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Abstract

The recent times are known as the dark silicon era. Dark implies the percent-

age of the chip that cannot be switched-on at a given time to keep the power

consumption in budget. As a consequence, researchers are innovating energy

efficient systems. Memory subsystem consumes a major part of energy and so

it is imperative to evolve them into energy-efficient memories. In the past few

years, new memories such as resistive memories or non-volatile memories have

emerged. They are inherently energy efficient and are promising candidates for

the future memory devices. However, the application and program layer is not

aware of the new memory and new architectural designs. Thus, the application

layer is not specifically optimized for energy efficiency.

In this thesis, we propose compiler optimization and software testing methods

to optimize programs for energy efficiency. Our techniques provide cross-layer

support to fully utilize the advantages of the energy-efficient memories. In most

of our works, we assume a resistive technology based hybrid memories as L1 data

cache, L2, L3 and main memory level. In hybrid memory designs, data placement

is critical as the resistive memories are sensitive to write operations. Therefore,

it is common to place a smaller SRAM or DRAM alongside to filter the write

accesses. However, caches are transparent to the application layer and so it is

challenging to influence the data traffic to the caches at runtime. Our solution

is a new virtual memory design (EnVM) that is aware of resistive technology

based hybrid caches. EnVM is based on the memory access behaviour of a
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program and can control the data allocation to the caches. The merits of EnVM

diminish at the main memory level, as the size of basic data unit differs from

caches. Caches address cache line size data where as main memory addresses a

page which is much larger. We propose a new operating system assisted page

addressing mechanism that accounts for cache line size data even in the main

memory level. Thus, we can magnify the effects of hybrid memory at the main

memory level.

The next challenge is a characteristic of the energy-efficient memories that

makes them prone to errors (bit-flips). This is not only true for the resistive

memories, undervolted memories also exhibit such characteristics. Adapting

error detection and correction mechanisms often offsets the gain in power con-

sumption. We propose a framework that exploits the inherent error resiliency of

some application to solve this issue. Instead of mitigating, it allows errors if the

final output is within a given Quality of Service (QoS) range. Thus, it is pos-

sible to run such applications on the energy-efficient memories without having

to provide error-correction support. In addition, the gain in energy efficiency

is magnified. The above framework, based on a dynamic program testing ac-

crues a large search space to find an optimal approximation configuration for a

given program. The running time of the analysis and book-keeping overheads of

such techniques scales linearly with increase in program size (lines of code). In

out next work, we propose a static code analysis which deduces accuracy mea-

sures for program variables to achieve a given QoS. This compile-time framework

complements the dynamic testing schemes and can improve their efficiency by

reducing the search space.

In this thesis, we show that with proper support from the software stack,

it is possible deploy energy efficient memories in the current memory hierarchy

and achieve remarkable reduction in power consumption without compromising

performance.
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Chapter 1

Introduction

The evolution of computer systems has reached a juncture where the percentage

of chips that can be utilized, keeping the power consumption within a budget,

is decreasing exponentially. This is commonly known as the utilization wall or

the power wall. As memory devices are the primary consumers of power, it is

imperative to evolve them into energy efficient memories. Architectural innova-

tions have been explored and applied extensively to make the memory devices

energy efficient. Dynamic voltage/frequency scaling (DVS/DVFS) based mem-

ories, non-volatile memories (NVMs, Flash), reconfigurable memories are some

of the widely accepted examples. In this thesis, we attempt to explore software

techniques to enable improved utilization of the energy efficient memories.

1.1 Energy Efficient Memories

There are broadly two kinds of energy efficient memories. First, memories that

are built with low power consuming devices or materials. Non-volatile memories

such as flash, NAND flash, magnetoresitive random access memory (MRAM),

spin transfer torque random access memory (STT-RAM), phase change memory

(PCM), racetrack or domain-wall memory (DWM) are some of the examples.

1
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Energy Efficient 

Memories

Device 

Innovations

Design 

Innovations

Non-Volatile 

Memories

DVS/DVFS 

Memories

Reconfigurable 

Memories

Resistive 

Memories
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Architectural 

Optimizations

SSD/Flash
STT-RAM, 

MRAM, 

PCM
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Caches, Main 

Memories

Refresh Mechanisms, 

Buffer Management, 

Tagless Memories

Figure 1-1: Broad classification of energy efficient memories

Second class energy efficient memories are the ones that are operated in

an optimized fashion to reduce their power consumption. These are essentially

architectural designs that apply to any type of memory device. However, such

optimization techniques depend on the level of the memory device in the memory

hierarchy. For example, refresh mechanisms for DRAM based main memories

reduces the number of times a DRAM bank is periodically recharged and this

is one of the earliest attempts to reduce power consumption. Operating mem-

ory devices at different voltage and frequency levels is another way of optimizing

them for power, often known as DVS/DVFS based memories. Recently, reconfig-

urable caches, where the number of sets and ways can be dynamically controlled

depending on some constraints are also being extensively researched for energy

efficiency of the memories. Figure 1-1 illustrates the classification of the energy

efficient memories that will aid in understanding the perspective of this thesis.

Limitations of Conventional Memories

In a discussion on energy efficient memories, it is important to describe the

limitations of the conventional memory devices and architectures. First, let us

examine the SRAM devices. SRAM is widely used to build processor caches.

SRAM is fast, which makes it suitable to be placed very close to the perfor-

2
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mance critical pipeline. However, SRAM suffers a power penalty in terms of

leakage current. As the technology node scales and capacity increases, the leak-

age current of SRAM becomes a more serious concern. Therefore, for higher

capacity off-chip memories, DRAM is the usual choice. DRAMs are denser and

cheaper compared to SRAMs. Though they do not exhibit leakage current com-

ponent, the power ditch is the refresh energy. DRAM cells discharge with time

and thus need to be refreshed to keep the data alive. This refresh mechanism

constitutes the majority of the power consumption in DRAMs.

Multi-core systems demand larger memory on and off-chip to be able to pro-

vide higher compute power and functionality. On the other hand, low-power

embedded devices such as smartphones and tablets, though do not demand huge

compute capabilities, poses higher power constraints in terms of battery provi-

sion. In both scenarios, the demerits with respect to power consumption, makes

it difficult to put more SRAM and DRAM to suffice the requirements and con-

straints. Therefore, the gradual shift from conventional memory designs and

devices to energy efficient memories is inevitable.

Resistive Memory Devices

Resistive memory devices are essentially non-volatile memories that are capable

of retaining data independent of the power supply. Therefore, they are free

from leakage current or refreshes. Resistive memories such as MRAM, STT-

RAM and PCM are well studied and considered for on-chip and off-chip memory

levels. Specifically, STT-RAM is considered as a suitable device for processor

caches. They are 4x denser than SRAM, which either provides bigger caches or

reduces the silicon area budget of the chips. At the main memory level, PCM is

considered to be the next alternative of DRAM providing faster and bigger off-

chip memories. However, these memories have few drawbacks. First, the access

latencies of load (read) and store (write) are asymmetric. The memory write

3
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access is usually 3x longer than memory read. Secondly, the write endurance of

the resistive memories is much lower than their conventional counterparts. Write

endurance is defined as the maximum number of write operations a memory cell

can endure before failing permanently. Moreover, the write current is also higher

and so, the resistive memories are also known as write-sensitive memories.

Therefore, if the resistive memories receive a large amount of write opera-

tions without any control, the lifetime of the entire chip will be reduced. The

non-volatility of the resistive memories could be relaxed to gain lower access

latency for memory read and write. The time period for which it can preserve

memory content without a refresh is known as the Retention Time. However,

beyond the retention time, these memories are susceptible to stochastic error in

terms of single or multiple bit-flips. This characteristic is similar to that of soft

errors in the conventional memory devices. Such errors are inherently a part

of dynamic voltage and frequency scaled memories, which is described in the

following section. We will refer to this issue as error susceptibility. Table 1.1

Features SRAM DRAM MRAM PCM STT-RAM

Non-Volatile No No Yes Yes Yes

Cell-Size(F 2) 5-120 6-10 16-40 6-12 6-20

Read Latency (ns) 1-100 30 3-20 20-50 2-20

Write Latency (ns) 1-100 15 3-20 50/120 2-20

Endurance 1016 1016 >1015 108 >1015

Write Power Low Low High Low Low

Other Power Consumption Leakage Refresh None None None

Table 1.1: Comparison of features of different memory technologies

shows a comprehensive comparison of all the memory technologies mentioned

above.

DVS/DVFS Based Memory Designs

In a DVS or DVFS based memory, the voltage or frequency is dynamically

changed to reduce power consumption. Decreasing the operating voltage of

a memory is also known as undervolting. Together with reducing power con-
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sumption, undervolting also reduces reliability and renders the memory prone

to errors. DVS/DVFS is a popular energy controlling mechanism at all levels

of memory hierarchy. Beginning from instruction and data L1 caches, it can

be applied to all cache levels and aptly to main memories too. Researchers

have explored many novel architectures and policies to utilize DVS/DVFS based

memories. However, the error handling and book-keeping involved in all such

techniques, always negates the energy gain to an extent.

1.2 Motivation & Goal

In this thesis, we would explore the various possibilities of deploying energy effi-

cient memories at various levels of the memory hierarchy. Specifically, we would

propose compiler and software assisted techniques that unleash the full poten-

tial of these memories. We base our works on hybrid memory architectures.

In hybrid memory systems, a resistive memory is supported by a conventional

SRAM/DRAM memory with a smaller capacity to filter out write accesses. Sum-

marizing the scope and attempt of this thesis in a comprehensive way -

• We assume an energy-efficient memory hierarchy consisting of resistive

technology based hybrid memories at each level. Though these memories

will exhibit similar properties, the implications are different when they are

placed at different levels of the memory hierarchy.

• Specifically, we will focus on compilation and software techniques and how

such methods can be applied to aid the energy-efficient memories.

• Finally, we would engage our efforts to deal with two specific challenges,

namely, write sensitivity and error susceptibility of energy efficient

memories.

Overall, we attempt to answer the following question -

How to optimize programs so that they can alleviate the weaknesses

5



Chapter 1. Introduction

of the energy-efficient memories in the underlying hardware architec-

ture?
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Software Support for Memory Hierarchy

Usually, it is a common practice to analyze and optimize program code based on

the underlying hardware on which it is expected to be executed. Information on

the program code is used to optimize and compile it so that it gains maximum

in terms of performance and correctness at runtime.

For example, Registers are one of the very limited, yet important hardware

resources. Registers play a key role in the performance, as they are situated

closest to the processor. Register Allocation, therefore, is a very significant step

in the compilation process that determines which variables could be allocated

to registers and at what point of program execution should they be written

back to the memory. As the numbers of registers are limited and in contrast,

the numbers of variables in a program are much larger, it is a difficult task

to sieve and allocate the variables to registers in an optimal fashion. Register

allocation techniques are well-studied over decades and still it remains one of the

most important research areas as it plays a significant role in the performance

of systems.

However, as the power consumption has now become a threat to further evo-

lution of computer systems, program codes are being analyzed and transformed

in various new ways, so that it consumes less energy too, while it is executed. In

pursuit of this, it is essential to examine if existing off-the-shelf program analysis

techniques already provide such a support.

In this thesis, we are chiefly concerned with energy consumption of memory

devices. When a program is analysed for its memory usage, generally the load

and store instructions are of prime importance. In most of the conventional pro-

gram analysis and optimization techniques, the memory accesses are considered

to be symmetric i.e. a read access is equivalent to a write access in terms of

latency and probe. In addition, correctness of the program output is regarded

as the goal while optimizing programs for a particular underlying architecture.
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While the above-mentioned assumptions are no longer valid for architectures

using energy efficient memories, it is therefore, imperative to design new pro-

gram analyses and optimizations to perceive the advantages of energy efficient

memories.

1.3 Contributions
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Figure 1-2: A comprehensive illustration of the scope of this thesis.

In this thesis, we would explore the various ways a program can be optimized

for a completely energy efficient memory hierarchy. Figure 1-2 illustrates the

possible influences of software and compiler techniques over memories at different

levels of the memory hierarchy and a comprehensive illustration of the scope of

this thesis. The gray boxes represent the works proposed in this thesis.

1.3.1 Write Sensitivity of Hybrid Memories

Optimizing Programs for Hybrid Caches

Caches are the most critical memories to the performance of a system. A resistive

memory based cache hierarchy as the next generation of on-chip memories is well
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explored. However, as mentioned before, if caches are built with resistive memory

technology, they will be sensitive to write operations. Compilation techniques

that are aware of this write sensitivity and access latency asymmetry are able to

support the resistive memories on behalf of the software stack. Differentiating

between read and write operations would not only enhance performance, reduce

power consumption, it will increase the lifetime of the chips also. Unfortunately,

caches are transparent to the application layer. The only way to control the

data allocation to the caches is to influence the physical address of memory

objects. The physical address of memory objects are strongly mapped to the

virtual addresses.

Therefore, we propose a new virtual memory design, EnVM, which is aware

of resistive memory based hybrid caches. In particular, we assume a STT-RAM

and SRAM based hybrid cache, deployed at any level of cache hierarchy. Virtual

addresses are generated according to memory access behaviour of the program

variables. Read and write intensive data are allocated separately in the virtual

memory area, introducing a data locality based on the memory access behaviour.

The new virtual memory layout is implicitly used to allocate data to STT-RAM

and SRAM at any level of the memory hierarchy and is not dependant on the

particular arrangements of the two partitions. The proposed design successfully

filters out write operations and allocates them to SRAM. Chapter 3 elaborates

more on this work.

Operating System Assisted Hybrid Main Memories

EnVM is capable of influencing data allocation to all the memories in the entire

memory hierarchy from L1 caches to the main memory. As it is a virtual memory

design, unique to a process, it is also applicable to multi-core and multi-tasking

environments. EnVM is supported by a small hardware component which is cou-

pled with the address translation unit. Thus, it closely monitors and intercepts

9
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cache fills and writebacks. Read and write intensive data are read and written

back to the resistive and conventional SRAM/DRAM partitions respectively, in

all levels of caches. However, the data exchange between the last level cache

(LLC) and main memory is different in nature. The unit of data copied between

the caches is the size of cache lines (say 64 bytes), generally same for different

levels of caches. In case of LLC writebacks, there is a disparity between the sizes.

LLC usually maintains a cache line size writeback. On the contrary, the main

memory maintains data in units of pages (say 4KB) which is much larger than

the cache line size. Therefore, any read or write intensive data that is written

back from the LLC under the influence of EnVM, has no guarantee to maintain

the locality based on memory access intensity in the main memory too. As the

page size is large, it is difficult to allocate all the read and write intensive data

separately in the resistive and DRAM partitions. To achieve that, the virtual

memory area should be aligned with page size containing same size chunks of

read and write intensive data, which is very unlikely.

So, we propose a new operating system assisted, LLC writeback scheme to the

hybrid main memory. In this technique, the main memory maintains sub-page

level data and is able to differentiate between dirty and clean data at the cache

line size granularity. The key mechanism is that the LLC always writes back to

the DRAM partition and LLC fills are always served by the resistive memory

partition. This interaction and mapping of sub-page level activity is entirely

maintained by the operating system. More details on this work are included in

Chapter 4.

1.3.2 Error Management of Hybrid Memories

Dynamically Testing Programs for Approximation

With the two techniques mentioned above, the entire software stack is aware of

the underlying hybrid memory system. The applications and operating system
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assists the memory sub-systems to achieve energy efficiency and performance.

Hence, the write sensitivity problem of the resistive memories is now acknowl-

edged. Next, would focus on error susceptibility issue of these memories. Re-

sistive memories are exposed to stochastic errors, which are commonplace for

the DVS- DVFS based memories too, commonly known as soft-errors. Many

researchers have proposed error detection and error correction techniques for re-

liability against soft-errors. This implicitly assumes a framework that ensures

correctness of a program even at the cost of power consumption. In addition,

such methods demand high book-keeping overheads. On the flip side, with pop-

ularity of high configuration embedded devices such as smartphones and tablets,

power constraints in terms of battery usage have become a bottleneck.

Many applications that are usually run on these devices are resilient to errors

to some extent. In other words, accuracy of some applications can be relaxed i.e.

approximated, if there is a reduction in power consumption as a consequence.

In our third work, we propose a framework to analyse a program to extract

approximable data which, even if incurs errors, will not lead to catastrophic

failure of the application and will produce output within an acceptable quality

of service (QoS) band. We propose a dynamic testing framework based on sta-

tistical sensitivity analysis which characterizes program data into critical and

approximable classes. The approximable data are allocated to the resistive or

DVS/DVFS based memories and other data to SRAM/DRAM. The apt usage of

energy efficient memories to hold approximated program data reduces the power

consumption required to maintain the correctness or mitigate errors. Chapter 5

elaborates on this work in details.

Statically Analyzing Programs for Approximation

Dynamic testing frameworks involve computationally intensive algorithms and

profiling of applications to characterize approximation spaces in a program. They
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are based on large search spaces with a goal to find a near-optimal approxima-

tion configuration for a given application. The ideal configuration is one that

would minimize the energy consumption of the application during runtime with

no QoS loss. However, it is a difficult problem and thus, the state-of-the-art

solution involves programmer’s expertise to manually annotate the applications

for possible approximations. Our previous work attempts to alleviate program-

mer’s effort and generates approximation spaces automatically with a penalty of

a complex and compute intensive analysis.

In this work, our aim is to statically analyze a program to extract approx-

imations in program variables based on the required correctness (QoS) of the

output variable. As a compile time analysis has limited knowledge about pro-

gram runtime, our ulterior goal is to merely reduce the huge search spaces the

dynamic testing based methods incur, by heuristically determining possible ap-

proximations. Chapter 6 elaborates on this work in details.

1.4 Thesis Outline

This thesis continues with an extensive study on the related literature and state-

of-the-art techniques in Chapter 2. We introduce our first proposal of a static

analysis and code generation technique for the deployment of hybrid memories as

processor caches in Chapter 3. Further, we propose a system-wide and operating

system assisted framework to support hybrid memories at the main memory level

in Chapter 4.

After the previous two proposals to solve the write sensitivity of the hybrid

memories, in Chapter 5, we propose a solution to mitigate the error suscep-

tibility issue of energy efficient memories. We continue by elaborating on the

limitations of the proposed technique and thereby, proposing a complementary

static analysis in Chapter 6. Finally, the thesis concludes in Chapter 7.
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Chapter 2

Background & Related Works

In this chapter, we would elucidate on the existing literature and researches

related to resistive memories and their usage to reduce the energy consumption

of computer systems. First, we would start with a short description on the device

level details of resistive memories followed by various schemes to deploy them in

the current memory hierarchy.

2.1 Resistive Memories

Resistive memories are memristor [2] based non-volatile memories. Recent stud-

ies [3–7] show that they are promising as next generation alternatives to SRAM

and DRAM. Resistive memories are inherently energy efficient and provide better

performance than other non-volatile memories like NAND Flash etc [8, 9]. One

variety of resistive memory, namely, STT-RAM (Spin Torque Transfer Random

Access Memory) is a suitable candidate for processor caches and thus, can be

an alternative to SRAM [3, 4, 10–12]. STT-RAMs are denser (4x) than SRAM

and do not exhibit any leakage current, thus, highly energy efficient. With the

increasing demand of many cores and network-on-chip architectures, denser and

power efficient caches like STT-RAMs opens a way forward for Moore’s scaling.
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Other works [5–7, 13] suggest that a class of memories, namely PCM (Phase

Change Memories) which are similar to the resistive memories and shares all the

merits and demerits, are good candidates for main memory as an alternative to

DRAM.

However, resistive memories disclose two main drawbacks which hinder them

from being adapted in the memory hierarchy in a straight-forward fashion. First,

write sensitivity, i.e. the read and write access latencies are different. A memory

write requires longer (3x) than a memory read. In addition, write current is

higher than read current. Thus, writes to resistive memory devices are expensive

and critical to performance and lifetime. Second drawback is error susceptibility

of the resistive memories. Smullen et al. reduces the write latency of the resistive

memories by introducing a relaxed non-volatility design [14], which exposes the

resistive memory cells to stochastic errors. The relaxed non-volatility entails

these devices with a retention time - a time interval for which a memory cell

can hold the content without being refreshed. Beyond the retention time, the

memory cells are susceptible to errors.

2.2 Write Sensitivity of Hybrid Memories

Due to the above idiosyncrasies researchers have proposed a Hybrid Memory

design which comprises a large partition of STT-RAM/PCM assisted by a small

SRAM/DRAM partition to aid the write sensitivity of their counterparts, as

shown in Figure 2-1.

Figure 2-1 illustrates a simple hybrid memory hierarchy with hybrid cache(s)

and hybrid main memory. There are two main challenges -

• Data Allocation - A random data allocation to the two partitions of

hybrid memory may result in unaccounted write operations in the resistive

memory. Therefore, it is important to allocate data to the two partitions
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CPU 
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Figure 2-1: Simple hybrid memory hierarchy

wisely. Depending on which level of memory hierarchy the hybrid memory

is placed in, the data allocation policy will have different implications.

• Write Reduction - In addition, the data allocation strategy should be

such that the writes to the resistive memory are minimized. The write

reduction is of prime importance as it impacts the performance, writes

being 3x slower and also the lifetime of the chip, as the write endurance is

lower.

2.2.1 Hybrid Caches

Towards the reduction of writes in hybrid caches comprising SRAM and STT-

RAM, data migration techniques have been proposed where cache blocks are

migrated to SRAM to absorb write accesses, and then moved back to the STT-

RAM from where they can service read requests [3, 15]. However, such hardware

managed schemes require significant energy overhead for the additional hardware

units which can offset the energy gain. Moreover, the migration traffic is a serious

concern. Zhou et al. [16] suggested a method to reduce writes by performing a

read operation before the write operation. This checks if the write operation is

redundant i.e. rewriting the same data. Such redundant writes are terminated

and the total number of writes to STT-RAM is reduced. These works require

both runtime and hardware support, and thus poses significant overhead. Most
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of the hybrid memory management techniques are hardware controlled. A few

schemes, concentrating on compiler assisted and profiling techniques have been

directed at embedded system where the applications are stable and known ahead

of time [17–19].

