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Summary 

Increasing global urbanization has severely altered the hydrological cycle resulting 

in the decrease of pervious areas, infiltration and therefore the lateral sub-surface 

component during rainfall events. Consequently this lead to increasing peak 

discharges in the urban drainage infrastructure. This call for a better understanding of 

rainfall-runoff processes in urbanized areas especially with regards to the 

contributions of specific land use types towards surface and sub-surface flow. 

However, this knowledge in tropical urban environments is limited.  Therefore, the 

main objective of this research is to better understand the hydrological rainfall-runoff 

processes in an urban tropical system through a deeper insight into hydrograph flow 

components and runoff response of specific land use types. This study used genetic 

programming to establish a physically interpretable modular model consisting of two 

sub-models to simulate the two hydrograph flow components of baseflow and 

quickflow. Furthermore it used the modular model to predict the events as well as 

time series of both flow components and optimization techniques to estimate the 

contributions of various land use types (i.e. impervious, steep grassland, grassland on 

mild slope, mixed grasses and trees and relatively natural vegetation) towards 

baseflow and quickflow in tropical urban systems. A tropical urban catchment in 

Singapore was chosen to setup a monitoring network for this study. This catchment 

contains the main land uses (e.g. impervious, grassland, relatively natural vegetation) 

as well as the main soil types (e.g. loamy sand, clay loam, silt clay, sandy loam) of 

Singapore. Therefore, understanding the triggers behind rainfall-runoff processes as 

well as their behaviour at this catchment yields valuable information for tropical 

urbanized cities such as Singapore.  

The results demonstrated the successful prediction of streamflow as well as 

hydrograph flow components using the modular model developed in this study. The 

relationship between the input variables in the model (i.e. meteorological data and 

catchment initial conditions) and its overall structure can be explained in terms of 

catchment hydrological processes. Therefore, the model is a partial greying of what is 

often a black-box approach in catchment modelling and has strong extrapolation 
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capability. The modular model was further modified into a generalized structure and 

was validated on a large vegetation-dominated basin located in the US. 

The events as well as time series predictions of both flow components from the 

modular model were then used to estimate the effect of various land uses towards 

hydrograph flow components through robust optimization techniques in Singapore 

Catchment. The results showed that the sub-catchment containing the highest portion 

of impervious surfaces (40% of the total area) contributed the least towards the 

baseflow (6.3%) while the sub-catchment covered by 87% of relatively natural 

vegetation contributed the most (34.9%). The results also indicated that the average 

runoff coefficient of different types of land use decreased according to: impervious 

(0.8), grass on steep slope (0.56), grass on mild slope (0.48), mixed grasses and trees 

(0.42) and relatively natural vegetation (0.12). The results also suggested that runoff 

coefficients differ significantly among land uses for all rainfall events.  

The outcomes of this study are new methodologies which can yield better insights 

into the rainfall-runoff processes and helps for better understanding of runoff 

generation mechanisms in tropical urban environments. This understanding contains 

valuable information with regards to a physical understanding of rainfall-runoff 

behaviour when designing appropriate water management infrastructure in tropical 

megacities. This understanding would also be essential for water resources 

management and the sustainable development of water resources particularly where 

communities are dependent on water sources that are more vulnerable to inter-annual 

fluctuations in precipitation.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Backgrounds and Motivations  

One of the most important questions in hydrology is how much streamflow 

occurs in a river or channel in response to a given rainfall event. Answering 

this question first requires separating rainfall inputs into components which 

infiltrate and those that flow over the earth's surface and directly enter 

channels. Infiltrated water can move laterally in the subsurface pathways until 

it reaches a channel, in which case it is called interflow. Infiltrated water can 

also percolate to groundwater flow, which may form a relatively steady 

contribution to streamflow which is called baseflow. In addition, the portion of 

rainfall which flows over the earth's surface and enters directly into streams is 

surface runoff. Therefore, streamflow is commonly conceptualized as being 

composed of baseflow and quickflow (i.e. direct runoff) components. The 

baseflow component represents the relatively steady contribution to 

streamflow from groundwater flow, while the quickflow represents the 

additional streamflow contributed by surface flows (i.e. rapid runoff) and 

shallow subsurface flows (delayed runoff) (Beven, 2012). Schematic 
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illustration of the processes involved in the runoff generation is also shown in 

Figure 1.1.  

Understanding and modelling of rainfall-runoff process, especially in an 

urban system, is essential for water policy and environmental management and 

enhances the understanding of rainfall-runoff behaviour when designing 

appropriate water management infrastructure within a basin. To enhance this 

understanding in an urban environment, factors which may affect rainfall-

runoff processes need to be identified. In addition, an appropriate approach 

should be adopted to model the rainfall-runoff relationship.  

 

 

Figure 1.1: Schematic illustration of the processes involved in the runoff 
generation(Tarboton, 2003) 
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Increasing urbanization has severely altered the rainfall-runoff processes in 

many places worldwide, accelerating runoff due to a decrease of pervious 

areas and therefore reducing infiltration capacities (Marshall and Shortle, 

2005). There is now an incentive to restore and enhance infiltration, which 

would delay and reduce flash floods. Therefore, to better understand rainfall-

runoff processes in urbanized areas, it requires an accurate assessment of 

infiltration rates and soil hydraulic properties of the top soil which is often 

compacted in an urban environment.  

On the other hand, in order to account for a fast drainage of the surface 

runoff, an intensive drainage network is built to prevent flash floods during 

heavy storm events (Marshall and Shortle, 2005). However, as cities are 

dynamically expanding, the continuous increase of impervious surfaces and 

the accompanied excess runoff often exceeds the present channel capacity 

resulting in local flash floods. To reduce the impact of surface runoff, water 

sensitive urban infrastructure (e.g. green roofs, porous pavement, bioretention 

ponds, swales) retaining rainfall and enhancing infiltration rates in urban cities 

are being promoted (Burns et al., 2012; Chang, 2010). Water Sensitive Urban 

Design (WSUD) is an engineering design approach which aims to minimize 

hydrological and water quality impact of urban development by integrating 

land use planning with urban water management (Singh and Kandasamy, 

2009). The implementation of such technologies requests for a detailed 

understanding of runoff contributions from each specific land use in order to 
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plan the location of these local source control measures. Therefore, a better 

understanding is needed regarding rainfall-runoff processes in urbanized areas, 

including an accurate assessment of contributions from different land uses 

towards quickflow as well as baseflow. This understanding would be essential 

for integrated management and sustainable development of water resources 

particularly in tropical megacities which are dependent on water sources that 

are more vulnerable to inter-annual fluctuations in precipitation. 

Land use and land cover affect the hydrological processes primarily 

through changes in hydrological processes such as infiltration, rainfall 

interception, and evapotranspiration (DeFries and Eshleman, 2004; Potter, 

1991; Tran and O’Neill, 2013) which may have significant effects on rainfall-

runoff processes and catchment water yields (Roa-García et al., 2011). The 

various contributions from different land uses towards rainfall-runoff 

processes have attracted worldwide attention, especially in temperate urban 

regions (e.g. Burns et al., 2005; Diaz-Palacios-Sisternes et al., 2014; Loperfido 

et al., 2014; Miller et al., 2014). Comparing runoff generation from different 

land uses enables us to understand the rainfall-runoff response influenced by 

particular catchment components and processes and their contribution towards 

the overall catchment. This understanding contains valuable information with 

regards to a physical based understanding of rainfall-runoff behaviour when 

designing appropriate water management infrastructure in tropical megacities. 

However, it is interesting to note that a review of the literature shows that to 
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date, no detailed investigation has been done to assess the impact of different 

land use types on rainfall-runoff processes for tropical urban cities. 

On the other hand, quantifying these effects is one of the most challenging 

issues in hydrology (Stonestrom et al., 2009). With the advances in technology 

and the increasing need for integrated environmental management, distributed 

hydrological models, offer an appropriate approach to quantify the land use 

effects on hydrological responses in watershed scale. Physically-based models 

usually incorporate simplified forms of physical laws and are generally non-

linear, time-varying and deterministic, with parameters that are representative 

of watershed characteristics. Although these models enhance our physical 

understanding towards the spatio-temporal variation of hydrological processes  

and respective water balance components, they require intensive data sets and 

are highly computational demanding (Dye and Croke, 2003). Moreover, in 

urban tropical regions, erratic rainfall patterns as well as multiple sequential 

rainfall events in a relatively short period require special attention as it 

contributes towards the complexity of rainfall-runoff processes and the 

conveyance of storm water through concrete lined channels in urban cities. In 

fact, the behaviour of rainfall-runoff process and moreover sub-surface flow in 

urban systems experience a high degree of non-linearity and heterogeneity. 

Therefore, caution is needed when using urban hydrological models that are 

often designed for temperate climates where rainfall-runoff concepts are 

simplified as a linear system.  
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Over the past decades, machine learning tools such as Artificial Neural 

Network (ANN) and Genetic Programming (GP) have been used to develop 

rainfall-runoff models (e.g. Babovic, 2005; Babovic and Keijzer, 2006; Jeong 

and Kim, 2005; Kisi et al., 2013; Sudheer et al., 2002; Talei and Chua, 2012). 

GP offers advantages over other data driven techniques since it is able to 

generate a function with understandable structure. However, most data driven 

models are one unit models with adequate input variables that cover all system 

processes in one input/output structure (Abrahart and See, 1999; Bowden et 

al., 2005). Such models combine all the various flow components losing 

valuable information on their specific contributions which experts need when 

designing local mitigation measures (Corzo and Solomatine, 2007). In 

addition, covering all the rainfall-runoff processes in one unit without taking 

into account the different physically interpretable sub-processes may lead to 

low accuracy in extrapolation. One way of retaining as much information as 

possible is to build separate models for each of the different physically 

interpretable flow components leading to a modular approach (Figure 1.2). As 

explained before, streamflow is commonly conceptualized to include baseflow 

and quickflow components. As such, a modular model for the simulation of 

streamflow time series consisting of separate modular units for baseflow and 

quickflow (Figure 1.3) would be suitable in quantifying both flow components 

in a more flexible manner.  The idea of a modular model has been used in the 

modelling tools that use the linear reservoir approach (e.g. Unit hydrograph 
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methods) by splitting streamflow into baseflow and quickflow components. 

However, these models may fail to represent the nonlinear dynamics in the 

rainfall-runoff process (Rajurkar et al., 2002). Therefore, one may use GP for 

developing a physically interpretable modular model of these processes which 

is more universally applicable, especially for tropical regions. This modular 

model could also be used to quantify the effect of land use type on rainfall-

runoff processes as well as hydrograph flow components.  

 

 

Figure 1.2: General structure of a modular model  
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Figure 1.3: Unit models for simulating streamflow in a modular model  

 

1.2 Objectives 

The main objective of this thesis was to enhance our understanding on 

rainfall-runoff processes in an urban tropical system by shedding insights on 

hydrograph flow component separation and runoff response of specific land 

use types. Therefore, this study, 

i. developed a modular physically interpretable model consisting 

of two sub-models (i.e. baseflow and quickflow) to simulate 

streamflow time series and hydrograph flow components 

ii. and then enhanced our understanding on various contributions 

from different land uses towards hydrograph flow components.  

 

In addition, human activities in an urban area may lead to soil compaction 

and subsequently reducing saturated soil hydraulic conductivity and 

infiltration capacity which could increase surface runoff during a rainfall 
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event. Therefore, to better understand rainfall-runoff processes in urbanized 

areas, this thesis also assessed the impact of urbanization on soil hydraulic 

properties and infiltration rate. 

In addition, the following research questions are addressed in a tropical 

urbanized system: 

 Is GP capable for developing a physically interpretable modular model to 

simulate the hydrograph flow components? 

 What are the contributions of the various land use types towards 

quickflow? 

 How does the baseflow contribution change among sub-catchments with 

different land uses?  

 How do runoff generation processes vary among the different types of 

rainfall events? 

 What are the effects of antecedent catchment conditions on runoff 

response?   

The results of present study contain valuable information with regards to a 

physical based understanding of rainfall-runoff behaviour when designing 

appropriate water management infrastructure in tropical megacities. This 

understanding would be essential for water resources management and the 

sustainable development of water resources particularly where communities 

are dependent on water sources that are more vulnerable to inter-annual 
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fluctuations in precipitation. This knowledge also enables a better 

understanding of land-cover change effecting on runoff generation in tropical 

urban systems.  

 

1.3 Outline 

In this thesis, a general literature review on the assessment of infiltration 

rates and soil hydraulic properties, baseflow separation techniques, rainfall-

runoff modeling and land use effects on rainfall-runoff processes are provided 

in Chapter 2. A description of the study sites as well as monitoring program is 

described in Chapter 3. Chapter 4 of this study is focused on processing and 

analysis of experimental data from monitoring program. Chapter 5 uses a data 

driven modelling approach namely GP to derive a novel simple-to-use 

empirical equation to estimate baseflow time series so that minimal data is 

required and physical information is preserved. Chapter 6 develops a modular 

model for the simulation of streamflow time series, consisting of two sub-

models (i.e. baseflow and quickflow). A new guideline with regards to the 

quantification of land-use specific contributions to quickflow component is 

presented in Chapter 7 which also includes the effect of land use types on the 

contribution of baseflow to the total discharge. The effect of rainfall events 

and antecedent catchment condition on runoff generation processes as well as 

effect of land use types on the runoff coefficient is also discussed in Chapter 7. 
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Lastly, conclusions and recommendations for future research work are 

summarized in Chapter 8. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

This thesis focused on rainfall-runoff processes in tropical urban 

environments. The following sections provide further review on studies 

relating to the objectives of this research mentioned in Chapter 1 to identify 

the gaps in current state of catchment modeling and also knowledge about the 

rainfall-runoff processes in tropical urban environments. 

 

2.2 Baseflow Separation Techniques 

Baseflow is commonly defined as the groundwater contribution to 

streamflow which can be affected by watershed characteristics of 

geomorphology, soil, and land use, as well as climate change (Price, 2011). 

Various studies have pointed out the significance of baseflow estimation for 

water policy and environmental management as it enhances the understanding 

of surface-groundwater interactions and related contaminant transport 

(Gilfedder et al., 2009; Li et al., 2013b; Smakhtin, 2001). In addition, one of 

the most important question in urban area is how much streamflow occurs in a 

river or channel in response to a given rainfall event. Answering this question 

first requires separating baseflow (i.e. groundwater contribution to 

streamflow) from total discharge in a river or channel. Therefore, developing 
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reliable methods to estimate baseflow has been a subject of research over the 

past decades (Gonzales et al., 2009). However, baseflow identification and 

quantification still remains cumbersome and highly depends on the availability 

of monitoring networks and the choice of models. Baseflow cannot be 

identified easily based on direct field measurements (Li et al., 2013b). 

Therefore, indirect methods comprising graphical methods (Linsley et al., 

1982), recursive digital filters (RDFs) (Arnold and Allen, 1999; Nathan and 

McMahon, 1990), rating curve methods (Kliner and Knezek, 1974; Sellinger, 

1996), tracer based hydrograph separation techniques (McGlynn and 

McDonnell, 2003), conceptual models such as IHACRES model (Jakeman and 

Hornberger, 1993) and numerical models (Partington et al., 2011) are 

commonly employed to quantify baseflow.  

Various graphical baseflow separation methods have been developed by 

assuming baseflow to be equal to streamflow between distinct and consecutive 

rainfall events (e.g. Linsley et al., 1982). According to Linsley et al (1982) this 

method is not appropriate for long continuous streamflow records. 

Furthermore, this approach assumes that the baseflow response is significantly 

slower than the surface runoff. However, as shown in many case studies in 

mountainous areas, this assumption is not always valid (McDonnell et al., 

2001; Uhlenbrook and Hoeg, 2003). 

Tracer based hydrograph separation is another widely used baseflow 

separation method (Barthold et al., 2010; Brown et al., 1999; Christophersen 
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and Hooper, 1992; Christophersen et al., 1990; Hooper, 2003; Jones et al., 

2006). However, as pointed out by Jones et al. (2006), quantification of pre-

event water’s contribution to streamflow may lead to huge overestimation due 

to the importance of dispersivity used in simulating tracer transport.   

RDFs are signal processing techniques that remove the high-frequency 

quick flow signal from a streamflow time series in order to obtain the low-

frequency baseflow signal. Numerous RDFs exist for baseflow separation such 

as one-parameter algorithm (Chapman and Maxwell, 1996), two-parameter 

algorithm (Chapman, 1999; Eckhardt, 2005) and three-parameter algorithm 

(Chapman, 1999). As the true values of the baseflow index parameter in these 

methods are unknown, one cannot conclude which method is best (Eckhardt, 

2008). These approaches are often computationally efficient and also 

overcome the limitations associated with graphical based methods when 

applied to long continuous streamflow records. Therefore, RDFs are currently 

the most widely adopted method for baseflow separation. However, these are 

statistically derived equations that do not directly incorporate physically-

meaningful information. 

The rating curve method uses the intrinsic relationship between 

groundwater and stream water levels. According to Kliner and Knezek (1974), 

baseflow can be estimated by fitting a curve through the available discharge 

vs. groundwater table time series plot. On the other hand, Sellinger (1996) 

assumed that the entire streamflow during fair weather periods was composed 
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of baseflow and then proposed to fit a parabolic equation only to the data 

corresponding to the recession limbs of the hydrograph after the surface runoff 

is over. However, according to Gonzales et al. (2009), an exponential function 

was more suitable than a parabolic equation for their study area. The equation 

also included an intercept term to account for a constant discharge coming 

from the deeper aquifer. Fitting parameters in this method can be estimated 

with the least squares method using observed streamflow and groundwater 

table data which have to be optimized separately for each event.  

Application of physically based numerical modelling for baseflow 

quantification has been recently explored by Partington et al. (2011). In this 

method, flow solutions obtained from numerical models are processed by a 

hydraulic mixing-cell method to quantify hydrograph flow components. This 

method overcomes many of the limitations of other methods mentioned above. 

However, to date it has only been tested for a hypothetical catchment. 

Furthermore, such models are complex, requiring significant computational 

time and large amounts of data which may not always be available.  

Artificial Intelligence (AI) tools such as Genetic Algorithms (GA) have 

been used widely in hydrology (e.g. Anctil et al., 2006; Babovic, 2005; Kim 

and Kim, 2008; Sedki et al., 2009). Genetic Programming (GP), a 

specialization of Genetic Algorithms (GA), has been also employed over the 

past decades to simplify complex hydrological problems such as the 

development of rainfall-runoff models based on meteorological data (Babovic 
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and Keijzer, 2006), predicting natural channel flood routing (Sivapragasam et 

al., 2008), estimating saturated hydraulic conductivity (Parasuraman et al., 

2007), evapotranspiration (Izadifar and Elshorbagy, 2010) and groundwater 

levels (Fallah-Mehdipour et al., 2013).  However, to date, no equation has 

been derived using GP for determining baseflow based on physical catchment 

parameters. 

 

2.3 Rainfall-Runoff Modelling 

Accurate estimation of streamflow is crucial for planning, design and 

management of water resources within a basin and has been a subject of 

research for decades. There are multiple Rainfall-Runoff (R-R) models 

available that can be applied to simulate streamflow; each one characterized 

by a different level of complexity, limitations and data requirement 

(Sorooshian, 2008).  These methods can be categorized into two main groups: 

physically-based models and system theoretic models. 

