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Summary 

Approximately one-third of the world population is presently infected with 

the highly infectious Mycobacterium tuberculosis (Mtb), and this worldwide 

endemic appears to be deteriorating. Underlying this endemic is the emerging 

epidemic of multi-drug resistant (MDR-TB) and extreme-drug resistant TB 

strains (XDR-TB) that have severely undermined control efforts. With 

dwindling treatment options for MDR and XDR-TB that are decades old, it 

has become imperative to either identify novel anti-TB drugs or develop 

shorter, more efficient anti-TB therapies with existing drugs. While improving 

the efficacy of existing drugs may require a shorter timeframe than the former 

strategy, this approach however necessitates further understanding in the 

mechanism of action of mycobacterial drugs and their bio-activation, 

especially drugs which have been suggested to have multiple targets and 

pathways, such as isoniazid (INH) and ethionamide (ETH), thus increasing the 

exploitation potential for drug improvements. 

One of the most efficient second-line drugs to date for the treatment of 

MDR-TB is ETH; however its associated hepatotoxicity and gastric 

intolerability have restricted its use as an alternative treatment reserved for 

MDR-TB cases only. As a pro-drug that requires activation within the 

mycobacterial cell in order to exert its bactericidal effects, the current model 

for ETH bio-activation involves a Bayer-Villiger monooxygenase EthA and a 

repressor, EthR, which binds to the promoter region of ethA. However, the 

molecular mechanisms of ETH activation by EthA have not been completely 

deciphered yet. To add on, while most studies to date have focused on 

dissecting the role of EthA in ETH activation, few attempts have been made to 

understand its physiological role in Mtb. This thesis aims to further 

characterize the role of the EthA/R system in both the physiology and 

virulence of mycobacteria, and in ETH bio-activation.  

To address the first aim, ethA/R knockout mutants and complemented 

strains were constructed in both M. bovis BCG (BCG) and Mtb backgrounds. 

Our results indicate that absence of the ethA/R locus led to greater persistence 

of BCG in the mouse model of mycobacterial infection, which correlated with 

greater adherence to mammalian cells. Furthermore, analysis of cell wall lipid 

composition by thin-layer chromatography and mass spectrometry revealed 

differences between the BCG ethA/R KO mutant and the parental strain in the 
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relative amounts of alpha and keto-mycolates. The work presented in this 

section suggests that the ethA/R locus is involved in the composition of cell 

wall mycolates in mycobacteria, specifically the relative amounts of alpha and 

keto-mycolic acids, which impacts the adherence properties of mycobacteria 

to mammalian cells ex vivo and their ability to colonize their host. 

The second part of this thesis further investigates the bio-activation of 

ETH by the EthA/R system.  Interestingly, we discovered that ETH killing 

efficacy against Mtb was greater in macrophages than during in vitro growth. 

We demonstrated that this effect was neither accountable by changes in ethA 

or ethR gene expression during macrophage infection nor mediated by 

spontaneous activation of ETH by macrophages alone. We concluded that the 

apparent greater killing efficacy of ETH in macrophage may be due to 

accumulation of the drug within the phagosomal compartment where 

mycobacteria reside, thereby leading to higher drug concentration compared to 

the actual concentration in the culture medium. 

In the second sets of experiments, we demonstrated for the first time that 

the deletion of the entire ethA/R locus in BCG and three different Mtb 

backgrounds (namely Erdman, H37Rv and CDC1551) leads to different levels 

of resistance to ETH. While ethA/R deletion in BCG led to high levels of ETH 

resistance, ethA/R KO mutants in Mtb backgrounds displayed retained drug 

susceptibility and dose-dependent killing in response to ETH, suggesting the 

existence of an alternative EthA/R-independent pathway of ETH bio-

activation in Mtb. Expression of ethR in ethA/R KO strains did not increase 

ETH resistance therefore supporting that the alternative pathway of ETH bio-

activation is not modulated by EthR. Full-genome sequencing of spontaneous 

ETH-resistant mutants isolated from Erdman ethA/R KO Mtb identified 

several candidates, including mshA, which is involved in mycothiol 

biosynthesis. These gene candidates may have potential roles in ETH drug 

resistance that may specifically be involved in ETH bio-activation. Validation 

of the role of mshA in ETH drug resistance showed that deletion of the mshA 

locus in all Mtb ethA/R KO strains conferred even higher levels of resistance 

to ETH compared to their ethA/R single KO counterpart. These observations 

therefore suggest that mshA is not involved in ETH bio-activation and is more 

likely to be involved in the downstream steps after ETH catalysis. Most 

importantly, this is the first report to demonstrate that the simultaneous 

removal of both ethA/Rand mshA loci is able to completely abrogate ETH 

susceptibility in all Mtb strains. 
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1.1 Tuberculosis: A Persistent Adversary through the ages 

since Europe’s Great White Plague to Today’s Global 

Hallmark of Drug Resistance 

Tuberculosis is a chronic granulomatous disease that has persisted 

throughout history since the inception of early civilization to present, 

accumulating monikers such as Consumption, Phthisis, Scrofula, Pott's disease, 

and the Great White Plague. As one of the most eminent epidemics of the past, 

the Great White Plague was used to describe the tuberculosis epidemic in 

Europe which started in the early 17
th

 century and lasted up to two hundred 

years, during which up to 25% of deaths in Europe were attributed to this 

complex and debilitating disease (1, 2). The death toll from tuberculosis began 

to fall in Europe towards the beginning of the 20
th

 century with the general 

improvement of living standards and the advent of antituberculosis drugs and 

BCG vaccination in the early 1960s (2). However, due to globalization, the 

current HIV/AIDS epidemics, complicated and lengthy drug regimens causing 

poor drug compliance, and the development of multi/extensively/totally-drug 

resistant M. tuberculosis strains (largely fuelled by the above three factors), 

the disease has presently resurged with a vengeance in staggering proportions 

globally and is ratified as one of the leading causes of morbidity and mortality, 

causing 1-7 million tuberculosis-related deaths worldwide annually (3, 4). 

Upon the declaration of tuberculosis as a global public health emergency 

by the World Health Organization (WHO) in 1993, response from the 

international community was criticized as ‘sluggish and inadequate’ (2), and 

the incidence of tuberculosis cases continued to increase at an alarming rate. 
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Since then, the disease has eventually been recognized by these global 

organizations as a formidable threat that could have serious repercussions in 

terms of social and financial development internationally. The Stop TB 

strategy was initiated by WHO in 2006 with the ultimate goal of reversing the 

spread of tuberculosis by 2015 (5). 

Unfortunately, regardless of continuous efforts by public health officials 

worldwide to curb the spread of Mycobacterium tuberculosis (Mtb)infections, 

pulmonary tuberculosis (TB) remains endemic worldwide. With 

approximately one-third of the world population presently infected with this 

highly infectious pathogen (6), the situation appears to be deteriorating, with 

WHO reporting 8.6 million incident cases of tuberculosis, 1 million deaths 

from HIV-negative tuberculosis-infected individuals and an additional 0.3 

million deaths from HIV-associated tuberculosis in 2012(7). 

Underlying these statistics is an emerging epidemic of multi-drug resistant 

(MDR-TB) and extensively-drug resistant TB strains (XDR-TB) that have 

severely undermined control efforts (8, 9), resulting in concerned appeals by 

the WHO for urgent action by TB control programmes worldwide as the 

multiplication of these strains spin out of control. Even more alarmingly, a 

handful of totally-drug resistant TB strains have surfaced in Iran and India in 

recent years.  While the number of diagnosed MDR-TB cases nearly doubled 

between 2011 and 2012, leading to 94,000 confirmed MDR-TB cases; in 

reality, WHO estimates that there were 450,000 new MDR-TB cases in 2012 

alone (7). These statistics are even more alarming with the knowledge that on 

average, an estimated 9.6% of MDR-TB cases develop into XDR-TB (7). By 
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the end of 2012, 92 countries reported at least one case of XDR-TB. This 

implies that globally, less than one in four MDR-TB patients have been 

detected, necessitating the need for wider and better TB detection and 

diagnostics. A large-scale and orchestrated effort largely led by the WHO 

Global TB Program together with WHO regional and country offices has been 

implemented worldwide to tackle this multi-factorial perseverant disease.  
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1.2 Tuberculosis pathophysiology: Active versus Latent TB 

In an infected individual, tuberculosis generally develops as a consequence 

of one of the following three processes: progression of primary infection 

(primary active TB), exogenous reinfection (re-infection with a new strain of 

Mtb in a previously infected individual), or endogenous reactivation 

(reactivation of dormant TB in a previously infected individual) (3, 10, 11). 

The disease typically manifests in the lungs with ~80% of the diagnosed cases 

being classified as pulmonary TB (12), but can also affect extrapulmonary 

organs and tissues including the pleura, brain, testicles, spleen and liver, 

particularly in immunosuppressed persons and young children. Miliary 

tuberculosis, an extremely serious form of the disease leading to the 

widespread dissemination of TB into the human body coupled with tiny (1-

5mm) lesions comprises 10-20% of extrapulmonary TB cases (13, 14).  

The primary phase of TB infection commences with the inhalation of 

mycobacteria through the respiratory tract, which forms the major portal of 

entry for this pathogen (15). Alveolar macrophage in the lung peripheries then 

phagocytose these mycobacteria through interaction with several cell surface 

receptors, including complement receptor, mannose receptor, surfactant 

protein A, scavenger receptor and Fc receptor (16). More unconventionally, 

several lines of evidence also suggest the interaction of mycobacteria with 

epithelial cells in the respiratory tract including type II pneumocytes by 

attaching with glycosaminoglycans (GAG) (17-20).Mtb-infected macrophages 

subsequently reach the lung parenchyma, leading to the recruitment of other 

cells including the epithelioid and foamy macrophages, multinucleated giant 
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cells which are surrounded by a peripheral rim of B and T cell lymphocytes 

followed by a fibrous capsule, delineating the battlefield between Mtb and the 

host’s immune system through the formation of the classic TB granuloma (21-

24) (Fig. 1). The initiation of tuberculosis requires the establishment of only a 

single primary pulmonary tubercle comprising of bacilli surrounded by a wall 

of immune cells in the lung.During TB infection, individual lesions in the 

same host may progress at discordant rates, leading to varying maturation 

stages and subsequently, to different granuloma types which can be 

categorized as caseous, cellular and fibrotic (22, 24) (Fig. 1). 

Disease progression varies widely depending on the complex interplay of 

both host and pathogen factors, and can be further characterized into 5 non-

distinct stages that usually overlap, which are elaborated in detail in Fig. 2: 1) 

Ingestion with possible destruction of bacilli by pulmonary alveolar 

macrophages; 2) Exponential growth of bacilli within nonactivated 

macrophages that entered the developing tubercle from the bloodstream as 

monocytes; 3) Development of a solid caseous centre in the tubercle upon 

delayed-type hypersensitivity (DTH) response (due to the accumulation of 

high concentrations of tuberculin-like product) leading to arrested bacillary 

growth and subsequent killing of bacilli-laden macrophages; 4) Either tubercle 

and its caseous centre enlarging with hematogenous bacilli dissemination in 

immunocompromised hosts due to weak cell-mediated immunity (CMI); or  

tubercule stabilization orregression in immunocompetent hosts; and lastly, 5) 

Liquefaction of the caseous centre, extracellular bacillary growth, cavity 

formation, and bronchial dissemination of the bacilli (25).  
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In most healthy individuals, initial infection involving minute amounts of 

Mtb (1-5 bacilli) is asymptomatic, with primary lesions spontaneously 

resolving on their own. However, 5-10% of primarily infected individuals go 

on to develop local or systemic TB within the next 1-2 years (23, 26). During 

active disease, it is thought that mycobacteria may exist as subpopulations in 

different metabolic states in order to survive the vastly differing 

microenvironments within a single granuloma (27). In contrast, about 2 billion 

people comprising one third of the world are estimated to harbour latent TB 

(22). During latent disease, Mtb is thought to enter a dormant state in which 

the replication rate is substantially slower than that during active growth (28). 

90-95% of primary TB cases asymptomatically develop into latent TB cases 

which can only be detected via the tuberculin skin test 3-8 weeks later, a 

diagnostic TB test that can identify the presence of both actively replicating 

and dormant non-replicating (NR) Mtb (12, 23, 29). NR Mtb can persist in the 

tissues throughout a latently-infected TB individual’s lifetime, during which 

Mtb may migrate from primary lesions usually formed at the base of the lungs 

via lymphatics and the bloodstream to secondary sites located at the apical 

zones of the lungs, leading to the formation of secondary granulomas (12).  

About 1 in 10 latent TB cases may reactivate into active TB under 

circumstances of weakened or compromised immunity, multiplying to high 

densities within the granulomas. Massive numbers of Mtb antigens appear to 

trigger the immune response that lead to the occurrence of caseous necrosis, 

liquefaction, cavity formation and the eventual release of the tubercle bacilli 

into the airways of highly contagious pulmonary TB patients (23, 26). This 
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infection-disease-infection cycle mediated by the reactivation of latent TB is 

believed to be one of the many mechanisms by which Mtb perpetuates its 

survival (12), leading to its persistence through history.  
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Figure 1: Types of Granulomas that can be found in an Mtb-infected host. 

During TB infection, individual lesions in the same host may progress at discordant 
rates, leading to varying maturation stages and subsequently, different granuloma 
types which can be categorized as (A) Caseous granuloma, also known as the 
classic TB granuloma, which is composed of epithelial macrophages, neutrophils, a 
cuff of lymphocytes (CD4+ and CD8+ T cells and B cells) and occasionally 
surrounded by peripheral fibrosis. Found in both active and latent infections, this 
granuloma has a caseous centre in a necrotic stage that consists of dead 
macrophages and other cells. Mycobacteria exist in different microenvironments 
here, either in macrophages, the hypoxic centre or the fibrotic rim. (B) Non-
necrotizing granuloma, also known as the cellular granuloma, are primarily found 
during active TB and largely consists of macrophages and lymphocytes with 
mycobacteria residing within macrophages. (C) Fibrotic lesions are more often 
found in latent TB and comprise mostly of fibroblasts with a minimal number of 
macrophages; however it is not clear where the bacilli reside (possibly in 
macrophages or in the fibrotic area) or what the microenvironment is like. Figure 
reproduced with permission from Barry et al. 2001(30). 
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Figure 2: Tubercule development during tuberculosis disease progression 
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(A) Stage 1: An alveolar macrophage that has ingested and killed two bacilli in a 
phagocytic vacuole. The darkly shaded cytoplasm in this macrophage depicts a high 
degree of activation, ie. high levels of lysosomal and oxidative enzym es. Most 
alveolar macrophages are nonspecifically activated by the variety of inhaled 
particles that they ingest. An alveolar macrophage is usually able to kill an inhaled 
bacillus, except when the bacillus is unusually virulent or the macrophage is poorly  
activated. (B) Stage 2: An early primary pulmonary tubercle, in which bacilli have 
multiplied exponentially within newly arrived macrophages that have immigrated 
into the lesion from the bloodstream. Being nonactivated and incompetent, their 
cytoplasm is unshaded to depict the lack of activation. In fact, the phagocytic 
vacuoles in the cytoplasm of these nonactivated macrophages provide an ideal 
environment for mycobacterial multiplication, allowing macrophages and bacilli to 
exist in symbiosis. The bacill i multiply while the macrophages accumulate without 
harming neither host nor parasite. (C) Stage 3: A 3-week old tubercle comprised of 
a caseous necrotic center and a peripheral accumulation of partly activated 
macrophages (lightly shaded) and lymphocytes (small dark cells). Initial caseation 
occurs when the tissue-damaging DTH response to a high concentration of 
tuberculin-like products kills the nonactivated macrophages that have allowed the 
bacilli to multiply logarithmically within them. Dead and dying macrophages are 
depicted by fragmented cell membranes. Intact and fragmented bacilli are present, 
both within macrophages and within the caseum. Tubercle bacilli do not multiply 
in solid caseum. (D) Stage 4: (I) A 4-5 week old tubercle and its caseous center 
enlarging with hematogenous bacilli dissemination in immunocompromised hosts. 
Several partly activated macrophages are lightly shaded to indicate that these 
immunosuppressed hosts develop only relatively weak cell-mediated immunity 
(CMI). Escaping bacilli from the edge of this centre are ingested by poorly 
activated incompetent macrophages with intracellular environments that favour 
their multiplication. High concentrations of tuberculin -like products induce tissue-
damaging DTH which kills these new bacilli-laden macrophages, enlarging the 
caseous necrotic center. This cycle may repeat multiple times, resulting in the 
development of metastatic lesions due to lung tissue destruction and bacilli 
spreading via the lymphatic and hematogenous r outes to other sites. (II) A 4-5 
week old established tubercule in healthy immunocompetent humans who show 
positive tuberculin reactions and yet no clinical and often no X -ray evidence of the 
disease. Bacilli escaping from the caseous centre are ingested b y highly activated 
macrophages (darkly shaded) surrounding the caseum which inhibit bacilli 
multiplication and eventually destroy them, hence retaining a small caseous centre. 
Such effective macrophages were activated by T cells and their cytokines. If the  
caseous centre remains solid and does not liquefy, the disease will be arrested by 
this CMI response, leading to stabilization or regression in immunocompetent 
hosts. (E) Stage 5: Bacilli may multiply extracellularly to large numbers in liquefied 
caseum, which get discharged from cavities into a bronchus, thereby moving to the 
airways and allow the bacilli to disseminate to other parts of the lung and to the 
external environment. High concentrations of tuberculin -like products are 
produced and local tissues are destroyed, including the walls of adjacent bronchi. 
The large quantities of bacilli and their antigens in liquefied caseum may 
overwhelm a formerly effective CMI, causing progression of the disease in 
immunocompetent humans. Also, among such large numbers of bacilli, mutations 
causing antimicrobial resistance may occur. Figures reproduced with permission 
from reference (31) and (25). 
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1.3 The Mycobacterium tuberculosis complex (MTBC) 

Being predominantly environmental organisms found in the soil, 

mycobacteria have since evolved through several transitions from the 

environment to pathogenicity. Several organisms, including various strains of 

M. tuberculosis, the human pathogen M. africanum and a clade of animal-

infecting mycobacteria including M. bovis, have been classified as a closely 

related group of variants of a single species known as the M. tuberculosis 

complex (28). These are the etiological agents for both human and animal 

tuberculosis with pathogenicity differences amongst the various 

Mycobacterium species (32). The animal-adapted M. bovis ecotypes branch 

from a presumed human-adapted lineage of M. africanum  that is currently 

restricted to West Africa (28). On the other hand, human-adapted Mtb strains 

can be grouped into several main lineages, each of which is primarily 

associated with distinct geographical distribution (28) (Fig.3).  
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Figure 3: Evolutionary Relationship between selected mycobacteria and members of 

the MTBC. 

The MTBC was thought to arise as a clonal expansion from a smooth tubercle 
bacillus (STB) progenitor population that originated from soil bacteria. Human -
adapted M. tuberculosis strains are grouped into seven main lineages, each of 
which is primarily associated with distinct geographical distribution. TbD1 
indicates the deletion event specific for M. tuberculosis lineages 2, 3 and 4. 
Evolutionary distances are not to scale. All species shown are from the genus 
Mycobacterium. Figure reproduced with permission from Galagan2014. (28) 
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1.3.1 Mycobacterium Microbiology 

The etiological agent of tuberculosis is M. tuberculosis, which belongs to 

the Mycobacterium genus under the Actinobacteria class. Mycobacteria are 

best characterized by their Gram-positive thick, complex, lipid-rich, waxy cell 

wall which contributes to their acid-fastness. They are generally divided into 

two major groups, the fast growing mycobacteria eg. M. smegmatis, and the 

slow growing mycobacteria eg. M. tuberculosis and M. bovis. Members of the 

MTBC are non-motile, non-sporing, straight or slightly curved rods about 3 x 

03µm in size. They usually appear as single or small clumps in sputum and 

other clinical specimens, and as twisted rope-like colonies termed serpentine 

cords (Fig. 4B) in liquid. Colonies on solid media are typically of an off-white 

(buff) colour with a dry breadcrumb-like appearance (Fig. 4A). The Ziehl-

Neelsen (ZN) staining technique, which is a type of acid-fast stain, is the 

classic method used for mycobacteria visualization (Fig. 4C). However, light-

emitting diode fluorescence microscopy (LED-FM), which involves 

fluorochrome-labelled auramine O (which has an affinity for the mycolic acid 

contained in the cell wall of mycobacteria) (33) has increasingly been 

employed due to its ease of utilization, higher sensitivity (~8-10%) and similar 

specificity as compared to the Ziehl-Neelsen staining  for the detection of 

sputum smear positive TB cases (34-36) (Fig. 4D).  

Although mycobacteria have been shown to be able to survive and persist 

in a non-replicating state under anaerobic conditions (37), they are obligate 

aerobes (although M. bovis grows better in conditions of reduced oxygen 

tension) that grow best at the optimal temperature of 35-37°C. These tubercle 
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bacilli can survive very well and for extremely long periods in either external 

or internal environments so long as they are not exposed to ultraviolet light 

due to their heat sensitivity (32).   

 

 

 

Figure 4: Visualizing Mycobacterium tuberculosis 

(A) Mtb colony on solid media with a dry breadcrumb-like appearance.  
(B) Ziehl-Neelsen stained microcolonies of Mtb showing ‘serpentine cord’ 
formation. 
(C) Ziehl-Neelsen stained Mtb bacilli appear as purple rods (red arrows) viewed 
under phase contrast and bright field light.  
(D) Auramine-Rhodamine fluorochrome stain showing Mtb bacilli rods (blue dot) 
viewed under fluorescent light.  
Pictures reproduced with permission from (A), Vilceheze et al.2008 (38), (B), 
Wellcome Images (32), (C)&(D) Ryan et al.  (39) 
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1.3.2 Avirulent M. bovis BCG versus M. tuberculosis 

As one of the most widely used vaccines in the world for over 50 years, 

the live attenuated vaccine strain bacillus Calmette-Guérin (BCG) is an 

attenuated derivative of M. bovis, the virulent bacillus that is closely related to 

M. tuberculosis as discussed above (40). For over 50 years, BCG has been 

used to immunize over 3 billion people in immunization programs against 

tuberculosis. Although its protective efficacy against TB has been highly 

variable, the introduction of the BCG vaccine has been shown to reduce the 

overall risks of tuberculosis (41). The original BCG Pasteur Strain was 

developed from M. bovis by 230 serial passages in liquid culture with stable 

deletions and/or multiple mutations that eventually gave rise to an avirulent 

phenotype in both humans and animals, neither causing progressive disease 

nor pathogenic symptoms characteristic of tuberculosis (42).  

Fourteen regions of differences (RD) present in the reference laboratory 

strain M. tuberculosis H37Rv have been identified to be absent from avirulent 

BCG, which could shed clues on chromosomal genes related to pathogenicity 

(43). In particular, the genetic differences between avirulent BCG and virulent 

M. tuberculosis strains could be further narrowed down to three distinct 

genomic regions of difference; designated RD1 to RD3. RD3 is a 9.3kb 

genomic segment whose role for virulence was deemed doubtful due to its 

absence in most clinical isolates; RD2, a 10.7kb DNA segment which was 

found to have been deleted after the original derivation of BCG, and most 

importantly, RD1. Through the re-introduction of RD1 into BCG and 

proteomic studies, this 9.5-kb DNA segment was shown to play a role in the 
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regulation of multiple genetic loci, thus attributing the loss of virulence by 

BCG to the deletion of this regulatory region (44). Proteome comparison 

between M. tuberculosis and BCG revealed the expression of at least 10 

additional proteins and higher levels of many other unidentified proteins (44), 

which was accounted for by the loss of the RD1 region. These identified 

genetic differences could also account for the multiple physiological 

differences that also exist between BCG and M. tuberculosis (45, 46). 

