target status. Without molecular information, it is impossible to precisely define a 

disease condition for a patient with this coding system, leading to a hindrance for 

personalized treatment and prescription. One example is the classification of breast 

cancer as illustrated in Figure 6-3. In ICD9, ICD10 and ICD11, subclasses of breast 

cancer are defined by their location in the body. 

 

 
Figure 6-3 Classification of breast cancer in ICD9, ICD10 and ICD11. 

 

  However, from the aspect of diagnosis and treatment, breast cancer can be 

classified by its molecular status into four subtypes: basal-like, luminal A, luminal B 

and HER2+ [295]. In a recent study, HER2+ breast cancer was found to be 

Breast cancer in ICD
ICD9

ICD10

ICD11
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heterogeneous and could be further divided into HER2E-mRNA-subtype and 

luminal-mRNA-subtype based on gene expression analysis [296], as summarized in 

Figure 6-4. Thus it would create a precise disease coding system if the ICD codes 

were combined with target and biomarker identifiers from biological databases. 

 

 
Figure 6-4 Molecular subtypes of breast cancer. 

 

Breast cancer is not the only disease requires more refined classification. 

Classifications of diseases with information on biomarkers and targets available can 

all be refined. Figure 6-5 illustrates the coverage of clinically used biomarkers and 

successful targets on the disease classification system of ICD10. For disease 

conditions with plenty available biomarkers and targets, such as diseases related to 

infections, neoplasms, circulatory system and childbirth can also be refined based on 

molecular status to achieve precise disease classification for application in 

personalized medicine. 

 

Classification by receptor status

Basal-like (Triple Negative): ER-, PR- and HER2-

Luminal A: ER+ and low-grade

Luminal B: ER+ but often high-grade

ERBB2/HER2+:  amplified HER2/neu

HER2E-mRNA-subtype
(higher expression of RTKs including 
FGFR4, EGFR, HER2, as well as genes 
within the HER2 amplicon such as 
GRB7, TP53 mutation)

luminal-mRNA-subtype
(higher expression of luminal 
cluster of genes including 
GATA3, BCL2 and ESR1, 
GATA3 mutation)

supervised gene expression analysis
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Figure 6-5 Numbers of recommended or clinically used biomarkers and successful 

targets mapped to the ICD10 disease classification tree. 

 

 

(b) targets
(a) biomarkers

Neoplasms

Certain infectious and parasitic diseases

Diseases of the circulatory system

Pregnancy, childbirth and the puerperium
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Chapter 7 Concluding remarks 
 

7.1 Major findings and contributions 

 

In this thesis, various aspects of the implication of principle of similarity in virtual 

screening were investigated and demonstrated with chemogenomic approaches. The 

concept of similarity was emphasized throughout the whole thesis, which consists of 

the similarities of three key components: compounds, targets, and their interactions. 

Starting from similarity between compounds, chemical space can be organized and 

mapped with known compounds of interest, which in this case, approved drugs, clinical 

trial drugs, investigational drugs, biologically active compounds and compounds of 

other functions related to biomedicinal research. Attempts of optimization were also 

carried out for scoring functions of selected targets, guided by the similarity of binding 

site interactions. Finally, a combined approach of both compound similarity and target 

similarity was conceived and tested on the rhodopsin-like GPCR family, which was of 

great importance due to its high number of drug targets as well as association with 

diverse cognitive and sensing functions. These works demonstrated the feasibility of 

similarity-guided chemogenomic approaches as well as potential application on 

systems other than those studied here. 

 

Similarity of compounds guided the organization of compounds of different 

functional categories into hierarchical structure, presented in form of a publicly 

accessible database CFam Chemical Family database, available at 
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http://bidd2.cse.nus.edu.sg/cfam . Compounds from functional categories of approved 

drugs, clinical trial drugs, investigative drugs, bioactive molecules, human metabolites, 

natural products and patented agents partitioned the hierarchy thus provided a useful 

too facilitating chemical space analysis and virtual screening. By searching the 

database by compound name, family name, functional category or structural similarity, 

relevant compounds with information can be accessed, providing useful clues of the 

potential functions and biological targets of the compound of interest, since compounds 

with similar or same target or function tend to cluster together. Hierarchical clustering 

method guided by selected seed compounds successfully organized 490,279 

compounds in hierarchical units family, superfamily and class, demonstrating the 

capability and scalability of this method, thus providing useful concept for handling 

millions of compounds in the known chemical space. 