Hybrid L1 Cache

Deployment of STT-RAM in the L1 cache is most challenging problem as L1

cache is closest to the processor and hence is time critical [20]. Li et al. [15]

introduced one of the first compiler assisted approaches for managing hybrid

caches. They assumed a hybrid L1 cache architecture that allows for migration

of data from STT-RAM to SRAM to reduce write operations. They presented

a novel stack data placement and proposed an arrangement of memory blocks

in such a way that reduces migrations because copying data from one cache to

another is an expensive operation. Further, they proposed a preferential cache

allocation policy that places migration intensive blocks into SRAM to further

reduce write accesses to STT-RAM [17].

Hybrid L2 & Last Level Cache (LLC)

Mao et al. [21] proposed a novel prefetching technique for STT-RAM based LLC

to reduce write accesses due to aggressive prefetching. This method demands

extensive hardware support. Chen et al. [19] presented hardware and software co-

optimized framework to aid STT-RAM based hybrid L2 caches. They proposed

a memory-reuse distance based program analysis that allocates write intensive

data in SRAM and read intensive data in STT-RAM. This analysis is supported

by a runtime data migration technique using hardware counters for each cache

line. Though their framework improved performance and also showed energy

efficiency, they are based on the profiling of application. Profiling based methods

suffer the well-known shortcomings in usability and scalability.
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2.2.2 Hybrid Main Memories

As main memories are further away from the processor and pipeline, advantages

of using resistive memory (PCM) at the main memory level are enhanced. There

are two types of architectures proposed for the hybrid memory as shown in 2-2.

In the first type (2-2a), the DRAM is seen as a last level cache of the system. In

order to do this, DRAM must be stacked on the CPU chip using 3D die stacking

techniques. The second type (??) of hybrid memory has the DRAM occupying

a separate address range in the physical address space of the processor. This is

the architecture envisioned in our work. The main objective is to enhance the

lifetime of PCM and improve the overall system write performance.

LLC

Upper Level Caches

Memory Controller

Disks

DRAM

NVM

(a)

LLC

Memory Controller

DRAM

Disks

Upper Level Caches

NVM

(b)

Figure 2-2: Different designs of hybrid main memory

For the first type, Qureishi et al. [7] suggested using DRAM as an LLC with a

sophisticated cache controller. They also suggested a mechanism to improve the

access latency of hybrid main memories that adjusts the scheduling of memory

accesses using write pausing [22]. Architectures with DRAM as the LLC, requires

on-chip tag stores implemented in SRAM. For very large DRAM caches, the

overhead associated with storing the tag array is significant. Dong et al. [23]

reduced the size of the tag stores by using very large cache line size in the DRAM

cache. Though this reduces the tag store, fragmentation and increased traffic
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when fetching data from the PCM memory worsens memory bus contention.

Loh et al. [24, 25] overcomes the issue of on-chip tag storage by storing both

data and tag in the same DRAM row. The latency associated with a tag lookup

from the DRAM is reduced through a parallel on chip lookup structure called

Missmaps, and a technique called compound access scheduling where data and

tag lookup is scheduled side by side in the same memory transaction. Zhou et

al. [16] manages the DRAM cache with the aim of reducing writebacks to the

PCM memory. This work also distributes writebacks among write queues evenly

to spread the writes across PCM, popularly known as wear levelling.

Among other works that assume the second type of hybrid memory architec-

ture with a disjoint address space and arranged linearly [5, 26–29], Dhiman et

al. [5] proposed a technique based on counting the number of writes to individual

PCM frames. Once the count reaches a threshold, the data is moved to a DRAM

frame.

Zhang et al. [26] introduced a similar concept of recording the writebacks to

individual frames of an on-chip DRAM memory. A multi-queue (MQ) algorithm

is used to migrate write intensive pages from PCM to DRAM. Implementing on-

chip tables to store writes to individual PCM frames is not scalable. The storage

overhead associated with storing these tables may not always be realizable for

large scale systems with terabytes of PCM memory.

Ramos et al. [27] used another kind of memory controller that implements a

modified MQ algorithm to rank page frames. The pages are migrated to DRAM

on the basis of the read and write references. The memory controller performs

page migration between DRAM and PCM without support from the OS.

A purely OS-based hybrid page management technique implemented in the

Linux kernel was explored by Park et al. [28]. The page fault handler is modified

to allocate DRAM frames to writable memory regions of the process, while non-

writable regions are allocated PCM frames. Shin et al. [29] made use of a kernel
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daemon to monitor the write activity to the pages by scanning through the page

tables of all the processes running in the system. Energy is saved by powering

down blocks of DRAM memory after migrating these pages back to PCM.

2.3 Error Susceptibility of Hybrid Memories

Smullen et al. [14] proposed a design of STT-RAM where the non-volatility

property is relaxed and the write access is faster as a consequence. Relaxing the

non-volatility of the resistive memories, introduces the concept of Retention Time

- the maximum time period for which a memory cell can keep data alive without

a refresh operation. Therefore, relaxed non-volatility designs of STT-RAM and

PCM demands a regular refresh mechanism, without which, the memory cells

are susceptible to stochastic errors beyond the retention time.

Various authors suggested different STT-RAM and PCM cell structures with

different retention times [4, 14, 30], varying from 10ms to 24.5µs. Li et al. [31]

proposed smart refresh scheme for such STT-RAM based caches, while other

works relied on error detection and correction (EDC) to ensure data integrity [32,

33]. Refresh techniques are power hungry and have performance impact. On the

other hand, EDC schemes have high book-keeping and space overheads.

In this thesis, we approach the error susceptibility issue of the resistive mem-

ories with a perspective to allow errors resulting in a graceful degradation of

application and as a consequence reduce power consumption. This would not

only apply to resistive memories, but would also aid other energy-efficient mem-

ories such as DVS/DVFS based devices that are error prone. Thus, the abate-

ment of power consumption is twofold. First, using energy-efficient memories

without any refresh or EDC mechanisms saves significant overhead. Second, by

trading-off accuracy of application, it is possible to achieve better performance

which reduces runtime and saves power. In recent literature, such an approach

is popularly known as Approximate Computing.
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2.4 Approximate Computing

There are many popular applications in commercial embedded devices that do

not require a strict QoS as long as they meet an acceptable threshold [34]. Build-

ing on this idea, approximate computing has gained much attention. It allows

programs to relax their accuracy in order to save on energy consumption, instead

of focusing on mitigating soft-errors in programs [34–36].

2.4.1 Approximation in Programs

Recently there have been wide explorations on how to allow a disciplined ap-

proximation to relax the accuracy of a program and reduce energy consumption

as a consequence [1, 37–41]. Approximation is achievable at different levels of

abstraction such as code approximation, program approximation, approximate

computer architectures and device level approximations.

Baek et al. [37] suggested the idea of this trade-off by proposing a loop and

function approximation framework. In this, the programmers are expected to

provide multiple versions of a function or a loop structure. The framework con-

sists of a calibration that generates different QoS models and allows a graceful

QoS loss during runtime to save energy. However, this solution places a de-

mand on the programmer’s expertise and involvement. With the popularity of

open-source application development for embedded devices, it is generally not

feasible to request multiple versions of a code to allow approximate computing.

In addition, compiling (or re-compiling, in case of legacy software) a program

with extra versions of functions and loops would result in code bloat and larger

executables which is not suitable for tight budget and low power devices.

Sampson et al. [1] proposed a type-qualifier based programming paradigm,

EnerJ, to facilitate approximation of program data. This ensures safety in terms

of maintaining a distinction between approximate and precise computation of

program data. Only with explicit programmer’s endorsements, a conversion from
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precise to approximate or vice-versa is allowed. It provides an exclusive com-

piler to generate instructions for the underlying dynamic voltage scaling-based

hardware called “Truffle” to switch between high and low power modes [39].

Carbin et al. [42] proposed a technique that classifies code regions into ap-

proximable and critical by a training method that uses fuzzed input data. De-

pending on the program path taken by different inputs, it is able to identify

critical program regions and approximable regions. In other works, they propose

program transformations and code generation techniques to allow approximate

computation. The motivation in these works is to save computation power i.e.

loop iterations, floating point operations etc. One such method is known as

“loop perforation” where loop iterations are skipped in order to save computa-

tion which results in approximation in the output [43]. Misailovic et al. [44, 45]

proposes probabilistic accuracy tests to allow for program level approximations.

However, in most of the above mentioned works, one common drawback is the

programmer’s involvement, and the lack of scalability.

Shafique et al. [46] proposes a technique to discover errors that are masked by

program flow and operations on data. This indicates an inherent error resilience

and approximation capability of a program. However, this is based on static

code analysis and thus is not accurate as a whole program optimization frame-

work. Error concerning only statically allocated data and compile-time inferable

computation is exposed to this technique. Program data that are dynamically

allocated or are influenced by runtime computations are hard to analyse.

2.4.2 Approximation in Hardware Devices

Approximation can be introduced in both the hardware and software stack.

There are many other works investigating and designing architectural or device

level approximation infrastructures [47–49]. Chippa et al. [50] presented a work

on characterizing error resilience in applications based on approximate adders.
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They also proposed “Impact”, an approximate adder circuit that saves energy

by approximating addition operations [51]. Many other designs for approximate

adders have been proposed thereafter [52–56]. Liu et al. [40] proposed a DRAM

refresh mechanism that protects critical data and approximates non-critical data

to save refresh energy. Kahng et al. [52] propose an accuracy-configurable adder

which can adaptively adjust during runtime based on the required accuracy.

Memories that can control power supply at the bit level are widely explored [57–

59]. For such memories, it is imperative to know how many bits of a variable

are approximable. Finally, Nesenbergs et al. [60] proposed an approximate com-

parator that runs on low power and reduces the cost of comparisons which are

otherwise highly expensive.
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Compilation Framework for

Resistive Hybrid Caches

In this chapter, we introduce a compiler framework to attenuate the write impact

on hybrid memories. Specifically, we would propose a new virtual memory layout

which is aware of the hybrid memory architectures at the processor cache level.

We propose analyses targeted towards both statically and dynamically allocated

data and generate program executable with new virtual addresses according to

their memory access behaviour. Such an approach is able to influence all memory

devices in the memory hierarchy simultaneously.

3.1 Motivation

Virtual memory is the key to managing multiple processes efficiently with the

limits of the physical memory of a system. Virtual memory allows programs

to execute with memory footprints that are larger than the available physical

memory. However, the classic virtual memory is designed with the assumption

that the underlying cache hierarchy is built using fast SRAM and therefore it is

not aware of write sensitivity issue of hybrid memories.

23



Chapter 3. Compilation Framework for Resistive Hybrid Caches

From systems’ perspective, allocating data without differentiating between

read and write accesses, is detrimental to the hybrid memories. Unmonitored

and excessive write operations can impede performance, and reduce the lifetime

of the on-chip hybrid caches and hence of the processors [9, 11]. So, it is essential

to judiciously manage memory accesses based on their access patterns and access

types in order to achieve a balance between energy efficiency and performance.

Recent works have explored novel data allocation techniques towards efficient

utilization of the hybrid caches. Chen et al. [19] proposes a hardware-software

co-optimized framework to allocate data to hybrid caches. Their compile-time

analysis produces hints for each instruction that influences data placement in the

partitions. The hardware support ensures that write intensive data is migrated

from STT-RAM to SRAM to ameliorate the write endurance issue. Li et al. [17]

proposed a new stack layout to optimize data allocation to the hybrid caches.

They present a specialized address generation policy that reduces data migration

between the two partitions, while, at the same time, reducing write operations

to STT-RAM. Their technique can be applied to global data too. However, all

the techniques are specialized for a particular cache level and architecture. Most

of the methods have hardware overheads. These partial approaches will result in

even higher overheads when STT-RAM based hybrid caches are adapted at all

levels. Worse, it would lead to mutual interference between the different cache

levels, subsequently resulting in impaired efficiency.

For example, in the algorithm by Chen et al. [19], memory blocks with a

large memory reuse distance are assumed to incur write operations to L2 due

to L1 capacity miss. Based on such heuristics, every memory block is provided

with hints to be considered while placing the cache block in L2 SRAM partition

or STT-RAM partition. Suppose we also have a hybrid L1 that uses the other

algorithm [15] which places read and write intensive blocks in different localities

if they are in the stack region. The data locality, then, becomes a function of
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the type of memory access and not temporal relationships. In such a setup of

L1 and L2 caches, a large memory reuse distance for a L1 cache block does not

necessarily result in capacity misses. Therefore the assumption for algorithm for

L2 cache management is weakening significantly. These two cache management

techniques for L1 and L2 will fail to cooperate with each other, and may in fact

be detrimental to one another.

3.2 Our Proposal

All the works proposed in literature target a specific level in the cache hierarchy.

Many are profile based program analysis with hardware support to manage the

cache blocks in accordance with the program behaviour obtained. Such hardware

supports and program analyses are not scalable to the entire memory hierarchy.

There is, therefore, a need for a holistic framework that manages the virtual

memory area of a process to aid hybrid memories at any level of the memory

hierarchy. The cache hierarchy is generally accessed using physical addresses that

are computed from virtual addresses using specialized hardware. Virtual memory

layout, therefore, influences optimized cache management. As the underlying

memory technology changes, a shift in virtual memory design is essential for

maintaining performance and energy efficiency.

We propose a new virtual memory design EnVM, which is aware of hybrid

caches. The revised virtual memory design is able to influence data allocation

across all the levels of memory hierarchy seamlessly. EnVM consists of a static

analysis that generates virtual addresses for statically allocated data used for

virtual memory layout of the global data and stack. The static analysis is able

to discern the memory access affinity for each data and generates virtual address

accordingly. The key idea is to enhance locality of data based on their memory

access tendency i.e. read or write intensive. For dynamically allocated memory

i.e. heap area in the virtual address space, EnVM makes use of modified sys-
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tem libraries. Our new dynamic memory allocator interface is exposed to the

programmer and provides the programmer with distinctive functions for read in-

tensive and write intensive data structures. Virtual address generation for heap

accesses is performed at runtime by the operating system. Our modified kernel

supports the system libraries to manage the new heap area of virtual address

space. The virtual to physical address translation is intersected by a group of

conventional segment registers to facilitate data allocation to the hybrid memory

partitions i.e. SRAM and STT-RAM.

There are several advantages of EnVM. First, it is able to influence the data

allocation across all levels of memory hierarchy without requiring specialized

hardware at each level. This helps in easier adoption and scalability to deeper

cache hierarchies. Secondly, EnVM provides a holistic design for both statically

allocated and dynamically allocated data, spanning the entire virtual memory

address space. Finally, our experiments show that EnVM eliminates the need

for data migration as the write operations are optimized and filtered out to

SRAM. Although, cache management can be further optimized by some form

of migration, EnVM serves as the base virtual memory for the new memory

technologies. We implemented EnVM using the GCC compiler and GNU malloc

library. In order to quantify the gain, we implemented a hybrid cache model [61]

and compare EnVM with two existing works on software assisted data allocation

for hybrid caches [17, 19]. Details of evaluation and experimental results are

presented in Section 3.6.
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Summarizing the contributions of this work -

• We propose EnVM, the first virtual memory design that is aware of memory

hierarchies built using the new memory technologies. EnVM provides an

uniform data allocation mechanism to all the levels of memory hierarchy.

This is an important step towards an all hybrid memory based memory

hierarchy.

• EnVM provides a novel static code analysis that can identify and allocate

data with read and write affinity separately in the virtual address space. It

enables data allocation accordingly and reduces write operations to STT-

RAM.

• We propose a new programmer’s interface to be able to allocate read and

write intensive heap memory exclusively during runtime with the help of

optimized system libraries and the operating system.

• EnVM is the only virtual memory design that enables data allocation to

hybrid caches built with SRAM and STT-RAMs. It utilizes existing hard-

ware and advocates migration-less hybrid cache design.

3.3 EnVM

In this section, we will describe EnVM and its functionality in detail. We

will first describe EnVM’s new memory layout followed by the data manage-

ment techniques for both statically allocated and dynamically allocated data.

Traditionally, the virtual memory space is divided in logical segments as shown

in Figure 3-1a. EnVM contains fine-grained logical segments that are based on

the memory access affinity of the memory objects as shown in Figure 3-1b. In

other words, memory objects that exhibit read affinity are placed separately from

those that show write affinity.
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Figure 3-1: Existing and proposed virtual memory design for hybrid memories.

In order to examine the nature of programs, we examined benchmarks from

SPEC2006 [62] for the total proportion of variables showing read and/or write

affinity in each application. The results presented in Figure 3-2, shows that

memory objects that shows affinity to both read and write operations are less in

proportion. In most of the benchmarks, only 5% of the variables show a high read

and write affinity, where as 90% variables (on average) shows affinity towards

either read or write accesses. On an average, 59% of variables show read affinity

over write and 31% show write affinity over read. Thus, it is viable to allocate

these two classes to the STT-RAM and SRAM respectively. The premise of this

work rests on this aspect.

In EnVM, the read and write intensive groups are separated by segment

boundaries known to the operating system (OS). At runtime, the OS manages

the data allocation to underlying hybrid memories using the segment boundaries.

This is analogous to managing text segment and non-text segment for instruction

caches and data caches separately.
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Figure 3-2: Percentage of variables in a program with certain memory access
affinity.

3.3.1 Statically Allocated Data

Runtime behaviour of statically allocated data is possible to analyze at compile-

time. To arrange the global and stack data in EnVM, we propose a new static

code analysis for placing variables according to their memory access affinity.

The analysis we present here estimates the number of reads and writes of each

program variable. Unlike profiling techniques, it path insensitive, and therefore

does not focus only on the frequently executed program path(s). The analysis is

a dataflow analysis (DFA) problem. The DFA is applied as an interprocedural

analysis on the control flow graph of the program.

Definition 3.3.1 (Abstract Domain). The abstract domain of the analysis

is a tuple containing an identifier for the variable, it’s read and write count

represented as (V,R,W ), where V ∈ set of all variables in the program, R and

W ∈ N. The domain forms a lattice, ((V,N,N) ∪ {>},vF ), where > is the top

element and vF is the partial order defined as

(X vF Y ) iff (X(V ) vRW Y (V )) for each variable Vi ∈ V (3.1)

(Vi vRW Vj) iff (Ri ≤ Rj) ∧ (Wi ≤Wj) (3.2)

29



Chapter 3. Compilation Framework for Resistive Hybrid Caches

where Ri,Wi, Rj and Wj denotes the read and write counts for variables Vi and

Vj respectively.

The partial order defined above is significant for the termination of the

dataflow analysis. It also plays an important role in analyzing branches and

joins in the control flow graph. The partial ordering rule says that two variables

are partially ordered if and only if both the read and write counts are in natural

order. For example, if the read count of one variable is higher than that of the

other but opposite for the write count, then the analysis cannot determine any

partial order between the two variables.

As the DFA we propose is counting based, the partial order between different

variables do not influence the outcome of the analysis. However, the partial

ordering between instances of the same variable is important during branch joins.

This phenomenon is described later with the discussion of meet operator. Each

instruction i, in a basic block is passed through two transfer functions, F and

B , for forward and back edges, respectively.

Definition 3.3.2 (Transfer Function). At each program point, the set of tuples

(V,R,W ), denoted as X, and the transfer function for the current instruction i,

is defined as

Fi(X) = Gen[i] t Probei(X) (3.3)

The function Gen[i] discovers a variable from the instruction i, and the function

Probei(X) examines all the elements of the set X and updates it according to the

rule below -

∀V ′ ∈ X, where V ′ = (V,R,W )

R = R+ 1 if i reads V

W = W + 1 if i writes V
(3.4)
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The key idea is to examine whether an instruction i has a read operation on

variable V , then read counter is incremented, and if i has a write operation on

V , the write counter is incremented. For all back edges in the CFG, most likely

a loop edge back to the start of the loop, we have a transfer function Bi(X).

For an instruction i succeeding instruction j through a back edge, all variables

V ∈ instructions between j and i , R = R + k and W = W + k, where k is a

static loop bound [63]. This will have a similar effect as going through the loop

instructions k times. When resolving branches and φ functions, we apply the

meet operator t.

Definition 3.3.3 (Meet Operator). The meet operator t is applied when two

basic blocks have a common successor basic block. The OUT information from

the two parent basic blocks are unified using the meet operator to form the IN

information of the successor. It is defined as

(Vi, Ri,Wi) t (Vj , Rj ,Wj) =



> , if(Vi = Vj) ∧ (Vi 6v Vj)

(Vi,max(Ri, Rj),max(Wi,Wj))

, if(Vi = Vj) ∧ (Vi v Vj)

{(Vi, Ri,Wi) ∪ (Vj , Rj ,Wj)}

, if(Vi 6= Vj)

(3.5)

The above rule says that when different instances of a variable along different

paths are not in partial order then it is assigned the > element. Elaborately, for

the same variable, traversing different paths, we consider the path with maximum

of the read and write counts accrued among all paths. However, if the partial

order is not maintained, that means, the read and write counts attains maximum

value in different paths, it is marked as inconclusible. For example, if a variable

has a read count that is more than the write count for one path, but it is the other

way around for another path, then we assign > to the variable. This means that
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it was not possible to conclude whether this variable has more reads or writes. In

later steps, we will describe how to allocate these variables to SRAM and STT-

RAM. For all other variables, we take the maximum of read and write counts

over all the paths. This gives us an estimate of the upper bound. The dataflow

problem is solved using a worklist based iterative algorithm using the dataflow

equations described as follows -

Definition 3.3.4 (Dataflow Equations). For each basic block l, we have two

dataflow equations RWAentry(l) and RWAexit(l). These represent the set of

tuples before and after processing a basic block. For our analysis, we define the

dataflow equations as follows -

RWAentry(l) = ∅ if l ∈ init(S?) (3.6)

RWAentry(l) = t(RWAexit(l
′) ∪Bi, if (l, l′) ∈ Flow(S?) (3.7)

RWAexit(l) = (RWAentry(l) ∪ Fi(RWAentry(l)) (3.8)

where init(S?) denotes the set of initial labels i.e. the starting basic blocks,

Flow(S?) denotes the flow of the program and (l′, l) is a valid edge in the control

flow graph.