In light of these crucial findings, although BCG is considered to be closely 

related to M. tuberculosis and hence is commonly used in place of M. 

tuberculosis for research due to its higher safety profile, these important 

physiological and genetic differences should be taken into consideration when 

using BCG as a surrogate organism for the study of M. tuberculosis virulence 

and drug resistance.  
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1.3.3 Strain variants of M. tuberculosis: Erdman, H37Rv and 

CDC1551 

Although all three strains belong to the same Lineage 4 (Euro-American), 

H37Rv and Erdman are very common laboratory strains whilst CDC1551 has 

been referred to as a “clinical” strain (47, 48). Several studies have shown that 

the laboratory-derived strains H37Rv and Erdman display distinct phenotypes 

both in vitro and in vivo when compared to CDC1551 (47, 48). It is indeed 

well known that repeated in vitro passages of strains may lead to genetic 

changes acquired during growth in culture such as the loss of PDIM, an 

important cell wall component associated with mycobacterial virulence, which 

is often documented in laboratory-derived strains (49). However, since its 

isolation from a clinical case, CDC1551 has also been passaged a substantial 

number of times in vitro and should be regarded nowadays more like a lab-

adapted strain than a clinical isolate. Regardless, the numerous handling and in 

vitro passages of these individual strains in various labs could translate into 

the acquirement of stable mutations in these strains specific to each lab; and 

this should be noted during the comparison of whole genomes of various Mtb 

strains. 
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1.4 Mtb Virulence:  Challenging the Classic Paradigm of 

Mtb Virulence 

Over four decades of experimental work support the classical notion that 

the in vivo niche of M. tuberculosis is primarily the membrane-bound 

phagosome of macrophages, though conceding that growth in other cell types 

and even extracellular spaces are also important (50). Live M. tuberculosis 

was first demonstrated to exist inside phagosomes that failed to fuse with 

lysosomes even after 1-4 days of infection through classical electron 

microscopy (EM) studies (51, 52). These important findings strongly suggest 

that M. tuberculosis was able to avoid the lysosome in order to survive and 

replicate. Subsequent immuno-EM studies supported this discovery by 

revealing Mtb-containing vacuoles with uniformly surrounded membranes that 

contained endosome markers (51-55). Further studies have extensively 

investigated the mechanism of phagosome maturation arrest which was found 

to involve bacterial manipulation of several host molecules such as 

sphingosine kinase (56) and Coronin-1 (57).  

However, while the conventional thought on M. tuberculosis virulence has 

generally been agreed to mainly revolve around the rather unusual ability of 

the bacteria to survive and replicate within the macrophage while concurrently 

evading the host immune system in comparison to other bacteria, there appears 

to be accumulating evidence to suggest that phagosome escape into the cytosol 

can occur during M. tuberculosis infection, challenging this classical paradigm. 

A number of EM studies have reported unusual observations of M. 

tuberculosis bacilli without visible host membranes typically after several 
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days of infections (58-62), and further investigations have found that the RD1-

encoded ESX-1 specialized secretion system is critical for phagosome escape 

(58, 62). Additional studies also corroborate the notion that M. tuberculosis 

utilizes the ESX-1 pathway to gain access to the cytosol through membrane 

permeabilization during the early stages of infection (63-68).  

Although the mechanism of virulence for M. tuberculosis remains poorly 

understood, it is almost certainly multifactorial; and in light of these 

unconventional findings, the role of a number of critical factors in 

mycobacteria virulence should certainly be revisited. These factors should 

include other aspects of Mtb-host interactions that have been previously 

reviewed such as defence against host-induced stress (69) and other 

mycobacterial virulence compounds or genes such as proteases (70), lipids (30, 

71, 72), regulators (73), sigma factors (74), secretion systems (75, 76), etc. 

These virulence determinants can be widely categorized based on their 

function, molecular features or cellular localization into: 1, Lipid and fatty 

acid metabolism; 2, cell envelope proteins which include cell wall proteins, 

lipoproteins and secretion systems; 3, macrophage-interacting proteins; 4, 

protein kinases; 5, proteases; 6, metal-transporter proteins; 7, gene expression 

regulators including two component systems, sigma factors and other 

transcriptional regulators and lastly 8, other virulence proteins of unknown 

function, including PE and PE_PGRS families.  

  



Chapter 1: Literature Review 

 

20 

 

1.4.1 Mycobacteria Cell Wall and Structure in relation to virulence 

The convoluted and distinct cell wall of M. tuberculosis comprises of 

numerous complex lipids that play dual roles as both critical structural 

components and virulence factors that mediate host cell interactions (77, 78). 

Its cell wall comprises of a standard inner membrane made up of a 

peptidoglycan-arabinogalactan polymer that is linked to an outer membrane-

like structure termed the mycomembrane (79) (Fig. 5). Unique to 

mycobacteria and related actinobacteria, mycolic acids consisting of β-

hydroxyl fatty acids with long α-alkyl side chains line the inner layer of the 

mycomembrane, covalently linked to arabinogalactan in the standard inner 

membrane. Besides forming structural components for the mycobacterium cell 

wall, mycolic acids can also be esterified to glycerol and trehalose. A large 

variety of non-covalently attached lipids and glycolipids including additional 

mycolic acids in the form of the glycolipid trehalose-6,6’-dimycolate (TDM) 

and a family of structurally related phthiocerol dimycoserosates (DIMs) make 

up the outer mycomembrane, which is eventually coated with a capsular layer 

of extractable glycans, lipids, and proteins (80) that form the surface of M. 

tuberculosis. The extremely hydrophobic outer surface forms a reservoir for a 

myriad of bacterial products that can play a role in host cell interactions. These 

lipids have been proposed as key mediators of the host-pathogen interaction 

during Mtb infection (78), affecting host cells and tissues not just through 

surface mediation but also subsequent immunity. Clearly, the complex and 

unique mycobacterial cell wall plays a critical role in Mtb virulence that 

necessitates further exploration. 
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Figure 5: The M. tuberculosis cell wall is complex and distinct from other bacteria 

species. 

The M. tuberculosis cell wall comprises of a standard inner membrane of 
peptidoglycan-arabinogalactan polymer that is linked to the outer mycomembrane. 
The outer mycomembrane is lined with an inner layer of mycolic acids and an  
outer layer of several lipids and glycolipids, including additional mycolic acids such 
as TDM and DIMs. Finally, the surface of the mycobacterium is encased with a 
capsular layer of glycans, lipids and proteins.  
Figure adapted with permission from Stanley et al. 2013 (78). 
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1.4.2 Mycolic Acid Synthesis as a Lipid Virulence Factor in 

Mycobacteria 

Characterized by very hydrophobic C54 to C63 fatty acids with C22 to C24α 

side chains, mycolic acids are generally similar in length but are divided into 

three distinct structural classes based on their structure variations, having 

either cyclopropanation (cis or trans) or keto or methoxy groups (77, 81). α-

mycolic acids remain the most abundant form (>70%), with methoxy- and 

keto-mycolic acids forming minor components (10-15%) (82). α-mycolic 

acids are cis, cis-dicyclopropyl fatty acids that can vary structurally in the 

length of the terminal alkyl group and the number of methylene groups 

between the cyclopropane rings and the carboxyl group. Methoxy- and keto-

mycolic acids can also vary structurally with either cis- or trans-cyclopropane 

rings (77) to give rise to individual subspecies. 

Mycobacteria utilize the two component fatty acid synthetase (FASI-

FASII) system that is homologous to eukaryotic systems (83) to produce long 

chains of fatty acids of up to 86-95 carbon atoms in length from a hypothetical 

medium length fatty acid as its precursor (30) (Fig. 2). The biosynthesis of 

mycolic acids can be summarized into 5 distinct stages (77): 1, Fatty acid 

synthase-I (FAS-I) produces a C26 saturated straight chain fatty acid forming 

the α-alkyl branch of mycolic acids; 2, Fatty acid synthase-II (FAS-II) 

produces the C56 fatty acids for the formation of the meromycolate backbone; 

3, Various cyclopropane synthases introduce functional groups to the 

meromycolate chain; 4, Generation of the mycolic acid upon the condensation 

reaction between the α-branch and the meromycolate chain catalysed by the 

polyketide synthase Pks13 and a subsequent reduction reaction by 
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corynebacterineae mycolate reductase A (CmrA); 5, Transfer of mycolic acids 

to arabinogalactan and other acceptors eg. trehalose via the antigen 85 

complex. 

However, despite the accumulation of knowledge in mycolic acid 

biosynthesis in the last 30 years, synthesis of the individual mycolic acids 

species remains vague and poorly understood. What is clear though, is an 

established link between mycolic acid metabolism and virulence; as key 

enzymes involved in the FASI-FASII system and subsequent mycolic acid 

modifications such as β-keto acyl synthetase KasB (84) and methoxy mycolic 

acid synthase 4 MmaA4 (85), have been identified as key players in 

mycobacteria virulence (Fig. 6). 
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Figure 6: Biosynthesis of Mycolic Acids in Mycobacteria 

Α-mycolates, methoxymycolates and ketomycolates are synthesized from end 
products of the FAS I and FAS II pathway through a series of modifications via key 
enzymes. The genes highlighted in grey have been proposed as virulence factors 
for M. tuberculosis.  
Figure reproduced with permission from Forrellad et al. 2013 (43) 
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1.5 Current and Future Anti-TB Drug Therapies 

The conventional drug therapy for active TB consists of a cocktail of first-

line drugs including intensive phase treatment of 2 months of isoniazid (INH), 

rifampicin (RIF), pyrazinamide (PZA), ethambutol (EMB) and a subsequent 

continuation phase treatment of 4 months of INH and RIF (21, 22), a lengthy 

drug regime that lasts 6-9 months. MDR-TB, on the other hand, requires an 

even more complicated and lengthy drug regime, including a combination of 

eight to ten drugs with therapies lasting up to 18-24 months; only of which 

four of these drugs were actually developed solely for TB treatment (86). 

These include the second-line drugs such as cycloserine, ethionamide (ETH), 

para-amino salicylic acid (PAS) and streptomycin (87-89). Over the years, 

numerous biochemical, genetic, crystallography studies have been conducted 

to identify the molecular targets and analyse the mode of actions of these 

drugs (90) (Table 1). Besides these, for various reasons such as ease of use, 

toxicity, unclear efficacy and unsuitable drug combinations, other less 

commonly used drugs such as isoxyl (ISO), thiacetazone (TAC), kanamycin 

and clofazimine also exist for the treatment of MDR and XDR-TB (87, 90). 

The clinical efficacies of these drugs against Mtb are further summarized in 

Table 2 (87).  

Unique amongst other general antibiotics, several of the anti-TB drugs in 

use today including INH, ETH, and pyrazinamide (PZA) are pro-drugs that 

require activation in situ to an activated form for its bactericidal activity 

against M. tuberculosis (91). Of this work’s interest are the classic 

antitubercular pro-drugs that have proven activity on the essential pathway of 
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mycolic acid synthesis in Mtb, namely, INH, ETH, ISO and TAC. Their 

respective chemical structures are depicted in Figure 7. INH is a powerful 

efficacious first-line drug regarded as a highly valuable weapon for the 

treatment of TB (92); whilst ETH remains as one of the most effective second-

line drugs currently still in use for MDR-TB treatment today. Both TAC and 

ISO are prodrugs used in the 1970s and 1980s especially in Africa and Latin 

America due to their low cost. However, due to numerous life-threatening side 

effects such as hepatotoxicity and an unexpectedly high frequency of mutant 

strains arising during treatment, these drugs are commonly discontinued in the 

midst of treatment (93-95). 

Additionally, novel anti-TB drug candidates are continually being 

developed amongst research and pharmaceutical communities, including 

several promising TB drugs that are currently under review in clinical trials 

(Fig.8). As of 2013, WHO reports a total of 10 new or repurposed anti-TB 

drugs that are currently in Phase II or Phase III clinical trials, the highest-

profile drug being bedaquiline (TMC-207) (7). Although in Phase II clinical 

trials back then, bedaquiline underwent accelerated approval for use in the 

treatment of MDR-TB patients by the US Food and Drug Administration 

(FDA) in 2012 due to its novel mechanism of action and the potential of this 

drug to treat MDR-TB. Despite the constant search for novel drug candidates 

over the decades, bedaquiline became the first new TB drug to be approved for 

use in 40 years, underscoring the challenging and arduous development of the 

TB drug discovery pipeline. Other promising drugs under research and 

development for TB treatment include PA-284 (96), a novel nitroimidazole 
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compound and moxifloxacin (97), a wide-spectrum fluoroquinolone antibiotic, 

both of which are being tested as part of several potential combination 

regimens (98). 
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Figure 7: Structures of Drugs that inhibit Mycolic Acid Synthesis 

Isoniazid (INH) is a hydrazide, while ethionamide (ETH), thiacetazone (TAC) and 
isoxyl (ISO) are thiocarbamide-containing drugs that inhibit mycolic acid synthesis 
in mycobacteria; however their individual mode of actions on mycolic acid 
synthesis differs.  
 

 

Figure 8: Developmental Pipeline for novel TB drugs as of July 2013 

Figure adapted from WHO Global TB Report 2013 (7). 
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Table 1: Main Tuberculosis Drugs in Clinical Use Today and the their respective 

mechanism of drug action and targets 

Table reproduced with permission from Zumla et al. 2013 (90) 

 

Table 2: Categorized Anti-TB drugs and their Clinical Efficacies against M. 

tuberculosis 

Table reproduced with permission from Mukherjee et al. 2004  (87) 
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1.5.1 The Emergence of Multi-Drug Resistant, Extensively-Drug 

Resistant and Totally Drug-resistant TB Strains 

While first-line drugs such as INH and RIF have historically been 

successful in the treatment of TB infections (99); today, poor compliance with 

prolonged regimens, in conjunction with the growing acquired 

immunodeficiency disease pandemic, have compounded the problem and 

fuelled the emergence of MDR-TB and XDR-TB (100, 101). 

 MDR-TB strains are defined as resistant against at least the two first-line 

anti-TB drugs INH and RIF (102); XDR-TB as M. tuberculosis strains 

resistant to fluoroquinolone and to any of the three injectable drugs 

(capreomycin, kanamycin and amikacin) in addition to INH and RIF (103); 

and totally-drug resistant TB (TDR-TB)  as strains that are resistant to all first 

and second-line drug classes (ie. aminoglycosides, cyclic polypeptides, 

fluoroquinolones, thioamides, serine analogues, and salicylic acid derivatives) 

(104). Increase in drug resistance in Mtb clinical isolates has impeded the full 

success of tuberculosis control. An estimated 4.3% of newly and previously 

treated TB cases are MDR-TB, whilst XDR-TB has been associated with the 

rapid death of HIV-infected individuals (105, 106). 

MDR-TB cases currently represent nearly 5% of the world’s annual TB 

burden (107), and treatment inevitably necessitates the usage of second-line 

drugs which are less effective and often poorly tolerated with increased 

toxicity (108). An alarmingly increasing number of XDR-TB cases have been 

reported worldwide in recent years as well (109), for which neither first nor 
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second-line anti-TB drugs are efficient. Koul et al. raises the terrifying 

possibility of a return to a situation akin to the pre-antibiotic TB era (110).  

1.5.2 Isoniazid; A Highly Efficacious First-Line Anti-TB Drug 

As one of the most commonly prescribed first-line drugs for TB treatment, 

INH, a derivative of the vitamin nicotinamide, is a highly effective hydrazide 

that is inexpensive, generally well tolerated and available worldwide. By 

passive diffusion through the mycobacterial cell wall, INH only shows 

bactericidal activity on dividing bacteria, but is non-functional against 

mycobacteria in stationary phase or hypoxic mycobacteria (111, 112). INH 

bactericidal activity has been limited exclusively against mycobacteria, 

especially slow growing mycobacteria (113). Due to its specific and 

exceptional potency against Mtb, the molecular mechanism of action of INH 

has been the subject of intense research by scientists since its discovery in 

1952 (114).  

The most consensual mechanism described to date proposes the catalysis 

of the pro-drug INH into an active metabolite via the mycobacterial catalase 

peroxidase KatG to form a INH-NAD adduct (114). The formation of this 

adduct inhibits InhA, the NADH-dependent enoyl ACP reductase of the FASII 

system, resulting in the inhibition of mycolic acid synthesis, accumulation of 

long-chain fatty acids and finally, cell lysis (114-117) (Fig. 9). Understandably, 

katG and inhA mutations have been implicated in INH resistance; however 

several other genes including ndh, msh and nat have also been proposed to 

contribute to INH resistance. Notably, only mutations in inhA display 

dominant INH-resistance phenotypes, ie. conferring INH resistance when non-
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functional mutant alleles of inhA replace or complement the wild type gene, 

whilst all other mechanisms of resistance (eg. katG, ndh, msh and nat) are 

recessive, whereby INH susceptibility is restored in these mutants upon 

introduction in trans of the corresponding wild type gene (114, 116). 

Furthermore, between 40 up to 95% of INH-resistant (INH
R
) Mtb clinical 

isolates are associated with katG mutations, forming the majority of INH
R 

clinical Mtb isolates (118, 119). Another 8-20% INH
R
 clinical Mtb isolates 

have mutations either in the promoter of inhA or its open reading frame. 

Mutations in at least 16 other genes including ndh, kasA, aphC, have been 

implicated in INH
R
 clinical Mtb isolates as well, although their roles in INH 

resistance remains unascertained in a large proportion of these genes (119). 

Approximately 10-25% of INH
R
 strains do not contain mutations in any of the 

known gene targets for INH resistance, suggesting the need for further 

research in the mechanisms of INH resistance (119).  
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Figure 9: Proposed mechanism of action of INH and ETH on the FASII pathway by 

Vilcheze et al. 2005. 

INH is activated by the catalase-peroxidase KatG, while ETH is activated by the 
monooxygenase EthA into their respective activated forms. The formations of an 
INH-NAD or ETH-NAD adduct with the activated forms of either drug and NAD+ 
inhibit the common target InhA, the NADH-dependent enoyl-ACP reductase of the 
FASII system. InhA inhibition results in mycolic acid biosynthesis inhibition and 
subsequent cell lysis. Resistance to INH or ETH is associated with gene mutations 
in the activators of the drugs, katG and ethA respectively. Since activated INH and 
ETH share a common downstream pathway, hence, co-resistance to INH and ETH is 
associated not just with inhA mutations, but also ndh mutations, which increase 
the NADH intracellular concentration and cause resistance by competitively 
binding InhA to inhibit drug-NAD adduct.  
Figure reproduced with permission from Vilcheze et al. 2005 (116)  
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1.5.3 Ethionamide; A Highly Efficacious Second-Line Anti-TB Drug 

Ethionamide (ETH) is one of the most efficient second-line drugs to date 

for the treatment of MDR-TB. Despite its clinical use in humans for over 40 

years since its first synthesis in 1956, ETH prescription has been largely 

limited to patients relapsing with MDR-TB strains due to the high dosage 

required to achieve clinical efficacy which leads to serious hepatotoxicity, 

gastro-intestinal disturbances and other adverse toxicity issues (120).  

As a structural analog of INH, ETH is a thioamide pro-drug that like INH, 

inhibits a common molecular target InhA, a NADH specific enoyl-acyl carrier 

protein reductase, to eventually inhibit mycolic acid synthesis (121, 122) (Fig. 

9). However, while both INH and ETH exert inhibitory actions on InhA, the 

pathways for pro-drug activation and mode of action toward the enzyme are 

different (118, 123-125). This was apparent during studies conducted to 

investigate the resistance patterns of ETH and INH. ETH-resistant strains were 

still sensitive to INH, whilst INH-resistant strains showed a slight increase in 

sensitivity to ETH (126). Since the discovery of EthA as the mycobacterial 

enzyme responsible for ETH activation (124), in the past decade or so, much 

of the research on ETH has mainly focused on further elucidating its poorly 

understood mechanism of action with the penultimate aim of improving its 

killing efficacy. To date, whilst significant progress have been made, the full 

molecular mechanisms involved in ETH activation have yet to be fully 

characterized. Here, the 5 key major findings contributing to the understanding 

of ETH metabolism in M. tuberculosis up till today are highlighted and 

summarized. 
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1.5.3.1 The pro-drug ETH requires activation by EthA. 

In 2000, through a series of genetic and transfection experiments, both 

DeBarber et al. and Baulard et al. teams independently reported the 

identification of a gene, Rv3854c, in the M. tuberculosis genome encoding for 

a protein, EthA that was found to be responsible for the activation of ETH 

(124, 127). Hence, it was deduced that INH and ETH are activated by two 

different mycobacterial enzymes, namely KatG and EthA respectively (118, 

124, 127). The rarity of cross-resistance to both drugs was thus realized to be 

due to a higher frequency in katG mutations than in inhA, suggesting the use 

of ETH to be ideal for the treatment of INH-resistant TB (128). To further 

support these findings, resistance to ETH has been associated with mutations 

in ethA and inhA but not katG (126, 129), suggesting that ETH activation is 

solely dependent on EthA. Additionally, the overexpression of ethA in M. 

smegmatis has been shown to dramatically decrease the minimum inhibitory 

concentration (MIC) of ETH, suggesting that the bactericidal activity of ETH 

is directly correlated with its activation process by EthA (124).  

In vitro and in vivo studies have shown that ETH activation results in the 

production of various intermediates and derivative metabolites (Fig. 10 & 11), 

among which the active major compound, ETH* has yet to be structurally 

identified (127, 130, 131). Hanoulle et al. have proposed a model for the 

intracellular metabolization of ETH to depend on EthA, which is a membrane 

associated protein, through a molecular sorting mechanism of the ETH 

metabolites (Fig. 11) (128). Using high resolution magic angle spinning-NMR 

(HR-NMR), ETH activation was studied to observe the distribution of ETH-
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derived metabolites inside and outside the bacteria, while monitoring the 

kinetics of the drug transformation. ETH was found to be metabolized by 

EthA into ETH-SO and ETH*, and subsequently into ETH-OH. Only one of 

these three molecules, ETH*, was observed to accumulate exclusively within 

the bacterial cells whilst the remaining two were exclusively found in the 

extracellular milieu, suggesting ETH* to be the prime active compound 

candidate for antibiotic action. However, due to difficulties in purifying an 

intracellular compound, its molecular definition remains undeciphered. 

Vanelli et al. and Fraaije et al. have also shown that EthA is membrane 

associated when produced in E. coli and recombinant EthA is able to convert 

ETH to ETH-SO in vitro(130, 132). This suggests that EthA is a membrane-

associated protein responsible for the activation of ETH into the three 

metabolites and subsequently, their sorting. In the absence of EthA, ETH is 

either quickly expelled or unable to penetrate the mycobacterial cell (128, 131).  
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Figure 10: ETH and other proposed metabolites 

From Left to Right: Ethionamide (ETH), ETH S-oxide (ETH-SO), 2-ethyl-4-
amidopyridine (ETH-amide), 2-ethyl-4-carboxypyridine (ETH-acid) and2-ethyl-4-
hydroxymethylpyridine (ETH-alcohol; ETH-OH) 
Figure reproduced with permission from Hanoulle et al.(128) 

 

 

Figure 11: Model of the compartmentalized activation of ethionamide. 

Ethionamide is metabolized by EthA into ETH-SO, which is subsequently 
transformed into ETH-OH. Both metabolites are exclusively present outside of the 
bacterial cell and accumulate over time (see culture medium graph). In parallel, 
ethionamide is metabolized into ETH*, which accumulates exclusively in the 
cytoplasmic compartment (see intracellular graph).  
Figure reproduced with permission from Hanoulle et al. (128) 
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1.5.3.2 EthA is a Bayer-Villiger monooxygenase. 

EthA belongs to the flavine adenine dinucleotide (FAD)-containing 

monooxygenase family and has been classified as a Bayer-Villiger 

monooxygenase (BVMO) (130). The single FAD group catalyses NADPH- 

and O2-dependent monooxygenation of ETH to its corresponding S-oxide, 

ETH-SO, and is also capable of further oxidizing ETH-SO to its final 

cytotoxic species for the antibiotic action of ETH (130). However, while EthA 

has been shown to accept various ketones as substrates, the nature of its 

physiological substrate remains unknown. While Fraaije et al. have proposed a 

detoxifying function for EthA and other mycobacterial BVMOs (132), the 

physiological role of EthA in the mycobacterial cell has not been determined 

either. Transcriptome analysis has revealed that ethA expression is down 

regulated upon starvation (133) and upregulated under low-iron conditions 

(134), suggesting a role for EthA in the pathogen’s virulence. 

Interestingly, the analysis of ETH-resistant M. tuberculosis clinical isolates 

have revealed cross resistance to TAC and ISO, two other thiocarbamide-

containing anti-TB drugs as well (127). Like ETH, TAC and ISO have been 

shown to target the mycolic acid biosynthesis, albeit through a different mode 

of action (Fig. 12). The mechanism of action of TAC remains poorly 

understood, while ISO as well as its derivatives are able to inhibit the 

synthesis of both fatty acids and mycolic acid subtypes (135). Biochemical 

analysis of [
14

C] acetate-labeled cultures suggests that these three drugs inhibit 

mycolic acid biosynthesis via different mechanisms through binding to 

specific targets (91). Most importantly, Dover et al. have demonstrated that 
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EthA is a common activator of thiocarbamide-containing drugs, suggesting 

broad substrate specificity for this enzyme (91). 

