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Summary 

 

The objective of the current study is to develop a multi-functional water façade 

system that can be used to harness the solar energy, reduce solar heat penetration into 

building and at the same time acts as a protective envelope against blast. Since the 

probability of blast threat on buildings is usually low, it is of significance advantage 

to carry out the investigation on the multi-functional water façade system in order to 

maximize the benefits of adopting a blast-mitigating design while improving the 

building performance in terms of energy usage. The proposed multi-functional water 

façade system is an innovative design, it is also the objective of this research to 

evaluate its energy saving and blast resistant performance. 

  

The stainless steel water tank infilled with water, which is named Steel-Water-Steel 

(SWS), was proposed as one type of water façade system and can be installed at the 

outer skin of the building to achieve energy saving and to resist blast load. Since the 

blast resistance of stainless steel water tank is low, the Steel-Concrete-Steel (SCS) 

sandwich panel, which was proven with high blast resistant capacity, was attached at 

the rear of the stainless steel water tank to form another type of water façade system 

which is named SWS-SCS. 

 

To assess the energy saving performance of the water façade systems, field 

monitoring studies on the SWS and SWS-SCS mock-ups were conducted. The energy 

performance of the proposed water façade systems was evaluated in two aspects, i.e. 

thermal efficiency and space cooling load. The thermal efficiency gauges the 
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efficiency of water façade system in storing the solar energy as warm water and the 

space cooling load gauges the solar energy that penetrates into room. The field 

monitoring results showed that the SWS-SCS panel performed better than the SWS 

panel which in turn performed better than the control bare brick wall that directly 

exposed to solar radiation. This field test confirmed the energy saving function of the 

proposed water façade systems. 

 

The structural response of water façade systems under lateral pressure load was 

experimentally, numerically and analytically studied and the resistance-deflection 

functions, deflection shapes and failure modes were obtained, which are necessary for 

conducting the simplified analysis on the water façade systems under dynamic 

pressure loading. The inflated high pressure airbag was used to apply the lateral 

pressure load in the experimental study. Due to the limitation of airbag lifting capacity, 

the SWS-SCS configuration was divided into SWS and SCS which were tested 

separately. Finite Element analyses were then conducted to investigate the effect of 

water on the static response of SWS tank and the load transfer mechanism between 

face plate and concrete core of SCS panel. 

 

Dropping weight on inflated high pressure airbag was adopted to generate the 

dynamic pressure loading. This test method is to simulate the dynamic blast load and 

can be easily conducted in the laboratory. The Single-Degree-of-Freedom (SDOF) 

method was adopted to predict the responses of the specimens under dynamic 

pressure loading. Due to the limitation of the adopted test method with load duration 

longer than that of direct blast test, the performance of water façade systems under 
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blast loading was investigated using Finite Element method. 

 

An analytical method, based on energy principle, was adopted to predict the blast 

response of the pin-pin supported water façade systems. The accuracy of the method 

was validated with the established Finite Element models and the design implication 

of water façade systems was discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

List of Tables 

Table 3.1 Categorized results for October 2013 .................................................. 43 

Table 3.2 Properties of materials (Welty et al., 2001) ......................................... 43 

Table 3.3 Thermal efficiency of SWS mock-up .................................................. 44 

Table 3.4 Space cooling load ............................................................................... 45 

Table 3.5 Categorized results for June 2014 ........................................................ 46 

Table 3.6 Thermal efficiency of SWS and SWS-SCS mock-up .......................... 47 

Table 3.7 Space cooling load of SWS and SWS-SCS mock-up .......................... 48 

Table 4.1 Material properties of stainless steel and mild steel ............................ 94 

Table 4.2 Material properties of cement grout ..................................................... 94 

Table 4.3 Details of static test specimens ............................................................ 94 

Table 4.4 Lateral pressure test results .................................................................. 94 

Table 4.5 Comparisons between experimental and analytical results ................. 94 

Table 5.1 Summary of impact test results .......................................................... 154 

Table 5.2 Midpoint displacement of SAS and SWS tanks (mm)....................... 154 

Table 5.3 Midpoint displacement of SCS50 and SCS75 sandwich panels (mm)

 ................................................................................................................... 154 

Table 5.4 Comparison of maximum displacements between test and SDOF (mm)

 ................................................................................................................... 154 

Table 6.1 Maximum displacement comparison ................................................. 209 

Table 6.2 Minimum plate thickness of façade systems under blast load ........... 209 

 

 

 

 

  



 

xi 

 

List of Figures 

Fig. 1.1 The proposed water façade systems .......................................................... 9 

Fig. 2.1 Posttest configuration for masonry walls: no bonding (left) and bonding 

(right) between wall and polymer coating (Davidson et al., 2005).............. 27 

Fig. 2.2 Local buckling of the corrugation after blast test (Langdon and Schleyer, 

2005a) ........................................................................................................... 27 

Fig. 2.3 Typical pressure–time profile for blast wave in free air (Smith and 

Hetherington, 1994) ..................................................................................... 28 

Fig. 2.4 Test setup for blast load simulation system (Mostaghel, 2003) .............. 28 

Fig. 3.1 Photo of monitoring station .................................................................... 49 

Fig. 3.2 Layout of the monitoring station ............................................................ 49 

Fig. 3.3 Schematic diagram of circulating system: (a) SWS VS bare wall, (b) 

SWS VS SWS-SCS ...................................................................................... 50 

Fig. 3.4 Temperature sensing points for roof (Each dot represents one 

temperature sensor probe) ............................................................................ 51 

Fig. 3.5 Temperature sensing points for walls (Each dot represents a pair of 

temperature sensor probes on the internal and external surfaces of the wall)

 ...................................................................................................................... 51 

Fig. 3.6 Temperature sensing points for SWS and SWS-SCS mock-ups (Each dot 

represents one temperature sensor probe at the center) ............................... 52 

Fig. 3.7 Wireless data relay from central control station to industrial computer . 52 

Fig. 3.8 HOBO weather station ............................................................................ 53 

Fig. 3.9 Temperature profiles of water inside the SWS tank in Oct 2013............ 53 

Fig. 3.10 Temperature profiles of external west wall of Room A1 and A2 in Oct 

2013 .............................................................................................................. 54 

Fig. 3.11 Relationship between thermal efficiency and solar energy ................... 54 

Fig. 3.12 Temperature profiles on 2 October 2013 .............................................. 55 

Fig. 3.13 Temperature profiles of water of SWS and SWS-SCS mock-ups in June 

2014 .............................................................................................................. 55 

Fig. 3.14 Temperature profiles of external west wall of Room A1 and A2 in June 

2014 .............................................................................................................. 56 



xii 

 

Fig. 3.15 Relationship between thermal efficiency and solar energy .................. 56 

Fig. 4.1 Specification for tensile coupon test (in mm) ........................................ 95 

Fig. 4.2 Stress–strain curves of (a) stainless steel (b) mild steel ......................... 96 

Fig. 4.3 Coupons after tensile test: (a) stainless steel (b) mild steel .................... 97 

Fig. 4.4 Uniaxial compression test setup ............................................................. 97 

Fig. 4.5 Uniaxial compression stress–strain curves of cement grout: (a) 

longitudinal direction (b) transverse direction ............................................. 98 

Fig. 4.6 Diagram of splitting test ......................................................................... 98 

Fig. 4.7 Notation for SAS and SWS tanks........................................................... 99 

Fig. 4.8 Notation for SCS sandwich panel .......................................................... 99 

Fig. 4.9 Schematic of SAS and SWS tanks (in mm) ......................................... 100 

Fig. 4.10 Schematic of SCS sandwich panel (in mm) ....................................... 101 

Fig. 4.11 Static test setup ................................................................................... 102 

Fig. 4.12 Test control and data acquisition system ............................................ 102 

Fig. 4.13 Instrumentation layout (bottom view): (a) LVDTs on SAS and SWS (b) 

strain gauges on SAS and SWS (c) LVDTs on SCS50 and SCS75 (d) strain 

gauges on SCS50 and SCS75 (in mm) ...................................................... 103 

Fig. 4.14 Load–midpoint displacement (LVDT D0) of SAS and SWS tanks under 

lateral pressure load ................................................................................... 104 

Fig. 4.15 Flexural failure of SAS tank ............................................................... 104 

Fig. 4.16 Buckling on top plate of SAS tank ..................................................... 105 

Fig. 4.17 Fracture of weld between bottom plate and stiffener of SWS tank .... 105 

Fig. 4.18 Load–midpoint displacement of SCS50 and SCS75 panels under lateral 

pressure load .............................................................................................. 106 

Fig. 4.19 Deformation of SCS50: (a) before shear failure (b) after shear failure

 ................................................................................................................... 106 

Fig. 4.20 Load–midpoint displacement of re-tested SCS75 panel under line load

 ................................................................................................................... 107 

Fig. 4.21 Flexure failure of SCS75 panel under line load ................................. 107 

Fig. 4.22 Load–strain curves of SAS: Strain distribution (a) along span direction 

(b) along width direction (c) at midpoint ................................................... 108 

Fig. 4.23 Load–strain curves of SWS: Strain distribution (a) along span direction 



 

xiii 

 

(b) along width direction (c) at midpoint ................................................... 109 

Fig. 4.24 Load–strain curves of SCS50: Strain distribution (a) along span 

direction (b) along width direction (c) in side plate ................................... 110 

Fig. 4.25 Load–strain curves of SCS75: Strain distribution (a) along span 

direction (b) along width direction (c) in side plate ................................... 111 

Fig. 4.26 Deflection shape in span direction ...................................................... 112 

Fig. 4.27 Deflection shapes in width direction .................................................. 113 

Fig. 4.28 Contact area–load curves .................................................................... 114 

Fig. 4.29 Effective cross-section of SAS under bending (in mm) ..................... 114 

Fig. 4.30 Deformation of SCS sandwich panel under lateral pressure load ...... 115 

Fig. 4.31 Compression zone along the concrete core ......................................... 115 

Fig. 4.32 Cross-section of SCS sandwich panel at mid-span ............................. 116 

Fig. 4.33 Force distribution on each section ...................................................... 116 

Fig. 4.34 Varying contact area in the FE model of SAS (quarter model) .......... 117 

Fig. 4.35 Applied loading curves in FE model ................................................... 117 

Fig. 4.36 FE model of (a) water tank and (b) SCS sandwich panel in lateral 

pressure test (quarter model) ...................................................................... 118 

Fig. 4.37 Comparison of FE predicted load–midpoint displacement with test 

results: (a) SAS (b) SWS ............................................................................ 119 

Fig. 4.38 Deformation of SAS in the FE analysis (top surface): (a) Plastic hinge 

at mid-span (b) Buckling in the top surface (c) Deformation of stiffener .. 120 

Fig. 4.39 Comparison of face plate depth between SAS and SWS .................... 121 

Fig. 4.40 Variation of the resistance of SAS with moving stiffener ................... 121 

Fig. 4.41 Comparison of FE predicted load–midpoint displacement with test 

results: (a) SCS50 (b) SCS75 ..................................................................... 122 

Fig. 4.42 Shear failure of SCS50 ....................................................................... 123 

Fig. 4.43 Compression zone of the concrete core along span direction ............. 123 

Fig. 4.44 Axial stress distribution (Z-direction) in the bottom plate (quarter 

model) ........................................................................................................ 124 

Fig. 4.45 Axial stress distribution (Z-direction) in top plate (quarter model) .... 124 

Fig. 4.46 Installation of façade tanks to floor beam ........................................... 125 

Fig. 4.47 Load–displacement curves of SAS and SWS tanks ............................ 126 



xiv 

 

Fig. 4.48 Failure modes of SWS: (a) pin-roller supported (b) pin-pin supported

 ................................................................................................................... 126 

Fig. 4.49 Load–displacement curves of SCS sandwich panels ......................... 127 

Fig. 4.50 Failure modes of SCS50: (a) pin-roller supported (b) pin-pin supported

 ................................................................................................................... 127 

Fig. 5.1 Drop-weight impact test machine ......................................................... 155 

Fig. 5.2 Drop-weight impact test setup .............................................................. 155 

Fig. 5.3 Overview of data acquisition system: (a) photo (b) schematic drawing

 ................................................................................................................... 156 

Fig. 5.4 Instrumentation layout: (a) LVDTs on SAS and SWS (b) strain gauges 

on SAS and SWS (c) LVDTs on SCS50 and SCS75 (d) strain gauges on 

SCS50 and SCS75 (in mm) ....................................................................... 157 

Fig. 5.5 Deformed shape of SAS tank: (a) after 1
st
 impact (b) after 2

nd
 impact 158 

Fig. 5.6 Buckling on top surface of SAS tank after 2
nd

 impact ......................... 158 

Fig. 5.7 Deformed shape of SWS: (a) after 1
st
 impact (b) after 2

nd
 impact ....... 159 

Fig. 5.8 Top surface of SWS after 2
nd

 impact .................................................... 159 

Fig. 5.9 Permanent deformation of SAS and SWS after 2
nd

 test ....................... 160 

Fig. 5.10 Deformed shape of SCS50 panel after impact ................................... 160 

Fig. 5.11 Deformed shape of SCS50 and SCS75 panels after impact ............... 160 

Fig. 5.12 Impact force–time history of (a) SAS (b) SWS (c) SCS sandwich panel

 ................................................................................................................... 161 

Fig. 5.13 Air pressure–time history of (a) SAS and (b) SWS tanks .................. 162 

Fig. 5.14 Air pressure and impact force–time history of SAS under first impact

 ................................................................................................................... 162 

Fig. 5.15 Air pressure–time history of SCS sandwich panel ............................. 163 

Fig. 5.16 Air pressure and impact force–time history of SCS50 panel ............. 163 

Fig. 5.17 Displacement–time histories of SAS and SWS tanks ........................ 163 

Fig. 5.18 Displacement–time and air pressure–time histories of SWS tank under 

first impact ................................................................................................. 164 

Fig. 5.19 Comparison of maximum displacements of SAS and SWS tanks in the 

load–deflection curves ............................................................................... 164 

Fig. 5.20 Displacement–time histories of SCS50 and SCS75 sandwich panels 164 



 

xv 

 

Fig. 5.21 Strain–time histories of SAS tank under first impact: (a) along span 

direction (b) along width direction ............................................................. 165 

Fig. 5.22 Strain–time histories of SWS tank under first impact: (a) along span 

direction (b) along width direction ............................................................. 166 

Fig. 5.23 Longitudinal strain–time history of SCS50 under impact .................. 167 

Fig. 5.24 Longitudinal strain–time history of SCS75 under impact .................. 167 

Fig. 5.25 Comparison of displacement–time histories between test and SDOF 168 

Fig. 5.26 Strain rate effects of mortar under tension .......................................... 168 

Fig. 5.27 Relationship between pressure and relative volume for water ........... 169 

Fig. 5.28 Applied pressure–time history of SAS ................................................ 169 

Fig. 5.29 FE model of (a) SWS and (b) SCS sandwich panel in dynamic pressure 

test .............................................................................................................. 170 

Fig. 5.30 Comparison of FE predicted displacement–time histories with test ... 171 

Fig. 5.31 Internal energy of water and stainless steel in FE analysis ................. 171 

Fig. 5.32 Comparison of FE predicted displacement–time histories with test ... 172 

Fig. 5.33 Internal energy of steel and core material of SCS50 .......................... 172 

Fig. 5.34 Midpoint displacement–time histories of SAS and SWS ................... 173 

Fig. 5.35 Midpoint displacement–time histories of SCS sandwich panels ........ 173 

Fig. 6.1 Simplified half model for pin-pin supported SWS tank ....................... 210 

Fig. 6.2 Details of membrane action .................................................................. 210 

Fig. 6.3 Comparison of pressure–mid-span displacement response .................. 210 

Fig. 6.4 Comparison of deflection shape of SWS tank ...................................... 211 