As mentioned before, Bi is the transfer function applied while traversing

a backward edge. For our implementation, we have utilized the natural loop

detection routine provided in the GCC compiler. If there is no back edge to the

entry of the basic block then Bi = ∅.

Indirect memory accesses

Apart from static variables, there are a large number of variables in a program

which are accessed indirectly through pointers. Our analysis extends to the

pointers to static variables through the help of “may” aliases of each variable.

Points-to information gathered from the alias sets helps to associate variables to
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their probable source of access and the type (read or write). All pointer variables

that point to statically allocated data are treated as independent data objects

and can be classified differently than the points-to object. However, with each

load and store that accesses a variable through the pointer, the read and write

counts of that variable is updated. This satisfies two cases - firstly, where the

pointer variable itself is updated or read, which is a common practice in pointer

arithmetic and secondly, the data that the pointer points to is updated or read

after dereferencing.

Address Generation

The analysis provides an estimation of read and write counts for each program

variable. Our aim is to partition the variables into two groups - read intensive

and write intensive variables using these estimated counts. The memory access

behaviour of applications differs to a large extent. Applications that are com-

putation intensive have different memory access pattern than that of an I/O

intensive application. Therefore, to enhance scalability of EnVM, we rely on an

unsupervised machine learning technique to partition the variables.

Although, a threshold based partitioning is simpler, it is inefficient as the

threshold requires to be tuned for different applications separately. EnVM

leverages on the K-Means clustering algorithm to partition the variables. The

read and write information gathered are the feature inputs i.e. observations to

the clustering algorithm. The program variables are partitioned into 4 classes,

namely, write intensive; non-write intensive; read intensive; and non-read inten-

sive. The initial seed points are set to be the maximum and the minimum read

and write counts obtained from the analysis. The four extreme values as seed

points will move the clusters towards the read and write extremities. We obtain

the following four classes by applying clustering over the read count and write

arrays:
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Class 0 - Low read and low write Class 1 - Low read and high write

Class 2 - High read and low write Class 3 - High read and high write

Algorithm 3.1 Address Generation for Global and Stack Data (Partial)

Require: source code of the program
Ensure: virtual addresses for statically allocated memory objects
1: CFG ← Control Flow Graph of the program
2: procedure add gen(CFG)
3: Initialize var array ← ∅ /* var array is a 2-d array with variables and their assigned classes */
4: Initialize analysis outcome ← ∅ /* analysis outcome contains all the variables with read and

write counts */
5: for all function(F ) in CFG do
6: analysis outcome← pass rw analysis(F )
7: end for
8: var array ← clusterize(analysis outcome)
9: current global← .text section end
10: current stack ← .stack base
11: for all variable(V ) in var array do
12: if V is global data and class(V ) !=3 then
13: allocate V to current global
14: realign current global
15: remove V from var array
16: else if V is stack data and class(V ) == 0 or 2 then
17: allocate V to current stack
18: realign current stack
19: remove V from var array
20: end if
21: end for
22: .global write← current global
23: .stack write← current stack
24: for remaining variables(V ) in var array do
25: if V is global data then
26: current← current global
27: else if V is stack data then
28: current← current stack
29: end if
30: allocate V to current
31: realign current
32: remove V from var array
33: end for
34: end procedure

Algorithm 3.1 shows the address generation scheme for statically allocated

data. At the outset, a 2-D array is initialized which will hold the variables and

their assigned classes (line 3). This data structure will be the output of the

algorithm. Next, using the control flow graph, the dataflow analysis is applied

across functions for each basic block (lines 4-6). The outcome of the analysis is

stored in another 2-D array comprising variable names and their corresponding

read and write counts. This particular data structure is clusterized by the K-
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Means algorithm (line 8) into 4 clusters. Afterwards, using the existing flags for

each variable in the compilation framework, they are characterized as global data

or stack data (line 12, 16). All global data belonging to classes 0, 1 and 2 are

assigned addresses and placed in an elf section (lines 13-15). Class 3 global data

is then placed above starting from a new elf section marker .global write (lines

22, 25-26). Next, for stack data, classes 0 and 2 are placed together (lines 17-19)

and classes 1 and 3 are placed together from a new elf section marker .stack write

(lines 23, 27-18). Global variables usually show high affinity towards either read

or write operations. Number of global variables showing both high read and

write counts are few. Therefore, for global data, we place Class 0, 2 and 3

variables contiguously and then Class 1 variables. For stack data, we place Class

0 and 2 variables contiguously and then Class 1 and 3 variables as there are

a large number of variables showing high read and write affinity. The virtual

addresses separating the sections are embedded in the final executable which

are later recognized by the OS. This yields the read and write intensive virtual

memory segments shown in Figure 3-1(b) earlier.

3.3.2 Dynamically Allocated Data

Dynamically allocated memory objects occupy a large region in the virtual ad-

dress space of many processes, and are managed at runtime. Precise analysis

of dynamically allocated memory at compile time is computationally hard [64].

Though, heap memory management is well studied for efficient garbage collection

and detecting memory leaks [65, 66], analyzing dynamically allocated memory

for read and write patterns is especially difficult at compile time due to their

unbounded sizes and abstract types. For example, if a static memory object is

marked as read intensive, a pointer to the static variable can be analyzed by de-

referencing it symbolically at compile time. However, for dynamically allocated

memory regions, the de-referencing of the pointers creates an unbounded space
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if ((sfp->fileformat= malloc(sizeof(sqd_uint32) *  

                               sfp->nfiles)) == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

Iterator is always updated to point 

to next element. Thus, marked as 

write intensive

File descriptor are rarely 

manipulated and modified at 

different point in execution. Hence, 

can be considered read intensive.

int *iterator_to;

iterator_to = (int *)malloc(GA->extras->dim * sizeof(int));
for(dim = 0; dim < GA->extras->dim; dim++)

                       /* other codes*/

        iterator_to[dim] = istart_to[dim];

int *iterator_to;

iterator_to = (int *)w_malloc(GA->extras->dim * sizeof 

                                                                              (int));

for(dim = 0; dim < GA->extras->dim; dim++)

                       /* other codes*/

        iterator_to[dim] = istart_to[dim];

436.cactusADM – PUGH/Comm.c

456.hmmer – ssi.c

if ((sfp->fileformat=r_malloc(sizeof(sqd_uint32) * 

                                                     sfp->nfiles)) == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

dest->streamBuffer = malloc(MAXRTPPAYLOADLEN);
dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;

memset( dest->streamBuffer, 0, MAXRTPPAYLOADLEN);

while(/*code*/){

dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;

/*code*/ }

464.h264ref – sei.c

dest->streamBuffer = w_malloc(MAXRTPPAYLOADLEN);
dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;

memset( dest->streamBuffer, 0, MAXRTPPAYLOADLEN);

while(/*code*/){

dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;

/*code*/ }

A stream buffer is expected to have 

continuous data written to it. So it 

is implemented as write intensive.

if ((sfp->bpl= malloc(sizeof(sqd_uint32) *  

                               sfp->nfiles)) == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

These two signify the privilege 

levels of each file. This is constant 

throughout the program. Thus, they 

are functionally read only.

if ((sfp->bpl=r_malloc(sizeof(sqd_uint32) *  sfp->nfiles)) 
                                                                                  == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

int size = (save_last + 1) * sizeof(int);

search_next = malloc(size);
while (pdfa->indexes[i].next != pdfa->indexes[k].next) {

        if (!search_next[i]) {

          search_next[i] = ++last;

445.gobmk – patterns/dfa.c

List node, usually incremented to 

traverse through the entire list. 

Therefore a memory address is 

continuously written to this variable.

int size = (save_last + 1) * sizeof(int);

search_next = w_malloc(size);
while (pdfa->indexes[i].next != pdfa->indexes[k].next) {
        if (!search_next[i]) {
          search_next[i] = ++last;

456.hmmer – ssi.c

Figure 3-3: Example of modified code in the benchmarks with new malloc calls

that is hard to analyse.

Coburn et al. explores the possibilities and threats of heap memory manage-

ment for persistent memory systems such as NVMs [67]. However, in their work,

the read and write properties of the heap region are unexplored. For EnVM,

an estimate on the read and write counts of any memory object is sufficient for

the layout and address generation. However, an inappropriate data allocation

would be detrimental to performance and lifetime of the chips. Therefore, for

heap region, we rely on programmers’ interface to provide distinction between

read and write intensive heap accesses. EnVM provides new library functions,

namely, r_malloc() and w_malloc() that would allocate from two heaps - one

for read and another for write intensive dynamic objects. To incorporate these

malloc calls, either the source can be annotated by the programmer or heuristic

estimates may be applied. In this work, we have done the former and annotated

the source codes of our benchmarks with the new malloc function calls, as shown

in Figure 3-3.
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Just like the standard malloc(), the two new functions - r_malloc() and

w_malloc() are tied to the system calls sbrk() and brk(). The allocation and

deallocation from the two heaps are independently managed. During initializa-

tion, both r malloc() and w malloc() functions will each request for a sizable

memory chunk, usually spanning multiple pages, from the kernel. They subse-

quently maintain bins to cater to the malloc requests. Depending on the call,

r malloc() or w malloc(), the requests are served from the respective chunks.

Figure 3-3 shows an example of a code implemented with the two malloc calls.

As the interaction of the malloc library and the kernel is usually through the

page requests, there will not be any additional fragmentation (or holes) in the

virtual memory area due to the split heap. In case when one of the heaps runs

out of memory space to allocate, mainly due to a boundary limit, we allow the

use of the other.

Algorithm 3.2 Dual Heap Management

Require: modified malloc library support
Ensure: runtime dual heap management
1: kernel variables read malloc, start brk and nv brk set by operating system
2: malloc() sets read malloc← 0
3: nv malloc() sets read malloc← 1
4: while 1 do
5: for all brk() system calls do
6: if read malloc then
7: dummy ← start brk ; start brk ← nv brk
8: service system call and allocate memory space
9: update nv brk ← start brk
10: restore start brk ← dummy
11: else
12: service system call and allocate memory space
13: end if
14: end for
15: end while

For management of the two heaps at runtime, EnVM requires operating

system support. The two heaps are bounded by markers start brk, brk, nv brk

and max stack, where both start brk, brk and max stack are conventional

markers. start brk and max stack denotes the start and permissible end of

heap area. brk is the virtual address marking the end of allocated memory. We
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introduce a new marker nv brk to denote the end of allocated read intensive heap

memory. The operating system is responsible for loading a boundary register (see

Section 3.5) with the boundary addresses so that the cache fills and write-backs

to the two partitions are managed accordingly. For evaluation, we modified only

malloc() function calls. Programs that use other ways to dynamic memory

allocation and deallocation, for example new(), are only evaluated based on the

static analysis. However, we see no difficulty in extending this to other dynamic

memory allocation functions.

Algorithm 3.2 describes the overall runtime functionality of the dual heap

management. With a malloc() system call, the library sets a kernel variable

to denote the heap type i.e. read or write intensive heap (lines 2-3). Once the

context is switched to the kernel, it checks whether the malloc() is for the read

or write intensive heap (line 6), and will then sets the address in the variable

brk accordingly (lines 7-10). The kernel proceeds to allocate memory to the

requested heap (line 8 or 12). The variable brk is then restored to the default

i.e. write intensive heap (line 10). The default heap allocation is serviced from

write intensive heap to avoid unmonitored write accesses, for example security

threats, to STT-RAM.
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3.4 Putting It All Together
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Figure 3-4: Overall framework of EnVM.

The framework to create EnVM is illustrated in Figure 3-4. During compila-

tion, a program is analyzed for read and write intensive memory variables. The

outcome of the analysis dictates the virtual address generation of these variables.

As in the case of conventional virtual memory layout, static memory objects are

placed in the virtual address space and the executable is generated. For dynamic

memory objects, we provide a dual-heap management module that is assisted by

the operating system. Customized system calls are used as a wrapper function to

enable the dual heap structure. During runtime, the operating system allocates

dynamic memory objects from distinctive read and write intensive heaps. Thus,

in our proposed new virtual memory design, EnVM, memory objects arranged

in the order of their memory access affinity.
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3.5 Architectural Support

In this section, we would describe the architecture support required for our

virtual memory design. For evaluation, we assume a popular hybrid cache

model [61]. In addition we would discuss few aspects of virtual to physical

address mapping, and other hardware implications of EnVM.

3.5.1 Boundary Registers

The layout of EnVM is used to influence the data allocation for caches across

various levels. This is made possible by a set of boundary registers coupled with

the address translation hardware unit. For the x86 architecture, the existing

set of segment registers can be used for this purpose. During process creation

and context switches, the operating system is responsible for loading the bound-

ary registers with the boundary addresses. For our evaluation, we propose six

such boundary registers holding the addresses nv data, start brk, brk, nv brk,

max stack and nv stack. During the virtual to physical address translation, a

simple hardware logic (shown in Figure 3-5) enables the correct cache partition

to be probed. However, the boundary registers are consulted for cache selection

only for write operations to caches, i.e. either a cache fill from lower memory or

a write-back from higher level. For read operations, the entire cache is probed

without checking the boundary register. This optimization reduces any perfor-

mance degradation due to the boundary address checking. Moreover, for indirect

memory accesses, checking the entire cache prevents incorrect reads and extra

cache fills.

3.5.2 Cache Properties

The delay associated with the boundary registers and address checking depends

on the cache probe logic. We consider two kinds of caches here to analyze the

delay - PIPT (physically tagged, physically indexed) and VIPT (virtually tagged,
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Figure 3-5: Cache Selection Logic.

physically indexed). In PIPT caches, the TLB (translation lookaside buffer) is

responsible for a complete virtual to physical address mapping. The TLB look-

up is a blocking operation for PIPT caches and thus, the boundary registers

are checked in parallel. Therefore, we do not consider any additional delay in

PIPT caches. However, in VIPT caches, the TLB and tag array of the caches

are looked up in parallel. In this case, the boundary register checking becomes

a blocking operation. We assume that this delay is one clock cycle. For our

evaluation framework, we assumed VIPT caches, adding 1 cycle delay for the

boundary register checking. The delay overhead is minimal as the registers are

checked only for write accesses. Moreover, if hybrid caches are adapted at L2 or

L3 levels, the delay overhead is masked by L1 hit rate.
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3.6 Evaluation

3.6.1 Tools & Benchmark

The dataflow analysis is implemented in GCC-4.7.1 as an optimization pass.

We provide modified glibc-2.5 interface for the new dual-heap malloc function

calls. For our experiments, we used the entire SPEC2006 benchmark suite [62].

The results are based on the ‘ref’ input on all the benchmarks. Our back-

end OS is Linux (kernel version 3.2.51). We implement the hybrid caches in

MARSSx86 [68] cycle-accurate full system simulator. The complete configura-

tion is given in Table 3.1. NVSim [69] was used to generate the latency and

energy parameters for STT-RAM assuming a 32nm process technology. All the

hybrid cache configurations roughly occupy the same silicon area as their pure

SRAM counterpart [69]. We further assumed that the STT-RAM partition has

error-correcting code (ECC) to mitigate stochastic bit-flip error [33] as the re-

tention time for STT-RAM cells are myriad [4, 30].

Simulator Configuration

Processor : Unicore, 3 GHz, Commit Width - 4

Memory - Hybrid L1 Design

L1 I-Cache (SRAM) 64K, 8-way, 64B Line, 3 cycles
L1 D-Cache (Hybrid) SRAM : 4KB, 4-way, 64B Line, 3 cycles, STTRAM :

64K, 4-way, 64B Line, Read 3 cycles, Write 10 cycles
L2 (SRAM) 2MB, 8-way, 15 cycles, 64B Line

Memory - Hybrid L2 Design

L1 I-Cache (SRAM) 64K, 8-way, 3 cycles, 64B Line
L1 D-Cache (SRAM) 32KB, 8-way 3 cycles, 64B Line
L2 (Hybrid) SRAM : 1MB, 4-way 3 cycles, STTRAM : 2MB 4-way

Read 11 cycles, Write 30 cycles
L3 (SRAM) 4MB, 8-way, 35 cycles, 64B Line

Table 3.1: Simulation Configuration

42



Chapter 3. Compilation Framework for Resistive Hybrid Caches

3.6.2 Results

For evaluation, we implemented two hybrid cache designs at L1 [19] and L2 [17]

referred to as SW1 and SW2, respectively. We compare our method with another

hardware based hybrid memory management scheme [3] referred to as HW.

Write Reduction
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Figure 3-6: Total writes to STT-RAM in a hybrid cache design normalized to
the total number of writes to a pure STT-RAM cache.

The primary objective of all schemes of hybrid memory management is to

reduce the number of write operations to the STT-RAM caches by redirecting

write intensive data to the SRAM counterpart. Figure 3-6 shows the number of

write accesses to the STT-RAM partition, normalized to an architecture with

pure STT-RAM and no assisting SRAM. The purpose of comparing with an

architecture with pure STT-RAM is to illustrate the critical importance of the

smaller SRAM partition.

After the pure STT-RAM scheme, the HW method incurs the maximum

write accesses. In HW, data is primarily fetched into STT-RAM and migrated

to SRAM only upon saturation of a 3-bit counter. Therefore, only selected data

get migrated to SRAM and rest of the data receive write accesses being in the

STT-RAM partition.

SW2 is a profile-based technique that is co-optimized by hardware and soft-

ware having a priori information about memory accesses, and thus shows least
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number of writes to the STT-RAM. Unlike SW1, which proposes stack data

placement scheme, EnVM manages the entire virtual memory of a process and

thus places all data accordingly, to the two partitions. So, EnVM performs better

than SW1.

Quantitatively, EnVM reduces the total number of write accesses to STT-

RAM by 47.6% as compared to HW and 15% as compared to SW1. In addition,

for some benchmarks such as 403.gcc and 456.hmmer, EnVM achieves similar

write traffic to STT-RAM as compared to SW2, a profile-based technique.

Energy Consumption

Resistive memories exhibit high write current that affects the total energy con-

sumption. As all the schemes propose STT-RAM based hybrid caches, we will

compare the energy consumption by the data arrays of the caches. In addition,

we compare the energy consumption of hybrid memory caches with a pure SRAM

cache, to examine the merits of hybrid memory design, quantitatively.

The energy model is given by the sum of leakage energy, dynamic energy. We

add the energy overheads due to various additional hardware units to the total

energy consumption. In our scheme, we include the energy due to the usage of the

boundary registers as mentioned earlier. For other schemes, the overhead energy

includes migration of cache lines from one partition to the other. Formally, the

energy model is as follows -

Etotal = Eleakage + Edynamic + Eoverhead (3.9)

Eleakage = Pleakage ∗ texec (3.10)

Eleakage = Ewrite ∗Nwrites + Eread ∗Nreads (3.11)

where, Eleakage is leakage energy (in joules), Pleakage is the leakage power (in

Watts) and texec is the total execution time (in seconds) (of each benchmark).
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Edynamic is the total dynamic energy (in joules), Ewrite and Eread are the dynamic

write energy and dynamic read energy, respectively. The energy required to

allocate a cache block upon each miss is already accounted for in the total number

of writes as Nwrites and cache reads as Nreads. Eoverhead is the energy consumed

by the additional boundary registers to manage EnVM. We used CACTI 5.3 [70]

to calculate the energy consumption by the boundary registers.
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Figure 3-7: Energy per instruction normalized against pure SRAM cache.

Figure 3-7 shows the total energy per instruction for each of the methods.

Just as is the case for write reduction, EnVM is more energy efficient than SW1

and HW showing an average of 21% and 6% reduction, respectively. For some

C benchmarks, such as 400.perlbench, 401.bzip2, EnVM has lower energy

consumption than even SW2 with a maximum reduction of 50% for 458.sjeng.

The energy efficiency of EnVM is a result of including all memory objects,

especially heap data, in its management. Figure 3-8 shows the energy overhead

due to additional hardware units (Eoverhead) of EnVM as compared to HW which

is below 3%. In HW, there are two sets of 3-bit and 5-bit saturating counters per

cache line and set respectively, accounting for the energy and space overhead.

