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Summary 

Data mining is a computational tool which is used to transform massive 

amount of process data into useful forms like models, patterns, or rules. The mined 

information can provide insights into the underlying process behavior, make (accurate) 

prediction about future process states, or detect anomalies, thus offering opportunities 

for enhanced process operations. In order to sustain optimal operational performance, 

the changing process behavior in real-world chemical processes needs to be captured 

accurately and efficiently. This thesis strives to explore the use of Graphics Processing 

Unit (GPU) parallel computing for developing computationally efficient data mining 

algorithms which are capable of handling large-scale, real-time chemical process 

problems. The emphasis of this thesis is on three important applications - continuous 

optimization, real-time image analysis and data stream clustering.  

GPU is a computationally intensive device which consists of massive amount of 

processing cores. The processors are structured in a way that the same set of computing 

instructions can be executed on different data elements, in a parallel manner. Such data 

parallelization allows GPU to achieve significant enhancement in computational 

efficiency. As costly memory transfer between Central Processing Unit (CPU) and GPU is 

necessary for GPU implementation, it is important to ensure that there is sufficient 

amount of data parallelism for an overall satisfactory computational performance. On 

top of that, adequate understanding of GPU architectural and programming model, e.g. 

the size and access pattern of different GPU memories, are also important for better 

utilization of device resources and for developing highly efficient programs. 

First, a systematic procedure for developing efficient GPU-based Simulation-

Optimization (Sim-Opt) algorithms is proposed. By performing a comprehensive 
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structural analysis on Sim-Opt, we successfully reveal the various types of data 

parallelism for GPU acceleration. Based on these insights, a variable selection problem 

using Genetic Algorithm has been demonstrated on the proposed GPU-based 

procedure. In developing the GPU-based algorithm, we exploit data parallelism from 

independent operations among the candidate solutions in each GA generation, and also 

from the training and testing samples during PCA modeling and testing.  

Next, a real-time multivariate image analysis solution is presented, wherein 

real-time particle size estimation is achieved by accelerating the algorithm on GPU. 

Besides using the pixel-level parallelization which is a common strategy of standard 

GPU-based image processing techniques, we also combine multiple feature extractors in 

single GPU function or kernel so as to avoid unnecessary memory access, and explore 

the use of GPU computing to accelerate multi-way principal component analysis (PCA).  

Lastly, we propose a GPU-based online process monitoring scheme, in which a 

scalable clustering algorithm is developed to provide fine and accurate data summaries 

for effective model construction. The proposed scheme is particularly applicable to 

process monitoring problems which involve large amount of process variables and fast-

arriving online process data. The massive computing power of GPU is exploited primarily 

by processing data in batches, and treating tree nodes at the same level concurrently. 

Besides, several GPU supporting features like global node pointers, memory pre-

allocation, sorting, compacting, and scanning of tree nodes, are also proposed in this 

work. Memory pre-allocation of tree nodes provides a straightforward solution to the 

ineffective memory use in the original method which allocates tree nodes dynamically. 

Global node pointers which are associated to the pre-allocated tree nodes are a handy 

tool for nodes re-allocation, without actually moving their physical memory locations. 
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Sorting and scanning of tree nodes facilitate the identification of similar nodes, e.g. 

identifying nodes that are under the same parent node, which is important for parallel 

execution; while compacting is mainly used to segregate occupied pointers from those 

that are unoccupied. 

The abovementioned developments have been tested extensively for accuracy 

as well as computational efficiency, using various case studies - the Tennessee Eastman 

challenge problem, batch crystallization operation, simulated oil and gas production 

operation.   
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Chapter 1. Introduction 

This chapter elucidates the motivation, research scope, methodology as well as 

the objectives of this thesis work. The challenges and limitations of existing techniques 

are also provided here.  

1.1. Background and Motivation 

Knowledge Discovery and Data Mining (KDD) is a computational process 

involving data selection, data cleaning, data transformation, data mining and 

information evaluation. Data mining is the most important step in KDD and its major 

role is to extract previously unknown information from large datasets, and then 

transform the discovered information into an understandable and actionable structure 

such as a pattern or model. The mined patterns or models provide an effective way for 

interpreting and analyzing the physical behavior of the associated process, due to their 

compact and precise structure. Better understanding of process behavior allows process 

engineers to devise effective planning, make effective purchasing decision, and optimize 

process for greater operational efficiency, better anticipate order lead times, or shorten 

machine downtimes (Sajdak, 2013; Rong, 2008; Wang, 1998; Psichogios & Ungar, 1992). 

Data mining models can also be used to predict process states or faults, which enable 

process operators or controller to anticipate and take appropriate actions accordingly 

(Seider, 2014; Yu, 2011; Doan & Srinivasan, 2005; Lee et al., 2004; Henson, 1998).  

Real-time data mining is an advanced form of conventional data mining which 

incorporates additional features such as consideration of the age of the data, 

continuous model updating and handling of streaming data or big data (Chachuat et al., 

2009; Lee et al., 2003; Saraiva, 1992; Zhang, 2002). Conventional data mining assumes 

invariant process behavior, so the models are built based on historical data which 
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resides in secondary storage device or data warehouse and is assumed to be 

representative of the process at all times. Thus, in the offline mode data mining is 

performed only once or infrequently. However, in real world chemical plants, even in 

the absence of faults, a normal process could undergo slow drifts, for instance as a 

result of, equipment degradation due to corrosion, catalyst deactivation that results in 

kinetic drift, wear-and-tear of parts, fouling and periodic maintenance or cleaning of 

machines. In this thesis, we focus on real-time data mining applications which are either 

used directly for process monitoring or employed for continuous updating of process 

models, and the ultimate objective is to ensure sustainable optimal process 

performance. As highlighted in the work (Bunin, 2014; Pahija, 2014; Yip & Marlin, 2004), 

adequate model complexity is the key for an accurate model which in turns guarantees 

a successful process optimization application. Similarly, in process monitoring 

applications, the outdated model might create false alarms which lead to confusion, 

unnecessary machine downtime, and wastage of manpower and cost (Cicciotti, 2014; 

Lee et al., 2003). It is generally true that a sufficiently large amount of process data is 

unavoidable for constructing complex and detailed models. Considering the high data 

generation speed in modern chemical plant, especially when high dimensionality is 

involved, traditional data mining algorithms are limited by their deficient computational 

speed and thus are not suitable in real-time applications.  

The computational deficiency of many traditional data mining algorithms 

therefore offers the motivation for this PhD thesis, which endeavors to develop 

effective data mining algorithms for real-time extraction of process information. This 

thesis investigates key chemical process applications where the realization of real-time 

data mining is crucial. 
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1.2. Challenges of Real-Time Data Mining 

Real-time data mining is challenging mainly due to the requirements of 

producing accurate information in a timely manner and handling huge volume of data or 

transient data with limited computational resources. As conventional data mining 

process is usually performed infrequently and offline, it focuses exclusively on accuracy 

and places limited interest on computational efficiency. On the other hand, an 

important feature of real-time data mining application is that the data mining algorithm 

is executed frequently at regular or irregular intervals. Hence, it is important that the 

algorithm is computationally efficient so as to prevent data backlog and also ensure 

timely information. Accurate and timely information is extremely valuable as it provides 

opportunity for continuously improving operational performance. However, due to the 

limitation of computational resources (i.e. processing power and memory), 

computational efficiency or accuracy is sometimes being compromised. Some existing 

works (Prata, 2009; Yip, 2004) are constrained to simple process like single-reactor 

polymerization process and a stand-alone boiler network; while some sacrifice accuracy 

to a certain extent for speed (Tosukhowong, 2004; Yue, 2004) by using simplified 

models or sampling techniques. Hence, the development of accurate and efficient data 

mining algorithms for real-time applications is highly attractive. 

The large volume and high dimensionality of process measurement further 

complicates real-time data mining. As a result of advancements in measurement, sensor 

and network technologies, it is now a common practice in chemical plants to collect 

process data at extremely detailed levels which are characterized by high dimensionality 

and high data rate. Plant-wide or organization-wide data is gathered at a central storage 

place through data network if global-scale data analysis is of interest. To handle such a 
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massive amount of data, a data model called data stream is considered. A data stream is 

a finite or infinite sequence of ordered instances arriving at high speed. Due to the high 

arrival speed and the large volume, data stream algorithms are allowed to access data 

only once or a small number of times; this access mode is called a linear scan. 

Conventional data mining algorithms typically require random access to data. For 

instance k-means clustering repeatedly reads the data in random order. Such algorithms 

are therefore unsuitable for handling data streams. It is therefore evident that many 

offline data mining algorithms are not directly usable for real-time applications, and 

minor or major modifications may be needed. 

1.3. GPU-HPC Solution. Why? 

High performance computing (HPC) system is a powerful computing platform 

which has been successfully used for solving real-time problems. HPC solutions offer 

enhanced computational efficiency without sacrificing solution quality, based on a 

concept called parallelization. Standard HPC systems include supercomputers, grids, 

cloud, and computer clusters, wherein a large number of Central Processing Units 

(CPUs) are linked in different ways and work cooperatively for solving a big problem. In 

recent years, a new form of HPC system using General Purpose Graphics Processing 

Units (GPGPUs or GPUs for brevity) has emerged; a GPU the system consists of a single 

or a number of GPUs. Both CPU and GPU-based HPC systems serve as a parallel 

computing platform which provides many processing units for parallel works. If a 

computational problem can be divided into a number of smaller tasks which are 

independent of one another, the tasks can be executed simultaneously on a suitable 

HPC system, thus achieving enhanced computational efficiency. Successful applications 

report orders of magnitude acceleration achieved by parallel computing systems, for 
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example (Cano, 2014; You, 2014; Fok et al., 2007; Goil, 1997; Han et al., 2000; Liao, 

2009; Liu et al., 2004; Melab et al., 2006). 

CPU and GPU-based HPC systems differ in various aspects including the types 

of parallelization, costs and programming effort. On the one hand, CPU devotes majority 

of its transistors to control logics, so it has complete and complex control functionality 

for complicated computational tasks. Moreover, a CPU is designed to execute one 

process (or thread) at one time, at optimal efficiency. Hence, with multiple CPUs 

connected in a HPC system, it supports task-level parallelization, whereby each CPU 

executes the same or different task (i.e. program) on the same or different data. Due to 

the longstanding history of CPU in mainstream computers, majority of the commercial 

software or freeware are written and optimized for CPU implementation. There also 

exists a large body of well-established CPU libraries. As a result, less programming effort 

is needed when a single-CPU program is ported to a CPU-HPC system. However, the cost 

of building and maintenance of such CPU-based HPC systems is high which greatly 

reduces its feasibility for most applications.  

GPUs on the other hand, have an entirely different architecture from CPUs and 

are targeted at a different type of parallelization. In a GPU, massive amount of 

transistors is allocated for arithmetic units, while only a few are used for control units. 

This GPU architecture allows for parallel execution of the same program (simple control) 

on different data (massive amount of arithmetic units). It thus enables a different type 

of parallelization, called data parallelization. GPGPU is a newly emerged technology 

which is still at its infancy. Owing to the different architecture, existing CPU programs 

are not directly executable in a GPU. In fact, significant amount of programming effort is 

required to develop an efficient GPU algorithm. Recently, a number of high-level 
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programming languages are being developed for GPGPU applications, such as Nvidia’s 

CUDA, OpenACC and OpenCL, which simplify the programming. Besides the efficiency 

improvement offered by GPU, other attractive features of GPU include low cost, low 

power consumption as well as space saving. Therefore, we believe that GPU-based data 

mining algorithms offer a promising and practical solution to real-time information 

extraction in chemical plants. In this work, we explore the use of GPU computing to 

achieve real-time data mining for important chemical process applications.  

1.4. Research Scope and Contributions 

Figure 1-1 elucidates the research scope as well as the key objective of this 

thesis. In this work, we focus mainly on the data mining process which is known to be 

the most critical stage in KDD, and assume a minimum need on data pre-processing. As 

the data used in the case studies are either simulation data (Chapter 4 and Chapter 6) or 

reasonably complete data in the absent of missing values (Chapter 5), standard 

normalization should be sufficient. Furthermore, we are interested in tackling chemical 

process applications where real-time data mining is the key to assure the highest 

operational safety and optimal business value, specifically include the process control 

and fault detection problems. My major contributions include firstly to outset and 

explore the use of GPGPU parallel computing technology in realizing the practical use of 

data mining in chemical process applications, and this is accomplished by performing 

detailed examination on important data mining algorithms from which various types of 

data parallelism are successfully identified. Secondly, we demonstrate the development 

and implementation of several GPU-based data mining algorithms, and also address a 

number of important implementation issues related to GPU parallel computing. The 

developed GPU-based data mining methods have shown favorable results in terms of 



7 
 

computational speed and process control or monitoring quality, wherein it reveals the 

usefulness and potential of GPU technique in mining chemical process information. 

 
Figure 1-1-1: Research scope and objective of this thesis. 

1.5. Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 provides a detailed 

review on the key concepts of data mining as well as various data mining applications in 

chemical industries. In this chapter, the state-of-the-art of real-time data mining 

technology is highlighted and existing research gaps identified. We focus specifically on 

3 topics - continuous optimization, continuous pattern recognition using image analysis 

and clustering techniques. In Chapter 3, a comprehensive analysis of GPGPU parallel 

computing tool is performed. It focuses on the hardware architecture as well as 

software programming model of NVIDIA’s CUDA-enabled GPU. Key programming issues 

and commonly used optimization techniques are also discussed. A survey of GPGPU-

based research works is also presented. 

In Chapter 4, we seek to improve the computational efficiency of simulation-

optimization, a specific optimization technique, by devising a systematic procedure for 
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GPU programming. The implementation of the proposed procedure is demonstrated on 

a variable selection monitoring problem Enormous improvement in computational 

efficiency is obtained when the GPU-based algorithm is evaluated on the Tennessee 

Eastman Challenge Problem. Chapter 5 is devoted to real-time image analysis, where a 

GPU-based multivariate image analysis algorithm is developed. The proposed CPU-

based algorithm has been tested successfully in a case study of particle size estimation 

for a batch crystallization process, for which particle size information is determined in 

real-time. Chapter 6 presents a GPU-based online process monitoring scheme. 

Essentially, a scalable clustering method known as BIRCH is ported to GPU so as to 

achieve an enhanced characterization of process behavior. Both synthetic and simulated 

process data are employed for evaluating the proposed approach. In the final chapter, 

key conclusions of the thesis are summarized and major research areas for future work 

are identified. 



9 
 

Chapter 2. Literature Review 

This chapter begins with the introduction to KDD and data mining by including 

the definition and highlighting the key features of the technologies. It is followed by a 

literature review on various data mining methods and their classification. The 

importance of real-time data mining is then elaborated before detailed literature 

studies are performed on two important topics which are the continuous optimization 

and continuous pattern recognition.  

2.1. Overview of Knowledge Discovery and Data 

Mining (KDD) 

Knowledge Discovery and Data Mining (KDD) is an interactive and iterative 

computational process comprising of a number of phases including data selection, data 

cleaning, data transformation, data mining and information evaluation. This formal 

definition of KDD and the accompanying unified framework (as depicted in Figure 1-1) 

are firstly introduced by Fayyad and co-workers in (Fayyad et al., 1996; Fayyad et al., 

1999). Such framework is widely accepted and has been continuously practiced by many 

researchers (Mariscal et al., 2010; Mhamdi & Elloumi, 2010; Sharma et al., 2012), 

though different abbreviations might be used such as the KDDM in (Sharma, 2012). 

Historically, knowledge discovery is realized through manual data analysis whereby 

human specialists are involved in understanding and deriving insights from raw data.  As 

the amount of data collected across many fields continues to grow significantly, manual 

methods become impractical and inaccurate and thus computational data mining 

techniques emerge as a better, cheaper and less subjective alternative.  

KDD is a multi-step framework wherein some or all of the component steps are 

automated. Each individual step plays a crucial role in determining the success of a 
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knowledge discovery application, and they are briefly presented as below. The first step, 

data selection, is used to remove irrelevant data records or variables which tend to 

pollute or dilute the important information. It is typically achieved based on certain 

prior knowledge either manually or by setting certain threshold value. The selected data 

subset goes through a data cleaning or preprocessing step whereby noise, errors and 

missing data fields are handled in a systematic manner. Fully automated computational 

data cleaning methods are widely available. It should be noted that the 

abovementioned data refinement steps can be accomplished through manual 

investigation if the volume of data is manageable small, as human is capable of 

differentiating good data from the bad ones. Subsequently, a more useful feature space 

could be obtained through dimensionality reduction, feature selection, variable 

transformation, or space projection, using the refined data; popular computational 

methods include PCA, PLS, and SOM. In this third step, invariant representations for the 

original data can be produced from the transformed feature space, and thus creating a 

cleaner data space for analysis.  

The remaining steps of the KDD framework are data mining and information 

evaluation. The fourth step, data mining, is considered as the most computationally 

intensive and complex step in KDD. This could explain why it is the main focus of this 

work. The key objective of data mining is to search for interesting and useful patterns 

which can be in the forms of models, decision tree, classification or association rules, or 

cluster assignment; a more comprehensive literature review will be provided in 

following sections. As there are a wide range of data mining techniques, from simple 

regression methods to machine learning and artificial intelligence techniques, choosing 

a suitable method becomes a nontrivial task and caution has to be taken. The following 

step, information evaluation, has therefore become increasingly important as the 
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volume of data mining techniques keeps growing. The evaluation step which is the final 

step in the KDD cycle involves thorough review on all the preceding steps and careful 

examination on the data mining results. At this phase, it depends heavily on human 

involvement to cautiously interpret the discovered patterns, and it is done based on 

expert knowledge and with the help of visualization methods if possible. The objective is 

to make judgment on the use of data mining results by removing irrelevant or 

redundant patterns, and translate the useful results into forms which are 

comprehensible and implementable by users. If the extracted patterns are not useful or 

ambiguous, the KDD cycle needs to be repeated and alternative data mining techniques 

will be considered. Although the evaluation step is not covered in details in this work, it 

plays an equally important role as all the preceding steps in KDD. 

2.2. Introduction to Data Mining  

Data mining involves the extraction of hidden, previously unknown interesting 

and useful information from large volume of data, wherein the discovered information 

is in the form of understandable or actionable structures such as rules or models 

(Fayyad et al., 1996; Mukhopadhyay et al., 2014; Mahmood et al., 2013).  For discovery 

of useful information, large number of measurements and many attributes (or variables) 

need to be simultaneously explored, thus manual analysis is impractical. Data mining 

techniques which include a wide variety of machine learning algorithms offer an 

alternative feasible solution. The design of a data mining method requires paying 

attention to the following issues (Fayyad et al., 1999). 

Model representation: In the context of data mining, model is a concise representation 

of the discovered information or pattern. It consists of two parts which are the model 

structure (e.g. linear, nonlinear, Gaussian model, PCA) and model parameter (e.g. mean 
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and standard deviation of Gaussian model, eigenvectors of PCA model). Model selection 

depends heavily on the prior knowledge of the domain or system as well as the 

application goal. Compact and neat mathematical models are sometimes inadequate in 

describing highly complex systems (Quaglia et al., 2015; Yip & Marlin, 2004). However, 

excessive model complexity, like in the case where there are too many layers employed 

in an artificial neural network (ANN), has the tendency of over-fitting which leads to 

poor generalization. The rule of thumb is to choose the simpler model if its performance 

is adequate, according to Occam’s razor theory.   

Search method or learning algorithm: A good search method is one that provides 

effectiveness and efficiency in attaining the fittest model. There are two levels of 

searching where the top level is to identify a suitable model structure (e.g. the order of 

polynomial), and the bottom level is to find the optimal set of parameters for the 

selected model structure. Search method can be broadly divided into two groups, global 

search and local search. Global search methods like genetic algorithm (GA) and swarm-

based optimization explore a wider solution space, while local search methods like hill 

climbing and k-means look at solutions which are usually at near proximity. The former 

is generally more computationally demanding but offers higher chance of getting the 

best model, whereas the latter requires less computing effort but it only guarantees for 

suboptimal solution. 

Model evaluation: A quantitative measurement of the model fitness (i.e. fitness 

function) is required to ensure the model performs satisfactorily and meets the data 

mining goal. In applications where the fitted model is used for prediction, classification 

error and prediction accuracy (e.g. mean squared error) are common choices. When the 

data mining problem involves characterizing a system or process based on clustering 
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algorithms, similarity of items in the same cluster should be maximized while 

dissimilarity between items in different clusters should be minimized. In general, a 

separate set of data (i.e. testing data) is needed for model evaluation, this is to avoid 

over-fitting and promote model generalization which guarantees good prediction for 

unseen data. 

2.3. Classification of Data Mining Methods 

Numerous data mining algorithms have been developed with each mines for 

different type of information, one scheme of classifying them (Clifton, 2014) is based on 

the type of known information and the kind of information to be searched for. It should 

be noted that the same method can exist with different interpretation to suit the goal of 

application, and therefore it may fall into more than one category. 

Predictive modeling: This group of algorithms provides estimation of class or numeric 

value of the target variable or output. Classifiers, like support vector machine (SVM), 

neural network (NN) and naive Bayes classifiers, can serve as a predictive model with 

categorical target variable. While in regression methods, such as linear regression, non-

linear regression and neural network, the target variable is numerical or real-valued. For 

instance, (Chiang et al., 2004) examines the proficiencies of Fisher discriminant analysis 

(FDA), SVM, and proximal support vector machines (PSVM) in classifying multiple fault 

classes; (Gonzaga et al., 2009) proposes a feed-forward artificial neural network (ANN) 

to estimate PET viscosity online. The powerful approximating capability of neural 

network allows it to become a popular candidate for process control (Assenhaimer et 

al., 2014; Singh et al., 2014; Bhat, 1990; Nahas, 1992), by providing accurate prediction 

of process output. 
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Descriptive modeling: The main objective is data characterization, which is achieved by 

extracting patterns through grouping data items according to certain similarity measure; 

clustering is one of the most common methods. Similarity is measured based on 

distance metric e.g. Euclidean distance. A key difference between descriptive modeling 

and predictive modeling is that the former is usually trained using unsupervised 

technique, while the latter requires supervised training. Hence, clustering-based pattern 

recognition is particularly useful in cases where there is no prior knowledge (no labeling) 

about the data, e.g. (Detroja et al., 2006) uses clustering to detect faults that have not 

seen during training; (Srinivasan et al., 2004) proposes a two-step clustering method for 

automatic identification of different process states based on historical data. Clustering is 

a well-established data mining algorithms and it can be broadly categorized into 

hierarchical clustering (e.g. HAC, BIRCH, and CURE), partitioning clustering (e.g. K-means 

and K-medoids), density-based clustering (e.g. DBSCAN and DENCLUE) and grid-based 

clustering (e.g. STING and CLIQUE) (Pham & Afify, 2007). A more detailed investigation 

of clustering techniques will be provided in Section 2.6.2. 

Pattern mining: In this category, the extracted pattern is in the form of rules; 

association rules and sequential rules belong to this category. It focuses on discovering 

interesting relations between variables in large databases. In (Ren et al., 2005), an 

association rules mining technique is proposed and applied for reasoning about the 

relationship between recovery rate and energy loss in a real aromatic hydrocarbon 

extraction process. Zhang et al. (2005) use association rule mining to establish the 

relationships between the key process variables and some objective variables, like purity 

and recovery rate, of a simulated moving bed paraxylene adsorption process. 
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Anomaly detection: The major goal is to detect anomaly by looking for data items that 

are usual and do not fit the established models of normal process data. While predictive 

modeling can be used for detecting known or trained faults, there could be novel and 

unexpected faults appear in the process, and their discovery is highly valuable. A 

popular method in this category is principal component analysis (PCA) (Choi et al., 2004; 

Ku, 1995; Nomikos, 1994). Here, the measurement of Hotelling’s T2 statistic and squared 

prediction error (SPE) on the PCA model provide useful indication of process 

abnormality.  

2.4. Real-Time Data Mining and Its Desirable 

Characteristics 

Real-time data mining can be regarded as a continuous data mining process to 

cope with the changing environment conditions by continuously searching for new 

information and making adaptation to model. It enables continuous monitoring of 

chemical process operation so that quick responses and real-time decisions can be 

made in response to supply disturbances, market uncertainties, process behavior 

changes, process abnormalities, equipment malfunctions and faulty sensors. With 

effective real-time data mining system in place, it is possible to maintain the process 

operational performance, product quality, process safety and customer’s satisfaction at 

the optimal level.  

In real-time data mining applications, it is exceptionally important to ensure 

that information is obtained in a promptly manner. Conventional data mining algorithms 

which are computationally expensive and bounded to disk-resident data are therefore 

not suitable. They need to be revised and improved to address the following issues (Fan, 
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2013; Gaber, 2005; Gama, 2012; Silva, 2013) before they can be used in solving real-

time data mining problems. 

Unbounded and rapid arriving of data: In modern chemical plants, owing the rise of 

information technology and advances in sensor technology, the volume of data grows at 

an unprecedented rate. Various types of data which may be related to processes, 

products, scheduling, planning, equipment, maintenance and inventories are generated 

continuously and infinitely. Most of the time, data generation and collection rate is 

much faster than data mining speed. The capability of closing this time gap is thus an 

essential feature of real-time data mining techniques. 

Modeling process changes over time: The behavior of real world chemical processes is 

never stationary, abrupt changes like equipment malfunction, actuator failure and slow 

changes like equipment degradation, catalyst deactivation, are taking place consistently. 

In response to abrupt changes, an effective fault detection and remedial action is 

possible only if the faulty condition is captured accurately and quickly without delay. 

Although slow changes or drifts may not result in sudden and serious consequences, 

failing to detect such drifts would lead to suboptimal or deteriorating operational 

performance. Outdated model in control application could drive the process to 

suboptimal or negative performance direction; in process monitoring, it could result in 

fault positive (i.e. false alarm) or fault negative detection. The challenge is how to detect 

process changes over time and enable adaptive modeling. 

Constraints of computing resources: Most data mining algorithms require data to reside 

in main memory, so in cases where data size is larger than available memory size, it is 

required to move data in and out from secondary storage device which is extremely 

inefficient. Furthermore, high arrival rate and huge volume of data prohibit its long 
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residence in main memory i.e. data is transient. Transient data is disallowed to change 

its order due to time and space limitation. The challenge is to design a data mining 

method that is space-efficient and guarantees for useful pattern extraction under the 

constraint of linear scan to data. 

In this thesis, our focus is on devising feasible and effective real-time data 

mining solutions to three important chemical process applications, they are continuous 

optimization, and continuous pattern recognition using image analysis and clustering 

techniques. It should be noted that we do not address the issues regarding early stages 

of KDD, including data collection, data cleaning, data preprocessing, in this work. 

Interested readers are referred to (Fayyad et al., 1996, 1999; Li, 2009; Mariscal, 2010) 

for details.  

2.5. Continuous Optimization 

Optimization algorithms provide a means to search for the best solution while 

satisfying certain constraints. In the context of chemical process operations, a best 

solution could be a set of adjustable process variables corresponds to the highest 

possible production rate while ensuring pre-specified product quality (i.e. constraint), or 

an optimal allocation of limited resources and assets to satisfy market demand, or it 

could be simply an accurate prediction model for fault detection. Common optimization 

applications in chemical industries include process operation optimization (e.g. supply 

chain management, process planning and scheduling) (Gupta, 2003; Méndez, 2006), 

process model building (Yu, 2008; Psichogios & Ungar, 1992), process design and 

synthesis (e.g. reactors network configuration, heat exchanger) (Karuppiah, 2006; 

Papoulias, 1983; Yee, 1990) and process control (Biegler et al., 2002). Data mining 

strategies such as association, classification, and clustering are always useful in 
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optimization applications, through providing concise and accurate process model. Take, 

for example (Yu & Qin, 2008) uses Gaussian mixture model (GMM) to capture the 

multiple operating modes of complex industrial processes, for the purpose of process 

monitoring. In the study, the GMM model is established by determining the model 

parameters through optimization. In (Psichogios & Ungar, 1992), the authors propose a 

hybrid modeling process by combining the use of data-driven neural network and first 

principles. Through machine learning optimization, the optimal structure and 

parameters of ANN are identified for accurate process variable estimation of a fed-batch 

bioreactor. The above examples show the use of optimization in process model building. 

Continuous optimization is an increasingly popular research topic in recent 

years due to the capability of maintaining the optimal performance at all times. In real 

world chemical plants, the ever-changing behavior of processes causes a previously 

optimal operation condition or design no longer the best performing one in later time. 

