

REAL-TIME DATA MINING FOR PROCESS OPERATIONS

USING GRAPHICS PROCESSING UNIT (GPU)-BASED HIGH

PERFORMANCE COMPUTING

LAU MAI CHAN

NATIONAL UNIVERSITY OF SINGAPORE

2014

REAL-TIME DATA MINING FOR PROCESS OPERATIONS

USING GRAPHICS PROCESSING UNIT (GPU)-BASED HIGH

PERFORMANCE COMPUTING

LAU MAI CHAN

(B. TECH., NATIONAL UNIVERSITY OF SINGAPORE)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMICAL AND BIOMOLECULAR

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

i

Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Lau Mai Chan

First submission on 8th August 2014

Revised on 4th March 2015

ii

Acknowledgements

Foremost, I would like to express my very great appreciation to Professor

Rajagopalan Srinivasan and Professor I. A. Karimi, my thesis supervisors for their patient

guidance, continuous support and valuable advice throughout this research work.

Without their persistent help this thesis would not have been possible.

Besides my supervisors, I would also like to offer my special thanks to my

Thesis Advisory Committee, Prof. Lakshminarayanan Samavedham and Prof. Arthur Tay,

for their useful critiques, insightful comments and encouragement.

I want to thank the departmental staffs, Mdm. Samantha Fam, Mr. Kok Hong

Boey, Ms. Swee Yoke Woon, Ms Vanessa and Mr. Rajamohan, for being helpful and

friendly. I take this opportunity to thank my fellow lab mates in Intelligent Applications

in Chemical Engineering (iACE) group, Sathish Natrajan, Kaushik Ghosh, and Sha Meng

for their generous help and support. Also I thank my friends at Institute of Chemical &

Engineering Sciences (ICES), Arief Adhitya, Balaji Balgurunathan and Jonnalagadda

Sudhakar.

Finally, I would like to express the deepest gratitude to my parents, my sisters

and my brother for their unconditional support throughout my life. To my fiancé Daniel,

who has always been very supportive and caring, I thank you for your patience and love.

iii

Table of Contents

Declaration .. i

Acknowledgements ... ii

Table of Contents ... iii

Summary.. vi

List of Tables .. ix

List of Figures .. x

Acronym Table .. xiv

Chapter 1. Introduction ... 1

1.1. Background and Motivation... 1

1.2. Challenges of Real-Time Data Mining .. 3

1.3. GPU-HPC Solution. Why? .. 4

1.4. Research Scope and Contributions .. 6

1.5. Thesis Organization ... 7

Chapter 2. Literature Review ... 9

2.1. Overview of Knowledge Discovery and Data Mining (KDD) 9

2.2. Introduction to Data Mining .. 11

2.3. Classification of Data Mining Methods ... 13

2.4. Real-Time Data Mining and Its Desirable Characteristics 15

2.5. Continuous Optimization ... 17
2.5.1. Simulation-optimization... 20

2.6. Continuous Pattern Recognition .. 24
2.6.1. Image analysis .. 26
2.6.2. Data clustering ... 30

Chapter 3. GPU-based Parallel Computing Technique 39

iv

3.1. CUDA-enabled GPU Architecture - Hardware 42

3.1.1. Memories ... 48

3.2. CUDA Programming Model - Software .. 52
3.2.1. CUDA blocks execution .. 54
3.2.2. CUDA threads execution ... 54

3.2.3. Memory access ... 58

3.3. CUDA Programming Issues... 61
3.3.1. Guidelines for developing CUDA-based GPU program 62
3.3.2. CUDA kernel design .. 65
3.3.3. Performance optimization .. 69

3.4. GPGPU Applications ... 72
3.4.1. Optimization... 73
3.4.2. Pattern Recognition .. 76

Chapter 4. Hybrid CPU-GPU Sim-Opt for Continuous Optimization 85

4.1. Structural Analysis of Sim-Opt Techniques 86

4.2. Systematic Procedure for Developing Hybrid CPU-GPU Sim-Opt

Algorithm 89

4.3. GPU Application to the Variable Selection Problem 91
4.3.1. GA-PCA algorithm .. 93

4.3.2. GPU implementation.. 95

4.4. Case Study: The Tennessee Eastman Challenge Problem 106

4.4.1. Comparison of monitoring performance .. 108
4.4.2. Efficiency improvement achieved by hybrid CPU-GPU approach . 110

4.5. Summary .. 117

Chapter 5. Hybrid CPU-GPU Multivariate Image Analysis Algorithm ... 119

5.1. MIA for In-Situ Particle Size Estimation of Crystallization Process120
5.1.1. Feature extraction ... 121

5.1.2. Multi-way PCA and statistical image model 122
5.1.3. Image segmentation ... 123
5.1.4. Post-segmentation image analysis ... 123
5.1.5. Boundary refinement and particle size estimation 124

5.2. GPU Implementation of MIA .. 124

5.3. Case Study: Real-Time Particle Size Estimation in Batch

Crystallization of Monosodium Glutamate Monohydrate 134
5.3.1. Accuracy of Particle Size Estimation ... 137
5.3.2. Real-Time Computational Efficiency of Hybrid CPU-GPU-MIA

Algorithm .. 140

v

5.4. Summary .. 143

Chapter 6. GPU-based Data Stream Clustering for Continuous

Monitoring of Process Behavior .. 144

6.1. BIRCH Application to Online Process Monitoring for Gradual

Change Detection .. 145

6.2. GPU Implementation ... 148
6.2.1. Overview of the hybrid algorithm .. 149
6.2.2. Merging or splitting at cluster nodes.. 155
6.2.3. Splitting of leaf and nonleaf nodes .. 160

6.2.4. Rebuilding of CF tree ... 164

6.3. Performance Evaluation ... 169
6.3.1. Testing using synthetic data ... 171
6.3.2. Application to simulated oil and gas production process 182

6.4. Summary .. 189

Chapter 7. Conclusions and Future Work ... 191

7.1. Conclusions .. 191

7.2. Future Work ... 194
7.2.1. GPU performance on double precision computation 194

7.2.2. Improvement of input data quality ... 194
7.2.3. Integration with efficient data management system 195

7.2.4. Multi-GPUs computing system .. 195

Bibliography .. 197

Publications based on this work .. 215

vi

Summary

Data mining is a computational tool which is used to transform massive

amount of process data into useful forms like models, patterns, or rules. The mined

information can provide insights into the underlying process behavior, make (accurate)

prediction about future process states, or detect anomalies, thus offering opportunities

for enhanced process operations. In order to sustain optimal operational performance,

the changing process behavior in real-world chemical processes needs to be captured

accurately and efficiently. This thesis strives to explore the use of Graphics Processing

Unit (GPU) parallel computing for developing computationally efficient data mining

algorithms which are capable of handling large-scale, real-time chemical process

problems. The emphasis of this thesis is on three important applications - continuous

optimization, real-time image analysis and data stream clustering.

GPU is a computationally intensive device which consists of massive amount of

processing cores. The processors are structured in a way that the same set of computing

instructions can be executed on different data elements, in a parallel manner. Such data

parallelization allows GPU to achieve significant enhancement in computational

efficiency. As costly memory transfer between Central Processing Unit (CPU) and GPU is

necessary for GPU implementation, it is important to ensure that there is sufficient

amount of data parallelism for an overall satisfactory computational performance. On

top of that, adequate understanding of GPU architectural and programming model, e.g.

the size and access pattern of different GPU memories, are also important for better

utilization of device resources and for developing highly efficient programs.

First, a systematic procedure for developing efficient GPU-based Simulation-

Optimization (Sim-Opt) algorithms is proposed. By performing a comprehensive

vii

structural analysis on Sim-Opt, we successfully reveal the various types of data

parallelism for GPU acceleration. Based on these insights, a variable selection problem

using Genetic Algorithm has been demonstrated on the proposed GPU-based

procedure. In developing the GPU-based algorithm, we exploit data parallelism from

independent operations among the candidate solutions in each GA generation, and also

from the training and testing samples during PCA modeling and testing.

Next, a real-time multivariate image analysis solution is presented, wherein

real-time particle size estimation is achieved by accelerating the algorithm on GPU.

Besides using the pixel-level parallelization which is a common strategy of standard

GPU-based image processing techniques, we also combine multiple feature extractors in

single GPU function or kernel so as to avoid unnecessary memory access, and explore

the use of GPU computing to accelerate multi-way principal component analysis (PCA).

Lastly, we propose a GPU-based online process monitoring scheme, in which a

scalable clustering algorithm is developed to provide fine and accurate data summaries

for effective model construction. The proposed scheme is particularly applicable to

process monitoring problems which involve large amount of process variables and fast-

arriving online process data. The massive computing power of GPU is exploited primarily

by processing data in batches, and treating tree nodes at the same level concurrently.

Besides, several GPU supporting features like global node pointers, memory pre-

allocation, sorting, compacting, and scanning of tree nodes, are also proposed in this

work. Memory pre-allocation of tree nodes provides a straightforward solution to the

ineffective memory use in the original method which allocates tree nodes dynamically.

Global node pointers which are associated to the pre-allocated tree nodes are a handy

tool for nodes re-allocation, without actually moving their physical memory locations.

viii

Sorting and scanning of tree nodes facilitate the identification of similar nodes, e.g.

identifying nodes that are under the same parent node, which is important for parallel

execution; while compacting is mainly used to segregate occupied pointers from those

that are unoccupied.

The abovementioned developments have been tested extensively for accuracy

as well as computational efficiency, using various case studies - the Tennessee Eastman

challenge problem, batch crystallization operation, simulated oil and gas production

operation.

ix

List of Tables

Table 3-1: Characteristics of the 6 CUDA memories; the values shown are relevant to
GPU with compute compatibility of 2.X. .. 51

Table 3-2: Specifications of NVIDIA’s Quadro 2000 GPU device. 52

Table 3-3: Programming model of NVIDIA’s Quadro 2000 GPU device. 58

Table 5-1: Parameter values of MIA ... 137

Table 5-2: Thread configurations used for the 5 CUDA kernels 137

Table 5-3: Images with different number of particles detected based on the CPU and
hybrid algorithms. ... 138

Table 5-4: Distribution of particle size difference for the 87541 common particles. 140

Table 5-5: Computational efficiency enhancement achieved by the CPU-GPU-MIA
algorithm on the 3 GPU-parallelizable tasks. ... 143

Table 5-6: Overall computational efficiency enhancement achieved by the CPU-GPU-MIA
algorithm. ... 143

Table 6-1: An example showing 4 cluster centers allocated along the diagonal plane. . 171

Table 6-2: Performance of BIRCH-related CUDA kernels at various thread configurations.
 .. 174

Table 6-3: Effect of maximum number of nodes on CPU and hybrid BIRCH algorithms.175

Table 6-4: Effect of delay-split size (or batch size) on CPU-BIRCH (or hybrid BIRCH)
algorithm. ... 176

Table 6-5: Performance of the CPU and hybrid BIRCH algorithms at various
dimensionalities. ... 178

Table 6-6: True cluster membership of synthetic data in online data windows. 179

Table 6-7: Online performance of the CPU and hybrid BIRCH algorithms in 18 synthetic
data windows.. 182

Table 6-8: Offline performance of the CPU and hybrid BIRCH algorithms, based on
Kongsberg simulation data. .. 188

Table 6-9: Online performance of the CPU and hybrid BIRCH algorithms, based on
Kongsberg simulation data. .. 189

x

List of Figures

Figure 1-1: Research scope and objective of this thesis. .. 7

Figure 2-1: General structure of simulation-optimization .. 21

Figure 2-2: An example of CF-tree, where circles represent micro clusters and one-
directional arrows link parent node to its children nodes. 36

Figure 3-1: The 3 programmable engines of GeForce 7800 GPU developed by NVIDIA. . 40

Figure 3-2: The unified shader architecture of GeForce 8800 GPU developed by NVIDIA.
 .. 41

Figure 3-3: Comparison of GPU and CPU architecture. .. 43

Figure 3-4: Data processing model of (a) CPU, and (b) GPU computing system. 45

Figure 3-5: An architectural overview of a NVIDIA’s GPU device in the Fermi series; a
closer view is presented in Figure 3-6. ... 47

Figure 3-6: The key components contained in a SM unit of Fermi series GPU. 48

Figure 3-7: Instruction flow and memory copies involved in a hybrid CPU-GPU
application; memory bandwidth values are based on a PCI express bus
2.0x16, Intel Xeon W3670 workstation, and a Quadro 2000 GPU. 50

Figure 3-8: An example of CUDA threads configuration, demonstrating the relationship
among threads, blocks and grid. .. 53

Figure 3-9: Mapping of CUDA blocks to SM units in a GPU device. 56

Figure 3-10: Mapping of CUDA threads to SPs in a SM. ... 57

Figure 3-11: A small warp containing only 6 threads is used to illustrate the number of
memory transactions under 3 different situations, where (a) one, (b) two, (c)
six, transactions are required, respectively. ... 59

Figure 3-12: An example of texture memory access showing spatial locality
characteristic. ... 60

Figure 3-13: Examples of shared memory access; (a) random access; (b) random access
with broadcasting; (c) broadcasting; (d) orderly access; (e)&(f) strided access;
where (a), (b), (c), (d), (f) have no bank conflict, (e) generates 2-way bank
conflict. ... 61

Figure 3-13: Examples of shared memory access; (a) random access; (b) random access
with broadcasting; (.. 64

xi

Figure 3-14: An example of using shared memory to support a reduction operation; a
small warp containing only 6 threads is used for illustrative purpose. 67

Figure 3-15: An example of reduction operation which calculates the total sum from a
32-element input array residing in either shared or global memory. 67

Figure 3-16: Typical (hypothetical) relationship between computational efficiency
improvement and programming effort; the green boundary specifies the
recommended target range. .. 70

Figure 3-17: An example showing the use of data padding technique to achieve
coalesced global memory access, where a data row is accessed by a warp. . 71

Figure 4-1: Notion of data parallelism in each module of Sim-Opt; independent
operations are denoted by same colored curves. .. 89

Figure 4-2: Comparison of monitoring performance between full PCA models and
reduced PCA model. ... 93

Figure 4-3: Computing time distribution in GA-PCA algorithm; top figure shows the
results obtained at moderate population and generation size; bottom figure
is based on larger population and generation size. .. 96

Figure 4-4: Accessing patterns of consecutive threads (same color) before and after data
transposition for training dataset. .. 101

Figure 4-5: Conventional data structure of eigenvectors and the corresponding bank
locations in CUDA shared memory. .. 102

Figure 4-6: Transposed eigenvectors and the corresponding bank locations in shared
memory. ... 103

Figure 4-7: CUDA kernel computing times of objective evaluation at various block sizes;
optimal block size is 256. .. 104

Figure 4-8: CUDA kernel computing times of dominating relation determination at
various block sizes; optimal block size is 128. .. 104

Figure 4-9: CUDA kernel computing times of front assignment at various block sizes;
optimal block size is 128. .. 105

Figure 4-10: CUDA kernel computing times for crowding distance computation at various
block sizes; optimal block size is 32. ... 105

Figure 4-11: The proposed hybrid CPU-GPU-GA-PCA algorithm. 106

Figure 4-12: Tennessee Eastman process flow sheet ... 108

Figure 4-13: Objective values obtained by the CPU and hybrid methods, at the end of
100 GA generations, with 100 populations. ... 109

xii

Figure 4-14: Objective values obtained by the CPU and hybrid methods, at the end of
1000 GA generations, with 1000 populations. ... 110

Figure 4-15: Computing time of the CPU and hybrid methods measured at various
numbers of generations, with 1000 populations. .. 112

Figure 4-16: Speedups achieved by the hybrid method at various numbers of
generations, with 1000 populations. .. 112

Figure 4-17: Computing time of the CPU and hybrid methods measured at various
population sizes, with 1000 GA generations. ... 114

Figure 4-18: Comparison of computing time of two hybrid methods, one with and the
other one without GPU-based sorting; measurements are done at various
population sizes, with 1000 GA generations. ... 115

Figure 4-19: Speedups achieved by the hybrid method at various population sizes, with
1000 GA generations. ... 116

Figure 4-20: Computing time for the CPU and hybrid methods, along with the
corresponding speedups (represented in black circles), at various population
sizes and 1000 GA generations. .. 117

Figure 5-1: The 8 shifting directions used in MIA algorithm. .. 122

Figure 5-2: Pie chart showing the computing time distribution of the original MIA
algorithm; computing time measurements are based on averaging of 50
images. .. 125

Figure 5-3: Information flow among the 3 expensive tasks of MIA. 127

Figure 5-4: Task partitioning scheme for feature extraction and segmentation; (a)
representation of a CUDA block containing several threads; (b) mapping of
CUDA blocks/ threads to pixel operations. ... 129

Figure 5-5: An example illustrates the copying action performed by a CUDA thread in
shifting_kernel, with r=1, d=4; (a) shift downwards, (b) shift upwards, (c) shift
to the left, (d) shift to the right, and (e) no shifting. 131

Figure 5-6: Equipment set-up for the batch crystallization case study. 135

Figure 5-7: Temperature profile of the batch crystallization process. 135

Figure 5-8: Results of applying MIA algorithm to image no. 29454, where an arrow
points to the missing particle; (a) grayscale image captured by PVM, (b)(c)
post-segmentation image obtained from CPU-MIA and CPU-GPU-MIA,
respectively. .. 138

Figure 5-9: Particle size difference between the CPU-MIA and CPU-GPU-MIA algorithms.
 .. 139

xiii

Figure 5-10: Results of applying MIA algorithm to image no. 16023, where an arrow
points to the missing particle; (a) grayscale image captured by PVM, (b)(c)
post-segmentation image obtained from CPU-MIA and CPU-GPU-MIA,
respectively. .. 140

Figure 5-11: Computation time distribution of major steps in CPU-MIA algorithm. 141

Figure 5-12: Computation time distribution of major steps in CPU-GPU-MIA algorithm.
 .. 142

Figure 6-1: Online strategy for detecting gradual process change using BIRCH. 146

Figure 6-2: Overview of the GPU-based online process monitoring scheme, showing the
relationships among database system, CPU and GPU.................................. 150

Figure 6-3: Pointer assignment performed in init_CFtree CUDA kernel. 152

Figure 6-4: Overview of BIRCH implementation in GPU. .. 154

Figure 6-5: Procedure of sub-routine ‘merging or splitting at cluster nodes’. 156

Figure 6-6: A simple example demonstrating the 3 sorting operations involved in sub-
routine ‘merging or splitting at cluster nodes’. .. 157

Figure 6-7: Sample range determination using CUDA kernel compute_blockRange; using
the same data from the example given in Figure 6-6. 158

Figure 6-8: Example illustrating the usage and compaction of global pointers. 159

Figure 6-9: Procedure of sub-routine ‘splitting of leaf and nonleaf nodes’. 162

Figure 6-10: An illustrative sample of node splitting and redistribution at leaf level, in
GPU-based BIRCH algorithm. .. 164

Figure 6-11: Procedure of sub-routine ‘rebuilding of CF tree’. 168

Figure 6-12: Dissimilarity values computed from the 18 synthetic data windows, for both
CPU and hybrid BIRCH online application. ... 181

Figure 6-13: Plant overview of Kongsberg simulator for oil and gas production process.
 .. 185

Figure 6-14: Well opening combinations associated with the 7 normal process states,
using Kongsberg simulator. .. 186

Figure 6-15: Overview of the well system in the Kongsberg simulator. 187

Figure 6-16: Dissimilarity values obtained from the CPU and GPU-based approaches,
based on Kongsberg simulation data. .. 188

xiv

Acronym Table

ACO Ant Colony Optimization

ALUs Arithmetic Logic Units

ANN Artificial Neural Network

API Application Program Interface

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies

CF Clustering Feature

CLIQUE CLustering In QUEst

CluTree Cluster of Trees

CluStream Stream Clustering

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CURE Clustering Using REpresentatives

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DENCLUE DENsity- based CLUstEring

DenStream Density-Based Clustering over an Evolving Data Stream with Noise

EKF Extended Kalman filter

EM Expectation-Maximization

FDA Fisher discriminant analysis

FDM Frequency Domain Method

FFT Fast Fourier Transform

FLOPS FLoating-point Operations Per Second

GA Genetic Algorithm

GMM Gaussian Mixture Model

GP Genetic Programming

xv

GPGPU General-Purpose computing on Graphics Processing Unit

GPU Graphics Processing Unit

HAC Hierarchical Agglomerative Clustering

HDDSTREAM Density-based projected clustering over high dimensional data streams

HPC High Performance Computing

HPStream High-dimensional, Projected data Stream clustering

JC Jaccard Coefficient

LR Likelihood Ratio

KDD Knowledge Discovery and Data Mining

KM K-Means

MCL Maximum Chord Length

MIA Multivariate Image Analysis

MPC Model Predictive Controller

NIPALS Non-linear iterative partial least squares

NLP Non-Linear Programming

NN Neural Network

NSGA Non-dominated Sorting Genetic Algorithm

ODAC Online Divisive-Agglomerative Clustering

OO Ordinal Optimization

QAP Quadratic Assignment Problem

PA Perturbation Analysis

PCA Principal Component Analysis

PCI Peripheral Component Interconnect

PLS Partial Least Squares

PSVM Proximal Support Vector Machine

PSO Particle Swarm Optimization

xvi

PVM Particle Vision and Measurement

RTO Real Time Optimization

RSM Response Surface Methodology

SA Simulated Annealing

SFUs Special Function Units

Sim-Opt Simulation Optimization

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SOM Self-Organizing Map

SP Streaming Processors

SPE Squared Prediction Error

SPMD Single Program Multiple Data

STING STatistical INformation Grid

SVM Support Vector Machine

TE Tennessee Eastman

TSP Travelling Salesman Problem

1

Chapter 1. Introduction

This chapter elucidates the motivation, research scope, methodology as well as

the objectives of this thesis work. The challenges and limitations of existing techniques

are also provided here.

1.1. Background and Motivation

Knowledge Discovery and Data Mining (KDD) is a computational process

involving data selection, data cleaning, data transformation, data mining and

information evaluation. Data mining is the most important step in KDD and its major

role is to extract previously unknown information from large datasets, and then

transform the discovered information into an understandable and actionable structure

such as a pattern or model. The mined patterns or models provide an effective way for

interpreting and analyzing the physical behavior of the associated process, due to their

compact and precise structure. Better understanding of process behavior allows process

engineers to devise effective planning, make effective purchasing decision, and optimize

process for greater operational efficiency, better anticipate order lead times, or shorten

machine downtimes (Sajdak, 2013; Rong, 2008; Wang, 1998; Psichogios & Ungar, 1992).

Data mining models can also be used to predict process states or faults, which enable

process operators or controller to anticipate and take appropriate actions accordingly

(Seider, 2014; Yu, 2011; Doan & Srinivasan, 2005; Lee et al., 2004; Henson, 1998).

Real-time data mining is an advanced form of conventional data mining which

incorporates additional features such as consideration of the age of the data,

continuous model updating and handling of streaming data or big data (Chachuat et al.,

2009; Lee et al., 2003; Saraiva, 1992; Zhang, 2002). Conventional data mining assumes

invariant process behavior, so the models are built based on historical data which

2

resides in secondary storage device or data warehouse and is assumed to be

representative of the process at all times. Thus, in the offline mode data mining is

performed only once or infrequently. However, in real world chemical plants, even in

the absence of faults, a normal process could undergo slow drifts, for instance as a

result of, equipment degradation due to corrosion, catalyst deactivation that results in

kinetic drift, wear-and-tear of parts, fouling and periodic maintenance or cleaning of

machines. In this thesis, we focus on real-time data mining applications which are either

used directly for process monitoring or employed for continuous updating of process

models, and the ultimate objective is to ensure sustainable optimal process

performance. As highlighted in the work (Bunin, 2014; Pahija, 2014; Yip & Marlin, 2004),

adequate model complexity is the key for an accurate model which in turns guarantees

a successful process optimization application. Similarly, in process monitoring

applications, the outdated model might create false alarms which lead to confusion,

unnecessary machine downtime, and wastage of manpower and cost (Cicciotti, 2014;

Lee et al., 2003). It is generally true that a sufficiently large amount of process data is

unavoidable for constructing complex and detailed models. Considering the high data

generation speed in modern chemical plant, especially when high dimensionality is

involved, traditional data mining algorithms are limited by their deficient computational

speed and thus are not suitable in real-time applications.

The computational deficiency of many traditional data mining algorithms

therefore offers the motivation for this PhD thesis, which endeavors to develop

effective data mining algorithms for real-time extraction of process information. This

thesis investigates key chemical process applications where the realization of real-time

data mining is crucial.

3

1.2. Challenges of Real-Time Data Mining

Real-time data mining is challenging mainly due to the requirements of

producing accurate information in a timely manner and handling huge volume of data or

transient data with limited computational resources. As conventional data mining

process is usually performed infrequently and offline, it focuses exclusively on accuracy

and places limited interest on computational efficiency. On the other hand, an

important feature of real-time data mining application is that the data mining algorithm

is executed frequently at regular or irregular intervals. Hence, it is important that the

algorithm is computationally efficient so as to prevent data backlog and also ensure

timely information. Accurate and timely information is extremely valuable as it provides

opportunity for continuously improving operational performance. However, due to the

limitation of computational resources (i.e. processing power and memory),

computational efficiency or accuracy is sometimes being compromised. Some existing

works (Prata, 2009; Yip, 2004) are constrained to simple process like single-reactor

polymerization process and a stand-alone boiler network; while some sacrifice accuracy

to a certain extent for speed (Tosukhowong, 2004; Yue, 2004) by using simplified

models or sampling techniques. Hence, the development of accurate and efficient data

mining algorithms for real-time applications is highly attractive.

The large volume and high dimensionality of process measurement further

complicates real-time data mining. As a result of advancements in measurement, sensor

and network technologies, it is now a common practice in chemical plants to collect

process data at extremely detailed levels which are characterized by high dimensionality

and high data rate. Plant-wide or organization-wide data is gathered at a central storage

place through data network if global-scale data analysis is of interest. To handle such a

4

massive amount of data, a data model called data stream is considered. A data stream is

a finite or infinite sequence of ordered instances arriving at high speed. Due to the high

arrival speed and the large volume, data stream algorithms are allowed to access data

only once or a small number of times; this access mode is called a linear scan.

Conventional data mining algorithms typically require random access to data. For

instance k-means clustering repeatedly reads the data in random order. Such algorithms

are therefore unsuitable for handling data streams. It is therefore evident that many

offline data mining algorithms are not directly usable for real-time applications, and

minor or major modifications may be needed.

1.3. GPU-HPC Solution. Why?

High performance computing (HPC) system is a powerful computing platform

which has been successfully used for solving real-time problems. HPC solutions offer

enhanced computational efficiency without sacrificing solution quality, based on a

concept called parallelization. Standard HPC systems include supercomputers, grids,

cloud, and computer clusters, wherein a large number of Central Processing Units

(CPUs) are linked in different ways and work cooperatively for solving a big problem. In

recent years, a new form of HPC system using General Purpose Graphics Processing

Units (GPGPUs or GPUs for brevity) has emerged; a GPU the system consists of a single

or a number of GPUs. Both CPU and GPU-based HPC systems serve as a parallel

computing platform which provides many processing units for parallel works. If a

computational problem can be divided into a number of smaller tasks which are

independent of one another, the tasks can be executed simultaneously on a suitable

HPC system, thus achieving enhanced computational efficiency. Successful applications

report orders of magnitude acceleration achieved by parallel computing systems, for

5

example (Cano, 2014; You, 2014; Fok et al., 2007; Goil, 1997; Han et al., 2000; Liao,

2009; Liu et al., 2004; Melab et al., 2006).

CPU and GPU-based HPC systems differ in various aspects including the types

of parallelization, costs and programming effort. On the one hand, CPU devotes majority

of its transistors to control logics, so it has complete and complex control functionality

for complicated computational tasks. Moreover, a CPU is designed to execute one

process (or thread) at one time, at optimal efficiency. Hence, with multiple CPUs

connected in a HPC system, it supports task-level parallelization, whereby each CPU

executes the same or different task (i.e. program) on the same or different data. Due to

the longstanding history of CPU in mainstream computers, majority of the commercial

software or freeware are written and optimized for CPU implementation. There also

exists a large body of well-established CPU libraries. As a result, less programming effort

is needed when a single-CPU program is ported to a CPU-HPC system. However, the cost

of building and maintenance of such CPU-based HPC systems is high which greatly

reduces its feasibility for most applications.

GPUs on the other hand, have an entirely different architecture from CPUs and

are targeted at a different type of parallelization. In a GPU, massive amount of

transistors is allocated for arithmetic units, while only a few are used for control units.

This GPU architecture allows for parallel execution of the same program (simple control)

on different data (massive amount of arithmetic units). It thus enables a different type

of parallelization, called data parallelization. GPGPU is a newly emerged technology

which is still at its infancy. Owing to the different architecture, existing CPU programs

are not directly executable in a GPU. In fact, significant amount of programming effort is

required to develop an efficient GPU algorithm. Recently, a number of high-level

6

programming languages are being developed for GPGPU applications, such as Nvidia’s

CUDA, OpenACC and OpenCL, which simplify the programming. Besides the efficiency

improvement offered by GPU, other attractive features of GPU include low cost, low

power consumption as well as space saving. Therefore, we believe that GPU-based data

mining algorithms offer a promising and practical solution to real-time information

extraction in chemical plants. In this work, we explore the use of GPU computing to

achieve real-time data mining for important chemical process applications.

1.4. Research Scope and Contributions

Figure 1-1 elucidates the research scope as well as the key objective of this

thesis. In this work, we focus mainly on the data mining process which is known to be

the most critical stage in KDD, and assume a minimum need on data pre-processing. As

the data used in the case studies are either simulation data (Chapter 4 and Chapter 6) or

reasonably complete data in the absent of missing values (Chapter 5), standard

normalization should be sufficient. Furthermore, we are interested in tackling chemical

process applications where real-time data mining is the key to assure the highest

operational safety and optimal business value, specifically include the process control

and fault detection problems. My major contributions include firstly to outset and

explore the use of GPGPU parallel computing technology in realizing the practical use of

data mining in chemical process applications, and this is accomplished by performing

detailed examination on important data mining algorithms from which various types of

data parallelism are successfully identified. Secondly, we demonstrate the development

and implementation of several GPU-based data mining algorithms, and also address a

number of important implementation issues related to GPU parallel computing. The

developed GPU-based data mining methods have shown favorable results in terms of

7

computational speed and process control or monitoring quality, wherein it reveals the

usefulness and potential of GPU technique in mining chemical process information.

Figure 1-1-1: Research scope and objective of this thesis.

1.5. Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a detailed

review on the key concepts of data mining as well as various data mining applications in

chemical industries. In this chapter, the state-of-the-art of real-time data mining

technology is highlighted and existing research gaps identified. We focus specifically on

3 topics - continuous optimization, continuous pattern recognition using image analysis

and clustering techniques. In Chapter 3, a comprehensive analysis of GPGPU parallel

computing tool is performed. It focuses on the hardware architecture as well as

software programming model of NVIDIA’s CUDA-enabled GPU. Key programming issues

and commonly used optimization techniques are also discussed. A survey of GPGPU-

based research works is also presented.

In Chapter 4, we seek to improve the computational efficiency of simulation-

optimization, a specific optimization technique, by devising a systematic procedure for

Data cleaning &
selection

Data
transformation/
normalization

Data mining

Knowledge Discovery & Data Mining (KDD)

Data analytics
& visualization

Conventional data mining

Dynamic
process
model

Archived/
historical data

Recent process
data/ live data

stream

Static process
model

Real-time data mining

One time/ infrequent
& offline process

Thesis objective: to develop GPU-based data mining
algorithms which promise for effective process control
& fault detection under high dimensionality and fast

sampling rate requirements

Repeated process whose
computational efficiency is
crucial for producing timely/
real-time process information

8

GPU programming. The implementation of the proposed procedure is demonstrated on

a variable selection monitoring problem Enormous improvement in computational

efficiency is obtained when the GPU-based algorithm is evaluated on the Tennessee

Eastman Challenge Problem. Chapter 5 is devoted to real-time image analysis, where a

GPU-based multivariate image analysis algorithm is developed. The proposed CPU-

based algorithm has been tested successfully in a case study of particle size estimation

for a batch crystallization process, for which particle size information is determined in

real-time. Chapter 6 presents a GPU-based online process monitoring scheme.

Essentially, a scalable clustering method known as BIRCH is ported to GPU so as to

achieve an enhanced characterization of process behavior. Both synthetic and simulated

process data are employed for evaluating the proposed approach. In the final chapter,

key conclusions of the thesis are summarized and major research areas for future work

are identified.

9

Chapter 2. Literature Review

This chapter begins with the introduction to KDD and data mining by including

the definition and highlighting the key features of the technologies. It is followed by a

literature review on various data mining methods and their classification. The

importance of real-time data mining is then elaborated before detailed literature

studies are performed on two important topics which are the continuous optimization

and continuous pattern recognition.

2.1. Overview of Knowledge Discovery and Data

Mining (KDD)

Knowledge Discovery and Data Mining (KDD) is an interactive and iterative

computational process comprising of a number of phases including data selection, data

cleaning, data transformation, data mining and information evaluation. This formal

definition of KDD and the accompanying unified framework (as depicted in Figure 1-1)

are firstly introduced by Fayyad and co-workers in (Fayyad et al., 1996; Fayyad et al.,

1999). Such framework is widely accepted and has been continuously practiced by many

researchers (Mariscal et al., 2010; Mhamdi & Elloumi, 2010; Sharma et al., 2012),

though different abbreviations might be used such as the KDDM in (Sharma, 2012).

Historically, knowledge discovery is realized through manual data analysis whereby

human specialists are involved in understanding and deriving insights from raw data. As

the amount of data collected across many fields continues to grow significantly, manual

methods become impractical and inaccurate and thus computational data mining

techniques emerge as a better, cheaper and less subjective alternative.

KDD is a multi-step framework wherein some or all of the component steps are

automated. Each individual step plays a crucial role in determining the success of a

10

knowledge discovery application, and they are briefly presented as below. The first step,

data selection, is used to remove irrelevant data records or variables which tend to

pollute or dilute the important information. It is typically achieved based on certain

prior knowledge either manually or by setting certain threshold value. The selected data

subset goes through a data cleaning or preprocessing step whereby noise, errors and

missing data fields are handled in a systematic manner. Fully automated computational

data cleaning methods are widely available. It should be noted that the

abovementioned data refinement steps can be accomplished through manual

investigation if the volume of data is manageable small, as human is capable of

differentiating good data from the bad ones. Subsequently, a more useful feature space

could be obtained through dimensionality reduction, feature selection, variable

transformation, or space projection, using the refined data; popular computational

methods include PCA, PLS, and SOM. In this third step, invariant representations for the

original data can be produced from the transformed feature space, and thus creating a

cleaner data space for analysis.

The remaining steps of the KDD framework are data mining and information

evaluation. The fourth step, data mining, is considered as the most computationally

intensive and complex step in KDD. This could explain why it is the main focus of this

work. The key objective of data mining is to search for interesting and useful patterns

which can be in the forms of models, decision tree, classification or association rules, or

cluster assignment; a more comprehensive literature review will be provided in

following sections. As there are a wide range of data mining techniques, from simple

regression methods to machine learning and artificial intelligence techniques, choosing

a suitable method becomes a nontrivial task and caution has to be taken. The following

step, information evaluation, has therefore become increasingly important as the

11

volume of data mining techniques keeps growing. The evaluation step which is the final

step in the KDD cycle involves thorough review on all the preceding steps and careful

examination on the data mining results. At this phase, it depends heavily on human

involvement to cautiously interpret the discovered patterns, and it is done based on

expert knowledge and with the help of visualization methods if possible. The objective is

to make judgment on the use of data mining results by removing irrelevant or

redundant patterns, and translate the useful results into forms which are

comprehensible and implementable by users. If the extracted patterns are not useful or

ambiguous, the KDD cycle needs to be repeated and alternative data mining techniques

will be considered. Although the evaluation step is not covered in details in this work, it

plays an equally important role as all the preceding steps in KDD.

2.2. Introduction to Data Mining

Data mining involves the extraction of hidden, previously unknown interesting

and useful information from large volume of data, wherein the discovered information

is in the form of understandable or actionable structures such as rules or models

(Fayyad et al., 1996; Mukhopadhyay et al., 2014; Mahmood et al., 2013). For discovery

of useful information, large number of measurements and many attributes (or variables)

need to be simultaneously explored, thus manual analysis is impractical. Data mining

techniques which include a wide variety of machine learning algorithms offer an

alternative feasible solution. The design of a data mining method requires paying

attention to the following issues (Fayyad et al., 1999).

Model representation: In the context of data mining, model is a concise representation

of the discovered information or pattern. It consists of two parts which are the model

structure (e.g. linear, nonlinear, Gaussian model, PCA) and model parameter (e.g. mean

12

and standard deviation of Gaussian model, eigenvectors of PCA model). Model selection

depends heavily on the prior knowledge of the domain or system as well as the

application goal. Compact and neat mathematical models are sometimes inadequate in

describing highly complex systems (Quaglia et al., 2015; Yip & Marlin, 2004). However,

excessive model complexity, like in the case where there are too many layers employed

in an artificial neural network (ANN), has the tendency of over-fitting which leads to

poor generalization. The rule of thumb is to choose the simpler model if its performance

is adequate, according to Occam’s razor theory.

Search method or learning algorithm: A good search method is one that provides

effectiveness and efficiency in attaining the fittest model. There are two levels of

searching where the top level is to identify a suitable model structure (e.g. the order of

polynomial), and the bottom level is to find the optimal set of parameters for the

selected model structure. Search method can be broadly divided into two groups, global

search and local search. Global search methods like genetic algorithm (GA) and swarm-

based optimization explore a wider solution space, while local search methods like hill

climbing and k-means look at solutions which are usually at near proximity. The former

is generally more computationally demanding but offers higher chance of getting the

best model, whereas the latter requires less computing effort but it only guarantees for

suboptimal solution.

Model evaluation: A quantitative measurement of the model fitness (i.e. fitness

function) is required to ensure the model performs satisfactorily and meets the data

mining goal. In applications where the fitted model is used for prediction, classification

error and prediction accuracy (e.g. mean squared error) are common choices. When the

data mining problem involves characterizing a system or process based on clustering

13

algorithms, similarity of items in the same cluster should be maximized while

dissimilarity between items in different clusters should be minimized. In general, a

separate set of data (i.e. testing data) is needed for model evaluation, this is to avoid

over-fitting and promote model generalization which guarantees good prediction for

unseen data.