Fig. 6.5 Numerical generated constant value κ .................................................. 211 

Fig. 6.6 Shock spectrum for SWS tank .............................................................. 211 

Fig. 6.7 Dimensionless P–I diagram for SWS tank ........................................... 212 

Fig. 6.8 Comparison of dimensionless P–I diagram .......................................... 212 

Fig. 6.9 Comparison of maximum displacement ............................................... 212 

Fig. 6.10 Comparison of strain rate effect .......................................................... 213 

Fig. 6.11 Simplified half model for pin-pin supported SWS-SCS panel ........... 213 

Fig. 6.12 Force distribution and neutral axis on the concrete core .................... 214 

Fig. 6.13 Deformation profile across the concrete core depth ........................... 214 

Fig. 6.14 Comparison of pressure–mid-span displacement curves between 



xvi 

 

analytical method and FE analysis ............................................................ 214 

Fig. 6.15 Comparison of deflection shapes of SWS-SCS panel ........................ 215 

Fig. 6.16 Configuration of infinitesimal element along span ............................ 215 

Fig. 6.17 Flow chart for determining equation of motion ................................. 216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvii 

 

 List of Symbols 

th   Thermal efficiency 

   Strain 

   Strain rate 

p

eff   Effective plastic strain rate 

p   Plastic strain rate 

'

ij   Deviatoric strain rate 

wall  The emission coefficient of wall 

y   Yield strain 

   Hardening coefficient of the elastic-plastic-hardening constitutive model 

   Volumetric thermal expansion coefficient 

   Kinematic viscosity 

f   Strain rate enhancement factor 

0M   Partial factor for structural steel 

0   Gruneisen gamma 

   Stress 

'

ij   Deviatoric (viscous) stress 

y  Initial yield deviatoric stress 

m  Maximum deviatoric stress 

r  Residual deviatoric stress 

   The distance between compressive layer and neutral axis 

   Effective plastic strain parameter 

   Density 

 1 x  Deflection shape function along x direction 

 2 y  Deflection shape function along y direction 



xviii 

 

   Deflection shape function 

   Dynamic viscosity 

   Support rotation 

   Angle 

   Dimensionless displacement 

y   Dimensionless displacement at yield point 

   Circular frequency 

A   Area 

vA   Shear area 

a   Bulk sound speed of water 

ija      Parameters defining the failure surface in MAT_72R3 

B   Width 

iC   Generalized displacement 

,p wc   Specific heat capacity of water 

D   Strain rate parameters in Cowper-Symonds model 

E   Young’s modulus 

coolingE  Space cooling load 

cE   Elastic modulus of concrete 

sE   Solar energy 

ssE   Elastic modulus of steel plate 

TE   Internal energy per unit width by tension force 

T BE   Total internal energy per unit width due to tension and bending 

wE   The energy stored in water 

 F t  Force  

cF   Compression force in concrete 

eF   Equivalent force 

endF   Compression force given by end plate 

cf   Cylinder compressive strength of concrete 



 

xix 

 

yf   Yield stress 

fG   Fracture energy 

Gr   Grashof number 

h   Element size 

ah   The convection coefficient of air 

ch   Concrete core depth 

I   Impulse 

I   Dimensionless impulse 

0I   Pressure asymptote 

K   Kinetic energy 

cK   Curvature 

eK   Equivalent curvature 

LK   Load factor 

LMK  Load mass factor 

ak   Conductivity of air 

epk   Equivalent plastic stiffness 

sk   Stiffness    

eL   The length of compression zone 

SL  Elongation of steel plate 

M   Moment capacity 

eM   Equivalent mass 

m   Mass  

am   Mass per unit area    

wm   The total mass of water inside the water tank 

xim   Mass per unit length in x direction 

yim   Mass per unit length in y direction 

Nu   Nussel number 

P   Pressure 



xx 

 

P   Dimensionless pressure 

0eP   Pressure asymptote 

emP     Initial maximum pressure × span 

rP   Reflected pressure 

Pr   Prandtl number 

sQ   The intensity of solar radiation 

q   Strain rate parameters in Cowper-Symonds model 

R   Resistance 

cR   Resistance contributed by concrete core 

eR   Equivalent resistance 

 r z  Pressure-deflection function 

ijS   Stress deviatoric tensor 

T      Free vibration period 

T   Tension force per unit width 

't   The distance to neutral axis  

cT   The effective compression depth of concrete core 

iwwT   Internal west wall temperature 

roomT  Room temperature 

t   Time 

ct   Top plate thickness of SCS panel 

dt   Load duration 

nt   Neutral axis 

tt   Bottom plate thickness of SCS panel 

U   Strain energy 

DU   Strain energy considering strain rate effect 

u   Internal energy of concrete core per unit area 

V   Potential energy 

V   Volume of top/bottom steel plate 



 

xxi 

 

CV   The tensor viscosity coefficient 

cV   Shear resistance of concrete core 

,pl RdV  Design value of the plastic resistance to vertical shear 

rdV   Shear resistance of SCS panel 

spV   Shear resistance of side plates 

0v   Initial velocity 

yW   Elastic section modulus 

maxx  Maximum displacement 

y   Acceleration 

my   Mid-span displacement 

,m my  A value of mid-span displacement 

m,maxy  Maximum mid-span displacement 

,m ny   The minimum of ym,max and ym,m  
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Chapter 1 Introduction 

1.1 Overview 

The façade of a building plays an important role as a protective envelope that shields 

its occupants from natural elements and in some cases, the more extreme threats such 

as accidental blast attack. Recently, the energy saving façade is increasingly used to 

improve the energy efficiency of a building. To combine the blast resistance and 

energy saving function into one façade system, a novel multi-functional façade system 

was developed in this study.  

 

In hot climate region like Singapore, a fair amount of solar radiation is transmitted 

through the external walls or facades of buildings throughout the day. The solar 

thermal energy can cause the surface temperature of the wall/façade to rise to 20 
o
C 

above the ambient temperature, leading to high energy consumption for space cooling 

with air-conditioning. To minimize the solar thermal loading, façade systems made of 

double-glazed glass, low-emissivity glass and aluminum claddings, to name a few, are 

often specified for a building project. Although these systems are aesthetically 

pleasing, they are costly and do not utilize the abundant solar energy effectively. On 

the other hand, the Building Integrated Photovoltaic (BIPV) façade system has been 

used to harness the solar energy but it is a more complex and costly option. In view of 

cost and efficiency, water is an ideal insulation medium for harnessing the solar 

energy due to its high specific heat capacity. This motivated the development of 
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stainless steel water storage tank to provide an economical and efficient solution for 

buildings to reduce solar heat penetration and store the solar energy for daily usages. 

In addition to the savings on the building operational cost, the reduction in electricity 

consumption due to lower ‘heat gain’ and the use of solar energy for providing a 

source of warm water will also reduce fuel burning and hence lessen the greenhouse 

gas emissions from power generation plants.  

 

The use of water to mitigate blast energy has been quite extensively studied through 

experimental and numerical methods (Keenan and Wager, 1992; Shin et al., 1998; 

Chong et al., 1999) and significant reduction of peak pressure and impulse was 

observed especially when the water was stored close to the explosive. The underlying 

principle of water in mitigating blast loading is that the high pressure shock wave 

produced by detonation aerosolizes the water placed close to the explosive and causes 

both a phase change of water and the redistribution of internal and kinetic energy over 

the detonation gases, blast wave and barrier material (Chen et al., 2005). These 

studies were based on the scenario that water was directly exposed to blast wave. For 

confined water in a tank, such as the water storage façade, little research has been 

done in this filed and studies are therefore required to understand the effect of 

confined water on the response of water storage façade.  

 

Since the probability of a blast threat is usually low, the water storage façade system 

was developed and investigated in this study to achieve both energy saving and blast 

resistance function in order to maximize the benefits of adopting blast-mitigating 

design besides improving the building performance. 
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1.2 Background 

Solar collectors have been used for decades to harness solar energy and provide 

heating source. An active system typically consists of a glazed thermal collector that 

absorbs heat using liquid storage medium which is then circulated to a heat tank for 

storage during daytime. At night, the stored heat in the liquid is redistributed for 

heating. However, the passive system, which does not require power supply, has a 

thermal storage mass, such as water and sand to store the thermal energy (Baer and 

Mingenbach, 2002; Maloney, 1981; Lee et al., 2005). The advantage of using water as 

thermal storage mass is that it is economical and easy to operation. Besides this, the 

specific heat capacity of water is higher than sand, which makes water store more 

solar energy per unit temperature difference as compared to sand. Another advantage 

of using water as thermal storage mass is that it has high potential for reducing blast 

loading (Keenan and Wager, 1992; Shin et al., 1998; Chong et al., 1999). Hence, 

water appears to be an ideal choice to achieve both energy saving and blast resistance 

function.  

 

Thinner and lighter blast resistant façade/wall systems such as the unitized wall, stick 

wall and metal stud wall systems (Swartz et al., 2009; Hallissy et al., 2005) have been 

wider application in recent years in favors of space-saving, easier installation and 

handling as well as aesthetic appeal. Some of these systems have been tested and were 

shown to survived low blast pressure. Heavier and stiffer system constructed using 

ductile poured-in-place reinforced concrete (RC), such as the perimeter blast-resistant 

wall (Nanayakkara, 2004), will provide higher level of protection against blast loading 

but not easy to be installed as the façade system.  
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RC panel is commonly used in structure and its performance against blast loading has 

been studied by experimental (Silva and Lu, 2009) and numerical methods (Zhou et 

al., 2008). Based on the test and numerical studies, some simplified methods to 

predict the response of RC panel subjected to blast loading were proposed (Natio and 

Wheaton, 2006; Silva and Lu, 2009). Since concrete is brittle under tension, the 

fractured flying debris would posed serious risk to the occupants and building itself. 

Fibers were therefore added to increase the ductility of concrete under tension. The 

experimental and numerical studies showed that fiber-reinforced concrete (FRC) 

performed better under blast loading as compared to conventional RC structures 

(Foglar and Kovar, 2013). Other than this, it has been shown that the maximum 

deformation of concrete panel retrofitted with steel plate could be reduced as 

compared to the non-retrofitted concrete panel and the scabbing can be prevented by 

retrofitted steel plates (Yun et al., 2013). Steel concrete composite structures like the 

retrofitted concrete panel have been adopted as the protective layer against accidental 

load, such as impact and blast threat. Experimental and numerical studies showed that 

the Steel-Concrete-Steel (SCS) sandwich panels displayed good performance against 

blast loading (Lan et al., 2005; Liew and Wang, 2011). The SCS sandwich panel, 

which is prior to other panels in terms of blast resistance and spalling protection, 

would be an ideal choice as a blast resistance layer that can be attached to the water 

storage façade to improve its blast resistance capacity. Hence, the lighter and thinner 

Steel-Water-Steel (SWS) water storage façade would be ideal for protection against 

low level blast and Steel-Water-Steel-Steel-Concrete-Steel (SWS-SCS) with the 

additional composite layer as shown in Fig. 1.1 could be adopted to resist high level 

blast. In terms of energy saving performance, the SWS-SCS with additional SCS layer 
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may perform better than the SWS in maintaining the thermal heat in the water and 

providing extra insulation to reduce the solar penetration into rooms. 

 

To date, study on such multi-functional blast-resistant façade system with energy 

saving function has not been found in public references. Hence, this study is 

undertaken to develop the multi-functional façade system and evaluate its energy 

saving and blast resistance performance to facilitate the application of such façade 

system in actual project. 

1.3 Objectives and Scopes 

The objective of this study was to develop a novel multi-functional water façade 

system and evaluate its energy saving and blast resistance performance. To achieve 

the main objective, the specific objectives are outlined as follow: 

1. Design a water storage façade system that is effective in harnessing the solar 

energy and resisting blast loading. 

2. Determine the energy savings by using the water storage façade to harness the 

solar energy in the form of warm water for usage and reduce solar heat penetration 

into building. 

3. Evaluate the performance of water storage façade under static, dynamic and blast 

pressure loading.  

4. Develop analytical methods for predicting the response of water storage façade 

under blast loading in order to facilitate the blast resistant design of the system. 

 

To achieve the aforementioned objectives, the scope of this study area is as follow: 
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1. Conduct literature reviews and patent search to examine existing technologies on 

blast resistant façade/wall and solar energy harvesting façade system to address the 

design for the multi-functional water façade system. 

2. Conduct field monitoring on the mock-ups of the proposed water storage façade 

system. The mock-ups will be mounted onto actual building with west facing brick 

wall. Through the field monitoring study, the energy saving performance of the 

proposed systems in terms of warm water collection and space cooling load reduction 

will be evaluated. 

3. Conduct lateral pressure test on SWS tank and add-on SCS blast resistant panel. 

The resistance–deflection and deflection shape function obtained from the test will be 

applied to establish the simplified blast analysis method. 

4. Conduct drop-weight impact test on SWS tank and SCS panel to study their 

responses under dynamic pressure loading. 

5. Establish and verify the FE models of SWS tank and SCS panel against test 

results and to apply the models for further study on SWS tank and SCS panel under 

blast loading. 

6. Carry out theoretical analysis on the water storage façade and develop analytical 

methods to evaluate the blast response of the proposed system. 

1.4 Outline of Thesis 

In chapter 1, the motivation behind the development of the multi-functional blast 

resistant water façade system is explained and the concept of the water storage façade 

is presented. The need for research is then identified, based on which the main 

objectives and scope of the study are outlined. 
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Chapter 2 provides a comprehensive review on existing energy saving façade systems 

and blast resistant façades or walls that have been reported in the literature. Besides 

this, research findings on the water effects in mitigating blast loading are presented, 

followed by description on the utilization of analytical methods for predicting the 

blast response of structures. 

 

Chapter 3 describes the field monitoring on the mock-ups of the proposed water 

storage façade system. Based on the monitoring results, its energy saving performance 

is reported in terms of thermal efficiency and space cooling load.  

 

In chapter 4, the performance of the water façade system under lateral pressure load 

was investigated through experimental, analytical and numerical study. Analysis and 

discussion on the experimental results are presented, followed by verification of the 

FE models against the test data. The verified models were applied to further study the 

behavior of the water storage façade under lateral pressure load. 

  

The performance of the water façade system under dynamic pressure loading is 

discussed in chapter 5. Both experimental and numerical results are presented and the 

experimentally-verified FE models were applied to study the response of the façade 

under blast pressure loading. 

 

Analytical methods to predict the blast response of the water storage façade are 

presented in chapter 6. These include the Single-Degree-of-Freedom (SDOF) method, 

Lagrange Equation method and Pressure–Impulse diagram method. The validation of 
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the analytical methods was conducted by comparing with the FE simulations. 

 

Chapter 7 completes the thesis with a set of conclusions derived from present 

experimental, numerical and analytical investigations. Lastly, recommendations are 

proposed for further studies. 
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Fig. 1.1 The proposed water façade systems 
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Chapter 2 Literature Review 

2.1 Introduction 

The proposed multi-functional water façade system is a novel design concept that has 

yet to be fully developed. The concept stemmed from the use of the thermal and blast 

mitigation properties of water to harness solar energy and reduce blast response. The 

use of water as a heat storage medium in hybrid solar photovoltaic-thermal (PVT) 

system to harness the solar energy is first reviewed. Research findings on the effects 

of water in mitigating blast loading were examined, followed by the reviews on the 

blast performance of blast resistant walls/panels. The characteristics of blast loading 

and the methods used to simulate blast loading and lateral pressure loading are also 

reviewed in order to find the suitable experimental method. Finally, existing analytical 

methods to predict the responses of structural members against blast loading are 

discussed. 

2.2 Hybrid Solar Photovoltaic-Thermal System 

The façade-integrated photovoltaic/water-heating system developed by Chow et al. 

