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SUMMARY 

 

The nuclear lamina, comprised of the A and B-type lamins, is 

important in maintaining nuclear shape and regulating key nuclear functions 

such as chromatin organization and transcription. Deletion of the A-type 

lamins results in genome instability and many cancers show altered levels of 

A-type lamin expression. Loss of function mutations in the Lmna gene result 

in early postnatal lethality, usually within 3-6 weeks of birth making analysis 

of the role of Lmna in carcinogenesis difficult. To circumvent early lethality 

and determine the role of the A-type lamins in specific tissues in older mice, a 

“floxed” conditional allele of Lmna gene, LmnaFL/FL, was derived. It has the 

flexibility to be crossed with different Cre deletors to generate constitutive or 

tissue-specific Lmna knockouts. Constitutive deletion of Lmna with Zp3-Cre 

was efficient at the genomic and proteomic level. LmnaFL/FL mice were then 

used to generate tissue-specific Lmna knockout mice to investigate the 

physiological and oncogenic roles of Lmna in two highly proliferative tissues: 

the intestines and skin.  

 

  Lmna was specifically deleted in the gastrointestinal (GI) epithelium 

by crossing the LmnaFL/FL mice with Villin-Cre mice. Lmna∆/∆/Vil-Cre mice are 

overtly normal with no effects on overall growth, longevity or GI morphology. 

On a GI-specific sensitized (ApcMin/+) background, polyp numbers are 

unchanged, but polyp size is increased in the duodenum. These findings reveal 

that although A-type lamins are dispensable in the postnatal GI epithelium, 
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loss of Lmna under malignant conditions enhances polyp size, suggesting that 

A-type lamins regulate cell proliferation.  

 

The skin is affected in laminopathies such as progeria and restrictive 

dermopathy. Altered LMNA levels are also observed in human skin cancers. 

However the exact role of LMNA/C in skin has yet to be elucidated. Through 

the introduction of Keratin 14-cre, a mouse line (Lmna∆/∆/K14-Cre) was derived 

where Lmna was specifically ablated in keratinocytes. Lmna∆/∆/K14-Cre mice 

show epidermal thickening in the skin due to hyperplasia. In addition, 

Lmna∆/∆/K14-Cre mice also show aberrant hair cycles where the onset of the 

second hair growth phase is greatly accelerated. Human LMNAKD 

keratinocytes also exhibit a pronounced acceleration in growth. Consistently, 

loss of Lmna altered expression of genes associated with hyperproliferation 

and malignant transformation of keratinocytes. Collectively, these results 

indicate that A-type lamins are important in keratinocyte growth and hair cycle 

regulation.  

 

In collaboration with Solovei and colleagues, we show that lamin A/C 

and LBR are important in the regulation of peripheral heterochromatin 

positioning in mammalian cells. Absence of both lamin A/C and LBR results 

in the loss of peripheral heterochromatin and pronounced inversion of nuclei. 

Furthermore, loss of lamin A/C results in prolonged LBR expression, 

indicating that lamin A/C plays a significant role in regulating LBR expression 

during differentiation. During muscle development, lamin A/C and LBR have 

opposing effects with lamin A/C increasing and LBR decreasing muscle gene 
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transcription. Taken together, lamin A/C and LBR have important roles in 

regulation of chromatin organization and cellular differentiation. 
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Chapter 1 - Introduction  

1.1 The nuclear envelope and lamina proteins 

1.1.1 The nuclear envelope 

The nucleus is a characteristic hallmark in all eukaryotic cells and 

comprises of the nucleoplasm and nuclear envelope (NE). The nucleoplasm 

houses the genetic material of the cell and various structural subcompartments 

such as the nucleolus, splicing-factor compartments (SFCs), the Cajal body 

(CB) and promyelocytic leukaemia (PML) body (Dundr and Misteli, 2001). 

The NE encloses and separates the nucleoplasm from cytoplasm. The NE was 

originally thought to largely function as a selective barrier to regulate the entry 

and exit of macromolecules, but this view is changing due to immense data 

that it is involved in the maintenance of nuclear architecture, organization of 

chromatin, control of DNA replication, transcription and cellular signaling 

(Burke and Stewart, 2014). 

 

The NE consists of three important elements: the nuclear membranes, 

nuclear pore complexes (NPCs) and nuclear lamina. The nuclear membranes 

consist of two lipid bilayers membranes. The outer nuclear membrane (ONM), 

facing the cytoplasm, is continuous with the rough endoplasmic reticulum 

(ER) and associates with ribosomes and a variety of other ONM-specific 

proteins (Stewart et al., 2007b) (Fig. 1.1). The inner nuclear membrane (INM), 

facing the nucleoplasm, contains some 70 or more unique transmembrane 

proteins that are anchored to the INM during interphase (Schirmer et al., 
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2003). The ONM and INM are separated by a 40-50 nm perinuclear space 

(PNS) (Stewart et al., 2007b), but periodically connected where they are 

transversed by NPCs that are important in moving macromolecules between 

the cytoplasm and nucleus (Grossman et al., 2012). Underlying the INM is the 

10-20 nm thick nuclear lamina, a proteinaceous meshwork comprised of the 

type V intermediate filaments (IF) collectively termed the lamins (Dwyer and 

Blobel, 1976; Fisher et al., 1986), which are found exclusively in the nucleus 

(Gerace and Huber, 2012) (Fig. 1.1). 

Figure 1.1: The NE consists of three important elements: the nuclear membrane, 
nuclear pore complexes (NPCs) and the nuclear lamina. The nuclear membrane 
consists of an outer nuclear membrane (ONM) contiguous with the endoplasmic 
reticulum (ER) and faces the cytoplasm, and an inner nuclear membrane (INM), 
which faces the nucleoplasm. Underlying the INM is a meshwork of intermediate 
filaments comprised of the A-type and B-type lamins known as the nuclear lamina. 
The nuclear lamina and the integral INM proteins (including LBR, emerin, MAN1) 
that it harbors have important functions such as chromatin organization and gene 
regulation. The LINC (linker of nucleoskeleton and cytoskeleton) complex (dashed 
box) comprising of SUN and KASH proteins has important connections to the 
cytoskeleton. Illustration was adapted and modified with permission (Burke and 
Stewart, 2014). 
 

1.1.2 The nuclear lamins 

Lamins are the major structural components of the proteinaceous 

nuclear lamina. Nuclear lamin isoforms are divided into two major classes 
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based on their sequence homologies, structural similarities, isoelectric points, 

expression patterns and behavior during disassembly and assembly on the NE 

during cell division (Broers et al., 2006). The B-type lamins have acidic 

isoelectric points and are membrane associated throughout the cell cycle, 

whereas A-type lamins have neutral isoelectric points and are solubilized 

during mitosis (Burke and Ellenberg, 2002; Gerace and Blobel, 1980).  

 

1.1.3 Genes encoding lamins 

A-type lamins (lamin A, lamin C, lamin C2 and lamin AΔ10) are 

encoded by a single LMNA gene on human chromosome 1q21.2 (Furukawa et 

al., 1994; Lin and Worman, 1993; Machiels et al., 1996) and generated by 

alternate splicing at exon 10. Lamins A and C are the major A-type lamins: 

lamin A contains 12 exons while lamin C is identical except for lacking part of 

exons 10 to 12 of the LMNA gene (Lin and Worman, 1993) (Fig. 1.2). Lamin 

C2 is a minor splice variant of LMNA, with an identical sequence to lamin C 

but lacking the N-terminal head (Furukawa et al., 1994). Lamin AΔ10 is an 

alternatively spliced product that lacks all of the residues encoded by exon 10 

of the LMNA gene (Machiels et al., 1996).  

 

There are three mammalian B-type lamins. LMNB1 on human 

chromosome 5q23.3-q31.1 encodes lamin B1, LMNB2 on human chromosome 

19p13.3 encodes lamin B2 (Furukawa and Hotta, 1993; Hoger et al., 1988; 

Zewe et al., 1991). Lamin B3 is a minor variant that arises from alternate 

splicing of LMNB2 (Biamonti et al., 1992; Furukawa and Hotta, 1993). 
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1.1.4 Structure of lamins 

Lamins have a highly conserved tripartite domain organization typical 

of type V IF. They have a short globular head domain, a central α-helical rod 

consisting of 4 coiled-coil segments separated by linker regions, and a 

globular COOH-terminal tail domain (Fisher et al., 1986; Herrmann and Aebi, 

2004) (Fig. 1.2). The central rod domain is essential for the formation of 

parallel coiled-coil lamin dimers that are required for the assembly into higher 

order structures (Aebi et al., 1986). The tail domain contains an approximately 

120 residue immunoglobulin (Ig) fold (Krimm et al., 2002) and both the head 

and tail domains of the lamins are highly positively charged which is 

important for their potential interaction with DNA and other proteins (Stierle 

et al., 2003). Lamins also contain a nuclear localization signal (NLS) located 

between the rod domain and the Ig fold (Frangioni and Neel, 1993) and 

mutations in the NLS cause mislocalization of nuclear lamins to the cytoplasm 

(Loewinger and McKeon, 1988). The tail domains of lamin A (but not lamin 

C) and B-type lamins contain a CAAX motif (“C” is Cysteine, “A” is an 

aliphatic residue and “X” can be any amino acid, but usually is a Methionine) 

(Fig. 1.2), that is involved in numerous post-translational modifications 

(PTMs) important for the efficient targeting of lamins to the INM (Dechat et 

al., 2007). 
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Figure 1.2: A- and B-type lamins have similar structural domains and undergo 
post-translational modifications (PTMs) to produce mature lamins. Lamin A and 
C are encoded by the same gene (LMNA) and arise through alternate RNA splicing 
while B-type lamins are encoded by two separate genes (LMNB1 and LMNB2). 
Lamins have a conserved tripartite structure consisting of a short globular head, a α-
helical central rod and a tail domain. Both A and B-type lamins contain a nuclear 
localization signal (NLS, black rectangle) and immunoglobulin (Ig) fold (light grey 
regions) at their tail domains. Immature pre-lamin A undergoes two PTMs (PTM1 
and PTM2, black arrows) to release a mature lamin A protein while lamin C lacks the 
CAAX motif and does not undergo PTMs. Lamin B1 and B2 undergo only one PTM 
(black arrows) and stay farnesylated (blue circle F). Illustration was adapted and 
modified with permission (Mendez-Lopez and Worman, 2012). 
 

1.1.5 Post-translation processing of lamins 

Lamin A and the B-type lamins are synthesized as precursors prelamin 

A, prelamin B1 and prelamin B2. These prelamins undergo a series of four 

enzymatic post-translational processing steps to yield mature and functional 

lamin proteins. First, the cytosolic enzyme farnesyl transferase catalyzes the 

farnesylation of cysteine of the CaaX motif. ZMPSTE24/FACE1, a membrane 

zinc metalloproteinase, removes the –aaX amino acids. The newly exposed 

farnesyl-cysteine is then methylated by a membrane methyltransferase, 



6 

 

isoprenylcysteine carboxyl methyltransferase (ICMT) (Casey, 1992; Casey 

and Seabra, 1996; Clarke, 1992; Davies et al., 2009). Farnesylation is 

important in targeting the newly synthesized lamins to the NE by enhancing 

protein hydrophobicity (Holtz et al., 1989). At the nuclear lamina, prelamin A 

undergoes the final proteolytic cleavage by ZMPSTE24/FACE1, which 

releases the last 15 amino acids of the protein to generate a mature lamin A 

containing 646 amino acids. B-type lamins, on the other hand, remain 

permanently farnesylated (Gerace et al., 1984; Pendas et al., 2002; Weber et 

al., 1989) (Fig. 1.2). Other PTMs of lamins include phosphorylation 

(Stuurman et al., 1998) and sumoylation (Zhang and Sarge, 2008); defects in 

these PTMs can hinder proper assembly of the nuclear lamina. Lamin C (562 

amino acids) does not contain the CaaX motif at the C-terminus nor undergoes 

PTMs and may rely on the presence of lamin A to incorporate into the nuclear 

lamina (Vaughan et al., 2001) although a lamin C only mouse has been derived 

and is overtly normal (Fong et al., 2006).  

 

1.1.6 Expression profile of lamins 

The A- and B-type lamins are differentially expressed in mammalian 

tissues (Broers et al., 1997). Studies tracing the expression of A-type lamins 

from embryonic stage to birth indicate that expression of lamin A is 

developmentally regulated in a tissue-specific manner (Rober et al., 1989; 

Stewart and Burke, 1987). All cells express either one or both of the B-type 

lamins. In contrast, expression of A-type lamins, though present in the 

fertilized egg, disappear during pre-implantation development and only start to 
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reappear, initially in the trophoblast and visceral endoderm and then in the 

embryo proper at around E10 to E12, when basic organogenesis and tissue 

differentiation occur (Rober et al., 1989; Stewart and Burke, 1987). The onset 

of lamin A/C expression is not simultaneous in all tissues of the embryo 

proper, as its expression is first detected at E10 in skeletal and smooth muscle 

but does not appear until after birth in other organs such as the heart, liver, 

lungs and intestine. Furthermore, brain cells and undifferentiated lymphoid 

cells of the spleen, thymus, blood and bone marrow from postnatal day 15 

(P15) mice show little or no expression of lamin A/C. However, once the 

lamin A/C expression sets in, it persists and becomes increasingly prominent.  

 

These studies by Stewart and Burke and then Rober et al. were the first 

to establish that lamin A/C is expressed in differentiated adult cells, but absent 

from embryonic stem cells (ESCs). It has since been confirmed that A-type 

lamins are not expressed in either human or mouse ESCs (Butler et al., 2009; 

Constantinescu et al., 2006), suggesting that A-type lamins are non-essential at 

the cellular level during development. Indeed, mice lacking lamin A/C are 

indistinguishable from their wild-type (WT) littermates at birth. However at 

about 2-3 weeks after birth, they present defects in skeletal muscle and heart 

which lead to early lethality (Sullivan et al., 1999). Therefore, A-type lamins 

may be dispensable for uterine development but appear to serve specialized 

functions in different postnatal tissues and may be implicated in terminal 

tissue differentiation during postnatal development (Broers et al., 1997; 

Goldman et al., 2002; Hutchison et al., 2001). The other lamin A family 

members are lamin C2 that is uniquely expressed in the testis and lamin AΔ10 
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is expressed in the human placental, colon and leukocytes as well as a variety 

of carcinoma cell lines (e.g. lung and neuroblastoma) (Furukawa et al., 1994; 

Machiels et al., 1995; Machiels et al., 1996).  

 

B-type lamins (lamin B1 and B2) are expressed in embryos and all 

adult cell types (Broers et al., 1997), while lamin B3 is expressed only in 

spermatocytes (Furukawa and Hotta, 1993). Since at least one B-type lamin is 

expressed in all cell types throughout development, it was thought that they 

may perform essential functions of the lamina (Burke and Stewart, 2013). But 

despite the dogma that B-type lamins are essential for cell survival, growth 

and development (Harborth et al., 2001; Vergnes et al., 2004), there have been 

contradicting reports. Mice deficient in Lmnb1 undergo prenatal development, 

but die at birth due to abnormal development of the central nervous system 

(CNS) and with no evidence of diseased nuclear phenotypes in the skin, liver, 

heart and skeletal muscle (Vergnes et al., 2004). Deletion of both Lmnb1 and 

Lmnb2 in mouse keratinocytes did not result in overt pathologies in the skin, 

hair and nails, indicating that complete absence of B-type lamins does not 

affect keratinocytes development and proliferation (Yang et al., 2011a). 

Similarly, mice with deletion of both Lmnb1 and Lmnb2 in hepatocytes had 

normal liver development and function (Yang et al., 2011b). In contrast, 

forebrain-specific deletion of Lmnb1 and/or Lmnb2 resulted in mice with a 

smaller cranium, abnormal neuronal migration and cortical layering defects, 

indicating that B-type lamins are critical in the survival of neurons and proper 

development of the CNS (Coffinier et al., 2011). Collectively, these studies 

indicate that B-type lamins might not be obligatory in cell survival but instead 
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may exhibit different levels of importance in different cell types. Another 

explanation is that abundant expression of lamin A/C in skin and liver may 

compensate and contribute to survival of keratinocytes and hepatocytes. 

However as lamin A/C expression is low/absent in the brain, the effect of the 

absence of B-type lamins is more profound in neurodevelopment (Coffinier et 

al., 2011; Yang et al., 2011a; Yang et al., 2011b).  

 

More interestingly, mouse ESCs and keratinocytes lacking all nuclear 

lamins are able to proliferate normally (Jung et al., 2014; Kim et al., 2013). 

Lamin-null ESCs injected into nude mice were capable of teratoma formation, 

giving rise to endodermal, mesodermal and ectodermal structures (Kim et al., 

2013).  

 

1.1.7 Integral membrane proteins of the INM  

 

The INM harbors approximately 70 to 100 unique membrane-

associated and integral proteins (Fig. 1.1). The functions of most of these 

proteins are still poorly understood (Schirmer et al., 2003). Moreover, 

expression of many INM proteins may also be tissue-specific (Korfali et al., 

2012; Solovei et al., 2013). Proteins are localized to the INM via their 

selective retention that is mediated via interaction with components of the 

nuclear lamina and chromatin (Powell and Burke, 1990). This interaction is 

crucial in modulating signaling pathways within and outside the nucleus. 

Mutations in many of these proteins and complexes are undesirable as they 

can cause severe human diseases (Burke and Stewart, 2014). 
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1.1.7a LEM domain-containing proteins 

 

A group of lamin-interacting proteins share a 40 amino acid bi-helical 

structural motif known as the LEM domain (Lin et al., 2000). Members of the 

LEM domain-containing protein family include lamina-associated 

polypeptides (LAP) 2, emerin, MAN1, LEM2, LEM3, LEM4 and LEM5 

(Brachner et al., 2005; Cai et al., 2001; Lee and Wilson, 2004; Lin et al., 

2000). At the nucleoplasmic side, the LEM domain interacts with a small 

DNA-binding protein barrier-to-autointegration factor (BAF/BANF1) that 

binds to and compacts DNA in a sequence-independent manner (Cai et al., 

2001; Shumaker et al., 2001). LEM domain proteins anchor heterochromatin 

to the NE in yeast, which has no lamins, and in Caenorhabditis elegans (C. 

elegans), which has a single lamin (Ikegami et al., 2010; Mattout et al., 2011). 

 

The LAP family comprises of LAP1 and LAP2. LAP1 does not contain 

the LEM domain and has three major isoforms (LAP1A, LAP1B and LAP1C) 

(Martin et al., 1995). LAP1 interacts with Torsin A, a poorly understood 

nuclear membrane AAA ATPases, through a perinuclear domain (Sosa et al., 

2014). LAP1 also specifically associates with B-type lamins (Maison et al., 

1997). LEM domain-containing LAP2 consists of a family of 6 isoforms (α, β, 

δ, γ, ε, ζ) (Berger et al., 1996; Dorner et al., 2007) and interacts with 

chromatin and lamins (Gant et al., 1999; Yang et al., 1997). All LAP2 isoforms 

are INM-bound proteins except for LAP2α, which lacks the transmembrane 

domain, localizes to the nucleoplasm and binds specifically nucleoplasmic A-

type lamins (Dechat et al., 2000a; Dechat et al., 2000b). Adult mouse 
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fibroblasts (MAFs) and epidermal progenitor cells deficient in LAP2α display 

loss of the nucleoplasmic lamin A, indicating that LAP2α associates with A-

type lamins (Gotic et al., 2010). LAP2α-null mice exhibit hyperproliferation of 

erythroid and epidermal precursors, an increased myofiber stem cell pool and 

eventually develop impaired systolic function and extensive fibrosis due to 

dysregulation of tumour suppressor retinoblastoma (Rb) protein (Gotic et al., 

2010; Naetar et al., 2008). Hence, the association of LAP2α, lamin A/C and 

Rb may be essential in the cell cycle control (Dorner et al., 2007). LAP2α is 

also expressed during final stage of spermatogenesis and may be involved in 

chromatin remodeling (Alsheimer et al., 1998). LAP2β specifically binds to B-

type lamins (Foisner and Gerace, 1993; Furukawa et al., 1998) and 

chromosomes and has important functions in lamin assembly and nuclear 

organization (Gant et al., 1999).  

 

Emerin, encoded by EMD gene on chromosome X, binds to all lamins 

but displays a stronger binding to lamin C (Clements et al., 2000; Fairley et 

al., 1999; Vaughan et al., 2001). Lamin A binds to the middle of the emerin 

protein at residue 70-178 (Lee et al., 2001) and is essential for the localization 

of emerin to the INM (Sullivan et al., 1999; Vaughan et al., 2001). Emerin is 

ubiquitously expressed in almost all human cell types (Tunnah et al., 2005). 

While mutations in emerin result in a form of muscular dystrophy (X-linked 

Emery Dreifuss) in humans (Bione et al., 1994), it is dispensable for cell 

survival and normal development in mice as Emd-null mice are overtly normal 

with mild retardation in muscle regeneration (Melcon et al., 2006; Ozawa et 

al., 2006). However, lethality occurs when both LAP1 and emerin are 
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simultaneously deleted in skeletal muscle, indicating that emerin and LAP1 

work together and are essential in skeletal muscle function and maintenance 

(Shin et al., 2013). 

 

MAN1, encoded by LEMD3 gene, is a double pass transmembrane 

INM protein with a nucleoplasmic LEM motif in its N- and C-terminal 

domain (Lin et al., 2000; Paulin-Levasseur et al., 1996). Both emerin and 

MAN1 have essential and overlapping functions in chromosomal segregation 

during cell division (Liu et al., 2003). Lemd3-null mice die during 

embryogenesis due to defective vascularization of the yolk sac (Cohen et al., 

2007; Ishimura et al., 2006) and display abnormal heart morphogenesis 

(Ishimura et al., 2008). MAN1 interacts with receptor regulated SMAD 

(rSMAD) so antagonizing transforming growth factor-β (TGF-β) and bone 

morphogenetic proteins (BMP) signaling pathways (Hellemans et al., 2004; 

Lin et al., 2000; Osada et al., 2003; Pan et al., 2005). Loss of MAN1 results in 

increased phosphorylation and hyperactivity of SMAD2/3 (Cohen et al., 

2007). 

 

1.1.7b Lamin B Receptor (LBR)  

 

LBR protein binds to the B-type lamins via its nucleoplasmic N-

terminal domain (Worman et al., 1988). The Tudor domain at the N-terminus 

of LBR selectively interacts with heterochromatin (Hirano et al., 2012; 

Makatsori et al., 2004; Olins et al., 2010), heterochromatin protein HP1 (Ye et 
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al., 1997) and RNA helicase A binding protein HA95 (Martins et al., 2000). It 

possesses a short hydrophobic C-terminal domain with 8 transmembrane 

segments that exhibit sterol reductase activity (Fig. 4.1) (Holmer et al., 1998; 

Silve et al., 1998). During human fetal development, LBR and its sterol 

reductase activity is critical for normal chondro-osseous calcification and loss 

of LBR results in fetal lethality (Waterham et al., 2003).  

 

Mice with mutations in their Lbr gene (icJ and LbrGt/Gt) display overt 

phenotypes such as ichthyosis with dry skin and alopecia, syndactyly, severe 

growth retardation and often early postnatal death. Non-segmented nuclei and 

abnormal chromatin organization are also observed in neutrophils and 

eosinophils in the icJ and LbrGt/Gt mice (Cohen et al., 2008; Shultz et al., 

2003). Recent evidence has revealed that LBR may have close proximity with 

lamin A (Roux et al., 2012) and they both function in retaining 

heterochromatin at the nuclear periphery (Solovei et al., 2013). In chapter 4 of 

this thesis, we show that LMNA/C and LBR sequentially tether 

heterochromatin to the nuclear periphery and loss of both proteins results in 

the displacement of heterochromatin to the nuclear interior resulting in nuclear 

inversion (Solovei et al., 2013).   

 

1.1.7c SUN and KASH proteins 

 

The SUN (Sad1p/Unc-84) family consists of at least six proteins and 

the two most widely expressed isoforms, SUN1 and SUN2, localize to the 



14 

 

INM (Starr and Han, 2002). In mice, SUN1 is required for gametogenesis 

hence both male and female mice lacking SUN1 are infertile (Chi et al., 2009; 

Ding et al., 2007). The N-terminal regions of SUN1 and SUN2 proteins extend 

into the nucleoplasm and interact with lamins and other nucleoplasmic factors. 

The C-terminal regions of SUN1 and SUN2 proteins extend into the PNS and 

bind KASH (Klarsicht, Anc-1, Syne homology) proteins by interactions 

between the SUN and KASH domains respectively (Burke and Stewart, 2013; 

Crisp et al., 2006; Haque et al., 2006; Sosa et al., 2013; Sosa et al., 2012). 

Therefore, SUN1 and SUN2 function as bridge proteins connecting the 

nuclear lamins and other components of the nuclear interior to the 

cytoskeleton networks via KASH proteins and this assembly is known as the 

LINC (linker of nucleoskeleton and cytoskeleton) complex (Fig. 1.1) (Crisp et 

al., 2006; Padmakumar et al., 2005). 

 

The KASH (Syne/Nesprins) family consists of six mammalian proteins 

that contain the conserved 50-60 amino acids C-terminal KASH domain with 

them being mostly localized to the ONM (Crisp et al., 2006). The members 

include Nesprins 1-4, KASH 5 and lymphoid-restricted membrane protein 

(LRMP) (Horn et al., 2013b; Lindeman and Pelegri, 2012; Zhang et al., 2001). 

KASH proteins are important in the control of cell polarization (Roux et al., 

2009), centrosome positioning (Zhang et al., 2009), neuronal cell migration 

(Tsai and Gleeson, 2005), nuclear positioning (Horn et al., 2013a) and 

maintenance of cytoskeleton architecture (Warren et al., 2005). The LINC 

complex mechanically couples the lamina/nucleoplasm to the cytoplasmic 

cytoskeleton including the 3 different cytoskeletal networks, namely the actin, 
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microtubule and intermediate filaments. Except LRMP, all nesprin proteins 

interact with different components of the cytoskeleton (Burke and Stewart, 

2014). Both Nesprins 1 and 2 connect the nucleus to actin cytoskeleton to 

anchor or move nuclei. Nesprin 3 binds to plectin which acts as a link to the 

intermediate filament network. Nesprin 2, Nesprin 4 and KASH5 interact with 

the microtubule network via Kinesin 1 and/or dynein during nuclear migration 

(Burke and Stewart, 2013; Starr and Fischer, 2005).  

 

Disruption in the LINC complex results in disease phenotypes. For 

example, mice lacking SUN1 or KASH4 show progressive hearing loss as 

outer hair cells of the cochlea display impaired nuclear positioning and cell 

motility (Horn et al., 2013a). KASH5 forms a meiotic complex with SUN1 

and is required for male and female gametogenesis in mice (Horn et al., 

2013b). Together with the nuclear lamina, LINC complex forms a structural 

and functional connection between the nucleus and cytoplasm that may be 

important for maintaining nuclear architecture, high-order chromatin 

arrangement (Ding et al., 2007; Sato et al., 2009), nuclear migration (Mosley-

Bishop et al., 1999; Zhang et al., 2009), and proper nuclear anchorage and 

positioning (Luxton et al., 2010). 

 

1.2 Functions of Lamins  

 

The NE was originally thought to largely function as a selective barrier 

to regulate the entry and exit of macromolecules and the nuclear lamina being 
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an inert scaffolding structure providing mechanical support to the nucleus and 

for maintaining nuclear shape. However emerging data now shows that the 

nuclear lamina and INM proteins are also critical to processes such as 

chromatin organization, DNA synthesis, transcription control, cellular 

differentiation, cell migration, signal transduction and cell cycle control. 

Lamins directly and/or indirectly participate in the fundamental functions of 

striated and cardiac muscles, fat, glucose metabolism, bone formation and 

even aging and cancer (Burke and Stewart, 2014).  

 

1.2.1 Maintenance of the nuclear architecture 

 

The nuclear lamina is an important determinant of nuclear architecture 

and has an essential role in the NE integrity. It determines the overall shape 

and size of the interphase nucleus and provides structural stability to the 

nucleus. In particular, A-type lamins are the principal contributors to the 

biophysical properties of the lamina, providing mechanical strength and 

stiffness to the nuclei (Lammerding et al., 2006). Loss of lamin A/C in mouse 

embryonic fibroblasts (MEFs) causes the nucleus to lose its rounded 

morphology, and become defective in shape with increased numbers of 

nuclear blebs. This also makes the nucleus more prone to damage arising from 

physical mechanical stress (Lammerding et al., 2004; Sullivan et al., 1999). 

When compared to nuclei in soft tissues (e.g. fat and brain), higher expression 

levels of A-type lamins are detected in stiff tissues (e.g. cartilage and bone) 

with the A-type lamins contributing to nuclear stiffness and preventing nuclear 

distortion in these tissues (Swift et al., 2013). In contrast, fibroblasts deficient 
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in lamin B1, though displaying nuclear deformations, did not lose nuclear 

stiffness (Lammerding et al., 2006).  

 

Besides providing structural support, the NE with the lamina, also 

functions as a scaffold for the proper localization of nuclear membrane 

proteins, NPCs and peripheral chromatin (Burke and Stewart, 2014). In 

particular, A-type lamins mediate the localization and form an interconnected 

network with LEM domain proteins such as emerin, LEM2 and LAP2 at the 

INM (Dechat et al., 2000a). In C.elegans (Ce), Ce-lamin is central in the 

formation of a complex involving Ce-MAN1, Ce-BAF and Ce-emerin as 

RNAi knockdown of Ce-lamin resulted in mislocalization of Ce-emerin, Ce-

MAN1 and Ce-BAF, together with defects in chromatin segregation during 

mitosis and aneuploidy (Liu et al., 2003; Liu et al., 2000; Zheng et al., 2000). 

Loss of lamin A/C causes the relocalization of emerin to the ER (Raharjo et 

al., 2001; Sullivan et al., 1999), with minor effects on MAN1 (Liu et al., 2003; 

Mansharamani and Wilson, 2005), nesprins (Zhang et al., 2005) and abnormal 

aggregation of LAP2α (Pekovic et al., 2007). The lamina anchors NPCs and 

maintains their normal distribution within the NE via the interaction with 

Nup153 (Hutchison, 2002; Lenz-Bohme et al., 1997; Smythe et al., 2000).   

 

Lamins contribute to normal chromatin organization and functions. 

Electron microscopy revealed partial loss of heterochromatin from the lamina 

in MEFs and cardiomyocytes derived from Lmna-deficient mice (Galiova et 

al., 2008; Nikolova et al., 2004; Sullivan et al., 1999). Fibroblasts from 

patients with various LMNA mutations showed detachment or/and 
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redistribution of heterochromatin at the nuclear periphery (Capanni et al., 

2003; Columbaro et al., 2005; Goldman et al., 2004; Sabatelli et al., 2001). 

Expression of LMNA/C and LBR is coordinated in a temporally synchronized 

manner, and important in tethering heterochromatin to the nuclear periphery. 

Indeed, absence of both LMNA/C and LBR results in chromatin inversion, 

with heterochromatin being displaced from nuclear periphery to the interior 

(see Chapter 4) (Solovei et al., 2013).  

 

Lamins also contribute to the regulation of the epigenetic signature of 

chromatin through regulating the stability, localization and/or activity of 

chromatin associated proteins (Scaffidi and Misteli, 2005; Shumaker et al., 

2006). Cells lacking or carrying mutations in LMNA exhibit mislocalization 

and reduced levels of histones binding protein ING1 (inhibitor of growth 1) 

(Han et al., 2008) and RBBP4/7 (retinoblastoma binding protein 4/7) 

(Pegoraro et al., 2009). Furthermore, displacement of chromosome 18 was 

also observed in cells with LMNA mutations (Meaburn et al., 2007) and 

Lmnb1-null MEFs (Malhas et al., 2007), suggesting that the lamins play an 

important role in chromosome positioning and may consequently impact 

transcriptional regulation of genes located on such chromosomes. 