Figure 3-9 further shows the energy overhead of SW1, SW2 as compared to

EnVM. While there is no additional hardware component for SW1, it assumes a

migration based L1 cache architecture. SW2 too assumes a migration based L2

cache architecture. Migrating cache lines at L1 and L2 levels requires hardware
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Benchmarks HW EnVM Benchmarks HW EnVM

400.perlbench 0.0346 1E-04 434.zeusmp 0.0339 0.0001

401.bzip2 0.0284 0.0002 435.gromacs 0.0411 0.0001

403.gcc 0.067 0.0002 436.cactusADM 0.0454 0.0001

429.mcf 0.055 0.0002 437.leslie3d 0.0454 1E-04

445.gobmk 0.0702 0.0003 444.namd 0.0256 7E-05

456.hmmer 0.0254 6E-05 447.dealII 0.0367 9E-05

458.sjeng 0.0554 0.0003 450.soplex 0.0323 1E-04

462.libquantum0.0275 7E-05 453.povray 0.0443 0.0002

464.h264ref 0.0507 0.0001 454.calculix 0.066 0.0001

471.omnetpp 0.0349 8E-05 459.GemsFDTD0.0602 8E-05

473.astar 0.0483 0.0001 465.tonto 0.0401 6E-05

483.xalancbmk 0.0304 0.0001 470.lbm 0.0274 0.0001

410.bwaves 0.0151 4E-05 481.wrf 0.0468 9E-05

416.gamess 0.042 9E-05 482.sphinx3 0.0212 0.0001

433.milc 0.0632 0.0002 AVERAGE 0.0413 0.0001

Figure 3-8: Energy (joules/instruction) consumed by the additional hardware
units for HW and EnVM.
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Figure 3-9: Total energy consumption by additional hardware components.
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to copy the cache lines, and incurs additional cache reads and writes. Though,

EnVM requires a set of boundary registers, it can be used on a migration-less

cache architecture at any level. In our evaluation, we measured the energy

overhead of the three techniques as shown in Figure 3-9.

Performance Impact

In Figure 3-10 we show that the performance of the system (an out-of-order

x86 processor in our case), remains unperturbed with the introduction of EnVM

based migration-less STT-RAM based hybrid cache at L1. We measured the

IPC (Instructions per cycle), taking into accounts all additional delays (+1 cycle)

required by the boundary address checking. We considered a VIPT cache, giving

an upper bound on the additional delay. In PIPT cache design, the IPC is

expected to be less affected by EnVM. The IPC is normalized to a baseline of

32K SRAM L1 cache. Quantitatively, EnVM achieves 26% better IPC than HW

and comparable performance with SW1 and SW2.
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Figure 3-10: Instructions Per Cycle (IPC) normalized to pure SRAM based cache
design.

As compared to pure SRAM architecture, hybrid memory managed by EnVM

achieves similar performance. While the high write latency of STT-RAM and

other resistive memories may erode overall performance, as they are denser,

much bigger caches can be accommodated in the same die area. This increase
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in cache sizes compensates for the performance deterioration due to the higher

write latency.
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Figure 3-11: Cache hit rate for the hybrid L1 cache design.

To further quantify the impact of cache sizes on performance, we measured

the cache hit rate (see Figure 3-11). The cache hit rate is measured only for L1

cache as it is most critical to the overall performance of a system. Though SW2

assumes a hybrid L2 cache, we have reported the hit rate of L1 when SW2 is

applied.

Scheme Target Cache Migration Overhead Additional Hardware

HW L1  

SW1 L1  Nil

SW2 L2  

EnVM Any Nil 

Figure 3-12: Summary of state-of-the-art methods and EnVM.

Table 3-12 summarizes the features of state-of-the-art schemes and EnVM.

HW scheme is optimized for L1 caches requiring hardware counters and assumes

a migration based cache design. SW1 and SW2 assume migration based caches

for L1 and L2 respectively. Though SW1 is a pure software based technique,

it only optimizes stack data and is not scalable to other memory regions. SW2

is hardware and software co-optimized scheme requiring hardware counters and

buffers. EnVM is applicable to any level of caches and is not dependant on
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migration based design. While it does require hardware support, the hardware

cost is amortized over the entire memory hierarchy as it is not exclusive to any

particular level. Thus, we believe that EnVM is more scalable.

3.7 Chapter Summary

In this chapter, we have proposed EnVM, a virtual memory design optimized

for STT-RAM based memory hierarchy. Enhancing the state-of-the-art, EnVM

manages the entire virtual memory area of a process including code, static data,

stack and dynamic data. It provides an uniform and holistic management of

STT-RAM based memory hierarchies, unlike current techniques that optimizes

for specific levels of the memory hierarchy. As a part of EnVM, we propose

a new static code analysis that distinguishes read-intensive from write-intensive

variables. We also propose a new dual heap scheme that enables distinct memory

regions for read and write intensive dynamically allocated variables at runtime.

EnVM is capable of managing any design of hybrid caches comprising SRAM

and STT-RAM partitions. Furthermore, it assumes a migration-less hybrid cache

architecture and thus is not dependant on the effectiveness of migration tech-

niques. EnVM serves as a base virtual memory for any further optimizations on

architectural design and is thus orthogonal to state-of-the-art hardware managed

schemes for hybrid caches. Furthermore, EnVM is backward compatible to the

conventional SRAM/DRAM based memory systems.
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Chapter 4

Operating System Assisted

Resistive Hybrid Main

Memory

In this chapter, we consider a hybrid main memory comprising PCM and DRAM.

We would propose a fine-grain interaction scheme between last level cache (LLC)

and the main memory which reduces writes to the PCM partition. In addition,

we would propose a new operating system managed page reclamation algorithm

that is aware of the underlying hybrid memory architecture. Such a two-pronged

approach reduces writes to PCM efficiently and enhances the power-performance

benefit.

4.1 Motivation

The focus of this chapter is management of hybrid main memory by leveraging

on the disparity between the data granularities of last-level cache writebacks and

main memory. Because of its small size, the DRAM partition must use the PCM

partition as back up, demanding migration of pages between the two partitions.
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Note, that this is a necessity independent of the actual management scheme of

the hybrid main memory.

LLC

Memory Controller

DRAM

Disks

Upper Level Caches

NVM

Figure 4-1: Different designs of hybrid main memory

Figure 4-1 is the assumed hybrid main memory design for our framework.

Therefore, the challenge in managing such hybrid design is the data allocation for

last level cache writebacks. In this chapter, we will deeply investigate the non-

trivial relation between the last level cache writebacks and the data allocation

between DRAM and PCM.

Disparity in Data Granularity

The last-level caches (LLC) and the main memory are different both in terms

of structure as well as behaviour. LLC usually reads and writes data in units

of cache lines. Data in LLC are uniquely identified by simple hashing of their

physical addresses. Main memory is organized in pages that consist of many

cache lines. For today’s systems, a page typically contains 64 cache lines. While

caches are completely hardware managed and transparent to software, main

memory is managed by the operating system (OS) often with complex mapping

schemes such as virtual paging. The OS maintains information for each page
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Figure 4-2: An example showing the extra amount of dirty data in main memory
due to cache line size writebacks.

and its attributes in page tables. When a LLC writeback occurs, the data is

written to its corresponding physical address within a page.

For example, as shown in Figure 4-2, let the cache line size be 64 bytes and

page size be 4 kilobytes. This means a page can contain up to 64 cache line

size worth of data. When a LLC writes back 3 cache lines located in 3 different

pages, it marks all the three pages as dirty. Therefore, 64∗3 = 192 bytes of dirty

data in LLC get translated to 4∗3∗1024 = 12288 bytes of dirty data in the main

memory. This indicates about 98.4% of data which are not modified, are marked

as dirty too. In a hybrid memory scenario, due to the smaller size of the DRAM,

pages are evicted frequently to PCM in order to maintain the write working set

in the DRAM. As the operating system is unaware of the cache writebacks, the

98.4% of the data which is unmodified will also be written, generating a huge

number of wasteful or redundant writes to the PCM partition.

However, we conducted an experiment to examine this phenomenon in reality.

Figure 4-3 shows the amount of dirty cache lines per memory page of six memory

intensive benchmarks from SPEC2006 and PARSEC over a period of 4 billion

cycles. To obtain these plots, we computed the average number of dirty cache

lines per page at intervals of 10 million cycles. We see that the average number

of dirty lines per page never exceeded 10 for GemsFDTD and at the most 12 for

53



Chapter 4. Operating System Assisted Resistive Hybrid Main Memory

the rest of the applications except dedup that reached an average of about 42.

Figure 4-3 shows that for the most part, memory pages contain clean data.

Therefore, copying entire pages during the migration process will result in many

redundant writes to the PCM partition.

Scope of Improvements

The redundant writes, if eliminated, will improve the performance and power

consumption of the hybrid memories in several ways. To examine the impact of

this, we first need to elaborate on the critical issues of the hybrid memories.

• Unmonitored cache writebacks. The problem originates when cache

lines are written back to memory. We therefore need to monitor such

writebacks using special hardware mechanisms so that dirty data in a page

can be identified. The challenge is to devise an efficient way to maintain

the fine-grain dirty data information, and to reduce of the overhead of the

extra book-keeping that is required. Only with such information can a less

wasteful migration scheme be implemented.

• Page Allocation. Ideally, all the cache writebacks must be directed to

DRAM and cache fills must be serviced from the PCM partition. However,

in practice, as a page is much bigger, it is possible to have write and read

intensive cache lines mapped to the same page. Therefore, it would be

productive to have some cache lines of a page reside in the DRAM partition,

while having others of the same page reside in the PCM partition.

• Migration traffic. As the DRAM partition of a hybrid memory is smaller

than PCM partition, it is necessary to evict DRAM pages from time to

time. The evicted pages should be migrated to the PCM partition so as

to reduce disk accesses for future accesses to them. Current reclamation

schemes choose the least-recently-used page and write them to the PCM,
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Figure 4-3: Average number of dirty cache line per main memory page of six
memory intensive applications

without considering the amount of dirty data within the page. A fine-

grain page reclamation policy would choose pages that are least dirty to

be migrated from DRAM to PCM. This would further reduce the number
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of write operations that the PCM partition actually receives.

4.2 Our Proposal

We propose a hardware-software framework consisting of Fine-Grain Writes

(FGW) and Fine-Grain Page reclamation (FGP). The former is a hardware

mechanism while the latter is a new operating system based page reclamation

algorithm for PCM-based hybrid memories. Our framework solves the challenges

mentioned in previous section. It not only reduces write accesses to the PCM

partition, but also minimizes the data traffic between the two partitions.

FGW exploits the disparity between the data granularity of LLC and main

memory and redirects dirty cache lines to the DRAM partition. Cache writebacks

do not reach PCM partition and thus reduces the number of write accesses. FGP

is a page reclamation policy that introduces a notion of dirtiness of DRAM pages

and evicts only least dirty page from DRAM to maintain a free pool of pages in

it. The evicted DRAM pages are stored in PCM and thus, PCM receives only

the least dirty pages. Thereby, reducing writes to a large extent.

Conceptually, the smaller DRAM holds the write working set of the current

set of processes in the system and PCM acts as a large storage, servicing all

read requests. However, depending on the combination of DRAM size and write

working set size, pages have to be evicted from DRAM to PCM occasionally to

ensure free space in the former. Here, FGP plays a crucial part and ensures the

write working set to remain in DRAM for as long as possible.

The key contributions in this work are as follows -

• We propose a fine-grain write (FGW) mechanism for hybrid memories

which writes only dirty cache lines to main memory, thereby eliminating

redundant writes.

• Further, to detect the amount of dirty data within a page we propose
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an operating system assisted page table management. Our technique can

measure the dirtiness of a page which is needed in the fine-grain page

migration between DRAM and PCM.

• In order to further reduce the migration overhead between DRAM and

PCM, we propose a novel operating system based fine-grain page reclama-

tion algorithm (FGP) which makes use of the dirtiness information of each

page to evict least dirty pages from DRAM.

4.3 Fine-Grain Writes

To redirect writes to DRAM and reads to PCM, we propose a new concept of

shadow pages. A shadow page is a DRAM page that receives write operations

on behalf of a corresponding page in the PCM partition. Every shadow page has

a corresponding PCM page, but the reverse is not true since the PCM partition

is much larger. When a write operation is performed on a PCM page that does

not yet have a shadow page, a blank shadow page is allocated in DRAM and

is associated with this PCM page. All LLC writebacks to this page goes to the

shadow page. When the shadow page is evicted, the dirty data is merged into

the corresponding PCM page. On the other hand, LLC fills are performed using

both the shadow and PCM page.

4.3.1 Shadow Page Management

The mapping between the DRAM and PCM pages are maintained by the OS in a

page table like structure, called the shadow table. Figure 4-4 shows how shadow

table maintains the mapping of cache lines in the shadow pages and PCM pages.

Each shadow table entry consists of the DRAM page frame number (DRAM

PFN), together with a bitmap indicating the location of the corresponding cache

lines in that page. We assume the page sizes of DRAM and PCM to be equal.
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Figure 4-4: Shadow page and shadow table entry

So, data in PCM page A at an offset d would be situated in a shadow frame S

at the same offset d.

Suppose each page contains 64 cache lines’ worth of data. The bitmap for

each page would then be 64 bits long. A ‘1’ indicates that the data is present

in the DRAM shadow page, and a ‘0’ indicates that the data is present in PCM

page. The shadow table is checked before any main memory access, and the

bitmap decides which partition is to be probed. If it’s a write access, it is

redirected to the shadow page. For a read operation, if the data to be read was

previously written and hence dirty, then the corresponding bit in the bitmap

would already be set during a previous write and the read is serviced from

the shadow page in the DRAM partition. However, if the data to be read is

clean then there would be no preceding write access that cache line and the

corresponding bit would be ‘0’. Hence, the request is serviced from the PCM

page. Thus, the bitmap ensures that there are no stale reads and spurious writes

occurring in the memory.
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Figure 4-5: PCM to shadow page physical address translation.

4.3.2 Extended LLC

All memory accesses are performed by the LLC. Therefore, to redirect memory

read and write accesses to the correct partition, the LLC must be aware of the

fine-grain data management. In particular, it must use the shadow table entry

to find the location of the data to be read or written. Figure 4-5 illustrates the

modified architecture of the LLC. The redirect decision logic (RDL) is a new

component that processes the bitmap. Bits [11:6] of the PCM address, namely

cache block offset is used to address all cache lines of a PCM page uniquely.

The RDL generates the shadow address by replacing bits [39:12] of the PCM

address with the DRAM PFN provided by the shadow table entry. The bits

[11:0] remains the same in PCM address and shadow address as the page sizes

are assumed to be the same. The 28 most significant bits are used as tags to look

up the shadow table. The SBAR register stores the base address of the shadow

table and STE stores the physical address of the shadow table entry, both of

which are located in DRAM.
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4.3.3 Shadow Table Cache

The shadow table is indexed by the PCM page frame number and each shadow

table entry consists of a physical address and a bitmap. Therefore, the size of the

shadow table linearly increases with the total capacity of the PCM. The shadow

table resides in the DRAM. For each memory access, the shadow table is checked

before the actual data access. Such a mechanism increases the memory access

delay by 2×. Using the same trick to speed up virtual address translation, namely

the introduction of the TLB (translation look-aside buffer), we propose a TLB-

like small cache, that we have named the shadow table cache. The shadow table

cache contains the most recent shadow table entries, thereby speeding up LLC

reads/writes from/to the memory. The shadow table cache in our framework

contains 1024 entries. However, in our experiments, we will demonstrate the

impact of the shadow table cache capacity on power and performance.

4.4 Fine-Grain Page Reclamation

The allocation of shadow pages is managed by the operating system. If a LLC

writeback tries to write in a page that does not have a shadow page in the DRAM

partition, (i.e., a miss of the shadow table) the operating system issues a minor

page fault and disallows the write access to the PCM page. Following the minor

page fault, it allocates a shadow page in the DRAM partition, and allows the

write access to the shadow page instead. However, as the DRAM partition is

smaller, eviction of the shadow pages from the DRAM partition is essential to

maintain a steady pool of free pages. Evicted pages from DRAM are written back

to the PCM partition. Since this introduces writes to the PCM partition, the

page reclamation policy affects the amount of writes to the PCM partition. As

the least recently used DRAM page is not necessarily the least written to DRAM

page, if the eviction policy is conventional LRU (least recently used), there would
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Algorithm 4.1 Write Aware Page Reclamation

Require:
1: shad alloc list : the circular list of allocated shadow pages,
2: shad free list : the list of free shadow pages,
3: Ndirty(s) ∈ {1, . . . , 64} : the number of dirty cache lines in s ∈ shad alloc list,
4: Range(s) : a function of s ∈ shad alloc list, defined as follows:

5: Range(s) =


Range 0, if Ndirty(s) ∈ {1, . . . 16},
Range 1, if Ndirty(s) ∈ {17, . . . 32},
Range 2, if Ndirty(s) ∈ {33, . . . 48},
Range 3, if Ndirty(s) ∈ {49, . . . 64},

6: overlook(s) : number of iterations overlooked during reclamation for s ∈ shad alloc list,
7: F : Shadow page pointed by the clock hand in shad alloc list,
8: next(s) : Shadow page next to s ∈ shad alloc list,
9: threshold : Maximum number of iterations that can be overlooked, this sets this as 2 to match

CLOCK algorithm.
10: Start
11: procedure Allocate Shadow Page
12: if shad free list 6∈ ∅ then
13: return s ∈ shad free list
14: else
15: s←Reclaim Shadow Page
16: return s
17: end if
18: end procedure
19: procedure Reclaim Shadow Page
20: for range = Range 0 to Range 3 do
21: p← F
22: if Range(p) == range then
23: if dirty bit(p) == 1 then
24: dirty bit(p)← 0
25: overlook ← 0
26: else
27: if overlook(p) < threshold then
28: overlook(p)← overlook(p) + 1
29: else
30: F ← next(p)
31: return p
32: end if
33: end if
34: end if
35: p← next(p)
36: end for
37: end procedure
38: End

eventually be no control over the writes to the PCM partition. Evicting a least

recently used but extensively modified page would translate to a large number

of writes to the PCM partition.

We propose a new page reclamation algorithm that is aware of the dirtiness

of a page. We define a dirtiness metric that is essentially the total number of

dirty cache lines within a page. A page with more dirty lines is considered to be
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dirtier than a page containing lesser number of dirty lines. Selecting a shadow

page with the least number of dirty lines as the eviction candidate is desirable

not only because it reduces the number of writes to PCM, it also reduces the

migration overhead due to the copying of data. At the same time, it is necessary

to ensure that shadow pages that are currently part of the working set, do not

get reclaimed. Frequent reclamation of write intensive shadow pages that are in

the current working set increases the number of minor page faults and writes to

its associated PCM page, resulting in thrashing.

Our page reclamation algorithm is based on the CLOCK algorithm [71] and

tracks the recent writebacks to a shadow page. Algorithm 4.1 describes the

pseudo-code of our proposed algorithm. The function N dirty(s) (Line 3) stores

the number of dirty lines in a shadow page s. The function Range(s) (Line 5)

identifies the range of dirty lines in the shadow page s. Function overlook(s)

(Line 6) counts the number of reclamation iterations for which the shadow page

s was ignored. The maximum number of iterations for which a shadow page can

be overlooked for reclamation is set as 2.

When the LLC requests a shadow page by generating a minor page fault,

the procedure Allocate Shadow Page is called. The OS checks if there are free

shadow pages available in the shad free list (Line 12). If a free shadow page is

available, it is allocated to the request. Otherwise, the shadow page reclamation

tries to reclaim a shadow page from the circular shad alloc list, by calling the

function Reclaim Shadow Page (Line 19). To reclaim an allocated shadow page,

shad alloc list is scanned, starting from the shadow pages containing dirty cache

lines in the lowest range (Range 0) (Line 20). When a suitable candidate is found,

the dirty bit is first checked. If it is set, then this candidate is not considered for

reclamation for the current iteration.

The dirty bit of the candidate is reset and the overlook value for the shadow

page is set to 0 (Lines 23 − 25). If the dirty bit of the candidate has not been
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Figure 4-6: Example of dirtiness aware page reclamation with an overlook value
of 8.

set, then the number of overlooks the shadow page has enjoyed is checked. If it

is equal 2, then this candidate is chosen as the victim. Otherwise, the overlook

count for the candidate is incremented (Lines 27 − 31). The scanning proceeds

to the pages with the next range of dirty lines (Range 1), (Range 2) and so on.

Figure 4-6 illustrates an example of a typical iteration of the algorithm with

an overlook value of 8, for ease of explanation. In the first iteration, page A has

the least number of dirty slices, however, the overlook count is only 2. Therefore,

the next page B is considered. As the overlook value for B is 7, B is chosen as

the victim for this iteration and the overlook counts for rest of the pages are

incremented by 1. In the next iteration, none of the pages in the first range

have saturated the overlook counter. Thereby, the algorithm probes the next

range of pages i.e. P, Q and R. In this group, even though both P and Q have

lesser number of dirty cache lines, R has saturated its overlook counter. So, R

is chosen as a victim in this iteration. The overlook counter ensures that least

recently used pages are evicted while the order of the pages to be probed (no. of

dirty slices and group of pages based on ranges) ensures that the least recently

used and least written to page is evicted.
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Figure 4-7: Overview of our proposed framework

Putting It All Together

Figure 4-7 shows the overall structure and functionalities of our proposed frame-

work. In our proposed hardware, every time the LLC controller performs a main

memory access, the shadow table cache is probed. The shadow table cache is

implemented like the translation-lookaside buffer. Just like a TLB miss, the op-

erating systems is invoked on a shadow table cache miss. It will service the miss

by a cache fill from the shadow table which resides in the kernel space in the

DRAM partition.

In the configurations we have used in our experiments, the shadow tables

are typically 2.4 Mbytes. On processing a shadow table cache miss, if the OS

fails to locate an entry in the shadow table, then it will examine if the virtual

page is present in main memory. If it is not, then a full-fledged page fault will be

triggered. If the page is present, it results in a minor page fault. This means that

the virtual page is already mapped into the PCM partition, but a shadow page

in the DRAM partition has yet to be allocated. Should the access be a read,

then it is straightforward to satisfy the read request from the PCM partition.
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If the access is a write, then the OS will allocate a DRAM shadow page, and

perform the necessary book-keeping. Such minor page faults do not have the

similar heavy performance penalty as a conventional page fault.