 

 

 

 

Figure 12: Summary of the activation mechanisms of isoniazid (INH), ethionamide 

(ETH), thiacetazone (TAC) and isoxyl (ISO) antitubercular drugs. 

INH is activated by the catalase-peroxidase KatG, whilst EthA acts as a common 
activator for ETH, TAC and ISO to generate a range of radicals to attack multiple 
targets and specific targets in the cell. Once activated, ETH inhibits mycolic acid 
biosynthesis by targeting InhA, which is also the primary target of activated INH. In 
contrast, activated TAC or ISO inhibits mycolic acid biosynthesis through InhA -
independent mechanisms, which remain to be determined.  
Figure reproduced with permission from Dover et al.(91) 
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1.5.3.3 ethA expression is regulated by EthR.  

Previous genetic studies have suggested that EthA production is negatively 

regulated by the product of the neighbouring gene ethR (124, 127, 136). EthR 

is a repressor that belongs to the TetR/CamR family of transcriptional 

regulators. Overexpression of ethR resulted in ETH resistance; yet 

chromosomal inactivation of ethR led to ETH hypersensitivity, suggesting that 

EthR represses ethA expression in M. tuberculosis (136). Engohang-Ndong et 

al. have established that EthR acts as a repressor of ethA expression through 

direct binding to the ethA upstream promoter region (136) (Fig. 13). ethA and 

ethR genes are divergently transcribed with their +1 transcription start 

separated by a putative 76-bp divergent promoter. Electrophoretic mobility 

shift assays indicated a direct and specific physical interaction between 

recombinant EthR and the ethA-R intergenic region (136). Surface plasmon 

resonance analyses suggest that EthR binds cooperatively as a homo-octamer 

to its operator, thus preventing RNA polymerase from interacting with both 

ethA and ethR promoters, effectively repressing both ethA and ethR(136). 

Consequently, the repression of the entire ethA/R locus by EthR may be 

responsible for the poor activation of ETH by EthA, contributing to the innate 

resistance of mycobacteria to this antibiotic (137). This could also be a 

plausible reason for the necessary high clinical dosage of ETH to achieve 

satisfactory killing efficacy which leads however to the adverse and 

intolerable side effects experienced by patients on ETH medication. 
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1.5.3.4 The repressor activity of EthR is negatively regulated by 

Serine/Threonine phosphorylation, and can be modulated by 

a small inhibitor molecule.  

As a repressor that belongs to the TetR/CamR family of transcriptional 

regulators, characteristically, the regulation of its target gene(s) should be 

controlled by a small molecule effector able to induce a conformational 

change in its repressor which would result in a loss in its capacity to bind its 

DNA operator (138). Earlier, the X-ray crystal structure of EthR in a ligand-

bound conformation (EthRHexOc) was reported and described as a 

homodimer with a ligand bound to each EthR monomer, the ligand 

subsequently being identified as hexadecyl octonoate (HexOc) (139). In the 

presence of HexOc, EthRHexOc is unable to bind to its target DNA and thus 

to repress ethA transcription (137). This finding strongly suggests that ethA 

gene expression is tightly regulated and involves more than one modulator.  

The transcriptional repressor EthR was later identified as a specific 

substrate of the mycobacterial serine/threonine protein kinase (STPK) PknF. 

Phosphorylation of EthR by PknF negatively affected the DNA-binding 

activity of EthR, suggesting that EthR is negatively regulated by 

serine/threonine phosphorylation (140), which further affirms the role of 

STPK-dependent regulatory mechanisms in the bio-activation process of ETH.  

Additionally, Willand et al. have identified synthetic inhibitors of EthR, 

demonstrating that one of the compounds (BDM14801) was able to actively 

repress EthR thereby leading to a ten-fold improvement of ETH potency 

against M. tuberculosis (141). The discovery of these EthR inhibitors with the 

ability to boost the antimycobacterial efficacy of ETH demonstrates the 
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importance for further understanding of the bio-activation mechanism of ETH 

which could potentially lead to improvements in the therapeutic index of ETH. 

1.5.3.5 The mycothiol synthesis pathway is implicated in ETH 

resistance 

The mycothiol synthesis pathway involves 5 enzymes, namely 

glycosyltransferase MshA, phosphatase MshA2, deacetylase MshB, ligase 

MshC and acetyltransferase MshD (142) (Fig.14). Recently, biochemical 

studies identified glycosyltransferase MshA and its downstream product, 

mycothiol, the mycobacterial analogue for glutathione to be involved in ETH 

bio-activation in M. tuberculosis. Although the mechanisms have yet to be 

fully deciphered, the authors observed a mycothiol-dependent increase in the 

rate of NADPH conversion during the activation of ETH by recombinant EthA; 

and noted an absence in the formation of the ETH-NAD adduct in the 

presence of NAD+, NADPH, recombinant EthA and mycothiol. These 

findings imply that mycothiol is not involved in the formation of the ETH-

NAD adduct, but rather in the activation steps of ETH, hypothetically through 

the stabilization of ETH intermediates or its active form (142). Further studies 

by the same group have also illustrated that mutations in mshA and mshC 

genes appear to contribute to low-level resistance to INH, but were highly 

resistant to ETH, leading the authors to conclude that mutations in the 

mycothiol biosynthesis genes may contribute to INH or ETH resistance across 

mycobacterial species (143).  

Additionally, a separate research group studied the effect on INH and ETH 

susceptibility upon the disruption of mshA, mshB and mshC in M. smegmatis. 
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It was observed that while the disruption of mshA led to both ETH and INH 

resistance, mshB disruption led to ETH resistance but retained INH sensitivity 

in M. smegmatis. Interestingly, the same authors also found that mshC-

disrupted M. smegmatis mutants remained sensitive to ETH but were INH 

resistant. These observations led them to suggest the involvement of either 

mycothiol or its early intermediates in ETH bio-activation, possibly through 

an indirect effect of the regulation or activation of enzymes that participate in 

ETH bio-activation (144) .  

Regardless of the slightly different drug susceptibility profiles obtained 

from both groups which could be highly attributed to the use of different 

Mycobacteria species, it is apparent that the mycothiol synthesis pathway 

plays a role in ETH resistance, and further studies are required to understand 

how this pathway can contribute to ETH bio-activation. 
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Figure 13: The ethA/R intergenic region forms the promoter for the ethA/R operon. 

ethA and ethR are divergently transcribed in opposite directions with the ethA/R 
intergenic region acting as the common promoter for both proteins. The 
transcriptional regulator EthR can bind to the ethA/R intergenic region at the 
indicated EthR binding region to repress the expression of both genes.  
Figure reproduced with permission from Engohang-Ndong  et al, 2004 (136). 
 
 
 
 
 

 

Figure 14: Mycothiol biosynthesis pathway 

Mycothiol biosynthesis is first initiated by the glycosyltransferase MshA and the 
phosphatase MshA2 to an intermediate product, which is then deacetylated by the 
deacetylase MshB, followed by the addition of a cysteine group by the ligase MshC. 
The final product is completed by the acetylation of the cysteine amino group by 
the acetyltransferase MshD.  
Figure adapted from Vilcheze et al. 2008 (38) 
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1.6 The role of the ethA-ethR locus in ETH bio-activation 

and Mycobacterium tuberculosis necessitates further 

exploration 

 The major discoveries with regards to ETH bio-activation reported in the 

above sections have prompted novel therapeutic perspectives for improving 

ETH efficacy, particularly against MDR-TB. Based on the literature reviewed 

in this section, a summary model for the modulation of ethA-ethR expression 

as it is understood today is depicted in Figure 15. A full understanding and 

deciphering of the molecular mechanisms involved in ETH activation is a pre-

requisite for scientists and clinicians to be able to propose novel strategies to 

improve ETH potential such that the high dosage of ETH can be reduced, 

thereby minimizing its side effects and toxicity.  

Hence, the objectives of this research thesis are outlined as follows: I) 

investigate the importance of the ethA-ethR locus in mycobacteria virulence; 

and II) further understand the mechanisms behind ETH drug resistance, in a 

bid to identify novel mechanisms to improve the killing efficacy of ETH and 

the eventual goal for the re-consideration of ETH and other thiocarbamide-

containing drugs as first-line antibiotics against tuberculosis. 
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1.6.1 Analyzing the Relevance of the ethA/R locus in Mycobacteria 

Virulence (Chapter 3) 

Although the ethA-ethR locus has been characterized as the locus involved 

in ETH drug activation in mycobacteria, the actual physiological role of the 

ethA-ethR locus in mycobacteria has been largely overlooked by the scientific 

community. To date, while most studies have focused on dissecting the role of 

EthA and its transcriptional repressor EthR in ETH bio-activation, few 

attempts have been made to understand the function and physiological role of 

the ethA-ethR locus in Mycobacterium species. The function of EthA in the 

mycobacterial cell has never been experimentally addressed although it was 

previously proposed to be involved in cell detoxification through toxic ketones 

removal and/or in mycolic acid metabolism (132). Since the presence of an 

EthA-encoding gene ortholog could be found in all of the mycobacterial 

genomes (124), it is anticipated that EthA serves an important and conserved 

function in mycobacteria. Yet, it does not appear to be essential since ETH-

resistant M. tuberculosis clinical isolates can be found with mutations in ethA 

that likely impair its physiological function as well (127). The presence of 

several genes encoding BVMO-like compounds together with an abundant 

number of other oxidizing enzymes, such as P450 cytochromes, has led to the 

idea that such high oxidative potential in mycobacteria may help the pathogen 

resist oxidative stress in vivo(127). In this context, it was proposed that EthA 

and other BVMOs may play a role in detoxifying the bacterial cell by 

removing toxic ketones (132). Moreover, the importance of this factor in vivo 

during macrophage or host infection has never been reported.  
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Hence, the first research objective investigated the relevance for the ethA-

ethR locus in mycobacteria virulence. This was conducted by deleting the 

ethA-ethR locus in several Mtb backgrounds to create ethA/R KO mutants. The 

phenotypes of these mutants were then characterized in a series of mammalian 

cell infection assays, animal work and mycolic acid analyses to further discern 

the role of this locus for virulence in Mtb.  

The results and discussion for this research objective are presented in 

Chapter 3.  
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1.6.2 Investigation of ETH Drug Activation and Resistance 

Mechanisms in Mycobacteria (Chapter 4) 

While it is well established that the ethA/R locus in mycobacteria is 

involved in ETH bio-activation, recent studies have shown that this paradigm 

is more complex than initially thought and that other factors are involved in 

the regulation of this genetic locus (38, 139, 140). Further understanding the 

regulation of the ethA/R locus, especially during host-pathogen infections, 

could reveal valuable clues in the quest for novel approaches to enhance the 

efficacy of ETH usage in patients. As a preliminary step to investigate whether 

ETH bio-activation may be influenced upon host-pathogen interactions, the 

killing efficacies of ETH, ISO and TAC were compared during macrophage 

infection and in vitro culture, and revealed greater killing efficacy during 

macrophage infection. Based on these results, gene expression studies were 

then conducted for both ethA and ethR to detect for differential expression 

levels of these genes during macrophage expression that could account for the 

greater killing efficacy of ETH during macrophage infection in comparison to 

in vitro culture. Additionally, the possibility of ETH bio-activation within 

macrophages was studied by monitoring the fate of the drug by high resolution 

magic angle spinning (HRMAS)-NMR to address whether macrophages have 

the intrinsic ability to activate ETH in the absence of mycobacteria. 

The EthA/EthR system has been described to be essential for the bio-

activation of ETH in mycobacteria, with EthA as the only known ETH bio-

activator. However, the molecular mechanisms of ETH bio-activation by EthA 

remain vague, and the presence of a fairly large proportion of ETH-resistant 

clinical isolates with no known genes linked to ETH resistance (126)suggests 



Chapter 1: Literature Review 

 

49 

 

the existence of additional bio-activation factors and/or drug resistance 

mechanisms. Hence, the second main objective of this research thesis aimed to 

further dissect the mechanisms involved in ETH bio-activation, and in 

particular to explore whether another pathway of ETH bio-activation 

independent of EthA/R may exist in Mtb. ETH susceptibility in the absence of 

the ethA/R locus was thus analysed, revealing varying degrees of ETH 

resistance amongst various Mtb strains. Generation of ETH resistant 

spontaneous mutants was then employed to identify factors involved in a 

possible EthA/R-independent pathway of ETH bio-activation. 

The results and discussion for this research objective are presented in 

Chapter 4. 
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Figure 15: ETH bio-activation and the modulation of the ethA-ethR locus 

ETH is activated by the monooxygenase EthA into its activated form, ETH*, for its 
antibiotic action. The expression of EthA is regulated by the transcriptional 
repressor EthR, and both ethA and ethR are located in the same operon with a 
shared intergenic promoter region. EthR dimers bind cooperatively as a homo -
octamer to the specific operator in the ethA-ethR intergenic promoter region, 
repressing both ethA and ethR expression. A mycobacteria serine/threonine 
protein kinase (STPK) negatively regulates the physical binding of EthR to the DNA 
region via phosphorylation of the EthR homo-octamer, hence promoting ethA-ethR 
expression. Additionally, the mycothiol synthesis pathway and its end product, 
mycothiol, have been implicated in ETH bio-activation as well. 
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1.7 Clinical Significance of this Study 

With dwindling treatment options for MDR and XDR-TB that are decades 

old, one of the pertinent key issues faced by the TB research community is the 

daunting challenge of synthesizing new anti-TB drugs. The last drug with a 

new mechanism of action approved for TB, rifampicin, was discovered in 

1964, about four decades ago. Since then, few promising anti-TB drugs have 

been discovered, much less successfully entered the TB clinical pipeline (110). 

One of the major reasons for this limited success is our poor understanding of 

M. tuberculosis physiology and the disconnect between in vitro and in vivo 

behaviour of M. tuberculosis mycobacteria which has translated into the 

screening of numerous lead compounds with great in vitro killing efficacy but 

weak or no in vivo potency (145, 146). Both research and medical 

communities agree that it is of utmost urgency to identify novel anti-TB drugs 

that could reduce the timeframe for current anti-TB therapies and that are 

effective against MDR and XDR-TB. Being further hampered by the 

unfavourable economics of TB drug development (110), the identification and 

commercialization of new anti-TB drugs may however take another decade. In 

addition, more appropriate clinical trials to properly evaluate the efficacy of 

anti-TB drugs used in MDR and XDR-TB patient groups are necessary along 

with the improvement in TB diagnostics for a wider coverage of drug 

susceptibility testing (110).  

While the development of new anti-TB drugs may take decades due to the 

various reasons listed above, improving the efficacy of existing drugs may 

represent an alternative strategy of choice that should not be disregarded. This 
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approach however necessitates further understanding in the mechanism of 

action of mycobacterial drugs and their bio-activation, especially drugs which 

have been suggested to have multiple targets and pathways, such as INH (114, 

147) and ETH (126), thus increasing the exploitation potential for drug 

improvements. Despite ETH being one of the most effective drugs for the 

treatment of MDR-TB patients, due to the toxic side effects of ETH, ETH 

prescription is often associated with poor patient compliance which further 

aggravates drug-resistance in Mtb. Moreover, clinical dosage of ETH has to be 

limited as a consequence of its narrow therapeutic index, hence inhibiting the 

full killing potency of ETH upon Mtb. The recent discovery of small 

molecules capable of boosting ETH killing efficacy support the idea that it is 

possible to improve ETH treatment through dosage reduction, thus minimizing 

side effects and improving patient compliance (148, 149). A search for novel 

ETH resistance mechanisms, in particular alternative ETH bio-activation 

mechanisms, not only has the potential to increase the therapeutic index of 

ETH in a similar manner, thus improving ETH potency without increasing and 

perhaps even decreasing its toxic effects; but may also help improve the 

screening accuracy (PCR based) during drug susceptibility testing of MDR-

TB strains with the introduction of additional gene candidates in the screening 

panel. 

 



 

Chapter 2: Materials & Methods 

All experiments involving live Mycobacterium tuberculosis were performed in 

a BSL3 laboratory following Standard Operating Procedures (SOPs) approved 

by the Institutional Bio-safety Committees (IBC) from Defence Science 

Organization (DSO) National Laboratories and National University of 

Singapore (NUS).  
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2.1 Microbiology 

2.1.1 E. coli growth conditions 

All E.coli strains were grown in Luria-Bertani (LB) broth and agar 

(Difco). When appropriate, hygromycin and kanamycin were added at 150 

and 50 g/ml into the medium, respectively. Chemically competent E.coli 

TOP10 strain (Invitrogen) was used for propagation of all plasmids in this 

study. 

2.1.2 Mycobacterial Strains and Growth Conditions. 

M. bovis BCG (Pasteur strain ATCC 35734), M. tuberculosis Erdman, 

H37Rv and CDC1551 and derivative strains were grown at 37°C in 

Middlebrook 7H9 liquid media (Difco) supplemented with ADS (0.5% bovine 

serum albumin-fraction V, 0.2% dextrose, 0.085% saline) unless otherwise 

stated; with OADC (0.5% bovine serum albumin-fraction V, 0.2% dextrose, 

0.085% saline, 0.005% oleic acid and 0.0004% catalase) enrichment when 

necessary, or 7H11 agar, 0.05% Tween 80 (Tw) and 0.2% glycerol 

supplemented with OADC. Appropriate antibiotics [80µg/ml Hygromycin 

(Roche), 20µg/ml Kanamycin (Sigma)] were added when required.  
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2.2 Cell Biology 

2.2.1 Cell culture 

THP-1 (ATCC TIB-202), A549 (ATCC CCL-185) and Huh-7 (Health 

Science Research Resources Bank JCRB0403) cell lines were maintained and 

stored according to the ATCC guidelines. THP-1 cells were differentiated into 

adherent macrophages by seeding 5x10
4
 monocytes per well (in 24-well plates) 

with 0.04µg/ml Phorbol 12-myristate 13-acetate (PMA) (Sigma) 24-26 hours 

prior to infection.   

To obtain murine bone marrow derived macrophages (BMMO), murine 

bone marrow cells were isolated from the femurs from adult BALB/c mice and 

differentiated into macrophages over 7 days in Dulbecco modified Eagle 

medium (DMEM) supplemented with 0.58g/litre L-glutamine, 1mM sodium 

pyruvate, 10% fetal bovine serum (FBS), 10mM HEPES, 100 units/ml 

penicillin-streptomycin (all reagents from Gibco), and 10ng/ml recombinant 

macrophage colony-stimulating factor (M-CSF) (R& D Systems). Culture 

media was refreshed on Day 2 and 5 post-seeding by centrifugation at 280g 

for 10 min at 4°C and resuspension of cell pellet in fresh complete BMMO 

media each time. On day 6 post-seeding, adherent BMMOs were washed once 

with PBS and harvested by incubating the cell layer in 1mM EDTA in PBS for 

10min at 4°C, after which remaining adherent cells were gently scraped off 

with a plastic cell scraper (Techno Plastic Products). The cell culture dish was 

flushed with additional PBS, and the combined cell suspensions were then 

pelleted at 280g for 10min at 4°C, washed once with PBS and finally 

resuspended in complete BMMO media without penicillin/streptomycin to the 
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cell concentration required for seeding into 24- well plates (5x10
4
 cells/well) 1 

day prior to infection. 

2.2.2 Ex vivo Mycobacteria Infection and Adherence Assays 

Infection assays were performed by co-incubating mycobacteria and 

mammalian cells for 45 minutes at a multiplicity of infection (MOI) of 1 

(THP-1 and BMMOs), 2 (Huh-7) and 3 (A549) in 24-well plates. At the 

indicated time points, the cell monolayers were washed thrice with PBS to 

remove extracellular bacteria and subsequently lysed with 0.1% Triton X-100 

(Sigma) to release the intracellular bacteria. Appropriate dilutions of the cell 

lysates in 7H9 media were plated onto 7H11 for colony counting. Bacterial 

uptake percentages were calculated by normalizing Day 0 bacterial load to the 

respective inoculum, and survival percentages were calculated by expressing 

Day 2, 5 and 7 counts as a percentage of the initial Day 0 load. For adherence 

assays, 45 minutes co-incubation of mycobacteria and mammalian cells was 

performed at 4°C or in the presence of 10µg/ml cytochalasin D as described 

before (150). Monolayers were then thoroughly washed thrice with PBS to 

remove non-adherent bacteria, lysed with 0.1% Triton X-100, and appropriate 

dilutions of the cell lysates were plated onto 7H11 for colony counting. 
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2.3 Molecular Biology 

2.3.1 Construction and Unmarking of KO mutants and complement 

strains 

The ethA/R locus was deleted by double homologous recombination as 

described previously (151). Briefly, two primer pairs (listed in Table 3) were 

used to amplify the DNA regions flanking the ethA/R locus in M. bovis BCG 

and M. tuberculosis strains (Erdman, CDC1551 and H37Rv) via polymerase 

chain reaction (PCR). Bases in bold are extra nucleotides added for cloning 

convenience. The PCR-amplified regions (approximately 800bp long each) 

were sequenced and cloned directionally into vector pYUB854 such that the 

hygromycin-resistance cassette (hyg) lies in between the flanking regions. The 

lacZ ORF and promoter region from the pGoal17 plasmid (151) was then 

cloned into the unique PacI site of the pYUB construct to obtain the final 

plasmid construct for electroporation. To prepare electrocompetent 

mycobacteria, mycobacteria cultures were grown to mid-log phase (0.4-0.6) in 

7H9-ADS in the absence of glycerol, and re-introduced into fresh 7H9-ADS 

supplemented with 1.5% glycine (Sigma) 1 day prior to electroporation. On 

the day of electroporation, harvested mycobacteria cells were spun down and 

washed thrice with washing media (0.05% Tween80 and distilled water) 

before a final resuspension in 1ml wash media. For each electroporation, 

200ml of electrocompetent mycobacteria were electroporated (2.5 kV, 800 Q, 

25mF) with 2µg of recombinant plasmid and plated onto Hygromycin-

containing 7H11 medium supplemented with 40µg/ml X-gal for incubation at 

37°C. White hygromycin-resistant clones were selected after 16 days 

incubation and screened by PCR with a set of internal ethA/R primers, 5’-TCC 
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AGC GGT TTT CCG CGG TC-3’and 5’-TCC CGG TGC GCC ACA TGT 

TC-3’. Deletion of the ethA/R locus was further confirmed by Southern and 

Western blot analysis (see sections below). 

To complement the ethA/R KO mutants, the 2.2kb ethA/R full-length 

locus was PCR amplified (Table 3), cloned into the multiple cloning site of the 

integrative vector pMV306 (42) and introduced into the genome of all ethA/R 

KO mutant constructs via electroporation as described above. The resulting 

transformants were plated onto Kanamycin-containing 7H11 agar and 

incubated at 37°C. After 16 days incubation, kanamycin-resistant colonies 

were PCR screened using the internal ethA/R primers as mentioned above.  

Using the techniques described above, ethA KO and mshA KO mutants 

were constructed using vector pYUB854 as the backbone plasmid, whilst 

complement ethR and complement mshA mutants were constructed in selected 

Mtb strains using vector pMV306 as the backbone plasmid. Overexpressed 

ethR mutants were constructed using the multicopy replicative plasmid 

pMV262 (42). All modified plasmid constructs were synthesized and validated 

using oligonucleotides listed in Table 3. 

Subsequent construction of the double mshA/ethA/R KO mutant was 

initiated by unmarking the ethA/R KO mutants which was necessary in order 

to remove the hygromycin cassette which was inserted in place of the ethA/R 

locus. To do so, the ethA/R KO mutants were transformed with plasmid 

pYUB870 which harbors a χδ-resolvase (tnpR)-encoding gene (152), thereby 

allowing the resolvase-mediated cleavage of the hygromycin cassette 

integrated at the ethA/R locus. Gentamicin-resistant clones were first selected 
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after incubation at 31°C for the resolvase activity and selected again on 7H11 

containing 2% sucrose after incubation at 39°C. Loss of the hygromycin 

cassette and the retained deletion of the ethA/R locus were verified by PCR. 

Successfully unmarked ethA/R KO mutants were then used for deletion of 

mshA by classical double homologous recombination as described above, 

followed by complementation of mshA under the hsp60 promoter (since the 

native promoter of mshA remains unknown) (Table 3).  