(2007) is a hybrid solar technology that integrates the PV and solar thermal 

components in one single system. The hybrid solar PVT system utilized water to cool 

down the PVT components that exposed directly to solar radiation and store the solar 

thermal energy. Since a part of solar radiation fallen on the building façade is directly 
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converted to useful thermal and electric power, the portion of solar energy penetrated 

into the building is reduced. Hence, the hybrid solar PVT system can store the solar 

energy as electric and thermal energy and also reduce the space cooling load. The 

thermal efficiency at zero reduced temperature and the cell conversion efficiency of 

the tested hybrid solar PVT system in Hong Kong were 38.9% and 8.56%, 

respectively. The thermal efficiency at zero reduced temperature is the optical 

efficiency of the collector and can be obtained by multiplying transmission coefficient 

t  with absorbed factor t (Eicker, 2003). In addition, the space cooling load, which 

is the heat gains from the environment, could be reduced by 50% in peak summer of 

Hong Kong where temperature can reached 35.4 
o
C. The natural circulation of water 

by means of thermosyphon principle and forced circulation of water using pump were 

compared in the experimental study, which showed that the collector performance of 

natural circulation could be as good as forced circulation (Chow et al., 2007). An 

explicit dynamic thermal model of the hybrid solar PVT system was also developed 

by Chow et al. (2008) to evaluate the annual performance of building-integrated 

photovoltaic/water-heating system (Chow et al., 2009). It was found that the 

year-round thermal and cell conversion efficiencies were 37.5% and 9.39%, 

respectively, under typical Hong Kong weather conditions and the space cooling load 

could be reduced by 38%. 

2.3 Water Effects in Mitigating Blast Load 

The erection of a water wall around an explosive has been found to be an effective 

method of mitigating the shock wave and blast pressure of an explosion (Cheng et al., 

2005). The encouraging earlier findings and low cost of water have motivated the 



Chapter 2 Literature Review 

- 13 - 

research on its blast mitigation effects. To date, a number of experiments have been 

carried out (Keenan and Wager, 1992; Vretblad and Eriksson, 1994; Joachime and 

Lunderman, 1997; Chabin and Pitiot, 1998; Absil et al., 2000) and it was 

demonstrated that the peak pressure and impulse were reduced significantly when the 

water was stored close to the explosive. This could be attributed to the significant 

amount of energy loss from the shock to break up the water into small droplets, which 

in turn, enhances the process of phase change from liquid to gas state (Cheng et al., 

2005). The effects of water wall on blast wave mitigation were studied in scale model 

tests by Chabin et al. (1998). The influence of different parameters such as the 

thickness of the wall and the distance between the explosive charge and the water 

barricade was calculated. Nomographs were used to give overpressure as a function of 

wall thickness, charge-to-wall distance and charge-to-location distance. Besides, 

several small-scale tests showed that water (contained in plastic bags or containers) 

placed in in the proximity of explosives stored in a confined space could reduce the 

internal gas pressure and impulse from a detonation by up to 90% (Malvar and 

Tancreto, 1998).  

 

Besides the experimental investigations, numerical studies on the mitigation effects of 

water have been conducted as well. Shin et al. (1998) modeled the mitigation effects 

of water shield around the explosive on shock waves. It was found that the magnitude 

of peak pressure generally decreased and the shock arrival time increased with 

increasing thickness of water shield for the case that the water shield was in contact 

with explosive. A series of studies using the AUTODYN software was conducted by 

Birnbaum et al. (1998) to simulate three small-scale feasibility tests of explosions 

inside a rigid chamber. A user subroutine was used to account for heat transfer effects 
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that are not represented in the standard version of the program. It was shown that the 

model with heat transfer effects between explosive products and water/vapor was 

better than that without it. Cheng et al. (2005) utilized a multi-material Eulerian finite 

element technique to study the influence of the design parameter, such as the 

water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover 

area ratio of water on the effectiveness of the water mitigation concept. It was shown 

that the higher the water-to-explosive weight ratio, the more significant was the 

reduction in peak pressure of the explosion. Typically, water-to-explosive weight 

ratios in the range of 1-3 were found to be most effective (Cheng et al., 2005).  

 

Since the aforementioned researches on blast wave mitigation effects by water were 

based on the scenario that the water was exposed to blast wave before and during the 

event of the explosion, different mechanism would be expected from the confined 

water in the proposed water storage façade in the current study. Hence, experimental 

and numerical studies were carried out to determine the effects of water on the 

response of water storage façade under static, dynamic and blast pressure loading. 

2.4 Blast Resistant Wall/Panel 

In the event of blast attack, the wall/panel tends to sustain higher blast loading due to 

its larger exposed area as compared with column and beam. Therefore, the blast 

performance, failure mechanism and retrofitting of wall/panel is an important research 

area on the blast resistance of structures. To date, numerous experimental, numerical 

and analytical studies have been carried out to investigate the blast response of 

different kinds of walls/panels, including masonry, reinforced concrete, steel and 
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composite walls/panels. 

2.4.1 Masonry wall/panel 

Masonry or brick is commonly used for building walls due to its easy construction 

and low cost. However, unreinforced masonry is very brittle and prone to become 

debris hazard to the building occupants in the event of blast. The debris hazard of 

masonry wall caused by blast load has been studied (Wang et al., 2009; Baylot et al., 

2005) and retrofitting techniques were developed to mitigate the debris hazard (Baylot 

et al., 2005). Wang et al. (2009) adopted the numerical method to study the 

probabilistic fragment size distribution and launch distance. The analysis results 

indicated that the masonry fragments approximately followed the Weibull distribution, 

which was consistent with the empirical fragment distribution. A series of physical 

experiments were conducted by Baylot et al. (2005) to develop methods for predicting 

the hazard levels associated with concrete masonry units (CMU) walls. The CMU is 

commonly known as concrete blocks. The experiments included nonretrofitted CMU 

walls and three types of retrofits, including fiber reinforced polymer (FRP), 

sprayed-on polyurea and hot-dipped galvanized A-36 steel. It was found that the 

debris velocity was directly related to the applied impulse and the retrofit techniques 

were successful at reducing the hazard level. 

 

The performances of unreinforced masonry walls under blast loading were studied by 

Wei and Stewart (2010) using numerical method. A new model for strain rate effects 

and a new dynamic plastic damage model were used for brick and mortar in their 

numerical model. It was found that the boundary condition and wall thickness 

significantly affected the blast responses of unreinforced masonry walls, while the 
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effect of material strength was relatively small. For reinforced masonry walls, the 

reinforcements commonly used include reinforcing steel bars, FRP and elastomeric 

polymer. According to the experimental study by Mayrhofer (2002), the dynamic 

force enhancement of reinforced masonry wall by reinforcing steel bars increased by a 

factor of four in comparison with unreinforced masonry wall. Tan and Patoary (2009) 

proposed an approximate analysis method to determine the blast resistance of 

FRP-strengthened masonry walls, based on which, 18 full-scale masonry walls 

reinforced with three different FRP systems were designed and subjected to field 

explosions. No visible crack or debonding was observed due to the low blast pressure 

load. A full-scale blast test was carried out by Urgessa et al. (2010) on eight masonry 

walls reinforced with two and four layers of carbon fibers and two types of polymer 

matrices. Based on the test results and analysis, a retrofit design procedure was 

proposed to design the amount of retrofits for masonry walls retrofitted with FRPs. 

More recently, the focus has shifted from applying stiff fiber-reinforced composites to 

using lower-strength higher-elongation elastomeric polymers that can be easily 

applied to the interior masonry wall. The spray-on polymer approach could overcome 

the problems of stiff composites, such as high material costs, challenges in bonding 

the material to the wall and difficulties in anchoring the material to the host structures 

(Davidson et al., 2005). Fig. 2.1 shows the bonding effects of polymer coating on the 

blast resistance of masonry wall and the improvement of blast resistance with bonding 

could be observed. 

2.4.2 Reinforced Concrete Wall/Panel 

Extensive analytical, numerical and experimental studies have also been conducted to 

investigate the performance of the widely used reinforced concrete (RC) wall/panel. 
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Since concrete is also a brittle material, the same debris hazard as masonry wall is 

likely to occur under blast loading. The design guide has provided the charts to predict 

the spalling of concrete (UFC, 2008). Besides this, spalling criteria for different levels 

of spalling can also be determined using numerical method (Xu and Lu, 2006).  

 

The blast resistance of RC structures can be improved by adopting ultrahigh-strength 

concrete (UHSC) as shown in the experimental investigation by Ngo et al. (2007), 

where UHSC panel suffered less damage as compared to normal strength concrete 

(NSC) panel. However, the UHSC is normally more brittle than NSC, which limits its 

energy absorbing capacity. The use of fibers were effective in improve the ductility of 

concrete and energy absorbing capacity. For examples, the superior performance of 

ultra-high performance fiber reinforced concrete (UHPFRC) against blast loading was 

also demonstrated through numerical analysis by Mao et al. (2014). The UHPFRC is a 

concrete material with both high strength concrete and fiber reinforcement. It was 

concluded that steel fibers and reinforcing bar were of similar effect in increasing the 

resistance of UHPFRC panel under far field blast loading, while the significant 

improvement was observed under near field blast loading. Long carbon fibers added 

to RC panels were also shown to improve the blast spalling resistance of concrete 

(Tabatabaei et al., 2013). The deflection of RC panel could also be reduced by 

increasing the panel thickness and the ratio of reinforcing bar as evident from the 

numerical investigation by Lin et al. (2014). The efficiency of FRP strengthening 

schemes for improving the performance of RC panel against single and multiple blast 

loads has been demonstrated by Wu et al. (2009) and Tanapornraweekit et al. (2011), 

respectively. The FRP-strengthen RC panels could survive multiple explosions and 

brittle shear failure with FRP debonding was observed after the explosion 
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(Tanapornraweekit et al., 2011). 

 

The SDOF method is a simple method that is usually adopted to predict the response 

of RC panel under blast loading (UFC, 2008). The SDOF combined with the 

displacement based design (DBD) method was presented by Silva and Lu (2009) to 

assess the blast response of RC panel. Comparison with experimental results 

demonstrated that this method was suitable for the cases where punching shear failure 

was not the governing failure mode. This was likely because the punching shear 

failure mode was not considered in the SDOF model. Naito and Wheation (2006) 

presented a method that combined basic section analysis, SDOF modeling and a static 

FE pushover analysis to calculate the blast resistance of an existing RC shear wall. 

Pressure–Impulse curves were also developed to quantify the blast resistance of the 

wall. 

2.4.3 Steel Wall/Panel 

As opposed to concrete and masonry, steel has higher ductility and strength to resist 

blast loading. However, due to the higher cost, steel structural elements tend to be 

slender and less massive than concrete structures. Therefore, global and local buckling 

is more likely to occur in steel structures under blast loading. To improve the stiffness 

of steel panel, corrugated and profiled sections are normally adopted. The profiled 

stainless steel panels under blast loading were investigated experimentally by 

Langdon and Schleyer (2005a). It was found that the connection detail could 

significantly influence the response of the panel under blast loading. Besides this, 

large permanent plastic deformations were sustained by the panels without rupture, 

and localized buckling developed at the center of the corrugations as shown in Fig. 
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2.2 (Langdon and Schleyer, 2005a). An analytical approach based on Lagrange 

Equation method was proposed to assess the response of profiled panel against blast 

loading. The modeling approaches predicted less deformation of profiled panel as 

compared to current design guidance due to the inclusion of supports and membrane 

action (Langdon and Schleyer, 2005b). To improve the blast resistance of profiled 

blast panels, an innovative passive barrier system was developed by Boh et al. (2005) 

to delay the tearing of the horizontal welds at the connections. The effects of strain 

rates on the response of the stainless steel firewall under hydrocarbon explosion were 

also investigated by Boh et al. (2004). It was found that the enhancement due to strain 

rates on the deflection of the panel were effective before weld failure, after which the 

enhancement effects might be governed by failure criteria. 

2.4.4 Steel-Concrete Composite Wall/Panel 

The steel-concrete composite panels have higher ductility than concrete panels and 

higher buckling resistance than steel panels and therefore are commonly adopted as 

blast resistant panels. The Steel-Concrete-Steel (SCS) sandwich panel that consists of 

a concrete core sandwiched in between two steel faceplates is a favorable type of 

steel-concrete composite elements for blast resistance due to its high energy absorbing 

capacity and spalling protection. The composite action of SCS sandwich structure is 

achieved by using shear connectors to bond the two face plates to the concrete core. 

Therefore, several types of shear connectors were developed, including headed shear 

studs (Odeyemi and Wright, 1989), angle shear connectors (Malek et al., 1993), 

Bi-steel (Foundoukos, 2005) and interlocked J-hook connectors (Liew et al., 2008). 

Although a number of researches have been conducted to study the performance SCS 

sandwich panels under static loading, there are very limited work on their blast 
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performance (Kang, 2012; Liew and Wang, 2011; Lan et al., 2005). Kang (2012) 

carried out the field blast test on the SCS sandwich panels with and without shear 

connectors. It was found that the SCS sandwich panel without shear connectors could 

perform as well as those with shear connectors, including headed studs and J-hook 

connectors. In view of easy fabrication and low cost, the SCS sandwich panel without 

shear connectors would be an ideal choice as the add-on layer to improve the blast 

resistance of water storage façade system. 

2.5 Blast Load and Test Method 

2.5.1 Blast Load 

A blast is characterized by a rapid expansion of gases generating a pressure wave 

propagating from the source of the explosion (Smith et al., 2009). The effects of a 

blast are in the form of a shock wave composed of a high-intensity shock front which 

expands outward from the surface of the explosive into the surrounding air. As the 

wave expands, it decays in strength, lengthens in duration, and decreases in velocity 

(UFC, 2008). The shape of the blast wave depends on the nature of the energy release. 

When the explosive is located on or near to the ground, the blast is considered to be a 

surface burst. The incident blast wave is reflected and amplified by the ground and the 

reflected wave then merges with the incident wave to form a hemispherical blast wave. 

When the explosive is far from any reflecting surface, the blast is considered to be an 

air burst and is a spherical blast wave (Smith and Hetherington, 1994). 

 

The typical pressure–time profile for blast wave in free air is shown in Fig. 2.3, which 

includes positive and negative phase. In the positive phase, the incident pressure Ps 
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decays to the ambient pressure Po within the time duration td known as positive phase 

duration. For the following negative phase, the peak negative pressure is typically 

small as compared to the peak pressure in positive phase. Hence, the negative phase is 

usually ignored in the blast resistant design (UFC, 2008; ASCE, 2010; ASCE 2011). 

The positive phase of surface blast can be described by the modified Friedlander 

Equation (Baker, 1973) as 

  1 expr

d d

t t
P t P

t t

   
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                  (2.1) 

where   is the coefficient that describes the rate of decay of the pressure–time curve. 

Parameters Pr, td and   can be obtained using blast loading predictive tool ConWep 

(Hyde, 1991) by given TNT charge and standoff distance. Herein the reflected 

pressure Pr is used, since the blast wave is reflected and magnified with higher 

reflected pressure when it impinges onto the face of a target. In the blast resistant 

design, the pressure–time profile in positive phase can be further simplified as a 

bi-linear or triangular shape (UFC, 2008; ASCE, 2011), which was adopted in the 

theoretical study. 