In order to cope with such changing behavior, it is required to perform the optimization 

routine repeatedly. (Biegler & Zavala, 2009) illustrates how a real-time optimization 

(RTO) can be used in combination with a model predictive controller (MPC) in achieving 

smooth and optimal transitions between different operating modes. (Tosukhowong et 

al., 2004) is another research work which integrates the use of RTO and MPC, but the 

authors suggest using an intermediate frequency for optimization. The proposed 

approach guarantees for lower economic loss as compared to a less frequent RTO (i.e. 

stead-state RTO), in the presence of disturbance. In these two studies, the role of RTO is 

mainly to identify the best performing set-point for MPC. In the study (Prata et al., 

2009), the authors employ particle swarm optimization method (PSO) to iteratively 

update data model parameters. The proposed procedure is tested successfully in the 

operation of a propylene polymerization process, by having accurate and real-time 
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prediction of process variables. Such continuously adapted process model is also 

demonstrated to attain a better stabilization of control loops at plant site. 

From the perspective of data mining, continuous optimization involves 

continuous model adaptation or re-construction based on most recent data. The 

relationship between optimization and data mining can be two-fold, where recurring 

optimization is either used as a model updating tool or is performed based on the 

updated model. Some examples are detailed below. (Peters et al., 2007) propose a real-

time optimization approach aiming to continuously improve the overall cost of batch 

processes, based on a regularly updated process model. However, the searching method 

is limited to a smooth and locally convex cost function. The research work (Golshan et 

al., 2005) suggests using the Extended Kalman filter (EKF) to estimate process states and 

time-varying parameters of the process model. The updated process model is then 

optimized through NLP to determine an optimal set of process operating conditions at 

every 8 hours. EKF does not guarantee for the optimal estimation of process behavior as 

a consequence of the linearization requirement when it extends from the regular 

Kalman filter.  

To overcome the limitations of conventional optimization methods e.g. EKF 

and NLP, the authors of (Prata et al., 2009) propose the use of heuristic optimization 

method PSO which is capable of handling high dimensional problems, attaining globally 

optimal solutions and allowing for straightforward implementations. In the study, model 

parameters and process states are estimated by performing PSO on moving windows. 

Moving window or moving horizon is generally used to reduce the size of optimization 

problems and at the same time discard old process data. A survey of various model 

adaptation strategies for real-time optimization applications is presented in (Chachuat 
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et al., 2009). As it has been pointed out in the article, besides model parameter 

adaptation, there are also situations where we should take in consideration of 

modifying the model structure, so as to avoid plant-model mismatch.  

2.5.1. Simulation-optimization 

Simulation-optimization (Sim-Opt) is a special type of optimization techniques 

which makes use of simulation to replace deterministic mathematical formulations. It 

provides plausible optimization solutions for systems involving complex phenomena and 

containing uncertainty, which are unsolvable otherwise. The concise mathematical 

expression for Sim-Opt is given as, 

   
   

 [ ( (   ))] ( 2-1 ) 

where, L is a performance measure,  denotes variables or parameters subject to 

optimization,   refers to the entire search space for ,   represents the system 

randomness, x is to the trajectory for  generated based on  . Essentially, Sim-Opt 

comprises of three functional modules, which are simulation, objective evaluation and 

optimization. The information flow and relationship between the three modules are 

depicted in Figure 2-1. In Sim-Opt, the system reaction of all candidate solutions ’s 

generated from an optimization cycle is first simulated, after which objective evaluation 

L is performed based on the simulated response  (   ). For a stochastic system where 

uncertainty is involved, multiple simulations with different paths   are needed for each 

candidate solution. 

In modern chemical plants, highly integrated process configuration gives rise 

to complex interaction among process variables. Modeling of such processes requires 

large-scale and difficult mathematical formulations. Furthermore, uncertainty exists in 
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chemical processes in various forms, from raw material quality variation to fluctuation 

of market demand, so deterministic mathematical models are sometimes inadequate. 

Considering the capability of simulation in capturing system complexity and 

stochasticity, Sim-Opt techniques are highly favorable in solving complex optimization 

problems.  

 
Figure 2-1: General structure of simulation-optimization 

2.5.1.1. Sim-Opt in chemical process operations 

Sim-Opt have attracted considerable attention from researchers and industrial 

practitioners in recent years. Reviews of Sim-Opt techniques are provided in (Wang & 

Shi, 2013; Azadivar, 1999; Swisher et al., 2000). Successful applications of Sim-Opt are 

found in areas such as process design and operation, supply chain management, and 

sustainability development. Brunet et al. (2012) combine simulation and optimization 

techniques to solve a single-product process design problem, in which both structural 

(type and size of process units, number of equipment units in parallel) and operating 

decisions (e.g. concentration, flow rates, temperature etc.) are taken care of. Reyes-

Labarta et al. (2012) solve the design problem of multi-component distillation columns 

using Sim-Opt technique. This is a complex optimization problem where design variables 
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(including total number of stages and feed location) interact heavily with operating 

decisions (i.e. distillate flow rate and reflux ratio). Brunet et al. (2012) present a Sim-Opt 

methodology for designing absorption system which is used for cooling and refrigeration 

purpose. The design problem is solved by taking into consideration both economic and 

environmental factors. In the area of sustainability, Halim et al. (2011) propose a 

knowledge-based Sim-Opt framework for generating sustainable design and operations 

alternatives for chemical process plants. The above works demonstrate Sim-Opt 

applications that are motivated mainly by the capability of simulation on modeling 

complex systems, e.g. reaction kinetic, thermodynamic relation, vapor-liquid 

equilibrium, while there is limited or no uncertainty involved.  

The uncertainty handling capability of simulation has been stressed in Sim-Opt 

applications found in the area of supply chain management. For example, Chen et al. 

(2012) present a Sim-Opt approach to minimize clinical trial costs during new drug 

development in pharmaceutical industry, whereby stochastic factors like patient 

enrollment rate, randomly assignment probability and dropout rate are taken into 

consideration. Mele et al. (2006) present a simulation-based optimization framework for 

optimal chemical supply chain management under demand uncertainty. Nikolopoulou 

et al. (2012) design a Sim-Opt approach to address the planning and scheduling decision 

problem in supply chain management, with demand uncertainty. Tan et al. (2010) 

address the business decision support problem in a global specialty chemicals enterprise 

using a Sim-Opt framework, in which decision variables such as reactor size and policy 

decision like raw material reorder point are optimized. The behavior, interaction and 

various uncertainties of supply chain entities are simulated using a dynamic model. 

http://en.wikipedia.org/wiki/Vapor-liquid_equilibrium
http://en.wikipedia.org/wiki/Vapor-liquid_equilibrium
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2.5.1.2. Limitations of Sim-Opt  

Although Sim-Opt have been widely accepted as an effective optimization 

technique, the high computational cost associated with simulation has limited the 

practicality of the techniques. Assuming Sim-Opt are used in continuous optimization 

applications, the computation cost will become extremely huge and unmanageable with 

standard computing resources. As a result, real-time performance is nearly impossible. 

Detailed structural analysis of Sim-Opt will be given in 4.1, in which the effect of 

optimization technique and degree of uncertainty on computation time will be 

examined. 

2.5.1.3. Approaches for improving computational efficiency  

A number of studies attempt to overcome the high simulation cost in 

simulation-optimization applications, which can be broadly classified into two groups. 

One group of studies seeks for alternative optimization techniques that require lesser 

simulation runs, while the other group concentrates on enhancing computational speed 

based on parallel computing technology. The first group essentially refers to the special 

gradient estimators which have been mentioned early; classic examples include 

perturbation analysis (PA), likelihood ratios (LR), response surface methodology (RSM) 

and ordinal optimization (OO). A major drawback of the PA technique is that the 

estimated gradients are often biased and inconsistent (Carson & Maria, 1997). In 

addition, the technique is based on the assumption that perturbation made in an input 

variable does not affect the sequence of events, which may not be always true. 

Although LR guarantees for unbiased gradient, the method is not applicable to 

optimization problems that involve in-differentiable objective function (Fu, 1994). In 

RSM, regression polynomials or neural networks are used to approximate the 

relationship between objective variables and decision variables, based on simulation 
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data. Although the overall number of simulations is reduced, the method is restricted to 

smooth objective-to-decision variable relation, where there is no sharp ridges and flat 

valleys (Azadivar, 1999). On the other hand, OO focuses on finding good enough 

solutions (not the best solution) by exploring as much as the solution space, within 

certain computational time; where the global searching capability is enhanced at the 

cost of its local searching capability (Zhong et al., 2006). Since a crude model is firstly 

used for selecting a subset of good solutions, and simulation is performed only on the 

selected subset, computational time is significantly reduced. However, statistically good 

solutions can be difficult to obtain (Swisher et al., 2000; Zhong et al., 2006). While the 

aforementioned optimization approaches promise reduced number of time-consuming 

simulation runs, they are only applicable to over-simplified optimization cases. 

The advent of parallel computing technology offers an alternative way of 

improving the computational efficiency of simulation-optimization techniques. Fujimoto 

(1989, 1990) and Misra (1986) discuss and compare various parallel computing 

techniques for accelerating single simulation, based on distributed computing systems 

like supercomputers and a network of processors. There are also studies, such as (Koo 

et al., 2008; Laganá et al., 2006; Tan et al., 2010), which work on multiple simulations at 

any one time. However, these algorithms require CPU-based HPC systems which can be 

extremely expensive.  

2.6. Continuous Pattern Recognition 

Pattern recognition can be regarded as a classification technique, in which 

machines attempt to learn from the environment and make judgment about the 

categories of the data observations or patterns. As other data mining techniques, the 

product of the learning process is a model. There are two broad groups of classification 
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techniques, namely supervised and unsupervised classification. In cases where the 

actual classes of training data are known, supervised classification techniques are 

usually more adequate; otherwise unsupervised methods are the only choice. The 

number of studies of applying pattern recognition techniques in chemical process 

operations is tremendous and growing continuously, some examples include process 

monitoring and fault diagnosis using SVM (Chiang, 2004; Zhang, 2009), PCA (Bakshi, 

1998; Kresta, 1991; Lee et al. 2004) , partial least squares (PLS) (MacGregor et al., 1994), 

faulty sensor detection (Dunia et al., 1996; Qin & Li, 2001), process states identification 

(Srinivasan et al., 2004), and etc. 

As business has become increasingly competitive and regulations are getting 

more stringent, continuous pattern recognition approaches which provide updated 

information are highly attractive. In reality, process behavior is dynamic and time-

varying due to many reasons, e.g. seasonal fluctuation, tools aging, external 

disturbances, equipment degradation. Therefore, it is crucial to detect or capture 

process changes, so that adequate actions can be taken for maintaining optimal 

operational conditions or satisfying regulatory standards. Relevant studies include (Geng 

& Zhu, 2005) which presents an adaptive multiscale-nonlinear PCA algorithm for on-line 

monitoring of slow process changes. The adaptive feature is granted by the use of 

moving windows which acquire the process data dynamically. Instead of using moving 

windows, Yue et al. (2004) propose to assign different weights to samples according to 

their age. In doing so, old information will be forgotten gradually and newly constructed 

PCA model reflects the current process behavior. In (Lee et al., 2003), the authors 

demonstrate that the use of fixed multiway PCA model can lead to false alarms when it 

is applied in a real process monitoring problem; the issue is resolved with consecutively 

updating of the multiway PCA model. In (Ge et al., 2009), a statistical local method is 
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used to formulate changes of parameters in the kernel PCA model, so as to account for 

the changes of process behavior.  

However, the existing studies are mainly restricted to the use of PCA-based 

strategy, and they show zero or little concern on computational efficiency. As model is 

continuously updated or re-constructed, it can severely slow down the pattern (fault or 

changes) identification process. Hence, our main goal is to develop efficient pattern 

recognition methods for 2 important types of algorithm, which are image analysis and 

clustering. In the following paragraphs, we discuss the state-of-the-art of these two 

groups of techniques as well as their applications. 

2.6.1. Image analysis 

Image analysis involves identification of the position, size, or shape of objects 

in a system, through classifying image pixels into separate groups representing 

background, edges, boundary or objects. A standard digital image can be expressed as a 

2D matrix (gray-scale) or a three-way 2D matrix (RGB or color). The size of the 2D matrix 

indicates the degree of resolution, e.g. 720x480, 480x640, etc. On the other hand, 

spectral imaging techniques provide much richer details of a scene by integrating both 

the spatial and spectral information, in the form of 3D matrix, or a stack of 2D matrices. 

The 3 important stages in a standard image analysis process are discussed as follows (M. 

P. Ekstrom, 1984; Pitas, 1993). 

Image enhancement: Image filters are the basic tool for image enhancement. It can be 

broadly categorized into two groups, which are the Fast Fourier Transform (frequency 

domain) and convolution (spatial domain) filtering. In this work, we focus on the latter. 

Convolution filtering performs discrete convolution of the original image with a special 

mask; where the fundamental idea is to assign each pixel a value depending on the 
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values of its neighboring pixels. The simplest mathematical formula of a convolution 

filter is given below, 

 (   )  ∑ ∑  (   )   (       )

 

    

 

    

 
( 2-2 ) 

where, h is a mask given as a matrix of size (    )  (    ), and the function or 

values of h is known as the filter kernel. Depending on the functionality and complexity 

of h, filters can be divided into low-pass filters and high-pass filters. Low-pass filters such 

as mean and median filtering are commonly applied for image de-noising or smoothing. 

Whereas high-pass filters e.g. Laplace, Roberts, Sobel are mainly used for image 

sharpening. As high-pass filters develop useful features such as edges, lines from raw 

image, they are also known as feature extractors. 

Image segmentation: The objective of image segmentation is to partition an image into 

multiple segments of connecting pixels; a segment is a group of pixels with similar visual 

characteristics. The pixel segments which can be background, lines, curves, boundaries 

and etc. are used for locating and characterizing objects in the subsequent stage. The 

most popular method used for image segmentation is thresholding. Image thresholding 

process replaces the values of background pixels to 1’s (i.e. white) and values of object 

pixels to 0’s (i.e. black), thus the product is a binary image. There are several ways of 

obtaining the threshold value, some based on blank images while others rely on the 

considered image. 

Image post-segmentation and characterization: Commonly, the objects identified 

during image segmentation are defective, thus further enhancements are required. 

Morphological operations like erosion, dilation, opening, closing are standard methods 

used at this stage, for filling missing holes, removing objects that are tiny and touching 
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the image boundary. For effective characterization of the objects, object boundaries 

need to be first identified by locating the connected pixels which separate the object 

from the background. Lastly, quantitative or qualitative characterization of the image 

can be performed.  

2.6.1.1. Applications in process operations  

Image analysis represents a powerful technique for monitoring and controlling 

the shape and size distribution of crystal products in pharmaceutical, specialty chemical, 

agrochemical industries. Numerous studies have been conducted, for examples, (De 

Calderon Anda et al., 2005; Eggers et al., 2008; Larsen et al., 2006, 2007; Oullion et al., 

2007; Sarkar et al., 2009); some provide 3D size information (Darakis et al., 2010; 

Kempkes et al., 2010); some uses image analysis to support model development 

(Monnier et al., 1997).  

On top of that, applications of image analysis are also found in other non-

particulate processes. Yu et al. (2004) develop a multivariate image analysis technique 

for online performance monitoring of boiler system, by analyzing RGB flame images. By 

combining the information extracted from flame images with additional process data, it 

allows prediction of more useful information like concentration of NOx and SO2 in the 

off-gas. In (Khalil et al., 2010), an automatic image analysis technique is used for 

studying the effect of process parameters, e.g. surfactant concentration, stirring power, 

on the droplet size distribution in an emulsification process. The optimal process 

settings attained from the study show 3 to 4 times faster in reaching equilibrium.  In the 

study (2009), the authors present a multi-resolution and multivariate image analysis 

method to identify defects on the surface of a photolithographed semiconductor device. 
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The use of image analysis is also extended to the study of gas-solid fluidization 

and mixing systems, where standard analytical measurement is impractical or 

ineffective.  The features of bubbles, including size, moving speed, size evolution, have 

great impact on the fluidized process performance, so visualization and understanding 

of the bubble behavior are of foremost importance. Image analysis approaches are well-

suited to this case, as shown in the works (Busciglio et al., 2009; Kantzas & Kalogerakis, 

1996; Lim et al., 2007). While some studies of fluidized system focus on the particle flow 

dynamics like (Liu et al., 2008; Pallarès & Johnsson, 2006). On the other hand, the 

concentration of components during solid-solid powder mixing or liquid-liquid mixing 

which is difficult to measure can also be determined with image analysis techniques, as 

illustrated in (Blood et al., 2004; Li & Wei, 1999; Santomaso et al, 2004). 

From the perspective of continuous (i.e. online) process monitoring and 

control, image analysis techniques which are capable of providing timely information 

about the process are extremely valuable. Although, in (Larsen et al., 2006,  2007), it is 

reported that the image analysis algorithm is sufficiently fast for real-time 

implementation, the image acquisition speed of the video camera system is relatively 

slow which is 12min per image. Many modern imaging systems operate at a much faster 

speed, for instance (Sarkar et al., 2009) employ a Particle Vision and Measurement 

probe captures image at every 0.5 second, (Yu & MacGregor, 2004) is based on imaging 

time of 1 frame per second, (Khalil et al., 2010) records video sequence at the speed of 

30 seconds per image. In some cases, the use of image analysis is restricted to off-line 

applications, e.g. (Oullion et al., 2007). 
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2.6.2. Data clustering  

Clustering is an unsupervised classification technique which divide non-trivial 

amount of objects into a smaller number of groups (i.e. clusters), in which objects in the 

same group share similar attributes and those in different groups are more dissimilar. 

Standard clustering methods include k-means, density-based clustering, hierarchical 

methods, fuzzy clustering, and neural network-based and genetic algorithm-based 

clustering, an overview of these methods can be found at (Pham & Afify, 2007). More 

detailed discussions on several key aspects of clustering e.g. object types, similarity and 

distance measure, clustering optimality are provided in (Grabmeier & Rudolph, 2002). 

These standard clustering algorithms are among the most popular data mining tools 

which have been successfully applied in many disciplines such as bio-informatics (Alon, 

et al. 1999; Edgar, 2010; Eisen et al., 1998; Li & Godzik, 2006), environmental science 

(Chen et al., 2007; Malmberg & Maskell, 2002), economics (Colin Cameron et al., 2011; 

Breschi & Malerba, 2001), and also chemical process operations as discussed below. 

2.6.2.1. Applications of conventional clustering algorithms in process 

operations 

Clustering emerges as an effective tool for process states identification, for 

example in the work (Srinivasan et al., 2004), a PCA-based two-step clustering method is 

proposed for classifying historical data into various process modes and transitions, 

which are characterized by different optimal control configurations. Ng et al. (2008) 

demonstrate the use of self-organizing map (SOM) for process modes identification; the 

approach has later been validated on process monitoring and diagnosis applications in 

(Ng Y. S., 2008). Wang et al. (2013) propose using a subtractive clustering algorithm for 

identifying the operation mode of a coke oven system, based on historical data. 

Correctly identified operation mode is important as it allows determining of optimal 
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pressure set-point for coke oven operation. A similar application is also presented in 

(Pyun, 2011) where k-means clustering is used to classify LNG data into several 

operating modes for process monitoring purpose. 

In addition, clustering of chemical components into smaller and more 

manageable groups helps to reveal the chemical similarity and thus facilitating 

comparison, understanding and making references on the components. In (Aji et al., 

2004), the PLS model constructed based on pre-clustered mid-distillates offers more 

accurate concentration prediction of aromatic components. Akman et al. (2008) 

propose a hierarchical clustering strategy to classify essential oil components in 

supercritical CO2 phase. Clustering of components provides a clearer view of the relative 

distribution and enables optimal design and operation of supercritical fluid technology. 

Babaei Pourkargar et al. (2010) demonstrate the use of fuzzy clustering to predict 

thermodynamic and transport properties of hydrocarbons based on the cluster 

membership of the components. In some cases, plant facilities can also be clustered into 

smaller groups for more effective network design and operation optimization, e.g. 

design of biomass supply network using clustering technique (Ng & Lam, 2013), 

coherent power generator groups are identified using support vector clustering 

(Agrawal & Thukaram, 2013). 

Direct applications of clustering in process fault detection and diagnosis have 

also been found in the literature, e.g. (Detroja et al., 2006). In the study, historical 

patterns are first classified into various clusters of normal or faulty operations using 

possibilistic clustering. During online monitoring phase, the cluster membership of plant 

data serves as the indicator of whether the data falls into normal or abnormal process 

conditions. Similar to the works discussed early, the clustering is performed off-line on a 
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rather small historical dataset, by assuming unchanged process behavior. Hence, 

conventional clustering methods are unsuitable for problems involving continuous 

pattern recognition. 

2.6.2.2. Data stream clustering 

Effective continuous clustering applications involve handling large volume of 

data or fast arriving data stream in an efficient manner. Apart from using expensive 

CPU-based HPC computing systems to induce scalability and efficiency, like in the 

studies (Dhillon & Modha, 2000; Feng et al., 2007; Kaur et al., 2012; Li et al., 2012; Li & 

Xi, 2011; Patwary et al., 2012; Tsui et al., 2012; Xu & Zhao, 2012; Yang et al., 2012), we 

are more interested in clustering methods which are fundamentally scalable to large 

data as they represent more practical alternatives. Review of these scalable methods 

can be found in (Silva et al., 2013; Yogita & Toshniwal, 2013). 

Balanced iterative reducing and clustering using hierarchies (BIRCH) is one of 

the earliest and most widely used scalable clustering method proposed by Zhang et al. 

(1996). The key features contributing to the scalability of BIRCH are clustering feature 

(CF) and micro-clusters; while the tree structure organization of micro-clusters allows 

for efficient searching. The fundamental idea is to incrementally assign data to the most 

similar micro-cluster. The main characteristics and data distribution of a micro-cluster is 

represented by a tuple CF=(N,LS,SS), where N is the number of data, LS is the linear sum 

of the N data, SS is the squared sum of the N data. Through condensing N data points 

into a CF tuple and limiting the number of micro-clusters to be formed, BIRCH is able to 

take in infinite number of data theoretically. The resultant micro-clusters which 

represent data summaries can be further processed or clustered to generate more 

meaningful results. More details of BIRCH algorithm are provided in Section 2.6.2.3. 
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A number of scalable clustering algorithms have been derived from BIRCH, 

based on the CF-vector and micro-cluster concept. The CluTree algorithm proposed by 

Kranen et al. (2008) incorporates temporal information to tree nodes (i.e. micro-

clusters), whereby CF computation is time dependent. In doing so, outdated information 

will slowly be forgotten. ODAC is another variant of BIRCH employing the micro-

clustering approach, but it is a method for variables or features clustering instead of 

data clustering (Rodrigues, 2008). Some of the micro-clustering algorithms remove the 

tree structure; popular ones include DenStream, HPStream, HDDSTREAM and 

CluStream. The DenStream algorithm proposed in (Cao et al., 2006) constructs density-

based micro-clusters which undertake arbitrary shape. It also employs a different 

pruning strategy to limit the amount of micro-clusters. Aggarwal et al. (2005) and 

Ntoutsi et al. (2012) develop micro-cluster-based HPStream and HDDSTREAM 

algorithms, respectively, which are targeted at high dimensional clustering problems. 

The CluStream algorithm removes outdated data by tracking and including the temporal 

information of micro-cluster into CF (Aggarwal et al., 2003).  

While the abovementioned BIRCH-derived methods process data 

incrementally, i.e. one at a time, there are also algorithms working on data batches like 

the scaleKM algorithm proposed in (Bradley et al., 1998) and its enhanced version 

presented in (Farnstrom et al., 2000). In the study (Bradley et al., 1998), individual data 

batch undergoes a series of steps including standard k-means (along with micro-clusters 

formed previously), primary and secondary data compression. There will be k clusters 

generated from the standard clustering step with each cluster represented by a CF 

tuple. Based on the k-clusters model, data in the current batch is grouped into micro-

clusters representing discarded, compressed, and retained set, during the two-step data 

compression. Farnstrom et al. seek to reduce computational complexity and enhance 
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algorithm efficiency of scaleKM by removing the compressed and retained micro-

clusters.  

Scalable clustering algorithms which are not based on the CF and micro-cluster 

concepts of BIRCH are also found in the literature. For instance, (Hore et al., 2007) and 

(Wan et al., 2012) present fuzzy c clustering algorithms which are scalable to large data 

by processing them in batches, (Song & Wang, 2005) proposes a scalable GMM-based 

clustering approach in which GMM is trained on data batches. A main concern of these 

methods is the merging of two consecutive sets of clusters into single set, which can be 

complicated and erroneous if the involved data batches contain distinctive data 

distribution.  

The scalable clustering algorithms discussed above are characterized by single 

or a few data scan, eliminating the need of transferring data from secondary storage 

device which is extremely expensive. However, the micro-clustering approach emerges 

as an exclusively flexible and effective means for data stream clustering. As many of the 

existing micro-cluster-based algorithms are designed by focusing only on the clustering 

accuracy, enhancement of computational efficiency is very much needed for continuous 

clustering applications.   

2.6.2.3. BIRCH 

In this section, we re-present the BIRCH algorithm which is originally proposed 

in (Zhang et al., 1996) by examining the CF vector, CF-tree structure, insertion of data 

into CF-tree, and maintenance of CF-tree. As has been mentioned above, CF vector is a 

tuple containing 3 statistics (N, LS, SS) extracted from the constituent data points of a 

micro cluster. The CF vector provides all necessary statistical information for clustering 

computations such as distance and cluster centers. In addition, the additive feature of 
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CF vector allows it to incrementally take in data points as well as to merge with other CF 

vector (i.e. micro cluster); merging of two micro clusters are sometimes needed for CF-

tree maintenance, as will be discussed later. 

CF-tree is made up of 3 types of micro clusters, namely cluster node, leaf node 

and interior node (known as nonleaf node in the original paper). These nodes are 

connected through parent-child relationship, as shown in Figure 2-2, interior nodes 

represent high level nodes containing leaf nodes as their children, and cluster nodes are 

the lowest level nodes which do not contain child node. Interior node located at the top 

of CF-tree is called the root node. To facilitate the increment of tree height, we define 

cluster nodes as level 0, leaf nodes as level 1, and interior nodes as level 2 and higher, 

which is the different from the original paper. Note that the CF vector of cluster node is 

computed directly from its constituent data points; whereas the CF vectors of leaf and 

interior node are obtained by adding the CFs of all children nodes. The maximum 

number of children node allowable in a leaf node (L) or an interior node (B) is 

determined by both the data dimensionality and page-size of computing system. 
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Figure 2-2: An example of CF-tree, where circles represent micro clusters and one-

directional arrows link parent node to its children nodes. 

Insertion of a data point D’ into the CF-tree involves 2 key steps, which are 

identification of the nearest cluster node Cnearest and updating of CF-tree with or without 

structure change.  In the first step, the data point traverses through the CF-tree in a top-

down manner, whereby the path taken is made up of the closest child nodes at every 

level, starting from the root node. Once it arrives at Cnearest, it needs to examine if the 

distance between D’ and Cnearest is smaller than the current threshold value. If this is the 

case, the CFs of Cnearest as well as all its preceding parent nodes will be updated to reflect 

the adding of D’; note that there is no structure change involved. Otherwise, a new 

cluster containing single data point will be created as a new child sharing the same 

parent leaf node of Cnearest, provided there is empty child slot. It all child slots are 

occupied, splitting of the leaf node is required, whereby a new leaf node is created and 

the siblings of Cnearest along with the newly created cluster node are re-distributed 
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between these two leaf nodes. Redistribution is achieved by locating two farthest 

children nodes which serve as the seeds in the two leaf nodes, and then the remaining 

children nodes will be assigned to the nearest seed. Splitting may propagate to higher 

levels following the same re-distribution procedure. If splitting reaches the root node, 

an additional level will be added.   

A key characteristic of BIRCH algorithm is that it summarizes data points into 

the finest possible micro clusters, given a memory space M. As new data points are 

continuously inserted into the CF-tree, it may arrive at a state where M has been fully 

consumed. If this is the case, threshold value needs to be increased, and CF-tree will be 

rebuilt based on the modified threshold. It should be noticed that a larger threshold 

enables merging of nodes and hence resulting in a smaller size CF-tree. In this study, we 

apply the same heuristic approach given in (Zhang et al., 1996) for threshold increment, 

in which the new value is computed based on the distance of two nearest cluster nodes 

in the most crowded leaf node found in the CF-tree. CF-tree rebuilding involves treating 

individual cluster node as a new data point against the new CF-tree, where the new CF-

tree initially consists of only the most left-hand branch of the original tree. During 

rebuilding, if a cluster node finds a closer path in the new tree before its original path, it 

will be either merged with another cluster node or included as a new child in the new 

path; otherwise it will stay in its original path.  