 

1.2.2 Cytoskeleton organization and function 

Lamins interacts with the LINC complex consisting of the SUN/KASH 

domains to the maintain nuclear shape and cytoskeleton organization (Tzur et 

al., 2006). This connection is essential in establishing connections between the 



19 

 

nucleoskeleton and cytoskeleton through the binding to actin, microtubules, 

and cytoplasmic intermediate filaments (Burke and Stewart, 2014). Mutations 

in lamins affect localization of SUN/KASH proteins and cellular behavior. For 

example, LmnaSul-/- MEFs showed defective nuclear mechanotransduction, 

attenuated NF-kB regulated gene transcription (Lammerding et al., 2004), 

reduced mechanical stiffness and cytoskeletal disorganization (Broers et al., 

2005). Loss of Lmna also resulted in the mislocalization of NE-bound Sun2 

and since the ONM localization of Nesprin 2 is dependent on SUN domains, 

the loss of Lmna may also affect nesprin localization to the ONM (Crisp et al., 

2006). When LmnaSul+/- MEFs expressing Lmna point mutations were exposed 

to mechanical strain in vitro, they displayed greater deformities and impaired 

nuclear stability compared to LmnaSul+/- MEFs expressing wild-type Lmna. 

Loss of one copy of Lmna allele is therefore enough to induce defects in the 

maintenance of proper nucleo-cytoskeleton connection (Zwerger et al., 2013). 

The nuclear lamina therefore contributes to the maintenance of physical and 

functional connections throughout the cell.  

 

1.2.3 Involvement in cellular signaling and functions 

 

Other than merely maintaining nuclear integrity, the lamina also has 

complex roles in the maintenance of fundamental cellular physiology. Lamins 

are implicated in DNA replication and transcription, regulation of gene 

expression and signaling, apoptosis, and maintenance of genomic stability 

(Andres and Gonzalez, 2009; Gerace and Burke, 1988; Goldman et al., 2002; 

Moir et al., 1994; Stuurman et al., 1998; Sullivan et al., 1999).  
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1.2.3a Lamins in DNA replication 

 

Roles of lamins in DNA replication surfaced when lamin B1 was found 

at proliferating cell nuclear antigen (PCNA) positive replication foci in late S-

phase (Moir et al., 1994) while lamin A localized to replication sites in early 

S-phase (Kennedy et al., 2000). Experiments using Xenopus egg interphase 

extracts to study nuclear assembly showed that nuclei assembled in a lamin-

depleted extract were unable to replicate their DNA (Meier et al., 1991; 

Newport et al., 1990). When dominant negative Lmna mutants were added to 

Xenopus interphase nuclear extracts, redistribution of endogenous lamins into 

intranuclear foci and inhibition of DNA replication were observed (Ellis et al., 

1997; Spann et al., 1997), with lamin A being critical during the chain 

elongation phase of replication (Moir et al., 2000). Lmna-null MEFs showed 

defective DNA replication and introduction of lamin A in the mutant cells 

restored the normal rate of DNA replication to that of WT cells (Johnson et al., 

2004).  

 

1.2.3b Lamins in gene regulation 

 

B-type lamins bind to RNA polymerase II (pol II) to regulate basic 

processes of mRNA synthesis (Spann et al., 2002). Both RNAi inhibition of 

LMNB1 (Tang et al., 2008) or overexpression of LMNA/C in Hela cells 

(Kumaran et al., 2002) caused a significant decrease in pol II transcription. A-

type lamins may bind the zinc finger transcription factor MOK2 (Dreuillet et 

al., 2002), sterol response element binding protein SREBP1 (Lloyd et al., 
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2002) and c-Fos (Ivorra et al., 2006) to regulate transcription. Lamin A/C is 

important in the stability, localization and activity of Rb, a tumour suppressor 

protein which restricts the cell's ability to replicate DNA by preventing its 

progression from the G1 to S phase by repression of E2F gene activity 

(Johnson et al., 2004; Ozaki et al., 1994). Loss of A-type lamins and/or LAP2α 

in MEFs results in the loss of Rb activity and an accelerated S-phase entry 

(Johnson et al., 2004; Markiewicz et al., 2002). Loss of lamin A also affects 

downstream effects of TGF-β signaling via alteration of Rb phosphorylation 

and nuclear protein phosphatase 2A (PP2A) resulting in hyperproliferation of 

MEFs (Van Berlo et al., 2005). Lamin A may also regulate transcription 

through its interaction with MAN1, which binds and inhibits SMADs 2/3/4, 

disrupting TGF-β/BMP signaling (Bengtsson, 2007; Pan et al., 2005; Van 

Berlo et al., 2005). In the Lmna∆9/∆9 mouse line which expresses a truncated 

and farnesylated form of lamin A (progerin), MAFs exhibit reduced 

proliferative capacity and impaired extracellular matrix formation due to 

reduced transcriptional activity of Wnt signaling components Tcf-1 and Lef1 

(Hernandez et al., 2010). 

 

By tethering reporter genes to emerin and Lap2β to monitor their 

subnuclear localization, it was suggested that the lamina participates in the 

repositioning of genes to the lamina, which then leads to partial to full 

transcriptional repression (Finlan et al., 2008; Reddy et al., 2008). Conversely, 

tethering lamin B1 showed that the nuclear lamina may not be a 

transcriptionally repressive environment (Kumaran and Spector, 2008).  
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Taken together, the lamina contributes to signaling platforms at both 

nuclear periphery and nucleoplasm by providing binding sites for regulatory 

molecules such as transcription cofactors and by creating an environment of 

active and inactive transcriptional regions through gene repositioning (Burke 

and Stewart, 2006; Wilson and Foisner, 2010).  

 

1.2.3c Regulation of genomic stability 

 

NE components are also important for proper cell proliferation and 

mitosis. Disruption of lamins and its interacting partners such as emerin, BAF 

and MAN1 can result in abnormal mitosis, defective chromosomal segregation 

and cell death (Liu et al., 2003; Zheng et al., 2000). Loss of lamin A/C in 

MAFs results in aneuploidy, increased frequency of chromosome and 

chromatid breaks, telomere shortening, defects in telomere structure and 

function and defective DNA repair mechanisms as A-type lamins may be 

important for the recruitment of DNA repair proteins such as p53 binding 

protein 1 (53BP1), BRCA1 and Rad51 to the sites of DNA damage (Gonzalez-

Suarez et al., 2009b; Redwood et al., 2011). Fibroblasts from patients with a 

truncated form of LMNA (progerin) exhibit increased genomic instability such 

as nuclear defects, abnormal chromatin structure and increased DNA damage 

(Bridger and Kill, 2004; Goldman et al., 2004). MEFs and bone marrow cells 

from Zmpste24-deficient mice, a model of premature aging due to disrupted 

PTM of lamin A, also show increased DNA damage and sensitivity to DNA-

damaging agents, delayed checkpoint response and compromised DNA repair 

due to impaired recruitment of 53BP1 and Rad51 to sites of DNA lesions (Liu 
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et al., 2005) and defective chromatin remodeling after DNA damage (Liu et 

al., 2013).  

 

Apoptosis is the process of programmed cell death. Characteristic 

hallmarks include cell shrinkage, blebbing, DNA fragmentation, presence of 

micronuclei and chromatin condensation. During apoptosis, chromatin 

condensation is followed by proteolytic lamin degradation and DNA 

fragmentation (Neamati et al., 1995; Oberhammer et al., 1994). The presence 

of degradation-resistant lamins delayed apoptosis, indicating that lamins are 

important in facilitating cellular apoptotic events (Rao et al., 1996).  

 

In fibroblasts lacking lamin A/C, the nuclear lamina is weakened 

causing the nuclear envelope to be more susceptible to tearing by ROCK 

I/Rho kinase compared to WT fibroblasts. This indicates that both a weakened 

lamina and an intact cytoskeletal actin-myosin-based contraction are required 

for disruption of nuclear integrity during apoptosis (Croft et al., 2005). In 

Lmna-null mice, spermatocytes exhibited characteristics of apoptosis leading 

to impaired spermatogenesis (Alsheimer et al., 2004) whereas fibroblasts 

subjected to mechanical stress displayed increased nuclear deformation and 

defective NF-κB regulated transcription which has anti-apoptotic roles 

(Lammerding et al., 2004)..  

 

Introduction of FACE1/Zmpste24 siRNA to HeLa cells resulted in 

accumulation of prelamin A and cells displayed apoptotic phenotypes such as 

nuclear hyperlobulations, increased frequency of micronuclei and mitotic 
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arrest (Gruber et al., 2005). Dermal fibroblasts from patients with various 

different LMNA mutations also displayed increased micronuclei and apoptosis 

(Meaburn et al., 2007). These studies show that mutations in LMNA result in 

nuclear deformities, dysregulated signaling pathways culminating to 

apoptosis, reinforcing the importance of lamin A in the maintenance of 

genomic stability and its potential role in tumorigenesis.  

 

1.2.3d Regulation of adult stem cell differentiation 

 

While B-type lamins are ubiquitously expressed in all cell types, A-

type lamins are absent or expressed in very low levels in ESCs and later 

upregulated in differentiated cell types, indicating that A-type lamins are 

critical in postnatal tissue homeostasis in both mouse and human 

(Constantinescu et al., 2006). An emerging body of evidence suggests that A-

type lamins are involved in regulating cell type-specific gene expression and 

adult stem cells differentiation (Gotzmann and Foisner, 2006; Pekovic and 

Hutchison, 2008).  

 

Human and mouse progeria fibroblasts exhibit accelerated growth at 

early passage but undergo premature senescence at later passages (Bridger and 

Kill, 2004; Mounkes et al., 2003). Introduction of Lmna mutants (R453W) in 

mouse C2C12 myoblasts significantly inhibited differentiation into myotubes 

while overexpression of WT lamin A delayed the process (Favreau et al., 

2004). In adipocytes, lamin A acts as a differentiation antagonist as Lmna-null 

mouse fibroblasts differentiated into adipocytes more readily (Boguslavsky et 
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al., 2006). In human mesenchymal stem cells (hMSCs), lack of lamin A/C 

inhibited osteoblast differentiation but instead favoured adipocyte 

differentiation (Akter et al., 2009). Furthermore, expression of progerin in 

patients’ fibroblast may activate the Notch signaling pathway, resulting in 

accelerated aging and progressive deterioration of tissue functions (Scaffidi 

and Misteli, 2008). However, the components of the Notch signaling pathway 

were not affected when induced pluripotent stem cells (iPSC) differentiated 

derivatives from HGPS (Hutchinson-Gilford Progeria Syndrome) dermal 

fibroblasts were analyzed (Zhang et al., 2011).  

 

Zmpste24-null mice exhibit increased numbers, but with a reduced 

proliferative capacity of epidermal stem cells in their skin, aberrant nuclear 

structure in the bulge cells and increased apoptotic hair bulb cells. Wnt 

signaling was also impaired in Zmpste24-null mice as both total and activated 

(nuclear bound) β-catenin were decreased and cyclin D1, a target of the Wnt/ 

β-catenin pathway, was also significantly reduced (Espada et al., 2008). 

Disrupted Wnt signaling was also present in cells derived from a progeriod 

mouse model and in HGPS progeria fibroblasts (Hernandez et al., 2010). 

 

Increases in the progenitor cells proliferation were detected in various 

tissues such as skin, colon, skeletal muscle and in the hematopoietic system of 

LAP2α-null mice (Gotic and Foisner, 2010; Gotic et al., 2010; Naetar and 

Foisner, 2009; Naetar et al., 2008). Loss of LAP2α ameliorates the muscular 

dystrophy resulting from Lmna loss possibly through promoting muscle 

growth, due to increased Smad activity, suggesting an involvement of a 
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complex containing both lamin A, LAP2α and Smads in the differentiation of 

tissue progenitor cells and tissue homeostasis (Cohen et al., 2013). 

 

Collectively, these reports indicate that lamin A participates in adult 

stem cell homeostasis and Lmna mutations cause dysfunction in maintenance 

and differentiation of epidermal, adipogenic and muscle stem cells via 

disruption of key signaling pathways.  

 

1.3 Diseases associated with the nuclear lamina 

 

The interest in studying the functions of the nuclear lamina was stimulated by 

the findings that approximately 30 different inherited diseases affecting 

different organs and tissues had been reported (Worman, 2012; Worman et al., 

2010). Defects in nuclear envelope proteins and lamins, including defective 

post-translational processing of prelamin A, give rise to a wide variety of 

diseases including muscular dystrophy, lipodystrophy, neuropathy and 

progeroid syndromes. These diverse and often severe genetic disorders are 

collectively called the ‘laminopathies’ (when mutations arise in genes 

encoding lamins) or ‘nuclear envelopathies’ (when mutations arise from genes 

encoding INM and/or NPC proteins) (Worman et al., 2010).  
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Figure 1.3: Mutations in the LMNA gene give rise to a group of severe diseases 
known as laminopathies. Over 460 different and randomly distributed mutations 
have been identified in LMNA, resulting in diseases affecting various tissues such as 
the skeletal muscles, cardiac muscles, fat distribution and peripheral nerves. Diagram 
reproduced with permission (Burke and Stewart, 2006). 
 

1.3.1 Laminopathies  

The most significant finding that has catalyzed the increased interest in 

the lamins has been the discovery that some 13 different diseases are caused 

by over 460 different mutations throughout the LMNA gene (Worman, 2012) 

(Fig. 1.3). LMNA has the largest and most diverse number of disease-linked 

mutations in the human genome (Burke and Stewart, 2013). These mutations 

are usually missense mutations scattered across the LMNA gene causing the 

expression of mutated LMNA proteins that have undergone a single amino 

acid exchange. The diseases associated with mutations in lamins can be 

classified as primary or secondary laminopathies when mutations arise in 
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LMNA or ZMPSTE24 gene respectively (Stewart et al., 2007a) and grouped 

into three broad classes based on the affected tissues.  

 

The first and largest group of laminopathies comprises 60% of all 

reported cases and primarily affects striated muscle function. Autosomal-

dominant Emery-Dreifuss muscular dystrophy (AD-EDMD) is characterized 

by early joint contractures of the elbows and posterior neck, rigidity of the 

spine, progressive muscle weakness and wasting in the upper arms and lower 

legs, and dilated cardiomyopathy which eventually results in heart failure 

(Bonne et al., 2000; Muchir and Worman, 2007). Limb-girdle muscular 

dystrophy type 1B (LMG1B) patients suffer from slow progressive muscle 

weakness in proximal skeletal muscles and dilated cardiomyopathy (Muchir et 

al., 2000) while isolated Dilated Cardiomyopathy 1A (DCM) patients present 

cardiovascular defects but minimal to no effects on skeletal muscle (Fatkin et 

al., 1999). Charcot-Marie-Tooth syndrome type 2B1 (CMT2B1), a form of 

peripheral neuropathy that results in demyelination of motor nerves and 

muscle wasting of the limbs, is also included in this first group (Chaouch et 

al., 2003; De Sandre-Giovannoli et al., 2002). 

 

The second group of laminopathies comprises of Dunnigan-type 

familial partial lipodystrophy (FPLD) and Mandibuloacral dysplasia (MAD). 

The development, homeostasis and distribution of adipose tissues are 

primarily affected in this group of laminopathies. FPLD is autosomal-

dominantly inherited with clinical features such as a marked acral loss of 

subcutaneous white adipose tissue with increased accumulation around the 
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neck and trunk. It usually manifests with the onset of puberty suggesting that 

hormonal changes may participate in the initiation of the disease. 

Hyperlipidemia, insulin resistance followed by type 2 diabetes and increased 

susceptibility to atherosclerotic heart disease subsequently develops 

(Vigouroux et al., 2000).  Approximately 90% of mutations that cause FPLD 

are due to a missense mutation in exon 8 of LMNA and lead to arginine 

substitution that changes the surface charge of the Ig-like fold domain in the 

carboxyl tail of LMNA (Cao and Hegele, 2000; Shackleton et al., 2000). MAD 

is an autosomal-recessively inherited condition that causes abnormalities in fat 

distribution and bone formation. Patients present loss of adipose tissues in 

their extremities with excessive fat accumulation around the neck and face, 

delayed closure of the cranial sutures, joint contractures and retarded growth. 

94% of mutations causing MAD are a missense mutation (R527H) (Novelli et 

al., 2002). 

 

The third group of laminopathies is principally comprised of 

Hutchinson-Gilford Progeria Syndrome (HGPS) and atypical Werner’s 

syndrome. They affect multiple systems including the skin, hair, skeleton and 

especially the vascular system with signs of accelerated aging or progeria 

syndromes (Burke and Stewart, 2002; Worman and Bonne, 2007). HGPS is a 

rare (1 in 4 million births), dominantly inherited disease where patients show 

severe growth retardation, loss of subcutaneous fat, alopecia, skin atrophy, 

wrinkling, osteoporosis and poor muscle development with an average 

lifespan of 12 to 15 years, due to fatal arteriosclerotic vascular disease 

(Merideth et al., 2008; Sarkar and Shinton, 2001). The majority of HGPS 
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cases are due a de novo point mutation in exon 11 of the LMNA gene 

(c.1824C>T, p.G608G), which introduces a cryptic splice site resulting in an 

in-frame deletion of 50 amino acids. Consequently, a truncated and 

farnesylated LMNA protein known as progerin is synthesized while LMNC is 

unaffected (De Sandre-Giovannoli et al., 2003; Eriksson et al., 2003). Atypical 

Werner’s syndrome arises from missense mutations mostly towards the 5’ end 

of the LMNA gene. They are characterized by age-related features such as 

thinning and graying hair, skin atrophy, myopathy, atherosclerosis and 

mandibuloacral dysplasia symptoms such as short stature, lipodystrophy, and 

osteoporosis (Bonne and Levy, 2003; Chen et al., 2003).  

 

Disruption of prelamin A processing to mature lamin A by other 

mutations also results in progeroid disorders and these diseases are classified 

as secondary laminopathies as they involve mutations in metalloproteinase 

ZMPSTE24/FACE1 (Burke and Stewart, 2006). Complete loss of ZMPSTE24 

causes a rare disorder known as Restrictive dermopathy (RD), a perinatal fatal 

disorder where newborns present severe symptoms such as tight, rigid and 

erosive skin, epidermal hyperkeratosis, pulmonary hypoplasia, bone density 

reduction and sparse eyebrows and eyelashes. These newborns usually die 

within the first week of birth. A study on RD patients revealed that 2 out of 9 

patients showed a heterozygous splicing mutation in LMNA, leading to a 

truncated, non-functional prelamin A protein. In the other patients, mutations 

were found in ZMPSTE24, resulting in loss of mature LMNA and 

mislocalization of lamin B1 and emerin (Navarro et al., 2004).  

 



31 

 

It is also interesting to note that while different mutations in LMNA 

manifest diverse pathologies, only one disease adult onset autosomal dominant 

leukodystrophy (ADLD) has been linked to defective duplication of LMNB1 

(Padiath et al., 2006). ADLD is characterized by symmetric demyelization of 

the central nervous system. Similarly, only one adipose tissue disorder, 

Acquired Partial Lipodystrophy, has been linked to mutations in LMNB2 

(Hegele et al., 2006). There are no reports of human diseases due to loss of 

function mutations in lamin B genes, hence it is possible that complete 

absence of either B-type lamins is embryonic lethal (Vergnes et al., 2004). One 

study identified 2 unique missense mutations in the LMNB1 gene in patients 

with neural tube defects (NTD). These mutations resulted in compromised 

stability of the LMNB1 protein, and therefore may contribute to the defects in 

CNS development in these patients (De Castro et al., 2012; Robinson et al., 

2013).   

 

1.3.2 Nuclear envelopathies 

Nuclear envelopathies refer to diseases that arise due to defects in 

other proteins in the NE, such as emerin, MAN1, LBR and nesprins. X-linked 

Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in 

Emerin gene (EMD) and patients present very similar clinical features to AD-

EDMD patients (Bione et al., 1994). Mutations in LEMD3 gene that encodes 

for MAN1 cause disorders such as Buschke-Ollendorff Syndrome with an 

increase in bone density resulting in osteopoikilosis, a form of sclerosing bone 

dysplasia which also affects the skin in the form of connective tissue nevi 
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(skin growths) (Chigira et al., 1991; Hellemans et al., 2004). Melorheostosis 

also occurs and is characterized by excessive growth of the tubular bone 

cortex accompanied by abnormalities of adjacent soft tissues such as joint 

contractures, scleorodermatous skin lesions, muscle atrophy and hemangiomas 

(Rozencwaig et al., 1997). Mutations in BAF have been linked to atypical 

Nestor-Guillermo Progeria Syndrome (NGPS) where patients exhibit multiple 

system disorders such as dry atrophic skin, lipoatrophy and osteoporosis 

(Cabanillas et al., 2011; Puente et al., 2011). It is plausible that mutations in 

these INM proteins disrupt the interaction with lamin A/C causing diseases 

with clinical phenotypes similar to that of laminopathies.  

 

LBR has been implicated in regulating sterol metabolism (Kelley, 

2000; Porter, 2003; Waterham et al., 2003) and chromatin organization 

(Hoffmann et al., 2002; Solovei et al., 2013). Mutations in LBR can lead to 

mild or severe diseases depending on the site of mutation. Heterozygous LBR 

mutations lead to Pelger-Huët anomaly, a benign condition associated with 

hypolobulation of granulocyte nuclei and altered chromatin structure (Best et 

al., 2003; Hoffmann et al., 2002) while the homozygous form of the same 

disease results in more severe blood phenotype and clinical manifestations 

such as impaired cognitive development, epilepsy and heart defects 

(Hoffmann et al., 2007; Oosterwijk et al., 2003). Homozygous LBR mutations 

lead to Greenberg Dysplasia, also known as hydrops-ectopic calcification-

moth-eaten (HEM) skeletal dysplasia, due to a “moth-eaten” ectopic skeletal 

calcifications clinical presentation which is associated with lack of 3-beta-

hydroxysterol delta-14 reductase. Clinical manifestations include dwarfism, 
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polydactyly, disorganization of cartilage and it is characterized by fetal 

lethality due to fetal hydrops (Waterham et al., 2003). Reynolds syndrome, an 

autoimmune disorder, can also be caused by missense mutations in LBR 

resulting in primary biliary cirrhosis and limited cutaneous systemic sclerosis 

(Gaudy-Marqueste et al., 2010).  

 

Mutations in SYNE1 and SYNE2, genes encoding Nesprins 1 and 2 

respectively, cause a form of EDMD (Zhang et al., 2007) and cerebellar ataxia 

(Gros-Louis et al., 2007). A truncated form of the SYNE4, gene encoding for 

Nesprin 4, results in a progressive sound-induced high frequency hearing loss 

implicating the LINC complex in being essential for hearing (Horn et al., 

2013a).  

 

1.3.3 Mechanisms of disease 

 

Studying the laminopathies has stimulated much interest into the roles 

of lamins and other INM proteins, but the complete understanding of the 

disease mechanisms still lags. The nuclear lamina functions as a large scaffold 

and provides docking sites and an organization center for chromatin and other 

INM proteins. A straightforward explanation of the disease mechanism is that 

mutations in LMNA can disrupt the assembly of lamins into the lamina and 

when cells are exposed to physical stress, nuclear fragility and cellular damage 

happen culminating in cell death (Lammerding et al., 2004; Prokocimer et al., 

2009). Furthermore, mutations in LMNA/Lmna lead to changes in localization 

and expression of other NE proteins such as emerin (Dechat et al., 2000b; 
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Raharjo et al., 2001; Sullivan et al., 1999), LAP2α (Dorner et al., 2007; 

Pekovic et al., 2007), LINC complex (Crisp et al., 2006; Zhang et al., 2005) 

and chromatin (Capanni et al., 2003; Columbaro et al., 2005; Goldman et al., 

2004; Sabatelli et al., 2001; Solovei et al., 2013), thus disrupting the NE 

composition, nucleo-cytoskeleton network (Zwerger et al., 2013) and 

chromosome positioning (Meaburn et al., 2007). Hence, mutations in lamin A 

and/or other INM proteins resulting in disruption of lamin A complexes may 

be the molecular cause of laminopathies. 

 

However, a large body of evidence revealed that lamin A have roles far 

beyond nuclear scaffolding, and mutations in lamin A can affect various 

nuclear functions such as cell cycle progression and differentiation via 

disruption of Rb (Johnson et al., 2004; Markiewicz et al., 2002; Ozaki et al., 

1994), Wnt or TGF-β signaling (Dechat et al., 2007; Hernandez et al., 2010; 

Van Berlo et al., 2005). Since mutations in INM proteins such as MAN1 cause 

enhanced TGF-β signaling (Cohen et al., 2007; Hellemans et al., 2004), it is 

also possible that mutations in lamin A and emerin may cause diseases by 

altering MAN1 function in certain cell types resulting in tissue-specific 

alterations in TGF-β signaling (Bengtsson, 2007; Van Berlo et al., 2005). Loss 

of LAP2α leads to dysregulation of pRb and affects cell cycle control in 

several cell types such as MAFs, EDMD and HGPS human fibroblasts (Cohen 

et al., 2013; Dorner et al., 2007; Gotic et al., 2010; Naetar et al., 2008; Pekovic 

and Hutchison, 2008). Accumulation of prelamin A caused by the loss of 

Zmpste24, as well as progeric mutations, impaired Wnt signaling and altered 
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the proliferative capacity and function of epidermal progenitor stem cells 

(Espada et al., 2008; Hernandez et al., 2010). 

 

Taken together, lamin A/C together with its potentially large number of 

interactors, may well be important in the maintenance of an intricate balance 

between cell proliferation, self-renewal and differentiation. Hence, mutations 

in the nuclear lamina and/or lamin associated proteins may disrupt several 

aspects of normal cellular physiology culminating in the drastic phenotypes in 

the laminopathies. However, the understanding of tissue-specific functions of 

lamin A and tissue-specific disease mechanisms in laminopathies still lags thus 

I hope to address this aspect in this thesis.  

 

1.4 Lamins and cancer 

 

Emerging data has indicated that changes in the nuclear lamina not 

only cause rare occurring laminopathies but may contribute to other diseases 

particularly cancer (Worman and Foisner, 2010). Alterations in nuclear 

morphology and architecture are associated with human diseases and are 

classic hallmarks of cancer cells. Morphological changes in nuclear shape, 

size, lobulations and heterochromatin appearance are commonly used to 

identify and evaluate cancer cells, and determine the stage of tumor 

development to help make a prognosis (Zink et al., 2004).  

In recent years, increased interest into the roles of lamins and changes 

to nuclear structure in malignancy has arisen, since cells with defective lamins 
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show altered nuclear morphology such as misshapen nucleus, increased 

incidence of nuclear blebs and lobulations (Broers et al., 1993; Goldman et al., 

2004; Tilli et al., 2003). Hence, the role of the nuclear lamina in maintenance 

of nuclear architecture and flexibility in relation to cell metastasis (Rowat et 

al., 2013), interactions with cancer gene pathways through regulation of signal 

transduction pathways such as Rb, Wnt and TGF- signaling and role in 

chromosomal segregation and genome stability (Andres and Gonzalez, 2009; 

Broers et al., 2006; Foster et al., 2010; Gonzalez-Suarez et al., 2009a; Zink et 

al., 2004) has led to speculations that nuclear lamins have important roles in 

tumorigenesis (Prokocimer et al., 2009). However, the understanding of 

specific functions of lamins in the transformation of cells to cancer states 

remains an enigma and requires further study.  

 

Alterations, including the absence, reduction, or increase in lamin 

expression and localization, especially lamin A/C, have been reported in 

leukemias (Kaufmann, 1992), lymphomas (Agrelo et al., 2005), lung (Broers 

et al., 1993; Machiels et al., 1995), colon (Belt et al., 2011; Willis et al., 2008), 

skin (Tilli et al., 2003; Venables et al., 2001), ovarian (Capo-chichi et al., 

2011), breast and prostate cancers (Capo-chichi et al., 2011; Helfand et al., 

2012), suggesting that abnormal lamins expression is closely related to 

carcinogenesis. However, analysis of lamin expression patterns in different 

forms of cancer showed that there is no simple trend in expression in one type 

of human cancer, as expression profiles of the lamins change with tumor 

subtypes, differentiation and metastatic stages (Prokocimer et al., 2009). 

Interestingly, even though HGPS patients exhibit dramatically high levels of 



37 

 

DNA damage, only 1 incidence of osteosarcoma (bone cancer), has been 

reported in a progeria patient diagnosed with Werner syndrome (Fernandez et 

al., 2014; Goto et al., 1996).  

 

1.5 Mouse models of Lmna mutations 

 

Over the past 15 years, mouse models had been created by introducing 

the same human mutations into the mouse Lmna gene (as their nucleotide 

sequence are more than 95% conserved) to attempt to mimic the phenotypic 

pathologies. To date, more than 10 lines of mice targeting Lmna have been 

established, many of which present an early postnatal lethality due to 

detrimental effects in their skeletal and cardiac muscles (Stewart et al., 2007a; 

Zhang et al., 2013). These mouse models have provided valuable information 

on effects of mutations in different components of the lamina on various 

tissues and more importantly, the participation of lamins in various signaling 

pathways.  

 

The first Lmna knockout mouse was created by Sullivan and 

colleagues, whereby targeted deletion of Lmna exons 8 to 11 was performed 

via homologous recombination (Sullivan et al., 1999). Homozygous Lmna-

null (LmnaSul-/-) mice developed normally and at birth, did not present any 

distinguishable phenotype that differs from their heterozygous and WT 

littermates. However, at 2-4 weeks, LmnaSul-/- mice showed severe growth 

retardation, weak limbs and stiff walking posture, and had an average lifespan 
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of 3-5 weeks. Histological observations of the musculature of the LmnaSul-/- 

mice revealed dystrophic perivertebral muscles, increased nuclear number 

within muscle fibres and atrophic cardiac myocytes in the heart (Nikolova et 

al., 2004; Sullivan et al., 1999), which closely resembles the human EDMD 

pathology (Bonne et al., 2000; Muchir and Worman, 2007).  

 

Since LmnaSul-/- mice have no or little pathology at birth, it was evident 

that lamin A/C may not be important during embryogenesis but becomes 

increasingly crucial in the postnatal control of tissue homeostasis. Moreover, 

LmnaSul-/- mice displayed only muscle and heart tissue-specific pathologies 

despite lamin A/C being ubiquitously expressed in most adult tissues (Sullivan 

et al., 1999). Striated muscle cells are frequently subjected to mechanical 

stress thus in Lmna-deficient cells, increased nuclear deformation and cell 

injury culminating to cell death was observed (Lammerding et al., 2004). 

Although mice heterozygous for Lmna appear phenotypically normal, they 

developed dilated cardiomyopathy after 1 year (Wolf et al., 2008). However, a 

recent reexamination of the LmnaSul-/- mice revealed that it is not completely 

deficient for A-type lamins as a truncated form of Lmna gene product (lamin 

AΔ8-11) at both transcript and protein level was detected at very low levels in 

the LmnaSul-/- mice. It was suggested that this truncated form of lamin A could 

act as a toxic molecule with a gain-of-function effect, similar to progerin and 

farnesylated prelamin A, but to a lesser extent based on comparing phenotypes 

of LmnaSul-/- mouse to another mouse model (LmnaHG/+) with progerin (Jahn et 

al., 2012).  
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Other Lmna-null mouse lines include Lmna∆K32/+ (Bertrand et al., 

2012), LmnaGt/- (Kubben et al., 2011) and Disheveled Hair and Ear (Dhe) - a 

spontaneous Lmna L52R mutation (Odgren et al., 2010). These Lmna-null 

mice develop normally till birth but within 2 weeks of postnatal development, 

start to present growth retardation, skeletal deformities, defective skeletal and 

cardiac muscle development, and die by 3 weeks of birth. Heterozygous Dhe 

mice exhibit mild skin and hair anomalies such as sparse and scruffy hair coat, 

smaller ear pinnae, flaky skin, abnormal skull and bone morphology inferior 

and reduced body fat while homozygous null mice exhibit multinucleated and 

apoptotic epidermal cells in the skin along with defective skull growth and 

mineralization deficiencies (Odgren et al., 2010).  

 

H222P (Arimura et al., 2005) and N195K (Mounkes et al., 2005) 

mutant mice mimic human laminopathies AD-EDMD and DCM respectively. 

