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Abstract 

Laser chemical processing (LCP), developed by Fraunhofer Institute for Solar Energy 

Systems was successfully applied in fabricating n-type selective emitters and p-type 

local back surface fields for bulk crystalline silicon wafer solar cells. In this thesis, 

LCP is demonstrated as a straightforward technique for laser doping of poly-silicon 

(poly-Si) thin films, thereby overcoming the process complexity related to laser 

doping on thin films as well as supplying a practically infinite amount of dopants 

during the doping process. Using a frequency-doubled (532 nm) tunable nanosecond 

Nd:YAG laser coupled inside a phosphoric acid jet, LCP was successfully applied in 

fabricating an n-type active layer for poly-silicon thin film solar cells on glass. 

 Different LCP parameters such as pulse energy, pulse overlap and pulse length 

were investigated for n-type doping of boron-doped poly-Si films. The sheet 

resistances (Rsh) and active dopant concentration were assessed by four-point-probe 

and electrochemical capacitance-voltage (ECV) profiling. The peak doping 

concentrations and doping depth were influenced by the melt lifetime and number of 

melt cycles per unit area, which were dependent upon the LCP conditions. Below the 

ablation threshold, a longer melt lifetime increases impurity diffusion inside the    

poly-Si until the liquid jet dominates the melt flow above a characteristic melt 

expulsion time. 

 Dopant activation was performed by post-LCP annealing in a nitrogen-purged 

oven using different temperatures and durations or by a rapid thermal process (RTP) 

at 1000 °C for 1 min. The best structural quality and lowest Rsh were obtained under 

RTP conditions. LCP was then applied to fabricate an n-type emitter on a                   

p
-
/p

+
 poly-Si thin film layer structure on glass. After dopant activation, the sheet 

resistances were about 2-5 kΩ/□ and the active dopant concentration was about          
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8 x 10
18 

cm
-3 

to 1 x 10
19 

cm
-3 

at a doping depth of less than 350 nm (as measured by 

ECV). Selected samples were then passivated by hydrogenation in a low pressure 

chemical vapor deposition tool with an inductively-coupled remote plasma source. 

The Rsh was further reduced due to improved carrier mobility from passivation of 

defects. Furthermore, the device performance was evaluated by quasi-steady-state 

open-circuit voltage (Suns-Voc) measurements before and after hydrogenation. A 

major improvement in open-circuit voltage (Voc) (> 400 mV) and pseudo-fill factor 

(pFF) (> 65%) was realized through hydrogenation whereby the best cell had an 

average Voc of (446 ± 7) mV and a pFF of (68.3 ± 0.9)%. It was found that the post-

LCP anneal was the limiting factor for better device performance. 

 A detailed investigation of the electrically-active defects also indicated that the 

Voc and pFF of the fabricated cells were limited by intra-grain defects generated from 

excessive hydrogenation as well as recombination within the space-charge region. It is 

expected that device performance can be improved by a rapid thermal processing step 

(e.g. 1000 °C for 1 min) after LCP and by using optimized hydrogenation conditions. 

Overall, this research has shown that LCP is practical for doping poly-Si thin films 

and is further amenable towards other thin film technologies.  
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CHAPTER 1 

INTRODUCTION 

1.1 Thin film solar cells 

Today’s commercially available bulk crystalline silicon wafer cells have solar cell 

efficiencies in the range of 15% - 25%. At the forefront lies the notable SunPower 

silicon solar cell - an all back-contact n-type silicon wafer solar cell with efficiency 

~25% [1] followed by the Sanyo HIT cell featuring a thin mono-crystalline wafer 

sandwiched between ultra-thin amorphous silicon layers, with a cell efficiency over 

22% [1]. Despite these strong achievements, photovoltaic (PV) electricity is still far 

behind other forms of green electricity such as hydroelectricity. The Renewable 

Energy Policy Network for the 21
st
 Century (REN21) 2013 reports that only ~19%  of 

our global energy consumption consists of renewable energy – out of which, 

wind/solar/geothermal/biomass power generation altogether form a mere 1.1%. 

Nevertheless, given these low numbers, the annual growth rate for PV is a staggering 

42%, more so than any other forms of renewable technologies such as wind power 

which is only about 19%. This is primarily due to economies of scale and constant 

technological advancements that continuously drive down the price of PV 

manufacturing [2]. 

 The cost of modern-day PV module manufacturing is around US$ 0.5/Wp, and 

there is still continuing effort to drive down the price by either decreasing production 

cost or by increasing the efficiency of the solar cell. The cost of a silicon substrate 

makes up ~50% of the overall fabrication cost [4]. One way to lower costs is to move 

towards larger and thinner wafers to scale up production but at some stage the wafer 
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breakage rate will limit the minimum achievable thickness [4]. Another consideration 

is that the relative fraction of silicon loss due to sawing (kerf loss) increases as the 

wafer gets thinner. Similarly, the fractional loss due to saw damage etch is likely to 

increase. Thus, one possible way to decrease the dollar per watt and yet overcome 

these issues is through thin film technology. 

 Thin film PV technology combines the advantages of using small amounts of 

material with scalability. The thin film material is deposited by physical [4] or 

chemical vapor deposition [3, 5] and by solution-based processing [6]. In addition, 

batch scale manufacturing can be expanded towards larger and/or flexible substrates. 

Leveraging off semiconductor technology, production time and cost can be decreased 

significantly through monolithic integration and novel interconnection methods 

involving laser scribing and inkjet printing. 

 To date, various thin film technologies have already found their way to the 

market. For instance, First Solar is a leading industrial manufacturer of cadmium 

telluride (CdTe) PV modules with average efficiency in the range of 12% - 13%. 

Additionally, copper indium gallium selenide (CIGS) PV modules with efficiencies in 

the range of 13% - 14% are already being commercialized [7]. Even though these 

technologies seem promising, they rely heavily on scarce elements such as indium 

and telluride and thus, may potentially limit their growth in the near future. 

Additionally, cadmium is toxic and in this respect, CdTe PV is not quite symbolic for 

‘green energy’. In contrast, silicon-based thin film PV technologies are non-toxic and 

sustainable. Amorphous silicon (a-Si) solar cells have already been on the market for 

years and can be found in calculators and watches, amongst others. Nevertheless, one 

barrier to industrial production is the relatively low PV efficiency of amorphous 

silicon. The latter technology also suffers from light-induced degradation (Staebler-
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Wronski effect) which decreases the efficiency by up to 30% of its initial value [8]. 

Thus, one effective way to exploit a-Si technology is to combine it with other silicon-

based material (e.g. micro-crystalline silicon) to form tandem solar cells. For 

example, the team from Neuchatel, Switzerland demonstrated stable efficiencies 

(~12%) with triple junction solar cells using this technology [9]. 

Another silicon-based technology is poly-silicon thin film. Poly-silicon (poly-

crystalline silicon or poly-Si) thin film is a common semiconductor material driving 

numerous applications in the semiconductor industry (e.g. thin film transistor (TFT) 

circuitry in active matrix liquid crystal display (AMLCD) [10]). Poly-Si can be 

formed or deposited in multiple ways – for instance, by laser crystallisation of a-Si, 

solid phase crystallisation of a-Si [11], physical vapor deposition methods such as e-

beam evaporation or chemical vapor deposition techniques as in low pressure 

chemical vapor deposition (LPCVD) [12] or plasma-enhanced chemical vapor 

deposition (PECVD) of poly-Si [4]. Depending upon the deposition conditions, 

amorphous, poly- or micro-crystalline silicon may be formed for chemical vapor 

deposition techniques such as PECVD. These three materials are typically classified 

according to their grain size and range order. Amorphous silicon (a-Si) has no long 

range order while poly-Si has relatively long range order and consists of grain sizes 

varying between 1 and 1000 micrometers. In contrast, micro-crystalline silicon 

consists of amorphous tissue and poly-Si altogether and is typically made up of grain 

sizes less than 1 micrometer [4]. 

In the late 1980s, Sanyo Electric pioneered the first poly-Si solar cells made 

by the solid phase crystallisation approach. Those were made on quartz substrates and 

had solar cell efficiencies around 8.5% [13]. More details about this layer structure 

will be described in Chapter 2. Despite these encouraging results, this type of solar 
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cell structure has slowly phased out to evolve into their present-day silicon 

heterojunction solar cell (called HIT). In 2007, CSG Solar demonstrated the first 

commercial poly-Si thin film PV technology on glass (fabricated by solid phase 

crystallization (SPC) of PECVD amorphous silicon) by manufacturing a 10.4% mini-

module with an aperture area of 94 cm
2 

[14]. The structural and device properties of 

the poly-Si were further enhanced by post-SPC processes such as rapid thermal 

processing (RTP) and hydrogenation. More details about this cell structure will be 

discussed in Chapter 2.  

 At the Solar Energy Research Institute of Singapore (SERIS), a similar layer 

structure to CSG Solar is adopted on borosilicate glass (the fabrication details are 

described in Chapter 2) and is being scaled up for higher efficiencies. Realistically, 

through the use of industrially viable technologies, a module efficiency of 13% is 

within reach for poly-Si thin film solar cells on glass. A schematic of a metallised 

poly-Si thin film solar cell on planar glass is illustrated in Figure 1.1. 

 

 

Figure 1.1: A schematic of a metallised poly-silicon thin film solar cell on planar glass in superstrate 

configuration [i.e. light enters the solar cell through the supporting structure] 
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1.2 Doping of poly-silicon thin films 

To date, numerous techniques exist for doping poly-Si thin films. Some of these 

include thermal diffusion [15], in-situ deposition followed by epitaxy [4], laser 

doping, ion beam implantation and so forth. Each technique is characterized by its 

process temperature, cost, throughput, material quality, grain size, dopant 

concentration and doping depth. Some of the main doping technologies available for 

poly-Si are described below: 

 Thermal diffusion [15] - this process is similar to creating a p-n junction on a 

silicon wafer and involves diffusing a doping gas at relatively high 

temperatures between 700 °C - 900 °C. This solid-state diffusion is relatively 

slow (in hours) because the diffusion coefficient of the dopant is low under 

these conditions. In addition, the diffusion profile may be hard to control due 

to enhanced diffusion along crystallographic defects such as grain boundaries 

etc. 

 Spin-on-dopant (SOD) [16] - this form of doping is typically performed using 

a commercially available diffusion source. This technique does not require 

expensive infrastructure as in thermal diffusion and requires a drive-in step 

typically achieved through a furnace or by a laser. However, there are also 

risks of contamination from impurities in the SOD. 

 In-situ methods followed by epitaxy [4] - this is the most convenient way to 

grow a p-n junction and is very well established in industry. CVD methods can 

also decouple the formation of the seed layer from the growth rate and the 

crystallographic orientation. Therefore, subsequent layers can be deposited at 

higher deposition rates.  
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 Ion beam implantation [17] - this technique is commonly used in industry to 

achieve high doping levels at shallow diffusion depths (tens of nanometers). A 

thermal anneal is necessary to activate dopants and anneal defects - either in 

the form of a flash or a laser anneal. The diffusion profiles of ion-implanted 

samples depend upon the ion energy, the sample thickness and the subsequent 

annealing conditions.  

 Metal-induced crystallisation - Some metals do not form silicides but instead 

act as acceptors (i.e. p-type doping) upon annealing. At the same time, they 

also lower the crystallisation threshold of amorphous silicon such that 

crystallisation occurs at significantly lower temperatures. Processes such as 

aluminum-induced crystallisation (AIC) simultaneously dope and crystallise 

amorphous silicon into poly-silicon. The doping levels are relatively high 

(~10
19 

atoms/cm
3
)
 
[18]. However, there are also significant amounts of metal 

contaminants in the crystallised layers. 

 Laser doping - excimer laser has been applied to SOD on amorphous silicon or 

SOD on poly-Si [19, 20]. High doping concentrations can be achieved at 

shallow diffusion depths but a significant amount of contaminants is also 

incorporated into the film. On the other hand, Nd:YAG laser is applied mostly 

for crystallising and scribing thin films. Studies about Nd:YAG laser doping 

on silicon wafers reported high doping levels (~10
19

 atoms/cm
3
) at depths of 

1000 nm [21]. 
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1.3 Application of Nd:YAG laser – a literature review 

This Section describes the studies that form the understanding that laser-induced 

interaction on silicon lead to melting of the solid and solidification of the molten 

silicon. Also it was established that the temperature threshold for laser doping 

coincided with the silicon melting threshold and hence laser doping was basically 

liquid phase diffusion. It also gives the reader a broad picture of the application of 

Nd:YAG laser on silicon over the years.  

 By the late 1960s, lasers were already being investigated for semiconductor 

applications such as in laser annealing of ion-implanted silicon.  The fundamental 

findings were that laser melting of the surface layer removed crystallographic defects 

and that the silicon solidified epitaxially from the underlying substrate. During this 

solidification process, impurity atoms were incorporated into the lattice with 

concentrations that could well exceed the equilibrium solubility limit and the doping 

concentration and segregation coefficients were dependent upon the resolidification 

velocities [22]. A few examples of such studies are described below. 

 In 1968, Fairfield reported a solid-state diode fabricated by laser irradiation of 

a phosphorus-coated silicon wafer with a ruby laser (694 nm). The doping depth was 

about 1 µm [23]. Around the same year, Harper and Cohen realised a p-n junction by 

irradiating an aluminium-coated n-type silicon wafer with a pulsed Nd:YAG laser 

(1064 nm). They measured the rectifying behavior of the diodes and concluded that 

the diodes exhibited satisfactory electrical behavior [24].  

 In subsequent years, several studies were performed with Nd:YAG laser using 

various precursors and system (e.g gas immersion systems). Those studies seemingly 

showed that a threshold laser fluence existed for the onset of laser doping and that it 

coincided with the silicon melting threshold. It was also observed that the depth of the 
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diffused layers increased linearly with laser fluence and that the doping depth was 

equivalent to the melt depth. Thus, it was established that laser doping was essentially 

liquid phase diffusion and the high dopant concentrations in short processing times 

was due to the high temperature prevailing at the reaction site. Lastly, it was observed 

that infinite doping precursors could only be realised with gaseous systems while pre-

deposited precursors, being exhaustive, eventually lead to a decrease in the peak 

doping concentration [22]. For example, in 1978, Affolter [25] fabricated ohmic and 

rectifying (p-n junctions) contacts on silicon with a Nd:YAG (Q-switched) and a CO2 

laser using precursors from SOD. The diffusion depth was about 0.5 µm. Bentini [26] 

doped GaAs substrates with silicon using a Nd:YAG laser (pulsed, 532 nm) in a 

silane atmosphere. The doping concentration was about 10
20

 Si atoms/cm
3
 at a doping 

depth of 100 nm. Besi-Vetrella and co-authors [20] achieved selective doping on 

silicon using a two-step process involving Rapid Thermal Diffusion (RTD) on SOD 

followed by Nd:YAG (pulsed, 532 nm) laser irradiation of the doped regions. The 

diffusion depth was about 2-3 µm.  

 A comparative work between Nd:YAG laser doping (continuous wave and 

pulsed mode with wavelength of 1064 nm) and excimer doping for n-type doping 

(using N2 precursors) and p-type doping (using Al precursors) in different background 

gases was also performed on silicon carbide substrates by Tian [27]. Lien et al. [28] 

demonstrated a one-step laser crystallisation and doping process of amorphous silicon 

(100 nm thick) on glass. The authors employed a Nd:YAG laser (pulsed, 355 nm) on 

phosphorus-doped TiO2-coated a-Si on glass. However, they performed a 

dehydrogenation step at low laser fluence before the doping/crystallisation process. 

They revealed SIMS concentration of about 2 x 10
19

 atoms/cm
3
. Palani et al. [29] 

performed laser doping and crystallisation of amorphous silicon with a Nd:YAG laser 
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(pulsed, 355 nm) of Nd:YAG. The authors utilized a thin antimony layer for doping 

and crystallising the amorphous silicon. They also carried out a two-step laser 

irradiation process to first crystallise the amorphous silicon and diffuse the dopants 

and lastly to activate the dopants. Barhdadi et al. [22] compared the defect level 

introduced by solid-state laser [Nd:YAG (pulsed, 530 nm) and ruby] and excimer 

laser irradiation on silicon. They concluded that for fluence above the melting 

threshold value (the value of which depends upon the type of laser), the active defects 

measured by deep level transient spectroscopy (DLTS) are somewhat similar for all 

three lasers. They claimed that the defects are due to a fast melt cooling and re-

solidification velocity of the irradiated layer. Those defects can act either as charge 

carrier traps or as recombination centers. More recently, Li et al. [30] demonstrated 

the application of Nd:YAG (pulsed, 532 nm) laser in chalcogen doping and micro-

structuring of silicon. By irradiating silicon in a background gas of SF6, they 

demonstrated increased absorption of the irradiated silicon.  

 Since then, the demands from the semiconductor industry have evolved 

significantly due to device miniaturization and thus, Nd:YAG laser is mostly used for 

crystallisation of doped and undoped amorphous silicon. As such, Nd:YAG lasers 

have slowly phased out due to the laser specifications and are increasingly being 

replaced by excimer lasers for doping and crystallisation applications on thin films. 

Nevertheless, depending upon the application, Nd:YAG is still widely popular due to 

its cost and flexibility. For example, some laser crystallisation studies have been 

carried out using Nd:YAG on thin amorphous silicon layers. Notable examples are the 

works by Fereira et al. [31] who crystallised ~200 nm thick PECVD a-Si film (doped 

and undoped) using a pulsed Nd:YAG laser (532 nm). Similarly, Shibata et al. [32] 

reported Nd:YAG (pulsed, 1064 nm and continuous wave) laser annealing on 180 nm 
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thick a-Si deposited by LPCVD. The a-Si was implanted with phosphorus prior to the 

annealing/ activation process.  

 

1.4 Laser Chemical Processing (LCP) 

Laser chemical processing (LCP), based on the patented LaserMicroJet technology by 

Synova® S.A, was originally introduced by Fraunhofer Institute for Solar Energy 

Systems ISE, as a novel approach for micro-structuring and wafering applications. 

Hence, the technique was initially called laser chemical etching (LCE). The 

technology was explored as an alternative to a low-cost damage-free wafering process 

for the PV industry. Due to the emergence of thinner silicon wafer solar cells, it 

became increasingly important to cut down the silicon loss during PV manufacturing 

for e.g. kerf loss during sawing and post-damage etch processes. Hence, a laser 

wafering process that could potentially saw wafers at relatively high cutting speeds 

without a subsequent cleaning/polishing process (i.e. a damage-free wafering process) 

would meet such requirements [33]. During the experimental phase, different carrier 

fluids such as water and potassium hydroxide (KOH) were experimented using pulsed 

and continuous Nd:YAG laser. It was found that LCP could indeed lead to an 

improved surface quality due to in-situ etching from KOH. Eventually, in 2001, 

Fraunhofer explored this technology for a novel doping application for bulk 

crystalline solar cells. Subsequently, the first results were published using LCP for n-

type doping in selective emitter applications. Since then, the technique was called 

LCP to encompass both micro-structuring and doping applications. 

LCP features a laser light (pulsed or continuous) coupled inside a highly 

pressurised hair-thin liquid jet (~50-80 µm) by total internal reflection. Essentially, 

the liquid jet acts as an optical waveguide. The laser beam is transported from the 
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laser source through an optical fibre cable and coupled through a quartz window into 

the jet through the Synova Microjet-Minihead
©

. Laminarity inside the liquid jet is 

maintained by using either compressed dry air (CDA) or helium (He) gas. The focal 

spot is determined by the focusing optics inside the LCP head as well as the jet output 

diameter from the nozzle. Technical capabilities allow the focal point to be between 

20 mm and 70 mm from the nozzle exit (in SERIS focal point is about 30 mm inside 

the jet and focal spot is ~30 µm). 

Therefore, according to the type of chemistry, LCP can be targeted for 

different applications such as doping, grooving or both. Figure 1.2 illustrates the 

laser/jet coupling inside the Synova Microjet-Minihead
©

. 

 

 

Figure 1.2: Laser/jet coupling inside one of the Synova Microjet-Minihead
©

 

 

 

So far, LCP has shown successful results for damage-free wafering applications using 

potassium hydroxide (KOH) as carrier fluid. More importantly, Fraunhofer ISE has 

demonstrated successful results in n-type and p-type doping: n-type doping for 

Optical fibre to carry laser 

(Nd:YAG 532 nm) to the 

Synova Microjet-

Minihead
©
 jet 

Collimator 

Laser/ jet coupling 

through quartz window 

Nozzle 
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fabricating selective emitters in high efficiency solar cells (i.e. the simultaneous 

ablation of passivating layers and localized doping for making ohmic contacts) [34, 

35] and p-type doping for making local back surface fields (LBSF) in silicon wafer 

solar cells [36]. 

 

1.5 Motivation 

Earlier, it was shown that lasers are promising for a multitude of thin film applications 

such as crystallisation, doping and annealing, amongst others. They are fast, versatile 

(in terms of spot size and pulse modifications etc.), capable of spatial patterning and 

can easily outcompete other forms of processing such as tube diffusion and 

photolithographic patterning. For example, lasers can be applied either at an early 

stage during the cell fabrication process (for e.g. laser crystallization [37], laser 

annealing [38] and laser doping [39]) or towards the end of the metallization/module 

fabrication process (for example in laser-fired contacts [40], cell isolation [41, 42] 

etc). 

 Within the realm of laser doping on poly-Si, excimer and Nd:YAG lasers have 

been commonly employed on pre-doped layers such as silicates and spin-on dopants 

or by gas immersion laser doping (GILD) to yield high dopant concentrations (~10
20 

atoms/cm
-3

). However, there are few limitations to these methods such as the number 

of required pre-process steps, cost and supply of the doping precursors. For instance, 

SODs are exhaustible doping sources that generally require a few additional steps (for 

example spin coating and solvent removal) before a drive-in step in a furnace or laser 

activation. In contrast, GILD is a more straightforward technique that features a 

practically infinite doping source. As a result, homogenous doping profiles can be 

achieved from GILD. However, GILD requires a specialized infrastructure which is 
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relatively expensive and potentially hazardous due to the poisonous doping gases. 

Additionally, GILD requires adsorption of dopants onto the film (performed by lower 

laser fluences before the actual doping step). Therefore, it seems that there is no report 

of a laser doping process that avoids the complexity of using pre-doped layers and yet 

provides a continuous flux of doping precursors.  

 In this case, LCP is a unique approach for laser doping of poly-Si thin films. 

Being laser-based, it derives all the benefits imparted by laser processing. It is also a 

‘direct’ doping procedure with the additional capability of supplying a practically 

infinite amount of dopant atoms throughout the doping process. Previously such 

feature was only available from specialized techniques such as GILD. Furthermore, 

the process can be localized or extended to large area substrates. In this respect, 

several jet heads can be fitted within the LCP system for doping or grooving several 

wafers simultaneously. Lastly, as discussed in the earlier Sections, there has not been 

much doping work carried out with Nd:YAG laser except in the earlier days. Even 

then, most of the work was carried out mostly on bulk crystalline silicon using pre-

deposited precursors or a background doping gas. As such, there has not been a single 

step laser doping process except for the published work by Lien et al. [28]. To the 

best of the author's knowledge, there has also been no prior LCP work on poly-Si 

except for the work investigated in this thesis. 

 

1.6 Aim of the current work 

This thesis focuses on two main aspects of LCP. First, it demonstrates that LCP can 

be successfully applied for doping poly-Si thin films. In this case, the optimum LCP 

parameters for n-type doping of poly-Si thin films are investigated systematically. 

Second, this work targets the fabrication of an LCP-doped active layer for poly-Si thin 
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film solar cells on glass. The basic structure of a poly-Si thin film solar cell is similar 

to that of a conventional wafer solar cell. It consists primarily of a relatively low 

doped layer (absorber) sandwiched between two layers of higher dopant concentration 

namely an emitter and a back surface field (BSF) [more details about the layer 

structure are described in Chapter 2]. Fabricating an active layer by LCP entails a few 

salient features. These are the dopant concentration, the doping depth, the structural 

and electronic quality of the films. 

 

1) Dopant concentration 

Depending upon the device architecture (e.g. substrate or superstrate), LCP can be 

applied to fabricate an emitter or a back surface field. A relatively high dopant 

concentration (e.g. 10
19

 cm
-3

) is desirable as it yields a reasonably low sheet resistance 

which minimises series resistance losses in the solar cell. On the other hand, if the 

layer is very heavily doped (e.g. 10
21

 atoms/cm
3
), carrier recombination is high and 

the diffusion length becomes rather short. Hence, a trade-off is necessary between the 

electronic quality and the sheet resistance. 

 

2) Doping depth 

The doping depth is another important factor that determines the collection efficiency 

of the solar cell. In the case of an emitter, a shallow doped layer is highly desirable to 

improve the blue response of the cell. In this way, the carriers are generated close to 

or within the absorber layer. The diffusion length of the carriers is higher in the 

absorber layer due to a lower defect density and thus, the collection efficiency of the 

solar cell is increased. 
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3) Structural quality 

The structural quality of the LCP-doped layer is another factor that determines the 

overall device performance. Grain boundaries and other structural defects act as 

carrier traps and influence the carrier lifetime. A study by Wong et al. [43] showed 

that clean dislocations lead to shallow band recombination and charged dislocations 

lead to deep level defects, both of which are detrimental to the performance of the 

solar cell. The structural quality of the LCP-doped layer is assessed against that of 

float-zone (FZ) silicon which possesses the best structural quality. 

 

4) Electronic quality 

The electronic quality of a solar cell determines the overall device performance. 

Despite possessing satisfactory material quality, the electronic quality of the solar 

cell may be rather poor, thus making the device impractical. The fabricated devices 

in this thesis are compared to the ‘baseline’ poly-Si thin film solar cells fabricated in 

SERIS to assess the relative device performance. To further enhance the device 

properties of the LCP-doped layers, the fabricated poly-Si thin film solar cells are 

hydrogenated in a LPCVD reactor. 

 

1.7 Organization of thesis  

This thesis is organized into eight chapters. Below is a brief description of each 

chapter:  

 Chapter 1 summarizes the current technologies available for doping poly-Si 

with particular attention to laser doping of poly-Si. LCP is proposed to overcome the 

shortcomings of laser doping process on thin films namely process complexity, cost 



 INTRODUCTION 

 
 

16 

 

and a continuous supply of doping precursors. The research scope and motivation 

behind the current study are stated and the aim is to fabricate an active layer for poly-

Si thin film solar cells using LCP. 

 Chapter 2 describes the laser-induced physical and chemical interactions 

occurring at each step during LCP. These include physical models detailing the optics, 

thermodynamics and hydrodynamics of LCP in order to give the reader a better 

understanding of LCP. A summary of the physical parameters/ models relevant to the 

LCP conditions used in this thesis is provided. Those parameters are later used for the 

simulations of melt depth and melt lifetime using the SLIM (simulation of laser 

interaction with materials) software. 

 Chapter 3 covers the fabrication process of poly-silicon thin film solar cells on 

glass made by the solid phase crystallisation (SPC) method. The SPC approach is 

utilized to form the poly-Si samples before n-type doping by LCP. The 

characterisation techniques for assessing the structural and electrical integrity of the 

LCP-doped layers are also outlined. 

 Chapter 4 summarizes the LCP doping experiments performed on p-type poly-

Si on glass. The experimental procedures for LCP optimization and annealing 

conditions are detailed therein. Melt depth and melt lifetime simulations are 

performed using the laser modeling software SLIM (simulation of laser interaction 

with materials) for a qualitative assessment of the LCP process parameters on the 

sheet resistance and doping profiles. An analytical model is introduced for calculating 

the sheet resistances of the LCP-doped layers. 

 Chapter 5 describes LCP doping experiments on p
-
/p

+
 poly-Si on glass. The 

first poly-Si thin film solar cells featuring an active layer by LCP are presented. The 

device performance is assessed by Suns-Voc measurements and hydrogenation is 
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carried out to enhance the device performance. These results are compared to our 

baseline solar cells and areas for further improvement are indicated. The solar cell 

modeling software, PC1D is used to model the solar cells and to compare the 

theoretical and measured Voc values.  

 Chapter 6 deals with the investigation of the structural properties of the LCP-

doped layers. The experimental procedures for assessing the structural integrity of the 

LCP-doped films are described. The influence of the annealing conditions on the 

structural properties of the films is also studied. 

 Chapter 7 investigates the electrically-active defects in LCP-doped solar cells. 

The dominant recombination behaviour in LCP-doped solar cells is identified. 

Hydrogenation-induced defects are also studied by Raman spectroscopy. The 

performance-limiting factors affecting the solar cells are discussed and suggestions 

are given to increase device performance. 

 Chapter 8 summarizes the essential findings from the work carried out in this 

thesis. Possible areas for further improvement on the existing work are suggested. 

Future studies towards a better understanding of LCP doping mechanisms on poly-

silicon are highlighted. 
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CHAPTER 2 

LASER CHEMICAL PROCESSING (LCP) 

2.1 Introduction 

This chapter details the laser-induced physical and chemical interactions occurring at 

each step during LCP. Despite the complexity associated with the laser/jet coupling in 

LCP, the laser-silicon interactions are similar to that of dry laser doping and therefore 

most of the physical models are relevant for LCP. In the first Section, the physical 

models pertaining to the optics and thermodynamics of LCP are described to give the 

reader a better understanding of LCP. Lastly a summary of the physical parameters/ 

models relevant to the LCP conditions used in this work is provided. Those 

parameters are later used for the simulations of melt depth and melt lifetime using the 

SLIM (simulation of laser interaction with materials) software. 

 

2.2 Laser chemical processing 

LCP couples a laser beam (pulsed or continuous) into a highly pressurised liquid jet 

and the laser-induced, physical and chemical interactions between the substrate and 

doping medium lead to micro-structuring, doping or both. The liquid jet acts as an 

optical waveguide and through total internal reflection, the laser is transported to the 

surface of the material for the desired application. 

 During LCP, the laser-induced physical and chemical interactions are highly 

complex. Therefore, the number of parameters is rather significant and precise 

mathematical models are required to evaluate the effect of each parameter on LCP 

process quantitatively. Prior work on LCP revealed that there was no existing 
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algorithm or commercial software that could couple the physical, chemical and 

hydrodynamic effects altogether. Additionally, at high temperature scales, some of the 

physical models may not be completely valid and material parameters measured under 

such conditions cannot be found in literature. Nevertheless, the laser-material 

interactions during dry laser doping of silicon are still relevant for LCP. In the 

following Sections, the models and governing equations were taken from Ref. [1] and 

available literature [2-15]. Only the physical models reflecting the LCP conditions 

used in this thesis are detailed. Additionally vapor dynamics were not considered in 

the mathematical models because the laser intensities were in the low to mid-range. 

 

a) Laser-jet coupling 

A high pressure pump is used to force a liquid (water or a suitable doping medium) 

across a nozzle to generate a hair-thin liquid jet of diameter about 50 µm. The laser 

light is then coupled through a quartz window into the jet. At this stage, the liquid jet 

absorbs energy from the laser and is heated up. If the liquid jet contains a low reactive 

solvent, photochemical reactions may already occur within the liquid jet. It is 

important to note that initially, Fell et al. [1, 2] assumed a uniform intensity 

distribution across the liquid jet. However, they later found out that the liquid jet was 

essentially a multi-mode waveguide and that the laser intensity showed interference 

peaks dependent upon the nozzle diameter and the coupling optics. 

 

b) Interactions at the reaction spot 

During a laser interaction with silicon, part of the laser light is reflected by the silicon 

while the remaining light is absorbed by the silicon. The melting temperature of 

silicon is reached. At this stage, a phase transition from solid to liquid occurs. The 
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melt time (ns-µs) of the silicon (i.e. liquid silicon) is longer than the nanosecond laser 

pulse length (less than 80 ns in the experiments within this thesis) used during LCP 

[1] and thus, even when the laser is off, the silicon is still in its molten state. The 

contact of the liquid jet with the hot silicon melt results in a small vapor layer that acts 

as a thermal insulating layer and reduce the viscous forces between the silicon melt 

and the liquid jet. Therefore melt expulsion does not occur instantaneously but 

depends on a characteristic melt expulsion time influenced by the hydrodynamics of 

the liquid jet such as the jet velocity etc. [1]. Further heating causes the melt to reach 

its evaporating temperature. Fast evaporation rates result in the formation of a dense 

vapor plume that exerts a recoil pressure onto the melt possibly shielding it from the 

impinging jet.  

 

c) Melt solidification 

Lastly, the silicon temperature drops down rapidly to about room temperature in only 

a few microseconds [1]. During this process, the melt solidifies (dopants are 

incorporated into the lattice if a doping medium is used as liquid jet) until the onset of 

the next laser pulse. 

 

2.3 Optics 

After absorption inside the liquid jet, the remaining laser intensity becomes available 

for melting the silicon. The complex refractive index, n
*
 is given by: 

 

𝑛∗ =  𝑛 + 𝑖𝑘 (2.1) 
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where k is the extinction coefficient and determines the attenuation of light in the 

material. Using a wavelength of 532 nm, the data for solid Si is taken from literature 

[3]. 

 

𝑛 = 3.95 + 5.68 × 10−4 𝑇 (2.2) 

𝑘 = 2.1252 × 10−2exp (
𝑇

430
) (2.3) 

 

where T is the absolute temperature (K). 

The Drude model is used to calculate the refractive index of liquid silicon since it 

essentially behaves as a metal (free electron gas) at this temperature and the photons 

are mainly absorbed by free carriers. The frequency-dependent complex permittivity 

of a free electron gas is given by: 

 

ε∗(f) = 1 −
𝜔𝑝𝑙
2

ω2 + γ2
+ 𝑖

𝛾𝜔𝑝𝑙
2

ω(ω2 + γ2)
 (2.4) 

 

where the plasma frequency ωpl is a material-dependent constant value and the 

collision rate γ is a temperature-dependent value given by Equation (2.6). Tm is 1683 

K. 

 

𝜔 =
2𝜋𝑐

λ
 (2.5) 

𝛾 = 𝛾𝑚
𝑇

Tm
 (2.6) 

 

The refractive index is then calculated by: 
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(𝑛∗)2 = 휀1 + 𝑖휀2 (2.7) 

 

Assuming parameters 𝜔𝑝𝑙 = 2.50 x 10
16

 s
-1 

and 𝛾𝑚= 4.717 x 10
15

 s
-1

 from Ref. [4], the 

refractive index of liquid silicon is then calculated as a function of temperature. 

 For photons of energy above the band gap, the laser energy is absorbed 

through electronic excitation (that is electrons moving from valence band to 

conduction band) within the silicon. These electrons then interact with phonons and 

transfer this energy to the lattice on a picosecond timescale. At high laser intensities 

(i.e. high photon densities), multi-photon absorption may result whereby more than 

one photon is absorbed by an electron and during the process creates more free 

electrons. At even higher laser intensities, more laser light is absorbed until it results 

in avalanche ionization (optical breakdown) whereby all the light is absorbed. For a 

532 nm laser, a minimum pulse length of roughly one nanosecond is desired to 

prevent optical breakdown in the liquid jet [1]. 