Furthermore, BIRCH includes 2 additional features which are used for delaying 

node splitting and removing outliers during CF-tree rebuilding. The first property is 

achieved by keeping aside data points which demand for node splitting into a temporary 

variable delay-split and allowing insertion of subsequent data points; the second feature 

involves moving cluster nodes containing too few data points to a variable outliers. The 
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sizes of these two variables which are specified by the users affect both the quality and 

computational time of BIRCH, as they alter the sequence of data insertion and at the 

same time the variables need to be examined regularly for data re-insertion to the CF-

tree.  
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Chapter 3. GPU-based Parallel Computing 

Technique 

Historically, graphics processing unit (GPU) was specially designed for graphics 

rendering purpose. The major advantage of using GPU in mainstream computers is that 

it offloads massive amount of graphics-related operations from the central processing 

unit (CPU). Graphics rendering process involves a series of operations on every image 

pixel unit following graphic pipeline, which comprises of vertex generation and 

processing, primitive generation and processing, fragment generation and processing, 

and pixel operations. In order to display precise and real-time graphics on computer 

screen, the architecture of GPU is structured in a way that it is capable of processing 

enormous vector calculations efficiently, by incorporating massive amount of processing 

cores. In the context of computer science, vector calculation or vectorization refers to 

the use of a computer program that processes one operation on multiple pairs of 

operands concurrently. The simultaneously manipulated operands are commonly 

known as data parallelism in parallel computing study. It should be noted that 

conventional CPU consisting of one or a few processing cores fails to meet such 

graphical requirement, and therefore it requires GPU to work as a co-processor so as to 

relieve the computational burden. 

The subsequent development of shader programming in GPU technology has 

unlocked the opportunities for non-graphical or general-purpose GPU applications. In 

traditional graphic pipeline, shader which calculates rendering effects on graphics 

hardware is hardcoded (i.e. fixed-function). To offer flexibility, programmable shader is 

introduced in modern GPUs, for instance, NVIDIA’s GeForce 7800 GPU which comprises 

of 3 programmable shaders as depicted in Figure 3-1. Graphical effects such as position, 
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saturation, brightness, and contrast of all pixels or vertices can thus be constructed 

dynamically using variable shader algorithms. Taking advantages of the many processing 

cores and programmable shaders of GPUs, researchers have successfully extended the 

use of GPU to general-purpose computing. Some example applications are (Adams et 

al., 2007; Liu et al., 2009; Liu et al., 2006; Loop & Blinn, 2006; Shiue et al., 2005; Tarditi 

et al., 2006; Wong et al., 2007). However, these non-graphical applications of GPU are 

required to follow strictly the graphic pipeline, making it extremely user-unfriendly. 

Furthermore, managing and load balancing of multiple types of programmable shaders 

or cores is difficult and involving good knowledge in graphic programming. 

 
Figure 3-1: The 3 programmable engines of GeForce 7800 GPU developed by NVIDIA

1
. 

Graphics device developers such as NVIDIA and ATI introduce a new concept 

called ‘unified shading architecture’, where there is only single type of programmable 

                                                           

1
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture) 
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shader cores to accommodate all shader tasks. A typical example is the GeForce 8800 

GPU developed by NVIDIA, as presented in Figure 3-2. Unifying of shader cores reduces 

programming complexity by eliminating the need for stage-by-stage balancing, and thus 

enables programmers to better focus on the algorithmic development. Nonetheless, 

programmers are still required to formulate the non-graphical GPU problem as a graphic 

rendering job by following the graphic pipeline and presenting data as vertex or texture 

information.  

 
Figure 3-2: The unified shader architecture of GeForce 8800 GPU developed by 

NVIDIA
2
. 

A major breakthrough in the general-purpose GPU (GPGPU) computing is the 

introduction of a general-purpose programming model called Compute Unified Device 

                                                           

2
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture) 
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Architecture (CUDA) by NVIDIA in 2006. CUDA is the first C-based program development 

platform in GPGPU industry, which allows GPU to be treated as a many-core processor. 

Most importantly, CUDA provides a user-friendly development environment which 

requires zero knowledge of graphics operations, and thus decreases the learning curve 

and greatly improves computational efficiency. Within a few years after the introduction 

of CUDA, a wide spread of CUDA-based scientific computing applications have been 

reported; a number of classic examples can be found at (NVIDIA, GPU-ACCELERATED 

APPLICATIONS). 

While CUDA programming is much easier and effective than shading 

programming, it requires adequate understanding on GPU architectural details and 

programming model characteristic for better utilization of device resources and 

development of highly efficient programs. In the following sections, we first investigate 

the hardware architecture of GPU in regards to key components such as processing 

cores, memory types, and its relationship with CPU. It is then followed by the discussion 

on important features of CUDA programming model, including the concept of threads, 

warp, thread block, and grid, efficient memory accessing patterns, and types of 

communication. Towards the end of this chapter, a number of CUDA applications in the 

area of optimization and pattern recognition will also be provided. 

3.1. CUDA-enabled GPU Architecture - Hardware 

A fundamental difference between GPU and CPU is that GPU is a 

computationally intensive device while CPU is a control-flow optimized device. As it can 

be seen from Figure 3-3, GPU devotes many of its transistors to Arithmetic Logic Units 

(ALUs), while CPU allocates a significant amount of transistors to flow control and data 

caching. Given a massive amount of ALUs, GPU possesses a much higher arithmetic 
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computing power than its CPU counterpart. However, the deficient control-flow 

capability of GPU has limited it to be a co-processor instead of the host processor of an 

application. In other words, only certain parts of an application are worthwhile to be 

ported to GPU, while CPU is still needed for controlling the overall process flow and also 

dealing with strictly sequential computations. The resulting program which is managed 

jointly by both CPU and GPU is called a hybrid CPU-GPU algorithm, or sometimes 

termed as GPU-based algorithm for brevity. On the contrary, a program that is executed 

exclusively on CPUs is called a sequential or serial program.  

 
Figure 3-3: Comparison of GPU and CPU architecture

3
. 

The massive amount of processing units and low level control-flow units of 

GPU makes it especially suitable for realizing data parallelization. In the context of 

parallel computing, data parallelism refers to the concurrent computations on many 

different data elements. Particularly, GPU execution fits into the Single Program 

Multiple Data (SPMD) model whereby the same program (or called data parallel 

algorithm) is executed on many data simultaneously. A trivial example is the summation 

of 2 matrices, where the same adding operation (i.e. program) is executed on all matrix 

elements. By means of data parallelization, GPU is capable of achieving an enhanced 

                                                           

3
 Courtesy: (NVIDIA, NVIDIA CUDA C Programming Guide Version 4.2, 2012) 
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overall efficiency, despite of the suboptimal performance of individual operations due 

to deficiency in control-flow operation, as illustrated in Figure 3-4. Amdahl's law defines 

the theoretical amount of efficiency improvement achievable by a parallel computing 

system, as given below, 

                    
 ( )

 ( )
 

 ( )

 ( ) (  
 
 
(   ))

 
( 3-1) 

where, T(1) and T(n) denote the time taken by the sequential and hybrid program, 

respectively, and the 1 and n inside the parenthesis indicate the number of data 

element being processed concurrently at the same time; B is the fraction of algorithm 

that is strictly sequential. 
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Figure 3-4: Data processing model of (a) CPU, and (b) GPU computing system. 

The development of an efficient data parallel algorithm is not only about 

identifying data parallelism, it is also required to ensure GPU resources is fully utilized to 

achieve high arithmetic computing power. It is therefore important for GPU 

programmers to fully understand the detailed organization and limitations of various 

GPU components. In a CUDA-enabled GPU device, the processing cores or streaming 

processors (SPs) are organized into multiple streaming multiprocessor (SM) units, as 

shown in Figure 3-5. It should also be noted from Figure 3-6 that SPs within the same 

SM unit share several computational resources, e.g. the instruction dispatch units, warp 

schedulers, shared memory, cache, and register file etc. This sharing of instruction 

dispatch units and warp schedulers implies that the computations on these SPs are 
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executed in parallel, whereby the same instructions are broadcasted to multiple SPs. 

Also, communication among SPs can be done through the shared memory. Hence, SMs 

and SPs together represent two-level of data parallelism in CUDA-enabled GPU. In 

developing a CUDA-based data parallel algorithm, it is crucial to adequately map data 

operations to these two-level processing units in such a way that both SPs and SMs are 

optimally utilized during the entire course of GPU computing. For instance, a data 

parallel program which assigns a massive amount of data operations to single SM will 

perform poorly, as SPs in all other SMs are not used. A further point is that the amount 

of device resources e.g. the number of SPs in a SM, the size of shared memory and 

register file in each SM, varies with the GPU architectural models which are specified as 

compute capabilities such as 1.0, 1.1, 2.1 by NVIDIA. 
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Figure 3-5: An architectural overview of a NVIDIA’s GPU device in the Fermi series; a 

closer view is presented in Figure 3-6
4
. 

                                                           

4
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture) 

One SM unit A processing core
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Figure 3-6: The key components contained in a SM unit of Fermi series GPU

5
. 

3.1.1. Memories 

Besides the shared memory mentioned early, there are several more memory 

types provided in CUDA-enabled GPUs, namely global memory, constant memory, 

texture memory, local memory, and register.  Essentially, these memories are different 

in terms of memory space, latency, accessibility, read-write-ability, and location, as 

summarized in Table 3-1, thus they are suited for different data storage purposes. 

                                                           

5
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture) 
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Global memory which is also known as DRAM, as presented in Figure 3-5, takes up the 

largest memory space among all. It can be used for storing both input (read) and output 

(write) data, which are usable and writable by all data operations in a data parallel 

program grid as well as the host CPU; the concept of grid, block, thread, and application 

will be introduced in Section 3.2. Due to its off-chip position, it involves high memory 

latency especially during data reading. In writing data to global memory, it proceeds to 

the next instruction immediately after calling for the store operation without waiting. 

Memory latency ranges from 400 to 700 clock cycles depending on the memory 

accessing pattern. The lower end can be achieved by the desirable coalesced memory 

access, which will be described in details in Section 3.2. Constant and texture memory 

are read-only memories which have limited memory space. Despite of their off-chip 

position, relatively low memory latency is achievable if specific memory access patterns 

are satisfied, which are data broadcasting and spatial locality, respectively. Such 

memory accessing patterns enables efficient use of constant cache (i.e. the uniform 

cache shown in Figure 3-6) and texture unit cache, which will be discussed more in the 

subsequent section.  

Similar to CPU-based HPC computing system, there is memory copying 

overhead costs incurred during GPU computing. As GPU is prohibited to access host 

memory directly, input data needs to be first copied from host to GPU global or 

constant or texture memory before any GPU computing can be performed. Besides, 

upon completion of GPU computation, the host needs to copy the results from GPU 

global memory back to host memory for further computations. The GPU and host 

memories are connected through a Peripheral Component Interconnect (PCI) bus, thus 

the data transfer rate is limited by hardware specifications. An illustrative example is 

given in Figure 3-7 showing different directions of memory copy and the associated 
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memory bandwidths. In general, GPU memory has a higher bandwidth than CPU 

memory, while the memory transfer through PCI bus is the slowest. Hence, data 

transfer between host and GPU should be minimized at all time, otherwise it may offset 

the performance benefits of GPU computing. 

 
Figure 3-7: Instruction flow and memory copies involved in a hybrid CPU-GPU 

application; memory bandwidth values are based on a PCI express bus 2.0x16, Intel Xeon 

W3670 workstation, and a Quadro 2000 GPU. 

Next, we discuss the two on-chip memories, shared memory and register. 

Shared memory serves as a communication platform within a SM unit, in which data 

computations executed on the same SM can exchange information e.g. intermediate 

results with each other. To fulfill the requirement of information sharing, it must be 

read-write-able. It is a very fast memory which takes about 4 or more clock cycles for 

memory accessing, and this is 2 orders of magnitude faster than the off-chip memories. 

Similar to the abovementioned memories, the lower end of latency is achievable by 
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satisfying a desirable memory access pattern, which is non-bank-conflicting access for 

shared memory as it will be analyzed in subsequent section. As the size of shared 

memory is rather small, which is at most 48 KB, its usage should be limited for data 

which is accessed or modified frequently during the operations of a data parallel 

algorithm. Note that the size of shared memory in GPUs with compute compatibility of 

2.X or above is configurable to be 48 or 16 KB. On the other hand, register is the fastest 

CUDA memory which allows memory accessing to occur at almost zero cost. However, it 

is limited to extremely small memory space, and it is the smallest among all memory 

types. Besides memory space limitation, register is restricted for storing data which is 

relevant to single data operation or a thread as it will be discussed later. It is essential to 

ensure that the memory space allocated for register not exceeded, otherwise it will 

cause spillage to expensive local memory. Memory latency involved in accessing local 

memory is as high as global memory. 

Table 3-1: Characteristics of the 6 CUDA memories; the values shown are relevant to 

GPU with compute compatibility of 2.X. 

 

In this work, all GPU computing is done using a NVIDIA’s Fermi Quadro 2000 

GPU device with compute capability of 2.1. Computing resource characteristics of the 

device are presented in Table 3-2. Note that computational power is quantified by 

number of floating-point operations per second (FLOPS) or giga FLOPS. The GPU 

contains full-featured processing units in term of full IEEE 754-2008 support for both 



52 
 

single and double precision floating-point operations. The device also includes special 

function units (SFUs) for transcendental, reciprocal, and square root operations, as its 

CPU counterpart. On top of the procedural C code, it offers object-oriented C++ 

programmability. Such GPU is suited for accurate scientific computation.  

Table 3-2: Specifications of NVIDIA’s Quadro 2000 GPU device. 

 

3.2. CUDA Programming Model - Software 

In CUDA programming, threads are the abstract processing elements which 

map the massive amount of data parallelism to processing units. During the execution of 

a data parallel algorithm, a CUDA thread will be created and assigned to an individual 

data operation, thus N threads will be needed if the algorithm is operated on N different 

data elements. Depending on the complexity of the computational task, cooperation 

among different data operations is sometimes required. Considering the previously 

discussed matrix summation example, if the resultant matrix is further reduced to a 

column vector through row-wise summation, data operations along the same row are 
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required working together to determine the summed value. To allow for cooperative 

operation while reserving massive parallelism, CUDA threads are organized into blocks 

and grid, as illustrated in Figure 3-8; where threads and blocks represent the two-level 

data parallelism. Thread configuration is the term used for describing thread 

organization, and it consists of two components which are the grid size (i.e. the number 

of blocks in a grid) and block size (i.e. the number of threads in each block). Threads 

within the same block are granted certain degrees of dependency, while threads at 

different blocks are strictly independent; more detailed discussion will be given in later 

paragraphs. Note that grid defines the scope of a data parallel program or called CUDA 

kernel or function, thus all threads inside a grid execute the same program. As every 

thread in a block and every block in a grid is assigned with a unique identifier, it is 

straightforward to compute a globally (i.e. grid-level) unique thread identifier for 

associating with relevant data elements (i.e. its share of work) or specific operational 

path.  

 
Figure 3-8: An example of CUDA threads configuration, demonstrating the relationship 

among threads, blocks and grid. 

Grid 0

Block (0,0) Block (0,1) Block (0,2)

Block (1,0) Block (1,1) Block (1,2)



54 
 

3.2.1. CUDA blocks execution 

The mapping of abstract processing threads to actual processing units in GPU 

device is presented in Figure 3-9 and Figure 3-10. As shown in Figure 3-9, the 

assignment of CUDA blocks to SMs is done randomly. Depending on the computing 

resource requirement for each block as well as the resource limitation of SM, there 

could be one or more blocks managed by a particular SM at one time. However, it is 

important to ensure that computing resource required by a CUDA block must be 

bounded such that at least one block can be fitted into a SM. Once the operations of a 

CUDA block are completed, a new block waiting in the queue will be assigned to the SM. 

All SMs of a GPU device are always occupied unless there is no more unprocessed block 

in the grid.  

3.2.2. CUDA threads execution 

Now, we consider the execution of a particular CUDA block that is assigned to 

the first SM, as given in Figure 3-10. A warp is defined as 32 (or 16) consecutive threads 

in a block, when a GPU device with compute capability of 2.X (or 1.X) is used. For 

instance, a block consisting of 128 threads can be viewed as 4 warps, which correspond 

to threads with identifier in the range of [0, 31], [32, 63], [64, 95], and [96, 127], 

respectively. Since warp is the smallest execution unit in CUDA programming model, it is 

advisable to have CUDA blocks containing number of threads that is multiples of warp 

size, so as to avoid resource wastage. As it can be seen from Figure 3-10, warp 

schedulers look for available warp randomly from the assigned CUDA block, and then 

allocate with suitable instruction. During this process, there are two issues need to be 

addressed. First, warps that are available for execution must have their previous 

operation completed; note that available warps are different from resident warps which 
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are simply every single warp in the assigned CUDA block. In general, the number of 

available warps tends to increase if there are more resident warps. Hence, thread 

configuration which exhibits large number of resident warps is usually more favorable. 

Secondly, the required instruction units which can be SPs, or SFUs, or memory load or 

store units, must be unoccupied and free for use.  

An important characteristic of warp execution is that threads within a warp are 

self-synchronized and thus required to follow strictly the exact operational path. Such 

execution paradigm fits to the Single Instruction Multiple Thread (SIMT) model as 

defined by NVIDIA. Supposing there are P conditional paths given in the CUDA program 

and each thread within the warp takes a different path, the entire warp will need to 

walk through the 32 operations sequentially. Hence, it is crucial to ensure that all 

threads in a warp taking the same or a limited number of paths. On the other hand, 

threads in different warps, regardless if they belong to the same CUDA block, can take 

different paths at no additional cost.  
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Figure 3-9: Mapping of CUDA blocks to SM units in a GPU device. 
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Figure 3-10: Mapping of CUDA threads to SPs in a SM. 

As it has been pointed out early, the allocation of threads inside the same 

block allows for more useful work to be done. This can be attributed to the availability 

of 2 valuable features, which are shared memory and synchronization barrier. As 

discussed in Section 3.1, shared memory serves as a communication platform for 

threads within the same block to exchange information in the middle of CUDA kernel 

execution. On the other hand, synchronization barrier provides a stop point to align all 

threads in a block. This synchronizing feature is particularly important when the 

correctness of subsequent computation is affected by the current operation of other 

threads in the block. Since warp execution is self-synchronized, CUDA block containing 

only a warp will behave in the same way. However, the synchronization of threads 

within a block incurs 4 or more clock cycles, and it is usually much longer especially for 

SM 0

Block (0,1)
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large CUDA block, due to the need of waiting. Hence, cautions must be taken while 

applying this feature. In contrast, thread operations at different blocks cannot be 

synchronized, and the only way to do that is to split the computing application into 

several CUDA kernels or programs. Table 3-3 presents the software resource limitations 

relevant to a NVIDIA’s Quadro 2000 GPU device.  

Table 3-3: Programming model of NVIDIA’s Quadro 2000 GPU device. 

 

3.2.3. Memory access 

In regards to memory accessing, warp is the most relevant execution unit in 

determining memory latency for various types of memory; more details can be found at 

NVIDIA’s website (NVIDIA, CUDA TOOLKIT DOCUMENTATION). Global memory can be 

viewed as memory chunks, where each chunk consists of 32 contiguous 4-bytes words. 

If a data request operation associated to a warp involves one such memory chunk, 

single memory transaction is needed, as demonstrated at the top example of Figure 

3-11. This memory access pattern which is called coalesced access is the most favorable 

for global memory, as it requires only one memory transaction and thus reduces 

memory latency. There are cases where the data requested by a warp fall into different 

memory chunks, thus requiring multiple memory transactions, like the center and 

bottom examples in Figure 3-11. It should be noticed that some parts of the data 

obtained from each memory transaction are not used, and thus resources are wasted. 
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Constant and texture memories are cached memories which require special accessing 

patterns to achieve low memory latency. Constant cache is designed for data 

broadcasting, thus it is exclusively used for situation where the threads in a warp ask for 

the same data. Texture cache is optimized for accessing data exhibiting spatial locality, 

as shown in Figure 3-12.  

 
Figure 3-11: A small warp containing only 6 threads is used to illustrate the number of 

memory transactions under 3 different situations, where (a) one, (b) two, (c) six, 

transactions are required, respectively.  

warp warp warp

warp
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warp

(c)
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Figure 3-12: An example of texture memory access showing spatial locality 

characteristic. 

On the other hand, memory accessing to shared memory is more complicated 

and compute capability dependent. In this work, all GPU computing is done on a Fermi 

GPU device with compute capability 2.1, so the following discussion on shared memory 

is focused on GPU of compute capability 2.X. Shared memory is made up of an array of 

32 memory banks, in which successive 32-bit words are stored at successive banks. An 

important feature is that data in the 32 banks can be accessed simultaneously, within a 

warp. In general, we want to avoid bank conflict which serializes memory access. Bank 

conflict occurs when there is more than one thread in a warp attempt to access the 

same bank, for example if there are two threads accessing the same bank, it is called 2-

way bank conflict like example (e) in Figure 3-13. Supposing the 32 threads in a warp 

access to different banks during a data request, there will be no bank conflict and 

minimal memory latency is achievable. As shown in Figure 3-13, examples (a), (d), and 

(f) satisfy this criteria. However, in a special case where multiple threads access to the 

same 32-bit word in a memory bank, there will also be no bank conflict; such as the 

examples (b) and (c). 

Texture 2D 
cache

warp
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Figure 3-13: Examples of shared memory access; (a) random access; (b) random access 

with broadcasting; (c) broadcasting; (d) orderly access; (e)&(f) strided access; where (a), 

(b), (c), (d), (f) have no bank conflict, (e) generates 2-way bank conflict
6
. 

3.3. CUDA Programming Issues 

CUDA software package which is freely downloadable from NVIDIA’s website 

(NVIDIA, NVIDIA CUDA ZONE) mainly consists of programming toolkits (e.g. user manual 

and profiler), device driver, compiler and Application Program Interface (API) functions. 

In particular, CUDA software package of version 4.2 64-bit is employed in this work 

(NVIDIA, CUDA Toolkit 4.2 - archive). At CUDA platform, software program development 

is based on standard programming languages, including C/C++ and Fortran.  Here, we 

focus on the use of CUDA C/C++. A CUDA program developed based on CUDA C/C++ is 

compiled with NVIDIA's LLVM-based C/C++ compiler (NVCC) which comes with the 

                                                           

6
 Courtesy: (NVIDIA, CUDA TOOLKIT DOCUMENTATION) 
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software package. As a hybrid application consists of both serial and parallel codes, a 

key role played by the NVCC is to identify, separate and send the two parts of codes to 

CPU host and GPU, respectively.  

Due to the fundamental difference between CPU and GPU in terms of 

hardware features and programming model, extensions to standard C/C++ are needed. 

These include function type qualifier, variable type qualifiers and built-in variables; 

detailed discussion is provided in (NVIDIA, NVIDIA CUDA C Programming Guide Version 

4.2, 2012). Function (or variable) type qualifiers specify the execution (or storage) 

location of a particular function (or variable), either on the host or GPU device; while 

built-in variables are used to indicate thread and block identifiers as well as the size of  

block and grid. For instance, a CUDA kernel has to be declared with __global__ function 

qualifier along with <<<…>>>; the former notifies NVCC that this is a GPU function, and 

the latter contains the execution configuration. The execution configuration essentially 

refers to the thread configuration employed during a particular run of the CUDA kernel. 

Moreover, API functions included in the CUDA package provide a simple means for data 

transferring, and thus simplifying the process of porting CPU sequential code to GPU.  

3.3.1. Guidelines for developing CUDA-based GPU program 

A standard set of procedures which serve as broad guidelines for developing 

CUDA-based GPU application is summarized in Figure 3-14. First of all, potential GPU 

tasks are identified based on two main criteria, which are high computational cost, and 

reasonably rich amount of data parallelism relative to the amount of data transfer 

required between host and GPU.  The next step is to design and build CUDA functions 

for the selected GPU tasks, whereby good knowledge of GPU architecture and parallel 

programming is required. In general, there are a number of design factors need to be 
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considered, and these include the availability and suitability of existing GPU library 

functions, the mapping relationship of tasks and CUDA kernels, choice of memory types, 

optimum thread configuration, and the applicability of various optimization techniques. 

In the following subsections 3.3.2 and 3.3.3, some of the primary GPGPU operations and 

widely used optimization techniques are elaborated. The developed GPU program and 

the entire CPU-GPU application is firstly tested for computational accuracy and result 

correctness, after which computational performance is measured using some kind of 

profilers such as NVIDIA Nsight Visual Profiler. If the resulting computational speedup is 

not satisfactory, further improvement could be achieved by searching for additional 

tasks for GPU implementation or refining the design of CUDA kernels. Application of the 

standard GPGPU programing procedures shown in Figure 3-14 is demonstrated in 3 case 

studies throughout Chapter 3 to Chapter 5. 
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Figure 3-14: Proposed procedures of developing a CUDA-based GPU application. 
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3.3.2. CUDA kernel design 

Programming knowledge and experience on one platform may not be directly 

useful to other platforms, particularly when the underlying programming models are 

disparate as in the case of transforming sequential code to parallel code. In view of the 

intensive programming effort of developing CUDA application, we recommend 

considering only computational expensive tasks for GPU computing. The simplest 

implementation of GPU computing is to directly apply functions from GPU-based 

libraries, such as CUBLAS, CULA, MAGMA, and Thrust libraries. Both CUBLAS and CULA 

are GPU-accelerated linear algebra libraries, where the former is the GPU-version of 

BLAS library; MAGMA library provides GPU-based dense linear algebra functions, similar 

to the sequential LAPACK library; and Thrust resembles the C++ Standard Template 

Library (STL). However, these standard library functions are insufficient for addressing 

computing problems that are complex. Real-world computing applications are always 

more than linear algebras, array sorting or searching. Hence, application-specific GPU 

programs need to be developed for optimal computational performance. A CUDA 

programming book written by Jason et al. (2010) provides simple CUDA kernel examples 

which are useful for beginners. 

There are a number of primary GPGPU operations which serve as the building 

blocks of a GPU program; most relevant ones are map, reduce, scatter and gather, scan, 

stream filtering, and sort (Owens et al., 2007). These are data-dependent operations 

offering data parallelism for GPU computing.  

Map: involves application of the same function to different data elements, e.g. given an 

array of input data *1, 2, 3, 4, …, 10+ and a function  (   ), the mapping operation 

results in output data of [3, 4, 5, 6, …, 12+.  
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Reduce: involves computations which generate single element or a smaller array from a 

larger size input array, e.g. finding summed, maximum, or minimum values. On the 

CUDA platform, shared memory can be used to partially reduce the input array to 

intermediate summed array which has the same size as the block. An example is 

illustrated in Figure 3-15, where the input array of 20 elements is partially reduced to an 

intermediate array of 6 elements. The partially summed array can then be reduced 

further to single value through thread cooperation; an example is given in Figure 3-16. 

In this example, an input array of size 32 is given initially and a block containing 32 

threads is assumed. At each successive step, the number of working threads is halved 

and the strided accessing size is also halved, until single value is obtained. As the order 

of data elements being processes depends on the block size and array size, the 

operation (i.e. op) must possess the properties of commutative and associative. An 

important point to highlight is that both the CUDA block size and the starting array size 

must be divisible by 2, such that the halving operation results in integer number. Note 

that the process demonstrated in Figure 3-16 is an example of the divide and conquer 

strategy with 2 elements in each group. Divide and conquer strategy involves dividing 

data into groups; each group is reduced to an intermediate results with lesser elements; 

intermediate results are further divided and reduced iteratively until final results are 

obtained.   
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Figure 3-15: An example of using shared memory to support a reduction operation; a 

small warp containing only 6 threads is used for illustrative purpose. 

 
Figure 3-16: An example of reduction operation which calculates the total sum from a 32-

element input array residing in either shared or global memory. 
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Stream filtering: involves selection of data subset based on certain criterion, sometimes 

known as stream compaction; e.g. removing data elements which are negative values, 

copying unique data elements. It can be regarded as a special class of mapping 

operation, except that the stream filtering is required to eliminate useless elements 

from the output array. 

Sort: involves alteration of the sequence of input array to generate an ordered output 

array based on a specific sorting key. For instance, given a sorting key array, K={1, 4, 2, 

8, 5, 7-, a value array, V=,‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’-, a sorting operation transforms V to ,‘a’, 

‘c’, ‘b’, e’, ‘f’, ‘d’- if it is sorted in ascending order. There has been a number of studies 

focusing on devising efficient GPU-based sorting algorithms, such as GPU sample sort 

(Leischner et al., 2010), GPU Odd-Even merge sort (Zhang et al., 2011), and GPU quick 

sort using scan primitives (Sengupta et al., 2007). 