2.3. Classification of Data Mining Methods

Numerous data mining algorithms have been developed with each mines for

different type of information, one scheme of classifying them (Clifton, 2014) is based on

the type of known information and the kind of information to be searched for. It should

be noted that the same method can exist with different interpretation to suit the goal of

application, and therefore it may fall into more than one category.

Predictive modeling: This group of algorithms provides estimation of class or numeric

value of the target variable or output. Classifiers, like support vector machine (SVM),

neural network (NN) and naive Bayes classifiers, can serve as a predictive model with

categorical target variable. While in regression methods, such as linear regression, non-

linear regression and neural network, the target variable is numerical or real-valued. For

instance, (Chiang et al., 2004) examines the proficiencies of Fisher discriminant analysis

(FDA), SVM, and proximal support vector machines (PSVM) in classifying multiple fault

classes; (Gonzaga et al., 2009) proposes a feed-forward artificial neural network (ANN)

to estimate PET viscosity online. The powerful approximating capability of neural

network allows it to become a popular candidate for process control (Assenhaimer et

al., 2014; Singh et al., 2014; Bhat, 1990; Nahas, 1992), by providing accurate prediction

of process output.

14

Descriptive modeling: The main objective is data characterization, which is achieved by

extracting patterns through grouping data items according to certain similarity measure;

clustering is one of the most common methods. Similarity is measured based on

distance metric e.g. Euclidean distance. A key difference between descriptive modeling

and predictive modeling is that the former is usually trained using unsupervised

technique, while the latter requires supervised training. Hence, clustering-based pattern

recognition is particularly useful in cases where there is no prior knowledge (no labeling)

about the data, e.g. (Detroja et al., 2006) uses clustering to detect faults that have not

seen during training; (Srinivasan et al., 2004) proposes a two-step clustering method for

automatic identification of different process states based on historical data. Clustering is

a well-established data mining algorithms and it can be broadly categorized into

hierarchical clustering (e.g. HAC, BIRCH, and CURE), partitioning clustering (e.g. K-means

and K-medoids), density-based clustering (e.g. DBSCAN and DENCLUE) and grid-based

clustering (e.g. STING and CLIQUE) (Pham & Afify, 2007). A more detailed investigation

of clustering techniques will be provided in Section 2.6.2.

Pattern mining: In this category, the extracted pattern is in the form of rules;

association rules and sequential rules belong to this category. It focuses on discovering

interesting relations between variables in large databases. In (Ren et al., 2005), an

association rules mining technique is proposed and applied for reasoning about the

relationship between recovery rate and energy loss in a real aromatic hydrocarbon

extraction process. Zhang et al. (2005) use association rule mining to establish the

relationships between the key process variables and some objective variables, like purity

and recovery rate, of a simulated moving bed paraxylene adsorption process.

15

Anomaly detection: The major goal is to detect anomaly by looking for data items that

are usual and do not fit the established models of normal process data. While predictive

modeling can be used for detecting known or trained faults, there could be novel and

unexpected faults appear in the process, and their discovery is highly valuable. A

popular method in this category is principal component analysis (PCA) (Choi et al., 2004;

Ku, 1995; Nomikos, 1994). Here, the measurement of Hotelling’s T2 statistic and squared

prediction error (SPE) on the PCA model provide useful indication of process

abnormality.

2.4. Real-Time Data Mining and Its Desirable

Characteristics

Real-time data mining can be regarded as a continuous data mining process to

cope with the changing environment conditions by continuously searching for new

information and making adaptation to model. It enables continuous monitoring of

chemical process operation so that quick responses and real-time decisions can be

made in response to supply disturbances, market uncertainties, process behavior

changes, process abnormalities, equipment malfunctions and faulty sensors. With

effective real-time data mining system in place, it is possible to maintain the process

operational performance, product quality, process safety and customer’s satisfaction at

the optimal level.

In real-time data mining applications, it is exceptionally important to ensure

that information is obtained in a promptly manner. Conventional data mining algorithms

which are computationally expensive and bounded to disk-resident data are therefore

not suitable. They need to be revised and improved to address the following issues (Fan,

16

2013; Gaber, 2005; Gama, 2012; Silva, 2013) before they can be used in solving real-

time data mining problems.

Unbounded and rapid arriving of data: In modern chemical plants, owing the rise of

information technology and advances in sensor technology, the volume of data grows at

an unprecedented rate. Various types of data which may be related to processes,

products, scheduling, planning, equipment, maintenance and inventories are generated

continuously and infinitely. Most of the time, data generation and collection rate is

much faster than data mining speed. The capability of closing this time gap is thus an

essential feature of real-time data mining techniques.

Modeling process changes over time: The behavior of real world chemical processes is

never stationary, abrupt changes like equipment malfunction, actuator failure and slow

changes like equipment degradation, catalyst deactivation, are taking place consistently.

In response to abrupt changes, an effective fault detection and remedial action is

possible only if the faulty condition is captured accurately and quickly without delay.

Although slow changes or drifts may not result in sudden and serious consequences,

failing to detect such drifts would lead to suboptimal or deteriorating operational

performance. Outdated model in control application could drive the process to

suboptimal or negative performance direction; in process monitoring, it could result in

fault positive (i.e. false alarm) or fault negative detection. The challenge is how to detect

process changes over time and enable adaptive modeling.

Constraints of computing resources: Most data mining algorithms require data to reside

in main memory, so in cases where data size is larger than available memory size, it is

required to move data in and out from secondary storage device which is extremely

inefficient. Furthermore, high arrival rate and huge volume of data prohibit its long

17

residence in main memory i.e. data is transient. Transient data is disallowed to change

its order due to time and space limitation. The challenge is to design a data mining

method that is space-efficient and guarantees for useful pattern extraction under the

constraint of linear scan to data.

In this thesis, our focus is on devising feasible and effective real-time data

mining solutions to three important chemical process applications, they are continuous

optimization, and continuous pattern recognition using image analysis and clustering

techniques. It should be noted that we do not address the issues regarding early stages

of KDD, including data collection, data cleaning, data preprocessing, in this work.

Interested readers are referred to (Fayyad et al., 1996, 1999; Li, 2009; Mariscal, 2010)

for details.

2.5. Continuous Optimization

Optimization algorithms provide a means to search for the best solution while

satisfying certain constraints. In the context of chemical process operations, a best

solution could be a set of adjustable process variables corresponds to the highest

possible production rate while ensuring pre-specified product quality (i.e. constraint), or

an optimal allocation of limited resources and assets to satisfy market demand, or it

could be simply an accurate prediction model for fault detection. Common optimization

applications in chemical industries include process operation optimization (e.g. supply

chain management, process planning and scheduling) (Gupta, 2003; Méndez, 2006),

process model building (Yu, 2008; Psichogios & Ungar, 1992), process design and

synthesis (e.g. reactors network configuration, heat exchanger) (Karuppiah, 2006;

Papoulias, 1983; Yee, 1990) and process control (Biegler et al., 2002). Data mining

strategies such as association, classification, and clustering are always useful in

18

optimization applications, through providing concise and accurate process model. Take,

for example (Yu & Qin, 2008) uses Gaussian mixture model (GMM) to capture the

multiple operating modes of complex industrial processes, for the purpose of process

monitoring. In the study, the GMM model is established by determining the model

parameters through optimization. In (Psichogios & Ungar, 1992), the authors propose a

hybrid modeling process by combining the use of data-driven neural network and first

principles. Through machine learning optimization, the optimal structure and

parameters of ANN are identified for accurate process variable estimation of a fed-batch

bioreactor. The above examples show the use of optimization in process model building.

Continuous optimization is an increasingly popular research topic in recent

years due to the capability of maintaining the optimal performance at all times. In real

world chemical plants, the ever-changing behavior of processes causes a previously

optimal operation condition or design no longer the best performing one in later time.

In order to cope with such changing behavior, it is required to perform the optimization

routine repeatedly. (Biegler & Zavala, 2009) illustrates how a real-time optimization

(RTO) can be used in combination with a model predictive controller (MPC) in achieving

smooth and optimal transitions between different operating modes. (Tosukhowong et

al., 2004) is another research work which integrates the use of RTO and MPC, but the

authors suggest using an intermediate frequency for optimization. The proposed

approach guarantees for lower economic loss as compared to a less frequent RTO (i.e.

stead-state RTO), in the presence of disturbance. In these two studies, the role of RTO is

mainly to identify the best performing set-point for MPC. In the study (Prata et al.,

2009), the authors employ particle swarm optimization method (PSO) to iteratively

update data model parameters. The proposed procedure is tested successfully in the

operation of a propylene polymerization process, by having accurate and real-time

19

prediction of process variables. Such continuously adapted process model is also

demonstrated to attain a better stabilization of control loops at plant site.

From the perspective of data mining, continuous optimization involves

continuous model adaptation or re-construction based on most recent data. The

relationship between optimization and data mining can be two-fold, where recurring

optimization is either used as a model updating tool or is performed based on the

updated model. Some examples are detailed below. (Peters et al., 2007) propose a real-

time optimization approach aiming to continuously improve the overall cost of batch

processes, based on a regularly updated process model. However, the searching method

is limited to a smooth and locally convex cost function. The research work (Golshan et

al., 2005) suggests using the Extended Kalman filter (EKF) to estimate process states and

time-varying parameters of the process model. The updated process model is then

optimized through NLP to determine an optimal set of process operating conditions at

every 8 hours. EKF does not guarantee for the optimal estimation of process behavior as

a consequence of the linearization requirement when it extends from the regular

Kalman filter.

To overcome the limitations of conventional optimization methods e.g. EKF

and NLP, the authors of (Prata et al., 2009) propose the use of heuristic optimization

method PSO which is capable of handling high dimensional problems, attaining globally

optimal solutions and allowing for straightforward implementations. In the study, model

parameters and process states are estimated by performing PSO on moving windows.

Moving window or moving horizon is generally used to reduce the size of optimization

problems and at the same time discard old process data. A survey of various model

adaptation strategies for real-time optimization applications is presented in (Chachuat

20

et al., 2009). As it has been pointed out in the article, besides model parameter

adaptation, there are also situations where we should take in consideration of

modifying the model structure, so as to avoid plant-model mismatch.

2.5.1. Simulation-optimization

Simulation-optimization (Sim-Opt) is a special type of optimization techniques

which makes use of simulation to replace deterministic mathematical formulations. It

provides plausible optimization solutions for systems involving complex phenomena and

containing uncertainty, which are unsolvable otherwise. The concise mathematical

expression for Sim-Opt is given as,

 [(())] (2-1)

where, L is a performance measure, denotes variables or parameters subject to

optimization, refers to the entire search space for , represents the system

randomness, x is to the trajectory for generated based on . Essentially, Sim-Opt

comprises of three functional modules, which are simulation, objective evaluation and

optimization. The information flow and relationship between the three modules are

depicted in Figure 2-1. In Sim-Opt, the system reaction of all candidate solutions ’s

generated from an optimization cycle is first simulated, after which objective evaluation

L is performed based on the simulated response (). For a stochastic system where

uncertainty is involved, multiple simulations with different paths are needed for each

candidate solution.

In modern chemical plants, highly integrated process configuration gives rise

to complex interaction among process variables. Modeling of such processes requires

large-scale and difficult mathematical formulations. Furthermore, uncertainty exists in

21

chemical processes in various forms, from raw material quality variation to fluctuation

of market demand, so deterministic mathematical models are sometimes inadequate.

Considering the capability of simulation in capturing system complexity and

stochasticity, Sim-Opt techniques are highly favorable in solving complex optimization

problems.

Figure 2-1: General structure of simulation-optimization

2.5.1.1. Sim-Opt in chemical process operations

Sim-Opt have attracted considerable attention from researchers and industrial

practitioners in recent years. Reviews of Sim-Opt techniques are provided in (Wang &

Shi, 2013; Azadivar, 1999; Swisher et al., 2000). Successful applications of Sim-Opt are

found in areas such as process design and operation, supply chain management, and

sustainability development. Brunet et al. (2012) combine simulation and optimization

techniques to solve a single-product process design problem, in which both structural

(type and size of process units, number of equipment units in parallel) and operating

decisions (e.g. concentration, flow rates, temperature etc.) are taken care of. Reyes-

Labarta et al. (2012) solve the design problem of multi-component distillation columns

using Sim-Opt technique. This is a complex optimization problem where design variables

22

(including total number of stages and feed location) interact heavily with operating

decisions (i.e. distillate flow rate and reflux ratio). Brunet et al. (2012) present a Sim-Opt

methodology for designing absorption system which is used for cooling and refrigeration

purpose. The design problem is solved by taking into consideration both economic and

environmental factors. In the area of sustainability, Halim et al. (2011) propose a

knowledge-based Sim-Opt framework for generating sustainable design and operations

alternatives for chemical process plants. The above works demonstrate Sim-Opt

applications that are motivated mainly by the capability of simulation on modeling

complex systems, e.g. reaction kinetic, thermodynamic relation, vapor-liquid

equilibrium, while there is limited or no uncertainty involved.

The uncertainty handling capability of simulation has been stressed in Sim-Opt

applications found in the area of supply chain management. For example, Chen et al.

(2012) present a Sim-Opt approach to minimize clinical trial costs during new drug

development in pharmaceutical industry, whereby stochastic factors like patient

enrollment rate, randomly assignment probability and dropout rate are taken into

consideration. Mele et al. (2006) present a simulation-based optimization framework for

optimal chemical supply chain management under demand uncertainty. Nikolopoulou

et al. (2012) design a Sim-Opt approach to address the planning and scheduling decision

problem in supply chain management, with demand uncertainty. Tan et al. (2010)

address the business decision support problem in a global specialty chemicals enterprise

using a Sim-Opt framework, in which decision variables such as reactor size and policy

decision like raw material reorder point are optimized. The behavior, interaction and

various uncertainties of supply chain entities are simulated using a dynamic model.

http://en.wikipedia.org/wiki/Vapor-liquid_equilibrium
http://en.wikipedia.org/wiki/Vapor-liquid_equilibrium

23

2.5.1.2. Limitations of Sim-Opt

Although Sim-Opt have been widely accepted as an effective optimization

technique, the high computational cost associated with simulation has limited the

practicality of the techniques. Assuming Sim-Opt are used in continuous optimization

applications, the computation cost will become extremely huge and unmanageable with

standard computing resources. As a result, real-time performance is nearly impossible.

Detailed structural analysis of Sim-Opt will be given in 4.1, in which the effect of

optimization technique and degree of uncertainty on computation time will be

examined.

2.5.1.3. Approaches for improving computational efficiency

A number of studies attempt to overcome the high simulation cost in

simulation-optimization applications, which can be broadly classified into two groups.

One group of studies seeks for alternative optimization techniques that require lesser

simulation runs, while the other group concentrates on enhancing computational speed

based on parallel computing technology. The first group essentially refers to the special

gradient estimators which have been mentioned early; classic examples include

perturbation analysis (PA), likelihood ratios (LR), response surface methodology (RSM)

and ordinal optimization (OO). A major drawback of the PA technique is that the

estimated gradients are often biased and inconsistent (Carson & Maria, 1997). In

addition, the technique is based on the assumption that perturbation made in an input

variable does not affect the sequence of events, which may not be always true.

Although LR guarantees for unbiased gradient, the method is not applicable to

optimization problems that involve in-differentiable objective function (Fu, 1994). In

RSM, regression polynomials or neural networks are used to approximate the

relationship between objective variables and decision variables, based on simulation

24

data. Although the overall number of simulations is reduced, the method is restricted to

smooth objective-to-decision variable relation, where there is no sharp ridges and flat

valleys (Azadivar, 1999). On the other hand, OO focuses on finding good enough

solutions (not the best solution) by exploring as much as the solution space, within

certain computational time; where the global searching capability is enhanced at the

cost of its local searching capability (Zhong et al., 2006). Since a crude model is firstly

used for selecting a subset of good solutions, and simulation is performed only on the

selected subset, computational time is significantly reduced. However, statistically good

solutions can be difficult to obtain (Swisher et al., 2000; Zhong et al., 2006). While the

aforementioned optimization approaches promise reduced number of time-consuming

simulation runs, they are only applicable to over-simplified optimization cases.

The advent of parallel computing technology offers an alternative way of

improving the computational efficiency of simulation-optimization techniques. Fujimoto

(1989, 1990) and Misra (1986) discuss and compare various parallel computing

techniques for accelerating single simulation, based on distributed computing systems

like supercomputers and a network of processors. There are also studies, such as (Koo

et al., 2008; Laganá et al., 2006; Tan et al., 2010), which work on multiple simulations at

any one time. However, these algorithms require CPU-based HPC systems which can be

extremely expensive.

2.6. Continuous Pattern Recognition

Pattern recognition can be regarded as a classification technique, in which

machines attempt to learn from the environment and make judgment about the

categories of the data observations or patterns. As other data mining techniques, the

product of the learning process is a model. There are two broad groups of classification

25

techniques, namely supervised and unsupervised classification. In cases where the

actual classes of training data are known, supervised classification techniques are

usually more adequate; otherwise unsupervised methods are the only choice. The

number of studies of applying pattern recognition techniques in chemical process

operations is tremendous and growing continuously, some examples include process

monitoring and fault diagnosis using SVM (Chiang, 2004; Zhang, 2009), PCA (Bakshi,

1998; Kresta, 1991; Lee et al. 2004) , partial least squares (PLS) (MacGregor et al., 1994),

faulty sensor detection (Dunia et al., 1996; Qin & Li, 2001), process states identification

(Srinivasan et al., 2004), and etc.

As business has become increasingly competitive and regulations are getting

more stringent, continuous pattern recognition approaches which provide updated

information are highly attractive. In reality, process behavior is dynamic and time-

varying due to many reasons, e.g. seasonal fluctuation, tools aging, external

disturbances, equipment degradation. Therefore, it is crucial to detect or capture

process changes, so that adequate actions can be taken for maintaining optimal

operational conditions or satisfying regulatory standards. Relevant studies include (Geng

& Zhu, 2005) which presents an adaptive multiscale-nonlinear PCA algorithm for on-line

monitoring of slow process changes. The adaptive feature is granted by the use of

moving windows which acquire the process data dynamically. Instead of using moving

windows, Yue et al. (2004) propose to assign different weights to samples according to

their age. In doing so, old information will be forgotten gradually and newly constructed

PCA model reflects the current process behavior. In (Lee et al., 2003), the authors

demonstrate that the use of fixed multiway PCA model can lead to false alarms when it

is applied in a real process monitoring problem; the issue is resolved with consecutively

updating of the multiway PCA model. In (Ge et al., 2009), a statistical local method is

26

used to formulate changes of parameters in the kernel PCA model, so as to account for

the changes of process behavior.

However, the existing studies are mainly restricted to the use of PCA-based

strategy, and they show zero or little concern on computational efficiency. As model is

continuously updated or re-constructed, it can severely slow down the pattern (fault or

changes) identification process. Hence, our main goal is to develop efficient pattern

recognition methods for 2 important types of algorithm, which are image analysis and

clustering. In the following paragraphs, we discuss the state-of-the-art of these two

groups of techniques as well as their applications.

2.6.1. Image analysis

Image analysis involves identification of the position, size, or shape of objects

in a system, through classifying image pixels into separate groups representing

background, edges, boundary or objects. A standard digital image can be expressed as a

2D matrix (gray-scale) or a three-way 2D matrix (RGB or color). The size of the 2D matrix

indicates the degree of resolution, e.g. 720x480, 480x640, etc. On the other hand,

spectral imaging techniques provide much richer details of a scene by integrating both

the spatial and spectral information, in the form of 3D matrix, or a stack of 2D matrices.

The 3 important stages in a standard image analysis process are discussed as follows (M.

P. Ekstrom, 1984; Pitas, 1993).

Image enhancement: Image filters are the basic tool for image enhancement. It can be

broadly categorized into two groups, which are the Fast Fourier Transform (frequency

domain) and convolution (spatial domain) filtering. In this work, we focus on the latter.

Convolution filtering performs discrete convolution of the original image with a special

mask; where the fundamental idea is to assign each pixel a value depending on the

27

values of its neighboring pixels. The simplest mathematical formula of a convolution

filter is given below,

 () ∑ ∑ () ()

(2-2)

where, h is a mask given as a matrix of size () (), and the function or

values of h is known as the filter kernel. Depending on the functionality and complexity

of h, filters can be divided into low-pass filters and high-pass filters. Low-pass filters such

as mean and median filtering are commonly applied for image de-noising or smoothing.

Whereas high-pass filters e.g. Laplace, Roberts, Sobel are mainly used for image

sharpening. As high-pass filters develop useful features such as edges, lines from raw

image, they are also known as feature extractors.

Image segmentation: The objective of image segmentation is to partition an image into

multiple segments of connecting pixels; a segment is a group of pixels with similar visual

characteristics. The pixel segments which can be background, lines, curves, boundaries

and etc. are used for locating and characterizing objects in the subsequent stage. The

most popular method used for image segmentation is thresholding. Image thresholding

process replaces the values of background pixels to 1’s (i.e. white) and values of object

pixels to 0’s (i.e. black), thus the product is a binary image. There are several ways of

obtaining the threshold value, some based on blank images while others rely on the

considered image.

Image post-segmentation and characterization: Commonly, the objects identified

during image segmentation are defective, thus further enhancements are required.

Morphological operations like erosion, dilation, opening, closing are standard methods

used at this stage, for filling missing holes, removing objects that are tiny and touching

28

the image boundary. For effective characterization of the objects, object boundaries

need to be first identified by locating the connected pixels which separate the object

from the background. Lastly, quantitative or qualitative characterization of the image

can be performed.

2.6.1.1. Applications in process operations

Image analysis represents a powerful technique for monitoring and controlling

the shape and size distribution of crystal products in pharmaceutical, specialty chemical,

agrochemical industries. Numerous studies have been conducted, for examples, (De

Calderon Anda et al., 2005; Eggers et al., 2008; Larsen et al., 2006, 2007; Oullion et al.,

2007; Sarkar et al., 2009); some provide 3D size information (Darakis et al., 2010;

Kempkes et al., 2010); some uses image analysis to support model development

(Monnier et al., 1997).

On top of that, applications of image analysis are also found in other non-

particulate processes. Yu et al. (2004) develop a multivariate image analysis technique

for online performance monitoring of boiler system, by analyzing RGB flame images. By

combining the information extracted from flame images with additional process data, it

allows prediction of more useful information like concentration of NOx and SO2 in the

off-gas. In (Khalil et al., 2010), an automatic image analysis technique is used for

studying the effect of process parameters, e.g. surfactant concentration, stirring power,

on the droplet size distribution in an emulsification process. The optimal process

settings attained from the study show 3 to 4 times faster in reaching equilibrium. In the

study (2009), the authors present a multi-resolution and multivariate image analysis

method to identify defects on the surface of a photolithographed semiconductor device.

29

The use of image analysis is also extended to the study of gas-solid fluidization

and mixing systems, where standard analytical measurement is impractical or

ineffective. The features of bubbles, including size, moving speed, size evolution, have

great impact on the fluidized process performance, so visualization and understanding

of the bubble behavior are of foremost importance. Image analysis approaches are well-

suited to this case, as shown in the works (Busciglio et al., 2009; Kantzas & Kalogerakis,

1996; Lim et al., 2007). While some studies of fluidized system focus on the particle flow

dynamics like (Liu et al., 2008; Pallarès & Johnsson, 2006). On the other hand, the

concentration of components during solid-solid powder mixing or liquid-liquid mixing

which is difficult to measure can also be determined with image analysis techniques, as

illustrated in (Blood et al., 2004; Li & Wei, 1999; Santomaso et al, 2004).

From the perspective of continuous (i.e. online) process monitoring and

control, image analysis techniques which are capable of providing timely information

about the process are extremely valuable. Although, in (Larsen et al., 2006, 2007), it is

reported that the image analysis algorithm is sufficiently fast for real-time

implementation, the image acquisition speed of the video camera system is relatively

slow which is 12min per image. Many modern imaging systems operate at a much faster

speed, for instance (Sarkar et al., 2009) employ a Particle Vision and Measurement

probe captures image at every 0.5 second, (Yu & MacGregor, 2004) is based on imaging

time of 1 frame per second, (Khalil et al., 2010) records video sequence at the speed of

30 seconds per image. In some cases, the use of image analysis is restricted to off-line

applications, e.g. (Oullion et al., 2007).

30

2.6.2. Data clustering

Clustering is an unsupervised classification technique which divide non-trivial

amount of objects into a smaller number of groups (i.e. clusters), in which objects in the

same group share similar attributes and those in different groups are more dissimilar.

Standard clustering methods include k-means, density-based clustering, hierarchical

methods, fuzzy clustering, and neural network-based and genetic algorithm-based

clustering, an overview of these methods can be found at (Pham & Afify, 2007). More

detailed discussions on several key aspects of clustering e.g. object types, similarity and

distance measure, clustering optimality are provided in (Grabmeier & Rudolph, 2002).

These standard clustering algorithms are among the most popular data mining tools

which have been successfully applied in many disciplines such as bio-informatics (Alon,

et al. 1999; Edgar, 2010; Eisen et al., 1998; Li & Godzik, 2006), environmental science

(Chen et al., 2007; Malmberg & Maskell, 2002), economics (Colin Cameron et al., 2011;

Breschi & Malerba, 2001), and also chemical process operations as discussed below.

2.6.2.1. Applications of conventional clustering algorithms in process

operations

Clustering emerges as an effective tool for process states identification, for

example in the work (Srinivasan et al., 2004), a PCA-based two-step clustering method is

proposed for classifying historical data into various process modes and transitions,

which are characterized by different optimal control configurations. Ng et al. (2008)

demonstrate the use of self-organizing map (SOM) for process modes identification; the

approach has later been validated on process monitoring and diagnosis applications in

(Ng Y. S., 2008). Wang et al. (2013) propose using a subtractive clustering algorithm for

identifying the operation mode of a coke oven system, based on historical data.

Correctly identified operation mode is important as it allows determining of optimal

31

pressure set-point for coke oven operation. A similar application is also presented in

(Pyun, 2011) where k-means clustering is used to classify LNG data into several

operating modes for process monitoring purpose.

In addition, clustering of chemical components into smaller and more

manageable groups helps to reveal the chemical similarity and thus facilitating

comparison, understanding and making references on the components. In (Aji et al.,

2004), the PLS model constructed based on pre-clustered mid-distillates offers more

accurate concentration prediction of aromatic components. Akman et al. (2008)

propose a hierarchical clustering strategy to classify essential oil components in

supercritical CO2 phase. Clustering of components provides a clearer view of the relative

distribution and enables optimal design and operation of supercritical fluid technology.

Babaei Pourkargar et al. (2010) demonstrate the use of fuzzy clustering to predict

thermodynamic and transport properties of hydrocarbons based on the cluster

membership of the components. In some cases, plant facilities can also be clustered into

smaller groups for more effective network design and operation optimization, e.g.

design of biomass supply network using clustering technique (Ng & Lam, 2013),

coherent power generator groups are identified using support vector clustering

(Agrawal & Thukaram, 2013).

Direct applications of clustering in process fault detection and diagnosis have

also been found in the literature, e.g. (Detroja et al., 2006). In the study, historical

patterns are first classified into various clusters of normal or faulty operations using

possibilistic clustering. During online monitoring phase, the cluster membership of plant

data serves as the indicator of whether the data falls into normal or abnormal process

conditions. Similar to the works discussed early, the clustering is performed off-line on a

32

rather small historical dataset, by assuming unchanged process behavior. Hence,

conventional clustering methods are unsuitable for problems involving continuous

pattern recognition.

2.6.2.2. Data stream clustering

Effective continuous clustering applications involve handling large volume of

data or fast arriving data stream in an efficient manner. Apart from using expensive

CPU-based HPC computing systems to induce scalability and efficiency, like in the

studies (Dhillon & Modha, 2000; Feng et al., 2007; Kaur et al., 2012; Li et al., 2012; Li &

Xi, 2011; Patwary et al., 2012; Tsui et al., 2012; Xu & Zhao, 2012; Yang et al., 2012), we

are more interested in clustering methods which are fundamentally scalable to large

data as they represent more practical alternatives. Review of these scalable methods

can be found in (Silva et al., 2013; Yogita & Toshniwal, 2013).

Balanced iterative reducing and clustering using hierarchies (BIRCH) is one of

the earliest and most widely used scalable clustering method proposed by Zhang et al.

(1996). The key features contributing to the scalability of BIRCH are clustering feature

(CF) and micro-clusters; while the tree structure organization of micro-clusters allows

for efficient searching. The fundamental idea is to incrementally assign data to the most

similar micro-cluster. The main characteristics and data distribution of a micro-cluster is

represented by a tuple CF=(N,LS,SS), where N is the number of data, LS is the linear sum

of the N data, SS is the squared sum of the N data. Through condensing N data points

into a CF tuple and limiting the number of micro-clusters to be formed, BIRCH is able to

take in infinite number of data theoretically. The resultant micro-clusters which

represent data summaries can be further processed or clustered to generate more

meaningful results. More details of BIRCH algorithm are provided in Section 2.6.2.3.

33

A number of scalable clustering algorithms have been derived from BIRCH,

based on the CF-vector and micro-cluster concept. The CluTree algorithm proposed by

Kranen et al. (2008) incorporates temporal information to tree nodes (i.e. micro-

clusters), whereby CF computation is time dependent. In doing so, outdated information

will slowly be forgotten. ODAC is another variant of BIRCH employing the micro-

clustering approach, but it is a method for variables or features clustering instead of

data clustering (Rodrigues, 2008). Some of the micro-clustering algorithms remove the

tree structure; popular ones include DenStream, HPStream, HDDSTREAM and

CluStream. The DenStream algorithm proposed in (Cao et al., 2006) constructs density-

based micro-clusters which undertake arbitrary shape. It also employs a different

pruning strategy to limit the amount of micro-clusters. Aggarwal et al. (2005) and

Ntoutsi et al. (2012) develop micro-cluster-based HPStream and HDDSTREAM

algorithms, respectively, which are targeted at high dimensional clustering problems.

The CluStream algorithm removes outdated data by tracking and including the temporal

information of micro-cluster into CF (Aggarwal et al., 2003).

While the abovementioned BIRCH-derived methods process data

incrementally, i.e. one at a time, there are also algorithms working on data batches like

the scaleKM algorithm proposed in (Bradley et al., 1998) and its enhanced version

presented in (Farnstrom et al., 2000). In the study (Bradley et al., 1998), individual data

batch undergoes a series of steps including standard k-means (along with micro-clusters

formed previously), primary and secondary data compression. There will be k clusters

generated from the standard clustering step with each cluster represented by a CF

tuple. Based on the k-clusters model, data in the current batch is grouped into micro-

clusters representing discarded, compressed, and retained set, during the two-step data

compression. Farnstrom et al. seek to reduce computational complexity and enhance

34

algorithm efficiency of scaleKM by removing the compressed and retained micro-

clusters.

Scalable clustering algorithms which are not based on the CF and micro-cluster

concepts of BIRCH are also found in the literature. For instance, (Hore et al., 2007) and

(Wan et al., 2012) present fuzzy c clustering algorithms which are scalable to large data

by processing them in batches, (Song & Wang, 2005) proposes a scalable GMM-based

clustering approach in which GMM is trained on data batches. A main concern of these

methods is the merging of two consecutive sets of clusters into single set, which can be

complicated and erroneous if the involved data batches contain distinctive data

distribution.

The scalable clustering algorithms discussed above are characterized by single

or a few data scan, eliminating the need of transferring data from secondary storage

device which is extremely expensive. However, the micro-clustering approach emerges

as an exclusively flexible and effective means for data stream clustering. As many of the

existing micro-cluster-based algorithms are designed by focusing only on the clustering

accuracy, enhancement of computational efficiency is very much needed for continuous

clustering applications.

2.6.2.3. BIRCH

In this section, we re-present the BIRCH algorithm which is originally proposed

in (Zhang et al., 1996) by examining the CF vector, CF-tree structure, insertion of data

into CF-tree, and maintenance of CF-tree. As has been mentioned above, CF vector is a

tuple containing 3 statistics (N, LS, SS) extracted from the constituent data points of a

micro cluster. The CF vector provides all necessary statistical information for clustering

computations such as distance and cluster centers. In addition, the additive feature of

35

CF vector allows it to incrementally take in data points as well as to merge with other CF

vector (i.e. micro cluster); merging of two micro clusters are sometimes needed for CF-

tree maintenance, as will be discussed later.

CF-tree is made up of 3 types of micro clusters, namely cluster node, leaf node

and interior node (known as nonleaf node in the original paper). These nodes are

connected through parent-child relationship, as shown in Figure 2-2, interior nodes

represent high level nodes containing leaf nodes as their children, and cluster nodes are

the lowest level nodes which do not contain child node. Interior node located at the top

of CF-tree is called the root node. To facilitate the increment of tree height, we define

cluster nodes as level 0, leaf nodes as level 1, and interior nodes as level 2 and higher,

which is the different from the original paper. Note that the CF vector of cluster node is

computed directly from its constituent data points; whereas the CF vectors of leaf and

interior node are obtained by adding the CFs of all children nodes. The maximum

number of children node allowable in a leaf node (L) or an interior node (B) is

determined by both the data dimensionality and page-size of computing system.

36

Figure 2-2: An example of CF-tree, where circles represent micro clusters and one-

directional arrows link parent node to its children nodes.

Insertion of a data point D’ into the CF-tree involves 2 key steps, which are

identification of the nearest cluster node Cnearest and updating of CF-tree with or without

structure change. In the first step, the data point traverses through the CF-tree in a top-

down manner, whereby the path taken is made up of the closest child nodes at every

level, starting from the root node. Once it arrives at Cnearest, it needs to examine if the

distance between D’ and Cnearest is smaller than the current threshold value. If this is the

case, the CFs of Cnearest as well as all its preceding parent nodes will be updated to reflect

the adding of D’; note that there is no structure change involved. Otherwise, a new

cluster containing single data point will be created as a new child sharing the same

parent leaf node of Cnearest, provided there is empty child slot. It all child slots are

occupied, splitting of the leaf node is required, whereby a new leaf node is created and

the siblings of Cnearest along with the newly created cluster node are re-distributed

37

between these two leaf nodes. Redistribution is achieved by locating two farthest

children nodes which serve as the seeds in the two leaf nodes, and then the remaining

children nodes will be assigned to the nearest seed. Splitting may propagate to higher

levels following the same re-distribution procedure. If splitting reaches the root node,

an additional level will be added.

A key characteristic of BIRCH algorithm is that it summarizes data points into

the finest possible micro clusters, given a memory space M. As new data points are

continuously inserted into the CF-tree, it may arrive at a state where M has been fully

consumed. If this is the case, threshold value needs to be increased, and CF-tree will be

rebuilt based on the modified threshold. It should be noticed that a larger threshold

enables merging of nodes and hence resulting in a smaller size CF-tree. In this study, we

apply the same heuristic approach given in (Zhang et al., 1996) for threshold increment,

in which the new value is computed based on the distance of two nearest cluster nodes

in the most crowded leaf node found in the CF-tree. CF-tree rebuilding involves treating

individual cluster node as a new data point against the new CF-tree, where the new CF-

tree initially consists of only the most left-hand branch of the original tree. During

rebuilding, if a cluster node finds a closer path in the new tree before its original path, it

will be either merged with another cluster node or included as a new child in the new

path; otherwise it will stay in its original path.

Furthermore, BIRCH includes 2 additional features which are used for delaying

node splitting and removing outliers during CF-tree rebuilding. The first property is

achieved by keeping aside data points which demand for node splitting into a temporary

variable delay-split and allowing insertion of subsequent data points; the second feature

involves moving cluster nodes containing too few data points to a variable outliers. The

38

sizes of these two variables which are specified by the users affect both the quality and

computational time of BIRCH, as they alter the sequence of data insertion and at the

same time the variables need to be examined regularly for data re-insertion to the CF-

tree.

39

Chapter 3. GPU-based Parallel Computing

Technique

Historically, graphics processing unit (GPU) was specially designed for graphics

rendering purpose. The major advantage of using GPU in mainstream computers is that

it offloads massive amount of graphics-related operations from the central processing

unit (CPU). Graphics rendering process involves a series of operations on every image

pixel unit following graphic pipeline, which comprises of vertex generation and

processing, primitive generation and processing, fragment generation and processing,

and pixel operations. In order to display precise and real-time graphics on computer

screen, the architecture of GPU is structured in a way that it is capable of processing

enormous vector calculations efficiently, by incorporating massive amount of processing

cores. In the context of computer science, vector calculation or vectorization refers to

the use of a computer program that processes one operation on multiple pairs of

operands concurrently. The simultaneously manipulated operands are commonly

known as data parallelism in parallel computing study. It should be noted that

conventional CPU consisting of one or a few processing cores fails to meet such

graphical requirement, and therefore it requires GPU to work as a co-processor so as to

relieve the computational burden.

The subsequent development of shader programming in GPU technology has

unlocked the opportunities for non-graphical or general-purpose GPU applications. In

traditional graphic pipeline, shader which calculates rendering effects on graphics

hardware is hardcoded (i.e. fixed-function). To offer flexibility, programmable shader is

introduced in modern GPUs, for instance, NVIDIA’s GeForce 7800 GPU which comprises

of 3 programmable shaders as depicted in Figure 3-1. Graphical effects such as position,

40

saturation, brightness, and contrast of all pixels or vertices can thus be constructed

dynamically using variable shader algorithms. Taking advantages of the many processing

cores and programmable shaders of GPUs, researchers have successfully extended the

use of GPU to general-purpose computing. Some example applications are (Adams et

al., 2007; Liu et al., 2009; Liu et al., 2006; Loop & Blinn, 2006; Shiue et al., 2005; Tarditi

et al., 2006; Wong et al., 2007). However, these non-graphical applications of GPU are

required to follow strictly the graphic pipeline, making it extremely user-unfriendly.

Furthermore, managing and load balancing of multiple types of programmable shaders

or cores is difficult and involving good knowledge in graphic programming.

Figure 3-1: The 3 programmable engines of GeForce 7800 GPU developed by NVIDIA

1
.