 After passing through the liquid jet, the laser light is still highly directional. 

The absorption of light in silicon can be approximated by a one dimensional Beer-

Lambert equation along the depth axis Z: 

 

𝐼(𝑧) = 𝐼𝑜 exp(−𝛼𝑧) (2.8) 

 

where Io is the laser intensity (W/m
2
) at depth (z = 0). The intensity Io is determined 

by the peak power, Ppeak (W) over the effective area (m
2
) by: 

  

𝐼𝑜 = 
𝑃𝑝𝑒𝑎𝑘

𝜋 (
𝑑𝑠𝑝𝑜𝑡

2
)
2 (2.9) 
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where peak power is given by: 

𝑃𝑝𝑒𝑎𝑘  =  
𝑃𝑢𝑙𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦

𝑡𝑝
= 

𝑃
𝑅𝑒𝑝⁄

𝑡𝑝
 (2.10) 

where P is average power in Watt (W), tp is the pulse length in seconds (s) and Rep is 

the pulse repetition rate in Hertz (Hz). Since a square pulse is used, the peak power 

refers to the average power across the jet.  

The absorption coefficient 𝛼 is related to the extinction coefficient by: 

 

𝛼 =
4𝜋𝑘

𝜆
 (2.11) 

 

For solid Si, it is given by [5]: 

𝛼 = 5.02 × 103exp (
𝑇

430
) (2.12) 

 

As can be seen in Equation (2.11), the absorption coefficient is both wavelength and 

material dependent. In LCP, the laser beam is not directly coupled into the liquid but 

rather at an angle determined by the optics and the liquid. Thus, an effective path 

enlargement (δ) exists whose angle is limited by the critical angle to ensure total 

internal reflection. This path enlargement factor is accounted into the absorption 

coefficient by calculating an effective absorption coefficient [1]: 

 

𝛼𝑒𝑓𝑓 =  𝛿𝛼 (2.13) 
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At the reaction spot, part of the incident laser light is reflected and the rest is absorbed 

by the silicon. The reflectivity is calculated by Fresnel equation and is given by [1, 6]: 

 

𝑅 = 
(𝑛𝑒𝑛𝑣 − 𝑛𝑆𝑖)

2 + 𝑘𝑆𝑖
2

(𝑛𝑒𝑛𝑣 + 𝑛𝑆𝑖)
2 + 𝑘𝑆𝑖

2  (2.14) 

 

where nSi is the refractive index of silicon and nenv is the refractive index of the 

surrounding medium. In the current work, 42.5% phosphoric acid was used during 

doping and therefore, the refractive index was calculated from Ref. [7]. It is assumed 

that the refractive index of phosphoric acid is temperature independent. 

 

𝑛𝑎𝑐𝑖𝑑 = 0.000792 × 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 % + 1.3346  (2.15) 

 

Replacing 𝑛𝑆𝑖, KSi and 𝑛𝑒𝑛𝑣 by their corresponding values, R is given as a function of 

temperature. Therefore,  

 

𝐼(𝑧) = (1 − 𝑅)𝐼0 exp(−𝛿𝛼𝑧) (2.16) 

 

2.4 Thermodynamics processes during LCP 

The thermodynamics occurring during the LCP process are described by heat 

transport, phase changes as well as species transport through evaporation or diffusion. 

The heat transport is solved by the general partial differential equation which includes 

a transient, a convection term, a conduction term and a source term as described by 

Equation (2.17) [8]: 
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𝑑(𝜌𝐶𝑝𝑇)

𝑑𝑡
+ �⃑�∇(𝜌𝐶𝑝𝑇) =  ∇(𝐾∇𝑇) +  𝑆 (2.17) 

 

where 𝑆 =  𝛼𝑒𝑓𝑓𝐼(𝑧) 

Assuming that the temperature distribution across the cross-sectional area of the jet is 

constant, Equation (2.17) can be reduced to a one dimensional heat equation along the 

depth axis (z). This assumption is valid because the jet length is about 3 cm and the 

diameter of the jet is about 50 µm. Therefore, the aspect ratio of the jet is relatively 

high such that the temperature is homogenized across the cross-sectional area of the 

jet. Furthermore, since the heat capacity Cp, density ρ and heat conductivity K are 

assumed to be constant, Equation (2.17) can be further simplified to: 

 

𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
+  𝜌𝐶𝑝𝑣𝑧

𝑑𝑇

𝑑𝑧
= K

d2T

dz2
+  𝑆 (2.18) 

 

Grigoropoulos et al. [9] described the laser-induced melting of silicon using an 

enthalpy scheme. During a phase change, the enthalpy is steadily rising while the 

temperature remains constant. Assuming no melt flow (i.e. no movement of silicon), 

the enthalpy is given by: 

 

𝑑𝐻

𝑑𝑡
= ∇(K∇T) +  𝑆 (2.19) 

 

where 𝐻(𝑇) =  ∫ 𝜌𝐶𝑝
𝑇

0
𝑑𝑇 

For solid Si, the temperature dependent heat capacity (in J/cm
3
K) is obtained as in 

Ref. [10]: 
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𝐶𝑝 =
𝜌

𝑀
[23.698 + 3.305 × 10−3𝑇 − 4.354 × 10−5𝑇−2] (2.20) 

 

where 𝜌 is density of silicon in g/cm
3
 and M is molar mass of silicon (g/mol). 

  The heat capacity is dependent upon the temperature and was defined in a 

stepwise manner using the temperature-enthalpy relation, as seen in Reference [11]. 

To define the enthalpy relation for each phase, a polynomial fit based on available 

data from literature was used. In the case of solid silicon, Equation (2.21) was derived 

[11]: 

 

𝑇𝑠 = −2.375𝑥 10
−17𝐻2  + 5.512 × 10−7𝐻 + 98.06 (2.21) 

 

For liquid Si, the specific heat capacity was assumed to be a constant at 2.432 J/cm
3
K 

[11]. The temperature-enthalpy relation for liquid Si is given by Equation (2.22): 

 

𝑇 = 𝑑𝐻 + 𝑒 (2.22) 

 

Where 𝑑 =  
1

𝜌𝐶𝑝
 and  𝑒 = 𝑇𝑚𝑒𝑙𝑡 − 

(𝐻𝑚𝑒𝑙𝑡+ 𝐿𝑚𝑒𝑙𝑡)

𝜌𝐶𝑝
 

 

a) Surface cooling 

Surface cooling may occur either by radiation, by convection or by conduction. 

Neglecting incoming radiation, the radiative heat loss (Jsurf) is given by Stefan-

Boltzmann law as in Equation (2.23): 

 

𝐽𝑠𝑢𝑟𝑓 = 휀𝑇𝜎(𝑇𝑠𝑢𝑟𝑓
4 − 𝑇𝑒𝑛𝑣

4 ) (2.23) 
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where 휀𝑇 is the emissivity of silicon, Tsurf is surface temperature of the silicon, Tenv is 

the surrounding temperature and 𝜎 is Stefan's constant. 

For both conductive and convective cooling, the surface heat transfer was assumed to 

be linearly dependent upon the temperature difference of the two materials and was 

described by a heat transfer coefficient ht. In this case it is given by [6], 

 

𝐽𝑠𝑢𝑟𝑓 = ℎ𝑡(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑒𝑛𝑣) (2.24) 

 

However, ht is dependent upon both the thermal properties of the material and the 

velocity of the cooling fluid in the case of convective cooling. This parameter needs 

to be derived empirically for each setup [1]. 

  If the near-surface temperature distribution of the fluid/solid (in this case, 

liquid jet /silicon) is known, ht can be calculated by the temperature gradient and 

conductivity of the fluid Kfluid as in Equation (2.25) [8]: 

 

𝐾𝑓𝑙𝑢𝑖𝑑
𝑑𝑇

𝑑𝑛
→ 
= ℎ𝑡(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑒𝑛𝑣) (2.25) 

 

The heat loss by radiation was considered to be negligible according to the 

simulations performed at Fraunhofer [1]. Nevertheless, the cooling effect induced by 

the liquid jet can be considerable because the heat transfer coefficient of the 

pressurised liquid jet is in the order of 10
6
 W/m

2
K. However, since the heat transfer 

coefficient in the silicon is much higher or on the same magnitude (in the range of 10
7
 

W/m
2
K) as that of the liquid jet, the heat is dissipated in the silicon very fast. As a 

result, only a fraction of the absorbed heat is transferred to the liquid jet. Using short 

pulse length during LCP processing leads to short melt lifetime and thus, the heat loss 
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to the liquid jet is even smaller. Additionally, the contact of the liquid jet with the 

silicon melt leads to a small vapor film being formed above the molten silicon and 

acts as a thermal insulating layer. 

 

b) Phase transition from solid to liquid silicon 

The speed of the solid-liquid interface (vsl) is dependent upon the temperature 

difference (Tsl) between the interface and the melting temperature, as shown in 

Equation (2.26) [12]: 

 

𝑣𝑠𝑙 = 𝐾𝑇𝑠𝑙 (1 − 𝑒𝑥𝑝 (−
𝐿𝑚
𝐾𝐵𝑇𝑚

𝑇𝑠𝑙 − 𝑇𝑚
𝑇𝑠𝑙

)) (2.26) 

 

where K is a kinetic rate constant for either melting or solidification, Lm is latent heat 

of melting and Tm is melting temperature. 

  In this case, K is higher for solidification because the activation energy is 

higher for crystallisation. Therefore, the phase change does not occur exactly at the 

melting temperature but some superheating or undercooling is required. However, the 

undercooling was estimated to be around 75 K and the superheating was estimated at 

even lower value. Therefore, it is feasible to assume that the phase change occurs at 

the melting temperature. 

  During the phase change, the temperature is constant while the enthalpy either 

increases or decreases until the latent heat of melting has been overcome. In the case 

of Si, the latent heat Lm is reported to be 50 kJ/mol. To maintain consistency in the 

units, Lm is converted into units of energy per volume by: 
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𝐿𝑚 = 𝐿𝑚𝑜𝑙
𝜌

𝑀
 

 = 4158 J/cm
3
K 

(2.27) 

 

For liquid Si, the temperature enthalpy relation is derived according to Equation 

(2.28). 

𝑇 = 
1

𝜌𝐶𝑝
𝐻 + 𝑇𝑚  −

(𝐻𝑚 + 𝐿𝑚)

𝜌𝐶𝑝
 (2.28) 

 

Where Hm is calculated by inserting Tm in Equation (2.21). 

 

c) Evaporation of liquid silicon 

For high laser intensities (particularly when using pulse length in the nanosecond 

scale), significant superheating occurs and therefore no specific boiling point exists. 

The evaporation is then considered using the Hertz-Knudsen evaporation model. It is 

assumed that above the melt surface, a layer of pure vapor exists. Thus, the 

evaporation rate of atoms is set to the effusion rate calculated from statistical 

thermodynamics [1]. 

 

�̇� =  
𝑃𝑠𝑎𝑡

√2𝜋𝑚𝑎𝐾𝐵𝑇
 (2.29) 

 

where ma is mass of a silicon atom, KB is Boltzmann constant, Psat is saturation vapor 

pressure and T is the surface temperature. 

  The evaporation speed can be calculated by the difference in saturation 

pressure of the vapor and partial pressure of the environment Penv. Additionally, this 

externally calculated partial pressure can take into account the pressure distribution 
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caused by the impinging liquid jet. Therefore, the evaporation velocity, vlv is 

calculated by dividing Equation (2.30) by the atom density of the liquid ρmelt/ma [11, 

13]. 

 

𝑣𝑙𝑣 =
𝑃𝑠𝑎𝑡 − 𝑃𝑒𝑛𝑣

𝜌𝑚𝑒𝑙𝑡√
2𝜋𝐾𝐵𝑇𝑙𝑣

𝑚𝑎

 
(2.30) 

 

Since no measured data exists for the saturation pressure of silicon above the boiling 

temperature, the Clausius-Clapeyron equation is used to calculate a temperature 

dependent saturation pressure as in Equation (2.31) [11]: 

 

𝑝𝑠𝑎𝑡 = 𝑝0exp (−
𝐿𝑚𝑜𝑙,𝑣
𝑅

(
1

𝑇
−
1

𝑇𝑏
)) (2.31) 

 

where 𝑝0 is the atmospheric pressure, 𝑇𝑏 is boiling temperature and R is the gas 

constant. Here, the evaporation causes some cooling and should be accounted by a 

heat flux given by −𝑣𝑙𝑣  ×  𝐿𝑣. Assuming a constant molar latent heat of vaporization, 

Lmol,v is calculated to be 400 kJ/mol at the boiling temperature. 

  The Knudsen evaporation model is still a simplification of the overall vapor 

dynamics occurring during LCP. This is because in practice, at high laser intensities, 

the vapor plume generates a recoil velocity onto the melt that influences the 

evaporation speed. For an accurate modeling, gas dynamics should be coupled into 

the modeling. 
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d) Species transport 

Species transport combines light-induced radical generation and transport through the 

liquid jet as well as diffusion of impurity atoms into the silicon (e.g. during a doping 

process). The general diffusion equation includes a transient, a convection term, a 

conduction term and a source term which can be described by Equation (2.32) [13]: 

 

𝑑𝐶

𝑑𝑡
+  𝑣∇C =  𝐷∇C +  𝑆 (2.32) 

 

The diffusion coefficient D is orders of magnitude higher in liquid phase than in solid 

phase. However, in solid phase, the diffusion coefficient is temperature dependent. On 

the other hand, in liquid phase, D is instead related to the size of the impurity atom 

and is temperature independent. Hence, it can be assumed to be constant in the liquid 

phase. 

  Since convection is not considered and there is no actual source of dopants 

within a molten volume, Equation (2.33) can be simplified to a one dimensional Fick's 

law: 

 

𝑑𝐶

𝑑𝑡
= 𝐷∇C (2.33) 

 

The boundary conditions are then implemented to solve the concentration. In the case 

of LCP, an infinite source is assumed at the liquid jet and reaction spot. The analytical 

equation as a function of (z) is [1]: 

 

𝐶 (𝑧) = 𝐶𝑠𝑢𝑟𝑓 [1 − 𝑒𝑟𝑓 (
𝑧

√𝐷𝑡
)] (2.34) 
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Since thermal atomization of the dopant was not considered in this work, the surface 

concentration is a free parameter that is dependent upon the setup. 

 

2.5 Fluid dynamics 

a) Fluid flow 

Fluid dynamics simulations are handled by the software Ansys Fluent. Since the flow 

within the simulation model occurs on a micrometer scale and the Knudsen number is 

below 1, Navier Stokes equations consisting of momentum and mass conservation 

(continuity equation) apply and are solved by Equation (2.35) and (2.36) respectively 

[1, 8]. The properties of the mixture are defined by a volume fraction and mass and 

momentum conservation is solved for each phase. 

 

𝑑

𝑑𝑡
(𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒�⃗�) + ∇. (𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒�⃗��⃗�) =  −∇𝑝 + ∇. (�̿�) + 𝑆𝑚𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (2.35) 

 

𝑑𝜌

𝑑𝑡
+ ∇. (𝜌𝑝ℎ𝑎𝑠𝑒�⃗�) =   𝑆𝑚𝑎𝑠𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (2.36) 

 

𝑆𝑚𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  represents the momentum sources due to surface tension and the 

melting/solidification process and p denotes the pressure.  

  During melting and solidification, the phases are further solved by introducing 

a temperature dependent liquid fraction β that solves the phases within a mushy 

region around the melting temperature. This parameter also provides numerical 

stability during the simulations. 
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  While it is possible that turbulence occurs during LCP due to the high pressure 

liquid jet, turbulence effects were not considered in the simulation model. The silicon 

melt is treated as an incompressible fluid, optionally with a temperature dependent 

density. Furthermore, as mentioned earlier, a recoil pressure acts on the melt but it is 

not considered within the model because vapor dynamics are not implemented into 

the mathematical model. In the case of short pulse length, this recoil pressure is 

relatively high, in the order of 1 GPa which is much higher than the liquid jet 

pressure. However, since the liquid jet exerts pressure far longer than the recoil 

pressure which occurs only during the evaporation stage, it can be assumed that the 

liquid jet dominates the melt flow particularly when using relatively long pulse 

lengths (> 1 µs) and low pulse energies. 

  The interaction of the liquid jet with the silicon melt is modeled using 

multiphase flow corresponding to the Euler-Euler model [1]. The liquid and the 

silicon melt are treated as two immiscible liquids and thus, a sharp interface and 

surface tension exists. In the simulation model, all the phases occupy a volume 

fraction that sum up to unity at any arbitrary point in space. Therefore, the algorithm 

can track each phase independently. Surface tension effects are also included within 

the model.  

  In this thesis, the nanosecond pulse lengths result in relatively high laser 

intensities. Therefore, the melt lifetime is much smaller than when using long pulse 

length (> 1 µs) or a continuous wave (CW) laser. As a result, the melt flow induced 

by the liquid jet is small and does not affect the doping quality of the poly-silicon 

considerably. However, during laser ablation processes, where a CW laser or long 

pulse length are being used, melt expulsion by the liquid jet is significant and depends 
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on a characteristic melt expulsion time determined by the hydrodynamics of the liquid 

jet. 

 

b) Radical generation and chemical reactions 

Depending upon the absorption coefficient of the molecules within the liquid medium, 

laser energy may be absorbed to generate radicals within the jet. In addition, at the 

reaction spot, other interfacial reactions may occur. In the model the reaction kinetics 

were not considered for doping. However, LCP was previously employed for 

wafering using a chlorine and potassium hydroxide media. Some of the reaction 

kinetics are described in Ref. [14]. 

 

2.6 Laser-material parameters used in the current 

work 

A large number of parameters used during LCP cannot be calculated directly by 

analytical equations. These have to be determined empirically as some of those 

parameters are setup-dependent. In this thesis, some of these values are borrowed 

from literature or the work by Fell [1] and are therefore not exactly representative of 

the setup and process conditions in this thesis. Hence, some discrepancies are 

expected due to the following reasons: 

a) The intensity of the laser beam across the jet is unknown in the LCP system 

used in the current work. It is known that the liquid jet acts as a multi-mode 

waveguide and therefore the intensity profile shows a speckled distribution 

across the jet [2]. Even though the side-effects of this intensity profile can be 

reduced by using a flat pulse and relatively high pulse overlap, it was shown in 
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previous work that local melting and evaporation of the silicon starts at much 

lower fluences than expected. Fell et al. [2] carried out LCP simulations based 

on the measured intensity profile across the liquid jet. The profile was 

monitored in real time using a glass plate and a CCD camera. Afterwards, the 

exact profile was used to calculate the laser intensity profile. In this work, the 

intensity profile is assumed to be flat and uniform across the laser jet. 

b) To correctly model the absorption of the laser light in the liquid jet, the path 

enlargement requires measurement as it is dependent upon the coupling optics. 

At Fraunhofer, the laser intensity distribution across a water jet was measured 

at varying distances from the nozzle outlet and the path enlargement was 

estimated to be about 1.3 [1]. Additionally, the absorption in the liquid jet was 

not empirically determined. Nevertheless, in this thesis, the effect of 

absorption and path enlargement of the laser inside the jet has been accounted 

by assuming a constant power loss of about 30%. 

c) To date, LCP work focused mainly on bulk silicon. It is assumed that the 

thermal and optical properties of bulk silicon are similar to those of poly-

crystalline silicon. However the thermal conductivity of poly-Si is influenced 

by the phonon mean free path length. The phonon mean free path is dependent 

upon deposition conditions, grain size and shape as well as doping [15]. 

Therefore, the heat transport is different in poly-Si. Furthermore, the defect 

levels in poly-Si are subjective to the fabrication process and may differ across 

the samples. In this thesis, the thermal properties are assumed to be same as 

those of bulk crystalline silicon. 

The software, SLIM (simulation of laser interaction with materials) is employed in 

Chapter 4 to calculate the time-dependent thermal effects of the laser parameters 
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through an implicit finite-difference scheme [16]. The software is used to identify the 

influence of the LCP parameters qualitatively and to improve the understanding of 

LCP on poly-Si thin films. In this Section, the parameters used for simulating the melt 

depth and the melt lifetime carried out in Chapter 4 are listed in Table 2.1. Unless 

otherwise stated, the physical constants assumed the values of silicon. Wavelength-

dependent parameters were estimated based on a 532 nm laser.  

 

Table 2.1: Parameters used for the simulations in the current work 

Parameters Solid Si Liquid Si 

Melting temperature [K] 1685 - 

Evaporation temperature [K] - 3540 

Thermal conductivity [W/cmK] 
2.99 x 10

2
/ (T - 99) - 

- 0.56 

Specific heat capacity [J/cm
3
K] 

Equation (2.20) - 

- 2.432 

Reflectivity 
Equation (2.2) and (2.14) - 

- Equation (2.4) and (2.14) 

Absorption coefficient [cm
-1

] 
Equation (2.3) and (2.11) - 

- Equation (2.7) and (2.11) 

 

 

 

2.7 Conclusion 

In this Chapter, the main physical interactions occurring at each stage during LCP 

were described to give the reader a better understanding of the dynamics of the 

process. LCP is a complex laser-based process due to the significant number of 

parameters related to the optics, thermodynamics and hydrodynamics during the 

process. Therefore it is hard to model the influence of each of those parameters 

quantitatively, partly due to unavailable literature under those process conditions and 
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also due to the high computational effort for undertaking this task. Nevertheless, the 

laser-silicon interactions occurring during dry laser doping still apply for LCP. 

Therefore, physical models available from literature can be used to model LCP. Those 

physical models/parameters were modified according to the LCP conditions used in 

this thesis and will serve as input for the simulations of melt lifetime and melt depth 

using the SLIM software. 
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CHAPTER 3 

EXPERIMENTAL AND  

CHARACTERISATION METHODS 

3.1 Introduction 

This chapter describes the fabrication process of poly-silicon thin film solar cell on 

glass made by the solid phase crystallisation (SPC) method. The SPC approach is 

utilized to form the poly-Si samples before n-type doping by LCP. In the second 

Section, the relevant characterisation techniques for assessing the structural and 

electrical integrity of the LCP-doped layers are outlined. The electrical and material 

properties of the LCP-doped films are compared to those from standard poly-Si thin 

film solar cells (i.e. baseline solar cells) to evaluate the material and electronic quality 

of the LCP-doped films.  

 

3.2 Poly-Si thin film on glass PV technology 

Poly-silicon (poly-Si) thin film solar cells on glass have significant potential to 

compete against the well-proven bulk silicon wafer counterparts. They are based on 

silicon which is abundant, cheap and non-toxic. In addition, the poly-Si thin film 

growth/deposition process can leverage off the semiconductor industry for 

technological and process innovation [1-4]. For instance, thin film PV technology 

benefits largely from processes and equipment originating from the semiconductor 

industry such as plasma-enhanced chemical vapor deposition (PECVD) and 
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sputtering, amongst many others. Furthermore, through advanced light-trapping 

mechanisms, only a small amount of semiconductor material (~2 µm thick) is 

sufficient to fabricate a poly-Si thin film solar cell with reasonable efficiency (e.g.   

~9 %) as compared to a typical silicon wafer solar cell which is about 180 µm thick 

[4, 5]. Such large difference in the required material significantly cuts down the 

manufacturing costs. 

The first prototype poly-Si thin film solar cell fabricated by the SPC approach 

goes back to the late 1980s to early 1990s and was developed by Sanyo Electric [6]. 

The team pioneered a bi-layer crystallisation method in which a bi-layer amorphous 

stack, consisting of a thin n
+
 layer and a thicker lightly-doped or undoped layer was 

deposited on metal substrates by plasma-enhanced chemical vapor deposition 

(PECVD). During the SPC process, the n
+ 

layer acted as the nucleation layer and 

crystal growth originated from this
 
layer into the much thicker lightly-doped or 

undoped layer. The high doping levels lowered the crystallisation threshold 

(particularly for n-type films) and thus, the heavily doped layer crystallised much 

faster than the less heavily doped layer [5]. Excellent quality poly-Si films were 

reported using such technique. In 2007, by using a comparable layer structure on 

glass, (Crystalline Silicon on Glass) CSG Solar commercialized a world record 10.5% 

efficient poly-Si thin film module on a 94 cm
2
 aperture area via the SPC method [9]. 

This record efficiency has remained unbroken since then. 

 Doped poly-Si layers have sufficient lateral conductance and novel 

interconnection schemes can be devised from this desirable feature. For instance full 

area expensive transparent conductive oxides (TCO) can be substituted by aluminium 

during metallisation. It is worth noting that TCOs cannot be used for poly-Si on glass 

PV technology. This is because TCOs are thermally unstable at high temperatures       
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(> 600 °C) and hence are incompatible with the process temperatures of poly-Si on 

glass. Additionally, since doped poly-Si layers have relatively low sheet resistances, 

the TCOs will shunt the solar cells once they are in contact with oppositely doped 

poly-Si layers. 

 While other thin film PV technologies such as cadmium telluride (CdTe) and 

copper indium gallium selenide (CIGS) have module efficiencies in the range of 13%, 

it is relatively hard to foresee long term growth of such technologies due to the 

toxicity of cadmium and scarcity of indium. On the other hand, while amorphous 

silicon PV technology is a seemingly cheaper and better alternative than CIGS and 

CdTe, it suffers from light induced degradation due to the Staebler-Wronski effect 

[11]. As such, the stabilized efficiency is only about 85% of its initial value. In 

contrast, poly-Si PV technology does not suffer from any light induced degradation 

[8] and is a cheap and durable technology. 

 Glass is highly favorable as a superstrate (i.e. light enters the solar cell through 

the supporting material) because: 

a) It is cheap, transparent to visible light, mechanically robust and easily scalable 

towards large scale production.  

b) Additionally, glass possesses excellent moisture barrier properties for long term 

outdoor conditions [2, 4, 5].  

c) Another benefit of using glass as a supporting material is that the overall module 

fabrication cost can be substantially reduced by using glass as the front cover. 

Typically, for silicon wafer PV, the cost of a bulk crystalline silicon wafer costs 

nearly 40-50% of the overall module production cost [4]. Additionally the module 

fabrication process includes a series of intricate steps such as stringing and tabbing of 

the solar cells followed by the lamination of an encapsulant [ethylene-vinyl acetate 
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(EVA)], a rear back sheet and a protective front glass cover over the solar cells to 

protect them against outdoor conditions. In poly-Si thin film on glass PV technology, 

the glass supporting material inherently takes over the role of this protective cover.  

d) Last but not least, glass can be textured using a variety of techniques to increase 

optical absorption in the thin film solar cells. For instance, sand blasting [12], 

aluminium-induced texturing (AIT) [4] and the glass-beaded technology [13] from 

CSG Solar are common examples of glass texturing. 

However, the common challenges with glass are the maximum processing 

temperature and impurities that can potentially diffuse from the glass to contaminate 

the poly-Si layers during the solar cell fabrication process. Fortunately, such concerns 

have been successfully addressed by using intermediate temperature processing 

technologies such as SPC and by using barrier layers such as silicon nitride to prevent 

diffusion of impurities from the glass to the thin films [1-4]. Additionally, more 

advanced glass materials such as Borofloat®33 from SCHOTT with a strain point 

above 520 °C have now appeared on the market, making them ideal for low-cost PV. 

 Since poly-Si can be formed by a multitude of techniques, the structural and 

electronic quality can be vastly different. One way to classify poly-Si is to use the 

temperature stability of the supporting material as a classification criterion. These are 

the low temperature methods (< 450 °C), intermediate temperature approaches      

(450 °C - 700 °C) such as SPC and high temperature methods (> 700 °C) [4]. So far, 

there has been no appreciable efficiency from solar cells made by low temperature 

methods [4]. Therefore, present poly-Si technologies focus mainly on intermediate 

and high temperature methods. 

High temperature (high-T) approaches utilize thermally stable supporting 

materials such as alumina. For instance, the research team in IMEC, Belgium 
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fabricated a high-T poly-Si solar cell using a p
+
 poly-Si layer first formed by 

aluminium-induced crystallisation (AIC) method, followed by the epitaxial growth of 

a p
+ 

back surface field and an absorber layer via thermal CVD. To improve the light 

trapping properties of the device, the poly-Si stack was textured before an n-type 

amorphous silicon emitter was deposited over the layer structure to form a 

heterojunction solar cell. With such process, solar cells with 8% efficiency have been 

achieved with an open-circuit voltage (Voc) of about 534 mV, a short-circuit current 

density (Jsc) of 20.7 mA/cm
2
 and a fill factor (FF) of 73 % [15]. A schematic of the 

cell structure using this high temperature approach is shown in Figure 3.1 below. 

 

Figure 3.1: Schematic of cell structure using the high temperature approach [15]. 

 

 

On the other hand, the intermediate temperature methods have mostly been 

investigated by researchers at the University of New South Wales (UNSW). The 

group deals mainly with poly-Si on glass (in superstrate configuration). The poly-Si 

device architecture features a homojunction that is a junction made from the same 

material (in this case poly-Si) and encompasses an emitter, an absorber and a back 

surface field. A schematic of this cell structure is shown in Figure 3.2.  

To date, poly-Si thin film solar cells on glass at UNSW [16] have been made 

by the:  
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a) Deposition of hydrogenated amorphous silicon by PECVD followed by solid 

phase crystallisation (SPC) or solid phase epitaxy (SPE) to form poly-Si. This 

is similar to the cell structure investigated in this thesis. 

b) Evaporation of amorphous silicon on glass followed by SPC to form poly-Si. 

In this case, doping is performed using effusion cells. Evaporation has the 

advantages of lower setup cost and much faster material deposition rates (~1 

µm/min) as compared to PECVD with deposition rate in the range of tens of 

nanometers/min. Therefore, the cell fabrication process is faster, more 

economic and yet still scalable. 

c) A seed layer on glass formed by the AIC method followed by the evaporation 

of amorphous silicon for the subsequent absorber and back surface field 

layers. The layers are then crystallised by SPC. 

d) Lastly, a seed layer made by AIC followed by poly-Si grown directly by ion-

assisted deposition (IAD) technique to form a complete poly-Si thin film solar 

cell structure. 

 

Figure 3.2: A schematic of a metallised poly-silicon thin film solar cell on planar glass using the 

intermediate temperature approach 
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Amongst these methods, the best solar cell efficiency was achieved by the deposition 

of a-Si via PECVD followed by SPC, with a solar cell efficiency of 9.3% on a 4 cm
2
 

area [17].  

A similar layer structure on glass was implemented by CSG Solar using 

commercial scale-up equipment. The standard process by CSG Solar starts with a 

bead-textured glass substrate, deposition of barrier layers (e.g. silicon oxide and 

silicon nitride) followed by the deposition of n
+
/p

-
/p

+ 
hydrogenated amorphous silicon 

layers via PECVD. Then, the entire layer structure undergoes a SPC process to 

convert the amorphous silicon into poly-Si. Afterwards, point defect annealing and 

passivation of electrically-active defects are performed by a rapid thermal process 

(RTP) and a remote in-line hydrogenation process respectively. The final stages of the 

module fabrication process comprise of the formation of grooves by either inkjet 

printing or laser scribing. Then a few micron-thick insulating and optically non-

absorbing resin is applied using a proprietary inkjet printing process. This process 

occurs in two separate stages whereby the first stage comprises of opening up the 

'crater' regions to contact the n
+
 poly-silicon layer while the second stage creates the 

vias for the p
+ 

layer (i.e. the 'dimple' region). Aluminium is then blanket deposited 

over the entire device and patterned into strips by either laser isolation or inkjet 

printing. In this way, the cells are automatically connected in series in one another 

forming the module [10]. Figure 3.3(a) shows a schematic representation of the layer 

structure of a CSG Solar poly-Si thin film solar cell on glass while Figure 3.3(b) 

illustrates the metallisation scheme employed by CSG. The crater and dimple 

openings are clearly visible along the conducting strips. 
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(a) (b) 

Figure 3.3: (a) Schematic representation of the layer structure of a CSG Solar poly-Si thin film solar 

cell on glass technology (b) CSG Solar metallisation scheme using their proprietary inkjet technology 

to open contact vias [10] 

 

 

3.3 Poly-Si thin film solar cell fabrication process 

At the Solar Energy Research Institute of Singapore (SERIS), a structure similar to 

that of CSG Solar is being developed on borosilicate glass utilising proprietary and 

less expensive processes such as AIT glass texturing [18] and an inter-digitated 

metallisation scheme [19]. The aim is to produce higher efficiency solar cells on a 

large scale.  

 The cell fabrication starts with a 3.3 mm borosilicate glass (Schott Borofloat® 

33) of size 30 cm by 40 cm that has been thoroughly cleaned and dried with nitrogen 

gas. Borosilicate glass is chosen because it has a relatively high glass transition 

temperature (~560 °C) and is closely matched to the coefficient of thermal expansion 

(CTE) of silicon [20]. In this way, the thermal stress on the glass/silicon structure is 

minimized. The glass is then loaded into a PECVD tool (MV Systems, USA) where 

an ~70 nm thick anti-reflective and barrier silicon nitride (SiNx) layer is deposited 

over the sample. The SiNx prevents impurities from the glass from contaminating the 

poly-Si during the subsequent SPC process and also couples more photons into the 

solar cell during device operation. Subsequently, doped amorphous silicon layers     

(a-Si:H) are deposited inside separate chambers within the PECVD machine by 
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flowing silane (SiH4) with doping gases such as phosphine (2% PH3:H2) and diborane 

(100 ppm B2H6:H2) for depositing n-type and p-type layers respectively. The 

deposited amorphous precursor stack typically comprises of ~100 nm  n
+ 

emitter layer               

(> 10
19

 cm
-3

), ~1.9 μm p
- 
absorber layer (~10

15
-10

16
 cm

-3
) and ~100 nm p

+
 BSF layer 

(~10
18

 cm
-3

). Before SPC, a 100 nm capping silicon oxide (SiOx) layer is deposited 

over the entire layer structure to prevent contamination during the subsequent SPC 

and RTP process.  

At this stage, the layer structure consists of glass/70 nm SiNx/100 nm n
+            

a-Si:H/~1.9 µm p
-
 a-Si:H/100 nm p

+
 a-Si:H/100 nm SiOx. The sample is subsequently 

annealed in a nitrogen-purged furnace (Nabertherm, model N 120/65HAC, Germany) 

in a two-step process – first at 450 °C for one hour to remove the hydrogen (this step 

prevents cracking of the films during the subsequent SPC step) and then at 610 °C for 

about 10 hours to crystallise the amorphous silicon. After the SPC process, the sample 

is slightly warped due to the different thermal contraction/expansion of the poly-Si 

and glass. Additionally the poly-Si contains a high density of defects. Hence, the 

sample undergoes a rapid thermal process (RTP) in a RTP tool (CVD Equipment 

Corporation, USA) at 1000 °C for 1 min to activate the dopants, to anneal the point 

defects and to flatten the glass sheet [21]. 