2.5.2 Blast Load Generation Method 

Field explosive detonation is a direct method to generate the blast loading (Liew and 

Wang, 2011; Lan et al., Clubley 2014; Forglar and Kovar, 2013; Arora et al., 2011; 

Tabatabaei et al., 2013). This method can be used to test several specimens 

simultaneously and is able to replicate the actual condition of the detonation of high 

explosives (Remennikov et al., 2009). However, field blast test is generally expensive 

and requires remote and often very large testing site. Besides, the test data may be 

easy to lose due to the damage of transducers, cables or data acquisition equipment. 
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Therefore, other methods such as shock tube and non-explosive test method have been 

devised to simulate the high pressure and short duration of a blast loading. In the 

shock tube test method, which is less expensive than field blast test, the generated 

impulse loading can be well controlled. However, the specimen size is limited by the 

size of the shock tube and the load duration is relatively longer compared with field 

blast test (Schleyer et al., 2007; Lacroix et al., 2014). In the laboratory test by Whisler 

and Kim (2014), a non-explosive test method was developed to generate dynamic 

blast-type pressure pulse loading. However, only the impulse could be recorded and 

not the pressure–time history, which is necessary for analyzing the response of 

specimen in the dynamic and quasi-static response regimes. Another simple blast load 

simulation system that comprises of a test panel and a membrane mounted within a 

frame system as shown in Fig. 2.4 was proposed by Mostaghel (Mostaghel, 2003). 

The membrane combined with the panel forms an airtight chamber, which is inflated 

with air before testing. The plate is dropped onto the membrane at various heights to 

achieve the required impulse magnitude and duration. Even though the load duration 

is longer than those obtained directly from field blast detonation, this method is 

simple and can be easily conducted in the laboratory and was adopted by some 

researchers to generate blast-type pressure loading (Remennikov et al., 2009; Chen 

and Hao, 2014). Remennikov et al. (2009) adapted this method with an inflated airbag 

acting as the airtight chamber to test columns under impulse loading. The similar 

method was also adapted by Chen and Hao (2014) to investigate the response of 

multi-arch double-layered panel under impulse loading. As the use of airbag to 

generate pressure loading with short duration in the laboratory appeared to be an easy 

and economical way, this method was adopted in the present study to generate 

dynamic pressure loading to assess the response of water storage façade system. 



Chapter 2 Literature Review 

- 23 - 

2.5.3 Lateral Pressure Load Generation Method 

To apply lateral pressure load on panel specimens, Malo (2001) developed an 

experimental device that used water as the pressure medium. Although this method 

can be used to apply uniform pressure load on specimens, the test operation is more 

complex than using inflated airbag (Patoary, 2004; Derakhshan et al., 2013). For 

instance, the instruments have to be water-proof if they are immersed in the water 

medium, such as strain and displacement transducers. In view of easy operation and 

low cost, the inflated airbag loading method was also adopted to investigate the 

response of the water storage façade under lateral pressure load. 

2.6 Analytical Method 

The equivalent SDOF method was proposed by Biggs (1964) as a simple method to 

evaluate the response of continuous member under blast loading. This method has 

been widely adopted to evaluate the structural response (UFC, 2008; ASCE, 2010; 

ASCE, 2011; Rigby et al., 2014; Morison, 2006) and several modifications have been 

made to more accurately consider the strain rate effects (Nassr et al., 2012; Garta and 

Stochino, 2013) and different failure modes (Krauthammer et al., 1986; Astarlioglu et 

al., 2013). In the SDOF method, a structural member is made equivalent to the SDOF 

system through transformation factor KLM, which is a function of its deflection shape 

(Biggs, 1964). Hence, a good and representative deflection shape function would 

provide a closer estimate of the actual response. Normally, the deflection shape 

function is obtained by analyzing the member under uniformly distributed static load. 

In reality, the deflection shape changes during motion due to the existence of inertia 

force which, together with the uniform pressure load, changes the load distribution on 
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the member. It is accepted that deflection shape function has little effect on the 

structural response if the adopted deflection shapes are in accordance with the 

boundary conditions. However, the difference in maximum displacement obtained 

using different assumed shape functions may be over 10% in elastic range and may be 

even more when the member enters into plastic range (Baker et al., 1983). Hence, the 

Lagrange Equation method with combined shape functions was adopted in this study 

to accurately predict the response of water storage façade under all three response 

regimes, i.e. quasi-static, dynamic and impulsive.  

 

A constant Dynamic Increase Factor (DIF) is usually included in the SDOF analysis 

to represent the average strain rate effect on material strength (UFC, 2008; ASCE, 

2010; ASCE, 2011). Since the DIF is a function of strain rate, it also varies during 

motion. Hence, adopting a constant DIF may not accurately capture the strain rate 

effect. To overcome this limitation, Nassr et al. (2012) proposed a strain rate model 

that defines the maximum strain rate in terms of scaled distance for beam column. 

Different DIF values can be generated under different blast loads, but the model is 

still unable to capture the varying DIF with strain rate during motion. The varying 

DIF was recently included in the continuous beam model (Carta and Stochino, 2013; 

Jones et al., 2009) and SDOF model (Carta and Stochino, 2013) to analyze 

simply-supported RC panels under blast loading. The DIF was introduced by updating 

the resistance at each time step according to the strain rate at the corresponding time 

step and the predictions by including varying DIF were more accurate than those with 

constant DIF by comparing with test results. Since this method was not easy to be 

introduced in the Lagrange Equation model, the energy principle would be used to 

include the varying DIF into the SDOF and Lagrange Equation methods to accurately 
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capture the strain rate effect. 

 

The Pressure–Impulse (P–I) diagram, which is an iso-damage curve (Cormie et al., 

2009) for a particular structural member loaded with a particular blast load history, is 

normally utilized to evaluate the damage level of structures for a given blast scenario. 

There are mainly two methods to construct the P–I diagram, i.e. the commonly 

adopted SDOF (Li and Meng, 2002; Li and Meng, 2002b; Fallah and Louca, 2006; 

Krauthammer et al., 2008; Dragos and Wu, 2013) and the more recently applied FE 

methods (Shi et al., 2008; Mutalib and Hao, 2011). The advantage of SDOF method is 

that the parameters relationship of structural member can be directly constructed. For 

example, the pressure and impulse asymptotes, which are two critical parameters of 

P–I diagram, can be given as functions related to structural parameters such as 

stiffness, mass and allowable maximum displacement. In the SDOF method, 

deformation is utilized to gauge the damage level, which would be reasonable for 

members such as beam and slab but not so much for column since the failure is more 

likely to be governed by its residual axial strength. Therefore, researchers have 

increasingly used the FE method to construct the P–I diagram of such structures. For 

instance, Shi et al. (2008) and Mutalib et al. (2011) applied the FE method to generate 

the P–I diagram for RC and FRP strengthened RC columns, respectively. In their 

studies, the residual axial strength was simulated and applied as the damage level 

indicator, which is more representative than maximum displacement for column. The 

disadvantage of FE method is that the pressure and impulse asymptotes cannot be 

directly defined. Parametric studies and curve-fitting are usually utilized to establish 

these parameters. In the present study, the dimensionless P–I diagram involving 

pressure and impulse asymptotes would be constructed using SDOF method and its 
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accuracy would be verified by comparing with FE investigations. 
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Fig. 2.1 Posttest configuration for masonry walls: no bonding (left) and bonding (right) 

between wall and polymer coating (Davidson et al., 2005) 

 

 

 

Fig. 2.2 Local buckling of the corrugation after blast test (Langdon and Schleyer, 

2005a) 

 



Chapter 2 Literature Review 

- 28 - 

 
 

Fig. 2.3 Typical pressure–time profile for blast wave in free air (Smith and 

Hetherington, 1994) 

 

 

Fig. 2.4 Test setup for blast load simulation system (Mostaghel, 2003)
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Chapter 3 Energy Performance of Water Façade Systems 

3.1 Introduction 

Mock-ups of the water façade tank with and without the Steel-Concrete-Steel (SCS) 

sandwich layer were designed, fabricated and installed at a monitoring station to 

evaluate the energy savings performance of the proposed water façade system in 

terms of thermal efficiency and space cooling load. The two design configurations of 

the mock-ups denoted as Steel-Water-Steel (SWS) and SWS-SCS, monitoring station, 

water circulation, automated control, instrumentation and remote data monitoring 

system are described in the following sections. The weather data and temperature 

profiles of the water façade mock-ups, building walls and indoor air were recorded 

based on which the thermal efficiency and space cooling load reduction of the water 

façade system were evaluated. The SWS mock-up was installed on the external west 

wall of Room A2 and it was compared to the control bare external west wall of Room 

A1 from 1 August 2013 to 21 March 2014 before the SWS-SCS mock-up was put up 

on 22 March 2014. 

3.2 Test Setup 

3.2.1 Monitoring Station 

Two identical rooms on the second level of a two story monitoring station at Tuas, 

Singapore were used to conduct the temperature monitoring, as shown in Fig. 3.1. Fig. 
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3.2 shows the layout and dimension of the two rooms, A1 and A2, with directly west 

facing brick wall (wall 1) and three other walls (wall 3) made of 100 mm thick 

drywall.    

 

Both of the rooms were provided with a Mitsubishi Heavy Duty Jetflow 

air-conditioning unit on the internal east wall. The units were fitted with timer control 

to automatically start and stop the controlled room temperature daily at the preset 

times. 

3.2.2 Mock-ups 

The drawings of the SWS and SWS-SCS mock-ups are given in Appendix A and the 

dimensions are summarized as follow: 

i. SWS - Steel plate thickness: t = 10 mm 

        - SWS tank size: 2500 mm (W) × 2500 mm (H) × [t + 50 mm + t] (D) 

        - SWS tank capacity: 312.5 liter 

ii. SWS-SCS - Steel plate thickness: t = 10 mm 

        - SWS tank size: 2500 mm (W) × 2500 mm (H) × [t + 50 mm + 1/2t] (D) 

        - SWS tank capacity: 312.5 liter 

        - SCS panel size: 2500 mm (W) × 2725 mm (H) × [1/2t + 50 mm + t] (D) 

(W – Width, H – Height, D – Depth) 

 

Since the proposed water storage façade was intended as a solar energy harvesting 

system whereby the warm water heated by the solar thermal energy is stored in a 

supply tank to be circulated to end-users, stainless steel 316 material was adopted for 

the SWS tank to fulfill the potability requirement of the Public Utilities Board of 
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Singapore. For the SCS panel, which was not in direct contact with water, mild steel 

with 2-coats painted external surfaces was applied. Pre-mixed Parvex Dacvo cement 

grout without coarse aggregate was adopted for the core material of SCS panel since it 

is easier to be pumped into the panel as compared to normal concrete with coarse 

aggregate.   

3.2.3 Automated Water Circulation System 

The mock-ups were equipped with automated control water circulation system to 

drain and then refill the SWS tank to and from the collection and feed tanks, 

respectively, once the target water temperature of 38 
o
C was attained. As illustrated in 

Fig. 3.3, the collection tank was placed on the top of the feed tank. The tanks were of 

the same size of 1500 mm (Length) × 1500 mm (Width) × 1050 mm (Height) and 

designed to a specified volume capacity that equals to six drainages from the SWS 

and SWS-SCS mock-ups combined. Water in the collection tank was left to cool 

overnight and the actuated valve between the feed tank and collection tank was 

opened at 06:00 daily to circulate the cold water back to the feed tank. Hence, at the 

start of each day at 06:00, the water circulation system was reset to full feed tank and 

empty collection tank condition using the timer control. When the water temperature 

in the mock-up reached the target temperature of 38 
o
C, the valve was automatically 

opened and warm water was drained through gravity outflow to the collection tank. 

After the tank was completely drained, the outlet valve was automatically closed and 

the inlet valve was opened using a timer control. At the same time, the pump was 

triggered and started to draw water from the feed tank to refill the mock-up. 
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3.2.4 Instrumentation and Remote Data Monitoring 

The DS18B20 temperature sensor probe, which is accurate to +/- 0.3 
o
C under 

ambient temperature of 20 to 50 
o
C and to +/- 0.5 

o
C across its entire measurement 

range of -10 to +85 
o
C, was applied to measure the temperature at 5 minutes logging 

frequency. The layout of temperature probes are shown in Fig. 3.4 to Fig. 3.6 and 

summarized as follow: 

i. Above the ceiling for both rooms (2 probes) 

ii. Below the ceiling for both rooms (2 probes) 

iii. Center of internal and external surfaces of East and West walls of each 

room (8 probes) 

iv. Internal and external surface of North and South walls (above the door) of 

each room (4 probes) 

v. Center of each room (2 probes) 

vi. SWS mock-up (3 probes) 

vii. SWS-SCS mock-up (3 probes) 

Web based data transmission was achieved by using a central control station to send 

the temperature data wirelessly to an industrial computer running Linux as shown in 

Fig. 3.7. A custom written program uploaded the sensor data online via a 3G modem 

to a database. 

 

For the weather condition onsite, a solar powered U30/NRC USB HOBO outdoor 

weather station was deployed on the west corridor (see Fig. 3.8) in between the two 

rooms to monitor the ambient temperature, relative humidity (RH), wind speed and 

solar radiation using plug-and-play smart sensors. The measured data were also 
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logged at 5 minutes interval and the smart sensors automatically communicated the 

data information to the HOBO data logger. The S-THB-M002 12-bit temperature and 

RH smart sensor was installed within a solar radiation shield as shown in Fig. 3.8. The 

S-WSA-M003 wind speed smart sensor that offers measurement range from 0 to 45 

m/s recorded the average wind speed and highest 3 seconds gust at each logging 

interval. The solar radiation was measured using three S-LIB-M003 silicon 

pyranometers that offer measurement range from 0 to 1280 W/m
2
 over a spectral 

range of 300 to 1100 nm. Two of the pyranometers were placed on the west corridor 

with one facing perpendicularly away from the west wall and the other facing 

vertically towards sky. The third pyranometer faced perpendicularly away from the 

east wall. 

 

Lutron DW-601 power analyzer was mounted on the internal east wall of both rooms 

to carry out measurement of live mains voltage to the air-conditioning units in order 

to determine the power consumption by the units. Since the measured quantity is an 

integrated quantity (summation), the frequency of data logging was not a concern. 

The update rate of the power analyzer was set to 5 minutes to match the temperature 

sensor probes logging rate. 

3.3 Test Results and Discussion 

3.3.1 Water Filled Tank VS Bare Wall 

The monitoring data in October 2013 was selected to evaluate the energy efficiency of 

the SWS mock-up as compared to the control bare wall. Throughout the month, the 

air-conditioning units in both the monitoring rooms were operated at 24 
o
C, daily 
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from 08:00 to 17:00. 

3.3.1.1 Temperature Profile 

Fig. 3.9 shows the temperature profiles of water from 1 to 7 October 2013. It can be 

seen that the water temperature immediately reduced after the warm water was 

automatically drained out and replaced with cold water once the target temperature of 

38 
o
C was reached. All of the recorded draining occurred after 12:00, which can be 

related to the position of the SWS mock-up that was facing the west side and hence, 

shielded from direct solar radiation in the morning.  

 

25 days of recorded data (excluding 6 days with partially missing data, i.e. 17, 18, 19, 

23, 24 and 31 October due to temporary disruption of temperature probe) in October 

2013 were categorized into three groups in Table 3.1 according to the number of 

draining in a day, i.e. Group 1 (number of drains = 0), Group 2 (number of drains = 1) 

and Group 3 (number of drains = 2). The target temperature was reached on 9 out of 

the 25 days with one day of two draining.  

 

From the comparison of the temperature profiles of external west walls of the two 

rooms in Fig. 3.10, it was noted that the maximum temperature of Room A2 with 

SWS mock-up was much lower than the bare wall of Room A1. Besides, the 

air-conditioning unit in Room A1 was unable to halt the temperature gain of the 

external west wall while the influence of controlled room temperature was evident 

from the temperature profile of the wall behind the SWS mock-up. This indicates the 

heat shield effect by the SWS mock-up that reduced the penetration of solar radiation 

into the room. 
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3.3.1.2 Thermal Efficiency of SWS mock-up 

The thermal efficiency of the SWS mock-up is defined as the ratio of energy stored in 

water wE  to the solar energy sE , as shown in Eq. (3.1). 
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In the above equations, ,p wc  is the specific heat capacity, wm  is the total mass of 

water in the SWS, T is the water temperature as measured by the temperature probe, 

sQ  is the intensity of solar radiation as measured by the HOBO, A is the front surface 

area of SWS and it  is the time interval. Density and specific heat capacity of water 

are given in Table 3.2 (Welty et al., 2001). The thermal efficiency was calculated from 

08:00 to 17:00 in accordance with the running time of the air-conditioning units.  