Graphics device developers such as NVIDIA and ATI introduce a new concept

called ‘unified shading architecture’, where there is only single type of programmable

1
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture)

41

shader cores to accommodate all shader tasks. A typical example is the GeForce 8800

GPU developed by NVIDIA, as presented in Figure 3-2. Unifying of shader cores reduces

programming complexity by eliminating the need for stage-by-stage balancing, and thus

enables programmers to better focus on the algorithmic development. Nonetheless,

programmers are still required to formulate the non-graphical GPU problem as a graphic

rendering job by following the graphic pipeline and presenting data as vertex or texture

information.

Figure 3-2: The unified shader architecture of GeForce 8800 GPU developed by

NVIDIA
2
.

A major breakthrough in the general-purpose GPU (GPGPU) computing is the

introduction of a general-purpose programming model called Compute Unified Device

2
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture)

42

Architecture (CUDA) by NVIDIA in 2006. CUDA is the first C-based program development

platform in GPGPU industry, which allows GPU to be treated as a many-core processor.

Most importantly, CUDA provides a user-friendly development environment which

requires zero knowledge of graphics operations, and thus decreases the learning curve

and greatly improves computational efficiency. Within a few years after the introduction

of CUDA, a wide spread of CUDA-based scientific computing applications have been

reported; a number of classic examples can be found at (NVIDIA, GPU-ACCELERATED

APPLICATIONS).

While CUDA programming is much easier and effective than shading

programming, it requires adequate understanding on GPU architectural details and

programming model characteristic for better utilization of device resources and

development of highly efficient programs. In the following sections, we first investigate

the hardware architecture of GPU in regards to key components such as processing

cores, memory types, and its relationship with CPU. It is then followed by the discussion

on important features of CUDA programming model, including the concept of threads,

warp, thread block, and grid, efficient memory accessing patterns, and types of

communication. Towards the end of this chapter, a number of CUDA applications in the

area of optimization and pattern recognition will also be provided.

3.1. CUDA-enabled GPU Architecture - Hardware

A fundamental difference between GPU and CPU is that GPU is a

computationally intensive device while CPU is a control-flow optimized device. As it can

be seen from Figure 3-3, GPU devotes many of its transistors to Arithmetic Logic Units

(ALUs), while CPU allocates a significant amount of transistors to flow control and data

caching. Given a massive amount of ALUs, GPU possesses a much higher arithmetic

43

computing power than its CPU counterpart. However, the deficient control-flow

capability of GPU has limited it to be a co-processor instead of the host processor of an

application. In other words, only certain parts of an application are worthwhile to be

ported to GPU, while CPU is still needed for controlling the overall process flow and also

dealing with strictly sequential computations. The resulting program which is managed

jointly by both CPU and GPU is called a hybrid CPU-GPU algorithm, or sometimes

termed as GPU-based algorithm for brevity. On the contrary, a program that is executed

exclusively on CPUs is called a sequential or serial program.

Figure 3-3: Comparison of GPU and CPU architecture

3
.

The massive amount of processing units and low level control-flow units of

GPU makes it especially suitable for realizing data parallelization. In the context of

parallel computing, data parallelism refers to the concurrent computations on many

different data elements. Particularly, GPU execution fits into the Single Program

Multiple Data (SPMD) model whereby the same program (or called data parallel

algorithm) is executed on many data simultaneously. A trivial example is the summation

of 2 matrices, where the same adding operation (i.e. program) is executed on all matrix

elements. By means of data parallelization, GPU is capable of achieving an enhanced

3
 Courtesy: (NVIDIA, NVIDIA CUDA C Programming Guide Version 4.2, 2012)

44

overall efficiency, despite of the suboptimal performance of individual operations due

to deficiency in control-flow operation, as illustrated in Figure 3-4. Amdahl's law defines

the theoretical amount of efficiency improvement achievable by a parallel computing

system, as given below,

 ()

 ()

 ()

 () (

())

(3-1)

where, T(1) and T(n) denote the time taken by the sequential and hybrid program,

respectively, and the 1 and n inside the parenthesis indicate the number of data

element being processed concurrently at the same time; B is the fraction of algorithm

that is strictly sequential.

45

Figure 3-4: Data processing model of (a) CPU, and (b) GPU computing system.

The development of an efficient data parallel algorithm is not only about

identifying data parallelism, it is also required to ensure GPU resources is fully utilized to

achieve high arithmetic computing power. It is therefore important for GPU

programmers to fully understand the detailed organization and limitations of various

GPU components. In a CUDA-enabled GPU device, the processing cores or streaming

processors (SPs) are organized into multiple streaming multiprocessor (SM) units, as

shown in Figure 3-5. It should also be noted from Figure 3-6 that SPs within the same

SM unit share several computational resources, e.g. the instruction dispatch units, warp

schedulers, shared memory, cache, and register file etc. This sharing of instruction

dispatch units and warp schedulers implies that the computations on these SPs are

CPU 1 2 3 N

GPU

CPU computing time

1

2

3

N

GPU computing time

Computing
operation

(a)

(b)

46

executed in parallel, whereby the same instructions are broadcasted to multiple SPs.

Also, communication among SPs can be done through the shared memory. Hence, SMs

and SPs together represent two-level of data parallelism in CUDA-enabled GPU. In

developing a CUDA-based data parallel algorithm, it is crucial to adequately map data

operations to these two-level processing units in such a way that both SPs and SMs are

optimally utilized during the entire course of GPU computing. For instance, a data

parallel program which assigns a massive amount of data operations to single SM will

perform poorly, as SPs in all other SMs are not used. A further point is that the amount

of device resources e.g. the number of SPs in a SM, the size of shared memory and

register file in each SM, varies with the GPU architectural models which are specified as

compute capabilities such as 1.0, 1.1, 2.1 by NVIDIA.

47

Figure 3-5: An architectural overview of a NVIDIA’s GPU device in the Fermi series; a

closer view is presented in Figure 3-6
4
.

4
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture)

One SM unit A processing core

48

Figure 3-6: The key components contained in a SM unit of Fermi series GPU

5
.

3.1.1. Memories

Besides the shared memory mentioned early, there are several more memory

types provided in CUDA-enabled GPUs, namely global memory, constant memory,

texture memory, local memory, and register. Essentially, these memories are different

in terms of memory space, latency, accessibility, read-write-ability, and location, as

summarized in Table 3-1, thus they are suited for different data storage purposes.

5
 Courtesy: (NVIDIA, NVIDIA’s Fermi: The First Complete GPU Computing Architecture)

49

Global memory which is also known as DRAM, as presented in Figure 3-5, takes up the

largest memory space among all. It can be used for storing both input (read) and output

(write) data, which are usable and writable by all data operations in a data parallel

program grid as well as the host CPU; the concept of grid, block, thread, and application

will be introduced in Section 3.2. Due to its off-chip position, it involves high memory

latency especially during data reading. In writing data to global memory, it proceeds to

the next instruction immediately after calling for the store operation without waiting.

Memory latency ranges from 400 to 700 clock cycles depending on the memory

accessing pattern. The lower end can be achieved by the desirable coalesced memory

access, which will be described in details in Section 3.2. Constant and texture memory

are read-only memories which have limited memory space. Despite of their off-chip

position, relatively low memory latency is achievable if specific memory access patterns

are satisfied, which are data broadcasting and spatial locality, respectively. Such

memory accessing patterns enables efficient use of constant cache (i.e. the uniform

cache shown in Figure 3-6) and texture unit cache, which will be discussed more in the

subsequent section.

Similar to CPU-based HPC computing system, there is memory copying

overhead costs incurred during GPU computing. As GPU is prohibited to access host

memory directly, input data needs to be first copied from host to GPU global or

constant or texture memory before any GPU computing can be performed. Besides,

upon completion of GPU computation, the host needs to copy the results from GPU

global memory back to host memory for further computations. The GPU and host

memories are connected through a Peripheral Component Interconnect (PCI) bus, thus

the data transfer rate is limited by hardware specifications. An illustrative example is

given in Figure 3-7 showing different directions of memory copy and the associated

50

memory bandwidths. In general, GPU memory has a higher bandwidth than CPU

memory, while the memory transfer through PCI bus is the slowest. Hence, data

transfer between host and GPU should be minimized at all time, otherwise it may offset

the performance benefits of GPU computing.

Figure 3-7: Instruction flow and memory copies involved in a hybrid CPU-GPU

application; memory bandwidth values are based on a PCI express bus 2.0x16, Intel Xeon

W3670 workstation, and a Quadro 2000 GPU.

Next, we discuss the two on-chip memories, shared memory and register.

Shared memory serves as a communication platform within a SM unit, in which data

computations executed on the same SM can exchange information e.g. intermediate

results with each other. To fulfill the requirement of information sharing, it must be

read-write-able. It is a very fast memory which takes about 4 or more clock cycles for

memory accessing, and this is 2 orders of magnitude faster than the off-chip memories.

Similar to the abovementioned memories, the lower end of latency is achievable by

Device

Host

Device

Host

Instruction flow

Serial code

Data parallel
algorithm

Serial code

CPU main memory

~25GB/s

GPU global
memory

~41.6GB/s

~8GB/s

Data parallel
algorithm

PCI Express 2.0 x16

51

satisfying a desirable memory access pattern, which is non-bank-conflicting access for

shared memory as it will be analyzed in subsequent section. As the size of shared

memory is rather small, which is at most 48 KB, its usage should be limited for data

which is accessed or modified frequently during the operations of a data parallel

algorithm. Note that the size of shared memory in GPUs with compute compatibility of

2.X or above is configurable to be 48 or 16 KB. On the other hand, register is the fastest

CUDA memory which allows memory accessing to occur at almost zero cost. However, it

is limited to extremely small memory space, and it is the smallest among all memory

types. Besides memory space limitation, register is restricted for storing data which is

relevant to single data operation or a thread as it will be discussed later. It is essential to

ensure that the memory space allocated for register not exceeded, otherwise it will

cause spillage to expensive local memory. Memory latency involved in accessing local

memory is as high as global memory.

Table 3-1: Characteristics of the 6 CUDA memories; the values shown are relevant to

GPU with compute compatibility of 2.X.

In this work, all GPU computing is done using a NVIDIA’s Fermi Quadro 2000

GPU device with compute capability of 2.1. Computing resource characteristics of the

device are presented in Table 3-2. Note that computational power is quantified by

number of floating-point operations per second (FLOPS) or giga FLOPS. The GPU

contains full-featured processing units in term of full IEEE 754-2008 support for both

52

single and double precision floating-point operations. The device also includes special

function units (SFUs) for transcendental, reciprocal, and square root operations, as its

CPU counterpart. On top of the procedural C code, it offers object-oriented C++

programmability. Such GPU is suited for accurate scientific computation.

Table 3-2: Specifications of NVIDIA’s Quadro 2000 GPU device.

3.2. CUDA Programming Model - Software

In CUDA programming, threads are the abstract processing elements which

map the massive amount of data parallelism to processing units. During the execution of

a data parallel algorithm, a CUDA thread will be created and assigned to an individual

data operation, thus N threads will be needed if the algorithm is operated on N different

data elements. Depending on the complexity of the computational task, cooperation

among different data operations is sometimes required. Considering the previously

discussed matrix summation example, if the resultant matrix is further reduced to a

column vector through row-wise summation, data operations along the same row are

53

required working together to determine the summed value. To allow for cooperative

operation while reserving massive parallelism, CUDA threads are organized into blocks

and grid, as illustrated in Figure 3-8; where threads and blocks represent the two-level

data parallelism. Thread configuration is the term used for describing thread

organization, and it consists of two components which are the grid size (i.e. the number

of blocks in a grid) and block size (i.e. the number of threads in each block). Threads

within the same block are granted certain degrees of dependency, while threads at

different blocks are strictly independent; more detailed discussion will be given in later

paragraphs. Note that grid defines the scope of a data parallel program or called CUDA

kernel or function, thus all threads inside a grid execute the same program. As every

thread in a block and every block in a grid is assigned with a unique identifier, it is

straightforward to compute a globally (i.e. grid-level) unique thread identifier for

associating with relevant data elements (i.e. its share of work) or specific operational

path.

Figure 3-8: An example of CUDA threads configuration, demonstrating the relationship

among threads, blocks and grid.

Grid 0

Block (0,0) Block (0,1) Block (0,2)

Block (1,0) Block (1,1) Block (1,2)

54

3.2.1. CUDA blocks execution

The mapping of abstract processing threads to actual processing units in GPU

device is presented in Figure 3-9 and Figure 3-10. As shown in Figure 3-9, the

assignment of CUDA blocks to SMs is done randomly. Depending on the computing

resource requirement for each block as well as the resource limitation of SM, there

could be one or more blocks managed by a particular SM at one time. However, it is

important to ensure that computing resource required by a CUDA block must be

bounded such that at least one block can be fitted into a SM. Once the operations of a

CUDA block are completed, a new block waiting in the queue will be assigned to the SM.

All SMs of a GPU device are always occupied unless there is no more unprocessed block

in the grid.

3.2.2. CUDA threads execution

Now, we consider the execution of a particular CUDA block that is assigned to

the first SM, as given in Figure 3-10. A warp is defined as 32 (or 16) consecutive threads

in a block, when a GPU device with compute capability of 2.X (or 1.X) is used. For

instance, a block consisting of 128 threads can be viewed as 4 warps, which correspond

to threads with identifier in the range of [0, 31], [32, 63], [64, 95], and [96, 127],

respectively. Since warp is the smallest execution unit in CUDA programming model, it is

advisable to have CUDA blocks containing number of threads that is multiples of warp

size, so as to avoid resource wastage. As it can be seen from Figure 3-10, warp

schedulers look for available warp randomly from the assigned CUDA block, and then

allocate with suitable instruction. During this process, there are two issues need to be

addressed. First, warps that are available for execution must have their previous

operation completed; note that available warps are different from resident warps which

55

are simply every single warp in the assigned CUDA block. In general, the number of

available warps tends to increase if there are more resident warps. Hence, thread

configuration which exhibits large number of resident warps is usually more favorable.

Secondly, the required instruction units which can be SPs, or SFUs, or memory load or

store units, must be unoccupied and free for use.

An important characteristic of warp execution is that threads within a warp are

self-synchronized and thus required to follow strictly the exact operational path. Such

execution paradigm fits to the Single Instruction Multiple Thread (SIMT) model as

defined by NVIDIA. Supposing there are P conditional paths given in the CUDA program

and each thread within the warp takes a different path, the entire warp will need to

walk through the 32 operations sequentially. Hence, it is crucial to ensure that all

threads in a warp taking the same or a limited number of paths. On the other hand,

threads in different warps, regardless if they belong to the same CUDA block, can take

different paths at no additional cost.

56

Figure 3-9: Mapping of CUDA blocks to SM units in a GPU device.

SM P

SM 1

SM 0

Device

Grid 0

Block (0,0) Block (0,1) Block (0,2)

Block (1,0) Block (1,1) Block (1,2)

57

Figure 3-10: Mapping of CUDA threads to SPs in a SM.

As it has been pointed out early, the allocation of threads inside the same

block allows for more useful work to be done. This can be attributed to the availability

of 2 valuable features, which are shared memory and synchronization barrier. As

discussed in Section 3.1, shared memory serves as a communication platform for

threads within the same block to exchange information in the middle of CUDA kernel

execution. On the other hand, synchronization barrier provides a stop point to align all

threads in a block. This synchronizing feature is particularly important when the

correctness of subsequent computation is affected by the current operation of other

threads in the block. Since warp execution is self-synchronized, CUDA block containing

only a warp will behave in the same way. However, the synchronization of threads

within a block incurs 4 or more clock cycles, and it is usually much longer especially for

SM 0

Block (0,1)

58

large CUDA block, due to the need of waiting. Hence, cautions must be taken while

applying this feature. In contrast, thread operations at different blocks cannot be

synchronized, and the only way to do that is to split the computing application into

several CUDA kernels or programs. Table 3-3 presents the software resource limitations

relevant to a NVIDIA’s Quadro 2000 GPU device.

Table 3-3: Programming model of NVIDIA’s Quadro 2000 GPU device.

3.2.3. Memory access

In regards to memory accessing, warp is the most relevant execution unit in

determining memory latency for various types of memory; more details can be found at

NVIDIA’s website (NVIDIA, CUDA TOOLKIT DOCUMENTATION). Global memory can be

viewed as memory chunks, where each chunk consists of 32 contiguous 4-bytes words.

If a data request operation associated to a warp involves one such memory chunk,

single memory transaction is needed, as demonstrated at the top example of Figure

3-11. This memory access pattern which is called coalesced access is the most favorable

for global memory, as it requires only one memory transaction and thus reduces

memory latency. There are cases where the data requested by a warp fall into different

memory chunks, thus requiring multiple memory transactions, like the center and

bottom examples in Figure 3-11. It should be noticed that some parts of the data

obtained from each memory transaction are not used, and thus resources are wasted.

59

Constant and texture memories are cached memories which require special accessing

patterns to achieve low memory latency. Constant cache is designed for data

broadcasting, thus it is exclusively used for situation where the threads in a warp ask for

the same data. Texture cache is optimized for accessing data exhibiting spatial locality,

as shown in Figure 3-12.

Figure 3-11: A small warp containing only 6 threads is used to illustrate the number of

memory transactions under 3 different situations, where (a) one, (b) two, (c) six,

transactions are required, respectively.

warp warp warp

warp

(a)

(b)

warp

(c)

One memory chunk

60

Figure 3-12: An example of texture memory access showing spatial locality

characteristic.

On the other hand, memory accessing to shared memory is more complicated

and compute capability dependent. In this work, all GPU computing is done on a Fermi

GPU device with compute capability 2.1, so the following discussion on shared memory

is focused on GPU of compute capability 2.X. Shared memory is made up of an array of

32 memory banks, in which successive 32-bit words are stored at successive banks. An

important feature is that data in the 32 banks can be accessed simultaneously, within a

warp. In general, we want to avoid bank conflict which serializes memory access. Bank

conflict occurs when there is more than one thread in a warp attempt to access the

same bank, for example if there are two threads accessing the same bank, it is called 2-

way bank conflict like example (e) in Figure 3-13. Supposing the 32 threads in a warp

access to different banks during a data request, there will be no bank conflict and

minimal memory latency is achievable. As shown in Figure 3-13, examples (a), (d), and

(f) satisfy this criteria. However, in a special case where multiple threads access to the

same 32-bit word in a memory bank, there will also be no bank conflict; such as the

examples (b) and (c).

Texture 2D
cache

warp

61

Figure 3-13: Examples of shared memory access; (a) random access; (b) random access

with broadcasting; (c) broadcasting; (d) orderly access; (e)&(f) strided access; where (a),

(b), (c), (d), (f) have no bank conflict, (e) generates 2-way bank conflict
6
.

3.3. CUDA Programming Issues

CUDA software package which is freely downloadable from NVIDIA’s website

(NVIDIA, NVIDIA CUDA ZONE) mainly consists of programming toolkits (e.g. user manual

and profiler), device driver, compiler and Application Program Interface (API) functions.

In particular, CUDA software package of version 4.2 64-bit is employed in this work

(NVIDIA, CUDA Toolkit 4.2 - archive). At CUDA platform, software program development

is based on standard programming languages, including C/C++ and Fortran. Here, we

focus on the use of CUDA C/C++. A CUDA program developed based on CUDA C/C++ is

compiled with NVIDIA's LLVM-based C/C++ compiler (NVCC) which comes with the

6
 Courtesy: (NVIDIA, CUDA TOOLKIT DOCUMENTATION)

62

software package. As a hybrid application consists of both serial and parallel codes, a

key role played by the NVCC is to identify, separate and send the two parts of codes to

CPU host and GPU, respectively.

Due to the fundamental difference between CPU and GPU in terms of

hardware features and programming model, extensions to standard C/C++ are needed.

These include function type qualifier, variable type qualifiers and built-in variables;

detailed discussion is provided in (NVIDIA, NVIDIA CUDA C Programming Guide Version

4.2, 2012). Function (or variable) type qualifiers specify the execution (or storage)

location of a particular function (or variable), either on the host or GPU device; while

built-in variables are used to indicate thread and block identifiers as well as the size of

block and grid. For instance, a CUDA kernel has to be declared with __global__ function

qualifier along with <<<…>>>; the former notifies NVCC that this is a GPU function, and

the latter contains the execution configuration. The execution configuration essentially

refers to the thread configuration employed during a particular run of the CUDA kernel.

Moreover, API functions included in the CUDA package provide a simple means for data

transferring, and thus simplifying the process of porting CPU sequential code to GPU.

3.3.1. Guidelines for developing CUDA-based GPU program

A standard set of procedures which serve as broad guidelines for developing

CUDA-based GPU application is summarized in Figure 3-14. First of all, potential GPU

tasks are identified based on two main criteria, which are high computational cost, and

reasonably rich amount of data parallelism relative to the amount of data transfer

required between host and GPU. The next step is to design and build CUDA functions

for the selected GPU tasks, whereby good knowledge of GPU architecture and parallel

programming is required. In general, there are a number of design factors need to be

63

considered, and these include the availability and suitability of existing GPU library

functions, the mapping relationship of tasks and CUDA kernels, choice of memory types,

optimum thread configuration, and the applicability of various optimization techniques.

In the following subsections 3.3.2 and 3.3.3, some of the primary GPGPU operations and

widely used optimization techniques are elaborated. The developed GPU program and

the entire CPU-GPU application is firstly tested for computational accuracy and result

correctness, after which computational performance is measured using some kind of

profilers such as NVIDIA Nsight Visual Profiler. If the resulting computational speedup is

not satisfactory, further improvement could be achieved by searching for additional

tasks for GPU implementation or refining the design of CUDA kernels. Application of the

standard GPGPU programing procedures shown in Figure 3-14 is demonstrated in 3 case

studies throughout Chapter 3 to Chapter 5.

64

Figure 3-14: Proposed procedures of developing a CUDA-based GPU application.

2

Identify computational expensive

tasks through

1. computational experiments (if

sequential code is available); or

2. algorithmic examination

Analyze the costly tasks for

1. data parallelism or SIMD compatibility;

and

2. amount of memory transfer between

host and GPU

Validate the correctness

and accuracy of output

results

Start

YES

End

Identify tasks which fit the CUDA

architecture with characteristics of

1. SIMD-rich; and

2. acceptably low data transfer from or to

host

Construct CUDA kernels for the selected tasks through

answering the following questions

1. Is there any existing GPU library function suitable for the

job? or does a custom built CUDA kernel allow for better

efficiency?

2. What is the ideal mapping of task to kernel? 1-to-1 or

multiple-to-1 or 1-to-multiple? What is the amount of

memory transfer required? Any cross-talk needed among

threads above block-level?

3. What is the optimum design of individual CUDA kernel?

Consider the following issues:

a) characteristics of input and intermediate data (e.g.

size, accessing frequency etc.) and thus the types of

CUDA memory used

b) thread configuration

c) cross-talk required among threads

d) synchronization requirement

e) applicability of various optimization techniques

Measure computational

performance in terms of

speedups achieved by GPU

computing

Is the computational performance satisfactory?

NO

Search for additional tasks to

be ported to GPU

Refine CUDA kernels

65

3.3.2. CUDA kernel design

Programming knowledge and experience on one platform may not be directly

useful to other platforms, particularly when the underlying programming models are

disparate as in the case of transforming sequential code to parallel code. In view of the

intensive programming effort of developing CUDA application, we recommend

considering only computational expensive tasks for GPU computing. The simplest

implementation of GPU computing is to directly apply functions from GPU-based

libraries, such as CUBLAS, CULA, MAGMA, and Thrust libraries. Both CUBLAS and CULA

are GPU-accelerated linear algebra libraries, where the former is the GPU-version of

BLAS library; MAGMA library provides GPU-based dense linear algebra functions, similar

to the sequential LAPACK library; and Thrust resembles the C++ Standard Template

Library (STL). However, these standard library functions are insufficient for addressing

computing problems that are complex. Real-world computing applications are always

more than linear algebras, array sorting or searching. Hence, application-specific GPU

programs need to be developed for optimal computational performance. A CUDA

programming book written by Jason et al. (2010) provides simple CUDA kernel examples

which are useful for beginners.

There are a number of primary GPGPU operations which serve as the building

blocks of a GPU program; most relevant ones are map, reduce, scatter and gather, scan,

stream filtering, and sort (Owens et al., 2007). These are data-dependent operations

offering data parallelism for GPU computing.

Map: involves application of the same function to different data elements, e.g. given an

array of input data *1, 2, 3, 4, …, 10+ and a function (), the mapping operation

results in output data of [3, 4, 5, 6, …, 12+.

66

Reduce: involves computations which generate single element or a smaller array from a

larger size input array, e.g. finding summed, maximum, or minimum values. On the

CUDA platform, shared memory can be used to partially reduce the input array to

intermediate summed array which has the same size as the block. An example is

illustrated in Figure 3-15, where the input array of 20 elements is partially reduced to an

intermediate array of 6 elements. The partially summed array can then be reduced

further to single value through thread cooperation; an example is given in Figure 3-16.

In this example, an input array of size 32 is given initially and a block containing 32

threads is assumed. At each successive step, the number of working threads is halved

and the strided accessing size is also halved, until single value is obtained. As the order

of data elements being processes depends on the block size and array size, the

operation (i.e. op) must possess the properties of commutative and associative. An

important point to highlight is that both the CUDA block size and the starting array size

must be divisible by 2, such that the halving operation results in integer number. Note

that the process demonstrated in Figure 3-16 is an example of the divide and conquer

strategy with 2 elements in each group. Divide and conquer strategy involves dividing

data into groups; each group is reduced to an intermediate results with lesser elements;

intermediate results are further divided and reduced iteratively until final results are

obtained.

67

Figure 3-15: An example of using shared memory to support a reduction operation; a

small warp containing only 6 threads is used for illustrative purpose.

Figure 3-16: An example of reduction operation which calculates the total sum from a 32-

element input array residing in either shared or global memory.

Scatter and gather: are essentially the data writing and reading operations.

Input array6 threads in a
block

op +=

Shared memory array
(array size = block size)

op += op +=

op +=

1st iteration

2nd iteration

3rd iteration

4th iteration

Compute the
total sum

op +=

op +=

op +=

Input array containing 32 elements

Working threads: The
first 16 threads in the

block

Working threads: The
first 8threads in the

block

Working threads: The
first 4threads in the

block

Working threads: The
first 2threads in the

block

Working threads:
only the first thread

in the block

68

Stream filtering: involves selection of data subset based on certain criterion, sometimes

known as stream compaction; e.g. removing data elements which are negative values,

copying unique data elements. It can be regarded as a special class of mapping

operation, except that the stream filtering is required to eliminate useless elements

from the output array.

Sort: involves alteration of the sequence of input array to generate an ordered output

array based on a specific sorting key. For instance, given a sorting key array, K={1, 4, 2,

8, 5, 7-, a value array, V=,‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’-, a sorting operation transforms V to ,‘a’,

‘c’, ‘b’, e’, ‘f’, ‘d’- if it is sorted in ascending order. There has been a number of studies

focusing on devising efficient GPU-based sorting algorithms, such as GPU sample sort

(Leischner et al., 2010), GPU Odd-Even merge sort (Zhang et al., 2011), and GPU quick

sort using scan primitives (Sengupta et al., 2007).

The development of efficient CUDA program based on the abovementioned

primitives involves finding large amount of data parallelism and effective utilization of

GPU resource capabilities. First of all, appropriate computational tasks are identified

from the target computing application. The shortlisted computational tasks must satisfy

two key criteria, which are massiveness in data parallelism and high computational cost.

Essentially, a computational task should be partitioned into many smaller parallel sub-

tasks, and each sub-task is further split into even smaller concurrent operations (which

is referred as thread-operation in later discussion, for brevity purpose). The task

partitioning matches to the two-level hierarchical organization of hardware and

software resources, i.e. SPs and SMs, threads and blocks, and thus promises for optimal

utilization of GPU resources.

69

Depending on the nature of computations, the notion of sub-task may refer to

a well-defined duty or simply a group of thread-operations. An example of the first case

is when a sub-task responsible for constructing a PCA model; a second case example is

when a sub-task assigned to one section of a matrix summation operation. Most of the

time, the former involves more complex computations than the latter. Apparently, the

thread configuration for the second case is more flexible, as the only requirement is to

launch sufficient threads regardless of the block size and grid size. On the other hand,

when a sub-task is required to execute a more defined and complex duty, the number of

threads in each block must be chosen carefully to achieve high degree of parallelism but

at the same time avoid unnecessary long waiting time. Based on these considerations,

the optimal thread configuration for one computational task may not be the same as

another. Therefore it is common to separate tasks which behave distinctly into different

CUDA kernels for optimal performance.

3.3.3. Performance optimization

Figure 3-17 shows the typical relationship of computational cost and

programming effort during the process of transforming a sequential code to GPU-

compatible code. A major observation from the plots is that as increasing amount of

effort (red curve) spent on optimizing GPU code, the overall computational cost (black

curve) is gradually reduced until a plateau is reached. At this stage, programmers are

required to investigate the GPU code painstakingly for finding optimization opportunity,

or find additional sequential tasks to be ported to GPU despite the inadequacy of the

tasks; and yet the resulting improvement in computational efficiency can be extremely

little. The region bounded by two dotted vertical green lines represents more practical

and realistic performance goals for GPU computing, which guarantees for performance

70

that is not far from the plateau. In this work, we attempt to arrive at this performance

region.

A commonly used performance metric for parallel computing algorithm is the speedup

ratio, as given in Equation (3-2), which will be used as the main performance indicator

in this study.

(3-2)

Figure 3-17: Typical (hypothetical) relationship between computational efficiency

improvement and programming effort; the green boundary specifies the recommended

target range.

Here, we introduce several commonly used strategies for improving CUDA

kernel performance.

Sequential code Sequential + non-
optimized GPU code

Sequential + moderately
optimized GPU code

Sequential + finely
tuned GPU code

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

14

Target range

Computational
cost

Programming
effort

71

Data transposition: It exchanges the position of rows and columns, i.e. ith row is

rewritten as ith column, jth column becomes jth row. Mathematically, it is expressed as A’,

or Atr, or At, given A is the original matrix. This approach is useful for global memory

access, in which successive threads in a warp attempt to access successive elements in a

column. Since successive column elements are stored apart with a gap equal to row

width (assuming 32-bit element), warp accessing to them require multiple memory

transactions, and thus seriously increases memory latency. By transposing the matrix,

much lower memory latency can be achieved.

Data padding: It intentionally includes artificial values like zeros to expand the size of a

matrix of an array. The main purpose of data padding is to realize the coalesced memory

access to global memory; an illustration example is given in Figure 3-18.

Figure 3-18: An example showing the use of data padding technique to achieve coalesced

global memory access, where a data row is accessed by a warp.

Tiling: It loads data to shared memory in tiles, where each tile consists of a number of

data elements fitting nicely into the banks of shared memory.

a data row

(a)

a memory chunk

1 transaction
2 transactions for each warp access

(b)

1 transaction for each warp access

padding

72

Re-computation: There are situations where intermediate results computed in the

preceding kernel are needed in the subsequent kernel, where both kernels belong to

the same application. If the writing or reading of intermediate results to or from global

memory (which serves as communication platform between kernels) is expensive, re-

computations can be more effective.

Experimentally determined optimal thread configuration: In cases where the

underlying computing task involves complex computations, it is difficult to identify the

optimal thread configuration based on visual investigation of GPU code. Numerical

experiments which provide measurements of computational time at various thread

configurations, allows for more effective optimization.

Profiling: NVIDIA Visual Profiler (NVIDIA, CUDA TOOLKIT DOCUMENTATION) and NVIDIA

Nsight Visual Profiler (NVIDIA, NVIDIA Nsight Visual Studio Edition) are performance

profiling tools developed by NVIDIA, which provide critical feedbacks for optimization of

CUDA C/C++ applications. Through tracing activities occurring on both the host and GPU,

the tools produce useful performance indicators allowing developers to identify

performance bottlenecks. Key performance data include application timeline showing

time taken for CUDA API calls, memory transfers and CUDA kernel execution, memory

requests versus memory transactions, frequency of bank conflicts, achieved memory

bandwidth, amount of resident versus available threads/ warp/ block, and etc.

3.4. GPGPU Applications

GPGPU parallel computing is a relatively new technology which has become

increasingly popular in academia and research fields. Successful applications have been

reported from a wide range of areas, including computer science, engineering, physics,

material science, medicine, molecular biology, chemistry, and many more. (Moreland et

73

al., 2003; Garcia et al., 2008; Sengupta et al., 2007; Krüger et al., 2003; and Manssen et

al., 2012) demonstrate the application of GPGPU computing on a number of standard

algorithms, including fast Fourier transform (FFT), k-nearest neighbor search, scan

primitives, sparse matrix algebra, linear algebra, random number generation, and etc.

Remarkable GPGPU performance has also been achieved on specific research areas,

such as molecular dynamics simulations (Anderson et al., 2008) and molecular modeling

(Stone et al., 2010); medical imaging applications (Heng & Gu, 2005; Shams et al., 2010)

and surgical simulation (Taylor et al, 2008); chemical informatics (Haque et al., 2010; Liu

et al., 2011; Ma et al., 2011); bio-informatics (Langdon & Harrison, 2008; Liu et al., 2007;

Schatz et al., 2007). In particular, GPGPU studies in chemical engineering have so far

focused on system modeling and simulations, some representative examples are gas-

solid flow simulations (Xiong et al., 2010; Xu, et al., 2012), turbulent flow simulation

(Shinn et al., 2010), powder mixing simulations (Radeke et al., 2010), combusting

modeling (Xu et al., 2012). In this study, we attempt to explore the use of GPGPU

parallel computing technique to a different area, i.e. data mining on chemical process

operations. Specifically, we aim to develop efficient GPU-based data mining algorithms

for tackling large data problems in chemical industries; our main focus is on the topic of

optimization and pattern recognition.

3.4.1. Optimization

In this section, we survey a number of GPGPU-based optimization studies.

Majority of the works are mainly focused on population-based optimization techniques,

such as GA, PSO, ant colony optimization (ACO) and tabu search. An obvious reason is

that population-based optimization methods are inherently rich in data parallelism and

at the same time they are computationally expensive. Early works like (Fok et al., 2007)

and (Li et al., 2007) successfully accelerate evolutionary-based optimization with the use

74

of shader programming. Since the introduction of CUDA programming in year 2006,

there have been an increased number of studies reported on GPU-based optimization;

several examples are discussed as follows.

Robilliard et al. (2009) devise an interpreter to handle multiple genetic

programming (GP) programs in GPU. The authors propose two schemes of deploying the

interpreter. One restricts threads running on the same SM to interpret the same GP

program, while the other allows each thread to interpret its own GP program. As could

be expected, the former outperforms the latter, with a factor up to 15 times, owing to

the absence of branch divergence. In (Zhu et al., 2010), the authors propose a SIMD-

tabu search algorithm using CUDA programming. The algorithm is specially designed for

the quadratic assignment problem (QAP) which involves the assignment of n items to n

locations while optimizing overall distance. To avoid expensive communication between

host and GPU and also among the threads, each thread is responsible for an

independent tabu search. During evolution of population, each thread is assigned

randomly to one of the 4 operations based on user-specified probabilities; the options

are do nothing, mutation with random swap, re-initialization, and replacement with

mutated best solution. Satisfactory speedups of 25-40 are obtained on a number of

QAPLIB test datasets.

Particle swarm optimization is another popular topic in GPGPU optimization

studies. Mussi et al. (2011) present two parallel versions of PSO which are characterized

by different usage of global memory. One of the GPU-based PSO restricts a swarm to

single CUDA block (termed as SyncPSO), while the other distributes candidates solutions

of a swarm to multiple CUDA blocks (termed as RingPSO). As only solutions within the

same swarm are required to communicate, the first approach eliminates the use of

75

global memory by storing the solution data in local registers; while the second approach

makes use of multiple kernels for solutions synchronization in between various stages of

optimization, and communication is achieved through global memory. It should be

apparent that SyncPSO is more appropriate for optimization problems with low

dimensionality due to the limitation of local register space. Moreover, sufficiently large

number of swarm groups is needed for fully utilization of SMs. Experimental results

show that RingPSO outperforms SyncPSO, and thus implying that global memory latency

and kernel call overhead are counterbalanced by the advantages of parallelization. In

fact, the multi-kernel approach has already been discussed by Veronese et al. (2009)

and Zhou et al. (2009), in which 88 and 11 speedups are reported in their works,

respectively. These two works use 3 similar CUDA kernels, for fitness value computation,

updating of current local and global best position of each particle, updating of velocity

and position of each particle. A major algorithmic difference between the two studies is

that one employs the MersennTwister CUDA SDK code for random number generation,

and the other generates a set of random number on CPU which is copied to GPU global

memory before the first generation of optimization.

Ant colony optimization which can be regarded as a special type of PSO also

matches to the SIMT model of CUDA-enabled GPU. ACO incorporates the concept of

pheromone which is a chemical substance left by ants during food searching, in which

pheromone concentration provides the searching direction for ants. As in reality,

concentration of pheromone will decrease over time through evaporation, thus there is

additional computational task for managing pheromone concentration. In the work (Zhu

& Curry, 2009), the authors retain the tasks of pheromone evaporation and update in

CPU and overall 200-400 speedups are reported. While the generation of new ant

solutions based on the updated pheromone concentration, cost evaluation, and ant

76

local search are parallelized in GPU. On the other hand, Bai et al. (2009) include all

stages of ACO in GPU by using 4 separate CUDA kernels, namely solutions construction,

iteration-best choosing, pheromones evaporation, and pheromones deposition, while

CPU is only responsible for controlling the iteration process. Effective communication

and central-management of ants within a colony is achieved by mapping an ant colony

to a CUDA block, and the best values obtained from the optimal solutions of these ant

colonies at the end of all iterations serve as the final results. As compared to (Zhu &

Curry, 2009), relatively low speedups are obtained, which are about 2.3.

Although remarkable improvement in computational efficiency has been

reported in the above works, these results are obtained based on relatively simple test

functions. Standard benchmark functions, such as sphere function, step function,

Rastrign, Rosenbrock, Schwefel, TSP, QAP are employed in these works, which are

characterized by straightforward cost evaluation. Real-world chemical process

optimization problems always require much more complex cost functions which may

also involves stochasticity. Hence, exploring the performance of GPU-based

optimization on more realistic problems is highly desirable.