After RTP, the poly-Si layers contain a large number of electrically-active 

defects such as dangling bonds which are detrimental to the device performance. Thus 

the solar cell undergoes a hydrogenation process in a hydrogenation reactor (AK800, 

Roth & Rau, Germany) at 450 °C for 15 min [22]. The system is equipped with a 

linear microwave plasma source (LMPS) capable of handling substrate sizes up to    

30 cm by 40 cm. Prior to the hydrogenation process, the capping silicon oxide is 

removed by a 5% hydrofluoric acid (HF) dip. 
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It is important to note that the above fabrication processes are primarily for 

poly-Si thin film solar cells on planar glass (i.e. non-textured glass). Generally, high 

efficiency poly-Si solar cells on glass utilise a textured glass to increase optical 

absorption into the cells. This is usually done by texturing the glass prior to the diode 

deposition process and adding a SiO2 back surface reflector (BSR) after the 

hydrogenation step. The glass texturing is carried out by aluminum-induced texturing 

(AIT), initially developed in UNSW by Widenborg et al. [23]. Subsequently a 100 nm 

thick silicon oxide BSR is deposited over the samples after the hydrogenation process. 

This layer serves to couple photons back into the solar cell once they reach the rear 

side of the device. Figure 3.4 shows a textured solar cell illustrating the inter-digitated 

metallisation scheme developed at UNSW. The emitter fingers are the thin light grey 

lines contacting the n
+
 emitter layer (glass side of the solar cell) while the air side 

fingers are in contact with the p
+
 back surface field (BSF). In both cases, the grey 

areas represent aluminium that has been deposited by thermal evaporation. The 

different shades of grey are due to the SiO2 back surface reflector (BSR) that is 

deposited at the rear of the device, i.e. on the p
+ 

layer. 

Since the experiments investigated in this thesis deal only with poly-silicon 

thin film solar cells fabricated on planar glass substrates, only the relevant fabrication 

processes for these devices are described. Figure 3.5 summarizes the fabrication 

process flow for poly-Si thin film solar cells on planar glass substrates. 
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Figure 3.4: A textured solar cell illustrating the inter-digitated metallisation scheme developed at 

UNSW. The emitter fingers are the thin light grey lines contacting the n
+
 emitter layer (glass side of the 

solar cell) while the air side fingers are in contact with the p
+
 back surface field (BSF). 

 

 

 
Figure 3.5: Process details for fabrication of poly-Si thin film solar cells on planar glass substrates at 

SERIS. 
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3.4 Characterisation methods 
 

3.4.1 Electrical characterisation 

 

3.4.1.1 Four point probe 

A manual four point probe (Jandel Engineering Ltd equipped with a RM3-AR test 

unit, Bedford, U.K.) was used to measure the resistivity (or in this case, the sheet 

resistance) of the LCP-doped layer. By driving a voltage at the two outer probes and 

measuring the current with the two inner probes, the resistivity of the sample is 

determined without considering parasitic voltage drops. The probe location, the probe 

diameter, the sample thickness and the temperature are important factors for 

accurately measuring the sheet resistance.  

 For thin film samples, if the thickness t of the poly-Si layers is much smaller 

than the diameter of the probes (in our case 1.59 mm), then the resistivity simplifies to 

[24]: 

 

𝜌 =  
𝜋

𝑙𝑛(2)
𝑡
𝑉

𝐼
 (3.1) 

where 𝜌 is the resistivity (Ωcm), t is the thickness of the film (cm), V is the voltage 

(V) and I is the current (A).  

 For a sample of finite geometry (e.g. rectangular sample of width d and length 

a), a correction factor f is required and thus, the resistivity equation becomes: 

 

𝜌 =  
𝜋

𝑙𝑛(2)
𝑡
𝑉

𝐼
 𝑓 (3.2) 
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The sheet resistance is a measure of the resistivity averaged over the sample thickness 

and is given by: 

𝑅𝑠ℎ𝑒𝑒𝑡 = 
𝜌

𝑡
= 4.532

𝑉

𝐼
 (3.3) 

 

The Jandel four point probe head comprises of four conductive pins, each of diameter 

40 µm and spaced 1.59 mm apart in a linear fashion. Due to the finite geometry of the 

LCP-doped samples, it was necessary to insert a correction factor to calculate the 

sheet resistance accurately. The correction factor was calculated according to the 

method by Smits [25]. For the LCP-doped area (length 40 mm by 7 mm), the 

correction factor is ~ 0.755 for a width/probe spacing (d/s) of 4.4 and a rectangle 

width d with length ≥ 4d. This correction factor was also experimentally verified by 

the author by cutting a doped poly-Si sample (about 10 cm by 10 cm) to a size of       

7 mm by 40 mm (similar to that of the LCP-doped area) and comparing the sheet 

resistance of the original structure to that of the final poly-Si test structure. It was 

found that the sheet resistance of the cut sample was about 0.8 times that of the larger 

sample and in good agreement with the calculated correction factor. The sheet 

resistance was measured at several locations across the samples ensuring that the 

probes were aligned in the middle of the sample to prevent any edge effects. The sheet 

resistance measurements were acquired in both forward and reverse bias with 

different driving currents and the average sheet resistance was calculated based on 

those measurements. 
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3.4.1.2 Electrochemical capacitance-voltage (ECV) 

ECV is a depth profiling technique that determines the active dopant concentration in 

a semiconductor by means of repetitive etching and measuring the capacitance-

voltage (C-V) at an electrolyte-semiconductor interface. From the C-V measurements, 

the active doping concentration at the edge of the depletion region below the 

electrolyte-semiconductor interface can be determined. 

 Depth profiling is achieved due to the presence of holes. If the semiconductor 

is p-type, holes are already present and etching is performed by forward biasing the 

electrolyte-semiconductor junction. In the case of a n-type semiconductor, holes are 

created by illuminating the electrolyte-semiconductor interface (typically done with 

an ultra-violet (UV) light) and reverse biasing the junction. The etch depth (Xetch) is 

controlled by the applied current at the junction and is calculated by Faraday’s law of 

electrolysis according to [26, 27]: 

 

𝑋𝑒𝑡𝑐ℎ= 
QMmol

𝑒𝑉𝑎𝑙𝑁𝐴𝜌𝐴
 (3.4) 

 

where Q is the total measured charge (C), e is the charge of an electron (C), Val is the 

number of valence electrons per atom (in this case it is silicon), Mmol is the molar mass 

of silicon (28 g/mol), NA is the Avogadro constant (6 x 10
23

 mol
-1

), ρ is the density of 

Si (2.33 g/cm
3
) and A is the etched area (cm

2
). 

 The semiconductor-electrolyte interface is characterized by a depletion region 

in the semiconductor with an interface barrier height known as the Schottky barrier. 

The width of this depletion region (Xdepletion) can be changed by applying an external 

voltage to the system. In this way, the C-V measurement is performed with a fixed 
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reverse DC bias and a small superimposed AC signal (typically in the range of          

1-50 kHz). As a result of this varying AC signal (AC current), the depletion region 

width changes accordingly. This changing width is similar to that of a parallel-plate 

capacitor model with a variable plate gap. Therefore, the capacitance of the depletion 

region is expressed by: 

C = |
dQ

dV
|= 

εoεrA

𝑋𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛
 (3.5) 

 

where Q is the total charge, V is the applied voltage, εo is the permittivity in vacuum 

(F/cm), εr is the relative permittivity of silicon (11.7), A is the area of the diode and 

Xdepletion is the width of the depletion region. 

 In the case of an abrupt junction, the relationship between the capacitance C 

and the applied voltage V is given by the Mott-Schottky equation [24]: 

 

1

C
2

 = 
-2

qεoεrA
2
N
(𝑉 − 𝑉𝑓𝑏) (3.6) 

 

where Vfb denotes the flat-band potential and N is the carrier concentration. Plotting 

1/C
2
 against V yields a linear relationship whereby the slope gives the active doping 

concentration N and the y-intercept is Vfb. 

 For evaluating a non-uniform doping profile with depth, differentiating 

equation (3.6) yields the majority doping concentration N as a function of the 

capacitance [26, 27]: 

N = −
2

eεoεrA2
1

d(
1

C2
)/dV

 (3.7) 
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where N is the majority carrier concentration (cm
-3

). Thus, the overall depth (𝑋𝑡𝑜𝑡𝑎𝑙) 

measured by ECV is: 

 

𝑋𝑡𝑜𝑡𝑎𝑙 = 𝑋𝑒𝑡𝑐ℎ + 𝑋𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 (3.8) 

 

Therefore, assuming a constant area and measuring the doping concentration as a 

function of depth, the active doping profile of the semiconductor can be plotted. The 

area is determined by the geometry of the sealant ring during ECV measurements. 

 In this work, a commercial ECV profiler (CVP21 ECV Profiler, WEP Control, 

Germany) was utilized to measure the active dopant profiles of the LCP-doped films. 

The electrolyte solution was prepared by dissolving 2.89 g of ammonium bifluoride 

(ABF) [NH4F.HF] into 500 ml of DI water to achieve a 0.1 M solution. The etched 

area was defined by the area of the sealant ring and was equivalent to 0.095 cm
2
. 

Figure 3.6 illustrates a schematic of the ECV measurement technique. 

 

 

Figure 3.6: Schematic of the ECV measurement technique (not drawn to scale) 
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Throughout the etching process, the applied voltage was 1.5 V with respect to the 

saturated calomel electrode (SCE). C-V measurements were performed across an 

applied voltage between -0.65 V to -0.30 V with respect to the SCE. The error in the 

measurement of the active doping concentration was calculated from the non-linearity 

of the 1/C
2
 curve [26]. High contact resistance and non-uniform etching can be the 

main sources of error during ECV measurements. A gallium indium eutectic paste 

was spread at the probe contact areas to decrease the contact resistance prior to 

measurements. It is important to note that ECV doping profiles are dependent upon 

numerous factors such as ring geometry, surface area factor (in the case of textured 

samples, this factor is increased), etched depth and the material being etched, amongst 

many others [28]. Each of these factors has a significant influence over the doping 

profile. Therefore, for accurate analysis, ECV measurements require other 

complementary techniques such as secondary ion mass spectroscopy (SIMS). 

 

3.4.1.3 Quasi-steady state open-circuit voltage (Suns-Voc) 

measurements 

Introduced by Sinton and Cuevas [29, 30], Suns-Voc is a fast (takes less than 2 seconds 

per measurement), non-destructive measurement procedure that is very popular in the 

photovoltaic industry. By simultaneously illuminating a reference solar cell and the 

device under test (DUT) with a slowly decaying flash light (from a Xenon lamp), the 

open-circuit voltage (Voc) is measured as a function of the light intensity. Since the Voc 

of a silicon solar cell is influenced by its temperature (typically a 1 °C increase in cell 

temperature leads to a 2.2 mV decrease in Voc), the flash decay is chosen to be fast 

enough (within 10 ms) such that temperature effects during the measurements can be 

neglected. Furthermore, the Voc is corrected with the temperature coefficient of the 
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sample under test (-0.0022 V/ºC for crystalline Si solar cells). In this work, Suns-Voc 

measurements were acquired using a customized thin film Suns-Voc tester [31]. Since 

our standard poly-Si thin film solar cell is fabricated on glass, a fast hassle-free 

method of contacting the rear of the devices was devised during the Suns-Voc setup. 

The contact probes enable the n
+
 and p

+ 
layer to be contacted from the rear side of the 

solar cell while the front side (glass side) faces the transparent glass stage. The    

Suns-Voc system is equipped with a Xenon flash lamp directly underneath the glass 

stage. The flash is fitted with filters and a wide angle diffuser to uniformly distribute 

the light over the glass stage. On top of the glass stage, there are transparent plastic 

foils that have been printed with dotted patterns of different density to achieve good 

spatial uniformity of the light intensity over the glass stage. In this way, large area 

samples (25 x 35 cm
2
) can be measured with good uniformity. More details about the 

setup and demonstration of the capabilities of this tester can be found in Ref. [31]. 

 The light intensity of the Suns-Voc flash tester is calibrated against the short-

circuit current (Isc) flowing across a calibrated silicon wafer reference solar cell (area 

1 cm
2
), which is located at a fixed distance from the light source. The short circuit 

current is measured by passing it through a small load of 1 Ω and measuring the 

voltage drop across the resistor. This voltage drop is then amplified using a gain 

amplifier for measurement accuracy. The light intensity is then calculated by dividing 

the Isc across the silicon reference cell by the Isc at 1 Sun (the value of which was 

measured independently by a calibrated I-V tester). An example of the illumination 

against time during a Suns-Voc measurement is shown in Figure 3.7 below [27]: 
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Figure 3.7: Illumination (from the Xenon lamp) against time and the measured open-circuit voltage 

during a Suns-Voc measurement [27] 
 

The resulting Suns-Voc curves on a log and linear scale are plotted as in Figure 3.8 

[27]. 

  

Figure 3.8: Illumination (from the Xenon lamp) against measured open-circuit voltage (Voc) [on the left 

the scale is a logarithmic plot] and illumination against the measured open-circuit voltage [on the right 

the scale is a linear plot]. 
 

 

Assuming that the measured current varies linearly with the light intensity, the Suns-

Voc curve can be converted into a light I-V curve. However, since there is no actual 

current flowing out of the device under test (the raw measurement is open-circuit 
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voltage), the measured light intensity (Suns) can instead be converted into current 

density (mA/cm
2
). Therefore the y-axis (originally in Suns) is converted to Jsc by 

using the formulation below [29]: 

𝐽𝑖𝑚𝑝𝑙𝑖𝑒𝑑 = 𝐽𝑠𝑐(1 − 𝑆𝑢𝑛𝑠) (3.9) 

 

A reasonable short-circuit current density (Jsc) (in this case, a Jsc of 30 mA/cm
2
 is 

used in the calculations). This value is the highest current density achieved for our 

baseline poly-Si solar cells on textured glass. Since this current is not the ‘actual’ 

current flowing through the device, the I-V curve is known as a ‘pseudo-IV’ curve. 

The resulting I-V curve then shows up as in Figure 3.9, after which the I-V curve is 

downshifted from the first quadrant to the fourth quadrant to extract relevant 

parameters. 

 

Figure 3.9: An example of the 1-Sun pseudo-IV curve extracted from the Suns-Voc data 
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 Typically, the fill factor (FF) (%) of a metallised solar cell is the ratio of the 

maximum power output of the solar cell to the product of Voc and Jsc. It is essentially a 

measure of the squareness of the I-V curve and is given by: 

𝐹𝐹 =
𝑉𝑜𝑐(𝑀𝑃𝑃) × 𝐽𝑠𝑐(𝑀𝑃𝑃)

V𝑜𝑐 (1 𝑆𝑢𝑛) × 𝐽𝑠𝑐 (1 𝑆𝑢𝑛)
 (3.10) 

 

The maximum power output (W) by a solar cell is calculated by: 

𝑃𝑚𝑎𝑥 = V𝑜𝑐  (1 𝑆𝑢𝑛) × 𝐽𝑠𝑐  (1 𝑆𝑢𝑛) × 𝐹𝐹 (3.11) 

 

The efficiency (η) of a solar cell is then calculated by the ratio of output power to 

input power:  

𝜂 =
V𝑜𝑐  (1 𝑆𝑢𝑛) × 𝐽𝑠𝑐  (1 𝑆𝑢𝑛) × 𝐹𝐹

Input power
 (3.12) 

 

Where the input power is AM1.5G spectrum, that is 1000 W/m
2
 or 100 mW/cm

2
. 

 From the Suns-Voc curve, the pseudo-fill factor (pFF) which represents the 

upper limit of fill factor excluding series resistance (Rs) can be calculated. It is given 

by [32]: 

𝑝𝐹𝐹 =
𝑣𝑜𝑐(𝑀𝑃𝑃) × 𝐽𝑛𝑜𝑟𝑚 (𝑀𝑃𝑃)

𝑣𝑜𝑐  (1 𝑆𝑢𝑛)
 (3.13) 

 

where Voc(1 Sun) is the open-circuit voltage at 1 Sun, Voc(MPP) and Jnorm(MPP) is the 

open-circuit voltage and normalized current density at maximum power point (MPP) 

respectively. The normalized current density is due to the hypothetical short-circuit 

current density of 30 mA/cm
2
. 
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 Generally, before metallisation, the shunt resistance (Rsh) remains unaffected 

during the diode fabrication process and the series resistance does not have significant 

effect on the Suns-Voc measurements. Thus, the pFF represents the actual fill factor 

without the effect of Rs and Rsh. When both Rs and Rsh have negligible effects, the fill 

factor is given by [33]: 

  

𝐹𝐹 = 𝑝𝐹𝐹 =
𝑣𝑜𝑐  − ln  (𝑣𝑜𝑐 +  0.72)

𝑣𝑜𝑐 + 1
 (3.14) 

 

where 𝑣𝑜𝑐 is the normalized open-circuit voltage given by: 

 

𝑣𝑜𝑐 =
𝑞

𝑛𝐾𝑇
𝑉𝑜𝑐 (3.15) 

 

where n is the diode ideality factor and K is the Boltzmann constant. 

 However, it is worth noting that the extraction of Voc and pFF becomes 

unstable at very high series resistance and can impact the Suns-Voc curve. This 

procedure will be addressed in more details in Chapter 5. Figure 3.10 shows the in-

house Suns-Voc thin film tester. The glass stage holds the reference sample, the device 

under test and a thermocouple for temperature measurements. 
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Figure 3.10: Customized thin film Suns-Voc tester for measuring poly-Si solar cells. The glass stage 

holds the reference sample, the device under test and a thermocouple for temperature measurements. 

 

 

Since the Suns-Voc method does not require a metallised solar cell, measurements can 

be performed on a solar cell at various stages during the fabrication process. 

Furthermore, the shunt and series resistance can be evaluated before and after 

metallisation providing further opportunity to optimize the process. In this work, the 

Voc of the non-metallised samples are measured with the in-house thin film Suns-Voc. 

In Chapter 6, the effective ideality factor (neff) is used to evaluate the electronic 

quality of LCP-doped poly-Si thin film solar cells before and after hydrogenation 

process.  

 

3.4.2 Crystal characterisation 

3.4.2.1 Ultra-violet (UV) reflectance 

Hemispherical reflectance measurements were performed using a UV-VIS-NIR (ultra-

violet-visible-near infrared) spectrometer equipped with an integrating sphere (Perkin 

Elmer UV/VIS Lambda 950) to measure both specular and diffuse reflectance from 

the LCP-doped samples. Crystalline silicon (c-Si) yields two prominent maxima in the 
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UV range, more specifically at 280 nm and at 365 nm. These peaks are the result of 

optical interband transitions occurring along the Ґ-L axis of the Brillouin zone [34]. 

Imperfect crystallinity in the near-surface region typically causes broadening and 

attenuation of those peaks. Thus, UV reflectance can be used as a measure of 

assessing the crystalline quality of silicon. Additionally it is a fast, contactless and 

non-destructive method that has been widely employed to investigate the crystalline 

quality of poly-Si thin films. The crystallinity of the LCP-doped layers was 

investigated by comparing the average reflectance of the LCP-doped films to that of a 

double-sided polished boron-doped float zone (FZ) Si wafer which arguably possesses 

the best crystalline quality. This method is described in Ref. [35]. 

 

3.4.2.2 Raman spectroscopy 

Raman spectroscopy involves the inelastic scattering of a monochromatic light 

(typically a laser beam) by the atomic vibrations in a medium (e.g. silicon). Such 

lattice vibrations are collectively described by a wave vector q and frequency ω. 

Those are quantized and in the absence of perturbations (e.g. doping and stress), they 

are degenerate and have the same frequency value. In silicon, due to translational 

symmetry, momentum is conserved (q =0) and the Raman spectrum is represented by 

a single transverse-optical (TO) phonon mode and two longitudinal-optical (LO) 

phonon modes. Therefore the Raman spectrum is distinguished by a narrow line (full 

width half maximum (FWHM) ~3.5 cm
-1

 at room temperature) and is located at 

around 521 cm
-1

. This value is somewhat subjective to setup, calibration and is 

measured relative to the frequency of the laser. The optical phonon mode (OPM) of 

crystalline silicon (c-Si) is characterised by its peak frequency ω, FWHM, intensity of 

the scattered signal and peak symmetry. Due to disturbances in the crystal structure 
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(e.g. imperfect crystallinity, doping, stress etc.), the phonon correlation length 

decreases and momentum is no longer conserved. Hence, the TO phonon peak in the 

Raman spectra is either shifted (usually known as Raman shift) or broadened [36]. For 

instance, in the presence of tensile stress, the peak shifts to lower frequency and vice-

versa. Additionally, structural defects in the crystal (e.g. dislocations, doping, crystal 

disorder) lead to broadening or peak asymmetry. There are numerous studies in 

literature dealing with stress, doping and defects in poly-silicon thin films by Raman 

spectroscopy. Some of these studies focus on low pressure chemical vapour 

deposition (LPCVD) poly-Si films [37], laser-crystallised poly-Si films [38] and 

laser-annealed poly-Si films [39], amongst many others. 

In this work, micro-Raman spectroscopy was used to investigate the stress and 

structural quality in LCP-doped films. Raman spectroscopy was also used to identify 

electrically-active defects in the LCP-doped poly-Si thin film solar cells – for example 

dangling bonds before and after hydrogenation. More details are found in the 

respective chapters.  

 

3.4.2.3 Electron backscattered diffraction (EBSD) 

EBSD is a specialised characterisation technique that is used in conjunction with a 

scanning electron microscope (SEM). It provides quantitative microstructural 

information about the grain boundary character, texture and grain size, amongst many 

others. An electron beam is directed on a sample tilted at a shallow angle (e.g. 20 °). 

Usually the SEM stage is used to tilt the sample and thus, the stage tilt is equivalent to 

70 °. Typical acceleration voltages are in the range of 10-30 kV and beam currents are 

in the order of 1-50 nA. At the point of incidence on the sample’s surface, an EBSD 

pattern originates spherically from this point. Upon interaction with the sample, low 



EXPERIMENTAL AND CHARACTERISATION METHODS 

 
 

67 

 

energy backscattered electrons are channeled and subjected to path differences 

resulting in constructive or destructive interference. These diffraction patterns are 

captured by a phosphor screen linked to a CCD camera, positioned a close distance 

from the sample (~15 mm).The phosphor screen converts the diffracted electrons into 

light such that the EBSD patterns can be recorded on the CCD camera

 EBSD patterns depend upon the lattice parameters of the material, its 

orientation in space, the acceleration voltage of the scanning beam and proximity of 

the detector. A special software then detects the Kikuchi bands using a Hough 

transform and indexes all the possible grain orientations within each phase. In this 

work, EBSD measurements are carried out using a Bruker CrystAlign 200 system 

attached to a Carl Zeiss Auriga SEM. Information from EBSD is used to quantify the 

average grain size and to identify any geometrically-necessary dislocations (GNDs) in 

the LCP-doped samples. 
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CHAPTER 4 

LASER CHEMICAL PROCESSING OF P-

TYPE POLY-SILICON THIN FILM  

ON GLASS 

4.1 Introduction 

In this chapter, LCP is investigated for n-type doping of poly-Si thin film on glass 

substrates. The poly-Si was lightly doped with boron (~ 10
16 

cm
-3

) such that a p-n 

junction was formed at the surface of the poly-Si during LCP. The first Section 

investigates LCP and annealing conditions required for dopant activation. Therein, the 

LCP-doped layers were characterised by four point probe, secondary ion mass 

spectrometry (SIMS) and electrochemical capacitance-voltage (ECV) measurements. 

Melt depth and melt lifetime simulations were then performed using the laser 

modeling software SLIM (simulation of laser interaction with materials) for a 

qualitative assessment of the LCP process parameters on the sheet resistance and 

doping profiles. An analytical model was introduced for calculating the sheet 

resistances of the LCP-doped layers and the theoretical and measured data were 

compared. From the findings in this Chapter, the optimum doping conditions of poly-

Si thin film on glass were identified and used for future processing. 
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4.2 Experimental details 

An approximately 1.5 µm thick p-type amorphous silicon layer (a-Si:H) was 

deposited by plasma-enhanced chemical vapour deposition (PECVD) (MV Systems, 

USA) onto a borosilicate glass sheet (Borofloat33, Schott AG, Germany) of size 30 

cm x 40 cm x 3.3 mm. The glass was pre-coated with a 70 nm thick silicon nitride 

which acts as an anti-reflective and barrier layer against impurities from the glass. 

Before solid phase crystallization (SPC), a 100 nm capping silicon oxide layer was 

deposited in situ over the 1.5 µm p-doped a-Si:H to prevent contamination during the 

subsequent thermal treatments. The sample was then crystallized by the SPC process 

at 610 °C for 10 hours in a nitrogen-purged oven (Nabertherm, model N120/65HAC, 

Germany). Rapid thermal anneal (RTP) was performed in a RTP tool (CVD 

Equipment Corporation, U.S.A) at 1000 °C for 1 min to flatten the glass sheet and to 

anneal point defects. The capping oxide layer was later removed by a HF dip (10%) 

after RTP. A 20 cm x 20 cm sample was then cut out for LCP. Figure 4.1 shows the 

sample preparation steps before LCP doping. 

 

 
 
Figure 4.1: Sample preparation before LCP doping 
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Before the doping experiments, the LCP equipment (SelectDop, RENA, Germany) 

was switched to run mode. Under this configuration, the doping medium (in this case 

phosphoric acid) was pumped at high pressure (120 bars) through one of the jet heads. 

From experience, it was found that the commercial grade phosphoric acid (85%) 

caused random clogging of the jet head due to its high viscosity. Therefore, a 42.5% 

phosphoric acid solution was used in the experiments. Before LCP, the laser source 

(PyroFlex™ 25 Series) was also turned on for about 20-30 min before operation such 

that the laser output remained stable throughout the doping experiments. The laser 

unit featured a Q-switched, frequency-doubled solid state Nd:YAG laser (wavelength 

532 nm).  

Then, the 20 cm by 20 cm poly-Si sample was inserted into a custom-made 

Teflon chuck. The latter was milled according to the geometry of the glass sample 

(i.e. 20 cm by 20 cm by 3.3 mm) such that the glass remained securely held within the 

chuck during LCP operation. Furthermore the chuck was fitted with leveling screws 

that allowed independent adjustment at each edge and corner for proper sample 

positioning. An allowance of about 3 cm between the nozzle and the poly-Si was 

necessary to maintain the laminar flow of the jet and to prevent the nozzle head from 

striking the sample during LCP operation. During LCP, the jet head remained 

stationary while the stage (i.e. chuck) moved along the X and Y translational 

directions. LCP parameters (jet pressure, number and width of lines forming the 

busbar-like patterns etc.) as well as other setup variables such as chuck speed served 

as input to the equipment through the touch-sensitive computer screen. Figure 4.2 

shows a screenshot of the parameter input window. 
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Figure 4.2: Screenshot of the parameter input window 

 

 

Before starting the doping experiments, a laser power output was first monitored at 

the laser/optical fibre entry point located inside the laser cabinet and subsequently at 

the laser/jet output situated in the processing chamber. This procedure was performed 

to determine the loss in laser power after passing through the optics and inside the 

liquid jet. Since high pressure phosphoric acid flowed out of the nozzle, the power 

output was monitored by holding a plain glass piece towards the incoming jet while 

measuring the laser power with a photodiode. Since the glass was transparent at the 

laser wavelength (532 nm), the approach was feasible to verify the power losses 

between the laser source and the jet output. Typically, a 30% power loss between the 

laser source and the nozzle output was acceptable for LCP doping. This power loss 

originated from the coupling optics, absorption inside the laser jet and non-
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uniformities from the laser output. Any power loss higher than 40% necessitated the 

Synova Microjet-Minihead
©

 alignment which entailed mounting the Synova jet head 

on a separate fixture for aligning purposes. However, a detailed description of this 

procedure is not treated here. Figure 4.3 depicts the LCP equipment and its process 

control. 

 

 

Figure 4.3: LCP equipment and its process control 

 

LCP doping was performed by scanning the sample under the coupled laser beam/acid 

jet in the X and Y translational directions. By overlapping a series of single lines, 

doping was achieved over a particular area. In this work, 7 mm wide lines (busbar-

like structures) covering the entire length of a 20 cm square sample were n-type doped 

by the LCP process. Those busbars were raster scanned with a line pitch of 10 µm 

(0.01 mm x 700 busbars) and were each spaced 2 cm apart to prevent any dopant 

smearing during the subsequent thermal treatments. At a repetition rate (Rep) of 100 

kHz, the pulse overlap was calculated to be 80% and 90% for processing speeds (s) of 

1000 mm/s and 500 mm/s respectively. The pulse overlap ∆ was calculated according 

to Equation (4.1): 
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∆ =
D - D1

D
 (4.1) 

where  

 D1 = s * 
1

Rep
 

 

 

where D was the jet diameter (assumed to be the jet diameter exiting the nozzle i.e. 50 

µm) and s was the processing speed in m/s.  

 The pulse energy P in Joules (J) was calculated from the average measured 

power Plaser in Watts (W) after accounting for 30% power loss. The laser fluence, F 

(J/cm
2
) was determined by the pulse energy over the area A of the laser spot size (in 

cm
2
). The diameter of the laser spot was assumed to be 30 µm. The laser fluence was 

then determined by Equation (4.2): 

 

𝐹 = 

𝑃
𝑅𝑒𝑝⁄

𝜋 (
𝑑𝑠𝑝𝑜𝑡

2
)
2 (4.2) 

 

The LCP parameters were investigated to determine the influence of the pulse energy 

and pulse overlap over the sheet resistance and doping depth of the samples. In this 

case, the LCP conditions were explored for two different pulse regimes (20 ns and 60 

ns) and are listed in Table 4.1. The laser fluence reflects the actual laser energy 

available to the sample after accounting for laser losses within the jet and coupling 

optics (about 30%). Figure 4.4 shows a schematic illustration of the sample during 

LCP. 
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Figure 4.4: A schematic of the sample structure during LCP 

 

 

Table 4.1: LCP parameters used for the experiments (pulse shape, repetion rate and jet pressure were 

set to square-shaped, 100 kHz and 130 bar respectively). 

 

Laser pulse length 

[ns] 

Parameter 

optimisation 

Sample 

number 

Pulse 

energy 

[µJ] 

Fluence 

[J/cm
2
] 

Pulse 

overlap 

[%] 

Average 

surface 

roughness 

[nm] 

20 

Influence of 

pulse energy 

E1 14 2.0 80 92 ± 34 

E3 12 1.7 80 50 ± 19 

E5 10.5 1.5 80 12 ± 11 

Influence of 

pulse overlap 

E2 14 2.0 90 135 ± 18 

E4 12 1.7 90 62 ± 24 

E6 10.5 1.5 90 28 ± 8 

60 

Influence of 

pulse energy 

S1 24.5 3.5 90 208 ± 44 

S2 21 3.0 90 150 ± 3 

S3 17.5 2.5 90 62 ± 7 

Influence of 

pulse overlap 

S4 17.5 2.5 80 37 ± 2 

S5 21 3.0 80 93 ± 12 

  S6 24.5 3.5 80 189 ± 16 

 

 

For each experimental run, one sample was kept as control (hereafter labelled as-

doped) while the remaining samples were subjected to different annealing conditions 
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to study the effect of the annealing step on the sheet resistance and doping profiles. 

Prior to annealing, a 100 nm thick barrier silicon oxide layer was deposited on each 

batch of LCP-doped samples except for batch B1. Prolonged and short thermal 

annealing for dopant activation was carried out in a nitrogen-purged oven at different 

temperatures or in a RTP tool at 1000 °C for 1 min respectively. After a short 10% 

HF etch to remove any oxide layer, sheet resistance measurements were carried out on 

each LCP-doped sample. Based on the geometry of the samples, a correction factor 

was applied to the measured sheet resistances after the method of Smits [1]. The 

process step for each batch of samples is shown in Figure 4.5. After dopant activation, 

electrochemical capacitance-voltage (ECV) profiling was performed on the samples 

to assess the active phosphorus concentration. SIMS measurements were also 

conducted to determine the atomic concentration of phosphorus within the LCP-doped 

layers. Surface roughness measurements were conducted using a stylus profiler 

(Dektak 150 surface profiler). Lastly, scanning electron microscope (SEM) 

micrographs were acquired on an Auriga system from Carl Zeiss. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Process steps for each batch of samples after LCP processing. All samples were subjected 

to a 10% HF dip to remove any oxide layer prior to sheet resistance measurements. 

Oven anneal 
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In another round of experiments, the influence of the pulse length over the doping 

depth and the sheet resistances was studied. Due to a major fire occurring at the 

authors’ research institute, the following study was performed through collaboration 

with Fraunhofer Institute of Solar Energy Systems (Fraunhofer ISE), Germany. The 

LCP equipment used in this investigation was similar to the one shown in Figure 4.3 

except that the specifications of the laser were different. The repetition rate could not 

be varied independently from the pulse length. For instance, at 100 kHz, the pulse 

length was set at 40 ns and the pulse length was about 60 ns at 160 kHz and so forth. 

Sample preparation followed the process steps described in Figure 4.1. After LCP and 

sample cleaning, the samples were annealed in a nitrogen-purged oven at 610 °C for 

30 min. Table 4.2 summarizes the LCP conditions used for the LCP experiments 

(pulse shape and jet pressure were set to square-shaped and 130 bar respectively). 

 

Table 4.2: LCP parameters used for the LCP experiments (pulse shape and jet pressure were set to 

square-shaped and 130 bar respectively). 

Sample 

number 
Laser parameters 

Fluence 

[J/cm
2
] 

Pulse 

overlap 

[%] 

Average surface 

roughness [nm] 

D1 [13 µJ, 160 kHz, 60 ns] 1.8 88 41 ± 8 

D2 [11 µJ, 160 kHz, 60 ns] 1.5 94 27 ± 6 

D3 [11µJ, 220 kHz, 80 ns] 1.5 96 36 ± 3 

D4 [11 µJ, 220 kHz, 80 ns] 1.5 91 54 ± 17 

D5 [10 µJ, 200 kHz, 70 ns] 1.4 95 88 ± 8 

D6 [10 µJ, 200 kHz, 70 ns] 1.4 90 35 ± 2 

D7 [12 µJ, 100 kHz, 40 ns] 1.8 90 39 ± 6 

D8 [13 µJ, 100 kHz, 40 ns] 1.8 80 38 ± 16 
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4.3 Results and Discussion 

 
4.3.1 Sheet resistance measurements 

 
A) Influence of pulse energy and pulse overlap 

The sheet resistance of the as-doped LCP samples was very high with values close to 

1 MΩ/□ implying that the dopants were not activated directly after the LCP process. 

However it was found that a prolonged thermal anneal in a nitrogen-purged oven at 

610 °C for 30 min or a RTP at 1000 °C for 1 min was sufficient to reduce the sheet 

resistance to values below 5 kΩ/□. This significant decrease in the sheet resistance 

was originally attributed to the formation of amorphous silicon (i.e. amorphisation) [2, 

3]. Literature reports that amorphisation is dependent upon the resolidification 

velocity of the melt [4]. However, a detailed investigation of the structural quality 

through transmission electron microscopy (TEM), ultra-violet (UV) reflectance and 

Raman spectroscopy confirmed that the high sheet resistance was not due to 

amorphisation. More details about this study are reported in Chapter 6. 