The development of efficient CUDA program based on the abovementioned 

primitives involves finding large amount of data parallelism and effective utilization of 

GPU resource capabilities. First of all, appropriate computational tasks are identified 

from the target computing application. The shortlisted computational tasks must satisfy 

two key criteria, which are massiveness in data parallelism and high computational cost. 

Essentially, a computational task should be partitioned into many smaller parallel sub-

tasks, and each sub-task is further split into even smaller concurrent operations (which 

is referred as thread-operation in later discussion, for brevity purpose). The task 

partitioning matches to the two-level hierarchical organization of hardware and 

software resources, i.e. SPs and SMs, threads and blocks, and thus promises for optimal 

utilization of GPU resources.  
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Depending on the nature of computations, the notion of sub-task may refer to 

a well-defined duty or simply a group of thread-operations. An example of the first case 

is when a sub-task responsible for constructing a PCA model; a second case example is 

when a sub-task assigned to one section of a matrix summation operation. Most of the 

time, the former involves more complex computations than the latter. Apparently, the 

thread configuration for the second case is more flexible, as the only requirement is to 

launch sufficient threads regardless of the block size and grid size. On the other hand, 

when a sub-task is required to execute a more defined and complex duty, the number of 

threads in each block must be chosen carefully to achieve high degree of parallelism but 

at the same time avoid unnecessary long waiting time. Based on these considerations, 

the optimal thread configuration for one computational task may not be the same as 

another. Therefore it is common to separate tasks which behave distinctly into different 

CUDA kernels for optimal performance.  

3.3.3. Performance optimization 

Figure 3-17 shows the typical relationship of computational cost and 

programming effort during the process of transforming a sequential code to GPU-

compatible code. A major observation from the plots is that as increasing amount of 

effort (red curve) spent on optimizing GPU code, the overall computational cost (black 

curve) is gradually reduced until a plateau is reached. At this stage, programmers are 

required to investigate the GPU code painstakingly for finding optimization opportunity, 

or find additional sequential tasks to be ported to GPU despite the inadequacy of the 

tasks; and yet the resulting improvement in computational efficiency can be extremely 

little. The region bounded by two dotted vertical green lines represents more practical 

and realistic performance goals for GPU computing, which guarantees for performance 
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that is not far from the plateau. In this work, we attempt to arrive at this performance 

region. 

A commonly used performance metric for parallel computing algorithm is the speedup 

ratio, as given in Equation ( 3-2 ), which will be used as the main performance indicator 

in this study. 

         
                                         

                                  
 

( 3-2 ) 

 
Figure 3-17: Typical (hypothetical) relationship between computational efficiency 

improvement and programming effort; the green boundary specifies the recommended 

target range. 
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Data transposition: It exchanges the position of rows and columns, i.e. ith row is 

rewritten as ith column, jth column becomes jth row. Mathematically, it is expressed as A’, 

or Atr, or At, given A is the original matrix. This approach is useful for global memory 

access, in which successive threads in a warp attempt to access successive elements in a 

column. Since successive column elements are stored apart with a gap equal to row 

width (assuming 32-bit element), warp accessing to them require multiple memory 

transactions, and thus seriously increases memory latency. By transposing the matrix, 

much lower memory latency can be achieved.  

Data padding: It intentionally includes artificial values like zeros to expand the size of a 

matrix of an array. The main purpose of data padding is to realize the coalesced memory 

access to global memory; an illustration example is given in Figure 3-18. 

 
Figure 3-18: An example showing the use of data padding technique to achieve coalesced 

global memory access, where a data row is accessed by a warp. 

Tiling: It loads data to shared memory in tiles, where each tile consists of a number of 

data elements fitting nicely into the banks of shared memory. 

a data row

(a)

a memory chunk 

1 transaction
2 transactions for each warp access

(b)

1 transaction for each warp access

padding
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Re-computation: There are situations where intermediate results computed in the 

preceding kernel are needed in the subsequent kernel, where both kernels belong to 

the same application. If the writing or reading of intermediate results to or from global 

memory (which serves as communication platform between kernels) is expensive, re-

computations can be more effective. 

Experimentally determined optimal thread configuration: In cases where the 

underlying computing task involves complex computations, it is difficult to identify the 

optimal thread configuration based on visual investigation of GPU code. Numerical 

experiments which provide measurements of computational time at various thread 

configurations, allows for more effective optimization. 

Profiling: NVIDIA Visual Profiler (NVIDIA, CUDA TOOLKIT DOCUMENTATION) and NVIDIA 

Nsight Visual Profiler (NVIDIA, NVIDIA Nsight Visual Studio Edition) are performance 

profiling tools developed by NVIDIA, which provide critical feedbacks for optimization of 

CUDA C/C++ applications. Through tracing activities occurring on both the host and GPU, 

the tools produce useful performance indicators allowing developers to identify 

performance bottlenecks. Key performance data include application timeline showing 

time taken for CUDA API calls, memory transfers and CUDA kernel execution, memory 

requests versus memory transactions, frequency of bank conflicts, achieved memory 

bandwidth, amount of resident versus available threads/ warp/ block, and etc.  

3.4. GPGPU Applications 

GPGPU parallel computing is a relatively new technology which has become 

increasingly popular in academia and research fields. Successful applications have been 

reported from a wide range of areas, including computer science, engineering, physics, 

material science, medicine, molecular biology, chemistry, and many more. (Moreland et 
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al., 2003; Garcia et al., 2008; Sengupta et al., 2007; Krüger et al., 2003;  and Manssen et 

al., 2012) demonstrate the application of GPGPU computing on a number of standard 

algorithms, including fast Fourier transform (FFT), k-nearest neighbor search, scan 

primitives, sparse matrix algebra, linear algebra, random number generation, and etc. 

Remarkable GPGPU performance has also been achieved on specific research areas, 

such as molecular dynamics simulations (Anderson et al., 2008) and molecular modeling 

(Stone et al., 2010); medical imaging applications (Heng & Gu, 2005; Shams et al., 2010) 

and surgical simulation (Taylor et al, 2008); chemical informatics (Haque et al., 2010; Liu 

et al., 2011; Ma et al., 2011); bio-informatics (Langdon & Harrison, 2008; Liu et al., 2007; 

Schatz et al., 2007). In particular, GPGPU studies in chemical engineering have so far 

focused on system modeling and simulations, some representative examples are gas-

solid flow simulations (Xiong et al., 2010; Xu, et al., 2012), turbulent flow simulation 

(Shinn et al., 2010), powder mixing simulations (Radeke et al., 2010), combusting 

modeling (Xu et al., 2012). In this study, we attempt to explore the use of GPGPU 

parallel computing technique to a different area, i.e. data mining on chemical process 

operations. Specifically, we aim to develop efficient GPU-based data mining algorithms 

for tackling large data problems in chemical industries; our main focus is on the topic of 

optimization and pattern recognition.  

3.4.1. Optimization 

In this section, we survey a number of GPGPU-based optimization studies. 

Majority of the works are mainly focused on population-based optimization techniques, 

such as GA, PSO, ant colony optimization (ACO) and tabu search. An obvious reason is 

that population-based optimization methods are inherently rich in data parallelism and 

at the same time they are computationally expensive. Early works like (Fok et al., 2007) 

and (Li et al., 2007) successfully accelerate evolutionary-based optimization with the use 
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of shader programming. Since the introduction of CUDA programming in year 2006, 

there have been an increased number of studies reported on GPU-based optimization; 

several examples are discussed as follows.  

Robilliard et al. (2009) devise an interpreter to handle multiple genetic 

programming (GP) programs in GPU. The authors propose two schemes of deploying the 

interpreter. One restricts threads running on the same SM to interpret the same GP 

program, while the other allows each thread to interpret its own GP program. As could 

be expected, the former outperforms the latter, with a factor up to 15 times, owing to 

the absence of branch divergence. In (Zhu et al., 2010), the authors propose a SIMD-

tabu search algorithm using CUDA programming. The algorithm is specially designed for 

the quadratic assignment problem (QAP) which involves the assignment of n items to n 

locations while optimizing overall distance. To avoid expensive communication between 

host and GPU and also among the threads, each thread is responsible for an 

independent tabu search. During evolution of population, each thread is assigned 

randomly to one of the 4 operations based on user-specified probabilities; the options 

are do nothing, mutation with random swap, re-initialization, and replacement with 

mutated best solution. Satisfactory speedups of 25-40 are obtained on a number of 

QAPLIB test datasets. 

Particle swarm optimization is another popular topic in GPGPU optimization 

studies. Mussi et al. (2011) present two parallel versions of PSO which are characterized 

by different usage of global memory. One of the GPU-based PSO restricts a swarm to 

single CUDA block (termed as SyncPSO), while the other distributes candidates solutions 

of a swarm to multiple CUDA blocks (termed as RingPSO). As only solutions within the 

same swarm are required to communicate, the first approach eliminates the use of 
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global memory by storing the solution data in local registers; while the second approach 

makes use of multiple kernels for solutions synchronization in between various stages of 

optimization, and communication is achieved through global memory. It should be 

apparent that SyncPSO is more appropriate for optimization problems with low 

dimensionality due to the limitation of local register space. Moreover, sufficiently large 

number of swarm groups is needed for fully utilization of SMs. Experimental results 

show that RingPSO outperforms SyncPSO, and thus implying that global memory latency 

and kernel call overhead are counterbalanced by the advantages of parallelization. In 

fact, the multi-kernel approach has already been discussed by Veronese et al. (2009) 

and Zhou et al. (2009), in which 88 and 11 speedups are reported in their works, 

respectively. These two works use 3 similar CUDA kernels, for fitness value computation, 

updating of current local and global best position of each particle, updating of velocity 

and position of each particle. A major algorithmic difference between the two studies is 

that one employs the MersennTwister CUDA SDK code for random number generation, 

and the other generates a set of random number on CPU which is copied to GPU global 

memory before the first generation of optimization.  

Ant colony optimization which can be regarded as a special type of PSO also 

matches to the SIMT model of CUDA-enabled GPU. ACO incorporates the concept of 

pheromone which is a chemical substance left by ants during food searching, in which 

pheromone concentration provides the searching direction for ants. As in reality, 

concentration of pheromone will decrease over time through evaporation, thus there is 

additional computational task for managing pheromone concentration. In the work (Zhu 

& Curry, 2009), the authors retain the tasks of pheromone evaporation and update in 

CPU and overall 200-400 speedups are reported. While the generation of new ant 

solutions based on the updated pheromone concentration, cost evaluation, and ant 
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local search are parallelized in GPU. On the other hand, Bai et al. (2009) include all 

stages of ACO in GPU by using 4 separate CUDA kernels, namely solutions construction, 

iteration-best choosing, pheromones evaporation, and pheromones deposition, while 

CPU is only responsible for controlling the iteration process. Effective communication 

and central-management of ants within a colony is achieved by mapping an ant colony 

to a CUDA block, and the best values obtained from the optimal solutions of these ant 

colonies at the end of all iterations serve as the final results. As compared to (Zhu & 

Curry, 2009), relatively low speedups are obtained, which are about 2.3. 

Although remarkable improvement in computational efficiency has been 

reported in the above works, these results are obtained based on relatively simple test 

functions. Standard benchmark functions, such as sphere function, step function, 

Rastrign, Rosenbrock, Schwefel, TSP, QAP are employed in these works, which are 

characterized by straightforward cost evaluation. Real-world chemical process 

optimization problems always require much more complex cost functions which may 

also involves stochasticity. Hence, exploring the performance of GPU-based 

optimization on more realistic problems is highly desirable. 

3.4.2. Pattern Recognition 

Pattern recognition algorithms offer excessive amount of data parallelism for 

GPU acceleration, as demonstrated by many successful studies. A number of neural 

network variants has been effectively transformed to GPU-compatible codes, such as 

the Probabilistic Neural Network (PNN) (Kostopoulos et al., 2014; Sidiropoulos et al., 

2012), Fuzzy Neural Networks (FNN) (Juang et al., 2011; Martínez-Zarzuela et al., 2011), 

Convolutional Neural Network (CNN) (Cireşan et al., 2011; Strigl et al., 2010), Kohonen's 

Self Organizing Map (SOM) (Prabhu, 2008). Other GPU-accelerated pattern recognition 
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methods include Support Vector Machine (SVM) (Catanzaro et al., 2008; Liao et al., 

2009), k-Nearest Neighbour (kNN) (Garcia et al., 2010; Kostopoulos et al., 2014; Liang et 

al., 2009), decision trees (Grahn et al., 2011; Sharp, 2008), and Principal Component 

Analysis (PCA) (Andrecut, 2009; Funatsu & Kuroki, 2010). In this study, we are 

particularly interested in 2 groups of algorithms, which are image analysis and 

clustering. 

3.4.2.1. Image analysis 

Image analysis or processing is fundamentally the reversed operation of image 

rendering, so GPUs which are originally designed for image rendering purpose are 

readily adapted to the image processing job. There are comprehensive GPU-based 

image processing algorithms available in well-established libraries, such as NVIDIA 

Performance Primitives (NPP) (NVIDIA, NVIDIA CUDA ZONE) and ArrayFire (AccelerEyes). 

However, it has been seen in many research studies that customized GPU programs are 

still needed in order to fully exploit GPU computing power for specific applications. In 

the following discussion, we survey a number of literature studies covering both general 

and application-specific GPU-based image processing algorithms.  

Examples of GPU-based acceleration of basic image processing algorithms are 

(Asano et al., 2009; Castaño-Díez et al., 2008;  Fialka & Čadík, 2006; Park et al., 2011; 

Zhiyi et al., 2008). Castaño-Díez et al. (2008) show that direct application of standard 

GPU library functions, like the FFT function from CUFFT, linear algebra functions from 

CUBLAS, offers better image processing performance as compared to the CPU 

counterpart. In the work (Park et al., 2011), the authors propose a GPU-based linear 

feature extraction method which involves piecewise fitting of lines to edges. GPU 

implementation is achieved by mapping threads to pixels, and each thread traverse 
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through the neighboring pixels sequentially to identify connected edge chain. As it has 

been highlighted in the article, there is redundant traversing caused by multiple threads, 

along the same edge chain. This could be the reason for the relatively low performance 

speedups, which are 3.2.    

Fialka et al. (2006) successfully accelerate the convolution image filtering 

process using GPU shader programming. The authors employ pixel-level parallelization 

technique, in which each thread sequentially loops over every element in the mask for 

filter kernel operations. However, the size of mask is limited by the maximum number of 

instructions allowable in the shader. In addition, histogram equalization which is usually 

used for enhancing global contrast of images has also been implemented in GPU (Zhiyi 

et al., 2008). Given a grayscale image, each thread is responsible for generating a sub-

histogram based on a subset of data S. As the sub-histograms are stored in shared 

memory, the block size is bounded at 
                             

   
; where 256 are the 

number of bins in histogram built from a grayscale image. Subsequently, block-level 

histogram is obtained by combining all the sub-histograms in shared memory. Lastly, 

only single block with 256 threads is launched for reducing the block-level histograms to 

a global histogram, which is used for calculating a new gray distribution of the image.  

Next, we discuss GPU implementation of non-standard image processing 

algorithms, such as k-means clustering and PCA, which are only applicable to specific 

image applications. As it is mentioned in (Asano et al., 2009), k-means clustering can be 

used to reduce the number of colors to a smaller groups while maintaining image 

quality. Given a RGB (or color) image of size n by m, it is divided into n or m sub-images 

which are mapped to equal number of CUDA blocks. Within each block, there are p 

threads running simultaneously on the sub-image pixels, whereby the distances to k 
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cluster centers are computed for R, G, and B components sequentially in each pixel; the 

RGB pixel values are then added to the kmin
th element of the arrays Rsum[kmin], Gsum[kmin], 

Bsum[kmin], Count[kmin] in shared memory. These shared arrays can be combined in global 

memory in later stage for determining the new cluster centers at the end of each 

iteration.  

PCA which is an effective dimensionality reduction tool is commonly used in 

spectral image analysis. In general, the large data size of spectral images needs to be 

first reduced to a manageable size, using PCA. In the context of image analysis, GPU-

accelerated PCA algorithms are discussed in several works, like (Castaño-Díez et al., 

2008) and (Jošth et al., 2012). In (Jošth et al., 2012), the authors focus on the 

computation of correlation matrix, as it is the most expensive task in PCA. Considering 

the spectra image as a 2D matrix, in which a column consists of all wavelength 

information (length=n) of a particular pixel, and rows represent different pixels 

(length=m). The computation of the correlation matrix (nxn) can be regarded as 

averaging of a stack of m number of 2D matrices of size nxn. Parallelization is achieved 

by mapping CUDA blocks to components of the correlation matrix. The threads within a 

block calculate a specific component in different matrices simultaneously. In this work, 

the eigenvalue and eigenvector calculations are carried out sequentially using single 

thread. On the other hand, Castaño-Díez et al. (2008) explore the use of GPU computing 

for enhancing the performance of eigenvalue and eigenvector computations. The 

authors propose a 2-step numerical procedure which concatenates the power method 

and Hotelling deflation. Power method is used for determining the highest eigenvalue 

(and the corresponding eigenvector), and Hotelling deflation produces the residual 

matrix for finding the next highest eigenvalue, in the following iteration. Since linear 
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algebra operations are the key components, straightforward GPU implementation with 

CUBLAS library results in speedups up to 10. 

However, it has been noticed that applications of these highly efficient GPU-

based image processing techniques are mainly limited to medical and surgery 

applications. For instance, image registration for patient positioning in radiation therapy 

(Gu et al., 2010; Khamene et al., 2006), image segmentation (Pan et al., 2008), image 

reconstruction (Cui et al., 2011; Schiwietz et al., 2006). In this study, we extend the use 

of GPU-based image processing techniques to effective information discovery in 

chemical process operations.  

3.4.2.2. Clustering 

Distance computations required in clustering algorithms, in the form of object-

to-object or object-to-centroid distance, generate enormous amount of data 

parallelism. Several studies attempt to parallelize the object-to-centre distance 

computations during k-means clustering, e.g. (Bai et al., 2009, Farivar et al., 2008; Li et 

al., 2010; Takizawa & Kobayashi, 2006). Parallelization is achieved by assigning 1 CUDA 

thread to 1 data object; each thread is responsible for calculating distance from the data 

to all cluster centers so that the nearest centre can be identified. The parallel k-means 

algorithm proposed in (Takizawa & Kobayashi, 2006) intends to tackle a large-scale 

clustering problem. It is achieved by distributing data into multiple computing nodes 

(CPUs), each node comprises of a GPU. Given the limited data parallelism in updating 

cluster centres, some authors like Farivar et al. (2008) and Takizawa et al. (2006) choose 

to retain the task in CPU; while Bai et al. (2009) propose to sort the cluster labels in CPU 

first which facilitates the simultaneous updating of k clusters by k threads; Li et al. 

(2010) compute the new centroids using divide and conquer strategy. Li et al. (2010) 
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present 2 GPU-based k-means algorithms which are targeted at problems with low and 

high dimensionality, respectively. To address a low dimensional problem, the authors 

suggest using fast local register for storing object data. Whereas for a high dimensional 

problem, data object is loaded into shared memory and distance computation is carried 

out as a matrix multiplication process.  

Besides k-means, other GPU-based clustering algorithms include density-based 

clustering, bird flocking algorithm, and GMM. In (Böhm et al., 2009), the authors define 

a concept called ‘chain’ to allow for massive parallelism in DBSCAN method. Multiple 

chains which are assigned with different starting data points are assigned to different 

SMs. Within each chain, one core object is considered at a time so that many threads 

can be created for processing its potential neighbors simultaneously. In order to avoid 

collision, i.e. chaining of the same data by multiple chains, a collision matrix is 

maintained for keeping all necessary information. Cui et al. (2011) develop a GPU-based 

bird flocking algorithm which is significantly more efficient than the CPU counterpart. 

Bird flocking algorithm moves individual data (i.e. bird) according to the movement of 

others in its neighborhood, thus requiring object-to-object distance computations. The 

GPU algorithm consists of 2 CUDA kernels; one assigns N2 threads to parallelize the N2 

pair-wise distance computations, where N is the total number of birds; the other kernel 

launches N threads for updating the position and velocity of the N birds simultaneously. 

Note that the initial positions of birds are randomly generated, and through the flocking 

process the birds will ultimately organize themselves into separate clusters. In the work 

(Machlica et al., 2011), a GMM clustering algorithm based on Expectation-Maximization 

(EM) technique is transformed to a GPU-compatible code. Major data parallelization is 

realized on the computation of log-likelihood and component’s posterior probability, 

which are independent among the data objects. 
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To address the issue of fast and infinite growing of data size and data 

generation speed, efficiency improvement on scalable clustering algorithms are 

extremely desirable. In contrast to traditional clustering algorithms, scalable methods 

allow for accurate clustering at unbounded problem size. Wu et al. (2009) propose to 

process data by batches in order to tackle problem size that is larger than the size of 

GPU global memory. In each data batch, ordinary k-means is executed and sufficient 

statistics of the resulting k clusters are passed to the following batch. However, this 

approach incurs an extremely high data transferring cost, as multiple data batches need 

to be moved from CPU to GPU at every iteration. The authors alleviate the data 

transferring cost with the use of CUDA stream API, which enables asynchronous 

memory transfer and streaming among different data blocks. Wasif et al. (2011) employ 

a similar approach but using a multinode-multiple GPUs computing system. In the work, 

data batches are distributed to the nodes (CPUs) from which the data is further divided 

and sent to multiple GPUs. The output of cluster centroids follows the opposite 

direction of data distribution, where the partial centroids computed by individual GPU 

are sent back to the parent node, centroids collected from multiple GPUs in a node are 

then transferred back to the master node from which global centroids are calculated. 

The global centroids will be broadcasted to all nodes and GPUs at the next iteration, if 

the termination criterion is not met. In (Cao et al., 2006), the proposed GPU-based 

method also focuses on a section of data at a time, based on the concept of landmark 

window and moving window. A major concern of these 3 studies, (Cao et al., 2006; 

Wasif & Narayanan, 2011; Wu et al., 2009), is that clustering quality of the proposed 

GPU methods are not validated. 

A number of GPGPU studies have also been done on improving the efficiency 

of incremental clustering algorithms. For instance, Chen et al. (2012) execute an 
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incremental GMM algorithm in GPU. At each incremental step, a data batch is copied to 

GPU for the execution of standard EM algorithm and order (i.e. number of cluster) 

identification. The Gaussian mixture model keeps evolving by merging the new model 

obtained from current data batch with the historical model into single model, where 

merging is done by finding statistically comparable components. Chen et al. (2013) and 

Papenhausen et al. (2013) explore the use of GPU computing on micro-cluster-based 

incremental clustering methods. Chen et al. (2013) defines cluster granularity based on 

a mean shift algorithm, whereas Papenhausen et al. (2013) pre-specify a radius 

threshold. It is also mentioned in (Papenhausen et al., 2013) that data parallelization is 

achieved by mapping CUDA threads to data object during distance computation and 

cluster centers updating.  

Dong et al. (2013) present an accelerated version of BIRCH algorithm using 

GPU computing, termed as GBIRCH. BIRCH is a widely used incremental clustering 

method from which the idea of micro-clusters is originated. GBIRCH demonstrates the 

use of dynamic parallelism capability offered by NVIDIA’s latest Kepler Compute 

Architecture GPUs. CUDA Dynamic Parallelism feature allows calling of kernel functions 

(i.e. slave kernels) from another kernel function (i.e. master kernel), and thus enhancing 

the flexibility and simplicity of GPU programming. In GBIRCH, the entire BIRCH algorithm 

is executed in GPU, whereby each slave kernel will receive a subset of data from the 

master kernel. The distance computation and nearest cluster identification are carried 

out simultaneously in all slave kernels. In cases where a data cannot be absorbed into 

existing cluster, the data will be returned to the master kernel. Another refinery kernel 

will then be activated to handle the returned data sequentially in GPU, so as to ensure 

the constructed CF-tree is accurate by avoiding race conditions. However, GBIRCH is 
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mainly tested on low dimensional problems. Moreover, as dimensionality increases the 

performance is also seen to degrade slowly. 
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Chapter 4. Hybrid CPU-GPU Sim-Opt for 

Continuous Optimization  

Simulation-optimization has gained increasing popularity in chemical 

industries, particularly in the areas of process design and operation, supply chain 

management, and sustainability development. Sim-Opt outperform conventional 

optimization techniques due to the capabilities of handling complex, highly dimensional, 

and stochastic processes, through incorporating the simulation feature. Although there 

have been a number of methods proposed for reducing model complexity and thus the 

simulation time, e.g. dimensionality reduction or model structure simplification based 

on assumptions. Such approaches are either still required to deal with the originally 

large input data, as in the case study to be discussed in Section 4.4 or they might incur in 

a loss of modelling details by using oversimplified process model. Therefore, the 

tremendously huge computational effort and time required by Sim-Opt is hardly 

avoidable and causing infeasibility and intractability in many cases. It becomes even 

more challenging if Sim-Opt algorithm is applied to continuous optimization problems, 

as the Sim-Opt routine needs to be performed repeatedly and rapidly. To the best of our 

knowledge, there is no related work found in the literature.  

To overcome the long simulation time and to enhance the practicality of Sim-

Opt techniques, a hybrid CPU-GPU Sim-Opt systematic framework is proposed in this 

work. While the existing GPU-based optimization methods are limited to simple and 

deterministic objective functions as reported in Section 2.5, we provide a useful and 

efficient optimization solution to real-world chemical problems. Our main contribution 

in this specific area, i.e. GPU-based optimization, is to explore the use of GPU parallel 
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computing on complex optimization applications wherein stochasticity and simulation 

model are needed in place of straightforward mathematical equations. Moreover, a 

comprehensive investigation of important Sim-Opt techniques is also performed in 

order to identify potential computational tasks or operations to be ported to GPU. The 

remainder of this chapter is organized as follows. In Section 4.2, we first analyze the 

nature of various Sim-Opt techniques, and then identify the type of data parallelism 

involved. The major steps of the proposed framework are provided in Section 4.2; while 

application of the framework is illustrated using a variable selection monitoring problem 

in Section 4.3. Lastly, a case study of Tennessee Eastman challenge problem is carried 

out to validate the performance of the developed hybrid algorithm. 

4.1. Structural Analysis of Sim-Opt Techniques 

The nature of problem and the type of technique used in the 3 modules of 

Sim-Opt govern the amount of data parallelism, and thus opportunity for acceleration 

using GPU. As has already been mentioned, simulation is the most time consuming 

module in Sim-Opt.  The total simulation time in sequential approach is equal to the 

simulation time of single run multiplies by the total number of simulation runs. The 

number of simulation runs required in each optimization cycle is determined by both 

the optimization technique and the degree of uncertainty involved. In the following 

discussion, we focus on two classes of optimization techniques, population and 

gradient-based methods, due to the large amount of simulations involved.  

Population-based methods like GA, PSO and simulated annealing (SA) produce 

P candidate solutions, where P is a user-specified population size. Assuming there is zero 

uncertainty, one simulation is required for fitness measurement of one candidate 

solution. Hence, P simulation runs will be needed in each optimization cycle. On the 
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other hand, in order to find the optimal search direction in gradient-based optimization 

problems, it requires performing O(N) simulations, where N is equal to the number of 

input variables. Although there are enhanced versions of gradient-based methods such 

as LR, PA, frequency domain method (FDM) and RSM which requires reduced amount of 

simulation runs, their applicability are limited (refer to Section 2.5.1.3). Furthermore, in 

cases where uncertainty needs to be accounted for, additional M simulation runs (as 

seen in Figure 2-1) representing different simulation paths will be needed for fitness 

measurement of single candidate solution; this special type of optimization solution is 

sometimes referred as stochastic optimization.  

In order to characterize data parallelism in Sim-Opt techniques, we treat each 

module as a separate task for identification of parallelism, and also study the 

relationship between neighboring modules. At each optimization cycle, gradient-based 

methods generate only one candidate solution, thus there is no apparent data-

parallelism. Although population-based methods generate P candidate solutions in each 

cycle, the off-spring generation process is intrinsically sequential due to the stochastic 

operations involved e.g. mutation, crossover. It is worth nothing that off-springs are 

generated from best few parents and this requires sorting of the parents based on 

fitness values. Such sorting can be computationally demanding when P is large and 

multiple objective values are involved (i.e. multi-objective optimization). GPU-based 

sorting could be helpful if the sorting has become the computational bottleneck. On the 

contrary, the tasks of simulation and objective evaluation offer massive amount of data 

parallelism. As the system response of all P candidate solutions (or M simulation paths) 

are determined based on the same simulation model, the P (or M) simulations can be 

carried out simultaneously. Similarly, in objective evaluation, the fitness values 

associated with the P candidate solutions (or M simulation paths) can be computed 
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concurrently, whereby same objective function is used with different input values (i.e. 

system response). A further point is that the M fitness values will be subsequently 

reduced to single value which indicates the fitness of a candidate solution. 