2.3.2 Genomic DNA (gDNA) Extraction 

Mycobacteria were grown to exponential phase and beyond (OD>0.6) and 

harvested for gDNA extraction. Cells were washed once with ultrapure water, 

resuspended in Buffer 1 (3% SDS, 1mM CaCl2, 10mM Tris-HCl pH 8.0, 

100mM NaCl and ultrapure water) and subjected to heat inactivation and cell 

lysis at 95°C for 20 minutes. The supernatant from the boiled cell suspension 

was extracted and adjusted to a final concentration of 2mM EGTA. An equal 

volume of phenol-chloroform-isoamyl alcohol (25:24:1) was added to extract 

the aqueous phase containing soluble gDNA. The separated aqueous phase 

was subjected to further adjustment to a final concentration of 0.3M sodium 

acetate and addition of 0.8 final volume of isopropanol for gDNA precipitation. 

The gDNA pellet was spun down at 14,000g for 15 min and washed once with 

70% ethanol, dried and dissolved in TE buffer (10mM Tris-HCl pH 8.0, 

0.2mM EDTA) overnight at room temperature before checking via 

Nanodrop2000c (Thermo-Scientific) and gel electrophoresis for visualization 

of gDNA. 
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2.3.3 Southern blot analysis 

1-3 µg of gDNA was digested with SacI (Promega), separated on a 1.5% 

agarose gel and treated as previously reported (153). DNA was transferred 

onto a Millipore Immobilon-Ny+ Transfer membrane and UV cross-linked. 

For detection of ethA/R and ethA KO mutants, a 415 bp DIG-labeled probe 

was amplified using a set of primers that binds approximately 1.5kb 

downstream of ethR, 5’-TGA GTT TAG TTG GGA CCT AGG CC -3’and 5’- 

CTA GAG TCA CAT CAG AAA CAT TTG A -3’. For detection of mshA and 

double mshA/ethA/R KO mutants, a 600 bp DIG-labeled probe was amplified 

using a set of primers that binds just upstream of mshA, 5’-CCC GTC CAC 

TCT GAA ATG CTC G -3’and 5’- ATC AAC CCT GAA CCG TCA TCG 

TGT -3’. Probe amplifications were done via PCR according to the 

manufacturer’s instructions (DIG-labeling kit, Roche). Hybridization and 

signal detection were performed using a detection kit (Roche) according to the 

manufacturer’s protocols. EasyHyb (Roche) was used as the prehybridization 

and hybridization solutions, and CSPD (Roche) was used as the detection 

substrate for chemical luminescence.   
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Plasmid Sequence RE used 

pYUB-ethA/RKO   

FP1 5’-TT CTC GAG GTC CTG GCA TGA TGG GAC CG-3’ XhoI 

RP1 5’ TT AAG CTT GAC ATC CGG CTC ATC CGG C-3’ HindIII 

FP2 5’-TT CTT AAG GTG CCG GAA GCC CGC GTG-3’ AfIII 

RP2 5’-TT TCT AGA GGC CGC GAG CCG GAC CTG-3’ XbaI 

   

pYUB-ethAKO   

FP1 5’- TTTTA ATT AAA CCC CCG ACC GAG TGC G-3’ PacI 

RP1 5’- TTTCT AGA CAC GAT GAC AAC GTC GAG GT-3’ XbaI 

FP2 5’- TTAAG CTT GAC GAG GGT CTG CGG TTC-3’ HindIII 

RP2 5’- TTCTC GAG GTC AGT TTG CAG CAG CGG AT-3’ XhoI 

   

pMV306-ethA/R   

FP 5’- TTTCT AGA GGC GCT AAA CCG TCG CTA AA-3’ XbaI 

RP 5’- TTAAG CTT GAC CGA GCA CCC CCT ACC-3’ HindIII 

   

pMV306-ethA   

FP 5’- TTTCT AGA GGC GCT AAA CCG TCG CTA AA-3’ XbaI 

RP 5’- TT AAG CTT CC CCT AGG CAG CGA AGC-3’ HindIII 

   

pMV306-ethR   

FP 5’- TT TCT AGA TAA TGT CGA GGC CGT CAA-3’ XbaI 

RP 5’- TT AAG CTT GAC CGA GCA CCC CCT ACC-3’ HindIII 

   

pMV262-ethR   

FP 5’- TT GGA TCC TAG TAA GCT GCC AGG GTG ACC-3’ BamHI 

RP 5’- TT GTC GAC CGA GTG CGG CTT AGC GGT TCT-3’ SalI 

   

pYUB-mshA KO   

FP1 5’- TTTTA ATT AAT GGT GGT GCA GTC GAC AGT G-3’ PacI 

RP1 5’- TTTCT AGA GAT CAA CCC TGA ACC GTC ATC-3’ XbaI 

FP2 5’- TTAAG CTT CTG GTA GCG GTG GGC AAG C-3’ HindIII 

RP2 5’- TTCTC GAG TGT GAT CGC GAA TTT CTG AGT C-3’ XhoI 

   

pMV306-mshA   

FP 5’- TTGGA TCC GCA AGG ATG GCA GGT GTG CG-3’ BamHI 

RP 5’- TTGTC GAC GGT CGG CAA GGA GGA AGT CA-3’ SalI 

Table 3: Oligonucleotides used during plasmid construction for gene deletion and 

complementation of mutants 

FP: Forward primer; RP: Reverse primer. RE: Restriction Enzyme. RE sites in primer 
sequences are underlined.   
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2.3.4 Quantification of gene expression levels of selected Mtb genes 

Real-time PCR (RT-PCR) was performed to analyse the mRNA levels of 

selected Mtb genes as previously reported(154). Briefly, Qiagen RNeasy Mini 

kit was employed according to the manufacturer’s protocols to extract RNA 

from log-phase Mtb cultures or Mtb-infected THP-1 macrophages at indicated 

time points post-infection. 0.01-10 µg of DNase-I-treated RNA suspensions 

was reverse-transcribed to cDNA using an iScript cDNA synthesis kit (Biorad). 

Real time-PCR reactions were set up with iTaq SYBR Green Supermix with 

Rox (Biorad) utilizing designed primer sets as listed in Table 4. All listed 

primer sets were designed with either Primer Express 3.0 (Applied Biosystems) 

or Primer-Blast  and pre-optimized for primer efficiencies ranging between 

80-120%. Quantitation of the fluorescent-labeled PCR products were 

monitored over time employing the ABI PRISM 7000 SDS (Applied 

Biosystems) with a temperature cycling profile as follows: 2 min at 50˚C, 10 

min at 95˚C and 59-61˚C (depending on primer sets) at 1 min for 40 cycles. At 

the end of each experiment, the final PCR mixes were ran on a 1.5% gel and 

the dissociation curve was analysed to confirm product specificity. The 

expression levels of each gene in all strains were then normalized to a 

housekeeping gene, either sigA or 16sRNA, and compared to a specified 

reference strain for relative quantification. In all real time-PCR experiments, 

no template controls (NTC) and no reverse transcriptase controls (NRT) were 

included to check for the formation of any primer-dimers and exclude any 

genomic DNA contamination respectively. 
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H37Rv 

Locus 

Gene 

name  

Direction Sequence 

16S rRNA  FP 5’-GCA CCG GCC AAC TAC GTG-3’ 

  RP 5’-GAA CAA CGC GAC AAA CCA CC-3’ 

Rv2703 sigA FP 5’-AGC TAG CCA AGC GGA TCG A-3’ 

  RP 5’-GCT AGC GAA ACC ACC AGG C-3’ 

Rv3854c ethA FP 5’-GTA CAC GCT AGG TTT CCG ATT 

C-3’ 
  RP 5’-GTA GTA GCC GCT GCA CAG AAA 

G-3’ 
Rv3855 ethR FP 5’-CGA GGC CGA CGT TCT ACT TAT-

3’   RP 5’-GCG ACT TCG ACA CTG GTT GC-3’ 

Rv1393c  FP 5’-CCG GCT TCC ACA ACA CCT A-3’ 

  RP 5’-GTC TAG CAC CTT GAA GCC G-3’ 

Rv3049c  FP 5’-CCA CCG GCT TCC ACG TCA-3’ 

  RP 5’-CGA TCG CAT CGG CCA CGT-3’ 

Rv0892  FP 5’-CGT GTG TCG CGC CAG CTT-3’ 

  RP 5’-TGG CAA GCA CGA TGA CGT C-3’ 

Rv3083  FP 5’-CCA CCG GCT TCC ACG TCA-3’ 

  RP 5’-CGA TCG CAT CGG CCA CGT-3’ 

Rv0565c  FP 5’-ACG ACA TCG AAA CCC ACT TC-3’ 

  RP 5’-GAT AAT GTC CGC ATC GAG GT-3’ 

Rv0486 mshA FP 5’-ACG AAT CGA CGT GGT CCA TCC-

3’ 
  RP 5’-ACA ATG TCG GGT GCC TTC AGC-

3’ 
Table 4: Sequences of Primer sets employed in RT-PCR assays 

FP: Forward primer; RP: Reverse primer  
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2.3.5 Isolation of ETH-resistant spontaneous mutants 

To generate spontaneous ETH
R
 clones from the Erdman ethA/R KO 

mutant, a protocol was adapted from both Luria and Delbruck (155)  and 

Mathys et al. (156). Since the Erdman ethA/R KO mutants were lowly resistant 

(2-fold MIC increase in comparison to WT) to ETH, optimization was 

required to select appropriate ETH concentrations for the generation of 

spontaneous ETH
Rhi

 mutants in order to minimize background growth ie. 

clones that lowly resistant to ETH and where no spontaneous mutation has 

occurred. To do so, 10
8 

and 107 bacteria directly obtained from a glycerol 

stock of Erdman ethA/R KO mutant strain were plated on 7H11-OADC full 

plates covering a range of ETH concentrations (40, 50, 60, 70, 80, 90µg/ml). 

CFU counts were enumerated from these plates to decide on appropriate ETH 

concentrations for the isolation of spontaneous ETH
R
 mutants. The results 

indicate that whether 10
7
 or 10

8
 bacteria was plated, high CFU counts (~200) 

were obtained at 40µg/ml, followed by a drastic drop in CFU counts (~20-80) 

with 50µg/ml ETH (Fig. 16). Following which, since CFU counts did not vary 

much over the range of 50-90µg/ml ETH and gave relatively low and 

countable CFU counts over these concentrations, 60, 70 and 80 µg/ml ETH 

were selected as appropriate ETH concentrations to maximize the number of 

truly spontaneous ETH
Rhi 

mutants. 

To generate spontaneous ETH
Rhi

 mutants, an exponential phase 7H9-ADS 

liquid culture (OD600nm of 0.6-0.8) of the ethA/R KO mutant was used to 

inoculate 3 individual flasks of 7H9-ADS medium at an initial OD600 of 

0.005-0.01. The cultures were incubated for 1-2 weeks and the OD600 noted. 

An estimated 10
8 

and 107 bacteria were then plated onto 7H11 plates 
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containing selected ETH concentrations of 60-80μg/ml. ETH
Rhi

 colonies 

which could be sub-cultured were grown for gDNA extraction and also stored 

as glycerol stocks. The MIC and MBC of ETH were determined for these 

clones as described in Section 2.1.2, and extracted gDNA were sent for full 

genome sequencing at the Genome Institute of Singapore. 

 

 

 

Figure 16: Amount of Bacteria Enumerated after plating Erdman ethA/R KO 

mutant at various ETH concentrations 

10
7 

or 10
8
 bacteria from glycerol stock of M. tuberculosis Erdman ethA/R KO 

mutant were plated on 7H11-OADC full plates with various ETH concentrations (40, 
50, 60, 70, 80, 90 µg/ml) and enumerated for CFU counts 16 days after incubation 
at 37°C.  
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2.4 Biochemistry 

2.4.1 Western blot analysis 

Mycobacteria grown to log-phase cultures were spun down and 

resuspended in ultrapure water, heat-inactivated at 95°C and passed through a 

27g syringe needle 8-10 times to shear chromosomal DNA. Protein 

concentration was measured using Quick Start
TM

 Bradford Protein Assay via a 

spectrophotometer. Protein sample buffer (8% sodium dodecyl sulfate [SDS], 

20% β-mercaptoethanol, 20% glycerol, 0.04% bromophenol blue) was added 

to whole cell bacterial lysates. Lysates were subjected to SDS-PAGE with 12% 

polyacrylamide gels and electro-transferred onto polyvinylidene difluoride 

(PVDF) membranes via an Owl
TM

 HEP Series Semidry Electroblotting system 

(Thermo Scientific) at 45mA for 2 hours. Blocking and incubation with 

antibodies were performed using 5% non-fat dry milk (Biorad) and 0.1% 

Tween 20 in Tris-buffered saline. Immunoblot was performed using primary 

rabbit polyclonal antibodies (diluted at 1:500) raised against an EthA epitope 

(GenicBio) and horseradish peroxidase (HRP)-conjugated goat anti-rabbit 

secondary antibodies (diluted at 1:2500) (Sigma). Detection was performed by 

enhanced chemiluminescence (ECL). Molecular sizes were determined using 

pre-stained molecular weight marker SDS-7B (Sigma). 

2.4.2 Analysis of total, extractable and cell wall bound lipids. 

Total lipid extraction from bacterial cells and preparation of fatty acid and 

mycolic acid methyl esters from extractable lipids and delipidated cells 

followed earlier procedures (157, 158). Briefly, selected mycobacteria strains 

were grown at 37°C in 7H9 media supplemented with ADS, 0.2% glycerol 
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and 0.05% Tyloxapol (Sigma) for 20 days, harvested, washed twice with 

ultrapure water (Gibco), resuspended in chloroform: methanol (2:1, v/v) and 

incubated at 4°C overnight to allow inactivation of the cells. The whole 

mixture was subsequently dried and subjected to a series of extractions with 

CHCl3:CH3OH (1:2) and two times with CHCl3:CH3OH (2:1). Each extraction 

was performed overnight at room temperature. The extracts obtained by 

centrifugation of the mixture at 1800 x g were collected, combined, dried and 

subjected to biphasic Folch wash as described previously (159). The upper 

phase was removed and discarded and the bottom phase was dried under a 

stream of N2 and dissolved in CHCl3:CH3OH (2:1) in the ratio of 100μl of the 

solvent per 300 mg wet weight. Thin layer chromatography (TLC) of the lipid 

extracts was performed on silica gel plates (Merck) in different solvent 

systems [CHCl3/CH3OH/H2O (20:4:0.5); CHCl3/CH3OH/NH4OH/H2O 

(65:25:0.5:4); n-hexane:ethylacetate (95:5)] to reveal total lipid species 

profiles. For further MAME analysis, MAMEs prepared from whole cells, 

extractable lipids and delipidated cells were ran in three different solvent 

systems [n-hexane:ethylacetate (95:5); petroleum ether: acetone (90:10); 

dichloromethane] using silver(Ag)-impregnated plates to reveal additional 

types of MAMEs.  Lipids were visualized by spraying with cupric sulfate (10% 

in 8% phosphoric acid solution) or α-naphthol (0.5% α-naphthol in 5% 

sulfuric acid in ethanol) and heating. 

2.4.3 Mass Spectrometry for Mycolic Acid Lipid Analysis 

Mycobacterial cells grown in 7H9-ADS at mid-log phase were harvested 

in Teflon-fluorinated ethylene propylene tubes (Nalgene, Rochester, NY) and 

total lipids were extracted as described previously (160). Briefly, cell pellets 
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were resuspended in chloroform:methanol (2:1, v/v), incubated overnight at 

4°C under constant shaking at 200 rpm and separated into organic and 

aqueous phases by adding deionized water. The white intermediate layer 

(“delipidated cells”) was used for subsequent alkaline hydrolysis. To release 

esterified MAs from the cell wall, the defatted cells resulting from chloroform-

methanol extraction were washed once with deionized water and dried. For 

alkaline hydrolysis, 1 ml of 1 M KOH/methanol was added for 2 h at 80°C at 

600 rpm and resulting extracts were cooled to room temperature before 

acidification to pH 4.5 with HCl. Liberated MAs were extracted twice with 1 

ml of diethyl ether. The ether phase were washed once with deionized water 

and dried. Samples were analyzed via a Q trap 4000 mass spectrometer as 

described previously (160). 
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2.5 Drug Assays 

2.5.1 In vitro Drug Susceptibility Assays 

Bacterial drug susceptibility assays were performed in 7H9 media 

supplemented with either ADS or OADC as reported previously (161). ETH 

(Sigma), ISO (NITD) and TAC (NITD) were dissolved in 90% DMSO, whilst 

INH (Sigma) was dissolved in ultrapure water for stock solutions. Using a 

broth microdilution method, 96-well flat bottom clear plates were prepared 

with twofold serially diluted concentrations of INH and ETH (0.02-5µM and 

0.3-80µM respectively), one drug per row, and the last row filled with 7H9 

media only to serve as drug-free control. BCG or Mt cultures were cultured up 

to log-phase and diluted in 7H9-ADS medium to obtain an optical density at 

600nm (OD600) of 0.04. 100µl of this prepared inoculum were added to each 

test well containing an equal volume of drug containing 7H9 broth, bringing 

the final inoculum density to ~1 x 10
5
 cfu/ml. The plates were then sealed in 

an air-tight box on water-soaked paper towels for 5-7 days at 37°C. On the 5
th

 

day, OD600 values were recorded using a Biorad iMark Microplate 

absorbance reader, and minimum inhibition concentration curves were 

graphed using Graphpad PRISM to determine MIC values. The MIC50 in this 

study is defined as the lowest concentration of drug that is required to inhibit 

50% growth of the specified strain in drug-free 7H9 media. Drug assays were 

performed thrice independently to confirm MIC values. After determining 

MIC50 values, 50µl of 1x MIC, 2x and 4x MIC from the assay plates were 

plated on 7H11 agar plates to determine minimum bactericidal concentration 

(MBC90) values when indicated. Plates were incubated at 37˚C for 2-3 weeks 
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before colony forming unit (CFU) enumeration. The MBC
90

 range (in µM) 

was defined as the range of drug concentrations within which the number of 

CFUs compared to the drug free control was reduced by 90% (1 log reduction). 

2.5.2 Ex vivo Drug Susceptibility Assays 

Infection assays were performed by co-incubating mycobacteria and THP-

1 cells (see Section 1.2.1 for cell culture conditions) for 1 hour at MOI 1. At 

the end of 1 hour incubation, mycobacteria were removed and cell monolayers 

were washed thrice with PBS to remove any extracellular bacteria. The post-

infected cells were then treated with various drug media of selected 

concentrations for 5 days, with media change to freshly prepared drug-

containing media on Day 3 post-infection for cell maintenance. At Day 5, 

macrophages were harvested by washing each well twice with PBS and 

subsequent lysis with 0.1% Triton X-100 (Sigma) to release the intracellular 

bacteria. Appropriate dilutions of the cell lysates in 7H9 media were plated 

onto 7H11 for colony counting. 
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2.6 Animal Work 

2.6.1 Mouse Infection 

All animal experiments were carried out upon approval and under the 

guidelines of the Institutional Animal Care and Use Committee, National 

University of Singapore. Six- to eight-week-old female BALB/c mice were 

kept under specific-pathogen-free conditions in individual ventilated cages. 

For intranasal and intratracheal infections, sedated mice were either 

intranasally instilled with 5 × 10
6
 CFUs of BCG or intratracheally 

administered with 500 cfu of CDC1551 in 20μl sterile phosphate-buffered 

saline (PBS) supplemented with 0.05% Tween 80 (PBST) (Sigma). 

Intravenous infection was performed retro-orbitally with 5 × 10
6
 CFUs of 

BCG in 200μl sterile PBST. At the indicated times, 4 mice per group were 

euthanized, and individual lungs, spleens and livers were harvested and 

homogenized. Appropriate dilutions were plated onto 7H11 for colony 

counting. 
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2.7 Statistical Analysis 

Unless otherwise stated, in the figures, bars represent means + standard 

deviations (SD) and averages were compared using a bidirectional unpaired 

Student t test with a 5% significance level (*, P ≤ 0.05). 
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3.1 Construction, complementation and validation of 

ethA/R KO mutants in BCG, Erdman, H37Rv and 

CDC1551 

The entire ethA-ethR (ethA/R) locus was deleted in several Mycobacterium 

wild type (WT) strains including M. bovis BCG (BCG), M. tuberculosis 

Erdman (Erdman), M. tuberculosis H37Rv (H37Rv) and M. tuberculosis 

CDC1551 (CDC1551) by double homologous recombination (Fig. 17A). 

Deletion of the ethA/R locus was verified by Southern blot (Fig. 17B) and 

Western blot analysis using an anti-EthA polyclonal immune serum (Fig. 17C). 

Complemented strains were also constructed by re-introducing the ethA/R 

locus back into the genome of the ethA/R KO mutants using the integrative 

plasmid pMV306 (162).  Similar in vitro growth kinetic profiles in liquid 

culture medium were observed with both the parental, complemented and 

ethA/R KO mutant strains (Fig. 18) indicating that deletion of the ethA/R locus 

did not impair the general fitness of the mycobacteria during standard in vitro 

culture conditions.  
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Figure 17: Construction of ethA/R KO mutants in BCG, MTB Erdman, H37Rv and 

CDC1551 

A) Chromosomal organization of ethA/R was identical amongst all mutant strains. 
The arrows depict the lengths and directions of ethA, ethR and their neighbouring 
genes. Black bar corresponds to the probe used for Southern Blot analysis. B) 
Southern Blot analysis of chromosomal DNA. L, DNA Mol ecular Ladder; 1, BCG 
ethA/R KO; 2, MTB Erdman ethA/R KO; 3, MTB H37Rv ethA/R KO; 4, MTB CDC1551 
ethA/R KO ; 5, BCG WT. C) Western Blot analysis of BCG whole cell lysate with anti -
EthA polyclonal antibodies. 1, BCG WT; 2, BCG ethA/R KO; 3, BCG ethA/R KO 
complemented strain. 
 

 

Figure 18: Growth kinetics of WT, KO and complemented strains in 7H11 medium 

Growth Kinetics of A) M. bovis BCG, B) M. tuberculosis Erdman, C) H37Rv and D) 
CDC1551parental, ethA/R KO and Complement strains in 7H9 media over a period 
of 19-20 days. After precultures were adjusted to the same starting OD600, strains 
were grown in 7H9 at 37˚C over a period of 19 days. Every 2 -3 days, the OD was 
taken to determine the growth of each strain.  
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3.2 M. bovis BCG ethA/R KO strain displays increased 

virulence in the mouse model. 

To study the role of the ethA/R locus during infection, the infection 

profiles of the BCG ethA/R KO mutant and its parental and complemented 

counterparts were monitored in the mouse model. Upon nasal administration 

of comparable inoculums of each strain (data not shown), the bacterial load in 

the lungs, spleen and liver from infected animals was monitored over time. 

Comparable counts were obtained in the lungs at day 1 p.i. (Fig. 19A). In 

contrast, at day 10, 21, 35 and 56 p.i. the number of colonies recovered from 

the animals infected with the ethA/R KO strain was several orders of 

magnitude higher in all the organs examined when compared to the number of 

colonies obtained in mice infected with the parental and complemented strains 

(Fig. 19A-C). The difference in bacterial load between the parental and mutant 

strains was particularly striking in the liver where only the ethA/R KO mutant 

strain could establish infection and multiply transiently (Fig. 19C). Thus, the 

infection profiles obtained upon nasal infection indicate that absence of the 

ethA/R locus in BCG leads to a more virulent phenotype in vivo. 

The enhanced virulent phenotype seen with the BCG ethA/R KO 

mutant upon nasal administration could be attributed to either enhanced 

colonization/persistence ability and/or increased ability of the bacteria to 

disseminate from the lungs to other systemic organs. To test both hypotheses, 

infection was performed via the intravenous route thereby bypassing the 

extrapulmonary dissemination step. Although less pronounced than for the 

nasal route of infection, generally, significantly higher bacterial loads were 
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again recovered from the BCG ethA/R KO-infected mice in comparison to 

mice infected with BCG WT and complemented strains (Fig. 19D-F).  

Notably, intravenously-infected animals had similar mycobacterial 

loads in the lung, liver and spleen due to the absence of extrapulmonary 

dissemination (Fig. 19D, E, F). This led to the recovery of significantly higher 

bacterial loads from the liver of intravenously-inoculated mice with WT and 

complemented strains in contrast to intranasally-inoculated mice with the 

same strains. Besides this observation being attributed to the route of 

dissemination for infection, it has also previously been shown that differences 

in immune response following intravenous infection versus 

intranasal/intratracheal infections may add to differences in mycobacterial 

clearance from various extrapulmonary organs (163).  