Figure 4.6 displays the sheet resistance measurements of the samples that were 

processed using a 20 ns pulse length and two different pulse-to-pulse overlap ratios 

(see Table 4.1 for LCP parameters) and anneal conditions B1-B3 (refer to Figure 4.5). 

The error bars reflect the standard deviation in the sheet resistance measurements 

conducted at various locations over the samples. 

 



LASER CHEMICAL PROCESSING OF P-TYPE POLY-SILICON THIN FILM ON GLASS 

 
 

81 

 

 
 

Figure 4.6: Sheet resistance of LCP samples processed using a 20 ns pulse length and LCP parameters 

from Table 4.1. The samples were annealed as described in Figure 4.5. Samples processed with 90% 

pulse overlap yielded lower sheet resistances due to increased dopant diffusion. Batches B1 and B2 

showed almost similar sheet resistances. The error bars reflect the standard deviation in the sheet 

resistance measurements. 

 

 

The batches B1 (without barrier oxide) and B2 (with barrier oxide) displayed 

somewhat similar sheet resistances indicating that the ambient annealing conditions 

did not contribute to dopant activation. From Figure 4.6, the samples processed using 

a 90% pulse overlap showed a lower sheet resistance than those processed with an 

80% laser pulse overlap due to increased dopant diffusion. A 90% overlap implied 

that the number of pulses per unit area was doubled as compared to that of an 80% 

pulse overlap. Thus, the number of melt cycles per unit area was increased which 

resulted in a deeper doping depth. The RTP batch (B3) was expected to show the 

lowest sheet resistance for the same LCP conditions but the high thermal gradient 

during the RTP process caused cracking of the samples (e.g. refer to sample E4 from 

B3 in Figure 4.6). Sample E1 from B3 was processed with higher laser fluence (e.g. 

2.0 J/cm
2 

using 20 ns pulse length) and thus, the laser damage was higher causing 
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partial ablation of the poly-silicon. In addition, the sample was also cracked after the 

RTP process. Therefore it showed higher sheet resistance. From Figure 4.6, it appears 

that the optimum conditions for LCP processing using a laser pulse length of 20 ns lie 

within a range of 1.5-1.7 J/cm
2 

at 90% overlap conditions. Those samples also showed 

a reasonably low average surface roughness (refer to Table 4.1) indicating low surface 

damage as a result of LCP. 

Figure 4.7 depicts the sheet resistances of LCP samples processed using a 60 

ns laser pulse length. The 90% pulse overlap conditions yielded the lowest sheet 

resistances due to improved dopant diffusion. It was also observed that longer anneals 

(e.g. 610 °C for 2 hours) or anneals at higher temperatures (e.g. 700 °C for 30 min) 

resulted in lower sheet resistances, possibly due to improved defect annealing and 

increased carrier mobility under these process conditions. At higher laser fluences (≥ 

3.0 J/cm
2
 using 60 ns pulse length), there was more significant material damage such 

as partial ablation of the poly-Si material and therefore there were large variations in 

the measured sheet resistances. From Table 4.1, those samples also showed higher 

surface roughness as a result of the laser damage from LCP.  
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Figure 4.7: Sheet resistance of LCP samples processed using a 60 ns laser pulse length and LCP 

parameters from Table 4.1. The samples were annealed as described in Figure 4.5. For LCP at lower 

fluence, the sheet resistance decreased upon annealing for longer durations or annealing at a higher 

temperature (refer to B5 and B6). Samples processed with 90% pulse overlap yield lower sheet 

resistances due to enhanced dopant diffusion. The error bars represent the standard deviation in the 

sheet resistance measurements. 

 

 

The above experiments confirm that the incorporated phosphorus is not activated after 

LCP. Upon annealing, phosphorus diffuses into the substitutional site within the 

silicon lattice and becomes activated. This diffusion mechanism (e.g. kick-out, 

vacancy etc.) is thermally activated and requires an activation energy. Additionally, 

conduction in solids typically follows an Arrhenius behavior since they are thermally 

activated processes.  

In this Section, the activation energy for dopant activation is evaluated by 

investigating the drop in sheet resistance as a function of the annealing temperature 

(up to 610 °C), for two as-doped LCP samples, E3 and S4 from Table 4.1 processed 

using different laser pulse lengths (20 ns and 60 ns respectively). These samples were 

subjected to an isochronal anneal (the duration was set to 30 min) in an argon 
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ambient. The same heating and cooling rate was applied for each experimental 

condition. After each anneal step, the samples were cooled down to room temperature 

and the sheet resistance was measured at different points across the samples. Figure 

4.8 displays an Arrhenius plot as a function of annealing temperature.  

 

 
 
Figure 4.8: Measured sheet resistance of two LCP samples (E3 and S4 processed using 20 ns and 60 ns laser pulse 

length respectively) as a function of annealing temperature during an isochronal anneal. All samples were annealed 

for 30 min and were subjected to the same heating and cooling rate. 
 

 

The data from Figure 4.8 was fitted empirically in an Arrhenius form using Equation 

(4.3). It was observed that dopant activation required at least a temperature of 500 °C. 

Below this temperature, the sheet resistances were very high (in MΩ/□) indicating 

that the dopants were not activated.  
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ln 𝑅𝑠ℎ𝑒𝑒𝑡 = 𝐴 − 
𝐸𝐴
𝐾𝑇

 (4.3) 

where EA is the activation energy in eV, K is the Boltzmann constant                      

(8.62 x 10
-5 

eVK
-1

) and T is the absolute temperature. The activation energy of the 

annealing process was calculated from the slope of the graph. From the Arrhenius fit 

line of each sample, the activation energy was calculated to be ~0.49 eV for both 

samples. This activation energy could be related to some diffusion mechanism (i.e. 

dopant activation) occurring at relatively low temperatures (~500 °C). The atoms 

become mobile at this temperature (~0.3 x melting point of silicon) and therefore, 

during atom re-arrangement, the phosphorus atoms occupy substitutional sites and 

become activated [5]. 

 

B) Influence of pulse energy and pulse length over the sheet resistance 

Table 4.3 summarizes the measured sheet resistances of the LCP-doped samples 

annealed at 610 °C for 30 min in a nitrogen-purged oven. It is observed that for a 

relatively similar laser fluence and pulse overlap, an increase in pulse length resulted 

in lower sheet resistances (refer to samples D2 & D3 and D1 & D7). Since the sheet 

resistance is related to the carrier mobility and active dopant concentration within the 

LCP-doped layers, the sheet resistance decreased for samples with higher active 

dopant density. For example, sample D3 showed the lowest sheet resistance due to a 

slightly higher peak doping concentration (above 10
19

 cm
-3

) and a deeper doping 

depth as compared to sample D2 [refer to Figure 4.12(a)]. The same explanation 

applied for the lower sheet resistance of sample D1 as compared to sample D7. Even 

though sample D8 was processed using the same pulse energy as sample D7, it 

showed a much higher sheet resistance than sample D7. It is possible that sample D8 
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had a much higher defect density and thus, it can be considered as an outlier in this 

experiment. 

 

Table 4.3: Sheet resistance of LCP samples processed using LCP parameters from Table 4.2. The 

samples were annealed at 610 °C for 30 min in a nitrogen-purged oven. The error bars represent the 

standard deviation in the sheet resistance measurements. A longer pulse length leads to lower sheet 

resistances due to increased phosphorus diffusion. 

 

Sample 

number 
Laser parameters 

Fluence 

[J/cm
2
] 

Pulse 

overlap 

[%] 

Sheet resistance 

measurements 

[kΩ/□] 

 

LCP +oven anneal 

at 610 °C for 30 

min 

D1 [13 µJ, 160 kHz, 60 ns] 1.8 88 3.5 ± 0.1 

D2 [11 µJ, 160 kHz, 60 ns] 1.5 94 2.0 ± 0.2 

D3 [11µJ, 220 kHz, 80 ns] 1.5 96 0.7 

D4 [11 µJ, 220 kHz, 80 ns] 1.5 91 1.3 ± 0.1 

D5 [10 µJ, 200 kHz, 70 ns] 1.4 95 6.5 ± 3.3 

D6 [10 µJ, 200 kHz, 70 ns] 1.4 90 3.7 ± 1.4 

D7 [12 µJ, 100 kHz, 40 ns] 1.8 90 4.1 ± 0.7 

D8 [13 µJ, 100 kHz, 40 ns] 1.8 80 10.9 ± 1.5 

 

 

 

 

4.3.2 Doping profiles (ECV and SIMS) 
 

Electrochemical capacitance-voltage (ECV) profiling [6] was performed on the 

annealed LCP samples to assess the active phosphorus concentration in the LCP-

doped layers. Since the phosphorus in the as-doped samples was not activated, ECV 

measurements could not be conducted on this batch. Instead, SIMS measurements 

were carried out on a few representative samples from this batch. 
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A) Influence of pulse energy and pulse overlap over the active doping profiles 

Figure 4.9 shows the ECV profiles of the LCP-doped samples from batches B2 (LCP 

+ oven anneal at 610 °C for 30 min) and B3 (LCP + RTP at 1000 °C for 1 min). The 

LCP conditions are listed in Table 4.1. 

 

 
 
Figure 4.9: Active dopant concentration of poly-Si samples that were oven-annealed at 610 °C for 30 

min and RTP-annealed at 1000 °C for 1 min after LCP. The doping depth of the samples processed 

with 90% pulse overlap was deeper due to a higher number of melt cycles per unit area. Higher pulse 

energies lead to a deeper doping depth due to longer melt lifetime and molten volume. The doping 

profiles of the RTP-annealed samples were closely matched to the corresponding oven-annealed 

samples. 

 

 

From Figure 4.9, one striking feature is the flat-top doping profile implying that the 

dopants were uniformly distributed across the doped layers. Using the same 

concentration of phosphoric acid (e.g. 42.5% in our present study), the peak doping 

concentration was observed to be quite similar for all of the samples. Therefore, it 
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appears that the junction depth is tailored by varying the laser parameters (mainly 

pulse energy and pulse overlap). For instance, increasing the pulse energy lead to an 

increased amount of energy available for melting the silicon (i.e. bigger molten 

volume) which then resulted in a deeper doping depth (refer to samples E1, E3 and E5 

or E2, E4 and E6). On the other hand, changing the pulse overlap from 80% to 90% 

doubled the number of pulses per unit area. Therefore, the number of melt cycles per 

unit area was increased which lead to a deeper doping depth (e.g. samples E1 & E2, 

E3 & E4 or E5 & E6). As a result, the active dopant density within the samples 

increases and the sheet resistance decreases. 

Another interesting feature was the relative similarity between doping profiles 

of samples processed under the same LCP conditions but annealed differently in 

either an oven or a RTP. This observation showed that the dopants did not smear 

significantly upon annealing. Additionally, the relative similarity between the ECV 

profiles of those samples showed that the lower sheet resistance of the RTP samples 

(refer to Figure 4.6) was the result of better carrier mobility from improved defect 

annealing. 

 

B) Influence of annealing conditions over the active doping profiles 

In order to investigate the influence of the annealing conditions over the active doping 

profiles, two selected LCP samples from Table 4.1 (for e.g. S3 and E5) were 

subjected to ECV profiling. Figure 4.10 shows the ECV profiles of those annealed 

LCP-doped samples. It is observed that the pulse length may have a significant 

influence over the doping depth. Using a 60 ns pulse length and a fluence of            

2.5 J/cm
2
, the melt lifetime was increased significantly thereby enabling dopants to 

diffuse deeper inside the silicon film. Additionally, samples processed under identical 
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LCP conditions displayed somewhat similar doping profiles despite being annealed 

under different conditions. For example, the set of doping profiles represented by S3 

and E5 were quite comparable. 

 

 
Figure 4.10: Active dopant profiles (as determined by ECV) of two selected LCP samples (E5 and S3). 

The doping profiles of each LCP sample were quite similar despite being annealed under different 

conditions. 

 

 

In order to assess the chemical concentration (i.e. both active and inactive 

phosphorus) of phosphorus within the LCP-doped layers, SIMS measurements were 

carried out on an as-doped and a RTP sample (E5 from Table 4.1). The SIMS 

profiling was carried out from the n-type LCP-doped layer up to the silicon nitride 

layer. The background boron concentration for each sample was also measured to 

determine the location of the p-n junction within each sample. The measured SIMS 

profiles are shown in Figure 4.11. For comparison, the ECV data of sample E5 (RTP) 
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are also shown (refer to the blue open triangles in Figure 4.11(b)) to compare the 

active dopant concentration from the ECV data to the total atomic concentration from 

the SIMS data. 

 

 
 

Figure 4.11: Measured SIMS profiles of phosphorus (P) and boron (B) for sample E5 from Table 4.1 

for: (a) an as-doped sample (b) a sample processed at 1000 °C for 1 min (RTP). The junction depth was 

measured to be about 260 nm for the as-doped and 300 nm for the RTP sample respectively. Within the 

LCP-processed area (the first 350 nm of the film), the as-doped and RTP profile are relatively similar. 

The ECV data of sample E5 subjected to RTP (see open blue triangles) is included for comparison in 

Figure 4.11(b).  

 

 

As observed in Figure 4.11, the SIMS doping profiles of the phosphorus in the as-

doped and RTP samples were relatively similar within the LCP–processed area (the 

first 350 nm of the film). The boron spike close to the silicon nitride/ glass side most 

likely originated from the borosilicate glass. From the doping profiles, the junction 

depth was estimated to be ~260 nm for the as-doped sample and ~ 300 nm for the 

RTP sample.  
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 Comparing the active phosphorus peak doping concentration from the ECV 

data of sample E5_P (ECV) to the SIMS data of E5_P (RTP), it is found that the peak 

doping levels agree to within ~70%. This is a reasonably good agreement and can be 

attributed to various measurement artifacts affecting the ECV measurements on poly-

Si. Firstly, the non-uniform etching of the test sample by the electrolyte may be a 

contributing factor during ECV profiling. Secondly, diffusion, being a defect-induced 

process, is also highly dependent upon the material quality of the boron-doped poly-

silicon. Therefore, the doping levels may differ according to the defect levels within 

the film. Thirdly, jet or laser instability during the LCP doping process may also lead 

to doping variations across each doped line. The beam intensity profile within the 

liquid jet is not completely uniform [7] and may give rise to doping inhomogeneities 

despite the high pulse overlap conditions within our work. In addition, the SIMS 

profiling could also be affected by numerous factors such as the sputtering rate, the 

material quality of the poly-silicon etc. 

 

C) Influence of pulse length over the active doping profiles 

Figure 4.12(a) and (b) shows the ECV and SIMS profiles of the samples processed 

with LCP conditions as listed in Table 4.2. Prior to ECV, the samples were annealed 

in a nitrogen-purged oven at 610 °C for 30 min for dopant activation.  

 From Figure 4.12, it is observed that one cannot draw a straightforward 

comparison amongst those samples. This is because the different laser system used at 

Fraunhofer ISE did not allow independent setting of the repetition rate and the pulse 

length. Since the repetition rate affects the pulse overlap and the pulse energy 

simultaneously, all three parameters varied at the same time. 
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 Nevertheless, with some assumptions, it is still possible to make qualitative 

comparisons amongst these samples. Firstly, comparing samples D2 and D3 

processed using same pulse energy but different pulse lengths, it is found that D3 has 

a higher peak dopant concentration and a deeper doping depth. Since the pulse 

overlap was also relatively similar, it can be argued that the longer pulse length (80 ns 

as compared to 60 ns) lead to a deeper doping depth and higher peak doping 

concentration. This is because using a longer pulse length, the melt lifetime and 

molten volume was increased [8] allowing increased dopant diffusion. Figure 4.12(b) 

shows the total phosphorus concentration of as-doped samples D2 and D3. For 

comparison purposes, the active phosphorus concentration of sample D2, annealed at 

610 °C for 30 min was also included in Figure 4.12(b). 

  

 

(a) 
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(b) 

 

Figure 4.12: (a) Measured active phosphorus doping concentration of poly-Si samples that were oven-

annealed at 610 °C for 30 min in a nitrogen-purged oven. The LCP conditions are listed in Table 4.2 

(b) measured SIMS profiles of phosphorus (P) for as-doped samples D2 and D3 from Table 4.2. The 

ECV profile of sample D2 annealed at 610 °C for 30 min in a nitrogen-purged oven was included for 

comparison purposes. 

  

 

The SIMS profiles of the samples (refer to Figure 4.12(b),) looked significantly 

different from the SIMS profiles in Figure 4.11. The peak phosphorus doping 

concentration of sample D3 and D2 was found to be ~10
19 

cm
-3

 and ~10
20

 cm
-3 

respectively. The peak doping concentration of sample D3 was higher most likely due 

to an increased melt lifetime that allowed more phosphorus atoms to diffuse into the 

films. It is also seen that for both samples, the doping profile was rather steep within 

the first 150 nm of the film. However, upon annealing and dopant activation, the 
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doping profile levels out across the LCP-doped layer [refer to the ECV profile of 

sample D2_P (ECV)]. Two possibilities were considered to explain this observation: 

a) Since the melt lifetime of the LCP-doped samples (from Figure 4.12) was 

significantly longer as a result of the longer pulse length, the evaporation 

velocity was lower and thus, the shielding effect from the evaporated layer 

was less pronounced, resulting in more significant melt expulsion by the liquid 

jet. Thus a fraction of the doped layer may have been removed during the 

doping process. However, since the pulse energy used for processing both 

samples was quite low (~11 µJ) and the average surface roughness was also 

rather insignificant (refer to Table 4.2), this possibility appeared unlikely. 

Additionally, except for the peak doping concentration, the doping profiles of 

samples D2 and D3 appeared relatively similar despite using different pulse 

lengths.  

b) Another possibility could be dopant segregation effect whereby a fraction of 

the diffused dopants are accumulated at the surface as a result of the fast 

solidification velocity in the melt. This occurrence is generally characterised 

by a segregation coefficient (K) and is less than unity in cases of dopant 

segregation. Additionally, the dopant may not be incorporated substitutionally 

if its concentration in the solid becomes higher than the solubility limit of the 

process. The latter is dependent upon the segregation coefficient as well as the 

thermal equilibrium solubility limit [9, 10]. From Figure 4.12(b), it is possible 

to conclude that samples D2 and D3 displayed dopant segregation effects 

where a fraction of dopant atoms were accumulated at the surface. 
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4.4 Simulations of melt depth and melt lifetime 

The melt depth is largely influenced by the absorption depth and the laser parameters 

such as pulse energy and pulse length. For a 532 nm wavelength, the absorption depth 

in silicon is about 1 µm [11]. During interaction with a nanosecond (ns) laser pulse, 

the solid silicon undergoes progressive phase transition into the liquid phase and if the 

laser energy is high enough, another phase transition from liquid to gaseous phase (i.e. 

evaporation) occurs. Although the melt lifetime varies from ns to a few µs which is 

longer than the laser pulse length typically used in LCP, the temperature drops rapidly 

to room temperature within a few microseconds. For instance, Fell et al. [12] showed 

that using a 532 nm laser, 30 ns pulse length and a fluence of 5.0 J/cm
2
, the time taken 

for the silicon to reach room temperature was less than 10 µs. Therefore it can be 

assumed that the laser pulses are thermally independent. As a result, the influence of 

the laser parameters on the melt depth and melt lifetime can be investigated by 

studying the interaction of a single laser pulse. 

 In this work, the fluence used was less than 5.0 J/cm
2
 and LCP was carried out 

at SERIS using a pulse length ranging from 20 ns to 60 ns. Therefore, the time taken 

for the silicon to reach room temperature was estimated to be less than 10 µs. Hence, 

the assumption of the laser pulse being independent is feasible. Simulations using the 

software SLIM [13] were carried out to investigate the influence of different LCP 

conditions over the melt depth and melt lifetime. The parameters used for the 

simulations are listed in Table 2.1 in Chapter 2. Those parameters have been modified 

to reflect the LCP conditions used in this work. However, the following simulation 

results are only meant to study the effect of the LCP parameters qualitatively. 

Additionally, due to the limitations of the SLIM software, parameters such as a 

temperature-dependent reflectivity and absorption coefficient of liquid Si could not be 
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accounted during the simulations. Instead a constant value was assumed and the latter 

was calculated at the melting temperature of silicon. Moreover the thermal 

conductivity (K) of liquid silicon varied across a wide range in literature, from 0.56 

W/cmK to 0.84 W/cmK [14, 15]. The influence of the thermal conductivity on the 

melt depth and melt lifetime was quite significant in the simulations - for example 

using a laser fluence of 1.5 J/cm
2
, a pulse length of 20 ns and a square-shaped pulse, 

increasing K from 0.56 to 0.84 W/cmK resulted in an increased melt depth from ~700 

nm to ~ 880 nm. The melt lifetime was also increased from ~250 ns to ~350 ns. In 

this work, we assumed a lower bound of 0.56 W/cmK . 

 It is important to distinguish between the melt depth and the junction depth. 

The junction depth is equivalent to the depth at which the donor doping concentration 

is equal to the acceptor doping concentration (NA) and is thus subjective to NA. 

Nevertheless, at low laser energies when the melt front velocity is low, the melt depth 

is approximately equal to the junction depth. In contrast, at high laser energies, the 

melt front advances faster than the dopants and in these cases, there is a clear 

distinction between the melt depth and the junction depth. Also, the junction depth 

depends not only on the absorption depth and laser parameters but also on the number 

of pulses per unit area (i.e. number of melt cycles per unit area). The melt depth is 

generally not influenced by the number of melt cycles because the silicon is assumed 

to be at room temperature at the end of each melt cycle [10]. For instance, using a 

repetition rate of 100 kHz, the time lapse between two successive pulses is 10 µs. 

Figure 4.13 displays the influence of the laser fluence over the melt depth and melt 

lifetime for (a) a 20 ns pulse length (b) a 60 ns pulse length. The simulations were 

carried out using a square-shaped pulse. 
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Figure 4.13: Influence of the laser fluence over the melt depth and melt lifetime for (a) a 20 ns pulse 

length (b) a 60 ns pulse length. The simulations were carried out using a square-shaped pulse. 

 

 

From Figure 4.13(a), as the laser fluence increases, the melt depth and the melt 

lifetime increase which results in a deeper doping depth (e.g. refer to the ECV profiles 

of samples E1, E3 and E5 in Figure 4.9). Also, the melt depth profiles show that the 

melt depth does not change significantly when the fluence is increased. This is in 

reasonable agreement with the ECV profiles where increasing the fluence increases 

the doping depth by < 75 nm (refer to Figure 4.8). In contrast, for the 60 ns pulse 

regime shown in Figure 4.13(b), the melt depth and the melt lifetime is increased 

more significantly. Therefore, the junction depth is considerably deeper than the 

samples processed with a 20 ns pulse regime (for e.g. refer to samples S3 and E5 

annealed at 610 °C for 30 min in Figure 4.10). 

 Figure 4.14 shows the influence of the laser fluence and the pulse length over 
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the melt depth and the melt lifetime. The solid, dashed and dotted blue curves show 

the effect of the pulse length over the melt depth at the same laser fluence. The 

simulations were carried out using a square-shaped pulse. 

 

Figure 4.14: Influence of the laser fluence and pulse length over the melt depth and melt lifetime. The 

solid, dashed and dotted blue curves show the effect of the pulse length over the melt depth at the same 

laser fluence. The simulations were carried out using a square-shaped pulse. 

 

 

From Figure 4.14, the solid, dashed and dotted blue curves show that for the same 

laser fluence, a longer pulse length increases the melt lifetime. Since the phosphorus 

diffusion (liquid phase diffusion) is dependent upon the melt lifetime, more 

phosphorus diffuses into the liquid silicon, which explains the higher peak doping 

concentration when using a longer pulse length [refer to Figure 4.12(a)]. Furthermore, 

Fell et al. [8] showed through a simulative approach that longer pulse lengths results 

in increased melt lifetime and molten volume. Additionally, the speckled intensity 

distribution of the laser is significantly homogenized as a result of improved lateral 
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heat conduction thus leading to more uniform dopant distribution in the doped layers. 

The authors also explained that increasing the pulse length lead to lower thermal 

stress in the LCP-doped layers. 

 

4.5 Sheet resistance modeling 

The resistivity of the poly-silicon was calculated using the method of Lu et al. [16]. 

The details and derivations of the mathematical model can be found in Ref. [16]. A 

similar analysis was also performed on p-type poly-Si solar cells by considering the 

peak dopant concentration and doping depth of the absorber and back surface field 

[17]. The resistivity is given by: 

 

𝜌 = 𝜌𝑏 (
2𝑊

𝐿
) + 𝜌𝑐 (1 −

2𝑊

𝐿
) (4.1) 

 

where W is the depletion width in cm, L is the grain size in cm, 𝜌𝑏 is the grain 

boundary resistivity in Ωcm and 𝜌𝑐 is the intra-grain boundary resistivity in Ωcm. 

 For an n-type film, 𝜌𝑏 is given by: 

 

𝜌
𝑏
=
1

𝑓

1

2𝑊𝑞2𝑛(0)
√2𝜋𝑚𝑒∗𝐾𝑇𝑒𝑥𝑝 (

𝑞𝑉𝐵

𝐾𝑇
) (4.2) 

 

where 

𝑉𝐵 =
𝑞𝑁𝑊2

2휀
 (4.3) 
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where 𝑉𝐵 is the potential barrier height in V, N is the doping concentration in cm
-3

, q 

is the electronic charge in C, 휀 is the permittivity of silicon in Fcm
-1

, f is a 

dimensionless fit parameter, n(0) is the electron concentration (cm
-3

) in quasi-neutral 

region, 𝑚𝑒
∗  is effective electron mass, K is Boltzmann constant in JK

-1
 and T is 

absolute temperature in K. 

The depletion width W is calculated by Equation (4.4): 

 

𝑊 =
𝑄𝑇

2𝑁 [1 + 2 exp (
𝑒𝑇+𝑞𝑉𝐵−𝐸𝑓

𝐾𝑇
)]

 (4.4) 

 

where eT is the trapping state energy with respect to the Fermi level, EF is the Fermi 

energy level and QT is the trap density. 

The intra-grain resistivity was calculated using mobility values determined from 

Arora’s model. The mobility was estimated as a function of doping concentration and 

temperature.  

 The sheet resistance was then obtained using Equation (4.5): 

 

𝑅𝑠ℎ𝑒𝑒𝑡 =
1

∫ 𝜎 𝑑𝑡
𝑡

0

 (4.5) 

 

where 𝜎 is the conductivity of the film in (Ωcm)
-1 

calculated by taking the inverse of 

Equation (4.1) and t is the thickness of the doped layer in cm (as measured by ECV). 

The mathematical model assumes a uniform grain size, a single trap level and 

a constant trap density for calculating the sheet resistances. In this work, it was shown 

that LCP generated flat-top doping profiles across the doping depth. Therefore the 

sheet resistance was calculated using the measured peak dopant concentration and 
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doping depth (from the ECV data) for each sample from Figure 4.9. The average grain 

size was measured by electron backscattered diffraction (EBSD) to be 1.1 µm. 

Additionally a trap level of ~ 0.2 eV and a trap density of 10
12 

cm
-3

 were used to 

calculate the sheet resistances. All other parameters assumed the default value for 

silicon and be found in Ref. [16]. The fit parameter, f is a dimensionless parameter 

that was adjusted to have a better fit between the measured and calculated sheet 

resistance. It was estimated to be around 0.05. Figure 4.15 compares the calculated 

and measured sheet resistances of the LCP-doped samples annealed at 610 °C for 30 

min (refer to Figure 4.9) in a nitrogen-purged oven (i.e. from batch B2 in Figure 4.4). 

The LCP conditions are listed in Table 4.1. 

 

 

Figure 4.15: Calculated and measured sheet resistances of LCP-doped samples annealed in a nitrogen-

purged oven at 610 C for 30 min (refer to Figure 4.9).  
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As seen in Figure 4.15, it is observed that a reasonably good agreement was achieved 

between the theoretical and measured sheet resistances except for samples E1 and E2. 

The discrepancy between the data can be due to several factors. Firstly, despite using 

a high pulse overlap and a flat pulse shape, the speckled intensity distribution of the 

laser results in doping inhomogeneity. Secondly, intra-grain and grain boundary 

defects in the poly-Si also affect carrier mobility and contribute to higher sheet 

resistances. Laser damage from LCP could also create more point defects that 

increase the sheet resistances. Thirdly, the ECV measurements are subjective to non-

uniform etching of the poly-Si as well as defects in the poly-Si. Lastly, the 

discrepancy between the data is due to the limitations of the mathematical model 

which assumed a uniform grain size, a single trap level and a constant trap density for 

calculating the sheet resistances. 

 

4.6 Optical characterisation 

SEM micrographs of selected samples from Table 4.1 were acquired to show the 

influence of the LCP conditions on the overall surface quality. Figure 4.16 shows the 

SEM micrographs (tilted at 45°) of the as-doped samples (E5 and S1 from Table 4.1) 

illustrating the doped and undoped areas. The images were taken at a magnification of 

550X. The scale bar is 10 µm. The inset in the pictures illustrates a magnified view of 

the LCP-doped region at 2500X. 
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a) E1 [2.0 J/cm
2
, 80% pulse overlap, 20 ns]

 

b) E2 [2.0 J/cm
2
, 90% pulse overlap, 20 ns]

 

c) E3 [1.7 J/cm
2
, 80% pulse overlap, 20 ns]

 

d) E4 [1.7 J/cm
2
, 90% pulse overlap,20 ns] 

 

e) E5 [1.5 J/cm
2
, 80% pulse overlap, 20 ns]

 

f) E6 [1.5 J/cm
2
, 90% pulse overlap, 20 ns]
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g) S6 [3.5 J/cm
2
, 80% pulse overlap, 60 ns]

 

h) S1 [3.5 J/cm
2
, 90% pulse overlap, 60 ns] 

 

i) S4 [2.5 J/cm
2
, 80% pulse overlap, 60 ns] 

 

j) S3 [2.5 J/cm
2
, 90% pulse overlap, 60 ns]

 

Figure 4.16(a)-(j): SEM micrographs of as-doped samples at a magnification of 550X. The scale bar is 10 µm. The 

inset in the pictures illustrates a magnified view of the LCP-doped region at 2500X.  Figure 4.16(e) and (h) show 

the LCP-doped and undoped region (distinguished by the dashed white line) for a 20 ns pulse length and 60 ns 

pulse length. 

 

 

From Figure 4.16, it is evident that using a lower laser fluence (e.g. sample E5), there 

is less surface damage to the doped poly-silicon as compared to LCP processing with 

higher laser fluence (e.g. sample S1). The surface roughness of sample E5 (12 ± 11 

nm) is also lower than that of sample S1 (208 ± 44 nm) (refer to Table 4.1). The 

micro-structuring of the doped region is the result of the melt-regrowth process from 

the laser-induced interaction. At higher pulse overlap (e.g. 90% as compared to 80%), 

the surface damage is slightly more pronounced due to the higher number of melt 

cycles per unit area and the average surface roughness of the samples is also 

increased. Lastly, using a combination of high laser fluence and long pulse length, it 
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is observed that the melt expulsion by the liquid jet is more apparent as shown in 

Figure 4.16(g) and (h). This is because the melt lifetime was significantly increased 

and the melt flow became dominated by the liquid jet. 

 

4.7 Conclusion 

In this chapter, LCP was applied to n-type doping of poly-Si thin film on glass. The 

influence of the pulse energy and the pulse overlap on the sheet resistance and doping 

profiles of the LCP-doped samples was studied. It was found that below the ablation 

threshold, increasing the pulse energy and pulse overlap lead to deeper doping depth 

and lower sheet resistances as a result of higher dopant density. The doping profiles 

were characterised by a flat-top profile implying that the dopants were homogenously 

distributed across the doping depth. It was also found that the dopants were not 

activated after LCP and that a thermal anneal was necessary for dopant activation, 

either through a rapid or a prolonged thermal anneal in a RTP tool or a nitrogen-

purged oven. Further investigation revealed that the ambient conditions were not the 

cause of dopant activation, as demonstrated by the relatively similar sheet resistances 

between batches of samples annealed with and without a barrier silicon oxide layer. It 

was also showed that the annealing conditions did not smear the doping profiles 

significantly. The annealing conditions improved the carrier mobility of the LCP-

doped samples whereby annealing at a higher temperature resulted in lower sheet 

resistances due to improved defect anneal and carrier mobility. 

 The influence of pulse length suggested that using a longer pulse length, the 

melt lifetime and doping depth was increased. As a result, the peak doping 

concentration also increased accordingly. The SIMS profiles of the as-doped samples 

with longer pulse length (> 40 ns) showed a steep dopant profile in comparison to the 
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SIMS profiles of the as-doped samples processed using a shorter pulse length (e.g. 20 

ns). 

It was speculated that dopant segregation effect could have caused accumulation of 

dopants near the surface of the LCP-doped layer. 

 SLIM simulations were carried out using the laser parameters employed in this 

work to assess the influence of the laser parameter qualitatively. Increasing the pulse 

energy resulted in a deeper melt depth and a longer melt lifetime as predicted by the 

simulation results. Therefore, more dopants diffused into the film during the liquid 

phase. Increasing the pulse length also showed a similar finding whereby the melt 

lifetime was significantly increased.  Hence the peak doping concentration increased.  

The sheet resistances of the LCP-doped samples were determined using an analytical 

model from literature and good agreement was showed between the measured and 

calculated sheet resistances considering the limitations of the model and the factors 

affecting the measured sheet resistances. 

 Overall, it was established that LCP can be successfully applied for doping 

poly-silicon on glass. The sheet resistances and doping profiles are tailored according 

to the LCP conditions during the doping process. The pulse energy and the pulse 

length are critical for the overall doping quality. Higher pulse energy leads to 

increased surface damage causing partial ablation of the poly-Si. In contrast, long 

pulse lengths increase the melt lifetime until significant melt expulsion by the liquid 

jet is observed.  
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CHAPTER 5 

LASER CHEMICAL PROCESSING OF 

P
-
/P

+ 
POLY-SILICON THIN FILM  

ON GLASS 

5.1 Introduction 

This chapter describes the first reported application of LCP in fabricating an active 

layer for poly-Si thin film solar cells on glass. The optimized LCP conditions detailed 

in Chapter 4 are used to make an n-type emitter on a p
-
/p

+
 poly-Si thin film on glass. 

In this way, a complete solar cell was formed with an n-type emitter (on the air side of 

the device), a p-type absorber and a p-type back surface field (on the glass side of the 

device). After dopant activation in a nitrogen-purged oven, selected samples from 

each batch of annealed devices were then hydrogenated in a low pressure chemical 

vapor deposition (LPCVD) tool with an inductively-coupled remote plasma (ICP) 

source to passivate the electrical defects in the poly-silicon. Those devices were 

subsequently assessed by sheet resistance, Suns-Voc and ECV measurements before 

and after the hydrogenation process. The 1-Sun open-circuit voltage (hereafter called 

Voc) and pseudo-fill factor (pFF) from the Suns-Voc data were used to evaluate the 

electronic quality of the films. Lastly, the solar cell modeling software, PC1D was 

used to model the solar cells and to compare the theoretical and measured Voc values. 
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5.2 Experimental details 

An approximately 1.9 µm p
-
/ 100 nm thick p

+ 
amorphous silicon (a-Si:H) precursor 

layer was deposited on a silicon nitride coated borosilicate glass via plasma-enhanced 

chemical vapor deposition (PECVD) [PECVD, MV Systems, USA]. The glass size 

was 30 cm by 40 cm by 3.3 mm. After solid phase crystallisation (SPC) at 610 °C for 

10 hours in an oven [Nabertherm, model N120/65HAC, Germany] and a rapid 

thermal process (RTP) at 1000 °C for 1 min in a RTP tool [CVD Equipment 

Corporation, USA], the sample was cut down to a size of 20 cm by 20 cm for LCP. 