Based on the previous discussion, we can establish the inter-module 

relationship by looking at each neighboring pair of modules. Firstly, as the fitness of a 

candidate solution is represented by one objective value, it is a one-to-one relation 

between objective evaluation and candidate solution. Moreover, the relation between 

the number of candidate solution to simulation runs can be many-to-many (population-

based method), one-to-one (LR and PA) or one-to-many (finite differences, RSM and 

stochastic optimization); whereas simulation-to-objective evaluation relation is always 

one-to-one. The type of inter-module relationship indicates if the two neighboring 

modules can be combined into single CUDA kernel, assuming both modules are GPU-

parallelizable. The various types of data parallelism found in different Sim-Opt 

techniques are summarized in Figure 4-1.  

In this chapter, a GPU solution is developed for a population-based stochastic 

Sim-Opt problem where massive amount of data parallelism is available due to the 

structure of GA search paradigm. A similar GPU solution should also be possible for 

gradient-based Sim-Opt problem, except that the attainable amount of computational 

acceleration is strictly constrained by the problem dimensionality and the degree of 

uncertainty. Previous works like Arora et al., 2010 and Statz et al. 2013 have shown that 

simultaneous computation of sensitivity calculations, which are the most computational 

demanding operations in gradient-based techniques, on GPU offers attractive amount of 

speed improvement. In order to apply such GPU-parallelized gradient-based 
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optimization solution to Sim-Opt problems, the simulation model needs to be 

implementable within GPU.  

 
Figure 4-1: Notion of data parallelism in each module of Sim-Opt; independent 

operations are denoted by same colored curves. 

4.2. Systematic Procedure for Developing Hybrid CPU-

GPU Sim-Opt Algorithm 

A systematic approach for formulating an efficient hybrid CPU-GPU Sim-Opt 

algorithm is detailed in this section. Major steps include computing time examination, 

GPU task selection, data transfer consideration, CUDA kernel design, and CUDA kernel 

optimization. Individual steps are described as follows.  

Computing time examination: Since GPU programming is not an easy job, it is desirable 

to prioritize the most expensive tasks. Computing time consumed by different portions 
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of the algorithm can either be determined through numerical experiments (if sequential 

code is available) or based on theoretical complexity analysis of the algorithm. 

GPU task selection: The GPU tasks are selected based on three criteria, namely high 

computational cost, rich data parallelism, and GPU-compatible. Note that the 

computational cost has been determined in the previous step, and the amount of data 

parallelism can be estimated by the type of optimization technique used, as discussed in 

Section 4.1. The last criterion, GPU-compatibility, will be satisfied if the computations 

involved in the task are supported by GPU, specifically CUDA-enabled GPU. There are 

cases where the simulation model is extremely complex like those built on high-end 

simulators like MathWorks’s SIMULINK, implementing of such simulation on GPU could 

be tremendously taxing. 

Data transfer consideration: After selecting suitable tasks for GPU parallelization, next 

step is to assess the data transferring requirement, in terms of frequency and data size. 

It should be noticed that, input data to a module is generated from the preceding 

module, in a Sim-Opt problem. Hence, there are 4 key input data which include 

simulation paths, candidate solutions, system responses, and objective values. If same 

set of simulation paths is used throughout all optimization cycles, the data only needs to 

be transferred once from CPU to GPU. On the contrary, the other 3 input data are 

required to be transferred at every cycle. The size of these input data depends on the 

number of uncertain variables, problem dimensionality, and number of objective values.  

CUDA kernel design: As mentioned in Chapter 3, CUDA programming is essentially a 

two-level partitioning whereby a task is divided into subtasks and then thread-

operations. Based on the structural analysis of Sim-Opt as summarized in Figure 4-1, 

there are two potential GPU tasks, namely simulation and objective evaluation. A 



91 
 

subtask represents a simulation run (or a fitness measurement) in simulation module (or 

objective evaluation module). The use of fast memory and cooperation work within a 

subtask are dependent on the mathematical model of simulation (or objective function). 

CUDA kernel optimization: At this stage, applicability of optimization techniques as 

presented in Section 3.3.3 should be examined. Besides, combining two tasks into single 

kernel has the advantages of reducing kernel call overhead time and memory copying 

time, especially when intermediate results are stored in shared memory or local 

memory. Based on the inter-module relationship, two neighboring modules or tasks 

which comprise of same amount of subtasks, e.g. P-to-P and M-to-M, can thus be 

combined. However, if individual tasks achieve best performance at different thread 

configurations, it is still advisable to keep them in separate CUDA kernels.  

4.3. GPU Application to the Variable Selection Problem 

Implementation of the proposed systematic procedure for developing a hybrid 

CPU-GPU Sim-Opt algorithm is demonstrated on a variable selection monitoring 

problem. A PCA model for process monitoring can be constructed with all the measured 

process variables or a subset of these measured variables. Here, we are interested to 

identify the subset of variables which is sensitive to faults under certain system 

behavior. Therefore a PCA model constructed using this subset, termed as reduced PCA 

model, is expected to have improved monitoring performance. We trust that when the 

process behavior changes with time, the subset of variables selected could be different, 

and thus the variable selection routine needs to be repeated in order to provide an 

adequate process monitoring.  As a result, it is important to have an efficient variable 

selection algorithm to avoid any delay or use of outdated monitoring model. To identify 

these variables, Ghosh et al. (2014) proposed a multi objective GA-based stochastic 
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optimization technique, termed as GA-PCA algorithm. This algorithm seeks to minimize 

the cumulative error rate, defined as sum of missed detection and false alarm rates, 

while at the same time minimizing the number of selected variables; where an 

evolutionary optimization method GA is used. The improved monitoring performance, in 

terms of the cumulative error rate, achieved by reduced PCA model is shown in Figure 

4-2. From the perspective of Sim-Opt, the reduced PCA model serves as the simulation 

model in which component scores represent the system responses. Once the system 

response of testing data has been determined, it will be classified as normal or faulty 

data which is used for objective value computation. Note that both model parameters 

(i.e. eigenvalues and loadings) and model structure (i.e. number of principal component 

selected) are varied at every optimization cycle.  
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Figure 4-2: Comparison of monitoring performance between full PCA models and 

reduced PCA model
7
. 

4.3.1. GA-PCA algorithm 

Given a training dataset (i.e. normal operation data) and a testing dataset (i.e. 

normal and faulty operation data), our goal is to identify the best subset of variables 

satisfying below objective function, 

   
   

(                                    

                         ) 

( 4-1 ) 

GA encodes the variable selection in a binary vector with N elements, where 1 denotes a 

particular variable is selected and 0 means otherwise. A reduced set of training data 

obtained by removing those unselected variables is used for PCA modeling. Essentially, 

PCA transforms the originally correlated variables into a set of uncorrelated variables, 

from which q latent variables are selected to account for the user-specified data 

variability; 95% is used in this work. Mathematical formula of PCA is given below, 

        ( 4-2 ) 

where, X represents the original input data, T denotes the principal component scores, P 

denotes the principal component loadings, and E refers to the residual noise not 

covered by the q latent variables; as T and P only account for the first q variables. 

During objective evaluation, testing data is classified as normal or faulty class 

by comparing the Hotelling’s T2 and Q statistics with the control limits T2
 and Q, which 

are obtained from the training dataset. As stated in (Kourti & MacGregor, 1995), T2 and 

Q statistics are computed from PCA score values, as follows, 

                                                           

7
 Courtesy: (Ghosh et al., 2014)  
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where, ti denotes the score value of principal component i,  i represents the eigenvalue 

of principal component i, q is the number of principal components chosen, and V is the 

total number of process variables. The score value ti is a dot product computed from a 

test sample and an eigenvector. Based on the classification results, an overall objective 

value can be computed according to Equation ( 4-1 ); where false alarm rate is defined 

as the percentage of normal data which are found violating both the upper control 

limits, whereas missed detection rate is defined as the percentage of faulty data which 

are found below the two limits. In each GA generation, P objective values will be 

computed to indicate the fitness of the P candidate solutions i.e. variable subsets.  

To solve this multi-objective optimization problem, the non-dominated sorting 

genetic algorithm NSGA-II is employed here. NSGA is initially proposed in (Goldberg, 

1989) and later modified by Deb et al. (2002) as NSGA-II. There are two key values used 

for the sorting operation in NSGA-II, namely front assignment and crowding distance. 

Chromosomes that are superior in at least one objective value than others are assigned 

with front 1. Front 2 assignments are reserved for chromosomes that are only 

dominated by those at front 1, and subsequent fronts are assigned in similar way. 

Within each front, the crowding distance of a member j is computed as below, 

            ∑
                   

                 

   

 

 
( 4-5 ) 
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where, L denotes the total number of objectives (L=2 in this problem); Objmax,i and 

Objmin,i are the maximum and minimum value of objective variable i, respectively; 

Objnext,i and Objprev,i refer to the next higher objective and previously lower value to j, 

respectively, which are obtained from a sorted list of chromosomes. The candidates of 

current and previous generations are combined and sorted using NSGA-II, from which 

the best P’ candidates are selected as the parent seeds to generate new off-springs for 

next generation, through mutation and crossover operations. The 3 modules, PCA 

modeling, objective evaluation and optimization, will be repeated until a pre-specified 

number of generations is reached. 

4.3.2. GPU implementation   

In this section, we develop a hybrid CPU-GPU-GA-PCA algorithm using the 

proposed systematic approach. The major steps are discussed as follows. 

Computing time examination: Numerical experiments have been performed with 

different population and generation sizes in order to identify the most computationally 

demanding tasks. As it can be seen from the top part of Figure 4-3, at moderate 

population and generation size, PCA modeling and objective evaluation are the 

computational bottleneck which collectively account for 85% of total time. When larger 

population and generation size are used, non-dominated sorting has become dominant 

by consuming 66% of the total time. Hence, in GA-PCA algorithm, there are three 

computationally expensive tasks, namely PCA modeling, objective evaluation and non-

dominated sorting.  
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Figure 4-3: Computing time distribution in GA-PCA algorithm; top figure shows the 

results obtained at moderate population and generation size; bottom figure is based on 

larger population and generation size. 

GPU task selection: We turn now to examine the 3 identified tasks, PCA modeling, 

objective evaluation and non-dominated sorting, for the 3 criteria. The first requirement 

of having high computational cost has already been verified with the numerical 

experimental results. Typical GA optimization problems employ large P population size 

to guarantee for global optimal solution, so PCA modeling and objective evaluation 

should contain sufficient amount of data parallelism. Furthermore, the availability of 
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numerical solutions of PCA supports for GPU programming. In this work, we employ the 

Jacobi transformation numerical PCA algorithm as given in (Flannery et al., 1992); where 

the underlying concept is to apply a series of plane rotations so as to achieve zeroing for 

the off-diagonal elements. Since objective evaluation involves simple operations like 

comparison (data classification), summation and division (error rate computation), GPU 

programming of this task is straightforward. 

Next, we examine the NSGA-II task for data parallelism and GPU-compatibility. First of 

all, the dominating relation among the P chromosomes is determined through 

performing (    ) comparison operations. As the comparison operations are 

independent to each other, the amount of data parallelism is equal to (    ). 

Supposing the dominating relation is stored in a P by P matrix D, identification of 

chromosomes at each front require examining Pleft rows in D, where Pleft denotes the 

number of chromosomes that have not been assigned with front number. Although the 

computations of crowding distance at different fronts are not parallelizable, distance 

computations of all members in the same front can be executed simultaneously. 

Furthermore, NSGA-II requires simple computations like comparison and distance 

computation, so parallelizing it on GPU should offers promising improvement in 

computational speed.  

Data transfer consideration:  To construct a PCA model based on a subset of variables, 

it needs a training dataset and a binary vector called chromosome which specifies the 

selection of variables. For the entire population P, the same training dataset along with 

P chromosomes are used to build the P PCA models. Although both training data and 

chromosomes are read-only data, they are stored in global memory because they are 

usually too large for CUDA constant memory, and also do not have apparent 
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broadcasting characteristic. In regards to the objective evaluation task, it requires a 

testing dataset along with the PCA model details (eigenvalues, eigenvectors, Q and T2
). 

Like training data, the testing data is also stored in global memory for similar reasons. As 

eigenvalues and eigenvectors which define a PCA model are the output data from 

another GPU task, so they also reside in global memory. Likewise, NSGA-II sorting task 

directly makes use of the objective values which is written in global memory by the 

preceding GPU task. On the whole, constant memory and texture memory are not used 

as the special memory accessing patterns, i.e. broadcasting or spatial locality, are not 

needed for the 3 tasks. 

CUDA kernel design: For the two tasks, PCA modeling and objective evaluation, an 

intuitive choice for the first level task partitioning is to regard one candidate as one 

subtask, so there are P subtasks. Within a PCA modeling subtask, all CUDA threads work 

cooperatively to perform the Jacobi transformation and control limits computation. As 

the covariance matrix which is used for Jacobi transformation are essentially the dot 

products between each pair of variables, multiple CUDA threads can be used to 

parallelize the multiplication operations in a particular dot product. Note that thread-

operation parallelization is realized in single element (i.e. dot product) of covariance 

matrix. Apart from that, limited data parallelism is achievable from the remaining 

operations in Jacobi transformation and control limit computations, these include 

summation of the diagonal elements with reduction operation in shared memory, 

concurrent swapping of several elements during plane rotation, and choosing of largest 

eigenvalue using divide and conquer strategy. During Jacobi transformation, multiple 

reading and writing to variables chromosomes, eigenvalues, and eigenvectors are 

needed, so these variables are copied to shared memory for fast memory accessing. On 

the other hand, a subtask in objective evaluation is much richer in data parallelism due 
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to the independent operations involved among the testing samples. These operations 

include score value computation and sample classification. It should be noted that CUDA 

threads are mapped to testing samples instead to process variables, as the number of 

testing sample is typically much larger than the number of process variable. 

First of all, it should be obvious that standard GPU-based sorting algorithms such as GPU 

sample sort (Leischner et al., 2010), GPU Odd-Even merge sort (Zhang et al., 2011), GPU 

quick sort using scan primitives (Sengupta et al., 2007) and GPU sorting functions 

available in Thrust library (Thrust), are not applicable for this case due to the presence 

of multiple objectives. Considering the iterative nature of NSGA-II in determining 

successive fronts, we split the task into three separate CUDA kernels. As has been 

mentioned early, front assignment for front i can only be carried out after front i-1, thus 

the same assignment process is repeated by incrementing the front number until there 

is no unassigned chromosome. The first CUDA kernel involves calculating the 

dominating relation matrix Dpxp; in which if chromosome i is dominated by chromosome 

j then the element ij is assigned with a value of one, otherwise it has value zero. A 

vector dp of length equal to P is used store the number of dominating chromosomes, for 

instance, if ith element of dp has value 1, it indicates ith chromosome is dominated by one 

other chromosome. The values of dp are also computed in the first CUDA kernel, by 

mapping P blocks to P rows and T threads to P columns of Dpxp. Note that T can be larger 

or smaller than P, but it must ensure that there is no more or less than P variables being 

accessed to avoid incorrect computation. 

Once the first kernel is done, it enters the iterative process of repeating two consecutive 

CUDA kernels; one is for identifying chromosomes that are not dominated by any other 

member and the other one is for computing the crowding distance, in a particular front. 
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In the front assignment kernel, P blocks are assigned to P chromosomes wherein single 

thread is used to check if the associated element in dp is zero. After chromosomes at the 

current front have been identified, dp is updated so that those at higher front will 

become visible. In regards to a CUDA block b, multiple threads are used to determine 

the number chromosomes (says u) which are dominating bth chromosome and also at 

the current front, by simultaneously examining Dpxp and dp, then one thread is used to 

decrement the bth element in dp by u. For effective parallelization of crowding distance 

computation, the objective values of all members at current front are copied to 2 

dummy vectors (as L=2), each of them is sorted using the sorting function in Thrust 

library. Due to the simplicity of computation involved, as seen in Equation ( 4-5 ), there 

is essentially one level of parallelism. In this kernel, the amount of data parallelism is 

equal to the number of members at a particular front.  

CUDA kernel optimization: Although the two tasks, PCA modeling and objective 

evaluation, are divided into same number of P subtasks, combining them into single 

kernel shows poorer performance. This is mainly because they are characterized by 

different amount of data parallelism, thus requiring different block sizes for optimal 

performance. For instance, a large CUDA block used in PCA modeling will only take up 

the resources without doing useful work i.e. idling; whereas having too little CUDA 

threads in objective evaluation kernel will lead to under-utilization of GPU resources.  

In order to achieve efficient memory access, data transposition technique is deployed at 

both PCA modeling and objective evaluation kernels. During the computation of 

covariance matrix in PCA modeling kernel, consecutive threads access the same variable 

of different training samples. Hence, the training data is transposed such that data 

corresponding to the same variable is allocated in successive memory addresses for 



101 
 

coalesced accessing, as illustrated in Figure 4-4. In conventional eigenvalue 

decomposition algorithm, eigenvectors are stored as column-vectors as seen in Figure 

4-5. For illustration purpose, assuming the number of variables V is equal to the number 

of banks in CUDA shared memory. During computation of score values, elements of a 

particular eigenvector are accessed by consecutive threads in shared memory, so it is 

advisable to allocate the elements in different banks for prevention of bank conflicts, as 

depicted in Figure 4-6.  

 
Figure 4-4: Accessing patterns of consecutive threads (same color) before and after data 

transposition for training dataset. 
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… … … … …
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Global Memory Address

[1,1] [1,2] … [1, Tr] [2,1] [2,2] … [2, Tr] … … … … … …

Conventional structure of training data

Transposed training data
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Figure 4-5: Conventional data structure of eigenvectors and the corresponding bank 

locations in CUDA shared memory. 

Variable no.
Eigenvalue no.

1 2 … V

1 [1,1] [1,2] … [1,V]

2 [2,1] [2,2] … [2,V]

… … … … …

V [V,1] [V,2] … [V,V]

Conventional structure of eigenvectors

Bank no.
1 2 … V

1 [1,1] [2,1] … [V,1]

2

…

V

Eigenvectors in shared memory
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Figure 4-6: Transposed eigenvectors and the corresponding bank locations in shared 

memory. 

On top of that, a series of numerical experiments are carried out to determine the 

optimal block size for each CUDA kernel. Note that we use the smallest block size, i.e. 32 

threads, for the PCA modeling kernel due to the limited amount of data parallelism. The 

results shown in Figure 4-7 to Figure 4-10 are obtained using the process data of TE 

Challenge problem which will be discussed in subsequent section. An overview of the 

proposed hybrid GA-PCA algorithm, which consists of 5 CUDA kernels along with 4 data 

copying operations, is given in Figure 4-11.  
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Transposed eigenvectors

Transposed eigenvectors in shared memory; 

no. of variables  = no. of banks
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… …
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… …

V …
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Figure 4-7: CUDA kernel computing times of objective evaluation at various block sizes; 

optimal block size is 256.  

 
Figure 4-8: CUDA kernel computing times of dominating relation determination at 

various block sizes; optimal block size is 128. 
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Figure 4-9: CUDA kernel computing times of front assignment at various block sizes; 

optimal block size is 128. 

 
Figure 4-10: CUDA kernel computing times for crowding distance computation at 

various block sizes; optimal block size is 32. 
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Figure 4-11: The proposed hybrid CPU-GPU-GA-PCA algorithm. 

4.4. Case Study: The Tennessee Eastman Challenge 

Problem 

In this section, the proposed hybrid GA-PCA algorithm is tested on the TE 

process, though an offline variable selection approach is implemented, the achieved 
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computational speedup demonstrates good promises for real-time application. The TE 

process is a benchmark simulation proposed by Vogel et al. (1993) to provide a realistic 

chemical industrial process for studying and evaluating process control technology. The 

process consists of five main sections including reactor, condenser, separator, 

compressor and stripper, and it involves two simultaneous gas-liquid exothermic 

reactions. Four reactants, A, C, D and E, together with the presence of an inert B are 

required to produce two products, G and H, and a by-product F. The process flowsheet 

shown in (Vogel et al., 1993) is re-produced in Figure 4-12. It contains 22 process 

measurements, 19 composition measurements and 11 manipulated variables, thus a 

total of 52 process variables are involved; in this case study, we have focused on 32 

variables. The training and test datasets were obtained from 

http://brahms.scs.uiuc.edu/, wherein 500 samples of normal operating condition are 

used as training data, while 960 samples from the normal operation and 800 samples 

from each of the 21 programmed faults are used as testing data. In this variable 

selection problem, our goal is to select the best subset of variables from the 32 variables 

which are most sensitive to the 21 faults. As the objective function is defined based on 

the normal and faulty classification, identification of the fault type is not required.  

The computing system used in the experiments is 64-bit Intel Xeon CPU with 

processor speed of 3.20GHz and RAM of 12.00GB memory size; the GPU co-processor is 

an Nvidia Quadro 2000 card. In the following, we analyze the results obtained from the 

proposed CPU-GPU-GA-PCA algorithm, and compare it with that achieved by the original 

sequential approach.  

http://brahms.scs.uiuc.edu/
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Figure 4-12: Tennessee Eastman process flow sheet

8
 

4.4.1. Comparison of monitoring performance 

It is worthless to have an extremely efficient algorithm that has poor quality, 

thus we first need to ensure the monitoring quality of PCA model is not compromised 

with the use of GPU. At the end of the GA-PCA optimization, there will be P surviving 

solutions output from the algorithm. To guarantee for comparable monitoring quality, 

the P final solutions obtained from the sequential CPU approach and the hybrid 

approach should have comparable objective values, i.e. the number of variables chosen 

and the cumulative error rates. As it can be seen from Figure 4-13, the hybrid approach 

provides equivalently good monitoring performance as compared to the CPU method; 

this result is obtained at the end of 100 GA generations using 100 populations. The 

                                                           

8
 Courtesy: (Downs & Vogel, 1993)  
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monitoring quality of the hybrid approach has also been verified at larger GA 

generations and population size, as shown in Figure 4-14; using 1000 generations and 

1000 populations. 

 
Figure 4-13: Objective values obtained by the CPU and hybrid methods, at the end of 100 

GA generations, with 100 populations. 
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Figure 4-14: Objective values obtained by the CPU and hybrid methods, at the end of 

1000 GA generations, with 1000 populations. 

4.4.2. Efficiency improvement achieved by hybrid CPU-GPU 

approach 

We now evaluate the efficiency performance of the hybrid CPU-GPU-GA-PCA 

variable selection algorithm, which is constructed based on the proposed systematic 

procedure. Note that all results reported in following discussions are the average values 

of three duplicated experiments. As illustrated in Figure 4-3, the computing time 

consumed by different portions of the algorithm vary as the parameters change. 
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4.4.2.1. Effect of number of generations 

Several observations can be made from the Figure 4-15 which shows the total 

computation time consumed by the CPU method and the hybrid method, at the end of 

various generations using 1000 populations. Literally straight lines are seen for both 

methods, indicating that the amount of time required in each generation is consistent 

throughout the optimization course, given the same population size. This can be 

explained by the fact that the computational workload required by same amount of 

candidate solutions in each optimization cycle would be similar. Firstly, determination of 

the relationship matrix Dpxp involves computational complexity  (    ), which is a 

function of population size. Also, same training and testing datasets are used 

throughout all GA generations, so computational workload involved in the PCA 

modeling or objective evaluation would not be different significantly.  

By parallelizing the 3 computationally expensive tasks (i.e. PCA modeling, 

objective evaluation and non-dominated sorting) using GPU, it is expected that the 

hybrid method could complete the Sim-Opt problem in a shorter time than the 

sequential counterpart. The reduction of computing time can be clearly seen from 

Figure 4-15, where the red line representing hybrid method is significantly more gradual 

and flat as compared to the blue line. The speedup ratios computed according to 

Equation ( 3-2 ) are plotted in Figure 4-16. Since the computing time of both CPU and 

hybrid methods scale linearly as the number of generations increases, the speedup 

values are approximately constant. From Figure 4-16, it can be observed that about 11 

speedups are achieved by the hybrid method at GA generations in the range of [40 

1600]. Due to the linearly scaling characteristics of both methods, we expect identical 

efficiency performance to be achieved by the hybrid method, at larger generations. 
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Figure 4-15: Computing time of the CPU and hybrid methods measured at various 

numbers of generations, with 1000 populations. 

 
Figure 4-16: Speedups achieved by the hybrid method at various numbers of generations, 

with 1000 populations. 
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computation of Dpxp in NSGA-II involves 2 nested loops with P elements in each loop, so 

as P increases the computing time is expected to increase in a nonlinear manner. On the 

other hand, as the computing time required by the covariance matrix computation in 

PCA modeling is dependent only on the number of variables selected; and time 

consumed in score value computation and sample classification in objective evaluation 

depend on the testing data and number of variables selected. These two tasks have 

linear relation between P and computing time. Overall effect of P on total computing 

time is therefore determined by the strengths of the linear and nonlinear effects. As 

shown in Figure 4-3, NSGA-II dominates at large population size, while PCA modeling 

and objective evaluation consumes a large portion of total time at small populations. 

Such remark is consistent with the observation obtained from Figure 4-17, where the 

computing time of CPU method (represented as blue crosses) resembles a straight line 

at small P and gradually shows off the nonlinearity characteristic at larger P. 

With GPU parallelization, the linear and nonlinear characteristics would be 

diluted, where the dilution factor depends on CUDA kernel design. In both CUDA kernels 

of PCA modeling and objective evaluation, P candidate solutions are mapped to P CUDA 

blocks. Supposing P is a large number and GPU resource has limitation, there will only 

be Cp number of blocks executing concurrently, at any one time. As P increases by a 

factor of f, the computing time required by the CUDA kernels will multiply by 
 

  
 instead 

of  ; the latter is only true for sequential method. Given the same GPU device, the 

dilution factor Cp is constant, and the effect of population size on computing time is still 

linear for the two kernels. Next, we look at the nonlinearity contributor which is NSGA-

II. In this CUDA kernel, the key computation Dpxp is achieved by mapping P rows to P 

blocks and P columns to T threads. Hence, as P increases by a factor of f, the increase of 
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computing time for Dpxp computation is approximately 
[
(   ) (   )

    
]

   

    

 instead of 

(   ) (   )

   
 in sequential algorithm. Given the two-level parallelization i.e. dilution, not 

only the nonlinearity behavior becomes less apparent, the total computing time will also 

be reduced significantly. It can be seen from Figure 4-18, by implementing the sorting in 

GPU, the nonlinearity behavior is no longer noticeable at the tested range of population 

size.  

 
Figure 4-17: Computing time of the CPU and hybrid methods measured at various 

population sizes, with 1000 GA generations. 
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Figure 4-18: Comparison of computing time of two hybrid methods, one with and the 

other one without GPU-based sorting; measurements are done at various population sizes, 

with 1000 GA generations. 

Finally, we examine the efficiency performance attained by the proposed 

hybrid method. Based on the computing time of CPU and hybrid methods measured at 

end of 1000 generations (as given in Figure 4-17), the corresponding speedup ratios are 

plotted on Figure 4-19. The quickly increasing speedup ratios at population size below 

200 can be attributed to one possible cause. That is GPU resources are under-utilized 

when P is small, so when it is supplied with more P, it is able to complete the job using 

approximately same amount of time along with additional data transferring time. Due to 

the long computational time required by CPU method, for example it takes more than 8 

hours (or 24 hours for 3 duplicates) to complete an experiment using 1600 populations 

and 1000 generations, thus we evaluate the efficiency performance for larger 

populations at a smaller number of generations i.e. 100. An approximately linear 

speedup relation can be observed from Figure 4-20; the computing time for both the 

CPU and hybrid methods is also shown. At 7500 populations, the proposed hybrid 
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method greatly reduces the total computing time from 43 hours to 26 minutes, and this 

is equivalent to 102 speedups. Hence, the proposed hybrid GA-PCA algorithm offers 

great advantages in control and monitoring applications which require continuous 

model optimization, due its capability of capturing timely and accurate process behavior 

change. 