3.4.2. Pattern Recognition

Pattern recognition algorithms offer excessive amount of data parallelism for

GPU acceleration, as demonstrated by many successful studies. A number of neural

network variants has been effectively transformed to GPU-compatible codes, such as

the Probabilistic Neural Network (PNN) (Kostopoulos et al., 2014; Sidiropoulos et al.,

2012), Fuzzy Neural Networks (FNN) (Juang et al., 2011; Martínez-Zarzuela et al., 2011),

Convolutional Neural Network (CNN) (Cireşan et al., 2011; Strigl et al., 2010), Kohonen's

Self Organizing Map (SOM) (Prabhu, 2008). Other GPU-accelerated pattern recognition

77

methods include Support Vector Machine (SVM) (Catanzaro et al., 2008; Liao et al.,

2009), k-Nearest Neighbour (kNN) (Garcia et al., 2010; Kostopoulos et al., 2014; Liang et

al., 2009), decision trees (Grahn et al., 2011; Sharp, 2008), and Principal Component

Analysis (PCA) (Andrecut, 2009; Funatsu & Kuroki, 2010). In this study, we are

particularly interested in 2 groups of algorithms, which are image analysis and

clustering.

3.4.2.1. Image analysis

Image analysis or processing is fundamentally the reversed operation of image

rendering, so GPUs which are originally designed for image rendering purpose are

readily adapted to the image processing job. There are comprehensive GPU-based

image processing algorithms available in well-established libraries, such as NVIDIA

Performance Primitives (NPP) (NVIDIA, NVIDIA CUDA ZONE) and ArrayFire (AccelerEyes).

However, it has been seen in many research studies that customized GPU programs are

still needed in order to fully exploit GPU computing power for specific applications. In

the following discussion, we survey a number of literature studies covering both general

and application-specific GPU-based image processing algorithms.

Examples of GPU-based acceleration of basic image processing algorithms are

(Asano et al., 2009; Castaño-Díez et al., 2008; Fialka & Čadík, 2006; Park et al., 2011;

Zhiyi et al., 2008). Castaño-Díez et al. (2008) show that direct application of standard

GPU library functions, like the FFT function from CUFFT, linear algebra functions from

CUBLAS, offers better image processing performance as compared to the CPU

counterpart. In the work (Park et al., 2011), the authors propose a GPU-based linear

feature extraction method which involves piecewise fitting of lines to edges. GPU

implementation is achieved by mapping threads to pixels, and each thread traverse

78

through the neighboring pixels sequentially to identify connected edge chain. As it has

been highlighted in the article, there is redundant traversing caused by multiple threads,

along the same edge chain. This could be the reason for the relatively low performance

speedups, which are 3.2.

Fialka et al. (2006) successfully accelerate the convolution image filtering

process using GPU shader programming. The authors employ pixel-level parallelization

technique, in which each thread sequentially loops over every element in the mask for

filter kernel operations. However, the size of mask is limited by the maximum number of

instructions allowable in the shader. In addition, histogram equalization which is usually

used for enhancing global contrast of images has also been implemented in GPU (Zhiyi

et al., 2008). Given a grayscale image, each thread is responsible for generating a sub-

histogram based on a subset of data S. As the sub-histograms are stored in shared

memory, the block size is bounded at

; where 256 are the

number of bins in histogram built from a grayscale image. Subsequently, block-level

histogram is obtained by combining all the sub-histograms in shared memory. Lastly,

only single block with 256 threads is launched for reducing the block-level histograms to

a global histogram, which is used for calculating a new gray distribution of the image.

Next, we discuss GPU implementation of non-standard image processing

algorithms, such as k-means clustering and PCA, which are only applicable to specific

image applications. As it is mentioned in (Asano et al., 2009), k-means clustering can be

used to reduce the number of colors to a smaller groups while maintaining image

quality. Given a RGB (or color) image of size n by m, it is divided into n or m sub-images

which are mapped to equal number of CUDA blocks. Within each block, there are p

threads running simultaneously on the sub-image pixels, whereby the distances to k

79

cluster centers are computed for R, G, and B components sequentially in each pixel; the

RGB pixel values are then added to the kmin
th element of the arrays Rsum[kmin], Gsum[kmin],

Bsum[kmin], Count[kmin] in shared memory. These shared arrays can be combined in global

memory in later stage for determining the new cluster centers at the end of each

iteration.

PCA which is an effective dimensionality reduction tool is commonly used in

spectral image analysis. In general, the large data size of spectral images needs to be

first reduced to a manageable size, using PCA. In the context of image analysis, GPU-

accelerated PCA algorithms are discussed in several works, like (Castaño-Díez et al.,

2008) and (Jošth et al., 2012). In (Jošth et al., 2012), the authors focus on the

computation of correlation matrix, as it is the most expensive task in PCA. Considering

the spectra image as a 2D matrix, in which a column consists of all wavelength

information (length=n) of a particular pixel, and rows represent different pixels

(length=m). The computation of the correlation matrix (nxn) can be regarded as

averaging of a stack of m number of 2D matrices of size nxn. Parallelization is achieved

by mapping CUDA blocks to components of the correlation matrix. The threads within a

block calculate a specific component in different matrices simultaneously. In this work,

the eigenvalue and eigenvector calculations are carried out sequentially using single

thread. On the other hand, Castaño-Díez et al. (2008) explore the use of GPU computing

for enhancing the performance of eigenvalue and eigenvector computations. The

authors propose a 2-step numerical procedure which concatenates the power method

and Hotelling deflation. Power method is used for determining the highest eigenvalue

(and the corresponding eigenvector), and Hotelling deflation produces the residual

matrix for finding the next highest eigenvalue, in the following iteration. Since linear

80

algebra operations are the key components, straightforward GPU implementation with

CUBLAS library results in speedups up to 10.

However, it has been noticed that applications of these highly efficient GPU-

based image processing techniques are mainly limited to medical and surgery

applications. For instance, image registration for patient positioning in radiation therapy

(Gu et al., 2010; Khamene et al., 2006), image segmentation (Pan et al., 2008), image

reconstruction (Cui et al., 2011; Schiwietz et al., 2006). In this study, we extend the use

of GPU-based image processing techniques to effective information discovery in

chemical process operations.

3.4.2.2. Clustering

Distance computations required in clustering algorithms, in the form of object-

to-object or object-to-centroid distance, generate enormous amount of data

parallelism. Several studies attempt to parallelize the object-to-centre distance

computations during k-means clustering, e.g. (Bai et al., 2009, Farivar et al., 2008; Li et

al., 2010; Takizawa & Kobayashi, 2006). Parallelization is achieved by assigning 1 CUDA

thread to 1 data object; each thread is responsible for calculating distance from the data

to all cluster centers so that the nearest centre can be identified. The parallel k-means

algorithm proposed in (Takizawa & Kobayashi, 2006) intends to tackle a large-scale

clustering problem. It is achieved by distributing data into multiple computing nodes

(CPUs), each node comprises of a GPU. Given the limited data parallelism in updating

cluster centres, some authors like Farivar et al. (2008) and Takizawa et al. (2006) choose

to retain the task in CPU; while Bai et al. (2009) propose to sort the cluster labels in CPU

first which facilitates the simultaneous updating of k clusters by k threads; Li et al.

(2010) compute the new centroids using divide and conquer strategy. Li et al. (2010)

81

present 2 GPU-based k-means algorithms which are targeted at problems with low and

high dimensionality, respectively. To address a low dimensional problem, the authors

suggest using fast local register for storing object data. Whereas for a high dimensional

problem, data object is loaded into shared memory and distance computation is carried

out as a matrix multiplication process.

Besides k-means, other GPU-based clustering algorithms include density-based

clustering, bird flocking algorithm, and GMM. In (Böhm et al., 2009), the authors define

a concept called ‘chain’ to allow for massive parallelism in DBSCAN method. Multiple

chains which are assigned with different starting data points are assigned to different

SMs. Within each chain, one core object is considered at a time so that many threads

can be created for processing its potential neighbors simultaneously. In order to avoid

collision, i.e. chaining of the same data by multiple chains, a collision matrix is

maintained for keeping all necessary information. Cui et al. (2011) develop a GPU-based

bird flocking algorithm which is significantly more efficient than the CPU counterpart.

Bird flocking algorithm moves individual data (i.e. bird) according to the movement of

others in its neighborhood, thus requiring object-to-object distance computations. The

GPU algorithm consists of 2 CUDA kernels; one assigns N2 threads to parallelize the N2

pair-wise distance computations, where N is the total number of birds; the other kernel

launches N threads for updating the position and velocity of the N birds simultaneously.

Note that the initial positions of birds are randomly generated, and through the flocking

process the birds will ultimately organize themselves into separate clusters. In the work

(Machlica et al., 2011), a GMM clustering algorithm based on Expectation-Maximization

(EM) technique is transformed to a GPU-compatible code. Major data parallelization is

realized on the computation of log-likelihood and component’s posterior probability,

which are independent among the data objects.

82

To address the issue of fast and infinite growing of data size and data

generation speed, efficiency improvement on scalable clustering algorithms are

extremely desirable. In contrast to traditional clustering algorithms, scalable methods

allow for accurate clustering at unbounded problem size. Wu et al. (2009) propose to

process data by batches in order to tackle problem size that is larger than the size of

GPU global memory. In each data batch, ordinary k-means is executed and sufficient

statistics of the resulting k clusters are passed to the following batch. However, this

approach incurs an extremely high data transferring cost, as multiple data batches need

to be moved from CPU to GPU at every iteration. The authors alleviate the data

transferring cost with the use of CUDA stream API, which enables asynchronous

memory transfer and streaming among different data blocks. Wasif et al. (2011) employ

a similar approach but using a multinode-multiple GPUs computing system. In the work,

data batches are distributed to the nodes (CPUs) from which the data is further divided

and sent to multiple GPUs. The output of cluster centroids follows the opposite

direction of data distribution, where the partial centroids computed by individual GPU

are sent back to the parent node, centroids collected from multiple GPUs in a node are

then transferred back to the master node from which global centroids are calculated.

The global centroids will be broadcasted to all nodes and GPUs at the next iteration, if

the termination criterion is not met. In (Cao et al., 2006), the proposed GPU-based

method also focuses on a section of data at a time, based on the concept of landmark

window and moving window. A major concern of these 3 studies, (Cao et al., 2006;

Wasif & Narayanan, 2011; Wu et al., 2009), is that clustering quality of the proposed

GPU methods are not validated.

A number of GPGPU studies have also been done on improving the efficiency

of incremental clustering algorithms. For instance, Chen et al. (2012) execute an

83

incremental GMM algorithm in GPU. At each incremental step, a data batch is copied to

GPU for the execution of standard EM algorithm and order (i.e. number of cluster)

identification. The Gaussian mixture model keeps evolving by merging the new model

obtained from current data batch with the historical model into single model, where

merging is done by finding statistically comparable components. Chen et al. (2013) and

Papenhausen et al. (2013) explore the use of GPU computing on micro-cluster-based

incremental clustering methods. Chen et al. (2013) defines cluster granularity based on

a mean shift algorithm, whereas Papenhausen et al. (2013) pre-specify a radius

threshold. It is also mentioned in (Papenhausen et al., 2013) that data parallelization is

achieved by mapping CUDA threads to data object during distance computation and

cluster centers updating.

Dong et al. (2013) present an accelerated version of BIRCH algorithm using

GPU computing, termed as GBIRCH. BIRCH is a widely used incremental clustering

method from which the idea of micro-clusters is originated. GBIRCH demonstrates the

use of dynamic parallelism capability offered by NVIDIA’s latest Kepler Compute

Architecture GPUs. CUDA Dynamic Parallelism feature allows calling of kernel functions

(i.e. slave kernels) from another kernel function (i.e. master kernel), and thus enhancing

the flexibility and simplicity of GPU programming. In GBIRCH, the entire BIRCH algorithm

is executed in GPU, whereby each slave kernel will receive a subset of data from the

master kernel. The distance computation and nearest cluster identification are carried

out simultaneously in all slave kernels. In cases where a data cannot be absorbed into

existing cluster, the data will be returned to the master kernel. Another refinery kernel

will then be activated to handle the returned data sequentially in GPU, so as to ensure

the constructed CF-tree is accurate by avoiding race conditions. However, GBIRCH is

84

mainly tested on low dimensional problems. Moreover, as dimensionality increases the

performance is also seen to degrade slowly.

Related publications:
A Graphic Processing Unit (GPU) Algorithm for Improved Variable Selection in

Multivariate Process Monitoring, Computer Aided Chemical Engineering, 31, 2012;
A Graphic Processing Unit (GPU) Algorithm for Improved Variable Selection in

Multivariate Process Monitoring, AIChE Annual Meeting 2012, Pittsburgh, PA.
 85

Chapter 4. Hybrid CPU-GPU Sim-Opt for

Continuous Optimization

Simulation-optimization has gained increasing popularity in chemical

industries, particularly in the areas of process design and operation, supply chain

management, and sustainability development. Sim-Opt outperform conventional

optimization techniques due to the capabilities of handling complex, highly dimensional,

and stochastic processes, through incorporating the simulation feature. Although there

have been a number of methods proposed for reducing model complexity and thus the

simulation time, e.g. dimensionality reduction or model structure simplification based

on assumptions. Such approaches are either still required to deal with the originally

large input data, as in the case study to be discussed in Section 4.4 or they might incur in

a loss of modelling details by using oversimplified process model. Therefore, the

tremendously huge computational effort and time required by Sim-Opt is hardly

avoidable and causing infeasibility and intractability in many cases. It becomes even

more challenging if Sim-Opt algorithm is applied to continuous optimization problems,

as the Sim-Opt routine needs to be performed repeatedly and rapidly. To the best of our

knowledge, there is no related work found in the literature.

To overcome the long simulation time and to enhance the practicality of Sim-

Opt techniques, a hybrid CPU-GPU Sim-Opt systematic framework is proposed in this

work. While the existing GPU-based optimization methods are limited to simple and

deterministic objective functions as reported in Section 2.5, we provide a useful and

efficient optimization solution to real-world chemical problems. Our main contribution

in this specific area, i.e. GPU-based optimization, is to explore the use of GPU parallel

86

computing on complex optimization applications wherein stochasticity and simulation

model are needed in place of straightforward mathematical equations. Moreover, a

comprehensive investigation of important Sim-Opt techniques is also performed in

order to identify potential computational tasks or operations to be ported to GPU. The

remainder of this chapter is organized as follows. In Section 4.2, we first analyze the

nature of various Sim-Opt techniques, and then identify the type of data parallelism

involved. The major steps of the proposed framework are provided in Section 4.2; while

application of the framework is illustrated using a variable selection monitoring problem

in Section 4.3. Lastly, a case study of Tennessee Eastman challenge problem is carried

out to validate the performance of the developed hybrid algorithm.

4.1. Structural Analysis of Sim-Opt Techniques

The nature of problem and the type of technique used in the 3 modules of

Sim-Opt govern the amount of data parallelism, and thus opportunity for acceleration

using GPU. As has already been mentioned, simulation is the most time consuming

module in Sim-Opt. The total simulation time in sequential approach is equal to the

simulation time of single run multiplies by the total number of simulation runs. The

number of simulation runs required in each optimization cycle is determined by both

the optimization technique and the degree of uncertainty involved. In the following

discussion, we focus on two classes of optimization techniques, population and

gradient-based methods, due to the large amount of simulations involved.

Population-based methods like GA, PSO and simulated annealing (SA) produce

P candidate solutions, where P is a user-specified population size. Assuming there is zero

uncertainty, one simulation is required for fitness measurement of one candidate

solution. Hence, P simulation runs will be needed in each optimization cycle. On the

87

other hand, in order to find the optimal search direction in gradient-based optimization

problems, it requires performing O(N) simulations, where N is equal to the number of

input variables. Although there are enhanced versions of gradient-based methods such

as LR, PA, frequency domain method (FDM) and RSM which requires reduced amount of

simulation runs, their applicability are limited (refer to Section 2.5.1.3). Furthermore, in

cases where uncertainty needs to be accounted for, additional M simulation runs (as

seen in Figure 2-1) representing different simulation paths will be needed for fitness

measurement of single candidate solution; this special type of optimization solution is

sometimes referred as stochastic optimization.

In order to characterize data parallelism in Sim-Opt techniques, we treat each

module as a separate task for identification of parallelism, and also study the

relationship between neighboring modules. At each optimization cycle, gradient-based

methods generate only one candidate solution, thus there is no apparent data-

parallelism. Although population-based methods generate P candidate solutions in each

cycle, the off-spring generation process is intrinsically sequential due to the stochastic

operations involved e.g. mutation, crossover. It is worth nothing that off-springs are

generated from best few parents and this requires sorting of the parents based on

fitness values. Such sorting can be computationally demanding when P is large and

multiple objective values are involved (i.e. multi-objective optimization). GPU-based

sorting could be helpful if the sorting has become the computational bottleneck. On the

contrary, the tasks of simulation and objective evaluation offer massive amount of data

parallelism. As the system response of all P candidate solutions (or M simulation paths)

are determined based on the same simulation model, the P (or M) simulations can be

carried out simultaneously. Similarly, in objective evaluation, the fitness values

associated with the P candidate solutions (or M simulation paths) can be computed

88

concurrently, whereby same objective function is used with different input values (i.e.

system response). A further point is that the M fitness values will be subsequently

reduced to single value which indicates the fitness of a candidate solution.

Based on the previous discussion, we can establish the inter-module

relationship by looking at each neighboring pair of modules. Firstly, as the fitness of a

candidate solution is represented by one objective value, it is a one-to-one relation

between objective evaluation and candidate solution. Moreover, the relation between

the number of candidate solution to simulation runs can be many-to-many (population-

based method), one-to-one (LR and PA) or one-to-many (finite differences, RSM and

stochastic optimization); whereas simulation-to-objective evaluation relation is always

one-to-one. The type of inter-module relationship indicates if the two neighboring

modules can be combined into single CUDA kernel, assuming both modules are GPU-

parallelizable. The various types of data parallelism found in different Sim-Opt

techniques are summarized in Figure 4-1.

In this chapter, a GPU solution is developed for a population-based stochastic

Sim-Opt problem where massive amount of data parallelism is available due to the

structure of GA search paradigm. A similar GPU solution should also be possible for

gradient-based Sim-Opt problem, except that the attainable amount of computational

acceleration is strictly constrained by the problem dimensionality and the degree of

uncertainty. Previous works like Arora et al., 2010 and Statz et al. 2013 have shown that

simultaneous computation of sensitivity calculations, which are the most computational

demanding operations in gradient-based techniques, on GPU offers attractive amount of

speed improvement. In order to apply such GPU-parallelized gradient-based

89

optimization solution to Sim-Opt problems, the simulation model needs to be

implementable within GPU.

Figure 4-1: Notion of data parallelism in each module of Sim-Opt; independent

operations are denoted by same colored curves.

4.2. Systematic Procedure for Developing Hybrid CPU-

GPU Sim-Opt Algorithm

A systematic approach for formulating an efficient hybrid CPU-GPU Sim-Opt

algorithm is detailed in this section. Major steps include computing time examination,

GPU task selection, data transfer consideration, CUDA kernel design, and CUDA kernel

optimization. Individual steps are described as follows.

Computing time examination: Since GPU programming is not an easy job, it is desirable

to prioritize the most expensive tasks. Computing time consumed by different portions

Evolutionary method

P candidates

1 candidate

Gradient-based method Finite differences or RSM

Evolutionary method

P simulations

LR or PA

Stochastic optimization

M simulations

Optimization Module Simulation Module Objective evaluation Module

Finite differences or RSM

Evolutionary method

LR or PA

P objective values

Stochastic optimization

M objective values

Pfittest objective values

90

of the algorithm can either be determined through numerical experiments (if sequential

code is available) or based on theoretical complexity analysis of the algorithm.

GPU task selection: The GPU tasks are selected based on three criteria, namely high

computational cost, rich data parallelism, and GPU-compatible. Note that the

computational cost has been determined in the previous step, and the amount of data

parallelism can be estimated by the type of optimization technique used, as discussed in

Section 4.1. The last criterion, GPU-compatibility, will be satisfied if the computations

involved in the task are supported by GPU, specifically CUDA-enabled GPU. There are

cases where the simulation model is extremely complex like those built on high-end

simulators like MathWorks’s SIMULINK, implementing of such simulation on GPU could

be tremendously taxing.

Data transfer consideration: After selecting suitable tasks for GPU parallelization, next

step is to assess the data transferring requirement, in terms of frequency and data size.

It should be noticed that, input data to a module is generated from the preceding

module, in a Sim-Opt problem. Hence, there are 4 key input data which include

simulation paths, candidate solutions, system responses, and objective values. If same

set of simulation paths is used throughout all optimization cycles, the data only needs to

be transferred once from CPU to GPU. On the contrary, the other 3 input data are

required to be transferred at every cycle. The size of these input data depends on the

number of uncertain variables, problem dimensionality, and number of objective values.

CUDA kernel design: As mentioned in Chapter 3, CUDA programming is essentially a

two-level partitioning whereby a task is divided into subtasks and then thread-

operations. Based on the structural analysis of Sim-Opt as summarized in Figure 4-1,

there are two potential GPU tasks, namely simulation and objective evaluation. A

91

subtask represents a simulation run (or a fitness measurement) in simulation module (or

objective evaluation module). The use of fast memory and cooperation work within a

subtask are dependent on the mathematical model of simulation (or objective function).

CUDA kernel optimization: At this stage, applicability of optimization techniques as

presented in Section 3.3.3 should be examined. Besides, combining two tasks into single

kernel has the advantages of reducing kernel call overhead time and memory copying

time, especially when intermediate results are stored in shared memory or local

memory. Based on the inter-module relationship, two neighboring modules or tasks

which comprise of same amount of subtasks, e.g. P-to-P and M-to-M, can thus be

combined. However, if individual tasks achieve best performance at different thread

configurations, it is still advisable to keep them in separate CUDA kernels.

4.3. GPU Application to the Variable Selection Problem

Implementation of the proposed systematic procedure for developing a hybrid

CPU-GPU Sim-Opt algorithm is demonstrated on a variable selection monitoring

problem. A PCA model for process monitoring can be constructed with all the measured

process variables or a subset of these measured variables. Here, we are interested to

identify the subset of variables which is sensitive to faults under certain system

behavior. Therefore a PCA model constructed using this subset, termed as reduced PCA

model, is expected to have improved monitoring performance. We trust that when the

process behavior changes with time, the subset of variables selected could be different,

and thus the variable selection routine needs to be repeated in order to provide an

adequate process monitoring. As a result, it is important to have an efficient variable

selection algorithm to avoid any delay or use of outdated monitoring model. To identify

these variables, Ghosh et al. (2014) proposed a multi objective GA-based stochastic

92

optimization technique, termed as GA-PCA algorithm. This algorithm seeks to minimize

the cumulative error rate, defined as sum of missed detection and false alarm rates,

while at the same time minimizing the number of selected variables; where an

evolutionary optimization method GA is used. The improved monitoring performance, in

terms of the cumulative error rate, achieved by reduced PCA model is shown in Figure

4-2. From the perspective of Sim-Opt, the reduced PCA model serves as the simulation

model in which component scores represent the system responses. Once the system

response of testing data has been determined, it will be classified as normal or faulty

data which is used for objective value computation. Note that both model parameters

(i.e. eigenvalues and loadings) and model structure (i.e. number of principal component

selected) are varied at every optimization cycle.

93

Figure 4-2: Comparison of monitoring performance between full PCA models and

reduced PCA model
7
.

4.3.1. GA-PCA algorithm

Given a training dataset (i.e. normal operation data) and a testing dataset (i.e.

normal and faulty operation data), our goal is to identify the best subset of variables

satisfying below objective function,

(

)

(4-1)

GA encodes the variable selection in a binary vector with N elements, where 1 denotes a

particular variable is selected and 0 means otherwise. A reduced set of training data

obtained by removing those unselected variables is used for PCA modeling. Essentially,

PCA transforms the originally correlated variables into a set of uncorrelated variables,

from which q latent variables are selected to account for the user-specified data

variability; 95% is used in this work. Mathematical formula of PCA is given below,

 (4-2)

where, X represents the original input data, T denotes the principal component scores, P

denotes the principal component loadings, and E refers to the residual noise not

covered by the q latent variables; as T and P only account for the first q variables.

During objective evaluation, testing data is classified as normal or faulty class

by comparing the Hotelling’s T2 and Q statistics with the control limits T2
 and Q, which

are obtained from the training dataset. As stated in (Kourti & MacGregor, 1995), T2 and

Q statistics are computed from PCA score values, as follows,

7
 Courtesy: (Ghosh et al., 2014)

94

 ∑
()

(4-3)

 ∑ ()

(4-4)

where, ti denotes the score value of principal component i, i represents the eigenvalue

of principal component i, q is the number of principal components chosen, and V is the

total number of process variables. The score value ti is a dot product computed from a

test sample and an eigenvector. Based on the classification results, an overall objective

value can be computed according to Equation (4-1); where false alarm rate is defined

as the percentage of normal data which are found violating both the upper control

limits, whereas missed detection rate is defined as the percentage of faulty data which

are found below the two limits. In each GA generation, P objective values will be

computed to indicate the fitness of the P candidate solutions i.e. variable subsets.

To solve this multi-objective optimization problem, the non-dominated sorting

genetic algorithm NSGA-II is employed here. NSGA is initially proposed in (Goldberg,

1989) and later modified by Deb et al. (2002) as NSGA-II. There are two key values used

for the sorting operation in NSGA-II, namely front assignment and crowding distance.

Chromosomes that are superior in at least one objective value than others are assigned

with front 1. Front 2 assignments are reserved for chromosomes that are only

dominated by those at front 1, and subsequent fronts are assigned in similar way.

Within each front, the crowding distance of a member j is computed as below,

 ∑

(4-5)

95

where, L denotes the total number of objectives (L=2 in this problem); Objmax,i and

Objmin,i are the maximum and minimum value of objective variable i, respectively;

Objnext,i and Objprev,i refer to the next higher objective and previously lower value to j,

respectively, which are obtained from a sorted list of chromosomes. The candidates of

current and previous generations are combined and sorted using NSGA-II, from which

the best P’ candidates are selected as the parent seeds to generate new off-springs for

next generation, through mutation and crossover operations. The 3 modules, PCA

modeling, objective evaluation and optimization, will be repeated until a pre-specified

number of generations is reached.

4.3.2. GPU implementation

In this section, we develop a hybrid CPU-GPU-GA-PCA algorithm using the

proposed systematic approach. The major steps are discussed as follows.

Computing time examination: Numerical experiments have been performed with

different population and generation sizes in order to identify the most computationally

demanding tasks. As it can be seen from the top part of Figure 4-3, at moderate

population and generation size, PCA modeling and objective evaluation are the

computational bottleneck which collectively account for 85% of total time. When larger

population and generation size are used, non-dominated sorting has become dominant

by consuming 66% of the total time. Hence, in GA-PCA algorithm, there are three

computationally expensive tasks, namely PCA modeling, objective evaluation and non-

dominated sorting.

96

Figure 4-3: Computing time distribution in GA-PCA algorithm; top figure shows the

results obtained at moderate population and generation size; bottom figure is based on

larger population and generation size.

GPU task selection: We turn now to examine the 3 identified tasks, PCA modeling,

objective evaluation and non-dominated sorting, for the 3 criteria. The first requirement

of having high computational cost has already been verified with the numerical

experimental results. Typical GA optimization problems employ large P population size

to guarantee for global optimal solution, so PCA modeling and objective evaluation

should contain sufficient amount of data parallelism. Furthermore, the availability of

97

numerical solutions of PCA supports for GPU programming. In this work, we employ the

Jacobi transformation numerical PCA algorithm as given in (Flannery et al., 1992); where

the underlying concept is to apply a series of plane rotations so as to achieve zeroing for

the off-diagonal elements. Since objective evaluation involves simple operations like

comparison (data classification), summation and division (error rate computation), GPU

programming of this task is straightforward.

Next, we examine the NSGA-II task for data parallelism and GPU-compatibility. First of

all, the dominating relation among the P chromosomes is determined through

performing () comparison operations. As the comparison operations are

independent to each other, the amount of data parallelism is equal to ().

Supposing the dominating relation is stored in a P by P matrix D, identification of

chromosomes at each front require examining Pleft rows in D, where Pleft denotes the

number of chromosomes that have not been assigned with front number. Although the

computations of crowding distance at different fronts are not parallelizable, distance

computations of all members in the same front can be executed simultaneously.

Furthermore, NSGA-II requires simple computations like comparison and distance

computation, so parallelizing it on GPU should offers promising improvement in

computational speed.

Data transfer consideration: To construct a PCA model based on a subset of variables,

it needs a training dataset and a binary vector called chromosome which specifies the

selection of variables. For the entire population P, the same training dataset along with

P chromosomes are used to build the P PCA models. Although both training data and

chromosomes are read-only data, they are stored in global memory because they are

usually too large for CUDA constant memory, and also do not have apparent

98

broadcasting characteristic. In regards to the objective evaluation task, it requires a

testing dataset along with the PCA model details (eigenvalues, eigenvectors, Q and T2
).

Like training data, the testing data is also stored in global memory for similar reasons. As

eigenvalues and eigenvectors which define a PCA model are the output data from

another GPU task, so they also reside in global memory. Likewise, NSGA-II sorting task

directly makes use of the objective values which is written in global memory by the

preceding GPU task. On the whole, constant memory and texture memory are not used

as the special memory accessing patterns, i.e. broadcasting or spatial locality, are not

needed for the 3 tasks.

CUDA kernel design: For the two tasks, PCA modeling and objective evaluation, an

intuitive choice for the first level task partitioning is to regard one candidate as one

subtask, so there are P subtasks. Within a PCA modeling subtask, all CUDA threads work

cooperatively to perform the Jacobi transformation and control limits computation. As

the covariance matrix which is used for Jacobi transformation are essentially the dot

products between each pair of variables, multiple CUDA threads can be used to

parallelize the multiplication operations in a particular dot product. Note that thread-

operation parallelization is realized in single element (i.e. dot product) of covariance

matrix. Apart from that, limited data parallelism is achievable from the remaining

operations in Jacobi transformation and control limit computations, these include

summation of the diagonal elements with reduction operation in shared memory,

concurrent swapping of several elements during plane rotation, and choosing of largest

eigenvalue using divide and conquer strategy. During Jacobi transformation, multiple

reading and writing to variables chromosomes, eigenvalues, and eigenvectors are

needed, so these variables are copied to shared memory for fast memory accessing. On

the other hand, a subtask in objective evaluation is much richer in data parallelism due

99

to the independent operations involved among the testing samples. These operations

include score value computation and sample classification. It should be noted that CUDA

threads are mapped to testing samples instead to process variables, as the number of

testing sample is typically much larger than the number of process variable.

First of all, it should be obvious that standard GPU-based sorting algorithms such as GPU

sample sort (Leischner et al., 2010), GPU Odd-Even merge sort (Zhang et al., 2011), GPU

quick sort using scan primitives (Sengupta et al., 2007) and GPU sorting functions

available in Thrust library (Thrust), are not applicable for this case due to the presence

of multiple objectives. Considering the iterative nature of NSGA-II in determining

successive fronts, we split the task into three separate CUDA kernels. As has been

mentioned early, front assignment for front i can only be carried out after front i-1, thus

the same assignment process is repeated by incrementing the front number until there

is no unassigned chromosome. The first CUDA kernel involves calculating the

dominating relation matrix Dpxp; in which if chromosome i is dominated by chromosome

j then the element ij is assigned with a value of one, otherwise it has value zero. A

vector dp of length equal to P is used store the number of dominating chromosomes, for

instance, if ith element of dp has value 1, it indicates ith chromosome is dominated by one

other chromosome. The values of dp are also computed in the first CUDA kernel, by

mapping P blocks to P rows and T threads to P columns of Dpxp. Note that T can be larger

or smaller than P, but it must ensure that there is no more or less than P variables being

accessed to avoid incorrect computation.

Once the first kernel is done, it enters the iterative process of repeating two consecutive

CUDA kernels; one is for identifying chromosomes that are not dominated by any other

member and the other one is for computing the crowding distance, in a particular front.

100

In the front assignment kernel, P blocks are assigned to P chromosomes wherein single

thread is used to check if the associated element in dp is zero. After chromosomes at the

current front have been identified, dp is updated so that those at higher front will

become visible. In regards to a CUDA block b, multiple threads are used to determine

the number chromosomes (says u) which are dominating bth chromosome and also at

the current front, by simultaneously examining Dpxp and dp, then one thread is used to

decrement the bth element in dp by u. For effective parallelization of crowding distance

computation, the objective values of all members at current front are copied to 2

dummy vectors (as L=2), each of them is sorted using the sorting function in Thrust

library. Due to the simplicity of computation involved, as seen in Equation (4-5), there

is essentially one level of parallelism. In this kernel, the amount of data parallelism is

equal to the number of members at a particular front.

CUDA kernel optimization: Although the two tasks, PCA modeling and objective

evaluation, are divided into same number of P subtasks, combining them into single

kernel shows poorer performance. This is mainly because they are characterized by

different amount of data parallelism, thus requiring different block sizes for optimal

performance. For instance, a large CUDA block used in PCA modeling will only take up

the resources without doing useful work i.e. idling; whereas having too little CUDA

threads in objective evaluation kernel will lead to under-utilization of GPU resources.

In order to achieve efficient memory access, data transposition technique is deployed at

both PCA modeling and objective evaluation kernels. During the computation of

covariance matrix in PCA modeling kernel, consecutive threads access the same variable

of different training samples. Hence, the training data is transposed such that data

corresponding to the same variable is allocated in successive memory addresses for

101

coalesced accessing, as illustrated in Figure 4-4. In conventional eigenvalue

decomposition algorithm, eigenvectors are stored as column-vectors as seen in Figure

4-5. For illustration purpose, assuming the number of variables V is equal to the number

of banks in CUDA shared memory. During computation of score values, elements of a

particular eigenvector are accessed by consecutive threads in shared memory, so it is

advisable to allocate the elements in different banks for prevention of bank conflicts, as

depicted in Figure 4-6.

Figure 4-4: Accessing patterns of consecutive threads (same color) before and after data

transposition for training dataset.

Sample no.
Variable no.

1 2 … V

1 [1,1] [1,2] … [1,V]

2 [2,1] [2,2] … [2,V]

… … … … …

Tr [Tr,1] [Tr,2] … [Tr,V]

Global Memory Address

[1,1] [1,2] … [1,V] [2,1] [2,2] … [2,V] … … [Tr,1] [Tr,2] … [Tr,V]

Variable no.
Sample no.

1 2 … Tr

1 [1,1] [1,2] … [1, Tr]

2 [2,1] [2,2] … [2, Tr]

… … … … …

V [V,1] [V,2] … [V,Tr]

Global Memory Address

[1,1] [1,2] … [1, Tr] [2,1] [2,2] … [2, Tr] … … … … … …

Conventional structure of training data

Transposed training data

102

Figure 4-5: Conventional data structure of eigenvectors and the corresponding bank

locations in CUDA shared memory.

Variable no.
Eigenvalue no.

1 2 … V

1 [1,1] [1,2] … [1,V]

2 [2,1] [2,2] … [2,V]

… … … … …

V [V,1] [V,2] … [V,V]

Conventional structure of eigenvectors

Bank no.
1 2 … V

1 [1,1] [2,1] … [V,1]

2

…

V

Eigenvectors in shared memory

103

Figure 4-6: Transposed eigenvectors and the corresponding bank locations in shared

memory.

On top of that, a series of numerical experiments are carried out to determine the

optimal block size for each CUDA kernel. Note that we use the smallest block size, i.e. 32

threads, for the PCA modeling kernel due to the limited amount of data parallelism. The

results shown in Figure 4-7 to Figure 4-10 are obtained using the process data of TE

Challenge problem which will be discussed in subsequent section. An overview of the

proposed hybrid GA-PCA algorithm, which consists of 5 CUDA kernels along with 4 data

copying operations, is given in Figure 4-11.

Eigenvalue no.
Variable no.

1 2 … V

1 [1,1] [1,2] … [1,V]

2 [2,1] [2,2] … [2,V]

… … … … …

V [V,1] [V,2] … [V,V]

Transposed eigenvectors

Transposed eigenvectors in shared memory;

no. of variables = no. of banks

Bank no.
1 2 … V

1 [1,1]

2 [2,1]

… …

V [V,1]

Transposed eigenvectors in shared memory;

no. of variables > no. of banks

Bank no.
1 2 … V

1 [1,1] …

2 [2,1] [V,1]

… …

V …

104

Figure 4-7: CUDA kernel computing times of objective evaluation at various block sizes;

optimal block size is 256.

Figure 4-8: CUDA kernel computing times of dominating relation determination at

various block sizes; optimal block size is 128.

0

1000

2000

3000

4000

5000

6000

7000

8000

16 32 64 128 256 516

GPU time (ms)

Block Size (# threads per block)

Objective Evaluation Kernel

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

32 64 128 256

GPU time (ms)

Block Size (# threads per block)

Dominating Relation Computation Kernel

105

Figure 4-9: CUDA kernel computing times of front assignment at various block sizes;

optimal block size is 128.

Figure 4-10: CUDA kernel computing times for crowding distance computation at

various block sizes; optimal block size is 32.

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

32 64 128 160 192 224 256

GPU time (ms)

Block Size (# threads per block)

Front Assignment Kernel

4

5

6

7

8

9

10

11

12

13

32 64 128 160 192 224 256

GPU time (ms)

Block Size (# threads er block)

Crowding Distance Kernel

106

Figure 4-11: The proposed hybrid CPU-GPU-GA-PCA algorithm.

4.4. Case Study: The Tennessee Eastman Challenge

Problem

In this section, the proposed hybrid GA-PCA algorithm is tested on the TE

process, though an offline variable selection approach is implemented, the achieved

GPUCPU

Initialize problem: 1st population XPxV

Copy data to GPU: XP’’xV,iter training data, testing data

Call CUDA kernel: PCAmodeling_kernel <<<>>> (XP’’xV, training data)

Output data: ,Eigenvectors,T2
 ,Q

Call CUDA kernel: obj_eval_kernel <<<>>>(,Eigenvectors,T2
 ,Q ,testing data)

Output data: objective values Zp’’xL

Start optimization, iter=0

Copy data to CPU: Zp’’xL

Combine Zp’xL & Zp’’xL into Z0

Copy data to GPU: Z0

iteriter+1

Call CUDA kernel: front_assignment<<<>>>(D, d)
Output data: front assignment, updated d

Sort Z0 at front

Call CUDA kernel: crowding_dist<<<>>>(Z0)
Output data: crowding distance of candidates at front

Copy data to CPU: front assignment f, crowding distance cdist

Select best P candidates
based on f & cdist

iter > no. of gen

YES

NO

End

Call CUDA kernel: dominating_relation<<<>>>(Z0)
Output data: D, d

front=1

All candidates (p’+p’’)
assigned with front?