 

2.3.1 Physically-based models 

 Physically based models range from conceptual lumped to distributed 

models. These models usually incorporate simplified forms of physical laws 

and are generally non-linear, time-varying and deterministic; with parameters 

that are representative of watershed characteristics. Although these models 
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enhance our understanding towards the physics of hydrological processes, they 

require significant computational time that restricts their use to small 

intensively instrumented catchment (Beven, 2012; Dye and Croke, 2003). 

 Conceptual lumped rainfall-runoff models consider an integrated 

description of parameters representing an average value over the entire 

catchment. These models have been used widely in hydrology over the past 

decades (e.g. Crawford and Linsley, 1966; Cormary and Guilbot, 1969; Duan 

et al., 1992; Bergstrom, 1995; Donigan et al., 1995; Havnø et al., 1995). Storm 

Water Management Model (SWMM) (Huber, 1981), Hydrologic Engineering 

Center of US Army Corps of Engineers (HEC HMS) (Feldman, 2000), and 

SOBEK model (Deltares, 2009) are some examples for lumped rainfall runoff 

model. On the other hand, distributed models can account for spatial variations 

in input parameters and state variables within the catchment. Therefore, 

physically based distributed models have the advantage of simulating complex 

hydrologic systems and utilizing distributed field hydrologic data as compared 

to lump models. Mike-SHE (DHI, 2003) is one example for physically based 

distributed models. A lot of efforts have been made over the past decades to 

improve distributed hydrological models (Beven, 2012). However little or no 

attention has been paid to modelling the hydrograph response of water within 

a catchment (McDonnell et al., 2014; Semenova and Beven, 2015).  

Recent advances in the development of both lumped and distributed 

physically based models have led to a number of model evaluation studies. A 
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detailed discussion of such studies can be found in Refsgaard and Knudsen 

(1996), and Perrin et al. (2001). A review of these studies shows that the 

performance accuracy of the two modeling approaches may vary widely. 

According to Refsgaard and Knudsen (1996), the superiority of complex 

distributed physically based models over simpler lumped models has not been 

clearly supported by actual and sufficient performance evaluation tests. In fact, 

factors such as model structure and the modeler's skill can have greater impact 

than the type of the model used (Reed et al., 2004). 

 

2.3.2 System theoretic models 

Computational costs, parameter requirements and limitations in using 

physically based models in real hydrological applications have led to the 

development of simpler models called system theoretic models. These models 

establish a relationship between input and output functions without the need 

for a detailed consideration of the physical processes. Linear system theoretic 

models cannot represent non-linear catchment behavior, and thus drive the 

application of nonlinear techniques  such as Artificial Neural Network (ANN)  

(e.g. Jeong and Kim, 2005; Kisi et al., 2013; Sudheer et al., 2002; Talei and 

Chua, 2012) and Artificial Intelligence (AI) (e.g. Babovic, 2005; Babovic and 

Keijzer, 2002; Babovic and Keijzer, 2006). These kinds of models are 
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computationally efficient and their results are comparable with those obtained 

from physically-based models.  

The review of studies carried out on adaptability in ANN reveals that these 

efforts suffer from being a black-box model where little (or no) information of 

the physics to be extracted (Todini, 2007). Therefore, ANN cannot be used to 

generate a model which can be generalized for other catchments. 

Artificial Intelligence (AI) tools such as Genetic Programming (GP) has 

been employed over the past decades for R-R modeling (e.g. Babovic, 2005; 

Babovic and Keijzer, 2006; Kisi et al., 2013; Whigham and Crapper, 2001). 

GP may offer advantages over other data driven techniques such as ANN since 

it is more likely to generate a function with understandable structure and 

therefore has been applied in different studies to generate R-R modeling. 

However, those available formulations only incorporate rainfall and/or 

streamflow and consequently are local and cannot be generalized and adopted 

in other catchments with different physical characteristics. Most data driven 

models are one unit models with input/output structure and adequate input 

variables that covers all the processes in a system (Abrahart and See, 1999; 

Bowden et al., 2005). However, such models do not contain the knowledge 

that experts may have about the studied system which may lead to low 

accuracy in extrapolation (Corzo and Solomatine, 2007). 

As stated above, data driven techniques such as GP are computationally 

efficient as compared to physically based models and their results are 
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comparable with those obtained from physically-based models. However, 

most data driven models do not provide any information about the physical 

process in the catchment and also little or no attention has been paid to 

incorporate hydrological knowledge into these models. This calls for further 

progress in this type of catchment modeling. One way of incorporating 

hydrological knowledge into these models is to uncover and build separate 

models for each of the different physically interpretable sub-processes, which 

is called a modular approach. 

A modular approach has been employed over the past decades to split a 

hydrological process into smaller sub-processes in order to improve the 

model’s performance such as monthly discharge prediction (Zhang and 

Govindaraju, 2000), river flow modeling (Hu et al., 2001), flood-forecasting 

(Solomatine and Xue, 2004) and rainfall time series prediction (Wu and Chau, 

2013). For example, Hu et al. (2001) divided the flow range into three regions 

including high, medium and low regions and employed separate ANN models 

to predict the river flow. Their results demonstrated that the range-dependent 

network performed significantly better than the conventional global ANN. As 

a modular approach has been successful in improving a number of complex 

hydrological predictions, it may also enhance streamflow simulation. 

Therefore, one may use GP for developing a modular model of these processes 

which is more universally applicable and contains information about the 

physical process in the catchment.  
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2.4 The Effects of Land Use on Rainfall-Runoff Processes 

Land use and land cover affect the hydrological processes primarily 

through changes in hydrological factors such as infiltration, rainfall 

interception, and evapotranspiration (DeFries and Eshleman, 2004; Potter, 

1991; Tran and O’Neill, 2013) which may have significant effects on rainfall-

runoff processes and catchment water yields (Roa-García et al., 2011). The 

various contributions from different land uses towards rainfall-runoff 

processes have attracted worldwide attention, especially in temperate urban 

regions (e.g. Burns et al., 2005; Diaz-Palacios-Sisternes et al., 2014; Loperfido 

et al., 2014; Miller et al., 2014). The Results of their studies showed that land 

use types do seem to exert a major control on runoff coefficients, indicating 

that there is a strong positive correlation between the amount of quickflow and 

increasing urbanization (e.g. Sun et al., 2013). Their results also show that 

changing of land use types from pervious to impervious surfaces has a 

significant impact on surface runoff. Nevertheless the knowledge about the 

exact contributions of different land use types is still limited and at the 

catchments scale still waits to be defined. The results of some studies also 

indicated that increasing urbanization (i.e. impervious surface) might be 

resulted in significant loss of groundwater flow (i.e. baseflow) in streams due 

to the reduced infiltration (Chang, 2007; Kottegoda and Natale, 1994; Leopold 
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and Geological, 1968; Rose and Peters, 2001; Simmons and Reynolds, 1982). 

Their results indicated a negative relationship between the amount of 

impervious surfaces and baseflow contributions into streamflow (i.e. 

decreasing baseflow contributions with increasing impervious surfaces). 

According to these studies, in general, changing of land use types from 

pervious to impervious surfaces (e.g. roads, roofs, sidewalks, parking lots) 

associated with urban development reduces infiltration, thus increasing storm 

runoff while reducing baseflow. This could consequently increase peak 

discharges in urban drainage infrastructure. The effect of land use types on 

hydrological processes in a humid tropical forest region has also been 

investigated by a number of researchers (e.g. Muñoz-Villers and McDonnell, 

2013; Roa-García et al., 2011; Salemi et al., 2013). However, it is interesting 

to note that a review of the literature shows that to date, no detailed 

investigation has been done to assess the impact of different land use types on 

hydrological processes for an urban tropical system. Therefore, the 

contributions of land use towards hydrograph flow components in tropical 

urban environments need to be investigated. 

On the other hand, quantifying these effects is one of the most challenging 

issues in hydrology (Stonestrom et al., 2009). Paired-catchment studies have 

been widely applied in many studies as a means of determining the land use 

contributions towards runoff generation (e.g. Brown et al., 2005; Holko and 

Kostka, 2008; Malmer, 1992). In this approach, two catchments with similar 
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characteristics such as slope, soils, area, climate and vegetation are selected 

where one catchment is used for treatment and the other remains as a control 

(Brown et al., 2005). However, due to space constrains and land use policies 

imposed by governments, paired-catchment studies cannot be applied in some 

urban areas. Therefore, paired- catchment studies in urban areas are less 

common in the literature. With the advances in technology and the increasing 

need for integrated environmental management, the distributed hydrological 

models, offer an appropriate approach to quantify the land-use effects on 

hydrological responses in watershed scale (Chu et al., 2010; Haverkamp et al., 

2005; Li et al., 2013a; Li et al., 2013c; VanShaar et al., 2002; Yang et al., 

2013). Although these models enhance our understanding towards the physics 

of hydrological processes and allow describing the spatial distribution and 

temporal variability of water balance components, they require significant 

computational time and large amounts of data (Dye and Croke, 2003). 

Moreover, in urban tropical regions, erratic rainfall patterns as well as multiple 

sequential rainfall events in a relatively short period require special attention 

as it contributes towards the complexity of rainfall-runoff processes and the 

conveyance of storm water through concrete lined channels in urban cities. In 

fact, the behavior of rainfall-runoff process and moreover sub-surface flow in 

urban systems experience a high degree of non-linearity and heterogeneity. 

Therefore, caution is needed when using urban hydrological models that are 
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often designed for temperate climates where rainfall-runoff concepts are 

simplified as a linear system. 

 

2.5 Assessment of Soil Hydraulic Properties and Infiltration Rate 

Human activities in an urban area may lead to soil compaction and 

subsequently reducing saturated soil hydraulic conductivity and infiltration 

capacity which could increase surface runoff during a rainfall event. 

Therefore, to better understand rainfall-runoff processes in urbanized areas, it 

requires an accurate assessment of soil hydraulic properties and infiltration 

rate.  

Developing reliable methods to determine soil hydraulic properties has 

been a subject of research over the past decades (Šimůnek and van genuchten, 

1996a). Many laboratory and field methods are available to estimate the 

hydraulic conductivity as a function of pressure head or water content (Dane et 

al., 2002). The long column method (Corey, 2002), the crust method (Bouma 

et al., 1983) and the transient procedures (Bruce and Klute, 1956) are some 

popular laboratory methods which measure the hydraulic parameters using the 

direct inversion of Darcy's law. The instantaneous profile method, the various 

unit-gradient type approaches, the sorptivity methods associated with ponded 

infiltration and the crust method based on steady water flow (Yeh and 

Šimůnek, 2002) are also some field methods to estimate the soil hydraulic 
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properties. Field methods in general are more realistic and accurate than 

laboratory ones because of the larger volume of soil involved, the continuity in 

the soil profile versus depth and the soils are also minimal disturbed (Vachaud 

and Dane, 2002).  

Double ring or tension infiltrometers are also commonly employed in the 

field to measure infiltration rates (Fodor et al., 2011; Kechavarzi et al., 2009; 

Perroux and White, 1988; Timlin et al., 1994; van Tol et al., 2012). Minimal 

disturbance of soil surface, short testing time and little water requirements 

(Ankeny et al., 1991) are some advantages of tension infiltrometers, when 

compared to double rings. Tension infiltrometer data from unconfined and 

steady-state conditions can be analyzed by Wooding’s analytical approach 

(Wooding, 1968). However, limitations associated with this approach (e.g., 

uncertainty regarding the time required for steady-state conditions) have 

motivated researchers to find alternative solutions (Vandervaere et al., 2000). 

Therefore, Šimůnek and van Genuchten (1996) proposed an inverse modeling 

approach to estimate the soil hydraulic parameter from tension infiltrometer 

data. In this inverse modeling approach, based on the Richards’ equation 

(Richards, 1931) and the cumulative infiltration data from tension 

infiltrometer, the hydraulic properties can be estimated using optimization 

techniques which minimize the difference between the observed and the 

simulated values (Šimůnek and van genuchten, 1996a; Šimůnek and van 

genuchten, 1997). HYDRUS software package (Šimůnek et al., 2006) which is 
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a Windows based modeling environment for water flow and solute and heat 

transport in variably saturated porous media can be applied to estimate the soil 

hydraulic properties using an inverse modeling approach. 

 Estimating soil hydraulic parameters from tension infiltrometer data on 

horizontal land surfaces using an inverse modeling approach with HYDRUS-

2D have been performed by a number of researchers (Kechavarzi et al., 2009; 

Ramos et al., 2006; Šimůnek and van genuchten, 1996a; Šimůnek et al., 1999; 

Ventrella et al., 2005). The equipment has also been used to determine 

saturated and near-saturated hydraulic properties on sloped surfaces. For 

example, a study on the influence of slope aspects and slope gradients has 

been presented by Casanova et al. (2000). Their results showed that the 

estimated hydraulic conductivities increased with increasing slope angles. In 

another study, the use of tension and double ring infiltrometers for 

determining hydraulic properties of silt loam in sloping landscapes have been 

investigated (Bodhinayake, 2004) . Their results indicated that there were no 

significant differences in the estimated hydraulic properties for slopes between 

0 to 20% using both numerical and experimental methods. Raoof and Pilpayeh 

(2011) also estimated unsaturated hydraulic properties for loamy soil in 

sloping areas by numerical inversion using HYDRUS and concluded that 

estimated hydraulic conductivity decreases with increasing land slope. To sum 

up, there have been several studies investigating the impact of land slope on 

the hydraulic properties estimated using tension infiltrometer, each on a 
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particular soil type.  However, there has not been research on investigating and 

comparing the impact across different soil types and at various slope angles, 

and the effect of applying a 2D approximation to the fully 3D process.   

Estimation of hydraulic properties could also be very sensitive to the 

measurements of initial and final water content (Ramos, 2006) and error in the 

measurements of initial and final water content may lead to over- or under-

estimation of the hydraulic conductivity (Šimůnek and van Genuchten, 

1996b). According to Casanova et al (2000) the estimated hydraulic 

conductivities are larger in south-facing slopes than north-facing ones because 

the south-facing slope received more direct sun than north-facing one and thus 

contained less initial water content. These results confirmed that estimated 

hydraulic conductivity could also be affected by initial water content. It is 

interesting to note that a review of the literature shows that no detailed 

investigation has been done to examine the impact of initial water content on 

the hydraulic conductivity estimated from tension infiltrometer. 

 

2.6 Discussion 

The review of studies mentioned in Section 2.2 reveals that GP has been 

successful in solving a number of complex hydrological problems and 

therefore it can potentially be used to estimate baseflow.  Compared to 

numerical hydrological models, GP models require significantly less 
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computation time and input data for calibration. Moreover, estimating 

baseflow using discharge data is widely available (e.g., RDFs), however, to 

date, no equation has been derived using GP for determining baseflow based 

on physical catchment parameters and groundwater table fluctuations. 

Deriving an equation based on easy to measure groundwater table fluctuations 

enables baseflow predictions in catchments where discharge monitoring is 

absent. This method could also contribute to multi-proxy estimations of 

baseflow where both streamflow and groundwater water table measurements 

are available. In addition, the simple equations approximated by GP can be 

implemented in a modular model for streamflow simulations. 

The review of studies carried out on Section 2.3 reveals that Machine 

learning tools such as ANN and GP have been widely used for rainfall-runoff 

modeling as they need less computational time as compared to other methods 

such as physically-based models. ANN is a black-box model where little or no 

information of the physics can be extracted. Therefore, GP may offer 

advantages over ANN since it is able to generate a function with 

understandable structure and therefore it has been applied in different studies 

to generate a rainfall-runoff function. However, these attempts suffer from the 

following drawback: developing one unit models with adequate input 

variables that cover all system processes in one input/output structure; 

therefore, these models lose valuable information on their specific 

contributions which experts need when designing local mitigation measures. 
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In addition, proposed formulations only contain rainfall and/or streamflow 

data and consequently they are local and cannot be generalized and adopted in 

other catchments which have different physical characteristics. Moreover, 

covering all the rainfall-runoff processes in one unit without taking into 

account the different physically interpretable sub-processes may lead to low 

accuracy in extrapolation. On the other hand, a modular approach could be 

employed to split a hydrological process into smaller sub-processes in order to 

improve the model’s performance and incorporating hydrological knowledge 

that experts may have about the system. As streamflow is commonly 

conceptualized to include baseflow and quickflow components, modular units 

in a modular model for the simulation of streamflow time series would be 

suitable in identifying baseflow and quickflow components. These identified 

components incorporate underlying sub-processes. The idea of a modular 

model has been also used in the linear reservoir approach by splitting 

streamflow into baseflow and quickflow components. However, these simpler 

models may fail to represent the nonlinear dynamics in the rainfall-runoff 

process. On the other hand, the linearity assumption is not needed when using 

GP. Therefore, one may use GP for developing a physically based non-linear 

modular model of these processes which is more universally applicable. 

As can be seen in the afore-mentioned studies highlighted in Section 2.4, 

efforts have been made to understand the land use specific contributions 

towards rainfall-runoff processes, especially in temperate urban regions. 
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However, this knowledge in tropical urban environments is still limited. On 

the other hand, quantifying land use contributions towards rainfall-runoff 

processes remain among the most challenging issues in hydrology. Therefore, 

contributions of specific land uses towards rainfall-runoff processes in tropical 

urban environments need to be investigated using an appropriate approach. 

This understanding is essential for integrated water resources management and 

the sustainable development of water resources particularly in tropical 

megacities. In addition, this understanding contains valuable information with 

regards to a physical based understanding of rainfall-runoff behaviour when 

designing appropriate water management infrastructure in tropical urban 

environments.  

As it can be inferred from the studies reviewed in Section 2.5, researchers 

have successfully applied HYDRUS-2D to estimate the hydraulic parameters 

on horizontal surfaces from numerical inversion of tension infiltrometer data 

with an axisymmetrical two dimensional domain. In fact, when the tension 

infiltrometer is placed on a horizontal surface, the three-dimensional 

infiltration process can be simplified to an axisymmetrical two-dimensional 

(i.e., depth and radius) process. However, when the tension infiltrometer is 

placed on a slope, it is no longer an axisymmetrical 2D problem. As 

HYDRUS-3D does not offer an inverse option and there is not yet any 

software package developed to specifically analyze the tension infiltrometer 

data based on 3D inverse modeling, it is tempting to assume that the 3D 
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problem can be solved as a 2D problem with the flat surface using either 

HYDRUS-2D or the DISC computer software (free open source) (Šimůnek 

and van genuchten, 2000). However, there is not yet a conclusion regarding 

the effect of applying a 2D approximation to estimate hydraulic conductivity 

from tension infiltrometer data collected from different land slopes of various 

soil types. Therefore, the maximum allowable slope at which accurate 

hydraulic estimations can be deduced for each soil type using 2D 

approximation should be investigated. The impact of initial water content on 

the hydraulic conductivity estimated from tension infiltrometer should also be 

investigated. In addition, the initial water content that gives the most accurate 

estimations of soil hydraulic conductivity from a tension infiltrometer has to 

be determined for different soil types. 
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CHAPTER 3 DESCRIPTION OF THE STUDY SITES, 

MONITORING PROGRAMME AND FIELD 

STUDIES 

 

3.1 Introduction 

 As stated in Chapter 2, the main objective of this thesis was to enhance 

our understanding on rainfall-runoff processes in an urban tropical system by 

shedding insights on hydrograph flow component separation and runoff 

response of specific land uses. This required extensive climatic, 

physiographic, hydrologic and land use data for a tropical urban catchment. 