 

As observed from the chemical family database above, compounds with structure 

similarity clustered together and members in such clusters often share the same or 

similar targets. Previous findings also suggest similar binding site features for different 

compound against the same target. Such conserved features make the optimization of 

target-specific scoring function possible. In this thesis, the target-specific scoring 

approach was applied on three different targets trained with support vector machine 

based on simple energy terms and pharmacophore points, and obtaining satisfactory 

performance for predicting binding affinity for ligands without co-crystal structures 

with the target. This result suggested the potential application of this target-specific 

approach for preliminary virtual screening of potential active compounds. 

http://bidd2.cse.nus.edu.sg/cfam
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  The results from compound clustering by similarity and scoring function optimized 

for highly similar 3D structures of the same target both proved the value of similarity 

guided analysis. The two-dimensional sequence binding site sequence similarity and 

ligand set similarity guided characterization of rhodopsin-like GPCR family with 

ligands has furthered this methodology by integration of similarity of both the ligand 

and target aspects. From the two-dimensional interaction plots, regions of potential 

interest of chemogenomic approaches such as polypharmacology, scaffold hopping and 

target hopping, were explored and analyzed. Based on the observations, a potential 

multi-targeting structure was validated by experiment. These findings proved the 

success of this two-dimensional pharmacological profiling by combined ligand-based 

and sequence-based characterization approach and augmented the methodology of 

chemogenomic analysis. 

 

Finally, a tool for characterization of drugs including approved drugs, drugs in 

clinical trial and investigative drugs by their disease indications was developed. 

Further analysis on mapping between drugs and their disease indications based on 

structure similarity of drugs and classification of their disease indications may lead to 

novel characterization aspect complementing structure similarity, target interaction 

and target sequence similarity based characterization of biologically and 

therapeutically relevant compounds. 

 

  Overall, computational methods for characterization of biologically and 

therapeutically relevant compounds using similarity information were implemented, 



144 
 

evaluated and compared against previously published methods or experimental data, 

and these achievements extended the methodology of similarity-based virtual 

screening. Guided by the principle of similarity, a comprehensive seed-directed 

iterative hierarchical clustering method was developed and used to organize 

compounds with biological functions into families based on structural similarity. The 

results of this similarity based characterization were deposited into a publicly 

accessible database to facilitate virtual screening. Apart from structural similarity, a 

novel target-specific scoring algorithm combined with machine learning methods was 

developed to improve the characterization of target-binding compounds from target 

structures. Finally, a two-dimensional characterization method combining compound 

structural similarity and target sequence similarity was created and applied on G 

protein-coupled receptors. Observation and prediction on chemogenomic approaches 

for ligand discovery were obtained and validated by experiments. 

 

7.2 Limitations and suggestions for future works 

 

One major theoretical limitation throughout this work lies in the exceptions of the 

similar property principle. The relationship between structure and activity can be 

more complicated than expected. For example, in activity studies, it is possible that a 

slight change in compound structure leads to dramatic change in activity, which is 

known as the “activity cliff” [297, 298]. It partially accounted for the observations in 

characterization of compound by structural similarity, where compounds aggregated 

by structural similarity into a single family may have different activity profiles, or 
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even not share any same target. With regard to characterization of target-binding 

compounds from their targets, compounds with similar structure but significant 

difference in activities can affect the model performance as they provide similar input 

features but expect different target values. This problem also exists with the 

two-dimensional characterization approach, as the current approach discussed in this 

thesis only imposes an activity cutoff and derives patterns of all compounds within 

the cutoff, rather than distinguishes between compounds with quite different activities. 

To overcome this issue, systematic effort is required to investigate and identify the 

existence of “activity cliff” within the compounds of interest [299], and integrate such 

information into the process of applying similarity-based methods. It will also 

improve and extend the two-dimensional analysis approach by integration of activity 

information, and discuss the chemogenomic patterns on the activity landscape. 