NO

YES

front front+1

Select parent seeds XP’xV,iter

Generate off-springs candidates XP’’xV,iter

107

computational speedup demonstrates good promises for real-time application. The TE

process is a benchmark simulation proposed by Vogel et al. (1993) to provide a realistic

chemical industrial process for studying and evaluating process control technology. The

process consists of five main sections including reactor, condenser, separator,

compressor and stripper, and it involves two simultaneous gas-liquid exothermic

reactions. Four reactants, A, C, D and E, together with the presence of an inert B are

required to produce two products, G and H, and a by-product F. The process flowsheet

shown in (Vogel et al., 1993) is re-produced in Figure 4-12. It contains 22 process

measurements, 19 composition measurements and 11 manipulated variables, thus a

total of 52 process variables are involved; in this case study, we have focused on 32

variables. The training and test datasets were obtained from

http://brahms.scs.uiuc.edu/, wherein 500 samples of normal operating condition are

used as training data, while 960 samples from the normal operation and 800 samples

from each of the 21 programmed faults are used as testing data. In this variable

selection problem, our goal is to select the best subset of variables from the 32 variables

which are most sensitive to the 21 faults. As the objective function is defined based on

the normal and faulty classification, identification of the fault type is not required.

The computing system used in the experiments is 64-bit Intel Xeon CPU with

processor speed of 3.20GHz and RAM of 12.00GB memory size; the GPU co-processor is

an Nvidia Quadro 2000 card. In the following, we analyze the results obtained from the

proposed CPU-GPU-GA-PCA algorithm, and compare it with that achieved by the original

sequential approach.

http://brahms.scs.uiuc.edu/

108

Figure 4-12: Tennessee Eastman process flow sheet

8

4.4.1. Comparison of monitoring performance

It is worthless to have an extremely efficient algorithm that has poor quality,

thus we first need to ensure the monitoring quality of PCA model is not compromised

with the use of GPU. At the end of the GA-PCA optimization, there will be P surviving

solutions output from the algorithm. To guarantee for comparable monitoring quality,

the P final solutions obtained from the sequential CPU approach and the hybrid

approach should have comparable objective values, i.e. the number of variables chosen

and the cumulative error rates. As it can be seen from Figure 4-13, the hybrid approach

provides equivalently good monitoring performance as compared to the CPU method;

this result is obtained at the end of 100 GA generations using 100 populations. The

8
 Courtesy: (Downs & Vogel, 1993)

109

monitoring quality of the hybrid approach has also been verified at larger GA

generations and population size, as shown in Figure 4-14; using 1000 generations and

1000 populations.

Figure 4-13: Objective values obtained by the CPU and hybrid methods, at the end of 100

GA generations, with 100 populations.

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

2

4

6

8

10

12

14

miss detection + false alarm rates

to
ta

l
n

o
.

o
f

v
a
r

se
le

c
te

d

CPU method

Hybric method

110

Figure 4-14: Objective values obtained by the CPU and hybrid methods, at the end of

1000 GA generations, with 1000 populations.

4.4.2. Efficiency improvement achieved by hybrid CPU-GPU

approach

We now evaluate the efficiency performance of the hybrid CPU-GPU-GA-PCA

variable selection algorithm, which is constructed based on the proposed systematic

procedure. Note that all results reported in following discussions are the average values

of three duplicated experiments. As illustrated in Figure 4-3, the computing time

consumed by different portions of the algorithm vary as the parameters change.

Therefore, we analyze and discuss the effect of two key parameters, which are the

number of GA generations and population size, on the achieved efficiency

enhancement.

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

2

4

6

8

10

12

14

miss detection + false alarm rates

to
ta

l
n

o
.

o
f

v
a
ri

a
b

le
s

se
le

c
te

d

CPU method

Hybrid method

111

4.4.2.1. Effect of number of generations

Several observations can be made from the Figure 4-15 which shows the total

computation time consumed by the CPU method and the hybrid method, at the end of

various generations using 1000 populations. Literally straight lines are seen for both

methods, indicating that the amount of time required in each generation is consistent

throughout the optimization course, given the same population size. This can be

explained by the fact that the computational workload required by same amount of

candidate solutions in each optimization cycle would be similar. Firstly, determination of

the relationship matrix Dpxp involves computational complexity (), which is a

function of population size. Also, same training and testing datasets are used

throughout all GA generations, so computational workload involved in the PCA

modeling or objective evaluation would not be different significantly.

By parallelizing the 3 computationally expensive tasks (i.e. PCA modeling,

objective evaluation and non-dominated sorting) using GPU, it is expected that the

hybrid method could complete the Sim-Opt problem in a shorter time than the

sequential counterpart. The reduction of computing time can be clearly seen from

Figure 4-15, where the red line representing hybrid method is significantly more gradual

and flat as compared to the blue line. The speedup ratios computed according to

Equation (3-2) are plotted in Figure 4-16. Since the computing time of both CPU and

hybrid methods scale linearly as the number of generations increases, the speedup

values are approximately constant. From Figure 4-16, it can be observed that about 11

speedups are achieved by the hybrid method at GA generations in the range of [40

1600]. Due to the linearly scaling characteristics of both methods, we expect identical

efficiency performance to be achieved by the hybrid method, at larger generations.

112

Figure 4-15: Computing time of the CPU and hybrid methods measured at various

numbers of generations, with 1000 populations.

Figure 4-16: Speedups achieved by the hybrid method at various numbers of generations,

with 1000 populations.

4.4.2.2. Effect of population size

Here, we investigate the effect of population size on individual tasks, as well as

on the overall performance. In the original sequential GA-PCA algorithm, the

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800

C
o

m
p

u
ti

n
g
 im

e
(m

in
)

no. of generations

CPU method Hybrid method

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200 1400 1600 1800

S
p

ee
d

u
p

s

no. of generations

113

computation of Dpxp in NSGA-II involves 2 nested loops with P elements in each loop, so

as P increases the computing time is expected to increase in a nonlinear manner. On the

other hand, as the computing time required by the covariance matrix computation in

PCA modeling is dependent only on the number of variables selected; and time

consumed in score value computation and sample classification in objective evaluation

depend on the testing data and number of variables selected. These two tasks have

linear relation between P and computing time. Overall effect of P on total computing

time is therefore determined by the strengths of the linear and nonlinear effects. As

shown in Figure 4-3, NSGA-II dominates at large population size, while PCA modeling

and objective evaluation consumes a large portion of total time at small populations.

Such remark is consistent with the observation obtained from Figure 4-17, where the

computing time of CPU method (represented as blue crosses) resembles a straight line

at small P and gradually shows off the nonlinearity characteristic at larger P.

With GPU parallelization, the linear and nonlinear characteristics would be

diluted, where the dilution factor depends on CUDA kernel design. In both CUDA kernels

of PCA modeling and objective evaluation, P candidate solutions are mapped to P CUDA

blocks. Supposing P is a large number and GPU resource has limitation, there will only

be Cp number of blocks executing concurrently, at any one time. As P increases by a

factor of f, the computing time required by the CUDA kernels will multiply by

 instead

of ; the latter is only true for sequential method. Given the same GPU device, the

dilution factor Cp is constant, and the effect of population size on computing time is still

linear for the two kernels. Next, we look at the nonlinearity contributor which is NSGA-

II. In this CUDA kernel, the key computation Dpxp is achieved by mapping P rows to P

blocks and P columns to T threads. Hence, as P increases by a factor of f, the increase of

114

computing time for Dpxp computation is approximately
[
() ()

]

 instead of

() ()

 in sequential algorithm. Given the two-level parallelization i.e. dilution, not

only the nonlinearity behavior becomes less apparent, the total computing time will also

be reduced significantly. It can be seen from Figure 4-18, by implementing the sorting in

GPU, the nonlinearity behavior is no longer noticeable at the tested range of population

size.

Figure 4-17: Computing time of the CPU and hybrid methods measured at various

population sizes, with 1000 GA generations.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600 1800

C
o

m
p

u
ti

n
g

 T
im

e
(m

in
)

Populations, P

CPU method Hybrid method

115

Figure 4-18: Comparison of computing time of two hybrid methods, one with and the

other one without GPU-based sorting; measurements are done at various population sizes,

with 1000 GA generations.

Finally, we examine the efficiency performance attained by the proposed

hybrid method. Based on the computing time of CPU and hybrid methods measured at

end of 1000 generations (as given in Figure 4-17), the corresponding speedup ratios are

plotted on Figure 4-19. The quickly increasing speedup ratios at population size below

200 can be attributed to one possible cause. That is GPU resources are under-utilized

when P is small, so when it is supplied with more P, it is able to complete the job using

approximately same amount of time along with additional data transferring time. Due to

the long computational time required by CPU method, for example it takes more than 8

hours (or 24 hours for 3 duplicates) to complete an experiment using 1600 populations

and 1000 generations, thus we evaluate the efficiency performance for larger

populations at a smaller number of generations i.e. 100. An approximately linear

speedup relation can be observed from Figure 4-20; the computing time for both the

CPU and hybrid methods is also shown. At 7500 populations, the proposed hybrid

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0 200 400 600 800 1000 1200

C
o

m
p

u
ti

n
g

 T
im

e
(m

in
)

populations, P

Hybrid method with sorting

Hybrid method without sorting

116

method greatly reduces the total computing time from 43 hours to 26 minutes, and this

is equivalent to 102 speedups. Hence, the proposed hybrid GA-PCA algorithm offers

great advantages in control and monitoring applications which require continuous

model optimization, due its capability of capturing timely and accurate process behavior

change.

Figure 4-19: Speedups achieved by the hybrid method at various population sizes, with

1000 GA generations.

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400 1600 1800

S
p

e
e
d

u
p

s

Populations, P

117

Figure 4-20: Computing time for the CPU and hybrid methods, along with the

corresponding speedups (represented in black circles), at various population sizes and

1000 GA generations.

4.5. Summary

Sim-Opt is a special class of optimization techniques which are capable of

dealing with complex process system as well as uncertainty. Without sacrificing process

information unnecessarily, applications of Sim-Opt are strictly computationally limited

due to the need of processing large amount of data or dealing with complex simulation

model. In order to address the practicality issue of Sim-Opt, we propose a systematic

procedure for developing efficient hybrid Sim-Opt algorithm using GPU parallelization. A

step-by-step discussion of the systematic procedure is illustrated on a variable selection

algorithm, which is originally proposed by Ghosh et al. (2014) for solving a process

monitoring problem. The variable selection algorithm is regarded as a Sim-Opt

technique by treating GA as the optimization tool and PCA as the simulation model.

Based on the proposed approach, 5 CUDA kernels are constructed for the 3 tasks,

22.18

38.67

50.99

61.02

74.33

84.70

95.03

102.16

0

20

40

60

80

100

120

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000

S
p

e
e
d

u
p

s

C
o

m
p

u
ti

n
g

 T
im

e
 (
m

in
)

populations, P

GPU CPU speedup

118

namely PCA modeling, objective evaluation, and non-dominated sorting. The primary

data parallelisms exploited in these kernels include mapping CUDA blocks to candidate

solutions, and mapping CUDA threads to training samples, testing samples or candidate

solutions. The performance of the developed hybrid CPU-GPU-GA-PCA algorithm is

tested as an offline variable selection method on the TE process with 32 process

variables. The GPU-based method shows comparable monitoring performance, in terms

of miss detection and fault alarm rates, to the original sequential method. Furthermore,

the computational efficiency of the GA-PCA algorithm is greatly improved in the hybrid

approach, with speedups as high as 102. The significant improvement in computational

speed promises for the practical use of Sim-Opt algorithm in solving real-time or

continuous optimization problems.

Related publications:
Lau Mai Chan, Rajagopalan Srinivasan. A Hybrid CPU-Graphics Processing Unit (GPU)

Approach for Computationally Efficient Simulation-Optimization. Manuscript submitted
for publication.

Real-time Particle Size Estimation for Crystallization Processes through GPU-based
Multivariate Image Analysis, AIChE Annual Meeting 2013, San Francisco, CA.

 119

Chapter 5. Hybrid CPU-GPU Multivariate

Image Analysis Algorithm

Image analysis is an important sub-topic of pattern recognition which involves

the extraction of useful information from digital images by means of image processing

techniques. In the context of chemical processes, the extracted information is mainly

used for predicting, monitoring, or controlling purpose. Recently emerged image

analysis techniques called multivariate image analysis (MIA) are capable of handling

multiple univariate images at once, thus uncovering more informative and useful

pattern and knowledge. In contrast to traditional image analysis methods, MIA

algorithms deal with much larger input data size and require the use of multivariate

statistical tools such as PCA and PLS. While the growing advances of imaging technology

offer high resolution (i.e. large amount of pixels per frame) and high frame rate images

at low cost, the computational demand for processing those images is huge. Hence, the

task of extracting information in real-time for effective process control and monitoring

is extremely difficult, due to the computational complexity involved in MIA and also the

large data size of input images.

Although there have been a number of GPU-accelerated MIA approaches

proposed in the literature, none of them is meant for chemical process applications. As

the input images (in terms of color scale), image enhancement expectation, and the

types of pattern or object to be determined from the target images are typically

application-dependent. The existing GPU-based methods might not be directly useful in

solving chemical process problems. In this respect, our main contribution is to develop a

120

GPU-based MIA algorithm which is applicable to chemical process control and

monitoring.

Specifically, we aim to address the issue of high computational cost of MIA

algorithm by developing a hybrid CPU-GPU-MIA algorithm using GPU parallelization

technology. A major motivation is that the massive amount of data parallelism offered

by GPGPU fits perfectly to the large-scale image processing algorithm such as MIA,

whereby huge amount of pixels can be processed simultaneously. The organization of

the remainder of this chapter is as follows. In Section 5.1, we describe a MIA method

which is proposed for in-situ particle size estimation during crystallization process.

Subsequently, we analyze individual steps of the MIA method in Section 5.2. Based on

their contributing computational cost and amount of data parallelism, several GPU tasks

are identified. Some important details including CUDA kernel design, required data

transfer between CPU and GPU memory, and optimization opportunity are also

provided. In Section 5.3, the proposed hybrid MIA algorithm is implemented and

evaluated on a case study, which involves a batch crystallization of monosodium

glutamate monohydrate (MSG) for a period of 23 hours.

5.1. MIA for In-Situ Particle Size Estimation of

Crystallization Process

The capability of estimating crystal size distribution in real-time is important

for effective control and optimization of particulate processes. Appropriately controlled

crystal size distribution not only ensures high efficiency of downstream operations like

filtering, drying and formulation, it also safeguards the efficacy of final product which is

in crystal form. In order to achieve fast online measurement of crystal size, automated

image analysis has recently been developed (Sarkar et al., 2009). The method has shown

121

satisfactorily accurate estimation of particle size distribution. However, this comes at

the cost of computational efficiency. The minimum requirement for real-time particle

size estimation is that computational speed of the MIA algorithm is at least on par with

the image generation speed.

The MIA method proposed by Sarkar et al. (2009) consists of several tasks,

which include feature extraction, construction of statistical image model, image

segmentation, post-segmentation image analysis, and boundary refinement. Each step

is detailed as below.

5.1.1. Feature extraction

In the context of image analysis, various features which are useful

characteristics can be extracted from raw input image. In this work, we focus on three

features which are range, standard deviation and entropy; mathematical expressions

given in (Sarkar et al., 2009) are reproduced below,

 ()
 ()

 ()

* ()+
 ()
 ()

* ()+ (5-1)

 ()
 ()

 ()

* ()+ (5-2)

 () ∑ (()) (())

 ()

 ()

 (5-3)

where, B defines the size of filter mask (in this work, B = 1 which is equivalent to a 3 by 3

square mask); i and j represent the vertical and horizontal pixel location, respectively; (x,

y) denotes the pivot and also the output pixel location for feature calculation; p(f(i,j)) is

the histogram of intensity levels in the mask. Given a grayscale image with resolution X

by Y, there will be 3 individual feature images generated from the raw univariate image.

122

In order to capture the spatial relationships among pixels, a shifting operation is

performed on each of the feature image. This is achieved by moving the pixels of feature

image rs space (i.e. shifting radius) away in the specified direction. Here, we use rs=1 and

d=8, so there will be 8 shifted images produced for every feature image; the 9 images

are collectively referred as a multi-way image. The 8 shifting directions employed in this

work are depicted in Figure 5-1. The resulting 27 images (i.e.()) are regarded

as a multivariate image containing 27 variables. The application of a suitable

multivariate statistical is discussed next.

Figure 5-1: The 8 shifting directions used in MIA algorithm

9
.

5.1.2. Multi-way PCA and statistical image model

For effective image segmentation in later stage, statistical models need to be

constructed as they enable straightforward thresholding. Multi-way PCA can be used to

transform a multivariate image into an image model, which serves as a concise and

noise-free representation of the original input image. Multi-way PCA works as the same

9
 Courtesy: (Sarkar et al., 2009)

123

manner as traditional PCA method, except that the multivariate input data is required to

be first unfolded into a 2-dimensional matrix. Unfolding is achieved by opening up the

 pixels of each image into single dimension. As a result, a 2D matrix with ()

rows and 27 columns is obtained. Subsequently, Np principal components will be chosen

during PCA analysis which results in a score matrix of size () . As we only

retain the first principal component (i.e. Np = 1), the score matrix can be easily

converted back to original image size of () which is called pseudo-image. In cases

where Np is more than one, Hotelling’s T2 statistics as given in Equation (4-3) can be

used to reduce score matrix from size () to () .

5.1.3. Image segmentation

As has been discussed early, the main goal of image segmentation is to locate

objects using thresholding strategy, and the outcome is a binary image. First of all, a

global threshold value s is obtained offline from a background image. The value is

computed by multiplying a user-specified parameter to the standard deviation

determined from the associated pseudo-image. During the online phase, the pseudo-

images obtained from in-situ images are segmented into objects and background

regions, based on the threshold value.

5.1.4. Post-segmentation image analysis

At this stage, a flood-fill operation is first used to fill up the missing holes ,

which is then followed by a morphological opening operation to remove all objects

which are below a specified pixel area a. After removing objects touching the image

boundary, remaining objects are recognized as particles by assigning with unique object

labels. Lastly, the exterior boundary of the shortlisted particles is identified.

124

5.1.5. Boundary refinement and particle size estimation

Characterization of particles from image analysis which provides important

information such as particle size and maximum chord length (MCL) requires clean and

refined boundary. It begins with converting the boundary pixels identified from post-

segmentation to a series of Fourier descriptors of K frequencies, using discrete Fourier

transform technique. Note that lower frequency components of Fourier descriptors

describe the macro shape of object while higher frequency components provide fine

details of the boundary. As the macro shape of object plays an important role in

characterizing particle, a specified number NFC of low frequent components are used

(NFC < K) for reconstructing the boundary on the original image 2D plane, using inverse

Fourier transform. The refined boundary can then be used to determine object area and

MCL. In this work, object area which is measured in terms of number of pixels serves as

the comparison basis for evaluating the quality of our proposed hybrid approach.

Hence, the detailed discussion of MCL which involves the concept of signature curve and

antipodal angle threshold is omitted here; interested readers are referred to the original

article (Sarkar et al., 2009).

5.2. GPU Implementation of MIA

In this section, we develop a GPU-based MIA algorithm following the 5-step

approach as presented in Section 4.2. We discuss the individual steps in the context of

MIA algorithm as follows.

Computing time examination: It can be seen from the pie chart presented in Figure 5-2

that the most computationally demanding tasks are feature extraction, PCA modeling

and segmentation, which account for 91% of total computing time. Hence, these 3 tasks

will be examined for GPU parallelizability in the following step.

125

Figure 5-2: Pie chart showing the computing time distribution of the original MIA

algorithm; computing time measurements are based on averaging of 50 images.

GPU task selection: In this step, the shortlisted tasks are examined for amount of data

parallelism and GPU-compatibility. Since feature extraction and segmentation involve

mainly independent pixel operations, there is enormous amount of data parallelism.

Furthermore, they require only simple computations such as comparison, summation

and division which are perfectly supported by GPU, as can be seen in Equations (5-1), (

5-2) and (5-3).

Another costly task under consideration is PCA modeling based on a matrix of size

() . It is commonly advisable to normalize the input matrix prior to the

building of PCA model for avoiding biases towards variables with large magnitude. Both

the normalization of feature images and the computation of covariance matrix offer

significant amount of data parallelism, wherein massive data parallelism is available on

Misc (~0%)

image reading + BG
threshold check

(3%)

Feature extraction
& PCA modeling &

segmentation (91%)

Post-segmentation
(2%)

Boundary
refinement (4%)

126

independent column or element operations, respectively. Although the determination

of eigenvalues and eigenvectors is not inherently rich in data parallelism, there are still

GPU algorithms reported to have better performance than the CPU counterpart. In this

work, we employ the GPU-NIPALS-PCA algorithm proposed by Andrecut (2009). More

details will be given during the discussion of CUDA kernel design.

Data transfer consideration: Since the 3 selected GPU tasks are back-to-back processes

using output data from preceding task as their input, as illustrated in Figure 5-3. The

data required to be transferred from CPU to GPU mainly include the raw input image

and parameters such as shifting directions, mask size, threshold, range threshold and

number of principal components. The grayscale input image is stored in GPU global

memory instead of texture memory, because there is no spatial-localized accessing

pattern, as will be elaborated in later paragraphs. Whereas, the parameter values can

either be stored in constant memory or global memory.

As it can be seen from Figure 5-3, intermediate storage spaces in global memory are

needed for the 3 feature images, 27 shifted images, covariance matrix and pseudo-

image, so as to convey data information across different CUDA kernels. Lastly, the

binary image output from segmentation which is stored in global memory will be

transferred back to CPU for post-segmentation analysis.

127

Figure 5-3: Information flow among the 3 expensive tasks of MIA.

CUDA kernel design: First of all, it should be noted that the 3 tasks, i.e. feature

extraction, PCA modeling, and segmentation, are strictly sequential in nature as

displayed in Figure 5-3. In other words, a minimum of 3 CUDA kernels are required for

performing these tasks, each of which serves as an explicit synchronization point. Any of

the two consecutive tasks can be combined in the same CUDA kernel only if they share

the exactly same thread configuration, and if within-block synchronization is able to

Extract features: stdev,
range, entropy

Shifting operations

Compute covariance matrix

Normalization

PCA modeling

Pseudo-image

segmentation

binary image

Covariance matrix

Shifted
fstdev

Shifted
frange

Shifted
fentroy

fstdev fentropyfrange

128

guarantee for results consistency. A detailed discussion is given below, covering various

design decisions to be made during GPU programming. These mainly include the

optimum number of CUDA kernels for each task, the mapping of CUDA threads and

blocks to computational operations, and the types of memory used.

Figure 5-4 shows a standard method of task partitioning for GPU tasks which involve

pixel operations like feature extraction and segmentation, whereby arbitrary number of

2D CUDA blocks are mapped to the pixels. In this case, actual thread configuration is

mainly limited by GPU resources, particularly the maximum number of threads per block

and the shared memory usage. Nonetheless, the total number of redundant threads

which are not assigned to any pixels should be minimized. This strategy is slightly

different from the two-level partitioning approach mentioned in Chapter 3. The latter is

more suitable for situations where there is apparent existence of sub-tasks.

129

Figure 5-4: Task partitioning scheme for feature extraction and segmentation; (a)

representation of a CUDA block containing several threads; (b) mapping of CUDA

blocks/ threads to pixel operations.

We now look at the computation performed by individual thread in the feature

extraction CUDA kernel. For each feature extraction, i.e. range, standard deviation,

entropy, a thread is required to walk through all elements in the 3 by 3 mask, and collect

associated information like the minimum and maximum values, summed values,

summation of squared values, and intensity counts. Considering the same input image

and thread configuration used in all 3 feature extraction process, they can be combined

into single CUDA kernel. This provides the advantages of saving memory access

bandwidth and reducing kernel call overhead. Local register or shared memory can be

used for storing this information, but to avoid register spillage we use shared memory

for counting the intensity. For intensity counting, a vector with length equal to 9 is

allocated for each thread, in shared memory. Due to the self-synchronizing feature of

thread warp, the 32 threads in a warp tend to access the same location in the mask but

(a)

(b)

130

consecutive pixel locations in the input image residing in global memory. The resulting

kernel is termed as feature_kernel for brevity.

In order to ensure results consistency, a separate CUDA kernel (termed as

shifting_kernel) is used to perform the image shifting process. As presented in Figure

5-5, a particular thread in shifting_kernel copies the values from several different pixel

locations which are computed by different threads in feature_kernel, thus

synchronization through using another CUDA kernel is needed. Furthermore, to reduce

coding complexity, the shifting operation is performed on one feature image at a time,

thus the shifting_kernel is called for thrice, in a sequential manner. Considering the large

amount of data parallelism which is equal to the total number of pixels attained on

shifting one feature image, parallelizing the shifting of 3 feature images would not

provide significant speed improvement, owing to the limited GPU resources. A thread in

the shifting_kernel is responsible for copying d+1 pixel values from some source

locations to corresponding destination locations, as mentioned early d=8. The source

location in the target feature image is determined by the shifting radius rs and direction;

while the destination location is defined by the global position of the thread, as it can be

seen in Figure 5-4. Note that there are d+1 destination matrices for storing the shifted

feature image separately. An illustrative sample of the shifting operation performed by a

thread is given in Figure 5-5. We apply the mirror image concept to avoid accessing of

pixel locations outside image boundary.

131

Figure 5-5: An example illustrates the copying action performed by a CUDA thread in

shifting_kernel, with r=1, d=4; (a) shift downwards, (b) shift upwards, (c) shift to the left,

(d) shift to the right, and (e) no shifting.

In the segmentation CUDA kernel, segmentation_kernel, a thread is responsible for

comparing a pixel value in pseudo image with the threshold s, and then assigning a

suitable class (either 0 or 1). Both the source and destination pixel location is the same,

which is specified by the global position of the thread in the input raw image.

Two additional CUDA kernels, pre_normalization_kernel and normalization_kernel, and

a series of CUBLAS functions are devoted for the PCA modeling task. Since an unfolded

matrix is required for PCA modeling as discussed in Section 5.1.2, the 27 images

generated from the shifting operation are stored in a 2D matrix with () rows and

27 columns. The normalization task can be divided into 27 subtasks, and each subtask is

(a)

(b)

(c)

(d)

(e)

Original feature image:
source

Shifted feature image:
destination

132

responsible for normalizing one column in a CUDA block. The T threads within the CUDA

block iterate through the () elements and collect two cumulative values,

∑ ∑ ()

 and ∑ ∑ , () ()-

 , where () denotes the element

value at fth column and () rows. The number of iterations, iter, required is

equal to ⌈

⌉. This cumulative operation is achieved by a reduction operation

performed in shared memory. These two cumulative values are then be used for

calculating the mean and standard deviation of a specific feature image (or column),

according to Equations (5-4) and (5-5). The computation of normalized values requires

both the mean and standard deviation, as given in Equation (5-6). Hence, instead of

calling the within-block synchronization at the end of pre_normalization_kernel, a

separate CUDA kernel denoted as normalization_kernel is used for normalization. The

thread idling time incurred by within-block synchronization is expected to be as costly as

the CUDA kernel call overhead. Essentially, the kernel pre_normalization_kernel execute

Equations (5-4) and (5-5); and normalization_kernel takes care of Equation (5-6).

∑ ∑ ()

∑ ∑

(5-4)

∑ ∑ , () ()-
[∑ ∑ ()

] [∑ ∑ ()

]

∑ ∑

(∑ ∑

)

(5-5)

 ()
 ()

(5-6)

Numerous GPU-based PCA algorithms have been proposed in the literature, while some

are designed for specific application like (Woo et al., 2013) and (Jošth et al., 2012),

133

others are generic (Andrecut, 2009; Funatsu & Kuroki, 2010; Zhang & Lim, 2012). A

generic algorithm, GPU-NIPALS-PCA, which is proposed by Andrecut (2009) is chosen for

two main reasons. In this work, we construct the pseudo image based on the first

principal component, so Non-linear iterative partial least squares (NIPALS) algorithm

which demonstrates superior efficiency in computing the first few PCA components

appears to be an adequate choice. Furthermore, the algorithm provides straightforward

and simple implementations by directly using CUBLAS functions. First of all, memory

space is allocated for 3 matrices, residual matrix R, score matrix T, and loading matrix P.

For determining each principal component, it enters an iterative loop involving several

steps, including regression of R on T which is written to P using matrix vector

multiplication function cublasSgemv; normalization of the P using cublasSscal and

cublasSnrm2; regression of R on P which is written to T using cublasSgemv; and then

computation of the corresponding eigenvalue from T using cublasSnrm2. These steps

will be repeated until the change in eigenvalue in two consecutive iterations is smaller

than a user-specified threshold.

CUDA kernel optimization: Except for the joining of 3 feature extraction processes,

there is no further merging of CUDA kernels is possible. As discussed before, the 3 main

tasks, feature extraction, PCA modeling, segmentation, are inherently sequential. Due to

the different task partitioning approaches used in the kernels shifting_kernel and

pre_normalization_kernel, they must be kept in separate kernels. At the same time,

“pre_normalization_kernel and normalization_kernel” are intentionally separated for

better tractability. As has already been pointed out, shared memory is used for storing

intermediate results which helps to avoid register spillage and promote cooperative

action among threads. A major optimization is achieved by data transposition on the

shifted images, from () to (). The matrix transposition enables

134

coalesced global memory accessing under below situations, when consecutive threads

output results at the end of shifting_kernel, access data at the beginning of

pre_normalization_kernel, and modify data during normalization_kernel. This is due to

the fact that the CUDA kernels are designed such that consecutive threads access

neighboring pixels in () direction rather than in the 27 features.

5.3. Case Study: Real-Time Particle Size Estimation in

Batch Crystallization of Monosodium Glutamate

Monohydrate

The real-time particle estimation capability of our proposed hybrid CPU-GPU-

MIA algorithm is tested on a case study of batch crystallization of monosodium

glutamate monohydrate (MSG). The experiments were conducted by one of the authors

of the article (Sarkar et al., 2009), Ying Zhou. Equipment setup for the batch

crystallization is shown in Figure 5-6, where a 500ml flat-bottomed glass vessel fitted

with a variable speed stirrer serves as the crystallizer. The crystallization process begins

with dissolving 320g of MSG in 400ml deionized water, which is followed by a series of

heating for complete dissolution of the particles, and then cooling for crystallization to

take place. A graphical representation of the temperature change is summarized in

Figure 5-7; the detailed experimental steps are provided in (Sarkar et al., 2009). There

are a total of 29898 in situ images captured during the 23 hours crystallization process,

using a Particle Vision and Measurement (PVM) probe. The PVM generates images with

resolution of 480x640 at the speed of 2 images per second. In this work, the PVM serves

as a benchmark for performance evaluation, which means image processing speed of

0.5 second per image is the minimum requirement for real-time application.

135

Figure 5-6: Equipment set-up for the batch crystallization case study

10
.

Figure 5-7: Temperature profile of the batch crystallization process.

10
 Courtesy: (Sarkar et al., 2009)

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

temperature (oC)

time (min)

30min

40min

30min

30min

1g of 38-45m MSG seeds

23 hours

136

We examine the performance of our approach by comparing the accuracy of

particle size estimation and computational efficiency with the original sequential

approach. Both the sequential and hybrid MIA algorithms are implemented in Matlab

and all the computations are executed on a computing system with 64-bit Intel Xeon

CPU with processor speed of 3.20GHz and 12 GB RAM; while an Nvidia Quadro2000 GPU

card is used as the co-processor. Standard image processing functionalities such as

flood-filling, morphological opening, and object labeling, are performed using Matlab

Image Processing Toolbox. The parameter values used in the numerical experiments are

given in Table 5-1, while the thread configurations for the 5 CUDA kernels are presented

in Table 5-2. All 5 CUDA kernels along with several CUBLAS function calls are wrapped

into a MATLAB MEX function. It should be noted that the same set of 29898 images

used in the original work (Sarkar et al., 2009) for performance evaluation, is employed in

this work.

137

Table 5-1: Parameter values of MIA

Table 5-2: Thread configurations used for the 5 CUDA kernels

5.3.1. Accuracy of Particle Size Estimation

There are two important attributes pertinent to the accuracy of particle sizing,

which are the number of particles detected from every image, and the size of each

identified particle. Given that the accuracy of original CPU-MIA algorithm has been

validated based on manual segmentation (Sarkar et al., 2009), particle size information

obtained from CPU-MIA algorithm serves as reliable source for assessing the quality of

our proposed hybrid approach. Experimental results show that the number of particles

detected in all images is consistent between the CPU-MIA and CPU-GPU-MIA

algorithms, except for 4 images as shown in Table 5-3. It accounts for about 0.01% error

out of the 29898 images, and it is considered fairly insignificant. Table 5-3 also shows

that the discrepancy in quantity of particle is 1 at maximum, which is missing either

from the CPU or the hybrid method; one example is given in Figure 5-8.

138

Table 5-3: Images with different number of particles detected based on the CPU and

hybrid algorithms.

Figure 5-8: Results of applying MIA algorithm to image no. 29454, where an arrow

points to the missing particle; (a) grayscale image captured by PVM, (b)(c) post-

segmentation image obtained from CPU-MIA and CPU-GPU-MIA, respectively.

Next, we investigate the accuracy of particle size quantification. In MIA

approach, particle size is measured in the unit of pixel area i.e. number of pixels, thus

comparison can be made based on the metric defined below,

 | | (5-7)

where, p is the identity of a common particle detected by the 2 approaches. Excluding

those misplaced particles in the 4 images presented in Table 5-3, there are 87541

common particles identified by the 2 approaches. Figure 5-9 plots the particle size

difference against the 87541 particles, where the particle identities are given according

to the generation order of images. Significantly, the hybrid method provides

consistently close particle size measurement to the CPU method for most of the

particles under study, excluding several outliers which are found occasionally and

randomly throughout the 23 hours crystallization process. In order to provide a clearer

view of the overall distribution, the particle size difference is broadly divided into 3

CPU-MIA CPU-GPU-MIA

26238 8 9 1

27534 4 3 1

29454 10 9 1

29745 6 5 1

Image ID.
No. of particles detected

Difference in no. of particles

(a) (b) (c)

139

ranges as given in Table 5-4. It can be seen that up to 99.3% of the particles are found

having exactly the same size between the 2 approaches (i.e. p=0), 0.67% particles are

slightly different in their size measurement with difference less than 20 pixels, and

about 0.005% particles fall into the range of having p>20 pixels. The largest particle size

difference is found at image ID. 16023 in which there are total 4 particles detected. 3

out of 4 particles show zero size difference while the remaining one has 115 pixels

missing from the GPU results. A visual comparison of the particle sizes identified with

the 2 approaches is presented in Figure 5-10.

Figure 5-9: Particle size difference between the CPU-MIA and CPU-GPU-MIA

algorithms.

0 1 2 3 4 5 6 7 8 9

x 10
4

0

20

40

60

80

100

120

Particle ID.

p
 (

in
 p

ix
e
l

u
n

it
)

140

Table 5-4: Distribution of particle size difference for the 87541 common particles.

Figure 5-10: Results of applying MIA algorithm to image no. 16023, where an arrow

points to the missing particle; (a) grayscale image captured by PVM, (b)(c) post-

segmentation image obtained from CPU-MIA and CPU-GPU-MIA, respectively.

5.3.2. Real-Time Computational Efficiency of Hybrid CPU-GPU-

MIA Algorithm

The preceding discussion has shown that the proposed hybrid MIA approach

promises for accurate particle identification and size estimation, subsequently we will

investigate the achieved efficiency enhancement as well as fulfillment of the real-time

requirement. To recap, the hybrid MIA algorithm is constructed by parallelizing the most

costly tasks, namely feature extraction, PCA modeling, and segmentation on GPU, while

the rest is retained in CPU as in the original algorithm. First, the effect of GPU

parallelization on total computing time as well as time distribution in MIA algorithm are

shown in Figure 5-11 and Figure 5-12, which present the computing time distribution in

sequential and hybrid approach, respectively. It can be seen from Figure 5-11 that the 3

GPU-parallelizable tasks (represented as blue diamond symbols) are apparently the

computational bottleneck in the original MIA method. By shifting the 3 tasks to GPU, we

can see that the computing time of all components (i.e. blue diamonds, hollow red

circles and green stars) become more evenly distributed, as illustrated in Figure 5-12.

Range of p no. of particles % particles

0 pixel 86947 99.321%

between 0 and 20 pixels 590 0.674%

>20 pixels 4 0.005%

Total 87541 100%

(a) (b) (c)

141

The change in computing time distribution can be explained by the substantial

computing time reduction of the costly GPU-parallelizable tasks. Moreover, the

computing time collected from 5 separate numerical experiments is reasonably

consistent and stable.

Figure 5-11: Computation time distribution of major steps in CPU-MIA algorithm.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 1 2 3 4 5 6

T
im

e
(s

)

Run #

Feature extraction & PCA & segmentation Post-segmentation

Boundary refining total time

142

Figure 5-12: Computation time distribution of major steps in CPU-GPU-MIA algorithm.

The speedup ratios computed from the 5 numerical experiments are discussed

next. Considering only the 3 GPU-parallelizable tasks, an average of 13.29 speedups are

achieved as shown in Table 5-5, and this results in an overall speedups of 8.74, see Table

5-6. The reduced speedup performance can be explained by the inclusion of sequential

part. The achieved overall speedups of 8.74 is considerably close to the maximum

achievable speedup performance according to Amdahl's law, as follows,

()

This value is computed based on 0.09% total time taken by the sequential part (see

Figure 5-2), and assuming GPU execution consumes insignificant time. In conclusion, the

proposed hybrid CPU-GPU-MIA not only provides accurate particle size estimation, it

also offers real-time efficiency by reducing total computing time from 0.77 to 0.09

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1 2 3 4 5 6

Ti
m

e
 (s

)

Run #

Feature extraction & PCA & segmentation Post-segmentation
Boundary refining total time

143

seconds per image, which is much faster than the image generation speed of PVM at 0.5

seconds per image.