Therefore, a tropical catchment in Singapore was chosen to setup a monitoring 

network. The measured and collected data in this catchment were processed 

and analyzed in Chapter 4 and then used in Chapters 5 and 6 to derive a 

physically interpretable modular model to estimate baseflow and quickflow.  It 

was also employed in Chapter 7 to examine the influence of land use in runoff 

generation in the tropical urban context. 

 

3.2 Kent Ridge Catchment, Singapore 

A small catchment (8.5 ha) namely Kent Ridge Catchment located in the 

southern part of Singapore was chosen to setup an intensive monitoring 

network (Figure 3.1). This catchment contains all the main land use types of 
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Singapore and hence being considered representative from a hydrological 

point of view. A small catchment was chosen for this study since it was more 

economically and technically feasible to install a dense monitoring equipment 

network in a small area, reducing the data uncertainty and inaccuracy in the 

spatial distribution of precipitation and delineation of land uses.  The elevation 

varies from a 14.04 m to 75.84 m above sea level and the overall topography 

of the catchment is characterized by steep slopes. The pattern of rainfall varies 

over the year due to the two monsoons: the northeast (mid-November to early 

March) and the southwest monsoon (mid-June to September). Moderate to 

heavily rainfall events to intense thunderstorm activity are typically observed 

in the monsoon period while long shower events interrupted by thunderstorms 

occur in the inter-monsoon period. 
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Figure 3.1 Location of Kent Ridge Catchment, Singapore, and its respective 
topography, monitoring stations, sub-catchments and drainage infrastructure 

 

According to the weather station maintained by the NUS Department of 

Geography located nearby the study catchment, the mean annual precipitation 

from 2004 until 2013 is 2500 mm and the mean daily temperature varies 

between a minimum of 23.9°C and maximum of 32.3°C. The mean annual 

relative humidity is 84.2%, while the mean annual wind velocity is 

15km/hour. The whole catchment was divided into 6 sub-catchments (Figure 
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3.1). The sub-catchments were identified based on the Digital Elevation Map 

(DEM) as well as their drainage location on the network.  

A land use map of the catchment (Figure 3.2) was created combining the 

information from Google Earth, NUS campus map and field observations. The 

identified land use types, typically for Singapore, included impervious 

surfaces (i.e. roof top, road, and paved car parks), grasses on (Figure 3.3a) and 

steep slopes (Figure 3.3b), mixed grasses and trees (Figure 3.3c) and relatively 

natural vegetation (Figure 3.3d) which are relatively representative for 

Singapore. Therefore, understanding the behavior and the mechanism of 

rainfall-runoff processes at Kent Ridge catchment would yield valuable 

information for tropical urbanized cities such as Singapore.  

Twenty-five soil samples were also collected from different parts of the 

catchment in order to create a soil map for the Kent Ridge catchment (See 

Section 4.4). 
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Figure 3.2: Land use map of Kent Ridge Catchment, Singapore 
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Figure 3.3: Land use types of Kent Ridge Catchment including a) grass on 
mild slope, b) grass on steep slope, c) mixed grasses and trees and d) relatively 
natural vegetation 
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3.2.1 Monitoring Program 

3.2.1.1 Rainfall, discharge and groundwater table measurements 

One rainfall monitoring station was installed within the Kent Ridge catchment 

(Figure 3.1) and operated from September 2011 to August 2012 and January 

to June 2013 at one-minute intervals with an accuracy of 0.2 mm. The ideal 

location for installing a rain gauge would be a flat area with no tall 

obstructions in the near vicinity. Therefore, the rain gauge has been installed 

on one of the roof tops of Kent Ridge Catchment. With the aims of setting up 

a dense flow monitoring program, five sub-catchments have been first 

identified based on catchment topography. Streamflow gauges have then been 

installed at the outlet of each sub-catchment. Sub-catchment 1 and 2 drain into 

Stations A and B, respectively, while Station C measured discharges from sub-

catchment 3. Stations A and B together with the discharge draining from sub-

catchment 4 are recorded by Station D. The outlet (Station E) receives the 

flows from the upstream Stations C and D as well as those from sub-

catchment 5. Water level measurement stations (Figure 3.1) recorded at the 

same temporal resolution during the same period as the rain gauge. Types of 

control structure for discharge monitoring stations are shown in Figure 3.4. 

Measured water levels were converted into discharge using appropriate stage-

discharge relationships (See Section 4.2). Drainage areas of the five discharge 

monitoring locations are presented in Table 3.1. In addition, land uses relative 

distribution for the monitoring stations are listed in Table 3.2. To record 
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groundwater table elevations one pressure transducer operated concurrently 

from January 2012 to June 2013 at 15-minute intervals (Figure 3.1). To 

measure these fluctuations relative to the variations in atmospheric pressure, 

another pressure transducer was installed but suspended in the air. 

 

 

Figure 3.4: Types of control structure for streamflow monitoring stations 
within Kent Ridge Catchment, Singapore 
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Table 3.1: Drainage areas of the discharge monitoring stations within the Kent 
Ridge Catchment with their control structure type 

Station IDs of the contributing sub
catchment areas (Figure 1) 

Control structure 
type 

Total drainage 
area (m2) 

A 1 
V Notch weir 

13576 

B 2,3 Composite weir 18721 

C 4 Rectangular weir 21862 

D 1,2,3,4,5 Flume 53904 

E 1,2,3,4,5,6 Flume 85000 

 

Table 3.2: Relative distribution of land uses for each of sub-catchments within 
the Kent Ridge Catchment 

Station 
Impervious 

surfaces 
 (%) 

Grass on 
Steep Slope 

(%) 

Grass on 
Mild Slope 

(%) 

Mixed grasses and 
trees (%) 

Relativ
ely 

natural 
vegetati

on 
(%) 

A 40 0 15 9 36 
B 5 0 7 1 87 
C 24 0 27 1 48 
D 20 4 13 17 47 
E 25 6 16 11 42 

 

 

3.2.2 Tension infiltrometer measurements 

As stated in Section 2.5, better understanding of rainfall-runoff processes 

in urbanized areas also requires an accurate assessment of infiltration rate and 

soil hydraulic properties of the top soil which is often compacted in an urban 

area. The estimation of soil hydraulic properties from field methods such as 

tension infiltrometers are usually considered more accurate than laboratory 

methods due to the more capacity of soil involved and continuity in the soil 
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profile vs. depth in the ground. Tension infiltrometers allow water to infiltrate 

into the soils at various specified pressure heads. The resulting infiltration 

rates can then be analyzed for soil hydraulic properties by inverse numerical 

methods.  

As infiltration process is highly influenced by soil texture and land uses, 

six locations with different land uses and soil textures was selected for tension 

infiltrometer measurements as shown in Figure 4.4. All the measurements 

were performed at three slope angles (i.e., 0, 10 and 20 degrees). To set up the 

experiment (Figure 3.5), grass was first removed from a circular area of the 

soil surface for the placement of the infiltrometer disc. A thin layer of fine 

sand was poured over that circular area to ensure a good contact between the 

soil and the nylon mesh of the infiltrometer disc.  

 

Figure 3.5: Measuring of tension infiltrometer data 
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The sand layer was moistened 30 seconds before the start of the 

measurement to prevent air from entering the disk. Two soil samples, one with 

sand layer moistening and the other without, were taken under the sand layer 

for water content measurement to confirm that the sand layer moistening does 

not affect the initial water content of the tension infiltrometer experiment. All 

the experiments were conducted with consecutive supply pressure heads of -

15, -10, -6, -3 and -1cm that were respectively adjusted at 40, 75, 90, 110 and 

130 minutes of experiment time. For tests on slopes, natural slopes were 

chosen to avoid disturbing the top soil. To create the same pressure heads at 

the center of the disc and the outlet of bubble tower on a slope, the water 

reservoir as well as bubble tower were elevated using a wooden bench. The 

pressure heads inside the disk infiltrometer are not uniform on slopes.  

Maintaining a pressure head at the center of the disk to be at the specified 

value would give an average pressure head inside the disk at the specified 

value. To determine the initial and final water content of the soils, disturbed 

gravimetric samples were taken. To avoid disturbing the soil for infiltrometer 

measurement, soil sample was taken 30cm away from the disk for initial water 

content; however, the final water content was determined from the soil directly 

under the disk at the end of experiment. The samples were sent to the lab to 

measure their masses before and after oven-drying for 24 hours at 105 degrees 

Celsius (i.e. known as wet mass and dry mass). The water mass was calculated 
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as the difference between the wet and dry masses. This initial and final water 

content were then used as inputs for the inverse modeling. 

HYDRUS-2D was then employed to estimate the hydraulic parameters 

from numerical inversion of tension infiltrometer data (See Section 4.5) 

 

3.3 Beaver River Basin, US 

The empirical equations derived in Chapter 5 and 6 of the present thesis 

were based on the data collected from a tropical urban catchment (i.e. Kent 

Ridge Catchment, Singapore). To test the potential for more widespread 

applications in catchments with different climate and physical features, the 

performance of the generalized empirical equations was evaluated using an 

independent dataset located in the US. The US catchment (i.e. Beaver River 

Basin) is vegetation-dominated basin (Figure 3.6), with a third-order stream 

located in southern Rhode Island.  It has an area of 23 km2, which is more 

than 270 times larger than Singapore catchment. The land uses are mainly 

parks, forest, non-urban development and water bodies which are very 

different compared to those in Singapore catchment. In fact, Beaver River 

Basin is a rural watershed with approximately 2.4% impervious area (Figure 

3.7). In addition, Beaver River Basin has a temperate climate while the 

Singapore catchment has a tropical climate. 
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This basin is a sub-watershed of the, Pawcatuck-Wood Sub-basin, in the 

New England Region. The elevation ranges from a 34 m to 171 m above sea 

level and the slopes vary from flat to a maximum of 14.7% with the majority 

of the watershed exhibiting a slope between 0 to 3%.. The soils in this 

watershed are generally drained, having loamy sand or sandy loam textures 

which have moderately low runoff potential. The mean annual precipitation of 

this area is about 1350 mm. 

  Hourly streamflow and groundwater table data were downloaded from 

U.S. Geological Survey (USGS) website (http://www.usgs.gov) while hourly 

rainfall data (2008-2013) was downloaded from National Oceanic and 

Atmospheric Administration (NOAA) website (http://www.noaa.gov).  
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Figure 3.6: Location of Beaver River Basin, Rhode Island, US (National 
Geographic, 2012) with DEM (Rhode Island Digital Atlas, 2014), monitoring 
stations and stream network 
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Figure 3.7: Pervious and impervious areas in the Beaver River basin 
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CHAPTER 4 PROCESSING AND ANALYSIS OF 

EXPERIMENTAL DATA  

 

4.1 Introduction 

The main scope of this chapter was to process and analyze the measured 

and collected data in Chapter 4. Measured water levels in Chapter 3 were first 

converted into discharge using standard stage-discharge relationships for the 

control structures (Bos, 1989). Discharge data as well measured rainfall and 

groundwater data in Chapter 3 were then processed to identify the anomalies 

using the Aquarius software. Processed data were then used in Chapter 5 and 6 

to derive a physically interpretable modular model to estimate baseflow and 

quickflow and also employed in Chapter 7 to examine the influence of land 

use in runoff generation in the tropical urban context. In addition, soil samples 

collected from different parts of the catchment in Chapter 3 were analysed 

using the sieve method as well as a soil particle size analyser to create a soil 

map for the Kent Ridge Catchment, Singapore. Moreover, the field tension 

infiltrometer data (Chapter 3) was used to estimate the soil hydraulic 

properties based on inverse modeling and optimization techniques using 

HYDRUS-2D.  The estimated soil hydraulic parameters were used as initial 

estimates for the surface layer of soil defined in HYDRUS-2D in Chapter 5. 
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4.2 Stage–Discharge Relationships in Discharge Monitoring Stations 

As mentioned in Section 3.2.1.1, measured water levels were converted 

into discharge using appropriate stage-discharge relationships. This section 

presents the stage–discharge relationships in streamflow monitoring stations. 

 

a) Station-A (V-notch weir): 

The basic stage-discharge equation for a V-notch weir is (Bos, 1989):  

                                                                       4.1 

where: 

 Q is discharge (  
 Ce is discharge coefficient 
 g is gravitational acceleration (  
  is angel of the V-notch  
 h is water depth above V-notch (m) 

 

Stage–discharge relationship in Station-A was first calculated using 

Equation 4.1 and then plotted in Figure 4.1. 

 

b) Station-B (Composite weir): 

The basic stage-discharge equation for a Composite weir is (Bos, 1989): 

 

                                                                                 4.2 

where: 
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 Q is discharge (  
  is discharge coefficient for a V-notch weir 
  is angel of the V-notch  
  is water depth above V-notch (m) 
  is discharge coefficient for the overlapping portion of the V-

notch and Rectangular weirs 
  is depth of the V-notch portion (m) 
  is discharge coefficient for a Rectangular weir 
 L is combined length of the horizontal sections 
 g is gravitational acceleration (9.8  

 

Stage–discharge relationship in Station-B was first calculated using 

Equation 4.2 and then plotted in Figure 4.1. 

 

c) Station-C (Rectangular weir): 

The basic stage-discharge equation for a rectangular weir is (Bos, 1989):  

                                                                               4.3 

where: 

 Q is discharge (  
  is discharge coefficient 
  is the effective weir crest width 
 g is gravitational acceleration (9.8  
  is the effective height above weir crest (m) 

 

Stage–discharge relationship in Station-C was first calculated using 

Equation 4.3 and then plotted in Figure 4.1. 
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  d) Station-D and -E (Flume): 

The basic stage-discharge equation for a trapezoidal flume can be 

written as follows (Bos, 1989):  

                                          4.4 

where: 

 Q is discharge (  

  is energy head  which is a function of  , where  is head 

above the flume (m) and V is average velocity in the cross section 
(  

  is discharge coefficient which is a function of H/L ratio, where 
L is length of flume throat 

  is bottom width of trapezoid shape (m) 
  is the horizontal component of the side slopes of the trapezoid  
  is critical depth in the flume throat (m) 

 

 

Stage–discharge relationship in Station-D and -E were first calculated 

from Equation 4.4 and then plotted in Figure 4.1. 
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Figure 4.1: Stage-discharge rating curves in discharge monitoring stations 
within the Kent Ridge Catchment 
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4.3 Discharge, Rainfall and Groundwater Data Processing 

Identification of recorded inconsistencies and other anomalies in 

discharge, rainfall and groundwater data and data cleaning (e.g. outliers 

removal, missing data interpolation) were performed using the Aquarius 

software (Aquatic Informatics Inc., 2009). 

For data processing the following modules in the Aquarius software were 

applied: data input, visualization and reporting, data preprocessing, correction 

and data output. In the first stage, the quick view object was used to detect 

inconsistencies and other anomalies in the data by comparing the data from 

different monitoring stations. In the second stage, model based correction 

object was used to train the model to fill data gaps as well as to correct 

inconsistencies and other anomalies in the data.  

The quality of discharge data at each station was first assessed using 

Aquarius software and then 150 events were selected for clustering analysis 

(See CHAPTER 7) and quantifying land use contributions towards quickflow 

(See CHAPTER 7). A summary of statistical feature of the discharge 

monitoring data is presented in Table 4.1. 
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Table 4.1 : Statistical feature of the discharge monitoring data for the selected events 

Station N Mean 
(m3) 

StDev 
(m3) 

Minimum 
(m3) 

Q1 

(m3) 
Median 

(m3) 
Q3 

(m3) 
Maximum 

(m3) 
A 150 105.1 160.3 3.7 11.7 33 123 695.9 
B 150 56.72 88.58 1.8 6.06 17.01 64.99 487.3 
C 150 123.7 176.1 4.3 22.1 51.2 152.4 914.8 
D 150 313.3 463.1 13.5 42.1 108.5 375.1 2357 
E 150 464.7 686.5 19.9 55.6 171.2 572.2 3602.9 

N: Number of events 
Q1: The first quartile 
Q3: The third quartile 
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With regards to the groundwater table time series, the groundwater level 

depth (WL) was calculated as follows: 

 

where,   is the groundwater level (m), BD is the borehole depth (m), CL is 

the cable length (m),  is the atmospheric pressure (m) and   is the 

pressure exerted by the water column (WC) and the atmospheric pressure (m).  

  

 

Figure 4.2: An example of a monitoring well  
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A summary of statistical feature of the groundwater level monitoring data 

is presented in Table 4.2. 

 

Table 4.2 : Statistical feature of the groundwater level monitoring data  

Station Mean 
(m) 

StDev 
(m) 

Minimum 
(m) 

Median 
(m) 

Maximum 
(m) 

BH1 4.4 0.4 3.6 4.4 5.4 
BH2 8.8 0.3 8.1 8.8 9.6 
 

 

4.4 Soil Particle Size Analysis 

Twenty-five soil samples collected from different parts of the catchment 

were analysed using the sieve method as well as a soil particle size analyser 

(MaterSizer). The results were then verified with those in a soil report 

available for this area (Ryobi Geotechnique PTE LTD, 2005).  Finally, a soil 

map was developed using ARCGIS 10 based on the USDA classification 

(Figure 4.3) and polygon of influence method as shown in Figure 4.4. 55% of 

the catchment is loamy sand soil while only 9% and 2.7% was sandy loam and 

silt loam, respectively. Clay loam is the second major soil texture comprising 

33.3%. 
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Figure 4.3: Standard USDA soil texture triangle 
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Figure 4.4: Soil map of Kent Ridge Catchment, Singapore, with the locations 
of tension infiltrometer experiments 
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4.5 Analyzing Tension Infiltrometer Data 

4.5.1 Inverse Modeling  

The field tension infiltrometer data was used to estimate the soil hydraulic 

properties based on inverse modeling and optimization techniques using 

HYDRUS-2D.  The inverse modeling approach, that is already built within 

HYDRUS-2D, is based on the following function (Šimůnek and van 

genuchten, 1996a): 

 

where m represents the different sets of measurements (e.g., infiltration data, 

the final water content);  is the number of measurements in a particular set, 

 is the specific measurement at time  for the jth measurement set,  is 

the vector of optimized parameters (e.g.,  ,  , , , , and ),  

represents the corresponding model predictions for parameter vector ;   and 

  are weights associated with a particular measurement set j or a 

measurement i within set j, respectively. Minimization of the objective 

function Φ is accomplished by using the Levenberg-Marquardt nonlinear 

minimization method (Marquardt, 1963). It should be noted that HYDRUS-2D 

assumes a flat surface and neglects any effects of slope in its estimations of 

hydraulic conductivity. 
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4.5.2 Estimating Soil hydraulic properties 

Figure 4.5 shows the experimental and fitted cumulative infiltration curves 

versus time at consecutive supply pressure heads of -15,-10,-6 ,-3 and -1. The 

small breaks in the infiltration curve were caused by brief interruptions to 

change the tension head and to adjust the tension for a new time interval. As 

can be seen, excellent agreement between the measured and fitted cumulative 

field infiltration curves were obtained when the soil hydraulic parameters for 

the van Genuchten's model were optimized.  