Prior to the doping experiments, the barrier PECVD silicon oxide (SiO2) layer was 

removed by a 10% hydrofluoric (HF) dip. More details about the sample preparation 

before LCP can be found in Chapter 4. LCP doping was then carried out using a Q-

switched, frequency-doubled (532 nm) Nd:YAG laser coupled inside a 42.5% 

phosphoric acid jet (the doping medium was pressurized at 130 bars). Figure 5.1 

illustrates a schematic of the sample structure used in LCP doping (not drawn to 

scale). 

 

 

Figure 5.1: Schematic of the sample structure used in LCP doping (not drawn to scale). 
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 After LCP doping, the sample was thoroughly cleaned with deionized (DI) 

water and dried with nitrogen gas. Then, a 100 nm thick PECVD capping SiO2 layer 

was deposited over the samples to prevent any contamination during dopant activation 

in a nitrogen-purged oven. After the thermal anneal, the SiO2 layer was removed by a 

10% HF dip. Afterwards, samples of 4 cm length and 2 cm width, enclosing the strip-

like cells (active area 40 mm by 7 mm) were cut out from the main sample for 

subsequent characterisation. One sample from each run was kept as a control (labelled 

as-doped) while the remaining samples were grouped into different batches according 

to their annealing conditions (refer to Table 5.2). The process parameters used during 

LCP doping are listed in Table 5.1. 

 

Table 5.1: LCP parameters used during LCP doping (pulse shape and jet pressure were set to square- 

shaped and 130 bar respectively).  

Parameter optimisation 
Sample 
number 

Laser parameters 
Fluence 
[J/cm

2
] 

Pulse 
overlap 

[%] 

Average 
surface 

roughness 
[nm] 

Influence of pulse energy 
S1 [14 µJ, 100 kHz, 20 ns] 2.0 80 16 ± 4 

S2 [12 µJ, 100 kHz, 20 ns] 1.7 80 14 ± 2 

Influence of pulse-to-pulse 

overlap 

(as compared to S1 and S2) 

S3 [14 µJ, 100 kHz, 20 ns] 2.0 90 32 ± 11 

S4 [12 µJ, 100 kHz, 20 ns] 1.7 90 15 ± 1 

Influence of pulse length 
S5 [14 µJ, 100 kHz, 40 ns] 2.0 80 18 ± 1 

S6 [24 µJ, 100 kHz, 60 ns] 3.4 80 195 ± 18 

Influence of repetition rate 
S8 [16 µJ, 150 kHz, 20 ns] 2.3 87 66 ± 12 

S9 [12 µJ, 200 kHz, 20 ns] 1.7 90 21 ± 10 
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The sheet resistance of the LCP-doped layers was measured by a manual four point 

probe (Jandel Engineering Limited, Bedford, U.K.). Based on the geometrical 

parameters of the sample, a correction factor of 0.755 was applied to the measured 

sheet resistances [1]. The active dopant concentration in the samples was determined 

by electrochemical capacitance-voltage (ECV) measurements using a commercial 

system (CVP21 ECV Profiler, WEP Control, Germany). A sealant ring of 3.57 mm 

diameter was used during ECV profiling.  

The accuracy of ECV measurements depends upon the contact area of the 

sample with the electrolyte. Besides the geometrical area defined by the sealant ring, 

the surface texture of the samples also defines the contact area between the sample 

and the electrolyte. Typically, for very rough surfaces such as for poly-silicon thin 

film solar cells fabricated on textured borosilicate glass, a surface area factor is used 

to account for the area enhancement because the texture size is about 1.5 µm [2]. In 

this work, the samples have an average surface roughness in the order of nanometers 

as measured by a stylus profiler (Dektak 150 surface profiler) and therefore do not 

require a surface area factor. The average surface roughness of each LCP-doped 

sample is listed in Table 5.1. The error bars show the standard deviation in the 

measurements.  

 Suns-Voc measurements were performed using a customized thin film Suns-Voc 

tester [2]. Before the measurements, the samples were wet etched (corner etched) in a 

mixture of 70% nitric acid/ 49% hydrofluoric acid /deionized water in a volume ratio 

of 1:1:1 to reveal the buried p
+ 

layer for the probe contacts. 

Lastly, to study any improvements in the devices, a few selected samples from 

each batch were manually cleaved into two and one sample from each pair was 

subjected to a hydrogenation process at 600 °C for 30 min in a LPCVD tool with an 
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inductively coupled remote plasma source. The remote plasma prevented surface 

damage to the samples as a result of ion bombardment during the process. Before 

inserting the samples into the LCPVD reactor, they underwent a HF dip to remove the 

native oxide layer. After the hydrogenation process, the samples were again analyzed 

by ECV, Suns-Voc and four point probe measurements. 

 

5.3 Results and Discussion 

5.3.1 Sheet resistance measurements 

Table 5.2 summarizes the average sheet resistances of the annealed samples measured 

at different locations over the samples. If applicable, the error bars reflect the standard 

deviation in the measurements. The as-doped samples showed very high sheet 

resistances because the dopants were not activated. Therefore, only the sheet 

resistances of the annealed samples are shown in Table 5.2.  

The annealed samples yielded sheet resistances around 2-5 kΩ/□. A sheet 

resistance of ~2 kΩ/□ is practical to reduce the resistive losses in a poly-Si thin film 

solar cell, particularly in a metallisation scheme where the poly-Si carries current 

laterally. S6 was processed with high laser fluence and suffered from material 

damage. Thus, most of the n
+
 layer was removed and the sheet resistance was much 

higher than that of the other samples. Comparing S1 and S5, it is observed that a 

slightly higher sheet resistance is obtained for the same laser fluence, similar pulse 

overlap and a longer pulse length. Since the sheet resistance is related to the active 

dopant density in the samples, the higher sheet resistance is due to the decreased 

amount of dopants from using a longer pulse length [refer to the active doping profiles 

in Fig. 5.2(c)]. Prolonged annealing at the same temperature (e.g. 610 °C for 2 hours) 
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resulted in a higher sheet resistance. This could be due to dopant re-distribution across 

the grains and grain boundaries which then lead to an increased sheet resistance. 

Table 5.2: Sheet resistance measurements performed at several locations over the LCP-doped samples. 

If applicable, the error bars reflect the standard deviation in the measurements. All the samples were 

annealed in a nitrogen-purged oven at different temperatures and durations. 

Sample 

number 
Laser parameters 

Fluence 

[J/cm
2
] 

Pulse 

overlap 

[%] 

Sheet resistance measurements 

LCP +oven 

anneal at 

610 °C for 

30 min 

[kΩ/□] 

LCP +oven 

anneal at 

610 °C for  

2 hrs 

[kΩ/□] 

LCP + oven 

anneal at 

700 °C for 

30 min 

[kΩ/□] 

S1 [14 µJ, 100 kHz, 20 ns] 2.0 80 1.9 4.2 ± 0.1 1.8 

S2 [12 µJ, 100 kHz, 20 ns] 1.7 80 2.1 3.2 ± 0.1 2.0 ± 0.1 

S3 [14 µJ, 100 kHz, 20 ns] 2.0 90 2.0 ± 0.1 3.1 ± 0.1 1.9 ± 0.1 

S4 [12 µJ, 100 kHz, 20 ns] 1.7 90 2.1 ± 0.2 3.4 ± 0.2 1.9 

S5 [14 µJ, 100 kHz, 40 ns] 2.0 80 2.5 ± 0.1 4.5 ± 0.2 2.9 ± 0.2 

S6 [24 µJ, 100 kHz, 60 ns] 3.4 80 5.0 ± 0.5 10.0 ± 1.1 7.1 ± 0.4 

S8 [16 µJ, 150 kHz, 20 ns] 2.3 87 2.5 ± 0.1 5.1 ± 0.5 2.7 ± 0.3 

S9 [12 µJ, 200 kHz, 20 ns] 1.7 90 2.1 3.6 ± 0.4 2.5 ± 0.1 

 

 

5.3.2 Electrochemical capacitance-voltage (ECV) 

measurements 

The doping concentration and the doping depth of the LCP-doped emitter layer are 

critical for the performance of the solar cell. The peak doping concentration should be 

sufficiently high such that it yields a low contact resistance. However, a very heavily-

doped emitter layer is detrimental to the short wavelength response (i.e. blue 

response) in a solar cell because the electronic quality of heavily doped layers is 

compromised and the diffusion length within the layer becomes relatively short. 
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Hence, there is a trade-off between the doping concentration and the electronic quality 

of the doped layer. In the case of poly-Si devices made on borosilicate glass, the glass 

is non-absorbing in the UV range, and thus the short wavelength response can be 

affected by high doping levels of the emitter layer. Additionally, the doping depth of 

the emitter determines the location of the p-n junction in the cell. If the latter is 

located too far away from the side of illumination (i.e. the side where carrier 

generation is the highest), minority carriers which are predominantly generated close 

to the glass side of the solar cell are more susceptible to recombination before they are 

collected at the space charge region. 

To assess the active dopant concentration within the samples, ECV 

measurements were performed on a batch of LCP samples annealed at 610 °C for 30 

min. Figure 5.2(a)–(d) displays the active dopant profiles of the samples processed 

using the LCP parameters shown in Table 5.1. The blue symbols represent the n-type 

dopant (phosphorus) while the corresponding red symbols refer to the p-type dopant 

(boron). From Fig. 5.2(a), the active dopant concentration in the absorber layer was 

about 2 x 10
17

 cm
-3 

and the peak doping concentration of the p
+
 layer was about 2 x 

10
18

 cm
-3

. The peak phosphorus doping concentration was close to 10
19

 cm
-3

.  

From Figure 5.2(b), an increase in pulse energy resulted in a deeper junction 

depth because a higher amount of energy was available to melt more material per unit 

volume and thus, the melt front moved deeper into the poly-silicon [refer to samples 

S1 and S2 processed with a laser pulse energy of 14 µJ and 12 µJ respectively]. On 

the other hand, an increase in pulse overlap also lead to a deeper junction depth due to 

a higher number of melt cycles per unit area [refer to samples S2 and S4 processed 

with a pulse overlap ratio of 80% and 90% respectively]. However, an increase in 

pulse energy has a more significant influence over the junction depth as shown by 
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samples S2 & S1 and S4 & S3. Figure 5.2(c) shows how the pulse length affects the 

active dopant profile. Using constant pulse energy and a longer pulse length, the peak 

power decreases and melting is achieved at a lower energy threshold [3]. It is also 

possible that a pulse length of 40 ns homogenized the intensity distribution across the 

jet and thus, the melt lifetime was not increased significantly despite the longer pulse 

length. Therefore the doping depth was shallower (refer to samples S1 and S5 

processed with a pulse length of 20 ns and 40 ns respectively). Even though for longer 

pulse lengths, melting was achieved at a lower energy, S6 was processed with a much 

higher fluence resulting in significant material damage. Hence, most of the n
+
 layer 

was removed. This is also reflected in the irregular doping profile. Figure 5.2(d) 

illustrates the doping depth as a function of the repetition rate. In this case the 

repetition rate affects both the incident energy and the pulse overlap. It is shown that 

for the same incident laser energy, a change in pulse overlap [achieved by altering 

either the chuck speed (e.g. S4) or the repetition rate (e.g. S9)] affects the number of 

pulses per unit area and the doping depth. As discussed above, S8 has a much deeper 

doping depth because the pulse energy has a more prominent influence over the 

doping depth as compared to the pulse overlap. 
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Figure 5.2: (a) Active dopant profiles throughout the cell structure. The background p-type (red 

symbols) dopant concentration was about 2 x 10
17

 cm
-3 

and the peak phosphorus (blue symbols) doping 

concentration was ~10
19

 cm
-3

 (b) Influence of pulse energy/overlap ratio over the doping depth. (c) 

Influence of pulse length over the doping depth (d) Influence of repetition rate and pulse overlap over 

the doping depth 
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5.3.3 Suns-Voc measurements 

Suns-Voc essentially measures the excess minority carrier density at the edges of the 

depletion region. This technique is widely used for process optimisation in both bulk 

crystalline and thin film PV technology [4, 5]. In general, the Voc of a poly-silicon thin 

film solar cell is influenced by numerous factors such as the doping 

concentrations/profiles within the active layers, the width of the space charge region, 

the location of the p-n junction and the defect density within the poly-silicon (intra-

grain and grain boundary defects) [6]. Since minority carrier transport is dominated 

by diffusion under low injection conditions, the diffusion length of these carriers in 

the absorber layer has a significant effect on the Voc of the solar cell. Considering a 

simple one-diode model of a p-n junction and assuming that the thickness of the 

absorber significantly exceeds its diffusion length such that the surface recombination 

at the rear of the absorber does not influence the electrical parameters of the solar cell, 

it is found that a short diffusion length increases the diode’s dark saturation current 

density (𝐽0𝑎𝑏𝑠) as shown by Equation (5.1) [7]. 

 

𝐽0,𝑎𝑏𝑠 =
𝑞𝑛𝑖

2

𝑁𝑎𝑏𝑠

𝐷𝑎𝑏𝑠
𝐿𝑎𝑏𝑠

 (5.1) 

 

where 𝐽0,𝑎𝑏𝑠 is the dark saturation current density, q is the elementary charge, ni is silicon's 

intrinsic carrier concentration, Dabs is the diffusion constant of the minority carriers in the 

absorber layer, Nabs is the doping concentration in the absorber layer and Labs is the diffusion 

length in the absorber layer. 

 If recombination in the emitter region and at the p-n junction is neglected, the 

increase in the diode's dark saturation current has a major implication on the Voc according to 

Equation (5.2) [7]:  
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𝑉𝑜𝑐 =
𝑛𝐾𝑇

𝑞
ln
𝐽𝑠𝑐
𝐽0

 (5.2) 

 

where T is the absolute temperature, n is the ideality factor of the diode, K is Boltzmann 

constant and Jsc is the short-circuit current density. 

 Suns-Voc measurements were carried out in superstrate configuration using the 

customised Suns-Voc thin film tester i.e. light was shone from the glass side of the solar cell. 

The measurements were conducted by placing a sharp probe on the emitter and the back 

surface field of the solar cell. Since poly-Si thin film solar cells have relatively large sheet 

resistances (in the range of kΩ/□) as compared to conventional bulk silicon wafer solar cells 

(in the range of < 100 Ω/□), the contact resistance is relatively high. Such large contact 

resistance can cause significant measurement errors when probing non-metallised samples 

with pulsed illumination. This is because a resistor-capacitor (RC) element is formed as a 

result of the contact resistance and parasitic external capacitance. This issue was overcome by 

coupling a buffer amplifier with unity gain into the electrical circuit. In this way, the amplifier 

ideally provides infinite input impedance and low output impedance such that the 

measurement draws negligible current [9].  

 The as-doped samples showed very poor Voc between 30-60 mV and pFF of ~31%. 

This is because the low fraction of active dopants from the n-type emitter layer gives rise to a 

low built-in potential at the p-n junction. Figure 5.3 shows the average Voc of the annealed 

samples in superstrate configuration. 
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Figure 5.3: Average Voc of the oven-annealed samples in superstrate configuration. The error bars 

represent the standard deviation in the Voc measurements. 

 

 

As compared to the as-doped samples, the annealed samples displayed a moderately 

high Voc (~177-225 mV) and pFF (~48-58%) because the dopants were activated after 

the thermal anneal. From Figure 5.3, the samples annealed at 610 ºC for 2 hours 

displayed the lowest Voc, possibly due to dopant re-distribution across the layers that 

may have shifted the p-n junction slightly. Hence, the light-generated current was 

lower and the Voc decreased accordingly. In contrast, the samples annealed for shorter 

durations (e.g. 610 °C for 30 min) or at higher temperature (e.g. 700 °C for 30 min) 

showed higher Voc. 

 

5.4 Hydrogenation 

Poly-silicon is a rather defective material with a high defect density - intra-grain and 

grain boundary defects (e.g. dangling bonds and dislocations) and oxygen-related 
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defects, amongst many others [10, 11]. Hydrogen effectively passivates electrically-

active defects such as dangling bonds in poly-Si and therefore, significantly alters the 

electronic properties of the material. During the fabrication of poly-Si thin film solar 

cells on glass, the SPC (~ 600 °C) and the RTP process (1000 °C) drives most of the 

hydrogen out of the films. Hence, a separate process is carried out to incorporate 

hydrogen into the poly-Si. A common way to passivate electronic defects in poly-Si is 

by exposure to hydrogen plasma, commonly known as a hydrogenation process. The 

improvement in the devices is remarkable – for example the Voc can be increased by 

2-3 times and the efficiency increase of the solar cells can be up to 4-5 fold [5]. The 

exposure of poly-Si thin film to hydrogen plasma is already well established in the 

thin film transistor [12] and the photovoltaic field. The three critical process 

parameters during hydrogenation are the process temperature, the hydrogenation time 

and the hydrogen concentration. Other factors such as the film thickness and presence 

of diffusion barriers also contribute to the overall hydrogen distribution in the poly-Si 

films [2, 5]. In this work, the LCP-doped samples were hydrogenated at 600 ºC for 30 

min in a LPCVD reactor with an inductively coupled plasma source. 

 

5.4.1 Sheet resistance measurements after hydrogenation  

Selected samples from the as-doped and annealed batches were hydrogenated and 

subsequently characterized by four point probe measurements. Table 5.3 lists the 

average sheet resistances of the LCP-doped samples after the hydrogenation process. 

As observed in Table 5.3, the sheet resistances of the hydrogenated samples 

were in the order of ~2 kΩ/□ while the non-hydrogenated samples were in the range 

of ~3 kΩ/□ (refer to Table 5.2). This was primarily due to defect annealing and 

improved carrier mobility of the samples as a result of the hydrogenation process. 
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Literature reports that hydrogenation improves the carrier mobility as it reduces the 

grain boundary trap state density in poly-Si [11]. The above sheet resistance values 

are practical for low resistive losses in a solar cell. Furthermore, the “LCP + 

hydrogenation” batch was made to study the feasibility of omitting the annealing 

process in between the LCP and the hydrogenation process. The data shows that a 

higher sheet resistance was obtained for these samples due to lower dopant activation 

[e.g. refer to sample S2_(as-doped)_hyd in Figure 5.4(b)]. 

 

 

5.4.2 ECV profiling after hydrogenation 

After the hydrogenation process, ECV measurements were carried out on some 

samples to investigate the active doping profiles throughout the cell structure. After 

cleaving the cells for hydrogenation, some of those samples became too small and 

could not be contacted properly for ECV profiling. Therefore, they were excluded 

from this investigation. A few non-hydrogenated annealed samples were included in 

the study to compare the influence of the annealing conditions over the doping 

profiles. Figure 5.4 shows (a) the ECV profiles after annealing under different 

conditions (i.e. “LCP + anneal”) (b) the ECV profiles after the hydrogenation step 

(i.e. “LCP + anneal + hydrogenation”). 
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Table 5.3: Average sheet resistances of the LCP-doped samples after hydrogenation at 600 ºC for 30 

min in a LPCVD tool with an inductively coupled plasma source. 

Sample number 

LCP  + 

hydrogenation 

[kΩ/□] 

LCP +  anneal at 

610 °C for 30 min 

+ hydrogenation 

[kΩ/□] 

LCP +  anneal at 

610 °C for 2 hrs + 

hydrogenation 

[kΩ/□] 

LCP +  anneal at 

700 °C for 30 min 

+ hydrogenation 

[kΩ/□] 

S1 

[14 µJ, 100 kHz, 20 

ns, 80% overlap] 

1.5 ± 0.1 1.1 ± 0.1 1.5 ± 0.1 1.2 

S2 

[12 µJ, 100 kHz, 20 

ns, 80% overlap] 

1.6 ± 0.1 1.1 1.5 ± 0.1 1.3 

S3 

[14 µJ, 100 kHz, 20 

ns, 90% overlap] 

1.6 - - - 

S4 

[12 µJ, 100 kHz, 20 

ns, 90% overlap] 

1.5 - - - 

S5 

[14 µJ, 100 kHz, 40 

ns, 80% overlap] 

1.7 ± 0.1 - - - 

S6 

[24 µJ, 100 kHz, 60 

ns, 80% overlap] 

2.2 ± 0.1 - - - 

S8 

[16 µJ, 150 kHz, 20 

ns, 87% overlap] 

1.6 ± 0.1 1.0 1.5 ± 0.1 1.3 

S9 

[12 µJ, 200 kHz, 20 

ns, 90% overlap] 

1.5 1.0 1.7 ± 0.1 1.1 

 



LASER CHEMICAL PROCESSING OF P
-
/P

+
 POLY-SILICON THIN FILM ON GLASS 

 
 

123 

 

 

Figure 5.4: ECV profiles after annealing under different conditions (i.e. “LCP + anneal”) (b) ECV 

profiles after the hydrogenation step (i.e. “LCP + anneal + hydrogenation”). 

 

 

From Figure 5.4(b), the active phosphorus doping profiles in the LCP-doped layer 

(blue symbols) are characterized by a flat-top profile indicating that the dopants 

remained homogenously distributed throughout the LCP-doped layer after 

hydrogenation. From the ECV profiles, the junction depth of sample "S2_(610_2hr)" 

and "S2_(700_0.5hr)" is ~316 nm and ~344 nm respectively whereas the junction 

depth of sample "S2_(610_0.5hr)" is ~260 nm. Also, there seems to be no further 

dopant activation when the sample was annealed at 700 °C for 30 min. Thus, it can be 

inferred that the lower sheet resistances were due to improved carrier mobility from 

defect annealing. 

 Similarly, the ECV profiles of the hydrogenated samples did not show 

significant dopant activation from the hydrogenation process [refer to Figure 5.4(b)]. 

The ECV profile of the non-hydrogenated sample "S1_(700_0.5hr)" was included to 
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show the relative comparison in active doping profiles between a non-hydrogenated 

and a hydrogenated counterpart "S1_(700_0.5hr)_hyd". Likewise, the lower sheet 

resistance of sample "S1_(700_0.5hr)_hyd" as compared to sample "S1_(700_0.5hr)" 

was also primarily due to increased carrier mobility. Sample "S2_asdoped_hyd" had a 

much lower peak doping concentration due to insufficient dopant activation. It is also 

possible that the defects may not have been passivated properly from the 

hydrogenation process. This sample did not undergo any thermal treatment after the 

LCP process and was instead directly subjected to a hydrogenation process at 600 °C 

for 30 min. Despite the low peak active doping concentration in this sample, the 

relatively low sheet resistance of that sample (~1.6 kΩ/□) further supports our 

argument that carrier mobility was greatly enhanced from hydrogenation. 

Interestingly, the junction depth was located at around 500 nm and was deeper than a 

sample that had undergone both an intermediate oven anneal and a hydrogenation 

process (for e.g. sample“S2_(610_0.5hr)_hyd”). 

 The active doping concentration of conventional poly-Si thin film solar cells 

on glass (i.e. baseline poly-Si thin film solar cells) is affected by smearing of the n
+
 

layer during the RTP process carried out at 1000 °C for 1 min and a hydrogenation 

process performed at a temperature of ~480 °C for  about 15 min [13]. This is because 

the effective diffusion coefficient of phosphorus is higher than that of boron and thus, 

phosphorus smears more than boron. This smearing effect is detrimental to the 

performance of the devices because the p-n junction is shifted and the collection 

efficiency of the devices is reduced. Figure 5.5 shows a typical example of dopant 

smearing effect encountered in non-metallised poly-Si thin film solar cells on planar 

glass (i.e. non-textured glass) after RTP and a hydrogenation step carried out at ~480 

°C for  about 15 min).  
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Figure 5.5: Example of dopant smearing effect encountered in our non-metallised poly-Si thin film 

solar cells on planar glass (i.e. non-textured glass) after RTP and a hydrogenation step carried out at ~ 

480 °C for about 15 min (from Ref. [13]). 

 

 

As shown in the graph [n-type (1000 °C)], the p-n junction shifts by about ~0.5 µm 

from its original location (the thickness of the n-type emitter was about 100 nm). In 

contrast, our current work demonstrates that after a hydrogenation process carried out 

at a higher temperature of 600 °C for 30 min, the p-n  junction shifted only by ~120 

nm (for e.g. refer to sample "S2_(610_0.5hr)" and sample ""S2_(610_0.5hr)_hyd" 

from Figure 5.4). In samples "S1_(700_0.5hr)" and "S1_(700_0.5hr)_hyd", this shift 

in the junction shift was even lower, around 75 nm. Moreover, we showed in our 

earlier work (refer to Chapter 4) that the shift in the p-n junction between an "as-

doped" and a "LCP + RTP at 1000 °C" sample was only about 40 nm [14]. Therefore, 

it can be inferred that using a combination of RTP at 1000 °C for 1 min and a 

hydrogenation process at 600 °C for 30 min, the shift in the p-n junction in LCP-

doped poly-Si cells is at the most 200 nm, which is lower than that in our baseline 

solar cells (~500 nm). This is beneficial for carrier collection and for improving the 

light generated current during device operation. Furthermore, the smearing of the n
+
 

layer during the hydrogenation process can be further reduced by decreasing the 
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process temperature to about 450 °C. The lower dopant smearing effect in LCP-doped 

devices could be due to the lower mobility of the dopants as a result of the large 

amount of impurities found in LCP-doped films (e.g. refer to Figure 7.6 in Chapter 7). 

 

5.4.3 Suns-Voc measurements after hydrogenation 

After corner etching to access the p
+
 layer, Suns-Voc measurements were performed 

on the hydrogenated samples in superstrate configuration. Figure 5.6(a) and (b) show 

the average measured Voc and pFF from the Suns-Voc data. Table 5.4 displays the 

measured Suns-Voc parameters from the batch “LCP + hydrogenation”. 

From Figure 5.6, the best Voc (> 400 mV) and pFF (> 65%) were achieved for 

the samples that were annealed at 700 ºC for 30 min prior to the hydrogenation 

process except for S2. For comparison purposes, Figure 5.7 shows the typical Voc of 

non-metallised poly-Si thin film solar cells on glass fabricated by the process flow 

described in Chapter 3. The sample structure is glass/70 nm SiNx/100 nm n
+
 Si 

(emitter layer)/2 μm p
−
 Si (absorber layer)/100 nm p

+
 layer (BSF layer). As can be 

seen, the Voc values of LCP-doped hydrogenated solar cells are relatively close to 

those of non-metallised poly-Si thin film solar cells fabricated on non-textured glass 

(i.e. planar glass) which are in the range of 435-475 mV [13]. 
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Figure 5.6: (a) Average Voc (b) average pFF after a hydrogenation process performed at 600 ºC for 30 

min in a LPCVD tool with an inductively-coupled plasma. The measurement uncertainty reflects the 

standard deviation in the measurements. The best Voc (> 400 mV) and pFF (> 65%) were achieved for 

the samples that were annealed at 700 ºC for 30 min prior to the hydrogenation process. 

 

 

In some cases, the large variation in the Voc could be the result of non-

homogenous doping due to laser/jet instability from the LCP process or from defects 

within the poly-Si. The batch of samples annealed at 610 ºC for 2 hours or at 610 ºC 

for 30 min showed slightly lower average Voc and pFF as compared to those annealed 

at 700 ºC for 30 min. Lastly, the samples with the lowest Voc and pFF were those that 

were directly hydrogenated after the LCP process (refer to Table 5.4). This could be 
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due to incomplete passivation of defects from the hydrogenation process and lower 

dopant activation. 

 

 

Figure 5.7: Average measured Voc of non-metallised poly-Si thin film solar cells on glass fabricated by 

the process described in Chapter 3. The sample structure is glass/70 nm SiNx/100 nm n
+
 Si (emitter 

layer)/2 μm p
−
 Si (absorber layer)/100 nm p

+
 layer (BSF layer) [13]. 

 

Comparing the average Voc and pFF values from Figure 5.6, it appears that for the 

same hydrogenation parameters, the limiting factor for a higher Voc and pFF was the 

intermediate annealing step (i.e. the dopant activation step). It is likely that a high 

temperature process such as RTP before hydrogenation can lead to much higher Voc 

values than the ones obtained in the current work. Prior work by Rau et al. [15] 

demonstrated that the increase in open-circuit voltages after hydrogenation depended 

strongly upon the RTP conditions applied to the samples. They reported that the Voc 

increased almost linearly with the RTP plateau temperature. Furthermore, the 

hydrogenation conditions can also be optimized for the LCP-doped samples since 



LASER CHEMICAL PROCESSING OF P
-
/P

+
 POLY-SILICON THIN FILM ON GLASS 

 
 

129 

 

hydrogenation is dependent upon multiple process parameters such as the 

hydrogenation temperature and the hydrogenation time, amongst others. Similarly, 

other studies showed that hydrogenation can also lead to detrimental effects such as 

de-activation of dopants, particularly p-type dopants [16], platelets [17] etc. For 

instance, a recent study by Qiu et al.[11] revealed that depending upon the 

hydrogenation temperature, platelets can be localized at different depths within the 

poly-Si thin film solar cells. Such hydrogen-induced defects have localized states 

within the band gap and can decrease Voc and pFF significantly. Therefore, there is 

still possibility of improving the Voc and the pFF of the LCP-doped samples. 

 

 

Table 5.4: Measured Suns-Voc parameters from the batch “LCP + hydrogenation”. 

Sample number Parameters 
Voc 

[mV] 

pFF 

[%] 

S1 
[14 µJ, 100 kHz, 20 ns, 80% 

overlap] 
348 ± 14 59.0 ± 5 

S2 
[12 µJ, 100 kHz, 20 ns, 80% 

overlap] 
364 ± 7 65.7 ± 2 

S3 
[14 µJ, 100 kHz, 20 ns, 90% 

overlap] 
365 ± 8 65.4 ± 3 

S4 
[12 µJ, 100 kHz, 20 ns, 90% 

overlap] 
376 ± 5 66.5 ± 2 

S5 
[14 µJ, 100 kHz, 40 ns, 80% 

overlap] 
353 ± 9 67.5 ± 0.9 

S6 
[24 µJ, 100 kHz, 60 ns, 80% 

overlap] 
370 ± 20 68.2 ± 0.1 

S8 
[16 µJ, 150 kHz, 20 ns, 87% 

overlap] 
344 ± 12 63.4 ± 0.6 

S9 
[12 µJ, 200 kHz, 20 ns, 90% 

overlap] 
369 ± 4 63.9 ± 1 
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An important consideration is that LCP was applied to fabricate n-type emitters on 

poly-Si thin film solar cells on glass. Generally, poly-Si thin film solar cells on glass 

in superstrate configuration (i.e. light is shone from the glass supporting material) 

feature a p-n junction close to the glass side. In this way, once light-generated 

electron-hole pairs are created, they can be readily collected by the p-n junction 

(provided that the absorber layer has a suitable diffusion length). The minority 

carriers are then swept across the p-n junction where they become the majority carrier. 

In this work, the p-n junction was located close to the surface of the solar cells, i.e. at 

the air-side of the solar cells. Hence, the light-generated electron-hole pairs have to 

diffuse a relatively long distance before their separation by the p-n junction. As a 

result, the light-generated current and the Voc were relatively low. Figure 5.8 shows (a) 

a schematic illustration (not to scale) of carrier generation and subsequent separation 

by the p-n junction for a LCP-doped solar cell (in this work) and (b) for a 

conventional poly-Si thin film solar cell on glass superstrate respectively. 

However, for poly-Si thin film solar cell in superstrate, a p-n junction that is close 

to the glass side cannot be directly fabricated by LCP because the latter is a surface 

doping technique. Instead, it is possible to use LCP in the following ways: 

a) If the device architecture is intended for superstrate, then LCP can be used to 

fabricate an n-type back surface field on a n
-
/p

+
/SiNx on glass or a p-type back 

surface field on a p
-
/n

+
/SiNx on glass.  

b) LCP can be potentially applied to fabricate a seed layer on a foreign substrate 

followed by epitaxial growth to fabricate the subsequent active layers. In this 

case, the focus on the seed layer is on grain size and structural quality while 

the epitaxial layers target the electronic quality. Chapter 7 describes the 

structural quality of LCP-doped films in more details. 
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(a) 

 

(b) 

Figure 5.8: Schematic illustration (not to scale) of carrier generation and subsequent separation by the 

p-n junction for (a) a LCP-doped solar cell (in this work) (b) a conventional poly-Si thin film solar cell 

on glass superstrate. The n-type carriers are represented by the red spheres while the p-type carriers are 

denoted by the green spheres. 

 

 

5.4.4 Superstrate and substrate measurements 

In order to study the influence of the location of the p-n junction over the collection 

efficiency of the fabricated solar cells, Suns-Voc measurements were carried out in 

both superstrate (light was shone through the glass) and substrate (light was shone 

from the air side of the solar cell). First, Suns-Voc measurements were performed on a 

reference poly-silicon thin film solar cell on planar glass (i.e. non-textured glass) in 

both superstrate and substrate. The cell was made by the standard processes as 

described in Chapter 3 and featured a p-n junction located close to the glass side. This 
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step was performed to verify experimentally whether there was any measurable 

change in Voc using the Suns-Voc setup. 

 Since our customized thin film Suns-Voc tester is designed for thin film solar 

cells in superstrate configuration, the probe contacts can only be made at the rear side 

of the device because the glass side of the solar cell faces the glass stage during the 

measurements. Therefore, a specially designed fixture was used to contact the poly-Si 

solar cell from the rear side and yet measure the solar cell in both superstrate and 

substrate. The chuck consists of two spring-loaded probes (for n and p contacts) that 

were held firmly to the fixture by strong magnets. These probes could be moved 

manually across the chuck to contact the devices. The voltage output of the assembly 

was then connected to the input of the buffer/gain amplifier of the thin film Suns-Voc 

system via an electrical cable.  

Before starting the measurements, the solar cell (device under test) was 

secured by a sliding fixture on each side of the chuck. Suns-Voc measurements in 

superstrate were conducted as usual, i.e. by shining light through the glass supporting 

material. For substrate measurements, the chuck/solar cell assembly was then flipped 

over towards the light source without moving the contact probes. It is important that 

the reference solar cell of the thin film Suns-Voc tester be positioned at the same level 

as the device under test throughout this study. This procedure ensures that both cells 

receive the same light intensity. Figure 5.9 depicts the customized chuck used for the 

Suns-Voc measurements in substrate and superstrate configuration. 
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Figure 5.9: Customized chuck used for the Suns-Voc measurements in substrate and superstrate 

configuration. 