 

The calculated thermal efficiency for the 22 days of recorded data in October 2013 is 

tabulated in Table 3.3 and it ranges from 12.87% to 28.50%. The thermal efficiency of 

the SWS mock-up can be conveniently and effectively improved by painting the 

exposed front surface of the tank with high absorptivity paint in order to increase the 

solar absorptivity of stainless steel (0.4768). It was observed that the higher the solar 

energy, the higher was the number of draining as compared for the three groups of 

data. This indicates that higher solar energy would lead to higher energy stored in 

water and consequently higher number of draining, which translated to higher thermal 
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efficiency. This is illustrated in Fig. 3.11, where it can be seen that the thermal 

efficiency generally increases with increasing solar energy. 

3.3.1.3 Space Cooling Load 

Since Rooms A1 and A2 were identical except for their west walls, it is reasonable to 

assume that the heat penetration into both rooms through the other three walls and 

roof was the same. Therefore, only the heat penetration through west wall was 

determined in order to compare the space cooling load of the two rooms.  

 

The difference in space cooling load between the two rooms can be evaluated from 

the difference in solar energy that penetrates through their respective west wall. By 

assuming that the temperature of the internal west wall was uniform across its entire 

surface and the room temperature was uniform over the confined space, the energy 

transferred from the internal west wall to indoor air through convection and radiation 

can be calculated as follow: 

   4 4
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n

cooling a iww room wall iww room i

i

E h T T T T A t

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where ah  is the convection coefficient of air, iwwT  and roomT  are the temperatures 

of internal west wall and indoor air, wall  is the emission coefficient of wall,  is 

the Stefan-Boltzmann constant (5.676×10
-8 

W/m
2
*K

4
), A is the surface area of the 

west wall and it  is time interval.   

 

The convection coefficient of air, ha, can be obtained from the following equations: 
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where Gr is Grashof number, g is gravity,   is volumetric thermal expansion 

coefficient, L is the characteristic length,   is kinematic viscosity, Nu is Nussel 

number, Pr is Prandtl number and ka is conductivity of air. 

 

The calculated space cooling load for the same period as the thermal efficiency 

calculations is given in Table 3.4 based on the recorded temperatures of internal west 

walls and indoor air of the two rooms. The space cooling loads of both Rooms A1 and 

A2 were shown to increase with increasing number of draining, as expected due to the 

higher solar energy. The difference in space cooling load between Rooms A1 and A2 

also increases with increasing solar energy. This suggests that the SWS mock-up was 

effective as solar heat shield to the building on days with high solar radiation to 

reduce the space cooling load. Five days of negative space cooling load saving for 

Room A2 with SWS mock-up was observed in Table 3.4, which includes 2, 5, 8, 21 

and 27 October 2013. To find out the reasons that caused the higher space cooling 

load for Room A2, the temperature profiles on 2 October 2013 are analyzed as plotted 

in Fig. 3.12. It was found that the temperature of the internal west wall of Room A1 

with bare wall was generally lower than Room A2 during the running time of 

air-conditioning units from 08:00 to 17:00. Since the internal west wall temperature 

was mainly influenced by heat transfer between the external and internal west wall 

through conduction, the higher temperature of the external wall of Room A2 as 

compared to its internal wall temperature from 00:00 to 08:00 means that the heat was 
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transferred from the external wall to the internal wall during this period. In 

comparison, the external wall temperature of Room A1 was lower than its internal 

wall for the same period. Hence, the internal west wall of Room A2 cooled down 

slower to a higher temperature than Room A1 before the air-conditioning units were 

turned on at 08:00. Thus, the SWS mock-up was acting as a heat barrier that reduced 

heat loss from the external west wall behind it. This heat barrier effect could be 

alleviated by automatically replacing the water in the SWS mock-up with much cooler 

water in order to rapidly and effectively bring down the temperature.  

 

Between the period of 08:00 to 17:00, it was noted in Fig. 3.12 that the temperature 

difference of the west wall of Room A1 was lower than Room A2 before 11:30. This 

indicates that the heat penetration through west wall of Room A1 by conduction was 

lower than Room A2. Hence, less space cooling load would be required to bring down 

the internal west wall temperature of Room A1 between 08:00 and 11:30. After 11:30, 

the external west wall temperature of Room A1 increased at a faster rate than Room 

A2 due to the increasing direct solar radiation. As the intensity of solar radiation from 

the west only started to increase after 12:00 and would reach the highest value after 

16:00, the SWS mock-up was more effective as a solar heat shield after 12:00. Due to 

the remaining solar radiation after 17:00 and the thermal mass effect of the brick wall, 

the space cooling load was not fully captured as the air-conditioning units were turned 

off at 17:00. Higher saving of space cooling load would be expected if the 

air-conditioning units were running into the evening or through the night.  

3.3.2 Water Filled Tank VS Water Filled Tank-Sandwich Panel 

The temperature data in June 2014 were analyzed to compare energy savings 
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performances of the SWS and SWS-SCS mock-ups. The air-conditioning units in both 

rooms were maintained at 24 
o
C from 08:00 to 20:00 in this month. Automatic 

replacement of water in the mock-ups with cooler water from the feed tank was 

conducted at 21:30 each day in order to bring down the west wall temperature. 

3.3.2.1 Temperature Profile 

Fig. 3.13 compares the water temperature in the SWS and SWS-SCS mock-ups from 

15 to 22 June 2014. The target temperature was reached on six days in the week due 

to the higher solar radiation in that month. As seen in the figure, the water temperature 

in the SWS-SCS mock-up increased faster than the SWS mock-up after 12:00, which 

indicates that the energy storage capacity of SWS-SCS mock-up was higher than that 

of the SWS mock-up.  

 

From the recorded number of draining in the month of June as summarized in Table 

3.5, the SWS mock-up was drained once in 7 days and twice in 3 days as compared to 

10 and 5 days for the SWS-SCS mock-up. More significantly, a record of triple 

draining was achieved by the SWS-SCS in 2 days on 20 and 21 June 2014. Overall, 

the SWS-SCS mock-up achieved one additional draining under the same weather 

condition as compared to the SWS mock-up on 13 days, as marked (*) in the table. 

This higher energy storage capacity of the SWS-SCS mock-up was due to the thermal 

mass and heat barrier effect of the additional SCS layer that reduced the heat loss 

through the back surface of the SWS tank.  

 

The temperature profiles of the external west wall of Rooms A1 and A2 from 15 to 22 

June 2014 are compared in Fig. 3.14. The external west wall temperature of Room A1 
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with SWS-SCS mock-up was generally lower than Room A2 with SWS mock-up. 

Besides, the external west wall temperature of Room A1 also increased slower than 

Room A2 after 12:00 as the intensity of the solar radiation began to increase 

significantly. This demonstrates the better performance of the SWS-SCS mock-up in 

reducing the solar heat penetration as compared to the SWS mock-up. 

3.3.2.2 Thermal Efficiency of SWS and SWS-SCS mock-ups 

The thermal efficiencies of the two mock-ups were calculated using Eq. (3.1) for the 

daily period from 08:00 to 20:00 in accordance with the running time of the 

air-conditioning units. The calculated solar energy, energy stored in water and thermal 

efficiency of SWS and SWS-SCS mock-ups based on the recorded temperatures and 

weather data are tabulated in Table 3.6. The thermal efficiency of the SWS mock-up 

was found to range from 18.85% to 29.44% with an average of 23.01% for the 30 

days in June 2014. In comparison, a higher thermal efficiency ranging from 21.40% to 

40.62% with an average of 30.85% was observed for the SWS-SCS mock-up. This is 

in consistent with earlier observations that the SWS-SCS mock-up stored higher solar 

energy than the SWS mock-up. The relationships between the thermal efficiency and 

solar energy for the SWS and SWS-SCS mock-ups are shown in Fig. 3.15. Again, the 

thermal efficiency is shown to be generally increasing with increasing solar energy. It 

can be seen from the fitted curve that the thermal efficiency of SWS-SCS mock-up 

was higher than that of the SWS mock-up under the same solar energy. The thermal 

efficiency of the SWS-SCS mock-up was 5.4% higher than the SWS mock-up when 

the solar energy was 4.5 kWh and the difference rose to 9.4% under solar energy of 

21.2 kWh. Hence, it appears that the thermal efficiency difference between the 

SWS-SCS and SWS mock-up is more significant when the solar energy is higher. 
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3.3.2.3 Space Cooling Load 

The performance of the SWS and SWS-SCS mock-ups in reducing the space cooling 

load are discussed in this section. Similar to the comparison in Section 3.3.1.3, only 

heat penetration into Rooms A1 and A2 through their respective west wall was 

compared to evaluate the space cooling load by the two different configurations of the 

water façade systems. 

 

Table 3.7 summarizes the space cooling load of Room A2 with SWS mock-up and 

Room A1 with SWS-SCS mock-up and the difference (A2-A1) between them. It was 

noted that the space cooling load of both Rooms A1 and A2 generally increased with 

increasing number of draining, which implies that higher space cooling load was 

required under higher solar energy. It was also noted that the space cooling load of 

Room A1 was less than that of Room A2 for all the whole month in June 2014. Hence, 

it was shown that the SWS-SCS mock-up with additional SCS layer can better reduce 

solar heat penetration into the room as compared to the SWS mock-up. 

3.4 Summary 

In this chapter, the field monitoring on the SWS and SWS-SCS mock-ups were 

presented, based on which the energy savings potential was evaluated in two aspects, 

i.e. thermal efficiency and space cooling load. The key findings are summarized as 

follow: 

i) The target water temperature of 38 
o
C for daily usage can be achieved using 

water storage façade and automated control of the water circulation system to 

drain and refill the water façade. The number of draining in a day was 
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dependent on the weather condition with higher draining on days with higher 

solar radiation. The SWS-SCS mock-up with additional SCS layer was shown to 

be capable of storing higher solar thermal energy as compared to the SWS 

mock-up. This was attributed to the thermal mass and heat barrier effect of the 

SCS that reduced the heat loss through the back surface of the water tank. 

ii) In the two months of data that was analyzed, the thermal efficiency of the SWS 

and SWS-SCS mock-up was found to be ranging from 12.87% to 23.01% and 

from 21.40% to 40.62%, respectively. The thermal efficiency of the SWS-SCS 

mock-up was 7.84% higher than that of SWS mock-up under the same weather 

condition. Generally, the thermal efficiency increases with increasing input solar 

energy. 

iii) The SWS mock-up was shown to be effective as a solar heat shield to reduce 

heat penetration into the building as compared to the control bare wall. The 

external west wall temperature behind the mock-up was lower than the control 

wall during daylight. 

iv) Although the SWS mock-up was effective as solar heat shield, negative space 

cooling load saving as compared to the bare wall was observed on certain days 

with lower solar radiation due to cloud or rain. Besides, the heat barrier effect of 

the SWS mock-up also hindered the heat loss from the wall behind it during the 

night. But, the SWS mock-up achieved overall space cooling load reduction of 

0.0484 kWh per day averaging over a month period compared to the bare wall.  
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Table 3.1 Categorized results for October 2013 

Group 1  

(No. of drain=0) 

2, 3, 7, 10, 11, 12, 13, 14, 20, 21, 22, 26, 27, 28, 29, 30 

October 2013 

Group 2 

(No. of drain=1) 
1, 4, 5, 6, 8, 9, 15, 25 October 2013 

Group 3 

(No. of drain=2) 
16 October 2013 

 

 

 

Table 3.2 Properties of materials (Welty et al., 2001) 

Material Parameters 
Temperature (K) 

280 300 320 

Brick Emissivity 0.65 0.65 0.65 

Air 

Density (kg/m
3
) 1.2614 1.1769 1.1032 

Conductivity (W/m*K) 0.024671 0.026240 0.027785 

Kinematic viscosity (m
2
/s) 1.3876×10

-5
 1.5689×10

-5
 1.7577×10

-5
 

Thermal diffusivity (m
2
/s) 1.9488×10

-5
 2.2156×10

-5
 2.5003×10

-5
 

Prandtl number 0.713 0.708 0.703 

Volumetric thermal expansion 

coefficient 
3.5659×10

-3
   3.3329×10

-3
 3.1343×10

-3
 

  
Temperature (K) 

273 293 313 

Water 
Density (kg/m

3
) 999.3 998.2 992.2 

Specific heat capacity (J/kg*K) 4226 4182 4175 
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Table 3.3 Thermal efficiency of SWS mock-up 

Date 

Oct 2013 

Solar energy* 

(kWh) 

(1) 

Energy stored in water* 

(kWh) 

(2) 

Thermal efficiency 

(%) 

(2)/(1)×100% 

Group 1    

7 12.45 3.26 26.16 

10 5.07 0.90 17.84 

11 13.35 3.33 24.96 

12 8.07 1.04 12.87 

13 10.83 2.33 21.51 

14 11.32 2.62 23.18 

20 13.94 3.17 22.71 

21 7.72 1.27 16.42 

22 11.06 2.58 23.34 

26 9.31 2.28 24.50 

27 7.28 1.94 26.71 

28 10.70 2.78 26.02 

29 6.82 1.51 22.19 

30 6.21 1.27 20.42 

Group 2    

4 17.27 4.52 26.15 

5 17.03 4.25 24.96 

6 16.66 4.75 28.50 

8 14.16 3.78 26.70 

9 14.63 3.87 26.43 

15 15.29 3.86 25.26 

25 12.95 3.46 26.72 

Group 3    

16 16.79 4.43 26.37 

Total 258.90 63.20 - 

Average 11.77 2.87 24.38 

*The energy is obtained by summing the respective energy from 08:00 to 17:00.  
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Table 3.4 Space cooling load 

Date 

Oct 2013 

Space cooling load* in 

Room A1 (kWh) 

(1) 

Space cooling load* in 

Room A2 (kWh) 

(2) 

Difference 

(kWh) 

(1)-(2) 

Group 1    

2 0.872 1.020 -0.1480 

3 0.996 0.934 0.0624 

7 0.865 0.804 0.0607 

10 1.102 1.084 0.0177 

11 0.799 0.785 0.0139 

12 1.026 1.013 0.0121 

13 1.069 0.876 0.1930 

14 0.999 0.935 0.0634 

20 0.959 0.840 0.1200 

21 0.867 0.920 -0.0532 

22 0.854 0.743 0.1110 

26 1.048 0.949 0.0998 

27 0.797 0.848 -0.0502 

28 0.843 0.777 0.0662 

29 0.952 0.903 0.0489 

30 0.950 0.903 0.0470 

Average 0.937 0.896 0.0415 

Group 2    

1 1.090 0.946 0.1440 

4 1.033 0.909 0.1240 

5 0.927 0.992 -0.0650 

6 0.915 0.883 0.0321 

8 0.996 1.030 -0.0342 

9 0.916 0.911 0.0058 

15 1.036 0.958 0.0779 

25 1.031 0.899 0.1320 

Average 0.993 0.941 0.0521 

Group 3    

16 1.256 1.128 0.1280 

Total 24.199 22.989 1.2100 

Average 

(total) 
0.968 0.920 0.0484 

*Space cooling load is obtained by summing the transferred energy from 08:00 to 

17:00. 
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Table 3.5 Categorized results for June 2014 

Group 1 

(No. of drain=0) 

1, 2, 3, 4, 5, 6, 9, 10*, 12*, 13*, 14, 15, 16*, 22, 24*, 25*, 27, 28, 

29*, 30 June 2014 

Group 2 

(No. of drain=1) 
7, 11*, 17*, 18*, 19*, 23, 26 June 2014 

Group 3 

(No. of drain=2) 
8, 20* 21* June 2014 

Note: The date marked with (*) indicates that the SWS-SCS mock-up has one more 

time drain than SWS mock-up. 
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Table 3.6 Thermal efficiency of SWS and SWS-SCS mock-up 