Table 5-5: Computational efficiency enhancement achieved by the CPU-GPU-MIA

algorithm on the 3 GPU-parallelizable tasks.

Table 5-6: Overall computational efficiency enhancement achieved by the CPU-GPU-

MIA algorithm.

5.4. Summary

Image analysis is a powerful process quantification tool, particularly when

standard methods like wet chemistry, chromatography are not adequate or inaccurate.

Image analysis provides flexibility and effectiveness in quantifying product (or waste)

size or shape, based on image processing techniques. As it is required to deal with large

image data, real-time process measurement is usually hindered and thus impairing its

effectiveness in real-time process monitoring applications. To fully release the value of

image analysis techniques, we propose to enhance their computational efficiency using

GPU parallelization. In this work, we develop a GPU-based multivariate image analysis

algorithm for particle size estimation. In the context of GPU parallel computing, the

main contributions of this work include combining multiple feature extractors (or

Run# Speedup

1 13.69

2 13.25

3 13.25

4 13.13

5 13.13

Average 13.29

Run# Speedup

1 8.86

2 8.53

3 8.60

4 8.66

5 9.05

Average 8.74

144

filtering kernels) in single CUDA kernel to avoid repeated memory access of same input

data, and exploring GPU implementation of multi-way PCA. Successful application of the

proposed hybrid MIA algorithm has also been demonstrated in a batch crystallization

process, in which accurate particle measurement is obtained in real-time. Image

processing time is reduced from 0.77 to 0.09 seconds for each image, and this is

equivalent to 8.74 speedups.

144

Chapter 6. GPU-based Data Stream

Clustering for Continuous

Monitoring of Process Behavior

Clustering is one of the most popular data mining tools which have been

successfully applied in many areas. Such popularity is mainly attributed to its simplicity

in execution and effectiveness in information extraction. However, it soon becomes

ineffective when the data size is too large to be stored in the main memory of the

computing system. This can be explained by the fact that traditional clustering

algorithms e.g. k-means, PCA-based, hierarchical clustering usually require multiple

accesses to the entire dataset, thus expensive data transfer from secondary storage

device to main memory is required. It is known that most chemical plants are rich in

data but poor in information, as a result of ineffectiveness in handling large dataset. In

response to that, a novel research topic called data stream clustering has emerged. Data

stream is a data model used for handling transient, large, and rapid data.

In this chapter, we focus on the balanced iterative reducing and clustering

using hierarchies (BIRCH) algorithm for two key reasons. The first and most important

reason is that BIRCH serves as the fundamental model for deriving many other data

stream clustering algorithms like CluTree, DenStream, HPStream, HDDSTREAM,

CluStream, and scaleKM. Secondly, we are interested in exploring the use of GPU

parallelization for hierarchical clustering algorithm which is inherently lacking of data

parallelism. In the interest of developing an accelerated BIRCH approach which provides

useful data summaries for various chemical process applications, such as process

optimization, scheduling, design, and monitoring, problem size reduction methods like

topological decomposition which are strictly problem-specific are not considered in this

145

work. This chapter is organized as follows. In Section 6.1, we propose an online

monitoring scheme which uses BIRCH to detect slow process changes. For an effective

online monitoring application, we improve the efficiency of BIRCH through GPU

parallelization. The development of the GPU-based BIRCH algorithm is discussed in

Section 6.2 wherein kernel design and implementation issues are addressed. The

developed hybrid CPU-GPU-BIRCH algorithm is tested on Section 6.3 for clustering

quality and process monitoring capability. We first examine the performance of the

proposed algorithm using synthetic data and then followed by simulated process data

which closely resembles real-world oil and gas production process.

6.1. BIRCH Application to Online Process Monitoring

for Gradual Change Detection

BIRCH is particularly suitable for detecting gradual change in process behavior

owing to its incremental data summarizing feature. On the one hand, abrupt process

change or process fault, e.g. wrong parameters setting due to human fault or power

trip, can be detected by focusing on data collected from small time window as the

associated change in process measurement is substantial. On the other hand, slow

process change occurs at very low speed which may take months or years. Since the

change is extremely slow and unnoticeably small, it is necessary to examine much larger

data window continuously so as to detect such gradual change. We present an online

strategy whereby BIRCH is used to compress process data collected in each window into

C clusters, as illustrated in Figure 6-1. C is a user-specified value which is bound by

memory space. As C is much smaller than the size of a data window, it allows for more

effective data analysis thereafter. Moving windows or sliding windows are commonly

used in online data analysis applications, where data is continuously collected by batch

and at the same time old data is removed. As discussed in (Adä & Berthold, 2013),

146

window type can be classified based on two aspects which are the starting location of

the window (fixed or sliding) and the width of the window (constant or growing). In this

work, a window with sliding starting position and constant width is used for the purpose

of comparing consecutive data batches during event detection, as discussed in following

paragraphs.

Figure 6-1: Online strategy for detecting gradual process change using BIRCH.

Adä and Berthold (2013) propose an event detection framework wherein

events can be identified by tracking the difference in consecutive data windows.

Differences are measured based on a dissimilarity function (), where Di refers

to data window and i is the window identity. However, in cases where data size of D is

very large, computation of dissimilarity function can be costly and ineffective. Model

representations of data which are more concise and noise-free are more appropriate,

thus dissimilarity function is redefined as () where M denotes the data model.

There are 3 basic types of event which are defined as follows,

BIRCH

Extract the C cluster nodes
from BIRCH CF-tree

Archive w latest sets
of cluster nodes

Data analysis
If historical data

is needed

snapshots

D[i-1,i] D[i,i+1] D[i+1,i+2]

N samples

time

ith window

147

No event: If the current d measurement shows no significant difference from the

preceding one, i.e. () (), there is no sign of event taking place.

Note that there are total 4 data windows involved in the computation.

Abrupt event: If the current d measurement is significantly larger or smaller than the

preceding value, i.e. () (), it indicates the existence of

abrupt change.

Gradual event: If there is an increasing or decreasing trend of the d values across

several data windows, it suggests for a gradual event. Mathematically, it is expressed as

follows, () () () () or (<

respectively).

In general, chemical plants involve multiple operating states in order to cater

for different product grades and types, or to accommodate for scheduled maintenance

or part cleaning; (Méndez & Cerdá, 2003), (Srinivasan et al., 2004) and (Tousain &

Bosgra, 2006) show some examples. By using clustering to partition process data

collected from different states into separate groups, various process states can be

tracked or monitored individually. The dissimilarity function is therefore adjusted to,

 (), where s represents a particular process state. It is worth mentioning

that it is possible for single data window to contain data of different process states,

especially if the width of window is not too small. Process state-specific models can be

first constructed from identified data clusters, and then used in dissimilarity

computation. Alternatively, these data clusters can also be used directly as

representative models, in which cluster centers are the model parameters. In this case,

dissimilarity between two consecutive windows can be determined by taking difference

on the two sets of centroids. It should be noted that the data cluster models are

148

obtained by applying a standard clustering algorithm (k-means is used in this work) to

the C cluster nodes acquired from the final BIRCH CF-tree. For more effective clustering

(i.e. modeling) during online monitoring, clustering seeds can be first determined offline

using historical data based on the number of known normal process states.

Hence, in the interest of detecting gradual change which can deteriorate

process performance, it is required to execute the BIRCH algorithm repeatedly on each

incoming data window, and the size of data window can be large as explained before. In

order to avoid the piling up of data, an efficient BIRCH algorithm is highly favorable. This

is particularly important if more complex and costly modeling is needed in dissimilarity

determination. In the subsequent section, we develop a GPU-based BIRCH algorithm

aiming to enhance the computational efficiency.

6.2. GPU Implementation

As opposed to standard GPU implementation which is targeted at only

computationally costly tasks, as illustrated in Chapter 4 and Chapter 5, the entire BIRCH

algorithm is executed in GPU. A main reason is that BIRCH operations such as merging,

splitting, updating of parent nodes and tree rebuilding are closely related to the status

of CF-tree at that point in time, and moving of the CF-tree between CPU and GPU

memories is extremely costly and troublesome. Therefore, except for several auxiliary

operations like threshold calculation, all operations are executed in GPU. In view of the

algorithmic complexity of BIRCH, the discussion on CUDA kernel design, data

transferring and optimization is divided into 4 major parts, namely overview of the

hybrid algorithm, merging or splitting at cluster nodes, splitting of leaf and nonleaf

nodes, and rebuilding of CF tree.

149

6.2.1. Overview of the hybrid algorithm

Figure 6-2 shows the overview of our proposed BIRCH-based online monitoring

scheme. Note that CPU is mainly responsible for interacting with database system,

building models and calculating dissimilarity value; while GPU is liable for executing

BIRCH. In contrast to conventional BIRCH algorithm which processes one sample (or

pattern) at a time, we realize data parallelism by handling the incoming samples in

batch; is the notion used for batch size. Given a data window D[i, i+1], we split it into u

batches with each batch containing samples except for the first few and the last batch.

The initial few batches are intentionally assigned with smaller number of samples due to

limited amount of tree nodes at the beginning of CF-tree construction, more

explanation will be given later in Section 6.2.2. Whereas in the last batch, it may contain

samples lesser than if the division operation,

,

is not exact. In short, the ‘GPU-BIRCH’ routine represented as a green-outlined box in

Figure 6-2 will be called for u number of times, and each time a different section of D[i,

i+1] is transferred from CPU to GPU global memory.

150

Figure 6-2: Overview of the GPU-based online process monitoring scheme, showing the

relationships among database system, CPU and GPU.

Another key difference to conventional BIRCH algorithm is that tree nodes are

pre-allocated in GPU-based BIRCH, instead of dynamical allocation. This can be done by

translating the user-specified maximum memory space for BIRCH to number of nodes

M’ allowable in the tree. Given that sample dimensionality and page size P are known,

the size of single node and thus M’ can be computed. The tree nodes need to be stored

in GPU global memory for several reasons, and important ones include the writability

requirement and sustained lifetime throughout all kernel calls. As will be discussed in

later sections, LS and SS elements of CF vector and multiple nodes of the same type are

always accessed simultaneously by a CUDA thread warp. Hence, for coalesced memory

access, same type of nodes like cluster nodes, leaf nodes and nonleaf nodes are

All data in D[i, i+1]
processed?

GPUCPU

Copy data to GPU: the jth section of D[i, i+1], Dj

Call CUDA kernel: init_CFtree <<<>>> (global nodes, global CF vectors,
global pointers)

Output data: Initialized global nodes, global CF vectors, global pointers

Copy data to CPU: all cluster nodes

Acquire data D[i, i+1]

Database system

GPU-BIRCH

Build model Mi

Compute dissimilarity
d(Mi , Mi-1) & d(Mi-1 , Mi-2

Event detection

Store model

YesNo

j j+1

Initialization

j 0

Retrieve previous models

CPU computation

Database system

Data transfer between CPU & GPU

GPU computation

MAIN

151

allocated together. Also, CF vectors of the same type of nodes are allocated collectively

in the same memory space, as shown in Figure 6-3. By doing so, it is possible to have

coalesced memory access through ensuring dimensionality (or elements in LS or SS) is

multiples of warp size i.e. 32. Using CUDA C++ programming, the 3 types of tree nodes

are inherited classes from the same base class; function members of the base class

include the N component of CF vector, child pointers, parent pointers, and tree level.

It can also be seen from Figure 6-3 that there are two levels of pointers used to

establish the relationships of nodes and CF vectors. At the outermost level, a pointer

array serves as an interface for node manipulation. It provides flexibility in situations

where sorting or compacting of nodes is needed, as it can be done without physically

moving the nodes around, and thus saving time for copying and deleting. Note that 3

separate global pointer arrays are used for manipulating the cluster, leaf, and nonleaf

nodes. Within each node, there is also a pointer connecting it to the associated CF

vector. As shown in Figure 6-2, a CUDA kernel named init_CFtree is called at the

beginning of every data window. The kernel is responsible for setting up all the pointers

and also constructs a minimal CF tree which consists of only one cluster node, one leaf

node and one nonleaf node. The 3 nodes are related through parent-child relationship

and they incorporate the very first sample of each data window.

In this work, a standard parallelization strategy is employed which maps CUDA

blocks to samples or nodes, and maps CUDA threads to the elements of CF vector;

unless otherwise stated. For instance, in init_CFtree kernel, one block is assigned to a

node in which one thread is used to perform the pointer assignment, and all threads

perform zeroing of elements in the CF vector.

152

Figure 6-3: Pointer assignment performed in init_CFtree CUDA kernel.

Next, we examine the ‘GPU-BIRCH’ routine which involves a number of CUDA

kernels and CPU operations, as depicted in Figure 6-4. Given a data batch Dj extracted

from the current data window, it needs to firstly identify the nearest cluster nodes for

each samples. The CUDA kernel, search_nearestCluster, parallelizes this searching

operation over the samples in Dj based on the standard parallelization strategy. Thread-

level parallelization is mainly achieved at distance computation, whereby CUDA threads

access contiguous elements in CF vectors of both sample and candidate node. It is

important to highlight that such CUDA kernel design is mostly beneficial for problems

with sufficiently high dimensionality which is the center of our interest. If problem

dimensionality is less than the size of a warp which is the smallest block size, some

threads will idle and resources are wasted.

There are several output variables used to store computing results of

search_nearestCluster, which include action, Cnearest, and Lparent. The length of these

M’ nodes

Node pointers

CF vector

153

variables is equal to data batch size, so that the action, nearest cluster, and the parent

of the nearest cluster obtained from the sth sample can be stored in the sth element of

the variables, respectively. Note that action is an integer array using 0 and 1 to denote

merging and splitting action at cluster node, while Cnearest, and Lparent are pointer address

arrays. Memory space allocated for these variables can be used for storing other

intermediate results when their jobs have accomplished.

Following the CUDA kernel search_nearestCluster, a counting function from

Thrust library is called to determine the number of samples requiring merging and

cluster splitting, based on 0’s and 1’s counts in action. Since cluster splitting is only

allowed if there is sufficient amount of unused nodes available, it is necessary to ensure

that the amount of new clusters required is less than the available nodes. If this is the

case, a sub-routine called ‘merging or splitting at cluster nodes’ will be executed,

otherwise ‘rebuilding of CF tree’ routine will be called to free some of the used nodes by

using a larger T. Supposing ‘merging or splitting at cluster nodes’ is chosen, and the

number of new clusters created at a particular leaf parent (pointed to by Lparent) exceeds

the width of the leaf node, splitting at higher level will be required and the sub-routine

‘splitting of leaf and nonleaf nodes’ will be summoned this time. On the contrary, if all

newly created clusters can be absorbed by the leaf parents, then the next step is to

update the CF values of higher level nodes to reflect the adding of new samples.

The CUDA kernel, update_parent, is designed to update the parent nodes by

iterative through the levels from leaf to root node, i.e. one level at a time. Similar to

conventional BIRCH algorithm, CF values of upper level nodes are dependent on their

descendant nodes, thus synchronization is required at every level. Unlike the original

algorithm, the CUDA kernel update_parent updates all nodes at a particular level

154

simultaneously, regardless if their descendant nodes undergo any changes in the

‘merging or splitting at cluster nodes’ routine. This is due to the reason that tracking of

the affected nodes is both time and space consuming, in addition, updating of

unaffected nodes in GPU is free though it is unnecessary. The ‘GPU-BIRCH’ routine will

be repeated until all samples in the current window D[i, i+1] are accounted for, as

illustrated in Figure 6-2. Upon the last call of ‘GPU-BIRCH’, the average values of CF

vector (i.e.

) of every cluster node will be extracted and copied to CPU for model

construction and dissimilarity computation.

Figure 6-4: Overview of BIRCH implementation in GPU.

Call CUDA kernel: search_nearestCluster<<<>>>(Dj , global pointers)
Output data: action, nearest cluster Cnearest, parent leaf Lparent

Rebuilding of CF tree

No. of clusters requiring
further splitting > 0 ?

Thrust count: no. of data requiring cluster split, Nsplit &
no. of data merging to existing cluster, Nmerge

Yes No

Merging or splitting at
cluster nodes

Splitting of leaf and
nonleafnodes

Available cluster nodes
< Newcount ?

NoYes

Output data vector has the same
length as Dj

Return to “MAIN”

Current level1 (i.e. leaf)

Call CUDA kernel: update_parent<<<>>>(global pointers,
current level)

Output data: updated nonleaf nodes

The highest level reached?

Yes

No

Current level
Current level + 1

GPU BIRCH

155

6.2.2. Merging or splitting at cluster nodes

In this section, we provide the details of the sub-routine ‘merging or splitting

at cluster nodes’ which is represented as a purple box in Figure 6-4. As presented in

Figure 6-5, it begins with 3 sorting operations whereby samples merging to the same

cluster or creating new cluster at the same leaf node are located together. A variable

sorting_ID is used to keep track the sample sequence. The first sorting attempts to

separate samples requiring merging from those demand for new cluster, using action as

the sorting keys. To ensure consistency, Cnearest and Lparent are subsequently re-arranged

according to the sorted sample sequence indicated by sorting_ID. The remaining two

sorting operations are performed on Cnearest and Lparent, respectively. Since samples to be

merged to a particular cluster (or creating new cluster at the same leaf) will have same

memory address in the Cnearest (or Lparent), sorting of the memory addresses in Cnearest (or

Lparent) can partition samples into groups with same nearest cluster (or same parent leaf

node). An illustrative sample is given in Figure 6-6.

156

Figure 6-5: Procedure of sub-routine ‘merging or splitting at cluster nodes’.

Call CUDA kernel: cluster_merging_splitting<<<>>>(Dj, sorting_ID,
block_range, Nmerge, Cnearest , Lparent, Cnew, Lnew, global pointers)

Output data: new clusters Cnew which rejected by Lparent

Thrust sort: keys = Cnearest, values = sorting_ID

Thrust sort: keys = Lparent, values = sorting_ID

Thrust sequence filling: sorting_ID

Thrust count: no. of Cnew

Call CUDA kernel: compute_blockRange<<<>>>(Lparent)
Output data: block_range

Cluster splitting: identify the no. of
spls per block (or per leaf node)

sorting_ID stores the sample sequence

Group spls which can be merged to
the same cluster

Group spls which form new clusters at
the same leaf

Call CUDA kernel: compute_blockRange<<<>>>(Cnearest)
Output data: block_range

Merging: identify the no. of spls
handled per block (or per cluster)

Merging or splitting at
cluster nodes

return to “GPU BIRCH”

Thrust sort: keys = action, values = sorting_ID

Thrust gather: map ID = sorting_ID , values = Cnearest

Thrust gather: map ID = sorting_ID , values = Lparent

Separate merging spls from
those involve cluster splitting

157

Figure 6-6: A simple example demonstrating the 3 sorting operations involved in sub-

routine ‘merging or splitting at cluster nodes’.

According to the standard parallelization strategy mentioned in Section 6.2.1,

CUDA blocks are mapped to unique cluster nodes (or unique leaf nodes) for merging (or

splitting) operations. Samples in the same cluster node (or leaf node) are examined

sequentially in the CUDA block, in which CUDA threads are assigned to handle different

elements of CF vectors of either sample or node. Take the example given in Figure 6-6,

as there are 2 unique cluster nodes (i.e. C1 and C2), 2 CUDA blocks are needed to

perform the merging; similarly, another 2 CUDA blocks are used for splitting at the 2

unique leaf nodes, L1 and L2. Since the number of samples managed by each block is

sorting_ID11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10

action merging

splitting

1st sorting

Cnearest- - - C2 - - - C1 C1 C1C1 C1 - C2 C1 C1 C1 - - C2

LparentL1 L2 L1 - L2 L2 L2 - - -- - L2 - - - - L2 L2 -

20 3 8 9 11 12 13 15 16 171 2 4 5 6 7 10 14 18 19

action

CnearestC1 - - - - - - - - -C1 C1 C2 C1 C1 C1 C2 C2 C1 C1

Lparent- L2 L2 L2 L1 L2 L1 L2 L2 L2- - - - - - - - - -

2nd sorting

14 3 8 9 11 12 13 15 16 171 2 5 6 7 18 19 20 4 10

CnearestC2 - - - - - - - - -C1 C1 C1 C1 C1 C1 C1 C1 C2 C2

3rd sorting

14 3 8 9 12 15 16 17 11 131 2 5 6 7 18 19 20 4 10

Lparent- L2 L2 L2 L2 L2 L2 L2 L1 L1- - - - - - - - - -

sorting_ID

sorting_ID

sorting_ID

158

different, a CUDA kernel named compute_blockRange is used to determine the sample

range. A thread is responsible to retrieve and compare 2 neighboring elements in Cnearest

and Lparent, and write its location to output variable block_range if the 2 neighboring

elements are different in values, as illustrated in Figure 6-7. Although this CUDA kernel

functions similarly to the scanning function available from Thrust library, the latter is not

allowed to take more than one input; in this case the 2 inputs Cnearest and Lparent are

scanned simultaneously.

Figure 6-7: Sample range determination using CUDA kernel compute_blockRange; using

the same data from the example given in Figure 6-6.

The last CUDA kernel to be discussed in this sub-routine is

cluster_merging_splitting which carries out the actual merging and splitting operation at

cluster node. It requires several input variables which include the samples, sorted

sample sequence sorting_ID, sample range, number of sample groups for merging

Nmerge, Cnearest, Lparent, global cluster pointers, and 2 output variables Cnew and Lnew for

storing newly created clusters and parents. The global cluster pointers are required for

getting the address of unoccupied cluster nodes. To prevent multiple CUDA blocks

CnearestC2 - - - - - - - - -C1 C1 C1 C1 C1 C1 C1 C1 C2 C2

Sample range determination

Lparent- L2 L2 L2 L2 L2 L2 L2 L1 L1- - - - - - - - - -

0 7 10 17 19

Global thread ID.

Global thread ID.

Merging sample range splitting sample range

block_range

11 12 13 14 15 16 17 18 191 2 3 4 5 6 7 8 9 100

11 12 13 14 15 16 17 18 191 2 3 4 5 6 7 8 9 100

159

compete for the same unoccupied cluster node, each block is restricted to a range of

elements in the global array. This range can be determined by the sample range

indicated in block_range and also location of the first unoccupied node in the global

pointer array, as illustrated in Figure 6-8. This example also shows the importance of

global node compaction.

Figure 6-8: Example illustrating the usage and compaction of global pointers.

Given Nmerge, individual CUDA block is able to find out if it is related to the

merging or splitting job, as merging samples are already sorted to the front. Merging of

samples to a unique cluster node is achieved by adding samples to the CF vector of the

cluster, where the samples identity can be obtained from block_range and sorting_ID.

Similarly, splitting at a cluster node essentially involves creating new cluster at a unique

parent leaf node. In a CUDA block, one cluster is created at a time whereby the samples

Global pointers
used

unused

compaction

1st available node Nodes accessible
by 1st CUDA block

Nodes accessible
by 3rd CUDA block

Nodes accessible
by 2nd CUDA block

Updated status
of node usage

Requires compaction
before subsequent usage

160

are examined sequentially to be added into this cluster; new cluster address is obtained

from the global cluster pointers. Note that thread-level parallelism is achieved during

distance computation and adding of sample to cluster, by mapping threads to variables

in sample data or CF vector. If there is empty child lot at the parent leaf node, the

parent will absorb the new cluster as a child. Otherwise, a pointer will be generated in

Cnew and Lnew to store the address of this cluster node and its original leaf node parent,

for further processing in later stage. On completion of cluster_merging_splitting, the

number of new cluster nodes without parent can be counted from Cnew, and it proceeds

to the sub-routine ‘splitting of leaf and nonleaf nodes’ if the count is not zero.

6.2.3. Splitting of leaf and nonleaf nodes

The sub-routine ‘splitting of leaf and nonleaf nodes’, represented as a blue box

in Figure 6-4, involves splitting of nodes at leaf and nonleaf levels. Like conventional

BIRCH, the splitting task starts at the leaf level after receiving cluster nodes from

preceding sub-routine ‘merging or splitting at cluster nodes’. At leaf level, cluster nodes

are the child nodes (indicated by Childnew) which require splitting of their original parent

leaf node (indicated by Parentnew), so that more space is created by having additional

parent leaf node. In cases where the number of newly created leaf nodes is more than

the available child slot at their immediate nonleaf parent node, higher level node

splitting is required. Such splitting may propagate all the way up the CF-tree until there

is no more unhandled child node. Note that if it requires splitting at the root node level,

the tree height is increased one.

As it can be seen from Figure 6-9, at the beginning of every level of splitting,

new child nodes Childnew are segregated such that those belong to the same parent are

placed together, using sequencing, sorting and gathering functions from Thrust library.

161

The CUDA kernel compute_blockRange is then executed to determine the number of

child nodes associated to each unique parent in Parentnew. As both determination of the

farthest pair of child nodes (serve as seeds) and child node re-distribution have

computational complexity of (), where C’ is the number of child nodes under

consideration, node splitting will become extremely costly when C’ is large. In order to

avoid severe workload unbalance during splitting, we suggest identifying the most

crowded block whose C’ exceeding a user-specified limit , and performing the distance

computation in a separate kernel called compute_child2child_dist. Note that the

maximum C’ can be determined from block_range, and at most only one block will have

its distance pre-calculated due to memory space limitation. In compute_child2child_dist,

efficient computation can be achieved by mapping C’ CUDA blocks to C’ child nodes, and

mapping CUDA threads to elements of CF vectors during distance computation. The

calculated distances are stored in the variable, dist_matrix, which resides in global

memory.

162

Figure 6-9: Procedure of sub-routine ‘splitting of leaf and nonleaf nodes’.

The actual splitting job is performed in a CUDA kernel called splitting, which

consists of 2 key operations including determination of farthest seeds and

redistribution, where a CUDA block is assigned to a unique parent node in Parentnew. In

contrast to conventional BIRCH method, there may be more than one child node needs

Call CUDA kernel: splitting<<<>>>(Parentnew, Childnew , dist_matrix, global pointers)
Output data: next level NextParentnew, NextChildnew

Thrust sort: keys = Parentnew, values = sorting_ID

Thrust gather: map ID = sorting_ID , values = Childnew

Thrust sequence filling: sorting_ID

Group Childnew with same
parent by sorting Parentnew

Thrust count: no. of NextChildnew

Childnew Cnew

Parentnew Lnew

Call CUDA kernel: compute_blockRange<<<>>>(Parentnew)
Output data: block_range

Identify the no. of child per block

Determine the maximum child number or block range, maxchild & block_ID

maxchild > ?
NoYes

Call CUDA kernel:
compute_child2child_dist<<<>>>(block_ID, Childnewc)

Output data: dist_matrix

NextChildnew > 0 ?

NoYes

sorting_ID stores the sequence of Childnew

Empty dist_matrix is passed to
the kernel, distance computation
done in the splitting kernel

iter2

Call CUDA kernel: update_parent<<<>>>(global pointers,
current level)

Output data: updated nonleaf nodes

Iter highest level ?

Yes

No

iter iter+1

Splittingof leaf&
nonleafnodes

Return to “GPU BIRCH”

ChildnewNextChildnew

Parentnew NextParentnew

163

to be added to the parent assigned to a CUDA block. As a consequence, the 2 key

operations may be repeated for several times until all child nodes are accounted for.

Supposing a CUDA block has the child node-to-child node distances pre-computed in

compute_child2child_dist, it can perform seed determination and child re-distribution

directly based on dist_matrix. Otherwise, it is required to compute the distance during

execution of splitting kernel. Figure 6-10 presents a simple example of node splitting

occurring at leaf level. It should be noted that the creation of new nodes is done

through the global pointers, as depicted in Figure 6-8. The splitting procedure will be

repeated until the NextChildnew is found empty. It is then required to update the CF

vectors of all higher level nodes to reflect the adding of new samples or new child

nodes, before returning to the ‘GPU-BIRCH’ routine.

164

Figure 6-10: An illustrative sample of node splitting and redistribution at leaf level, in

GPU-based BIRCH algorithm.

6.2.4. Rebuilding of CF tree

Another sub-routine named ‘rebuilding of CF tree’ is used to compress CF-tree

by using a larger T; it is represented as a red box in Figure 6-4. In conventional BIRCH,

the target for CF-tree rebuilding is to free up one cluster node, as there is only one

sample being handled at one time. In our proposed GPU approach, samples are dealt

with simultaneously, so it is important to first determine the number of new cluster

nodes required. Upon completion of the CUDA kernel search_nearestCluster, the

c5 c6 c7

L

c1 c2 c3 c4 c8 c9 c10

Farthest pair of nodes

c1 c6

Closest members

c1 c6

Max. child width =4

Childnew

Parentnew

c2 c5 c7 c3 c4 c9

Remaining members
form a new leaf

new leaf node
L

c1 c2 c5 c7

Old leaf after
redistribution

L

c3 c4 c6 c9

L

c8 c10

NextChildnew

NextParentnew

nonleaf

165

number of samples requiring splitting Nsplit will be known. Here, we assume a maximum

number of new cluster nodes to be created, which is equal to Nsplit. In other words, it is

assumed that all candidate samples are far from each other such that every newly

created cluster contains only single sample. Setting a maximum requirement is

necessary as the CF-tree rebuilding is executed prior to the sub-routine ‘merging or

splitting at cluster nodes’ and the actual number of new clusters needed is still

unknown. This strategy avoids an additional execution of cluster_merging_splitting, but

it also risks for an unnecessary high T as will be discussed in later Section 6.3. Based on

this maximum requirement, the rebuilding operation is repeated until the target is met.

As shown in Figure 6-11, the first part of tree rebuilding is the determination of

Dmin which is defined as the distance between two closest child nodes in the most

crowded leaf node. In order to find the most crowded leaf node, a CUDA kernel called

extract_N_from_leaf is employed, in which T’ CUDA threads (where, T’ L’) are used to

copy the number of samples N and memory address of the L’ leaf nodes to variables Nleaf

and Lptr, respectively. In this case, arbitrary thread configuration is acceptable. The most

crowded leaf node can then be pushed to the front by carrying out sorting on Lptr using

Nleaf as keys. Determination of Dmin is executed in another CUDA kernel, compute_Dmin,

by assigning single CUDA block to examine the first element in Lptr. Thread-level

parallelization is achieved by mapping CUDA threads to elements of CF vectors for

calculating inter-cluster distances among all possible pairs of the child nodes. The

minimum distance found will be output to the variable Dmin which is subsequently

copied to CPU for calculating new threshold T.

Given an increased T value, some of the cluster nodes can be merged and

therefore freed for new samples in Nsplit. To account for the possibility of merging cluster

166

nodes located at different leaf nodes, we propose mapping CUDA blocks to nonleaf

nodes at level 2, which are immediately above the leaf node. Since single global pointer

array is shared by nonleaf nodes at all levels (from level 2 to root node level), we launch

a number of CUDA blocks that is equal to the total number of occupied nonleaf nodes

while executing the CUDA kernel, rebuild_CFtree. At the beginning of the kernel, a CUDA

block will terminate its operations if the associated nonleaf node is not at level 2.

Otherwise, it will iterate through all the child cluster nodes, one at a time. For each

cluster node c1, it determines the nearest cluster node c2 which is not necessary under

the same parent node. In cases where the distance between c1 and c2 is smaller than

the new T value, the two clusters will be merged, and the corresponding parent leaf

nodes will also be updated. Obviously, if a cluster has already been merged previously, it

will not be examined again in the remaining iterations.

Following the cluster merging operation in rebuild_CFtree, there are 2 CUDA

kernels which are remove_emptyLeaf and remove_emptyNonLeaf used to remove

empty nodes at leaf and nonleaf levels, respectively. In these 2 kernels, one CUDA block

is mapped to one leaf or nonleaf node, in which its corresponding child nodes are

examined sequentially. If any child node is found empty, the last available child will be

moved to this position. In doing so, the child pointer array is compacted for future

usage. As remove_emptyNonLeaf is performed on one level nonleaf nodes at one time,

a CUDA block will return immediately if it finds that the assigned node is not at the

target level.

It should be noted that the CUDA kernel rebuild_CFtree is designed in a way

that it ignores any merging opportunity at level higher than 2, and this may lead to the

formation of long single branches in the tree; a long branch is formed when a higher

167

level nonleaf node consists of single child at all lower levels. To allow merging at higher

levels, a CUDA kernel called merge_single_branch is employed. For more efficient

computation, the existence of long single branches is first identified in the kernel

remove_emptyNonLeaf where multiple nonleaf nodes can be examined simultaneously.

In view of the rarity of long single branch, single CUDA block is launched for

merge_single_branch in which one identified branch is examined at a time. Despite of

the limited parallelism, it can avoid complication of parent node tracking which is

needed to prevent race condition among CUDA blocks. Like rebuild_CFtree, this kernel

also seeks to merge any 2 clusters whose inter-cluster distance is smaller than T. The

only difference is that merge_single_branch traverses from higher level, while

rebuild_CFtree starts from level 2.

At this stage, the CUDA kernel search_nearestCluster needs to be executed

once more to re-calculate the Nsplit based on the compressed CF-tree and updated T.

Assuming the newly computed Nsplit is still larger than the available node, the entire CF-

tree rebuilding procedure will be repeated. Otherwise, it will return to the ‘GPU-BIRCH’

routine.

168

Figure 6-11: Procedure of sub-routine ‘rebuilding of CF tree’.

Call CUDA kernel: search_nearestCluster<<<>>>(Dj , global pointers)
Output data: action, nearest cluster Cnearest, parent leaf Lparent

Call CUDA kernel: extract_N_from_leaf<<<>>>(global pointers)
Output data: Nleaf & leaf pointer Lptr

Available cluster nodes
< Splitcount

Thrust sort: keys = Nleaf, values = Lptr

Call CUDA kernel: compute_Dmin<<<>>>(Lptr)
Output data: Dmin

Compute new T

Copy data to CPU: Dmin

Copy data to CPU: T

Call CUDA kernel: rebuild_CFtree<<<>>>(T, global pointers)
Output data: some of the global cluster nodes are merged

Call CUDA kernel: remove_emptyLeaf<<<>>>(global pointers)
Output data: updated global leaf

Call CUDA kernel: remove_emptyNonLeaf<<<>>>(global pointers, single branch pointers)
Output data: updated global nonleaf at higher levels

Yes No

Thrust count: no. of data requiring cluster split, Nsplit &
no. of data merging to existing cluster, Nmerge

Acquire spl no. N contained in
each leaf nodes

Sort and move the most
crowded lead node to the front

Thrust sort: keys = action, values = Cnearest

Thrust sort: keys = action , values = Lparent

Rebuilding of CF Tree

return to “GPU BIRCH”

Current level2

The highest level reached?
No

Current level
Current level + 1

Call CUDA kernel: merge_single_branch<<<>>>(single branch pointers, T)
Output data: updated global nonleaf at higher levels

Yes

169

6.3. Performance Evaluation

In this work, our main goal is to develop an efficient BIRCH algorithm for

effective online monitoring of chemical process, using GPU parallelization technique. A

series of numerical experiments, using both synthetic data and simulated process data,

are carried out to evaluate the performance of the proposed hybrid CPU-GPU-BIRCH

algorithm. In an online monitoring application, the main function of BIRCH is to provide

accurate summary of large data, which in turn allows the construction of correct data

models for different process states. The accuracy of data summarization can be

measured based on a testing dataset which has not seen by BIRCH, by comparing the

known and estimated process state. Considering the true labels and predicted labels as

2 partitions (referred to as P1 and P2), Jaccard coefficient (JC) can be used to measure

the accuracy of clustering and also data summarization. JC is defined as follows,

 (6-1)

where, n11 refers to the number of pairs of objects which are in the same cluster in both

P1 and P2, n10 denotes the number of pairs of objects assigned to the same cluster in P1

but not in P2, n01 is the number of pairs of objects assigned to the same cluster in P2 but

not in P1. Note that the computation of JC is expensive, as it involves complexity of

O(N2).

Moreover, in order to validate the effectiveness of the hybrid BIRCH algorithm

in detecting slow process change, a gradual change is simulated in both synthetic and

simulation data. To avoid biases towards high dimensional data, our performance

validation is based on normalized dissimilarity value. As clusters are used as the data

models , normalization can be achieved by dividing the dissimilarity value d by data

170

dimensionality. The sensitivity of gradual change detection of the hybrid method will be

established based on the sequential method. It should be noted that speedup realized

on individual data window is of higher interest to the online use of BIRCH; whereas an

overall speedup is more relevant for offline BIRCH application, which is used to generate

clustering seeds.

Experimental results reported in this work are obtained based on a computing

system containing 64-bit Intel Xeon CPU with processor speed of 3.20GHz, 12 GB RAM,

and an Nvidia Quadro2000 GPU card. Taking advantage of the well-established

functionality offered by MATLAB, the two algorithms, CPU-BIRCH and CPU-GPU-BIRCH,

are wrapped into two separate MATLAB MEX functions. While auxiliary computations,

including post-BIRCH clustering, JC computation, dissimilarity measurement, can also be

executed on MATLAB platform. Direct application of MATLAB k-means function is

especially straightforward. Furthermore, the function provides special feature of

ignoring cluster seeds that are too far from the samples, by setting parameter

‘emptyaction’ as ‘drop’. This feature prevents rigid clustering effect of using cluster

seeds, i.e. it is not necessary to form k clusters if the data are collected from number of

process states smaller than k.

The algorithm parameters employed in the experiments are specified as

below. Euclidean distance is used in both approaches throughout all the experiments;

the maximum total number of node M’ is set at 15000; the size of delay-split variable for

sequential approach is equal to the batch size of the GPU approach; the initial batch size

for GPU-BIRCH is 64. A further point is that both synthetic data and simulation data is

normalized to the range [0, 1] prior to analysis. As online data is normalized based on

171

the minimum and maximum values determined in the historical dataset, the normalized

values could be found outside the range of [0,1].