In our experiments, we found that the total numbers of minor page faults are

not large because once a shadow page is allocated, further writes to that page will

not result in a minor page fault. In such cases, only the bitmap in the correspond-

ing shadow table cache entry is updated by the FGW mechanism during every

write. The two rectangles in Figure 4-7 represent the software (FGP) and the

supporting hardware (FGW) components. While, FGW captures the finer gran-

ularity of reads and writes, FGP enables the fine grain data allocation/eviction

for the DRAM and PCM. We believe that such a software-hardware is necessary

for achieving our overall goals.

4.5 Evaluation Methodology

Experimental Setup

To evaluate our framework, we used a modified version of MARSSx86 [68], a full

system simulator for x86 architectures to work together with DRAMSim2 [72] to

model our framework. The processor simulated is a four-core, 3 GHz out-of-order

processor with a three level cache hierarchy. In addition, we have implemented

our page reclamation algorithm in a version 2.6 Linux kernel that runs on the

simulator together with the workloads. The detailed configuration is given in

Table 4.1. In order to eliminate effects of cold memory misses, we warmed up

the memory hierarchy for the first 500 million simulated cycles before taking

readings in the simulation of the next 4 billion instructions for each workload.

As workload, we used all the benchmarks of SPEC2006 [62] and PARSEC [73]

benchmark suite. Table 4.2 shows the benchmarks and the size of their working

sets. We grouped them into 11 workloads containing a mix of the benchmarks
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Configuration

Processor 4 Out-of-order cores, Freq - 3 GHz

L1 Cache
I-Cache and D-Cache, 32KB
4-cycle access latency, 64 byte line size

L2 Cache
2MB 4-way, 64 byte line size
12-cycle access latency

L3 Cache
Shared, 8MB, 64 byte line size
28-cycle access latency

Shadow Table Cache
1024 Entries, Area - 0.36 mm2

9-cycle access latency
Energy - 0.06 nJ/access

Main Memory

DRAM : varied size + PCM : 8GB
DRAM Access Latency - 50 ns
Energy - 0.1 nJ/bit
PCM Read Latency - 50 ns,
Energy - 0.2 nJ/bit
PCM Write Latency - 100 ns
Energy - 1 nJ/bit

Table 4.1: Simulation Configuration

as given in Table 4.3.

Among the 11 workloads, 4 are highly memory intensive (hm1, hm2, hm3, hm4),

4 have medium memory intensive working sets (mm1, mm2, mm3, mm4) and 3 are

light in terms of memory usage (lm1, lm2, lm3). While the highly memory inten-

sive workloads will reveal the savings in power consumption, the light memory

workloads helps us to gain insight in the overheads involved.

For comparison, we used two state-of-the-art works on hybrid memory man-

agement. One is a purely software based management [74] and the other is a

well established hardware solution for hybrid memories [7].

Comparison 1 - clock-dwf

Lee et al. [74] advocates an operating system driven page reclamation framework

for DRAM-PCM hybrid memories.
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Benchmark

Working
Set
Size

(MB)

Benchmark

Working
Set
Size

(MB)

swaptions 0.5 soplex 201

blackscholes 2 wrf 163.5

bodytrack 8 leslie3d 75.2

streamcluster 16 gcc 70

vips 16 sjeng 57

x264 16 perlbench 51

ferret 64 libquantum 33

fluidanimate 64 xalancbmk 27.8

freqmine 128 astar 26

canneal 256 bzip2 24.4

dedup 256 omnetpp 24

facesim 256 dealII 14.7

GemsFDTD 800 sphinx3 10.6

mcf 680 hmmer 8.2

bwaves 474 tonto 6.2

lbm 402 h264ref 2.9

zeusmp 270 povray 0.4

milc 230

Table 4.2: SPEC2006 and PARSEC benchmarks and their working set sizes

Comparison 2 - dram-cache

Qureshi et al. [7] proposed a hardware assisted memory management scheme

where DRAM is used as a cache to the bigger PCM partition.

Energy Models

One of the key contributions of our proposal is the reduction in energy consumed

by the memories. We used CACTI [70] to model our proposed hardware compo-

nent, namely the shadow table cache, and extracted the power consumption of

DRAM from the DRAMSim simulator. For the PCM partition, we used widely

accepted energy parameters [7, 74]. As the scope of this work is primarily data

management for hybrid memories, we mainly compare the energies of DRAM
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Workload Benchmarks

hm1 gemsFDTD, milc, sjeng, gcc, astar

hm2 mcf, soplex, zeusmp, perlbench, xalancbmk

hm3 lbm, bwaves, wrf, leslie3d, libquantum

hm4 dedup, canneal, facesim, freqmine

mm1 gcc, bzip2, dealII, wrf

mm2 leslie3d, omnetpp, sphinx3, soplex

mm3 ferret, streamcluster, x264, freqmine

mm4 freqmine, fluidanimate, vips, ferret

lm1 sphinx3, bzip2, hmmer, h264ref

lm2 dealII, tonto, omnetpp, povray

lm3 streamcluster, swaptions, blackscholes, bodytrack

Table 4.3: Workloads

and PCM with that for clock-dwf and dram-cache.

Performance Impact

As we used a full system simulator, the delays associated with all the components

are implemented as a part of the system. CACTI [70] was used to generate all

the delay numbers associated with our additional hardware components. We

also modelled and accounted for the delays due to the minor page faults and the

page reclamation algorithm in the operating system.
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4.6 Experimental Results

4.6.1 Write Reduction to PCM

Tables 4.4, 4.5 and 4.6 shows the total number of write accesses to the PCM

partition for each of the methods. Our solution disallows any last level cache

writeback to the PCM and thus, we achieve a remarkable reduction in writes.

Work-
loads

DRAM
Reads
×106

%
DRAM
Writes
×106

%
PCM
Reads
×106

%
PCM
Writes
×106

%
Total
×106

hm1 63.64 0.13 17.54 37.08 20.99 44.38 8.70 18.40 47.30

hm2 32.09 0.27 3.33 28.18 7.13 60.25 1.34 11.30 11.83

hm3 26.73 0.04 26.51 37.66 28.22 40.08 15.65 22.23 70.40

hm4 31.92 0.10 9.03 29.60 17.23 56.45 4.23 13.85 30.52

mm1 13.11 0.05 8.59 35.99 10.44 43.76 4.82 20.20 23.86

mm2 21.89 0.07 11.09 37.15 13.54 45.35 5.20 17.42 29.86

mm3 3.84 0.02 5.41 25.64 13.05 61.81 2.65 12.53 21.11

mm4 62.38 0.27 7.17 31.41 11.58 50.76 4.01 17.56 22.82

lm1 0.42 0.03 0.56 34.54 0.79 48.82 0.27 16.61 1.62

lm2 0.84 0.07 0.35 30.89 0.62 54.90 0.16 14.13 1.13

lm3 1.70 0.03 0.83 15.08 4.27 77.63 0.39 7.25 5.50

Avg 23.50 0.10 8.22 34.00 11.62 48.08 4.31 17.83 24.18

Table 4.4: Detailed memory access counts for clock-dwf

Work-
loads

DRAM
Reads
×106

%
DRAM
Writes
×106

%
PCM
Reads
×106

%
PCM
Writes
×106

%
Total
×106

hm1 57.49 0.12 17.63 37.11 21.15 44.53 8.66 18.23 47.50

hm2 50.74 0.21 8.08 34.15 10.91 46.13 4.61 19.51 23.65

hm3 18.98 0.04 19.94 37.79 21.71 41.13 11.10 21.04 52.77

hm4 28.49 0.10 8.38 29.31 16.14 56.47 4.04 14.12 28.58

mm1 34.79 0.34 3.68 35.66 4.96 48.00 1.65 16.00 10.33

mm2 8.83 0.06 5.43 35.62 6.93 45.45 2.88 18.87 15.25

mm3 5.84 0.02 5.74 21.77 17.96 68.14 2.66 10.07 26.37

mm4 37.27 0.21 5.55 31.07 9.18 51.40 3.09 17.32 17.87

lm1 0.77 0.05 0.56 33.98 0.84 51.52 0.24 14.45 1.64

lm2 0.29 0.02 0.37 30.40 0.67 55.62 0.17 13.95 1.21

lm3 4.77 0.16 0.34 11.69 2.43 83.00 0.15 5.15 2.93

Avg 22.57 0.11 6.88 33.19 10.26 49.50 3.57 17.21 20.73

Table 4.5: Detailed memory access counts for dram-cache
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Work-
loads

DRAM
Reads
×106

%
DRAM
Writes
×106

%
PCM
Reads
×106

%
PCM
Writes
×100

%
Total
×106

hm1 3.18 8.23 17.24 0.45 18.20 0.47 64.00 0.17 38.61

hm2 5.13 24.42 8.48 0.40 7.41 0.35 64.00 0.30 21.02

hm3 3.47 8.19 20.29 0.48 18.61 0.44 128.00 0.30 42.37

hm4 2.59 10.28 8.65 0.34 13.95 0.55 128.00 0.51 25.19

mm1 1.73 15.95 4.37 0.40 4.74 0.44 64.00 0.59 10.84

mm2 3.15 25.16 5.46 0.44 3.91 0.31 64.00 0.51 12.52

mm3 4.71 21.25 4.70 0.21 12.76 0.58 448.00 2.02 22.17

mm4 1.49 9.94 5.64 0.38 7.85 0.52 64.00 0.43 14.98

lm1 0.11 7.82 0.56 0.41 0.71 0.51 128.00 9.32 1.37

lm2 0.02 1.37 0.35 0.25 1.01 0.73 64.00 4.63 1.38

lm3 2.13 42.94 0.65 0.13 2.18 0.44 704.00 14.17 4.97

Avg 2.52 14.21 6.94 0.39 8.26 0.47 174.50 0.98 17.73

Table 4.6: Detailed memory access counts for our framework

Compared to both clock-dwf and dram-cache, our framework reduces writes

by four orders of magnitude. On an average, clock-dwf incurs 4.3 million and

dram-cache incurs 3.6 million writes to PCM, where as our framework incurs

174.5 writes to PCM in a span of simulation of 4 billion instructions. Due to

limitation in simulating disk accesses, for all the three methods, the PCM writes

excludes the PCM fills from the disk.

4.6.2 Memory Utilization

Another interesting angle to evaluate the three techniques is to see how well they

utilize the memory resources available. Tables 4.4, 4.5 and 4.6 show a detailed

insight on the total number of reads and writes accrued by DRAM and PCM.

Ideally, most of the reads should be serviced by the PCM partition while most

of the writes should be serviced by the DRAM partition. In addition, in a quest

to reduce writes to PCM, the larger PCM partition should not be under-utilized

for that would be a waste. The tables 4.4, 4.5 and 4.6 show that under our

framework there is still a substantial fraction of total reads going to the PCM

partition with writes to PCM being nearly eliminated.
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4.6.3 Energy Consumption

Figure 4-8 shows the total energy consumption by all the techniques. The energy

model we used is as follows -

ETotal = EDynamic + ERefresh + EOverhead (4.1)

where, EDynamic refers to the dynamic energy due to read and write accesses to

the main memory. ERefresh refers to the amount of energy spent in refreshing

the DRAM.

In addition, EOverhead consists of the energy consumed by additional hard-

ware or extra components for each of the techniques. For our framework, the

energy consumption of the shadow table cache is added into EOverhead. The

energy for the shadow table cache accesses was obtained from CACTI and is

given in Table 4.1. For clock-dwf and dram-cache the overheads are in terms

of book-keeping for scanning the dram pages and additional migration to and

fro from DRAM and PCM, respectively. Such overhead cases are covered within

the EOverhead.

Figure 4-8(a) shows the total energy consumption in a system consisting of an

8 GB PCM partition and a 1 GB DRAM partition. Our proposal reduces energy

by 58.8% as compared to DRAM-cache and 65% as compared to clock-dwf. The

DRAM partition consumes the most energy together with the write operations

to the PCM partition. A smaller DRAM therefore should intuitively reduce the

overall energy consumption.

However, a smaller DRAM partition also translates to increased write traffic

to PCM. Therefore, to quantitatively verify this phenomenon, we tested a system

with 8GB of PCM supported by a smaller 512MB DRAM shown in Figure 4-

8(b). The energy consumption of dram-cache and clock-dwf increases due to

the increased write traffic to the PCM partition. However, even in this case, our

71



Chapter 4. Operating System Assisted Resistive Hybrid Main Memory

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

hm1 hm2 hm3 hm4 mm1 mm2 mm3 mm4 lm1 lm2 lm3 avg 

N
o

rm
a

li
ze

d
 E

n
er

g
y

 

Workloads 

clock-dwf dram-cache ours 

(a) 1GB DRAM + 8GB PCM

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

hm1 hm2 hm3 hm4 mm1 mm2 mm3 mm4 lm1 lm2 lm3 avg 

N
o
rm

a
li

ze
d

 E
n

er
g
y

 

Workloads 

clock-dwf dram-cache ours 

(b) 512MB DRAM + 8GB PCM

Figure 4-8: Dynamic energy of hybrid memory (DRAM+PCM) for two sizes of
DRAM, normalized to energy consumption of clock-dwf.

framework shows energy reduction of 76.9% as compared to dram-cache and

83.6% as compared to clock-dwf.

This is due to the write aware page reclamation policy (FGW component)

which prevents heavily written pages from being evicted and thus generates

huge write traffics to PCM. Thus we achieve a higher energy gain as other two

methods do not consider the amount of dirty data within a page while eviction.

Especially, for dram-cache, the replacement policy is LRU and thus a smaller

DRAM aggressively evicts pages that still belong to the write working set of the

application.
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Figure 4-9: Throughput in terms of instructions per cycle (IPC) for two sizes of
DRAM, normalized to the IPC of clock-dwf.

4.6.4 Performance

We quantified performance in terms of the instructions per cycle (IPC). We com-

pared the IPC with dram-cache and clock-dwf in Figure 4-9. Our framework

has an IPC penalty of 0.7% on average as compared to dram-cache. However,

when compared to clock-dwf, our framework shows an IPC improvement of

10%. For workloads, like hm2, that have large write working sets, dram-cache

performs better as it uses DRAM to service LLC writebacks.

However, it also fails to control the writes to PCM, thereby increasing energy

consumption as we have seen. Similarly, when the DRAM partition is small, the
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performance of dram-cache degrades drastically. As DRAM size decreases, more

pages have to be migrated to the PCM partition due to more frequent evictions.

This impacts the main memory access latencies, hence degrading performance.

The same workload hm2 generates larger writes to PCM and thus degrading IPC.

In our framework, if the write working set of an application is small enough

to be accommodated by the DRAM partition, such as mm1 and lm3, the overall

performance is better than both dram-cache and clock-dwf. Under such a

scenario, the application benefits from the fast DRAM writes as well as the

larger PCM capacity.

4.6.5 Shadow Table Cache

Our framework uses an additional shadow table cache to assist in the fine-grain

data management. This cache contains the mapping between DRAM and PCM

address together with the bitmap to indicate whether the cache line to be written

back is present in the DRAM or PCM partition. We call the process of directing

the access to either the DRAM or PCM partition a remap.

Figure 4-10a shows the impact of the shadow table cache of various sizes on

performance. A larger shadow table cache would presumably result in better

performance. However, our experiments show that the IPC stabilizes with a

shadow table cache with 1024 entries. On further investigation, we found that

this was due to a stable hit rate being attained. Figure 4-10b shows the hit rate

of the shadow table cache for the varying sizes. The hit rate stabilizes at 1024

entries, and therefore for all our experiments, we used a shadow table cache with

1024 entries.

4.6.6 DRAM Sizes

The main motivation of a hybrid memory design is to use a smaller DRAM to

filter out write accesses to a bigger PCM. For our experiments, we simulated an
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Figure 4-10: Study on Shadow Table Cache.

8 GB PCM partition. This is the maximum capacity our simulator can handle.

Alongside this 8 GB PCM partition, we varied the size of the DRAM partition

to examine its impact on power and performance.

Figure 4-11a presents the energy consumption of the main memory for vary-

ing sizes of DRAM for the high memory workloads. The percentage of DRAM in

hybrid memory represents the size of DRAM as compared to the PCM. A very

small DRAM translates to a lot of write accesses to the PCM partition as it is

too small to hold the write working set of the application. Therefore, for 6.2%,
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Figure 4-11: Study on varied DRAM sizes.

i.e. 512 MB of DRAM with 8 GB of PCM, the energy consumption is high.

For 12.5% and 25%, the energy consumption is the minimal as the DRAM par-

tition is able to accommodate the write working set, and alleviating the writes

to PCM. As expected, with an increased DRAM size, the energy consumption

also increases. Figure 4-11b shows the impact varying the size of the DRAM

partition has on performance.

76



Chapter 4. Operating System Assisted Resistive Hybrid Main Memory

 0

 10

 20

 30

 40

 50

 60

hm
1

hm
2

hm
3

hm
4

m
m

1
m

m
2

m
m

3
m

m
4

lm
1

lm
2

lm
3

av
g

N
o
. 
o
f 

M
in

o
r 

P
ag

e 
F

au
lt

s

Workloads

Figure 4-12: Total number of minor page faults.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

hm
1

hm
2

hm
3

hm
4

m
m

1
m

m
2

m
m

3
m

m
4

lm
1

lm
2

lm
3

av
g

F
ra

ct
io

n
 o

f 
U

se
fu

l 
W

ri
te

s

Workloads

Figure 4-13: Amount of useful writes to PCM.

4.6.7 Page Reclamation

The cache writebacks to PCM generates a minor page fault for which the op-

erating system allocated a DRAM shadow page to service writes. As the page

does not need to be filled in from the disk, the latency of the minor page fault is

significantly lower than that of a conventional page fault. Figure 4-12 shows the

total number of such minor page faults triggered by the workloads during the

execution of 4 billion instructions. Figure 4-13 shows the fraction of dirty cache

lines within a page that was written to the PCM due to shadow page evictions.

The graph shows that on average 94% of the page contained clean data and only

6% was dirty and our framework is successful in writing only this 6% of data to

the PCM eliminating the rest.
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Figure 4-15: Normalized energy consumption when L2 is the LLC.

4.6.8 L2 as Last Level Cache

For all the above results, we assumed a three level cache hierarchy. We have

also evaluated a processor configuration in which there are only two levels of

cache hierarchy and the unified L2 cache is the last level cache. This translates

to increased memory access to the main memory. In such scenarios, it could be

that an optimal algorithm for hybrid memory with the L3 cache as last level

cache might not be sufficient to control the writes to the PCM partition.

To check this, we repeated our experiments assuming the L2 cache as the last

level cache, using clock-dwf and dram-cache for comparison. As dram-cache

utilizes a smaller DRAM as a cache and PCM is accessed only for DRAM misses,

having increased DRAM traffic significantly increases writes to the PCM. This

not only impacts performance, also worsens energy consumption. Figure 4-14
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shows the performance of such a system. Our framework outperforms both

clock-dwf and dram-cache in terms of IPC showing an improvement over

clock-dwf and dram-cache of 14% and 4.8%, respectively. The gain in en-

ergy efficiency over clock-dwf and dram-cache are 49% and 54%, respectively.

Thus, our framework is effective for hybrid main memory management regard-

less of whether the LLC is L2 or L3. Having L2 as LLC indicates that the

writes to the DRAM partition increases. However, our write aware page recla-

mation policy keeps the write intensive pages in DRAM and thus continuous

LLC writebacks to these pages are filtered by DRAM.
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4.7 Chapter Summary

In this chapter, we propose a fine-grain data management for hybrid main memo-

ries composed of a DRAM and a PCM partition. In our scheme, cache writebacks

are monitored and redirected to the DRAM partition only, thereby reducing the

amount of write operations the PCM partition is subjected to. Furthermore,

during DRAM eviction, only dirty data in units of cache lines is written to the

PCM partition, instead of entire pages that we found mostly contained clean

data. This reduced the writes to the PCM partition drastically. We compared

our framework with two state-of-the-art techniques clock-dwf and dram-cache.

Our experiments show that our framework offers 58.8% and 65.5% reduction

in energy consumption compared to dram-cache and clock-dwf. Our solution

reduces writes to PCM by four orders of magnitude as compared to the above

mentioned works. In addition, our solution exhibits a mere 0.7% degradation in

performance in terms of instructions per cycle when compared to dram-cache,

and a 10% improvement in IPC over clock-dwf. We believe that the hardware

overhead of our proposal is modest, and the combined benefit from involving

the operating systems in the process is significant gain from the state-of-the-art.

We hope this will contribute to the acceleration of the adoption of the next

generation non-volatile memories in actual systems.
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Chapter 5

Error Management through

Approximate Computing

This chapter focuses on the second crucial challenge faced by the energy efficient

memories i.e. Error Susceptibility. We would propose approximate computing

based approach which abates the overheads of refreshes or error detection and

correction for the energy efficient memories. In particular, this chapter would

elaborate on a specific problem of identifying which program parts are favourable

to approximation, towards which we would propose a dynamic program testing

scheme.

Approximate computing is a new programming paradigm allowing programs

to trade-off accuracy in favour of lower power consumption. It is especially

appealing to low-power embedded devices where energy efficiency is of serious

concern. Further, there are many applications targeted to smartphones, tablets,

etc. that are capable of tolerating inaccuracy while maintaining the desired

quality of service (QoS).

Many recent works have shown this to be a promising trade-off for current

and future embedded platforms [1, 37, 39, 40, 43, 75]. Programs contain specific

parts that contribute to the correctness of the output and others that do not. A
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correct output usually lies within a Quality of Service range of the application.

The parts of a program that do not affect the output beyond a tolerable extent

are deemed approximable, while parts that are important are non-approximable.

Depending on the application, these two parts can vary significantly.

The presence of approximable data in a program is the mainstay of the

approximate computing paradigm. The non-approximable program data can be

computed and stored in a high power mode, while the approximable regions in

a low power mode [39]. Applications allowing such behaviour are called error-

tolerant. Error-tolerance of applications running on devices prone to soft-errors

is well studied [34–36]. However, in this new paradigm, instead of mitigating the

errors, a controlled degradation of QoS due to the errors is allowed.