Date 

Jun 2014 

Solar 

energy* 

(kWh) 

 

(1) 

SWS-SCS mock-up SWS mock-up 

Energy stored 

in water* 

(kWh) 

(2) 

Thermal 

efficiency  

(%) 

(2)/(1)×100% 

Energy stored 

in water* 

(kWh) 

(3) 

Thermal 

efficiency 

(%) 

(3)/(1)×100% 

Group 1      

1 9.76 2.60 26.61 1.86 19.02 

2 9.11 2.31 25.37 1.76 19.35 

3 11.18 3.13 28.03 2.46 22.03 

4 8.79 2.03 23.10 1.84 20.96 

5 4.53 0.97 21.40 0.85 18.85 

6 4.67 1.47 31.59 1.25 26.70 

9 7.33 2.98 40.62 1.46 19.97 

10 11.42 3.80 33.23 2.55 22.35 

12 13.27 4.61 34.74 3.35 25.22 

13 12.39 3.32 26.82 2.55 20.61 

14 4.53 1.20 26.55 0.97 21.51 

15 11.69 3.19 27.27 2.53 21.67 

16 12.66 3.77 29.82 2.49 19.66 

22 8.34 2.35 28.12 1.97 23.62 

24 14.24 4.13 29.03 2.87 20.15 

25 17.43 5.54 31.76 3.98 22.81 

27 5.09 1.26 24.82 1.14 22.34 

28 12.72 3.37 26.47 2.76 21.70 

29 12.69 3.73 29.38 3.12 24.62 

30 6.78 1.45 21.43 1.08 15.98 

Group 2      

7 16.90 6.01 35.56 4.98 29.44 

11 15.91 5.24 32.91 3.89 24.47 

17 18.41 5.81 31.54 4.09 22.20 

18 20.67 7.11 34.41 5.15 24.91 

19 21.22 6.69 31.53 4.79 22.56 

23 14.29 3.88 27.17 2.96 20.72 

26 15.44 4.68 30.29 3.55 22.97 

Group 3      

8 18.59 6.53 35.11 4.97 26.72 

20 20.30 6.64 32.71 4.84 23.82 

21 18.72 7.14 38.13 5.15 27.50 

Total 379.07 116.93 - 87.20 - 

Average 12.64 3.90 30.85 2.91 23.01 

*The energy is obtained by summing the respective energy from 08:00 to 20:00.  
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Table 3.7 Space cooling load of SWS and SWS-SCS mock-up 

Date 

Jun 2014 

Space cooling load* in 

Room A2 (kWh) 

(1) 

Space cooling load* in 

Room A1 (kWh) 

(2) 

Difference 

(kWh) 

(1)-(2) 

Group 1    

2 1.594 1.544 0.051 

3 1.370 1.226 0.144 

4 1.257 1.159 0.098 

5 1.048 1.002 0.046 

6 1.006 0.839 0.168 

9 1.834 1.755 0.079 

10 1.549 1.338 0.211 

12 1.227 1.173 0.053 

13 1.480 1.199 0.281 

16 1.480 1.317 0.163 

24 1.551 1.379 0.172 

25 1.287 1.218 0.069 

27 1.024 1.021 0.003 

30 1.341 1.317 0.024 

Average 1.361 1.249 0.112 

Group 2    

11 1.526 1.277 0.250 

17 1.520 1.213 0.308 

18 1.230 1.187 0.043 

19 1.370 1.128 0.242 

23 1.840 1.710 0.130 

26 1.414 1.163 0.251 

Average 1.483 1.280 0.204 

Group 3    

20 1.574 1.262 0.312 

Total 29.522 26.427 3.098 

Average 

(total) 
1.406 1.258 0.148 

*Space cooling load is obtained by summing the transferred energy from 08:00 to 

20:00. 
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Fig. 3.1 Photo of monitoring station 

 

 

 

Fig. 3.2 Layout of the monitoring station 
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(a) 

 

(b) 

Fig. 3.3 Schematic diagram of circulating system: (a) SWS VS bare wall, (b) SWS VS 

SWS-SCS 

 

Roof

A2 A1

Flow
meter

Outlet pipe

Inlet pipe

Reference
wall

SWS

Actuated valve

Collection
tank

Feed
tank

Actuated valve

Pump

Actuated valve

30
00

30
00

Ground

Roof

A2 A1

Flow
meter

Inlet pipe

SWS-SCSSWS

Actuated valveActuated valve

30
00

30
00

Collection
tank

Feed
tank

Actuated valve

Pump

Actuated valve

Outlet pipe

Ground



Chapter 3 Energy Performance of Water Façade Systems 

- 51 - 

 

 

Fig. 3.4 Temperature sensing points for roof (Each dot represents one temperature 

sensor probe) 

 

 

Fig. 3.5 Temperature sensing points for walls (Each dot represents a pair of 

temperature sensor probes on the internal and external surfaces of the wall) 

West face 

A2 

A1 
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Fig. 3.6 Temperature sensing points for SWS and SWS-SCS mock-ups (Each dot 

represents one temperature sensor probe at the center) 

 

 

    

 (a) Central control station        (b) Industrial computer running Linux 

Fig. 3.7 Wireless data relay from central control station to industrial computer 
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Fig. 3.8 HOBO weather station 

 

Fig. 3.9 Temperature profiles of water inside the SWS tank in Oct 2013 
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Fig. 3.10 Temperature profiles of external west wall of Room A1 and A2 in Oct 2013 

 

 

Fig. 3.11 Relationship between thermal efficiency and solar energy 
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Fig. 3.12 Temperature profiles on 2 October 2013 

 

 

Fig. 3.13 Temperature profiles of water of SWS and SWS-SCS mock-ups in June 

2014 
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Fig. 3.14 Temperature profiles of external west wall of Room A1 and A2 in June 2014 

 

 

Fig. 3.15 Relationship between thermal efficiency and solar energy
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Chapter 4 Performance of Water Façade Systems under Lateral 

Pressure Load 

4.1 Introduction 

The structural responses of water façade systems under lateral pressure load were 

experimentally, analytically and numerically investigated in this chapter. The loading 

was applied using hydraulic actuator on an inflated high pressure airbag to assert 

lateral pressure on the specimens in the experimental study. Due to the limitation of 

airbag lifting capacity, which has maximum allowable pressure of 0.8 MPa, the 

SWS-SCS configuration was divided into SWS and SCS which were tested separately. 

The resistance–deflection curves, deflection shapes and strain responses were 

obtained from the experiments to understand their behaviors under lateral pressure 

load. In addition, the effects of water and concrete core depth on the resistances of 

SWS and SCS were experimentally investigated. Analytical models were developed 

to predict the resistances of the specimens and the analytical predictions were verified 

with the test results. FE models of the test specimens under lateral pressure load were 

established. The experimentally-verified FE models were applied to investigate the 

effects of water on the resistance of SWS tank and the load transfer mechanism 

between face plate and concrete core of SCS panel. 

4.2 Material Properties 

The material properties of the stainless steel, mild steel and cement grout used to 



Chapter 4 Performance of Water Façade Systems under Lateral Pressure Load 

- 58 - 

fabricate the SES, SWS and SCS specimens were determined under static loading 

condition in accordance to the ASTM laboratory test standards. The material test 

procedure and results are reported in the following subsections.  

4.2.1 Steel 

Three coupon specimens for each of the 3 mm thick mild steel and stainless steel 

plates were machined according to ASTM E8E (2004) recommendation as shown in 

Fig. 4.1. The center of both faces of the coupon was attached with a 5 mm post yield 

strain gauge to capture the tensile strain while extensometer was used to record the 

displacement beyond the strain gauge limit. In the test setup, one end of the coupon 

was gripped by the loading arm of the test machine while the other end was secured to 

an immobile base. Displacement-controlled loading rate of 0.1 mm/min was applied 

up to yield and then increased to 1 mm/min between yield and fracture. 

 

The average yield stress of the stainless steel 316 at 0.2% proof strain is 260.9 MPa 

while the mild steel has slightly higher average yield stress of 309.2 MPa, as 

determined from their respective tensile stress–strain curves in Fig. 4.2. However, the 

ultimate engineering stress and strain of the stainless steel are higher than the mild 

steel as compared in Table 4.1. All the coupon specimens failed with tensile necking 

as shown in Fig. 4.3. It was noted that the fracture point did not occur exactly at the 

center of specimen, particularly for the mild steel. Hence, it is necessary to capture the 

post yield extension of the coupons by using extensometer. 

4.2.2 Cement Grout 

Due to the small depth of the SCS sandwich panel as compared to its length and width, 
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it was proposed that the confined core space was filled with concrete by using pump 

in order to eliminate the need for welding after pouring and also to ensure better 

casting quality. Self-compacting concrete (SCC) with 6 mm maximum aggregate size 

was initially proposed in view of its superior workability as compared to normal 

concrete for such space constraint. After several trial mixes to verify the workability 

and pumpability of the SCC mix using the IMER pump, it was finally confirmed that 

the pump was unable to provide sufficient pressure to consistently move the SCC 

without bleeding or segregation. As a result, the pre-mixed Parvex Davco cement 

grout with minimum compressive strength of 40 MPa was sourced to replace the SCC 

mix. Based on the supplier recommendation of 3.5 to 5 liter of water per bag of grout 

(25 kg), 4 liter water per bag mix proportion was selected and trial mix was conducted 

to ensure that the grout was pumpable and segregation-free with sufficient workability 

and setting time before the actual casting. During the casting of SCS sandwich panels 

for the structural test, nine 100 × 200 mm cylinders and six 100 mm cubes samples 

were prepared for material test. The grout was pumped from the top of the cylinder 

and cube moulds without compaction or vibration in order to mimic the casting of the 

panels. 

 

The uniaxial compression test was carried out in accordance to the ASTM C39/C39M 

(2005) test standard. The cylinder samples were loaded using the 1000 kN MTS 

machine under displacement-controlled rate of 0.1 mm/min as shown in Fig. 4.4. Two 

30 mm post yield strain gauges were used to measure the longitudinal strain and 

another two were applied for the transverse strain. The softening response was 

captured by using four Linear Variable Displacement Transducers (LVDT) as seen in 

the uniaxial compression stress–strain curves plotted in Fig. 4.5. 
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Tensile splitting test on three cylinder samples were carried out to determine the 

tensile stress of the cement grout. Each cylinder was placed horizontally between the 

loading surfaces of the compression test machine as shown in Fig. 4.6. The 

compression load was applied diametrically and uniformly along the length of 

cylinder until the failure of the cylinder along the vertical diameter. 

 

The material properties of the cement grout as determined from the uniaxial 

compression test (ASTM C469, 2002) are summarized in Table 4.2. The average 

compressive and tensile stresses were obtained as 50.3 MPa and 4.9 MPa. 

4.3 Preparation of Specimens 

Stainless steel (SS316) tanks with and without infilled water (SWS and SAS) were 

investigated to study the influence of water on the resistance of the steel tank structure. 

Two stiffeners with cut-out holes for water flow were welded to the top and bottom 

plates and the tank was enclosed by four side plates. As seen in Fig. 4.7, a 20mm (¾ 

inch) inlet pipe and an outlet pipe of the same size, both with threaded plug, were 

provided so that the SWS tank can be filled with water before test. For comparison 

purpose, the pipes were also included in the SAS tank. 

 

Two SCS sandwich panels with different core depth of 50 and 75 mm were fabricated 

from mild steel plates that were fillet welded together to form the outer skin as shown 

in Fig. 4.8. 32 mm (1¼ inch) inlet pipe with stopper ball valve and 32 mm (1¼ inch) 

outlet pipe with threaded cap were provided at the side and end plates of the panels 
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for the pumping of cement grout into the core. The schematic drawings of the four 

specimens are shown in Fig. 4.9 and Fig. 4.10 and the details are summarized in Table 

4.3. 

4.4 Test Setup and Instrumentation 

For the lateral pressure load test setup, the specimen was roller-supported at two ends 

by 80 mm (diameter) round bars. The clear span between the bars was 900 mm as 

shown in Fig. 4.11. The load was applied at the mid-span point through an inflated 

airbag which was placed on top of the test specimen via a 1000 mm × 1000 mm × 30 

mm thick transfer steel plate. The distance between the transfer plate and specimen 

was kept at 120 mm throughout the test. To load the specimen, the airbag was 

continuously charged using a compressed air pump so that the inflating airbag, which 

was restrained on the top by the fixed transfer plate, will apply increasing pressure 

onto the specimen. This loading method allows a slower change in contact area 

between airbag and specimen as compared to displacing the actuator at a certain 

displacement-controlled rate. The rate of displacement at the mid-span point of the 

test specimen was kept within the static loading rate of less than 1 mm/min 

throughout the test. The air supply pressure was also manually controlled using the 

regulator as shown in Fig. 4.12 to maintain an approximately constant deformation 

rate for the specimen.   

 

Fig. 4.13 shows the positions of LVDTs and strain gauges at the bottom plate of the 

specimen. Seven LVDTs were provided to measure the displacements and deflection 

shapes along the span length and across the width direction. For the SAS and SWS 
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tanks, strain gauges S0, S1 and S2 were used to capture the strain distribution along 

the span direction while S0, S4, S5 and S6 were used to measure the strain 

distribution across the width direction. For the SCS sandwich panels, three additional 

strain gauges were used to record the strain distribution across the side plate at 

mid-span. The strain and displacement data were recorded using the data logger as 

seen in Fig. 4.12. Other than this, the non-contact area from edge of specimen to 

contacting edge of airbag and specimen was measured at every loading interval of 20 

kN or less. 

4.5 Discussion on Test Results 

4.5.1 Load–Displacement Response and Failure Mode 

4.5.1.1 SAS and SWS Tanks 

Both of the SAS and SWS tanks underwent large ductile deformation beyond peak 

load as observed from their respective pressure load–displacement curves in Fig. 4.14. 

For the SWS tank, its maximum resistance is about 30% higher than the SAS tank. 

The comparison shows that the infilled water is effective to maintain the shape of the 

steel tank during loading and delay the occurrence of local buckling. At the post 

failure range, the resistance of SWS tank was decreased due to cracking of the welds 

and leakage of water. 

 

Fig. 4.15 shows the flexure failure of the SAS and SWS tanks with plastic hinge at 

mid-span. Buckling was observed near mid-span of the side plates of both tanks, as 

shown in Fig. 4.16 for the SAS tank. This is attributable to the unsymmetrical load 

acting on the side plates, which could be visualized as web of a C-channel with the 
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top and bottom plates as flanges. Buckling of top plate along the stiffener at the 

weaker cut-out positions was also observed from the figure. At the post failure range, 

leakage of water from the SWS tank occurred due to cracking of welds between the 

stiffener and bottom plate as shown in Fig. 4.17. The final deformed shape of the 

SWS tank after leakage were similar to that of the SAS tank, which highlights the role 

of water in the improved resistance. 

4.5.1.2 SCS50 and SCS75 Sandwich Panels 

The pressure load–displacement responses of the SCS50 and SCS75 sandwich panels 

are compared in Fig. 4.18. A short plateau before yielding can be seen in both curves. 

This is likely due to the occurrence of debonding between the steel plates and grout 

core which results in lower stiffness and weakened composite action between the steel 

plates and grout core. 