6.3.1. Testing using synthetic data

Synthetic data offers the flexibility in covering a wide range of dimensionality,

number of cluster, sample size, and deviation mode. Considering the use of Euclidean

distance in BIRCH, normally distributed data is appropriate for evaluating the

performance of the proposed approach. In (Zhang et al., 1996), the authors propose

using the concept of grid for locating cluster centers. This strategy assures non-

overlapping clusters, but its application for generating high dimensional data is rather

complicated. In this work, the cluster centers are allocated along the diagonal path. A

simple example is given in Table 6-1, where there are 3 clusters of data with

dimensionality of 4. Besides the location of centers, variance is another parameter

required for generating normally distributed data. The variance is chosen randomly from

the range of [0.7, 1.5] for each cluster generation. Upon completion of data generation,

the data is normalized across all clusters to the range of [0, 1]. In this work, we use 4

clusters for synthetically generated data.

Table 6-1: An example showing 4 cluster centers allocated along the diagonal plane.

A number of synthetic datasets are generated to assume problems with

different number of normal process states (or number of clusters) and dimensionality.

172

The total size of each dataset is set at 10 GB, and the number of patterns or samples is

computed as follows,

(6-2)

where, d is the dimensionality and data size equal to 4 bytes (i.e. single precision data) is

used throughout this work. Due to the expensive computational cost of JC, only 10% of

the dataset (i.e. about 1 GB) is used as testing data. For small d, the number of samples

can be extremely large, so a smaller fraction of 0.1% will be used for d below 256. The

remaining 90% or 0.99% of data serves as the training data. At both online and offline

stages, 0.5 GB is used as the window size.

The performance evaluation on synthetic data is carried out in 2 parts, which

include studying the effect of parameters on computational performance in offline

BIRCH applications, and investigating BIRCH performance in detecting gradual change

during online monitoring.

6.3.1.1. Effect of parameters

First of all, we study the effect of several parameters on the performance of

both sequential and hybrid BIRCH algorithms. Due to the complex operations involved in

CUDA kernels, optimal thread configurations are determined through a series of

numerical experiments. From the discussion on CUDA kernel design, we know that the

number of blocks used in each CUDA kernel is determined dynamically by the number of

occupied nodes, splitting samples, and etc. Therefore, block size is the only variable

under evaluation in the experiments. The CUDA kernels are tested from the minimum

block size i.e. 32 to the maximum allowable block size which can be 1024 or smaller.

Although block size of 1024 is the device limitation for GPU with compute capability of

173

2.X, CUDA kernels which assign each thread with private space in shared memory may

be limited to a smaller block size. It can be seen from Table 6-2, the overall computing

time is significantly reduced as the block size of search_nearestCluster decreases from

the maximum 1024 to 512, and it reaches the optimal performance at block size 256.

Apart from that, block sizes of all other CUDA kernels do not have notable impact on the

overall efficiency performance. Hence, the maximum block size is generally chosen for

these CUDA kernels, as highlighted in yellow in Table 6-2. Note that the experimental

results reported in Table 6-2 are based on dimensionality of 1792.

174

Table 6-2: Performance of BIRCH-related CUDA kernels at various thread

configurations.

175

The maximum number of nodes M’ allowable in CF-tree influences the

performance of BIRCH in terms of the number of tree rebuilding, final threshold value,

and also total computing time. Table 6-3 summarizes the performance of both CPU and

hybrid BIRCH algorithms at varying M’, in the range of [2500, 150000]. More stable

performance is achieved by the hybrid BIRCH method, by having gradually increasing

computing time, final number of clusters, and final threshold value, as M’ increases. On

the contrary, CPU BIRCH performance is rather unpredictable, especially for the total

computing time and final number of clusters. Both methods show comparable final

threshold values and achieve perfect clustering accuracy (i.e. JC=1). Note that the

experimental results reported in Table 6-3 are based on dimensionality of 1792, and

thread configurations determined from Table 6-2.

Table 6-3: Effect of maximum number of nodes on CPU and hybrid BIRCH algorithms.

The delay-split feature in CPU BIRCH algorithm has similar function to the

batch processing feature in hybrid approach; that is to allow peeking into future

samples. Hence, they are examined jointly for comparison purpose. The experimental

results presented in Table 6-4 have once again validated the stable performance of GPU-

based approach. As the batch size increases, steady increasing trends are observed for

final number of clusters obtained by GPU approach. Larger batch size provides farther

176

view into the future samples, which promises for better arrangement of nodes in the CF-

tree, thus offering finer clusters with smaller T. On the other hand, the effect of delay-

split size is less predictable, in CPU approach. The final number of clusters obtained

from CPU-BIRCH is much smaller than those obtained from the hybrid approach, and

this could be a problem for further data analysis which may require certain volume of

samples. Both methods show comparable final threshold values and achieve perfect

clustering accuracy (i.e. JC=1), in all the experiments shown in Table 6-4. Note that the

experimental results reported in Table 6-4 are based on dimensionality of 1792, optimal

thread configurations obtained previously, and M’=15000.

Table 6-4: Effect of delay-split size (or batch size) on CPU-BIRCH (or hybrid BIRCH)

algorithm.

In this work, the last parameter to be evaluated is data dimensionality. As has

been mentioned early, the CUDA kernels are designed for addressing large dimensional

problems, which is achieved by mapping CUDA threads to different variables (or

elements) of a sample (or CF-vector). It can be seen from Table 6-5 that the computing

time consumed by hybrid method generally increases as dimensionality decreases. This

can be explained by the fact that the number of samples becomes larger at lower

dimension, so as to make up for the total 10 GB data size, according to Equation (6-2).

Although there is no obvious trend observed from the CPU approach, the computing

177

time is generally getting larger as dimensionality increases. It can be attributed to the

repeated access of the same sample and tree nodes, for instance, the same sample is

accessed during searching, merging or splitting, and parent node updating, and some

nodes in the CF-tree may be accessed more than one time for searching and updating.

As sequential method iterate through every dimension, increasing in dimensionality has

dominant effect. Furthermore, the number of cluster nodes obtained from CPU-BIRCH

tends to be lesser, particularly at dimension 256, 512, 768, and 1280. A possible reason

for the unstable performance of CPU-BIRCH is that it is more sensitive to the sequence

of data order. The exceptionally high threshold value at dimension 256 could be due to

the same reason.

The proposed hybrid BIRCH algorithm outperforms the sequential counterpart

by providing finer cluster nodes, enhanced computational efficiency with speedups

range from 1.75 to 30.81, and comparable clustering accuracy where both methods

achieve JC=1. Although at low dimension of 32, the GPU-based BIRCH is slower than the

sequential method, satisfactory accuracy is still obtained. Note that the experimental

results reported in Table 6-5 are based on batch size (or delay-split size) of 4800,

M’=15000, and optimal thread configurations obtained previously; except that smaller

block sizes containing 64 threads are used for low dimensions of 32 and 64.

178

Table 6-5: Performance of the CPU and hybrid BIRCH algorithms at various

dimensionalities.

6.3.1.2. Online BIRCH

The synthetic dataset which is used for assessing online monitoring

performance of BIRCH is characterized by high dimensionality of 2048 and 4 process

states (or clusters); 2.4GB data is generated for each cluster. Based on data window size

of 0.5GB, the entire 9.6GB data is distributed into 18 data windows with some windows

contain data belonging to the same cluster while others consists of data mixture, as

summarized in Table 6-6. A simulated gradual change is effected on the first cluster

whereby the initial half of the 2.4GB data is collected from normal operating condition,

while the later half demonstrates a slow change in the first dimension. The shifted

179

process data is seen starting in the middle of second window till fifth window. A

stepwise increment of 0.05% with 5000 samples size is used.

Table 6-6: True cluster membership of synthetic data in online data windows.

We examine the performance of BIRCH in detecting gradual change based on

the dissimilarity measurements obtained from the 18 data windows, as plotted in Figure

6-12, for both the CPU and hybrid BIRCH approach. It can be seen from the region

marked by 2 vertical green lines that both the sequential and hybrid BIRCH approaches

successfully reflect the process change by showing increasing trends of dissimilarity

values. However, significant dissimilarity values are also seen in data windows outside

the gradual change range. For data window number 2 and 11, the high dissimilarity

values detected by the CPU-BIRCH are caused by the abnormally small number of

cluster nodes resulted from CF-tree, as given in Table 6-7; where there are only 2 and 3

cluster nodes obtained, respectively. In this case, the data is over-compressed and

resulting in information lost. On the other hand, at data window number 9, both

180

approaches show a sudden jump in dissimilarity value at the start of cluster ID 3.

Investigation of the raw data reveals that this particular window contains an extremely

skewed data distribution by having 0.01% (or 7 out of 55339) data belonging to cluster

ID 3, while the remaining pertaining to cluster ID 2. Given these 7 data points are found

slightly far from the center of cluster ID 3 detected offline, the dissimilarity value

computed from them is not representative of the real process behavior.

Apart from the one-off deficiency at data window ID 9, GPU-based BIRCH show

better performance than the sequential as it achieves more stable and unnoticeable

dissimilarity values at data windows corresponding to normal operation, provides finer

cluster nodes, and also attains enormously enhanced computational speedups ranging

from 6.17 to 31.58. The superior performance is attributed to the algorithmic design of

GPU-based BIRCH, wherein it is allowed to peek into a batch of data at each time. By

having a wider view of the incoming data, the algorithm is able to generate a tighter and

well-organized CF-tree. Though the delay-split feature in CPU-based BIRCH provides a

similar functionality, once the delay-split array is fully-occupied, there will be no more

viewing into future data.

181

Figure 6-12: Dissimilarity values computed from the 18 synthetic data windows, for both

CPU and hybrid BIRCH online application.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9
x 10

-3

data window #

d
is

si
m

ila
ri

ty
,

d

GPU cluster#1

CPU cluster#1

GPU cluster#2

CPU cluster#2

GPU cluster#3

CPU cluster#3

GPU cluster#4

CPU cluster#4

gradual change range

182

Table 6-7: Online performance of the CPU and hybrid BIRCH algorithms in 18 synthetic

data windows.

6.3.2. Application to simulated oil and gas production process

183

A Kongsberg simulator of oil and gas offshore production process is employed

in this work. Kongsberg has received credibility for distributing process simulators and

real-time systems for oil and gas fields. An important reason for choosing the Kongsberg

simulator is that it represents an adequately complex and realistic system. Essentially,

oil, water and gas travel from the reservoir to the surface through the oil wells, under

their own pressure or with the help of water or produced gas re-injection. At the

surface, production from the well is routed to a separation system from which it is

segregated into 3 basic components, i.e. oil, gas and water. As presented in Figure 6-13,

the separation system comprises several key subsystems, which include oil separation,

gas compression, gas dehydration, and gas reinjection sub-systems.

These key sub-systems are discussed briefly in the following. The well

production is firstly sent to a conventional three-stage process, at a sequentially

reduced pressure in each stage, namely High Pressure Separator, Medium Pressure

Separator, and Low Pressure Separator. Produced water is separated at the H.P.

separator while final dewatering of crude oil is carried out at a Coalescer. Crude

generated from H.P. separator is further refined at M.P. and L.P. separators to meet

certain specification, before it is collected at the oil storage tanks. The test separator is

available to allow individual wells to be examined. Produced water which is released

from H.P. separator is cleaned and degassed to required levels prior to discharging to a

disposal well. In Kongsberg oil and gas simulator, a single gas processing train is

employed in which gas collected from the oil separation system is compressed and

dehydrated prior to injection or export into gas pipeline. The process model uses a two-

stage compression system, where each stage consists of a cooler, a scrubber and a

compressor. Based on the outlet pressure of the scrubber, oil output from the scrubber

is sent back to either H.P. or L.P. separator. Gas at increased pressure is then sent to the

184

gas dehydration system whereby further water removal is achieved on a glycol

contactor unit accompanying with cooler and scrubbers. The refined gas goes through

another compressor prior to entering the gas export pipeline or gas re-injection system

where further compression is required.

There is a total of 1701 process variables comprising of various measurements

(e.g. temperature, pressure, flow, level), and opening positions for various valve types

(e.g. choke valve, flow wing valve, bypass valve, gate valve, isolation valve). In this work,

process data of all 1701 variables is collected at the rate of 3 milliseconds, using

Microsoft Excel. In view of real-world gradual change detection applications, it would be

much more practical to make use of existing process data instead of collecting a

separate dataset. In general, fast data generation speed is required especially for the

purpose of process control and monitoring, data rate of 3 milliseconds is thus assumed

here.

185

Figure 6-13: Plant overview of Kongsberg simulator for oil and gas production process

11
.

A case study simulating 7 normal process states is employed, in which the

process states are associated to different combinations of oil wells, as summarized in

Figure 6-14. The overview of Kongsberg wells system is given in Figure 6-15. There are

approximately 70,000 samples collected for each process state. As we are interested in

extremely large data size, the sample size is doubled to 140,000 (or 1GB) by adding

white noise at signal to noise ratio of 70. Once the normal operation data has been

collected for the 7 process states, the opening of the choke valve positioned at the

outlet of well 11 is intentionally reduced to simulate a fouling and clogging scenario in

process state E. Note that choke valve is a kind of control valve which generally used in

oil and gas production wells for controlling the flow of well fluids. The reduction of valve

opening is carried at the rate of 5% for each 10,000 samples until it reaches 0%. As the

original opening under normal operation is 50%, there are additional 100,000 samples

11
 Courtesy: (Kongsberg)

186

collected for cluster E. Again, the simulated data is quadruplicated through adding

noise. As a result, there are a total of 400,000 samples (or 3.2GB) representing a slow

change in the oil and gas production process. In GPU-based BIRCH, all the data is

concatenated with 27 columns of zeros (i.e. padding) in order to increase dimensionality

from 1701 to 1728, as the latter is divisible by 32 for optimal performance. All the

experiments are performed using 4800 batch size (or delay-split size), 150000 M’, and

optimal thread configurations identified previously.

Figure 6-14: Well opening combinations associated with the 7 normal process states,

using Kongsberg simulator.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

C 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

D 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

E 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

G 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

total number of opened wells = 6

total number of opened wells = 8

well # (0 means close; 1 means open)
Process state ID

187

Figure 6-15: Overview of the well system in the Kongsberg simulator

12
.

First of all, we look at the offline performance of BIRCH in generating cluster

seeds and data models for the 7 normal process states. Given data window size of 0.5GB

and 0.1% of total samples is separated out as testing samples, the 7 GB normal

operating data is partitioned into 14 windows. The GPU-based BIRCH improves the

computational efficiency of the sequential method by 10.06 times, as shown in Table

6-8. Furthermore, comparable clustering quality of JC=1 is also achieved by the hybrid

approach.

The 7 cluster models obtained offline are then used for determining

dissimilarity values during online monitoring. Note that the shifted data is divided into 5

windows with each consists of 0.64GB data. It can be seen from Figure 6-16 that both

the sequential and hybrid methods successfully detect the gradual fouling effect of the

12
 Courtesy: (Kongsberg)

188

choke valve, by showing increasing dissimilarity values across the 5 data windows.

Moreover, GPU-based method also demonstrates computational speedups ranging from

3.88 to 11.31. The achieved acceleration prevents data backlog and ensures timely

feedback of anomaly. Although the threshold value obtained by GPU-BIRCH at the

second window is slightly high, the amount of cluster nodes is still sufficiently large to

serve as representative summary of the raw data.

Table 6-8: Offline performance of the CPU and hybrid BIRCH algorithms, based on

Kongsberg simulation data.

Figure 6-16: Dissimilarity values obtained from the CPU and GPU-based approaches,

based on Kongsberg simulation data.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

data window #

d
is

si
m

ila
ri

ty
,

d

GPU cluster E

CPU cluster E

189

Table 6-9: Online performance of the CPU and hybrid BIRCH algorithms, based on

Kongsberg simulation data.

6.4. Summary

In modern chemical plants, effective online process monitoring requires

handling of high dimensional data stream in an efficient manner. Although BIRCH is an

effective clustering algorithm which is scalable to extremely large data, its

computational speed is still unsuitably slow for online application. In this work, we

propose a BIRCH-based online monitoring scheme, where the key function of BIRCH is to

provide representative data summaries (in terms of micro clusters) for each data

window. The summaries can then be further compressed into data models which can be

used for detecting slow process change. We develop a GPU-based BIRCH algorithm,

whereby the 2-level parallelization is essentially achieved by mapping CUDA blocks to

samples or nodes, and mapping CUDA threads to dimensions. In order to overcome the

limited parallelism of tree structure as well as to better utilize GPU resources, we

incorporate several supporting features like global node pointers, memory pre-

allocation, sorting, compacting, scanning, and batch processing of data.

The GPU-based BIRCH is evaluated using both synthetic and simulation data,

where the original sequential method serves as the performance basis. Experimental

190

results show that GPU-based method provides more stable performance, in terms of the

number of clusters and dissimilarity values (during online test). Note that stable

dissimilarity values are crucial to prevent confusion or false alarm during process

monitoring. Moreover, the hybrid BIRCH approach achieves satisfactory computational

speedup at various parameter values e.g. total number of tree nodes, dimensionality,

batch size; the maximum speedups achieved are 31.58. The only exception is seen at

low dimension of 32. It has also been observed that the hybrid BIRCH method is

exceptionally efficient when dealing well-separated clusters, as in the case of synthetic

data. This could be explained by the fact that there is higher number of CF-tree

rebuilding required when data is noisy and over-lapping.

191

Chapter 7. Conclusions and Future Work

7.1. Conclusions

Data mining is a computational tool used for extracting useful information

from massive amounts of process data. The mined information which can be in the

forms of models, patterns, or rules provide insights into the process, and enables

accurate prediction about the process state, or detect anomaly. These offer

opportunities for effective planning, process operations, process monitoring and control

among others. However, conventional data mining algorithms which ignore the slow

changes of real-world processes fail to sustain optimal performance. Real-time data

mining seeks to overcome this obstacle through extracting timely, up-to-date

information, continuously. As many data mining algorithms are computationally

unsuitable for this task, real-time data mining applications remain challenging,

particularly when the data involved is of high dimension, large size, and containing

transients. GPU parallel computing technology offers enormous computing power at

low cost and low power consumption and provides a promising and practical solution to

real-time data mining problems. This thesis has sought to develop efficient GPU-based

data mining algorithms for real-time applications. In particular NVIDIA’s CUDA-enabled

GPU was employed. We focused on three important chemical process applications,

continuous optimization, real-time image analysis and data stream clustering.

First, we proposed a systematic procedure for developing efficient GPU-based

Simulation-Optimization, Sim-Opt algorithms. A comprehensive structural analysis of

Sim-Opt problems was presented, in which various types of data parallelism for

different choice of techniques were revealed. Implementation of the proposed

procedure was illustrated on a variable selection monitoring problem, where GA and

192

PCA were used as the optimization and simulation tool as proposed in the original work

(Ghosh, 2014). For optimal efficiency, 5 CUDA kernels were constructed for executing

the tasks of PCA modeling, objective evaluation, and non-dominated sorting. Major data

parallelisms exploited in these CUDA kernels include concurrent handling of candidate

solutions in GA, and simultaneous operations on training and testing samples. The

excellent efficiency enhancement, up to 102 speedups, achieved by the proposed CPU-

GPUGA-PCA algorithm was demonstrated through the benchmark Tennessee Eastman

Challenge. A major limitation of the proposed framework is that GPU codes of many

popular chemical process simulators such as Simulink, Aspen HYSYS, PROSIM, gPROMS

are still not available both commercially and non-commercially. As the process units and

components used in these simulators are usually a black box to the users, it is extremely

difficult and tedious to construct the GPU counterpart. Therefore it might not be directly

useful to the industry practitioners who rely heavily on those handy simulators on daily

operations.

Second, a real-time multivariate image analysis solution was presented for

particle size estimation, using GPU computing. Besides using the pixel-level

parallelization which is a common strategy of standard GPU-based image processing

techniques, our main contributions in this work included combining multiple feature

extractors in single CUDA kernel to avoid unnecessary memory access, and exploring the

use of GPU computing for multi-way PCA. Desirable real-time performance of the

proposed GPU-based algorithm was demonstrated in a batch crystallization process, in

which total computing time was reduced from 0.77 to 0.09 seconds per image; that is

equivalent to 8.74 speedups. The proposed algorithm assumes that the images are

stored in the host main memory and required to be moved to GPU memory for GPU

processing. Since GPU is a graphics card and it should be able to directly read images

193

without going through the host memory, an improved version of GPU-MIA algorithm

which is more computationally efficient can be obtained by incorporating such feature.

Third, a GPU-based online process monitoring scheme was proposed, wherein

a scalable clustering algorithm called BIRCH was used to provide fine and accurate data

summaries for effective model construction. In the proposed scheme, BIRCH algorithm

was ported to GPU so that it can deal with high dimensional and fast-arriving online

process data efficiently. The massive computing power of GPU was exploited primarily

by processing data in batches, and treating tree nodes at the same level concurrently.

Moreover, several supporting features like global node pointers, memory pre-allocation,

sorting, compacting, and scanning of tree nodes, are proposed to overcome the

limitation of tree structure in regards to data parallelism. Extensive testing of the

proposed GPU-based approach using both synthetic and simulation data clearly showed

its ability to provide stable, accurate and timely process monitoring performance.

Furthermore, the proposed approach demonstrated much faster computational speed

than the conventional CPU-based BIRCH approach, with speedups of nearly 32x.

A major constraint of BIRCH in continuous monitoring application is that it

does not include the forgetting mechanism, thus it is sensitive to outlier. For that

reason, in the proposed approach a new model is built for each data window. However,

the selection of window size can be tricky. On the one hand, data window which is too

small is also sensitive to outlier; on the other hand, data window that is too big tends to

include outdated process information. Hence, an improvement of the proposed GPU-

BIRCH approach can be achieved by replacing the BIRCH algorithm with its derivative

clustering methods e.g. CluTree and CluStream. As it has been mentioned previously,

BIRCH is used in this work because it serves as the fundamental basis to many other

194

data stream clustering methods, and it is relatively simpler to implement as an initial

work in this field.

7.2. Future Work

In this section, some recommendations for future research extension are

presented.

7.2.1. GPU performance on double precision computation

Experimental results reported in this thesis are entirely based on single

precision (SP) computation for both CPU and GPU-based approaches. In chemical

process operations, data collected from the plant e.g. sensor measurement,

chromatogram, is usually noisy, thus SP computation is generally adequate. However,

there are also cases where precise data analysis is crucial for ensuring safety or

profitability. Process control applications in pharmaceutical plants is a classic example.

As double precision (DP) calculations are fully supported by modern GPUs like NVIDIA’s

Quadro 2000, its implementation at first sight would appear to be straightforward.

Existing GPU works which employ DP are mainly restricted to molecular and fluid

dynamic simulation (Baghapour et al., 2014; Scott Le Granda et al., 2013; Zaspel &

Griebel, 2013), in regards to chemical engineering applications. Since the data storage

requirement of DP data and computing power consumed by DP operations are

approximately double of their SP counterpart, it is necessary to perform thorough

investigation and devise optimal GPU strategies for DP applications.

7.2.2. Improvement of input data quality

The synthetic data or simulation data used for performance evaluation in

Chapter 4, Chapter 5, and Chapter 6 contain limited noise and few outliers, thus simple

data normalization is adequate. Although data generated from Kongsberg simulator

195

resembles closely to real-world process data, the data collection is done in a way that

only steady-state data is included. To thoroughly validate real-world applications of the

proposed approaches, comprehensive data cleaning and pre-processing is needed for

dealing with missing, noisy, and corrupted data. General data cleaning techniques have

been widely reported in literature, including (Andritsos et al., 2006; Jeffery et al., 2006;

Xiong et al., 2006; Žliobaite & Gabrys, 2014). Based on these studies, the development

of data cleaning techniques, which are suitable for large-scale data mining of chemical

process operations, can be explored in the future.

7.2.3. Integration with efficient data management system

In this thesis, efficiency performance evaluation is established based on the

assumption that process data is always ready. However, from the point where data is

generated at sensor or analytical instrument until it arrives at the computing system

where data analysis is performed, it may take a time longer than the data analysis itself.

Hence, efficient data management is another important issue that needs to be

addressed in the future, in order to ensure timely capture of process information.

Essentially, it requires two key components - a fast data network and an efficient

database system. Considering the fast generation speed and large volume of plant data,

traditional database systems which are designed for handling static data are likely to be

unsuitable for the real-time data mining applications; more advanced database systems

like the data stream management system discussed in (Tu et al., 2013) should be

evaluated.

7.2.4. Multi-GPUs computing system

In this age of big data, the volume of data generated in modern chemical

industries is growing exponentially due to advances in sensor technology, analysis

196

technique and expansion of analysis scope from plant-wide to regionally or even

globally, the memory space in a standard GPU device can be easily exceeded. As long as

the data mining algorithm is not scalable, once data size exceeds the main memory

space of GPU, the data needs to be moved in and out of GPU. Memory transfer between

the host and GPU is extremely expensive, and it can severely deteriorate the

performance of GPU applications. In this case, multi-GPUs computing systems emerge

as an alternative solution to preserve efficiency. On the other hand, although scalable

algorithms such as BIRCH which is discussed in Chapter 6 are capable of handling

unlimited amount of data theoretically, they may fail to meet the real-time requirement

if data size is too large. Therefore, multi-GPUs computing system may eventually

become essential for future data mining applications. High-throughput omics data

processing is one of the potential applications as it involves enormously growing data

size. For instance, the Next Generation Sequencing technique can analyze up to billions

of base pair per run, and the upcoming Third Generation Sequencing technique is

aiming at further improvement of throughput.

197

Bibliography

AccelerEyes. (n.d.). ArrayFire. Retrieved 6 17, 2014, from Graphics:
http://www.accelereyes.com/arrayfire/c/page_gfx.htm

Adä, I. B. (2013). EVE: A framework for event detection. Evolving Systems, 4 (1), 61-70.

Adams, S. P. (2007). Finite difference time domain (FDTD) simulations using graphics
processors. Department of Defense - Proceedings of the HPCMP Users Group
Conference 2007; High Performance Computing Modernization Program: A Bridge
to Future Defense, DoD HPCMP UGC, art. no. 4438007, (pp. 334-338).

Aggarwal, C. H. (2005). On high dimensional projected clustering of data streams. Data
Mining and Knowledge Discovery, 10 (3), 251-273.

Agrawal, R. T. (2013). Support vector clustering-based direct coherency identification of
generators in a multi-machine power system. IET Generation, Transmission and
Distribution, 7 (12), 1357-1366.

Aji, A. S.-S. (2004). Partial least square modeling for the control of refining processes on
mid-distillates by near infrared spectroscopy. Oil and Gas Science and Technology,
59 (3), 303-321.

Akman, U. O. (2008). Hierarchical clustering analysis for the distribution of origanum-oil
components in dense CO2. Korean Journal of Chemical Engineering, 25 (2), 329-344.

Alon, U. B. (1999). Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of
the National Academy of Sciences of the United States of America, 96 (12), 6745-
6750.

Anderson, J. L. (2008). General purpose molecular dynamics simulations fully
implemented on graphics processing units. Journal of Computational Physics, 227
(10), 5342-5359.

Andrecut, M. (2009). Parallel GPU implementation of iterative PCA algorithms. Journal
of computational biology : a journal of computational molecular cell biology, 16 (11),
1593-1599.

Andritsos, P. F. (2006). Clean answers over dirty databases: A probabilistic approach.
Proceedings - International Conference on Data Engineering, 2006, art. no. 1617398,
(p. 30).

Arora, N. R. (2010). Fast sensitivity computations for trajectory optimization. Advances
in the Astronautical Sciences, 135, (pp. 545-560).

Asano, S. M. (2009). Performance comparison of FPGA, GPU and CPU in image
processing. FPL 09: 19th International Conference on Field Programmable Logic and
Applications, art. no. 5272532, (pp. 126-131).

Assenhaimer, C. M. (2014). Use of a spectroscopic sensor to monitor droplet size
distribution in emulsions using neural networks. Canadian Journal of Chemical
Engineering, 92 (2), 318-323.

Azadivar, F. (1999). Simulation optimization methodologies. Winter Simulation
Conference Proceedings, 1, (pp. 93-100).

198

B. Flannery, W. P. (1992). Numerical Recipies in C. Cambridge University Press,
Cambridge UK, 2nd edition.

Babaei Pourkargar, D. A. (2010). Thermodynamic and transport properties estimation of
a complicated mixture of hydrocarbons by fuzzy clustering methods. 19th
International Congress of Chemical and Process Engineering, CHISA 2010 and 7th
European Congress of Chemical Engineering, ECCE-7.

Baghapour, B. E. (2014). A discontinuous Galerkin method with block cyclic reduction
solver for simulating compressible flows on GPUs. International Journal of Computer
Mathematics, Article in Press. .

Bai, H. O. (2009). MAX-MIN ant system on GPU with CUDA. 2009 4th International
Conference on Innovative Computing, Information and Control, ICICIC 2009, art. no.
5412455, (pp. 801-804).

Bai, H.-T. H.-L.-T.-S. (2009). K-means on commodity GPUs with CUDA. 2009 WRI World
Congress on Computer Science and Information Engineering, CSIE 2009, 3, art. no.
5170921, (pp. 651-655).

Bakshi, B. (1998). Multiscale PCA with application to multivariate statistical process
monitoring. AIChE Journal, 44 (7), 1596-1610.

Bezdek, J. H. (2004). Progressive sampling schemes for approximate clustering in very
large data sets. IEEE International Conference on Fuzzy Systems, 1, (pp. 15-21).

Bhat, N. M. (1990). Use of neural nets for dynamic modeling and control of chemical
process systems. Computers and Chemical Engineering, 573-582.

Biegler, L. C. (2002). Advances in simultaneous strategies for dynamic process
optimization. Chemical Engineering Science, 575-593.

Biegler, L. Z. (2009). Large-scale nonlinear programming using IPOPT: An integrating
framework for enterprise-wide dynamic optimization. Computers and Chemical
Engineering, 575-582.

Blood, P. D. (2004). A versatile flow visualisation technique for quantifying mixing in a
binary system: Application to continuous supercritical water hydrothermal synthesis
(SWHS). Chemical Engineering Science, 59 (14), 2853-2861.

Böhm, C. N. (2009). Density-based clustering using graphics processors. International
Conference on Information and Knowledge Management, Proceedings, (pp. 661-
670).

Bolz, J. F. (2003). Sparse matrix solvers on the GPU: Conjugate gradients and multigrid.
ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, (pp. 917-924).

Breschi, S. M. (2001). The geography of innovation and economic clustering: Some
introductory notes. Industrial and Corporate Change, 10 (4), 817-833.

Brunet R., G.-G. G.-C. (2012). Hybrid simulation-optimization based approach for the
optimal design of single-product biotechnological processes. Computers and
Chemical Engineering, 37, 125-135.

Brunet R., R.-L. J.-G. (2012). Combined simulation-optimization methodology for the
design of environmental conscious absorption systems. Computers and Chemical
Engineering, 46. Article in Press., 205-216.

199

Bunin, G. (2014). On the equivalence between the modifier-adaptation and trust-region
frameworks. Computers and Chemical Engineering, 71, 154-157.

Busciglio, A. V. (2009). Analysis of the bubbling behaviour of 2D gas solid fluidized beds.
Part II. Comparison between experiments and numerical simulations via Digital
Image Analysis Technique. Chemical Engineering Journal, 148 (1), 145-163.

Cano, A. Z. (2014). Speeding up multiple instance learning classification rules on GPUs.
Knowledge and Information Systems, . Article in Press. .

Cao, F. E. (2006). Density-based clustering over an evolving data stream with noise.
Proceedings of the Sixth SIAM International Conference on Data Mining, 2006, (pp.
328-339).

Cao, F. T. (2006). Scalable clustering using graphics processors. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 4016 LNCS, (pp. 372-384).

Castaño-Díez, D. M. (2008). Performance evaluation of image processing algorithms on
the GPU. Journal of Structural Biology, 164 (1), 153-160.

Catanzaro, B. S. (2008). Fast support vector machine training and classification on
graphics processors. Proceedings of the 25th International Conference on Machine
Learning, (pp. 104-111).

Chachuat, B. S. (2009). Adaptation strategies for real-time optimization. Computers and
Chemical Engineering, 1557-1567.

Charu C. Aggarwal, J. H. (2003). A framework for clustering evolving data streams. VLDB
'03: Proceedings of the 29th international conference on Very large data bases -
Volume 29 , Volume 29. VLDB Endowment.

Chen, C. D. (2007). Bayesian clustering algorithms ascertaining spatial population
structure: A new computer program and a comparison study. Molecular Ecology
Notes, 7 (5), 747-756.

Chen, C. M. (2012). A GPU-accelerated approximate algorithm for incremental learning
of Gaussian mixture model. Proceedings of the 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops, IPDPSW 2012, art. no. 6270399,
(pp. 1937-1943).

Chen, C. M. (2013). Towards a moderate-granularity incremental clustering algorithm
for GPU. Proceedings - 2013 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, CyberC 2013, art. no. 6685679, (pp. 194-201).

Chen, Y. M. (2012). Simulation-optimization approach to clinical trial supply chain
management with demand scenario forecast. Computers and Chemical Engineering,
40, 82-96.

Chiang, L. K. (2004). Fault diagnosis based on Fisher discriminant analysis and support
vector machines. Computers and Chemical Engineering, 28 (8), 1389-1401.

Choi, S. P.-B. (2004). Process monitoring using a Gaussian mixture model via principal
component analysis and discriminant analysis. Computers and Chemical
Engineering, 1377-1387.

200

Cicciotti, M. X.-B. (2014). Simultaneous Nonlinear Reconciliation and Update of
Parameters for Online Use of First-Principles Models: An Industrial Case-Study on
Compressors. Computer Aided Chemical Engineering, 33, 457-462.

Cireşan, D. M. (2011). Flexible, high performance convolutional neural networks for
image classification. IJCAI International Joint Conference on Artificial Intelligence,
(pp. 1237-1242).

Clifton, C. (2014). "data mining." Encyclopaedia Britannica. Encyclopaedia Britannica
Online. Retrieved 5 2, 2014, from Encyclopædia Britannica Inc.:
http://www.britannica.com/EBchecked/topic/1056150/data-mining

Colin Cameron, A. G. (2011). Robust inference with multiway clustering. Journal of
Business and Economic Statistics, 29 (2), pp. 238-249.

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic
Acids Research, 16 (22), 10881-10890.

Cui, J.-Y. P. (2011). Fully 3D list-mode time-of-flight PET image reconstruction on GPUs
using CUDA. Medical Physics, 38 (12), 6775-6786.

Cui, X. S. (2011). The GPU enhanced parallel computing for large scale data clustering.
Proceedings - 2011 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, CyberC 2011, art. no. 6079384, (pp. 220-225).

Darakis, E. K. (2010). Microparticle characterization using digital holography. Chemical
Engineering Science, 65 (2), 1037-1044.

David Kirk, W.-M. W. (2010). Programming Massively Parallel Processors. Springer
Verlag.

De Calderon Anda, J. W. (2005). Multi-scale segmentation image analysis for the in-
process monitoring of particle shape with batch crystallisers. Chemical Engineering
Science, 60 (4), 1053-1065.

De P. Veronese, L. K. (2009). Swarm's flight: Accelerating the particles using C-CUDA.
2009 IEEE Congress on Evolutionary Computation, CEC 2009, art. no. 4983358, (pp.
3264-3270).

Deb, K. P. (2002). A fast elitist multi-objective gentic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6 (2), 182-197.

Detroja, K. G. (2006). A possibilistic clustering approach to novel fault detection and
isolation. Journal of Process Control, 1055-1073.

Dhillon, I. S. (2000). A parallel data-clustering algorithm for distributed memory
multiprocessors. Large-Scale Parallel Data Mining, Lecture Notes in Artificial
Intelligence, Volume 1759 (pp. 245–260). New York: Springer-Verlag.

Doan, X.-T. S. (2005). Augmented dynamic PCA approach for online monitoring of multi-
phase batch processes. AIChE Annual Meeting, (pp. 6673-6695). Cincinnati.

Dong, J. W. (2013). Accelerating BIRCH for clustering large scale streaming data using
CUDA dynamic parallelism. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8206
LNCS, (pp. 409-416).

201

Dunia, R. Q. (1996). Identification of Faulty Sensors Using Principal Component Analysis.
AIChE Journal, 42 (10), 2797-2811.

Eden, M. J.-H. (2004). A novel framework for simultaneous separation process and
product design. Chemical Engineering and Processing: Process Intensification, 43 (5),
595-608.

Edgar, R. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26 (19), art. no. btq461, 2460-2461.

Eggers, J. K. (2008). Measurement of size and shape distributions of particles through
image analysis. Chemical Engineering Science, 63 (22), 5513-5521.

Eisen, M. S. (1998). Cluster analysis and display of genome-wide expression patterns.
Proceedings of the National Academy of Sciences of the United States of America,
95 (25), 14863-14868.

F. Farnstrom, J. L. (2000). True Scalability for Clustering Algorithms. SIGKDD
Explorations.

Facco, P. B. (2009). Monitoring roughness and edge shape on semiconductors through
multiresolution and multivariate image analysis. AIChE Journal, 55 (5), 1147-1160.

Fan, T. Z. (2013). A wireless electric field sensor based on a langasite resonator. Joint
European Frequency and Time Forum and International Frequency Control
Symposium (pp. 458-461). Prague: IEEE.

Fan, W. W. (2008). A framework for flexible clustering of multiple evolving data streams.
International Journal of Advanced Intelligence Paradigms, 1 (2), 178-195.

Farber, R. (2011). CUDA Application Design and Development. Elsevier.

Farivar, R. R. (2008). A parallel implementation of K-means clustering on GPUs.
Proceedings of the 2008 International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA 2008, (pp. 340-345).

Fayyad, U. P.-S. (1996). From data mining to knowledge discovery in databases. AI
Magazine, 37-53.

Feng, Z. Z. (2007). A parallel hierarchical clustering algorithm for PCs cluster system.
Neurocomputing, 70 (4-6), 809-818.

Fialka, O. Č. (2006). FFT and convolution performance in image filtering on GPU.
Proceedings of the International Conference on Information Visualisation, art. no.
1648322, (pp. 609-614).

Fok, K.-L. W.-T.-L. (2007). Evolutionary computing on consumer graphics hardware. IEEE
Intelligent Systems, 69-78.

Fujimoto, R. M. (1989). Parallel discrete event simulation. Winter Simulation Conference
Proceedings, (pp. 19-28).

Fujimoto, R. M. (1990). Optimistic approaches to parallel discrete event simulation.
Transactions of the Society for Computer Simulation, 7 (2), 153-191.