5.1 Motivation

Discovering distinct approximable and non-approximable parts of a program

automatically is a difficult task. Sampson et al. recently proposed source code

annotations and type-qualifiers for programmers to indicate whether a variable

(data) is error resilient, in other words, approximable [1]. However, this implies

rewriting or annotating source codes. This may be easy for small programs, but

is difficult for complex programs and legacy software.

Other works [37, 46, 76, 77] have shown that program approximations can

be achieved through algorithmic choices, runtime decision making frameworks,

and on the architectural or device level. The provision of algorithmic choices too

is the programmer’s responsibility and the application is compiled using all the

versions of a procedure. This is not only difficult to apply to large applications

having large numbers of procedures, it also inflates size of executables. Such

consequences impede the usage of these solutions for embedded devices.

Our motivation for this work is twofold. First, is to alleviate the existing

burden placed on the programmer in facilitating approximate computing. We
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aim to provide an automatic analysis for a program and identify data that can be

approximated. In scenarios where annotating programs without programmer’s

knowledge is considered unsafe, ASAC would serve as the suggestive framework

for annotating bigger and more complex programs. Programmers can then fine-

tune ASAC’s analysis results to obtain the final partitioning.

In any case, it is obviously expensive, time consuming, and in some scenarios,

infeasible to identify approximable and non-approximable data, and annotate

the application completely manually. Moreover, for legacy software and other

programs that have undergone significant changes over many versions, it may be

difficult to understand the implications of approximated variables and their effect

globally. Therefore, an automated analysis is indispensable for approximate

computing in the large.

Our second motivation is to study the error-resilience of internal program

data i.e. program variables, etc. Error-resilient program transformations have

been well studied. However, all the existing works focus on approximating dif-

ferent components such as procedure approximation, input data approximation,

control- flow based approximation etc. [42, 46]. Other works have studied the

error-resilience of data in architectural components such as the arithmetic units,

register files, etc. [77, 78]. Here, we are proposing a framework to analyse and ap-

proximate internal program data while maintaining an acceptable QoS according

to the application.

5.2 Our Proposal

In this chapter, we propose “ASAC” - Automatic Sensitivity analysis for Approx-

imate Computing, a framework to automatically discover approximable data from

a program. The key idea is to systematically perturb the program variables and

to observe its effect on program output. By quantifying the sensitivity of the

output to the perturbations, we can discern program variables in terms of their

83



Chapter 5. Error Management through Approximate Computing

contributions to the output. A variable that does not contribute to the correct-

ness of the output or the functionality of the program beyond a certain extent

is not considered as critical, and therefore can be approximated. Conversely,

critical variables cannot be approximated and must be precise.

The main component of this framework is a specialized sensitivity analysis

using statistical methods. Sensitivity analysis of parameters of mathematical

models using statistical methods is known in literature [79]. Our contribution

in this work is the use of statistical methods for sensitivity analysis of program

data.

Figure 5-1 illustrates ASAC consisting of 3 main stages, namely discovery,

probe and testing. In discovery stage, we extract the variables of a program along

with the range of values that each can assume during the execution. The carte-

sian product of the variable range intervals defines an n-dimensional hyperbox.

This hyperbox is the sample space for the statistical experiments performed by

the sensitivity analysis module. Each dimension represents a variable and the

corresponding edge of the hyperbox is the range of that variable. Therefore,

the total number of dimensions in the hyperbox is determined by the number of

variables in the program.

The hyperbox represents the value-space of the program during its execu-

tion. At the subsequent probe stage, we first divide the hyperbox into smaller

hyperboxes of equal sizes. We select a subset of these smaller hyperboxes, the

samples, and choose a number of points from among them. Each of these points

are n-tuple coordinates containing the values of each variable at that point.

These points are passed to the program and the values are forcefully assigned

(perturbed) to corresponding variables during the execution by means of binary

instrumentation.

Due to the intrusion, the program output can be expected to be deviated

from the correct output. Our aim is to measure this incorrectness. According to

84



Chapter 5. Error Management through Approximate Computing

int sum(){ 

   int i; 

   double a = 0.1, sum = 0.0; 

 for(i=0;i<10;i++){ 

          sum += a/10; 

 } 

   return sum; 

 } 
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Figure 5-1: Overview of “ASAC” framework. Each box represents a step and
the arrows are the dataflow between them. There is an information flow from
Sampler back to the Hyperbox Construction to facilitate further optimization in
range analysis.

the difference between the QoS threshold of the application and the perturbed

outputs, we mark each such sample as “good” (pass) or “bad” (fail).

Next, in the testing stage, a cumulative distribution curve is obtained by

plotting the number of good or bad samples against the range of each dimension

of hyperbox. The two curves undergo a hypothesis test that generates the max-

imum distance between them. A large distance between the curves means that

the program output is very sensitive to the variable representing that dimension

of the hyperbox. Conversely, a smaller distance implies the opposite. All the

stages are described in details in the following sections.

ASAC is fully automatic and alleviates the programmer’s involvement. With

minor modification, it can also be applied to programs where the source code

is not available. A direct application of this framework can be as a feedback

system to a compiler, providing information about how the programs may be

approximated. Moreover, ASAC can be used as a black-box tester to gain insight
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about the sensitivity of program output against program data. This would be

valuable information for platforms susceptible to soft-errors, where instead of

allowing the approximation, the sensitivity of the variables can be used as a

metric to decide which data should be protected.

We evaluated our analysis against a ‘gold’ standard where a programmer

has made type-qualifier based annotations to programs to facilitate approxi-

mation [1]. We achieve 86% accuracy in determining approximable data with

respect to this manually annotated baseline (MAB). In addition, to show the

scalability and generality of our analysis, we apply it to bigger and more complex

programs from MiBench and SPEC2006 benchmark suites. Our contributions in

this work are summarized as follows:

• The first automated software analysis that allows approximate computing

based programming paradigm.

• A framework to discover program data that can be approximated without

compromising the QoS of a given application.

• A black-box analysis that can test programs and order the variables in

terms of their contribution to the correctness of the final output.

5.3 Automated Analysis

In this section, we will describe the three stages in detail. First, we explain

two main concepts integral to the discovery stage - range analysis and hyperbox

construction. Range analysis is well studied. It is commonly used to detect

integer overflows, etc. However, here we apply range analysis to estimate the

values that a variable can assume during program’s execution.

Definition 5.3.1. For each variable Vi in program under analysis, let value(Vi)

be the value that Vi can assume during program execution. Then, range(Vi) =

86



Chapter 5. Error Management through Approximate Computing

Algorithm 5.1 Range Analysis

Require:
1: Program P, QoS Threshold Q
Ensure:
2: R[n], where n← no. of variables in P

3: Initialize rangeOf(Vi) = ∅ ∀ Vi in P
4: for each variable Vi in P do
5: if rangeof(Vi) = ∅ then
6: var ← Vi

7: Ri[2]← range analysis(var) /* standard widening & narrowing operator based */
8: if Ri[0] ∨Ri[1] =∞ then
9: if datatype(var) = int 32 then
10: Ri[0]← −32767 /* standard data */
11: Ri[1]← 32767 /* range for int type */
12: else if datatype(var) = float then
13: Ri[0]← 0 /* dummy range */
14: Ri[1]← 1 /* that will shrink over runs */
15: else
16: /∗ handle all datatypes similarly ∗/
17: end if
18: end if
19: end if
20: end for
21: return Ri[]

Variables Datatype Initial Range Tuned Range

LineSadBlk0 double [1 , 1] [0.0 , 780.0]
P A int [2048 , 2048] [128 , 128]
P E int [-32768 , 32767] [34 , 244]
D dis1 double [1 , 1] [-15.0 , 177.0]

Table 5.1: Ranges of some variables in H.264

[Ri1, Ri2], where Ri1 ≤ value(Vi) ≤ Ri2. If Ri1 = ±∞ or Ri2 = ±∞, range(Vi)

is given by the datatype of Vi.

This value range is essential for the construction of the hyperbox. We employ

widening and narrowing operators based dataflow analysis to calculate the value

ranges of the variables [80]. Algorithm 5.1 gives a pseudo-code description of

our range analysis. In cases where the analysis is unable to generate a finite

value range, we fine-tune the range based on the data type of the variable (line

9-12). For floating-point variables, we assume a dummy starting range of zero

(line 13-14). In order to extract the real value range, we have an information

loop back (see Figure 5-1) from the sampler to hyperbox construction which
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Figure 5-2: Example of 2 dimensional and 3 dimensional hyperboxes

makes it easy to get narrow and precise value-ranges from the profile runs of the

program. Therefore, even if the dataflow analysis generates an infinite range for

a variable, it is soon mitigated. This is shown in Table 5.1 with the examples of

some of the variables in H.264. After calculating the ranges of the variables, we

can construct the hyperbox.

Definition 5.3.2. An n-dimensional hyperbox H is the cartesian product of the

range intervals of each of the n variables.

H = [R11, R12] × [R21, R22] × . . . × [Rn1, Rn2], where [Ri1, Ri2] is the range of

variable (Vi).

Figure 5-2 shows a conceptual diagram of hyperboxes. Each dimension rep-

resents a variable and thus with n variables it will have n − dimensions. The

starting and ending point of each dimension is R1 and R2 of each variable i.e.

the range. As the value range of a variable can narrow or widen over runs,

the hyperbox may also shrink and grow. The shaded areas are called samples.

These are small hyperboxes obtained by discretizing the edges, and selecting

only a subset from among them. Discretization provides a finite sampling space

from the original hyperbox which has infinitely many sample points. The finite

sample space can then be sampled using any statistical sampler.

In our framework, we have used the Latin Hyperbox Sampling (LHS) algo-

rithm [81]. LHS ensures that the sampling is bias free and with a fairly well
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coverage of the sample space. As shown in Figure 5-2, the 2-D hyperbox is dis-

cretized into equal sized grids, and only one sample from each row and column

are qualified to be in the subset. For n-dimension, LHS selects only a subset of

the samples based on their positioning. The complexity of this method depends

on two factors - n, number of variables, i.e. the dimension of the hyperbox, and

the constant k i.e. the discretization parameter. Empirically, the number of

samples to be selected from a hyperbox can be defined as follows -

Number of samples = (

(k−1)∏
n=0

(k − n))n−1

Next, in the first step of the probe stage, we choose m uniformly random

points from each sampled hyperboxes. We will present a study of the effects of

the constants in a later section. Each of these points are an n-tuple coordinate,

where n is the number of variables in the program. For example, a point mi

from a sample si has the coordinates (mi1 ,mi2 , ...min), where mi1 is the value

of variable V1 at the point mi.

The points can be represented as a vector of real numbers. We use these

vectors to introduce perturbation in the program execution by passing the values

dynamically with an instrumentation tool. We call a program execution with

the perturbed values a probe run. As the hyperbox was originally constructed by

the value ranges of the variables, the perturbation for each variable lies within

the range of values the variable is expected to assume during executions.

Definition 5.3.3. Let Pi be a vector of the outputs of all the probe runs of sam-

ple Si, fobj be an objective function, and θ is a constant threshold. If fobj(Pi) ≥ θ

then designate Pi to be a “good” sample, else mark it as a “bad” sample. We

define the objective function as

fobj = (

j=k∑
j=0

ω(Pi))/k

where ω(Pi) = 1 if Pi ≥ Tqos, otherwise ω(Pi) = 0. Tqos is the QoS threshold for

the application given by the user.
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Algorithm 5.2 Hyperbox Construction & Sampling

Require:
1: Range[n][2], where n is no. of variables in program
2: k, discretization factor
Ensure:
3: V ector[n][k], containing the values to be passed to program for perturbed run
4: procedure Hypercube(Range[n][2],n)
5: Initialize H ← ∅
6: Initialize dim = n
7: for i = 0 to dim do
8: H[i].leftdiagonal← Range[i][0]
9: H[i].rightdiagonal← Range[i][1]
10: end for
11: end procedure

12: procedure Latin Hypercube Sampling(H[n],dim,k)
13: for i = 0 to k do
14: for j = 0 to dim do
15: L = H[j].leftdiagonal
16: U = H[j].rightdiagonal
17: Interval Size = (U − L)/k
18: Interval V al = chooseRandom(i,j)
19: LowLim = Interval V al ∗ Interval Size
20: T [0][0]← L + LowLim
21: T [0][1]← L + LowLim + Interval Size
22: Sample[i][j]← Sample[i][j] ∩ Hypercube(T[1][2],j)
23: end for
24: end for
25: return SampleT

26: end procedure

Algorithm 5.2 illustrates the detailed steps involved in the construction of

hyperbox and how points from among the samples are chosen. First, a hyperbox

is built using the preliminary value ranges obtained from the range analysis (line

3-10). For each variable represented by a particular dimension (edge) of the

hyperbox, the edge is discretized into k intervals (line 13-17).

Therefore, we have dim ∗ k number of smaller hyperboxes after this step,

where dim is the total number of variables and k is the discretization constant.

A subset of these smaller hyperboxes is chosen using LHS to have a fair coverage

of the ranges (line 18-22). The samples represent the set of values to be passed

to the program in the probe runs.

The perturbed outputs from all the probe runs are partitioned into two classes

- “good” or “bad”, based on the QoS threshold of the application. From all the

samples marked as either good or bad (0 or 1), we construct a cumulative curve
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Figure 5-3: Example CDFs of “good” and “bad” samples based on the QoS and
distance metric.

for each dimension of the hyperbox. The number of good samples is counted, and

plotted against the range of that dimension. Similarly, a second curve is obtained

by counting the samples marked as bad. These two curves are regarded as two

cumulative distributions obtained from the perturbed program runs.

Intuitively, the distance between the two curves denotes the contribution of

these variables towards the program output. We apply the Kolmogorov-Smirnov

hypothesis test [79] to calculate the maximum distance between the two curves.

This is called the d-statistics, and it translates to the sensitivity ranking: the

higher the distance, the higher is the sensitivity of the output to this variable,

and vice-versa. Formally -

Definition 5.3.4. Let Seni denote the sensitivity score for a variable Vi. Let

fgoodVi and fbadVi be the two cumulative distribution function (CDF) for variable

Vi. Then, Seni = maxx|fgoodVi(x) − fbadVi(x)|, where x is a point in the value

range of the variable Vi at which the CDFs are calculated.

Figure 5-3 shows an example of the cumulative curves, and the maximum

distance between them. A detailed step-by-step description of the generation

91



Chapter 5. Error Management through Approximate Computing

Algorithm 5.3 Sensitivity Ranking

Require:
1: V ector[n][k], containing the values to be passed to program for perturbed run
2: Q, QoS Threshold
Ensure:
3: SenScores[n], sensitivity scores for variables
4: procedure Program Probe(Vector[n][k])
5: Initialize V alues[n]← ∅
6: Initialize dim = n
7: for j = 0 to k do
8: for i = 0 to dim do
9: V alues[i]← V ector[i][j]
10: end for
11: Output[j]← program executed with V alues[]
12: Update hypercube
13: end for
14: return Output[]
15: end procedure

16: procedure Hypothesis Test(Output[],Q)
17: for i = 0 to k do
18: err = getErrorFunction(Output[i])
19: if err ≤ Q then
20: Good[i][] = V alues[]
21: else
22: Bad[i][] = V alues[]
23: end if
24: end for
25: for i = 0 to dim do
26: j ← Ri[0]
27: while j 6= Ri[1] do
28: if j ∈ Good[i][] then
29: Cgood[j] + +
30: else if j ∈ Bad[i][] then
31: Cbad[j] + +
32: end if
33: j+ = IntervalSize
34: end while
35: SenScores[i]← KS Test(Cgood, Cbad)
36: end for
37: end procedure

of the sensitivity scores is given in Algorithm 5.3. First, the program probe step

is detailed in lines 3-15. The procedure receives the vector of values from the

hyperbox as input and runs the program by forcefully assigning these values to

the variables. Each program run produces a result that is stored to be compared

for QoS at a later stage. In this procedure, the hypercube is also updated with

fine-tuned range of the variables. Next, in the hypothesis test procedure, an

error is calculated from the obtained result and the original result of the program

(line 18). This error is used to mark a sample as good or bad. Following this
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marking, considering all the samples from the hyperbox, a cumulative graph is

plotted against each dimension (lines 27-33). Two curves are obtained for each

dimension of the hyperbox and they are passed to the KS-Test for the distance

metric (line 35).

5.4 Optimizations

5.4.1 Discretization Constant

Our proposed analysis has one tunable parameter, the discretization constant,

k. This determines the size of the samples for each dimension in the hyperbox.

In other words, all the value ranges of the variables are divided up using this

constant k so as to reduce the value space (see Algorithm 5.2).

The completion time of the analysis is affected by this parameter. A larger

value will cause the analysis to take a longer time to complete because the

hyperbox is divided into smaller grids. However, the sensitivity scores obtained

from the analysis is not affected by the value of k as shown in Table 5.2. Thus, we

can conclude that the sensitivity of program output with respect to its variables

is a characteristic of the program. For our evaluation, we tested with k =

10, 50, 100, 200.

Figure 5-4 shows the total time taken by ASAC to complete its analysis. As

shown, when k ≤ 100, ASAC takes longer time to rank the variables. Table 5.2

shows the percentage of total variables marked as approximate with two different

k values. The percentages for k = 5 and k = 200 are same as that for k = 10 and

k = 100, respectively. The difference between k = 10 and k = 100 is attributed

to the fine tuning of the ranges of the variables. As the percentages are averaged

over 20 runs, different program paths will result in different fine-tuning of the

variable ranges. Nonetheless, the difference of percentage of variables marked

as approximate shows no significant variation over the values of k as shown in
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Figure 5-4: Total runtime (minutes) of ASAC with values of k while m = 2.

Table 5.2.

There is another constant m, which determines how many points will be cho-

sen from within one sample to perturb the program. We observe an interesting

trend in the relationship between k and m. As the samples are small in size with

a high value of k, increasing the value of m, i.e. choosing many points within a

narrow range, results in passing similar values for probing.

Therefore, the value of this constant m has no significant impact on the

variable ranking when k is high. Nonetheless, a high value of both k and m will

translate to higher running time for our analysis. When k is small, the value of

m has an impact on the variables’ ranking. A small value of k and m will result

in sampling a few representatives from a large hyperbox causing poor coverage

of the sample space. This behaviour is accentuated in bigger programs, such as

JPEG and H.264. However, it is important to have perturbations with values

of variables that are uniformly distributed over its range. Therefore, for our

experiments we used m = 5 and k = 100.
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Data Approximable(%)
Bench-
marks

Total
Decls

k = 2 m = 5

m = 2 m = 10 k = 10 k = 100

SOR 28 28 28 28 28
SMM 29 27 27 27 27
Monte 15 33 33 33 33
FFT 85 32 35 36 35
LU 150 6 9 9 10

JPEG 1174 6 10 11 11
H.264 11857 7 15 16 16

Table 5.2: Percentage of variables marked as approximable by ASAC with dif-
ferent values of k and m.

5.4.2 Perturbation Points

In the probe stage, we force variables to assume values chosen from the hyperbox.

We use the dynamic instrumentation tool PIN [82] to inject the values at runtime.

There are two important issues that we would like to discuss here. First, it is

a challenge to identify program points where the variables are perturbed. For

example, if a perturbation is introduced at a point where a variable is first

used after being defined, then the effect on output will be different than if the

perturbation is introduced at a later point.

In the former, the error might propagate and accumulate, resulting in a

large deviation from correct output. On the other hand, the error might get

masked by further arithmetic operations on the variables [46]. We introduce the

perturbations at the first usage of a variable after it is defined. Nonetheless, it

would be interesting to study the effects of the perturbation at other program

points. The second challenge is in injecting error into loop structures. It is

difficult to force values into loop variables because of its iterative nature.

Our aim is to perturb a variable to see the effect on the output. However, if

the loop factor is high, then injecting the perturbation at every iteration becomes

too aggressive. Instead we chose to perturb only a subset (25%) of the loop
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iterations. This technique is analogous to the concept of loop-perforation [43].

5.4.3 Instrumentation & Testing

ASAC involves ranking the variables using their identifiers, i.e. names, which are

not easily accessible after the code generation, especially at runtime. Therefore,

it is difficult to pass the perturbation values to the program during the probe

runs. To force a sample value into a program, we implemented a compile-time

pass that will inject additional code at the appropriate program point in the

code to read the value to be forced into a variable from a file, and perform the

write of that value into the variable.

We also found that for larger applications, it was easier to use the PIN tool to

inject such values - provided they are not bound to registers - into variables using

their virtual addresses. In the actual implementation, we used a combination of

both. In the testing and evaluation of ASAC, we adapted the bitflip error model

used by many prior works [42, 78, 83] to introduce errors into the application.

A bitflip error essentially means that one or more bits within a data toggles

one or more times during execution of the program, inducing an error. We

used the same two techniques described above except that in the testing and

evaluation, instead of forcing a targeted variable to take a certain value, we

choose a (uniformly) random bit among the 16 lower bits of its current, and

toggle it. There are many other error models available in literature, we chose

bitflip because it is fairly simple to understand and model. Nonetheless, more

complicated error models could also be used.

5.5 Evaluation

We evaluated ASAC against a manually annotated baseline (MAB) that uses

type-qualifiers [1]. The authors kindly provided us with benchmarks from Sci-

Mark2 [84] that had such annotations made. We also apply ASAC to two bench-
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Application Benchmark Error Metric LOC

SOR SciMark2 Mean Square Error 36
SparseMatMult SciMark2 Normalized difference 38

MonteCarlo SciMark2 Normalized difference 59
FFT SciMark2 Mean Square Error 168
LU SciMark2 Mean Square Error 283
JPEG MiBench SNR 30781
H.264 SPEC2006 SNR 46190

Table 5.3: Description of all the benchmarks used for evaluation.

marks from SPEC2006 [62] and MiBench [85] to test its scalability.