 

The deformed shapes of the SCS50 sandwich panel before and after the occurrence of 

shear failure are compared in Fig. 4.19. The shear failure was brittle, sudden and 

accompanied by a loud cracking sound. Spalling of the grout can be seen through the 

failure of welds between the bottom plate and side plate and also the tearing from the 

side plate to top plate due to the large shear deformation. Without shear connectors, 

the shear resistance of SCS sandwich panel is contributed by the core layer, top plate 

and side plate, among which the grout core is the main contributor. Thus, the possible 

measures to avoid such brittle shear failure under pressure load are by (a) increasing 

the thickness of top steel plate, (b) applying embedded reinforcing bars to the concrete 

core within the zone with high shear force and (c) increasing the span to depth ratio. 
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Due to the limitation of the allowable maximum airbag pressure of 0.8 MPa, the relief 

valve on the airbag was opened before the SCS75 panel has reached its ultimate 

resistance. Thus, the SCS75 panel was re-tested to failure under line load after the 

lateral pressure load test and the load–displacement curve is plotted in Fig. 4.20. The 

panel failed under flexure as shown in Fig. 4.21. Debonding between top plate and 

grout layer and buckling of top plate can be seen from the deformed shape. The 

observed failure modes are consistent with the structural form of the panel without 

shear connectors, which would otherwise resist the transverse and longitudinal shear 

and also delay the debonding between the top plate and grout core. 

4.5.1.3 Maximum Resistance and Failure Mode 

The maximum resistances and failure modes of the four specimens are compared in 

Table 4.4. It can be seen that the thicker and stiffer SCS50 and SCS75 sandwich 

panels exhibited much higher resistance as compared to the stainless steel tanks. 

However, the SAS and SWS tanks, which failed under flexure with large deformation, 

were superior in terms of ductility.  

 

The SCS50 sandwich panel failed suddenly in brittle shear mode at mid-span 

displacement of 52.3 mm. The shear failure would also occur in the SCS75 sandwich 

panel due to its higher thickness to span ratio. Meanwhile, the SAS tank was able to 

maintain 84.2% of its maximum resistance at mid-span displacement of 100.9 mm, 

which is equivalent to a high ductility ratio of 6.2. Similar ductility was also observed 

for the SWS tank albeit at a lower remaining resistance of 72.6% of maximum 

resistance after the leakage of water. Based on the static test results, it was deduced 

that the SCS sandwich panel can be applied as add-on layer to increase the blast 

resistance of SWS tank provided that the aforementioned measures to avoid shear 
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failure are adopted to improve its ductility. 

4.5.2 Load–Strain Response 

4.5.2.1 SAS and SWS Tanks 

The development of strains with loading along the span and across the width of the 

specimen is plotted in Fig. 4.22 and Fig. 4.23 for the SAS and SWS tanks, 

respectively. Before reaching the peak load, the strain readings at mid-span and 

quarter-span (Fig. 4.22(a)) of the SAS tank were similar. Beyond that, the strains at 

both quarter-spans began to decrease while the one at mid-span continued to rise. This 

indicates that the plastic hinge was developing at mid-span after the peak load. Fig. 

4.22(b) compares the strains along the width direction and the strain reading near the 

stiffener (S4) was largest among all four before the peak load, indicating that load was 

transferred more through the stiffener as compared to the side plate. As the SAS tank 

sustained further deformation beyond the peak load, the strain near side plate (S6) 

became larger than the rest, which was due to occurrence of buckling near the side 

plate. The readings of strain gauges S0 at mid-span and S5 between the stiffener and 

side plate were smaller in comparison to S4 and S6, which is attributable to the shear 

lag effect where normal strain/stress in flange (top and bottom plates) further from the 

web (stiffener/side plate) is smaller than those near the web for thin-walled flanged 

flexural members (Reissner, 1986; Moffatt et al., 1975). Fig. 4.22(c) compares the 

two strain gauges at mid-span and the longitudinal strain reading (S0) was evidently 

larger than the transverse strain reading (S3). This observation is consistent with the 

response of one-way supported member. 

 

Fig. 4.23(a) compares the strain readings of SWS tank along the span direction. The 
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two quarter-span strain gauges recorded higher tensile strain than mid-span from the 

beginning of loading. This was unexpected and likely caused by the geometric 

imperfection of the SWS tank. All three strain readings decreased after the leakage of 

water at load of 86.4 kN, which demonstrates the role of water in distributing the load 

to bottom plate and improving the overall resistance of the tank. Fig. 4.23(b) 

compares the strain readings along the width direction. Similar to the SAS tank, the 

strain reading of S4 near stiffener was largest before peak load and it continued to 

increase after the leakage while the strain readings of S0 and S5 decreased after the 

leakage. The development of strain reading S6 near side plate agreed with the 

buckling deformation shown in Fig. 4.17, which was slightly off from the mid-span. 

The shear lag effect of strain S5 between stiffener and side plate was less obvious as 

compared to the SAS tank, which also demonstrates the effect of water in distributing 

the load to bottom plate in the SWS tank. As shown in Fig. 4.23(c), the larger 

longitudinal strain, smaller transverse strain response of the one-way supported SWS 

tank is also similar to the SAS tank. 

4.5.2.2 SCS50 and SCS75 Sandwich Panels 

The strain distribution of the SCS50 and SCS75 along the span direction are plotted in 

Fig. 4.24(a) and Fig. 4.25(a), respectively. The strain readings at mid-span (S0) were 

larger than those at quarter-spans (S1 and S2). This is because the bending moment at 

mid-span is larger than the quarter-span under lateral pressure load. Consistent with 

the load–displacement response of the panels, the plateau that indicates the stress 

redistribution after the debonding between grout core and steel plates was also 

observed in the load–strain curves.  
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From the plots of the strain distribution across the width in Fig. 4.24(b) and Fig. 

4.25(b) for the SCS50 and SCS75 panels respectively, it can be seen that the strain 

near side plate (S4) increased more than the mid- (S0) and quarter-width (S3) strains 

after the plateau. This shows that the stresses were transferred to the side plate after 

the debonding near the mid- and quarter-width area. For the SCS50 sandwich panel 

which was tested to failure, it can be seen that the load was distributed back to the 

mid-span near the failure load.    

 

Fig. 4.24(c) and Fig. 4.25(c) show the strain distribution across the side plate at 

mid-span for the SCS50 and SCS75 sandwich panels, respectively. It can be seen that 

the plate was under bending in the test. The neutral axis moved from the center of the 

side plate towards the top plate with increasing pressure loading for both panels. 

Subsequently for the SCS50 panel, the center strain reading S9 was reversed from 

tension to compression near to the failure load. This could indicate the failure of grout 

core whereby the compressive stress was transferred to the steel plate after failure of 

the grout. 

4.5.3 Deflection Shapes 

The deflection shapes of the four specimens, which are required to establish the 

equivalent SDOF system, are drawn in Fig. 4.26 and Fig. 4.27 at selected load levels 

in span and width directions, respectively. The load levels were selected such that the 

displacement intervals of adjacent load levels were similar. 

 

The deflection shape of beam bending under lateral pressure load is a polynomial 

function in elastic range and a bi-linear function in plastic range after the formation of 
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plastic hinge at mid-span (Biggs, 1964). It should be mentioned that the deflection 

shape was derived only considering the flexure deformation not the shear deformation. 

As seen in Fig. 4.26, the deflection shapes of all four specimens were not exactly a 

polynomial function in elastic range nor bi-linear function when the plastic hinge was 

formed. One reason is that the shear deformation also contributed to the deflection 

shapes of the test specimens. Besides, the specimen may not be treated as a true beam 

due to its more complex geometry and the composite action in the sandwich panels. 

Hence, the deflection shapes from test could be applied to obtain more accurate 

construction of the SDOF system. As seen in Fig. 4.26(b) for the SWS tank, the 

displacement at quarter-span was higher than mid-span, which corresponds to the 

unexpected higher quarter-span strain readings as discussed previously. 

 

Although the specimens were roller-supported at two ends, the mid-span deflection 

shapes along the width direction were not the same particularly at the beginning of 

loading as compared in Fig. 4.27. This is likely due to the influence of side plates in 

all specimens and stiffeners in the tanks. Besides, the concave in SCS75 panel at low 

load level may be attributed to the geometric imperfections of the specimen. The 

measured deflection shapes along the width direction will also be used to obtain the 

more accurate representation of the SDOF model. 

4.5.4 Contact Area 

The contact area between airbag and specimen, which changes with air pressure, was 

measured continuously during the test. Fig. 4.28 compares the relationships between 

the measured contact area and applied load for the four specimens and the change in 

contact area decreased with increasing load as the airbag was progressing towards its 
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fully inflated state. The four contact area–load curves were also close to each other, 

thus, showing that the same loading method was consistently applied on the different 

specimens. 

4.6 Analysis of Specimens Subject to Lateral Pressure Load 

4.6.1 Water Tank 

The cross-section of the SAS tank at mid-span consists of two C-shape and I-shape 

beams as shown in Fig. 4.29. Hence, the bending resistance of SAS tank can be 

obtained by summing the bending resistance of these beams. According to EN 

1993-1-1, The cross-section classification of these beams are all class 4, which means 

that local buckling will occur before the attainment of yield stress in one or more parts 

of the cross-section (Eurocode 3, 2005). Hence, effective width may be used to make 

the allowances for reductions in resistance due to the effects of local buckling. 

Besides, shear lag effects in flanges should also be taken into account by the use of an 

effective width according to EN 1993-1-5. Therefore, the effective width of tension 

flange was calculated considering shear lag effects and the effective width of 

compression flange was calculated considering combined effects of shear lag and 

plate buckling. The calculated effective widths are given in Fig. 4.29.  

 

The bending resistance of SWS tank is difficult to evaluate since the effect of water 

on the resistance has not been analytical studied and no design code has been found 

up to date. Since the shear resistance of water is negligible, it theoretically has no 

contribution to the shear lag. However, it was observed from the test that it could 

reduce the shear lag effect of bottom plate, which might be due to the maintained 
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shape of SWS tank by water. Since water is incompressible and maintained the 

volume of SWS tank, the local buckling of top plate was partially hindered due to the 

confinement by water and airbag. However, it is still difficult to quantify the buckling 

resistance by water and the quantification is out of this research scope. Based on 

above analysis, the effective width of compression flange considering water effect in 

resisting local buckling is suggested in Eq. (4.1).  

 w cs s cs

eff eff eff effb b b b                       (4.1) 

where w

effb  is the effective width considering water effects in resisting local buckling, 

cs

effb  is the effective width considering combined effects of shear lag and plate 

buckling, s

effb  is the effective width considering shear lag effects and  is the 

influencing factor of water effects on plate buckling. The influencing factor  is 

varying from 0 to 1, which stands for no effects and fully restriction on plate buckling, 

respectively. It is found that the prediction is close to the test result when 0.62 . 

This demonstrates that water can partially hinder the local buckling. However, the 

determination of influencing factor   may need further analytical and experimental 

study and is out of the current research scope. 

 

Since the shear resistance of water is negligible, the shear resistance of the SAS and 

SWS tanks is the same and can be calculated by Eq. (4.2) based on EN 1993-1-1 

(Eurocode 3, 2005). 

 
,

0

3v y

pl Rd

M

A f
V


                        (4.2) 

where vA  is the shear area. 
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4.6.2 SCS Sandwich Panels 

Although the bending resistance of a full or partial composite SCS sandwich beam is 

given by the EN 1994-1-1 (Eurocode 4, 2004), the SCS sandwich panel with side and 

end plates cannot be simply treated as a SCS sandwich beam. The load transfer 

mechanism between steel plates and concrete core has to be analyzed to determine the 

bending resistance of such panel. The configuration of SCS sandwich panel before 

and after deformation is shown in Fig. 4.30. Since the bond between steel plates and 

concrete core was negligible and no shear connector was used, the composite action 

between steel plates and concrete core of the SCS sandwich panel was contributed by 

the end plate. In the absence of end plate, the top/bottom plate and concrete core will 

bend separately. In such scenario, the length of top/bottom plate over its thickness is 

nearly unchanged due to the thin plates, while the top layer of concrete core shortens 

and the bottom layer extends. Due to the existence of end plate, the extension of 

concrete core at bottom layer will be constrained and therefore its bottom layer at end 

and top layer at mid-span are under compression. Then, the compression zone along 

the concrete core can be obtained in Fig. 4.31. It is noted that the end plate has the 

function similar to shear connectors to provide the composite action between 

top/bottom plate and concrete core. In terms of top/bottom plate, the bottom plate is in 

tension and the stress of top plate is mainly influenced by the side plate instead of 

concrete core due to the separation between the end plate and top layer of concrete 

core as shown in Fig. 4.30. Under bending, the top plate near the side plate is under 

compression while certain distance away may have little compression due to the shear 

lag effect. This shear lag effect will be taken into account to determine the effective 

width of top plate under compression. 
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Fig. 4.32 shows the cross-section of the SCS sandwich panel at mid-span, which can 

be divided into three sections to calculate the bending resistance based on the previous 

discussions. The force distributions in the cross-section of sections A, B and C are 

shown in Fig. 4.33. As the width in section B is determined by considering the shear 

lag effect according to BS EN 1993-1-5 (Eurocode 3, 2005), the top plate within 

sections B and A is under compression and zero stress, respectively.  

 

In section A, the top layer of concrete core is under compression and bottom plate is 

under tension. Hence, the effective compression depth of concrete core Tc can be 

obtained in Eq. (4.3) based on force equilibrium. 

 
y t

c

c

f t
T

f
                           (4.3) 

where fy and fc are the yield strength of bottom plate and compressive strength of 

concrete core; tt is the thickness of bottom plate;   = 1.0 for fc ≤ 50 MPa,   = 1.0 

– (fc – 50)/200 for 50 < fc ≤ 90 MPa (Eurocode 2, 2004). The bending resistance of 

section A can then be calculated as 

( 2 2)A y t t c c AM f t t h T B                     (4.4) 

where hc is the concrete core depth and BA is the width of section A. In section B, the 

top plate is under compression and bottom plate is under tension. Since these two 

plates are of equal thickness and strength, the bending resistance of the section is 

reached when the neutral axis of concrete core moves near to the lower surface of the 

top plate. Therefore, the bending resistance in Section B can be calculated as 

 B y c BM f t h t B                        (4.5) 

where t is the thickness of top or bottom plate and BB is the width of section B. In 
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section C, the side plate is under bending and it can be treated as a beam with 

rectangular section. Hence, the bending resistance of section C is obtained as 

C y zM f W                          (4.6) 

where Wz is the plastic section modulus. 

 

The transverse shear resistance, Vrd, of the SCS sandwich panel without shear 

connectors is contributed by concrete core, top/bottom plates and side plates as 

follow: 

rd c spV V V                           (4.7)  

in which the contribution of top/bottom plates is included by modifying the effective 

depth of concrete core (Yan et al., 2014). The shear resistance of the concrete core can 

be calculated as (Yan et al., 2014)  

 
1 3

, 1 1100c Rd c ck eV C k f Bh  
 

                 (4.8) 

where  , 0.18Rd c cC   for normal weight concrete; 1 200 2.0ck h    with hc 

in mm; 1 0.02t ct h    and 1 0.40 0.60 2200w    where w  is the density of 

concrete in kg/m
3
. Considering the influence of top/bottom plate, the effective depth 

of the panel needs to be modified to  

e c c s ch h t E E                         (4.9) 

where tc is the thickness of compression steel plate and Es and Ec are the elastic 

modulus of steel plate and concrete, respectively. The transverse shear resistance of 

side plate can be calculated by Eq. (4.2) given by EN 1993-1-1 (Eurocode 3, 2005). 

4.6.3 Comparison with Test Results 

The analytical calculations are compared to the lateral pressure loading test results in 
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Table 4.5. The calculated bending resistance of SAS tank according to Eurocode 3 

matches well with the test result. Since there is no analytical solution to quantify the 

water effects on the local buckling of compression plate, an influencing factor is 

proposed to calculate the effective width of compression flange and it is found that the 

prediction is close to the test result when the influencing factor equals to 0.62. It is 

noted that the calculated shear resistances of SAS and SWS tanks are smaller than the 

calculated bending resistances, while flexure failure mode was observed for both SAS 

and SWS tanks in the test. This indicates that the shear resistance formula given by 

Eurocode 3 is conservative. As discussed earlier, shear failure mode was observed in 

the test on the SCS50 sandwich panel and the calculated shear resistance agrees well 

with the test result. The calculated bending resistance is conservative as indicated by 

the actual failure mode of the SCS 50 sandwich panel. The conservative predictions 

are caused by neglecting friction forces between the face plates and concrete core and 

neglecting strength hardening after the yield of the steel face plate.  