 

 

Table 5.5 displays the average measured Voc and pFF of the baseline solar cell. The 

average Voc of the reference device was about 17 mV higher in superstrate than in 

substrate configuration. In superstrate configuration, the light is shone through the 

glass onto the n
+
 emitter and thus, the light-generated current is higher and the Voc is 

also higher. Additionally, in superstrate configuration, the anti-reflective silicon 

nitride layer couples more photons into the device whereas in the substrate 

configuration, this layer is absent. 

 

Table 5.5: Average Voc of the reference planar SPC sample measured in superstrate and substrate 

configuration with a customized chuck. The error bars reflect the standard deviation in the 

measurements 

 

Parameter  
Superstrate 
configuration 

Substrate 
configuration 

Voc [mV] 413 ± 3 396 ± 1 

pFF [%] 71.7 ± 0.3 70.8 ± 0.1 
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Suns-Voc measurements were subsequently carried out on a few non-hydrogenated 

samples from the annealed batches in both substrate and superstrate. Figure 5.10 

displays the average Voc of the oven-annealed samples in superstrate and substrate 

configuration. The error bars represent the standard deviation in the Voc 

measurements. 

 

 

Figure 5.10: Average Voc of the oven-annealed non-hydrogenated samples measured in superstrate and 

substrate configuration. The error bars represent the standard deviation in the Voc measurements. 

 

 

From Figure 5.10, the average Voc measured in superstrate and substrate configuration 

was relatively similar. The Voc was slightly higher for those samples annealed at     

700 ºC for 30 min, most likely due to improved defect annealing at higher 

temperature. Furthermore, the standard deviation in the measured Voc were up to about 

30 mV for the samples annealed at 610 ºC for 30 min, possibly due to defects in the 

poly-Si films or from doping inhomogeneities. 
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Comparing the above results with those from Figure 5.3, it is found that even 

though the same samples were measured in superstrate with the same system, the Voc 

was about 20 mV lower than measured previously. We speculate that the lower Voc 

was due to the samples being damaged from repeatedly probing the n
+
 and p

+
 layers. 

Sample S9 was too small to fit inside the customized jig and thus, was excluded from 

this investigation. The samples annealed at 700 ºC for 30 min had the highest Voc.  

 The customized fixture was then utilized to measure the hydrogenated samples 

in superstrate and substrate configuration. The active area of some samples became 

rather small after sample cutting and the corner etch. As a result, they could either not 

be held securely inside the jig or the contact probes of the fixture would shadow part 

of the solar cell. Hence, such samples were excluded from the investigation. Table 5.6 

summarizes the Suns-Voc measurements for the batch “LCP + hydrogenation” in both 

superstrate and substrate configuration.  

The average measured Voc were relatively similar in both substrate and 

superstrate. On the other hand, the standard deviation in the Voc measurements was 

rather significant ranging between 5-83 mV. Since the average Voc, pFF and the 

standard deviation were roughly the same in both substrate and superstrate, it was 

likely that the samples were damaged due to probing. 
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Table 5.6: Measured Suns-Voc parameters for the batch “LCP + hydrogenation”. Measurements were 

performed in superstrate and substrate using the customized jig. 

Sample 

number 
Parameters 

Superstrate Substrate 

Voc 

[mV] 

pFF 

[%] 

Voc 

[mV] 

pFF 

[%] 

S1 
[14 µJ, 100 kHz, 20 ns, 

80% overlap] 
298 ± 59 60.8 ± 6 297 ± 69 59.9 ± 5 

S2 
[12 µJ, 100 kHz, 20 ns, 

80% overlap] 
337 ± 17 65.6 ± 1 345 ± 10 65.2 ± 2 

S3 
[14 µJ, 100 kHz, 20 ns, 

90% overlap] 
339 ± 35 63.6 ± 0.5 345 ± 29 63.3 ± 1 

S4 
[12 µJ, 100 kHz, 20 ns, 

90% overlap] 
355 ± 9 64.5 ± 0.5 356 ± 5 64.3 ± 0.7 

S5 
[14 µJ, 100 kHz, 40 ns, 

80% overlap] 
262 ± 26 64.3 ± 3 287 ± 31 65.9 ± 2 

S6 
[24 µJ, 100 kHz, 60 ns, 

80% overlap] 
234 ± 63 65.7 ± 5 212 ± 83 64.4 ± 7 

S8 
[16 µJ, 150 kHz, 20 ns, 

87% overlap] 
307 ± 32 65.4 ± 0.7 308 ± 20 65.1 ± 0.7 

S9 
[12 µJ, 200 kHz, 20 ns, 

90% overlap] 
326 ± 18 65.8 ± 0.4 339 ± 32 65.2 ± 1 

 

 

 

Figure 5.11 (a) and (b) show the average measured Voc and pFF of the oven-annealed 

hydrogenated samples in superstrate and substrate configuration. The error bars 

represent the standard deviation in the measurements. The batch of samples annealed 

at 610 °C for 30 min was too small to provide any reliable measurements and were 

excluded from this study. 

 From Figure 5.10, the average measured Voc were again comparable in both 

substrate and superstrate. The standard deviation in the measurements was also higher 

than measured previously due to the samples being damaged from repetitive probing. 

Even though the Voc values were lower than measured previously in superstrate [refer 
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to Figure 5.6(a)], the trends remained somewhat similar with the hydrogenated 

samples annealed at 700 °C having higher Voc than those annealed at 610 °C due to 

improved defect annealing. 

 

 

 

Figure 5.11: Average measured (a) Voc (b) pFF of the oven-annealed hydrogenated samples in 

superstrate and substrate configuration. The error bars reflect the standard deviation in the 

measurements. 
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5.5 Modeling of silicon solar cells using PC1D 

A simple model of a non-metallised poly-Si thin film solar cell on non-textured (i.e. 

planar) glass was implemented into the solar cell simulator PC1D [18] to model the 

Voc of the devices in superstrate and substrate. Since the absorber and the back surface 

field have similar electrical and structural properties as the ones made from the 

baseline solar cells, it can be argued that Voc is mainly dependent upon the doping 

profile, as well as the electrical and material properties of the LCP-doped regions. As 

most of the samples were too small for ECV measurements after being cut for 

hydrogenation, only a few hydrogenated samples could be measured with ECV and 

subsequently modelled in PC1D. 

 Additionally the fabricated solar cells were not metallised and quantum 

efficiency measurements could not be acquired on the samples. Therefore, some of 

the modeling parameters (e.g. recombination velocity, refractive index of the silicon 

nitride etc.) were taken from conventional poly-Si thin film solar cells on glass. 

Auger recombination was enabled in the model such that the minority carrier 

lifetime was influenced by the doping concentration. In PC1D, the emitter layer is at 

the top of the device by default. Therefore, the measured ECV profiles of the LCP-

doped samples were re-adjusted for modeling the devices in superstrate such that the 

p
+
 layer was at the front of the solar cell. The active area of the solar cell was defined 

by its LCP-doped region (7 mm by 20 mm). The AM1.5G spectrum was used as the 

illumination source. Unless otherwise mentioned, the parameters assumed the default 

value provided by PC1D or that of silicon. Table 5.7 lists the main parameters used in 

PC1D for a LCP-doped hydrogenated poly-Si solar cell measured in superstrate. 
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Table 5.7: Main parameters used in PC1D for a LCP-doped hydrogenated poly-Si solar cell measured 

in superstrate. 

Parameter Value Unit 

Device area 1.4 cm
2 

Front surface optically coated 

Upper layer thickness (taken as air) 

 

0 

 

nm 

Upper layer refractive index 1 - 

Middle layer thickness (glass) 3.3 mm 

Middle layer refractive index 1.47 - 

Lower layer thickness (SiNx) 75 nm 

Lower layer refractive index 2.05 - 

Internal reflectance – enabled 
  

Front surface (specular) 

First bounce 20 % 

Subsequent bounce 20 % 

Rear surface (specular)   

First bounce 20 % 

Subsequent bounce 20 % 

Cell thickness 2 µm 

Bulk recombination 

Minority carrier lifetime τno = τpo 

Fit parameter used in 

the simulation 
ns 

Front surface 

Recombination velocity Sno = Spo 
1 x 10

5
 cm/s 

Rear surface 

Recombination velocity Sno = Spo 
1 x 10

7
 cm/s 

 

 

 

In the first scenario, light passes through air, glass, silicon nitride and then enters the 

solar cell through the p
+
 layer. The recombination velocity of the front surface (p

+
) 

was set to 1 x 10
5
 cm/s due to surface passivation provided by SiNx. Since the rear 

surface (n
+
) was exposed to air, the rear surface recombination velocity was set to a 
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high value of 1 x 10
7
 cm/s. This model was synonymous with the device being 

measured in superstrate on the thin film Suns-Voc tester. 

In the second scenario, the model was modified for a poly-Si thin film solar 

cell being measured in substrate configuration. In this case, light goes through the 

LCP-doped emitter layer first and then exits the solar cell by passing through SiNx, 

glass and air. Hence, the front surface recombination velocity was set to 1 x 10
7
 cm/s 

because it was exposed to air and the rear recombination velocity was set to 1x 10
5
 

cm/s. 

Only the hydrogenated samples were modelled to correlate the simulated Voc 

to the experimental Voc. This is because the electrically-active defects in the non-

hydrogenated samples were not passivated and would affect the Voc significantly. 

Additionally, the defect levels could vary across the samples such that no reliable 

trend could be observed from simulations performed on the non-hydrogenated 

samples. Using the parameters from Table 5.7, the measured ECV profiles of the 

hydrogenated samples [from Figure 5.4(b)] and the bulk lifetime as the fit parameter, 

the Voc was modelled in both superstrate and substrate. However, since the Voc 

measurements performed using the customized fixture were affected by sample 

damage [e.g. refer to Voc measurements in Figure 5.10(a)], those Voc measurements 

were discounted from this study because they were not representative of the actual Voc 

shown by the samples. Instead, the Voc simulations were performed only for the 

superstrate measurements without the customized jig [refer to Voc measurements in 

Figure 5.6(a)]. Table 5.8 summarizes the experimental and simulated Voc in 

superstrate. The expected Voc values in the substrate configuration were also 

calculated from the simulation model. 
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Table 5.8: Experimental and simulated Voc of the hydrogenated samples measured in superstrate. The 

expected Voc values in the substrate configuration were also calculated from the simulation model. 

Sample Bulk lifetime [ns] 

Superstrate Substrate 

Simulated Voc 

[mV] 

Experimental 
Voc 

[mV] 

Simulated Voc 

[mV] 

S2_(610_0.5hr)_hyd 1.2 424 423 434 

S2_asdoped_hyd 0.7 367 364 384 

S1_(700_0.5hr)_hyd 2.0 445 446 451 

 

 

 

The above results show that the bulk lifetime was the highest for the sample annealed 

at 700 °C for 30 min before hydrogenation. This is also in good agreement with the 

earlier findings that samples annealed at 700 °C for 30 min showed the highest Voc 

and pFF due to improved defect annealing.  

Comparing the simulated Voc in superstrate to that of the theoretical Voc in 

substrate, the data predicts a Voc increase of ~10 mV in substrate arrangement. 

However, it is seen from Figure 5.11(a) that the Voc in superstrate and substrate 

arrangements were relatively similar. This is because the standard error in the Voc 

measurements was either comparable or larger than ~10 mV such that any difference 

in the Voc was not perceptible. As explained earlier, the lower Voc and large standard 

deviation in the measurements was attributed to sample damage due to probing. 

Lastly, the addition of a SiNx layer on top of the n
+
 layer is likely to boost the Voc by a 

further 10 mV because the SiNx couples more photons into the solar cell as well as 

passivates the n
+
 layer. 
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5.6 Conclusion 

In this Chapter, the first reported application of LCP in fabricating an n-type emitter 

for poly-Si thin film solar cells on glass was described. After dopant activation in a 

nitrogen-purged oven under different conditions, the measured sheet resistances of the 

annealed samples were about 2-5 kΩ/□ and the dopant concentration was about 8 x 

10
18 

to 1 x 10
19 

cm
-3 

at a doping depth of less than 350 nm (as measured by 

electrochemical capacitance-voltage). Selected LCP-doped samples were then 

subjected to a hydrogenation process in a LPCVD reactor tool with an inductively 

coupled remote plasma source. 

ECV measurements revealed that carrier mobility was considerably improved 

after the hydrogenation process which resulted in lower sheet resistances. From the 

ECV profiles, it was also observed that the hydrogenation process shifted the p-n 

junction only slightly as compared to conventional poly-Si thin film solar cells on 

glass. This is promising for LCP-doped poly-Si thin film solar cells as it increases the 

collection efficiency of the devices. 

Suns-Voc measurements were then carried out before and after hydrogenation. 

A major improvement in Voc (reaching values > 400 mV) and pseudo-fill factor (pFF 

> 65%) was realized by hydrogenation. It was discussed that the annealing step was 

the limiting factor for a higher Voc and pFF as demonstrated by the samples annealed 

at 700 ºC for 30 min. The best cell had an average Voc of (446 ± 7) mV and a pFF of 

(68.3 ± 0.9) %.  

To study the influence of the location of the p-n junction over the collection 

efficiency of the fabricated solar cells, the cells were measured in substrate and 

superstrate using a customized fixture. It was found that the Voc and the pFF were 
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relatively similar. The lower average Voc and the pFF were attributed to sample 

damage from repetitively probing the n
+
 and p

+
 layers. 

PC1D modelling was used to simulate the LCP-doped solar cells in substrate 

and superstrate. The bulk lifetime of the solar cells was calculated and it was found 

the sample annealed at 700 °C for 30 min before hydrogenation showed the highest 

lifetime. The simulation model also showed that the addition of a SiNx layer on top of 

the n
+
 layer is likely to boost the Voc by a further 10 mV. 

Lastly, it was discussed that the Voc and the pFF in the current work may be 

further improved by using a RTP process for dopant activation and optimizing the 

hydrogenation conditions to yield the best Voc and pFF. Furthermore, LCP-doped 

profiles are characterized by a flat-top profile which makes LCP an attractive 

technique for doping poly-Si thin film solar cells on glass.  
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CHAPTER 6 

STRUCTURAL PROPERTIES  

OF LCP-DOPED POLY-SILICON THIN 

FILMS ON GLASS 

6.1 Introduction 

Structural defects (e.g. disorder, dislocations, grain boundaries etc.) are detrimental to 

the performance of a solar cell as they affect carrier mobility and lifetime. This 

chapter investigates the structural properties of LCP-doped poly-silicon thin film on 

glass. Ultra-violet (UV) reflectance measurement and transmission electron 

microscopy (TEM) were utilized to assess the crystalline quality of the LCP-doped 

layer. The structural properties of the LCP-doped poly-silicon thin films were further 

studied with Raman spectroscopy. The transverse-optical (TO) phonon mode and the 

full width half maximum (FWHM) were used to assess the stress and defect density in 

the LCP-doped films respectively. The structure disorder degree, C was determined 

from the Raman data and it was found that C decreased after post-LCP annealing. 

Lastly, grain size and plastic deformation were studied by electron backscattering 

diffraction (EBSD). It was found that LCP did not induce any significant change in 

the average grain size and plastic deformation within the poly-Si. 
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6.2 Structural defects in poly-silicon 

Poly-silicon is made up of crystallites (grains) bounded by grain boundaries. Within 

each crystallite, the atoms are arranged in a lattice structure that can be considered as 

that of single crystal silicon [1]. However, these grain boundaries are defective 

transitional regions between differently orientated crystallites and contain a high 

density of dangling bonds (e.g. 10
12

-10
13

 cm
-2

) [1, 2]. Also, each grain includes a 

significant amount of structural defects such as dislocations, impurity atoms, 

vacancies, interstitials etc. [3, 4]. 

In poly-silicon thin film solar cells, both grain boundary and intra-grain 

defects act as recombination sites and subsequently lower the carrier lifetime [5]. The 

defects at grain boundaries are decreased either by hydrogenation (passivation of 

dangling bonds) or by reducing the grain boundary density. Hydrogenation not only 

reduces the density of trap states but also decreases the effective recombination 

velocity at grain boundaries [2, 6]. One way of lowering the grain boundary density is 

through high temperature deposition/ growth processes that increase the poly-Si grain 

size [4]. However, despite using these techniques, physical imperfections still exist 

within the grains in the form of dislocations, intra-grain boundaries (such as Σ3 grain 

boundaries and twins) or point defects. 

 Line defects exist in the form of dislocations and are grouped into edge and 

screw dislocations. The former is the result of extra or missing partial plane in the 

lattice while screw dislocation arises from fault in the atomic stacking. Another 

category called misfit dislocations are generated from a mismatch in lattice constant 

of two different materials [3]. Charged dislocations are electrically-active and affect 

the minority carrier lifetime of the solar cell. Literature reports that metallic impurities 
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such as copper, nickel and iron etc. enhance the electrical activity of these 

dislocations [7, 8]. 

 Area defects exist at the crystal surface and in the form of grain boundaries. If 

the atoms on one side of a grain boundary are a mirror image to those on the other 

side, the grain boundary is called a twin boundary and if no dangling bonds are 

formed along the boundary, it is called a stacking fault [3]. Impurity gettering of 

metals such as aluminium and iron can render those electrically-active. Additionally, 

Σ3 grain boundaries are a class of low energy intra-grain boundaries which form 

readily during poly-Si crystal growth [4]. Those can also be activated by high 

concentrations of impurity gettering [9]. 

 Point defects encompass a multitude of atomic defects such as vacancies, 

interstitials and dopant impurity atoms, amongst others. Point defects are readily 

formed during the solar cell fabrication process and consist of native point defects 

(self-vacancies and self-interstitials in silicon) as well as foreign point defects 

introduced by dopant impurity atoms [2, 3, 4]. During the poly-Si thin film fabrication 

process, the RTP step anneals the point defects in the film. In the following Section, 

the structural quality of the LCP-doped layers is investigated to identify the optimum 

LCP conditions for device fabrication. 
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6.3 Study of structural properties by ultra-violet 

reflectance and transmission electron microscopy 

(TEM)  

In the early stages of LCP research, it was speculated that the high sheet resistance 

after LCP could be due to amorphous silicon (amorphisation) being formed during 

LCP. The cooling effect induced by the impinging liquid jet may increase the 

solidification velocity of the melt during LCP [10]. Since the formation of amorphous 

silicon is dependent upon the solidification velocity of the melt (typically above 15 

m/s) [10, 11], a higher solidification velocity could introduce an amorphous silicon 

phase in the poly-Si. In this study, UV reflectance was used to evaluate the crystalline 

quality of the LCP-doped poly-Si films. More details about the assessment of 

crystalline quality by UV reflectance can be found in Chapter 3. 

 

6.3.1 Experimental procedure 

UV reflectance measurements were conducted on selected LCP-doped samples (as-

doped and annealed under different conditions) using a Perkin Elmer UV/VIS 

Lambda 950 spectrometer. The LCP doped lines were carefully aligned to the beam 

such that the full beam was incident onto the doped area. The spectrometer was 

covered with a black cloth during every measurement to ensure that stray light did not 

influence the measurements. A float-zone (FZ) (100) boron-doped double-sided 

polished Si wafer was used as reference to assess the crystal quality of the LCP-doped 

samples. Figure 6.1 displays the UV reflectance curves of two samples processed 

using a 60 ns pulse length and two different laser fluences [(sample Y5 processed 
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with a laser fluence of 3.0 J/cm
2 

(below the ablation threshold) and sample Y1 

processed with a laser fluence of 3.5 J/cm
2 

(close to the ablation threshold)] after 

annealing under different conditions. In the diagram, the solid black line corresponds 

to the reflectance of a float zone (FZ) Si reference while the dashed black line 

displays the reflectance of the undoped poly-silicon. The dashed blue line is the 

reflectance of the as-doped sample while the other colored lines denote the respective 

reflectance of each sample after each thermal anneal.  

 

 

Figure 6.1: UV reflectance curves of two LCP samples processed using two different pulse energies 

and annealed under different conditions – (a) Y5, processed below the ablation threshold. The inset in 

Figure 6.1(a) is a magnified view between 360-370 nm. (b) Y1, processed close to the ablation 

threshold. The as-doped curve (dashed blue line) of Y1 is located further away from the undoped poly-

silicon (dashed black line) due to an increased defect density in the sample. 

 

 

From Figure 6.1, it is observed that the two crystalline peaks (around 280 nm and 365 

nm) corresponding to crystalline silicon are clearly visible implying that the LCP-
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doped layer was crystalline silicon. However, the as-doped curve shows that the LCP-

doped layer sustained some material damage and upon annealing, the sample 

recovered part of its original material quality. For sample Y5, the as-doped curve was 

closer to that of the undoped sample implying a better crystalline quality while Y1 

had a large defect density and was located further away from the undoped sample. 

The annealing conditions at 610 °C for 30 min appeared to be the best for the LCP-

doped samples. In contrast, annealing the samples for longer time (e.g. 610 °C for 2 

hours) or at higher temperatures (e.g. 700 °C for 30 min) appear to yield a poorer 

crystal quality. A possible explanation might be related to the appearance of a surface 

oxide that reduces the reflectance of the film [12]. The formation of the surface oxide 

is likely due to oxygen precipitation and is explained in Section 6.5. 

Even though UV reflectance provides a fast and contactless assessment of the 

crystalline quality, the measurement is sensitive to other imperfections in the near-

surface region of the sample such as the presence of a silicon oxide layer and surface 

roughness amongst many others [12]. Therefore, it needs to be complemented by 

other techniques such as TEM and X-ray diffraction (XRD). 

 Cross-sectional TEM (XTEM) images and selected area diffraction (SAD) 

patterns were acquired on two selected samples; an as-doped and a corresponding 

oven-annealed sample (e.g. S5 as-doped and S5 annealed at 610 °C for 30 min from 

Table 6.1). Both samples were processed under identical LCP conditions - 1.5 J/cm
2
, 

20 ns and 90% pulse overlap. 

 Figure 6.2(a) and (c) show the XTEM of the as-doped and annealed sample 

(S5 from Table 6.1) indicating the LCP-doped and undoped area while Figure 6.2(b) 

and (d) display the SAD pattern gathered at the surface of S5 (as-doped) and at the 
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surface of S5 (annealed at 610°C for 30 min) illustrating the crystallinity of the LCP-

doped regions. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.2: (a) XTEM of an as-doped sample (S5 from Table 6.1) showing the LCP-doped and 

undoped area (b) SAD pattern gathered at the surface of S5 (as-doped) showing the crystallinity of the 

LCP-doped region (c) Corresponding LCP sample (S5) annealed at 610 °C for 30 min illustrating the 

LCP-doped and undoped area (d) SAD pattern at the surface of S5 (annealed at 610°C for 30 min) 

illustrating the crystallinity of the LCP-doped area. 
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From the SAD patterns of the samples shown in Figure 6.2(b) and (d), it is clear that 

the poly-silicon films were fully crystalline and did not contain any amorphous 

material. The interface between the LCP-doped and undoped region can also be 

distinguished in Figure 6.2(a) and (c) by the columnar grains formed within the LCP-

doped area as a result of the melt-solidification process during LCP. The depth of the 

LCP-processed area was about 350 nm. Additionally, the XTEM pictures show that 

the LCP-doped regions were of reasonable material quality. 

 

6.4 Structural properties by Raman spectroscopy 

The threshold for laser-induced damage depends on the wavelength of the laser, the 

laser parameters (for e.g. pulse length, pulse shape, number of pulses etc.) as well as 

the initial structural and surface quality of the substrate [13]. In a laser doping 

process, the melt lifetime is also a critical factor that determines dopant/impurity 

diffusion. Additionally, the solidification velocity of the melt is equally important as 

fast solidification velocities can generate electrically-active structural defects [3, 14]. 

During LCP, a long melt lifetime enables melt expulsion by the liquid jet which 

results in poor structural quality [10]. The high thermal gradient during LCP may also 

induce thermal stress in the poly-Si [15]. Studies on thin films indicate that stress 

leads to nucleation and propagation of dislocations as well as the formation of voids, 

cracks and peeling of thin films [16]. Besides mechanical damage, stress also 

influences carrier mobility and carrier lifetime. Fell et al.[15] showed through a 

simulative approach that depending upon the LCP conditions, high thermal gradients 

were generated during LCP and that the thermal stress could result in sample damage. 

 There exist multiple ways to study stress in thin films- for instance, XRD, 

wafer curvature method, XTEM and Raman microscopy, amongst others [17]. For 
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example, XTEM and convergent beam diffraction can evaluate stress at nanoscale but 

is destructive and is subjective to sample preparation. In contrast, XRD is a non-

destructive technique but the beam size is larger and only average values of the stress 

components can be determined from the data [16, 17]. Amongst these methods, 

Raman spectroscopy is a quick, non-destructive technique that is capable of 

evaluating structural quality and localised stress as a result of its low spatial resolution 

[18]. There are numerous studies in literature detailing stress and defects in poly-

silicon thin films studied by Raman spectroscopy – some of these focus on low 

pressure chemical vapor deposition (LPCVD) films [19] and laser-crystallised poly-Si 

[20] amongst others [21]. In the following section, the structural quality of the LCP-

doped layers is assessed by Raman spectroscopy and the LCP parameters are 

correlated to these findings to identify the optimum LCP conditions. 

 

6.4.1 Experimental details 

In this Section, the LCP-doped samples are characterized by Raman spectroscopy. 

The sample fabrication process is described in Chapter 4. Raman measurements were 

conducted in backscattering geometry on a Bruker Senterra system equipped with a 

532 nm argon-ion laser and a 50X objective. The laser power was kept low (less than 

10 mW) to prevent any sample heating. The sample parameters are listed in Table 6.1. 

A few measurements were acquired at various locations on each sample. All 

measurements were carried out at room temperature. Each spectrum was then fitted 

with a Lorentz distribution to evaluate the FWHM and the TO peak. Raman 

measurements were also acquired on the non-laser doped poly-Si (i.e. p
-
 layer) to 

investigate any influence of the annealing conditions on the structural quality of the 

sample. 
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  Stress in poly-Si films has been well studied by Raman spectroscopy. It is 

related to the shift in TO peak and is given by Equation (6.1) [22, 23]. 

 

𝜎 = −250 (
MPa

cm
) × ∆𝜔 

 

(6.1) 

where ∆𝜔 = 𝑥𝑝𝑜𝑙𝑦 − 𝑥𝑆𝑖  and refers to the peak shift (in cm
-1

) between the measured 

TO peak of poly-Si and that of single crystal Si (~521 cm
-1

). It is worthy to note that 

the TO peak of single crystal Si is dependent upon the setup, calibration of 

spectrometer and measurement conditions [16]. The exact value is not critical as 

mentioned in Ref. [16] but rather the relative peak change between the measured 

sample and the reference peak. In this thesis, the peak was defined at 521 cm
-1

. If the 

TO peak is shifted to lower wavenumber, it is indicative of tensile stress and vice-

versa. On the other hand, the FWHM reflects the structural quality of the sample and 

is related to doping, structural defects etc. [24]. More details about Raman 

backscattering spectroscopy are described in Chapter 3. 

  The Raman signal corresponds to a volume defined by the diameter (2-3 µm) 

and wavelength of the laser beam [16]. This interaction is dependent upon the 

scattered light intensity, and the depth is determined by the absorption coefficient of 

silicon at the laser wavelength. This depth, dp is given by [16]: 

 

𝑑𝑝 = 
2.3

2𝛼
 (6.2) 
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 For a 532 nm laser, this is equivalent to a penetration depth of ~1 µm in 

silicon. Therefore, in this investigation, the Raman signal is the result of the 

interaction from the p
-
 layer and the n

+
 LCP-doped layer. 

 

Table 6.1: Parameters used for LCP processing. Unless otherwise mentioned, LCP parameters were 

kept at a pressure of 130 bar, a square-shaped pulse and a laser repetition rate of 100 kHz. 

Pulse length Parameter optimisation 
Pulse energy 

[µJ] 

Experiment 

number 

Fluence 

[J/cm
2
] 

Pulse 

overlap 

[%] 

20 ns 

Influence of laser energy (repetition rate 

was kept at 100 kHz and pressure was set 

at 130 bars) 

10.5 E5 1.5 80 

12 E3 1.7 80 

14 E1 2.0 80 

21 E7 3.0 80 

Influence of pulse-to-pulse overlap 

(as compared to S3, S2 and S1) 

10.5 E6 1.5 90 

12 E4 1.7 90 

14 E2 2.0 90 

60 ns 

Influence of laser energy 

14 S7 2.0 80 

17.5 S4 2.5 80 

21 S5 3.0 80 

24.5 S6 3.5 80 

Influence of pulse overlap 

(as compared to S4, S5 and S6) 

17.5 S3 2.5 90 

21 S2 3.0 90 

24.5 S1 3.5 90 

 

 

6.4.2 Results and Discussion 

 
A) Effect of thermal anneal on undoped poly-silicon films 
 

Raman measurements were first conducted on two non-LCP doped (i.e. p
-
 layer) 

samples to investigate the influence of the annealing conditions on the stress and the 

structural quality of the poly-Si before LCP. Figure 6.3(a) and (b) show the effect of 

the annealing conditions on the TO peak and FWHM of two such poly-Si samples 

(denoted as untreated). The error bars reflect the standard deviation in the 
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measurements. Besides sample inhomogeneities, these arise from instability of the 

laser and spectrometer, as well as changes in the focusing of the laser onto the sample 

[16]. 

 

  
 

Figure 6.3: Influence of the annealing conditions on FWHM and TO peak of two non-LCP doped poly-

Si samples. The error bars reflect the standard deviation in the measurements. It is observed that 

annealing at higher temperature (e.g. RTP at 1000 °C for 1 min) lead to better structural quality (i.e. 

lower FWHM) and compressive stress (i.e. Raman peak is closer to ~521 cm
-1

. 

 

 

From Figure 6.3(a) and (b), the TO peak of both non-LCP doped poly-Si samples 

showed indications of tensile stress before any thermal treatment. This was due to 

thermal stress generated during the sample fabrication and caused by the mismatch in 

coefficient of thermal expansion (CTE) between the borosilicate glass, the silicon 

nitride and poly-Si layers. The thermal annealing relieved the tensile stress and 

improved the structural quality of the poly-Si as evidenced by the lower FWHM and 

the TO peak moving towards higher wavenumber. The best structural quality was 

achieved after a RTP anneal. In Figure 6.3(b), the untreated sample already showed a 

lower tensile stress and a better crystalline quality. Therefore the trend in stress 

relaxation and improvement in structural quality was less obvious. Nevertheless, the 

data shows that the best results were achieved under RTP at 1000 °C for 1 min.  
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b) Influence of pulse energy on the structural quality of samples processed with a 

20 ns pulse length 

Since it was shown earlier that the p
-
 layer showed only a slight indication of tensile 

stress before LCP processing, it can be assumed that most of the stress originated 

from the thermal gradient during LCP processing. Figure 6.4 shows the influence of 

the laser fluence on the TO peak and FWHM of as-doped samples processed with a 

20 ns pulse length, a 80% and 90% pulse overlap. The error bars reflect the standard 

deviation in the measurements and also represent the structural inhomogeneity in the 

samples after LCP. 

 

 

Figure 6.4: Influence of laser fluence on (a) FWHM and (b) TO peak of as-doped samples processed 

with 80% and 90% pulse overlap. The samples were processed with a pulse length of 20 ns, a square-

shaped pulse and a repetition rate of 100 kHz. The error bars reflect the standard deviation in the 

measurements. 

 

 

From Figure 6.4(a), it is observed that as the fluence was increased from 1.5 J/cm
2 

to 

3.0 J/cm
2
, the FWHM decreased progressively. It was speculated that at high laser 
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fluences, a major portion of the doped layer was removed by laser ablation and 

expulsed by the pressurized liquid jet. The remaining layer was then mostly the p
-
 

poly-Si with the heat affected zone. This possibly explains the low FWHM but 

relatively high tensile stress (i.e. low TO peak). 

  Another noticeable feature is that at low laser fluence (~1.5 J/cm
2
), the 

FWHM was higher for the sample processed with 80% pulse overlap as compared to a 

sample processed with the same laser fluence and 90% pulse overlap. It would be 

expected that at 90% pulse overlap, the FWHM would be larger due to increased 

dopant diffusion. A possible explanation could be that at relatively low laser fluence, 

the laser anneals a fraction of the laser-induced defects leading to better structural 

quality (recall that the number of melt cycles per unit area is increased at 90% pulse 

overlap).  

  As the laser fluence was increased to ~1.7 J/cm
2
, the melt lifetime was 

increased as a result of the higher pulse energy, which allowed more impurities and 

phosphorus at a deeper doping depth. In this case, the sample processed with 90% 

overlap showed a higher FWHM due to enhanced dopant/impurity diffusion. This 

finding also correlates well with the low sheet resistances and deeper doping depth 

achieved under such LCP conditions. Once the laser fluence was increased beyond a 

certain threshold (e.g. 2.0 J/cm
2
), the samples with 80% and 90% pulse overlap 

showed relatively similar structural quality. 

  From Figure 6.4(b), the TO peaks were shifted towards lower wavenumber       

(~517/518 cm
-1

) as compared to ~520 cm
-1 

for the untreated sample. This indicates the 

presence of tensile stress in the samples after LCP, most likely from the high thermal 

gradient during LCP. It is seen that, for samples processed with a 90% pulse overlap, 

increasing the laser fluence up to 2.0 J/cm
2
 resulted in a TO peak that was less shifted, 
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indicating that tensile stress decreased. A possible explanation could be that the 

increased number of melt cycles per unit area reduced the thermal stress in the poly-

Si. At a laser fluence of 2.0 J/cm
2
, the thermal stress was relatively similar for both 

samples most likely because the thermal gradient during LCP under those conditions 

was relatively similar. At high laser fluence (e.g. 3.0 J/cm
2
), the poly-Si showed 

relatively high tensile stress due to laser ablation and material expulsion by the liquid 

jet. 

 

c) Influence of pressure and pulse length on the structural quality 

In Chapter 2, it was discussed that the silicon melt is removed by the liquid jet if the 

melt lifetime exceeds a characteristic melt expulsion time. The latter is dependent 

upon the hydrodynamics of the liquid jet and is inversely proportional to the velocity 

of the liquid jet [15]. Therefore, the higher the jet velocity, the shorter is the 

characteristic melt expulsion time. The jet velocity is determined by the output 

pressure from the pump. On the other hand, the melt lifetime is dependent upon the 

LCP conditions for e.g. pulse energy and pulse length. Table 6.2 summarizes the 

measured TO and FWHM of selected as-doped poly-Si samples processed with 

different jet pressure and pulse length. The error bar represents the standard deviation 

in the measurements. 

  From Table 6.2, the average FWHM of samples E14 & E15 and that of 

samples E13 & E7 are almost similar for both laser fluences. Therefore the liquid jet 

pressure had a minor influence on the structural quality of the samples processed 

under these conditions. The TO peaks were also relatively similar at a laser fluence of 

2.0 J/cm
2
, most likely because there was no significant melt flow under those process 
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conditions. As explained in Chapter 2, a thin vapor layer exists above the silicon melt 

and acts as a thermal insulating layer against the liquid jet. In contrast, at higher laser 

fluence (e.g. 3.0 J/cm
2
), the TO peak showed less stress for the sample processed with 

130 bar. A possible explanation is that at low characteristic melt expulsion time (due 

to high jet pressure of 130 bar) and high laser fluence (e.g. 3.0 J/cm
2
), melt expulsion 

by the liquid jet is increased significantly. Therefore, a larger fraction of the LCP-

doped layer was removed and the Raman interaction resulted mostly from the p-type 

poly-Si layer.  