To measure the QoS loss due to approximation, we defined the error metric

for each application, shown in Table 5.3. For FFT, LU and SOR, we use the

mean squared error between the correct answer and the approximated output to

quantify the degradation. For applications like SparseMatMult and MonteCarlo,

we measure the normalized difference i.e. 0 if the approximated output is equal

to correct output and 1 if not. For JPEG and H.264, we use the signal-to-noise

ratio (SNR). The error estimation module as well as the QoS threshold is deemed

to be provided by the user for our analysis. This makes it easy and portable.

Comparison with Manually Annotated Baseline (MAB)

Table 5.4 shows the detailed comparison of ASAC with MAB. We shall examine

the precision, recall and accuracy metrics of these experiments.

Precision measures how frequent a variable marked by ASAC to be approx-

imable is also annotated as approximable in the MAB. Empirically it is -

tp
tp+fp

where ‘tp’ and ‘fp’ are the ‘true positive’ and ‘false positive’ in Table 5.4, respec-

tively. The former are those variables found to be ‘approximable’ in both ASAC

and MAB. The latter are variables that ASAC declared to be ‘approximable’

but were annotated as ‘non- approximable’ in MAB. ASAC achieved a precision
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Bench-
marks

True
Positive
(tp)

Flase
Positive
(fp)

False
Negative
(fn)

True
Negative
(tn)

Precision Recall Accuracy

SOR 5 0 1 2 0.83 1.00 0.88
SMM 1 0 1 6 0.50 1.00 0.88

Monte 2 0 1 2 0.67 1.00 0.80

FFT 15 2 2 12 0.88 0.88 0.87

LU 7 1 1 5 0.88 0.88 0.86

Average 0.75 0.95 0.86

Table 5.4: Comparison of ASAC with “EnerJ” [1].

of 75%. The 25% loss in precision is due to the fact that our framework is more

optimistic in marking variables as approximable.

Recall measures the robustness of our analysis. It is the complement of

the percentage of variables our analysis mistakenly classifies a variable as non

approximable while MAB has annotated it as approximable, defined as follows

tp
tp+fn

where ‘fn’ is ‘false negative’, variables that are marked as ‘non-approximable’ as

ASAC but annotated as ‘approximable’ by MAB. These are the cases where our

analysis fails to exploit approximable variables. Our analysis shows a high recall

value of 95%.

Accuracy is a metric that combines precision and recall, and quantifies how

much we can match the classification by MAB. It is defined as

tp+tn
tp+tn+fp+fn

where ‘tn’ are the ‘true negatives’, i.e., the variables that both ASAC and MAB

agree are non-approximable. We achieve a high accuracy of 86%, using ASAC’s

fully automatic approach. The accuracy can be improved further by optimiza-

tions discussed in Section 5.4.
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Figure 5-5: Percentage of error after approximating program data. The two bars
are different error percentage after approximating either one-third or all the data
that are classified as approximable by ASAC.

Error Measurement

In order to quantify the error due to approximation of program data, we eval-

uated different levels of error injection: two levels in JPEG, and three levels

for H.264. First, in the Mild injection, errors are injected to only 50% of the

variables marked as approximable. This half is chosen from the lower ranked vari-

ables (lower sensitivity scores) among those that are marked as approximable.

Bitflip errors were injected into these variables during runtime.

Second, in the Aggressive injection, errors are injected to all the variables

identified as approximable. For H.264 that has a large number of variables,

we created one more level of inject - Medium. For this benchmark, we chose

the lowest scored one-third as the Mild injection, 60% for Medium and 100%

(all) for Aggressive. Figure 5-5 shows the error percentages for the SciMark2

applications under Mild and Aggressive error injection.

Figure 5-7 shows the result when Mild and Aggressive error injections were

applied to the JPEG benchmark. We applied error injection to the encode

and decode steps separately to show the effect of error accumulation. In the

Figure 5-7(e) the errors are aggravated as it takes Figure 5-7(d) as its input which
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H.264 SNR Y SNR U SNR V BitRate

Correct 36.67 40.74 42.31 149.62
Mild 36.69 37.64 37.65 146.6
Medium 34.05 36.92 36.79 147.12

Aggressive 29.78 32.89 32.99 146.03

Table 5.5: H.264 Approximation Results

already contained the errors injected in encode step. Therefore, the Aggressive

approximation for decode step is actually more severe than what it would have

been if taken in isolation. Table 5.5 shows the approximation results for all the

Mild, Medium and Aggressive applied to H.264.

Further Studies on JPEG and H.264 - Sanity Check

As we do not have manual annotations for JPEG and H.264 benchmarks, we

studied the effect of injecting errors into the variables that ASAC has marked as

non- approximable. Essentially, there were two scenarios. First, when Aggressive

error injection was applied to those variables deemed non-approximable (i.e., pre-

cise), the output of the JPEG benchmark was a corrupted image file, while the

H.264 benchmark simply terminated pre-maturely with segmentation fault. This

is because ASAC marks all pointers and memory addresses as non-approximable,

hence an Aggressive error injection into memory addresses naturally resulted

in crashes. Next, we tried to inject errors only into variables that ASAC has

marked as non-approximable and are not memory addresses. Figure 5-7 shows

the encode and decode outputs of JPEG. It clearly shows that ASAC is able

to correctly mark not only approximable data, but also non-approximable data.

For H.264, even a Mild error injection into non-pointer variables led to the ap-

plication crashing.
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(a) Original (b) Encoding - Mild Approx.

(c) Decoding - Mild Approx. (d) Encoding - Aggressive
Approx.

(e) Decoding - Aggressive
Approx.

Figure 5-6: JPEG benchmark with various levels of approximations separately in
Encode and Decode stages. Image (a) is the original image. Images (b) and (c)
are result of introducing mild approximation (in 30% of the variables). Images
(d) and (e) are result of introducing aggressive approximation (in all the variables
that are approximable).

(a) Encoding - Mild Approx. (b) Decoding - Mild Approx.

Figure 5-7: JPEG benchmark with errors in data that are marked as “Precise”
by ASAC.
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5.6 Chapter Summary

In this chapter, we present ASAC, a framework to automatically classify internal

program data as approximable and non-approximable. We propose a novel sen-

sitivity analysis that makes use of statistical sampling in performing a controlled

perturbation based program testing. We are able to achieve 86% accuracy in

identifying approximable data as compared to a manually annotated baseline.

We also show that ASAC is scalable, and is able to analyze large applications

such as JPEG and H.264.

Our experimental results show that using our annotations to approximate

program data resulted in program outputs that are within the acceptable QoS

thresholds. ASAC is easy to adapt in either a compilation or a software testing

framework. In addition, it can be used to provide suggestive annotations for

large-scale programs that are difficult to annotate manually. As a part of future

work, ASAC can be extended to comprise more complex analysis and study

sensitivity of program data across software versions. We expect ASAC to be a

key contribution as the first automatic framework to classify program data in the

field of approximate computing, which will grow as energy efficiency demands

become more prevalent.
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Chapter 6

Compilation Framework for

Approximate Computing

6.1 Overview

Approximate or inexact computing trades-off accuracy of applications to save

memory or computational resources, and is especially attractive for power con-

strained embedded devices. Low power approximate adders produce inexact

sum of the inputs and introduce approximation in arithmetic operations [52–

54, 56, 86]. Approximate memories operate at lower voltages saving substantial

energy at the risk of possibly compromising the accuracy of the data stored [87–

89]. Such approximate circuits and devices require collaboration from the soft-

ware stack. Certain Instruction Set Architecture (ISA) extensions enable approx-

imate hardware to switch between accurate and approximate computation during

runtime [90]. However, identifying instructions or data of a program where ap-

proximation could be allowed without a loss of in the overall quality of service

(QoS) of the application is a difficult task. The state-of-the-art methods rely

on expressed type-classifiers and pragmas to indicate critical and approximable

constructs in the source code [91, 92], thereby transferring the responsibility to
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the programmer. A few recent works involving profiling and iterative testing of

applications are, unfortunately, computationally intensive [93, 94].

In this chapter, we introduce PAC - Program Analysis for Approximation

aware Compilation, a compiler framework to analyse and identify appropriate

parts of a program where approximation may be applied with an acceptable loss

in QoS. PAC computes a degree of accuracy (DoA) for each program component

that is required to attain the QoS of the program. A program component is a

variable, operation, instruction, function call, basic block or a procedure. PAC

outperforms the current state-of-the-art techniques in the following ways -

• PAC is a purely static framework and thus, does not require computa-

tionally expensive runs to extract approximable program constructs. For

instance, ASAC [94], Chisel [93] and ApproxIt [95] are techniques that ex-

plore a search-space by running the application repetitively to achieve an

acceptable approximation regime. A program analyzed with PAC, can sig-

nificantly reduce the search space and overheads of such dynamic testing

methods. Moreover, being a compile-time technique, PAC is easy to use

and easily complements other techniques.

• PAC takes an application and its QoS requirements (translated as DoA

of the outputs) as input and automatically computes the DoA of program

components of the application. These in turn can be used to automatically

(or semi-automatically, keeping the programmer in the loop) generate type-

classifiers like @approx, @endorse [91] and annotations [92] to facilitate

approximation.

• PAC assigns a quantifiable measure of accuracy i.e. the DoA metric, for

each program component that indicate their contribution to the overall QoS

of the application. Such non-binary classification of data and instructions

is more useful than the state-of-the-art binary (approximable or accurate)
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classification. For example, on reconfigurable devices, it is more useful to

know how many bits of data or an operation can be approximated, than

to merely know that it can be approximated.

Novel Contributions in PAC

The key idea is to propagate the expected accuracy of the output (QoS) to the

entire program. Based on the definition and usage of variables and interdepen-

dence of the instructions, it computes the DoA for all program components.

We introduce the Component Influence Graph (CIG) that captures the relations

between the various components. Using the CIG and dataflow equations, the

analysis calculates the DoA. Lee et al. [96] claimed that program variables af-

fecting the control flow such as conditional statements, must always be accurate

and approximation can only be introduced in multimedia data. However, PAC

comprises a novel program transformation technique which allows conditional

statements to be approximated.

Target Architectures

PAC is useful to architectures that support approximate computing. Kahng et

al. [52] proposes an accuracy-configurable adder which can adaptively adjust

during runtime based on the required accuracy. As PAC provides the required

accuracy of all addition or arithmetic operations, it is possible to exploit the

adaptive nature of such adders. Thus, instead of only allowing an addition to

be approximated, PAC can provide such adders with the DoA of that particular

addition. Memories that can control power supply at the bit level are widely

explored [57–59]. For such memories, it is imperative to know how many bits

of a variable is approximable. We believe that such information can be derived

from PAC’s DoA.

107



Chapter 6. Compilation Framework for Approximate Computing

Evaluation Summary

We compared PAC with the state-of-the-art techniques proposed in [91, 94, 96–

99]. Compared to current state-of-the-art techniques of approximate computing,

PAC achieves a high accuracy of 92% (compared to [91]) and 85% (compared

to [94]). In addition, runtime of PAC is ≈ 103× less than ASAC [94]. When

compared to [98], PAC achieves an accuracy of 91% on average. A detailed

presentation on evaluation results are in Section 6.3.

6.2 PAC Framework

The key idea of PAC is to propagate the accuracy (given as user defined QoS

margins) required by the output to all the program components. Formally, we

define DoA it as follows -

Definition 6.2.1. Degree of Accuracy- For a variable v, DoA(v) is the accuracy

required to maintain the QoS margins of the application. If DoA(v) = 1, it

indicates that all the bits belonging to variable v must be correct in order to

remain within the given QoS margins. Conversely, DoA(v) = 0 means that

none of the bits of variable v matters to the program output, such variables

can be removed by dead code elimination. In practice, the accuracy is usually

0 <DoA(v) ≤ 1.

The QoS of an application is required to be translated to the DoA of output

variable(s). PAC assumes that output variable(s) and their DoA is available

beforehand and the translation is done apriori. The DoAs are propagated using

influence relations among the variables. The influence relations connect variables

via the def-use chains (du-chain) such that an error in one variable impacts the

other. A du-chain consists of the definition of a variable and all its uses. Formally

we describe an Influence Relation as follows:
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<bb 2>: 

  if (n <= 1) 

    goto <bb 3>; 

  else 

    goto <bb 4>; 

<bb 3>: 

  D.1792 = 999; 

  goto <bb 35>; 

<bb 4>: 

  D.1793 = (double) n; 

  D.1794 = log (D.1793); 

  D.1795 = log (2.0e+0); 

  D.1796 = D.1794 / D.1795; 

  iter = (int) D.1796; 

  j = 1; 

  i = 0; 

  return iter; 

fft1 

main <bb 5>: 

  flag = 0; 

  chkerr = fft1 (n, flag); 

(a) Example Code

(n,2) 

(D.1792,3) 

(D.1793,4) 

(D.1794,4)  (D.1795,4) 

(D.1796,4) 

 (iter ,4) 

 (j ,4) (i ,4) 

(flag,5) 

(cst1, 2) 
(cst2, 3) 

(cst3, 4) 

(cst5, 4) (cst4, 4) 

(chkerr,5) 

(n,5) 

(fft,-1) (main,-2) 

influences influenced_by 

1 

3 

= 2 

(b) Corresponding CIG

Figure 6-1: A kernel and corresponding CIG from fft.c (MiBench)

Definition 6.2.2. Influence Relation- Two variables u and v share an influence

relation iff an error in u may result an error in v, or vice versa. We define

two types of influence relation - influenced by and influences. Variable u is

influenced by v if an error in v introduces error in u. We also say variable v

influences u.

6.2.1 Component Influence Graph (CIG)

The component influence graph captures the influence relations of all the pro-

gram variables. Each node in CIG is a tuple consisting of a variable and a basic

block identifier. There are two types of edges in a CIG representing the two

types of influence relations mentioned above.

Figure 6-1 illustrates a sample kernel of FFT benchmark from MiBench [85]

and its corresponding CIG. An ‘influenced by’ edge in CIG, connecting two

nodes, also contains information about the operator that relates the variables of

the nodes. For example, in Figure 6-1b the edge [(D.1792,3),(cst2,3)] denotes the
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Algorithm 6.1 CIG Construction

Require: Source code of program
Ensure: dug head, a pointer to the first node of DUG
1: for all function in CFG do
2: cfun←current function
3: for all basic block in cfun do
4: bb← current basic block; stmti ← assignment statement i in bb
5: if stmti is assignment then
6: lhs=assigned variable; rhs1=first operand; rhs2=second operand;
7: (lhs,bb)=create node(lhs);
8: if rhs1 is a constant then
9: (lhs,bb)→child=find node(cst,bb);
10: else
11: (lhs,bb)→left=(rhs1,bb);(lhs,bb)→right=(rhs2,bb);
12: (rhs1,bb)→parent=(lhs,bb); (rhs2,bb)→parent=(lhs,bb);
13: end if
14: else if stmti is conditional statement then
15: lhs=first operand; rhs=second operand;
16: for each edge Ej from bb do
17: bbj = Ej → dest→ bb;
18: (lhs,bb)→parent= ∀var ∈ bbj ;
19: (rhs,bb)→parent= ∀var ∈ bbj ;
20: end for
21: else if stmtiis call statement then
22: call return =first operand; callee=second operand(func name);
23: return=return value of callee;
24: (return,callee)→parent=(call return,cfun);
25: end if
26: end for
27: end for

operator ‘=’. Any node together with its immediate child (or children) can be

mapped to an instruction (eg. group 1 in Figure 6-1b). Moreover, a sub-graph

of all nodes with the same basic block identifier captures the influence relation

for the entire basic block (eg. group 2 in Figure 6-1b). Special nodes that are

tuples consisting of a function name and a negative integer each represents a

procedure. Such nodes are connected to the rest of the nodes in CIG via the

return value and the parameter variables (eg. group 3 in Figure 6-1b). A node of

CIG together with all its outgoing edges is equivalent to the variables’ du-chains.

Thus, the CIG is the union of du-chains of all variables of a program.

The CIG is constructed after the control-flow graph during compilation. The

detailed explanation of CIG construction is given in Algorithm 6.1. For each

assignment statement (line 5), a CIG node is created for the lhs of the assignment

(line 7). It is assumed that assignment of a variable v in a basic block bb is an

110



Chapter 6. Compilation Framework for Approximate Computing

unique pair (v, bb), as in SSA form. Afterwards, n ‘influenced by’ edges are

created from this node to the existing nodes in the CIG representing n operands

of the assignment statement (lines 8,10); 1 ≤ n ≤ 2 due to SSA form. In

addition, from the n operand nodes, one ‘influences’ edge is created, pointing

back to the lhs node. For conditional statements (line 14), ‘influences’ edges are

created from both operands of the condition to all the variables of the target

basic blocks (lines 16-19). Note, that no ‘influenced by’ edges are created as any

event of error in the condition operands would result only in erroneous branching

and not errors in other variables of the target basic blocks. Similarly, for function

calls, edges are created between the parameters passed and the return value of

the function (lines 22-24). These nodes are variables and function identifier (in

negative integers) pairs instead of basic block (line 24).

6.2.2 Accuracy Equations

The CIG, together with a set of accuracy equations, is used to generate the

DoA(v) for each variable v. As discussed before, PAC expects the user to provide

the DoA of the output variable(s) using annotation. The accuracy equations are

then applied to all other variables having an influence relation with the output

variables. For example, if DoA(O) is the accuracy of a variable O, then the DoA

of any variable V in an influence relation with O is derived from DoA(O) and

other variables influencing O. From the runtime perspective, errors occurring

in variables are non-trivially dependent events. CIG of a program can easily

characterize this phenomenon in the following way.

Definition 6.2.3. Error Independence - Two variables u and v share an Error

Independence relation if (a) u does not appear in the sub-graph G ∈ CIG, where

G consists of v with all its children, and (b) v does not appear in the sub-graph

H ∈ CIG, where H consists of u and all its children. Such variables are said to

be error independent.
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Figure 6-2: An example of a CIG showing the ‘Error Independence’ relations.

For instance, in Figure 6-2(a), an error in b would not result in an error in d.

However, an error in c would likely result in an error in b. Note that in the CIG,

a child node’s basic block occurs earlier than its parent in program order. So,

Figure 6-2(b) shows that variables b and d are error independent. However, a

and b (or b and c) are not, as they appear in each others’ sub-graph in the CIG.

We broadly classify instructions into three forms - copy statements, operation

statements and branching statements, and define the accuracy equations for each

of them.

1. Copy Statements of form A = B.

For simple copy statements of this form, the DoAs are calculated as -

DoA(A) = DoA(B) (6.1)

The propagation of DoAs is a backward dataflow analysis (Section 6.2.3). So,

DoA(B) is equal to the value of DoA(A), which is already known. Thereafter, for

copy statements where B is the left hand side expression, the value of DoA(B)

will be used to derive the DoA of the variable on the right hand side. In such

copy statements, it is said that A has a direct error dependence on B.
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2. Operation Statements of form A = B op C.

These are standard assignment statements where the error dependencies between

B and C are used to derive DoA(B) and DoA(C).

DoA(A) = DoA(B|C)DoA(C) + DoA(C|B)DoA(B) (6.2)

where DoA(B|C) is the DoA of B given a DoA of C. CASE I: B and C are error

independent. In other words, an error in B would not result in an error in C or

vice versa. Then, DoA(B|C) = DoA(B) and DoA(C|B) = DoA(C). However,

depending on the type of operator, the effect of the error is different. Assuming

the source of error is unbiased, both B and C are equally likely to incur error.

So,

DoA(B) = DoA(C) =


√

DoA(A),when op ∈ {+,−}√
DoA(A)/2,when op ∈ {∗, /}

(6.3)

Taking the square root prevents the DoA of the operands from diminishing in a

long du chain. Moreover, it preserves the notion of error accumulation. In other

words, errors in both B and C, would result in higher deviation of A. Conversely,

a given DoA of A (lhs), would imply that the DoA of the operands (rhs) must

be higher. The square root also achieves normalization, i.e., 0 ≤ DoA(A) ≤ 1

always.

CASE II: B and C are not error independent. In this case, B or C must

exist in each other’s subtree in the CIG. Therefore, there must exist a chain of

influence relations between B and C, such that B → Xi → C, where 0 ≤ i ≤ n

for n nodes in the subtree. Also, because the DoAs are propagated backward,

the event of error in a variable occurring in a statement is not dependent on an

error event occurring later in program order. If B is defined at a program point

earlier than C, then
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b = b/2 

c = b+1 
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b = i 

b = b/2 
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return c 
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return c 
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4 

Figure 6-3: DoA propagation for branching statements in a CFG.

DoA(C|B) = DoA(B,Xi)DoA(Xi|Xi+1)...DoA(Xi+n−1|C) (6.4)

3. Branching Statements

Branching is a control flow decision. Every basic block containing a conditional

or branching statement, has two successor basic blocks in the CFG. One of them

is taken during execution, while the instructions in the path not taken remain

unexecuted. For example, in Figure 6-3, if the path taken is 1→ 2→ 4 then the

instruction c=a+1; is never executed. This implies that the instruction a=10;

or the variable a in basic block 1 can be safely approximated. The branching

probability of the edges from a basic block to its successors depicts the likelihood

of the path being taken during runtime. This information is easily obtained from

the compiler (for example, using the -fguess-branch-prob flag for GCC). The edge

with lesser probability (for example, 1→ 3), leads to the basic block containing

instructions that are less likely to be executed and thus, are more amenable to

approximation. Therefore, for all variables whose reachability is found to be in

either of the successor basic blocks and not in both, the DoA is lowered using

the branch probabilities.