Together, these results thus indicate that the ethA/R KO BCG mutant 

strain displays intrinsic increased ability to persist in the murine organs 

compared to the WT strain. This suggests that while the ethA/R locus is not 

critical at the initial stage of infection (day 1 p.i.) for BCG, it may play a 

modulatory role in the mycobacterial colonization and persistence in the lungs, 

spleen and liver. 
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Figure 19: Infection profile of BCG ethA/R KO mutant in mice 

Adult Balb/c mice were intranasally (A-C) or intravenously (D-F) infected with 
approx. 5x10

6
 CFU of M. bovis BCG WT (open bar), ethA/R KO (black bar) or 

complemented (stripped bar) strains. Bacterial loads were monitored in the lungs 
(A, D), spleen (B, E) and liver (C, F) from the infected mice. The results are 
expressed in Log10 CFU/ml as the average of 4 mice per group per time point ±  SD. 
* p < 0.05. 
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3.3 M. bovis BCG ethA/R KO mutant displays a greater 

ability to adhere to mammalian cells. 

To further investigate the increased ability of the BCG ethA/R KO mutant 

to colonize mouse organs, its infection profile in various mammalian cells was 

determined and compared to that obtained with the parental and 

complemented strains. Human macrophages (THP1), murine bone marrow-

derived macrophages (BMMO), human hepatocytes (Huh7) and human 

pulmonary epithelial cells (A549) were infected at a multiplicity of infection 

(MOI) of 1, and at the indicated time points, the infected cells were lysed and 

appropriate dilutions were plated for colony counting. Comparable bacterial 

inoculums were added to the mammalian cells (data not shown). Significantly 

higher bacterial counts were obtained with the BCG ethA/R KO mutant strain 

across the various cell lines tested for all the time points analysed including 

Day 0, compared to the parental and complemented strains (Fig. 20). These 

data thus suggests that the BCG ethA/R KO mutant strain displays increased 

intrinsic ability to infect mammalian cells, regardless of cell type. Furthermore 

and importantly, this phenotype could be observed as early as at the first time 

point post-infection which corresponds to the initial 45 minutes of co-

incubation between bacteria and mammalian cells (Fig. 20 and 21A). This 

observation could suggest that the BCG ethA/R KO displays greater adherence 

properties than its WT counterpart thereby allowing higher bacterial uptake 

within the host cells.  

Additionally, Day 0 bacteria counts were expressed as a percentage of the 

given inoculum for each respective strain to further highlight the striking 
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differences in mycobacteria uptake by mammalian cells (Fig. 21A). 

Subsequent counts obtained from later time points were then expressed in 

reference to the initial Day 0 post-infection counts to check for differences in 

intracellular survival (Fig. 21B). The profiles obtained indicated that while 

there were no significant differences in the intracellular survival between the 

BCG ethA/R KO mutant, WT and complemented strains in human 

macrophages, the mutant displayed enhanced survival in murine macrophages 

throughout the course of infection (Fig. 21B). These data analyses imply that 

BCG ethA/R KO bacteria are more effectively taken up by the macrophages 

and may or may not display greater intracellular survival capability depending 

on the host species from which the macrophages were derived from.  

To further test the hypothesis of increased adherence property of the BCG 

ethA/R KO mutant at the surface of macrophages, an adherence assay was 

performed whereby mycobacteria were co-incubated with THP1 cells at 4
o
C 

or in the presence of cytochalasin D (CCD). Both conditions have previously 

been shown to prevent cellular uptake of bacteria (150, 164). Significantly 

higher bacterial counts were obtained with the BCG ethA/R KO mutant 

compared to the parental and complemented strains (Fig. 22). Moreover, the 

difference in bacteria counts obtained from parental and mutant-infected 

macrophages when cellular uptake was inhibited corresponds to the difference 

in counts between the respective strains under typical infection conditions, 

with differences close to half a log (Fig. 20A & 22). These data thus support 

that absence of the ethA/R locus in BCG confers a greater ability of the 

pathogen to adhere to mammalian cells.  
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Figure 20: Infection profile of BCG ethA/R KO in mammalian cells 

Human macrophages THP-1 (A), murine bone marrow-derived macrophages 
(BMMOs) (B), human hepatocyte cell line Huh-7 (C) and human pulmonary 
epithelial cell line A549 (D) were infected with WT (open bar), ethA/R KO (black 
bar) or complemented (stripped bar) strain at a MOI of 1 (THP-1 and BMMO), 2 
(Huh-7) and 3 (A549). At the indicated time points, the cells were washed, lysed 
and appropriate dilutions were plated for colony counting. The results are 
expressed in Log10 CFU/ml and represents the average of quad ruplicates ± SD. *, 
p<0.05. 
 

 

Figure 21: Uptake (Left Panel) and intracellular survival (Right Panel) profile of 

BCG ethA/R KO in macrophages 

Uptake percentages upon macrophage infections with WT (open bar), ethA/R KO 
(black bar) or complemented (stripped bar) strain s were calculated by expressing 
Day 0 bacterial loads as a percentage of the respective inoculum  (Left Panel). 
Intracellular survival percentages were then calculated by expressing counts 
obtained at indicated time points as a percentage of Day 0 load. The results 
represent the average of quadruplicates ± SD. *, p<0.05  (Right Panel).These were 
performed in (A) human macrophages THP-1 and (B) murine bone marrow-derived 
macrophages (BMMOs).at a MOI of 1 as described in the legend of Figure 20.  
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Figure 22: Adherence assay of BCG ethA/R KO to macrophages 

THP-1 macrophages were infected with BCG WT (open bar), ethA/R KO (black bar) 
or complemented (stripped bar) strain at MOI of 1. After 45 minutes co -incubation 
at 4°C (A) or in the presence of cytochalasin D (B), the cells were washed and lysed. 
Appropriate dilutions of the lysates were plated for colony counting. The results 
are expressed in Log10 CFU/ml as the average of quadruplicates ± SD. *, p < 0.05.  
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3.4 The ethA/R locus affects the cell wall mycolic acids 

composition in M. bovis BCG. 

The physiological role of membrane-associated EthA is unknown. 

However, given that BVMOs have been suggested to be involved in mycolic 

acid synthesis and/or degradation (132), it is plausible that the absence of 

EthA in the BCG ethA/R KO mutant may lead to some qualitative and/or 

quantitative differences in the cell wall lipid composition, in particular the 

mycolic acids (MA), that may account for the increased adherence properties 

of the BCG ethA/R KO mutant to mammalian cells.  

The fatty acid methyl ester (FAME) and mycolic acid methyl ester 

(MAME) compositions were thus analyzed by thin layer chromatography 

(TLC) of the whole cell mycolates prepared from ethA/R KO, wild type and 

complemented strains. No visible differences in the FAME profiles of the 

whole cell lipid esters were observed (Fig.23A panel III). Similarly, no 

significant changes were observed in the total lipid species including trehalose 

dimycolates and monomycolates, phosphatidylethanolamine, 

phosphatidylinositol, cardiolipin, diacylated and monoacylated 

phosphatidylinositol di-mannosides, or higher phosphatidylinositol 

mannosides (Fig. 23A panels I-II). In contrast, slightly greater signal intensity 

was consistently seen with both alpha and keto MAME species in the ethA/R 

KO mutant (Fig. 23A panel III). To confirm and further analyze the slightly 

increased amounts of MAMEs seen with the KO mutant, TLC analysis was 

performed on whole cell mycolates, mycolates prepared from extractable 

lipids or cell wall bound mycolates in different solvent systems. Interestingly, 
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results consistently showed increased amounts of cell-wall bound MAMEs in 

the KO strain compared to the WT and complemented strains whereas no 

visible difference was observed in the amounts of MAMEs prepared from 

extractable lipids (Fig. 23B), suggesting that while the MAME differences 

were only localized to the cell wall, MAME profiles in extractable lipids were 

not affected. 

To further analyse the qualitative difference in alpha and keto mycolic 

acids seen by TLC in the cell wall of the BCG ethA/R KO mutant, electrospray 

ionization-based multiple reaction monitoring (ESI-MRM) mass spectrometry 

was performed. This method allows qualitative and relative analysis of various 

species and sub-species of mycolic acids (160). The total amount of mycolic 

acids was increased by 83% in the ethA/R KO mutant compared to the parental 

strain, and re-introduction of the ethA/R locus in the complemented strain 

reduced the accumulation of mycolic acids back to levels comparable to that 

of the parental strain (Fig. 24A). In-depth analysis of the various mycolate 

sub-species from the BCG ethA/R KO mutant revealed significant increase in 

the overall amounts of C24:0 alpha-MA (170% increase compared to the 

parental strain), C26:0 keto-MA (56% increase) and C24:0 keto-MA (235% 

increase) mycolic acid sub-species (Fig. 24A). The quantitative differences of 

individual C24:0 and C26:0, alpha- and keto-mycolic acid sub-species 

between parental, KO and complemented strains have been heat-mapped to 

reflect localized differences between each mycolic acid subspecies (Fig. 24B). 

Together, these data demonstrate the existence of substantial alterations in the 

mycolic acid profile in the BCG ethA/R KO mutant compared to its parental 

and complemented counterparts, implying that EthA or EthR may be involved 
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in the metabolism of mycolic acids species and sub-species composition in the 

mycobacterial cell wall. 

 

 

 

 

 

Figure 23: TLC analysis of the lipid composition in the BCG ethA/R KO mutant 

A) Thin layer chromatography (TLC) of whole cell mycolates using  different 
solvents: I CHCl3/CH3OH/H2O (20:4:0.5); II CHCl3/CH3OH/NH4OH/H2O 
(65:25:0.5:4); III n-hexane: ethylacetate (95:5). B) TLC analysis of FAME and MAME 
prepared from whole cells, extractable lipids or cell wall in different solvents: I n -
hexane: ethylacetate (95:5); II petroleum ether: acetone (90:10); III 
dichloromethane on Ag-impregnated plates. WT, ethA/R KO and complemented 
BCG strains were grown at 37°C in 7H9 liquid medium for 20 days. The bacteria 
were harvested and processed for total, extractable and cell wall bound lipid 
extraction. Abbreviations: TDM, trehalose dimycolate; TMM, trehalose 
monomycolate; PEE, phosphatidylethanolamine; CL, cardiolipin; PI, 
phosphatidylinositol;  Ac2PIM2, diacylated phosphatidylinositol di -mannoside; 
Ac1PIM1, mono-acylated phosphatidylinositol di-mannoside; PIMs, higher 
phosphatidylinositol mannosides. FAME: fatty acid m ethyl ester; α and keto: alpha- 
and keto-mycolic acid methyl esters respectively.  
[TLCs were kindly performed by Dr Katarína Mikušová, Dr Jana Korduláková, 
Petronela Dianišková and  Jan Madacki under collaboration.] 
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Figure 24: Mass spectrometry analysis of mycolic acids 

Mycolic acids were extracted from mid-log phase liquid cultures (7H9). Samples 
were analyzed via a Q trap 4000 mass spectrometer. A) Individual sums of C26 
alpha, C24 alpha, C26 alpha and C24 keto mycolic acid prof iles in WT (open bar), 
ethA/R KO (black bar) and complemented (stripped bar) BCG strains. Results are 
expressed as the average of quintuplicates ± SD. * p < 0.05. B) Heat map 
representation of the mycolic acid profile in WT (n=5), ethA/R KO (n=5) and 
complemented (n=5) BCG strains.  
Legend: 26FA alpha-MA: Carbon26-alpha-unit-containing mycolic acid, 24FA alpha-
MA: Carbon24-alpha-unit-containing mycolic acid, 26FA MeO-MA: Carbon26-
methoxy-unit-containing mycolic acid, 24FA alpha-MA: Carbon24-methoxy-unit-
containing mycolic acid, 26FA keto-MA: Carbon26-keto-unit-containing mycolic 
acid, 24FA keto-MA: Carbon24-keto-unit-containing mycolic acid. The carbon 
number indicates chain length of the product ion.  
[LC-MS was conducted together with Dr Shui Guanghou under collaboration.] 
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3.5 M. tuberculosis CDC1551ethA/R KO mutant displays 

increased adherence properties in vitro which 

correlated with mild enhanced virulence phenotype in 

vivo. 

Although M. bovis BCG is commonly used as a surrogate organism to 

study M. tuberculosis, a high degree of phenotypic variability also exists 

amongst Mycobacteria strains including differences in terms of drug resistance, 

virulence and host immunity (165-168). Moreover, as mentioned earlier, BCG 

lacks the RD1 region which plays a crucial role in virulence in comparison to 

M. tuberculosis strains (44).  

To investigate the role of the ethA/R locus in M. tuberculosis CDC1551, 

the infection profile of the CDC1551 ethA/R KO mutant and its parental and 

complemented counterparts in human macrophages (THP1) and human 

hepatocytes (Huh7) were monitored. The CDC1551 ethA/R KO mutant 

displayed infection profiles that were very similar to that observed with the 

BCG ethA/R KO mutant during ex vivo mammalian cell infection, where 

significantly higher bacterial counts were obtained for the ethA/R KO mutant 

across both cell lines and for all the time points analysed in comparison to its 

parental and complemented strains (Fig. 25).  

These data thus support that the CDC1551 ethA/R KO mutant strain 

displays increased intrinsic ability to infect mammalian cells ex vivo. As seen 

for the BCG ethA/R KO mutant, importantly, this phenotype could be 

observed as early as at the first time point post-infection which corresponds to 

the initial 45 minutes of co-incubation between bacteria and mammalian cells 
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(Fig. 25). This observation suggests that the CDC1551 ethA/R KO mutant may 

also display greater adherence properties than its parental counterpart, which 

was indeed confirmed in an adherence assay. At 4°C, which inhibits cellular 

uptake as mentioned in the previous section, the CDC1551 ethA/R KO mutant 

was able to adhere better to THP1s, producing significantly higher counts by 

about 40% (Fig. 26). 

To further understand the importance of the ethA/R locus in M. 

tuberculosis CDC1551and whether the in vitro findings could translate to an 

in vivo phenotype, the infection profile of the CDC1551 ethA/R KO mutant 

and its parental strain were monitored in the mouse model upon intra-tracheal 

administration of comparable inoculums of each strain (data not shown). The 

percentage of uptake determined by expressing the number of bacteria 

recovered at 3 hours post-administration as a percentage of the initial 

inoculum was found to be significantly higher for the CDC1551 ethA/R KO 

mutant in comparison to its parental strain (100% and 70% respectively) (Fig. 

27A). This seems to directly correlate with the differential adherence 

properties between the KO and WT strains observed ex vivo. However, this 

difference was not seen with the BCG ethA/R KO mutant which displayed 

similar bacterial counts to the WT strain at day 1 post infection (p.i.) (Fig. 

19A). This may be explained by the fact that a much higher infectious dose 

must be given to establish infection with BCG bacteria in the mouse model 

compared to M. tuberculosis (5x10
6
 CFU for BCG vs 500 CFU for M. 

tuberculosis). It is thus likely that when giving 5x10
6
CFU of either BCG WT 

or ethA/R KO mutant bacteria, the initial adherence to the respiratory mucosa 

is comparable. 
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Next, the bacterial load present at different time points post-infection in 

the lungs, spleen and liver was expressed as a percentage of the initial 

bacterial uptake, in order to take into account the significant difference in 

bacterial uptake observed for both strains. It was found that the CDC1551 

ethA/R KO mutant and its parental strain displayed comparable infection 

profiles in the lungs and spleen throughout the course of infection (Fig. 27B-

C). A transient though non-significant increase in bacterial counts was seen in 

the spleen from the ethA/R KO-infected mice at Day 35 (Fig. 27C). No 

bacterial counts were obtained in the liver from both the parental and ethA/R 

KO strains throughout the course of infection, likely due to the small initial 

inoculum (500 CFU only) which was four logs less than that of the BCG 

inoculum. Thus, the CDC1551 ethA/R KO mutant infection profile obtained 

upon intra-tracheal infection suggests that absence of the ethA/R locus in M. 

tuberculosis CDC1551 allows greater bacterial adherence and uptake during 

the initial phase of infection, therefore implying a role in the establishment of 

infection. Presence or absence of the ethA/R locus at a later stage during the 

infection however seems to make no difference for M. tuberculosis whereas it 

was found very critical for M. bovis BCG. This observation indicates that M. 

tuberculosis relies on other virulence strategies to successfully infect its host, 

underscoring the differential virulence potential between M. tuberculosis and 

BCG, and indicating that observations made with BCG should not be 

extrapolated to M. tuberculosis. 

Together, data obtained with both M. bovis BCG and M. tuberculosis 

CDC1551 ethA/R KO mutants indicate that absence of the ethA/R locus 
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confers greater adherence capabilities of mycobacteria to mammalian cells, 

which influences the ability of the pathogens to infect their host.  

 

 

 

Figure 25:  Infection profile of CDC ethA/R KO mutant in mammalian cells 

Human macrophages THP-1 (A) and hepatocyte cell line Huh-7 (B) were infected 
with WT (open bar), ethA/R KO (black bar) or complemented (stripped bar) strain 
at a MOI of 1 (THP-1) and 2 (Huh-7). At the indicated time points, the cells were 
washed, lysed and appropriate dilutions were plated for colony counting. The 
results are expressed in Log10 CFU/ml and represents the average of 
quadruplicates ± SD. *, p<0.05.  
 
 
 

 

 

Figure 26: Adherence assay of CDC1551 ethA/R KO to macrophages 

THP-1 macrophages were infected with CDC WT (open bar), ethA/R KO (black bar) 
or complemented (stripped bar) strain at MOI of 1. After 45 minutes co-incubation 
at 4°C, the cells were washed and lysed. Appropriate dilutions of the lysates were 
plated for colony counting. The results are expressed in Log10 CFU/ml as the 
average of quadruplicates ± SD. *, p < 0.05.  
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Figure 27: Infection profile of CDC1551 ethA/R KO mutant in mice 

Adult Balb/c mice were intranasally infected with approx. 500 CFU of M. 
tuberculosis CDC wild type (open bar) or ethA/R KO (black bar). (A) Bacterial loads 
were obtained in the lungs from the infected mice at Day 1 post -infection and 
expressed as a percentage of the respective inoculums given per strain. Uptake 
percentages in the lungs (B) and spleens (C) were calculated b y expressing Day 0 
bacterial loads recovered from the lungs as a percentage of the respective 
inoculum. Intracellular survival percentages were calculated by expressing counts 
obtained at indicated time points as a percentage of Day 0 lung loads. The results 
represent the average of quadruplicates ± SD. *, p<0.05.Percentages reflected are 
the average of 4 mice per group per time point ± SD. * p < 0.05.  
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3.6 The M. tuberculosis Erdman ethA/R KO strain displays 

parental adherence properties during mammalian cell 

infection, which correlated with an unaltered mycolic 

acid cell wall composition. 

For a more comprehensive understanding of the importance of the 

ethA/R locus in virulence, the infection profile of Erdman ethA/R KO mutant 

and its parental and complemented counterparts in human macrophages (THP-

1) and murine bone marrow-derived macrophages (BMMO) was also 

monitored over time. Comparable bacterial inoculums were added to the 

mammalian cells (data not shown), and the Erdman ethA/R KO mutant strain 

showed no significant differences in bacterial counts across both macrophage 

cell lines in comparison to the parental and complemented strains over the 

course of infection (Fig. 28). These findings suggest that the ethA/R locus does 

not play a critical role in the adherence properties of M. tuberculosis Erdman. 

As the BCG ethA/R KO mutant displayed increased virulence during 

host infection which correlated with an altered cell wall composition of 

mycolic acids, the lack of a differential adherence pattern for the Erdman 

ethA/R KO mutant suggests an unchanged cell wall composition. Consistently, 

TLCs of the mutant’s whole cell mycolates revealed neither striking 

differences in various lipid species (Fig. 29A panels I-II) nor FAME and 

MAME profiles (Fig. 29B panel I). Further analysis of the localized 

extractable or cell wall-bound FAMEs and MAMEs from the Erdman ethA/R 

KO mutant and its parental and complemented counterparts also showed no 

conclusive differences between the three strains (Fig. 29B panels II-III).  
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In order to account for any possible relative differences in various 

mycolic acid species that may be undetectable via TLC, ESI-MRM was 

performed.  Although there was a slight but significant decrease in C24:0 

alpha-MA and also a slight but significant increase in C24:0 keto-MA in the 

mutant strain (Fig. 30), these differences could not be attributed to the absence 

of ethA/R locus since the complemented strain displayed a pattern similar to 

that of the KO mutant. We speculate that the minor differences seen with the 

KO and complemented strains compared to the parental strain could be due to 

the very sensitive nature of mass spectrometry quantification and minor 

sample loss during MA extraction, which involves several lengthy steps that 

could confound MA amounts. These observations thus suggest that unlike 

BCG andCDC1551, absence of the ethA/R locus in M. tuberculosis Erdman 

background does not lead to a significant change in the cell wall lipid 

composition.  

Together, the combined findings indicate that the suggested role of the 

ethA/R locus in mycolic acid cell wall composition and its consequential 

effects on adherence to mammalian cells and persistence in vivo varies 

amongst different Mycobacteria species. Moreover, the data presented here 

further validate the correlation between mycobacteria virulence and mycolic 

acid cell wall composition. 
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Figure 28: Infection profile of Erdman ethA/R KO mutant in mammalian cells 

Human macrophages THP-1 (A) and murine bone marrow-derived macrophages 
(BMMOs) were infected with WT (open bar), ethA/R KO (black bar) or 
complemented (stripped bar) strain at a MOI of 1.  At the indicated time points, the 
cells were washed, lysed and appropriate dilutions were plated for colony counting. 
The results are expressed in Log10 CFU/ml and represents the average of 
quadruplicates ± SD. *, p<0.05.  
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Figure 29: TLC analysis of the lipid composition in the Erdman ethA/R KO mutant 

A) Thin layer chromatography (TLC) of whole cell mycolates using different 
solvents: I CHCl3/CH3OH/H2O (20:4:0.5); II CHCl3/CH3OH/NH4OH/H2O 
(65:25:0.5:4). B) TLC analysis of FAME and MAME prepared from whole cells, 
extractable lipids or cell wall n-hexane: ethylacetate (95:5) WT, ethA/R KO and 
complemented M. tuberculosis Erdman strains were grown at 37°C in 7H9 liquid 
medium for 20 days. The bacteria were harvested and processed f or total, 
extractable and cell wall bound lipid extraction. Abbreviations: TDM, trehalose 
dimycolate; TMM, trehalose monomycolate; PEE, phosphatidylethanolamine; CL, 
cardiolipin; PI, phosphatidylinositol;  Ac2PIM2, diacylated phosphatidylinositol di -
mannoside; Ac1PIM1, mono-acylated phosphatidylinositol di -mannoside; PIMs, 
higher phosphatidylinositol mannosides. FAME: fatty acid methyl ester; α and keto: 
alpha- and keto-mycolic acid methyl esters respectively.  
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Figure 30: Mass Spectrometry Analysis of Mycolic Acids 

Mycolic acids were extracted from mid-log phase liquid cultures (7H9). Samples 
were analyzed via a Q trap 4000 mass spectrometer. A) Individual sums of C26 
alpha, C24 alpha, C26 alpha and C24 keto mycolic acid profile s in WT (open bar), 
ethA/R KO (black bar) and complemented (stripped bar) Erdman strains. Results 
are expressed as the average of quintuplicates ± SD. * p < 0.05. B) Heat map 
representation of the mycolic acid profile in WT (n=5), ethA/R KO (n=5) and 
complemented (n=5) Erdman strains.  
Legend: 26FA alpha-MA: Carbon26-alpha-unit-containing mycolic acid, 24FA alpha-
MA: Carbon24-alpha-unit-containing mycolic acid, 26FA MeO-MA: Carbon26-
methoxy-unit-containing mycolic acid, 24FA alpha-MA: Carbon24-methoxy-unit-
containing mycolic acid, 26FA keto-MA: Carbon26-keto-unit-containing mycolic 
acid, 24FA keto-MA: Carbon24-keto-unit-containing mycolic acid. The carbon 
number indicates chain length of the product ion.  
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3.7 Discussion 

3.7.1 The role of the ethA/R locus in M. bovis BCG and M. 

tuberculosis CDC1551 

As there is no experimental evidence that EthR directly modulates the 

expression of genes other than ethA and itself (136), we reasoned that any 

phenotypic differences observed between the parental and ethA/R KO strains 

would be very likely attributable to the lack of EthA monooxygenase activity, 

and unlikely to EthR-mediated repression of other unknown target genes, 

although we cannot completely rule out this remote possibility. Furthermore, 

although previous studies were able to create ethR KO mutants but yet were 

unsuccessful in their attempts to delete ethA for the study of ETH bio-

activation (124, 127), to our knowledge, this is the first time the entire ethA/R 

locus has been deleted in mycobacteria for the characterization of the 

physiological role of this locus in the MTBC. 