H222P mice exhibit a stiff walking posture, cardiac fibrosis with conduction 

defects and die around 9 months of age. Cardiac and skeletal muscles from 

these mice showed accumulation of phosphorylated Smad2 and Smad3 in their 

nuclei (Arimura et al., 2005). Mice homozygous for N195K mutation do not 

exhibit skeletal muscle defects but die around 3 months of age due to cardiac 

conduction defects and arrhythmia (Mounkes et al., 2005). In a model where 

mice express only lamin C but not lamin A, mutant mice do not display any 

overt skeletal, cardiac or skin abnormalities, indicating that the presence of 

either, not both, lamin A or C is essential for survival (Fong et al., 2006). 
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A number of different mutant mouse lines had also been established as 

models for progeria. The Lmna∆9/∆9 mouse line, to some extent mimics the 

most common form of HGPS, by introducing a splicing defect in Lmna intron 

9, resulting in the deletion of Lmna exon 9 and consequential in-frame 

deletion of 40 amino acids resulting in a truncated and farnesylated lamin A. 

Lmna∆9/∆9 mice are grossly normal at birth but gradually display pathological 

phenotypes associated with progeria such as growth retardation, weight loss, 

lipodystrophy, alopecia, and bone defects. These mice did not survive beyond 

4 weeks after birth (Mounkes et al., 2003).  

 

Lmna∆9/∆9 MAFs show misshapen nuclei, accelerated senescence and 

death, similar to phenotypes characteristic to HGPS patients’ fibroblasts 

(Bridger and Kill, 2004; Mounkes et al., 2003). Reduced expression of 

extracellular matrix components and disrupted Wnt signaling were observed in 

these MAFs (Hernandez et al., 2010). Increased levels of SUN1 are present in 

Lmna-null MEFs and it accumulates at the NE and Golgi causing abnormal 

nuclear shape and blebs. Loss of SUN1 rescues the weight loss and shortened 

lifespan in both LmnaSul-/- and Lmna∆9/∆9 mice as compound mutants exhibit a 

longer lifespan possibly due to a rescue of cardiac and skeletal muscle 

pathologies (Chen et al., 2012). Another mouse model of progeria is the 

Zmpste24-null mouse that unlike humans, do not develop RD or die at birth. 

Mice deficient in Zmpste24 are normal at birth but gradually display growth 

retardation, reduced incisor development, hair loss, skeletal muscle weakness, 

bone deformities leading to fractured ribs and they eventually die by 6 months 

of age (Navarro et al., 2005; Pendas et al., 2002).  
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Although current mouse models of laminopathies have provided 

tremendous amount of information in the molecular mechanisms of lamin 

A/C, these constitutive Lmna knockout mouse models exhibit early postnatal 

lethality due to severe phenotypes in the cardiac and skeletal muscles 

(Bertrand et al., 2012; Mounkes et al., 2003; Mounkes et al., 2005; Sullivan et 

al., 1999; Yang et al., 2006). Hence it is difficult to study the manifestation of 

disease phenotypes in other tissues and cell types. The short lifespan of the 

current models also hinder the possibility to study the association of lamin 

A/C to cancer. Therefore, it is essential to develop a conditional, true Lmna-

null mouse model to better understand the roles of lamin A/C in homeostasis 

and development of tissues, maintenance of genomic stability and 

involvement in cancer. Through tissue-specific deletion of Lmna, it will be 

more insightful to study the roles of lamin A/C in tissues with less mechanical 

stress and a milder deleterious effect.  

 

1.6 Cre-lox technology 

 

The Cre-lox technology was used to create conditional Lmna tissue-

specific mouse lines. It is now a well-characterized tool that allows close 

regulation of the location and timing of genetic manipulation in yeast, 

bacteria, mammalian cells and mice (Araki et al., 1997).  It is based on the 

ability of the P1 bacteriophage cyclization recombination (Cre) recombinase 

gene to catalyze recombination between two 34 base pair (bp) loxP sites 

(Sauer and Henderson, 1988; Sternberg and Hamilton, 1981). By breeding a 
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Cre mouse line (containing a Cre recombinase transgene under the control of a 

ubiquitous or tissue-specific promoter) to a loxP line (containing a pair of loxP 

sites flanking critical exons of the gene of interest), “Cre-lox” mice are 

produced. The orientation and location of the loxP sites determine whether the 

floxed gene of interest is deleted, inverted or translocated while the regulatory 

elements that are driving the Cre recombinase determine the location and 

timing of gene recombination. A general (constitutive) or tissue-specific 

(conditional) promoter drives the activation of Cre to produce constitutive or 

tissue-specific knockouts. There are also inducible Cre mice where deletion of 

the target gene occurs by introducing inducing agents such as doxycycline or 

tamoxifen at desired developmental stages (Nagy, 2000; Utomo et al., 1999).  

 

Cre-lox conditional mice therefore offer the opportunity to study 

tissue-specific cell functions of Lmna as it allows the analysis of the 

consequences of deleting Lmna in a specific cell type, which may be otherwise 

obscured by the early lethality of the mice, which occurs when the Lmna is 

deleted in all tissues.   
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1.7 Aims and objectives 

 

Mutations in LMNA result in laminopathies, a group of diseases which 

show tissue specificities. This has led to the question on how different 

mutations in a single LMNA gene that is almost ubiquitously expressed in 

adult tissues can lead to different tissue-specific diseases. Since mice 

completely null for Lmna usually die between 3-5 weeks after birth due to 

muscular dystrophy and cardiomyopathy (Bertrand et al., 2012; Kubben et al., 

2011; Sullivan et al., 1999), this may not be long enough to allow for 

pathologies to manifest in other tissues. Thus, to increase current 

understanding of the requirement for Lmna in other tissues and the various 

tissue-specific diseases it causes, I sought to employ the Cre-lox system to 

derive mouse lines with tissue-specific deletions of the Lmna gene to 

investigate the physiological roles of Lmna in two highly proliferative tissues: 

the skin and intestinal epithelium.  

 

Furthermore, the availability of a conditional Lmna knockout mouse 

provides a major opportunity to study cancer formation in tissues such as the 

intestinal epithelium and skin epidermis where lamin A/C levels were shown 

to be altered during cancer (Foster et al., 2010). Lamin A/C has important 

roles in nuclear dynamics, chromatin organization, gene regulation and DNA 

repair (Prokocimer et al., 2009; Redwood et al., 2011), all of which are critical 

events that can impact cancer development and progression. Therefore, I 

hypothesized that loss of Lmna may lead to increased tumorigenesis. This 
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thesis aims to test this hypothesis using Lmna mutant mouse lines generated in 

the laboratory. 

 

In this thesis, I report the generation and characterization of a 

conditional Lmna mouse model, which has the flexibility to be crossed with 

ubiquitous or tissue-specific promoter-driven Cre deletors to generate mouse 

lines lacking Lmna in specific tissues. As a start, I determined the success of 

deleting Lmna using a global zona pellucida 3-Cre (Zp3-Cre) deletor and 

characterized this constitutive Lmna knockout mouse line. I aimed to 

investigate the roles of lamin A/C in two tissues characterized by high levels 

of cell turnover: the skin and intestinal epithelium. I bred Villin-Cre (Vil-Cre; 

driven by the villin promoter in the intestinal epithelium) (Madison et al., 

2002) and Keratin 14-Cre (K14-Cre; driven by human keratin 14 promoter in 

the skin epidermis) (Vasioukhin et al., 1999) mice to floxed Lmna mice to 

specifically delete Lmna in the gastrointestinal (GI) epithelium and skin 

epidermis respectively, and studied the effects of its absence thereafter. 

 

Utilizing the non-lethal Lmna∆/∆Vil-Cre mouse model where Lmna is 

ablated in the GI epithelium, I aimed to evaluate the effects Lmna has on the 

morphology and proliferation of normal GI epithelium. Then, to test whether 

loss of Lmna contributes to tumorigenesis or become more resistant to 

formation of intestinal adenomas, I generated Lmna∆/∆/Vil-Cre/ApcMin/+ mice and 

analyzed polyp formation in the mice. 
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Since different mutations in LMNA lead to laminopathies affecting the 

skin, it is evident that lamin A/C has an important role in the proper 

homeostasis of the skin and hair. Therefore, utilizing the non-lethal 

keratinocyte-specific Lmna knockout mice, I aimed to investigate the 

requirement for lamin A/C in epidermal homeostasis and maintenance of 

genomic stability. In particular, I am interested to elucidate the mechanisms of 

lamin A/C in keratinocyte proliferation, skin homeostasis, hair formation, hair 

cycling, and carcinogenesis. To investigate whether Lmna loss accelerates 

tumor formation in skin, I will also perform cutaneous two-stage chemical 

carcinogenesis on Lmna-deficient mice to induce papillomas formation.  

  

In addition, the Lmna∆/∆ and LbrGT/GT mutant mouse lines (also 

generated in our laboratory) were used to study the regulation of chromatin 

organization. Eukaryotic cells contain heterochromatin that underlines the NE 

with the exception of photoreceptor rod cells of nocturnal animals. Rod cells 

lack peripheral heterochromatin and exhibit inversion of euchromatin and 

heterochromatin positions to reduce light loss to the retina and adapt to 

nocturnal vision (Solovei et al., 2009). Rod cells with inverted nuclei lack both 

LMNA/C and LBR, whereas cells with a conventional chromatin pattern 

express either LBR or LMNA/C, indicating that the presence of either protein 

is enough for proper heterochromatin distribution (Solovei et al., 2013).  

 

Therefore to expand our knowledge on how NE proteins LMNA/C and 

LBR can regulate chromatin distribution, a collaboration was established with 

Dr. Irina Solovei to investigate chromatin organization in the Lmna∆/∆ and 
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LbrGT/GT mouse lines. We sought to understand the spatio-temporal expression 

patterns of LMNA/C and LBR in different mammalian cell types and whether 

they serve distinct functional roles in terms of cellular differentiation. Then, 

we also investigated if absence of both LMNA/C and LBR results in nuclear 

inversion in cell types other than rods and ultimately hope to elucidate the 

mechanisms of LMNA/C and LBR in the regulation of chromatin organization 

in mammalian cells.    
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Chapter 2 - Materials and Methods 

  

2.1 Mouse husbandry 

 

Mice were kept and bred in cages with 12 hour light periods at the 

animal facility in Biological Research Centre, A-STAR, Singapore. Mice were 

supplied with Altromin standard diet pellets and drinking water ad libitum. 

Sex determination and weaning of pups were performed from postnatal day 20 

(P20) onwards, and 2mm tail tip tissues were collected for genotyping. Mice 

were sacrificed by CO2 euthanasia when tissues were harvested. All 

experiments in this thesis were approved by the Institutional Animal Care and 

Use Committee (IACUC) review board.  

 

2.2 Generation of Lmna∆/∆ knockout mice 

 

To obtain global deletion of the floxed Lmna allele (LmnaFL/FL), 

LmnaFL/FL mice were bred to mice with Cre recombinase driven by the 

regulatory sequences of the mouse zona pellucida 3 (Zp3) gene (JAX stock 

003651) (de Vries et al., 2000). Subsequently, female mice with LmnaFL/+ Zp3-

Cre+ alleles were bred to C57BL6 WT mice that then give heterozygous 

(Lmna∆/+) offspring. In the third round of mating, heterozygous male and 

female breeding were set up to obtain constitutive homozygous knockout 

(Lmna∆/∆) mice. The colony is subsequently maintained by mating 

heterozygous male and female Lmna∆/+ mice. The body weight of the mice 
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was measured at P12-14 and quantitative statistical analysis of body weight 

and survival rate was performed using Graphpad Prism software.  

 

2.3 Genotyping of mutant mice 

 

At weaning, tail tip tissues of the mice were collected and DNA was 

extracted by alkaline lysis. Tail tips were incubated in 25mM NaOH, 0.2mM 

EDTA solution for 30 mins at 95oC followed by neutralization with 40mM 

Tris-HCL solution. To test for the presence of loxP sites (LmnaFL) and deleted 

Lmna allele (Lmna∆), DNA was PCR amplified using MangoMix (Bioline). 

The sequences of primers used for the genotyping are listed in Table 2.1.  

 

2.4 RNA extraction and quantitative real time-PCR (qRT-PCR) 

 

Mouse tissues and cell lines were harvested, put in Trizol® reagent and 

immediately snap frozen.  Total RNA was extracted using QIAGEN RNeasy 

kit according to manufacturer’s instructions. The quality and quantity of total 

RNA was determined with NanoDrop spectrophotometer (Thermo Scientific). 

Subsequently, 10ug of RNA was reverse transcribed to cDNA using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and qRT-

PCR was performed on the 7500 Fast Real-Time PCR system (Applied 

Biosystems) with Fast Sybr Green Master Mix Kit (Applied Biosystems) or 

TaqMan® Fast Universal PCR Master Mix (Applied Biosystems). The 
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sequences of primers used for all the qRT-PCR experiments are listed in Table 

2.2. 

 

2.5 Immunoblot analysis of tissues and cell lines 

 

Mouse tissues and cell lines were harvested, homogenized in RIPA 

lysis buffer (150mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% 

SDS, 50mM Tris, pH 8.0 supplemented with protease inhibitors) and spun at 

13,200g, 10 mins, 4oC. Total cell lysate was subjected to polyacrylamide gel 

electrophoresis (PAGE), transferred to PVDF membrane and blocked with 

Odyssey Blocking Buffer (Li-Cor Biosciences). The membrane was then 

incubated with primary antibodies for 1-2h at room temperature or overnight 

at 4oC. After, the membrane was washed in Tris buffered saline with 0.1% 

Tween 20 (TBST) washing solution and incubated in Odyssey IR Dye 

secondary antibodies for 0.5-1h before visualization on the Odyssey Infrared 

Imaging System (Li-Cor Biosciences). The primary and secondary antibodies 

used for immunoblot analysis are listed in Table 2.3. The primary antibodies 

used for detection of LMNA/C are N-18 (goat, 1:200, Santa Cruz) that is 

specific to an epitope in the first 50 amino acids in LMNA/C. 

 

2.6 Histological studies and immunofluorescence microscopy  

 

Mouse tissues were extracted and fixed in 4% paraformaldehyde (PFA) 

in phosphate buffered saline (PBS) or 10% Neutral Buffered Formalin (NBF) 
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for 16-20h, then dehydrated in 70% for at least 24h and processed through 

conventional tissue processing protocols before they were embedded in 

paraffin (Leica Microsystems). For histological studies, tissue sections (4-

5um) were de-waxed in 100% xylene and rehydrated through sequential steps 

of 100%, 70% and 30% ethanol, then stained in hematoxylin and eosin (H&E) 

and imaged using Zeiss Axio Imager Upright Microscope.  

 

For immunofluorescence, sections were de-waxed in 100% xylene and 

rehydrated through sequential steps of 100%, 70% and 30% methanol before 

washing with PBS. Antigen retrieval was performed in sodium citrate buffer 

(DAKO) in a pressure cooker and quenched in 10mg/ml sodium borohydride 

in PBS for 15 mins. Next, tissue sections were blocked with normal donkey 

serum, incubated with primary antibodies overnight at 4oC. The next day, the 

tissue sections were incubated in secondary antibodies and DAPI for 1h, 

before washing in 100mM copper sulphate dissolved in 50mM ammomium 

acetate buffer and finally, mounted in Prolong-Gold Anti-fade reagent 

(Invitrogen). Washes between and after incubation with antibodies were done 

with PBS (2 x 15mins, rtp). Immunofluorescence images were taken on the 

Olympus LSM510 confocal laser scanning microscope equipped with Plan 

Apo 20x-, 40x-, 63x/1.4 NA oil immersion objective and lasers with excitation 

lines 405, 488, 561 and 594nm.  

 

For immunofluorescence of cryosections, tissues were excised and 

fixed in 4% PFA for 12-24 hr, infiltrated with 30% sucrose, and embedded in 

Jung tissue freezing medium (Leica Microsystems). Cryosections (16-20μm) 
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were prepared and immediately stored at −80°C. Immunostaining was 

performed as described in (Eberhart et al., 2012). Before immunostaining, 

tissue sections were dried at room temperature for 30 min, rehydrated in 

sodium citrate buffer, and subjected to antigen retrieval by heating up to 80-

85°C in a microwave. After antigen retrieval, tissue sections were incubated in 

0.5% Triton X-100 for 1 hr. Primary and secondary antibodies were diluted in 

blocking solution (1% BSA, 0.1% Triton X-100, 0.1% Saponin in PBS) and 

applied for 12-24 hr under glass chambers at room temperature. Washes 

between and after incubation with antibodies were done with 0.01% Triton X-

100, 3 × 30 mins, at 37°C. The primary and secondary antibodies used for 

immunofluorescence are listed in Table 2.3. 

 

2.7 Extraction and cell culture of mouse adult fibroblasts (MAFs) 

 

2 weeks old Lmna∆/∆ mice and their WT littermates were sacrificed and 

all four limbs were cut off, muscles were removed from the bones and washed 

for 20 mins in 2% Penicillin /Streptomycin antibiotic solution, then transferred 

in Hank's Balanced Salt Solution (HBSS). Next, sterile dispase (2.4U/ml) and 

collagenase type II (1%) enzyme solution (1:1 volume to tissue weight) was 

added and tissues were digested at 37oC for 30 mins. Equal volume of DMEM 

supplemented with 10% FBS (D10) was added and the solution was filtered 

through a 70 µm filter, then through a 40 µm sterile filter. Cells were 

centrifuged at 1200 rpm for 5 mins and the pellet was rinsed with D10. Cells 

were cultured in collagen-plated T75 flasks overnight at 37oC. After 2 days, 
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cells were passaged onto new flasks and whenever it reached 70-80% 

confluency.  

 

MAFs were plated onto 100mm petri dishes and harvested when it 

reached required confluency. D10 media was removed and cells were washed 

twice with cold PBS. Total RNA extraction was performed by Trizol® 

extraction and RNAesy kit (QIAGEN) as mentioned in 2.4. For 

immunofluorescence of cells, during passaging, cells were plated onto glass 

cover slips in a 6-well dish. After 2 days, D10 was removed and cover slips 

were fixed with 100% methanol at -20oC followed incubation of primary 

antibodies at room temperature for 1-2h and secondary antibodies and DAPI 

for 30 mins and finally, mounted in Prolong-Gold Anti-fade reagent 

(Invitrogen). Washes after methanol fixation, between and after incubation 

with antibodies were done with PBS (2x, 5mins). The primary and secondary 

antibodies used for immunofluorescence are listed in Table 2.3. 

 

2.8 Generation of the LbrGT/GT mice 

 

To obtain LbrGT/GT mice (Cohen et al., 2008), heterozygous breeding of 

LbrGT/+ mice were set up. The sequences of the primers used for genotyping 

are listed in Table 2.1.  
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2.9 Microscopy and image acquisition and analysis for chromocenters 

 

Single optical sections or stacks of optical sections were obtained 

using Leica TCS SP5 confocal microscope equipped with Plan Apo 63x/1.4 

NA oil immersion objective and lasers with excitation lines 405, 488, 561, 594 

and 633 nm. Dedicated plug-ins in ImageJ program were used to compensate 

for axial chromatic shift between fluorochromes in confocal stacks, to create 

RGB stacks/images and to arrange them into galleries (Ronneberger et al., 

2008; Walter et al., 2006). Chromocenter number in rod cells was scored on 

confocal image stacks using ImageJ program.  

 

2.10 Transcriptome analysis of Lmna∆/∆ and LbrGT/GT myoblast cultures 

 

Myoblasts cultures were derived from limb muscles of P15/P16 WT, 

Lmna∆/∆ and LbrGT/GT mice using the method described in 2.7. Myoblasts were 

collected at passage number 2 at 40-50% confluency to avoid tissue culture 

artifacts. RNA was extracted using Trizol® and QIAGEN RNeasy kit. The 

transcriptomes of two biological replicate knockouts (Lmna∆/∆, LbrGT/GT) 

myoblast transcriptomes were compared to the transcriptomes of their WT 

littermates.  

 

Starting from 100ng of total RNA, double-stranded cDNA was 

generated by the Ovation RNA-Seq v2 Kit (Nugen, San Carlos, CA) according 

to the manufacturer’s protocol for myoblast samples. Briefly, total RNA was 
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reversely transcribed into cDNA using a tagged random primer. The purified 

double-stranded cDNA was amplified by isothermal amplification enabled by 

RNase H cleavage of a chimeric RNA-DNA primer that allows for repeated 

re-priming and strand displacement (Dafforn et al., 2004). 200ng of the 

resulting double stranded cDNA were random-sheared by sonication (30 

on/off cycles of 30 secs each) and subjected to end-repair and adaptor ligation 

to generate sequencing libraries for the Illumina Genome Analyzer. Each 

library was barcoded by a distinct 4 nucleotides sequence located at the 5′ end 

of each library insert in order to allow multiplex sequencing. Six barcoded 

libraries representing duplicates of Lmna∆/∆, LbrGT/GT and WT control were 

pooled and single-end sequenced on 6 lanes on the Illumina Genome Analyzer 

GAIIx yielding 217 million raw reads with a length of 84 bp. After 

demultiplexing, barcode trimming and quality filtering each library retained 

25 to 30 million reads.  

 

For limb muscle samples, 100ng of total RNA were used to generate 

strand-specific cDNA libraries using the Encore complete RNA-Seq Kit 

(Nugen, San Carlos, CA) according to the manufacturer’s protocol. Briefly, 

after first strand synthesis with semi-random hexamers, depleted for rRNA 

priming sequences, second strand cDNA was tagged with dUTP and 

selectively digested after library generation. Six barcoded libraries 

representing duplicates of Lmna∆/∆, LbrGT/GT and WT control were pooled and 

single-end sequenced on 2 lanes on the Illumina Genome Analyzer GAIIx 

yielding 86 million raw reads with a length of 90 bp. After demultiplexing, 

barcode trimming and quality filtering each library retained around 10 million 
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reads. Sequencing depth was 35 Mio reads per RNA sample for myoblasts and 

7.5 Mio reads per sample for limb muscles.  

 

Reads were mapped to the mouse genome using the splice-junction 

mapper Tophat (Trapnell et al., 2009). The program module Cuffdiff from the 

Cufflinks package (Trapnell et al., 2010) was used to obtain normalized 

FPKM (fragments per kilobase) values and to identify differentially expressed 

genes by accounting for biological replicates (n = 2) and setting a false 

discovery rate of 0.05. For assessment of repeat expression, a RepeatMasker 

file was obtained from UCSC genome browser (http://genome.ucsc.edu), 

restricted to region not overlapping with annotated genes and the FPKM 

values were summarized to the different repeat classes using Cuffdiff. All data 

handling steps were performed on a client-cluster grid with a local instance of 

the GALAXY platform (Goecks et al., 2010). Gene Ontology analysis was 

performed using GOrilla (Eden et al., 2009) and GSEA (Subramanian et al., 

2005) software.  

 

2.11 Deleting Lmna in the intestinal epithelial cells (IECs) 

 

To obtain an intestinal epithelial specific deletion of floxed Lmna 

allele, I used mice (JAX 004586) in which Cre expression is regulated by 

promoter sequences of mouse Villin (Vil) gene (Madison et al., 2002). To 

obtain Lmna∆/∆/Vil-Cre mice, male LmnaFL/FL mice were bred to female Vil-Cre 

mice. Subsequently, female mice with LmnaFL/+ Vil-Cre+ alleles were bred 
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LmnaFL/+ male mice that then give Lmna∆/∆/Vil-Cre offspring. The colony is 

subsequently maintained by mating Lmna∆/∆/Vil-Cre mice to LmnaFL/FL mice. The 

sequences of primers used for genotyping the mice are listed in Table 2.1. 

 

2.12 Isolation of intestinal epithelial cells (IECs) 

 

3 month old Lmna∆/∆/Vil-Cre mice and their WT littermates were 

sacrificed and their GI tracts (small and large intestines) were removed. 

Intestines were cut open longitudinally and into smaller pieces, then incubated 

in pre-warmed PBS containing 30mM EDTA for 10min at 37oC. Intestine 

pieces were then transferred into ice cold PBS containing Mg2+ and Ca2+ and 

shook vigorously. Intestine pieces were again transferred back to fresh pre-

warmed PBS containing 30mM EDTA and these steps were repeated twice to 

obtain IECs (E1 and E2) and the remaining lamina propria and muscularis 

mucosa (T). IECs were pelleted, homogenized in RIPA lysis buffer and 

western analysis was performed as mentioned in 2.5. The membrane was first 

probed with LMNA/C and tubulin antibodies, and then subsequently probed 

with villin antibody.  

 

2.13 Deriving a tumour-sensitized mouse line lacking Lmna  

 

 To derive a tumour-sensitized mouse line, Lmna∆/∆/Vil-Cre and ApcMin/+ 

(Su et al., 1992) mice were intercrossed. The sequences of primers for 

detection of Apc alelles are listed in Table 2.1. Two cohorts of mice 
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Lmna∆/∆/Vil-Cre/ApcMin/+ and LmnaWT/WT/ApcMin/+ were derived and maintained 

for 17-30 weeks for intestinal tumours to develop. 

 

2.14 Preparation and scoring of intestinal polyps 

 

Lmna∆/∆/Vil-Cre/ApcMin/+ and LmnaWT/WT/ApcMin/+ mice were sacrificed by 

CO2 euthanasia and their GI tract removed, and divided into 5 equal parts- 

duodenum, proximal jejunum, distal jejunum, ileum and colon. Intestines were 

fixed in Methacarn fixative (Methanol: Chloroform: Glacial Acetic Acid – 

6:3:1) overnight for the visualization of polyps (Kongkanuntn et al., 1999). 

The next day, the polyps were visualized under a light microscope, and scored 

according to 3 categories by sizes (0-2mm, 2-5mm and >5mm). Quantitative 

statistical analysis was performed using Graphpad Prism software. 

 

2.15 Deleting Lmna in the intestinal stem cells 

 

To derive an inducible Cre deletion of Lmna, I crossed LmnaFL/FL mice 

to Lgr5-EGFP-IRES-CreERT2 mice (Barker et al., 2007) where deletion of 

Lmna only occurs in the intestines and colon following tamoxifen induction. 

Tamoxifen (Sigma-Aldrich) was dissolved in 100% ethanol as a 10mg/ml 

stock. For administration, fresh tamoxifen was prepared daily by centrifugal 

evaporation into corn oil (Sigma-Aldrich) and a final concentration of 

20mg/ml tamoxifen was obtained. LmnaFL/FL/Lgr5-CreERT mice were injected 
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with tamoxifen (40mg/kg body weight) via intraperitoneal (i.p.) administration 

for 3 consecutive days.  

 

Subsequently, to derive alternative tumor-sensitized mouse lines, I bred 

LmnaFL/FL/Lgr5-CreERT mice to ApcFL/FL (Cheung et al., 2010) and p53FL/FL mice 

(Marino et al., 2000) and derived another two lines of double mutant mice 

(LmnaFL/FLApcFL/FL/Lgr5-CreERT and LmnaFL/FLp53FL/FL/Lgr5-CreERT). The efficiency 

of Lmna deletion was confirmed by genotyping and immunofluorescence 

staining for lamin A/C in the intestines. The sequences of the primers used for 

genotyping are listed in Table 2.1.  

 

2.16 Deleting Lmna in the keratinocytes of skin and tongue epithelium 

 

To obtain keratinocyte-specific deletion of floxed Lmna allele, I used 

mice (JAX 004782) in which Cre expression is driven by the human epithelial 

keratin 14 (K14) promoter (Dassule et al., 2000). To obtain Lmna∆/∆/K14-Cre 

mice, female LmnaFL/FL mice were bred to male K14-Cre mice. Subsequently, 

male mice with LmnaFL/+ K14-Cre+ alleles were bred LmnaFL/+ female mice 

that then gave Lmna∆/∆/K14-Cre and LmnaFL/FL offspring. Subsequently, the 

mouse colony is maintained by mating female LmnaFL/FL mice to male 

Lmna∆/∆/K14-Cre mice. The Cre gene was never introduced through the mother 

as maternally inherited K14-Cre was reported to be active in oocytes and 

resulted in loxP flanked sequences to be deleted ubiquitously (Hafner et al., 

2004). 
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Lmna∆/∆/K14-Cre mice on a FVB/N background were also established by 

backcrossing both LmnaFL/FL and K14-Cre mouse lines to WT FVB/N females 

for 3 generations. Then, female LmnaFL/+ mice were bred to male K14-Cre 

mice for another two crosses to obtain Lmna∆/∆/K14-Cre (FVB/N) mice. The 

mouse colony is maintained by mating female LmnaFL/FL mice to male 

Lmna∆/∆/K14-Cre mice. This line of mice was used for two-stage chemical 

carcinogenesis experiments as mentioned in 2.22 since mice on C57/BL6 

background has been reported to be resistant to chemical-induced cutaneous 

carcinogenesis (Hennings et al., 1993). 

 

2.17 Measurement of epidermis thickness in Lmna∆/∆/K14-Cre mice 

 

Lmna∆/∆/K14-Cre mice and their WT littermates were sacrificed and their 

hair on the dorsal back and ventral side was shaved, and a small piece of 

dorsal and ventral skin (0.5cm x 0.5cm), tongue, and hind paws were 

removed. Tissues were fixed in 4% PFA or 10% NBF overnight and tissue 

processing was performed as mentioned in 2.6. H&E staining was performed 

on tissue sections and images were captured by light microscopy. To measure 

the thickness of the epidermis in the different parts of the skin, the images 

were processed on Adobe Photoshop CS4 and the thickness of the epidermis 

was measured by taking the average of at least 20 widths at random locations 

along the length of epidermis. This was repeated for at least 3 biological 

replicates for both Lmna∆/∆/K14-Cre and WT mice for all tissues examined. 
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Quantitative statistical analysis was performed using Graphpad Prism 

software.  

 

2.18 Analysis of hair cycle in Lmna∆/∆/K14-Cre mice 

 

At P16, Lmna∆/∆/K14-Cre mice and their WT littermates were 

anesthetized with 250mg/kg body weight Avertin (12.5 mg 2,2,2 

Tribromoethanol/ml, i.p.) and their hair on the dorsal back was shaved. Dorsal 

skin pigmentation was recorded and subsequently, mice were checked on 

thrice a week for their hair regrowth and change in skin pigmentation. Hair 

cycles of mice were monitored throughout their first two synchronized cycles 

up to 16 weeks. To study the histomorphology of the hair follicles, 1 x 1cm 

dorsal skin specimens were obtained at desired hair growth stages (P16, 19, 

32, 42, 49, 67, 84, 101) from Lmna∆/∆/K14-Cre mice and their WT littermates. 

Samples were processed as mentioned in 2.6 and histolomorphological 

assessment was performed. 

 

2.19 Analysis of wound healing capacity of Lmna∆/∆/K14-Cre mice 

 

7 weeks old Lmna∆/∆/K14-Cre mice and their WT littermates were 

anesthetized with 250mg/kg body weight Avertin (12.5mg 2,2,2 

Tribromoethanol/ml, i.p.) and their hair on the dorsal back was shaved. A 4mm 

wound was administered on the dorsal skin with a sterile tissue biopsy punch 

(Miltex Inc., Germany). The wounds were allowed to heal for 48h before the 
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mice were sacrificed to harvest the dorsal skin around the wound area 

(approximately 1.5cm x 1.5cm). The dorsal skin was fixed in 10% NBF for 

24h before being processed as mentioned in 2.6 for histological analysis. 

Immediately after harvesting, the skin was laid flat, photographed and the area 

of each wound was subsequently demarcated and calculated on ImageJ 

software. Quantitative statistical analysis was performed using Graphpad 

Prism software. 

 

2.20 Isolation of keratinocytes from mouse dorsal skin 

 

Lmna∆/∆/K14-Cre mice and their WT littermates were sacrificed and their 

hair on the dorsal back was shaved, and the dorsal skin was removed. The skin 

was washed in 2 x ice-cold 70% ethanol for 1 min, followed 1-2 mins in ice-

cold PBS. Then, the dorsal skin was placed dermis side up and the muscles 

and fat were removed by scraping with scalpels, leaving only the dermis and 

epidermis. Next, the skin was placed onto a clean 100mm petri dish with the 

dermis side down and 8ml of 0.25% trypsin in Keratinocyte Serum Free 

Media (K-SFM) was added to the dish such that the skin floated on the trypsin 

solution. The skin was incubated with the media overnight at 4oC. The next 

day, the epidermis was scraped off the dermis with scalpels and incubated in 

0.25% trypsin solution for 15 mins at 37oC, with intermittent pipetting. 2x 

volume of DMEM 10% FBS (D10) was added to neutralize the trypsin and the 

solution was filtered through a 70µm sterile filter, then through a 40µm filter. 