Figure 4.6 shows the water retention curves obtained through numerical 

inversion of the field-measured tension disk infiltrometer data. The results 

indicate that water content estimated by numerical inversion in particular was 

very close to the final water content measured at the end of the infiltration 

tests. Many researchers have also shown that there is a close fit between these 

values with those simulated by inverse model (Simunek, Wendroth et al. 1999; 

Ventrella, Losavio et al. 2005; Ramos, Goncalves et al. 2006; Verbist, 

Cornelis et al. 2009). The soil hydraulic parameters determined by model are 

given in Table 4.4.   
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Figure 4.5: Measured and optimized cumulative infiltration curves for a 
tension disc infiltrometer experiment 
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Figure 4.6: Water retention curve obtained through numerical inversion of the 
field-measured tension disk infiltrometer data 
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The results showed that less infiltration rate was observed for loamy sand 2 

when compared to loamy sand 1. The main reason behind this result is 

probably due to different land-uses. In fact, loamy sand 1 area is covered by 

trees and grass while loamy sand 2 area is just covered by grass. As trees have 

an extended root zone which significantly increases infiltration rates, loamy 

sand 1 has a higher infiltration rate.  

The results also showed that the saturated hydraulic conductivity for loamy 

sand and sandy loam soil is significantly lower than the generally reported rate 

for this soil type. In fact, human activities, resulting in soil compaction and 

subsequently reducing soil porosity and infiltration capacity, in recreational 

grass areas, play an important role in generating surface runoff (Dadkhah and 

Gifford, 1980). However the estimated soil hydraulic conductivity for non-

urban areas (i.e. relatively natural vegetation) corresponded to the soil 

hydraulic conductivity related to the soil texture. 

 

4.5.3 Further investigation on analyzing tension infiltrometer data1  

Tension infiltrometers are primarily designed to be deployed on horizontal 

land surfaces and their applications have been studied widely using an inverse 

numerical tool HYDRUS-2D. However, as urban landscapes are often non-

                                                           

1 Reprinted from Hydrological Processes, 28, Meshgi et al., Analysing tension infiltrometer 
data from sloped surface using two-dimensional approximation,744-752, 
http://onlinelibrary.wiley.com/doi/10.1002/hyp.9621/abstract , Copyright (2012), with 
permission from John Wiley and Sons. 
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horizontal, infiltration through tension infiltrometers on sloped surfaces is no 

longer an axisymmetrical two-dimensional (2D) process but a fully three-

dimensional (3D) one. In addition, to date, there is not software package 

available to specifically analyse the tension infiltrometer data based on 3D 

inverse modelling. Therefore, the effect of simplifying the 3D problem to a 2D 

one on the hydraulic conductivity estimated using tension infiltrometer data 

needs to be examined.  

This section focused on the accuracy and constraints related to infiltration 

measurements by infiltrometers at steep terrains and the simulation of these 

infiltration processes in a two dimensional domain (HYDRUS-2D) were then 

assessed. For this purpose, tension infiltrometer data on different slopes and 

soil types has been obtained from Kent Ridge Catchment, Singapore (See 

Section 3.2.2). In addition, tension infiltrometer data of six soil types on 

different slopes and with different initial water content was simulated using 

HYDRUS-3D. Combining field measurements, forward and inverse modeling, 

the influence of applying a 2D approximation on hydraulic property 

estimations using tension infiltrometer data was examined.  

 

4.5.3.1 Forward Modelling  

To overcome the limitations in the field work mentioned in Section 3.2.2, 

a numerical model HYDRUS 3D (Šejna, 2007) was employed to simulate the 

application of a tension infiltrometer disk on a wider range of slopes, soil 
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types and initial water contents. The simulated results (i.e., cumulative 

infiltration rates) thus form a more complete set of tension infiltrometer data 

for further analysis. The governing flow equation can be described by the 

modified Richards' equation which is solved numerically using HYDRUS 3D 

(Šejna, 2007):  

 

where  is the volumetric water content ,  is a sink term ( ,  are 

the spatial coordinates ,  are components of a dimensionless anisotropy 

tensor  (The diagonal entries of  equal one and the off-diagonal entries 

zero for an isotropic medium), h is the pressure head ,  is time  and  is 

the unsaturated hydraulic conductivity  given by : 

 

where    and  are the saturated and relative hydraulic 

conductivity, respectively. 

This forward modeling further requires the following relationships for the 

effective fluid saturation and the hydraulic conductivity (van genuchten, 

1980): 
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where  is the effective fluid saturation (-),  is the saturated hydraulic 

conductivity ( ),  and  denote the residual and saturated water content 

( ), respectively;  is the pore-connectivity parameter (-), and  ( ) and 

 (-) are empirical shape parameters.   

First, soil hydraulic parameters of the van Genuchten functions (

) for the six soil textural classes of the USDA were chosen according to 

Carsel and Parrish (1988) (Table 4.3). Tension infiltrometer data at small 

incremental changes of slope for six soil types was then simulated. Modeling 

domain and boundary conditions at 20-degree slope is shown in Figure 4.7.  

 

Table 4.3: Soil hydraulic parameters of the van Genuchten functions (van 
genuchten, 1980) for six soil textural classes of the USDA chosen according to 
Carsel and Parrish (1988)   

Soil Texture 
 

 

 

 

 

 

 

 

 

 

Sand 0.045 0.43 0.145 2.68 0.495 

Loamy Sand 0.057 0.41 0.124 2.28 0.243 

Sandy Loam 0.065 0.41 0.075 1.89 0.074 

Loam 0.078 0.43 0.036 1.56 0.017 

Silt Loam 0.067 0.45 0.02 1.41 0.008 

Clay 0.068 0.38 0.008 1.09 0.003 
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Figure 4.7: Modeling domain and boundary conditions at 20-degree land slope 
in HYDRUS 3D 

 

All the simulations were conducted with the same consecutive supply pressure 

heads and duration time as in the field study. The radius of the disc tension 

infiltrometer was assumed to be 10cm, and the initial water content was 

assumed to be 20% which is about the average water content in the field. Soil 

hydraulic parameters of the van Genuchten functions (van genuchten, 1980) 

for the six soil textural classes of the USDA were chosen according to Carsel 

and Parrish (1988). Using the same conditions, tension infiltrometer data was 

also simulated at different initial water content (i.e., 10, 20 and 30%) for the 

six soil types to investigate the effect of initial water content. Finally, tension 
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infiltrometer data was also simulated on horizontal surfaces but with different 

initial water content for the different soil types.    

 

4.5.3.2 Statistical Test 

The hydraulic conductivities from different sources were analyzed using 

statistical tools available in the SPSS software version 18 developed by 

International Business Machines (IBM) corporation to determine whether they 

are significantly different from each other. As the hydraulic conductivity 

values do not come from normal distribution, the nonparametric statistics test 

namely Kolmogorov–Smirnov (KS) test which is sensitive to the shape of the 

cumulative distribution functions of the two samples is the most suitable test 

for this research. Two hydraulic conductivity values are considered as 

significantly different from each other when the absolute difference between 

them exceeds the calculated Kolmogorov–Smirnov’s critical value at 0.05 

significant level.   

The KS test was applied to the different estimated hydraulic conductivities 

obtained:  

(1) from field experiments to determine whether those from 10-degree and 

20-degree slopes are significantly different from those on the 

horizontal surface for the different soil types, 
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(2) from the simulations for the different soil types on 10-, 20-, 30- and 

40- degree slopes to determine whether they are significantly different 

from those on the horizontal surface, 

(3) from the simulations on various slopes to determine the maximum 

allowable slope at which accurate hydraulic estimations can be 

deduced for each soil type using 2D approximation, 

(4) from the simulations with different initial water content and also at 

different slope angles to investigate the effect of initial water content 

on the maximum allowable slope for employing 2D approximation to 

estimate hydraulic conductivity from tension infiltrometer data, 

and finally from the simulations on the horizontal surface with different 

initial water content to determine the water content that gives the most 

accurate estimations for different soil types.  The estimated hydraulic 

parameters using the inverse approach at different initial water content were 

compared with the actual (or true) values input into the forward models to see 

whether they are significantly different.   
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4.5.3.3 Effect of Land Slope on the Estimation of Soil Hydraulic 

Conductivity 

a Analysis based on the field experiments 

Estimated hydraulic parameters based on the field experiments for all the soil 

types are given in Table 4.4.  The unsaturated hydraulic conductivity curves of 

the loamy sand 1 and silty loam soils are shown in Figure 4.8 as examples as 

they give the highest and lowest infiltration rates. The KS test results 

suggested that there are no significant differences between the hydraulic 

conductivities estimated using data from 10-degree slope and horizontal 

surface on all the soil types except clay loam 1. However, the differences in 

those from 20-degree slope and the horizontal surface of loamy sand 1 and 

sandy loam soil were significant. The results therefore showed that the 2D 

approximation can be applied on soils that are less hydraulic conductive, 

namely loamy sand 2, silt loam and clay loam 1 and 2 up to 20-degree slopes. 

In other words, the impact of 2D approximation to estimate the hydraulic 

conductivity on sloped surfaces was more significant on soils with higher 

hydraulic conductivity.   

For clay loam 1, the estimated hydraulic conductivity on 10-degree slope was 

found to be significantly different from those on horizontal surface.  However, 

those from 20 degree slope were not found to be significantly different. 
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Table 4.4: Soil hydraulic parameters in the Kent Ridge Catchment, Singapore, estimated from numerical inversion using field 
measurements 

Soil Texture Slope (Degree)  
 

 
 

 
 

 
 

 
 

Loamy Sand 1 
0 0.30 0.01 1.40 0.012 -0.14 

10 0.30 0.01 1.38 0.014 -0.16 
20 0.30 0.01 1.34 0.016 -0.14 

Loamy Sand 2 
0 0.30 0.02 2.02 0.005 -0.17 

10 0.30 0.02 2.06 0.005 -0.17 
20 0.30 0.02 2.08 0.005 -0.60 

Silt Loam 
0 0.34 0.03 2.24 0.003 0.72 

10 0.34 0.03 2.23 0.003 0.50 
20 0.34 0.03 2.24 0.003 0.50 

Sandy Loam 
0 0.32 0.04 2.12 0.012 0.08 

10 0.32 0.04 2.14 0.012 0.62 
20 0.32 0.04 2.20 0.012 0.26 

Clay Loam 1 
0 0.34 0.01 2.11 0.002 -0.14 

10 0.34 0.01 1.78 0.003 -0.12 
20 0.34 0.01 2.12 0.002 -0.06 

Clay Loam 2 
0 0.32 0.02 1.52 0.007 -0.92 

10 0.32 0.02 1.53 0.007 -1.42 
20 0.32 0.02 1.56 0.007 -0.24 
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Figure 4.8: Estimated hydraulic conductivities of loamy sand 1 and silt loam at 
different slopes by inversing field experimental data 
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The results should be probably due to two major reasons. First, the 

differences in the initial water content, which were 24, 18 and 24% for 0-,10- 

and 20-degree slope respectively. More discussions on the impact of initial 

water content can be found in section 3.2. Second, as soil is intrinsically 

heterogeneous, it is impossible to repeat the experiment on exactly the same 

soil profile but with different slope angles.  In addition, the effect of 20-degree 

slope on 2D approximation of loamy sand 1 was significant but not for loamy 

sand 2.  The main reason behind this result is again due to heterogeneity (i.e., 

different land-uses and soil compaction conditions) because less infiltration 

rate was observed for loamy sand 2.    

The estimated hydraulic parameters as listed in Table 4.4 were also input 

into HYDRUS 3D to model the infiltration process. The cumulative 

infiltration curves from field experiments and from simulations yield excellent 

agreement. This confirms that HYDRUS 3D can be used to forward model 

tension infiltrometer data for the studies on a wider range of slopes and initial 

water content.  

 

b Analysis based on forward simulations  

The differences in the simulated cumulative infiltration on two soil types 

(i.e., loamy sand and silt loam as examples) at various slopes are shown in 

Figure 4.9. Based on the results of the inverse modeling, the effect of the 2D 



75 

 

approximation on the estimated hydraulic conductivities of loamy sand and silt 

loam soil types is also shown in Figure 4.10.   

The KS test showed that there were no significant differences between the 

hydraulic conductivities estimated using the data from 10-degree slope and the 

horizontal surface for all soil types except sandy soil. In contrast, hydraulic 

conductivities estimated from tension infiltrometer data of all soil types 

simulated on slope more than 30 degrees were significantly different from the 

ones obtained on the horizontal surface. In addition, silt loam and clay soil 

estimations were less sensitive to slope when compared to others. Water 

content under the tension infiltrometer disk for loamy sand and silt loam at the 

end of the simulation at a 20-degree land slope is shown in Figure 4.11.  The 

water content profile for the soil with higher infiltration rate, i.e., loamy sand, 

was more asymmetric, implying a stronger effect of gravity and a higher 

sensitivity to slope.   

The maximum land slope at which the estimated hydraulic conductivity 

was not significantly different from those at horizontal surface is listed in 

Table 4.5 for different soil types. The results indicate that the higher the 

infiltration rate, the gentler the slope infiltrometer has to be deployed on and 

vice versa. The maximum allowable slope for employing the 2D 

approximation to estimate hydraulic conductivity from tension infiltrometer 

data on clayey and sandy soil are 25 and less than 3 degree, respectively. 

 



76 

 

 

 

Figure 4.9: Cumulative infiltration into loamy sand and silt loam at various 
slopes obtained from HYDRUS 3D simulations with same initial pressure 
head (-100 cm) 
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Figure 4.10: Estimated hydraulic conductivities of loamy sand and silt loam at 
different slopes by inversing the simulated infiltrometer data 
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Figure 4.11: Water content under the tension infiltrometer disk at the end of 
the simulation at a 20-degree slope 
 

 

Table 4.5: Maximum slope at which accurate hydraulic property can be 
estimated using 2D approximation for different soil types 

Soil Texture Infiltration Rate Maximum land slope (degree) 

Sand Very High <3 

Loamy Sand  High 8 

Sandy Loam Moderate 11 

Loam Moderate 13 

Silt Loam Low 22 

Clay Very Low 25 

 

 

4.5.3.4 Effect of Initial Water Content  

Table 4.6 shows the maximum allowable slope for the application of 2D 

approximation to estimate hydraulic conductivity from tension infiltrometer 

data simulated on various soils with different water content to avoid any 
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significant difference with horizontal estimation. The results showed that the 

maximum allowable slope decreases with the decrease in water content. As 

more infiltration occurs in dry soils, these results again confirmed that with 

increasing infiltration rate, the error of the 2D approximation of 3D problem is 

more significant.  

As the effect of initial water content on the 2D approximation of the 3D 

problem was significant, its effect on the horizontal surface was further 

investigated using the simulated infiltrometer data. The estimated hydraulic 

conductivities using the inverse approach for two soil types (i.e., loamy sand 

and silt loam soil types as examples) on horizontal surfaces are shown in 

Figure 4.12 together with the true values input into the forward models. 

Hydraulic conductivity was better estimated for sandy, loamy sand and sandy 

loam soil at lower initial water content. In contrast, higher initial water content 

for silt loam and clay soil gave higher accuracy. In addition, the best 

estimation of hydraulic conductivity of loamy soil is achieved at a water 

content of 20%. The results therefore showed that higher and lower initial 

water content would respectively lead to under-estimation of the hydraulic 

conductivity in soils with very high and very low infiltration rate. 

Overall, low initial water content (e.g. 10%) for soil with high infiltration 

rate and high initial water content (e.g. 30%) for soil with low infiltration rate 

gives accurate estimations of hydraulic conductivity from tension infiltrometer 
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data. Moreover, in soil with moderate infiltration rate such as loamy soil, best 

estimation would be achieved at an initial water content of around 20%.   

 

4.5.3.5 Summary and Conclusions  

Scenarios of tension infiltrometer data at 0-, 10- and 20- degree slope were 

also carried out at six locations within the Kent Ridge campus of National 

University of Singapore. In addition, tension infiltrometer data at different 

land slopes (e.g., 0, 10, 20, 30 and 40 degrees) and with different initial 

moisture content (10, 20 and 30%) for six soil types at various specified 

pressures (15,-10,-6,-3 and -1cm) was simulated using HYDRUS 3D. 

Measured and simulated tension infiltrometer data was then analyzed by 

HYDRUS 2D to estimate the soil hydraulic properties using inverse modeling.  

Finally, statistical tests were then performed on the different hydraulic 

conductivities to see whether they are significantly different from each other.   
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Table 4.6: Maximum slope at different initial water contents for different soil types at which accurate hydraulic property can be 
estimated using 2D approximation 

Initial 

Water 

Content 

% 

Sand 

(degree) 

Loamy 

Sand 

(degree) 

Sandy 

Loam 

(degree) 

Loam 

(degree) 

Silt 

Loam 

(degree) 

Clay 

(degree) 

10 <1 4 7 10 17 20 

20 <3 8 11 13 22 25 

30 <5 10 13 17 23 26 
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Figure 4.12 : Effect of initial water content on estimated hydraulic 
conductivities on horizontal surface  
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Both experimental and simulation results showed that the effect of 2D 

approximation of the 3D problem on soils with higher hydraulic conductivity 

are more significant.  The estimation was accurate for clayey soil at slopes as 

steep as 25 degrees. However, for accurate estimation of sandy soil, tension 

infiltrometer measurements should be run on almost horizontal surfaces (i.e., 

less than 3 degrees). Furthermore, the maximum allowable slope for the 

application of the 2D approximation to estimate hydraulic conductivity from 

tension infiltrometer data to avoid any significant difference with horizontal 

estimation also decreased with decreasing initial water content. 

The simulation results also suggested that hydraulic conductivity estimated 

from tension infiltrometer data can be significantly affected by initial water 

content. In fact, hydraulic parameters of soils with high infiltration rates can 

be accurately optimized in low initial water content.  In contrast, for soils with 

low infiltration rates, higher initial water content can enhance the estimation 

accuracy. Moreover, 20% of initial water content provides the most accurate 

estimation for soils with moderate infiltration rates.  

Overall, the results of this section benefits soil scientists and hydrologists 

who are interested in applying a tension infiltrometer to estimate soil hydraulic 

conductivity.   
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CHAPTER 5 DEVELOPMENT OF AN EMPIRICAL 

METHOD FOR APPROXIMATING STREAM 

BASEFLOW TIME SERIES2  

 

5.1 Introduction 

 

This thesis used Genetic Programming to establish a modular model 

consisting of two sub-models: (i) a baseflow module and (ii) a quick flow 

module to simulate the two hydrograph flow components. In the present 

chapter, the first modular unit was developed to estimate baseflow time series 

using GP with minimal data requirements and preservation of physical 

catchment information. As baseflow time series cannot be obtained from 

direct field measurements, a validated numerical model was first adopted to 

simulate baseflow time series for the Kent Ridge Catchment. The simulated 

baseflow time series were taken as the target parameter variable (i.e. output) in 

GP to develop an empirical equation predicting a continuous baseflow time 

series using catchment characteristics and time series of groundwater table 

elevation in Kent Ridge Catchment collected and processed in Chapter 3 and 

4, respectively. The empirical equation was further modified into a generalized 

                                                           

2 Reprinted from Journal of Hydrology, 519A, Meshgi et al., An empirical method for 
approximating stream baseflow time series using groundwater table fluctuations,1031-1041, 
doi:10.1016/j.jhydrol.2014.08.033, Copyright (2014), with permission from Elsevier. 
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structure for its applicability in other catchments. The generalized baseflow 

equation was tested in a cross-site, cross-scale application in Beaver River 

Basin. Finally, its performance was compared to baseflow time series 

estimates obtained using the RDF method in both study sites. 

5.2 Numerical Modeling  

Baseflow time series needed for the derivation of the empirical equation in 

Kent Ridge Catchment, using GP, was obtained by the groundwater flow 

model HYDRUS-3D. HYDRUS-2D/3D package software is a Windows based 

modeling environment for water flow and solute transport in variably saturated 

porous media. One of the main advantages of this software is that instead of 

coupling different models, HYDRUS-3D is able to model both saturated and 

unsaturated zones (Kuznetsov et al., 2012) by numerically solving the 

modified Richards' equation (Šejna, 2007) (See Section 4.5.3.1).  