  An increase in pulse length lead to a higher FWHM (refer to samples E1 & 

S7). This is because a longer pulse length increased the melt lifetime and enhanced 

dopant diffusion in the poly-Si. On the other hand, the TO peak showed less tensile 

stress in the poly-Si. This is because a longer pulse length homogenized the 

temperature distribution within the melt and decreased the temperature gradient across 

the film. Hence, the thermal stress was lower in the LCP-doped layer [15]. 

 

d) Influence of pulse energy/pulse overlap on the structural quality of samples processed 

with a 60 ns pulse length 

Figure 6.5 shows the influence of the laser fluence on the TO peak and FWHM of the 

as-doped samples processed with a 60 ns pulse length, for 80% and 90% pulse 

overlap respectively. The error bars reflect the standard deviation in the 

measurements. 
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Table 6.2: LCP parameters used in this work. LCP parameters were kept at a pulse overlap of 80%, a 

repetition rate of 100 kHz and square-shaped pulse. 

Parameter 

optimisation 
Sample 

Pulse 

energy 

[µJ] 

Laser 

fluence 

[J/cm
2
] 

Pulse 

length 

[ns] 

Jet 

pressure 

[bar] 

TO peak 

[cm
-1

] 

FWHM 

[cm
-1

] 

Influence of 

pressure 

E14 14 2.0 20 60 518.3 ±0.4 7.4 ± 0.6 

E15 14 2.0 20 130 518.5 ±0.3 7.3 ± 0.4 

E13 21 3.0 20 60 517.4 ±0.6 6.3 ± 0.3 

E7 21 3.0 20 130 518.2 ±0.5 6.4 ± 0.3 

Influence of 

pulse length 

E1 14 2.0 20 130 517.9 ±0.5 6.8 ± 0.4 

S7 14 2.0 60 130 518.7 ±0.4 7.1 ± 0.3 

 

 

 

 
 

Figure 6.5: Influence of laser fluence on (a) FWHM and (b) TO peak of as-doped samples processed 

with 80% and 90% pulse overlap. The samples were processed with a pulse length of 60 ns, a square-

shaped pulse and a repetition rate of 100 kHz. The error bars reflect the standard deviation in the 

measurements. 
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From Figure 6.5(a), the trend shows that the FWHM decreases with an increase in 

laser fluence using a 60 ns pulse regime. Using high laser fluences in conjunction 

with a 60 ns pulse length, the melt lifetime was significantly increased as compared to 

conditions under a 20 ns pulse regime. Hence, there was enhanced dopant/impurity 

diffusion inside the poly-Si resulting in a higher FWHM [for e.g. compare the sample 

processed with a laser fluence of 2.0 J/cm
2
 and 80% pulse overlap in Figure 6.4(a) to 

the sample processed under similar laser fluence and pulse overlap in Figure 6.5(a)]. 

As the laser fluence increased, the melt lifetime became progressively longer and melt 

expulsion by the liquid jet removed the LCP-doped layer. Additionally, above a laser 

fluence of 2.5 J/cm
2
, the defect density in the film was quite high and thus, the 

increased number of pulses per unit area (i.e. using a 90% pulse overlap) did not 

contribute significantly in annealing laser-induced defects, which explains the relative 

similarity between the FWHM of samples processed with 80% and 90% pulse 

overlap. At increasing laser fluence (e.g. > 3.5 J/cm
2
), most of the LCP-doped layer 

was ablated and the FWHM showed large standard deviation in the measurements. 

  From Figure 6.5(b), the frequency of the TO peaks decreases with an increase 

in laser fluence implying that thermal stress became more significant in the poly-Si. 

Additionally, the samples processed with 80% and 90% pulse overlap showed 

relatively similar TO peaks as compared to samples processed with 20 ns pulse 

length. This is because as the fluence was increased, the increasing melt lifetime 

allowed more melt expulsion by the liquid jet. 
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e) Influence of post-LCP annealing conditions on the structural quality of the 

LCP-doped samples 

Earlier, it was established that post-LCP annealing activates the dopants in the LCP-

doped poly-Si. Annealing the samples at high temperatures yields lower sheet 

resistances due to improved carrier mobility. In this Section, the effect of the post-

LCP annealing conditions on the structural quality and tensile stress in the LCP-doped 

layers is investigated. Figure 6.6(a)-(d) displays the trend in TO peak and FWHM of 

two selected samples – sample E5 processed with a laser fluence of 1.5 J/cm
2
, a 20 ns 

pulse length and 80% pulse overlap and sample S3 processed with a laser fluence of 

2.5 J/cm
2
, a 60 ns pulse length and 90% pulse overlap. The as-doped sample refers to 

the control LCP-doped sample that had not undergone any thermal anneal. The error 

bars represent the standard deviation in the measurements. 

 From Figure 6.6(a) and (b), it is evident that for both samples, post-LCP 

annealing had a considerable effect over the TO peak and FWHM. Upon annealing at 

higher temperature, the TO peak became progressively closer to ~521 cm
-1

, i.e. the 

TO peak of single crystal silicon indicating that the tensile stress in the poly-Si was 

almost relieved. In the same way, the FWHM decreased significantly upon annealing 

at higher temperature. Interestingly, annealing at 450 °C for 2 hours and at 610 °C for 

30 min yielded relatively similar structural quality but the films showed different 

levels of stress as seen from Figure 6.6(a) and (b).  
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Figure 6.6: Influence of thermal anneal on (a) TO peak and (b) FWHM of a LCP-doped sample 

processed with a laser fluence of 1.5 J/cm
2
, 80% pulse overlap and 20 ns pulse length (c) TO peak and 

(d) FWHM of a LCP-doped sample processed with a laser fluence of 2.5 J/cm
2
, 90% pulse overlap and 

60 ns pulse length. The error bars represent the standard deviation in the measurements.  

 

 

A possible reason was attributed to the formation of thermal donors or non-

electrically active precipitates [25-26]. The latter are identifiable by means of 

transmission electron microscopy (TEM) or high resolution TEM whereas the thermal 

donors can only be revealed by electrical measurements [25]. For example, Cazcarra 

et al. [26] investigated the curing and generation of oxygen thermal donors over a 

range of annealing temperatures. More details about this study are described in 

Chapter 7. From Ref. [26], it appears that annealing at a temperature of about 610 °C 

annihilated existing thermal donors in the poly-Si but also generated new thermal 

donors upon further thermal treatment. This hypothesis may also explain the rise in 

the FWHM upon annealing the poly-Si under the same temperature for 2 hours [refer 

to Figure 6.6(d)] whereby new oxygen donors were generated in the poly-Si. Another 
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consideration is that the high carbon content in the film (~10
20 

cm
-3

) could have 

accelerated the donor annihilation process at a low temperature of about 450 °C. 

Literature mentions that below 950 °C, high carbon content precipitates oxygen in the 

form of C-O complexes [27]. More details about the oxygen donor generation and 

annihilation can be found in Chapter 7. 

A similar trend was observed for the sample processed with 60 ns pulse 

length. An increase in annealing temperature and duration leads to improved stress 

relaxation and better structural quality. From Figure 6.6(c), the TO peak of the sample 

annealed at 700 °C for 30 min indicated slightly more tensile stress than the sample 

annealed at 610 °C for 2 hours. The reason was attributed to the generation of new 

oxygen donors within this temperature range that were harder to anneal and required 

much higher temperature (e.g. 1000 °C) for complete annihilation [26]. In both Figure 

6.6(b) and (d), the best structural quality is obtained under RTP conditions - most 

likely because the donors are completely annihilated at this temperature [26]. 

 

6.5 Study of structure disorder in LCP-doped samples 
 

Recently, Wang et al.[24] assessed the structure disorder in LPCVD poly-Si film by a 

figure of merit, C, known as the structure disorder degree. The latter was derived from 

the anharmonic vibrational potential energy in disordered structures as in Equation 

(6.3): 

𝑉(𝑥) =  𝑑𝑥2 − 𝑔𝑥3 − 𝑓𝑥4 (6.3) 

  

where d, g and f are positive terms. The cubic and quadratic terms refer to the 

asymmetry of the mutual repulsion of the atoms and the softening of the vibration at 
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large amplitudes respectively. The structure disorder is an inherent property of a 

material and is the ratio of f and g. C is given by Equation (6.4). The derivations can 

be found in Ref. [24]: 

𝐶 =  
∆𝜔

Ґ2
 (6.4) 

  

where ∆𝜔 is the peak shift between the measured TO peak and that of single crystal 

silicon taken as 521 cm
-1

 and Ґ is the FWHM of the TO peak. 

 In this study, the influence of the post-LCP anneal conditions on the structure 

disorder, C in the LCP-doped samples was studied in an attempt to understand the 

bond re-arrangement occurring during the thermal treatment. C was averaged over 

five measurements taken across different locations over the samples. Figure 6.7(a) 

and (b) show the influence of the annealing conditions on the structure disorder 

degree of some selected samples. The LCP conditions are listed in Table 6.1.    

From Figure 6.7(a), the LCP-doped samples, except for sample S5 show a 

decreasing structure disorder upon annealing until they reach their lowest value 

(almost zero) under RTP conditions. It is also observed that the low temperature 

anneal (e.g. 450 °C for 2 hours) can significantly reduce C. As explained earlier, it is 

possible that the high carbon content in the film precipitated oxygen in the form of C-

O complexes. As for sample S5 at 610 °C for 30 min, it is possible that the higher 

concentration of oxygen in the film (the increased melt lifetime under those LCP 

conditions result in enhanced impurity diffusion) created more oxygen thermal donors 

and therefore, the structure disorder increased. Literature reports that the depending 

upon the range of temperature, the oxygen donor generation process is also dependent 

upon the oxygen concentration in the film [25]. Upon annealing at RTP conditions, 

the thermal donors are almost completely annihilated. 
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Figure 6.7: Influence of post-LCP annealing conditions on the structure disorder degree of selected 

samples processed using a (a) 20 ns pulse length (b) 60 ns pulse length. The LCP conditions are listed 

in Table 6.1. The error bars reflect the standard deviation in the measurements. The lines are guides to 

the eye. 

 

 

The trend in Figure 6.7(b) is slightly different than that in Figure 6.7(a). The structure 

disorder decreases upon annealing. Within the temperature range of 600 °C825 °C, 

new oxygen thermal donors are created that are thermally more stable. At RTP 

conditions, the structure disorder again falls back to a very low value (almost zero). 

  Overall, it appears that the change in structure disorder upon annealing is 

related to bond re-arrangement. Thus, it is likely that the generation and annihilation 

of oxygen thermal donors is responsible for the structure disorder. Additionally, high 

impurity content such as carbon and nitrogen are likely to influence the kinetics of the 

oxygen donor generation/annihilation process. 
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6.6 Electron backscattered diffraction (EBSD) 

The grain size may have a direct influence upon the open-circuit voltage (Voc) of poly-

silicon thin film solar cells. For example, bigger grain sizes could lead to the Voc being 

limited mostly by intra-grain defects. It is reported that the Voc of poly-Si solar cells is 

also dependent upon intra-grain defects and dislocations in the solar cells [29]. In this 

Section, EBSD is used to assess the grain size of LCP-doped films after LCP. 

Dislocations can be further grouped into statistically stored dislocations (SSDs) and 

geometrically necessary dislocations (GNDs). SSDs are typically formed during 

crystal growth and are not associated with lattice curvature [4]. On the other hand, 

GNDs are related to lattice curvature. GNDs are formed when atoms become mobile 

at temperatures (> 0.3 times the melting temperature of silicon) and they rearrange 

into arrays forming a low angle grain boundary (LAGB) [28]. Typically, the 

misorientation between two regions of crystals across a LAGB is ~5°. These small 

lattice rotations represent lattice curvature and can be detected by electron 

backscattered diffraction (EBSD). 

  From EBSD measurements, the grains within the sample (e.g. poly-Si) are 

detected and indexed by the EBSD system based on their diffraction pattern. Once the 

grain distribution map is obtained, an orientation matrix is generated for every pixel in 

the map. Based on this map, the misorientation angle between two pixels can be 

calculated and used to generate the misorientation maps. 

  In this work, the grain average misorientation (GAM), texture and grain size 

of selected samples were quantified by electron backscattered diffraction (EBSD) 

measurements performed using a Quantax EBSD CrystAlign (Bruker, Germany). A 

large majority of samples suffered from drifting effect under SEM and therefore the 

EBSD measurements were non-conclusive. GAM measures the accumulated 
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orientation changes relative to the average orientation within the grain and therefore is 

a reasonable representation of plastic deformation within a material. GAM maps were 

studied to identify the misorientation gradients within the LCP-doped layers. A colour 

map from blue (0°) to red (3°) was used to measure the misorientation between the 

reference pixel and every other pixel for a grain. Table 6.3 shows the average 

measured grain sizes of two selected as-doped samples, sample S3 processed with a 

60 ns pulse length and sample E5 processed with 20 ns pulse length. To study the 

influence of the thermal anneal on the grain size and GAM, sample S3 annealed at 

610 °C for 30 min and 610 °C for 2 hours are included. 

 

 

Table 6.3: Average measured grain sizes of two as-doped samples, sample S3 processed with a 60 ns 

pulse length and sample E5 processed with 20 ns pulse length. Sample S3 annealed at 610 °C for 30 

min and 610 °C for 2 hours are also included to study the effect of the thermal anneal on the grain size. 

Sample / grain orientation map Grain size distribution 
Grain average misorientation 

(GAM) 

E5 (as-doped)_20ns 

 

 

 

 
Average grain size = 1.2 µm 

 

S3 (as-doped)_60ns 

 

 

 

 
Average grain size = 1.1 µm 
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S3_LCP + 610deg(30min) 

 

 
 

 

 
Average grain size = 1.1 µm 

 

S3_LCP + 610(2hr) 

 

 
 

 

 
Average grain size = 1.3 µm 

 

 

 

 

As shown in Table 6.3, the average grain size of the as-doped and annealed samples 

were relatively similar and the grains were randomly oriented. Therefore the LCP 

conditions used in our work did not influence the average grain size significantly. In 

comparison, the grain size of poly-Si fabricated by the solid phase crystallisation 

(SPC) process is also about 1 µm.  

From Table 6.3, the grain misorientation maps (GAM) show a misorientation 

angle of less than 1.0°1.5°. Since the misorientation noise in the measurement is 

about 1° [4], it can be concluded that the LCP-doped poly-Si showed little or no 

plastic deformation. This is also in good agreement with the work by Law et al.[28] 
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who reported that little or no plastic deformation was found in poly-silicon with grain 

sizes < 3 µm. The authors claimed that the dislocations were mostly SSDs. 

 

6.7 Conclusion 

The electrical activity of structural defects is linked to the performance of solar cells. 

Microstructural defects (e.g. dislocations, grain boundaries etc.) affect carrier mobility 

and lifetime. Therefore a detailed investigation of the structural quality is essential to 

assess the defect density in the solar cells. In this Chapter, the crystalline quality of 

LCP-doped poly-Si films was first evaluated by ultra-violet reflectance and cross-

sectional transmission electron microscopy (XTEM). It was found that the LCP-doped 

layers did not contain any amorphous material and possessed satisfactory structural 

quality. 

 A more in-depth structural investigation was carried out by Raman 

spectroscopy. It was found that depending upon the pulse regime, increasing the laser 

fluence improved dopant and impurity diffusion up to the ablation threshold. The 

results were in good agreement with the sheet resistance and electrochemical 

capacitance-voltage measurements. Enhanced impurity diffusion also increased the 

tensile stress in the film. Annealing the LCP-doped samples relieved the tensile stress 

and lowered the FWHM whereby the structural properties of the poly-Si improved 

upon annealing at high temperature and longer duration. The best structural properties 

were obtained for samples that were subjected to a RTP at 1000 °C for 1 min.  

 A more detailed study of the structure disorder degree, C revealed that bond 

re-arrangement occurred during annealing. It was hypothesized that oxygen thermal 

donors was responsible for the change in tensile stress and structural quality. 

Depending upon the impurity content and the thermal treatment imparted to the 
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samples, the oxygen donors were either partially cured or completely annihilated. In 

contrast, prolonged annealing at the same temperature generated new oxygen donors. 

 Lastly, the grain size, texture and plastic deformation in the LCP-doped 

samples were studied by electron backscattering diffraction. The average grain size 

was comparable to that of non-LCP doped poly-silicon made by the solid phase 

crystallisation approach. The plastic deformation in the LCP-doped poly-Si was 

below the detection limit and therefore it was argued that LCP did not introduce 

appreciable plastic deformation in the poly-Si. This finding was also in agreement 

with earlier reported work about plastic deformation in poly-Si of grain sizes            

(< 3 µm).  
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CHAPTER 7 

ELECTRICALLY-ACTIVE DEFECTS 

IN LCP-DOPED POLY-SILICON THIN 

FILMS ON GLASS 

7.1 Introduction 

Electrical and structural defects limit the performance of solar cells. They act as 

recombination sites and decrease the minority carrier lifetime. In this Chapter, laser-

induced defects that limit the performance of LCP-doped solar cells are discussed. 

The effective ideality factor (neff) is introduced as a critical parameter for assessing the 

overall device quality of a poly-silicon thin film solar cell. From the neff, it is shown 

that the dominant recombination behavior in LCP-doped hydrogenated solar cells was 

confined within grain boundaries or the space-charge region. Further investigation by 

Raman spectroscopy revealed that electrically-active (Si-H2)n defects were introduced 

in the LCP-doped samples as a result of excessive hydrogenation. It is speculated that 

oxygen precipitation during thermal annealing is also responsible for the improvement 

in structural and device quality of the films. 

 

7.2 Effective ideality factor 

Several methods have been reported for fitting the ideality factor of poly-Si thin film 

diodes on glass [1, 4]. For instance, by fitting the light intensity against Voc, Terry et 

al.[3] determined the 1-Sun Voc across each diode as well as Rsh. Other techniques can 
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be found in literature [4]. Another way is to calculate an effective ideality factor 

which is determined from the slope of the Suns-Voc curve. Basically, it is the ideality 

factor of a single diode that allows the best fit for the Suns-Voc data [2]. Thus, a solar 

cell with an ideality factor close to 1 is dominated by recombination in the quasi-

neutral bulk regions and at the surfaces whereas an ideality factor close to 2 reflects 

recombination within the space charge region or at grain boundaries. The effective 

ideality factor (neff) is calculated by [5, 6] as in Equation (7.3):  

 

𝑛𝑒𝑓𝑓 =
𝑉𝑜𝑐(MPP) − 𝑉𝑜𝑐 (1 Sun)

𝑉𝑇 × ln(𝑆𝑢𝑛𝑠(MPP))
 (7.3) 

 

where Voc(MPP) and Voc(1 Sun) denote the open-circuit voltage at maximum power 

point (MPP) and at 1 Sun respectively, VT is the thermal voltage (0.0257 V at 25 ºC) 

and Suns(MPP) is the illumination intensity in Suns at MPP of the pseudo-I-V curve. 

 

7.3 Effective ideality factor of hydrogenated LCP-

doped samples 

In this Section, the effective ideality factor (neff) of the hydrogenated LCP-doped 

samples was extracted from the Suns-Voc data. The neff was derived from the Suns-Voc 

measurements conducted in superstrate. Figure 7.1 shows the extracted neff  and the 

average measured Voc of the LCP-doped samples after a hydrogenation process at   

600 ºC for 30 min in a low pressure chemical vapour deposition (LPCVD) tool with 

an inductively-coupled remote plasma. The LCP conditions are listed in Table 7.1. 

For comparison purposes, the open-circuit voltages (Voc) of those cells are also 

included. 
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(a) 

 

 

(b) 

Figure 7.1: (a) Extracted neff (b) average Vocof the samples after a hydrogenation process at 600 ºC for 

30 min in a LPCVD tool with an inductively-coupled remote plasma. The measurement uncertainty 

reflects the standard deviation in the measurements.The best Voc (> 400 mV) and pFF (> 65%) were 

achieved for the samples that were annealed at 700 ºC for 30 min prior to the hydrogenation process. 
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From Figure 7.1, the best Voc (> 400 mV) were achieved for the samples that were 

annealed at 700 ºC for 30 min prior to the hydrogenation process. It is observed that 

the effective ideality factor of the LCP-doped samples was close to 2, implying that 

the dominant recombination behaviour resulted from either the space-charge region or 

at grain boundaries. In contrast, the Suns-Voc parameters of a reference hydrogenated 

poly-silicon thin film solar cell on glass (from Table 5.5 in Chapter 5) showed a Voc 

and a neff of 413 mV and 1.4 respectively. The Suns-Voc measurements of the reference 

solar cell were also conducted in superstrate. 

 To gain more insight into the recombination behaviour of those cells after 

LCP, the effective ideality factor was compared before and after the hydrogenation 

process. The neff were only compared for the measurements conducted in superstrate 

configuration. The neff of the as-doped samples could not be extracted before the 

hydrogenation process because Suns-Voc measurements could not be conducted on the 

samples as a result of the non-activated dopants. Figure 7.2 shows the effective 

ideality factor of the hydrogenated and non-hydrogenated solar cells after LCP. 

 As seen in Figure 7.2, there is an increase in the effective ideality factor of 

most hydrogenated samples (in particular for the samples annealed at 610 °C for 2 

hours and  700 °C for 30 min) as compared to before hydrogenation. It was expected 

that the neff  would decrease upon hydrogenation due to passivation of grain boundary 

defects such as dangling bonds etc. Instead, the results suggest that relatively high 

ideality factor could arise from hydrogenation-induced defects. Sample S1 from the 

as-doped hydrogenated batch showed a much higher effective ideality factor and 

lower pFF (refer to Table 7.1). This could be due to processing inhomogeneities 

during LCP and hence, it was treated as an outlier in this experiment. 
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Figure 7.2: Effective ideality factor of the hydrogenated and non-hydrogenated solar cells after LCP. 

The effective ideality factor of the non-hydrogenated as-doped samples was not included because the 

dopants were not activated.  

 

 

The effective ideality factor of a complete batch of hydrogenated as-doped (i.e. LCP + 

hydrogenation) samples was subsequently investigated to study the effect of the LCP 

conditions on the device performance. Table 7.1 summarizes the measured and 

extracted Suns-Voc parameters from the batch “LCP + hydrogenation”. 

 From Table 7.1, sample S5 has a lower effective ideality factor (~1.4) as 

compared to sample S1 and S3 processed with the same laser fluence. The neff of 

sample S5 is comparable to the reference hydrogenated poly-Si thin film solar cell 

(~1.3). A possible reason could be that for the same laser fluence, the longer pulse 

length used for sample S5 homogenized the temperature distribution within the melt 

and decreased the temperature gradient across the film. Hence, the thermal stress was 
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lower in the LCP-doped layer. Additionally the dopant distribution inside the film was 

also more uniform. Even though S6 displayed a similar effective ideality factor, the 

high fluence during the LCP process introduced significant material damage to the 

cell. 

 

Table 7.1: Measured and extracted Suns-Voc parameters from the batch “LCP + hydrogenation”. The 

measurement uncertainty reflects the standard deviation in the measurements. 

Sample number 
Voc 

[mV] 

pFF 

[%] 
neff 

S1 

[14 µJ, 100 kHz, 20 ns, 80% 

overlap] 

348 ± 14 59 ± 5 2.1 ± 0.4 

S2 

[12 µJ, 100 kHz, 20 ns, 80% 

overlap] 

364 ± 7 65.7 ± 2 1.6 ± 0.2 

S3 

[14 µJ, 100 kHz, 20 ns, 90% 

overlap] 

365 ± 8 65.4 ± 3 1.6 ± 0.2 

S4 

[12 µJ, 100 kHz, 20 ns, 90% 

overlap] 

376 ± 5 66.5 ± 2 1.6 ± 0.2 

S5 

[14 µJ, 100 kHz, 40 ns, 80% 

overlap] 

353 ± 9 67.5 ± 0.9 1.4 ± 0.1 

S6 

[24 µJ, 100 kHz, 60 ns, 80% 

overlap] 

370 ± 20 68.2 ± 0.1 1.5 ± 0.1 

S8 

[16 µJ, 150 kHz, 20 ns, 87% 

overlap] 

344 ± 12 63.4 ± 0.6 1.7 ± 0.1 

S9 

[12 µJ, 200 kHz, 20 ns, 90% 

overlap] 

369 ± 4 63.9 ± 1 1.7 ± 0.1 
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The increase in neff after hydrogenation suggests that hydrogenation may have 

generated electrical and structural defects in the poly-Si. Studies have shown that 

hydrogenation can also lead to detrimental effects such as de-activation of dopants, 

particularly p-type dopants [7], platelets [8] etc. For instance, a recent study by Qiu et 

al. [9] revealed that depending upon the hydrogenation temperature, platelets can be 

localized at different depths within the poly-Si thin film solar cells. Such hydrogen-

induced defects have localized states within the band gap and can decrease Voc and 

pFF significantly. 

 

7.4 Investigation of the structural properties of LCP-

doped solar cells 

In order to assess the structural quality of the samples after hydrogenation, Raman 

backscattering spectroscopy was conducted on the samples. The critical parameters 

for assessing the structural quality are the transverse-optical (TO) phonon peak and 

full width half maximum (FWHM). More details about Raman spectroscopy can be 

found in Chapter 3 and 6. 

 

7.4.1 Experimental procedure 

Raman measurements (Renishaw inVia) were conducted in backscattering geometry 

using an argon-ion laser of wavelength 514 nm. The laser power incident on the 

samples was less than 10 mW to prevent any sample heating. Several measurements 

were taken across the samples and were performed at room temperature. The spectral 

range was between 400 cm
-1

 to 600 cm
-1

. The Raman spectrum was fitted with a 



ELECTRICALLY-ACTIVE DEFECTS IN LCP-DOPED POLY-SILICON THIN FILMS ON GLASS 

 
 

183 

 

Lorentz distribution to determine the TO peak and the full width half maximum 

(FWHM). 

 

7.4.2 Results and Discussion 

Table 7.2 summarizes the average measured TO peak and FWHM of the 

hydrogenated samples. The error bars reflect the standard deviation in the 

measurements. 

 

Table 7.2: Average TO peak and FWHM of the hydrogenated samples. The error bars reflect the 

standard deviation in the measurements. 

Sample 

number 
Parameter 

LCP  + 

hydrogenation 

LCP + oven 

anneal at 610 

°C for 30 

min+ 

hydrogenation 

LCP + oven 

anneal at 610 

°C for 2 hrs + 

hydrogenation 

LCP + oven 

anneal at 700 

°C for 30 min 

+ 

hydrogenation 

S1 

TO peak 520 ± 0.3 520 ± 0.3 520 ± 0.3 520 ± 0.1 

FWHM 5.8 ± 0.2 6.1± 0.2 6.1 ± 0.2 6.2 ±0.1 

S2 
TO peak 520 ± 0.2 520 ± 0.3 520 ± 0.2 521 ± 0.2 

FWHM 6.0 ± 0.2 5.9 ± 0.2 6.0 ± 0.3 6.0 ± 0.2 

S9 
TO peak 521 ± 0.3 520 ± 0.2 520 520 ± 0.2 

FWHM 5.7 ± 0.2 6.1 ± 0.2 6.2 ± 0.1 6.0 ± 0.3 

 

 

 

From Table 7.2, it is observed that a clear comparison could not be drawn from the 

samples. The TO peaks and FWHM of the hydrogenated samples were relatively 

similar ~520 cm
-1

 and ~6.0 cm
-1

 respectively implying that the samples had almost 

identical structural quality after the hydrogenation process. A possible reason could be 
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that the samples sustained a similar level of structural damage during the 

hydrogenation process. 

 

7.5 Investigation of electrically-active defects in LCP-

doped poly-silicon thin film solar cells 

Raman backscattering on silicon provides a wealth of information, ranging from 

structural quality and stress to chemical bonding and hydrogen defects [10]. 

Generally, non-hydrogenated poly-Si thin film solar cells contain a high density of 

dangling bonds at grain boundaries and other defective regions. These dangling bonds 

introduce states in the band gap and therefore increase the bulk recombination of the 

solar cells [7]. During hydrogenation, hydrogen atoms diffuse into the poly-Si and 

attach to these dangling bonds thereby removing the in-gap states. However, despite 

the significant benefits of hydrogenation in improving device performance, excessive 

hydrogenation generates new defects such as platelets in the solar cell [8, 10-12]. 

Those are micro-cracks between two adjacent planes of silicon atoms stabilised by 

hydrogen that trap molecular hydrogen in voids. The voids are the building blocks of 

platelets and arise from dangling bonds or intra-grain defects induced by the 

hydrogenation process. In Raman spectroscopy, the local vibration mode (LVMs) of 

Si-H, Si-H2 or (Si-H2)n and Si-H3 are used to detect dangling bonds and other hydride 

defects in platelets. Those are assigned the values of 2000 cm
-1

, 2090 cm
-1

 and      

2140 cm
-1

 respectively [13]. On the other hand, molecular hydrogen (H2) is 

distinguished by its frequency at ~4157 cm
-1 

and is attributed to hydrogen molecules 

trapped within the voids created by platelets [8, 12, 13]. 
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7.5.1 Experimental procedure 

In the following study, a few representative hydrogenated samples were investigated 

by Raman scattering spectroscopy (Renishaw inVia) to detect the presence of 

dangling bonds and molecular hydrogen. The measurements were conducted using an 

argon-ion laser of wavelength 514 nm. The LCP conditions are summarized in Table 

7.1. The laser power was ~12.5 mW. All measurements were carried out at room 

temperature. 

 

7.5.2 Results and Discussion 

Figure 7.3 shows the Raman spectra of silicon-hydrogen bond for LCP-doped sample 

(S1) after a hydrogenation process at 600 °C for 30 min in a LPCVD reactor with an 

inductively-coupled remote plasma source. For comparison purposes, the Raman 

spectrum acquired on a reference poly-Si sample (Hyd. reference sample) 

hydrogenated at 450 °C for 15 min is also included.  

From Figure 7.3, it is observed that all the hydrogenated LCP-doped samples 

(shown in red, green and cyan) displayed a clear (Si-H2)n peak at ~2100 cm
-1

. In 

contrast, sample S1_asdoped (shown in black) and its annealed counterpart 

S1[LCP+700(0.5hr)] (shown in blue) did not exhibit such peak. The reference 

hydrogenated sample (magenta) showed a faint peak at ~2100 cm
-1

. The results can be 

explained by the fact that hydrogenation performed at lower temperature and shorter 

duration generated fewer defects in the films. Previously it was reported that 

temperatures below 300 °C can generate hydrogenation-induced defects in silicon 

[14]. Therefore, optimum hydrogenation conditions saturate the dangling bonds (Si-

H) in the poly-Si but excessive hydrogenation simultaneously generates (Si-H2)n 

defects. Comparing the as-doped sample and its annealed counterpart S1[LCP + 
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700(0.5hr)], it would have been expected that, after annealing the sample at 700 °C 

for 30 min, sample S1[LCP + 700(0.5hr)] would have displayed a clear peak at       

~2000 cm
-1

 due to the dissociation of Si-H bond. Instead the results show that LCP 

does not create any dangling bonds in the poly-Si. As for the LCP-hydrogenated 

samples, it is evident that the hydrogenation conditions were excessive and created 

(Si-H2)n defects in the poly-Si. As reported in Ref. [13], the origin of the (Si-H2)n are 

rather complicated but are attributable to intra-grain defects. These results are also in 

reasonable agreement with the FWHM of the LCP-doped hydrogenated samples 

which are higher than that of a reference hydrogenated poly-Si sample (e.g. ~6.0 cm
-1

 

as compared to ~5.3 cm
-1

) thus indicating the presence of structural defects. Lastly, 

molecular hydrogen peaks located at ~4157 cm
-1

 could not be resolved clearly due to 

the high signal-to-noise ratio and are assumed to be under the detection limit. 

To gain more insight into the hydrogenation-induced defects in the other 

samples, a complete batch of hydrogenated samples previously annealed at 700 °C for 

30 min was investigated by Raman spectroscopy. The measurements were conducted 

under the same conditions as in Figure 7.3. Figure 7.4 displays the silicon-hydrogen 

Raman spectra of the LCP-doped samples annealed at 700 °C for 30 min and 

subsequently hydrogenated at 600 °C for 30 min in a LPCVD reactor with an 

inductively-coupled remote plasma source. 

From Figure 7.4, it is clear that all the samples, irrespective of their LCP 

conditions showed a distinct peak at around 2100 cm
-1

 which is in agreement with the 

earlier findings that the hydrogenation conditions generated defects in the poly-Si.  
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Figure 7.3: Raman spectra of silicon-hydrogen bond for LCP-doped sample S1 after a hydrogenation 

process at 600 °C for 30 min in a LPCVD reactor with an inductively-coupled remote plasma source. 

For comparison purposes, the Raman spectrum acquired on a reference poly-Si sample (Hyd. reference 

sample) hydrogenated at 450 °C for 15 min is also included.  
 

 

From the results described in this Section, it is evident that the performance of the 

hydrogenated LCP-doped samples was limited by the defects generated during the 

hydrogen process. Furthermore, literature reports that hydrogenation performed at 

higher temperature (e.g. 610 °C) creates deeper defects into the poly-Si (~1 µm deep) 

whereas hydrogenation carried at lower temperature of 420 °C creates defects in the 

sub-surface region which can be removed by post-hydrogenation processes such as 

dry etching [9]. Therefore, it is imperative that the hydrogenation conditions are 

optimized to maximize the performance of the solar cells.   
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Figure 7.4: Silicon-hydrogen Raman spectra of LCP-doped samples S1 annealed at 700 °C for 30 min 

and subsequently hydrogenated at 600 °C for 30 min in a LPCVD reactor with an inductively-coupled 

remote plasma source. 
 

 

7.6 Laser-induced defects in poly-silicon 
 

The localised heating imparted by a laser beam is advantageous for processing 

because only a fraction of the material is melted without heating the bulk [17]. 

However, the fast melting and solidification cycles introduces thermal stress and 

significant amount of contaminations such as oxygen and nitrogen into the film. 

Those affect the electrical properties of the laser-doped layer [15-17]. There are many 

studies in literature detailing about laser-induced defects in silicon. Some of those are 

described below. 
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 Studies on laser-crystallised silicon revealed that rapid cooling created 

electrically-active point defects within the molten layer as a result of the fast 

solidification (or recrystallization) velocity. Such defects were shown to be 

detrimental for the performance of silicon solar cells as they lower minority carrier 

lifetime and thus, the open-circuit voltage. For instance, some researchers reported a 

critical solidification velocity of about   1-1.5 m/s and considered this value to be the 

threshold for the formation of such defects [15]. In another study to further support 

the argument of a threshold solidification velocity during laser-assisted processes, 

Young et al.[18] used substrate heating during a laser annealing process to slow down 

the recrystallisation speed. They reported a decrease in the point defect density of the 

silicon film. In the same way, other studies claimed that there were two thresholds for 

laser power - one beyond which there was formation of bulk defects and one which 

corresponded to visible material damage [19]. 