The keratinocytes were centrifuged at 1000 rpm for 8 min and the pellet was 
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rinsed twice with K-SFM (Jensen et al., 2010). The keratinocytes were then 

processed for extraction of RNA, immunoblots or immunofluorescence as 

mentioned in 2.4, 2.5 and 2.6 respectively. 

 

2.21 Gene expression microarray analysis of Lmna-null  keratinocytes 

4 months old Lmna∆/∆/K14-Cre mice and their WT littermates were 

sacrificed and their dorsal skin were harvested and keratinocytes were 

extracted as mentioned in 2.19. Total RNA was extracted from keratinocytes 

using Trizol® and QIAGEN RNeasy kit as mentioned in 2.4. The quality and 

quantity of total RNA was determined with an Agilent RNA 6000 Nano Kit 

and Agilent Bioanalyzer 2100. Samples with RNA integrity number (RIN) 

above 7 were used for microarray analysis, which was performed using 

MouseWG-6 v2.0 Expression BeadChip (Illumina). Each experimental group 

consisted of 3 mice, and RNA from each biological sample was performed in 

triplicate. The samples were randomly assigned to different chips and 

microarray was performed as described (Rosario et al., 2014). 500ng RNA 

was first amplified into cRNA using Illumina TotalPrep-96 RNA 

Amplification Kit (Applied Biosystems/Ambion) according to the 

manufacturer's protocol. 1.5ug of amplified cRNA was hybridized to each 

chip, scanned using BeadArray Reader (Illumina) and analyzed with Genome 

Studio Software (Illumina).  

 

Partek Genome Studio version 6.6 was used to analyze the generated 

data where background subtraction, quantile normalization and removal of 
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batch effects were performed across all the chips. Principal component 

analysis (PCA) was performed to monitor the reproducibility of isolation with 

chip-to-chip and remove inter-animal variations. Hierarchical cluster analysis 

was also performed to validate the data. Three-way analysis of variance 

(ANOVA) was applied with a false discovery rate of 0.05. Subsequently, the 

gene list with >1.5 fold change in expression was then analyzed using 

Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems). Genes 

identified in the microarray analysis were verified by qRT-PCR and the 

sequences of the primers used are listed in Table 2.2. 

 

2.22 Two-stage chemical carcinogenesis in Lmna∆/∆/K14-Cre mouse skin 

 

6 weeks old female Lmna∆/∆/K14-Cre (FVB/N) mice and their WT 

littermates were anesthetized with 250mg/kg body weight Avertin (12.5mg 

2,2,2 tribromoethanol/ml, i.p.) and their dorsal hair was shaved. One week 

later, a single dose of 100nmol 7,12-dimethylbenz[a]anthracene (DMBA) 

(dissolved in 100ul acetone; Sigma-Aldrich) was topically applied to the 

dorsal skin of the mice. After another week, 10nmol 12-O-

tetradecanoylphorbol 13-acetate (TPA) (in 100ul acetone, Sigma-Aldrich) was 

topically applied to the dorsal skin of mice every 48h to induce skin 

papillomas (Abel et al., 2009).   
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2.23 Cell culture of N/TERT-1 keratinocytes, viral infection and 

knockdown assay to obtain LMNAKD 

 

Human N/TERT-1 keratinocyte cells were cultured in K-SFM 

supplemented with 0.1mg/ml penicillin/streptomycin, 25ug/ml bovine 

pituitary extract, 0.2ng/ml epidermal growth factor, 0.3mM CaCl2. N/TERT-1 

keratinocyte cells were infected with lentiviral vectors with LMNA shRNA 

targeting exon 7 of Lmna as described previously (Dreesen et al., 2013b). The 

target sequence for LMNA knockdown was 5’-TGC GCT TTT TGG TGA 

CGC T-3’, targeting exon 7 of the LMNA gene. Selection of infected cells was 

performed with 1ug/ml puromycin (Sigma Aldrich) for 14 days. Cells were 

split every 4 days or when they were approximately 70% confluent. The 

keratinocytes were then processed for extraction of RNA and immunoblots as 

mentioned in 2.4 and 2.5 respectively. 

 

2.24 Cell proliferation assay of LMNAKD N/TERT-1 keratinocytes 

 

The proliferation rate of LMNAKD N/TERT-1 keratinocytes was 

determined with xCELLigence RTCA System (ACEA Biosciences). Firstly, 

the microelectrode assay plate containing 100µl of supplemented K-SFM per 

well was equilibrated at 37°C and the electrical microimpedance signal (cell 

index) was set to zero in these conditions. Then, 750 or 1000 of LMNAKD or 

sham control N/TERT-1 keratinocytes were added to each well (n=3 cell lines 

per group with 5 technical replicate per cell line). Then, the plate was placed 
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in the 37°C incubator with 5% CO2 content. Electrical microimpedance signal 

was measured every hour for 14 days. 75% of the media was replaced every 3-

4 days. Data from 4 experimental sets was tabulated and analyzed with RTCA 

software. Statistical analysis was performed using Graphpad Prism software. 
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Alleles Primer name Sequence (5' - 3') 

LmnaFL Lmna_F2 TCC TTG CAG TCC CTC TTG CAT C 

Lmna_R AGG CAC CAT TGT CAC AGG GTC 

      
Lmna∆ Lmna_F1 CCA GCT TAC AGA GCA CCG AGC T 

Lmna_R AGG CAC CAT TGT CAC AGG GTC 

      
Zp3-Cre Cre_F ATC TGG CAT TTC TGG GGA TT 

  Cre_R TTA TTC GGA TCA TCA GCT ACA C 

      
Vil-Cre Vil_F ATC AAA GCC GGG TGG GCA GG 

  Cre_R CCT GGC GAT CCC TGA ACA TGT C 

      
Apcmin Apc_F TTC TGA GAA AGA CAG AAG TCA 

  Apc_R TTC CAC TTT GGC ATA AGG C 

      
K14-Cre Krt14_F1 TGG ATG TTA AAG GCC CAT TC 

  Cre_R2 CCT GGC GAT CCC TGA ACA TGT C 

      
Lgr5-CreERT Lgr5_KI_F CAC TGC ATT CTA GTT GTG G 

  Lgr5_KI_R CGG TGC CCG CAG CGA G 

      

ApcFL Apc_F 
CAC TCA AAA CGC TTT TGA GGG 

TTG ATT C 

  
Apc_R 

GTT CTG TAT CAT GGA AAG ATA 
GGT GGT C 

      
p53FL p53_F GGT TAA ACC CAG CTT GAC CA 

  p53_R GGA GGC AGA GAC AGT TGG AG 

      
LBR LBR-WT-F TTC CTA TGG ACT GGG TGT GGA G 

LBR-WT-R 
GCC TGA AAC TGG GTC AAA TAA 

GG 
  LBR-Mut-R TCA AAC CTG AAC CCC GAC TTC 

Table 2.1: List of primer sequences for genotyping mice. 
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Gene   Sequence (5' - 3') 

Sybr Green 

Lmna (exon 3) For GGA GGA GCT TGA CTT CCA GAA G 
(mouse) Rev CCA CAA GCC GCG TCT CAT 

Lmna (exon 10) For CGC ACC GCT CTC ATC AAC T 
(mouse) Rev CCT CAT TGT CCT CAA CCA TGG T 

Lmnb1 For GAATCGCTGTCAGAGCCTTACTG 
(mouse) Rev CCACCAAGCGGGTCTCAT 

Lmnb2 For GATGCTGGACGCTAAGGAACA 
(mouse) Rev GAGAGATGGTGATCCGTGATGA 

Klk6 For GAG GCC CGT GTT TGA AGG A 
(mouse) Rev CCC CAC CAC ACA GCA AGT G 

Tgfb1 For CTC CCG TGG CTT CTA GTG C 
(mouse) Rev GCC TTA GTT TGG ACA GGA TCT G 

TGFB1 For GGC CAG ATC CTG TCC AAG C 
(human) Rev GTG GGT TTC CAC CAT TAG CAC 

Tgfb2 For TCG ACA TGG ATC AGT TTA TGC G 
(mouse) Rev CCC TGG TAC TGT TGT AGA TGG A 

TGFB2 For CAG CAC ACT CGA TAT GGA CCA 
(human) Rev CCT CGG GCT CAG GAT AGT CT 

TgfbR1 For TCT GCA TTG CAC TTA TGC TGA 
(mouse) Rev AAA GGG CGA TCT AGT GAT GGA 

TgfbR2 For CCG CTG CAT ATC GTC CTG TG 
(mouse) Rev AGT GGA TGG ATG GTC CTA TTA CA 

Smad2 For ATG TCG TCC ATC TTG CCA TTC 
(mouse) Rev AAC CGT CCT GTT TTC TTT AGC TT 

Smad3 For AGG GGC TCC CTC ACG TTA TC 
(mouse) Rev CAT GGC CCG TAA TTC ATG GTG 

Smad4 For ACA CCA ACA AGT AAC GAT GCC 
(mouse) Rev GCA AAG GTT TCA CTT TCC CCA 

Ppid/ PPID  For TGT GC CAG GGT GGT GAC TT 

(mouse / human) 
Rev 

TCA AAT TTC TCT CCG TAG ATG 
GAC TT 

Taqman   Assay ID 
E-cadherin Cdh1 Mm01247357_m1 

Beta-catenin Ctnnb1 Mm00483039_m1 
Hypoxanthine guanine 

phosphoribosyltransferase 
HPRT1 Mm000439307_m1 

 
Table 2.2: List of primer sequences used for qRT-PCR. 
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Primary antibodies       

Name 
Source 

Dilution 
(WB) 

Dilution 
(IF) 

Emerin Novocastra 1:500 1:100 
GAPDH Abcam 1:500 N.A. 
Green Fluorescent 
Protein Abcam N.A. 1:100 
H4K20me3 Abcam (ab9053) N.A. 1:100 
H4K8ac Millipore (06-866) N.A. 1:100 

Keratin 10 
Pierce Thermo 
Scientific N.A. 1:100 

Keratin 14 Covance N.A. 1:1000 
Ki67 Abcam N.A. 1:100 
Lamin A H. Hermann's lab N.A. 1:10 
Lamin A (N18) Santa Cruz 1:1000 1:100-200 
Lamin B1 Yenzyme 1:500 1:200 
Lamin B2 Yenzyme 1:500 N.A. 
Lamin B-Receptor H. Hermann N.A. 1:100 
Lap2-alpha Santa Cruz 1:200 N.A. 
Loricrin Birgit Lane's lab N.A. 1:500 
Tubulin Abcam 1:1000 N.A. 
Villin Santa Cruz 1:200 N.A. 

  
Secondary antibodies   

Name 
Source 

Dilution 
(WB) 

Dilution 
(IF) 

Alexa Fluor® 488 
Donkey Anti-Goat IgG Molecular Probes N.A. 1:500 
Alexa Fluor® 568 
Donkey Anti-Goat IgG Molecular Probes N.A. 1:500 
Alexa Fluor® 488 
Donkey Anti-Rabbit IgG Molecular Probes N.A. 1:500 
Alexa Fluor® 568 
Donkey Anti-Rabbit IgG Molecular Probes N.A. 1:500 
Alexa Fluor® 488 
Donkey Anti-Mouse IgG Molecular Probes N.A. 1:500 
Rabbit anti-Chicken IgY 
(H+L)FITC 

Pierce Thermo 
Scientific N.A. 1:500 

Donkey Anti-Guinea Pig 
IgG (H+L) 

Jackson Immuno 
Research N.A. 1:700 

IRDye® 680CW Donkey 
anti-Rabbit IgG (H + L) Licor 1:2500 N.A. 
IRDye® 800CW Donkey 
anti-Goat IgG (H + L) Licor 1:2500 N.A. 

 Table 2.3: List of antibodies for western blot and immunofluorescence. 
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Chapter 3- Deriving and characterizing a conditional lamin A/C knockout 

mouse model  

 

Loss of function mutations in the Lmna gene result in early postnatal 

lethality in mice, usually within 3 to 6 weeks of birth (Bertrand et al., 2012; 

Sullivan et al., 1999). This makes the analysis of tissue-specific roles of 

lamins difficult. To circumvent this issue and provide a means to determine the 

role of the A-type lamins in specific tissues and in older mice, a conditional 

allele of Lmna was derived. The generation and extensive characterization of 

this conditional Lmna mouse line will facilitate analysis of the consequences 

of lamin A/C loss in specific tissues and in postnatal stages. 

 

3.1 The conditional lamin A mouse model (LmnaFL/FL) 

 

A conditional Lmna allele (LmnaFL) was generated in which exons 10 

and 11 of Lmna were flanked by 2 loxP sites located upstream of exon 10 and 

in the 3’ untranslated region (UTR) before exon 12 (Fig. 3.1A). Mice are on 

C57BL6 background and on homozygous genotype (LmnaFL/FL), they are 

healthy, do not present any overt phenotypes and breed normally. Presence of 

loxP sites can be detected via genomic DNA PCR amplification to 

differentiate between wild-type (WT) Lmna+/+, heterozygous LmnaFL/+ and 

homozygous LmnaFL/FL mice. WT Lmna allele was amplified as a 579 bp band 

and floxed Lmna allele (LmnaFL) was amplified as a larger 645 bp band (Fig. 

3.1B).  
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3.2 Creating and validating the global lamin A/C knockout mice (Lmna∆/∆) 

 

For the constitutive deletion of the 3’ terminus of Lmna, conditional 

LmnaFL/FL mice were crossed with oocyte-specific Cre recombinase deletor 

mice, where Cre deletion is driven by the regulatory sequences of zona 

pellucida 3 (Zp3) (de Vries et al., 2000). Deletion of Lmna was confirmed by 

multiplex PCR of genomic DNA, where approximately 1.5kb of the 3’ 

terminus of Lmna is deleted and a resultant 460bp band (Lmna∆) was detected 

(Fig. 3.1C). 

 

 

Figure 3.1: Generation of the LmnaFL and Lmna∆ mice. (A) A pair of 34-bp loxP 
sites (black triangle) flanks exon 10 to 11 of Lmna gene, which can be removed by a 
Cre recombinase to obtain a null allele (Lmna∆). (B) PCR amplification of genomic 
DNA from tail-clips of wild-type Lmna (WT, 579bp) and floxed Lmna (FL, 645bp) 
alleles with primers F2 and R1. (C) Duplex PCR amplification of WT Lmna (579bp) 
and null Lmna∆ (∆, 460bp) alleles with primers F1, F2 and R1.  
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3.3 Lamin A/C transcripts and proteins are depleted in Lmna∆/∆ mice 

 

Tissues such as skin, heart, duodenum, muscles and kidneys were 

harvested from P14 Lmna∆/∆ mice and analyzed by quantitative real-time-PCR 

(qRT-PCR) for Lmna mRNA transcript levels. Using primers specific for 

Lmna exons 9 to 10, no Lmna mRNA transcripts were detected in various 

tissues such as skin, heart, duodenum, kidney and liver  (>99% absent). 

Primers specific for Lmna exons 3 to 4 showed a 30% (duodenum) to 65% 

(skin) reduction in transcript levels (Fig. 3.2). Hence, Lmna∆/∆ mice do not 

make any full-length Lmna transcripts. 

 

Figure 3.2: Lmna transcripts are abolished in Lmna∆/∆ mice. qRT-PCR of mRNA 
at exons 3 to 4 and 9 to 10 showed that Lmna was depleted in various tissues such as 
the skin, heart, duodenum, kidney and liver. 
 

To study the expression of LMNA/C protein, I used an antibody that 

recognizes the first 50 amino acids in the N-terminus of LMNA/C protein. 

Immunofluorescence staining of lamin A and C was evident in WT mice as a 

distinct staining around the nuclear rim. In Lmna∆/∆ mice, the expression of 

LMNA/C was absent in all the cells in tissues such as the skeletal quadriceps 

muscle, lung and heart (Fig. 3.3A). Western blot analysis also showed that 

LMNA/C protein is abolished in tissues such as skin, skeletal quadriceps 
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muscles, heart and duodenum (Fig. 3.3B). Previous reports have shown the 

presence of smaller truncated LMNA bands in the LmnaSul-/- mouse (Sullivan 

et al., 1999, Jahn et al., 2012).  In some tissues of the Lmna∆/∆ mice, a faint 

low-molecular weight band was detected, but it was present in both Lmna+/+ 

and Lmna∆/∆ tissues and therefore it is unlikely to represent an aberrant 

truncated form of LMNA/C as a result of Lmna deletion. 

 

 

Figure 3.3: LMNA/C proteins are completely abolished in Lmna∆/∆ mice. Protein 
analysis via (A) immunofluorescence and (B) western blot confirmed that expression 
of LMNA/C is completely abolished in skin, skeletal muscles (sk. mus.), heart, 
duodenum and lung. Nuclear rim staining of LMNA/C is observed in cells of Lmna+/+ 
mouse tissues, but absent in Lmna∆/∆ cells (inset). (Scale bars, 20µm). 
 



73 

 

3.4 Characterization of the Lmna∆/∆ knockout mice  

 

Heterozygote breeding of Lmna∆/+mice was set up and from 21 litters, 

Lmna∆/∆ mice were born according to Mendelian ratios (Table 3.1), indicating 

that Lmna is not essential for embryonic development. Lmna∆/∆ mice appear to 

be slightly smaller at birth and have a slower postnatal growth rate so that by 

P12-14, Lmna∆/∆ mice are approximately 50% of the weight of their WT or 

heterozygous littermates (4.089g vs. 7.637g, p<0.001) (Table 3.1).  

 

Genotype Mendelian ratio (%) Weight (g)

Lmna+/+ 24.6% (n=46) 7.637 ±1.64 (n=38)

Lmna∆/+ 51.3% (n=96) 7.613 ±1.40 (n=65)

Lmna∆/∆ 24.1% (n=45) 
4.089 ±0.77 (n=35)

*** (p<0.001) 
 
Table 3.1: Loss of Lmna is not embryonic lethal but Lmna∆/∆ mice show severe 
growth retardation. Lmna+/+, Lmna∆/+ and Lmna∆/∆ mice were born according to 
Mendelian ratios at 24.6%, 51.3% and 24.1% respectively (n=187). By P14, Lmna∆/∆ 
mice (4.089 ±0.77g) are significantly smaller than their Lmna+/+ (7.637 ±1.64g) and 
Lmna∆/+ (7.613g ±1.40) littermates. ***(p<0.001). Data represents mean ± SEM.   
 
 

By P8-10, Lmna∆/∆ mice are distinguishable from their WT littermates 

as they present signs of muscular dystrophy such as stiff walking posture and a 

kink in their tail (Fig. 3.4A). Lmna∆/∆ mice generally survive to P12-18 while 

Lmna∆/+ mice survive for more than 1 year and are indistinguishable from 

their WT littermates (Fig. 3.4B). I did not observe weight difference between 

male and female mice of the same genotype (Fig. 3.4C), indicating that effects 

caused by loss of Lmna are not gender specific. The lifespan of Lmna∆/∆ mice 
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is shorter than the original constitutive LmnaSul-/- line that dies around P35-42 

(Sullivan et al., 1999), with the difference in longevity possibly being 

influenced by genetic background (129/JXC57Bl6 vs. C57/B6) (B. Kennedy 

pers comm) and/or the presence of low levels of a truncated LMNA fragment 

that has been reported (Jahn et al., 2012).  

 

 

 

Figure 3.4: Lmna∆/∆ mice have decreased lifespan and present non-gender 
specific weight loss. (A) At P13, Lmna∆/∆ mice are smaller compared to their Lmna+/+ 

littermates, with a kinked tail. (B) Lmna∆/∆ mice generally die before P18, having a 
significantly shorter lifespan compared to their Lmna+/+ and Lmna∆/+ littermates. (C) 
Male (white bars) and female (grey bars) mice within each genotype have similar 
weights. Data represents mean ± SEM.     
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3.5 Histological analysis of Lmna∆/∆ tissues 

 

Pathological assessment showed that Lmna∆/∆ mice had a smaller heart 

size compared to their WT littermates and histological analysis confirmed that 

Lmna∆/∆ mice have a smaller heart with thinner heart walls, indicative of 

cardiomyopathy (Fig 3.5A). Histological analysis of skeletal quadriceps 

muscle showed significantly smaller diameter myofibrils and increased 

incidence of centrally located nuclei (Fig 3.5B), which could be indicative of 

slower muscle growth and immaturity. Hence, our Lmna∆/∆ mouse model is 

similar to other Lmna mutant lines that present muscular dystrophy and 

cardiomyopathy symptoms (Arimura et al., 2005; Sullivan et al., 1999). The 

smaller muscle mass in Lmna∆/∆ mice contribute to the severe weight 

difference. More interestingly, Lmna∆/∆ mice showed anomalies in skin 

histology with a seemingly increase in the number of hair follicles in the 

dorsal skin (Fig 3.5C). The effect of the loss of Lmna on skin will be discussed 

further in chapter 6 where I analyzed Lmna loss in skin epidermis.  

 

3.6 Redistribution of emerin in Lmna∆/∆ MAFs 

  

Lamin A/C is essential for the proper localization of INM proteins such 

as emerin. MAFs and tongue epithelium cells in LmnaSul-/- mice showed 

emerin relocalization (Raharjo et al., 2001; Sullivan et al., 1999). In Lmna∆/∆ 

mice, MAFs showed more irregularly shaped nuclei and emerin relocalization 

from the nuclear periphery into the cytoplasm and ER (Fig. 3.6).  
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Figure 3.5: Histological analysis of P13 Lmna∆/∆ male mice revealed anomalies in 
heart, skeletal muscles and skin. (A) During necropsy, Lmna∆/∆ mice have smaller 
heart size compared to WT mice (inset) and histological analysis showed that Lmna∆/∆ 

mice have thinner heart walls (Scale bars, 1000µm). (B) Skeletal muscles of Lmna∆/∆ 

mice show smaller myofibrils and have increased frequency of centrally located 
nuclei (yellow arrows), indicative of defects in muscle growth and maturation (Scale 
bars, 50µm). (C) Dorsal skin of Lmna∆/∆ mice showed a slightly thickened epidermis 
with striking increase in number of hair follicles (Scale bars, 100µm).  
 
 
 



77 

 

 
Figure 3.6: Emerin is relocalized in Lmna∆/∆ mice fibroblasts. Immunostaining of 
emerin showed that emerin localization was more diffused and relocated from NE to 
the ER due to loss of Lmna. (Scale bars, 20µm). 
 

3.7 Conclusions 

 

In conclusion, I characterized a conditional (floxed) allele of the Lmna 

gene and show that mice with ubiquitous deletion of Lmna die within 3 weeks 

of birth. By means of PCR and qRT-PCR, no full-length Lmna mRNA 

transcripts were detected. Through immunoblot analysis and 

immunofluorescence studies with an antibody specific to the N-terminal 50 

amino acids of LMNA/C protein, I confirm that no full-length or aberrant 

truncated LMNA/C protein as a result of Lmna deletion of Lmna. 

Homozygous null LmnaΔ/Δ mice have a reduced life span, stiff walking gait, 

and severely retarded growth from P10 onwards, whereas heterozygous mice 

show no overt phenotypic abnormalities. Histological assessment of the heart 
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and quadriceps muscle revealed that LmnaΔ/Δ mice have a smaller heart with 

thinner heart muscles and smaller diameter myofibrils in skeletal muscles, 

with an increased percentage of centrally located nuclei, indicative of either 

retarded or defective muscle growth and maturation, which contributes to the 

severe weight loss in the knockout mice. A striking observation in the 

increased number of hair follicles in the LmnaΔ/Δ mice was also made and will 

be further discussed in chapter 6. 
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Chapter 4 – Lamin B receptor (LBR) and lamin A/C sequentially tether 

peripheral heterochromatin and inversely regulate differentiation  

 

4.1 The LBRGT mouse line 

 

Mutations in the LBR gene result in nuclear envelopathies such as 

Pelger-Huët anomaly, Greenberg/HEM skeletal dysplasia and Reynolds 

syndrome (Gaudy-Marqueste et al., 2010; Hoffmann et al., 2002; Waterham et 

al., 2003). LBR is essential for regulating sterol metabolism during fetal 

development (Holmer et al., 1998; Waterham et al., 2003) and chromatin 

organization (Ye et al., 1997). To study the functional roles of LBR, a mouse 

line was derived where a gene trap (GT) cassette, consisting of en2 splice 

acceptor (SA) sequences, neomycin resistance selection marker and β-

galactosidase reporter marker (β-geo), was inserted within exon 9 of the Lbr 

gene (LbrGT) (Fig 4.1A) (Cohen et al., 2008). WT LBR protein possesses a N-

terminal DNA and HP1 binding domain and a C-terminal hydrophobic domain 

with 8 transmembrane segments important in the regulation of sterol 

metabolism (Holmer et al., 1998; Silve et al., 1998). In the hybrid LBRGT 

protein, the first 366 amino acids containing the N-terminus and 

transmembrane domains 1 to 4 is fused to β-geo and since it lacks the last 4 

transmembrane domains and C-terminus (Fig. 4.1B), mutant LBRGT protein 

relocalizes from the nuclear lamina to the ER (Cohen et al., 2008).  
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Figure 4.1: Lbr mouse line was derived by the insertion of a gene-trapped (GT) 
cassette. (A) The WT Lbr gene consists of 14 exons (black rectangles). The GT 
cassette consisting of en2 splice acceptor (SA) sequences, neomycin resistance and β-
galactosidase cDNA sequences (β-geo) was inserted into exon 9 of the Lbr gene.  
(B) WT LBR protein has DNA and HP1 binding domains as well as 8 transmembrane 
(TM) domains (grey numbered boxes) that are important for sterol metabolism 
regulation. LBRGT is a 366 amino acid protein containing the N-terminus and the first 
4 TM domains fused to β-geo. Diagram was adapted and modified with permission 
(Cohen et al., 2008).  
 

 

While heterozygous (LbrGT/wt) mice are phenotypically normal, some 

Lbr-null (LbrGT/GT) mice exhibit embryonic lethality while some display 

incomplete penetrance and survive to postnatal stages. These latter mice 

however have decreased lifespan with multiple pathologies including 

hyperkeratosis, alopecia, hydrocephaly, scoliosis, syndactyly, apoptotic 

thymus, clogged nasolacrimal duct and anomalies in hematopoetic cells such 

as hypolobulations in the granulocytes but with no effects on its anti-bacterial 
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functions. Lbr is transcriptionally regulated by CCAAT/enhancer-binding 

protein epsilon (C/EBPε) which is important in the morphological 

differentiation of granulocyte nuclei (Cohen et al., 2008).  

 

LbrGT/GT MEFs exhibited altered nuclei morphologies including 

misshapen nuclei, wrinkly nuclear lamina, large nucleoplasmic foci associated 

with HP1α and increased numbers of micronuclei. Expression of emerin was 

also enriched at the nuclear lamina. During embryogenesis, LBR is strongly 

expressed in thymus, spleen and testis but its expression in other tissues 

becomes elevated postnatally. LBR is also expressed in outer root sheath of 

hair follicles and matrix cells in the hair bulb hence disruption of LBR results 

in overt pathologies in the skin and hair in LbrGT/GT mice (Cohen et al., 2008).  

 

4.2 LbrGT/GT mice exhibit anomalies in skin morphology 

 

In our laboratory, LbrGT/GT mice generally survive to P18 while a small 

percentage (<5%) survive to P145. LbrGT/GT mice are smaller in size compared 

to their Lbrwt/wt (WT) littermates (Fig. 4.2A). LbrGT/GT mice also display gross 

abnormalities such as syndactyly where digits fuse together in both front and 

hind paws (Fig. 4.2B), alopecia with sparse and wavy hair, hardened dorsal 

and ventral skin, and loss of skin elasticity. Gross anatomy and microscopic 

analysis also show that LbrGT/GT mice vibrissae and dorsal hair appears lighter 

and wavier with increased fragments in hair shafts compared to WT mice (Fig. 

4.2C). Histological analysis of P15 LbrGT/GT mice skin revealed epidermal and 



82 

 

dermal thickening as well as thicker keratinized squames in dorsal skin (Fig. 

4.2D). These anomalies are similar as previously reported (Cohen et al., 2008). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2: LbrGT/GT mice are smaller, exhibited syndactyly and anomalies in hair 
and skin. (A) At P15, LbrGT/GT mice are smaller than their WT littermates. (B) 
Syndactyly is observed in the front and hind paws of LbrGT/GT mice. (C) Vibrissae of 
LbrGT/GT mice are short and curly and hair shafts of body hair are thinner and 
fragmented. (D) Dorsal skin of LbrGT/GT mice show a thickened epidermis and dermis, 
with lighter hair shafts in the hair follicles. 
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4.3 Mammalian rod cells with inverted nuclei do not express both lamin 

A/C and LBR  

 

The NE with its lamina functions as a nuclear scaffold for the correct 

localization of INM proteins and NPCs as well as performs critical processes 

in chromatin organization (Burke and Stewart, 2014). Nuclear localization of 

the chromatin regions is highly ordered and plays an important role in 

functional organization of the nucleus (Cremer and Cremer, 2010). Majority of 

eukaryotic nuclei have a conventional chromatin architecture consisting of 

euchromatin that predominantly occupies internal nuclear regions while 

heterochromatin primarily lines the NE between the NPCs and also surrounds 

the nucleolus. Euchromatin is predominately juxtaposed to the NE with only 

small islands of heterochromatin being present at the periphery (Kizilyaprak et 

al., 2011; Solovei et al., 2009). 

 

A unique exception to chromatin organization in eukaryotes is found in 

photoreceptor rod cells of nocturnal animals (Solovei et al., 2009). Rod cells 

lack peripheral heterochromatin and exhibit inversion of euchromatin and 

heterochromatin positions in order to reduce light loss in the retina and adapt 

to nocturnal vision (Solovei et al., 2009). In Dr. Irina Solovei’s laboratory in 

Ludwig-Maximilians University Munich, the analysis of retinas in 39 diurnal 

and nocturnal mammalian species with conventional and inverted rod nuclei 

showed that inverted rod nuclei expressed neither LMNA/C nor LBR, whereas 

all rod cells with a conventional chromatin pattern expressed either LBR or 

LMNA/C, indicating that a lack of either protein was not enough for nuclear 
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inversion (Solovei et al., 2013). To expand our knowledge on how chromatin 

distribution is regulated by LMNA/C and LBR, a collaboration was 

established with Dr. Irina Solovei and colleagues to investigate the chromatin 

organization in our mutant Lmna∆/∆ and LbrGT/GT mouse lines.  

 

4.4 Expression of LMNA/C and LBR is temporally coordinated  

  

In the developing retina, the expression of both LMNA/C and LBR in 

neuronal nuclei is temporarily coordinated (Fig. 4.3A, B). At first, retinal 

neurons only express LBR. LMNA/C then appears and replaces LBR 10–14 

days after the birth of the respective neuronal cell type (i.e., after the last 

division of the cell-type specific progenitor cells (Rapaport et al., 2004)). In 

rod cells, LBR expression ceases after P14 without initiation of LMNA/C 

expression (Fig. 4.3A).  

 

Timelines for other representative tissues and cell types are shown in 

Fig. 4.3C. In contrast to neurons and cardiomyocytes (grouped as non-

renewed cells), other cell types are constantly renewed by the differentiation 

of stem cells (renewed cells). In the intestinal epithelium and stratified 

epidermis of the lip, the positions of cells at successive stages of 

differentiation are spatially ordered in a linear fashion. A graded staining 

pattern of LBR and LMNA/C observed in these tissues (Fig. 4.3D, E) clearly 

reveals temporal changes in expression of the two proteins. 

 



85 

 

Timelines for renewed cells (Fig. 4.3C) actually show the differences 

in expression between cells that are at the same (differentiated) state but in 

mice of different ages rather than differences in the same cells arising with 

age, as in non-renewed cells. For instance, differentiated absorptive and goblet 

cells of the small intestine are LMNA/C negative until P14, whereas in older 

mice, differentiated cells of these types express both LBR and LMNA/C (Fig. 