Model setup in HYDRUS-3D involved creating the modeling domain, 

generating a finite element mesh and defining domain properties, initial 

conditions and boundary conditions. 

 

 Modeling Domain 

Using ArcGIS v10, the surface layer was created based on the 

available digital elevation model (DEM) with 1 1 meter grid resolution 

provided by Public Utilities Board (PUB), and the bedrock layer was 
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generated using information 27 existing boreholes reported by Ryobi 

Geotechnique PTE LTD (2005) based on the Natural Neighbor method. 

Surface and bedrock layers were then imported in the HYDRUS-3D. As 

HYDRUS solves the Richards equation which is a local (point) equation, 

the HYDRUS thus requires a fine spatial discretization however, fine grid 

size will computationally expensive. Therefore, we reduced the size of our 

domain (Figure 5.1) in order to decrease the number of finite elements 

nodes. The identified land use categories in this sub-catchment include 

grasses on mild and steep slopes, mixed grasses and trees and relatively 

natural vegetation which are representative for the entire catchment. In 

addition, measured pressure heads at BH1 and BH2 located at this sub-

catchment (Figure 5.1) can be used to accurately optimize the soil 

hydraulic parameters in HYDRUS-2D (See section 5.7.1).  
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Figure 5.1 : Location of selected sub-catchment for numerical modeling in 
HYDRUS3D 
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Figure 5.2 : Selected sub-catchment for numerical modeling in HYDRUS3D 
in Kent Ridge Catchment, Singapore with monitoring stations, drainage 
network and DEM 

 

 

 

 Finite Element Mesh 
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The required size of finite elements is defined according to the three 

important rules (Šimůnek, 2007): 

1. Spatial discretization of the boundary conditions specified for 

small time intervals requires being finer. 

2. Coarse-textured soils generally need a finer discretization.  

3. The finite element mesh can be several times coarser in the 

horizontal direction than in the vertical direction. 

Accordingly, 1 meter and 20 centimeter resolutions were applied in 

horizontal and vertical directions, respectively, resulting in a mesh of 

78240 nodes and 141322 finite elements (Figure 5.3).  

 

Figure 5.3 : Finite element mesh of Kent Ridge Catchment, Singapore in 
HYDRUS-3D 
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 Soil Hydraulic Properties 

Inverse modeling approach in HYDRUS-2D (See Section 4.5.1) was 

used to estimate the soil hydraulic properties at different soil layers by 

matching observed and simulated pressure heads.  

In order to estimate the soil hydraulic parameters, a cross section from 

BH1 to BH2 was defined in HYDRUS-2D. Soil profiles were divided into 

4 layers based on the comprehensive study on soil investigation in the 

Kent Ridge Catchment reported by Ryobi (2005). Soil hydraulic 

parameters from infiltration measurements (Chapter 3) were used as initial 

estimates for the surface layer while initial estimates for the soil hydraulic 

parameters of the three bottom soil layers were chosen according to Carsel 

and Parrish (1988) (Table 4.3). Afterwards, measured pressure heads at 

BH1 and BH2 from January until December 2012 were used to optimize 

the soil hydraulic parameters in HYDRUS-2D, while the data from 

January until June 2013 were adopted for validation. Afterwards, based on 

the results of inverse modeling, the soil properties in HYDRUS-3D were 

specified.  
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 Initial and Boundary Conditions 

Four boundary conditions were applied including no flux, specified 

head, seepage face and atmospheric boundary. No flux boundary was 

applied to the bottom of domain. Specified head boundary with a 

distribution versus depth was employed to the vertical boundaries where 

there should be a groundwater outflow. Seepage face boundary was 

applied where groundwater table was shallow so that water seeped out of 

the ground when the groundwater table reached the land surface. The 

seepage face boundary, however, automatically became an atmospheric 

boundary condition when the soil was unsaturated (i.e., pressure head is 

negative).  For the unpaved areas including relatively natural vegetation 

and grasses, atmospheric boundary conditions were implemented to 

simulate precipitation and evapotranspiration. The physically-based 

Penman-Monteith equation was applied to estimate reference 

evapotranspiration using meteorological data from the NUS Geography 

weather station:  

   5.1 

where: 

   reference evapotranspiration (mm/d) 

  net radiation (MJ m-2 d-1) 



93 

 

  rate of increase with temperature of the saturation vapour pressure of 

water at air temperature (kPa °C-1) 

  soil heat flux(MJ m-2 d-1) 

  mean daily temperature (°C) 

  wind speed at 2m height (m s-1) 

  saturation vapour pressure (kPa) 

  actual vapour pressure(kPa) 

 γ psychrometric  constant (kPa °C-1) 

 

Estimated reference evapotranspiration was then separated into 

potential evaporation and transpiration according to the leaf area index 

(LAI).  The actual values of transpiration and evaporation were calculated 

by HYDRUS based on the potential values and the availability of water in 

the soil profile (Šimůnek et al., 2006).  

HYDRUS-3D was first run for 10 years with constant precipitation and 

reference evapotranspiration rates of 6.85 and 3.5 mm day-1, respectively. 

The simulated pressure heads from the 10-year steady state simulation 

were used as an initial condition for the subsequent unsteady state 

simulation. The calibrated and validated HYDRUS-3D provided daily 

simulated groundwater table and baseflow data from January 2011 until 

June 2013. Baseflow was extracted from the simulation by integrating the 
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flux across the seepage face boundary. It should be mentioned that the 

steady state (10 years) and un-steady state (from January 2011 until June 

2013) simulations using HYDRUS-3D took more than 72 and 192 hours, 

respectively, on an Intel Core i7-2600 (quad core) 3.4 GHz CPU PC. 

 

5.3 Genetic Programing 

GP, a specialization of Genetic Algorithms (GA), is a powerful tool that 

uses a tree-structured approach to relate the input information to the output 

information of a system and develop a data-based model. The following steps 

summaries the main steps of GP computation (Figure 5.6):  

 Initialization: GP uses function trees with two different sets defined by a 

user including 1) a function set which involves mathematical functions and 

arithmetic operators (e.g. sin, cos, -,*, /, +) and 2) a terminal set which 

represents external inputs, constants, and zero augment functions. An 

example of a function tree used in GP is shown in Figure 5.4. These trees 

can be created randomly in GP using different methods such as full, grow, 

ramped half-and-half and exact uniform initialization.   

 Selection: A fitness function is constructed to select the models (trees) 

which have better performance for reproduction in a probabilistic manner. 

Models with poorer fitness have less chance to be selected for 

reproduction than those of better fitness. 
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 Reproduction: In this stage, three genetic operators including crossover, 

mutation, and reproduction may be applied to create subsequent 

generations from selected models. Two function trees in the parent models 

before and after the crossover and mutation operation are shown in Figure 

5.5. It should be mentioned that in reproduction operation a model is 

copied unchanged to the new population. 

 Termination: GP continues to create new generation from the selected 

population until satisfying the optimality criteria or the maximum pre-

specified number of generations. 

 

In the current research, a GP software called GPKERNEL (Babovic and 

Keijzer, 2000) was employed to relate baseflow time series with hydrological 

and physical catchment parameters (Table 5.1). An overview of the 

evolutionary algorithm setup in this study is presented in Table 5.2. One 

experiment was set up in GP, to relate baseflow time series simulated by 

HYDRUS-3D to catchment characteristic and groundwater table elevation 

time series of Singapore catchment. In this experiment, simulated baseflow 

time series by HYDRUS-3D was defined as target output. 
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Figure 5.4 : An example of a function tree used in GP representing the 
expression (p+v)*z where ‘+’ and ‘*’ are inner nodes while p, v, and z 
represents terminal nodes (Babovic and Keijzer, 2000) 

 

 

Figure 5.5 : Two function trees in the parent models before and after the 
crossover and mutation operation  (Hong and Bhamidimarri, 2003). 
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Figure 5.6: The flowchart of the main steps in GP computation 
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Table 5.1: Definition of terminal set parameters 

Parameter name Parameter definition Unit Type 
R Daily precipitation [L] Input 

ET Daily evapotranspiration [L] Input 
 Normalized daily average of pressure head [L] Input 
 Annual daily average of evapotranspiration [L] Constant 
 Annual daily average of precipitation [L] Constant 

 Coefficient in the soil water retention function [L-1] Constant 
n Exponent in the soil water retention function [-] Constant 
l Pore-connectivity parameter [-] Constant 

 Daily saturated hydraulic conductivity [L] Constant 
 Minimum daily baseflow volume [L3] Constant 
           Maximum daily baseflow volume [L3] Constant 

A Surface area of catchment [L2] Constant 
 

 

 

Table 5.2 : An overview of the evolutionary algorithm setup 

Parameter  Value 
Objective Find the daily baseflow volume ( ) 
Population size 250 
Number of children to produce  500 
Number of generations 500 
Tournament size  3 
Brood size  2 (culling function on unit error) 
Crossover probability  0.4 
Mutation probability  0.05 
Crossover method  Random subtree crossover 
Objective Functions  RMSE and unit error  
Function set  *, +,-, %, - x , sqrt, power 
Maximum size at initialisation  15 
Maximum size  41 
Probability of selecting a constant vs. a variable 0.05 
Constant mutation probability  0.05 
Stopping criteria 500 generations 
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In addition, normalized pressure head, minimum daily baseflow of the entire 

period, precipitation and evapotranspiration data from January 2011 until 

August 2012 were used as input parameters in GP. For this experiment, 

normalized pressure head was calculated as follows: 

 

in which  is normalized pressure head,  is the daily averaged 

pressure head (m) and  is the minimum daily averaged pressure head (m) 

observed over the entire data set. 

 

5.4 Generalization of the Empirical Equation 

The groundwater table fluctuation of a borehole with an average depth of 4 

m below the surface was used to drive the empirical equation in Kent Ridge 

catchment. Nevertheless, the groundwater depth or fluctuation may not be at 

the same range in other catchments. Therefore, the empirical equation should 

be generalized to estimate baseflow time series from groundwater table at any 

depth or range of fluctuation.  To determine the effect of groundwater table 

depth on the estimation of baseflow time series, the lag time between the 

rainfall events and groundwater table responses at fifteen locations within the 

Kent Ridge Catchment with various groundwater table depth (i.e., from 1-14 

m) was extracted from HYDRUS-3D. 
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5.5 Recursive Digital Filters  

The Beaver River Basin was used to test the suitability of the general 

empirical equation under different conditions. As neither baseflow time series 

nor a numerical model was available to generate baseflow time series, a 

recursive filter method was used to evaluate the performance of generalized 

empirical equation in both study sites. The filter method used in this study has 

been proposed by Willems (2009) which is a generalization of the original 

Chapman-filter  (1991):  

 

 

with: 

 

 

 

 

with: 

 

where  is the filtered quick response at kth sampling instant ( ,  is 

the original streamflow,  is the filtered baseflow,  is the filter parameter, w 
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represents the case-specific average fraction of the quick flow volumes over 

the total flow volumes. To support the time series processing, Willems (2009) 

developed a Microsoft Excel-based tool, Water Engineering Time Series 

Processing tool (WETSPRO) (http://perswww.kuleuven.be/~u0009249/). The 

tool separates observed discharges into three flow components, i.e. storm 

water, quick sub-surface flow (interflow) and slow sub-surface flow 

(baseflow).  

Filter parameters for Beaver River Basin were estimated using observed 

discharge data from January 1990 until December 2002, while the rest of 

discharge time series data (January 2003- August 2013) was employed for 

validation. With regards of Kent Ridge Catchment, discharge data from 

September 2011 until August 2012 was used to calibrate the Chapman-filter 

parameters proposed by Willems, while the data from January until June 2013 

was adopted for validation. 

 

5.6 Statistical Tests 

Performance of the established equation in GP was tested using three 

commonly used error functions: Relative Root Mean Squared Error (RRMSE), 

Correlation Coefficient (CC) and the Nash–Sutcliffe Efficiency (NSE) statistic 

(Nash and Sutcliffe, 1970).  

RRMSE is calculated by using Equation (5.10): 
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where,   is observed value,  is estimated value, and n is the number of data 

points.  

The correlation coefficient is defined as: 

 

in which  is the covariance between variables x and y;  and  are the 

standard deviations of x and y, respectively;  and  are the average values of 

observed and estimated, respectively. CC ranges within the domain [1,-1] 

where value of 1 and -1 indicate positive and negative perfect linear 

correlation while CC of 0 indicates that there is no correlation between the two 

data series. 

The Nash–Sutcliffe efficiency is represented by Equation (5.12): 

 

NSE = 1 corresponds to a perfect match of estimated and observed values 

while an efficiency of 0 indicates that the model estimations are as accurate as 

the mean of the observed data. 

The confidence intervals for the parameters within the equation as well as 

for the predicted baseflow time series were obtained using the bootstrap 

method (DiCiccio and Efron, 1996; Efron and Tibshirani, 1993), a resampling 
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technique suitable for non-normally distributed populations. This method 

consists of re-sampling the data set independently and with equal probabilities 

for a specified number of times (Efron and Tibshirani, 1993). The resampling 

technique was performed using the bootstrap function in MATLAB, using 

1000 iterations according to Efron and Tibshirani (1993), computing the 

corresponding regression coefficients, calculating the standard error and 

corresponding confidence intervals. Similar procedures were performed for 

the prediction of baseflow time series. 

 

5.7 Results and Discussion 

5.7.1 Simulating Baseflow Time Series in Kent Ridge Catchment Using 

HYDRUS-3D 

Hydraulic parameters estimated from inverse modeling in HYDRUS-2D 

for all soil layers are given in Table 5.3. Pressure heads from the steady-state 

simulation in HYDRUS-3D agreed with the average observed groundwater 

table data. Observed pressure heads at BH1and BH2 were compared with the 

simulated ones from the unsteady state simulations in Figure 5.7 and the 

model performance indicators are calculated (Table 5.4). As can be seen, there 

was excellent agreement between the observed and simulated data, indicating 

a good calibration of the HYDRUS-3D model. Subsequently, 2.7 years of 

baseflow and pressure head time series were extracted from HYDRUS-3D. 
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Table 5.3: Estimated hydraulic parameters based on inverse modeling in 
HYDRUS-2D 

Layer Depth 
(m) 

 
 

 
 

 
 

 
 

 
 

1 0-0.5 0.30 1.30 1.40 0.18 -0.14 
2 0.5-1.5 0.47 0.23 2.96 2.85 0.01 
3 1.5-4 0.44 0.11 1.17 2.76 0.03 
4 >4 0.38 0.56 2.62 3.58 0.91 

 
 
 

 

 

Figure 5.7: Observed and simulated pressure heads at BH1 and BH2 in Kent 
Ridge Catchment, Singapore which are respectively 180 and 90 m away from 
the discharge measurement station 
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Table 5.4: Error functions associated with observed and simulated pressure 
heads at BH1and BH2 

Boreholes 
Error criteria 

RRMSE NSE CC 
BH1 0.031 0.972 0.995 
BH2 0.033 0.957 0.978 

 
 
 

5.7.2 Approximating Baseflow Timeseries in Kent Ridge Catchment  

Based on the time series baseflow data simulated by HYDRUS-3D, GP 

was set up to derive the empirical equation. The following equation was 

obtained:  

 

where  presents the daily baseflow volume ( ),  is the minimum 

daily baseflow volume over the entire data set ( ), A is the total unpaved 

surface area in the catchment ,  is the normalized daily average of 

pressure head (m) (  in which  is the daily averaged 

pressure head and  is the minimum daily averaged pressure head (m) 

observed over the entire data set).   

Figure 5.8 compares baseflow time series estimated by the empirical 

equation and those simulated by HYDRUS-3D. Error criteria including NSE, 

CC and RRMSE between baseflow time series simulated by HYDRUS-3D 

and the empirical equation are listed in Table 5.5. According to these results, 

differences between baseflow time series simulated by HYDRUS-3D and 
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empirical equation were minimal, confirming that the empirical equation can 

accurately estimate baseflow time series in the absence of discharge 

measurements. The uncertainty of the parameters using the bootstrapping 

method showed the significance of both parameters (  and ) at 

 with narrow confidence intervals (  and , 

respectively).  In addition, the 95% confidence interval for the predicted 

baseflow time series was  resulting in a reasonably small error band 

around the median. 

 

 

Figure 5.8: Comparison between baseflow estimated by the empirical equation 
and HYDRUS-3D in Kent Ridge Catchment, Singapore 
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Table 5.5: Error criteria between baseflow time series simulated by HYDRUS-
3D and the empirical equation  

Data Set 
Error criteria 

RRMSE NSE CC 
Train 0.06 0.95 0.98 
Test 0.06 0.98 0.99 

 

The first term in the empirical equation is the minimum baseflow 

corresponding to the deepest groundwater table in the dry period, while the 

second term approximates the additional baseflow due to the rise in 

groundwater table. In absence of rainfall, the minimum baseflow is expected 

to occur during the dry period corresponding to the minimum groundwater 

table. As it can be assumed that during the dry period groundwater recharge is 

minimal and relatively constant, the overall minimum discharge observed 

during these periods can be taken as minimum baseflow. 

 In this equation, pressure head (h) is the only variable and baseflow is 

correlated with h2. This is similar to Darcy’s Law ( ) that relates 

discharge through an unconfined aquifer to h2. It shows that the empirical 

equation derived by GP for estimating baseflow time series contains physical 

information. By comparing the empirical equation and Darcy’s Law, it also 

seems that the constant coefficient b (0.305) is related to the saturated 

hydraulic conductivity ( . Therefore, the effect of saturated hydraulic 

conductivity on the coefficient was further investigated using the simulated 
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baseflow and pressure head time series for different soil types listed in Table 

5.6 using HYDRUS-3D.   

 

Table 5.6 : Soil hydraulic parameters of the van Genuchten functions (van 
genuchten, 1980) for five soil textural classes of the USDA chosen according 
to Carsel and Parrish (1988)   

Soil Texture      
Loamy Sand 0.057 0.41 12.4 2.28 3.5 
Sandy Loam 0.065 0.41 7.5 1.89 1.06 

Loam 0.078 0.43 3.6 1.56 0.25 
Silt Loam 0.067 0.45 2 1.41 0.11 

Clay 0.068 0.38 0.8 1.09 0.05 

 
 

The following linear relationship between the constant coefficients and 

saturated hydraulic conductivity with R2=0.984 was found: 

 

where b is the constant coefficient and  is the saturated hydraulic 

conductivity.

To validate this relationship in Singapore, the average saturated hydraulic 

conductivity was calculated based on inverse modeling approach in 

HYDRUS-2D resulting in an average value of 3.09 which yields a value of 

0.309 for b according to Equation 5.14. This value is very close to the one in 

Equation 5.13, showing that 0.1  is a good approximation for the coefficient 

in the empirical equation.  