Funatsu, N. K. (2010). Fast parallel processing using GPU in computing L1-PCA bases.
IEEE Region 10 Annual International Conference, Proceedings/TENCON, art. no.
5686614, (pp. 2087-2090).

202

Fung, J. M. (2008). Using graphics devices in reverse: GPU-based Image Processing and
Computer Vision. 2008 IEEE International Conference on Multimedia and Expo,
ICME 2008 - Proceedings, art. no. 4607358, (pp. 9-12).

Gaber, M. Z. (2005). Mining data streams: A review. SIGMOD Record, (pp. 18 - 26).

Gama, J. (2012). A survey on learning from data streams: current and future trends.
Progress in Artificial Intelligence, 45-55.

Garcia, V. D. (2008). Fast k nearest neighbor search using GPU. 2008 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR
Workshops, art. no. 4563100.

Garcia, V. D. (2010). K-nearest neighbor search: Fast GPU-based implementations and
application to high-dimensional feature matching. Proceedings - International
Conference on Image Processing, ICIP, art. no. 5654017, (pp. 3757-3760).

Garg, A. M. (2006). PBIRCH: A scalable parallel clustering algorithm for incremental data.
Proceedings of the International Database Engineering and Applications Symposium,
IDEAS, art. no. 4041640, (pp. 315-316).

Ge, Z. Y. (2009). Improved kernel PCA-based monitoring approach for nonlinear
processes. Chemical Engineering Science, 64 (9), 2245-2255.

Geng, Z. Z. (2005). Multiscale Nonlinear Principal Component Analysis (NLPCA) and its
application for chemical process monitoring. Industrial and Engineering Chemistry
Research, 44 (10), 3585-3593.

Ghosh, K. R. (2014). Optimal variable selection for effective statistical process
monitoring. Computers and Chemical Engineering, 60, 260-276 .

Goil, S. C. (1997). High performance OLAP and data mining on parallel computers. Data
Mining and Knowledge Discovery, 391-417.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. Madison Wesley.

Golshan, M. B. (2005). A new approach to real time optimization of the Tennessee
Eastman challenge problem. Chemical Engineering Journal, 33-44.

Gonzaga, J. M. (2009). ANN-based soft-sensor for real-time process monitoring and
control of an industrial polymerization process. Computers and Chemical
Engineering, 43-49.

Grabmeier, J. R. (2002). Techniques of cluster algorithms in data mining. Data Mining
and Knowledge Discovery, 6 (4), 303-360.

Grahn, H. L. (2011). CudaRF: A CUDA-based implementation of random forests.
Proceedings of IEEE/ACS International Conference on Computer Systems and
Applications, AICCSA, art. no. 6126612, (pp. 95-101).

Gu, X. P. (2010). Implementation and evaluation of various demons deformable image
registration algorithms on a GPU. Physics in Medicine and Biology, 55 (1), 207-219.

Gupta, A. M. (2003). Managing demand uncertainty in supply chain planning. Computers
and Chemical Engineering, 1219-1227.

203

Halim, I. S. (2011). A knowledge-based simulation-optimization framework and system
for sustainable process operations. Computers and Chemical Engineering, 35 (1), 92-
105.

Han, E.-H. K. (2000). Scalable parallel data mining for association rules. IEEE Transactions
on Knowledge and Data Engineering, 337-352.

Haque, I. P. (2010). SIML: A fast SIMD algorithm for calculating LINGO chemical
similarities on GPUs and CPUs. Journal of Chemical Information and Modeling, 50
(4), 560-564.

He, Q. Q. (2005). A new fault diagnosis method using fault directions in Fisher
discriminant analysis. AIChE Journal, 51 (2), 555-571.

Heng, Y. G. (2005). GPU-based volume rendering for medical image visualization. Annual
International Conference of the IEEE Engineering in Medicine and Biology -
Proceedings, 7 VOLS, art. no. 1615635, (pp. 5145-5148).

Henson, M. (1998). Nonlinear model predictive control: Current status and future
directions. Computers and Chemical Engineering, 187-202.

Hore, P. H. (2007). Single pass fuzzy c means. IEEE International Conference on Fuzzy
Systems, art. no. 4295372.

Hwu, W.-m. W. (2012). GPU Computing Gems, Volume 2. Elsevier.

Jason Sanders, E. K. (2010). CUDA by Example: An Introduction to General-Purpose GPU
Programming. Ann Arbor: Edwards Brothers.

Jeffery, S. A. (2006). A pipelined framework for online cleaning of sensor data streams.
Proceedings - International Conference on Data Engineering, 2006, art. no. 1617508,
(p. 140).

Jošth, R. A.-K. (2012). Real-time PCA calculation for spectral imaging (using SIMD and
GP-GPU). Journal of Real-Time Image Processing, 7 (2), 95-103.

Juang, C.-F. C.-C.-Y. (2011). Speedup of implementing fuzzy neural networks with high-
dimensional inputs through parallel processing on graphic processing units. IEEE
Transactions on Fuzzy Systems, 19 (4), art. no. 5744114, 717-728.

Kantzas, A. K. (1996). Monitoring the fluidization characteristics of polyolefin resins
using x-ray Computer Assisted Tomography scanning. Chemical Engineering Science,
51 (10), 1979-1990.

Karuppiah, R. G. (2006). Global optimization for the synthesis of integrated water
systems in chemical processes. Computers and Chemical Engineering, 650-673.

Kaur, S. K. (2012). Scalable clustering using PACT programming model. Proceedings -
12th IEEE International Conference on Data Mining Workshops, ICDMW 2012, art.
no. 6406471, (pp. 424-430).

Kempkes, M. V. (2010). Measurement of 3D particle size distributions by stereoscopic
imaging. Chemical Engineering Science, 65 (4), 1362-1373.

Khalil, A. P.-M.-P. (2010). Study of droplet size distribution during an emulsification
process using in situ video probe coupled with an automatic image analysis.
Chemical Engineering Journal, 165 (3), 946-957.

204

Khamene, A. B. (2006). Automatic registration of portal images and volumetric CT for
patient positioning in radiation therapy. Medical Image Analysis, 10 (1), 96-112.

Kongsberg. (n.d.). Kongsberg Martime. Retrieved 6 3, 2014, from
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/B2F29B3742D7529
7C1257315003C3F6F?OpenDocument

Kostopoulos, S. G. (2014). A pattern recognition system for prostate mass spectra
discrimination based on the CUDA parallel programming model. Journal of Physics:
Conference Series, 490 (1), art. no. 012144.

Kranen, P. A. (2008). Self-adaptive anytime stream clustering. Proceedings - IEEE
International Conference on Data Mining, ICDM, art. no. 5360250, (pp. 249-258).

Kresta, J. V. (1991). Multivariate statistical monitoring of process operating
performance. Canadian Journal of Chemical Engineering, 69 (1), 35-47.

Krüger, J. W. (2003). Linear algebra operators for GPU implementation of numerical
algorithms. ACM Transactions on Graphics, 22 (3), (pp. 908-916).

Ku, W. S. (1995). Disturbance detection and isolation by dynamic principal component
analysis. Chemometrics and Intelligent Laboratory Systems (pp. 179-196). Elsevier.

Laguna-Sánchez, G. O.-C.-C.-F.-C. (2009). Comparative study of parallel variants for a
Particle Swarm Optimization algorithm implemented on a multithreading GPU.
Journal of Applied Research and Technology, 7 (3), 292-309.

Langdon, W. H. (2008). GP on SPMD parallel graphics hardware for mega bioinformatics
data mining. Soft Computing, 12 (12), pp. 1169-1183.

Larsen, P. M. (2009). The potential of current high-resolution imaging-based particle size
distribution measurements for crystallization monitoring. AIChE Journal, 55 (4), 896-
905.

Larsen, P. R. (2006). An algorithm for analyzing noisy, in situ images of high-aspect-ratio
crystals to monitor particle size distribution. Chemical Engineering Science, 61 (16),
5236-5248.

Larsen, P. R. (2007). Model-based object recognition to measure crystal size and shape
distributions from in situ video images. Chemical Engineering Science, 62 (5), 1430-
1441.

Lee, J. M. (2003). On-line batch process monitoring using a consecutively updated
multiway principal component analysis model. Computers and Chemical
Engineering, 1903-1912.

Lee, J. Y. (2004). Nonlinear process monitoring using kernel principal component
analysis. Chemical Engineering Science, 223-234.

Leischner, N. O. (2010). GPU sample sort. Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, IPDPS , (p. art. no. 5470444).

Li, H. Y. (2012). Parallel based on cloud computing to achieve large data sets clustering.
Proceedings - 2012 International Conference on Computer Science and Electronics
Engineering, ICCSEE 2012, 1, art. no. 6187874, (pp. 411-415).

205

Li, J.-M. W.-J.-S.-X. (2007). An efficient fine-grained parallel genetic algorithm based on
GPU-accelerated. Proceedings - 2007 IFIP International Conference on Network and
Parallel Computing Workshops, NPC 2007, art. no. 4351594, (pp. 855-862).

Li, L. W. (1999). Three-dimensional image analysis of mixing in stirred vessels. AIChE
Journal, 45 (9), 1855-1865.

Li, L. X. (2011). Research on clustering algorithm and its parallelization strategy.
Proceedings - 2011 International Conference on Computational and Information
Sciences, ICCIS 2011, art. no. 6086201, (pp. 325-328).

Li, S. W. (2009). Study on the data preprocessing of the questionnaire based on the
combined classification data mining model. International Conference on E-learning,
E-Business, Enterprise Information Systems, and E-Government, (pp. 217-220).

Li, W. G. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein
or nucleotide sequences. Bioinformatics, 22 (13), 1658-1659.

Li, Y. Z. (2010). Speeding up k-Means algorithm by GPUs. Proceedings - 10th IEEE
International Conference on Computer and Information Technology, CIT-2010, 7th
IEEE International Conference on Embedded Software and Systems, ICESS-2010,
ScalCom-2010, art. no. 5578441, (pp. 115-122).

Liang, S. L. (2009). A CUDA-based parallel implementation of K-nearest neighbor
algorithm. CyberC 2009 - International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, 291-296.

Liao, Q. W. (2009). GPU accelerated Support Vector machines for mining high-
throughput screening data. Journal of Chemical Information and Modeling, 2718-
2725.

Lim, C. G. (2007). Bubble distribution and behaviour in bubbling fluidised beds. Chemical
Engineering Science, 62 (1-2), 56-69.

Liu, F. H.-C.-H.-H. (2009). Efficient depth peeling via bucket sort. Proceedings of the HPG
2009: Conference on High-Performance Graphics 2009, (pp. 51-58).

Liu, G.-Q. L.-Q.-L. (2008). Experimental studies of particle flow dynamics in a two-
dimensional spouted bed. Chemical Engineering Science, 63 (4), 1131-1141.

Liu, P. A. (2011). Accelerating chemical database searching using graphics processing
units. Journal of Chemical Information and Modeling, 51 (8), 1807-1816.

Liu, W. S.-W. (2007). Streaming algorithms for biological sequence alignment on GPUs.
IEEE Transactions on Parallel and Distributed Systems, 18 (9), 1270-1281.

Liu, Y. P.-K. (2004). Performance evaluation and characterization of scalable data mining
algorithms. IASTED International Conference on Parallel and Distributed Computing
and Systems, (pp. 620-625).

Liu, Y.-Q. L.-H.-H. (2006). Real-time 3D fluid simulation on GPU with complex obstacles.
Ruan Jian Xue Bao/Journal of Software, 17 (3), 568-576.

Loop, C. B. (2006). Real-time GPU rendering of piecewise algebraic surfaces. ACM
SIGGRAPH 2006 Papers, SIGGRAPH '06, (pp. 664-670).

M. P. Ekstrom, E. (1984). Digital Image Processing Techniques. Orlando, FL.: Academic
Press.

206

Ma, C. W.-Q. (2011). GPU accelerated chemical similarity calculation for compound
library comparison. Journal of Chemical Information and Modeling, 51 (7), 1521-
1527.

Ma, W. A. (2009). A translation system for enabling data mining applications on GPUs.
Proceedings of the International Conference on Supercomputing, art. no. 1542331,
(pp. 400-409).

MacGregor, J. F. (1994). Process monitoring and diagnosis by multiblock PLS methods.
AIChE Journal, 40 (5), 826-838.

Machlica, L. V. (2011). Fast estimation of gaussian mixture model parameters on GPU
using CUDA. Parallel and Distributed Computing, Applications and Technologies,
PDCAT Proceedings, art. no. 6118944, (pp. 167-172).

Mahmood, A. S. (2013). Data mining techniques for wireless sensor networks: A survey.
International Journal of Distributed Sensor Networks, 2013, art. no. 406316.

Malmberg, A. M. (2002). The elusive concept of localization economies: Towards a
knowledge-based theory of spatial clustering. Environment and Planning A, 34 (3),
429-449.

Manssen, M. W. (2012). Random number generators for massively parallel simulations
on GPU. European Physical Journal: Special Topics, 210 (1), 53-71.

Mariscal, G. M. (2010). A survey of data mining and knowledge discovery process
models and methodologies. Knowledge Engineering Review, 137-166.

Martínez-Zarzuela, M. D.-P.-R.-H.-O.-G.-G. (2011). Multi-scale neural texture
classification using the GPU as a stream processing engine. Machine Vision and
Applications, 22 (6), 947-966.

Melab, N. C.-G. (2006). Grid computing for parallel bioinspired algorithms. Journal of
Parallel and Distributed Computing, 1052-1061.

Mele, F. G. (2006). A simulation-based optimization framework for parameter
optimization of supply-chain networks. Industrial and Engineering Chemistry
Research, 45 (9), 3133-3148.

Méndez, C. C. (2003). Dynamic scheduling in multiproduct batch plants. Computers and
Chemical Engineering, 27, (pp. 8-9).

Méndez, C. C. (2006). State-of-the-art review of optimization methods for short-term
scheduling of batch processes. Computers and Chemical Engineering, 913-946.

Mhamdi, F. E. (2008). A new survey on knowledge discovery and data mining .
Proceedings of the 2nd International Conference on Research Challenges in
Information Science, RCIS 2008, art. no. 4632134, 427-432.

Misra, J. (1986). Distributed discrete-event simulation. ACM Computing Surveys (CSUR)
Volume 18 Issue 1, 39-65.

Monnier, O. F. (1997). Model identification of batch cooling crystallizations through
calorimetry and image analysis. Chemical Engineering Science, 52 (7), 1125-1139.

Moreland, K. A. (2003). GPU, The FFT on a., (pp. 112-119).

207

Mukhopadhyay, A. M. (2014). Survey of multiobjective evolutionary algorithms for data
mining: Part II. IEEE Transactions on Evolutionary Computation, 18 (1), art. no.
6658840, 25-35.

Mussi, L. D. (2011). Evaluation of parallel particle swarm optimization algorithms within
the CUDA™ architecture. Information Sciences, 181 (20), 4642-4657.

Nahas, E. H. (1992). Nonlinear internal model control strategy for neural network
models. Computers and Chemical Engineering, 1039-1057.

Ng, W. L. (2013). Sustainable supply network design through optimisation with
clustering technique integration. Chemical Engineering Transactions, 35, 661-666.

Ng, Y. S. (2008). Multivariate temporal data analysis using self-organizing Maps. 1.
Training methodology for effective visualization of multistate operations. Industrial
and Engineering Chemistry Research, 47 (20), 7744-7757.

Ng, Y. S. (2008). Multivariate temporal data analysis using self-organizing Maps. 2.
Monitoring and diagnosis of multistate operations. Industrial and Engineering
Chemistry Research, 47 (20), 7758-7771.

Nikolopoulou, A. I. (2012). Hybrid simulation based optimization approach for supply
chain management. Computers and Chemical Engineering, Article in Press.

Nomikos, P. M. (1994). Monitoring batch processes using multiway principal component
analysis. AIChE Journal, 1361-1373.

Ntoutsi, I. Z.-P. (2012). Density-based projected clustering over high dimensional data
streams. Proceedings of the 12th SIAM International Conference on Data Mining,
SDM 2012, (pp. 987-998).

NVIDIA. (2012). NVIDIA CUDA C Programming Guide Version 4.2. NVIDIA.

NVIDIA. (n.d.). CUDA Toolkit 4.2 - archive. Retrieved 6 10, 2014, from
https://developer.nvidia.com/cuda-toolkit-42-archive

NVIDIA. (n.d.). CUDA TOOLKIT DOCUMENTATION. Retrieved 6 12, 2014, from CUDA
Toolkit v6.0 Profiler: http://docs.nvidia.com/cuda/profiler-users-
guide/#axzz34OMu5tj0

NVIDIA. (n.d.). GPU-ACCELERATED APPLICATIONS. Retrieved 6 7, 2014, from
http://www.nvidia.com/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf

NVIDIA. (n.d.). NVIDIA CUDA ZONE. Retrieved 6 17, 2014, from NVIDIA Performance
Primitives: https://developer.nvidia.com/NPP

NVIDIA. (n.d.). NVIDIA Nsight Visual Studio Edition. Retrieved 6 12, 2014, from
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition

NVIDIA. (n.d.). NVIDIA’s Fermi: The First Complete GPU Computing Architecture.
Retrieved 6 6, 2014, from
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_
Fermi-The_First_Complete_GPU_Architecture.pdf

Oullion, M. P. (2007). Industrial batch crystallization of a plate-like organic product. In
situ monitoring and 2D-CSD modelling: Part 1: Experimental study. Chemical
Engineering Science, 62 (3), 820-832.

208

Owens, J. L. (2007). A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26 (1), 80-113.

P. Bradley, U. F. (1998). Scaling clustering algorithms to large databases. Fourth
International Conference on Knowledge Discovery and Data Mining. AAAI Press.

Pahija, E. M. (2014). Assessment of control techniques for the dynamic optimization of
(semi-)batch reactors. Computers and Chemical Engineering, 66, 269-275.

Pallarès, D. J. (2006). A novel technique for particle tracking in cold 2-dimensional
fluidized beds - Simulating fuel dispersion. Chemical Engineering Science, 61 (8),
2710-2720.

Pan, L. G. (2008). Implementation of medical image segmentation in CUDA. 5th Int.
Conference on Information Technology and Applications in Biomedicine, ITAB 2008
in conjunction with 2nd Int. Symposium and Summer School on Biomedical and
Health Engineering, IS3BHE 2008, art. no. 4570542, (pp. 82-85).

Papenhausen, E. W. (2013). GPU-accelerated incremental correlation clustering of large
data with visual feedback. Proceedings - 2013 IEEE International Conference on Big
Data, Big Data 2013, art. no. 6691716, (pp. 63-70).

Papoulias, S. G. (1983). A structural optimization approach in process synthesis-II. Heat
recovery networks. Computers and Chemical Engineering, 707-721.

Park, I. S. (2011). Design and performance evaluation of image processing algorithms on
GPUs. IEEE Transactions on Parallel and Distributed Systems, 23 (1), art. no.
5477417, 91-104.

Patwary, M. P.-K. (2012). A new scalable parallel DBSCAN algorithm using the disjoint-
set data structure. International Conference for High Performance Computing,
Networking, Storage and Analysis, SC, art. no. 6468492.

Peters, N. G. (2007). Real-time dynamic optimization of batch systems. Journal of
Process Control, 261-271.

Pham, D. A. (2007). Clustering techniques and their applications in engineering.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 221 (11), 1445-1459.

Pilkington, N. Z. (2010). An implementation of decision tree-based context clustering on
graphics processing units. Proceedings of the 11th Annual Conference of the
International Speech Communication Association, INTERSPEECH 2010, (pp. 833-
836).

Pitas, I. (1993). Digital Image Processing Algorithms. New York: Prentice Hall Inc.

Polli, M. S. (2002). Bubble size distribution in the sparger region of bubble columns.
Chemical Engineering Science, 57 (1), 197-205.

Pospichal, P. J. (2010). Parallel genetic algorithm on the CUDA architecture. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 6024 LNCS (PART 1), (pp. 442-
451).

Prabhu, R. (2008). SOMGPU: An unsupervised pattern classifier on Graphical Processing
Unit. 2008 IEEE Congress on Evolutionary Computation, CEC 2008, art. no. 4630920,
(pp. 1011-1018).

209

Prata, D. S. (2009). Nonlinear dynamic data reconciliation and parameter estimation
through particle swarm optimization: Application for an industrial polypropylene
reactor. Chemical Engineering Science, 3953-3967.

Preis, T. V. (2009). GPU accelerated Monte Carlo simulation of the 2D and 3D Ising
model. Journal of Computational Physics, 228 (12), 4468-4477.

Psichogios, D. U. (1992). A hybrid neural network-first principles approach to process
modelling. AICHE JOURNAL, 1499-1511.

Pyun, H. K. (2011). Monitor and diagnosis of LNG plant fractionation process using k-
mean clustering and principal component analysis. Computer Aided Chemical
Engineering, 29, pp. 1899-1903.

Qin, S. L. (2001). Detection and identification of faulty sensors in dynamic processes.
AIChE Journal, 47 (7), 1581-1593.

Quaglia, A. G. (2015). Systematic network synthesis and design: Problem formulation,
superstructure generation, data management and solution. Computers and
Chemical Engineering, 72, , 68-86.

Radeke, C. G. (2010). Large-scale powder mixer simulations using massively parallel
GPUarchitectures. Chemical Engineering Science, 65 (24), 6435-6442.

Redondo, J. G. (2011). Parallel evolutionary algorithms based on shared memory
programming approaches. Journal of Supercomputing, 58 (2), 270–279.

Ren, J. S. (2005). Classified fuzzy association rules mining model and its application in
aromatic hydrocarbon extraction. Huagong Xuebao/Journal of Chemical Industry
and Engineering (China), 2137-2141.

Reyes-Labarta, J. C. (2012). A Novel Hybrid Simulation-Optimization Approach for the
Optimal Design of Multicomponent Distillation Columns. Computer Aided Chemical
Engineering, 30, 1257-1261.

Robilliard, D. M. (2009). High performance genetic programming on GPU. Proceedings of
the 2009 Workshop on Bio-inspired Algorithms for Distributed Systems, BADS '09,
(pp. 85-93).

Robilliard, D. M.-P. (2009). Genetic programming on graphics processing units. Genetic
Programming and Evolvable Machines, 10 (4), 447-471.

Rodrigues, P. G. (2008). Hierarchical clustering of time-series data streams. IEEE
Transactions on Knowledge and Data Engineering, 20 (5), art. no. 4407702, 615-627.

Rong, G. G. (2008). A classification framework for process operation optimization and its
application in a triazophos plant. Chemical and Biochemical Engineering Quarterly,
22 (2), 233-243.

Ruiz, A. U. (2009). Non-rigid registration for large sets of microscopic images on graphics
processors. Journal of Signal Processing Systems, 55 (1-3), 229-250.

Ryoo, S. R.-M. (2008). Optimization principles and application performance evaluation of
a multithreaded GPU using CUDA. Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP, (pp. 73-82).

210

Sajdak, M. M. (2013). Biomass, biochar and hard coal: Data mining application to
elemental composition and high heating values prediction. Journal of Analytical and
Applied Pyrolysis, 104, 153-160.

Samant, S. X.-Ö. (2008). High performance computing for deformable image
registration: Towards a new paradigm in adaptive radiotherapy. Medical Physics, 35
(8), 3546-355.

Santomaso, A. O. (2004). Mechanisms of mixing of granular materials in drum mixers
under rolling regime. Chemical Engineering Science, 59 (16), 3269-3280.

Saraiva, P. M. (1992). Continuous process improvement through inductive and
analogical learning. AIChE Journal, 161-183.

Sarkar, D. D.-T. (2009). In situ particle size estimation for crystallization processes by
multivariate image analysis. Chemical Engineering Science, 64 (1), 9-19.

Schatz, M. T. (2007). High-throughput sequence alignment using Graphics Processing
Units. BMC Bioinformatics, 8, art. no. 474.

Schiwietz, T. C.-C. (2006). MR image reconstruction using the GPU. Progress in
Biomedical Optics and Imaging - Proceedings of SPIE, 6142 III, art. no. 61423.

Scott Le Granda, A. W. (2013). SPFP: Speed without compromise—A mixed precision
model for GPU accelerated molecular dynamics simulations. Computer Physics
Communications Volume 184, Issue 2, 374–380.

Seider, W. S. (2014). Design for process safety - A perspective. Computer Aided Chemical
Engineering, 34, 795-800.

Sengupta, S. H. (2007). Scan primitives for GPU computing. Proceedings of the
SIGGRAPH/Eurographics Workshop on Graphics Hardware, (pp. 97-106).

Setoain, J. P. (2008). GPU for parallel on-board hyperspectral image processing.
International Journal of High Performance Computing Applications, 22 (4), 424-437.

Shams, R. S. (2010). A survey of medical image registration on multicore and the GPU.
IEEE Signal Processing Magazine, 27 (2), art. no. 5438962, 50-60.

Sharma, S. O.-B.-M. (2012). Evaluation of an integrated knowledge discovery and data
mining process model. Expert Systems with Applications, 39 (13), 11335-11348.

Sharp, G. K. (2007). GPU-based streaming architectures for fast cone-beam CT image
reconstruction and demons deformable registration. Physics in Medicine and
Biology, 52 (19), art. no. 003, 5771-5783.

Sharp, T. (2008). Implementing decision trees and forests on a GPU. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5305 LNCS (PART 4), (pp. 595-608).

Shi, Y. G.-W. (2011). Redesigning combustion modeling algorithms for the Graphics
Processing Unit (GPU): Chemical kinetic rate evaluation and ordinary differential
equation integration. Combustion and Flame, 158 (5), 836-847.

Shinn, A. V. (2010). Direct numerical simulation of turbulent flow in a square duct using
a Graphics Processing Unit (GPU). 40th AIAA Fluid Dynamics Conference, art. no.
2010-5029.

211

Shiue, L.-J. J. (2005). A realtime GPU subdivision kernel. ACM Transactions on Graphics,
24 (3), (pp. 1010-1015).

Sidiropoulos, K. G. (2012). Real time decision support system for diagnosis of rare
cancers, trained in parallel, on a graphics processing unit. Computers in Biology and
Medicine, 42 (4), 376-386.

Silva, J. F. (2013). Data stream clustering: A survey. ACM Computing Surveys, 46 (1), art.
no. 13.

Simon, L. A. (2010). Bulk video imaging based multivariate image analysis, process
control chart and acoustic signal assisted nucleation detection. Chemical
Engineering Science, 65 (17), 4983-4995.

Singh, A. T. (2014). Classical and neural network-based approach of model predictive
control for binary continuous distillation column. Chemical Product and Process
Modeling, 9 (1), 71-87.

Song, M. W. (2005). Highly efficient incremental estimation of Gaussian mixture models
for online data stream clustering. Proceedings of SPIE - The International Society for
Optical Engineering, 5803, art. no. 24, (pp. 174-183).

Srinivasan, R. W. (2004). Dynamic Principal Component Analysis Based Methodology for
Clustering Process States in Agile Chemical Plants. Industrial and Engineering
Chemistry Research, 2123-2139.

Statz, C. M. (2013). Hybrid CPU-GPU computation of adjoint derivatives in time domain.
CEM 2013 - Computational Electromagnetics International Workshop, art. no.
6617123, (pp. 32-33).

Stone, J. H. (2010). GPU-accelerated molecular modeling coming of age. Journal of
Molecular Graphics and Modelling, 29 (2), 116-125.

Strigl, D. K. (2010). Performance and scalability of GPU-based convolutional neural
networks. Proceedings of the 18th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, PDP 2010, art. no. 5452452, (pp. 317-324).

Swisher, J. R. (2000). Survey of simulation optimization techniques and procedures.
Winter Simulation Conference Proceedings, 1, (pp. 119-128).

T. Kourti, J. M. (1995). Process analysis, monitoring and diagnosis, using multivariate
projection methods. Chemom. Intell. Lab. Syst. 28, 3-21.

Takama, N. K. (1980). Optimal water allocation in a petroleum refinery. Computers and
Chemical Engineering, 251-258.

Takizawa, H. K. (2006). Hierarchical parallel processing of large scale data clustering on a
PC cluster with GPU co-processing. Journal of Supercomputing, 36 (3), (pp. 219-234).

Tan, J. A. (2010). Simulation-optimization for business decision support in a global
specialty chemicals enterprise. Computer Aided Chemical Engineering, 28 (C), 133-
138.

Tarabalka, Y. H. (2009). Real-time anomaly detection in hyperspectral images using
multivariate normal mixture models and GPU processing. Journal of Real-Time
Image Processing, 4 (3), 287-300.

212

Tarditi, D. P. (2006). Accelerator: Using data parallelism to program GPUs for general-
purpose uses. International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS, (pp. 325-335).

Taylor, Z. C. (2008). High-speed nonlinear finite element analysis for surgical simulation
using graphics processing units. IEEE Transactions on Medical Imaging, 27 (5), art.
no. 4388142, 650-663.

Thrust. (n.d.). Thrust: C++ Template Library for CUDA. Retrieved 5 12, 2014, from
https://code.google.com/p/thrust/

Tosukhowong, T. L. (2004). An introduction to a dynamic plant-wide optimization
strategy for an integrated plant. Computers and Chemical Engineering, 199-208.

Tousain, R. B. (2006). Market-oriented scheduling and economic optimization of
continuous multi-grade chemical processes. Journal of Process Control, 16 (3), (pp.
291-302).

Tsui, S.-R. W.-J.-S.-T. (2012). Parallel clustering based on partitions of local minimal-
spanning-trees. Proceedings - International Symposium on Parallel Architectures,
Algorithms and Programming, PAAP, art. no. 6424745, (pp. 111-118).

Tu, Y.-C. K. (2013). Data management systems on GPUs: Promises and challenges. ACM
International Conference Proceeding Series, art. no. 33.

U. Fayyad, G. P.-S. (1999). Knowledge Discovery and Data Mining: Towards a Unifying
Framework. Proceedings of the Second International Conference on Knowledge
Discovery. Portland: AAAI Press.

U. Fayyad, G. P.-S. (November 1996). The KDD process of extracting useful knowledge
from volumes of data. Communications of the ACM, 39(11), 27–34.

Vogel, D. J. (1993). A plant-wide industrial process control problem. Computers &
Chemical Engineering, volume 17, No. 3, 245-255.

Wan, R. G. (2012). Weighted fuzzy-possibilistic c-means over large data sets.
International Journal of Data Warehousing and Mining, 8 (4), 82-107.

Wang, J. G. (2013). Integrated intelligent control method of coke oven collector
pressure. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 7952 LNCS (PART 2), (pp.
246-252).

Wang, L.-F. S.-Y. (2013). Simulation optimization: a review on theory and applications.
Zidonghua Xuebao/Acta Automatica Sinica, 39 (11), 1957-1968.

Wang, X. M. (1998). Automatic classification for mining process operational data.
Industrial and Engineering Chemistry Research, 2215-2222.

Wasif, M. N. (2011). Scalable clustering using multiple GPUs. 18th International
Conference on High Performance Computing, HiPC 2011, art. no. 6152713.

Wojek, C. D. (2008). Sliding-windows for rapid object class localization: A parallel
technique. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 5096 LNCS, (pp. 71-81).

213

Wong, H. P.-M.-A. (2010). Demystifying GPU microarchitecture through
microbenchmarking. ISPASS 2010 - IEEE International Symposium on Performance
Analysis of Systems and Software, art. no. 5452013, (pp. 235-246).

Wong, T.-T. L.-S.-A. (2007). Discrete wavelet transform on consumer-level graphics
hardware. IEEE Transactions on Multimedia, 9 (3), 668-673.

Woo, Y. Y. (2013). Fast PCA-based face recognition on GPUs. ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, art. no.
6638138, (pp. 2659-2663).

Wu, R. Z. (2009). Clustering billions of data points using GPUs. Proc. Combined
Workshops on UnConventional High Performance Computing Workshop Plus
Memory Access Workshop, UCHPC-MAW '09, Co-located with the 2009 ACM Int.
Conf. on Computing Frontiers, CF'09, (pp. 1-5).

Xiong, H. P. (2006). Enhancing data analysis with noise removal. IEEE Transactions on
Knowledge and Data Engineering, 18 (3), 304-319.

Xiong, Q. L. (2010). Direct numerical simulation of sub-grid structures in gas-solid flow-
GPU implementation of macro-scale pseudo-particle modeling. Chemical
Engineering Science, 65 (19), 5356-5365.

Xu, M. C. (2012). Discrete particle simulation of gas-solid two-phase flows with multi-
scale CPU-GPU hybrid computation. Chemical Engineering Journal, 207-208, 746-
757.

Xu, R. W. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks,
16 (3), 645-678.

Xu, Z. Z. (2012). Research on clustering algorithm for massive data based on hadoop
platform. Proceedings - 2012 International Conference on Computer Science and
Service System, CSSS 2012, art. no. 6394257, (pp. 43-45).

Yang, Y.-F. W.-M. (2012). Parallel hierarchical K-means clustering-based image index
construction method. Proceedings - 11th International Symposium on Distributed
Computing and Applications to Business, Engineering and Science, DCABES 2012,
art. no. 6385323, (pp. 424-428).

Yee, T. G. (1990). Simultaneous optimization models for heat integration-II. Heat
exchanger network synthesis. Computers and Chemical Engineering, 1165-1184.

Yip, W. M. (2004). The effect of model fidelity on real-time optimization performance.
Computers and Chemical Engineering (pp. 267-280). Elsevier BV.

Yogita, T. D. (2013). Clustering techniques for streaming data-a survey. Proceedings of
the 2013 3rd IEEE International Advance Computing Conference, IACC 2013, art. no.
6514355, (pp. 951-956).

Yoon, S. M. (2000). Statistical and causal model-based approaches to fault detection and
isolation. AIChE Journal, 1813-1824.

You, Y. F. (2014). Scaling Support Vector Machines on modern HPC platforms. Journal of
Parallel and Distributed Computing, . Article in Press. .

Yu, H. M. (2004). Monitoring flames in an industrial boiler using multivariate image
analysis. AIChE Journal, 50 (7), 1474-1483.

214

Yu, J. (2011). Localized Fisher discriminant analysis based complex chemical process
monitoring. AIChE Journal, 1817-1828.

Yu, J. Q. (2008). Multimode process monitoring with bayesian inference-based finite
Gaussian mixture models. AIChE Journal, 1811-1829.

Yue, H. T. (2004). Weighted principal component analysis and its applications to improve
FDC performance . IEEE Conference on Decision and Control (pp. 4262-4267).
Nassau: Institute of Electrical and Electronics Engineers Inc.

Zaspel, P. G. (2013). Solving incompressible two-phase flows on multi-GPU clusters.
Computers and Fluids, 80 (1), 356-364.

Zhang, J. L. (2012). Implmentation of a covariance-based principal component analysis
algorithm for hyperspectral imaging applications with multi-threading in both CPU
and GPU. International Geoscience and Remote Sensing Symposium (IGARSS), art.
no. 6351726, (pp. 4264-4266).

Zhang, K. L. (2011). GPU accelerate parallel Odd-Even merge sort: An OpenCL method.
Proceedings of the 2011 15th International Conference on Computer Supported
Cooperative Work in Design, CSCWD , (pp. art. no. 5960058, pp. 76-83).

Zhang, T. R. (1996). BIRCH: An Efficient Data Clustering Method for Very Large
Databases. SIGMOD Record (ACM Special Interest Group on Management of Data),
25 (2), 103-114.

Zhang, Y. (2009). Enhanced statistical analysis of nonlinear processes using KPCA, KICA
and SVM. Chemical Engineering Science, 64 (5), 801-811.

Zhang, Y. J. (2008). Improved nonlinear fault detection technique and statistical analysis.
AIChE Journal, 54 (12), 3207-3220.

Zhang, Y. M. (2002). Real-time optimization under parametric uncertainty: A probability
constrained approach. Journal of Process Control, 373-389.

Zhang, Y. S. (2005). Association rules mining based on SVM and its application in
simulated moving bed PX adsorption process. Chinese Journal of Chemical
Engineering, 751-757.

Zhiyi, Y. Y. (2008). Parallel image processing based on CUDA. Proceedings - International
Conference on Computer Science and Software Engineering, CSSE 2008, 3, art. no.
4722322, (pp. 198-201).

Zhou, Y. T. (2009). GPU-based parallel particle swarm optimization. 2009 IEEE Congress
on Evolutionary Computation, CEC 2009, art. no. 4983119, (pp. 1493-1500).

Zhu, W. C. (2009). Parallel ant colony for nonlinear function optimization with graphics
hardware acceleration. Conference Proceedings - IEEE International Conference on
Systems, Man and Cybernetics, art. no. 5346870, (pp. 1803-1808).

Zhu, W. C. (2010). SIMD tabu search for the quadratic assignment problem with graphics
hardware acceleration. International Journal of Production Research, 48 (4), 1035-
1047.

Žliobaite, I. G. (2014). Adaptive preprocessing for streaming data. IEEE Transactions on
Knowledge and Data Engineering, 26 (2), art. no. 6247432, 309-321.

215

Publications based on this work

Journal Publication

 Lau Mai Chan, Rajagopalan Srinivasan. A Hybrid CPU-Graphics

Processing Unit (GPU) Approach for Computationally Efficient

Simulation-Optimization. Manuscript submitted for publication.

Conference Publications - Paper

 Lau Mai Chan, Rajagopalan Srinivasan. A Graphic Processing Unit

(GPU) Algorithm for Improved Variable Selection in Multivariate

Process Monitoring. Computer Aided Chemical Engineering, 31, 2012.

Conference Publications - Oral
 Lau, M. C. & Srinivasan, R. A Graphic Processing Unit (GPU)

Algorithm for Improved Variable Selection in Multivariate Process

Monitoring. PSE 2012, Singapore.

 Lau, M. C. & Srinivasan, R., Real-time Particle Size Estimation for

Crystallization Processes through GPU-based Multivariate Image

Analysis. AIChE Annual Meeting 2013, San Francisco, CA.

Conference Publications - Poster
 Lau, M. C. & Srinivasan, R. A Graphic Processing Unit (GPU)

Algorithm for Improved Variable Selection in Multivariate Process

Monitoring. AIChE Annual Meeting 2012, Pittsburgh, PA.

http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist
http://www.scopus.com/record/display.url?eid=2-s2.0-84864508523&origin=resultslist