 
Figure 4-19: Speedups achieved by the hybrid method at various population sizes, with 

1000 GA generations. 
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Figure 4-20: Computing time for the CPU and hybrid methods, along with the 

corresponding speedups (represented in black circles), at various population sizes and 

1000 GA generations. 

4.5. Summary 

Sim-Opt is a special class of optimization techniques which are capable of 

dealing with complex process system as well as uncertainty. Without sacrificing process 

information unnecessarily, applications of Sim-Opt are strictly computationally limited 

due to the need of processing large amount of data or dealing with complex simulation 

model. In order to address the practicality issue of Sim-Opt, we propose a systematic 

procedure for developing efficient hybrid Sim-Opt algorithm using GPU parallelization. A 

step-by-step discussion of the systematic procedure is illustrated on a variable selection 

algorithm, which is originally proposed by Ghosh et al. (2014) for solving a process 

monitoring problem. The variable selection algorithm is regarded as a Sim-Opt 

technique by treating GA as the optimization tool and PCA as the simulation model. 

Based on the proposed approach, 5 CUDA kernels are constructed for the 3 tasks, 
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namely PCA modeling, objective evaluation, and non-dominated sorting. The primary 

data parallelisms exploited in these kernels include mapping CUDA blocks to candidate 

solutions, and mapping CUDA threads to training samples, testing samples or candidate 

solutions. The performance of the developed hybrid CPU-GPU-GA-PCA algorithm is 

tested as an offline variable selection method on the TE process with 32 process 

variables. The GPU-based method shows comparable monitoring performance, in terms 

of miss detection and fault alarm rates, to the original sequential method. Furthermore, 

the computational efficiency of the GA-PCA algorithm is greatly improved in the hybrid 

approach, with speedups as high as 102. The significant improvement in computational 

speed promises for the practical use of Sim-Opt algorithm in solving real-time or 

continuous optimization problems. 



Related publications: 
Lau Mai Chan, Rajagopalan Srinivasan. A Hybrid CPU-Graphics Processing Unit (GPU) 

Approach for Computationally Efficient Simulation-Optimization. Manuscript submitted 
for publication. 

Real-time Particle Size Estimation for Crystallization Processes through GPU-based 
Multivariate Image Analysis,  AIChE Annual Meeting 2013, San Francisco, CA. 
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Chapter 5. Hybrid CPU-GPU Multivariate 

Image Analysis Algorithm  

Image analysis is an important sub-topic of pattern recognition which involves 

the extraction of useful information from digital images by means of image processing 

techniques. In the context of chemical processes, the extracted information is mainly 

used for predicting, monitoring, or controlling purpose. Recently emerged image 

analysis techniques called multivariate image analysis (MIA) are capable of handling 

multiple univariate images at once, thus uncovering more informative and useful 

pattern and knowledge. In contrast to traditional image analysis methods, MIA 

algorithms deal with much larger input data size and require the use of multivariate 

statistical tools such as PCA and PLS. While the growing advances of imaging technology 

offer high resolution (i.e. large amount of pixels per frame) and high frame rate images 

at low cost, the computational demand for processing those images is huge. Hence, the 

task of extracting information in real-time for effective process control and monitoring 

is extremely difficult, due to the computational complexity involved in MIA and also the 

large data size of input images. 

Although there have been a number of GPU-accelerated MIA approaches 

proposed in the literature, none of them is meant for chemical process applications. As 

the input images (in terms of color scale), image enhancement expectation, and the 

types of pattern or object to be determined from the target images are typically 

application-dependent. The existing GPU-based methods might not be directly useful in 

solving chemical process problems. In this respect, our main contribution is to develop a 
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GPU-based MIA algorithm which is applicable to chemical process control and 

monitoring.  

Specifically, we aim to address the issue of high computational cost of MIA 

algorithm by developing a hybrid CPU-GPU-MIA algorithm using GPU parallelization 

technology. A major motivation is that the massive amount of data parallelism offered 

by GPGPU fits perfectly to the large-scale image processing algorithm such as MIA, 

whereby huge amount of pixels can be processed simultaneously. The organization of 

the remainder of this chapter is as follows. In Section 5.1, we describe a MIA method 

which is proposed for in-situ particle size estimation during crystallization process. 

Subsequently, we analyze individual steps of the MIA method in Section 5.2. Based on 

their contributing computational cost and amount of data parallelism, several GPU tasks 

are identified. Some important details including CUDA kernel design, required data 

transfer between CPU and GPU memory, and optimization opportunity are also 

provided. In Section 5.3, the proposed hybrid MIA algorithm is implemented and 

evaluated on a case study, which involves a batch crystallization of monosodium 

glutamate monohydrate (MSG) for a period of 23 hours. 

5.1. MIA for In-Situ Particle Size Estimation of 

Crystallization Process 

The capability of estimating crystal size distribution in real-time is important 

for effective control and optimization of particulate processes. Appropriately controlled 

crystal size distribution not only ensures high efficiency of downstream operations like 

filtering, drying and formulation, it also safeguards the efficacy of final product which is 

in crystal form. In order to achieve fast online measurement of crystal size, automated 

image analysis has recently been developed (Sarkar et al., 2009). The method has shown 
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satisfactorily accurate estimation of particle size distribution. However, this comes at 

the cost of computational efficiency. The minimum requirement for real-time particle 

size estimation is that computational speed of the MIA algorithm is at least on par with 

the image generation speed. 

The MIA method proposed by Sarkar et al. (2009) consists of several tasks, 

which include feature extraction, construction of statistical image model, image 

segmentation, post-segmentation image analysis, and boundary refinement. Each step 

is detailed as below. 

5.1.1. Feature extraction  

In the context of image analysis, various features which are useful 

characteristics can be extracted from raw input image. In this work, we focus on three 

features which are range, standard deviation and entropy; mathematical expressions 

given in (Sarkar et al., 2009) are reproduced below, 

      (   )     
  (       )

  (       )

* (   )+      
  (       )
  (       )

* (   )+ ( 5-1 ) 

      (   )       
  (       )

  (       )

* (   )+ ( 5-2 ) 

        (   )   ∑  ( (   ))      ( (   ))

  (       )

  (       )

 ( 5-3 ) 

where, B defines the size of filter mask (in this work, B = 1 which is equivalent to a 3 by 3 

square mask); i and j represent the vertical and horizontal pixel location, respectively; (x, 

y) denotes the pivot and also the output pixel location for feature calculation; p(f(i,j)) is 

the histogram of intensity levels in the mask. Given a grayscale image with resolution X 

by Y, there will be 3 individual feature images generated from the raw univariate image. 
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In order to capture the spatial relationships among pixels, a shifting operation is 

performed on each of the feature image. This is achieved by moving the pixels of feature 

image rs space (i.e. shifting radius) away in the specified direction. Here, we use rs=1 and 

d=8, so there will be 8 shifted images produced for every feature image; the 9 images 

are collectively referred as a multi-way image. The 8 shifting directions employed in this 

work are depicted in Figure 5-1. The resulting 27 images (i.e.(   )   ) are regarded 

as a multivariate image containing 27 variables. The application of a suitable 

multivariate statistical is discussed next. 

 

 
Figure 5-1: The 8 shifting directions used in MIA algorithm

9
. 

5.1.2. Multi-way PCA and statistical image model 

For effective image segmentation in later stage, statistical models need to be 

constructed as they enable straightforward thresholding. Multi-way PCA can be used to 

transform a multivariate image into an image model, which serves as a concise and 

noise-free representation of the original input image. Multi-way PCA works as the same 

                                                           

9
 Courtesy: (Sarkar et al., 2009)  
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manner as traditional PCA method, except that the multivariate input data is required to 

be first unfolded into a 2-dimensional matrix. Unfolding is achieved by opening up the 

    pixels of each image into single dimension. As a result, a 2D matrix with (   ) 

rows and 27 columns is obtained. Subsequently, Np principal components will be chosen 

during PCA analysis which results in a score matrix of size (   )    . As we only 

retain the first principal component (i.e. Np = 1), the score matrix can be easily 

converted back to original image size of (   ) which is called pseudo-image. In cases 

where Np is more than one, Hotelling’s T2 statistics as given in Equation ( 4-3 ) can be 

used to reduce score matrix from size (   )     to (   )   . 

5.1.3. Image segmentation 

As has been discussed early, the main goal of image segmentation is to locate 

objects using thresholding strategy, and the outcome is a binary image. First of all, a 

global threshold value s is obtained offline from a background image. The value is 

computed by multiplying a user-specified parameter  to the standard deviation 

determined from the associated pseudo-image. During the online phase, the pseudo-

images obtained from in-situ images are segmented into objects and background 

regions, based on the threshold value.  

5.1.4. Post-segmentation image analysis 

At this stage, a flood-fill operation is first used to fill up the missing holes , 

which is then followed by a morphological opening operation to remove all objects 

which are below a specified pixel area a. After removing objects touching the image 

boundary, remaining objects are recognized as particles by assigning with unique object 

labels. Lastly, the exterior boundary of the shortlisted particles is identified. 
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5.1.5. Boundary refinement and particle size estimation 

Characterization of particles from image analysis which provides important 

information such as particle size and maximum chord length (MCL) requires clean and 

refined boundary. It begins with converting the boundary pixels identified from post-

segmentation to a series of Fourier descriptors of K frequencies, using discrete Fourier 

transform technique. Note that lower frequency components of Fourier descriptors 

describe the macro shape of object while higher frequency components provide fine 

details of the boundary. As the macro shape of object plays an important role in 

characterizing particle, a specified number NFC of low frequent components are used 

(NFC < K) for reconstructing the boundary on the original image 2D plane, using inverse 

Fourier transform. The refined boundary can then be used to determine object area and 

MCL. In this work, object area which is measured in terms of number of pixels serves as 

the comparison basis for evaluating the quality of our proposed hybrid approach. 

Hence, the detailed discussion of MCL which involves the concept of signature curve and 

antipodal angle threshold is omitted here; interested readers are referred to the original 

article (Sarkar et al., 2009). 

5.2. GPU Implementation of MIA 

In this section, we develop a GPU-based MIA algorithm following the 5-step 

approach as presented in Section 4.2. We discuss the individual steps in the context of 

MIA algorithm as follows. 

Computing time examination: It can be seen from the pie chart presented in Figure 5-2 

that the most computationally demanding tasks are feature extraction, PCA modeling 

and segmentation, which account for 91% of total computing time. Hence, these 3 tasks 

will be examined for GPU parallelizability in the following step. 
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Figure 5-2: Pie chart showing the computing time distribution of the original MIA 

algorithm; computing time measurements are based on averaging of 50 images. 

GPU task selection: In this step, the shortlisted tasks are examined for amount of data 

parallelism and GPU-compatibility. Since feature extraction and segmentation involve 

mainly independent pixel operations, there is enormous amount of data parallelism. 

Furthermore, they require only simple computations such as comparison, summation 

and division which are perfectly supported by GPU, as can be seen in Equations ( 5-1 ), ( 

5-2 ) and ( 5-3 ). 

Another costly task under consideration is PCA modeling based on a matrix of size 

(   )    . It is commonly advisable to normalize the input matrix prior to the 

building of PCA model for avoiding biases towards variables with large magnitude. Both 

the normalization of feature images and the computation of covariance matrix offer 

significant amount of data parallelism, wherein massive data parallelism is available on 
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independent column or element operations, respectively. Although the determination 

of eigenvalues and eigenvectors is not inherently rich in data parallelism, there are still 

GPU algorithms reported to have better performance than the CPU counterpart. In this 

work, we employ the GPU-NIPALS-PCA algorithm proposed by Andrecut (2009). More 

details will be given during the discussion of CUDA kernel design.  

Data transfer consideration: Since the 3 selected GPU tasks are back-to-back processes 

using output data from preceding task as their input, as illustrated in Figure 5-3. The 

data required to be transferred from CPU to GPU mainly include the raw input image 

and parameters such as shifting directions, mask size, threshold, range threshold and 

number of principal components. The grayscale input image is stored in GPU global 

memory instead of texture memory, because there is no spatial-localized accessing 

pattern, as will be elaborated in later paragraphs. Whereas, the parameter values can 

either be stored in constant memory or global memory.  

As it can be seen from Figure 5-3, intermediate storage spaces in global memory are 

needed for the 3 feature images, 27 shifted images, covariance matrix and pseudo-

image, so as to convey data information across different CUDA kernels. Lastly, the 

binary image output from segmentation which is stored in global memory will be 

transferred back to CPU for post-segmentation analysis. 
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Figure 5-3: Information flow among the 3 expensive tasks of MIA. 

CUDA kernel design: First of all, it should be noted that the 3 tasks, i.e. feature 

extraction, PCA modeling, and segmentation, are strictly sequential in nature as 

displayed in Figure 5-3. In other words, a minimum of 3 CUDA kernels are required for 

performing these tasks, each of which serves as an explicit synchronization point. Any of 

the two consecutive tasks can be combined in the same CUDA kernel only if they share 

the exactly same thread configuration, and if within-block synchronization is able to 
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guarantee for results consistency. A detailed discussion is given below, covering various 

design decisions to be made during GPU programming. These mainly include the 

optimum number of CUDA kernels for each task, the mapping of CUDA threads and 

blocks to computational operations, and the types of memory used.  

Figure 5-4 shows a standard method of task partitioning for GPU tasks which involve 

pixel operations like feature extraction and segmentation, whereby arbitrary number of 

2D CUDA blocks are mapped to the pixels. In this case, actual thread configuration is 

mainly limited by GPU resources, particularly the maximum number of threads per block 

and the shared memory usage. Nonetheless, the total number of redundant threads 

which are not assigned to any pixels should be minimized. This strategy is slightly 

different from the two-level partitioning approach mentioned in Chapter 3. The latter is 

more suitable for situations where there is apparent existence of sub-tasks. 
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Figure 5-4: Task partitioning scheme for feature extraction and segmentation; (a) 

representation of a CUDA block containing several threads; (b) mapping of CUDA 

blocks/ threads to pixel operations. 

We now look at the computation performed by individual thread in the feature 

extraction CUDA kernel. For each feature extraction, i.e. range, standard deviation, 

entropy, a thread is required to walk through all elements in the 3 by 3 mask, and collect 

associated information like the minimum and maximum values, summed values, 

summation of squared values, and intensity counts. Considering the same input image 

and thread configuration used in all 3 feature extraction process, they can be combined 

into single CUDA kernel. This provides the advantages of saving memory access 

bandwidth and reducing kernel call overhead. Local register or shared memory can be 

used for storing this information, but to avoid register spillage we use shared memory 

for counting the intensity. For intensity counting, a vector with length equal to 9 is 

allocated for each thread, in shared memory. Due to the self-synchronizing feature of 

thread warp, the 32 threads in a warp tend to access the same location in the mask but 

(a)

(b)
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consecutive pixel locations in the input image residing in global memory. The resulting 

kernel is termed as feature_kernel for brevity. 

In order to ensure results consistency, a separate CUDA kernel (termed as 

shifting_kernel) is used to perform the image shifting process. As presented in Figure 

5-5, a particular thread in shifting_kernel copies the values from several different pixel 

locations which are computed by different threads in feature_kernel, thus 

synchronization through using another CUDA kernel is needed. Furthermore, to reduce 

coding complexity, the shifting operation is performed on one feature image at a time, 

thus the shifting_kernel is called for thrice, in a sequential manner. Considering the large 

amount of data parallelism which is equal to the total number of pixels attained on 

shifting one feature image, parallelizing the shifting of 3 feature images would not 

provide significant speed improvement, owing to the limited GPU resources. A thread in 

the shifting_kernel is responsible for copying d+1 pixel values from some source 

locations to corresponding destination locations, as mentioned early d=8. The source 

location in the target feature image is determined by the shifting radius rs and direction; 

while the destination location is defined by the global position of the thread, as it can be 

seen in Figure 5-4. Note that there are d+1 destination matrices for storing the shifted 

feature image separately. An illustrative sample of the shifting operation performed by a 

thread is given in Figure 5-5. We apply the mirror image concept to avoid accessing of 

pixel locations outside image boundary. 
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Figure 5-5: An  example illustrates the copying action performed by a CUDA thread in 

shifting_kernel, with r=1, d=4; (a) shift downwards, (b) shift upwards, (c) shift to the left, 

(d) shift to the right, and (e) no shifting. 

In the segmentation CUDA kernel, segmentation_kernel, a thread is responsible for 

comparing a pixel value in pseudo image with the threshold s, and then assigning a 

suitable class (either 0 or 1). Both the source and destination pixel location is the same, 

which is specified by the global position of the thread in the input raw image.  

Two additional CUDA kernels, pre_normalization_kernel and normalization_kernel, and 

a series of CUBLAS functions are devoted for the PCA modeling task. Since an unfolded 

matrix is required for PCA modeling as discussed in Section 5.1.2, the 27 images 

generated from the shifting operation are stored in a 2D matrix with (   ) rows and 

27 columns. The normalization task can be divided into 27 subtasks, and each subtask is 
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responsible for normalizing one column in a CUDA block. The T threads within the CUDA 

block iterate through the (   ) elements and collect two cumulative values, 

∑ ∑  (    ) 
   

 
    and ∑ ∑ , (    )   (    )- 

   
 
   , where  (    ) denotes the element 

value at fth column and (     )   rows. The number of iterations, iter, required is 

equal to ⌈
   

 
⌉. This cumulative operation is achieved by a reduction operation 

performed in shared memory. These two cumulative values are then be used for 

calculating the mean and standard deviation of a specific feature image (or column), 

according to Equations ( 5-4 ) and ( 5-5 ). The computation of normalized values requires 

both the mean and standard deviation, as given in Equation ( 5-6 ). Hence, instead of 

calling the within-block synchronization at the end of pre_normalization_kernel, a 

separate CUDA kernel denoted as normalization_kernel is used for normalization. The 

thread idling time incurred by within-block synchronization is expected to be as costly as 

the CUDA kernel call overhead. Essentially, the kernel pre_normalization_kernel execute 

Equations ( 5-4 ) and ( 5-5 ); and normalization_kernel takes care of Equation ( 5-6 ). 
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Numerous GPU-based PCA algorithms have been proposed in the literature, while some 

are designed for specific application like (Woo et al., 2013) and (Jošth et al., 2012), 
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others are generic (Andrecut, 2009; Funatsu & Kuroki, 2010; Zhang & Lim, 2012). A 

generic algorithm, GPU-NIPALS-PCA, which is proposed by Andrecut (2009) is chosen for 

two main reasons. In this work, we construct the pseudo image based on the first 

principal component, so Non-linear iterative partial least squares (NIPALS) algorithm 

which demonstrates superior efficiency in computing the first few PCA components 

appears to be an adequate choice. Furthermore, the algorithm provides straightforward 

and simple implementations by directly using CUBLAS functions. First of all, memory 

space is allocated for 3 matrices, residual matrix R, score matrix T, and loading matrix P. 

For determining each principal component, it enters an iterative loop involving several 

steps, including regression of R on T which is written to P using matrix vector 

multiplication function cublasSgemv; normalization of the P using cublasSscal and 

cublasSnrm2; regression of R on P which is written to T using cublasSgemv; and then 

computation of the corresponding eigenvalue from T using cublasSnrm2. These steps 

will be repeated until the change in eigenvalue in two consecutive iterations is smaller 

than a user-specified threshold. 

CUDA kernel optimization: Except for the joining of 3 feature extraction processes, 

there is no further merging of CUDA kernels is possible. As discussed before, the 3 main 

tasks, feature extraction, PCA modeling, segmentation, are inherently sequential. Due to 

the different task partitioning approaches used in the kernels shifting_kernel and 

pre_normalization_kernel, they must be kept in separate kernels. At the same time, 

“pre_normalization_kernel and normalization_kernel” are intentionally separated for 

better tractability. As has already been pointed out, shared memory is used for storing 

intermediate results which helps to avoid register spillage and promote cooperative 

action among threads. A major optimization is achieved by data transposition on the 

shifted images, from (   )     to    (   ). The matrix transposition enables 
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coalesced global memory accessing under below situations, when consecutive threads 

output results at the end of shifting_kernel, access data at the beginning of 

pre_normalization_kernel, and modify data during normalization_kernel. This is due to 

the fact that the CUDA kernels are designed such that consecutive threads access 

neighboring pixels in (   ) direction rather than in the 27 features. 

5.3. Case Study: Real-Time Particle Size Estimation in 

Batch Crystallization of Monosodium Glutamate 

Monohydrate 

The real-time particle estimation capability of our proposed hybrid CPU-GPU-

MIA algorithm is tested on a case study of batch crystallization of monosodium 

glutamate monohydrate (MSG). The experiments were conducted by one of the authors 

of the article (Sarkar et al., 2009), Ying Zhou. Equipment setup for the batch 

crystallization is shown in Figure 5-6, where a 500ml flat-bottomed glass vessel fitted 

with a variable speed stirrer serves as the crystallizer. The crystallization process begins 

with dissolving 320g of MSG in 400ml deionized water, which is followed by a series of 

heating for complete dissolution of the particles, and then cooling for crystallization to 

take place. A graphical representation of the temperature change is summarized in 

Figure 5-7; the detailed experimental steps are provided in (Sarkar et al., 2009). There 

are a total of 29898 in situ images captured during the 23 hours crystallization process, 

using a Particle Vision and Measurement (PVM) probe. The PVM generates images with 

resolution of 480x640 at the speed of 2 images per second. In this work, the PVM serves 

as a benchmark for performance evaluation, which means image processing speed of 

0.5 second per image is the minimum requirement for real-time application. 
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Figure 5-6: Equipment set-up for the batch crystallization case study

10
. 

 
Figure 5-7: Temperature profile of the batch crystallization process. 
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 Courtesy: (Sarkar et al., 2009) 
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We examine the performance of our approach by comparing the accuracy of 

particle size estimation and computational efficiency with the original sequential 

approach. Both the sequential and hybrid MIA algorithms are implemented in Matlab 

and all the computations are executed on a computing system with 64-bit Intel Xeon 

CPU with processor speed of 3.20GHz and 12 GB RAM; while an Nvidia Quadro2000 GPU 

card is used as the co-processor. Standard image processing functionalities such as 

flood-filling, morphological opening, and object labeling, are performed using Matlab 

Image Processing Toolbox. The parameter values used in the numerical experiments are 

given in Table 5-1, while the thread configurations for the 5 CUDA kernels are presented 

in Table 5-2. All 5 CUDA kernels along with several CUBLAS function calls are wrapped 

into a MATLAB MEX function. It should be noted that the same set of 29898 images 

used in the original work (Sarkar et al., 2009) for performance evaluation, is employed in 

this work. 
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Table 5-1: Parameter values of MIA 

 

Table 5-2: Thread configurations used for the 5 CUDA kernels 

 

5.3.1. Accuracy of Particle Size Estimation 

There are two important attributes pertinent to the accuracy of particle sizing, 

which are the number of particles detected from every image, and the size of each 

identified particle. Given that the accuracy of original CPU-MIA algorithm has been 

validated based on manual segmentation (Sarkar et al., 2009), particle size information 

obtained from CPU-MIA algorithm serves as reliable source for assessing the quality of 

our proposed hybrid approach. Experimental results show that the number of particles 

detected in all images is consistent between the CPU-MIA and CPU-GPU-MIA 

algorithms, except for 4 images as shown in Table 5-3. It accounts for about 0.01% error 

out of the 29898 images, and it is considered fairly insignificant. Table 5-3 also shows 

that the discrepancy in quantity of particle is 1 at maximum, which is missing either 

from the CPU or the hybrid method; one example is given in Figure 5-8. 
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Table 5-3: Images with different number of particles detected based on the CPU and 

hybrid algorithms.  

 

 
Figure 5-8: Results of applying MIA algorithm to image no. 29454, where an arrow 

points to the missing particle; (a) grayscale image captured by PVM, (b)(c) post-

segmentation image obtained from CPU-MIA and CPU-GPU-MIA, respectively. 

Next, we investigate the accuracy of particle size quantification. In MIA 

approach, particle size is measured in the unit of pixel area i.e. number of pixels, thus 

comparison can be made based on the metric defined below, 

   |                               | ( 5-7 ) 

where, p is the identity of a common particle detected by the 2 approaches. Excluding 

those misplaced particles in the 4 images presented in Table 5-3, there are 87541 

common particles identified by the 2 approaches. Figure 5-9 plots the particle size 

difference against the 87541 particles, where the particle identities are given according 

to the generation order of images. Significantly, the hybrid method provides 

consistently close particle size measurement to the CPU method for most of the 

particles under study, excluding several outliers which are found occasionally and 

randomly throughout the 23 hours crystallization process. In order to provide a clearer 

view of the overall distribution, the particle size difference is broadly divided into 3 

CPU-MIA CPU-GPU-MIA

26238 8 9 1

27534 4 3 1

29454 10 9 1

29745 6 5 1

Image ID.
No. of particles detected

Difference in no. of particles 

(a) (b) (c)
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ranges as given in Table 5-4. It can be seen that up to 99.3% of the particles are found 

having exactly the same size between the 2 approaches (i.e. p=0), 0.67% particles are 

slightly different in their size measurement with difference less than 20 pixels, and 

about 0.005% particles fall into the range of having p>20 pixels. The largest particle size 

difference is found at image ID. 16023 in which there are total 4 particles detected. 3 

out of 4 particles show zero size difference while the remaining one has 115 pixels 

missing from the GPU results. A visual comparison of the particle sizes identified with 

the 2 approaches is presented in Figure 5-10. 

 
Figure 5-9: Particle size difference between the CPU-MIA and CPU-GPU-MIA 

algorithms. 
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Table 5-4: Distribution of particle size difference for the 87541 common particles. 

 

 
Figure 5-10: Results of applying MIA algorithm to image no. 16023, where an arrow 

points to the missing particle; (a) grayscale image captured by PVM, (b)(c) post-

segmentation image obtained from CPU-MIA and CPU-GPU-MIA, respectively. 

5.3.2. Real-Time Computational Efficiency of Hybrid CPU-GPU-

MIA Algorithm 

The preceding discussion has shown that the proposed hybrid MIA approach 

promises for accurate particle identification and size estimation, subsequently we will 

investigate the achieved efficiency enhancement as well as fulfillment of the real-time 

requirement. To recap, the hybrid MIA algorithm is constructed by parallelizing the most 

costly tasks, namely feature extraction, PCA modeling, and segmentation on GPU, while 

the rest is retained in CPU as in the original algorithm. First, the effect of GPU 

parallelization on total computing time as well as time distribution in MIA algorithm are 

shown in Figure 5-11 and Figure 5-12, which present the computing time distribution in 

sequential and hybrid approach, respectively. It can be seen from Figure 5-11 that the 3 

GPU-parallelizable tasks (represented as blue diamond symbols) are apparently the 

computational bottleneck in the original MIA method. By shifting the 3 tasks to GPU, we 

can see that the computing time of all components (i.e. blue diamonds, hollow red 

circles and green stars) become more evenly distributed, as illustrated in Figure 5-12. 

Range of p no. of particles % particles

0 pixel 86947 99.321%

between 0 and 20 pixels 590 0.674%

>20 pixels 4 0.005%

Total 87541 100%

(a) (b) (c)
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The change in computing time distribution can be explained by the substantial 

computing time reduction of the costly GPU-parallelizable tasks. Moreover, the 

computing time collected from 5 separate numerical experiments is reasonably 

consistent and stable. 

 
Figure 5-11: Computation time distribution of major steps in CPU-MIA algorithm. 
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Figure 5-12: Computation time distribution of major steps in CPU-GPU-MIA algorithm. 

The speedup ratios computed from the 5 numerical experiments are discussed 

next. Considering only the 3 GPU-parallelizable tasks, an average of 13.29 speedups are 

achieved as shown in Table 5-5, and this results in an overall speedups of 8.74, see Table 

5-6. The reduced speedup performance can be explained by the inclusion of sequential 

part. The achieved overall speedups of 8.74 is considerably close to the maximum 

achievable speedup performance according to Amdahl's law, as follows, 

                    
 

  
(   )
 

 
 

       
      

This value is computed based on 0.09% total time taken by the sequential part (see 

Figure 5-2), and assuming GPU execution consumes insignificant time. In conclusion, the 

proposed hybrid CPU-GPU-MIA not only provides accurate particle size estimation, it 

also offers real-time efficiency by reducing total computing time from 0.77 to 0.09 
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seconds per image, which is much faster than the image generation speed of PVM at 0.5 

seconds per image. 

Table 5-5: Computational efficiency enhancement achieved by the CPU-GPU-MIA 

algorithm on the 3 GPU-parallelizable tasks.   

 

Table 5-6: Overall computational efficiency enhancement achieved by the CPU-GPU-

MIA algorithm. 

 

5.4. Summary 

Image analysis is a powerful process quantification tool, particularly when 

standard methods like wet chemistry, chromatography are not adequate or inaccurate. 