Deletion of the ethA/R locus in M. bovis BCG resulted in increased 

bacterial loads recovered from the mouse organs upon nasal infection, thus 

supporting a role for the ethA/R locus in modulating mycobacterial virulence. 

Consistently, increased in vitro adherence to mammalian cells were also 

observed with the BCG ethA/R KO mutant thus strongly supporting that the 

greater adherence ability of the ethA/R KO mycobacteria translated into 

greater persistence in the murine organs. In a relatively similar fashion, the 

lack of the ethA/R locus in M. tuberculosis CDC1551 resulted in greater in 

vitro adherence to mammalian cells and also an increase in the initial bacterial 

uptake in mice lungs upon in vivo infection; although this effect, unlike the 
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BCG ethA/R KO mutant, did not persist in the lungs or spleens throughout the 

course of infection. Nevertheless, it is apparent that the ethA/R locus in BCG 

and CDC1551 is able to affect the adherence properties of mycobacteria, and 

this affected adherence has an impact on mycobacteria virulence.  

Interestingly, genetic studies have shown that 40-50% of the ETH-resistant 

clinical isolates harbour mutations in the ethA gene while the rest bear 

mutations in other genes such as inhA for example (126, 129). The possibility 

that the ethA-mutated ETH-resistant isolates display greater in vitro adherence 

properties and enhanced in vivo persistence ability would (at least partially) 

explain why the ethA locus is the most commonly mutated gene amongst 

existing ETH-resistant clinical isolates, as this would confer a selective 

advantage to these mutants.  

TLC analysis revealed increased amounts of cell wall bound mycolates in 

the BCG ethA/R KO mutant compared to the parental and complemented 

strains. In-depth quantitative analysis of the cell wall bound mycolates via 

mass spectrometry further unveiled differences between the BCG parental and 

ethA/R KO strains in their composition of alpha- and keto-mycolic acids. 

Mycolic acids not only constitute the major mycobacterial hydrophobic barrier 

responsible for drug resistance and oxidative stress, but have also been shown 

to play an active role in host-pathogen interactions through host receptors 

binding (169) and immunomodulatory properties (162, 170). In addition, by 

controlling the fluidity and hence the outer permeability barrier of 

mycobacteria, mycolic acids directly control nutrients intake during 

mycobacterial growth in host tissues (85, 171). Surprisingly, even the most 
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subtle changes in the mycolic acid structure have been shown to have 

profound effects on the physiology and virulence of mycobacteria (171). We 

thus propose here that the overall increased amounts of keto-mycolates and 

alpha-mycolates in the BCG ethA/R KO may account for the observed 

increased adherence properties to mammalian cells. This working hypothesis 

is supported by a previous study where the absence of keto-mycolates was 

found to lead to profound alterations in the envelope permeability and to an 

attenuated phenotype in mice (85, 172). Conversely here, a significant 

increase in both alpha and keto-mycolates abundance correlated with a 

hypervirulent phenotype in mice. While the cell wall permeability of the 

ethA/R KO mutant strain has yet to be investigated, our data support that the 

altered mycolic acid profile has potentially modified the ability of the 

mycobacterial cell wall to interact with the mammalian cell surface. 

Fraaije and colleagues previously proposed that the oxidative activity of 

EthA and other mycobacterial BVMOs may help the pathogen survive 

oxidative stress conditions encountered in vivo(132). The authors also 

speculated that EthA may participate to a detoxification activity through the 

removal of toxic ketones in mycobacteria. However, we found that EthA 

deletion neither impaired the in vitro general fitness of the mycobacteria, nor 

attenuated the infection capabilities of the mutant in macrophages, but instead 

enhanced its adherence properties and in vivo persistence. Alternatively, 

BVMOs in general have been shown to be involved in specific metabolic 

processes, through the conversion of relatively hydrophobic substances such 

as mycolic acids, although knowledge of mycolic acid metabolism still 

remains somewhat fragmentary (173). The altered mycolic acid profile in the 
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BCG ethA/R KO implies dysregulation of either the mycolic acid synthesis or 

degradation pathways, hence resulting in increased accumulation of long chain 

C24:0 and C26:0 alpha- and keto-mycolic acids. Although the exact 

mechanism of how the ethA/R locus modulates the composition of mycolic 

acid subspecies remains to be studied, the more pronounced keto-mycolic acid 

overproduction in the BCG ethA/R KO mutant compared to the change in 

alpha-mycolic acid levels leads us to speculate that EthA likely plays a 

metabolic role by oxidizing keto-mycolic acids to yield wax ester mycolic 

acids, which have been shown to be the result of a Baeyer-Villiger reaction on 

the keto group of keto-mycolic acids (174, 175) (Fig. 31).  

Although the mycolic acid profile of the CDC1551 ethA/R KO mutant was 

not analysed in this study due to limited time and resources, it would have 

been insightful to do so in order for further evidence that the adherence 

properties correlate with changes in the mycolic acids composition in the cell 

wall. Data obtained with the Erdman ethA/R KO mutant support indeed such 

correlation. However, the increased adherence properties of the ethA/R KO 

CDC1551 mutant did not translate in a drastic increase in its ability to 

colonize the mouse lungs, spleen and liver, unlike the BCG ethA/R KO mutant. 

We propose that the different mouse infection profiles obtained with BCG and 

CDC1551 ethA/R KO mutant strains are due to the difference in virulence 

between BCG and M. tuberculosis. Indeed, it has been shown previously that 

the lack of the RD1 region in BCG makes this bacterium less able to invade its 

host successfully, and therefore increasing the adherence properties of BCG 

(through deletion of the ethA/R locus for example) leads to a significant 

increase in its colonization ability, whereas doing the same in M. tuberculosis 
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only mildly affects its virulence potential which relies on other mechanisms 

and strategies.   

 

Figure 31: The Hypothetical Role of EthA 

As a BVMO, EthA likely plays a metabolic role in mycobacteria by oxidizing keto-
mycolates to wax ester mycolates, resulting in alterations in the mycolic acids cell 
wall of the bacterium. 
Figure adapted with permission from Asselineau et al. (173) 
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3.7.2 The role of the ethA/R locus in M. tuberculosis Erdman 

In an unexpected twist of findings, the M. tuberculosis Erdman ethA/R 

KO mutant did not display enhanced virulence ex vivo, nor did its cell wall 

composition differ from that of the parental phenotype, indicating that the 

ethA/R locus is not critical for virulence in M. tuberculosis Erdman. Notably, 5 

other genes containing the BVMO signature motif besides EthA have 

previously been identified in the mycobacteria genome (132, 176). 

Considering that our findings in the previous section suggests a role in 

mycolic acids composition for EthA in BCG, it is plausible that in the Erdman 

ethA/R KO mutant, other BVMOs which possess similar catalytic functions as 

EthA are able to compensate for the deletion of the ethA/R locus, hence 

retaining a parental mycolic acid profile that does not affect the adherence 

property of Erdman. Moreover, this hypothesis is supported by the finding that 

expression levels of the genes encoding the 5 other BVMOs were significantly 

(up to 14 fold) lower in BCG compared to the levels measured in Erdman 

strain (Table 3). Thus, deletion of the ethA/R locus in BCG is likely to impact 

more drastically the overall BVMO activity in BCG than in Erdman. 
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3.8 Conclusions 

In this section, we characterized the role of the ethA/R locus in virulence 

amongst 3 different strains of the MTBC – M. bovis BCG, M. tuberculosis 

Erdman and CDC1551 with the primary aim of studying the physiological role 

of EthA in various mycobacteria strains. The varying importance of the ethA/R 

locus in different Mtb strains has been demonstrated through the construction 

of EthA/R-deficient mutants in all 3 backgrounds. While this locus has been 

shown to play critical roles in adherence and subsequent virulence in both M. 

bovis BCG and M. tuberculosis CDC1551 host infections, it does not appear to 

impact the pathology of M. tuberculosis Erdman. Furthermore, the ethA/R 

locus appears to affect the cell wall mycolic acid composition in M. bovis 

BCG, but not that of M. tuberculosis Erdman. Lastly, the altered cell wall 

composition and enhanced virulence displayed by the M. bovis BCG ethA/R 

KO mutant corroborates with the unaltered cell wall composition and 

unaffected virulence of the M. tuberculosis Erdman ethA/R KO mutant, 

demonstrating that the mycobacterial cell wall mycolic acid composition 

correlates with the innate virulence of mycobacteria. 

It is difficult to speculate why the ethA/R locus appears to be redundant 

in Erdman but yet affects virulence in BCG and CDC1551, especially 

comparing the mutant phenotypes observed between Erdman and CDC1551, 

which are both virulent M. tuberculosis strains that originate from the same 

lineage. Moreover, the entire ethA/R locus is well conserved between all 

mycobacteria strains used in this study; hence any deductions for the differing 

phenotypes observed between mutant strains would likely involve differences 
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in the entire genomes of Erdman, CDC1551 and BCG. However, since all 3 

mutants did not appear to have impaired growth rates whether in vitro or ex 

vivo, we have established that this locus is not essential in mycobacteria, and it 

is not a critical factor for cell metabolism. Furthermore, though our study 

shows that the ethA/R locus affects virulence indirectly, it may also be feasible 

to investigate other roles for EthA that were not explored in this study, such as 

the detoxification of toxic ketones and esters that may aid in cell metabolism.  

Many gene characterization studies in mycobacteria typically study the 

effects of gene removal/interruption in only 1 mycobacteria strain, commonly 

using the M. tuberculosis surrogates M. bovis BCG or M. smegmatis for safety 

reasons. Here, we have widened the scope of our study by characterizing the 

ethA/R locus in 3 different Mtb strains to reveal differential roles for the 

ethA/R locus amongst MTBC strains. In doing so, we demonstrate here the 

varying relevance of utilizing BCG for M. tuberculosis research, and highlight 

that care has to be taken in the extrapolation of these data to the clinical setting, 

particularly when these organisms are used to study Mtb virulence. 

In conclusion, the work presented here suggests that the ethA/R locus is 

involved in the composition of cell wall mycolates in M. bovis BCG and M. 

tuberculosis CDC1551, specifically the relative amounts of alpha and keto 

mycolic acids, which impacts on the adherence properties of mycobacteria to 

mammalian cells ex vivo and their ability to colonize their host. 



 

Chapter 4: Investigating ETH drug 

activation and resistance 
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4.1 Enhanced killing efficacy of ETH ex vivo versus in vitro 

against M. tuberculosis Erdman 

To investigate whether ETH bio-activation may be influenced upon host-

pathogen interactions, the killing efficacy of ethionamide (ETH), isoxyl (ISO) 

and thiacetazone (TAC) compounds against M. tuberculosis Erdman strain 

was determined under in vitro (during growth in liquid 7H9 medium) and ex 

vivo (during macrophage infection) conditions. A concentration range of each 

drug was tested and the minimal bactericidal concentration, which corresponds 

to 90% reduction (or 1 log) of the number of colony forming units (CFU) 

compared to the drug-free control (MBC90) was determined. 

 When tested during in vitro culture, MBC90 determined for ETH 

ranged between 2.5 and 5µM (Fig. 32A). In contrast, the MBC90 of ETH 

during macrophage infection was < 0.75µM, indicating that ETH was 3 to 6 

times more potent in killing mycobacteria during macrophage infection in 

comparison to in vitro culture (Fig. 32B). Similar observations were made 

with ISO and TAC, for which the killing efficacy was approximately 14 and 

57 times greater respectively during macrophage infection compared to in 

vitro culture (Fig. 32).  

 Furthermore, the MBC90 values of other non thiocarbamide-

containing anti-TB drugs were also determined under both conditions. These 

included isoniazid, rifampicin, ethambutol, moxifloxacin, streptomycin, 

pyrazinamide and amikacin. In contrast to ETH, ISO and TAC, the MBC90 

measured for all these drugs during in vitro culture was either similar or lower 

than the MBC90 measured during macrophage infection (Fig. 32C). These 
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observations therefore suggest that the greater killing efficacy observed during 

macrophage infection is specific to the thiocarbamide-containing anti-TB 

drugs. 

 

 

 

 

Figure 32: Killing efficacy of ETH, ISO and TAC compounds during in vitro (A) 

and macrophage (THP-1) infection (B) with M. tuberculosis Erdman strain 

(A) M. tuberculosis Erdman bacteria were incubated in the presence of various 
concentrations of ETH, ISO or TAC, as indicated, and 5 days later, appropriate 
dilutions were plated for colony counting. (B) THP -1 macrophages were infected 
for one hour with M. tuberculosis at a multiplicity of infection of 1. The 
monolayers were then washed and culture medium containing ETH, ISO or TAC at 
the indicated concentrations was added. 5 days post -infection, the infected 
macrophages were lysed and appropriate dilutions were p lated for mycobacteria 
colony counting. DF: drug-free. Each assay was performed twice or three times 
independently. (C) MBC90 values in µm of various first, second and third -line anti-
TB drugs including ETH, ISO and TAC obtained from in vitro culture versus in THP1 
macrophages. 
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4.2 EthA and ethR expression levels in M. tuberculosis 

Erdman are not significantly modulated during 

macrophage infection 

Since the ethA and ethR genes encode for the ETH activator and repressor 

respectively, a possible explanation for the enhanced mycobacterial killing 

efficacy of the thiocarbamide-containing drugs during ex vivo conditions could 

be attributed to a differential expression of the ethA and/or ethR genes during 

macrophage infection compared to in vitro conditions. To test this hypothesis, 

the gene expression profiles of ethA and ethR in Erdman were analysed during 

macrophage infection and normalized to their expression levels during in vitro 

Mtb culture via quantitative real-time PCR. Considering a fold change 

threshold of 2 and above to be significant, the results indicated that neither 

ethA nor ethR genes were significantly modulated during macrophage 

infection (Fig. 33). While a slight down-regulation was observed for ethR at 

Day 1 and Day 4 post- infection (Fig. 33), this did not result in up-regulation 

of ethA as ethA expression levels remain unchanged in comparison to that of 

ethA mRNA levels during in vitro culture (Fig. 33). Although EthR has been 

shown to be the genetic repressor of the ETH activator EthA (124, 127), the 

minimal repression of ethR was likely insufficient to translate to a significant 

up-regulation of ethA. These results thus indicate that the greater killing 

efficacy of ETH during macrophage infection cannot be explained by a 

differential transcriptional activity of ethA and/or ethR.  
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Figure 33: Quantitative analysis of ethA and ethR gene expression during 

macrophage infection 

THP-1 cells were infected for 2 hours with Mtb Erdman at a multiplicity of infection 
of (MOI) of 10. The monolayers were then washed twice with PBS, and processed 
for RNA extraction. Real-time PCR was then conducted to compare regulation of (A) 
ethA and (B) ethR during macrophage infection were tabulated and compared to 
TB in vitro culture. 
1 = Mtb Erdman in vitro culture, 2 = Mtb-infected macrophages at Day 0, 3 = Mtb-
infected macrophages at Day 1, 4 = Mtb-infected macrophages at Day 3, 5 = Mtb-
infected macrophages at Day 4 
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4.3 ETH metabolites are not detected in macrophages 

incubated with ETH 

Human flavin-containing monooxygenases 1, 2 and 3 have been shown to 

catalyse the oxidation of ETH and TAC in vitro, forming the same products as 

EthA (177, 178). Thus, another plausible explanation for the enhanced killing 

efficacy of ETH during macrophage infection might be due to the innate 

ability of the macrophage itself to activate ETH before the compound reaches 

the mycobacterial cytoplasm. Due to the formation of very unstable and 

reactive intermediates during the activation steps of a pro-drug  that may also 

further be modified during the extraction/purification procedures, a non-

invasive, non-destructive method based on high resolution magic angle 

spinning (HRMAS-NMR) was previously developed to study ETH activation 

inside living mycobacteria (131). In order to address whether ETH is activated 

upon macrophage uptake, J774A.1 (murine) and THP-1 (human) macrophages 

were incubated in the presence of ETH and the fate of the drug and its 

metabolites (Fig. 11) was monitored by HRMAS-NMR analysis. However, no 

ETH intermediates were detected by this method, suggesting that ETH does 

not get activated within the macrophages (data not shown).  

Together, the data presented from both the previous and current section 

suggest that the increased killing efficacy of ETH during macrophage 

infection cannot neither be explained by a differential transcriptional activity 

of the ethA and/or ethR, nor by a spontaneous activation of ETH within the 

macrophages. Further investigation would be necessary to understand and 

decipher the mechanisms involved but are not within the scope of this thesis.  
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4.4 A novel pathway of ETH bio-activation exists in M. 

tuberculosis Erdman and H37Rv strains 

The minimum inhibitory concentration of drug required to inhibit 50% 

growth of mycobacteria in drug-free media (MIC) was determined for ethA/R 

KO mutant strains constructed in M. bovis BCG, M. tuberculosis Erdman, M. 

tuberculosis H37Rv and M. tuberculosis CDC1551 in order to determine the 

various levels of resistance to INH, ETH and other thiocarbamide containing 

drugs. INH was included as well as a negative control since bio-activation of 

INH is not EthA/R-dependent. Consistently, all ethA/R KO mutants displayed 

parental susceptibility to INH (Fig. 34). In contrast, and as expected, removal 

of the ethA/R locus in M. bovis BCG led to complete resistance to ETH (Fig. 

34A). However, complete resistance to ETH was not seen with the MTB 

ethA/R KO mutants whereby a dose-dependent killing could still be observed 

as evidenced by the sigmoidal MIC curves obtained (Fig. 34B-D). The MIC50 

values measured with the ethA/R KO MTB mutants were increased by 2-3X 

compared to their respective parental strains (Table 5). Furthermore, all the 

ethA/R KO mutant strains displayed increased resistance to TAC, with MIC50 

values increasing by 2-8X (Table 5). As for ISO, with the exception of 

Erdman ethA/R KO mutant which was found slightly more resistant with a 2-

fold increase in the MIC50 value compared to its parental counterpart, no 

significant changes in MIC50 were observed with the other mutant strains. 

Importantly, parental susceptibility to the three drugs was restored in each 

strain upon re-introduction of the ethA/R locus (Fig. 34, Table 5).  
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To confirm the MIC data reported above, the ETH concentration range 

within which 90% of the bacteria (also equivalent to 1 log) are killed (MBC90), 

was determined for the ethA/R KO mutant, parental and complemented strains 

in all four backgrounds. Consistent with the MIC data, while BCG ethA/R KO 

displayed full resistance to ETH, dose-dependent killing was observed with all 

three MTB KO strains over the range of ETH concentrations assayed (Fig. 35). 

The MBC90 range of ETH on CDC1551 ethA/R KO mutant was increased by 

8-16 fold compared to its parental and complemented counterparts (Table 6). 

In contrast, a mild 2-fold increase in ETH MBC90 was observed with ethA/R 

KO H37Rv and Erdman strains compared to their parental and complemented 

counterparts (Table 6). The ethA/R KO mutants in all backgrounds were 

constructed twice independently, and the MIC and MBC of ETH for this new 

set of mutants were determined. The results obtained were comparable to 

those obtained with the first series of KO mutants (data not shown). 

Although the Mtb KO mutants demonstrated low resistance to ETH, the 

retained susceptibility to ETH and dose-dependent drug response despite the 

removal of the ethA/R locus in these mutants was a striking observation that 

warranted further investigation. To further understand the ETH-

susceptiblephenotype observed with the Erdman and H37Rv ethA/R KO 

mutants in contrast to the ETH resistant phenotype obtained with the BCG 

ethA/R KO mutant, the DNA sequences of inhA and ethA (known genes 

identified in clinical isolates to be involved in ETH resistance phenotype) 

were obtained and compared between the Mtb strains (Erdman, CDC1551 and 

H37Rv) and BCG in order to rule out the possibility that a mutation in one of 
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these genes may be responsible for the phenotypic differences observed 

between the Mtb and BCG mutants. However, identical sequences were found 

for ethA and inhA genes for all 4 strains (data not shown), suggesting the 

possible association of other undiscovered genes with ETH resistance. 

In conclusion, these data show that although the ETH MICs and MBCs 

values obtained for ethA/R KO MTB strains were higher than those measured 

with the corresponding parental and complemented strains, ETH susceptibility 

and dose-dependent drug response to ETH were retained. In particular, both 

Mtb Erdman and H37Rv strains remained very susceptible to ETH upon 

deletion of ethA/R locus with 3 and 2-fold increases in their MIC and MBC 

values respectively. The observations made with the Mtb strains were 

somewhat surprising given that the ethA/R locus was previously identified to 

be solely responsible for ETH bio-activation (149). Since the ethA/R locus is 

necessary for ETH bio-activation, removal of this locus was initially expected 

to lead to a distinct ETH-resistant phenotype (124). Deletion of the ethA/R 

locus was therefore expected to lead to full or very high resistance to ETH as 

observed with BCG ethA/R KO mutant. In contrast, the retained susceptibility 

to ETH despite removal of ethA/R in the three MTB strains suggests that the 

pro-drug ETH still gets activated into its bactericidal form in an EthA-

independent manner, thus supporting the existence of an alternative bio-

activation pathway for ETH in Mtb.   
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Figure 34: Minimum Inhibitory Concentrations of Ethionamide (ETH) and other drugs 

(in µm) during in vitro culture. 

The MIC was defined as the minimum inhibitory concentration that is required to 
inhibit 50% growth of the specified strain in drug-free 7H9-ADS media. Drug assays 
were set up in 96-well plates using a broth microdilution method and their OD600 
values read with a spectrophotometry microplate reader after 5 days  after 5 days 
incubation at 37°C. OD600 values were tabulated into PRISM for fitting of MIC 
curves for (A) BCG, (B) CDC1551, (C) Erdman and (D) H37Rv and MIC50 values were 
read from PRISM.   

Strain INH ETH ISO TAC 

BCG 0.38 15.8

6 

3.93 0.76 

BCG ethA/R KO 0.35 NA 3.85 5.91 

BCG complement ethA/R 0.39 14.4

9 

4.04 0.27 

     

CDC1551 0.22 6.90 12.4

0 

9.20 

CDC1551 ethA/R KO 0.22 12.4

0 

11.5

6 

19.2

8 CDC1551 complement ethA/R 0.20 4.77 14.0

0 

6.42 

     

Erdman 0.15 3.89 10.8

7 

4.80 

Erdman ethA/R KO 0.11 9.29 21.2

0 

12.1

2 Erdman complement ethA/R 0.12 3.25 13.7

5 

2.07 

     

H37Rv 0.20 3.30 13.0

8 

2.0 

H37Rv ethA/R KO 0.20 9.16 10.6

7 

12.3

2 H37Rv complement ethA/R 0.19 3.10 11.5

9 

1.47 

 

Table 5: Minimum Inhibitory Concentrations (MIC50) of Ethionamide (ETH) and 

other drugs (in µm) during in vitro 7H9-ADS culture. 
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Figure 35: Minimum Bactericidal Concentration (MBC90) of Parental, ethA/R KO 

and complemented strain in the backgrounds of A) BCG, B) CDC1551, C) Erdman and 

D) H37Rv in the presence of ETH 

After determining MIC, 50µl of selected drug concentrations from the assay p lates 
were plated at appropriate dilutions on 7H11 agar plates to determine MBC. Plates 
were incubated at 37°C and scored for CFU after 14-16 days. MBC90 values in µm 
of various first, second and third-line anti-TB drugs including ETH, ISO and TAC 
obtained from in vitro culture versus in THP1 macrophages. DF = Drug-free. 
 

 

Parental Strain ethA/R KO Complement ethA/R 

BCG 10-20 NA 10-20 

CDC1551 2.5-5 40 2.5-5 

Erdman 1.25-2.5 2.5-5 1.25-2.5 

H37Rv 1.25-2.5 2.5-5 1.25-2.5 

 

 

 

Table 6: Minimum Bactericidal Concentrations (MBC90) of Ethionamide (in µm) 

during in vitro culture. 

Corresponding to Figure 34, the MBC90 range was defined as the range of ETH 
concentrations (in µM) within which 90% of the mycobacteria are killed compared 
to the drug-free control after 5 days incubation. 
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4.5 The alternative pathway of ETH bio-activation in M. tuberculosis 

Erdman and H37Rv is independent of the transcriptional 

repressor ethR. 