4.3D1). The crypt cells renewing the intestinal epithelium express only LBR at 

all ages (Fig. 4.3D1). The nuclei of hepatocytes and myotubes (striated 

muscle) lose most LBR around P9–P14 and P0, respectively. These cells 

retain a weak LBR signal even as adults, whereas satellite cells that renew 

myotubes have a lifelong strong expression of LBR. The nuclei of 

cardiomyocytes lose most LBR by P9, retaining only residual LBR 

expression. Differentiated lymphoid and myeloid blood cells do not express 

LMNA/C (Rober et al., 1989) but persistently express LBR. These results 

corroborate the role of LBR and LMNA/C in maintaining peripheral 

heterochromatin: all cell types except rods always express at least one of these 

two proteins. 
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Figure 4.3: Coordinated expression of LBR and LMNA/C in WT mice. Temporal 
coordination in retinal (A and B) and non-retinal (C) cell types. The stages at which a 
cell type cannot be identified are shown in gray; initial low LMNA/C expression 
level is shown in pink, and light green marks a very low residual LBR level, hatched 
pattern symbolizes variation between nuclei in mixed populations. (D and E) Spatio-
temporal coordination of LBR and LMNA/C expression in the intestinal epithelium 
of the duodenum (D) and stratified epidermis of the lip (E) tissues at low 
magnification (D1 and E1) and representative nuclei (D2 and E2). During 
differentiation, cells are shifted in the apical direction, therefore a clear LBR (green) 
to LMNA/C (red) gradient is observed. In D1, arrowheads mark the entrances of 
three crypts. In (E), arrows mark basal keratinocytes; arrowheads indicate suprabasal 
keratinocytes expressing both LBR and LMNA/C (solid arrowheads) or only 
LMNA/C (apical strata, empty arrowheads). Bars: B and D2, 2 μm; D1, 50 μm; E1, 
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10 μm; and E2, 5 μm. In all panels, LBR is shown in green, and LMNA/C (LA/C) is 
shown in red. 
4.3D1).  

 

4.4 Nuclei not expressing LMNA/C undergo nuclear inversion in LbrGT/GT 

mice  

 

Since onset of LMNA/C expression occurs postnatally in some tissues, 

we reasoned that cells not expressing LMNA/C in LbrGT/GT mice, thus lacking 

both proteins, would be expected to exhibit nuclear inversion. To search for 

inversion, we screened tissues from P5, P12–14, and adult (AD) LbrGT/GT 

mice. Out of 34 cell types assayed, several cell types such as thymic and 

splenic lymphocytes, microglia and Kupffer cells showed advanced inversion 

and were astonishingly similar to mature or maturating rod nuclei (Fig. 4.4A, 

B). In all cases, inversion coincided with the absence of LMNA/C that was 

confirmed by a LMNA/C signal in adjacent cells of other types (Fig. 4.4).  

For a semiquantitative description of the degree of inversion in non-retinal 

cells, we compared them to rods of different stages of differentiation. P14, 

P21, P28, and AD rods (Fig. 4.4A) were used to describe the state of inversion 

in non-rod cell nuclei.  

 

Non-rod cells with advanced inversion (Fig. 4.4B) had nuclei with one 

to five large dense aggregates of heterochromatin regions (chromocenters) 

surrounded by AT-rich/long interspersed nuclear element (LINE) -rich 

chromatin, with little or no contact with the NE; they corresponded to P21-AD 
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rods. A representative example is lymphocytes, which do not express 

LMNA/C in WT mice (Rober et al., 1989). WT lymphocytes usually either 

have none or only one internal chromocenters (Fig. 4.4C). In LbrGT/GT 

lymphocytes, all chromocenters were internal (Fig. 4.4B, C, 4.5A, B). 

 

For quantitative analysis, we compared inverted and non-inverted 

nuclei (from LbrGT/GT and WT mice) in P5 and P46 thymic lymphocytes and 

P5 cerebellar granular cells. Peripheral chromocenters adjoin the nuclear 

border and have a hemispherical or discoid shape while internal 

chromocenters are spherical (Fig. 4.4C and 4.5B). Hence, using the numbers 

of peripheral and internal chromocenters as coordinates, we found that 

inverted and conventional nuclei occupy two non-overlapping regions in the 

respective two-dimensional diagram indicating that inverted and conventional 

nuclei have different numbers of internal and peripheral chromocenters (Fig. 

4.5B-D). Such differences were observed even for the moderately inverted 

lymphocyte nuclei and cerebellar granular neurons from P5 mice, showing 

that, if inversion occurs in a cell type, it affects all nuclei. These data also 

show that the essence of inversion is the loss of heterochromatin association 

with the NE (which also facilitates chromocenter fusion). In these cells 

lacking both LMNA/C and LBR, chromocenter numbers also decrease 

approximately 1.5-fold in average, whereas the sizes of the two largest 

chromocenters increase. 

 

The relationship between inversion and the dynamics of LBR and 

LMNA/C expression during differentiation is directly visible in the hair 
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follicle (Fig. 4.4E). In the central part of a hair bulb, matrix cells do not 

express LMNA/C and exhibit pronounced nuclear inversion (comparable to 

P14–21 rods) in LbrGT/GT mice. During differentiation, the cells migrate along 

the hair follicle toward its opening. Differentiated cells at the border of the 

bulb are LMNA/C positive and display a conventional nuclear architecture, as 

do the nuclei of cells situated closer to the hair follicle opening. 

 

In several cell types, LMNA/C expression does not start by P5 (Fig. 

4.4D and 4.5). At P5, these cells from LbrGT/GT mice have fewer 

chromocenters and a nuclear architecture corresponding to the P14/P21 stage 

of inversion in rods (Fig. 4.4A, D). This was observed in the granular cells of 

the cerebellum, bipolar cells in the retina, and absorptive cells of the small 

intestine (Fig. 4.4D, 4.5E). By P14, LMNA/C expression commences in these 

cell types, and in adult LbrGT/GT mice, nuclei of these cells do not differ from 

their WT counterparts. Inverted nuclei were also present in the niches of the 

least differentiated and most rarely dividing stem cells (Greco and Guo, 2010), 

which presumably have enough time for inversion. We observed inverted 

nuclei in the hair bulge (Fig. 4.4F) and at the bottom of the crypts of the small 

intestine in LbrGT/GT mice (Fig. 4.4G). 
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Figure 4.4: Nuclear inversion occurs in LbrGT/GT cells not expressing LMNA/C. 
(A) Representative images showing landmark stages of nuclear inversion in WT rods. 
(B) Inverted nuclei in thymic and splenic lymphocytes, microglia (brain), and 
Kupffer (liver) cells. Inverted nuclei lack LMNA/C (arrows), whereas neighboring 
nuclei expressing LMNA/C (green) retain a normal nuclear architecture 
(arrowheads). (C) Thymic lymphocytes, fluorescent in situ hybridization (FISH) with 
major satellite repeat (MSR) probe specific for chromocenters (arrows). (D) Transient 
inversion in bipolar cells (retina), granular cells (cerebellum), and absorptive cells 
(duodenum) from P5 LbrGT/GT mice. (E) Inversion and rescue of the nuclear 
architecture in the hair bulb matrix cells. (E1) Illustration of the hair bulb structure: 
Dividing cells of the hair matrix (green) and differentiating keratinocytes (orange and 
red) are shifted peripherally during differentiation (arrow). (E2) A section through 
hair bulb showing LMNA/C-positive cells at the periphery, with the arrow showing 
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the direction of centrifugal migration. Note the much stronger LMNA/C staining in a 
fibroblast abutting the hair bulb. (E3) Representative region of a hair bulb: inverted 
nucleus not expressing LMNA/C (arrow) and conventional architecture in nuclei 
expressing LMNA/C (arrowhead). (F and G) Inverted nuclei from hair bulge (F) and 
crypt (G). Bars, 5 μm.  
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Figure 4.5: Comparison of the organization of inverted and conventional nuclei.  
(A) Lymphocytes only express LBR (green) while neighbouring stromal cells express 
LMNA/C (red). Compared to WT cells, LBR null (LbrGT/GT) lymphocytes have a 
smaller number of larger chromocenters. Nuclei of stromal cells have a conventional 
architecture and are not different between WT and LBR null. (B) WT lymphocytes 
have none or only one internal chromocenter (red arrow) and several peripheral 
chromocenters (green arrowheads) while LBR null lymphocytes have only spherical 
internal chromocenters (red arrows). Bars: 5μm. (C–E) 2-dimensional distribution of 
frequency of internal and peripheral chromocenters in thymic lymphocytes and 
cerebellar granular cells. x axis: the number of peripheral chromocenters; y axis: the 
number of internal chromocenters; z-axis: percent of nuclei with the respective 
numbers of peripheral and internal chromocenters. (C) Lymphocytes from adult (P46) 
mice. (D) Lymphocytes from P5 mice. (E) Granular cells from P5 mice; these cells 
experience transient inversion during early postnatal development. As inverted nuclei 
from LBR null (pink) and conventional nuclei from WT (blue) mice have different 
numbers of internal and peripheral chromocenters, they populate two non-
overlapping regions of the diagram. 
 

4.4 Loss of LMNA/C either induces nuclear inversion or is compensated 

by prolonged expression of LBR  

 

In P13 and P16 Lmna∆/∆ mice, we examined all cell types that, by this 

age express LMNA/C but not LBR (Fig. 4.3C and Table 4.1). Fibroblasts of 

the dermal papilla, lacking both LBR and LMNA/C, presented pronounced 

chromatin inversion (Fig. 4.6A). In other cell types such as reticulocytes in the 

spleen, cortical neurons in the brain and epithelial cells in the thymus, we 

observed a different phenotype where the expression of LBR persisted longer 

in Lmna∆/∆ than WT mice. Prolonged LBR expression rescued nuclear 

inversion and maintained normal nuclear architecture in these cells (Table 4.1, 

4.6B1, and 4.7). Using a tissue-specific knockout mouse line (Lmna∆/∆/K14-Cre; 

discussed in chapter 6) where LMNA/C is deleted only in keratinocytes but 

not in dermal fibroblasts, persistent LBR expression is observed only in 
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LMNA/C null keratinocytes. We observed that the compensatory phenomenon 

of LBR expression persisted for at least 3 months (Fig. 4.6B2 and 4.7B).  

 

 
Table 4.1: Correlation of LBR and LMNA/C expression with the nuclear 
architecture in 34 cell types from WT, Lmna∆/∆, and LbrGT/GT mice. LMNA/C 
staining in cones(1) is notably weaker than in the majority of other retinal cells. Cone 
nuclei are comparable to a moderate inversion in WT retina, and chromocenter  
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fusion tends to be enhanced in LBR null cones compared to WT. However, in 
difference to rod nuclei, peripheral heterochromatin is retained in cones. A proportion 
of basal keratinocytes(2) are LBR positive; other basal and all suprabasal keratinocytes 
are LBR negative. In P46 adult WT mice, the nuclei of hepatocytes, cardiomyocytes, 
and myotubes(w) retain a very low level of LBR expression. In Lmna∆/∆ mice, LBR 
expression is dramatically enhanced. 

 

 
Figure 4.6: Nuclear organization in Lmna∆/∆ and LbrGT/GT x Lmna∆/∆ double null 
mice. (A1, A2) Nuclear inversion in the hair bulb of P16 Lmna∆/∆ mice. In contrast to 
the matrix cells (arrowheads), the fibroblasts of the dermal papilla (arrows) do not 
express LBR and nuclei invert. (B1) Compensation for loss of LMNA/C by persistent 
expression of LBR in lip skin of P16 Lmna∆/∆ mouse. Basal keratinocytes (solid 
arrowhead) express both LBR and LMNA/C, whereas suprabasal keratinocytes 
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(empty arrowheads) and dermal fibroblasts (arrow) express only LMNA/C. (B2) 
Compensation in suprabasal keratinocytes in both trunk (top) and lip skin (bottom) 
from a 3-month-old Lmna∆/∆/K14-Cre mice. Note a fibroblast expressing LMNA/C 
(arrow). (C and D) Epithelial cells in the colon (C) and epidermal keratinocytes (D) 
of LbrGT/GT x Lmna∆/∆ double null mice have a smaller number of chromocenters that 
are internal and larger (due to fusion) than in WT. Differences in the position and size 
of chromocenters are emphasized by differential staining of eu- and hetero-chromatin 
(H4K8ac and H4K20m3, respectively; right). (E) Increased size and internalization of 
chromocenters in several postmitotic cell types from LbrGT/GT x Lmna∆/∆ double 
knockout mice. Bars: A1 and B2, 10 μm; A2 and C–E, 5 μm; B1, 25 μm.  
 

4.5 LbrGT/GT x Lmna∆/∆ mice show inversion in all postmitotic cell types 

 

Despite the absence of overt morphological defects, compound double 

null LbrGT/GT x Lmna∆/∆ pups died shortly after birth, and therefore, only P0 

animals were studied. We focused attention on cell types that do not invert in 

any of the two single gene knockouts (LbrGT/GT and Lmna∆/∆) (Table 4.1), in 

particular, the colon epithelium and skin epidermis. Both cell types express 

LBR and LMNA/C at birth. In LbrGT/GT x Lmna∆/∆ double null mice, cells 

show a clear increase in chromocenter size (chromocenter fusion) and 

relocation of chromocenters from the periphery to the nuclear interior (Fig. 

4.6C, D). Similar changes occurred in all postmitotic cell types such as 

chondrocytes, myotubes and hepatocytes (Figure 4.6E).   

 

As expected, inversion is not complete in the nuclei of P0 double null 

cells because full inversion needs several weeks after cell cycle exit (Solovei 

et al., 2009). The levels of inversion observed in double null nuclei were 

comparable to that of the transient inversion in P5 LBR null mice (Fig. 4.4D). 

The level of inversion varies between nuclei because some cells in P0 pups are 

postmitotic and some are cycling. Nevertheless, all identified postmitotic cell 
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types showed a clear inversion, confirming that peripheral heterochromatin 

cannot be maintained in postmitotic cells in absence of both LMNA/C and 

LBR. 

 

 
Figure 4.7: Compensation of LMNA/C deletion by prolonged expression of LBR. 
Basal keratinocytes (solid arrowheads), suprabasal keratinocytes (empty arrowheads), 
and dermal fibroblasts (arrows). In both body skin and lip skin from P16 Lmna∆/∆ 
mice and 3 month old Lmna∆/∆/K14-Cre mice, deletion of LMNA/C results in prolonged 
and enhanced expression of LBR in all keratinocytes. Single cells situated between 
basal keratinocytes but expressing LMNA/C are melanocytes. Basal cells not 
expressing LBR probably are cells that already exited cell cycle but still have not 
moved apically.  
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4.6 Loss of LBR and LMNA/C inversely affects transcription in a 

proportion of muscle genes in early myogenic cells, but not in 

differentiated muscle 

 

To determine the functional roles of the two temporally distinct 

heterochromatin tethers by LMNA/C and LBR, we analyzed the genome-wide 

effects of LBR and LMNA/C deficiency on the transcriptome. Primary 

cultures of myogenic cells were derived from limb muscles of P15–P16 

LbrGT/GT and Lmna∆/∆ mice with WT littermates as controls. To minimize 

artifacts due to culture, myoblasts were harvested at passage 2. Transcription 

profiles confirmed the early myogenic nature of the cells in our cultures 

(Table 4.2).  

 

Gene Ontology (GO) enrichment analysis using GOrilla suggested that 

the loss of Lbr or Lmna tends to have opposite effects on muscle-related 

genes, reducing their expression in Lmna∆/∆ and increasing it in LbrGT/GT 

myoblasts. To test this finding, we analyzed expression levels of all genes 

covered by two Gene Ontology Consortiums (GOCs) most relevant for our 

experiments: structural constituent of muscle (GO: 0008307) and striated 

muscle cell differentiation (GO: 0051146) (Gene list available in Appendix A 

and B). This provided us with two relevant gene sets for statistical analysis, 

which we restricted to genes that had a non-zero expression level (FPKM > 0; 

frequency of reads per Kb per Mio) in all studied transcriptomes to facilitate 

uniform comparison of genotypes and cell types.  
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Nearly 60% of the genes from the GOC structural constituent of 

muscle (41 genes with non-zero expression in our data) were strongly and 

similarly deregulated in myoblasts; expression was reduced by the loss of 

Lmna and slightly increased by the loss of Lbr (Fig. 4.8A1). This pattern was 

also reproduced by nearly all genes individually deregulated in one or both 

knockouts at a statistically significant level (p < 0.05; marked by colored 

bullets in Fig. 4.8A1). More than 2-fold deregulation was observed in a large 

proportion of genes, irrespective of their expression level (Fig. 4.8B1). In 

contrast to myoblasts, differences in expression levels in differentiated 

muscles were much smaller and without the reverse effect of Lmna and Lbr 

loss (Fig. 4.8A2, B2). Deletion of Lbr, which is anyway nearly silenced during 

myotube differentiation (Fig. 4.3C), had very little effect on their 

transcriptome. GOC striated muscle cell differentiation revealed the same 

trends (Fig. 4.8C) as the GOC structural constituent of muscle. From a 

statistical perspective, the differences (i) between the myoblasts of LbrGT/GT 

and Lmna∆/∆ mice and (ii) between myoblasts and muscles of the same 

genotype were significant at the levels p < 0.001 for the first GOC and p = 

0.013 or better for the second GOC (signed rank test). The differences 

between the two knockouts in limb muscle transcriptomes were not 

statistically significant for either GOC.  
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Table 4.2: Expression (FPKM) of marker genes of myogenic differentiation in 
myoblasts and limb muscles. Transcription profiles with expression of quiescent 
satellite cells and myoblasts markers such Pax3, CD34, Pax7 confirmed the early-
myogenic nature of the cells in our cultures. Markers relating to more advanced 
stages of myogenic differentiation such as Myogenic factor 5 (Myf5), MyoD, 
myogenin (Myog) was also observed but this diversity is typical of myogenic cell 
cultures (Zammit et al., 2006). Myoblasts cultures showed also a high level of the 
oncogene Dek and microRNA Mir682 which is upregulated on activation of satellite 
cells (Cheung et al., 2012) and proliferation of muscle progenitor cells (Chen et al., 
2011) respectively. 
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Figure 4.8: The effect of loss of Lbr and Lmna on the transcription of muscle-
related genes in myoblasts and differentiated myotubes. (A) Genes from the GOC 
structural constituent of muscle: myoblasts (A1) and limb muscles (A2). The 
difference in transcription level (x axis) is expressed as logarithm of the fold change, 
ln (FPKMKO/FPKMWT), for Lmna (red) and Lbr (green). Numbers of genes with each 
of the four possible deregulation patterns are shown in bold. Green and red bullets 
mark genes that are statistically significantly deregulated (p < 0.05 or better) in Lmna 
(red) and Lbr (green) knockouts. (B) Genes from the GOC structural constituent of 
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muscle: myoblasts (B1) and limb muscles (B2). Each point represents a gene, with its 
expression levels (log2 FPKM). Gray lines mark a 2-fold reduction in expression 
(below the red line) and increased expression (above the red line). Arrows emphasize 
deregulation trends for Lmna (red) and Lbr (green). (C) Genes from the GOC striated 
muscle cell differentiation: myoblasts (C1) and limb muscles (C2). The results are 
very similar to (B). The proportion of genes strongly deregulated in myoblasts is 
smaller, which may be explained by the fact that this GOC covers numerous genes 
(157 with non-zero expression in our data), many of which are not muscle-specific 
(e.g., Dicer1, Ezh2, Notch1, Rb1).  
 

 

 

Figure 4.9: Summary of the effects of LMNA/C and LBR on the nuclear 
architecture. Presence and absence of LBR and LMNA/C in individual cell types are 
shown with green and red pluses and minuses; i, inversion; c, compensation by 
prolonged LBR expression. Bar, 2 μm. 
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4.7 Conclusions 

 

By analyzing more than 30 cell types from WT, LbrGT/GT and Lmna∆/∆ 

mouse tissues (and 4 other transgenic lines based on other collaborators’ 

work), we showed that LBR and/or lamin A/C are essential for tethering 

heterochromatin to the nuclear periphery. Absence of both proteins in 

postmitotic cells results in inversion of the nuclear architecture with 

heterochromatin relocalizing from the nuclear envelope to nuclear interior. 

During development and cellular differentiation, expression of LBR and 

LMNA/C is sequential and coordinated. Initially, only LBR is expressed and 

is later replaced by LMNA/C, with a few differentiated cell types expressing 

both proteins. In most cell types, deletion of Lmna is compensated by 

prolonged expression of LBR. Deletion of both Lbr and Lmna causes 

inversion in all differentiated cell types in newborn mice (summarized in Fig. 

4.9). Comparison of WT, LbrGT/GT and Lmna∆/∆ myoblast transcriptomes 

revealed that a sequential temporal usage of LBR and LMNA/C tethers during 

development correlates with their opposite effects on the transcription of 

muscle specific genes: a decrease and increase, respectively. However, in 

terminally differentiated muscle, the differences between transcriptomes were 

almost non-existent. 

  

Although both LBR and LMNA/C are indispensable for 

heterochromatin tethering, the roles of these proteins are different. LBR is an 

integral protein of the INM, which preferentially binds to B-type lamins. The 

Tudor domain of LBR selectively interacts with heterochromatin (Hirano et 
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al., 2012; Makatsori et al., 2004; Olins et al., 2010). LBR, B-type lamins and 

INM are sufficient to build a heterochromatin tether (Fig. 4.10) (Clowney et 

al., 2012). However, B-type lamins seem to be dispensable because mouse 

cells lacking both Lmnb1 and Lmnb2 retain a conventional nuclear 

architecture in the absence of LMNA/C (Kim et al., 2011; Yang et al., 2011a); 

this may be due to the retention of LBR, which has eight transmembrane 

domains at the INM. 

 

 

Figure 4.10: Proposed organization of the two tethers maintaining peripheral 
heterochromatin. Chromatin/DNA binding by lamins (dotted circles) is not 
sufficient for heterochromatin tethering but might synergistically enhance binding. 
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In contrast to LBR, exogenous A-type lamins expression does not 

counteract inversion in rods (Solovei et al., 2013). Although LMNA/C may 

bind chromatin directly (Andres and Gonzalez, 2009; Kubben et al., 2012), it 

typically functions as a scaffold for other chromatin-interacting proteins, such 

as LEM-domain proteins in particular. The latter share three important 

properties with LBR: they are anchored in the INM, interact with lamins, and 

bind to chromatin and/or DNA through their binding partners (Brachner and 

Foisner, 2011). LEM domain proteins anchor heterochromatin to the NE in 

yeast, which have no lamins, and in C. elegans, which has a single lamin 

(Ikegami et al., 2010; Mattout et al., 2011; Towbin et al., 2012). 

 

The LEM domain protein Lap2β was recently implicated in gene 

silencing at the nuclear periphery in mammals (Zullo et al., 2012). It forms a 

complex with histone deacetylase (HDAC3) and cKrox, a protein binding to 

stretches of GA dinucleotides. While HDAC3 promotes 

heterochromatinization, the LEM domain protein binds the whole complex to 

the NE. The activity of the complex is cell-type- and developmental-stage-

specific (Zullo et al., 2012), which probably depends on PTMs known to 

strongly affect the properties of LEM domain proteins (Tifft et al., 2009). 

Lap2β doubtlessly contributes to peripheral heterochromatin tethering in 

differentiated cells but cannot completely account for all tethering. Lap2β does 

not target, to the nuclear periphery, all lamina-associated DNA sequences 

analyzed (Zullo et al., 2012). NE-associated isoforms of Lap2 (neLap2) does 

not prevent inversion occurring in WT rods lacking both LBR and LMNA/C. 

Also, in rods, neLap2 does not counteract inversion in combination with 
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transgenically expressed LMNC (and native B-type lamins) (Solovei et al., 

2013). Also, B-type lamins are dispensable for maintaining peripheral 

heterochromatin in the absence of LBR in nuclei from mice lacking both 

Lmnb1 and Lmnb2 (Kim et al., 2011; Yang et al., 2011a). 

 

These facts emphasize the importance of LMNA/C and also suggest a 

role for other LEM domain proteins in the LMNA/C tether. Notably, emerin 

also binds to HDAC3, and its deletion reduces the level of HDAC3 at the 

nuclear periphery (Demmerle et al., 2012), whereas HDAC3 regulates 

heterochromatin levels (Bhaskara et al., 2010). The other LEM domain 

proteins have not yet been studied in this respect. In dermal papilla cells (also 

affected by Lmna deletion), loss of emerin results in increased expression of 

neLap2, supporting a possible role for both emerin and neLap in peripheral 

heterochromatin tethering. However, even the absence of both emerin and 

neLap2 does not result in inversion in striated muscle. It was also shown that 

the pattern of LEM domain protein expression is cell type specific, with none 

of the LEM domain proteins being universally expressed in mammalian cells 

(Solovei et al., 2013). This is in agreement with the reported broad functional 

overlap between LEM domain proteins in all organisms studied so far (Barkan 

et al., 2012; Huber et al., 2009; Mattout et al., 2011). 

 

Clearly, the composition of the LMNA/C-dependent peripheral 

heterochromatin tether requires further analysis. Nevertheless, our data 

corroborates with published data and supports the notion that LEM-domain 

proteins cooperate with LMNA/C in tethering peripheral heterochromatin to 
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the NE in mammals (Fig. 4.10). Available data also suggest that different 

LEM domain proteins (probably combinations of these proteins) mediate 

heterochromatin binding to LMNA/C, depending on the cell type and 

developmental stage. Indeed, in C.elegans, heterochromatic chromosome arms 

are targeted to the nuclear lamina by a complex of lamin with any of the two 

LEM domain proteins (Ikegami et al., 2010; Mattout et al., 2011). Targeting 

depends on histone methylation (Towbin et al., 2012) —that is, using the same 

repressive epigenetic marks that LBR binds to in mammals. This suggests that 

complexes of lamin and LEM domain proteins in mammals should also 

include proteins recognizing histone methylation. 

 

LMNA/C is a known marker of the differentiated state (Zhang et al., 

2011), whereas our data primarily link LBR expression to undifferentiated or 

early differentiated states. This difference in the timing of expression of LBR 

and LMNA/C conforms to the opposite effects of Lbr and Lmna loss on 

transcription of many muscle-specific genes during the early stages of 

myotube differentiation. Loss of Lbr increases, whereas loss of Lmna 

decreases expression of these genes. This is consistent with the earlier findings 

on the delayed maturation of satellite and myotubes with myopathogenic 

mutations in Lmna (Bertrand et al., 2012; Melcon et al., 2006; Park et al., 

2009). In agreement with previous studies (Kubben et al., 2011; Verhagen et 

al., 2012), loss of Lbr and Lmna had little effect on the transcriptomes of 

mature, fully differentiated skeletal muscle, though transgenic expression of 

LBR deregulates the differentiation of olfactory neurons (Clowney et al., 

2012). 
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The same sequential pattern of LBR and LMNA/C expression in 

diverse cell types suggests that peripheral heterochromatin tethers regulate 

differentiation in a broad range of tissues, e.g., mesodermal (osteogenic and 

adipogenic) or perhaps in all cell types. In mammalian cells, targeting 

chromatin to the NE mediates its silencing in a histone-deacetylation-

dependent manner (Finlan et al., 2008), which concurs with HDAC3 

associating with LEM domain proteins. Tellingly, the proximity of the 

myogenic master regulator gene MyoD to the nuclear periphery directly 

affects its binding to alternative transcription factors in mammalian cells 

(Melcon et al., 2006; Yao et al., 2011). This illustrates how changes in gene 

position can switch between regulatory pathways and regulate cellular 

differentiation. The versatility of chromatin binding by the LMNA/C tether, 

suggested by our results, may explain how LMNA/C contributes to the 

regulation of diverse genes and developmental processes, resulting in a 

plethora of phenotypically different syndromes when this protein is mutated.  
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Chapter 5 – Determining the role of lamin A/C in gastrointestinal (GI) 

epithelium  

 

Increased interest in the roles of lamins in changes to nuclear structure 

and link to malignancy has emerged. A great body of evidence indicates that 

alterations in lamins affect a variety of processes that can impact cancer 

development and progression, such as changes in nuclear flexibility in relation 

to cell metastasis (Rowat et al., 2013), gene regulation, proliferation, 

apoptosis, chromatin organization and genome stability (Broers et al., 2006; 

Foster et al., 2010; Gonzalez-Suarez et al., 2009a; Zink et al., 2004).  

 

Expression of A-type lamins is altered in colorectal, lung, skin, 

ovarian, breast, thyroid cancers as well as in some leukemias (Agrelo et al., 

2005; Belt et al., 2011; Broers et al., 1993; Capo-chichi et al., 2011; Foster et 

al., 2010; Helfand et al., 2012; Kaufmann, 1992; Machiels et al., 1995; Tilli et 

al., 2003; Venables et al., 2001; Willis et al., 2008). However, there are 

conflicting reports as to the significance of LMNA levels in GI tumors.  In a 

study by Willis et al., the increased expression of LMNA, but not LMNC, was 

linked to tumor progression in colorectal cancer (CRC). Patients with high 

levels of LMNA expression were more likely to die of CRC than similarly 

staged patients with low LMNA expression. Thus, LMNA was suggested to be 

a potential risk biomarker in CRC. Expression of LMNA in CRC cell lines up-

regulated the expression of actin bundling protein T-plastin, resulting in 

reduced expression of cell adhesion molecule E-cadherin. It was proposed that 

loss of cell adhesion led to increased cell motility and resulted in metastasis of 
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tumor cells via reorganization of the actin cytoskeleton, and hence suggested 

that cancer cells with increased levels of LMNA were responsible for 

increased progression of CRC. In the same study, LMNA was highly 

expressed in the basal region of colonic crypt, a region suggested as the stem 

cell niche (Willis et al., 2008), contrary to previous evidence that LMNA is 

expressed only in differentiated somatic cells. In another study, low expression 

of LMNA/C in colonic epithelial cancer cells correlated to increased disease 

recurrence in stage II and III colon cancer patients (Belt et al., 2011). 

Therefore, while these studies implicate that alteration in LMNA expression 

levels is involved in oncogenesis in the intestines, the exact role of A-type 

lamins in intestinal tumor formation and progression remains to be elucidated. 

 

I was interested to examine the roles of Lmna in highly proliferative 

murine intestinal epithelial cells (IECs) and in particular, its role in 

oncogenesis in the GI tract (restricted to the small and large intestines). 

Utilizing the conditional LmnaFL/FL mouse model that I described in chapter 3 

and Villin-Cre recombinase (Vil-Cre) mice (Madison et al., 2002), I generated 

an IEC-specific Lmna-null mouse model where Lmna is deleted in epithelial 

cells in the GI tract but remains expressed in other cell types of the GI tract 

and all other organs.  

 

  



110 

 

5.1 Expression of LMNA/C in the GI tract 

 

The expression of LMNA/C in the GI tract was examined in WT mice 

by immunofluorescence and western analysis. In the small intestine 

(duodenum, jejunum and ileum), expression of LMNA/C is higher in the 

central lamina propria than in the IECs (Fig. 5.1A and B). Expression of 

LMNA/C progressively increases as IECs migrate to the villous tip as they 

differentiate. Expression was weak or absent in most cells in the basal colonic 

crypts (Fig. 5.1A). LMNA/C expression in the murine GI is similar to the 

human GI where LMNA/C was strongly expressed in the functionally 

differentiated epithelial layers and also strongly expressed in surrounding 

stromal tissue and underlying muscle, with weaker or no expression in the 

majority of cells in the colonic crypts (Willis et al., 2008).  