Image analysis provides flexibility and effectiveness in quantifying product (or waste) 

size or shape, based on image processing techniques. As it is required to deal with large 

image data, real-time process measurement is usually hindered and thus impairing its 

effectiveness in real-time process monitoring applications. To fully release the value of 

image analysis techniques, we propose to enhance their computational efficiency using 

GPU parallelization. In this work, we develop a GPU-based multivariate image analysis 

algorithm for particle size estimation. In the context of GPU parallel computing, the 

main contributions of this work include combining multiple feature extractors (or 

Run# Speedup

1 13.69

2 13.25

3 13.25

4 13.13

5 13.13

Average 13.29

Run# Speedup 

1 8.86

2 8.53

3 8.60

4 8.66

5 9.05

Average 8.74
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filtering kernels) in single CUDA kernel to avoid repeated memory access of same input 

data, and exploring GPU implementation of multi-way PCA. Successful application of the 

proposed hybrid MIA algorithm has also been demonstrated in a batch crystallization 

process, in which accurate particle measurement is obtained in real-time. Image 

processing time is reduced from 0.77 to 0.09 seconds for each image, and this is 

equivalent to 8.74 speedups. 



144 
 

Chapter 6. GPU-based Data Stream 

Clustering for Continuous 

Monitoring of Process Behavior 

Clustering is one of the most popular data mining tools which have been 

successfully applied in many areas. Such popularity is mainly attributed to its simplicity 

in execution and effectiveness in information extraction. However, it soon becomes 

ineffective when the data size is too large to be stored in the main memory of the 

computing system. This can be explained by the fact that traditional clustering 

algorithms e.g. k-means, PCA-based, hierarchical clustering usually require multiple 

accesses to the entire dataset, thus expensive data transfer from secondary storage 

device to main memory is required. It is known that most chemical plants are rich in 

data but poor in information, as a result of ineffectiveness in handling large dataset. In 

response to that, a novel research topic called data stream clustering has emerged. Data 

stream is a data model used for handling transient, large, and rapid data. 

In this chapter, we focus on the balanced iterative reducing and clustering 

using hierarchies (BIRCH) algorithm for two key reasons. The first and most important 

reason is that BIRCH serves as the fundamental model for deriving many other data 

stream clustering algorithms like CluTree, DenStream, HPStream, HDDSTREAM, 

CluStream, and scaleKM. Secondly, we are interested in exploring the use of GPU 

parallelization for hierarchical clustering algorithm which is inherently lacking of data 

parallelism. In the interest of developing an accelerated BIRCH approach which provides 

useful data summaries for various chemical process applications, such as process 

optimization, scheduling, design, and monitoring, problem size reduction methods like 

topological decomposition which are strictly problem-specific are not considered in this 
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work. This chapter is organized as follows. In Section 6.1, we propose an online 

monitoring scheme which uses BIRCH to detect slow process changes. For an effective 

online monitoring application, we improve the efficiency of BIRCH through GPU 

parallelization. The development of the GPU-based BIRCH algorithm is discussed in 

Section 6.2 wherein kernel design and implementation issues are addressed. The 

developed hybrid CPU-GPU-BIRCH algorithm is tested on Section 6.3 for clustering 

quality and process monitoring capability. We first examine the performance of the 

proposed algorithm using synthetic data and then followed by simulated process data 

which closely resembles real-world oil and gas production process. 

6.1. BIRCH Application to Online Process Monitoring 

for Gradual Change Detection 

BIRCH is particularly suitable for detecting gradual change in process behavior 

owing to its incremental data summarizing feature. On the one hand, abrupt process 

change or process fault, e.g. wrong parameters setting due to human fault or power 

trip, can be detected by focusing on data collected from small time window as the 

associated change in process measurement is substantial. On the other hand, slow 

process change occurs at very low speed which may take months or years. Since the 

change is extremely slow and unnoticeably small, it is necessary to examine much larger 

data window continuously so as to detect such gradual change. We present an online 

strategy whereby BIRCH is used to compress process data collected in each window into 

C clusters, as illustrated in Figure 6-1. C is a user-specified value which is bound by 

memory space. As C is much smaller than the size of a data window, it allows for more 

effective data analysis thereafter. Moving windows or sliding windows are commonly 

used in online data analysis applications, where data is continuously collected by batch 

and at the same time old data is removed. As discussed in (Adä & Berthold, 2013), 



146 
 

window type can be classified based on two aspects which are the starting location of 

the window (fixed or sliding) and the width of the window (constant or growing). In this 

work, a window with sliding starting position and constant width is used for the purpose 

of comparing consecutive data batches during event detection, as discussed in following 

paragraphs. 

 
Figure 6-1: Online strategy for detecting gradual process change using BIRCH. 

Adä and Berthold (2013) propose an event detection framework wherein 

events can be identified by tracking the difference in consecutive data windows. 

Differences are measured based on a dissimilarity function  (       ), where Di refers 

to data window and i is the window identity. However, in cases where data size of D is 

very large, computation of dissimilarity function can be costly and ineffective. Model 

representations of data which are more concise and noise-free are more appropriate, 

thus dissimilarity function is redefined as  (       ) where M denotes the data model. 

There are 3 basic types of event which are defined as follows, 

BIRCH

Extract the C cluster nodes 
from BIRCH CF-tree

Archive w latest sets 
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Data analysis 
If historical data 

is needed

snapshots
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No event: If the current d measurement shows no significant difference from the 

preceding one, i.e.  (       )   (         ), there is no sign of event taking place. 

Note that there are total 4 data windows involved in the computation. 

Abrupt event: If the current d measurement is significantly larger or smaller than the 

preceding value, i.e.  (       )        (         ), it indicates the existence of 

abrupt change. 

Gradual event: If there is an increasing or decreasing trend of the d values across 

several data windows, it suggests for a gradual event. Mathematically, it is expressed as 

follows,  (       )   (         )     (     )   (     ) or (< 

respectively). 

In general, chemical plants involve multiple operating states in order to cater 

for different product grades and types, or to accommodate for scheduled maintenance 

or part cleaning; (Méndez & Cerdá, 2003), (Srinivasan et al., 2004) and (Tousain & 

Bosgra, 2006) show some examples. By using clustering to partition process data 

collected from different states into separate groups, various process states can be 

tracked or monitored individually. The dissimilarity function is therefore adjusted to, 

  (           ), where s represents a particular process state. It is worth mentioning 

that it is possible for single data window to contain data of different process states, 

especially if the width of window is not too small. Process state-specific models can be 

first constructed from identified data clusters, and then used in dissimilarity 

computation. Alternatively, these data clusters can also be used directly as 

representative models, in which cluster centers are the model parameters. In this case, 

dissimilarity between two consecutive windows can be determined by taking difference 

on the two sets of centroids. It should be noted that the data cluster models are 
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obtained by applying a standard clustering algorithm (k-means is used in this work) to 

the C cluster nodes acquired from the final BIRCH CF-tree. For more effective clustering 

(i.e. modeling) during online monitoring, clustering seeds can be first determined offline 

using historical data based on the number of known normal process states. 

Hence, in the interest of detecting gradual change which can deteriorate 

process performance, it is required to execute the BIRCH algorithm repeatedly on each 

incoming data window, and the size of data window can be large as explained before. In 

order to avoid the piling up of data, an efficient BIRCH algorithm is highly favorable. This 

is particularly important if more complex and costly modeling is needed in dissimilarity 

determination. In the subsequent section, we develop a GPU-based BIRCH algorithm 

aiming to enhance the computational efficiency. 

6.2. GPU Implementation 

As opposed to standard GPU implementation which is targeted at only 

computationally costly tasks, as illustrated in Chapter 4 and Chapter 5, the entire BIRCH 

algorithm is executed in GPU. A main reason is that BIRCH operations such as merging, 

splitting, updating of parent nodes and tree rebuilding are closely related to the status 

of CF-tree at that point in time, and moving of the CF-tree between CPU and GPU 

memories is extremely costly and troublesome. Therefore, except for several auxiliary 

operations like threshold calculation, all operations are executed in GPU. In view of the 

algorithmic complexity of BIRCH, the discussion on CUDA kernel design, data 

transferring and optimization is divided into 4 major parts, namely overview of the 

hybrid algorithm, merging or splitting at cluster nodes, splitting of leaf and nonleaf 

nodes, and rebuilding of CF tree.  
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6.2.1. Overview of the hybrid algorithm  

Figure 6-2 shows the overview of our proposed BIRCH-based online monitoring 

scheme. Note that CPU is mainly responsible for interacting with database system, 

building models and calculating dissimilarity value; while GPU is liable for executing 

BIRCH. In contrast to conventional BIRCH algorithm which processes one sample (or 

pattern) at a time, we realize data parallelism by handling the incoming samples in 

batch;  is the notion used for batch size. Given a data window D[i, i+1], we split it into u 

batches with each batch containing  samples except for the first few and the last batch. 

The initial few batches are intentionally assigned with smaller number of samples due to 

limited amount of tree nodes at the beginning of CF-tree construction, more 

explanation will be given later in Section 6.2.2. Whereas in the last batch, it may contain 

samples lesser than  if the division operation, 
                                                

 
, 

is not exact. In short, the ‘GPU-BIRCH’ routine represented as a green-outlined box in 

Figure 6-2 will be called for u number of times, and each time a different section of D[i, 

i+1] is transferred from CPU to GPU global memory. 
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Figure 6-2: Overview of the GPU-based online process monitoring scheme, showing the 

relationships among database system, CPU and GPU.  

Another key difference to conventional BIRCH algorithm is that tree nodes are 

pre-allocated in GPU-based BIRCH, instead of dynamical allocation. This can be done by 

translating the user-specified maximum memory space for BIRCH to number of nodes 

M’ allowable in the tree. Given that sample dimensionality and page size P are known, 

the size of single node and thus M’ can be computed. The tree nodes need to be stored 

in GPU global memory for several reasons, and important ones include the writability 

requirement and sustained lifetime throughout all kernel calls. As will be discussed in 

later sections, LS and SS elements of CF vector and multiple nodes of the same type are 

always accessed simultaneously by a CUDA thread warp. Hence, for coalesced memory 

access, same type of nodes like cluster nodes, leaf nodes and nonleaf nodes are 
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allocated together. Also, CF vectors of the same type of nodes are allocated collectively 

in the same memory space, as shown in Figure 6-3. By doing so, it is possible to have 

coalesced memory access through ensuring dimensionality (or elements in LS or SS) is 

multiples of warp size i.e. 32. Using CUDA C++ programming, the 3 types of tree nodes 

are inherited classes from the same base class; function members of the base class 

include the N component of CF vector, child pointers, parent pointers, and tree level. 

It can also be seen from Figure 6-3 that there are two levels of pointers used to 

establish the relationships of nodes and CF vectors. At the outermost level, a pointer 

array serves as an interface for node manipulation. It provides flexibility in situations 

where sorting or compacting of nodes is needed, as it can be done without physically 

moving the nodes around, and thus saving time for copying and deleting. Note that 3 

separate global pointer arrays are used for manipulating the cluster, leaf, and nonleaf 

nodes. Within each node, there is also a pointer connecting it to the associated CF 

vector. As shown in Figure 6-2, a CUDA kernel named init_CFtree is called at the 

beginning of every data window. The kernel is responsible for setting up all the pointers 

and also constructs a minimal CF tree which consists of only one cluster node, one leaf 

node and one nonleaf node. The 3 nodes are related through parent-child relationship 

and they incorporate the very first sample of each data window.  

In this work, a standard parallelization strategy is employed which maps CUDA 

blocks to samples or nodes, and maps CUDA threads to the elements of CF vector; 

unless otherwise stated. For instance, in init_CFtree kernel, one block is assigned to a 

node in which one thread is used to perform the pointer assignment, and all threads 

perform zeroing of elements in the CF vector. 
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Figure 6-3: Pointer assignment performed in init_CFtree CUDA kernel. 

Next, we examine the ‘GPU-BIRCH’ routine which involves a number of CUDA 

kernels and CPU operations, as depicted in Figure 6-4. Given a data batch Dj extracted 

from the current data window, it needs to firstly identify the nearest cluster nodes for 

each samples. The CUDA kernel, search_nearestCluster, parallelizes this searching 

operation over the samples in Dj based on the standard parallelization strategy. Thread-

level parallelization is mainly achieved at distance computation, whereby CUDA threads 

access contiguous elements in CF vectors of both sample and candidate node. It is 

important to highlight that such CUDA kernel design is mostly beneficial for problems 

with sufficiently high dimensionality which is the center of our interest. If problem 

dimensionality is less than the size of a warp which is the smallest block size, some 

threads will idle and resources are wasted.  

There are several output variables used to store computing results of 

search_nearestCluster, which include action, Cnearest, and Lparent. The length of these 

M’ nodes

Node pointers 

CF vector
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variables is equal to data batch size, so that the action, nearest cluster, and the parent 

of the nearest cluster obtained from the sth sample can be stored in the sth element of 

the variables, respectively. Note that action is an integer array using 0 and 1 to denote 

merging and splitting action at cluster node, while Cnearest, and Lparent are pointer address 

arrays. Memory space allocated for these variables can be used for storing other 

intermediate results when their jobs have accomplished.  

Following the CUDA kernel search_nearestCluster, a counting function from 

Thrust library is called to determine the number of samples requiring merging and 

cluster splitting, based on 0’s and 1’s counts in action. Since cluster splitting is only 

allowed if there is sufficient amount of unused nodes available, it is necessary to ensure 

that the amount of new clusters required is less than the available nodes. If this is the 

case, a sub-routine called ‘merging or splitting at cluster nodes’ will be executed, 

otherwise ‘rebuilding of CF tree’ routine will be called to free some of the used nodes by 

using a larger T. Supposing ‘merging or splitting at cluster nodes’ is chosen, and the 

number of new clusters created at a particular leaf parent (pointed to by Lparent) exceeds 

the width of the leaf node, splitting at higher level will be required and the sub-routine 

‘splitting of leaf and nonleaf nodes’ will be summoned this time. On the contrary, if all 

newly created clusters can be absorbed by the leaf parents, then the next step is to 

update the CF values of higher level nodes to reflect the adding of new samples. 

The CUDA kernel, update_parent, is designed to update the parent nodes by 

iterative through the levels from leaf to root node, i.e. one level at a time. Similar to 

conventional BIRCH algorithm, CF values of upper level nodes are dependent on their 

descendant nodes, thus synchronization is required at every level. Unlike the original 

algorithm, the CUDA kernel update_parent updates all nodes at a particular level 
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simultaneously, regardless if their descendant nodes undergo any changes in the 

‘merging or splitting at cluster nodes’ routine. This is due to the reason that tracking of 

the affected nodes is both time and space consuming, in addition, updating of 

unaffected nodes in GPU is free though it is unnecessary. The ‘GPU-BIRCH’ routine will 

be repeated until all samples in the current window D[i, i+1] are accounted for, as 

illustrated in Figure 6-2. Upon the last call of ‘GPU-BIRCH’, the average values of CF 

vector (i.e. 
  

 
) of every cluster node will be extracted and copied to CPU for model 

construction and dissimilarity computation.   

 

 
Figure 6-4: Overview of BIRCH implementation in GPU. 
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6.2.2. Merging or splitting at cluster nodes 

In this section, we provide the details of the sub-routine ‘merging or splitting 

at cluster nodes’ which is represented as a purple box in Figure 6-4. As presented in 

Figure 6-5, it begins with 3 sorting operations whereby samples merging to the same 

cluster or creating new cluster at the same leaf node are located together. A variable 

sorting_ID is used to keep track the sample sequence. The first sorting attempts to 

separate samples requiring merging from those demand for new cluster, using action as 

the sorting keys. To ensure consistency, Cnearest and Lparent are subsequently re-arranged 

according to the sorted sample sequence indicated by sorting_ID. The remaining two 

sorting operations are performed on Cnearest and Lparent, respectively. Since samples to be 

merged to a particular cluster (or creating new cluster at the same leaf) will have same 

memory address in the Cnearest (or Lparent), sorting of the memory addresses in Cnearest (or 

Lparent) can partition samples into groups with same nearest cluster (or same parent leaf 

node). An illustrative sample is given in Figure 6-6. 
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Figure 6-5: Procedure of sub-routine ‘merging or splitting at cluster nodes’. 
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Figure 6-6: A simple example demonstrating the 3 sorting operations involved in sub-

routine ‘merging or splitting at cluster nodes’. 

According to the standard parallelization strategy mentioned in Section 6.2.1, 

CUDA blocks are mapped to unique cluster nodes (or unique leaf nodes) for merging (or 

splitting) operations. Samples in the same cluster node (or leaf node) are examined 

sequentially in the CUDA block, in which CUDA threads are assigned to handle different 

elements of CF vectors of either sample or node. Take the example given in Figure 6-6, 

as there are 2 unique cluster nodes (i.e. C1 and C2), 2 CUDA blocks are needed to 

perform the merging; similarly, another 2 CUDA blocks are used for splitting at the 2 

unique leaf nodes, L1 and L2. Since the number of samples managed by each block is 
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different, a CUDA kernel named compute_blockRange is used to determine the sample 

range. A thread is responsible to retrieve and compare 2 neighboring elements in Cnearest 

and Lparent, and write its location to output variable block_range if the 2 neighboring 

elements are different in values, as illustrated in Figure 6-7. Although this CUDA kernel 

functions similarly to the scanning function available from Thrust library, the latter is not 

allowed to take more than one input; in this case the 2 inputs Cnearest and Lparent are 

scanned simultaneously. 

 
Figure 6-7: Sample range determination using CUDA kernel compute_blockRange; using 

the same data from the example given in Figure 6-6. 

The last CUDA kernel to be discussed in this sub-routine is 

cluster_merging_splitting which carries out the actual merging and splitting operation at 

cluster node. It requires several input variables which include the samples, sorted 

sample sequence sorting_ID, sample range, number of sample groups for merging 

Nmerge, Cnearest, Lparent, global cluster pointers, and 2 output variables Cnew and Lnew for 

storing newly created clusters and parents. The global cluster pointers are required for 

getting the address of unoccupied cluster nodes. To prevent multiple CUDA blocks 
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compete for the same unoccupied cluster node, each block is restricted to a range of 

elements in the global array. This range can be determined by the sample range 

indicated in block_range and also location of the first unoccupied node in the global 

pointer array, as illustrated in Figure 6-8. This example also shows the importance of 

global node compaction.  

 
Figure 6-8: Example illustrating the usage and compaction of global pointers. 

Given Nmerge, individual CUDA block is able to find out if it is related to the 

merging or splitting job, as merging samples are already sorted to the front. Merging of 

samples to a unique cluster node is achieved by adding samples to the CF vector of the 

cluster, where the samples identity can be obtained from block_range and sorting_ID. 

Similarly, splitting at a cluster node essentially involves creating new cluster at a unique 

parent leaf node. In a CUDA block, one cluster is created at a time whereby the samples 

Global pointers
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unused

compaction

1st available node Nodes accessible 
by 1st CUDA block
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by 3rd CUDA block
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Updated status 
of node usage
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are examined sequentially to be added into this cluster; new cluster address is obtained 

from the global cluster pointers. Note that thread-level parallelism is achieved during 

distance computation and adding of sample to cluster, by mapping threads to variables 

in sample data or CF vector. If there is empty child lot at the parent leaf node, the 

parent will absorb the new cluster as a child. Otherwise, a pointer will be generated in 

Cnew and Lnew to store the address of this cluster node and its original leaf node parent, 

for further processing in later stage. On completion of cluster_merging_splitting, the 

number of new cluster nodes without parent can be counted from Cnew, and it proceeds 

to the sub-routine ‘splitting of leaf and nonleaf nodes’ if the count is not zero. 

6.2.3. Splitting of leaf and nonleaf nodes 

The sub-routine ‘splitting of leaf and nonleaf nodes’, represented as a blue box 

in Figure 6-4, involves splitting of nodes at leaf and nonleaf levels. Like conventional 

BIRCH, the splitting task starts at the leaf level after receiving cluster nodes from 

preceding sub-routine ‘merging or splitting at cluster nodes’. At leaf level, cluster nodes 

are the child nodes (indicated by Childnew) which require splitting of their original parent 

leaf node (indicated by Parentnew), so that more space is created by having additional 

parent leaf node. In cases where the number of newly created leaf nodes is more than 

the available child slot at their immediate nonleaf parent node, higher level node 

splitting is required. Such splitting may propagate all the way up the CF-tree until there 

is no more unhandled child node. Note that if it requires splitting at the root node level, 

the tree height is increased one.  

As it can be seen from Figure 6-9, at the beginning of every level of splitting, 

new child nodes Childnew are segregated such that those belong to the same parent are 

placed together, using sequencing, sorting and gathering functions from Thrust library. 
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The CUDA kernel compute_blockRange is then executed to determine the number of 

child nodes associated to each unique parent in Parentnew. As both determination of the 

farthest pair of child nodes (serve as seeds) and child node re-distribution have 

computational complexity of  (   ), where C’ is the number of child nodes under 

consideration, node splitting will become extremely costly when C’ is large. In order to 

avoid severe workload unbalance during splitting, we suggest identifying the most 

crowded block whose C’ exceeding a user-specified limit , and performing the distance 

computation in a separate kernel called compute_child2child_dist. Note that the 

maximum C’ can be determined from block_range, and at most only one block will have 

its distance pre-calculated due to memory space limitation. In compute_child2child_dist, 

efficient computation can be achieved by mapping C’ CUDA blocks to C’ child nodes, and 

mapping CUDA threads to elements of CF vectors during distance computation. The 

calculated distances are stored in the variable, dist_matrix, which resides in global 

memory. 
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Figure 6-9: Procedure of sub-routine ‘splitting of leaf and nonleaf nodes’. 

The actual splitting job is performed in a CUDA kernel called splitting, which 

consists of 2 key operations including determination of farthest seeds and 

redistribution, where a CUDA block is assigned to a unique parent node in Parentnew. In 

contrast to conventional BIRCH method, there may be more than one child node needs 
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to be added to the parent assigned to a CUDA block. As a consequence, the 2 key 

operations may be repeated for several times until all child nodes are accounted for. 

Supposing a CUDA block has the child node-to-child node distances pre-computed in 

compute_child2child_dist, it can perform seed determination and child re-distribution 

directly based on dist_matrix. Otherwise, it is required to compute the distance during 

execution of splitting kernel. Figure 6-10 presents a simple example of node splitting 

occurring at leaf level. It should be noted that the creation of new nodes is done 

through the global pointers, as depicted in Figure 6-8. The splitting procedure will be 

repeated until the NextChildnew is found empty. It is then required to update the CF 

vectors of all higher level nodes to reflect the adding of new samples or new child 

nodes, before returning to the ‘GPU-BIRCH’ routine. 
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Figure 6-10: An illustrative sample of node splitting and redistribution at leaf level, in 

GPU-based BIRCH algorithm. 

6.2.4. Rebuilding of CF tree  

Another sub-routine named ‘rebuilding of CF tree’ is used to compress CF-tree 

by using a larger T; it is represented as a red box in Figure 6-4. In conventional BIRCH, 

the target for CF-tree rebuilding is to free up one cluster node, as there is only one 

sample being handled at one time. In our proposed GPU approach,  samples are dealt 

with simultaneously, so it is important to first determine the number of new cluster 

nodes required. Upon completion of the CUDA kernel search_nearestCluster, the 
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number of samples requiring splitting Nsplit will be known. Here, we assume a maximum 

number of new cluster nodes to be created, which is equal to Nsplit. In other words, it is 

assumed that all candidate samples are far from each other such that every newly 

created cluster contains only single sample. Setting a maximum requirement is 

necessary as the CF-tree rebuilding is executed prior to the sub-routine ‘merging or 

splitting at cluster nodes’ and the actual number of new clusters needed is still 

unknown. This strategy avoids an additional execution of cluster_merging_splitting, but 

it also risks for an unnecessary high T as will be discussed in later Section 6.3.  Based on 

this maximum requirement, the rebuilding operation is repeated until the target is met.  

As shown in Figure 6-11, the first part of tree rebuilding is the determination of 

Dmin which is defined as the distance between two closest child nodes in the most 

crowded leaf node. In order to find the most crowded leaf node, a CUDA kernel called 

extract_N_from_leaf is employed, in which T’ CUDA threads  (where, T’  L’) are used to 

copy the number of samples N and memory address of the L’ leaf nodes to variables Nleaf 

and Lptr, respectively. In this case, arbitrary thread configuration is acceptable.  The most 

crowded leaf node can then be pushed to the front by carrying out sorting on Lptr using 

Nleaf as keys. Determination of Dmin is executed in another CUDA kernel, compute_Dmin, 

by assigning single CUDA block to examine the first element in Lptr. Thread-level 

parallelization is achieved by mapping CUDA threads to elements of CF vectors for 

calculating inter-cluster distances among all possible pairs of the child nodes. The 

minimum distance found will be output to the variable Dmin which is subsequently 

copied to CPU for calculating new threshold T.  

Given an increased T value, some of the cluster nodes can be merged and 

therefore freed for new samples in Nsplit. To account for the possibility of merging cluster 
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nodes located at different leaf nodes, we propose mapping CUDA blocks to nonleaf 

nodes at level 2, which are immediately above the leaf node. Since single global pointer 

array is shared by nonleaf nodes at all levels (from level 2 to root node level), we launch 

a number of CUDA blocks that is equal to the total number of occupied nonleaf nodes 

while executing the CUDA kernel, rebuild_CFtree. At the beginning of the kernel, a CUDA 

block will terminate its operations if the associated nonleaf node is not at level 2. 

Otherwise, it will iterate through all the child cluster nodes, one at a time. For each 

cluster node c1, it determines the nearest cluster node c2 which is not necessary under 

the same parent node. In cases where the distance between c1 and c2 is smaller than 

the new T value, the two clusters will be merged, and the corresponding parent leaf 

nodes will also be updated. Obviously, if a cluster has already been merged previously, it 

will not be examined again in the remaining iterations. 

Following the cluster merging operation in rebuild_CFtree, there are 2 CUDA 

kernels which are remove_emptyLeaf and remove_emptyNonLeaf used to remove 

empty nodes at leaf and nonleaf levels, respectively. In these 2 kernels, one CUDA block 

is mapped to one leaf or nonleaf node, in which its corresponding child nodes are 

examined sequentially. If any child node is found empty, the last available child will be 

moved to this position. In doing so, the child pointer array is compacted for future 

usage. As remove_emptyNonLeaf is performed on one level nonleaf nodes at one time, 

a CUDA block will return immediately if it finds that the assigned node is not at the 

target level.  

It should be noted that the CUDA kernel rebuild_CFtree is designed in a way 

that it ignores any merging opportunity at level higher than 2, and this may lead to the 

formation of long single branches in the tree; a long branch is formed when a higher 
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level nonleaf node consists of single child at all lower levels. To allow merging at higher 

levels, a CUDA kernel called merge_single_branch is employed. For more efficient 

computation, the existence of long single branches is first identified in the kernel 

remove_emptyNonLeaf where multiple nonleaf nodes can be examined simultaneously. 

In view of the rarity of long single branch, single CUDA block is launched for 

merge_single_branch in which one identified branch is examined at a time. Despite of 

the limited parallelism, it can avoid complication of parent node tracking which is 

needed to prevent race condition among CUDA blocks. Like rebuild_CFtree, this kernel 

also seeks to merge any 2 clusters whose inter-cluster distance is smaller than T. The 

only difference is that merge_single_branch traverses from higher level, while 

rebuild_CFtree starts from level 2. 

At this stage, the CUDA kernel search_nearestCluster needs to be executed 

once more to re-calculate the Nsplit based on the compressed CF-tree and updated T. 

Assuming the newly computed Nsplit is still larger than the available node, the entire CF-

tree rebuilding procedure will be repeated. Otherwise, it will return to the ‘GPU-BIRCH’ 

routine. 
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Figure 6-11: Procedure of sub-routine ‘rebuilding of CF tree’. 
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6.3. Performance Evaluation 

In this work, our main goal is to develop an efficient BIRCH algorithm for 

effective online monitoring of chemical process, using GPU parallelization technique. A 

series of numerical experiments, using both synthetic data and simulated process data, 

are carried out to evaluate the performance of the proposed hybrid CPU-GPU-BIRCH 

algorithm. In an online monitoring application, the main function of BIRCH is to provide 

accurate summary of large data, which in turn allows the construction of correct data 

models for different process states. The accuracy of data summarization can be 

measured based on a testing dataset which has not seen by BIRCH, by comparing the 

known and estimated process state. Considering the true labels and predicted labels as 

2 partitions (referred to as P1 and P2), Jaccard coefficient (JC) can be used to measure 

the accuracy of clustering and also data summarization. JC is defined as follows, 

   
   

           
 ( 6-1 ) 

where, n11 refers to the number of pairs of objects which are in the same cluster in both 

P1 and P2, n10 denotes the number of pairs of objects assigned to the same cluster in P1 

but not in P2, n01 is the number of pairs of objects assigned to the same cluster in P2 but 

not in P1. Note that the computation of JC is expensive, as it involves complexity of 

O(N2). 