 

  A second concern is that the mechanisms of activities were not taken into 

consideration throughout this thesis. Mechanisms of activities reveal more about the 

interaction than just a value indicating the activity strength. A compound can be an 

agonist, antagonist or agonist-antagonist to a target depending on its effect; and a 

compound can bind through the active site or act as an allosteric regulator depending 

on the site of interaction. Inclusion of such information would provide useful insight 

in interpretation of results, as well as a basis for subcategorizing compounds for 

separate modeling within each subcategory, especially for characterization of 

target-binding compounds from their targets.  
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  The following paragraphs will address practical concerns of this thesis. 

 

Meaningful results from analysis of data depend heavily on the data quality. One 

critical data component of the work in this thesis is activity records of compounds 

against biological targets. The types of assays, forms of activities reported and 

platforms the assays conducted on all affect the accuracy and usefulness of the activity 

data. In the process of construction of compound hierarchy for the CFam database, 

activity values of compounds determine whether they fit in certain functional category. 

For optimization of target-specific scoring functions, the accuracy of activity values are 

critical to the predictive power of the SVR model. In two-dimensional pharmacology 

profiling analysis, the activity type (e.g. binder or aggregator) affects the accuracy of 

the interaction plots that fake links can be introduced between compounds and targets if 

the activity type is not carefully distinguished. The activity data source such as 

ChEMBL and PubChem report activity in different units from assays of different 

purpose, and usually it is not indicated whether a compound is an agonist or antagonist 

to a certain target. Also in order to train the scoring function to predict activities, 

activity records of different assay type were mixed and used together with implied 

approximation. Furthermore, some activity records from the data source were obtained 

in various approaches other than backed by publications, and such records were 

excluded to ensure high quality of the activity data. This partly accounts for the possible 

improvement, as extra effort can be devoted in mining other publicly available activity 

databases and further filtering the activity to different system errors from different 

experiment platforms. 
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  For analysis of activity data such as clustering, model fitting and target sequence 

based characterization, the methods used in this thesis are usually not the only choice. 

For clustering of compounds, scaffold-based methods and fingerprint-based methods 

are both widely used, but due to limited computational power, only fingerprint-based 

similarity measurement was implemented. Future work can incorporate the 

scaffold-based clustering approach, complementing the current implemented approach. 

Similarly, since different choices exist for phylogenetic reconstruction of targets, it is 

worth exploring various methods to find common patterns independent of the method 

of choice. 

 

For the CFam chemical family database, since compounds are organized 

hierarchically by functional categories, continuous update efforts are needed as the 

functional category of a compound can change. For example, biologically active 

compounds can be selected for druggability investigation, and approved drugs can 

possibly be terminated or repurposed. Also, as novel compounds are being designed, 

synthesized and tested, there will be a constant need to incorporate the expansion of 

known chemical space. 

 

 

7.3 Contributions to facilitate drug repositioning 

 

Drug repositioning is the application of existing drugs to new indications [300]. The 

major advantage of drug repurposing is that known drugs have passed various safety 

tests and their toxicity profile have been well studied, resulting in less risk for failure 
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due to toxicity in the development process. Thus drug repurposing significantly 

reduces developing cost and time compared with development for new drugs [301]. 

One successful example is thalidomide, which was originally developed for relief of 

pregnancy associated nausea but was then removed from the market due to its 

teratogenic effect [70]. It was later found to be active against tumor necrosis factor α 

(TNF-α) [72], leading to its reposition in treatment of multiple myeloma. Another 

example duloxetine, which was first developed for treatment of depression, was later 

used in the treatment of stress urinary incontinence due to its excitatory effect on 

urethral sphincter motor neurons [302]. 

 

In the modern targeted therapeutics paradigm for drug development, repositioning a 

drug for new indications involves identification of new targets, and the work in this 

thesis provided useful platforms, tools and methods in such application. 

Similarity-based compound families enable the identification of novel potential 

targets by similarity match and examination of the activity profiles of compounds 

with similar structure. Target-specific scoring functions with improved predictive 

accuracy are useful in assessing the activity strength against potential targets. In 

addition, activity patterns around the drug of interest can be clearly observed and 

investigated with the two-dimensional chemogenomic characterization approach, 

which provides additional evidence and guidance for repurposing. Integration of 

methods presented in this thesis could provide promising approaches for drug 

repurposing in the future efforts. 
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