 

It is well documented that A-type lamins are expressed in differentiated 

cells but are usually absent in human and mouse stem cells (Constantinescu et 

al., 2006). LBR, but not LMNA/C, is expressed in the crypt cells in the 

duodenum (Fig. 4.3D) (Solovei et al., 2013). However, one study reported 

LMNA to be expressed in the stem cell niche of the human colon (Willis et al., 

2008). To further determine whether LMNA/C is expressed in murine GI stem 

cells, I used a reporter line expressing green fluorescent proteins (GFP) under 

control of the stem cell marker Lgr5 (Lgr5-EGFP-IRES-creERT2) (Barker et 

al., 2007), to determine if LMNA/C co-localizes with Lgr5 in the duodenum. I 

did not find any co-expression of LMNA/C with the Lgr5-positive GI stem 

cells in the duodenum crypts (n=25) of 7-weeks old mice (Fig. 5.2). 
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Figure 5.1: LMNA/C is abolished in Lmna∆/∆/Vil-Cre mice IECs. (A) 
Immunofluorescence staining of LMNA/C in Lmna∆/∆/Vil-Cre mouse GI tract 
(duodenum, jejunum, ileum and colon) showed that in WT mice, LMNA/C was 
detected in lower levels in the IECs (white arrows) compared to cells of the lamina 
propria  (yellow arrows) and muscularis mucosa. Upon introduction of Vil-Cre, no 
LMNA/C was detected in the IECs in Lmna∆/∆/Vil-Cre mice but remains in lamina 
propria cells (inset) (Scale bars, 20 µm). (B) Western blot for LMNA/C indicated that 
in LmnaFL/FL mice, less LMNA/C was detected in IECs (E1, E2) compared to lamina 
propria cells and muscularis mucosa (T) and upon introduction of Vil-Cre, complete 
loss of LMNA/C was observed.  
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Figure 5.2: LMNA/C is not expressed in murine Lgr5-positive intestinal stem 
cells. In Lgr5-eGFP-IRES-creERT2 reporter mouse duodenum, there was no co-
localization of LMNA/C (red) and Lgr5-eGFP (green), indicating that LMNA/C is 
not expressed in the adult stem cell populations in the crypts (yellow arrows) of the 
murine duodenum. (Scale bars, 20 µm)  
 

5.2 Deleting Lmna in the GI epithelium using Vil-Cre recombinase 

 

To study the effects of loss of Lmna in the highly proliferative IECs, I 

used Vil-Cre mice to delete the Lmna gene and derive GI IEC-specific Lmna 

null mice (Lmna∆/∆/Vil-Cre). Immunofluorescence and western analysis of 

Lmna∆/∆/Vil-Cre GI confirmed that LMNA/C was ablated in the epithelial layer 

throughout the GI tract, but not in the lamina propria or muscularis mucosa 

(Fig. 5.1A and B). Vil-Cre mediated deletion is generally efficient and 

continuous but a residual amount of mosaicism may remain (Madison et al., 

2002). We observed occasional IECs still expressing LMNA/C in the 

Lmna∆/∆/Vil-Cre GI, but estimated this is in less than 1% of the total number of 

IECs.  
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5.3 Lmna∆/∆/Vil-Cre mice appear phenotypically normal  

 

Lmna∆/∆/Vil-Cre mice were born at expected Mendelian ratios, and were 

indistinguishable from their WT littermates. They survived for more than 1 

year without presenting any gross phenotypic abnormalities, such as shortened 

lifespan, reduced weight or spontaneous adenoma formation in their GI tract. 

Histological analysis of the GI at 10 weeks showed no overt disparities in 

intestinal morphology between control LmnaFL/FL and Lmna∆/∆/Vil-Cre mice (Fig. 

5.3). Examination of 3 one year old Lmna∆/∆/Vil-Cre mice revealed no overt 

consequences on intestinal morphology. Although renal cortex and testes 

epithelial cells also expresses villin (Maunoury et al., 1992), minimal Cre 

recombination was observed in kidneys or testes of this Villin-Cre line 

(Madison et al., 2002). I also did not observe any gross morphological 

abnormalities in the kidneys or testes of Lmna∆/∆/Vil-Cre mice, and reasoned that 

deletion of Lmna occurred exclusively in the IECs or at least, did not 

contribute to non-GI specific phenotypes in Lmna∆/∆/Vil-Cre mice. 
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Figure 5.3: No observable histological differences were detected in Lmna∆/∆Vil-
Cre mice intestines. H&E staining of the different regions of the GI tract (duodenum, 
jejunum, ileum and colon) showed that at 10-weeks old, Lmna∆/∆/Vil-Cre mice were 
healthy and comparable to their WT littermates (Scale bars, 100 µm).  
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5.4 Lmna∆/∆/Vil-Cre mice do not show differences in GI epithelial 

proliferation 

 

 Since previous studies on human samples showed that there is no 

consistent pattern of LMNA expression in GI tumorigenesis, I investigated the 

effects of loss of Lmna on the proliferative capacity of the GI epithelium. 

Analysis of Ki-67 expression of the different segments of the intestines 

showed that Ki-67 positive cells were located in the crypt, mainly in the transit 

amplifying cells of the GI with no difference in the numbers of Ki-67 positive 

nuclei between control LmnaFL/FL and Lmna∆/∆/Vil-Cre (Fig. 5.4A and B). These 

findings are similar to previous reports where CRC lines not expressing 

LMNA showed no differences in proliferation rates compared to cells 

expressing LMNA (Willis et al., 2008). 
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Figure 5.4: Lmna-null IECs do not show any differences in proliferation rate. (A) 
Ki-67 positive cells (white/green) were mainly located in the transit amplifying cells 
in the crypts, where LMNA/C (red) was not expressed. No difference in the number 
of Ki-67 positive cells was observed in Lmna∆/∆/Vil-Cre mice compared to their wild-
type littermates (Scale bars, 20 µm). (B) Ki-67 positive cells in the crypts of 
duodenum, jejunum, ileum and colon were counted and tabulated. No statistical 
difference was observed between Lmna∆/∆/Vil-Cre mice and their WT littermates. 
 

5.5 Loss of Lmna in the GI increases papilloma size  

 

To investigate a potential link of LMNA/C to carcinogenesis, I bred 

Lmna∆/∆/Vil-Cre mice to mice carrying a mutation in the adenomatous polyposis 

coli gene (ApcMin/+). ApcMin/+ mice have a germ-line nonsense mutation in the 

adenomatous polyposis coli (Apc) gene and spontaneously develop intestinal 

adenomatous polyps in the GI tract around 10-12 weeks (Su et al., 1992). 

Immunofluorescence analysis of polyps obtained from Lmnawt/wt/ApcMin/+ and 

Lmna∆/∆/Vil-Cre/ApcMin/+ mice GI revealed that the polyps originated from IECs 

in both genotypes (Fig. 5.6). A comparison of the number and size of polyps 

throughout the GI tract was made between Lmnawt/wt/ApcMin/+ (n=14) and 

Lmna∆/∆/Vil-Cre/ApcMin/+ (n=16) mice aged between 17-30 weeks. The total 

number of polyps in the GI tract was only slightly elevated in Lmna∆/∆/Vil-

Cre/ApcMin/+ mice (77.56 ±13.17 vs. 58.79 ±11.96, Fig. 5.5A), although I found 

an increased frequency of large polyps (2-5mm) in the duodenum (1.5-fold 

larger, p<0.05) and proximal jejunum (3-fold larger, p<0.01) compared to 

Lmnawt/wt/ApcMin/+ mice (Fig. 5.5B). These results indicate that in the absence 

of Lmna, polyp growth is accelerated, though possibly only in specific 

segments of the GI tract.  
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Figure 5.5: When exposed to APCmin mutation, the total number of polyps was 
unchanged but polyp size was enhanced in Lmna∆/∆/Vil-Cre mice GI. (A) The total 
number of polyps observed in the GI tract (duodenum, proximal and distal jejunum, 
ileum and colon) was not changed in Lmnawt/wt/APCMin/+ (n=14) compared to 
Lmna∆/∆/Vil-Cre/APCMin/+ (n=16) mice. (B) Increased frequency of larger polyps (2-
5mm) was observed in the duodenum (* p<0.05) and proximal jejunum of Lmna∆/∆/Vil-

Cre/APCMin/+ mice. (** p<0.01) compared to their WT littermates. Data represents 
mean ± SEM.  
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5.6 Prolonged expression of LBR in Lmna-null IECs and polyps 

 

In chapter 4, I showed that LMNA/C and LBR expression is 

coordinated in a temporally synchronized manner and that loss of both LBR 

and LMNA/C results in chromatin inversion (Solovei et al; 2013). In the GI 

epithelium, LBR is strongly expressed in the basal colonic crypts and as IECs 

progress up the vilum, LMNA/C replaces LBR in the nuclei (Fig. 5.6A). I 

analyzed LBR expression in Lmna∆/∆/Vil-Cre/APCMin/+ GI and found LBR 

expression was enhanced in Lmna-null IECs (Fig. 5.6A). LBR was also highly 

expressed in Lmna-null IECs-derived polyps in Lmna∆/∆/Vil-Cre/ApcMin/+ mice 

compared to Lmna positive IECs in the polyps of Lmnawt/wt/ApcMin/+ mice (Fig. 

5.6B). 
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Figure 5.6: Increased expression of LBR in Lmna-null IECs. Immunofluorescence 
co-staining of LMNA/C and LBR showed that (A) in the normal regions of 
Lmnawt/wt/APCMin/+ colon, expression of LMNA/C and LBR was coordinated such that 
LMNA/C is highly expressed at villous tip (indicated as yellow arrows) while LBR is 
abundantly expressed in the basal colonic crypt IECs (indicated as white arrows). In 
Lmna∆/∆/Vil-Cre/APCMin/+ colon IECs, expression of LBR was uniform. (B) In the 
Lmnawt/wt/APCMin/+ polyp, IECs expressing LMNA/C exhibited none/lower expression 
of LBR whereas in Lmna∆/∆/Vil-Cre/APCMin/+ polyp, LMNA/C-null cells exhibited 
higher expression of LBR in contrast to neighboring cells with LMNA/C expression 
and low LBR expression (see inset) (Scale bars, 20 µm). 
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5.7 Conclusions 

 

In conclusion, by employing the conditional LmnaFL/FL mouse model, I 

generated a mouse line (Lmna∆/∆/Vil-Cre) where Lmna was ablated in the IECs 

but remains intact in the lamina propria and other tissues. Mice lacking Lmna 

throughout the GI epithelium survived more than 1 year without presenting 

gross abnormalities or spontaneous development of GI tumors. Histological 

analysis of the GI tract lacking LMNA/C showed no abnormalities in 

morphology and proliferation. Hence, the creation of our mouse model allows 

us to bypass the early lethality due to global loss of lamin A/C, and evaluate 

tissue-specific loss of Lmna in the GI and the consequences on tumorigenesis.  

 

To elucidate the role of lamin A/C in GI oncogenesis, we investigated 

the effect of loss of Lmna on the proliferative capacity of murine GI epithelial 

cells. Our findings reveal that, although A-type lamins appear to be 

dispensable in the GI epithelium, loss of Lmna in the IECs increased the 

frequency of larger polyps (2-5mm) in the duodenum and proximal jejunum, 

but have no significant effect on overall number of papillomas.  Although the 

statistical significance is marginal, my data suggests that loss of Lmna leads to 

accelerated polyp growth indicating that Lmna may serve as a tumor 

suppressor gene.  

 

Loss of Lmna in our conditional Lmna∆/∆/Vil-Cre/ApcMin/+mice possibly 

resulted in defective control of genomic stability in highly proliferative 

intestinal epithelial cells, resulting in occurrence of bigger polyps. Therefore, I 
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took another approach to confirm our hypothesis. p53, apart from APC, is one 

out of three genes most frequently mutated in CRC (Fearon and Vogelstein, 

1990). p53 is a tumor suppressor gene that has an important role in regulating 

the cell cycle and apoptosis. In p53-null mice, cancer begins to develop at 4 to 

6 months of age (Donehower et al., 1992; Jacks et al., 1994). Therefore, I 

attempted to obtain an inducible Cre deletion of Lmna specifically in the 

intestinal stem cells that will subsequently proliferate and differentiate into 

IECs. I crossed LmnaFL/FL mice to Lgr5-EGFP-IRES-CreERT2 mice (Barker et 

al., 2007) where deletion of floxed Lmna occurs in GI following tamoxifen 

induction. This would allow me to investigate if loss of Lmna shortens the 

period or increase the incidence of cancer of the intestine and help further 

elucidate the role of Lmna in cancer formation in the highly proliferative 

intestine. However, I found that Lgr5-EGFP-IRES-CreERT2 mediated 

deletion of Lmna was inefficient and mosaic. Tumour sensitized double 

mutant mouse lines containing floxed Apc (Cheung et al., 2010) and floxed 

p53 alleles (Marino et al., 2000) that result in the deletion of Lmna as well as 

APC and p53 respectively (LmnaFL/FLApcFL/FL/Lgr5-CreERT and 

LmnaFL/FLp53FL/FL/Lgr5-CreERT), were also analyzed for tumor formation. 

However, due to mosaic deletion of Lmna, I was unable to obtain conclusive 

results on disparities in lifespan or polyps formation between Lmna-null and 

WT mice. 

 

LMNA/C is important in tethering chromatin to the nuclear periphery 

in terminally differentiated cells while LBR does the same in less 

differentiated cells (Solovei et al., 2013). Furthermore, loss of LMNA/C 
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results in prolonged expression of LBR in terminally differentiated cells 

(Solovei et al., 2013). Strong and persistent expression of LBR was also 

observed in IECs and polyps lacking LMNA/C. Since LBR is expressed in the 

crypts and transitional zones where GI cells are proliferating, our findings 

suggest that the slight increase in polyp size in Lmna∆/∆/Vil-Cre/ApcMin/+ mice 

may be due to the persistent expression of LBR, which otherwise would be 

suppressed by lamin A/C.  

 

A recent study of human colon suggested that LMNA was expressed in 

colonic crypts and that LMNA could be a marker of adult human colonic stem 

cells (Willis et al., 2008).  LGR5 positive cells are found in human GI and 

these cells give rise to multicellular organoids ex vivo indicating that they are 

pluripotent (Jung et al., 2011). Using a mouse strain expressing GFP 

specifically in Lgr5 positive intestinal stem cells, co-localization of LMNA/C 

with Lgr5 was not detected, indicating that LMNA/C positive cells in the 

crypts are not the stem cells that give rise to GI adenomas. In contrast to 

humans, LMNA/C may not be a marker for murine adult intestinal stem cells. 
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Chapter 6 – Determining the role of lamin A/C in skin development and 

carcinogenesis 

 

6.1 Structure and properties of skin and hair in human and mouse 

 

The skin is the largest organ of the human body and has important 

functions in providing of barrier to harmful organisms and substances, 

protection against ultraviolet radiation, as well as regulating water loss and 

body temperature (Blanpain and Fuchs, 2006). The skin is composed of 3 

primary layers: the epidermis, dermis and hypodermis (Fig. 6.1A). The 

epidermis is further stratified into 4 sublayers with keratinocytes being the 

predominant cell type in all the sublayers. Above the basement membrane lies 

the basal cell layer (stratum basale) consisting of stem cells and transit 

amplifying cells that differentiate and move upwards into the 

suprabasal/spinous layer (stratum spinosum). Keratinocytes progressively 

flatten as they move apically. In the granular layer (stratum granulosum), 

keratinocytes further differentiate and eventually lose their nuclei. The 

outermost epidermal layer is the cornified layer (stratum corneum) and 

depending on their body location, consists of up to 30 layers of dead 

anucleated corneocytes. The mouse skin is a useful model for studying human 

skin, and is structurally similar. However, the number of epidermal layers can 

differ, with the epidermis of mouse body skin having only 1 to 2 cell layers 

and paw skin having up to 10 layers of epidermal cells.  
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The skin also contains important appendages such as hair follicles 

(HFs), nails and sebaceous glands. Mammalian hair is critical to regulating 

body heat and has significant sensory functions. The hair follicle (HF) is a 

specialized organ composed of several layers of epithelial cells (the root 

sheath) surrounding the hair shaft (Sperling, 1991). Specialized dermal papilla 

cells reside at the base of the HF and have significant roles in the postnatal 

regulation of hair growth (Jahoda et al., 1984). Throughout a mammal’s 

lifetime, HFs cyclically degenerate and regenerate in three main phases: 

anagen as the growth phase, catagen as the apoptosis-driven regression phase 

and telogen as the resting phase (Fig. 6.1A) (Cotsarelis, 1997). While human 

HFs undergo asynchronous hair growth cycles throughout their lifespan (Xu et 

al., 2003), murine hair growth occurs in a wave-like pattern and is highly 

synchronized during the first two cycles (Muller-Rover et al., 2001).  

 

In C57BL6 mice, HF morphogenesis starts during late embryogenesis 

and lasts until P14. After this period of rapid growth, HFs enter a catagen 

phase, a period of controlled regression that involves apoptosis of epithelial 

cells in the hair bulb and outer root sheath (ORS) (Lindner et al., 1997). At 

around P19, HFs enter the first postnatal hair cycle at telogen where they 

become dormant for a few days and await activation. The first postnatal 

anagen starts at P28 and HFs go through 2 weeks of rapid growth, after which 

they transit into a short catagen and then a resting telogen phase lasting 4 to 5 

weeks. By P84, HFs re-enter anagen again and hair growth becomes random 

and asynchronous after this point (Fig. 6.1B) (Krause and Foitzik, 2006; 

Muller-Rover et al., 2001; Stenn and Paus, 2001). 
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Figure 6.1: Hair cycling in C57BL6 mice. (A) The skin is a stratified organ 
comprising of epidermis, dermis, hypodermis (subcutis) made up of subcutaneous fat 
and a thin dermal muscle layer panniculus carnosus. Hair follicles (HFs) undergo 
cycles of hair growth in 3 distinct stages: telogen (rest), catagen (regression) and 
anagen (growth) phase. At each phase, the sublayers and HFs show distinct 
histomorphologies. (B) HFs in C57BL6 mice cycle in a synchronized manner for 
about 12 weeks after birth. First postnatal anagen phase starts around P28 and lasts 
for 1-2 weeks, followed by a short catagen phase and a longer telogen phase at P49. 
The second anagen starts at around P84. Illustration adapted with permission (Muller-
Rover et al., 2001). 
 

6.2 Key molecular mechanisms regulate skin and HF growth 

 

Growth and differentiation of keratinocytes are influenced by a large 

number of factors. Several different cyclin-dependent kinases and growth 

factors such as epidermal growth factor (EGF), insulin-like growth factor-1 

(IGF-1), keratinocyte growth factor (KGF) and TGF-β participate in 

enhancing or inhibiting keratinocyte proliferation (Gniadecki, 1998). TGF-β 
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belongs to BMP superfamily and is the most important inhibitor of 

keratinocyte growth (Glick, 2012). Low levels of TGF-β1 and TGF-β2 are 

usually found in keratinocytes of the suprabasal layer and enhanced levels of 

TGF-β can lead to epidermal atrophy in mice (Sellheyer et al., 1993). 

 

Molecular signaling pathways involved in the formation, growth and 

cycling of HFs have been extensively studied. During hair morphogenesis, 

growth factors such as fibroblast growth factors (FGF), KGF and BMP-

inhibitory factors determine the positions of hair placodes and specify their 

commitment (Mou et al., 2006; Petiot et al., 2003; Werner et al., 1994). During 

hair development, sonic hedgehog (Shh) is necessary for epithelial cells 

proliferation and formation of new HFs. Disruption of Shh results in impaired 

formation of HFs (St-Jacques et al., 1998; Wang et al., 2000) while ectopic 

expression of Shh induces quiescent HFs to enter anagen (Sato et al., 1999). 

Wnt/β-catenin signaling is also critical during HF induction and growth. 

Disruption of β-catenin or ectopic expression of Wnt inhibitor dickkopf-1 

(Dkk1) in the epidermis resulted in impaired hair placodes formation (Andl et 

al., 2002; Huelsken et al., 2001). Constitutive expression of the stabilized form 

of β-catenin in the epidermis resulted in excess HF and hair tumours in mice 

(Gat et al., 1998; Lo Celso et al., 2004; Van Mater et al., 2003). During hair 

cycling, expression of TGF-β declines as HFs cycle from catagen to telogen. 

In mice, ectopic TGF-β expression causes premature catagen (Foitzik et al., 

2000) whereas suppression of TGF-β signaling delays catagen (Tsuji et al., 

2003). Taken together, these studies implicate various molecular signaling 

pathways play important roles in keratinocyte growth and hair cycling. 
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6.3 Expression and functions of lamins in skin and hair 

 

While B-type lamins are expressed in all cells and are essential for 

normal embryogenesis (Vergnes et al., 2004), A-type lamins are found in more 

differentiated cells and may have more specialized tissue-specific functions 

(Goldman et al., 2002). In the human skin, this expression pattern is 

conserved. B-type lamins are expressed in all cell types of the human skin. 

LMNB1, but not LMNB2, declines as keratinocytes differentiate and migrate 

up the epidermal axis (Dreesen et al., 2013a). A-type lamins are highly 

expressed in dermal fibroblasts and epidermal suprabasal cells but absent in 

actively proliferating basal cells (Broers et al., 1997; Tilli et al., 2003; 

Venables et al., 2001).  

 

In mice, expression of lamin A/C in skin starts at around E15 and 

persists postnatally through adulthood (Rober et al., 1989). During the 

different hair growth phases, differential levels of A- and B-type lamins were 

observed: expression of both A- and B-type lamins are strongest in basal 

keratinocytes, ORS of HFs and dermal papilla cells but lower in catagen hair 

bulbs and suprabasal cells in all stages (Hanif et al., 2009). During 

development and cellular differentiation, expression of LBR and LMNA/C is 

sequential and coordinated in keratinocytes (Solovei et al., 2013). In stratified 

epidermis of the skin, expression of LBR and LMNA/C is spatially and 

temporally coordinated: basal keratinocytes express higher levels of LBR 

while more differentiated suprabasal cells express higher levels of LMNA/C 

(Fig. 4.3). Matrix cells in the hair bulb express LBR (Cohen et al., 2008) but 
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not LMNA/C while differentiated keratinocytes along the edge of the hair bulb 

show strong LMNA/C expression (Fig. 4.4E) (Solovei et al., 2013).  

 

A mouse line, harboring a spontaneous mutation in exon 1 of Lmna 

(LmnaDhe), displayed severe abnormalities in skin, hair and bone structure. 

This missense mutation resulted in amino acid substitution (L52R) that 

destabilizes the coiled coil rod domain of lamin A/C, so potentially disrupting 

the functions of lamin A-interacting proteins. Besides defective skull growth 

and mineralization deficiencies, homozygous LmnaDhe mice exhibit profound 

anomalies in the skin and hair such as thickened epidermis, multinucleated 

suprabasal keratinocytes, reduced hypodermis thickness, increased basal 

keratinocyte apoptosis, shorter length of anagen HFs and ulcerations in the 

oral mucosa. While homozygous LmnaDhe mice die at P10, heterozygous mice 

have a lifespan comparable to WT mice. Heterozygous mice exhibit mild skin 

and hair anomalies such as smaller ear pinnae, flaky skin and sparse hair with 

accelerated greying (Odgren et al., 2010). In mice deficient in Zmpste24, the 

gene coding for the metalloproteinase required for the post-translational 

processing of lamin A, mice exhibit alopecia and apoptotic hair bulbs due to 

reduced Wnt signaling in their hair follicles (Espada et al., 2008).  

 

In contrast, mice with a tissue-specific deletion of Lmnb1 and Lmnb2 

in their keratinocytes did not present any overt pathology in their skin, hair 

and nails and histological analysis did not reveal abnormalities. Lmnb-null 

keratinocytes exhibited normal proliferation rates and chromosome numbers 

although a significant increase in occurrence of misshapen nuclei and blebs 
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was observed (Yang et al., 2011a). Hence, B-type lamins would appear to be 

dispensable in murine keratinocyte development and proliferation. In a follow 

up study, a mouse line was created where keratinocytes lack all nuclear lamins 

(LmnaSul, Lmnb1 and Lmnb2). These mice exhibit morphological anomalies 

such as ichythosis, defective skin barrier function leading to severe 

dehydration, a thickened epidermis, lipid accumulation in the epidermis, 

defective hair placode development with the mice surviving only up to few 

days after birth. Lamin-deficient keratinocytes showed abnormal 

nucleoplasmic localization of emerin, intrusion of cytoplasmic fibers into the 

nucleus and incursion of nuclear and ER membranes into the chromatin, 

indicating that lamins are important in the formation of a “physical barrier” at 

the nuclear envelope to prevent invasion cytoplasmic organelles into the 

nucleoplasm. DNA synthesis and proliferation of lamins-deficient 

keratinocytes from P1 mice was not altered (Jung et al., 2014). Taken together, 

the complete absence of nuclear lamins in keratinocytes does not hinder 

embryonic skin formation, growth and differentiation, but A-type lamins may 

be more critical than B-type lamins in the postnatal regulation and 

maintenance of skin and HFs. 

 

 Mutations in lamins result in many diseases known as laminopathies. 

While many laminopathies affect skeletal and cardiac muscles, peripheral 

nerves and fat distribution, in 3 of the laminopathies the skin is also affected. 

HGPS patients exhibit accelerated aging symptoms and anomalies in skin and 

hair such as alopecia, scleroderma and thinning of epidermis (Sarkar and 

Shinton, 2001). Patients with mandibuloacral dysplasia also display alopecia, 
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skin atrophy and hyperpigmentation in their skin (Novelli et al., 2002). Loss of 

Zmpste24 causes the very rare neonatal lethal disease RD where newborns 

exhibit tight erosive skin with hyperkeratosis, sparse eyebrows and hair 

(Navarro et al., 2005). The occurrence of these skin-related laminopathies 

indicates that LMNA has important tissue-specific functions in the 

development and homeostasis of skin and hair.  

 

6.4 Expression of lamins in skin cancers 

 

 Lamins have important roles in maintenance of nuclear architecture, 

chromatin organization, apoptosis and genome stability (Broers et al., 2006; 

Foster et al., 2010; Gonzalez-Suarez et al., 2009a; Zink et al., 2004), all of 

which may contribute to tumourigenesis. Hence, mutations in lamins and 

changes in the nuclear lamina may contribute to cancer development and 

progression (Worman and Foisner, 2010). Indeed, aberrant expression and 

localization of lamins have been implicated in both hematopoietic and other 

cancers including those of the skin (Foster et al., 2010; Tilli et al., 2003; 

Venables et al., 2001).  

 

The expression of LMNA generally marks non-proliferating 

differentiated cells while the absence of LMNA is associated with a more 

proliferative profile. In a study looking at human basal cell carcinoma (BCC), 

10 out of 16 tumours that did not express LMNA showed enhanced 

proliferation, while tumours lacking LMNC displayed slower growth. This 
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observation suggests that lamin A, but not lamin C, may have tumour 

suppressing roles in BCC (Venables et al., 2001). However, in another study, 

LMNA was reported as being widely expressed in squamous cell carcinoma 

(SCC) and BCC, and 60% of actively proliferating cells in the tumours 

expressed LMNA. In normal human skin, LMNA is usually absent in the basal 

cells. However, LMNA was detected in the basal cells of epidermis overlying 

SCC and BCC, suggesting that lamin A may have a role in the primary 

processes of carcinogenesis. Hence, it was proposed that LMNA is absent in 

the early phase of BCC and SCC but as tumour progresses, the tumour cells 

differentiate with increasing LMNA expression (Tilli et al., 2003).  

 

Using our Lmna∆/∆K14-Cre mouse model, I sought to study the effect of 

loss of Lmna in keratinocytes. I evaluated the roles which lamin A/C play in 

the development and homeostasis of murine skin and hair. In particular, I am 

interested in defining whether Lmna partakes in the processes involved in skin 

transformation.  

 

 6.5 Deleting Lmna in keratinocytes with K14-Cre 

 

 Lamins are abundantly expressed in the mouse skin. A-type lamins are 

expressed in the keratinocytes, dermal fibroblasts, sebaceous glands, inner and 

outer root sheath (ORS) of HFs, bulb and dermal papilla (Fig. 6.2A) (Hanif et 

al., 2009; Solovei et al., 2013). They are also expressed in the epithelial 

keratinocytes and striated muscles of the tongue (Fig. 6.2B).  
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To study the effect of loss of Lmna in highly proliferative epithelial 

cells in the skin, I use the K14-Cre line to delete Lmna specifically in the 

keratinocytes. K14-Cre driven -galactosidase expression was observed in 

skin and tongue epithelium, HFs, and also at low levels in the uterus, liver and 

thymus (http:/cre.jax.org/Krt14/Krt14-creNano.html). Lmna∆/∆K14-Cre mice are 

born at Mendelian ratios, and indistinguishable from their WT littermates. 

Skin tissues including the dorsal skin, ventral skin, paws and tongue were 

analyzed and keratinocyte-specific Lmna knockout mice (Lmna∆/∆K14-Cre) do 

not express LMNA/C in the skin epidermis, ORS of HFs and tongue 

epithelium (Fig. 6.2A, B). The efficiency of deletion was near 100% and 

keratinocyte-specific.  

 

Keratinocytes were harvested from WT (LmnaFL/FL) and Lmna∆/∆K14-Cre 

mice and analyzed via qRT-PCR, western analysis and immunofluorescence 

staining for LMNA/C. Similar to the Zp3-Cre driven global knockout Lmna∆/∆, 

Lmna mRNA transcript levels at exons 9 to 10 are greatly depleted (~99%) 

while exons 3 to 4 show a ~50% reduction (Fig. 6.3A). LMNA/C protein 

expression was completely abolished in Lmna-null keratinocytes as 

demonstrated by western blot analysis and immunofluorescence staining (Fig. 

6.3B, C). 
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Figure 6.2: LMNA/C is widely expressed in skin and tongue. Upon introduction 
of K14-Cre, LMNA/C is abolished in keratinocytes in skin and tongue epithelium 
of Lmna∆/∆K14-Cre mice. (A) In the dorsal skin, LMNA/C (green) is expressed in 
keratinocytes in the skin epidermis (ep) and hair follicles (hf), dermal fibroblasts in 
the dermis, and dermal papilla cells. K14 (red) is expressed in the basal cell layer and 
ORS of HFs. In the dorsal skin of Lmna∆/∆K14-Cre mice, expression of LMNA/C is 
abolished in K14-expressing keratinocytes (red, see inset) but remains expressed in 
fibroblasts in the dermis (Scale bars, 50 µm). (B) In the tongue, LMNA/C is 
expressed in high levels in the muscular layer (mus) and in lower levels in the K14-
expressing keratinocytes (ep) in the epithelium. In Lmna∆/∆K14-Cre mice, expression of 
LMNA/C is completely abolished (Scale bars, 100 µm). 
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Figure 6.3: LMNA/C is abolished in keratinocytes of Lmna∆/∆K14-Cre mice. 
Keratinocytes extracted from dorsal skin of Lmna∆/∆K14-Cre mice confirm that (A) 
Lmna mRNA transcript levels are reduced by ~90% and ~50% at exons 9 to 10 and 
exons 3 to 4 respectively (n=3 biological samples; data represents mean  SEM). At 
the protein level, LMNA/C cannot be detected by (B) western analysis (n=3 
biological samples) and (C) immunofluorescence staining of Lmna-null 
keratinocytes. (Scale bars, 50 µm). 
 

6.6 Loss of lamin A/C does not affect B-type lamins and other NE proteins  

 

 To study the effect of loss of Lmna on other components of the nuclear 

lamina, I studied the expression profiles of B-type lamins and NE components 

including emerin and LAP2 in Lmna-null keratinocytes. Lmnb1 and Lmnb2 

mRNA levels are unchanged (Fig. 6.4A) and western analysis revealed that 

expression levels of LMNB1, LMNB2, emerin and LAP2 were not 

significantly altered (Fig. 6.4B). In the epidermis and HFs of Lmna∆/∆K14-Cre 
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mice, there are more LMNA-null keratinocytes expressing LMNB1 but 

localization of LMNB1 was not altered (Fig. 6.4C). Contrary to previous 

reports from FVB/N mice (Hanif et al., 2009), I did not see differential 

expression of LMNA/C and LMNB in basal and suprabasal cells. In WT mice, 

expression of LMNA/C and LMNB1 is similar in both basal and suprabasal 

keratinocytes (Fig. 6.4C). On the other hand, expression of LBR was 

prolonged and enhanced in epidermis of Lmna∆/∆K14-Cre mice (Fig. 4.8) and this 

may be important in maintenance of heterochromatin positioning.  

 

6.7 Histological analysis of skin of Lmna∆/∆K14-Cre mice 

 

Histological examination of skin tissue sections from 10 weeks old 

mice (age and gender matched littermates) show thickened epidermis in the 

dorsal skin, ventral skin, and non-cornified layer of stratified squamous 

epithelial in the tongue of the Lmna∆/∆K14-Cre mice. Follicular hyperkeratosis 

and hyperplasia are also observed in Lmna∆/∆K14-Cre mice (Fig. 6.5, Appendix C 

–  Pathology report). 