Moreover, in order to validate the effectiveness of the hybrid BIRCH algorithm 

in detecting slow process change, a gradual change is simulated in both synthetic and 

simulation data. To avoid biases towards high dimensional data, our performance 

validation is based on normalized dissimilarity value. As clusters are used as the data 

models     , normalization can be achieved by dividing the dissimilarity value d by data 
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dimensionality. The sensitivity of gradual change detection of the hybrid method will be 

established based on the sequential method. It should be noted that speedup realized 

on individual data window is of higher interest to the online use of BIRCH; whereas an 

overall speedup is more relevant for offline BIRCH application, which is used to generate 

clustering seeds.   

Experimental results reported in this work are obtained based on a computing 

system containing 64-bit Intel Xeon CPU with processor speed of 3.20GHz, 12 GB RAM, 

and an Nvidia Quadro2000 GPU card. Taking advantage of the well-established 

functionality offered by MATLAB, the two algorithms, CPU-BIRCH and CPU-GPU-BIRCH, 

are wrapped into two separate MATLAB MEX functions. While auxiliary computations, 

including post-BIRCH clustering, JC computation, dissimilarity measurement, can also be 

executed on MATLAB platform. Direct application of MATLAB k-means function is 

especially straightforward. Furthermore, the function provides special feature of 

ignoring cluster seeds that are too far from the samples, by setting parameter 

‘emptyaction’ as ‘drop’. This feature prevents rigid clustering effect of using cluster 

seeds, i.e. it is not necessary to form k clusters if the data are collected from number of 

process states smaller than k.  

The algorithm parameters employed in the experiments are specified as 

below. Euclidean distance is used in both approaches throughout all the experiments; 

the maximum total number of node M’ is set at 15000; the size of delay-split variable for 

sequential approach is equal to the batch size of the GPU approach; the initial batch size 

for GPU-BIRCH is 64. A further point is that both synthetic data and simulation data is 

normalized to the range [0, 1] prior to analysis. As online data is normalized based on 
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the minimum and maximum values determined in the historical dataset, the normalized 

values could be found outside the range of [0,1]. 

6.3.1. Testing using synthetic data 

Synthetic data offers the flexibility in covering a wide range of dimensionality, 

number of cluster, sample size, and deviation mode. Considering the use of Euclidean 

distance in BIRCH, normally distributed data is appropriate for evaluating the 

performance of the proposed approach. In (Zhang et al., 1996), the authors propose 

using the concept of grid for locating cluster centers. This strategy assures non-

overlapping clusters, but its application for generating high dimensional data is rather 

complicated. In this work, the cluster centers are allocated along the diagonal path. A 

simple example is given in Table 6-1, where there are 3 clusters of data with 

dimensionality of 4. Besides the location of centers, variance is another parameter 

required for generating normally distributed data. The variance is chosen randomly from 

the range of [0.7, 1.5] for each cluster generation. Upon completion of data generation, 

the data is normalized across all clusters to the range of [0, 1]. In this work, we use 4 

clusters for synthetically generated data. 

Table 6-1: An example showing 4 cluster centers allocated along the diagonal plane. 

 

A number of synthetic datasets are generated to assume problems with 

different number of normal process states (or number of clusters) and dimensionality. 
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The total size of each dataset is set at 10 GB, and the number of patterns or samples is 

computed as follows, 

               
      

           
 

( 6-2 ) 

where, d is the dimensionality and data size equal to 4 bytes (i.e. single precision data) is 

used throughout this work. Due to the expensive computational cost of JC, only 10% of 

the dataset (i.e. about 1 GB) is used as testing data. For small d, the number of samples 

can be extremely large, so a smaller fraction of 0.1% will be used for d below 256. The 

remaining 90% or 0.99% of data serves as the training data. At both online and offline 

stages, 0.5 GB is used as the window size.  

The performance evaluation on synthetic data is carried out in 2 parts, which 

include studying the effect of parameters on computational performance in offline 

BIRCH applications, and investigating BIRCH performance in detecting gradual change 

during online monitoring. 

6.3.1.1. Effect of parameters 

First of all, we study the effect of several parameters on the performance of 

both sequential and hybrid BIRCH algorithms. Due to the complex operations involved in 

CUDA kernels, optimal thread configurations are determined through a series of 

numerical experiments. From the discussion on CUDA kernel design, we know that the 

number of blocks used in each CUDA kernel is determined dynamically by the number of 

occupied nodes, splitting samples, and etc. Therefore, block size is the only variable 

under evaluation in the experiments. The CUDA kernels are tested from the minimum 

block size i.e. 32 to the maximum allowable block size which can be 1024 or smaller. 

Although block size of 1024 is the device limitation for GPU with compute capability of 
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2.X, CUDA kernels which assign each thread with private space in shared memory may 

be limited to a smaller block size. It can be seen from Table 6-2, the overall computing 

time is significantly reduced as the block size of search_nearestCluster decreases from 

the maximum 1024 to 512, and it reaches the optimal performance at block size 256. 

Apart from that, block sizes of all other CUDA kernels do not have notable impact on the 

overall efficiency performance. Hence, the maximum block size is generally chosen for 

these CUDA kernels, as highlighted in yellow in Table 6-2. Note that the experimental 

results reported in Table 6-2 are based on dimensionality of 1792. 
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Table 6-2: Performance of BIRCH-related CUDA kernels at various thread 

configurations. 
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The maximum number of nodes M’ allowable in CF-tree influences the 

performance of BIRCH in terms of the number of tree rebuilding, final threshold value, 

and also total computing time. Table 6-3 summarizes the performance of both CPU and 

hybrid BIRCH algorithms at varying M’, in the range of [2500, 150000]. More stable 

performance is achieved by the hybrid BIRCH method, by having gradually increasing 

computing time, final number of clusters, and final threshold value, as M’ increases. On 

the contrary, CPU BIRCH performance is rather unpredictable, especially for the total 

computing time and final number of clusters. Both methods show comparable final 

threshold values and achieve perfect clustering accuracy (i.e. JC=1). Note that the 

experimental results reported in Table 6-3 are based on dimensionality of 1792, and 

thread configurations determined from Table 6-2. 

Table 6-3: Effect of maximum number of nodes on CPU and hybrid BIRCH algorithms.  

 

The delay-split feature in CPU BIRCH algorithm has similar function to the 

batch processing feature in hybrid approach; that is to allow peeking into future 

samples. Hence, they are examined jointly for comparison purpose. The experimental 

results presented in Table 6-4 have once again validated the stable performance of GPU-

based approach. As the batch size increases, steady increasing trends are observed for 

final number of clusters obtained by GPU approach. Larger batch size provides farther 
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view into the future samples, which promises for better arrangement of nodes in the CF-

tree, thus offering finer clusters with smaller T. On the other hand, the effect of delay-

split size is less predictable, in CPU approach. The final number of clusters obtained 

from CPU-BIRCH is much smaller than those obtained from the hybrid approach, and 

this could be a problem for further data analysis which may require certain volume of 

samples. Both methods show comparable final threshold values and achieve perfect 

clustering accuracy (i.e. JC=1), in all the experiments shown in Table 6-4. Note that the 

experimental results reported in Table 6-4 are based on dimensionality of 1792, optimal 

thread configurations obtained previously, and M’=15000. 

Table 6-4: Effect of delay-split size (or batch size) on CPU-BIRCH (or hybrid BIRCH) 

algorithm. 

 

In this work, the last parameter to be evaluated is data dimensionality. As has 

been mentioned early, the CUDA kernels are designed for addressing large dimensional 

problems, which is achieved by mapping CUDA threads to different variables (or 

elements) of a sample (or CF-vector). It can be seen from Table 6-5 that the computing 

time consumed by hybrid method generally increases as dimensionality decreases. This 

can be explained by the fact that the number of samples becomes larger at lower 

dimension, so as to make up for the total 10 GB data size, according to Equation ( 6-2). 

Although there is no obvious trend observed from the CPU approach, the computing 
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time is generally getting larger as dimensionality increases. It can be attributed to the 

repeated access of the same sample and tree nodes, for instance, the same sample is 

accessed during searching, merging or splitting, and parent node updating, and some 

nodes in the CF-tree may be accessed more than one time for searching and updating. 

As sequential method iterate through every dimension, increasing in dimensionality has 

dominant effect. Furthermore, the number of cluster nodes obtained from CPU-BIRCH 

tends to be lesser, particularly at dimension 256, 512, 768, and 1280. A possible reason 

for the unstable performance of CPU-BIRCH is that it is more sensitive to the sequence 

of data order. The exceptionally high threshold value at dimension 256 could be due to 

the same reason.  

The proposed hybrid BIRCH algorithm outperforms the sequential counterpart 

by providing finer cluster nodes, enhanced computational efficiency with speedups 

range from 1.75 to 30.81, and comparable clustering accuracy where both methods  

achieve JC=1. Although at low dimension of 32, the GPU-based BIRCH is slower than the 

sequential method, satisfactory accuracy is still obtained. Note that the experimental 

results reported in Table 6-5 are based on batch size (or delay-split size) of 4800, 

M’=15000, and optimal thread configurations obtained previously; except that smaller 

block sizes containing 64 threads are used for low dimensions of 32 and 64. 
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Table 6-5: Performance of the CPU and hybrid BIRCH algorithms at various 

dimensionalities. 

 

6.3.1.2. Online BIRCH 

The synthetic dataset which is used for assessing online monitoring 

performance of BIRCH is characterized by high dimensionality of 2048 and 4 process 

states (or clusters); 2.4GB data is generated for each cluster. Based on data window size 

of 0.5GB, the entire 9.6GB data is distributed into 18 data windows with some windows 

contain data belonging to the same cluster while others consists of data mixture, as 

summarized in Table 6-6. A simulated gradual change is effected on the first cluster 

whereby the initial half of the 2.4GB data is collected from normal operating condition, 

while the later half demonstrates a slow change in the first dimension. The shifted 
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process data is seen starting in the middle of second window till fifth window. A 

stepwise increment of 0.05% with 5000 samples size is used. 

Table 6-6: True cluster membership of synthetic data in online data windows. 

 

We examine the performance of BIRCH in detecting gradual change based on 

the dissimilarity measurements obtained from the 18 data windows, as plotted in Figure 

6-12, for both the CPU and hybrid BIRCH approach. It can be seen from the region 

marked by 2 vertical green lines that both the sequential and hybrid BIRCH approaches 

successfully reflect the process change by showing increasing trends of dissimilarity 

values. However, significant dissimilarity values are also seen in data windows outside 

the gradual change range. For data window number 2 and 11, the high dissimilarity 

values detected by the CPU-BIRCH are caused by the abnormally small number of 

cluster nodes resulted from CF-tree, as given in Table 6-7; where there are only 2 and 3 

cluster nodes obtained, respectively. In this case, the data is over-compressed and 

resulting in information lost. On the other hand, at data window number 9, both 
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approaches show a sudden jump in dissimilarity value at the start of cluster ID 3. 

Investigation of the raw data reveals that this particular window contains an extremely 

skewed data distribution by having 0.01% (or 7 out of 55339) data belonging to cluster 

ID 3, while the remaining pertaining to cluster ID 2. Given these 7 data points are found 

slightly far from the center of cluster ID 3 detected offline, the dissimilarity value 

computed from them is not representative of the real process behavior.  

Apart from the one-off deficiency at data window ID 9, GPU-based BIRCH show 

better performance than the sequential as it achieves more stable and unnoticeable 

dissimilarity values at data windows corresponding to normal operation, provides finer 

cluster nodes, and also attains enormously enhanced computational speedups ranging 

from 6.17 to 31.58. The superior performance is attributed to the algorithmic design of 

GPU-based BIRCH, wherein it is allowed to peek into a batch of data at each time. By 

having a wider view of the incoming data, the algorithm is able to generate a tighter and 

well-organized CF-tree. Though the delay-split feature in CPU-based BIRCH provides a 

similar functionality, once the delay-split array is fully-occupied, there will be no more 

viewing into future data.  
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Figure 6-12: Dissimilarity values computed from the 18 synthetic data windows, for both 

CPU and hybrid BIRCH online application. 
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Table 6-7: Online performance of the CPU and hybrid BIRCH algorithms in 18 synthetic 

data windows. 

 

6.3.2. Application to simulated oil and gas production process 
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A Kongsberg simulator of oil and gas offshore production process is employed 

in this work. Kongsberg has received credibility for distributing process simulators and 

real-time systems for oil and gas fields. An important reason for choosing the Kongsberg 

simulator is that it represents an adequately complex and realistic system. Essentially, 

oil, water and gas travel from the reservoir to the surface through the oil wells, under 

their own pressure or with the help of water or produced gas re-injection. At the 

surface, production from the well is routed to a separation system from which it is 

segregated into 3 basic components, i.e. oil, gas and water. As presented in Figure 6-13, 

the separation system comprises several key subsystems, which include oil separation, 

gas compression, gas dehydration, and gas reinjection sub-systems.   

These key sub-systems are discussed briefly in the following. The well 

production is firstly sent to a conventional three-stage process, at a sequentially 

reduced pressure in each stage, namely High Pressure Separator, Medium Pressure 

Separator, and Low Pressure Separator. Produced water is separated at the H.P. 

separator while final dewatering of crude oil is carried out at a Coalescer. Crude 

generated from H.P. separator is further refined at M.P. and L.P. separators to meet 

certain specification, before it is collected at the oil storage tanks. The test separator is 

available to allow individual wells to be examined. Produced water which is released 

from H.P. separator is cleaned and degassed to required levels prior to discharging to a 

disposal well. In Kongsberg oil and gas simulator, a single gas processing train is 

employed in which gas collected from the oil separation system is compressed and 

dehydrated prior to injection or export into gas pipeline. The process model uses a two-

stage compression system, where each stage consists of a cooler, a scrubber and a 

compressor. Based on the outlet pressure of the scrubber, oil output from the scrubber 

is sent back to either H.P. or L.P. separator. Gas at increased pressure is then sent to the 
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gas dehydration system whereby further water removal is achieved on a glycol 

contactor unit accompanying with cooler and scrubbers. The refined gas goes through 

another compressor prior to entering the gas export pipeline or gas re-injection system 

where further compression is required.  

There is a total of 1701 process variables comprising of various measurements 

(e.g. temperature, pressure, flow, level), and opening positions for various valve types 

(e.g. choke valve, flow wing valve, bypass valve, gate valve, isolation valve). In this work, 

process data of all 1701 variables is collected at the rate of 3 milliseconds, using 

Microsoft Excel. In view of real-world gradual change detection applications, it would be 

much more practical to make use of existing process data instead of collecting a 

separate dataset. In general, fast data generation speed is required especially for the 

purpose of process control and monitoring, data rate of 3 milliseconds is thus assumed 

here. 
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Figure 6-13: Plant overview of Kongsberg simulator for oil and gas production process

11
. 

A case study simulating 7 normal process states is employed, in which the 

process states are associated to different combinations of oil wells, as summarized in 

Figure 6-14. The overview of Kongsberg wells system is given in Figure 6-15. There are 

approximately 70,000 samples collected for each process state. As we are interested in 

extremely large data size, the sample size is doubled to 140,000 (or 1GB) by adding 

white noise at signal to noise ratio of 70. Once the normal operation data has been 

collected for the 7 process states, the opening of the choke valve positioned at the 

outlet of well 11 is intentionally reduced to simulate a fouling and clogging scenario in 

process state E. Note that choke valve is a kind of control valve which generally used in 

oil and gas production wells for controlling the flow of well fluids. The reduction of valve 

opening is carried at the rate of 5% for each 10,000 samples until it reaches 0%. As the 

original opening under normal operation is 50%, there are additional 100,000 samples 

                                                           

11
 Courtesy: (Kongsberg) 



186 
 

collected for cluster E. Again, the simulated data is quadruplicated through adding 

noise. As a result, there are a total of 400,000 samples (or 3.2GB) representing a slow 

change in the oil and gas production process. In GPU-based BIRCH, all the data is 

concatenated with 27 columns of zeros (i.e. padding) in order to increase dimensionality 

from 1701 to 1728, as the latter is divisible by 32 for optimal performance. All the 

experiments are performed using 4800 batch size (or delay-split size), 150000 M’, and 

optimal thread configurations identified previously. 

 
Figure 6-14: Well opening combinations associated with the 7 normal process states, 

using Kongsberg simulator.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

C 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

D 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

E 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

G 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

total number of opened wells = 6

total number of opened wells = 8

well # (0 means close; 1 means open)
Process state ID



187 
 

 
Figure 6-15: Overview of the well system in the Kongsberg simulator

12
. 

First of all, we look at the offline performance of BIRCH in generating cluster 

seeds and data models for the 7 normal process states. Given data window size of 0.5GB 

and 0.1% of total samples is separated out as testing samples, the 7 GB normal 

operating data is partitioned into 14 windows. The GPU-based BIRCH improves the 

computational efficiency of the sequential method by 10.06 times, as shown in Table 

6-8. Furthermore, comparable clustering quality of JC=1 is also achieved by the hybrid 

approach.  

The 7 cluster models obtained offline are then used for determining 

dissimilarity values during online monitoring. Note that the shifted data is divided into 5 

windows with each consists of 0.64GB data. It can be seen from Figure 6-16 that both 

the sequential and hybrid methods successfully detect the gradual fouling effect of the 
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 Courtesy: (Kongsberg) 
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choke valve, by showing increasing dissimilarity values across the 5 data windows. 

Moreover, GPU-based method also demonstrates computational speedups ranging from 

3.88 to 11.31. The achieved acceleration prevents data backlog and ensures timely 

feedback of anomaly. Although the threshold value obtained by GPU-BIRCH at the 

second window is slightly high, the amount of cluster nodes is still sufficiently large to 

serve as representative summary of the raw data. 

 

Table 6-8: Offline performance of the CPU and hybrid BIRCH algorithms, based on 

Kongsberg simulation data. 

 

 
Figure 6-16: Dissimilarity values obtained from the CPU and GPU-based approaches, 

based on Kongsberg simulation data.  
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Table 6-9: Online performance of the CPU and hybrid BIRCH algorithms, based on 

Kongsberg simulation data. 

 

6.4. Summary 

In modern chemical plants, effective online process monitoring requires 

handling of high dimensional data stream in an efficient manner. Although BIRCH is an 

effective clustering algorithm which is scalable to extremely large data, its 

computational speed is still unsuitably slow for online application. In this work, we 

propose a BIRCH-based online monitoring scheme, where the key function of BIRCH is to 

provide representative data summaries (in terms of micro clusters) for each data 

window. The summaries can then be further compressed into data models which can be 

used for detecting slow process change. We develop a GPU-based BIRCH algorithm, 

whereby the 2-level parallelization is essentially achieved by mapping CUDA blocks to 

samples or nodes, and mapping CUDA threads to dimensions. In order to overcome the 

limited parallelism of tree structure as well as to better utilize GPU resources, we 

incorporate several supporting features like global node pointers, memory pre-

allocation, sorting, compacting, scanning, and batch processing of data.  

The GPU-based BIRCH is evaluated using both synthetic and simulation data, 

where the original sequential method serves as the performance basis. Experimental 
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results show that GPU-based method provides more stable performance, in terms of the 

number of clusters and dissimilarity values (during online test). Note that stable 

dissimilarity values are crucial to prevent confusion or false alarm during process 

monitoring. Moreover, the hybrid BIRCH approach achieves satisfactory computational 

speedup at various parameter values e.g. total number of tree nodes, dimensionality, 

batch size; the maximum speedups achieved are 31.58. The only exception is seen at 

low dimension of 32. It has also been observed that the hybrid BIRCH method is 

exceptionally efficient when dealing well-separated clusters, as in the case of synthetic 

data. This could be explained by the fact that there is higher number of CF-tree 

rebuilding required when data is noisy and over-lapping.  
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Chapter 7. Conclusions and Future Work 

7.1. Conclusions 

Data mining is a computational tool used for extracting useful information 

from massive amounts of process data. The mined information which can be in the 

forms of models, patterns, or rules provide insights into the process, and enables 

accurate prediction about the process state, or detect anomaly. These offer 

opportunities for effective planning, process operations, process monitoring and control 

among others. However, conventional data mining algorithms which ignore the slow 

changes of real-world processes fail to sustain optimal performance. Real-time data 

mining seeks to overcome this obstacle through extracting timely, up-to-date 

information, continuously. As many data mining algorithms are computationally 

unsuitable for this task, real-time data mining applications remain challenging, 

particularly when the data involved is of high dimension, large size, and containing 

transients. GPU parallel computing technology offers enormous computing power at 

low cost and low power consumption and provides a promising and practical solution to 

real-time data mining problems. This thesis has sought to develop efficient GPU-based 

data mining algorithms for real-time applications. In particular NVIDIA’s CUDA-enabled 

GPU was employed. We focused on three important chemical process applications, 

continuous optimization, real-time image analysis and data stream clustering.  

First, we proposed a systematic procedure for developing efficient GPU-based 

Simulation-Optimization, Sim-Opt algorithms. A comprehensive structural analysis of 

Sim-Opt problems was presented, in which various types of data parallelism for 

different choice of techniques were revealed. Implementation of the proposed 

procedure was illustrated on a variable selection monitoring problem, where GA and 
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PCA were used as the optimization and simulation tool as proposed in the original work 

(Ghosh, 2014). For optimal efficiency, 5 CUDA kernels were constructed for executing 

the tasks of PCA modeling, objective evaluation, and non-dominated sorting. Major data 

parallelisms exploited in these CUDA kernels include concurrent handling of candidate 

solutions in GA, and simultaneous operations on training and testing samples. The 

excellent efficiency enhancement, up to 102 speedups, achieved by the proposed CPU-

GPUGA-PCA algorithm was demonstrated through the benchmark Tennessee Eastman 

Challenge. A major limitation of the proposed framework is that GPU codes of many 

popular chemical process simulators such as Simulink, Aspen HYSYS, PROSIM, gPROMS 

are still not available both commercially and non-commercially. As the process units and 

components used in these simulators are usually a black box to the users, it is extremely 

difficult and tedious to construct the GPU counterpart. Therefore it might not be directly 

useful to the industry practitioners who rely heavily on those handy simulators on daily 

operations.  

Second, a real-time multivariate image analysis solution was presented for 

particle size estimation, using GPU computing. Besides using the pixel-level 

parallelization which is a common strategy of standard GPU-based image processing 

techniques, our main contributions in this work included combining multiple feature 

extractors in single CUDA kernel to avoid unnecessary memory access, and exploring the 

use of GPU computing for multi-way PCA. Desirable real-time performance of the 

proposed GPU-based algorithm was demonstrated in a batch crystallization process, in 

which total computing time was reduced from 0.77 to 0.09 seconds per image; that is 

equivalent to 8.74 speedups. The proposed algorithm assumes that the images are 

stored in the host main memory and required to be moved to GPU memory for GPU 

processing. Since GPU is a graphics card and it should be able to directly read images 
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without going through the host memory, an improved version of GPU-MIA algorithm 

which is more computationally efficient can be obtained by incorporating such feature. 

Third, a GPU-based online process monitoring scheme was proposed, wherein 

a scalable clustering algorithm called BIRCH was used to provide fine and accurate data 

summaries for effective model construction. In the proposed scheme, BIRCH algorithm 

was ported to GPU so that it can deal with high dimensional and fast-arriving online 

process data efficiently.  The massive computing power of GPU was exploited primarily 

by processing data in batches, and treating tree nodes at the same level concurrently. 

Moreover, several supporting features like global node pointers, memory pre-allocation, 

sorting, compacting, and scanning of tree nodes, are proposed to overcome the 

limitation of tree structure in regards to data parallelism. Extensive testing of the 

proposed GPU-based approach using both synthetic and simulation data clearly showed 

its ability to provide stable, accurate and timely process monitoring performance. 

Furthermore, the proposed approach demonstrated much faster computational speed 

than the conventional CPU-based BIRCH approach, with speedups of nearly 32x.  

A major constraint of BIRCH in continuous monitoring application is that it 

does not include the forgetting mechanism, thus it is sensitive to outlier. For that 

reason, in the proposed approach a new model is built for each data window. However, 

the selection of window size can be tricky. On the one hand, data window which is too 

small is also sensitive to outlier; on the other hand, data window that is too big tends to 

include outdated process information. Hence, an improvement of the proposed GPU-

BIRCH approach can be achieved by replacing the BIRCH algorithm with its derivative 

clustering methods e.g. CluTree and CluStream. As it has been mentioned previously, 

BIRCH is used in this work because it serves as the fundamental basis to many other 
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data stream clustering methods, and it is relatively simpler to implement as an initial 

work in this field.     

7.2.  Future Work 

In this section, some recommendations for future research extension are 

presented. 

7.2.1. GPU performance on double precision computation 

Experimental results reported in this thesis are entirely based on single 

precision (SP) computation for both CPU and GPU-based approaches. In chemical 

process operations, data collected from the plant e.g. sensor measurement, 

chromatogram, is usually noisy, thus SP computation is generally adequate. However, 

there are also cases where precise data analysis is crucial for ensuring safety or 

profitability. Process control applications in pharmaceutical plants is a classic example. 

As double precision (DP) calculations are fully supported by modern GPUs like NVIDIA’s 

Quadro 2000, its implementation at first sight would appear to be straightforward. 

Existing GPU works which employ DP are mainly restricted to molecular and fluid 

dynamic simulation (Baghapour et al., 2014; Scott Le Granda et al., 2013; Zaspel & 

Griebel, 2013), in regards to chemical engineering applications. Since the data storage 

requirement of DP data and computing power consumed by DP operations are 

approximately double of their SP counterpart, it is necessary to perform thorough 

investigation and devise optimal GPU strategies for DP applications. 

7.2.2. Improvement of input data quality 

The synthetic data or simulation data used for performance evaluation in 

Chapter 4, Chapter 5, and Chapter 6 contain limited noise and few outliers, thus simple 

data normalization is adequate. Although data generated from Kongsberg simulator 
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resembles closely to real-world process data, the data collection is done in a way that 

only steady-state data is included. To thoroughly validate real-world applications of the 

proposed approaches, comprehensive data cleaning and pre-processing is needed for 

dealing with missing, noisy, and corrupted data. General data cleaning techniques have 

been widely reported in literature, including (Andritsos et al., 2006; Jeffery et al., 2006; 

Xiong et al., 2006; Žliobaite & Gabrys, 2014). Based on these studies, the development 

of data cleaning techniques, which are suitable for large-scale data mining of chemical 

process operations, can be explored in the future. 

7.2.3. Integration with efficient data management system  

In this thesis, efficiency performance evaluation is established based on the 

assumption that process data is always ready. However, from the point where data is 

generated at sensor or analytical instrument until it arrives at the computing system 

where data analysis is performed, it may take a time longer than the data analysis itself. 

Hence, efficient data management is another important issue that needs to be 

addressed in the future, in order to ensure timely capture of process information. 

Essentially, it requires two key components - a fast data network and an efficient 

database system. Considering the fast generation speed and large volume of plant data, 

traditional database systems which are designed for handling static data are likely to be 

unsuitable for the real-time data mining applications; more advanced database systems 

like the data stream management system discussed in (Tu et al., 2013) should be 

evaluated.  

7.2.4. Multi-GPUs computing system 

In this age of big data, the volume of data generated in modern chemical 

industries is growing exponentially due to advances in sensor technology, analysis 
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technique and expansion of analysis scope from plant-wide to regionally or even 

globally, the memory space in a standard GPU device can be easily exceeded. As long as 

the data mining algorithm is not scalable, once data size exceeds the main memory 

space of GPU, the data needs to be moved in and out of GPU. Memory transfer between 

the host and GPU is extremely expensive, and it can severely deteriorate the 

performance of GPU applications. In this case, multi-GPUs computing systems emerge 

as an alternative solution to preserve efficiency. On the other hand, although scalable 

algorithms such as BIRCH which is discussed in Chapter 6 are capable of handling 

unlimited amount of data theoretically, they may fail to meet the real-time requirement 

if data size is too large. Therefore, multi-GPUs computing system may eventually 

become essential for future data mining applications. High-throughput omics data 

processing is one of the potential applications as it involves enormously growing data 

size. For instance, the Next Generation Sequencing technique can analyze up to billions 

of base pair per run, and the upcoming Third Generation Sequencing technique is 

aiming at further improvement of throughput.   
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