However, soil properties or simulated baseflow time series is also not 

always available in other catchments to estimate the coefficient in the 
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empirical equation.  Hence, one alternative and general method should be 

identified for optimization purposes. The proposed method is based on the 

assumption that before the beginning of the rainfall event, the discharge in the 

stream is due to baseflow. Therefore, by substituting discharge values in the 

channel before the beginning and other known parameters (e.g. minimum 

daily baseflow and area of the catchment) into the empirical equation, the 

constant coefficient can be easily estimated. However, it is important to 

identify the amount of data points (i.e., rainfall events) needed to optimize the 

constant coefficient.  Therefore, 17 rainfall events (Table 5.7) at Kent Ridge 

Catchment covering seasonal variability (monsoon vs. non-monsoon), various 

dry weather periods prior to the event and groundwater table depth were 

selected. As can be seen, almost the same average event based constant 

coefficient estimation was obtained as the one resulting from the empirical 

equation (Equation 5.13). In addition, this table presents error criteria 

associated with baseflow estimated by the average event based constant 

coefficient and the individual event based estimation. As the estimated 

baseflow time series values did not follow a normal distribution, the 

nonparametric statistics test namely Kolmogorov–Smirnov (KS) was applied 

to determine whether estimated baseflow obtained by the average event based 

constant coefficients were significantly different from those obtained by the 

individual event based estimation. No significant difference between baseflow 

obtained by the average event based constant coefficients and the individual 
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event based estimation was found using the KS test at . In other 

words, the constant coefficient can be optimized based on a single event. 

 

5.7.3 Generalization of the Empirical Equation 

This section derives a generalized empirical equation for approximating 

baseflow time series in other catchments. First, the effect of groundwater table 

depth on the estimation of baseflow time series was investigated. The lag time 

between the rainfall events and groundwater table response at 15 locations in 

HYDRUS-3D are listed in Table 5.8. The results showed that shallower 

groundwater tables had the shorter lag times with the rainfall events and 

correspondingly yield higher NSE values. Therefore, if several wells are 

available, those with shallower groundwater tables yield better and therefore 

more reliable results. 
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Table 5.7 : Main characteristics of selected events observed at Kent Ridge Catchment, Singapore  

Event Date 

Number of dry 
days before the 
beginning of the 

event 

Measured discharge 
value before the 
beginning of the 
event (m3/day) 

 

Normalized daily 
average of 

pressure head (m) 

Constant 
Coefficient 

(-) 

Error criteria 

RRMSE NSE CC 

1 10/18/2011 7 167.70 0.84 0.28 0.05 0.96 0.97 
2 11/5/2011 3 217.80 1.06 0.30 0.06 0.96 0.97 
3 12/14/2011 5 186.60 0.90 0.34 0.07 0.95 0.97 
4 1/15/2012 4 136.90 0.63 0.33 0.06 0.95 0.97 
5 2/12/2012 6 119.10 0.49 0.35 0.07 0.94 0.97 
6 3/1/2012 3 112.60 0.45 0.28 0.05 0.96 0.97 
7 4/6/2012 3 163.30 0.83 0.27 0.05 0.96 0.97 
8 5/29/2012 3 186.90 0.97 0.25 0.06 0.95 0.97 
9 6/27/2012 6 121.60 0.55 0.25 0.06 0.95 0.97 

10 7/14/2012 3 125.48 0.55 0.32 0.06 0.96 0.97 
11 8/17/2012 13 113.21 0.47 0.26 0.05 0.96 0.97 
12 1/8/2013 4 156.00 0.75 0.32 0.06 0.96 0.97 
13 2/12/2013 3 297.50 1.37 0.28 0.05 0.96 0.97 
14 3/13/2013 3 147.60 0.75 0.24 0.06 0.94 0.97 
15 4/21/2013 2 152.50 0.75 0.29 0.06 0.96 0.97 
16 5/7/2013 4 135.20 0.66 0.25 0.06 0.95 0.97 
17 6/7/2013 3 109.20 0.41 0.30 0.06 0.96 0.97 

    Average 0.29 0.06 0.96 0.97 
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The results additionally revealed that deeper groundwater table corresponds 

with a longer lag time.  Therefore, for locations with the average groundwater 

table depth exceeding 5 meter, a lag time in the groundwater table should be 

considered in the derivation of the empirical equation. In addition, soil 

properties may also affect the lag time. The effect of the soil type over the 

entire area on the estimation of this parameter was further investigated by 

generating various baseflow time series with HYDRUS-3D. The results that 

can be used for estimating this parameter from average groundwater table 

depth (m) in different soil types are listed in Table 5.8, supporting that due to 

the low infiltration rates in soils with lower saturated hydraulic conductivity, 

more lag times need to be taken into account. 

As such, a generalization of the empirical equation is as follows: 

 

where  is the coefficient related to the saturated hydraulic conductivity 

( ) and k is the lag time between the rainfall events and groundwater 

table responses (T).  

Assuming the minimum discharge occurring within the dry weather period 

represents perennial baseflow during extreme seasonal low flow of the 

catchment. Therefore, the equation reveals the additional baseflow fluctuation
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Table 5.8 : Estimation of lag time (k) in empirical equation from average of groundwater table depth (m) in Singapore catchment and 
different soil types 

Soil Type 
k (days) 

0 1 2 3 4 5 6 7 8 
Singapore 
Catchment <5 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 

Loamy Sand <5 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 
Sandy Loam <4 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 
Loam <3 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 
Silt Loam <2 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 
Clay <1 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 
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as function of the lag time dependent normalized water table fluctuations and 

accounts for the recharge characteristics of the catchment through the average 

hydraulic conductivity of the unpaved area as well as its contributing drainage 

area (m²).   

The structure of Equation 5.15 is comparable to the rating carve method 

proposed by Sellinger (1996) as follows:  

 

where Q (m3/s) is the discharge at the outlet of the catchment, h (m) is the 

groundwater level in an observation well, or an average groundwater level all 

over the catchment, and  (m3/s), B (1/m) are fitting parameters. The 

parameters in Equation 5.16 can be related to ones obtained in Equation 5.15 

as follows: 

  can be approximated from the saturated hydraulic conductivity (Ks) 

and  the catchment area(A) ( . 

 B is equal to 2 and one may not need to determine this parameter 

separately for each event. 

 As groundwater tables vary significantly throughout catchments, the effect 

of groundwater table fluctuations on baseflow prediction is improved by 

using a lag time coefficient in the general equation. 
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5.7.4 Evaluation of the Generalized Equation in Beaver River Basin 

The performance of the general equation was evaluated using an independent 

dataset from a larger vegetation-dominated basin located in the US. (i.e.  

Beaver River Basin). As no baseflow time series were available in Beaver 

River Basin, the RDF method was used to obtain baseflow time series in both 

study sites and results were compared with the ones obtained from the 

empirical equation. By visually inspecting the plots of filtered results in 

WETSPRO, the filtering parameters ‘k’ and ‘w’ for baseflow separation were 

found to be 4 days and 0.7 for Kent Ridge Catchment, respectively. Filtering 

parameters ‘k’ and ‘w’ in the RDF were optimized as 40 days and 0.3 for 

Beaver River Basin, respectively.  Figure 5.9 shows baseflow filter results 

based on daily river flow of Beaver River from 1/1/1990 until 31/08/2013. The 

slant dotted lines in the figure, representing the slope recession constant 

baseflow, follow the recession trends, implying that the filter parameters were 

well estimated according to the criteria reported by Willems (2009).  

The , b, and k parameters in Equation 5.15 for the Beaver Basin 

were  55 , 0.123 and 0 respectively. Based on these results and the 

proposed relationship between b and Ks (Equation 5.14), the average of 

saturated hydraulic conductivity was estimated as 1.23 m/day which represents 

sandy loam soils for this basin and was confirmed by the soil report available 

for this basin (Rhode Island Digital Atlas, 2014). 
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Figure 5.9 : Baseflow filter results based on daily river flow series of Beaver 
River, US from 1/1/1990 until 31/08/2013 

 

Figure 5.10a compares the baseflow estimated by the empirical equation 

and with the filtered results from WETSPRO in Kent Ridge catchment. It 

should be noted that no discharge data from September 2012 to December 

2012 was available. Error criteria including NSE, CC and RRMSE between 

baseflow time series estimated by WETSPRO and the generalized empirical 

equation were 0.959, 0.972 and 0.065, respectively. According to these results, 

differences between the baseflow obtained by WETSPRO and empirical 

equation were minimal. In addition, a comparison between baseflow time 

series estimated by WETSPRO and the generalized empirical equation in  
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Figure 5.10 : Comparison between baseflow estimated by WETSPRO and the 
generalized empirical equation in a) Kent Ridge Catchment, Singapore and b) 
Beaver River Basin, US 

 

Beaver River Basin are shown in Figure 5.10b. Error criteria including 

NSE, CC and RRMSE between baseflow time series estimated by WETSPRO 

and the generalized empirical equation were 0.901, 0.957 and 0.21, 



118 

 

respectively. These results demonstrate the successful prediction of baseflow 

time series using the generalized empirical equation derived in this study. 

 

5.8 Summary and Conclusion   

This study used GP to derive an empirical equation for estimating 

baseflow time series using groundwater table fluctuations.  First, a 

groundwater model was adopted to simulate baseflow time series for a small 

semi-urban catchment in Singapore. GP was then used to derive an empirical 

equation predicting a continuous baseflow time series based on minimum 

perennial baseflow, catchment area, and a time series of groundwater table 

elevation.   Baseflow time series estimated by the empirical equation matched 

very well with those from the HYDRUS-3D in both the training and the 

testing of data sets, giving NSEs of 0.95 and 0.98 respectively.  The empirical 

equation was further modified into a generalized structure for application in 

other catchments. This method proved successful in a cross-site, cross-scale 

application in a northeastern US watershed. Overall, this study proposes a new 

approach to predict baseflow time series with only three parameters.  It serves 

as an alternative approach for baseflow estimation in un-gauged systems when 

only groundwater table and soil information is available, and is thus 

complementary to other methods that require discharge measurements (e.g., 

digital filter method). This method also contributes to multi-proxy estimations 
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of baseflow where both streamflow and groundwater water table 

measurements are available. The simple equation can also be implemented in a 

modular model to simulate streamflow time series with little computational 

time and data requirement (See CHAPTER 6). 
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CHAPTER 6 DEVELOPMENT OF A MODULAR MODEL FOR 

THE SIMULATION OF STREAMFLOW TIME 

SERIES 

 

6.1 Introduction 

As stated in Chapter 1, streamflow is commonly conceptualized to include 

baseflow and quickflow (also called quickflow) components. One way of 

retaining as much information as possible is to build separate models for each 

of the different physically interpretable flow components leading to a modular 

approach. Therefore, this thesis used Genetic Programming to establish a 

modular model consisting of two sub-models: (i) a baseflow module and (ii) a 

quickflow module to simulate the two hydrograph flow components. In the 

previous chapter, the first modular unit was developed to estimate baseflow 

time series using GP. In the present chapter, the second modular unit was 

developed to simulate quickflow using hydrological parameters (e.g. 

precipitation), catchment initial conditions prior to the event (e.g. groundwater 

table) and area of the Kent Ridge Catchment collected and processed in 

Chapter 3 and 4, respectively. The model developed on Singapore catchment 

was further generalized to approximate streamflow in other catchments and 

validated in a cross-site, cross-scale application on a large vegetation 

dominated basin in the US. The modular model has then been applied in 
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Chapter 7 to estimate the effect of various land use types (i.e. impervious, 

steep grassland, grassland on mild slope, mixed grasses and trees and 

relatively natural vegetation) towards hydrograph flow components in tropical 

urban systems. 

 

6.2 Approximating Quickflow Time Series Using Genetic 

Programming 

A modular model for simulating streamflow can be defined as: 

 

where,  is streamflow (L/T),  is baseflow (L/T),  is 

quickflow (L/T). 

As total streamflow includes baseflow as well as quickflow, baseflow was 

calculated first based on the function established in CHAPTER 5. Subtracting 

the predicted baseflow from the measured discharge resulted in the quickflow 

which was taken as target parameter (i.e. output) in GP. For a detailed 

description of the GP, readers are referred to Section 5.3. The GP software 

called GPKERNEL (Babovic and Keijzer, 2000) was employed to relate 

quickflow with hydrological parameters (e.g. precipitation), catchment 

antecedent conditions (e.g. groundwater table elevation prior to the rainfall 

event) and area of the catchment. In this experiment, five-minute average 

precipitation and discharge at the catchment outlet (i.e., Station 5), daily 
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evapotranspiration data, and simulated pressure head by HYDRUS-3D (See 

CHAPTER 5), were used as input parameters in GP. Data from September 

2011 until August 2012 was used for model development, while the data from 

January to June 2013 was used for model validation. Moreover, to evaluate the 

performance of the model in rainfall events with different characteristics such 

as seasonal variability (monsoon vs. non-monsoon), various antecedent 

conditions such as duration of dry period and groundwater table depth prior to 

the event, total rainfall, duration and shape of hydrograph (single peak versus 

multiple peaks), six rainfall events within the period September 2011to June 

2013 were selected and are listed in Table 6.1.  

An overview of the evolutionary algorithm setup in GPKERNEL is 

presented in Table 5.2.  
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Table 6.1 : Main characteristics of selected events observed at Kent Ridge Catchment, Singapore  

Event Date 

Number of dry 
hours before the 
beginning of the 

event 

Normalized daily average 
of pressure head (m) 

Total Rainfall 
(mm) 

Rainfall 
duration (hour) 

Maximum 30-
minutes rainfall 

intensity (mm/hour) 

Shape of 
hydrograph 

1 21/11/2011 15.8 0.94 39.8 2.3 69.2 Single 
2 09/03/2012 87.2 0.59 32.6 3.6 46.1 Single 
3 25/03/2012 74.7 0.65 64.2 4.8 89.5 Multiple 
4 08/02/2013 16.7 1.18 82.2 2.7 104.1 Single 
5 09/03/2013 165.4 0.81 34.0 3.6 58.7 Multiple 
6 27/04/2013 25.5 0.78 12.0 2.7 22.5 Single 
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6.3 Generalization of Modular Model 

As the local modular model developed, described in the previous section, 

was derived for a small semi-urban catchment with a short time of 

concentration (about half an hour), only total rainfall of the event may affect 

the runoff component. However, for a large catchment with a gentle slope and 

a long time of concentration, the total rainfall which occurred in the previous 

days may also need to be taken into account. Therefore, a local modular model 

needs to be generalized for simulating streamflow in other catchments. A 

generalized equation for simulating baseflow in other catchment was 

developed in CHAPTER 5. Therefore, this study first derived a generalized 

equation for approximating quickflow in other catchments and combined with 

the general module for baseflow approximation in CHAPTER 5 which 

resulted in a generalized two-unit modular model.  

To estimate model parameters in the baseflow component, an appropriate 

method was identified in CHAPTER 5. A proper optimization technique 

should also be adopted to choose suitable parameter values for the quickflow 

component.  
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6.3.1.1 Optimization Technique (Hybrid Genetic Algorithm) 

Genetic algorithm (GA), one of the most popular stochastic global search 

methods, is an evolutionary algorithm which finds the optimal solution of a 

problem using the evolutionary ideas of natural selection and genetics. GA 

evolves four main steps including initialization, selection, reproduction and 

termination in order to optimize the parameters for a specific problem (Reeves 

and Rowe, 2002). GA first randomly generates a population of individuals 

within the constraints of the decision variables to be optimized. After 

initialization, a fitness function of each individual is then calculated to select 

the individuals which have better performance. In fact, individuals with the 

better objective values are selected for reproduction. In the next stage, GA 

uses three genetic operators including crossover, mutation and reproduction to 

create subsequent generations from selected individuals. GA then continues 

creating new generation from the selected population. The evolution is usually 

terminated by a pre-specified number of generations. 

On the other hand, Interior Point Algorithm (IPA) is a popular local search 

method and has been widely used successfully in many optimization problems 

including linear and nonlinear, convex and non-convex (Abadie and 

Carpentier, 1969; Mousavi et al., 2004; Vanderbei and Shanno, 1999). This 

method applies a direct step (e.g. Newton step or a conjugate gradient step) at 

each iteration to solve a system of Karush-Kuhn-Tucker (KKT) equations 

(Byrd et al., 1999) until it reaches an optimal solution.  
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A hybrid Genetic Algorithm which is the combination of GA with a local 

search method (e.g. IPA) has been widely applied successfully in many 

optimization problems with good results (Grosan and Abraham, 2007). 

Therefore, in the current study, hybridization of GA with IPA is proposed to 

choose suitable parameter values in the quickflow component (Equation 8). In 

this optimization procedure, the GA is first used for global optimization which 

provides the global optimal solution.  The global optimal solution is 

subsequently fed into IPA for local search to achieve the improved results.  

The flow chart of the proposed GA-IPA algorithm is shown in Figure 6.1. 

Model parameters in the quickflow component were determined based on the 

hybrid GA using the Optimization Tool in MATLAB. The parameter settings 

for the implementation of these algorithms are given in Table 6.2.  

 

6.4 Statistical Tests of Accuracy 

Performance of the established equation in GP was tested using three 

commonly used error functions: Relative Root Mean Squared Error (RRMSE), 

Correlation Coefficient (CC) and the Nash–Sutcliffe Efficiency (NSE) statistic 

(Nash and Sutcliffe, 1970) (See Section 5.6).  
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Figure 6.1: The flow chart of the proposed hybrid GA (GA-IPA algorithm) 
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Table 6.2: Parameter settings of algorithms 

GA  IPA 
Parameters Settings Parameters Settings 

Population size 50  Start point Optimal values 
from GA 

Selection function Stochastic uniform  Maximum iterations 1000 

Mutation function Adaptive feasible  Maximum function  
evaluations 3000 

Crossover function Scattered  Function tolerance 1e-10 

Hybridization IPA  Nonlinear constraint  
tolerance 1e-10 

Number of generations 100  X tolerance 1e-10 
Function tolerance 1e-10  Hessian BFGS 
Nonlinear constraint 
 tolerance 1e-10  Derivative type Central 

differences 
 

 

6.5 Results and Discussion 

6.5.1 Approximating Quickflow Time Series Using Genetic 

Programming 

Based on the quickflow time series filtered from the observed streamflow 

data using Equation (5.15), GP was set up to derive the empirical equation. 

The equation that has a physically realistic set of variables and minimum 

RMSE was selected as follows:  

 

where  presents the quickflow ( ),  is the rainfall intensity 

(mm/min) with L being minutes of lag time,   is the total rainfall depth 

during the event (mm),  is the normalized daily averaged pressure head 
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prior to the event and  is the total area of the catchment (m2), “a” , “c” , “b” 

and “d” are the dimensionless coefficient. 

Based on the error criteria, differences between the filtered quickflow from 

observed discharge data and those obtained by the empirical equation, at 

Station-E, were minimal in both training and testing periods (Table 6.3).  

 

Table 6.3 : Error criteria between observed quickflow time series and those 
estimated by the empirical equation in Kent Ridge catchment, Singapore 

Station Data Set 
Error criteria 

RRMSE NSE CC 

MD04 
Train 0.54 0.97 0.99 
Test 0.65 0.96 0.98 

 

 

The first term of the empirical equation is the quick runoff component 

corresponding to quickflow, while the second term approximates the delayed 

runoff component as the lag time increases. Both terms include the total 

catchment area (A), rainfall (e.g. ) and antecedent catchment 

condition ( ). In this equation, the term of   allows variability in 

the percentage of rainfall that appears as runoff component for different 

events; higher  and  yield higher runoff volume.  

As such, a modular model for simulating streamflow in Singapore 

catchment is: 

 

and: 
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A comparison between observed streamflow and those estimated by the 

modular model are shown in Figure 6.2. In addition, according to the results of 

previous chapter , differences between baseflow time series simulated by a 

groundwater numerical model (i.e. HYDRUS-3D) and the baseflow module 

were minimal, indicating that the baseflow module can accurately estimate 

baseflow time series. Moreover, error criteria including NSE, CC and RRMSE 

between filtered quickflow from observed discharge data and those obtained 

by the runoff module are listed in Table 6.3, confirming that the runoff module 

can successfully estimate quickflow. These results demonstrate the successful 

prediction of streamflow as well as hydrograph flow components using the 

modular model derived in this study. 