 

The thickness of dorsal and ventral skin epidermis as well as tongue 

epithelium was measured. In Lmna∆/∆K14-Cre mice, the dorsal skin epidermis is 

3.33-fold thicker than WT mice (23.37  0.94 m vs. 7.01  0.22 m), ventral 

skin is 1.77-fold thicker (21.56  0.89 m vs. 12.18  0.52 m) and tongue 

epithelium is 2.05-fold thicker (56.61  2.09 m vs. 27.57  1.39 m) (Fig 
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6.5). These results indicate that loss of Lmna leads to greater epidermal 

thickness possibly due to hyperproliferation of keratinocytes. 

 

 

 

Figure 6.4: Expression of B-type lamins and other NE proteins is not affected in 
Lmna∆/∆K14-Cre mice. (A) Transcript levels of Lmnb1 and Lmnb2 are not changed in 
Lmna-null keratinocytes. (Data represents mean  SEM). (B) Expression levels of B-
type lamins and NE proteins such as emerin and LAP2 are not altered in Lmna-null 
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keratinocytes (n= 3 biological samples). (C) Expression and localization of lamin B1 
(LMNB1) are not altered in dorsal skin epidermis and HFs of Lmna∆/∆K14-Cre mice. 
(Scale bars, 20 µm).  
 
 

 

Figure 6.5: Histological examination of dorsal skin, ventral skin and tongue 
reveals epidermal thickening in Lmna∆/∆K14-Cre mice. An increased number and 
larger HFs are also observed in Lmna∆/∆K14-Cre mice. Data represents mean  SEM. 
(*** p<0.0001) (Scale bars, 50/100 µm) 
 

6.8 Epidermal thickness does not increase with age in Lmna∆/∆K14-Cre mice  

 

Since defects in the nuclear lamina and increased genomic instability 

occur during normal cellular aging (Negrini et al., 2010; Scaffidi and Misteli, 

2006), I analyzed older mice (6 and 18 months old) to investigate whether a 

prolonged lack of lamin A/C might have a stronger effect on epidermal 

thickening. I compared the thickness of epidermis of dorsal skin, ventral skin 
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and hind paw, as well as tongue epithelium and in 3, 6 and 18 month old 

Lmna∆/∆K14-Cre mice (Fig. 6.6B). 

 

No gross abnormality in skin and hair, other than a decrease in 

subcutaneous fat was observed in 18 month old Lmna∆/∆K14-Cre mice. However, 

histological assessment revealed epidermal thickening and large hyperplastic 

HFs in their dorsal and ventral skin. A reduction in hypodermis thickness was 

also observed in Lmna∆/∆K14-Cre mice, which could be a secondary effect since 

K14-Cre is also active in the liver (http:/cre.jax.org/Krt14/Krt14-

creNano.html). Paw and tongue epithelium also greatly increased in thickness. 

Furthermore, the tongue epithelium appeared to be more disorganized 

compared to WT mice (Fig. 6.6A).       

 

To quantify the epidermal thickness in mice of different ages, I 

compared the epidermis thickness of 3, 6 and 18 month old WT and 

Lmna∆/∆K14-Cre mice (Fig. 6.6B). In general, epidermal thickness is 

significantly increased in all skin types (dorsal and ventral skin, tongue and 

paws) in Lmna∆/∆K14-Cre mice. However, even as the mice aged, the intensity of 

epidermal thickening does not change. Dorsal skin of Lmna∆/∆K14-Cre mice 

shows no change in epidermal thickness between 3 to 6 months, but is greatly 

reduced between 6 to 18 months. The thickness of epidermis in the ventral 

skin and tongue however was not significantly affected with age. In paw skin 

of Lmna∆/∆K14-Cre mice, epidermal thickening is greatly increased from 3 to 6 

months, but do not change between 6 to 18 months. Taken together, I conclude 
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that loss of Lmna causes epidermal thickening in Lmna∆/∆K14-Cre mice, and this 

effect does not change as the mice age. 

 

6.9 Lmna-null keratinocytes exhibit hyperproliferation  

 

Since Lmna∆/∆K14-Cre mice exhibit thickened skin and tongue epithelia, I 

hypothesized that Lmna-null keratinocytes possess enhanced proliferative 

capacity rather than increase in size. The total number of cells in the epidermis 

was counted and a 1.36-fold increase in the total number of epidermal cells in 

Lmna∆/∆K14-Cre compared to WT mice in both dorsal skin and tongue was 

observed (Fig. 6.7A2, B2). Staining for the proliferation marker Ki-67 

revealed that proliferating cells were largely located in the basal layer in dorsal 

skin and tongue epidermis (Fig. 6.7A1, B1). A 3-fold increase in Ki-67 

positive cells was observed in dorsal skin and 1.97-fold increase in the tongue 

from Lmna∆/∆K14-Cre mice (Fig. 6.7A3, B3). These findings indicate that Lmna-

null keratinocytes show greater proliferative capacity explaining the increased 

numbers of epidermal keratinocytes resulting in a thicker epidermis in 

Lmna∆/∆K14-Cre mice. Microarray gene expression analysis of Lmna-null 

keratinocytes identified more than 50 genes associated with cell proliferation 

and hyperplasia, as being altered in their expression levels (Fig. 6.14). 
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Figure 6.6: Epidermal thickening is observed in 18 month old Lmna∆/∆K14-Cre 
mice. (A) In dorsal and ventral skin, tongue and paw, epidermal thickening is 
observed in Lmna∆/∆K14-Cre mice. (Scale bars, 100 µm) (B) When comparing epidermis 
thickening in mice of 3,6 and 18 months old, epidermal thickening is observed in 
dorsal and ventral skin, tongue and paw of Lmna∆/∆K14-Cre mice Data represents mean 
 SEM (*<0.05, *** p<0.0001, ns = not statistically significant).  
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Figure 6.7: Keratinocytes of Lmna∆/∆K14-Cre mice dorsal skin and tongue display 
hyperproliferation. (A1, B1) More Ki-67-positive cells (white/green) are detected in 
Lmna∆/∆K14-Cre mice dorsal skin and tongue. (Scale bars, (A1) 100 µm; (B1) 50 µm). 
(A2, B2) There are more keratinocytes in the epidermis of dorsal skin and tongue in 
Lmna∆/∆K14-Cre than WT mice. (A3, B3) There are more Ki-67-positive proliferating 
keratinocytes in Lmna∆/∆K14-Cre dorsal skin and tongue compared to WT mice. Data 
represents mean  SEM (*** p<0.001). 
 

 

 

 

 



142 

 

6.10 Lmna-null keratinocytes do not show defects in differentiation and 

stratification  

 

 Keratinocytes in the different epidermal sublayers express different 

markers. Actively proliferating basal keratinocytes directly above the dermal-

epidermal junction express keratins 5 and 14 (K5, K14). As they differentiate 

and migrate apically, they occupy the spinous layer and express keratins 1 and 

10 (K1, K10). As keratinocytes continue to differentiate, they occupy the 

granular layer and express differentiation markers including loricrin and 

filaggrin. 

 

Since the expression of LMNA is regarded as a hallmark of 

differentiation, I investigated if the loss of Lmna would hinder the 

differentiation capacity of keratinocytes. Sections of dorsal skin and tongue 

were analyzed for the expression of skin differentiation markers including 

K14, K10 and loricrin. While K14 remains unchanged, expression of K10 

appeared to be slightly increased in the dorsal skin of Lmna∆/∆K14-Cre mice (Fig. 

6.8). Loricrin, the marker for the granular layer, was also greatly increased in 

dorsal skin and tongue epithelia of Lmna∆/∆K14-Cre mice (Fig. 6.9A, B). 

Increased expression of markers such as K10 and loricrin is most likely due to 

an increased number of keratinocytes in dorsal skin and tongue, and not due to 

an altered differentiation capacity of keratinocytes. Hence, these findings 

reveal that loss of Lmna does not prevent the keratinocytes from 

differentiating as they progress through the epidermal sublayers and in 

forming a functional skin barrier.  
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Figure 6.8: Keratin 10 (K10) is slightly increased in dorsal skin of Lmna∆/∆K14-Cre 
mice. The thickness of basal layer (K14, red) of dorsal skin epidermis is not altered in 
Lmna∆/∆K14-Cre mice, but thickness of spinous layer (K10, green) may be slightly 
increased, possibly due to the presence of more differentiated suprabasal 
keratinocytes located in this area. (Scale bars, 50 µm) 
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Figure 6.9: Expression of loricrin was increased in dorsal skin and tongue of 
Lmna∆/∆K14-Cre mice. Increase number of keratinocytes in the granular layer leads to 
elevated expression of loricrin (LOR, green) in (A) dorsal skin and (B) tongue 
epithelia. (Scale bars, 50 µm) 
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6.11 Aberrant hair cycles in Lmna∆/∆K14-Cre mice  

 

Since hyperproliferation of keratinocytes was observed in Lmna∆/∆K14-

Cre mice (Fig. 6.7, 6.15), I speculated that hair growth cycle may also be 

affected in the absence of Lmna. The hair growth profile of C57BL6 mice is 

well documented (Fig. 6.1B) and differs slightly between mice of different 

gender and ages (Muller-Rover et al., 2001). Consequently, only male 

littermates mice were aged to respective major time points of hair cycle and 

their dorsal skin collected for histomorphological examination of HFs (Fig. 

6.10). As mice rarely have interfollicular epidermal pigmentation, the skin 

colour in mice closely correlates to hair cycle phases. For example, the colour 

of the skin changes from dark gray to black during anagen and pale pink by 

telogen (Muller-Rover et al., 2001). Therefore, to obtain a better 

understanding of the hair growth in Lmna∆/∆K14-Cre mice, hair coats of more 

than 50 P16 to P120 LmnaFL/FL and Lmna∆/∆K14-Cre mice (age- and gender-

matched) were shaved and changes in their skin pigmentation and hair 

regrowth were recorded to complement the histomorphological classification 

of HFs (Fig 6.10).  

 

At P16, mice of both genotypes have light grey skin. Histological 

analysis shows HFs characteristic of late anagen to catagen stage with 

Lmna∆/∆K14-Cre mice displaying a slight increase in number of HFs (Fig. 

6.10A). At P21 corresponding to telogen, the skin colour in both genotypes 

turns pink. HFs appeared to be shortened in both genotypes but HFs in 

Lmna∆/∆K14-Cre mice appeared larger compared to WT HFs (Fig. 6.10B). No 
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obvious epidermal thickening is detected in P16 and P21 Lmna∆/∆K14-Cre mice 

(Fig. 6.10A, B). Interestingly, Lmna∆/∆K14-Cre mice display a pink skin colour 

for 1-3 days longer than WT mice, indicating that the telogen is slightly 

prolonged in Lmna∆/∆K14-Cre mice. After P21, WT mice skin colour greys 

earlier in comparison to Lmna∆/∆K14-Cre mice and by P30, WT mice exhibit 

visible hair growth but Lmna∆/∆K14-Cre mice continue to display strong 

pigmentation resulting in very dark grey skin colour although hair was not 

visible. At this stage, HFs in both genotypes are in anagen phase and appear as 

long shafts extending into the dermis with enlarged dermal papilla. The first 

sign of epidermal thickening is observed at this stage (Fig. 6.10C).  

 

As hair growth continues, anagen HFs gradually enter a short catagen. 

At P42, HFs in WT mice show dramatic shortening and regression, with 

concomitant lightening of skin colour from grey to pink. In contrast, 

Lmna∆/∆K14-Cre mice continue to display larger HFs and darker skin colour 

compared to WT littermates (Fig. 6.10D), indicating that HFs in Lmna∆/∆K14-Cre 

mice remain in anagen longer and enter catagen later. This phenomenon 

extends until P49 where HFs in Lmna∆/∆K14-Cre mice are in catagen and the skin 

displays a darker pigmentation compared to WT littermates that have pink 

skin and HFs in telogen (Fig. 6.10E).  

 

In the murine hair cycle, the second telogen usually lasts for 4 weeks. 

However in Lmna∆/∆K14-Cre mice, the telogen phase is shortened to 2 weeks and 

by around P67, while WT littermates still display pink skin with HFs in 

telogen phase, Lmna∆/∆K14-Cre mice have anagen HFs and up to 80% hair 
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regrowth (Fig. 6.10F). At P84, HFs in WT mice cycle into anagen while HFs 

in Lmna∆/∆K14-Cre mice regress (Fig. 6.10G). By P101, HFs in WT mice are in 

telogen while in Lmna∆/∆K14-Cre mice, there is a mix of HFs in catagen and 

anagen. A summary of the hair cycles is presented in Fig. 6.11.   
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Figure 6.10: Hair growth cycles are altered in Lmna∆/∆K14-Cre mice. At both P16 to 
P28, hair stages in mice of both genotypes are similar. However at P42 to P49, 
Lmna∆/∆K14-Cre mice HFs remain in catagen but do not cycle into telogen phase. At 
P67, hair cycle in Lmna∆/∆K14-Cre mice accelerates into anagen while HFs in WT mice 
remain in telogen. At P84, HFs in WT mice enter anagen while HFs in Lmna∆/∆K14-Cre 
mice show signs of regression. At P101, HFs in WT are in telogen while in 
Lmna∆/∆K14-Cre mice, there is a mix of catagen and anagen HFs. Epidermal thickening 
is not observed in P16 and P19 mice but become evident from P32 onwards. 
Compared to their WT littermates, HFs in Lmna∆/∆K14-Cre mice are significantly larger. 
(Scale bars, 200 µm). Representative images of mice showing different skin 
pigmentation and hair growth corresponding to HF stages are shown on the right. 
 
 

 

Figure 6.11: Summary of hair growth cycle in WT vs. Lmna∆/∆K14-Cre mice. During 
the first hair cycle telogen (red arrow), Lmna∆/∆K14-Cre mice display a slightly 
prolonged telogen and enter anagen phase later compared to WT mice. At P42, WT 
HFs enter catagen followed by telogen while Lmna∆/∆K14-Cre mice HFs show delayed 
catagen and telogen (black arrow). HFs in WT mice stay in telogen phase for around 
4 weeks, but HFs in Lmna∆/∆K14-Cre mice cycle into anagen phase in 2 to 3 weeks 
(green arrow). Hair growth in both genotypes becomes asynchronized after the 
second anagen.    
 

6.12 Accelerated wound healing in Lmna∆/∆K14-Cre mice  

 

 Keratinocyte proliferation and migration are critical in cutaneous 

wound healing. To further evaluate the proliferative capacity of Lmna-null 

keratinocytes, Lmna∆/∆K14-Cre mice and WT littermates were injured in their 

dorsal skin with a 4mm skin punch and after 2-3 days, skin surrounding the 

wound was harvested. Based on my observations of hair growth, I chose 7-

weeks old mice since both WT and Lmna∆/∆K14-Cre mice do not exhibit active 

hair growth. In general, Lmna∆/∆K14-Cre mice showed accelerated healing 

leading to smaller wound size (Fig. 6.12)  compared to WT mice.. Compared 
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to WT mice, Lmna∆/∆K14-Cre littermates had smaller wound area, an indication 

of better wound healing (5.759  0.52 mm2 vs.  7.898  0.77 mm2, p<0.05) 

(Fig 6.12B).  

 

 

Figure 6.12: Lmna∆/∆K14-Cre mice display accelerated wound healing. (A) After skin 
injury, WT mice show slower repair of the skin wound while Lmna∆/∆K14-Cre mice 
show accelerated healing with smaller wound size. Histological analysis of skin 
wounds show greater inflammation and keratinocytes proliferation and migration at 
injury site (*) in Lmna∆/∆K14-Cre compared to WT mice. (B) Statistical analysis of the 
area of wound size confirms that Lmna∆/∆K14-Cre mice show better wound healing 
compared to their WT littermates (LmnaFl/FL n=13, Lmna∆/∆K14-Cre n=16, * p = 0.027). 
Data represents mean  SEM. 
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6.13 Genes associated with growth and proliferation are altered in Lmna-

null keratinocytes 

 

 Since Lmna∆/∆K14-Cre mice exhibit accelerated growth in their epidermal 

keratinocytes, I was interested in defining the molecular pathways associated 

with loss of Lmna. I used microarray gene expression analysis to determine 

changes in gene profiles in Lmna-null keratinocytes. RNA was extracted from 

keratinocytes of P120 Lmna∆/∆K14-Cre mice and their WT littermates. Principal 

component analysis (PCA) confirmed the integrity of the samples permitting 

analysis of inter-animal variation (Fig. 6.13A) while hierarchical clustering 

applied to the dataset showed that biological samples within each genotype 

display similar gene expression profiles. A total of 84 unique genes are 

downregulated and 103 unique genes are upregulated (fold change ≥ 1.5) in 

Lmna-null keratinocytes (Fig. 6.13B). 

 

Lmna is downregulated by 3.04-fold in keratinocytes derived from 

Lmna∆/∆K14-Cre mice skin (Fig 6.14). Loss of Lmna in keratinocytes leads to 

alteration of 187 genes (Fig. 6.13B) in the nucleus, cytoplasm and plasma 

membrane. Of these, 49 molecules are involved in increased proliferation of 

epithelial (z-score = 2.27) and tumour (z-score = 3.155) cells (Fig. 6.14).  
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Figure 6.13: PCA analysis of microarray dataset confirms the integrity of 
samples and expression profiles of 187 unique genes are altered in Lmna∆/∆K14-Cre 
mice. (A) Spheres of each colour represent each mouse (biological sample) and from 
the PCA analysis, technical replicates cluster closely and keratinocytes from 
LmnaFL/FL (WT) and Lmna∆/∆K14-Cre mice (KO) are distinct. (B) Hierarchical cluster 
analysis of microarray dataset showed that LmnaFL/FL (WT, green) and Lmna∆/∆K14-Cre 
mice (KO, red) show similar expression profiles. In Lmna-null keratinocytes, 84 
genes are downregulated (blue) and 103 genes are upregulated (red). Grey bars 
indicate unchanged genes. 
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Figure 6.14: Gene network of molecules associated with proliferation. 49 unique 
molecules are identified by microarray analysis of keratinocytes derived from 
Lmna∆/∆K14-Cre mice. Lmna (boxed) shows a 3-fold decrease in Lmna∆/∆K14-Cre mice. 
Pink (less extreme) to red (more extreme) represent upregulated genes while light 
green (less extreme) to dark green (more extreme) molecules are downregulated. 
Orange dashed lines indicate activation of cell proliferation, while yellow and grey 
dashed lines indicate that effects are inconsistent or not predicted respectively. The 
genes are also sub-divided into their cellular location.  
 

 

Keratin 16 (K16), a well-documented marker for hyperproliferation 

(Jiang et al., 1993; Weiss et al., 1984), was also upregulated in Lmna-deficient 

keratinocytes (Fig. 6.14). Kallikrein-related peptidase 6 (Klk6) was the most 

upregulated gene, (8.96-fold increase). Klk6 level was further validated by 

qRT-PCR of cDNA derived from Lmna-null keratinocytes and 2-fold increase 

was detected (Fig. 6.15). Upregulation in KLK6 was reported in human SCC 

and also other epithelial tumours in the ovaries and colon (Klucky et al., 2007; 

Vakrakou et al., 2014). Ectopic Klk6 expression in mouse keratinocyte cell 

lines resulted in reduced expression of cell adhesion protein E-cadherin and 

nuclear translocation of β-catenin which consequently promotes proliferation, 

migration, and invasion (Klucky et al., 2007). In Lmna-null keratinocytes, 

transcript levels of E-cadherin were downregulated but no change was 

observed in β-catenin (Fig. 6.15). Since measurements of mRNA transcript 

levels cannot differentiate between nuclear and cytoplasmic β-catenin, more 

work should be done to determine if β-catenin is altered in Lmna-null 

keratinocytes. Nevertheless, based on these data, it is possible that loss of 

Lmna results in acute increase in Klk6 and decrease of cell adhesion molecule 

E-cadherin, resulting in keratinocytes displaying enhanced proliferation and 

migration properties, which are hallmarks of tumourigenesis.  
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Figure 6.15: Enhanced Klk6 in Lmna-null keratinocytes. Loss of Lmna resulted in 
increased Klk6 transcript level leading to decreased E-cadherin but no change in β-
catenin (n = 3 biological replicates, * p<0.05, ns = not statistically significant). Data 
represents mean  SEM.   
 

6.14 TGF-β signaling is affected in keratinocytes of Lmna∆/∆K14-Cre mice  

 

TGF-β signaling is critical is homeostasis of the skin and influences 

various biological processes including morphogenesis, cell proliferation and 

differentiation (Moustakas et al., 2002). In particular, TGF-β1 serves as a 

potent growth inhibitor in keratinocytes (Anzano et al., 1982). TGF-β binds to 

type 2 TGF-β receptor (TGFβR2) that recruits and activates TGFβR1. This 

leads to binding and phosphorylation of receptor-regulated Smads (R-Smads) 

such as Smad2 or Smad3 (Massague et al., 2005). Smad2 and Smad3 form a 

complex with the co-Smad (Smad4). Subsequently the complex translocates to 

the nucleus and binds promoters to modulate expression of target genes 

(Lagna et al., 1996) such as p21, a cyclin-dependent kinase inhibitor, which 

lead to cell cycle arrest (Pardali et al., 2000). Furthermore, when TGF-β is 
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suppressed, it can delay the progression of catagen in mouse hair growth 

cycles (Tsuji et al., 2003). 

 

Based on our observations that proliferation is enhanced in Lmna-null 

keratinocytes and delayed catagen and shortened telogen growth cycles of 

Lmna∆/∆K14-Cre mice, I hypothesize that TGF-β signaling may be altered in 

Lmna-null keratinocytes. TGF-β and TGFβR2 have been reported to promote 

a switch between proliferation to regression during hair cycling (Foitzik et al., 

2000). BMP4, a member in the TGF-β superfamily was also downregulated by 

2.17-fold in Lmna-null keratinocytes (Fig. 6.14). Hence, I analyzed the 

transcription profile of molecules of the TGF-β signaling pathway and found 

that in keratinocytes derived from Lmna∆/∆K14-Cre mice, transcript levels of 

TGF-β1 and TGF-β2 were downregulated (Fig. 6.16). However, expression 

levels of receptors such as TGFβR1 and TGFβR2 were not altered. Smad2, but 

not Smad3 and Smad4, was also slightly downregulated in Lmna-null 

keratinocytes (Fig. 6.16). Loss of Lmna therefore results in downregulation of 

TGF-β and consequently, keratinocyte proliferation is not inhibited resulted in 

enhanced Lmna-null keratinocytes proliferation. TGF- signaling is critical to 

skin and hair development and carcinogenesis (Andres and Gonzalez, 2009). 

For example, deregulation of members of the TGF-β family have been 

implicated in several cancers (Massague, 2008) including skin epithelial 

cancers such as SCC and BCC (Glick, 2012). 
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Figure 6.16: Altered TGF-β signaling in Lmna–null keratinocytes. Loss of Lmna 
results in reduced TGF-β1 and TGF-β2 transcript levels but no change in transcript 
levels of TGF-βR1 and TGF-βR2. Smad2 (* p<0.05), but not Smad3 and Smad4 (ns), 
is also reduced in Lmna-null keratinocytes. (n = 3 biological samples, * p<0.05, ** 
p<0.01, ns = not statistically significant). Data represents mean  SEM. 
 

6.15 Accelerated hair growth in Lmna∆/∆K14-Cre FVB/N mice  

  

Since hyperproliferation and upregulation of cancer associated markers 

were observed in Lmna-null keratinocytes, I hypothesized that loss of Lmna in 

skin epidermis may predispose Lmna∆/∆K14-Cre mice to skin cancer. I sought to 

expose Lmna∆/∆K14-Cre mice to a well-documented cutaneous two-stage 

chemical carcinogenesis assay to study papillomas formation in Lmna∆/∆K14-Cre 

and WT mice. However, C57BL6 mice have been reported to be resistant to 
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the chemical carcinogenesis assay (Hennings et al., 1993), so I proceeded to 

cross our Lmna∆/∆K14-Cre mouse model onto a FVB/N background which are 

known to be good models for the study of skin papillomas induction (Abel et 

al., 2009).   

 

As a convenient way to ensure the enhanced proliferative capacity of 

keratinocytes is still conserved in Lmna∆/∆K14-Cre FVB/N mice, I shaved 

littermate mice at their second telogen (P49) and observed for rate of hair 

regrowth. After 18 days, Lmna∆/∆K14-Cre mice displayed approximately 70 to 

100% hair regrowth, while LmnaFL/FL mice did not show visible hair regrowth 

until 3 weeks later (Fig. 6.17). This indication of a shortened second telogen 

phase and early onset of anagen phase confirms that Lmna∆/∆K14-Cre mice on 

FVB/N background have the same proliferative profile as C57BL6 mice. I am 

currently in the process of inducing skin papillomas in the dorsal skin of 

Lmna∆/∆K14-Cre and WT mice. 
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Figure 6.17: Lmna∆/∆K14-Cre mice on a FVB/N background exhibit shorter telogen 
phase and is a suitable model to study skin papilloma formation. Dorsal hair of 7-
weeks old LmnaFL/FL and Lmna∆/∆K14-Cre female littermates was shaved. After 18 days, 
Lmna∆/∆K14-Cre mice displayed at least 70% hair regrowth while LmnaFL/FL mice did not 
display any signs of hair regrowth. 
 

6.16 Deriving LMNAKD human N/TERT1 keratinocytes 

 

 To establish a human cell line of keratinocytes lacking LMNA 

(LMNAKD), I employed lentiviral vectors expressing LMNA shRNA to knock 

down LMNA in human N/TERT1 keratinocytes using shLMNA (Dreesen et al., 

2013b). Western blot analysis shows that both LMNA and LMNC protein 

levels were reduced by about 40% and 60% respectively in LMNAKD 

keratinocytes (Fig. 6.18). I proceeded to use LMNAKD cell lines to study 

proliferation profiles and gene expression due to loss of LMNA.  
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Figure 6.18: LMNA and LMNC proteins are significantly reduced in LMNAKD 
keratinocytes. Western blot analysis revealed that N/TERT keratinocytes infected 
with shLMNA showed 40% reduction in LMNA and 60% reduction in LMNC. 
GAPDH protein was used as loading control and normalization marker for 
quantification of LMNA/C levels.  
 

6.17 LMNAKD keratinocytes exhibit accelerated proliferation  

 

 Since keratinocytes in Lmna∆/∆K14-Cre mice exhibited enhanced 

proliferation in vivo (Fig. 6.7) and gene expression analysis presented 

evidence of upregulation of hyperproliferation markers (Fig. 6.14), I was 

interested in finding out if the loss of LMNA in human keratinocytes will also 

elicit similar effects. Cell growth of LMNAWT and LMNAKD N/TERT1 

keratinocytes was determined whereby cells attached to the bottom of 

microelectrode assay plates transmit an electrical microimpedance signal. The 

growth rate of LMNAWT and LMNAKD keratinocytes was measured over 8 

days. LMNAKD keratinocytes proliferated faster compared to LMNAWT 

keratinocytes by ~70% (Fig 6.19A, B). These results are in sync with 

enhanced proliferative capacity observed in keratinocytes of Lmna∆/∆K14-Cre 

mice. I then proceeded to measure transcript levels of TGF-1 and TGF-2 in 

LMNAWT and LMNAKD keratinocytes. However, transcript levels of both TGF-

1 and TGF-2 are unaffected in LMNAKD keratinocytes (Fig. 6.20), possibly 

due to incomplete loss of LMNA in the knockdown cell lines.  
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Figure 6.19: LMNAKD keratinocytes exhibit accelerated proliferation rate 
compared to LMNAWT keratinocytes. (A) Growth rate of N/TERT1 keratinocytes 
was observed and recorded. LMNAKD keratinocytes showed a faster growth compared 
to LMNAWT keratinocytes. (B) On average, LMNAKD keratinocytes showed 70% 
increase in growth rate compared to LMNAWT keratinocytes. Data represents mean  
SEM from 4 experiments. (n=3 for both LMNAWT and LMNAKD ** p = 0.0065). 
 
 

 

Figure 6.20: TGF-β1 and TGF-β2 transcript levels are not altered in LMNAKD 
keratinocytes. No significant change was observed in levels of TGF-β1 and TGF-β2, 
possibly due to incomplete loss of LMNA in keratinocytes. Data represents mean  
SEM. (n=3 for both LMNAWT and LMNAKD, ns = not statistically significant). 
 



161 

 

6.18 Conclusions 

 

In summary, I have described the use of a tissue-specific knockout 

mouse model (Lmna∆/∆K14-Cre) where lamin A/C is deleted in the keratinocytes 

of skin epidermis, ORS of HFs and tongue epithelium using a K14 promoter 

driven Cre recombinase. Lmna∆/∆K14-Cre mice exhibit a longer lifespan 

compared to other global Lmna-null mouse models (Stewart et al., 2007a; 

Zhang et al., 2013), allowing me to address the key issues that relate to the 

loss of Lmna in the skin such as postnatal maintenance and hair homeostasis 

and susceptibility to carcinogenesis.  

 

Lmna∆/∆K14-Cre mice exhibit normal lifespan with no gross 

morphological abnormalities in their skin and hair coat. I demonstrated that 

Lmna-null keratinocytes in Lmna∆/∆K14-Cre mice proliferate, differentiate and 

migrate into the different epidermal sublayers and express markers such as 

K10 and loricrin characteristic of differentiated keratinocytes. In several Lmna 

mutant mouse models, thickened epidermis was reported in the paw epidermis 

(Naetar et al., 2008; Sullivan et al., 1999) and dorsal skin (Jung et al., 2014; 

Odgren et al., 2010). Lmna∆/∆K14-Cre mice (aged 1 to 18 months) display 

thickened epidermis in their skin and tongue, as well as hyperkeratosis and 

hyperplasia of HFs. Enhanced proliferation of Lmna-null keratinocytes was 

confirmed by increased Ki-67-positive cells in the basal layer of the skin and 

tongue epidermis of Lmna∆/∆K14-Cre mice. In the knockout mice where both A- 

and B-type lamins were depleted in the keratinocytes, no effect on cell 

proliferation was observed in embryos and P1 mice (Jung et al., 2014). Since 
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Lmna∆/∆K14-Cre mice do not show increase thickness in epidermis before P21, 

the requirement for lamin A/C may be more important in the postnatal control 

of keratinocyte growth. 

 

Hyperproliferation of keratinocytes in Lmna∆/∆K14-Cre mice led me to 

speculate that their hair growth cycles may also be affected. Indeed, 

Lmna∆/∆K14-Cre mice exhibit earlier activation of the second anagen, causing 

hair to regrow faster post shaving. TGF-β is the most important growth 

inhibitor in keratinocytes (Gniadecki, 1998) and regulates cycling of HFs 

(Foitzik et al., 2000). In Lmna-null keratinocytes, I showed that TGF-β1 and 

TGF-β2, along with Smad2 transcript levels, which are associated with the 

TGF-β signaling pathway, were decreased. My preliminary data indicates that 

loss of Lmna impairs TGF-β signaling resulting in hyperproliferation of 

keratinocytes which consequently alters hair cycling in Lmna∆/∆K14-Cre mice. 

 

To elucidate the molecular pathways involved in hyperproliferation in 

Lmna-null keratinocytes, I performed microarray analysis. Many of the altered 

molecules are associated with hyperproliferation of keratinocytes, such as 

Klk6 (Klucky et al., 2007), K16 (Jiang et al., 1993; Weiss et al., 1984) and 

BMP4 (Huelsken et al., 2001). For instance, constitutive expression of Klk6 

resulted in enhanced wound healing in mice due to decreased cell adhesion 

molecule E-cadherin, resulting in increased cell migration and wound closure 

(Klucky et al., 2007). This corroborates my observations that loss of Lmna in 

Lmna∆/∆K14-Cre mice accelerates wound healing due to enhanced proliferation 
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of the keratinocytes as well as increased motility resulting from decreased 

expression of E-cadherin in Lmna-null keratinocytes.  

 

A great body of evidence suggests that lamins can influence pathways 

implicated in cancer such as DNA replication (Johnson et al., 2004) and 

regulation of genomic stability (Gonzalez-Suarez et al., 2009b; Redwood et 

al., 2011), and therefore it is possible that alterations in lamin A/C expression 

could modify cancer development and progression (Prokocimer et al., 2009). 