Algorithm 6.2 elaborates on the method we apply, to handle branching state-

ments. First, the probabilities of branch edges are obtained (lines 3-4). Reacha-
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Algorithm 6.2 Branching Statements’ Accuracy Propagation

Require: List of basic blocks with edge probabilities
Ensure: Updated DoAs of affected variables
1: for all branching statements do
2: bb←current basic block
3: dest major← target branch with higher edge probability e
4: dest minor← other branch with probability 1− e
5: for ∀ variables v∈ bb do
6: if used(v)∈ dest minor∨ used(v)/∈ dest major then
7: stmt← get use(v);
8: lhs = get lhs(stmt);
9: DoA(lhs)=DoA(lhs)*(1− e);
10: end if
11: end for
12: end for

bility of the variables is calculated by applying a standard reachability analysis.

For every variable that reaches only one of the destination of the current branch-

ing (line 6), the branch probabilities are multiplied with the DoA already ob-

tained using the accuracy equations mentioned earlier (line 9). Multiplication

results in lowering of the DoAs of the variables according to whether the branch

is taken.

6.2.3 Analysis & Propagation

DoA propagation is modelled as a program analysis problem. The analysis is

solved in an iterative manner where every iteration has two phases. Phase 1 is a

backward flow analysis that considers the variables belonging to all statements

except conditional statements. Phase 2 is a forward flow analysis for variables

involved in conditional statements.

The flow of the analysis is represented in Equations 5 and 6. Phase 1 uses

Equations 6.1 and 6.3 (Section 6.2.2). Phase 2 comprises of the technique de-

scribed as ‘form 3’ in Section 6.2.2. The iterations of the analysis partially

fill Equation 6.4 with the DoAs that are calculated in previous iterations. The

analysis attains a maximum fixed point (MFP) solution when the assigned DoAs

do not change between successive iterations. This safe termination is ensured by

keep track of variables that have obtained a value other than Init in the lattice
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Algorithm 6.3 PAC dataflow Analysis (Partial)

Require: Control Flow Graph
1: BBe ← Entry basic block;
2: equation[]←set of unsolved accuracy equations;
3: for all basic blocks bb ∈ CFG do
4: if bb ∈ BBe then
5: dfin(bb) = Init;
6: else
7: dfin(bb) = >;
8: worklist = variables v∈ bb;
9: end if
10: end for
11: for all basic blocks bb ∈ CFG do
12: for ∀variables v∈ bb & v∈worklist do
13: if matches form 1 or 2(I) then
14: Calculate DoA(v) using equation 1 or 4;
15: worklist -= v;
16: fill(equation,v);
17: else
18: if !solve(equation[bbv ]) then
19: equation[bbv ]← partial equation 5;
20: end if
21: end if
22: end for
23: end for

of the analysis. Init denotes the initial state of the variables, which is Critical,

i.e., a DoA of 1. The analysis results in lowering of the DoAs. Variables with a

DoA of 0, i.e., dead variable, will not be consider further in the analysis.

Out(B) =


Init, for B = Exit∏

P∈Succ(B) F1,2(OUT(P )), ∀var ∈ B ∧ var /∈ COND

(6.5)

IN(B) =


Init, for B = Entry∏

P∈Pred(B) F3(IN(P )), ∀var ∈ B ∧ COND

(6.6)

Algorithm 6.3 elaborates on the steps of the analysis as implemented in our

framework. It follows the generic steps of a worklist based dataflow analysis

with slight modifications. At the outset, the basic block dataflow information

is initialized with the > of the lattice (lines 4-7), i.e. all variables are assumed

critical. All variables are added to a worklist as they have not been assigned any
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DoA value at this step (line 8). Afterwards, traversing through the control flow

graph (lines 11,12), each statement is matched against the forms discussed in

Section 6.2.2 (line 13,17). If the corresponding accuracy equation can be solved,

the variables are assigned the resulting DoA (line 14,18), and are removed from

the worklist (line 15). Otherwise, from the program components found, equation

5 is partially filled (lines 16,19). When all the equation elements are available,

the equation is solved and the variables are assigned with the DoA (line 18).

6.2.4 Approximating Comparisons

Comparison expressions are central to branching and loop termination and thus

are considered as critical instructions [96]. From the perspective of approximate

computing, variables in the comparison expression are often considered non-

approximable.

In our framework, we propose a simple program transformation that allows

comparisons too to be approximated without any change in the program be-

haviour. Apart from the known benefits of approximation, allowing inexact

comparison allows for the use of approximate comparators [60], thereby poten-

tially resulting in a better power-performance.

Dead (0) 

Critical (1) 

0.5 0.4 0.6 … … … … 

i < 10 

sum += 2 c = sum 

return c 

1 

2 3 

4 

Y N 

i < 10 

sum += 2 c = sum 

return c 

1 

2 3 

4 

Y N 

t = i - 10 

t < 0 

sum += 2 c = sum 

return c 

1 

2 3 

4 

Y N 

all bits of i are critical 
only sign bit of t is critical 

Figure 6-4: Transformation for approximate comparison.

Figure 6-4 shows a frequently occurring pattern in any program. Typically,
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a loop induction variable or other branching conditions comprise of relational

operators, specifically <,≤, >,≥. For these operators, we propose a transfor-

mation technique that allows the particular comparison statement to be safely

approximated.

As a penalty, for every comparison statement, a temporary variable is intro-

duced. Such temporary variables do not pose a large overhead due to the SSA

form. Formally we define the premise of the transformation as follows -

Definition 6.2.4. For any comparison statement of the form if(A op B){},

where op ∈ {<,≤, >,≥}, there exists a pair of statement:

temp = A−B;

if (temp op 0){}

which is semantically equivalent and can replace the original comparison without

any change of the program behaviour.

Using the above, all the comparison statements are replaced with the ap-

propriate pair of new statements. For example, in Figure 6-4, the statement

i<10;, where i is a loop induction variable causing i<10; to be executed only

in full precision. However, with the transformation t = i - 10; t < 0;, only

the sign-bit of t remains critical and rest of the bits can tolerate errors without

any change of program’s behaviour. Approximation is thus introduced in the

control flow statement with a penalty of 1 additional computation.

6.3 Evaluation

We evaluated PAC in three ways. First, we compared it with the state-of-

the-art methods for approximate computing. Next, we compared PAC with

compile-time techniques designed for reliability against soft-errors. Such meth-

ods categorize program variables into critical and non-critical with the intention
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EnerJ [91]

Bench-
marks

True
Posi-
tive

False
Posi-
tive

True
Nega-
tive

False
Nega-
tive

Accu-
racy

SMM 4 0 4 0 1
MonteCarlo 2 0 4 0 1
LU 8 0 12 2 0.9
FFT 9 0 15 7 0.77
SOR 6 0 7 1 0.92

Average 0.92

Table 6.1: Comparison with EnerJ to show PAC’s accuracy.

of ‘hardening’ critical data against soft-errors. We will show with our exper-

iments that data identified as non-critical by these techniques are not always

approximable. Finally, we evaluated PAC by injecting errors in the applications

and thereby measuring the resulting QoS and overhead.

6.3.1 Comparison with approximation techniques

We compared PAC with two state-of-the-art methods, namely EnerJ and ASAC.

EnerJ [91] uses type-classifiers such as @approx to annotate program variables

meant for approximation. ASAC [94] ranks variables in terms of the output’s

sensitivity towards them, and allows approximation for less sensitive program

variables. Table 6.1 and Table 6.2 show how PAC performs as compared to both

the techniques. Though PAC can produce DoA for each program component,

for the comparison we only considered program variables.

Furthermore, in order to perform the comparison, we assumed that variables

with DoA less than 0.5 are approximable and rest are not. This is a conservative

assumption and can be fine-tuned according to the demand of the application.

We present the standard metrics of true positive (PAC classifies approximate

data correctly), false positive (PAC mistakenly classifies critical data as ap-

proximable), true negative (PAC correctly identifies critical variables) and false
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ASAC [94]

Bench-
marks

True
Posi-
tive

False
Posi-
tive

True
Nega-
tive

False
Nega-
tive

Accu-
racy

SMM 3 0 3 2 0.75

MonteCarlo 2 0 2 2 0.66

LU 8 0 9 5 0.77

FFT 9 0 12 10 0.68

SOR 7 0 5 2 0.85

Average 0.74

Table 6.2: Comparison with ASAC to show PAC’s accuracy.

Benchmarks
GCC -O3
(seconds)

PAC
(seconds)

ASAC
(seconds)

SOR 0.147 0.168 1345.009

MonteCarlo 0.105 0.113 1929.476

SMM 0.104 0.127 1138.159

LU 0.164 0.186 1831.876

FFT scimark2 0.135 0.219 1062.417

FFT MiBench 0.56 0.83 53.069

adpcm 0.342 0.378 222.272

susan 1.2 1.45 30.014

JPEG 6.973 6.601
13.642

(only DCT kernel)

Table 6.3: Runtime of PAC as compared to standard -O3 optimization flag in
GCC and ASAC

negative (PAC marks a variable as critical where it can be approximated). PAC

is a static method and hence it is conservative. In particular, false negatives are

to be expected. However, false positives would be unsafe approximation of pro-

gram variables that might lead to unacceptable QoS or unexpected termination

of applications.

In our experiments, we used the Scimark2 [84] benchmarks, as @approx an-

notations are available only for this suite. We applied ASAC to the same bench-

marks and present the results in Table 6.1 and Table 6.2. PAC achieved an

accuracy of 92% when compared to EnerJ, and 74% when compared to ASAC,
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on average. ASAC is based on profiling of application and thus, has runtime

information to analyse the sensitivity of the variables. However, for simple ap-

plications like SOR PAC is able to have an accuracy that is 85% that of ASAC.

The key reason is that it has a simple CFG and the accuracy equations are

mostly of forms 1 and 2(I).

The main advantage of PAC over ASAC is the runtime overhead of the

analysis. Table 6.3 shows the different runtime of both methods. PAC is a

compiler analysis pass, therefore, we also compare PAC’s runtime with the com-

pilation time of -O3 of GCC. The runtime of ASAC depends on the total number

of variables and the dynamic instruction count of the application. We tested com-

paratively small programs to measure the runtime of PAC and ASAC. Table 6.3

shows that ASAC is 3 orders of magnitude slower than PAC. As application

becomes larger, the difference in runtime also increases. The standard -O3 op-

timization in GCC, on the other hand, is 3% faster than PAC on an average

(Table 6.3). In other words, PAC has minimum impact on compile time.

6.3.2 Comparison with software reliability techniques

To compare with state-of-the-art techniques for ensuring program level reliabil-

ity, we use three applications, adpcm, susan and jpeg from MiBench [85] and

three applications 464.h264ref, 433.milc and 482.sphinx3 from SPEC2006

benchmark suites (Table 6.4).

A. Bitwidth Analysis [Ste00]

Bitwidth analysis determines and reduces the number of bits required for pro-

gram variables [97]. This is often used to minimize the memory budget in silicon

compilation. Intuitively, if the bitwidth analyzed by these techniques is shorter

than the width of the data type declared by programmer, the extra bits can be

approximated safely. With this assumption, we compare PAC’s analysis with a
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Application
Lines

Of
Code

Description Error Metric

adpcm 283
Adaptive differential

pulse code modulation
(variation of PCM)

SQNR(Signal to
Quantization
Noise Ratio)

susan 888
Image recognition

(edge/corner detection)
Mean

Pixel Difference

jpeg 10176 Image compression
SNR (Signal to

Noise Ratio)

464.h264ref 18696 Video Compression
PSNR (Peak Signal to

Noise Ratio)

433.milc 5401
Quantum

Chromodynamics
Error per site

(provided with benchmark)

482.sphinx3 7721 Speech recognition Word error rate

Table 6.4: Description of the applications

state-of-the-art bidwidth analysis [97]. Table 6.5 shows the quantitative com-

parison. It illustrates 3 cases: CASE I where both PAC and bitwidth analysis

marks a variable as approximable; CASE II where PAC characterizes a variable

with varying bitwidth as approximable; and CASE III where PAC character-

izes a variable with varying bitwidth as non-approximable. Lastly, Table 6.5

also shows the coverage of the two methods as a ratio of number of variables

analysed by PAC to bitwidth analysis. PAC identifies 3× more variables, on

average, that can be approximated, as the premise of approximate computing is

to introduce as much as approximation possible to reduce energy consumption.

This is due to the fact that PAC considers the interdependence of variables and

also transforms conditional statements to more approximable equivalents. In

addition, PAC has a better coverage of code, 40% more than bitwidth analysis.

This can be attributed to PAC’s interprocedural influence relations.

B. Program Dependency Graph (PDG) Scheme [Cong11]

The second scheme we compared PAC with is based on a weighted program

dependence graph [98]. The authors proposed a technique to identify critical
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Application CASE I CASE II CASE III Coverage

adpcm 28 68 174 1.13

susan 147 435 3064 1.254

jpeg 134 531 1552 1.54

464.h264ref 165 231 46082 1.82

433.milc 152 452 35250 1.1

482.sphinx3 45 276 7348 1.65

Average 111.83 332.16 15578.3 1.41

Table 6.5: Comparison with bitwidth analysis with no. of variables for all cases
(above paragraph) and ratio of code coverage.

Application
True

Positive
False

Positive
True

Negative
False

Negative
Accu-
racy

adpcm 35 6 198 31 0.86

susan 498 31 3034 83 0.96

jpeg 620 45 1470 82 0.94

464.h264ref 312 84 44447 1635 0.96

433.milc 515 89 33268 1982 0.94

482.sphinx3 279 42 6027 1321 0.82

Average 376.5 49.5 14740.66 855.66 0.91

Table 6.6: Comparison with PDG based scheme with no. of matches identified
by both methods and PAC’s accuracy.

data based on the number of references to it in the whole program with the aim

of protecting these data against soft errors. The technique classifies the data

as likely critical (LC) or likely not critical (LNC). Table 6.6 shows the match

between LC and LNC data with approximable and non-approximable data as

characterized by PAC. The ‘true positive’ represents the number of variables

with low (<0.5) DoA and also marked as LNC. Such variables can be safely

approximated. ‘False Positives’ are variables that are marked as LC that, how-

ever, has a low DoA. This column suggests that approximability of program

variables is not just the function of the total number of references to it. Later

in Section 6.3.3, we will show that injecting errors into this class of variables

also does not result in the loss of QoS. ‘True negatives’ are variables that both
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schemes agree on. Lastly, ‘false negatives’ are cases where PAC characterized

the variable as non-approximable, but was marked as LNC. This shows that a

variable which does not need extra protection from soft errors, may not tolerate

errors aggressively due to deliberate approximation.

C. Multimedia Application Specific Data Partitioning [Lee06]

In this method, the authors suggested selective protection of data in multime-

dia applications [96]. Any variable affecting termination of the application is

characterized as critical and multimedia data (input or output) is deemed non-

critical. We compare with this scheme in terms of error percentage obtained by

running the applications under a synthetic error injection framework described

in Section 6.3.3. Figure 6-6 shows that the number of variables marked as ap-

proximable or non-critical by this scheme is 7% on average, which is much lesser

than PAC’s 37.5% on average. Thus, we can conclude that PAC performs better

in terms of identifying possible approximation in a program.

D. Instruction Vulnerability based characterization [Sha13]

The fourth technique is based on error masking and its effect on QoS of an

application [99]. The scheme is based on the probability of masking of an error

due to bitwise ‘AND’, shift or other similar operations. This technique, like

the previous ones, suffers from poor coverage of source code and considers only

specific cases. Figure 6-6 shows that it provides around 11% of coverage of a

program. In applications where bitwise operators do not play a major role, this

technique fails to identify possible approximations.

6.3.3 Impact of Errors

To evaluate the effectiveness of the data characterization, we present the quan-

titative QoS loss in terms of error percentage in Figure 6-5. We used a synthetic
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error injection framework, which injects a random bitflip into variables that are

identified as approximable. During execution, the error injector, randomly se-

lects one or more variables at a uniform interval and injects the bitflip. For each

application, the error percentage is calculated based on the correct (provided)

value of the metric mentioned in Table 6.4 and the output obtained upon error

injection.
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Figure 6-5: Error Percentage (error injected in approximable variables).
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Figure 6-6: Impact of errors injection in approximable variables characterized
by different methods.
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Applications
Total

Conditional
Statements

Transformed
Conditional

Overhead
(10−2)

adpcm 157 143 3.2

susan 149 84 2.8

jpeg 1454 1239 1.14

464.h264ref 3128 2743 1.06

433.milc 626 581 0.86

482.sphinx3 1263 912 1.11

Average 1129.5 950.33 1.695

Table 6.7: Overhead of conditional transformation

On average, PAC accounts for 3.4% of QoS loss. Though, schemes Ste00,

Lee06 and Sha13 perform better and show a QoS loss of 0.28, 2.9 and 2.4 % only,

they do not provide a good coverage of approximation in the program. In other

words, the total numbers of approximations allowed according to these schemes

are much less than Scheme Cong11 and PAC. This phenomenon is presented in

the graph of Figure 6-6. Poor coverage will leads to less opportunities to reduce

energy or computational resources. So while these schemes are as scalable as

PAC, they provide lower quality information.

6.3.4 Impact of Approximating Conditions

For each conditional statement that is transformed, one assignment statement is

added to the code (Section 6.2.4). Table 6.7 present the number of transformed

conditional statements and the overhead in terms of percentage of additional

instructions over the total static instruction count of the application.

6.4 Chapter Summary

In this chapter, we present PAC, a program analysis for approximation aware

compilation. PAC computes degrees of accuracy for each program component

required to maintain the quality of service of an application. Other than having
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the user specifying the QoS requirement, PAC is a completely automatic static

analysis. Compared to the manual annotation of EnerJ, PAC attains a 92%

accuracy. When compared to ASAC, a compute intensive search procedure,

PAC attains 74% accuracy in characterizing variables that can be approximated

without any QoS loss. However, PAC is 103× faster than ASAC. Compared to

software reliability methods, PAC achieved better coverage while maintaining

the QoS under error injected execution of the applications. In summary, PAC

offers something unique to the state of the art. Of the current techniques that

compute the same information as PAC, none can scale to the large program that

PAC can handle. Compared to similarly scalable software techniques designed for

other purposes that may possibly be used to derive DoA, PAC computes higher

quality results. We believe that this makes PAC an attractive complementary

analysis to enhance other approximation approaches.
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Conclusion

7.1 Thesis Summary

In this thesis, we explored four software solutions to enable an energy efficient

memory hierarchy. Specifically, we assumed a resistive hybrid memory based

memory hierarchy and the issues faced in their deployment as caches and main

memory. Summarizing the contributions of this thesis -

• Write Sensitivity Towards mitigation of write sensitivity issues of resis-

tive memories we proposed two solutions.

1. Static Code Analysis - We proposed a code analysis where programs

are analyzed at compile time and based on their memory access affin-

ity, they are placed in the virtual memory area. During runtime,

the virtual addresses influence their placement in the hybrid memory.

Read intensive data are allocated to STT-RAM and write intensive

data to SRAM. This technique reduces the energy consumption of

L1 cache by up to 50% as compared to the state-of-the-art without

noticeable degradation in performance.
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2. Operating System Assisted Solution - For an architecture with hy-

brid main memory, we proposed a fine-grain write control mechanism

to reduce write operations from the last level caches to the resistive

memory partition in the main memory. In addition, we proposed a

new page reclamation policy that evicts pages from DRAM partition

based on the amount on dirty data in the page. This approach is able

to reduce power consumption by up to 83% as compared to the state-

of-the-art with a penalty of about 1% degradation in performance in

terms of Instructions Per Cycle.

• Error Susceptibility To solve the error susceptibility of energy efficient

memories, both resistive and DVS/DVFS based memories, we apply the

concept of approximate computing and propose two solutions for it.

1. Sensitivity Analysis - We proposed a dynamic testing scheme where

the sensitivity of each variable is determined to quantify its con-

tribution towards the Quality of Service of the application. A less

sensitive variable is said to be approximable and as a consequence

can be allocated to energy efficient memories. On the other hand,

highly sensitive variables are critical and must be safely allocated to

reliable SRAM/DRAM memories. Our framework identifies approx-

imable variables in a program with an accuracy of 86% as compared

to manual identification. Moreover, our solution is scalable and can

be applied to larger programs where source codes are not available

for manual classification.

2. Accuracy-aware Static Analysis - The above mentioned scheme is ac-

curate but demands high overhead in terms of running time and is

computationally intensive. To mitigate these drawbacks, we proposed

a static code analysis that characterizes program variables as approx-

imable or critical. We also proposed a code transformation to enable
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approximated conditional statements. Our framework, allows better

approximation of programs and reduces the overheads of the dynamic

testing based schemes. The analysis is able to identify approximations

with an accuracy 74% compared to the state-of-the-art.

7.2 Future Research

We wish to achieve a complete energy efficient computing environment. We be-

lieve that, through cross-layer interaction, it is possible to utilize the abstractions

exposed at the one level to better utilize the resources available at other levels.

This thesis mainly concentrates on the memory subsystem of x86 architecture.

One direction to extend this work is to observe and apply these techniques for

other architectures such as Graphics Processing Units (GPU) or Network on

Chips (NOC), where the data handling mechanisms are non-trivial.

Approximate computing is in nascent stage and a plethora of researches are

possible in this field. Approximations for energy efficiency can be explored in all

possible components of computer organisation and design. This thesis focuses

of approximation for memories and independent of other aspects of underlying

architecture. At the outset, in multi-core environment, approximation can be ex-

plored in task scheduling or memory bank partitioning. Similarly, approximation

can be achieved at various levels of abstraction in the system stack.
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