Figure 6.3 presents the different hydrograph components including quick 

runoff, delayed runoff and baseflow estimated by Equation 6.2 for several 

selected events with different characteristics (Table 6.1). The estimated total 

streamflow hydrograph shows a good correspondence with observed 

streamflow hydrograph confirming that the modular model can successfully 

estimate streamflow in rainfall events with different characteristics. 
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Figure 6.2 : Scatter plot between observed streamflow and those estimated by 
modular model at Station E which situates at catchment outlet in Kent Ridge 
Catchment, Singapore 

 

From these hydrographs, it can also be seen that the time of concentration 

is very short and the quick runoff component has a steep rising and falling 

limb, dominating the total runoff hydrograph during a rainfall event (66%). 

The contribution of the delayed runoff and baseflow components were 26% 

and 8%, respectively. These phenomena reflect the hydrological 

characteristics of the basin: slopes are steep, infiltration is low through which 

the rainfall results in a rapid quick flow component, being unable to recharge 

the groundwater in such a short-time period. 
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Figure 6.3 : Separation of observed streamflow data into its respective flow 
components using modular model for six selected rainfall events as listed in 
Table 6.1 Kent Ridge Catchment, Singapore 
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To evaluate the influence of dependent variables including  and 

on the estimated quickflow, sensitivity analysis was carried out on the 

empirical equation. First, normalized pressure heads were kept constant at the 

average of the entire data series, whereas the total rainfall events varied from 

10 to 80 mm. For the second part of the sensitivity analysis, total rainfall was 

kept constant at the average of the entire data series, whereas the normalized 

pressure heads varied from 0.1 to 2.5 m. Two sets of rainfall intensities with 

low (8 mm/hr.) and high (88 mm/hr.) rainfall intensities were assessed (Figure 

6.4). Estimated runoff with 2.5 m pressure head is about 50% larger than one 

obtained by 0.1m pressure head in both low and high rainfall intensities 

(Figure 6.4a). Similar trends regarding the dependence of estimated quickflow 

on the total rainfall was observed (Figure 6.4b). These results indicate that the 

empirical equation is almost equally sensitive to both total rainfall and the 

normalized pressure head. 

 

6.5.2 Generalization of Modular Model 

  As explained in Section 6.3, the local modular model was derived for 

simulating streamflow in catchment outlet (i.e., Station-E). However, this local 

modular model should be generalized for simulating hydrograph flow 

components in other sub-catchments/catchments. 



135 

 

 
Figure 6.4 : Sensitivity analysis of a) normalized pressure head and b) total 
rainfall, on estimated quickflow for low (8 mm/h) and high (88 mm/h) rainfall 
intensities 
 

As such, a generalized equation for approximating quickflow in other 

catchments is proposed as follows: 

 

where “a” , “c”, “ ”, and “ ” are the dimensionless coefficients. 

As such, a generalization of the modular model is as follows: 
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and .  

Details regarding the estimation of model parameters in baseflow 

component can be found in CHAPTER 5. With regards of parameter “n” in 

quickflow component, the time differences between the beginning of a rainfall 

event and the start of the rising limb or the end of a rainfall event and the end 

of recession limb can be used to approximate this parameter in Equation 6.4; 

whichever is longer.   

In the present study, the suitability of hybrid GA for estimating model 

parameters in quickflow component was first tested in Singapore catchment 

outlet (i.e. Station E, Figure 3.1). In order to prevent parameters from taking 

unrealistic values and ensure that the true parameter values will be reached, 

the following constraints were set based on the physical meaning of the 

model’s parameters: 

 

 , 

 . 
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 The model parameters (  optimized with hybrid GA were 

same as those obtained in GP model, confirming that the proposed hybrid GA 

is an appropriate method for estimating model parameters in quickflow 

component.  

The performance of the generalized modular model was evaluated using an 

independent dataset from a larger vegetation-dominated basin located in the 

US (i.e. Beaver River Basin). A comparison between observed streamflow and 

those estimated by the generalized modular model are shown in Figure 6.5. 

Moreover, error criteria including NSE, CC and RRMSE between observed 

streamflow and those estimated by the generalized modular model are listed in 

Table 6.4. These results demonstrate the successful prediction of streamflow 

using the generalized modular model derived in this study. The results also 

show that baseflow is a significant contribution to streamflow during a flood 

period (75%) which reflects stable flow regimes due to groundwater inflow. In 

addition, the contributions of quick and delayed runoff components were 14% 

and 11% of the total runoff during a flood period, respectively.   
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Figure 6.5 : Scatter plot between observed streamflow and those estimated by 
the modular model in Beaver River Basin, US 

 

Table 6.4 : Error criteria between observed streamflow time series and those 
estimated by the modular model in Beaver River Basin, US 

Data Set 
Error criteria 

RRMSE NSE CC 
Train 0.18 0.955 0.98 
Test 0.32 0.945 0.97 
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These phenomena reflect the gentle slopes and generally drained soils 

according to the soil report and DEM available for this basin (Rhode Island 

Digital Atlas, 2014). Therefore, the storms mainly infiltrate into the soils and 

recharge the groundwater. 

 

6.6 Summary and Conclusion   

This chapter used GP to derive a physically interpretable modular model 

for estimating streamflow.  First, a baseflow separation technique developed in 

CHAPTER 5 was adopted to separate baseflow from observed streamflow for 

a small semi-urban catchment located in Singapore. An empirical equation 

was then derived using GP to relate the filtered quickflow with characteristics 

of rainfall events, catchment initial condition and area of the catchment. The 

quickflow estimated by the empirical equation matched very well with 

observed data in both the training and the testing of data sets, giving NSEs of 

0.97 and 0.96 respectively. A modular model was then developed for 

simulating streamflow time series, which included two local models associated 

with baseflow and quickflow. The modular model was further modified into a 

generalized structure and was validated in a cross-site, cross-scale application 

on a large vegetation-dominated basin located in the US.  Overall, this study 

proposes a physically interpretable model with understandable structure to 

simulate streamflow with the following features: 
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a. The model consists of two modules, one for baseflow and the other 

for quickflow. 

b. The baseflow module represents the relatively steady contribution 

to streamflow from groundwater flow. 

c. The quickflow module contains a rapid and delayed streamflow 

generation component which corresponds to the overland flow and 

shallow sub-surface flow, respectively. 

d. The relationship between the input variables in the model (i.e. 

meteorological data and catchment initial conditions) and its 

overall structure can be explained in terms of catchment 

hydrological processes. The model allows visualization of 

information about catchment hydrological processes and therefore 

is a partial greying of what is often a black-box approach in 

catchment modelling. 

 This method can be applied in other catchments and can simulate and 

separate hydrograph flow components on both event as well as time series 

bases. It can also be used to estimate the effect of various land use types (i.e. 

impervious, steep grassland, grassland on mild slope, mixed grasses and trees 

and relatively natural vegetation) towards hydrograph flow components (See 

CHAPTER 7). 
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CHAPTER 7 QUANTIFICATION OF LAND-USE 

CONTRIBUTIONS TOWARDS HYDROGRAPH 

FLOW COMPONENTS 3  

 

 

7.1 Introduction 

Increasing global urbanization has severely altered the hydrological cycle 

resulting in the decrease of pervious areas, infiltration and therefore the sub-

surface component during rainfall events, and consequently in the increase of 

peak discharges in urban drainage infrastructure. On the other hand, the 

behaviour of rainfall-runoff process in urban systems experiences a high 

degree of non-linearity and heterogeneity. This call for a better understanding 

of rainfall-runoff processes in urbanized areas especially with regards to 

contributions from specific land uses towards surface and sub-surface flow. 

However, this knowledge in tropical urban environments is still limited. 

Therefore, this chapter used the physically interpretable modular model 

developed in CHAPTER 6 to simulate the hydrograph flow components (i.e. 

                                                           

3 Reprinted from Journal of Hydrology, Meshgi et al., Development of a modular 
streamflow model to quantify runoff contributions from different land use types in tropical 
urban environments using Genetic Programming, 525: 711-723, 
doi:10.1016/j.jhydrol.2015.04.032 , Copyright (2015), with permission from Elsevier.  
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baseflow and quickflow). Furthermore it used the events as well as time series 

predictions of both flow components from the modular model and 

optimization techniques to estimate the effect of various land use types (i.e. 

impervious, steep grassland, grassland on mild slope, mixed grasses and trees 

and relatively natural vegetation) towards hydrograph flow components in 

tropical urban systems.  

 

7.2 Quantification of Quickflow Contributions from Specific Land 

Uses  

7.2.1 Clustering Analysis 

In a tropical area, catchment responses to the rainfall events are expected 

to vary significantly from event to event due to different types of rainfall 

events and antecedent catchment conditions (Peng and Wang, 2012). 

Therefore, rainfall events were divided into clusters and sub-clusters based on 

types of rainfall events and antecedent catchment conditions using a statistical 

hierarchical clustering technique proposed by Ward (1963).   

The following variables were used: total precipitation in the event, 

maximum 30-min intensity and duration. This resulted in a total of 150 events 

grouped into four clusters (Table 7.1).  Rainfall Cluster I represents rainfall 

events which are less intensive than other clusters. Rainfall Cluster II includes 

rainfall events with moderate rainfall depth, intensity and duration while 
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Rainfall Cluster III consists of storms that have high rainfall depth, intensity 

and duration. Rainfall Cluster IV represents extreme rainfall storms with very 

high rainfall depth and intensity. Most rainfall events were categorized into 

Rainfall Cluster I with 102 events while Rainfall Cluster IV only contained 10 

events. In addition, events in Rainfall Cluster III and II occurred 21 and 17 

times, respectively.  

The sub-clusters contained the various antecedent catchment conditions. 

As the spatio-temporal variations of the antecedent soil moisture data are often 

not available, the antecedent baseflow derived using the baseflow module 

(Equation 6.4) was used to present the catchment state prior to the event for 

the entire period, resulting in three sub-clusters (Table 7.1). Sub-cluster one 

contained events with low antecedent baseflow between 0.98 and 2.4 L/s, 

events with moderate antecedent baseflow between 2.41 and 3.83 L/s were 

grouped in Sub-Cluster-2 while events with high antecedent baseflow between 

3.84 and 5.26 L/s were classified in Sub-Cluster-3. 
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Table 7.1: Statistical feature of the rainfall events 

Rainfall 
Event Parameter Mean StDev 

Number of occurrences 
Sub-

Cluster 1 
Sub-

Cluster 2 
Sub-

Cluster 3 

Cluster 
I 

P 3.8 2.6 
35 24 43 I30 5.5 4.6 

RD 1.5 0.4 

Cluster 
II 

P 16.2 3.9 
4 10 3 I30 22.6 4.6 

RD 2.7 0.6 

Cluster 
III 

P 31.2 4.3 
4 7 10 I30 42.5 9.2 

RD 3.5 0.3 

Cluster 
IV 

P 59.7 10.9 
3 4 3 I30 67.6 20.0 

RD 5.0 1.0 
P: Rainfall depth (mm) 
I30: Maximum 30-min intensity (mm/hr.) 
RD: Rainfall duration (hr.) 

 

7.2.2 Land use specific runoff coefficient 

This section derived an approach to estimate land use specific runoff 

coefficients (i.e. the portion of rainfall contributing to quickflow) during an 

event. For each station, the relation between the weighted average runoff 

coefficient and runoff coefficient of each particular land use was derived for a 

given event:  
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         7.1 

 

 where, i is an event,  is the weighted average runoff coefficient (-), , 

, , ,  are the runoff coefficients of total impervious, grass on mild 

slope, grass on steep slope, mixed grasses and trees and relatively natural 

vegetation areas,  is the total area (m2),  , , , ,  are the areas 

of impervious, grass on mild slope, grass on steep slope, mixed grasses and 

trees and relatively natural vegetation (m2), respectively.  

The weighted average runoff coefficient in Equation 7.1 can be calculated 

as follows at each station: 

 7.2 

where  presents the weighted average runoff coefficient for event i,   and 

 are total runoff volume (m3) and total precipitation depth (m) of a given 

event, respectively, and A is the area of a catchment/sub-catchment (m2).  

Total runoff volume in Equation 7.2 was calculated from the quickflow 

component of the modular model developed in CHAPTER 6.  
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Hybrid GA was used to optimize the parameter values for land use specific 

runoff coefficients ( , , , , )  in Equation 7.1 using the 

Optimization Tool in MATLAB. The objective function of the optimization 

processes was defined as reducing the Root Mean Squared Error (RMSE), a 

commonly used error function namely. The parameter settings for the 

implementation of GA and IPA are given in Table 6.2. The following 

constraints were set based on the physical meaning of runoff coefficient: 

.  

 

7.2.3 Estimating total contribution of different land use types towards 

the quickflow component 

To evaluate the contribution of various land uses towards the quickflow 

component, the runoff volume generated by each land use was calculated at 

catchment level. Total contributions of each land use were normalized as 

follows: 

  

and,

 

where, , is the normalized contribution and  is the total contribution of 

each land use type, IMP, GS, GM, RNV, and MGT represent impervious, 
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grass on steep slope, grass on mild slope, relatively natural vegetation, mixed 

grasses and trees, respectively. 

 

7.3 Results and Discussion 

7.3.1 Quantifying Quickflow Contributions from Different Land Uses  

7.3.1.1 Approximating quickflow time series in discharge monitoring 

stations 

Runoff module of modular model developed in CHAPTER 6 was first 

used to approximate quickflow time series in discharge monitoring stations. 

Total runoff volume in Equation 7.2 (See Section 7.3.1.2) was then calculated 

from the quickflow component of the modular model. Error criteria including 

NSE, CC and RRMSE between observed quickflow in Station-A to -E and 

those estimated by runoff module of modular model developed in CHAPTER 

6 are listed in Table 7.2. These results again demonstrate the successful 

prediction of quickflow using the model derived in CHAPTER 6. 
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Table 7.2: Error criteria between observed quickflow time series and those 
estimated by runoff module of modular model 

Station Data Set 
Error criteria 

RRMSE NSE CC 

A 
Train 0.69 0.94 0.96 
Test 0.73 0.95 0.97 

     

B 
Train 0.67 0.95 0.96 
Test 0.71 0.94 0.97 

     

C 
Train 0.65 0.95 0.97 
Test 0.66 0.95 0.97 

     

D 
Train 0.51 0.97 0.99 
Test 0.60 0.96 0.98 

     

E 
Train 0.54 0.97 0.99 
Test 0.65 0.96 0.98 

 

7.3.1.2 Event-based land use specific runoff coefficient 

The average runoff coefficients of different land uses towards the 

predicted quickflow for each cluster and sub-cluster were obtained with hybrid 

GA using the runoff module (Table 7.3).  Comparison of the average runoff 

coefficient for all events belonging to one sub-cluster using Equation (7.1) and 

those estimated by Equation (7.2) (Table 7.3), demonstrates the successful 

estimation of land-use specific runoff coefficients.  
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Table 7.3: Average quickflow contribution and error criteria of each land use within clusters and sub-clusters 

Rainfall 
Event Sub-Cluster 

Surface Runoff Coefficient (-) 
 

 
Relative 

absolute error 
(%)1 

Impervious 
surfaces 

Grass on 
steep slope 

Grass on 
mild slope 

Mixed grasses 
and trees 

Relatively 
natural 

vegetation 

 
 Mean Std.dev 

Cluster 
I 

1 0.66 0.30 0.25 0.20 0.04   4.6 0.7 
2 0.67 0.31 0.27 0.21 0.05   3.9 1.7 
3 0.69 0.38 0.34 0.29 0.06   4.4 1.0 

Cluster 
II 

1 0.73 0.52 0.43 0.36 0.07   3.8 1.6 

2 0.75 0.53 0.45 0.38 0.07   3.6 1.2 

3 0.75 0.55 0.45 0.38 0.10   4.2 1.9 

Cluster 
III 

1 0.82 0.57 0.46 0.39 0.11   3.9 0.6 
2 0.83 0.63 0.47 0.40 0.12   3.2 0.9 
3 0.84 0.66 0.55 0.52 0.17   3.7 0.3 

Cluster 
IV 

1 0.94 0.71 0.63 0.55 0.17   3.4 1.4 
2 0.95 0.75 0.68 0.61 0.18   4.0 0.4 
3 0.96 0.81 0.77 0.73 0.24   3.8 2.0 

1 The relative absolute error was calculated according to the absolute error of Equation 4 estimates relative to values obtained from Equation 3 
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The small standard deviation of relative absolute errors (Equation 7.1 

estimates relative to Equation 7.2 values) suggests that the average runoff 

coefficients were estimated with low uncertainty.  

Results indicated that land uses exert a major influence on runoff 

coefficients of an urban tropical environment. Similar results have been also 

reported for urban temperate systems, indicating that there is a strong positive 

correlation between the amount of quickflow and the level of urbanization 

(e.g.Sun et al., 2013). The average runoff coefficient of different land uses 

decreased from impervious surface (0.8), grass on steep slope (0.56), grass on 

mild slope (0.48), mixed grasses and trees (0.42) and to relatively natural 

vegetation (0.12). As expected, impervious surfaces contributed the most to 

the rapid and delayed runoff among all land uses. In contrast, the lowest runoff 

coefficient was found for relatively natural vegetation ranging from 0.04 to 

0.24 due to canopy interception and evapotranspiration (Sriwongsitanon and 

Taesombat, 2011). In addition, larger infiltration in relatively natural 

vegetation area occurs as a result of extensive root zone development which 

increases the porosity. Human activities, resulting in soil compaction and 

subsequently reducing soil porosity and infiltration capacity, in recreational 

grass areas, play an important role in generating surface runoff (Dadkhah and 

Gifford, 1980). Additionally, runoff increases with increasing slope gradients, 
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due to decreased infiltration rates (Huang et al., 2013). As such, higher runoff 

coefficients were observed for the grass areas with steep slopes than those 

areas with mild slopes that included trees. 

With regards to the effect of antecedent catchment conditions, the 

antecedent soil moisture content had a larger effect on the pervious land uses. 

Normalized variation in runoff coefficients (with respect to their minimum 

value within each land use) of different land uses from Cluster-I/Sub-Cluster-1 

to Cluster-IV/Sub-Cluster-3 listed in Table 7.3 are shown in Figure 7.1. Table 

7.3 shows the increasing trend of runoff coefficients from Cluster-I/Sub-

Cluster-1 to Cluster-IV/Sub-Cluster-3 for all the land uses. In addition, Figure 

6 shows the largest variation for the runoff coefficients associated with the 

relatively natural vegetation followed by grass based land uses and impervious 

surfaces. As the types of rainfall events had the largest effect on relatively 

natural vegetation areas compared to other land uses, runoff coefficients for 

relatively natural vegetation fluctuated about 2 to 4 times more compared to 

those for grass based and impervious surfaces, respectively (Figure 7.1). This 

is because rainfall loss due to evapotranspiration, canopy interception and 

infiltration, especially during small rainfall events, is typically higher for 

natural vegetation areas than for non- natural vegetation areas (Sriwongsitanon 

and Taesombat, 2011). In addition, canopy interception may reduce with 

increasing rainfall intensity due to splashing of larger raindrops from 

vegetation (Calder, 2005). 
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Figure 7.1: Normalized variation in runoff coefficients (with respect to their 
minimum value within each land use) of different land uses from Cluster-
I/Sub-Cluster-1 to Cluster-IV/Sub-Cluster-3 (grey bars represents the expected 
range of variability of the median) 

 

This could cause a large variation in runoff coefficient for relatively 

natural vegetation area from Cluster-I/Sub-Cluster-1 to Cluster-IV/Sub-

Cluster-3. On average, the runoff coefficients of all the land uses increased 

gradually from sub-cluster-1 (relatively un-saturated condition) to sub-cluster-

3 (relatively saturated condition) by 17% (Table 7.3). With regards to the 

pervious surfaces, this can be explained by the catchment initial conditions. In 

fact, higher levels of groundwater table and initial soil moisture would reduce 

the soil water suction and potential (Hawke et al., 2006) which reduces 

infiltration rate (Philip, 1957) and consequently increases the runoff volume. 