To further investigate the possible existence of an alternative pathway of 

ETH bio-activation in MTB, we questioned whether the transcriptional 

repressor EthR which negatively modulates the ethA/R locus, would also 

modulate this alternative pathway. Indeed, EthR was predicted to bind to a 

number of promoter regions in addition to ethA/R promoter 

(http://genome.tbdb.org/tbdb_sysbio/Resources.html). Thus it is conceivable 

that EthR may repress the expression of another gene that is involved in ETH 

bio-activation. To address this hypothesis, the ethR open reading frame (ORF) 

was over-expressed in all three WT MTB strains under the control of the 

constitutive strong promoter hsp60 and using the multicopy replicative 

plasmid pMV262. Real-time PCR analysis confirmed the over-expression of 

ethR (8-16 fold increase) in comparison to the parental strains (data not 

shown). The over-expression of ethR in these three strains was expected to 

lead to the strong repression of ethA expression as well as any other genes that 

may be negatively regulated by EthR. Should an alternative EthR-dependent 

pathway of ETH bio-activation exist in MTB, susceptibility to ETH would be 

affected when ethR is over-expressed.  

However, the ethR over-expressing strains displayed MBC90 concentration 

ranges similar to those obtained with the ethA/R KO mutants (Table 7), 

retaining ETH susceptibility in a dose-dependent manner (Fig. 36). These 

results thus further support the existence of an alternative pathway of ETH 

http://genome.tbdb.org/tbdb_sysbio/Resources.html
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bio-activation in MTB and indicate that this pathway is likely to be EthR-

independent. 

To further confirm the existence of an EthR-independent pathway of ETH 

bio-activation in MTB, the ethR ORF was re-introduced back into the Erdman 

ethA/R KO mutant under the control of its original promoter using the 

integrative plasmid pMV306. We reasoned that expression of ethR in the 

ethA/R KO mutant would only impact on the susceptibility to ETH if the 

alternative pathway of ETH bio-activation is under the control of EthR. 

However, comparable dose-dependent killing profile and MBC90 ranges were 

obtained for both strains (Fig. 36, Table 7).  

Finally, utilizing the previous strategy used for construction of the ethA/R 

KO mutants, the ethA ORF was deleted from all 4 mycobacteria strains, 

maintaining ethR ORF expressed at parental level. This approach allowed us 

to verify whether the absence of EthA alone would lead to similar 

observations made when the entire ethA/R locus has been deleted. The MIC 

(data not shown) and MBC values (Table 7) generated from these strains were 

similar to the values obtained with the ethA/R KO mutants, demonstrating that 

both EthA and EthR do not play a role in the alternative pathway of ETH bio-

activation. Altogether, these findings strongly support the existence of an 

EthA/R-independent alternative pathway of ETH bio-activation in MTB 

strains.  
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Figure 36: Minimum Bactericidal Concentration (MBC90) of ETH (in µm) in 

Erdman or CDC1551 ethA/R KO pMV306-ethR or Erdman or CDC1551 WT pMV262-

ethR. 

See experimental details in the legend of Fig. 34. DF, drug free. Solid lines 
represent 1 log change in CFU, ie. MBC90 values. DF = Drug-free. 
 

 Parental 
strain 

ethA/R KO Complement 
ethA/R 

pMV306-
ethR 

pMV262-
ethR 

ethA KO 

CDC1551 2.5-5 20-40 ND 20-40 40 40 

H37Rv  1.25-2.5 1.25-2.5 2.5-5 1.25-2.5 5 5 

Erdman  1.25-2.5 2.5-5 ND 2.5-5 2.5 2.5 

Table 7: Minimum Bactericidal Concentrations (MBC90) of Ethionamide (in µm) 

during in vitro culture. 

See experimental details in the legend of Fig. 34. 
pMV262-ethR: ethR was overexpressed in WT strains using replicative pMV262. 
pMV306-ethR: ethR was re-introduced into ethA/R KO mutants using integrative 
plasmid pMV306. The MBC90 was defined as the range of ETH concentration (in 
µM) within which 90% of the mycobacteria are killed compared to the drug -free 
control after 5 days incubation. ND: not determined.  
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4.6 Genomic Analyses of Spontaneous ETH mutants raised 

from Erdman ethA/R KO background 

In order to identify the factors that are involved in the alternative pathway 

of ETH bio-activation in H37Rv and Erdman strains, spontaneous mutants that 

were highly resistant to ETH were generated from the Erdman ethA/R KO 

background. We reasoned that the absence of the ethA/R locus in the mutant 

should enable us to select for ETH
R
 clones for which a spontaneous mutation 

has occurred in a gene that is not involved in the classical EthA-dependent 

pathway of ETH bio-activation. Following the procedures described in section 

3.3.5, passaged bacteria were plated onto agar plates containing a range of 

ETH concentrations (between 60-80μg/ml). Individual ETH
R
 colonies were 

picked and sub-cultured. Drug susceptibility assays were then determined for 

these ETH
R
 clones to confirm ETH resistance (data not shown).  

Since InhA is the downstream target of activated ETH, a pre-screen was 

first conducted to exclude any spontaneous ETH
R
 mutants which harboured 

mutations in the inhA gene. Genomic DNA was extracted for PCR 

amplification and DNA sequencing of the inhA gene. Any spontaneous 

mutation that had occurred in this gene would have likely accounted for the 

observed ETH
R
 phenotype and was not of interest for this study. Out of the 

hundred clones analysed by PCR, only a handful of clones contained 

mutations in the inhA gene and were thus excluded. Notably, a large 

proportion of the spontaneous ETH
R
 mutants also could not be passaged in 

vitro and displayed weak growth in liquid media, hence these clones had to be 

excluded for full genome sequencing as well as it was technically impossible 
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to extract enough DNA from the cultures. The inability to passage these 

cultures suggests that the acquired mutations for these mutants were either 

unstable mutations or mutations in genes that are critical for growth. 

Eventually, 2 clones with no mutation in inhA were selected and subjected 

to full genome sequencing (FGS). Although numerous mutations were 

identified through FGS, the list of mutations were restricted to 

insertion/deletions (INDELs) and non-synonymous SNPs (NS-SNPs), and 

further refined by eliminating NS-SNPs that resulted in conservative amino 

acid changes (ie. change to an amino acid with similar physiochemical 

properties) to eliminate as much noise and unspecific mutations as possible. 

These two clones were found to contain frameshift mutations in mshA caused 

by INDELs of a number of nucleotides. No other NS-SNPs were observed in 

these two clones when compared against the parental Erdman ethA/R KO 

strain, indicating that mshA is likely the gene accounting for ETH resistance. 

A second round of spontaneous ETH
R
 mutants was carried out independently 

applying the same exclusion criteria used for the first round and another 5 

newly identified mutants were then subjected to full genome sequencing. This 

time, NS-SNPs in mshA were found in 4 out of 5 mutant clones, along with 

several other interesting genes candidates that could possibly account for ETH 

resistance as well (Table 9). A large proportion of the identified genes such as 

galE3, cobD, plcB and pks5 were found to be involved in metabolism 

pathways. Another group of identified genes including gltx, recD and topA 

were involved in the transcriptional, translational and nucleotide assembly 

pathways; however these genes were eliminated due to their unlikely 
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involvement in ETH metabolism (as explained further in Section 4.2.10.2) 

(data not shown). Remaining identified genes such as Erdman_1484 and 

Erdman_0263 clones could not be categorized under any pathways and these 

genes remain unclassified. 

While other gene candidates are worth further investigation as well, mshA 

was first selected for further characterization as mshA mutations had occurred 

at the highest frequency in six out of the seven clones. Previously, mshA 

mutations were shown to confer varying levels of co-resistance to INH and 

ETH in Mtb, after which MshA and its mycothiol associated pathway were 

suggested to play a role in ETH bio-activation (142).  The same work has 

reported that mshA KO mutants in the Erdman, H37Rv and CDC1551 

background are ETH
R
. It was proposed that MshA is linked to ETH bio-

activation due to its role in mycothiol biosynthesis. Interestingly, in both our 

current study and an independent group (38), only mshA mutations were 

obtained and not others in the mycothiol gene synthesis pathway including 

mshB, mshC or mshD during the generation of spontaneous ETH resistant 

mutants. However, the role of the glycosyltransferase MshA in ETH-mediated 

killing has yet to be described and understood fully and no further 

investigations had been made to analyze whether MshA action was associated 

with EthA-mediated ETH bio-activation.  The identification of ETH
R 

ethA/R 

KO Erdman mutants with mutations in mshA here further affirms the role of 

MshA and mycothiol in ETH bio-activation and suggests that it may be in an 

ethA/R-independent fashion.  
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Gene Name Gene Known Function Type of 

Mutations 

Frequency of 

mutation 

Erdman_0532 mshA Mannosyl transferase INDELs 

NS- SNPs 

2 

4 

Erdman_3212 - Malonyl CoA-acyl carrier protein 

transacylase 

NS- SNPs 3 

Erdman_0324 - Transmembrane protein NS- SNPs 2 

Erdman_0263 - Transmembrane protein NS- SNPs 1 

Erdman_0300 fadE6 Acyl-CoA dehydrogenase NS- SNPs 1 

Erdman_0588 galE3 UDP-glucose 4-epimerase NS- SNPs 1 

Erdman_0718 fabD2 Malonyl CoA-acyl carrier protein 

transacylase 

NS- SNPs 1 

Erdman_0819 - Transcriptional regulator NS- SNPs 1 

Erdman_1118 pabB Para-aminobenzoate synthase 

component I 

NS- SNPs 1 

Erdman_1484 - Thioredoxin NS- SNPs 1 

Erdman_1488 glgP Glycogen phosphorylase NS- SNPs 1 

Erdman_1647 moxR1 Transcriptional regulator NS- SNPs 1 

Erdman_1703 pks5 Polyketide synthase NS- SNPs 1 

Erdman_1821 argB Acetylglutamate kinase NS- SNPs 1 

Erdman_2261 pks12 Polyketide synthase NS- SNPs 1 

Erdman_2377 murE UDP-N-acetylmuramoylalanyl-D-

glutamate-2,6-diaminopimelate ligase 

NS- SNPs 1 

Erdman_2459 cobD Cobalamin biosynthesis protein NS- SNPs 1 

Erdman_2580 plcB Membrane-associated phospholipase C NS- SNPs 1 

Erdman_2922 - Prophage protein NS- SNPs 1 

Erdman_3922 - Transcriptional regulator NS- SNPs 1 

Erdman_4115 tyrA Prephenate dehydrogenase NS- SNPs 1 

 

Table 8:  Mutations Identified from Spontaneous ETH-resistant mutants 

Spontaneous ETH-resistant mutants were derived from a M. tuberculosis Erdman 
ethA/R KO mutant, screened for wild type inhA genes to exclude ETH

R
 mutants 

caused by inhA gene mutations, and 7 individual mutants were fully sequenced to 
identify novel genes involved in ETH bio-activation. Identified mutations were 
restricted to INDELs and NS- SNPs. The gene list was further refined by eliminating 
conservative NS-SNPs and excluding any hits in transcriptional, translational and 
nucleotide assembly pathways. Frequency of mutation indicates the number of 
mutants out of the 7 mutants sequenced that contai ns mutations in that particular 
gene. INDELS – Insertion/Deletion, NS-SNPs – non-synonymous single nucleotide 
polymorphisms. Gene name, gene and known function were referenced and 
extracted from Pubmed Genbank.  
(http://www.ncbi.nlm.nih.gov/nuccore/379026087 )  

  

http://www.ncbi.nlm.nih.gov/nuccore/379026087
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4.7 Analysis of mshA as a putative factor involved in the 

alternative pathway of ETH bio-activation in Mtb 

strains.  

4.7.1 Construction, complementation and validation of mshA KO 

and mshA/ethA/R double KO mutants in Erdman, H37Rv and 

CDC1551 

To verify the role of MshA in ETH bio-activation, the entire mshA locus 

was deleted from wild type M. tuberculosis Erdman, H37Rv and CDC1551, 

thus generating mshA single KO mutants. Furthermore, to investigate the role 

of MshA in the ethA/R KO mutants, mshA was also deleted in the ethA/R KO 

mutants. To do so, the ethA/R KO mutants were first unmarked to remove the 

hygromycin selection marker that had integrated at the ethA/R locus. Next, the 

unmarked ethA/R KO mutants underwent mshA deletion by classical double 

homologous recombination.  This led to the generation of mshA/ethA/R (m/e) 

double KO mutants in all three backgrounds. All clones were verified by 

Southern blot (Fig. 36) and subsequently complemented with hsp60-mshA on 

the integrative plasmid pMV306, utilizing hsp60 as its promoter since the 

native promoter of mshA remains uncharacterized (data not shown).  

Growth kinetics profiles of the M. tuberculosis Erdman, H37Rv and 

CDC1551 mshA and m/e KO mutants in 7H9 and 7H9 supplemented with 

OADC were monitored over a period of 14 days. Expectedly, the mshA and 

m/e KO mutants were unable to grow in 7H9 supplemented with only ADS 

(bovine albumin-dextrose-sodium chloride) (Fig. 37D-F) as previously shown 

by Vilcheze et al. 2008 (38). Due to the presence of beef liver catalase in 
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OADC, growth of the mutants in 7H9 was restored with the addition of OADC 

in place of ADS as the growth supplement. Notably, in the presence of 7H9-

OADC, Erdman parental, mshA and m/e KO mutants showed no differences in 

growth rate; however, H37Rv and CDC1551 mshA and m/e KO mutants 

displayed markedly attenuated growth rates in comparison to their respective 

parental strains particularly during the first 7 days of in vitro culture (Fig. 

37A-C). Complementation of the KO mutants restored growth rates 

comparable to that of their parental strains (data not shown).  Hence, we have 

verified that indeed, M. tuberculosis Erdman, H37Rv and CDC1551 mshA and 

mshA/ethA/R KO mutants require OADC to grow. Subsequently, all drug 

susceptibility assays involving mshA and m/e KO mutants were performed in 

7H9-OADC. 
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Figure 37: Construction of mshA KO and mshA/ethA/R double KO mutants in MTB 

Erdman, H37RV and CDC1551 

A) Chromosomal organization of mshA  was similar amongst all mutant strains. The 
arrows depict the lengths and directions of mshA and its neighbouring genes. Black 
bar corresponds to the probe used for Southern Blot analysis. B) Southern Blot 
analysis of chromosomal DNA. 1, MTB Erdman mshA KO; 2, MTB H37Rv mshA KO; 3, 
MTB CDC1551 mshA KO; 4, MTB CDC1551 WT ; L, DNA Molecular Ladder; 5, MTB 
Erdman mshA/ethA/R double KO; 6, MTB H37Rv mshA/ethA/R double KO; 3, MTB 
CDC1551 mshA/ethA/R double KO.   

  

(A) 

(B) 
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Figure 38: Growth Kinetics of M. tuberculosis Erdman, H37Rv and CDC1551 mshA KO 

and mshA/ethA/R double KO mutants in 7H9 OADC 

Growth Kinetics of A) & D) M. tuberculosis Erdman, B &E) H37Rv, C &F) CDC1551 
parental, mshA KO and mshA/ethA/R (m/e) double KO strains in 7H9 media 
supplemented with OADC (Left panel) or ADS (Right Panel) over a period of 14 days. 
After precultures were adjusted to the same starting OD600, strains were grown in 
7H9 at 37˚C over a period of 14 days. Every 2-3 days, the OD was taken to 
determine the growth of each strain.  
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4.7.2 MshA is not involved in the alternative pathway of ETH bio-

activation 

To investigate the possible role of mshA in the alternative pathway for 

ETH bio-activation, drug susceptibility assays were conducted on the mshA 

single KO and mshA ethA/R (m/e) double KO mutants. The slower growth 

rates observed with the CDC1551 mshA and m/e KO mutants (Fig. 38) were 

taken into consideration by reading the plates at day 7 post-setup, instead of 

day 5 post-setup for the other strains with parental growth rates. Indeed, 

optimization studies showed that these mutants reached an OD600 at day 7 

comparable to that of parental strain at day 5 in drug-free (DF) media, 

enabling unbiased comparison of MIC50 values (Table 11).  

Remarkably, the combined absence of both ethA/R and mshA loci in all 

three MTB backgrounds abrogated ETH susceptibility, rendering the m/e 

double KO mutants completely resistant to ETH (Fig. 39 and Table 10). MIC50 

values could not be obtained for these mutants since mycobacteria grew 

uninhibitedly even at the highest concentration of ETH (80µM) used (Table 

10). These observations were supported by the lack of a dose-response curve 

(Fig. 39) and bacteria growth equivalent to that of untreated mycobacteria 

(data not shown) in all three m/e KO mutant strains. Re-introduction of mshA 

in the m/e KO mutants restored ETH susceptibility to levels similar to that 

observed with their respective ethA/R KO counterparts (Table 10). Thus, these 

data indicate that the combined removal of mshA and ethA/R loci in MTB 

leads to complete resistance to ETH, and further confirms the involvement of 

mshA in ETH killing efficacy.  
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Interestingly, deletion of mshA alone led to MIC50 values either 

comparable (Erdman background) or greater (H37Rv and CDC1551 

backgrounds) than those obtained with their ethA/R KO counterparts (Fig. 39, 

Table 10). This observation thus suggests that mshA is at least, if not more; 

critical than the ethA/R locus for ETH killing efficacy. Complementation with 

mshA only partially restored the levels of ETH susceptibility, possibly due to 

the usage of hsp60 promoter in place of its native promoter.  

Additionally, and consistent with a previous report (179), the mshA KO 

mutants displayed mild increased resistance to INH with a 2-fold (Erdman) 

and 4-fold (H37Rv and CDC1551) increase of the MIC50 values compared to 

the parental strains (Table 10).  

Together, these data confirm the contribution of mshA in ETH and (to a 

lower extent) INH killing efficacy in Mtb. In addition, the complete resistance 

to ETH upon deletion of mshA from ethA/R KO mutants suggests that the role 

of MshA in ETH killing efficacy is independent of EthA-mediated ETH bio-

activation as previously proposed (42). These data thus further support that 

mshA is not involved in the alternative pathway of ETH bio-activation. Instead, 

since activated ETH and INH metabolites share the common drug target InhA, 

mshA may be involved in the latter steps of ETH drug action after its 

activation. 
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Figure 39: ETH MIC curves on mshA KO and mshA ethA/R double KO mutants. 

Drug assays were set up in 96-well plates using a broth microdilution method and 
their OD600 values were read with a spectrophotometry microplate reader after 5-
7 days. OD600 values were tabulated into PRISM for fitting of MIC curves, and 
MIC50 values were read from PRISM (Table 10).    
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Strain INH ETH 

 CDC1551 0.26 7.18 

CDC1551 ethA/R KO 0.20 31.04 

CDC1551 complement ethA/R 0.29 5.12 

CDC1551 mshA KO 0.98 NA 

CDC1551 complement mshA 0.43 11.82 

CDC1551 m/e KO 0.57 NA 

CDC1551 complement m/e 0.30 4.76 

   

Erdman 0.18 3.04 

Erdman ethA/R KO 0.18 19.69 

Erdman complement ethA/R 0.17 2.67 

Erdman mshA KO 0.49 20.63 

Erdman complement mshA 0.28 5.42 

Erdman m/e KO 0.37 NA 

Erdman complement m/e 0.20 13.54 

   

H37Rv 0.20 3.30 

H37Rv ethA/R KO 0.28 12.55 

H37Rv complement ethA/R 0.23 1.99 

H37Rv mshA KO 0.85 40.67 

H37Rv complement mshA 0.28 12.89 

H37Rv m/e KO 0.80 NA 

H37Rv complement m/e 0.27 11.12 

 

Table 9: MIC50 values of INH and ETH on mshA KO and mshA ethA/R double KO 

mutants. 

Drug assays were set up in 96-well plates using a broth microdilution method 
in 7H9-OADC and their OD600 values were read with a spectrophotometry 
microplate reader after 5 or 7 days. OD600 values were tabulated into PRISM for 
fitting of MIC curves, and MIC50 values were read from PRISM.   NA = Not 
Available due to complete ETH resistance.  

  



Chapter 4: Investigating ETH drug activation and resistance mechanisms 

in Mtb 

 

118 

 

4.7.3 ETH drug susceptibility of Erdman ethA/R KO mutant varies in 

different nutritional supplements. 

Due to the inability of mshA and m/e KO mutants to grow in 7H9 ADS, 

drug susceptibility assays involving these mutants were performed in 7H9-

OADC. However, since the initial MIC values obtained in this work were 

generated in 7H9-ADS (Table 5), we re- established their MIC in 7H9-OADC 

to analyze for any differences in drug susceptibility in the presence of the 2 

different supplements (Table 11). The MIC50 values obtained for INH were 

comparable regardless of the medium supplement (OADC or ADS) for the 

three MTB backgrounds (WT, ethA/R KO and complement) (Table 11). 

Similar MIC values for ETH were also observed with the three WT strains in 

both types of medium. However, the ETH MICs increased by 2-fold for all 

ethA/R KO mutants upon replacing ADS with OADC. Despite the greater 

resistance to ETH in the presence of OADC, dose-dependent drug 

susceptibility to ETH was nevertheless retained (data not shown). Therefore 

our data indicated that although some variation exists between the MIC values 

when using ADS or OADC as supplement, ETH susceptibility was still 

retained in the ethA/R KO MTB mutants. 
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 7H9-ADS 7H9-OADC 

 INH ETH INH ETH 

CDC1551 0.22 6.90 0.26 7.18 

CDC1551 ethA/R KO 0.22 12.40 0.20 31.04 

CDC1551 complement ethA/R 0.20 4.77 0.29 5.12 

     

Erdman 0.15 3.89 0.18 3.04 

Erdman ethA/R KO 0.11 9.29 0.18 19.69 

Erdman complement ethA/R 0.12 3.25 0.17 2.67 

     

H37Rv 0.20 3.30 0.20 3.30 

H37Rv ethA/R KO 0.20 9.16 0.28 12.55 

H37Rv complement ethA/R 0.19 3.1 0.23 1.99 

Table 10: MIC
50

 values of INH and ETH in 7H9-ADS and 7H9-OADC. 

Drug assays were set up in 96-well plates using a broth microdilution method and 
their OD600 values were read with a spectrophotometry microplate reader after 5 -
7 days. OD600 values were tabulated into PRISM for fitting of MIC curves, and 
MIC50 values were read from PRISM.  
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4.8 The EthA/R-independent alternative pathway of ETH 

bio-activation in M. tuberculosis Erdman and H37Rv 

strains does not involve other EthA-like BVMOs. 

As mentioned earlier, EthA is a Bayer Villiger monooxygenase (BVMO) 

that metabolizes ETH into its active mycobactericidal compound. In addition 

to ethA, five other genes annotated in the H37Rv database (rv1393c, rv3049c, 

rv0892, rv3083, rv0565c) encode for proteins that display the BVMO 

signature motif  (132, 176) and counterpart orthologs are also present in the 

genomes of the other Mycobacteria strains used in this study. Since BVMOs 

such as EthA are known to have broad substrate specificity, it is conceivable 

that the alternative ETH bio-activator present in these Mtb strains could also 

be a BVMO.  

Taking into account that multiple in vitro passages occasionally lead to 

genetic mutations in the Mtb genome, the five BVMO-encoding genes in the 

Mtb and BCG strains used in this study were first fully sequenced to survey 

for any non-synonymous single nucleotide polymorphisms (SNPs) between 

the Mtb and BCG strains. Since BCG ethA/R KO was found to be completely 

resistant to ETH killing, we reasoned that should one of these putative 

BVMOs be involved in the alternative pathway of ETH bio-activation in MTB, 

differences at the DNA level may exist between the BCG and MTB strains. 

Using H37Rv as the reference genome, we therefore sequenced and compared 

all five other BVMO-encoding genes between the three MTB strains 

(CDC1551, Erdman, H37Rv) and BCG strain via BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The BLAST results revealed 2 NS-

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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SNPs in rv3083 (Ile81Ala and Val94Ile) between MTB strains and BCG. 

However, both NS-SNPs do not map within the ‘Baeyer–Villigerase’ (BVase) 

motif [FXGXXXHXXXW(P/D)] which is involved in the enzymatic activity 

of the protein (47). Therefore, these NS-SNPs are unlikely to account for a 

possible difference in the enzymatic activity of this putative BMVO between 

MTB and BCG strains.  