Furthermore, altered levels of LMNA have been implicated in many cancers 

including skin epithelial cancers such as BCC and SCC (Tilli et al., 2003; 

Venables et al., 2001). Although no distinct pathway was suggested in the 

microarray analysis, a large number of genes associated with activation of 

proliferation and oncogenesis were altered, strongly suggesting that loss of 

Lmna in keratinocytes may lead to tumourigenesis. For instance, upregulation 

of KLK6 is reported in SCC (Klucky et al., 2007) and deregulation of TGF-β 

is associated with SCC and BCC (Glick, 2012). To further elucidate if loss of 

lamin A/C contributes to skin carcinogenesis, I am performing carcinogenesis 

studies on Lmna∆/∆K14-Cre mice. I hypothesize that absence of Lmna relieves the 

inhibition of keratinocyte growth due to decreased TGF-β levels, and when 

Lmna∆/∆K14-Cre mice are challenged with carcinogens, the mice may have 

increased tendency to form papillomas in their skin.   

 

A-type lamins form an interconnected network with LEM domain 

proteins at the INM and mediate the localization of emerin, Lem2 and Lap2 to 

the INM (Brachner et al., 2005; Dechat et al., 2000a; Sullivan et al., 1999). 
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MAN1, an INM protein with a nucleoplasmic LEM domain (Lin et al., 2000), 

inhibits Smad2 and Smad3 activity so antagonizing TGF-β signaling 

(Bourgeois et al., 2013; Lin et al., 2005). Nucleoenvelopathies that arise due to 

mutations in LEMD3 (MAN1) showed abnormalities in bone and skin and 

enhanced TGF-β activity (Hellemans et al., 2004). Overexpression of MAN1 

leads to inhibition of BMP and TGF-β signaling (Hellemans et al., 2004) 

whereas loss of MAN1 results in Smad2/3 activation in mice (Bourgeois et al., 

2013; Cohen et al., 2007; Lin et al., 2005). Emerin and MAN1 have essential 

and overlapping functions in chromosomal segregation during cell division 

(Liu et al., 2003). I speculate that since lamin A/C closely interacts with 

emerin, loss of Lmna may also affect the functions of MAN1 in keratinocytes.  

 

Furthermore, as MAN1 can differentially regulate TGF-β and BMP, 

pathways important in skin homeostasis, it is possible that Lmna loss on 

keratinocytes and TGF-β signaling involves MAN1. Lem2 is a less studied 

INM LEM domain protein which interacts with and recruits A-type lamins, 

BAF, emerin and MAN1 (Brachner et al., 2005). Similar to emerin, lamin A/C 

also shows selective retention for Lem2 as loss of Lmna results in the 

redistribution of Lem2 throughout the ER (data not shown) (Brachner et al., 

2005). Further studies and understanding of the roles of lamin A/C and other 

LEM domain proteins in the skin will shed light onto the mechanisms by 

which lamin A/C causes skin-related disorders in some laminopathies and also 

investigate its potential role in skin cancer.    
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Final conclusions and future work 

 

Lamin A/C and its associated nuclear proteins have many significant 

functions. Mutations in LMNA result in at least thirteen different diseases 

collectively known as the laminopathies. Patients present clinical features in 

various tissues including the skeletal muscles, cardiac muscles, adipose 

tissues, bones and skin. This has led to the question of how different mutations 

in the single LMNA gene that is almost ubiquitously expressed in adult tissues 

leads to different tissue specific diseases. Moreover, mutations in LMNA affect 

a variety of processes that may impact cancer development and progression, 

such as changes in nuclear architecture, gene regulation, proliferation, 

apoptosis, chromatin organization and genome stability (Broers et al., 2006; 

Foster et al., 2010; Gonzalez-Suarez et al., 2009a; Zink et al., 2004).  

Colorectal, lung, skin, ovarian, breast and thyroid cancers as well as some 

leukemias, show altered levels of A-type lamins expression (Foster et al., 

2010). However there has been little experimental investigation as to whether 

changes in LMNA expression contribute to the development of tumours. 

Mouse lines with constitutive Lmna mutations exhibit early postnatal lethality 

due to muscular dystrophy and cardiomyopathy. Therefore, it is essential to 

generate tissue-specific Lmna knockout mice that will live longer, to study the 

tissue-specific roles of lamin A/C as well as in the development of cancer.   

 

In this thesis, I report a conditional Lmna knockout mouse model 

(LmnaFL/FL), where exons 10 and 11 can be deleted by Cre recombinase. A 

constitutive Lmna knockout mouse line was obtained by crossing LmnaFL/FL to 
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Zp3-Cre mice, no full length Lmna transcripts or LMNA/C protein were 

detected in the Lmna∆/∆ mice. These mice showed retarded postnatal growth 

and histological analysis of quadriceps muscles indicative of either delayed or 

defective muscle growth and maturation. This was probably a major 

contributory factor to the severe weight loss in the knockout mice. Lmna∆/∆ 

mice had a shorter life span than the first constitutive Lmna mouse deletion 

(Sullivan et al., 1999), perhaps due to differences in strain background and/or 

the absence of the low levels of the truncated LMNA/C fragment that had 

been reported as being present in these mice (Jahn et al., 2012).  

 

Recently, a Lmna conditional mouse model which targets exon 2 of 

Lmna was reported. Constitutive deletion of Lmna using CMV-Cre results in 

functional deletion resulting in early death of the mice at P16-18 (Kim and 

Zheng, 2013). Our mouse line therefore provides an alternative to this line. 

The availability of a Lmna conditional model is especially important since the 

constitutive knockout models are early postnatal lethal, so preventing the 

study of the roles of LMNA/C in more mature tissues. The conditional Lmna 

knockout mouse lines, combined with different tissue-specific Cre lines, will 

be a powerful and essential tool to study the roles of LMNA/C in different 

tissues, cell types, and at different ages. This will be important for gaining 

further insight into how lamin A/C has a role in causing laminopathies and 

cancer. Using this conditional Lmna mouse line, I investigated the 

physiological roles of Lmna in two highly proliferative tissues: the skin and 

gastrointestinal tract. I also investigated the involvement of Lmna in the 

tumorigenesis of these two tissues. 
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Our Lmna∆/∆/Vil-Cre mouse line that lacks Lmna in their intestinal 

epithelial cells (IECs) through the GI tract survives more than 1 year without 

presenting any gross abnormalities or decrease in lifespan. This allowed me to 

bypass the early lethality of global loss of LMNA/C to evaluate tissue-specific 

loss of Lmna in the intestines and the consequences on disease progression. 

Our Lmna∆/∆/Vil-Cre/ApcMin/+ mice model showed that loss of Lmna in the 

intestinal epithelium leads to an increased frequency of larger tumors. 

Although Willis and colleagues previously linked the over-expression of 

LMNA to increased progression of colorectal cancer (CRC) and tumor 

metastasis in humans (Willis et al., 2008), my data shows that loss of Lmna 

may result in enhanced tumorigenesis in the intestines, indicating that lamin 

A/C may serve as a tumor suppressor gene. Based on our findings that both 

LBR and LMNA/C have a mutual and interactive role in regulating 

heterochromatin distribution, I found that the nuclei in IECs and polyps also 

expressed LBR, which may have compensated for the loss of LMNA/C. In 

turn, this suggested that Lmna-null cells may be in a less differentiated state, 

so contributing to the slight increase in polyp size in Lmna∆/∆/Vil-Cre/ApcMin/+ 

mice.  

 

Lmna∆/∆/K14-Cre mice do not express LMNA/C in the keratinocytes of 

the skin epidermis and hair follicles as well as in the keratinocytes of the 

tongue epidermis. These mice show pronounced epidermal thickening in the 

skin with concomitant hyperproliferation of basal keratinocytes. Loss of Lmna 

also resulted in accelerated hair growth, particularly during the second anagen 

of the hair cycle. While B-type lamins are dispensable in the proliferation of 
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murine keratinocytes and development of skin and hair in mice (Yang et al., 

2011a), my data shows that lamin A/C is important in regulating epidermal 

proliferation and hair follicle growth. Furthermore, when lamin A is deleted in 

keratinocytes deficient for both Lmnb genes, the mice showed severe 

anomalies in the skin particularly in the formation of a proper skin barrier 

resulting in early postnatal death, probably due to dehydration (Jung et al., 

2014).  Taken together with my data, I propose that lamin A may play a more 

important role in postnatal skin and hair homeostasis in comparison to B-type 

lamins.  

 

Further studies and understanding of the roles of lamin A/C in the skin 

are still required to fully understand the mechanisms by which mutations in 

LMNA cause skin-related disorders in some laminopathies. In addition, further 

work is needed to investigate a potential role of lamin A/C in skin cancer. 

Therefore, work beyond this thesis will mainly focus on defining the 

molecular mechanisms by which lamin A/C regulates cell proliferation. 

Microarray gene expression analysis of Lmna-null keratinocytes from P120 

mice revealed upregulation of several genes associated with hyperproliferation 

such as Klk6, K16 and BMP4. At P120, WT and Lmna∆/∆K14-Cre mice have 

asynchronized hair cycles. However, at around P70, Lmna∆/∆K14-Cre show 

accelerated hair growth compared to their WT littermates. Therefore, I will 

analyze the gene expression profiles of P70 Lmna-null keratinocytes, which 

will aid in understanding the mechanisms which lamin A/C has in the skin 

epidermis. Hopefully, this may identify regulatory pathways and how the loss 

of Lmna results in accelerated hair growth in Lmna∆/∆K14-Cre mice. RNA 
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sequencing (RNA-Seq) of WT and Lmna-null keratinocytes is currently in 

progress. 

 

MAFs expressing laminA∆9, a truncated and farnesylated form of 

lamin A known as progerin, show reduced transcriptional activity of Wnt 

signaling components Tcf-1 and Lef1 hence slowing down cell proliferation 

(Hernandez et al., 2010). Lmna-null MEFs show disrupted NF-kB regulated 

gene transcription (Lammerding et al., 2004) and Rb signaling (Johnson et al., 

2004; Markiewicz et al., 2002; Ozaki et al., 1994). Lamin A/C is also 

associated with Rb, Smad2 and nuclear protein phosphatase 2A (PP2A) to 

regulate gene expression downstream of TGF-β signaling (Van Berlo et al., 

2005). TGF-β, a potent inhibitor of keratinocyte growth and hair cycling, is 

downregulated in Lmna-null keratinocytes. Deregulation of the TGF-β 

signaling pathway is often associated with squamous cell carcinoma (SCC) 

(Glick, 2012).  

 

A-type lamins have important interactions with other INM proteins 

such as emerin, Lem2 and MAN1 (Brachner et al., 2005; Dechat et al., 2000a; 

Sullivan et al., 1999), all of which have been implicated in regulating major 

signaling pathways. Emerin participates in regulating Notch, Wnt, IGF and 

TGF-β signaling pathways to govern the proliferation and differentiation of 

myoblasts (Koch and Holaska, 2012). Emerin, as well as Lem2, also 

negatively regulates extracellular signal-regulated kinase (ERK) (Huber et al., 

2009; Muchir et al., 2007a; Muchir et al., 2007b) . MAN1 has a major role in 

regulating TGF-β and BMP signaling by influencing Smad phosphorylation 
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(Bourgeois et al., 2013; Cohen et al., 2007; Hellemans et al., 2004; Lin et al., 

2005). Therefore, loss of Lmna may alter the functions of these INM proteins 

in regulating these different but critical signaling pathways in keratinocyte 

proliferation and hair cycling (Fuchs, 2007; Lee and Tumbar, 2012).  

 

Future work will analyze the interplay and molecular functions of 

lamin A/C, MAN1 and Lem2 in TGF-β signaling and possibly emerin in Wnt 

signaling, although Emd-null mice do not show any overt skin pathology 

(Melcon et al., 2006; Ozawa et al., 2006). Using human keratinocytes lines, 

my preliminary findings suggested an increase in proliferation rate when 

LMNA was knocked down. These cell lines will be helpful to study the 

molecular pathways which are altered in the event of reduced LMNA. In 

addition, I am also analyzing whether absence of Lmna predisposes 

Lmna∆/∆/K14-Cre mice to enhanced skin papilloma formation and ultimately hope 

to elucidate the role of lamin A/C in maintenance of genomic stability.  

 

In collaboration with Dr. Irina Solovei and colleagues from Ludwig-

Maximilians University Munich, we investigated the role of LBR and 

LMNA/C in heterochromatin tethering and their roles in regulating cellular 

differentiation. We showed that peripheral heterochromatin is maintained by 

two tethers: LBR or lamin A/C. In all mammalian cells, except rod 

photoreceptors, at least one of these tethers is present. Absence of both LBR 

and LMNA/C leads to the peripheral heterochromatin relocalizing to the 

nuclear centre and an inverted nuclear architecture. Myoblast transcriptome 

analysis indicated that the selective disruption of either the LBR- or LMNA/C-
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dependent heterochromatin tether has inverse effects on the muscle gene 

expression, up- or downregulating them, respectively. These results show how 

developmental regulation of NE composition regulates global heterochromatin 

positioning, gene expression and cellular differentiation.  

 

Since our data corroborates with published data and supports the 

notion that LEM-domain proteins cooperate with LMNA/C in tethering 

peripheral heterochromatin to the NE in mammals, we will continue to 

investigate the involvement of other LEM domain proteins such as Lem2 and 

MAN1 in mediating heterochromatin binding to LMNA/C. Since we have 

preliminary data that the localization of Lem2 is affected in the event of Lmna 

loss, we aim to investigate the nuclear architecture and chromatin organization 

in cells lacking Lem2. We plan to derive a conditional Lemd2 knockout mouse 

line in the laboratory as embryonic stem (ES) cell clones with a conditional 

allele are available. The availability of a Lemd2 knockout mouse model will 

provide further insight on the overall understanding of the nuclear envelope, 

and also help to define the composition of LMNA/C-dependent peripheral 

heterochromatin tether in mammalian cells.  

 

In conclusion, the tissue-specific deletion of Lmna in mice has 

provided new insights in the requirement of lamin A/C in the intestinal 

epithelium and skin epidermis, and loss of Lmna results in defective 

proliferation. My studies show that lamin A/C, together with LBR and perhaps 

Lem2 and MAN1, have important functions in proliferation, cellular 

differentiation and chromatin organization. Future work mentioned above will 
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provide additional information on the signaling pathways implicated in the 

event of Lmna loss and nuclear lamin biology. Ultimately, I hope to provide 

new knowledge on nuclear lamins and contribute to improvement of 

therapeutic options of treatment of rare laminopathies and perhaps cancer.  
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APPENDICES 

Expression (FPKM) of Genes

Covered by GOC GO:0008307

Structural Constituent of Muscle, Related to Figures 4.8

only genes with non-zero expression are shown

  Myoblasts Limb muscles
  Lmna Lbr

  KO WT KO WT
Lmna 
KO WT

Lbr 
KO 

Actn2 0.59 3.39 6.10 1.97 940.06 609.04 622.49 

Actn3 1.24 4.54 8.00 3.00 1073.66 1206.24 1171.46 

Ankrd2 0.10 0.22 0.88 0.23 83.81 32.32 36.71 

Asph 29.93 28.84 36.07 34.73 184.44 165.27 175.48 

Capn3 0.05 0.58 2.20 0.46 23.57 33.97 29.86 

Dag1 68.52 61.61 58.41 54.30 50.99 47.06 38.57 

Dmd 7.91 7.01 7.95 8.60 48.25 43.60 42.84 

Jph1 2.21 2.10 3.41 2.67 40.22 40.87 36.33 

Krt19 26.25 17.33 7.44 5.45 0.49 0.99 0.78 

Mybpc1 0.11 1.74 4.39 1.29 508.70 263.51 298.83 

Mybpc2 0.02 0.05 0.13 0.06 731.24 991.51 1152.91 

Mybph 0.50 9.31 9.08 4.43 103.91 204.25 152.98 

Myh11 15.68 14.34 13.76 11.61 23.68 26.03 18.73 

Myh2 0.06 0.77 1.43 0.60 710.92 589.01 617.86 

Myh4 0.04 0.61 1.55 0.55 9782.86 12587.00 13015.30 

Myh6 0.03 0.13 0.07 0.05 9.30 19.10 22.17 

Myh7 0.07 0.79 0.92 0.39 99.28 130.29 148.25 

Myh8 0.43 4.94 13.39 3.67 617.67 580.59 480.81 

Myl1 3.43 31.99 61.29 20.12 15323.10 17287.30 20558.90 

Myl2 0.27 1.17 1.03 0.19 127.31 220.80 270.21 

Myl4 8.10 46.73 74.36 23.31 8.94 11.50 10.76 

Myl6 
283.9

8 

245.4

5 

152.7

9 

135.1

9  
208.72 265.15 250.32 

Myl6b 9.74 16.89 22.15 10.88 46.88 38.52 43.86 

 

Myl9 

1064.

41 

 

807.9

 

495.5

 

461.1  

 

95.54 

 

191.28 

 

183.77 
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3 9 0

Mylpf 18.69 
119.0

6 

195.7

2 
57.53 

 
6090.17 7984.37 8909.78 

Myom1 5.00 5.72 3.52 3.79 209.33 175.56 156.56 

Myom2 0.02 0.80 1.81 0.50 361.25 313.96 331.71 

Myot 0.07 0.72 1.51 0.43 509.58 299.01 336.97 

Neb 1.44 3.27 9.38 3.78 1018.04 1044.35 1107.44 

Nebl 0.37 0.48 0.37 0.61 0.46 0.41 0.16 

Nexn 24.66 28.10 44.52 42.72 126.76 140.47 179.70 

Obscn 0.02 0.13 0.32 0.09 90.80 67.53 62.48 

Pdlim3 1.06 5.28 8.29 3.08 243.15 221.76 256.16 

Plec 50.58 48.81 41.58 44.52 133.32 96.67 91.53 

Smtn 55.78 53.66 39.44 38.76 40.29 49.27 41.45 

Sorbs2 2.29 2.06 2.85 1.85 5.24 4.54 3.59 

Synm 0.34 0.57 0.51 0.80 24.05 25.24 28.12 

Tcap 0.13 1.01 2.08 0.39 423.62 216.30 266.53 

Tpm2 

739.4

7 

705.3

5 

460.9

9 

485.7

2 3426.35 2937.79 3198.86 

Tpm3 

183.9

4 

177.2

9 

169.5

1 

145.7

5 73.44 68.06 80.54 

Ttn 0.19 0.95 2.13 0.75 862.21 940.31 920.35 

 
Appendix A: Gene list of structural constituent of muscle (GO: 0008307).  
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Expression (FPKM) of Genes

Covered by GOC GO:0051146

Striated Muscle Cell Differentiation, Related to Figures 4.8

only genes with non-zero expression are shown

  Myoblasts  Limb muscles  

  Lmna Lbr

  KO WT KO WT  
Lmna 
KO WT Lbr KO 

Acadm 10.73 10.18 12.72 13.44 46.09 82.57 52.23 

Acta1 32.47 52.60 62.51 25.55 16909.60 13887.00 17214.80 

Actc1 24.91 77.96 146.81 36.67 4741.20 1642.43 6500.62 

Actg1 1144.69 1051.84 777.98 733.65 222.22 209.26 245.47 

Afg3l2 25.11 22.95 22.86 22.04 23.73 24.20 24.43 

Agrn 9.62 9.68 7.50 8.24 4.38 5.73 3.72 

Agt 0.18 0.10 0.14 0.03 6.24 8.12 4.35 

Akt1 91.26 93.20 70.79 78.99 35.02 28.60 29.15 

Als2 5.50 4.16 4.75 5.17 4.28 5.36 3.64 

App 151.61 147.76 147.92 136.28 51.17 59.77 53.67 

Atg5 10.53 9.66 10.45 9.74 3.07 3.86 3.47 

Atg7 6.39 5.17 4.73 4.25 2.06 2.32 3.04 

Bcl2 6.19 5.55 5.33 5.02 2.52 2.40 1.49 

Bcl9 9.58 7.40 8.73 10.20 2.13 2.35 1.41 

Bcl9l 22.85 21.83 17.85 20.38 7.93 8.31 5.41 

Bhlhe41 3.05 2.70 2.72 2.87 0.94 0.72 1.59 

Bmp2 0.10 0.20 0.27 0.17 0.65 0.70 0.85 

Bmp4 4.78 5.37 12.62 3.73 1.69 1.28 2.57 

Bnip2 98.89 96.88 100.06 103.20 32.52 26.74 32.04 

Boc 6.50 6.46 4.86 4.69 2.53 3.32 2.39 
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Btg1 10.50 10.01 9.66 8.36 6.44 6.68 5.07 

Cacnb4 0.58 0.40 0.36 0.51 0.28 0.45 0.28 

Cacybp 31.42 34.67 40.49 44.21 7.59 8.87 10.74 

Capn2 290.93 278.61 205.21 263.00 31.58 33.92 36.63 

Capn3 0.05 0.58 2.06 0.46 33.97 23.57 29.86 

Casp1 2.17 3.62 3.80 1.15 1.02 1.43 0.60 

Cav2 8.07 7.51 8.28 8.61 21.17 27.86 24.60 

Cav3 0.38 3.55 4.35 1.56 112.06 92.77 102.04 

Cby1 8.51 7.53 5.79 5.10 3.82 3.73 3.52 

Cdh2 57.37 54.78 45.69 54.80 2.43 2.53 2.32 

Cdon 12.37 12.84 15.57 15.50 6.71 6.11 6.32 

Chrna1 2.67 9.69 14.13 6.48 8.22 6.68 6.12 

Chrnb1 4.22 4.10 5.03 3.52 29.95 26.60 34.58 

Chuk 11.60 12.26 19.63 18.97 4.52 7.63 4.95 

Col4a1 149.47 122.62 105.40 86.12 101.83 95.94 101.60 

Col4a5 7.98 6.30 5.70 5.45 1.37 1.16 1.23 

Cxadr 1.29 1.27 5.37 2.28 0.57 0.69 0.59 

Ddx17 74.96 82.07 102.25 103.56 58.32 65.36 49.45 

Dicer1 10.68 9.91 14.01 14.46 6.47 5.93 6.05 

Dmpk 5.48 5.42 5.50 3.13 93.92 100.11 94.08 

Dnaja3 12.17 12.76 11.67 11.43 42.01 40.70 47.48 

Dner 0.57 0.19 0.52 0.30 0.43 0.31 0.68 

Dok7 0.08 0.19 0.27 0.09 1.55 2.28 1.53 

Dvl1 6.67 7.03 5.87 5.50 22.97 23.49 21.47 

Dyrk1b 3.05 2.98 3.18 2.49 37.29 31.19 25.88 
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Edn1 13.56 5.99 4.54 5.19 1.49 2.81 1.39 

Emd 87.38 75.02 53.37 51.55 3.53 2.22 3.73 

Epc1 12.83 13.67 15.40 15.47 9.75 11.10 7.70 

Erbb2 7.95 8.25 7.02 7.40 1.51 1.92 1.44 

Ezh2 27.09 26.09 27.58 27.04 5.98 5.30 4.35 

F2r 278.13 214.60 287.10 221.24 10.05 11.72 8.65 

Fbxo22 37.71 39.19 36.74 37.60 15.71 17.99 17.19 

Fdps 21.65 16.40 17.49 15.68 18.71 14.31 19.79 

Fgfr2 8.15 7.88 7.54 7.28 0.54 0.97 0.61 

Fhod3 0.28 0.47 0.57 0.36 5.36 4.50 7.35 

Flnc 39.18 29.89 25.32 24.36 53.21 71.76 58.96 

Foxp1 22.67 22.68 29.82 31.88 4.59 4.72 3.03 

Gata6 3.55 2.19 6.35 3.01 1.02 0.85 1.03 

Gphn 4.88 5.80 7.10 6.76 10.63 10.58 10.29 

Gpx1 274.67 254.86 170.95 150.88 92.10 86.25 86.35 

Gsk3a 29.69 26.79 23.81 25.20 24.13 27.49 19.77 

Gsk3b 39.41 42.37 48.37 53.10 5.65 6.46 5.82 

Hdac4 6.94 6.20 6.94 6.53 12.23 9.29 9.30 

Hdac5 8.13 7.46 7.89 7.30 13.68 19.04 10.56 

Hdac9 0.61 0.60 1.27 0.61 2.60 2.65 2.38 

Hey2 1.98 2.67 1.34 2.25 0.84 0.98 0.80 

Hmgb1 24.73 26.72 32.34 32.40 44.89 44.85 43.37 

Homer1 6.07 5.63 8.33 7.61 17.93 17.87 20.52 

Hopx 0.33 0.29 0.32 0.34 7.32 5.54 6.93 

Igf1 16.86 17.26 20.23 10.37 18.22 13.55 15.92 
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Igf2 114.41 63.06 171.07 72.85 437.45 495.32 395.91 

Igf2bp3 11.77 9.94 12.70 11.30 2.22 1.33 1.53 

Igfbp5 32.87 28.92 32.83 44.53 196.17 60.85 155.54 

Ilk 236.63 202.28 164.70 154.50 39.58 36.67 36.45 

Itgb1 400.30 392.16 402.26 444.74 71.21 74.33 62.72 

Itgb1bp3 0.11 0.87 0.60 0.20 23.20 27.13 24.69 

Kras 28.19 32.11 45.47 37.76 8.00 7.98 7.38 

Krt19 26.25 17.33 7.44 5.45 0.99 0.49 0.78 

Ky 0.02 0.06 0.08 0.04 50.06 23.75 40.62 

Lamb2 15.83 17.61 12.22 12.48 23.59 23.75 18.39 

Lef1 2.56 2.83 1.46 1.84 1.20 0.84 0.25 

Lemd2 9.65 8.72 8.03 7.24 9.38 9.95 7.37 

Lemd3 3.40 4.14 4.52 4.87 2.30 3.12 2.43 

Lrp4 1.20 1.02 1.61 1.54 4.62 6.04 3.75 

Lrrk2 6.03 6.08 9.07 11.55 2.14 3.14 2.21 

Maml1 15.54 15.29 14.71 13.10 3.16 3.28 2.81 

Mamstr 0.34 0.25 0.51 0.26 19.97 14.14 18.33 

Mapk14 34.05 30.82 26.36 25.42 31.36 32.03 28.27 

Mbnl3 3.83 3.49 7.81 6.31 1.33 1.08 1.09 

Mef2a 20.31 20.23 36.63 29.05 16.70 18.02 14.23 

Mef2c 2.50 5.45 13.29 6.62 71.18 67.40 69.06 

Met 4.90 4.52 6.45 6.61 2.60 3.05 2.61 

Msx1 1.52 1.77 0.88 1.95 1.32 1.75 1.28 

Murc 2.80 6.03 12.21 6.00 78.30 76.54 75.38 

Musk 0.14 0.64 2.00 0.86 6.58 6.79 4.99 



219 

 

Myh10 52.35 55.55 64.40 65.10 9.15 11.83 11.52 

Myh11 15.68 14.34 13.76 11.61 26.03 23.68 18.73 

Myh6 0.03 0.13 0.07 0.05 19.10 9.30 22.17 

Myh9 269.81 251.20 223.55 251.97 55.35 54.26 45.18 

Myl2 0.27 1.17 1.03 0.19 220.80 127.31 270.21 

Mylk2 0.54 0.39 0.45 0.54 56.96 106.74 57.04 

Myo18b 0.06 0.23 0.39 0.14 62.25 71.82 64.65 

Myocd 2.37 1.95 1.21 1.39 0.64 1.11 0.26 

Myod1 2.09 5.35 5.51 2.46 17.83 16.44 18.13 

Myog 2.89 7.47 10.50 2.94 48.62 28.69 42.89 

Mypn 0.09 0.66 1.28 0.27 93.07 89.00 79.05 

Neb 1.44 3.27 9.38 3.78 1044.35 1018.04 1107.44 

Nebl 0.37 0.48 0.37 0.61 0.41 0.46 0.16 

Neo1 39.86 38.59 34.94 36.00 11.36 11.60 8.47 

Neurl2 0.92 0.94 0.74 0.48 14.71 15.07 20.51 

Notch1 5.73 4.67 4.37 4.16 5.80 5.95 4.85 

Ntn3 0.04 0.29 0.08 0.10 0.37 0.29 0.31 

Nupr1 81.34 66.17 48.14 42.87 26.43 29.40 16.94 

Pak1 18.50 18.80 22.98 22.09 71.59 38.37 55.26 

Pdgfra 10.81 9.53 17.71 14.13 8.99 9.09 6.95 

Pdgfrb 71.12 68.08 71.20 66.08 13.58 14.76 10.80 

Pdzrn3 49.40 41.77 65.51 66.46 7.50 8.34 7.75 

Pik3r1 12.69 12.11 17.89 16.46 7.78 7.14 5.04 

Pitx2 0.56 0.66 1.72 1.31 4.83 7.20 6.17 

Plcb1 0.74 1.06 1.29 1.92 2.23 2.25 1.89 



220 

 

Ppp3ca 23.83 23.45 41.89 38.82 29.40 33.96 31.17 

Prl2c2 0.96 0.71 1.08 1.96 1.14 1.41 1.13 

Prox1 0.67 0.69 1.36 0.80 4.29 3.01 2.94 

Ptcd2 14.29 16.31 14.67 13.26 21.56 18.79 23.64 

Rara 28.82 26.62 20.86 21.98 8.96 9.07 7.62 

Rarb 1.47 1.01 2.23 1.20 2.01 1.89 2.24 

Rbm24 0.84 2.05 4.70 1.59 32.86 41.92 32.46 

Rbm38 3.96 3.08 2.93 1.81 43.08 57.69 38.80 

Rcan1 14.32 14.20 13.78 16.00 15.29 21.40 26.10 

Rxra 9.92 8.77 7.15 7.45 10.53 11.62 7.97 

Rxrb 5.34 5.16 4.81 3.97 5.10 6.75 3.12 

Ryr1 0.12 0.53 1.00 0.26 198.72 236.35 168.19 

S100b 0.86 0.70 0.88 0.35 3.26 1.44 2.94 

Shox2 11.83 8.13 9.58 9.21 1.14 1.49 0.98 

Sik1 8.97 6.93 8.28 6.81 5.99 5.66 4.61 

Ski 45.16 47.41 42.76 43.28 21.75 22.21 16.54 

Slc8a1 1.92 2.24 2.52 2.11 1.53 1.49 1.64 

Snta1 9.93 9.34 8.79 9.13 53.79 76.61 47.46 

Sort1 2.02 1.31 2.00 1.41 13.85 10.91 10.87 

Sox8 1.57 2.04 1.41 1.69 5.86 3.76 5.05 

Sox9 9.87 6.56 7.55 8.89 0.80 1.12 1.35 

Srf 27.64 19.64 13.41 13.43 7.70 7.43 6.70 

Tbx3 13.51 12.61 11.25 14.32 1.86 1.86 1.74 

Tbx5 1.24 1.70 1.64 3.22 0.15 0.12 0.22 

Tcap 0.13 1.01 2.08 0.39 216.30 423.62 266.53 
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Tgfb1 18.64 16.85 16.16 15.75  5.18 5.74 3.61 

Thra 5.12 4.50 5.52 4.39  15.57 20.59 11.91 

Tmod1 0.99 1.84 2.51 1.44  145.34 107.20 136.14 

Tnc 456.17 300.75 296.64 285.28  4.66 7.79 6.53 

Tnnt2 10.75 33.62 71.27 22.50  26.35 22.29 27.71 

Tsc1 3.98 3.70 4.63 3.81  4.21 6.00 4.72 

Ttn 0.19 0.95 2.13 0.75  940.31 862.21 920.35 

Utrn 31.13 26.39 36.47 36.45  20.80 20.11 16.71 

Vegfa 57.25 55.25 56.66 60.81  42.23 54.55 45.93 

Xirp1 0.31 1.54 2.79 1.17  18.80 37.79 31.14 

Ybx1 296.54 274.56 282.49 281.50  98.91 99.38 94.24 

Zfhx3 17.12 17.72 19.46 19.34  2.65 2.77 2.47 

  

Appendix B: Gene list of striated muscle cell differentiation (GO: 

0051146).  
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Appendix C: Pathology report on skin and hair histomorphology of 

Lmna∆/∆K14-Cre mice.  

 