However, with regards to the impervious surfaces, the runoff coefficients 
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increased slightly probably due to the antecedent precipitation which could 

increase the initial storage and subsequently lead to the greater runoff 

coefficient. 

The suitability of land use specific runoff coefficients derived in this 

section for the assessment of runoff generated by an extreme rainfall event 

(e.g., 10 year ARI) was investigated. According to the Rainfall Intensity-

Duration-Frequency (IDF) (Figure 7.2) established for Singapore by Public 

Utilities Board (PUB) (Code of Practice-Drainage Design and Considerations, 

2011), an event with 10 year ARI (128 mm) was monitored during 2010-2011. 

It should be mentioned that this event was not used during the optimization 

procedure for quantifying land use contributions towards rapid and delayed 

runoff component. Assessment of the runoff generated by this event which 

would be categorized in Cluster-IV/Sub-Cluster-3 showed that with less than 

5% error, the runoff coefficient of Cluster-IV/Sub-Cluster-3 can be used to 

estimate the total runoff for an extreme rainfall event. This indicated that even 

for such a rainfall event, the contribution of relatively natural vegetation area 

is about 4 times smaller than that of impervious surfaces. As such, increasing 

urban pressure and the related conversion of pervious surfaces to impervious 

areas clearly influences not only hydrological processes at watershed scale but 

also increases flood risks tremendously. 



154 

 

 

Figure 7.2: The Rainfall Intensity-Duration Frequency curves established for 
Singapore by Public Utilities Board (PUB) (Code of Practice-Drainage Design 
and Considerations, 2011) 

 

However, land use conversion due to demographic pressure, frequently 

inhibits the conservation of forests and natural vegetation. Therefore, it is of 

uttermost importance to account for water sensitive features in urban cities 

that have similar properties to natural vegetation in order to restore 

hydrological processes in tropical urban environments. This could eventually 

ensure dry season baseflow sustenance as well as modulation of quickflow 

responses to the extreme rainfall events. 

 

 



155 

 

7.3.2 Average runoff coefficients at catchment scale 

Average runoff coefficients varied between 0.09 and 0.61 for the various 

sub-catchments (Figure 7.3). As expected, the average runoff coefficients 

among the various types of rainfall events differed significantly ( , 

) and were in decreasing order of Rainfall Cluster IV>III>II>I. These 

results showed a consistent positive relationship between types of rainfall 

events and runoff coefficient (i.e. increasing runoff volume with increasing 

rainfall depth, duration and intensity). Sub-Cluster-3 (relatively saturated 

condition) contributed the most towards the quickflow during rainfall events. 

Rainfall events in Sub-clusters 3 had a shorter dry antecedent weather period 

(0.8 days) when compared to sub-clusters 1 and 2 (2.3 and 1.8 days, 

respectively). As evapotranspiration losses increases with increasing dry 

weather period, higher antecedent soil moisture was expected in Sub-Cluster-3 

as compared to other sub-classes. Therefore, a reduction in the infiltration and 

thus the water buffering capacity of the soil results in a larger quickflow 

fraction. 

When analyzing the various sub-catchments, larger average runoff 

coefficients were found for Station A due to the larger fraction of impervious 

surface of the sub-catchment (Figure 7.3, Table 3.2). In contrast, the lowest 

runoff coefficient was observed at Station B where relatively natural  
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Figure 7.3 : Average runoff coefficient within the clusters and sub-clusters for 
each discharge monitoring station within Kent Ridge Catchment, Singapore 
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vegetation areas were the dominating. In fact, quickflow was very small for 

most rainfall events, and large runoff in this station could only be generated by 

rainfall storms larger than 55 mm (Cluster-IV/Sub-Cluster-3). No significant 

differences in the average catchment runoff coefficients were observed among 

Stations C, D, and E ( , α = 0.05) due to the relative similar land use 

distributions in those stations (Table 3.2). 

 

7.3.2.1 Contribution of different types of land use towards overall 

stormwater runoff 

The mean total quickflow of five land uses descended in an order of 

impervious surfaces, grass on mild slope, relatively natural vegetation, mixed 

grasses and trees, grass on steep slope (Figure 7.4a). Although the percentage 

of area covered by relatively natural vegetation is about 1.7 times larger than 

that covered by impervious surfaces, the mean total quickflow from 

impervious surface is approximately 3.4 times greater than from the relatively 

natural vegetation. As can be seen in Table 3.2, the areas of different land uses 

vary largely. Hence, in order to provide a fair comparison, total contributions 

of land uses on equivalent area basis (i.e. area of each land use is equal) is 

presented in Figure 7.4b. The amount of total quickflow on equivalent area 

basis change to: impervious surfaces > grass on steep slope > grass on mild 

slope > mixed grasses and trees > relatively natural vegetation. These results 
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showed that impervious surfaces exhibited the greatest quickflow while the 

average contribution of relatively natural vegetation areas was as low as about 

5.4% which was 5.8 times smaller than that of impervious surfaces. The total 

quickflow on equivalent area basis were similar among the grass based land 

uses with grass areas on steep slopes being the second largest contributor 

(23.5%), followed by grass on mild slope (21%) and grass with trees (18.7%). 

Due to the urbanization effect such as soil compaction, the contribution of 

impervious surfaces was in average only 1.4 times greater than the grass based 

land uses (i.e. steep slope, mild slope and underneath trees) contributions. The 

buffer capacity of the relatively natural vegetation area is large enough to even 

buffer heavy rainfall events, reducing the quickflow in an urban environment.  

The results indicated that land-cover transformation from relatively natural 

vegetation to impervious surfaces is associated with an increase in the total 

quickflow by 26% (Figure 7.5). In addition, changes from mixed grasses and 

trees, grass on mild slope and grass on steep slope to impervious surfaces 

could increase the total quickflow by 13, 10 and 8 %, respectively. In addition, 

the conversion of total pervious surfaces to impervious ones increases total 

quickflow by 57%. These results suggest that the conversion of pervious 

surfaces (especially relatively natural vegetation) to impervious surfaces may 

lead to important changes in runoff generation processes in tropical urban 

environments. 
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Figure 7.4 : Total land use specific quickflow contributions towards Station E 
from September 2011 until August 2012 for: a) absolute amount basis and b) 
equivalent area basis 

 

 

 

Figure 7.5: The effect of land-cover transformation from pervious surfaces to 
impervious ones on total quickflow 
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7.3.3 Baseflow contributions at catchment scale 

Comparison was made between the average baseflow contributions 

towards the overall discharge at the various stations.  The lowest baseflow 

contribution (6.3%) was observed at Station A whose drainage area contained 

40% of impervious surfaces (Figure 7.6). In contrast, the highest proportion of 

baseflow contribution to the streamflow generation (34.9%) was detected at 

Station B with relatively natural vegetation being the main land use (87% of 

the total area). As natural vegetation can both increase baseflow and reduce 

runoff, it plays an important role in catchment water yields, streamflow 

dynamics and sustainable development of water resources. Similar 

contributions of baseflow (about 18%) were observed for Stations C, D, and E 

due to the similar land use composition (Table 3.2). These results showed a 

negative relationship between the amount of impervious surfaces and baseflow 

contributions (i.e. decreasing baseflow contributions with increasing 

impervious surfaces). Similar results have also been found in some studies 

indicating that increasing urbanization (i.e. impervious surface) might  result 

in significant loss of groundwater flow contribution in streams  due to reduced 

infiltration (Chang, 2007; Leopold and Geological, 1968; Price, 2011; Rose 

and Peters, 2001; Simmons and Reynolds, 1982). 
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Figure 7.6 : Average contribution (%) of baseflow and quickflow from 150 
rainfall events towards the discharge measured at sub-catchment (Stations A-
D) and catchment (Station E) level 

 

7.4 Summary and Conclusion   

Meteorological, physiographic, hydrologic and land use data was used to 

derive a physically interpretable modular model consisting of a baseflow 

module and a quickflow module. The structure of the derived modular model, 

using GP, was simple and physically interpretable. The quickflow module 

contained a rapid and delayed streamflow generation component which 

corresponds to the overland flow and shallow sub-surface flow, respectively. 

The modular model was generalized to predict rapid and delayed runoff at 

sub-catchment and catchment scales, revealing its potential application for 

other catchments independent from the prevailing meteorological and 
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catchment condition. In a latter step the model was further validated on its 

representation of catchment processes through the quantification of land use 

specific overland flow, shallow sub-surface and baseflow contributions in the 

tropical urban context. Results from the modular model showed that baseflow 

contributions decrease with the increase of impervious surfaces, and runoff 

volume increases with the increase in rainfall depth, duration and intensity.  

The model results also suggested that both very large and small rainfall events 

may cause runoff generation processes to be significantly different among 

different land uses. Even for an extreme rainfall event, the quickflow 

contribution of relatively natural vegetation areas was about four times less 

than that of impervious surfaces. As such, the modular model is able to 

quantify the various hydrograph components in the landscape and could 

potentially be used in other catchments to simulate the rainfall-runoff 

processes and also to quantify runoff contributions from different land uses. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH WORK 

 

 

8.1 Conclusions 

Knowledge about the land use contributions towards hydrograph flow 

components (i.e. baseflow and quickflow) in tropical urban environments is 

sorely lacking in the literature. Moreover, development of an appropriate 

approach for quantifying these contributions in a tropical urban system plays a 

vital role. Therefore, this thesis was aimed at providing a better understanding 

of hydrological rainfall-runoff processes in an urban tropical system through a 

deeper insight into hydrograph flow components and runoff response of 

specific land use types. In order to reach this goal, extensive climatic, 

physiographic, hydrologic and land use data of a small catchment in Singapore 

was first used to derive a physically interpretable modular model to simulate 

hydrograph flow components (i.e. baseflow and quickflow) using Genetic 

Programing (GP). Contributions from different land use types towards 

hydrograph flow components in a tropical urban context were then quantified 

using the modular model and optimization techniques. The following are the 

conclusions drawn from this research. 
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8.1.1 Development of a modular physically interpretable model for the 

simulation of streamflow time series, consisting of two sub-models 

(i.e. baseflow and quickflow)  

Most data driven models such as GP are often one unit models with 

adequate input variables that cover all system processes in one input/output 

structure. Such models do not contain the knowledge that experts may have 

about the studied system. One way of incorporating hydrological knowledge 

into these models is to uncover and build separate models for each of the 

different physically interpretable sub-processes which is called a modular 

approach. Modular units in a modular model for the simulation of streamflow 

time series would be suitable in identifying baseflow and quickflow 

components. This part of study used GP to develop a modular physically 

interpretable model consisting of two sub-models (i.e. baseflow and 

quickflow) to simulate streamflow time series. 

 

(1) Development of baseflow module  

As baseflow time series cannot be obtained from direct field 

measurements, a validated groundwater model was first adopted to 

simulate baseflow time series for Singapore catchment. The simulated 

baseflow time series were taken as the target parameter variable (i.e. 

output) in the GP software called GPKERNEL to develop an empirical 

equation predicting a continuous baseflow time series based on minimum 



165 

 

perennial baseflow, catchment area, and a time series of groundwater table 

elevation. This method was further modified into a generalized structure 

for application in other catchments and proved successful in a cross-site, 

cross-scale application in a northeastern US watershed. Results showed 

that: 

 Genetic programming is a successful tool for predicting baseflow. 

 The proposed equation performs as well as a recursive filter or a 

numerical model.  

 The generalized equation predicts baseflow irrespective of land use or 

scale.  

Overall, this part of study proposed a new approach which serves as an 

alternative method for baseflow estimation in un-gauged systems when 

only groundwater table and soil information is available. This method also 

contributes to multi-proxy estimations of baseflow where both streamflow 

and groundwater water table measurements are available. The simple 

equation can also be implemented in a modular model to simulate 

streamflow time series with little computational time and data requirement. 

It was proven that the proposed equation performs as well as a recursive 

filter or a numerical model. Future research could evaluate the 

performance of these three methods as compared to other techniques such 

as tracer based approaches in tropical urban environments. 
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(2) Development of quickflow module  

Subtracting the predicted baseflow from the measured discharge for 

Singapore catchment resulted in the quickflow which was taken as target 

parameter (i.e. output) in GP to develop the second modular unit based on 

hydrological parameters (e.g. precipitation), catchment antecedent 

conditions (e.g. groundwater table elevation prior to the rainfall event) and 

area of the catchment. The quickflow module was further modified into a 

generalized structure for application in other catchments. Results showed 

that: 

 Differences between the filtered quickflow from observed discharge 

data and those obtained by runoff module derived by GP were minimal 

in both training and testing periods; confirming that quickflow module 

can accurately estimate quickflow time series. 

 The model accounts for hydrological parameters and catchment initial 

conditions. 

 The term of antecedent catchment conditions allows variability in the 

percentage of rainfall that appears as runoff component for different 

events. 
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(3) Development of a modular module  

Combining baseflow and quickflow modules resulted in a modular model 

for the simulation of streamflow time series and hydrograph flow components 

(Q streamflow = Q baseflow + Q quickflow). Results show that: 

 GP successfully derived a physically interpretable modular model for 

simulating streamflow time series, which included two local models 

associated with baseflow and quickflow.  

 The relationship between the input variables in the model (i.e. 

meteorological data and catchment initial conditions) and its overall 

structure can be explained in terms of catchment hydrological 

processes. Therefore, the model is a partial greying of what is often a 

black-box approach in catchment modelling and has strong 

extrapolation capability. 

 The simulated results in a semi-urban catchment in Singapore matched 

very well with observed data in both the training and the testing data 

sets. 

 The modular model proved successful in a cross-site, cross-scale 

application in a northeastern US watershed 

 

Overall, this part of study proposed a physically interpretable model with 

understandable structure to simulate streamflow. This method can be 
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applied in other catchments and can simulate and separate hydrograph 

flow components on both event as well as time series basis. It can also be 

used to estimate the effect of various land use types towards hydrograph 

flow components. Moreover, as it requires less computational time as 

compared to the distributed hydrological models, it can be potentially 

coupled with a global climate model (GCM) to assess the climate change 

impacts on streamflow. 

 

8.1.2 Enhancement of our understanding on contributions from 

different land uses towards hydrograph flow components using the 

modular model and optimization techniques 

An extensive dataset of various climatic, physiographic, hydrologic 

and land use data combined with a modular model and optimization 

techniques provided an effective way to better understand the 

hydrological rainfall-runoff processes in an tropical urban context. 

Results showed that: 

 Runoff coefficients differ significantly among land uses for all 

rainfall clusters. 

 Rainfall events have greater impact on runoff coefficients of 

pervious areas. 
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 Baseflow contributions decrease with the increase of impervious 

surfaces. 

The results also showed that due to the urbanization, the soil 

hydraulic conductivity for soils covered by grass is significantly lower 

than the generally reported rate for these soil types. This could 

consequently reduce infiltration capacity which increases surface 

runoff during a rainfall event. However the estimated soil hydraulic 

conductivity for non-urban areas (i.e. relatively natural vegetation) 

corresponded to the soil hydraulic conductivity related to the soil 

texture. 

Overall this part of study offered a new approach with regards to 

the quantification of land-use specific contributions to quickflow 

component. Moreover, it provided enhanced knowledge on the 

hydrological rainfall-runoff processes in an urban tropical system 

through a better insight into hydrograph flow component and land use 

specific runoff response using a modular approach. This knowledge 

would be essential for integrated water resources management and the 

sustainable development of water resources particularly in tropical 

megacities.  
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8.2 Recommendations for Future Work 

A few possible directions for future research are highlighted below. 

 

8.2.1 Modeling of Streamflow under the Effects of Climate Change 

Using a Hybrid Model 

Changes in precipitation patterns are considered to be a significant 

component of climate change. Changes in precipitation, in combination with 

increases in temperature, may have important effects on the streamflow of a 

watershed. Understanding and assessing the potential impacts of climate 

change on future streamflow, especially in an urban system, is essential for 

water policy and environmental management, particularly in the context of 

water quantity, quality, and aquatic ecosystem sustainability. 

Climate change can have a variety of impacts on surface and sub-surface 

flow. However, quantifying these effects remains one of the most challenging 

issues in hydrology. With the advances in technology and the increasing need 

for integrated environmental management, the distributed hydrological 

models, offer an appropriate approach to model the rainfall-runoff relationship 

and also to quantify the climate change effects on hydrological responses in 

watershed scale. However these models are computationally expensive and the 

modeling of streamflow under the effects of climate change then require 

significant computational time. The modular model developed in CHAPTER 6 
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on the other hand is based on statistical relationship and hence require less 

computational time. Therefore one may couple this modular model with global 

climate models (GCMs) to assess the climate change impacts on streamflow 

using a hybrid model. In addition, as the model is modular, the impacts of 

climate change on hydrograph flow components (i.e. baseflow and quickflow) 

can be assessed separately.  

 

8.2.2 Runoff Generation Mechanism at Different Spatial Scales 

To better understand the hydrological rainfall-runoff processes in a 

tropical urban context, an extensive dataset of various climatic, physiographic, 

hydrologic and land use data should be available. For this purpose, a small 

catchment is more economically and technically feasible to install a dense 

monitoring equipment network. The results of the current study also showed 

that a small experimental catchment represents a valuable tool for collection of 

detailed hydro-meteorological data and conceptualization of rainfall runoff 

processes in tropical urban systems. On the other hand, detailed analyses and 

monitoring are usually more difficult in a larger catchment. Therefore, an 

upscaling approach can offer insights about the main rainfall-runoff processes 

occurring at larger scales.  

Therefore, the runoff coefficient estimated in the present study for small 

catchments might be used as an indicator of the hydrological behavior of 

larger catchments in Singapore (e.g. Marina catchment). Upscaling the 
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observations and the knowledge gained over small research catchments to 

larger watersheds, would be valuable for flood modelling and prediction as 

well as risk assessment. 

 

8.2.3 Enhancement of water resources management in tropical urban 

environments 

To reduce the impact of surface runoff, water sensitive urban infrastructure 

(e.g. green roofs, porous pavement, bioretention ponds, swales) retaining 

rainfall and enhancing infiltration rates in urban cities are being promoted. 

Water Sensitive Urban Design (WSUD) is an engineering design approach 

which aims to minimize hydrological and water quality impact of urban 

development by integrating land use planning with urban water management. 

The implementation of such technologies requests for a detailed understanding 

of runoff contributions from each specific land use in order to plan the 

location of these local source control measures. Therefore, the knowledge of 

contributions from different land uses towards quickflow as well as baseflow 

achieved in the present study could be adopted to enhance integrated 

management and sustainable development of water resources particularly in 

tropical megacities which are dependent on water sources that are more 

vulnerable to inter-annual fluctuations in precipitation. 
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