In conclusion, the absence of significant differences at the DNA level of 

the five other BVMO-encoding genes between BCG and MTB strains argues 

against the hypothesis that one of these five BVMO-encoding genes may act 

as an alternative ETH bio-activator in MTB. In addition, the fact that none of 

these BVMO-encoding genes was identified upon FGS of the ETH
R
 

spontaneous mutants further argues against their potential role in ETH bio-

activation. Therefore, our data suggest that it is highly unlikely for the 5 other 

BVMO-encoding genes to be involved in the alternative pathway of ETH bio-

activation identified in H37Rv and Erdman strains; however, the possibility of 

transcriptional or post-transcriptional modulation of these BVMOs cannot be 

ruled out. 
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4.9 Discussion 

4.9.1 Comparison of ETH efficacy in vitro versus ex vivo 

In the first part of this section, we observed an enhanced bactericidal effect 

of ETH and other thiocarbamide containing drugs during macrophage 

infection in contrast to in vitro conditions. Further investigations revealed that 

this effect could neither be accounted for by differential transcriptional 

activities of the ethA/R locus nor by spontaneous activation of ETH within the 

macrophages. Several other conjectures that could account for this interesting 

observation exist; however, these were not explored due to the technical 

limitations in our study.  

Firstly, although the transcriptional activity of ethA and ethR was analyzed, 

post-transcriptional regulation or differential translational activity of these 

genes could have occurred which were not monitored in this study. 

Alternatively, thiocarbamide containing drugs may be able to accumulate 

better in macrophages, resulting in an actual intracellular drug concentration 

that is higher than that in the culture medium, thereby leading to an artefactual 

increase in drug killing efficacy. Lastly, it is proverbial that the physiology of 

Mtb varies widely in different microenvironments partly depending on the 

carbon and energy sources available. Naturally, the in vitro growth conditions 

versus the phagosomal environment vary greatly, which affects mycobacterial 

metabolism, thus possibly influencing ETH bio-activation. One manner in 

which ETH bio-activation could be affected could be an enhancement in the 

enzymatic activity of EthA in the presence of specific components that are 

only present in macrophages but not in vitro.  
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Yet, due to the difficulties in analysing pro-drug metabolism in vivo, to 

this date only 2 published reports exist on the study of ETH metabolism in 

vivo using this fairly new method of HRMAS-NMR by the same group (128, 

131). Moreover, the challenges in studying these unstable and short-lived 

metabolites that are susceptible to oxidation coupled with the lack of 

understanding in ETH metabolism raises limitations in the use of this 

technique to study ETH bio-activation within the macrophage. Indeed, the 

macrophage environment varies vastly from the mycobacteria environment 

and thus it is difficult to conclude whether the lack of detection of ETH 

metabolites was due to a true inability of the macrophage to metabolize ETH, 

or the abundant amounts of reactive oxygen species (ROS) and reactive 

nitrogen intermediates (RNIs) present in macrophages that may have 

interfered with any intermediate metabolites the moment these were formed. 

Another theory that could be potentially challenging to investigate would be 

the metabolism of ETH being a synergistic reaction involving both the 

macrophage and the mycobacteria during macrophage infection. 

Although the mechanisms behind these observed data are not fully 

deciphered yet, these findings can still be utilized to further our understanding 

of ETH bio-activation. As discussed in earlier sections, extremely high 

dosages of ETH (up to 10 times more than that of INH) are utilized for the 

treatment of MDR-TB in the clinical setting. Yet, the in vitro MIC value for 

ETH is 6-7 times lower than that of ex vivo MIC, in contrast to INH which 

displays the opposite trend (ie. ex vivo MIC is 4 times higher than in vitro 

MIC). This indicates that the co-incubation of Mtb-infected macrophages with 
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ETH is sufficient to achieve efficient and effective antibiotic effect, in contrast 

to previous deductions that the lower antibiotic activity of ETH as compared 

to INH was due to a generally lower efficiency of ETH bio-activation (180). 

Instead, these observations indirectly favour the counter theory, whereby the 

low bioavailability of ETH eventually results in poor drug distribution and 

thus, insufficient drug uptake by macrophages. While research efforts have 

been made in both aspects to either improve ETH efficacy by improving ETH 

bio-activation through the use of EthR inhibitors (149) or improving the drug 

formulation or delivery systems to reduce dosing frequency (which would 

reduce patient toxicity and improve patient compliance) (181), these findings 

give indication that perhaps the latter approach would be more feasible in the 

clinical setting with better clinical outcomes. 
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4.9.2  Molecular Mechanisms behind ETH Bio-activation 

The second part of this section examines ETH drug susceptibility amongst 

ethA/R KO mutants in the BCG, Erdman, H37Rv and CDC1551 backgrounds 

in a bid to further analyze ETH bio-activation.Surprisingly, while BCG ethA/R 

KO mutant displayed complete resistance to ETH, ETH susceptibility and 

dose-dependent drug response to ETH were retained in the ethA/R KO MTB 

strains, with mild increase in their levels of resistance to ETH. Previous 

studies involving anti-mycobacterial pro-drugs INH and PZA have shown that 

absence of their respective bio-activators in MTB led to extremely high to 

complete levels of resistance (179, 182, 183). The reported MICs of INH for 

katG-deleted mutants and katG deficient MTB isolates (~80 mg/ml) (179) 

were 400 fold higher than the MIC measured with their WT and 

complemented counterparts (~0.02mg/ml), proving that deletion of katG is 

sufficient to confer high-level INH resistance (182). Similarly, PZA-resistant 

strains with pncA-encoded mutations that led to a loss in pyrazinamidase 

activity also displayed high levels of resistance to PZA, ranging from 100 to 

more than 800μg/ml versus 12.5 μg/ml in WT counterparts (183). Arguably, in 

the absence of their respective enzymatic bio-activator to convert these 

prodrugs into a catalytically active form, these stable and chemically inert 

drug forms are expected to remain inactive and non-bactericidal, thus 

accounting for the high to complete levels of drug resistance. Previous studies 

by Hanoulle et al. have shown that ETH is metabolized into an ETH-S-oxide 

derivate (ETH-SO) and ETH*, and subsequently into ETH-OH; out of which 

only ETH* was observed to accumulate exclusively within the bacterial cells 
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(128). On the other hand, ETH, ETH-SO and ETH-OH were found exclusively 

in the extracellular milieu, suggesting ETH* to be the prime active compound 

candidate for antibiotic action. Other than ETH*, all other ETH derivatives 

including prodrug ETH itself possess little or no anti-mycobactericidal activity 

(124, 130, 177, 184). Coupled with this knowledge, our data therefore 

challenge the paradigm of ethA/R locus as the sole player involved in ETH 

bio-activation in MTB (124, 127) and led us to propose the existence of an 

alternative pathway of ETH bio-activation independent of the ethA/R locus. 

Although efforts were made in this study to compare the genome 

sequences of other BVMO-encoding genes amongst BCG and Mtb strains, no 

conclusive differences could be drawn between the strains. These findings led 

us to exclude the possibility of involvement of other BVMO-encoding genes 

in the alternative pathway of ETH bio-activation, although these genes cannot 

be ruled out completely either since their respective enzymatic activities in the 

various Mtb backgrounds has not been measured.  

In fact, the genome of MTB encodes more than 30 putative 

monooxygenases which may have stemmed from evolution as a protective 

mechanism against various xenobiotic substances, leading Morlock et al. to 

contemplate the plausible existence of one or more enzymes with functional 

redundancy to EthA (124, 126, 127). The proliferation of these EthA 

homologs suggests that one or more of these enzymes may be capable of 

compensating for the loss of EthA for pro-drug function. However, the 

absence of NS-SNPs that map within the ‘Baeyer–Villigerase’ (BVase) motif 

[FXGXXXHXXXW(P/D)] and the absence of these BVMO-encoding genes 
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upon FGS of the ETH
R
 spontaneous mutants led us to exclude the likelihood 

of other BVMOs possessing analgous roles to EthA. Yet, these genes cannot 

be ruled out completely either since their respective enzymatic activities in the 

various Mtb backgrounds has not been measured. Transcriptional and post-

transcriptional modulation of these BVMOs in similar in vitro conditions 

should be conducted to further validate this notion. Henceforth, we searched 

for novel factors that could account for additional mechanisms of ETH 

resistance by generating spontaneous ETH-resistant mutants from the lowly 

resistant Erdman ethA/R KO mutant and identified several potentially 

interesting gene candidates. Out of this list, MshA was selected as the pilot 

gene for further investigation in this thesis due to the existence of previous 

literature that suggested a role for this gene in ETH resistance (38).  

ETH susceptibility assays of the mshA single KO and mshA/ethA/R double 

KO mutants revealed that the role of mshA in ETH killing efficacy was 

independent of ethA/R-mediated ETH bio-activation, and suggest that MshA 

and the mycothiol pathway play a role in ETH killing efficacy after ETH bio-

activation. The different drug susceptibility profiles of ETH obtained from 

both sets of Mtb strains highlight the fact that different Mtb strains display 

very different phenotypes and raises a possible necessity to study various Mtb 

strains in future drug susceptibility assays instead of just one reference strain 

in order to further understand the complexity of drug resistance mechanisms in 

Mtb strains.  

While clinical isolates resistant to ETH have been associated with 

mutations in its activator gene ethA, its molecular target inhA , and others, a 
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number of studies have reported that up to 20-50% of the ETH
R
 Mtb clinical 

isolates harbour no mutations in genes known to be involved in ETH 

resistance (126, 138, 149), adverting that the mechanisms involved in ETH 

bio-activation are more complicated than initially thought, thus supporting that 

additional investigation is necessary to fully decipher the molecular and 

genetic players. Also, despite the recent discovery of mshA as a novel player 

involved in ETH resistance, even then, few ETH
R
 clinical isolates were found 

to carry mutations in this gene; likely due to a loss of fitness in these mutants 

with the lack of mycothiol as a detoxification mechanism against toxic ROS 

(38). A very recent study found that only 1 out of 47 ETH
R
 clinical isolates 

(2%) harboured a mutation in mshA. Even more intriguing was the presence of 

8 out of 47 isolates (17%) that had no mutations in any of the genes so far 

known to be involved in ETH activation (126, 129), suggesting that the 

mechanisms of ETH bio-activation in M. tuberculosis are more complex than 

initially thought and have yet to be deciphered. Furthermore, in a recent study 

on Mtb clinical isolates, investigators described ETH
R
 clinical isolates with 

wild type ethA gene but inhA promoter mutations which displayed varying 

levels of ETH resistance (138). The authors reported that 6 out of 15 isolates 

presented with unusually high levels of ETH resistance (100µg/ml) and 

proposed that this should not exclusively be attributed to the inhA promoter 

mutations, but rather, to an alternative mechanism of ETH resistance. Lastly, 

Baulard et al. have recently identified ETH boosters that appear to boost ETH 

bio-activation by turning on the transcription of a novel pathway for ETH bio-

activation; but yet do not bind to EthR, giving rise to more evidence for the 
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existence of an alternative pathway of ETH bio-activation (Baulard, personal 

communication). Certainly, the combinations of all these findings taken 

together with the data presented here culminate in a highly plausible existence 

of an alternative pathway for ETH bio-activation.  

In order to ascertain whether this hypothesized alternative activator has 

synonymous catalytic activity to EthA, one possible direction would be to use 

HRMAS-NMR as was previously done (131) to trace the fate of ETH and its 

derivative metabolites in the ethA/R KO Erdman and H37Rv mutants. 

Detection of similar metabolites as those found in the parental strain in the 

mutant would be a strong indication of the presence of an EthA-like activator 

in these mutants. Alternatively, an indirect way to confirm the presence of this 

hypothesized pathway would be to analyse the downstream effects of activated 

ETH by detecting by TLC for any possible inhibition of FAMEs and MAMEs 

in the ethA/R KO Erdman or H37Rv mutants, which has been shown 

previously to be inhibited only in the presence of ETH in its activated form 

(91).   

Since MshA and its mycothiol-associated pathway were previously 

proposed to be involved in ETH bio-activation (142), we decided to ascertain 

its role in the alternative pathway of ETH bio-activation. Earlier studies 

observed an increase in the rate of NADPH-dependent mono-oxygenation of 

ETH by recombinant EthA that is directly proportional to the increase in 

mycothiol concentration, suggesting that mycothiol plays a role in the 

activation steps of ETH rather than in the formation of the ETH-NAD adduct 

(142). The findings presented in our study have demonstrated that removal of 
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mshA led to high levels of ETH resistance in all 3 Mtb strains. In fact, removal 

of mshA alone resulted in higher levels of ETH resistance than removal of the 

ethA/R locus in all the Mtb backgrounds including CDC1551 strain where a 

functional alternative pathway of ETH bio-activation is likely inexistent, 

therefore suggesting that mshA is not involved in ETH bio-activation. 

Furthermore, the low resistant phenotype to ETH in the Erdman and H37Rv 

ethA/R KO mutants shifted to full resistance to ETH upon deletion of mshA, 

suggesting that mshA may instead be involved in the downstream steps after 

ETH bio-activation. It is plausible that the final product of MshA, mycothiol, 

either stabilizes the formation of ETH intermediates or forms a complex with 

activated ETH as previously suggested by Vilcheze et al. (38),for which more 

in-depth studies will be necessary. Taking all these findings together, the 

totally ETH resistant phenotypes of the double mshA/ethA/R KO mutants and 

high ETH resistance phenotypes of the single mshA KO mutants in contrast to 

the low ETH resistance phenotypes of Erdman and H37Rv ethA/R KO mutants 

suggest that  mshA plays a critical role in ETH killing efficacy. Additionally, 

these discoveries also further validate MshA and its mycothiol associated 

pathway as novel potential drug targets with the ultimate goal to enhance 

sensitivity to not only ETH but also to INH, by synthesizing compounds that 

lead to enhanced MshA expression levels. A similar approach has been 

reported with EthR inhibitors whereby small molecules able to inhibit EthR 

were shown to lead to increased EthA expression levels thereby improving the 

ETH bio-activation rate (149). 
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Taking all these data together, these conclusions raise the necessity to 

revisit the ETH bio-activation pathway in mycobacteria, which has been 

outlined in Figure 39. It appears that while MshA and its mycothiol-associated 

pathway are critical for ETH killing activity, their involvement would occur at 

a later stage, ie. after ETH bio-activation and after the formation of ETH 

metabolites. Previous studies found that EthA was able to metabolize 

thiacetazone into either a sulfenic acid intermediate under acidic/neutral 

conditions or a carbodiimide metabolite under basic conditions; and both 

metabolites readily react with glutathione (GSH) to either regenerate the 

parent drug for the former metabolite, or form a GSH-adduct for the latter 

(178). Since mycothiol is the mycobacterial analogue for GSH and EthA has 

also been shown to oxidize ETH into a sulfenic acid metabolite (130), ETH 

metabolites could react with mycothiol in a similar manner. Consequently, one 

could further speculate that such a reaction would either stabilize these 

reactive ETH metabolites or help in drug recycling, or perhaps even lower the 

intracellular concentration of MSH thus sensitizing mycobacteria to oxidative 

damage, or culminate in a combination of all three consequences. Furthermore, 

previous studies have demonstrated the lack of formation of the ETH-NAD 

adduct in the presence of recombinant EthA with NAD+, NADPH and 

mycothiol by monitoring the rate of inhibition of InhA (38), supporting that 

MSH is unlikely to be involved in the downstream formation of the ETH-

NAD adduct. In light of our findings and the proposed role of mycothiol in 

ETH mycobactericidal activity, it is likely that the alternative pathway of ETH 

bio-activation identified in the Erdman and H37Rv strains still requires an 
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enzyme or protein conjugate of some sort to assist in the formation of ETH 

metabolites that has yet to be identified. 

On that account, other novel genes have been identified through 

sequencing analysis of the spontaneous ETH
R
 mutants generated in this study, 

and it would be interesting to investigate their roles in ETH resistance upon 

further validation of these mutations via DNA sequencing in the respective 

mutants. It is possible that some of these hits could contribute to the 

alternative pathway of ETH bio-activation, in particular metabolism-related 

genes with similar catalytic activities as EthA; however we did not identify 

such genes in our list. We also ruled out genes involved in transcriptional, 

translational and nucleotide assembly pathways since it is highly likely that 

these mutations are most probably non-specific mutations that arose during the 

numerous rounds of passage; however, we cannot completely rule out the 

possible involvement of unknown transcriptional regulators such as 

Erdman_0819 and Erdman_3922 that may play a role in regulation of this 

pathway. Subsequent more interesting gene candidates worth studying apart 

from mshA would be Erdman_1484, a gene encoding for thioredoxin. 

Interestingly, in Streptomyces coelicolour, the amount of MSH has been 

shown to be under the control of a sigma factor σ
R
, which is regulated by an 

antisigma factor RsrA via a thiol-disulphide redox switch involving 

thioredoxin (185);thus suggesting that such a thiol-disulphide redox switch 

may exist in mycobacteria as well, hence affecting mycothiol levels and 

subsequently causing ETH resistance. Moreover, since mycobacterial 

thioredoxins have been demonstrated to serve regulatory functions as 
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disulphide reductants that affect the metabolism of mycobacteria(186, 187), 

characterization of this gene may provide further insights into ETH bio-

activation as well. Additionally, since small thiol molecules do not appear to 

be directly associated with the thioredoxin system in bacteria unlike that in 

mammalian cells (188), one could also speculate that thioredoxin may 

facilitate redox reactions specifically involved in the alternative pathway of 

ETH bio-activation, although biochemical studies would be necessary to 

explore this possibility. All things considered, this list of genes is undeniably 

worth further exploration for other novel factors influencing ETH killing 

efficacy. 

Finally, we also discovered that the choice of nutrient supplement used 

when conducting ETH susceptibility assays can influence the outcome for the 

ethA/R KO mutants. The use of the nutritional supplement OADC causes Mtb 

ethA/R KO strains to develop slightly increased drug resistance towards ETH 

but not INH, whilst ADS allows mycobacteria to display a less resistant 

phenotype to ETH. The main differences in the 2 supplements are the 

additional beef catalase and oleic acid present in OADC that ADS lacks. In 

light of these findings, we reasoned that either of these additional components, 

more likely the catalase due to its involvement in detoxification processes, 

could also be contributing to ETH resistance. Should mycothiol and catalase 

affect ETH bio-activation in a similar manner due to their similarities in 

antioxidant functions (189), one would expect the addition of catalase to 

enhance ETH susceptibility in all Mtb strains (since removal of the mshA 

locus increased ETH resistance in all Mtb strains). On the contrary, the 
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addition of OADC increased ETH resistance in all 3 Mtb ethA/R KO mutants. 

The contrasting effect observed between MSH and OADC indicates that the 

mycothiol pathway and OADC affect ETH bio-activation via completely 

different modes of action. It seems likely that the beef catalase present in 

OADC may be implicated in the alternative pathway of ETH bio-activation, 

likely through the detoxification of ETH metabolites. Since catalases display 

high capacities in removing hydrogen peroxide which is a toxic by product of 

many metabolic reactions (190), this set of findings further supports the 

presence of an alternative pathway of ETH metabolism in Mtb which could 

explain the indirect effect of catalase in the alternative pathway of ETH bio-

activation. Further studies would be necessary to verify this idea. Of note, 

most published studies on ETH resistance utilized OADC as their nutritional 

supplement of choice (124, 142). 

Our work has demonstrated several novel findings. Firstly, it is worth to 

note that previous studies provided only indirect genetic evidence of the 

involvement of EthA/R in ETH bio-activation through either over-expression 

of ethA or ethR, or through ethR deletion in M. bovis BCG (124, 127). Here 

instead, we demonstrate for the first time that deletion of the entire ethA/R 

locus in MTB and BCG strains led to increased resistance to ETH, thus further 

confirming the crucial role of this locus in ETH bio-activation. Secondly, and 

less expectedly, the retained susceptibility to ETH in ethA/R KO MTB mutants 

led us to propose the existence of an alternative pathway of ETH bio-

activation. Finally, while our data confirm the importance of MshA and the 

mycothiol pathway in ETH killing efficacy, they do not support its 
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involvement in EthA-mediated ETH bio-activation as previously proposed, 

and rather suggest that MshA and the mycothiol pathway act at a later step, 

after formation of the ETH cidal metabolite, ETH*. Hence, this work raises 

the necessity to revisit the ETH bio-activation pathway in pathogenic 

mycobacteria and calls for further investigation.  
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In closing, this thesis has explored the varying importance of the ethA/R 

locus for host virulence and drug susceptibility in several strains of Mtb. 

Characterization of the varied virulence profiles have demonstrated an indirect 

role for the ethA/R locus in virulence amongst specific Mtb strains; whilst the 

heterogeneous ETH resistance phenotypes obtained from the various Mtb 

ethA/R KO mutant strains have unexpectedly revealed an alternative 

mechanism for ETH bio-activation in certain Mtb strains. Although we have 

identified critical roles for the ethA/R locus in BCG and CDC1551 in terms of 

both host virulence and ETH drug susceptibility; conversely, the ethA/R locus 

appears to be less essential for both host virulence and ETH susceptibility in 

Erdman. While further in-depth studies will be necessary to verify this, we 

hypothesize either the presence of a compensatory factor for EthA that exists 

in Erdman and H37Rv but is absent in BCG and CDC1551, or the existence of 

additional detoxification mechanisms in BCG and CDC1551 that could 

simultaneously account for an increased resistance of CDC1551 and BCG 

against ROS and RNI. Considering the discovery of several other novel gene 

candidates that may potentially contribute to ETH drug resistance mechanisms 

from our pre-screens and the drug susceptibility profiles of these spontaneous 

ETH-resistant mutants being specific to ETH only, the former hypothesis is 

favoured; and further research in this area could reveal novel drug targets or 

aid in molecular diagnostics for the screening of MDR-TB in future. 

Another recurrent issue raised in this thesis is the importance of selecting 

an appropriate and representative Mtb strain for experimental studies as 

reflected by the varying virulence and drug susceptibility phenotypes obtained 

amongst different Mtb strains. Though consisting of genetically related 
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members, the genome diversity amongst individual members varies 

considerably, and a minor amino acid or frameshift variant could have 

consequential effects. This decision should be dependent on factors such as the 

type of study being conducted, the available resources and the relative 

importance of future outcomes to the clinical setting. On hindsight, the study 

of virulence factors for Mtb should optimally utilize virulent M. tuberculosis 

strains and not avirulent BCG for more clinically relevant findings. Drug 

susceptibility and mechanism studies should not be limited to a single strain, 

but instead encompass a broad spectrum of Mtb strains in order to glean a 

better understanding of drug response in clinical settings that typically involve 

unidentified clinical Mtb isolates. Care should also be taken to not 

overgeneralize findings from mechanism studies based on just a single strain 

as these outcomes may not necessarily be extrapolated to other Mtb strains.   

Lastly, we propose novel modifications in the mechanism for ETH bio-

activation in mycobacteria upon consolidation of all findings in this thesis. 

Our findings in the first section suggest the existence of a compensatory factor 

for the ethA/R locus in Mtb strains that BCG lack. Assuming that this 

compensatory factor is innate and may also play a role in the alternative 

pathway of ETH bio-activation that may be further linked to MshA 

downstream, subsequent data from the second section of this thesis further 

supports this theory. Thus, based on existing literature and this thesis, ETH 

bio-activation should be reconsidered as a 2-step pathway (Fig. 40), with 1) 

the formation of unstable and reactive ETH metabolites; and 2) subsequent 

formation of the activated ETH, ETH*. Mycothiol appears to be implicated in 

the second step of this pathway downstream of ETH bio-activation, possibly 
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by stabilizing either intermediate ETH metabolites or ETH*. An alternative 

pathway of ETH bio-activation is proposed as well, with the possible 

involvement of catalase or its substrate, hydrogen peroxide, in the X pathway 

of ETH metabolism. These unexplored modifications warrant further research 

potential and specify novel investigative directions in further understanding 

ETH bio-activation. 
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Figure 40: Existing and Proposed Alternative Pathway of ETH Bio-activation in 

Mycobacterium tuberculosis 

ETH is activated by the monooxygenase EthA into its activated form, ETH*, for its 
antibiotic action. The expression of EthA is regulated by the transcriptional 
repressor EthR, and both ethA and ethR are located in the same operon with a 
shared intergenic promoter region. EthR dimers bind cooperatively as a homo -
octamer to the specific operator in the ethA-ethR intergenic promoter region, 
repressing both ethA and ethR expression. A mycobacteria serine/threonine 
protein kinase (STPK) negatively regulates the physical binding of EthR to the DNA 
region via phosphorylation of the EthR homo -octamer, hence promoting ethA-ethR 
expression. Additionally, the mycothiol synthesis pathway and its end product, 
mycothiol, have been implicated in ETH bio-activation as well. Based on existing 
reports and this thesis, ETH activation should be considered as a 2 -step pathway, 
with 1) the formation of unstable and reactive ETH metabolites; and 2) subsequent 
formation of the activated ETH, ETH*. Mycothiol appears to be implicated in the 
second step of this pathway, by stabilizing either ETH metabolites or ETH*. An 
alternative pathway of ETH bio-activation is proposed as well 
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