 There are also reports of traps being generated in silicon as a result of 

thermally-induced stress. Arora et al.[20] claimed that there exists a threshold energy 

beyond which laser damage and electrically-active defects are generated. This energy 

was found to depend mainly upon the pulse duration and the number of pulses per 

unit area incident on the silicon [20]. This argument is also in agreement with the fact 

that longer pulse length generates less thermal stress. Furthermore, stress also induces 

cracks in the poly-Si films. Thermal stress accounts for defect generation at depths 

that are larger than the doping depths in laser-crystallised films [17]. 

 Besides the factors affecting solidification kinetics, impurities such as oxygen 

and nitrogen lower carrier lifetime in silicon. For instance, Karg et al.[21] showed that 

in the presence of oxygen and nitrogen, there were about 7 species of shallow thermal 

donors and up to 16 species of thermal donors that were formed within a temperature 
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range of 300 °C to 600 °C in mono-crystalline silicon. Those donor-like complexes 

were electrically active and it was reported that nitrogen could either act as a catalyst 

for the formation of these donors or could be part of the complexes. The oxygen-

related defect centers were annihilated by a heat treatment at temperatures above    

600 °C. 

 Other research also focused on the effect of oxygen and carbon on Czochralski 

(CZ) silicon. A detailed study conducted by Kishino et al.[22] revealed that high 

interstitial oxygen levels (10
18

-10
21

 cm
-3

) decreased upon annealing CZ wafers at high 

temperatures. Additionally they found that thermally-induced micro-defects appeared 

upon annealing and that the defect density was largely influenced by the thermal 

history of the substrates. It was demonstrated that high cooling rates lead to small 

micro-defects whereas slow cooling rates lead to bigger micro-defects. They 

speculated that the carbon and oxygen content in the wafers played a significant role 

in the defect density. 

 Cazcarra et al. [23] reported the annihilation and generation of oxygen thermal 

donors over a range of temperatures. They found that thermal treatments within the 

temperature range of 600 °C-900 °C rapidly eliminated thermal donors generated 

during a pre-annealing step at 450 °C. However, prolonged annealing also created 

new oxygen donors. These donors generally appeared after an incubation time related 

to the oxygen concentration in the silicon and once generated, were more difficult to 

annihilate than donors generated at a temperature of 450 °C. They postulated that 

donors created at low temperature (e.g. 450 °C) were attributed to aggregates of few 

oxygen atoms that were easily cured and hence did not introduce stress in the silicon. 

In contrast, donors generated at temperatures between 600 °C-900 °C were related to 

oxygen precipitation and induced stress in the silicon. They speculated that this 



ELECTRICALLY-ACTIVE DEFECTS IN LCP-DOPED POLY-SILICON THIN FILMS ON GLASS 

 
 

191 

 

behaviour could be due to heavy clusters of Siy-Ox atoms acting as nucleation centers 

for oxygen precipitation. They hypothesized that those electrically-active Siy-Ox 

clusters were also quite thermally stable and thus, higher temperatures were required 

to annihilate them. In the same way, Borghesi et al. [24] described the precipitation of 

oxygen as the aggregation of oxygen atoms inside the silicon and that the process was 

driven over a wide temperature range subjective to the kinetics of the diffusion 

reaction. They further explained that based on the electrical activity, the agglomerates 

of oxygen can be further divided into thermal donors and non-electrically active 

precipitates. The latter are identifiably by means of transmission electron microscopy 

(TEM) or high resolution TEM whereas the thermal donors can only be revealed by 

electrical measurements. An excellent review about oxygen precipitation is given in 

Ref. [24]. 

Carbon is also known to affect the precipitation kinetics of oxygen in silicon. 

In literature, there are different views about the influence of carbon on the 

precipitation of oxygen in silicon. Some claim that carbon enhances precipitation 

while others have observed no profound effect on oxygen precipitation mechanisms. 

For instance, Londos et al.[25] studied the effects of oxygen in carbon-lean               

(< 10
16

 cm
-3

) and carbon-rich (10
16

 cm
-3

) silicon and found that carbon had a 

significant role in the precipitation kinetics. They observed that in carbon-rich 

samples, the precipitation annealed out at lower temperature (~720 °C) as compared 

to carbon-lean samples which occurred at 800 °C. From their findings, they claimed 

that below ~950 °C, carbon assisted the precipitation process by providing additional 

seeding sites for heterogeneous precipitation through the formation of C-O complexes 

and above 950 °C, carbon played a catalytic role in the precipitation by minimizing 

the interfacial energy. 
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7.7 Impurity concentration in LCP-doped films 

Secondary ion mass spectrometry (SIMS) profiling was carried out to investigate the 

level of contamination in the LCP-doped samples. The carbon and oxygen 

concentration in an as-doped (sample E5 from Table 4.1) and a corresponding LCP 

sample annealed at 1000 °C for 1 min was assessed by SIMS measurements. The 

sample structure was n
+
 (LCP-doped)/p

-
/SiNx/glass. Both samples underwent a 

hydrofluoric acid (HF) etch to remove the native oxide layer before SIMS. The 

profiling was carried out from the LCP doped layer up to the silicon nitride layer. 

Figure 7.5 shows the measured SIMS profiles of carbon and oxygen in (a) an as-

doped LCP sample and (b) a LCP sample processed under the same conditions and 

subsequently RTP annealed at 1000 °C for 1 min. Both samples were processed with 

a fluence of 1.5 J/cm
2
, a pulse length of 20 ns and a pulse overlap of 80 %. 

 

Figure 7.5: Measured SIMS profiles of carbon and oxygen in (a) an as-doped LCP sample and (b) a 

corresponding LCP sample subjected to RTP at 1000 °C for 1 min. The oxygen level was ~8x10
20

 cm
-3

 

and ~2x10
20

 cm
-3 

in the as-doped and annealed sample respectively. The carbon content was ~5x10
18

 

cm
-3

 and ~4x10
18

 cm
-3

in the as-doped and annealed sample respectively. 
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From Figure 7.5, the oxygen level in the LCP-doped layers was ~8x10
20

 cm
-3 

in the   

as-doped sample and ~2x10
20

 cm
-3 

in the annealed sample. From the above data, it 

appears that a fraction of the oxygen was removed after the thermal anneal and the HF 

etch. As reported in literature [23-26], oxygen thermal donors or non-electrically 

active precipitates may have been formed at this temperature and was subsequently 

removed during the HF etch. This possibly explains the discrepancy in oxygen levels 

between the as-doped and annealed sample. Additionally, high carbon concentration 

of ~10
20 

cm
-3

 was also measured in other LCP-doped samples (refer to Figure 7.7) 

which could have precipitated oxygen in the form of C-O complexes.  

Figure 7.6 shows the measured SIMS profiles of carbon and oxygen in two  

as-doped LCP samples processed with a fluence of 1.5 J/cm
2
 and (a) a pulse overlap 

of 94% and a pulse length of 60 ns (b) a pulse overlap of 96% and a pulse length of 80 

ns. As seen, it is likely that the high carbon and oxygen concentration played a role in 

the oxygen precipitation kinetics upon annealing. Furthermore, LCP on bulk silicon 

wafers previously showed high levels of nitrogen (~10
19

 cm
-3

) [27]. Although the 

level of nitrogen impurity was not measured in the LCP-doped poly-Si samples, it is 

speculated that nitrogen may be present in relatively high concentration. This is 

because the same LCP setup utilizing a doping source coupled in compressed dry air 

(CDA) was used for the LCP experiments in this thesis. Additionally, SIMS profiling 

on hydrogenated poly-Si samples fabricated from the solid phase crystallisation (SPC) 

approach (i.e. baseline solar cell) previously showed nitrogen concentration of 

~6x10
18 

cm
-3

. Overall, it would be tedious to isolate the performance-inhibiting 

mechanisms in LCP-doped poly-Si thin film solar cells because carrier recombination 

could arise from structural defects, electrically-active defects or the significant 

amount of impurities in the LCP-doped layers. Other advanced characterisation 
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techniques such as X-ray absorption spectroscopy, deep level transient spectroscopy 

(DLTS) are mandatory and could not be performed within the timeframe of this work. 

However, some performance-limiting mechanisms can be identified from the findings 

in this thesis. 

 

Figure 7.6: Measured SIMS profiles of carbon and oxygen in two as-doped LCP samples processed 

with a fluence of 1.5 J/cm
2
 and (a) a pulse overlap of 94% and a pulse length of 60 ns (b) a pulse 

overlap of 96% and a pulse length of 80 ns. 

 

 

 Firstly, a detailed study of the effective ideality factor of the hydrogenated 

samples showed that carrier recombination originated mostly within grain boundary 

or space-charge region. A further investigation by Raman spectroscopy revealed that 

hydrogenation generated (Si-H2)n defects in the poly-Si. Although the origin of (Si-

H2)n defects is not clearly understood, it is speculated that they originate from intra-

grain defects [13]. Thus, it appears that the Voc and pFF were limited by 



ELECTRICALLY-ACTIVE DEFECTS IN LCP-DOPED POLY-SILICON THIN FILMS ON GLASS 

 
 

195 

 

recombination within the space-charge region. Also, findings from literature state that 

depending upon the hydrogenation temperature, the platelets extend deeper (~1 µm) 

in the poly-Si than the sub-surface platelet defects typically encountered after 

hydrogenation at lower temperature (e.g. 450 °C) [9].  

Secondly, the results in Chapter 6 showed that after annealing the samples at 

temperatures below 700 °C, the transverse-optical (TO) peak as measured by Raman 

scattering showed some residual stress in the film. For example, the TO peak of the 

sample annealed at 700 °C was ~519 cm
-1 

(indicating the presence of tensile stress) 

while the TO peak of a similar sample annealed under RTP at 1000 °C for 1 min was 

≥ 520 cm
-1

 indicating that the tensile stress was almost completely relieved. These 

results can be explained by oxygen thermal donor generation and annihilation over the 

range of investigated temperatures. For instance, at a temperature of 700 °C, new 

oxygen thermal donors are generated while other species of oxygen donor are 

annihilated and thus, the poly-Si still shows residual stress. On the other hand, under 

RTP conditions, the donors are mostly annihilated and therefore the poly-Si showed 

no residual stress. In contrast, annealing carried out at lower temperatures (below   

700 °C) showed increasing levels of stress in the poly-Si because the donors were not 

effectively removed. These findings are in reasonable agreement with the study by 

Cazcarra et al.[23] who observed that depending upon the thermal treatment, oxygen 

donors were mostly annihilated at 1000 °C. Additionally, the carbon and nitrogen 

content in the LCP-doped films possibly acted as catalyst or enhanced the 

precipitation reaction. A supporting argument may be the low temperature (below  

500 °C) that is sufficient for dopant activation in the LCP-doped samples. In this case, 

the carbon in the film may have precipitated the oxygen in the form of C-O 
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complexes at such low temperatures [24]. Therefore, the electrical quality of the LCP-

doped layer is influenced by the annealing conditions and the oxygen thermal donors. 

 

7.8 Conclusion 

In this Chapter, the electrically-active defects that limit the performance of LCP-

doped poly-Si thin film solar cells was investigated by Suns-Voc measurements as well 

as Raman spectroscopy. The effective ideality factor was introduced as a parameter to 

assess the recombination in the solar cells. From these measurements, it was found 

that the performance of the solar cells was mostly limited by recombination within the 

space-charge region or grain boundary defects. A more in-depth study of the 

hydrogenated LCP samples by Raman spectroscopy revealed that the hydrogenation 

process induced (Si-H2)n intra-grain defects in the poly-Si as a result of excessive 

hydrogenation. A further study of the FWHM and TO peaks indicated that the LCP-

doped samples were of relatively similar structural quality after hydrogenation.  

 The carbon and oxygen impurities in the LCP-doped films were assessed by 

SIMS measurements. Significant levels of impurities were measured in the LCP-

doped samples. A comparison of the SIMS profiles before and after annealing 

revealed that oxygen precipitation in the form of oxygen thermal donors may have 

been generated or annihilated upon annealing. It was further discussed that carbon and 

nitrogen influenced the generation/annihilation of oxygen thermal donors over a range 

of temperatures. The structural quality of the films as investigated by Raman 

spectroscopy in Chapter 6 indicated that the annealing conditions influenced the 

residual tensile stress in the poly-Si. This is because the thermal donor annihilation 

and generation process is a competitive reaction and is also in agreement with reports 

in the literature. Additionally, the high impurity levels such as carbon and nitrogen 
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were likely to influence the kinetics of the oxygen precipitation reaction over a range 

of temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ELECTRICALLY-ACTIVE DEFECTS IN LCP-DOPED POLY-SILICON THIN FILMS ON GLASS 

 
 

198 

 

References 

[1] H. Hidayat, Post-crystallisation treatment and Characterisation of polycrystalline silicon 

thin-film solar cells on glass, PhD thesis, University of Singapore, 2013. 

[2] O. Kunz, Evaporated solid-phase crystallised Poly-silicon thin film solar cells on glass, 

PhD thesis, University of New South Wales, 2009. 

[3]  M.L. Terry, A. Straub, D. Inns, D. Song and A.G. Aberle, "Large open-circuit voltage 

improvement by rapid thermal annealing of evaporated solid-phase-crystallized thin-film 

silicon solar cells on glass", Appl. Physics Lett., vol. 86,pp.172108,2005. 

[4] M.A. Green, Silicon solar cells: advanced principles & practice, Centre for Photovoltaic 

Devices and Systems, University of New South Wales, Sydney, NSW, Australia, 1995. 

[5] O. Kunz, Z. Ouyang, J. Wong, and A. G. Aberle, “Advances in Evaporated Solid-Phase-

Crystallized Poly-Si Thin-Film Solar Cells on Glass (EVA),” Adv. OptoElectronics, pp. 

1-10, 2008. 

[6] A. Kumar, H. Hidayat, C. Ke, S. Chakraborty, G. K. Dalapati, P. I. Widenborg, C. C. 

Tan, S. Dolmanan, and A. G. Aberle ," Impact of the n+ emitter layer on the structural 

and electrical properties of p-type polycrystalline silicon thin-film solar cells", J. Appl. 

Physics, vol. 114, pp. 134505-134505-7, 2013. 

[7] P.I. Widenborg and A.G. Aberle, "Hydrogen-induced dopant neutralisation in p-type AIC 

poly-Si seed layers functioning as buried emitters in ALICE thin-film solar cells on glass" 

J. Cryst. Growth, vol. 306, pp. 177–186, 2007. 

[8] S. Honda, T. Mates, M. Ledinský, A. Fejfar, J. Kočka, T. Yamazaki, Y. Uraoka, T. 

Fuyuki, H. Boldyryeva, A. Macková, and V. Peřina, “Defects generation by hydrogen 

passivation of polycrystalline silicon thin films,” Solar Energy, vol. 80, pp. 653-657, 

2006. 

[9] Y. Qiu, O. Kunz, A. Fejfar, M. Ledinský, B.T. Chan, I. Gordon, D.V. Gestel, S. 

Venkatachalm and R. Egan, “On the effects of hydrogenation of thin film polycrystalline 

silicon: A key factor to improve heterojunction solar cells,” Solar Energy Materials and 

Solar Cells, vol. 122, pp. 31-39, 2014. 

[10] K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamakazi and T. Kurosawa, "Analysis of Defects 

in Polycrystalline Silicon Thin Films Using Raman Scattering Spectroscopy", Jpn. J. 

Appl. Phys. vol. 42, pp. 6742–6747, 2003. 

[11] K. Kitahara, H. Ogasawara, J. Kambara, M. Kobata and Y. Ohashi, "Characterization of 

defects in polycrystalline silicon thin films using chemical etching, hydrogenation, and 

raman spectroscopy", Jpn. J. Appl. Physics, vol. 47, pp. 54–58, 2008. 

[12] A.W.R. Leitch, J. Weber and V. Alex, "Formation of hydrogen molecules in crystalline 

silicon", Mat. Sci.Eng.B58,pp. 6–12, 1999. 

[13] K. Kitahara, A. Hara, K. Nakajima and M. Okabe, "Silicon-Hydrogen Bonds in Laser-

Crystallized Polysilicon Thin Films and Their Effects on Electron Mobility", Jpn. J. Appl. 

Phys., vol. 38, pp. 1320–1325, 1999. 

[14] A.G Ulyashin, R. Job, W.R Fahrner, O. Richard, H. Bender, C. Claeys, E. Simoen and D. 

Grambol, "Substrate orientation, doping and plasma frequency dependencies of structural 

defect formation in hydrogen plasma treated silicon", Phys. Condens. Matter, vol. 14, pp. 

13037, 2002. 

[15] E. Fogarassy, R. Stuck, J.J. Grob, P. Siffert,"Silicon solar cells realized by laser induced 

diffusion of vacuum-deposited dopants", J. Appl. Physics, vol52, pp. 1076-1082, 1981. 

[16] Z. Hameiri, Laser-doped selective emitter and local back surface field solar cells with 

rear passivation, University of New South Wales, Sydney, 2010. 

[17] Z. Hameiri, T. Puzzer, L. Mai, A. B. Sproul and S. R. Wenham, "Laser induced defects in 

laser doped solar cells" Prog. Photovolt: Res. Appl., vol. 19, pp. 391–405, 2011. 

[18] R.T. Young, R.F. Wood and W.H. Christie, "Laser processing for high-efficiency Si solar 

cells", J. Appl. Physics, vol. 53, pp. 1178-1189, 1982. 



ELECTRICALLY-ACTIVE DEFECTS IN LCP-DOPED POLY-SILICON THIN FILMS ON GLASS 

 
 

199 

 

[19] D.L. Parker, F.Y. Lin, S.J. Zhu, D.K. Zhang and W.A. Porter, "A comparison of Nd:YAG 

fundamental and second-harmonic Q-switched laser-beam lifetime doping in single 

crystal silicon", IEEE Trans. Electron Devices, vol. 30,pp. 1322-1326, 1983. 

[20] V.K. Arora and A.L. Dawar, "Laser-induced damage studies in silicon and silicon-based 

photodetectors", Appl. Optics, vol. 35, pp.7061-7065, 1996. 

[21] D. Karg, G. Pensl, M. Schulz, C. Hässler and W. Koch, "Oxygen-Related Defect Centers 

in Solar-Grade, Multicrystalline Silicon. A Reservoir of Lifetime Killers", physica status 

solidi (b), vol. 222, pp. 379–387, 2000. 

[22] S. Kishino, M. Kanamori, N. Yoshihiro, M. Tajima and T. Lizuka, "Heat-treatment 

behavior of microdefects and residual impurities in CZ silicon crystals", J. Appl. Physics, 

vol. 50, pp.8240-8243, 1979. 

[23] V. Cazcarra and P. Zunino, "Influence of oxygen on silicon resistivity", J. App. Physics, 

vol.51, pp. 4206, 1980.  

[24] A. Borghesi, B. Pivac, A. Sassella, and A. Stella, "Oxygen precipitation in silicon", J. 

Appl. Physics, vol. 77, pp. 4169, 1995. 

[25] C.A. Londos, M.S. Potsidi and V.V. Emtsev, "Effect of carbon on oxygen precipitation in 

Czochralski silicon", Phys. Stat. Sol. (c), vol. 2, pp. 1963–1967, 2005. 

[26] I. Hide, T. Matsuyama, M. Suzuki, H. Yamashita, T. Suzuki, T. Moritani, Y. 

Maeda,"Influence of oxygen on polycrystalline silicon sheet [solar cells]," Photovoltaic 

Specialists Conf., 1990., Conf. Record of the Twenty First IEEE , pp.717,720 vol.1, 21-25 

May 1990. 

[27] M. Heinrich, “January 2013 SiPV monthly report”, unpublished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY, CONCLUSION AND FUTURE WORK 

 
 

200 

 

CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Summary 

Lasers are promising for a multitude of thin film applications such as doping, 

crystallisation and defect annealing, amongst others. They are fast, versatile, capable 

of spatial patterning and can be tailored for various purposes. Generally, laser doping 

on poly-silicon thin film is carried out either using externally applied precursors (i.e. 

in the form of spin-on dopants or pre-doped layers such as silicates) or by gas 

immersion laser doping. Each of the aforementioned techniques is limited in terms of 

supply of dopants, high cost, specialised infrastructure, and increased number of pre-

processing steps etc.  

In this thesis, a novel laser doping process known as laser chemical processing 

(LCP) was proposed and applied for doping p-type poly-Si thin films. Initially, LCP 

was developed by Fraunhofer ISE for doping and micro-structuring applications on 

bulk crystalline silicon wafer solar cells. The technique consists of coupling a laser 

light (pulsed or continuous) inside a highly pressurized ultra-thin liquid jet carrying a 

doping precursor. Through total internal reflection, the laser is then wave-guided 

towards the substrate for doping applications. During the process, precursors are 

atomized in situ within the liquid jet and therefore a practically infinite supply of 

doping precursors exists at the reaction site. Using such favorable features from LCP, 

the current work demonstrated a laser doping technique that was both selective and 

featured a practically infinite supply of doping precursors during the doping process. 

Using a frequency-doubled (532 nm) tunable nanosecond Nd:YAG laser and 
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phosphoric acid (42.5%) as the doping source., LCP was applied solely for n-type 

doping of poly-Si. Additionally, the potential of LCP for poly-Si thin film was further 

shown by fabricating an active layer for poly-Si thin film solar cells on glass. To the 

best of the author’s knowledge, such LCP work is being reported for the first time. 

 Chapter 2 detailed the laser-induced physical and chemical interactions 

occurring during LCP to provide the reader with a better understanding of LCP. The 

laser-material interactions were similar to those of dry laser doping on silicon and 

therefore a large number of mathematical models used in dry laser doping were 

relevant for LCP. The parameters within the models were changed accordingly to suit 

the LCP conditions applied in this thesis. These also served as input for the melt depth 

and melt lifetime simulations carried out in Chapter 4. It was explained that the 

simulation model was intended to provide a qualitative understanding of the LCP 

process and that it was limited by the lack of empirical parameters such as the 

intensity profile of the beam, path enlargement of the laser inside the beam and so 

forth. 

 Chapter 3 dealt with a comprehensive description of poly-Si thin film on glass 

solar cells and it was shown that poly-Si thin film on glass photovoltaics was 

promising as a robust and cost-effective technology. Furthermore the process flow for 

the fabrication of poly-Si on glass for LCP was described in detail. The chapter also 

gave an overview of the relevant characterisation techniques for assessing the 

structural and electrical properties of the LCP-doped layers. 

 Chapter 4 investigated the LCP conditions for n-type doping of poly-Si thin 

films on glass. Throughout the study, it was found that a thermal anneal was 

necessary for dopant activation. Additionally, it was demonstrated that the ambient 

conditions did not contribute to dopant activation as shown by the samples with a 
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silicon oxide barrier layer during the thermal treatment. Different LCP and annealing 

conditions were investigated and the sheet resistances and active dopant profiles were 

measured by four point probe and electrochemical capacitance-voltage (ECV) 

measurements respectively.  

Within a particular pulse regime, increasing the pulse energy and pulse 

overlap (below the ablation threshold) resulted in a deeper doping depth as a result of 

enhanced dopant diffusion inside the poly-Si. ECV profiling of the LCP-doped 

samples revealed a flat-top profile implying that the dopants were uniformly 

distributed across the doped layer. Comparison of the ECV and secondary ion mass 

spectrometry (SIMS) profiles showed that for samples processed with a 20 ns pulse 

regime, the peak doping concentration agreed to within 70%. The discrepancy was 

explained by artefacts affecting both ECV and SIMS profiling. On the other hand, the 

investigation of pulse length over the doping profiles showed that using longer pulse 

lengths at the same laser fluence resulted in higher peak doping concentration and 

deeper doping depth. However, it was explained that under conditions of high laser 

fluences and long pulse lengths, the melt lifetime may exceed the characteristic melt 

expulsion time and consequently the melt flow may be dominated by the pressurized 

liquid jet. Additionally, it was shown that for samples processed using a 60 ns and an 

80 ns pulse length, there was a large disparity between the ECV and SIMS profiles. It 

was speculated that doping segregation effects might have caused dopant 

accumulation in the near-surface layer of the samples. 

Melt depth and melt lifetime simulations were carried out using LCP 

conditions employed in this work. The simulations were performed using the SLIM 

(simulation of laser interaction with materials) software and provided a qualitative 

understanding of the LCP conditions on the doping profiles. The limitations of the 
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simulation model were clearly described. Next the sheet resistances were calculated 

using a suitable model from literature. Good agreement was obtained between the 

calculated and measured sheet resistances. The discrepancy was attributed to the 

limitations of the mathematical model as well as experimental artifacts affecting the 

sheet resistance and ECV doping profiles. Finally, optical characterisation using a 

scanning electron microscope (SEM) revealed the influence of the LCP conditions on 

the surface quality of the LCP-doped layers. At high laser fluences and longer pulse 

lengths, the surface quality deteriorated from melt expulsion by the liquid jet. Overall, 

the findings from this chapter indicated that the peak doping concentration           

(~10
19

 cm
-3

), the doping depth (less than 350 nm) and sheet resistances (< 5 kΩ/□) 

were favorable for making an active layer (e.g. an emitter or a back surface field) for 

poly-Si thin film on glass solar cells. 

 Chapter 5 reported the first application of LCP in fabricating an active layer 

for poly-Si thin film solar cells on glass. The optimized LCP conditions from Chapter 

4 were used to make an n-type emitter on a p
-
/p

+
 poly-Si thin film on glass. After 

dopant activation, the samples were assessed by four point probe and ECV 

measurements. The sheet resistances of the annealed samples were about 2-5 kΩ/□ 

and the dopant concentration was about 8 x 10
18 

cm
-3 

to 1 x 10
19 

cm
-3 

at a doping depth 

of less than 350 nm (as measured by electrochemical capacitance-voltage). Selected 

LCP-doped samples were subjected to a hydrogenation process in a low pressure 

chemical vapor deposition (LPCVD) reactor tool with an inductively coupled remote 

plasma source. 

 After hydrogenation, the samples were again subjected to sheet resistance and 

ECV measurements. ECV profiling revealed that the lower sheet resistances were due 

to improved carrier mobility rather than an increase in the peak active dopant 
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concentration. From the ECV profiles, it was also observed that the hydrogenation 

process shifted the p-n junction only slightly as compared to conventional poly-Si thin 

film solar cells on glass. The implication of this shift on the collection efficiency of 

the devices was discussed and was deemed to be promising for the performance of 

LCP-doped poly-Si thin film solar cells on glass. 

 Suns-Voc measurements were carried out before and after hydrogenation. A 

major improvement in open-circuit voltage (Voc) (> 400 mV) and pseudo-fill factor 

(pFF) (> 65%) was realized through hydrogenation due to passivation of dangling 

bonds. The best cell had an average Voc of (446 ± 7) mV and a pFF of (68.3 ± 0.9) %. 

It was discussed that the annealing step was the limiting factor for a higher Voc and 

pFF as demonstrated by the samples annealed at 700 ºC for 30 min. To further study 

the influence of the location of the p-n junction over the collection efficiency of the 

devices, the cells were measured in substrate and superstrate using a customized 

fixture. It was found that the Voc and the pFF were relatively similar. The lower 

average Voc and pFF measured in substrate configuration were attributed to sample 

damage from repetitively probing the n
+
 and p

+
 layers. 

 The solar cell modeling software PC1D was utilized to calculate the Voc of the 

LCP-doped solar cells (in substrate and superstrate). The simulated Voc were in 

reasonable agreement with the experimental Voc. Lastly it was discussed that the Voc 

and the pFF could be further improved by using a RTP process for dopant activation 

and optimizing the hydrogenation conditions to yield higher Voc and pFF.  

 Chapter 6 investigated the structural quality of the LCP-doped layers. It was 

mentioned that structural defects were critical towards device performance as they 

affect carrier mobility and lifetime. Evaluation of the LCP-doped layers through ultra-

violet reflectance and cross-sectional transmission electron microscopy (XTEM) 
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revealed that the high sheet resistances were not caused by amorphisation. The XTEM 

also demonstrated that the poly-Si possessed satisfactory material quality.  

 An in-depth structural investigation was carried out by Raman spectroscopy. It 

was found that depending upon the pulse regime, increasing the laser fluence 

increased structural defects (i.e. impurity diffusion and laser-induced defects) in the 

film. The results were in good agreement with the sheet resistance and 

electrochemical capacitance-voltage measurements. Enhanced impurity diffusion also 

increased the tensile stress in the film. Annealing the LCP-doped samples relieved the 

tensile stress and lowered the FWHM whereby the structural properties of the poly-Si 

improved upon annealing at higher temperature and longer duration. The best 

structural properties were obtained for samples that were subjected to a RTP at 1000 

°C for 1 min.  

 To further understand the microstructural properties of the poly-Si, the 

structure disorder parameter C was determined from the Raman measurements. It was 

established that upon annealing the poly-Si, bond re-arrangement occurred in the 

poly-Si. It was hypothesized that the precipitation of oxygen in the form of oxygen 

thermal donors was responsible for the structure disorder. The generation and curing 

of oxygen thermal donors was discussed within the investigated temperature range. 

The high impurity levels in the LCP-doped layers likely played a role in the kinetics 

of the precipitation reaction. 

 Lastly, the grain size, texture and plastic deformation in the LCP-doped 

samples were studied by electron backscattered diffraction (EBSD). The average 

grain size was comparable to that of non-LCP doped poly-silicon made by the solid 

phase crystallisation approach. The measured plastic deformation in the poly-Si was 

below the detection limit of the EBSD system and it was argued that LCP did not 
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introduce appreciable plastic deformation in the poly-Si. This finding was also in 

agreement with earlier reported work about plastic deformation in poly-Si of grain 

sizes (< 3 µm).  

 Chapter 7 discussed the electrically-active defects that limited the performance 

of the LCP-doped solar cells. The device quality of the poly-Si was evaluated by the 

effective ideality factor (neff) determined from Suns-Voc measurements. It was found 

that the hydrogenated LCP-doped solar cells displayed a neff close to 2 indicating that 

the performance of the devices was mostly limited by recombination within the space-

charge region or by grain boundary defects. An in-depth study of the hydrogenated 

LCP samples by Raman spectroscopy revealed that excessive hydrogenation 

introduced (Si-H2)n intra-grain defects in the poly-Si. Assessment of the structural 

quality through the FWHM and TO peaks indicated that the LCP-doped samples 

possessed relatively similar structural quality after hydrogenation. 

The carbon and oxygen content in the LCP-doped films were measured by 

SIMS profiling. Significant levels of contaminants were observed in the LCP-doped 

samples. A comparison of the SIMS profiles before and after annealing revealed that 

oxygen precipitation may have occurred upon annealing. It was further discussed that 

carbon and nitrogen influenced the generation/annihilation of oxygen thermal donors 

over the range of annealing temperatures. Therefore, it was likely that the thermal 

treatment imparted to the samples controlled the oxygen thermal donor 

generation/annihilation process in the poly-Si.  

 

8.2 Conclusion 

The main contributions of this thesis towards LCP on poly-Si thin films are: 
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 A straightforward technique for doping poly-Si thin films was demonstrated 

using a frequency-doubled (532 nm) tunable nanosecond Nd:YAG laser and 

phosphoric acid as the doping medium. Doping technique is selective and can 

be extended to large area applications (e.g. 20 cm by 20 cm). 

 A systematic investigation of optimum LCP parameters and post-LCP 

annealing conditions was carried out for n-type doping of poly-Si thin films on 

glass through the detailed study of structural and electrical properties of the 

LCP-doped layers. 

 A qualitative understanding of the influence of LCP conditions over the peak 

doping concentration and doping depth of the LCP-doped layers through melt 

depth and melt lifetime simulations was presented.  

 A modified analytical model was shown for calculating the sheet resistance of 

the LCP-doped layers. 

 A thorough study of the structural properties of LCP-doped films was 

performed by Raman spectroscopy, cross-sectional transmission electron 

microscopy (XTEM) and electron backscattered diffraction (EBSD). Proposed 

that oxygen precipitation in the form of thermal donors was responsible for the 

observed structural disorder in the films upon thermal annealing. 

 A poly-Si thin film solar cell on glass featuring an n-type active layer (e.g. 

emitter) made by LCP was successfully fabricated. 

 The device performance [i.e. open-circuit voltage (Voc) and pseudo-fill factor 

(pFF)] and diode quality [i.e. effective ideality factor (neff)] of the fabricated 

solar cells was evaluated by Suns-Voc measurements. 
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 The performance-limiting factors affecting the LCP-doped solar cells were 

identified. The post-LCP anneal step, excessive hydrogenation and oxygen 

thermal donors were discussed to be the underlying reasons. 

  

8.3 Future work 

Considering the early stages of LCP research on poly-Si thin film, the present study 

has shown that the Voc and pFF of LCP-doped solar cells were reasonable and showed 

potential for further improvement. Given the timeframe of the current work and the 

fact that the author's laboratory was affected by a major fire during the course of his 

PhD candidature, some research areas were left unexplored. However, it is the 

author’s belief that such work can further improve understanding of LCP on poly-Si 

thin films and ultimately increase device performance. 

 Firstly, an optimisation of the hydrogenation conditions is essential for the 

LCP-doped poly-Si thin film solar cells. It was shown that the performance of the 

cells was limited by (Si-H2)n defects due to excessive hydrogenation. This study 

entails a careful investigation of the device performance (e.g. by Suns-Voc 

measurements) and hydride defects with respect to the hydrogenation conditions. A 

trade-off is necessary between the optimum hydrogenation conditions, defects and 

device performance. 

 Secondly, another motivating study consists of metallising the solar cells and 

measuring light current-voltage (I-V) and external quantum-efficiency (EQE) for a 

complete assessment of the device performance. It is believed that the surface 

roughness imparted to the poly-Si during LCP is a welcome side-effect to minimise 

overall reflectance losses to the solar cells. Therefore, it will be interesting to compare 

the light-generated current in the LCP-doped devices to a baseline solar cell (i.e. non-
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LCP doped). Furthermore, from the reflectance, EQE and light I-V data, the diffusion 

length of the carriers can be calculated using PC1D. From the data, the LCP 

conditions can be optimized further to decrease carrier recombination within the LCP-

doped layers. 

 Thirdly, a detailed study of the surface composition of the poly-Si by X-ray 

photoelectron spectroscopy (XPS) will be useful to identify the chemical states before 

and after annealing in order to have a better understanding of the dopant activation 

mechanisms occurring during the thermal treatment. Additionally, studies by X-ray 

absorption spectroscopy (XAS) can complement information about the local 

electronic structure of the elements in the poly-Si (e.g. silicon, oxygen or 

phosphorus). 

 Lastly, the present study dealt only with n-type doping on poly-Si thin films. It 

would be equally interesting to investigate p-type doping on poly-Si. Another area of 

study would be to extend LCP application towards crystallisation and doping of 

amorphous silicon.  

 