4.7 Finite Element Analysis of Specimens under Lateral Pressure 

Load 

FE analysis was conducted using LS-DYNA to simulate the responses of water tanks 

and SCS sandwich panels under lateral pressure load. Compared to physical tests, FE 

analysis could provide more detailed information and comprehensive observations on 

the structural responses, which helps to understand their behaviors under lateral 

pressure load. 
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4.7.1 Material Models 

4.7.1.1 Concrete Material Model 

Concrete is a complex heterogeneous material that exhibits non-linear inelastic 

behavior under multi-axial stress states. To accurately predict the material response 

and failure modes under a variety of loading situations, the key characteristics 

including the influence of confinement on concrete strength and energy absorption 

capacity, compression hardening and softening behaviors, volumetric expansion upon 

cracking, tensile fracture and softening, biaxial response and strain rate effects under 

dynamic load (Crawford et al., 2012) have to be captured in the constitutive model, 

which defines the relationship between flow variables that relate stress to deformation 

and internal energy (Hallquist, 2006).  

 

The Karagozian & Case material model (MAT_72R3 in LS-DYNA) developed by 

Malvar et al. (1997) was adopted in this study to model the cement grout layer. The 

stress tensor of a material may be decoupled into a hydrostatic pressure and a 

deviatoric stress tensor (Chen and Han, 1998) and this decouple was adopted in this 

material model. Although the material model was built to simulate the response of 

concrete under dynamic load (Malvar et al., 1997), it has been shown that the model 

reasonably captured the material response under both quasi-static loading (Malvar et 

al., 1997; Malvar et al., 2004; Crawford et al., 2012) and dynamic loading (Malvar et 

al., 1997; Lin et al., 2014, Lei et al., 2014). 

 

The deviatoric response of MAT_72R3 is defined by three independent failure 

surfaces that describe the plastic behavior of concrete. The three surfaces are the 
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initial yield surface, maximum failure surface and residual surface written as follow: 

0

1 2

y y

y y

p
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a a p
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
    (Initial yield surface)           (4.10) 
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p
a

a a p
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
     (Maximum failure surface)       (4.11) 
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r

f f

p

a a p
 


      (Residual surface)             (4.12) 

where p is pressure and parameter ija , which defines the failure surfaces, can be 

determined through uniaxial tension, uniaxial compression and triaxial compression 

tests. Option to automatically generate a standard set of the eight ija  parameters for a 

given compressive strength of normal concrete is available in LS-DYNA. If the 

compressive strength ratio of a new material to the reference material is r, then the 

new coefficients of failure surface can the written in terms of the old ones as 

0 0na a r , 1 1na a , 2 2na a r                   (4.13) 

 

In this material model, if the current stress state lies between the yield and maximum 

surfaces, the current failure surface is linearly interpolated between the yield and 

maximum surfaces based on the value of damage parameter   for hardening stage, 

as shown in Eq. (4.14). A similar interpolation is performed between the maximum 

and residual surfaces for softening stage if the current stress state is located between 

the maximum and residual surfaces, as shown in Eq. (4.15). 

( )m y y                             (4.14) 

( )m r r                             (4.15) 

In above equations, the damage parameter   varies between 0 and 1 depending on 

the accumulated effective plastic strain parameter  . The   is 0 when  =0 and 1 
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when m  . The   then decrease to 0 at some larger value of  . Since   is 

defined to be non-decreasing, the   can sequentially take on the values y , 

m  and r  (Malvar, et al., 1997). 

 

The above   versus p relationships define the compressive meridian of the failure 

surface in the principal stress space. Hence, it is needed to establish the relationship 

between any point in the failure surface and the compressive meridian to form the full 

failure surface. The deviatoric plane shape typically transitions from triangular curves 

with smooth corners at low pressures to circular at high pressures (Chen, 1982). 

Therefore, the third invariant, Lode angle θ, is adopted to describe the deviatoric 

plane of concrete and the shape proposed by Willam and Warnke is adopted to provide 

a smooth and convex triangular surface generated by elliptical segments. Then, the 

principal stress difference   between the tensile and compressive meridian can be 

obtained by multiplying the compressive meridian with a ratio 
,r , which is defined as 

2 2 2 2

,

2 2 2

2(1 )cos (2 1) 4(1 cos 5 4 )

4(1 )cos (1 2 )

Q Q Q Q Q
r

Q Q

 



     


  
         (4.16) 

In Eq. (4.16), 
t cQ r r , where rt and rc are the radii of the tensile and compressive 

meridians, respectively. 

 

To capture the varying deviatoric plane with increasing pressure, the ratio of radii of 

tensile meridian to compressive meridian Q is defined as a piecewise linear function 

of pressure p as follow 
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In MAT_72R3, the accumulated effective plastic strain parameter  , which governs 

the stress–strain relationship, is defined as follow 
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                 (4.19) 

where fr  is the strain rate enhancement factor, b1 and b2 are the damage scaling 

exponents and pd  is the effective plastic strain increment given by 

 2 3 p p

p ij ijd   . The damage scaling exponents b1 and b2 govern the softening of 

the unconfined uniaxial stress–strain curve in compression and tension, respectively 

(Malvar et al., 1997). Whenever the stress path is close to the triaxial tensile test path, 

a volumetric damage increment is added to the deviatoric damage as follow 

3 ,( )d d v v yieldb f k                          (4.20) 

where b3 is the input scalar multiplier, kd is the internal scalar multiplier, v  is the 

volumetric strain and ,v yield  is the volumetric strain at yield. The factor df  is used 

to limit the effect of this change to the paths close to the triaxial tensile path by  
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            (4.21) 

 

The smeared crack band model was adopted for MAT_72R3 to avoid spurious mesh 

sensitivity caused by strain-softening (Malvar et al., 1997). In this model, to ensure 

the constant fracture energy dissipation, the value of b2 is determined by iterative 

calculations until the area under the stress–strain curve for a uniaxial unconfined 

tensile test coincides with fG h , where fG  and h are the fracture energy and 

element size, respectively. Similarly b3 and b1 are found using hydrostatic triaxial 

tensile test and uniaxial unconfined compressive test, respectively. In this study, the 

fracture energy from uniaxial unconfined compressive test on the cement grout was 

used to determine b1. The fracture energy in tension-softening was referred from 

Ishiguro (2007) in Eq. (4.23) to determine b2. 

0.1050.0251f cG f                       (4.22) 

where cf  is the compressive strength of grout in MPa. In absence of test data, the 

value of b3 is assumed to be 1.15 as suggested by Malvar et al. (1997). This parameter 

determines the energy dissipation in triaxial tensile path, which is relatively small 

compared with the energy dissipation in compressive path. Hence, this assumption has 

no significant effect on the structural response.  

 

The volumetric response of concrete material is defined in MAT_72R3 by the 

tabulated Equation of State (EOS), numbered as EOS_8 in LS-DYNA. The EOS 

relates the hydrostatic pressure, p, the relative volume, V, and the internal energy, ei. 

In the loading (compression) phase, the pressure is defined as 
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( ) ( )v v ip C T e                         (4.23) 

where v  is the natural logarithm of the relative volume, C and T are coefficients 

given as function of v  and ie  is the internal energy. Unloading occurs at the slope 

corresponding to the bulk modulus at the peak (most compressive) volumetric strain. 

Reloading follows the unloading path to the point where unloading begins and 

continues on the loading path (Hallquist, 2006).  

 

In this study, the thermal state of concrete ( )v iT e   in Eq. (4.23) was not considered 

and the values of C and v  can be generated by using the automated generation 

option in MAT_72R3, which is based on uniaxial strain test on concrete material 

(Malvar et al., 1997). Since the bulk modulus of grout is different from that of normal 

concrete, the bulk modulus of grout (13.83 GPa) obtained from uniaxial unconfined 

compressive test was applied to the parameters in EOS.  

 

Since the strain rate effects may have significant influence on the strength and failure 

mode of concrete material (UFC, 2008; CEB, 1993; Ross et al., 1989; Ross et al., 

1996; Grote et al., 2001), the strain rate enhancement was captured in MAT_72R3 by 

modifying the failure surface and damage function   through the modified damage 

function in Eqs. (4.18) and (4.19). A radial rate enhancement on the concrete failure 

surface was implemented and the enhanced strength e  corresponding to pressure 

p  is determined as follow (Malvar et al., 1997):  

 e f fp                            (4.24) 

where f  is the strain rate enhancement factor or Dynamic Increase Factor (DIF). 

For the simulation of specimens under lateral pressure load in this chapter, the DIF 
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was not considered in the FE models. 

4.7.1.2 Steel Material Model 

The Piecewise_Linear_Plasticity material model (Mat_24) was adopted to simulate 

the stainless steel and mild steel materials. For this material model, an arbitrary stress 

versus strain curve, an arbitrary strain rate dependency and a failure based on plastic 

strain can be defined. The material properties of the stainless steel and mild steel were 

determined from tensile coupon test, which has been given in Section 4.2.1. The strain 

rate effect is described using the Cowper-Symonds model which scales the yield stress 

as follow: 

   
1

, 1

q
p

effp p p

y eff eff y eff
D


    

  
        

               (4.25) 

where  p

y eff   is the yield stress, p

eff  is the effective plastic strain rate, and D and 

q are the strain rate parameters. Similar to the concrete material, the DIF of steel was 

not included in the FE models when simulating the specimens under lateral pressure 

load in this chapter. 

4.7.1.3 Water Material Model 

The Mat_elastic_fluid model (Mat_1_fluid) in LS-DYNA (Hallquist, 2012) was 

adopted to simulate the behavior of water in the lateral pressure test, because this 

material model is applicable for Lagrange formulation which is suitable for simulating 

the static behavior of confined water without severe element distortion. Besides, the 

computing time is significantly less than Eulerian formulation.  

 

The volumetric response of water is defined by the bulk modulus, and the value used 
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in this study was 2.2 GPa (Whita, 1986). Although the relationship between 

hydrostatic pressure and volumetric strain is nonlinear at high hydrostatic pressure 

(Gurtman et al., 1971) and cannot be captured by this model, the linear relationship is 

still applicable for the low hydrostatic pressure level (less than 100 MPa) involved in 

this study. Meanwhile, the deviatoric response of water is defined by a tensor viscosity, 

Sij, written in terms of the damping coefficient as follow 

'

ij C ijS V La                        (4.26) 

where CV  is the tensor viscosity coefficient, L  is the characteristic element length, 

a is the bulk sound speed of water,   is the water density and '

ij  is the deviatoric 

strain rate. 

4.7.2 Element Type and Formulation 

The S/R Hughes-Liu shell element (Hallquist, 2012) was employed for the face plates 

of water tank and SCS sandwich panel as it can capture the performance of thin plate 

components and reduce the computing time as compared to fine solid element. The 

water and cement grout core were both meshed using eight-point solid element with 

reduced integration. The Lagrangian formulation, which is generally suitable for 

elements without severe element deformation, was adopted for the stainless steel, mild 

steel, concrete and water in the lateral pressure test. 

4.7.3 Contact and Loading Approach 

In the FE model, the contacts between two “parts” are captured through ‘master-slave’ 

contact interfaces, which are defined by using the surface to surface contact option in 

LS-DYNA. The penalty-based contact approach is a generally used method where the 
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contact spring stiffness is determined by the algorithm according to the sizes and 

material properties of contact segments. Hence, it works more effectively when the 

material stiffness parameters between the contacting surfaces are of the same 

order-of-magnitude, such as that between the face plates and the bar support in this 

study. However, this contact might break down when materials with dissimilar 

stiffness come into contact, as the contact stiffness, which is roughly the minimum of 

the slave and master stiffness, may be too small. Therefore, the soft constraint-based 

contact approach, whose contact stiffness is independent of material parameters and 

well suited for treating contact between materials of different stiffness, was used to 

simulate the interaction between face plate and water or concrete.  

 

Since the contact area between airbag and specimen varied continuously during the 

lateral pressure test as shown in Fig. 4.28, it is difficult to replicate the actual load 

area in the FE model. Therefore, four contact areas were selected from the measured 

area during test to represent the varying contact area in the FE model as illustrated in 

Fig. 4.34 for the SAS tank. The applied pressure–time curve for each of the load area 

was increased from zero to maintain a continuously increasing applied force as shown 

in Fig. 4.35. The pressure P1, P2, P3 and P4 were selected by ensuring similar pressure 

differences between the adjacent applied pressures, i.e. P4 – P3 ≈ P3 – P2 ≈ P2 – P1 ≈ 

P1. 

 

The implicit solver was incorporated into LS-DYNA to simulate the response of 

structures under quasi-static loading whereas the explicit solver was meant for 

dynamic analysis. Since the pressure load acting on specimen is specified as load 

curves input in the implicit analysis, the softening stage cannot be properly captured. 
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Therefore, the explicit solver was adopted to capture the softening stage. The dynamic 

effect should be eliminated when using explicit solver to simulate the quasi-static 

response. Normally, the inertia force is checked to ensure it is within the tolerable 

level. Since the evolution of internal and kinetic energy is easier to obtained, it is 

more widely used to judge the dynamic effect (Rust and Schweizerhof, 2003). When 

the ratio of kinetic-to-internal energy is negligible, it is reasonable to treat the loading 

as a quasi-static manner (Egan et al., 2012). 

4.7.4 Finite Element Model 

Due to symmetry, quarter FE models of the specimens and round bar supports were 

established as shown in Fig. 4.36. The round bar support in the test setup was welded 

to a rigid rectangular mounting frame and therefore the nodes along the bottom of the 

round bar support were restricted from translation and rotation in the FE model. The 

airbag was not explicitly modeled, since it has negligible contribution to the resistance 

of specimen due to its flexibility.  

4.7.5 Discussion on Finite Element Results 

4.7.5.1 Empty Steel Tank and Water Filled Tank 

The FE simulated load–displacement curves are compared with the test results in Fig. 

4.37 and the FE models are able to predict the responses of SAS and SWS tanks with 

reasonable accuracy. The difference in maximum load between FE predictions and 

test results for SAS and SWS tanks were 8.0% and 5.0%, respectively. Both the FE 

models underestimated the maximum load, especially for the SAS tank. This is 

because the pressure load applied onto the specimen in the test is not exactly 

symmetric and the maximum resistance of one-way supported panel under symmetric 
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pressure loading in the FE model is lower than that under unsymmetrical pressure 

load in the test. Besides, the geometric imperfections of the specimens may also cause 

this disparity. 

 

The welding failure of SWS tank led to water leakage after the peak load and the final 

deformation mode was similar to that of SAS tank. Since it is difficult to capture the 

leaking in the FE model and the calculating of SWS tank stopped before the leaking, 

only the simulated deformation mode of SAS tank is compared with test results in Fig. 

4.38. It can be seen from Fig. 4.38(a) that the FE model can reasonably predict the 

flexure failure mode of SAS tank with plastic hinge at mid-span. Fig. 4.38(b) shows 

the buckling on the top surface, which is in agreement with the observations from the 

test. The buckling of top plate along the stiffener near the weaker area with cut-out 

holes was observed in both FE and test results. This may be caused by the relatively 

large shear deformation of stiffener near the weaker area as shown in Fig. 4.38(c). 

 

It was found from the test that the SWS tank exhibited up to 31% increase in 

resistance as compared to the SAS tank. The effects of water in improving the 

resistance can be attributed to the role of water in maintaining shape of SWS tank, 

which helped in delaying the occurrence of local buckling. To investigate this, the 

simulated mid-span clear distances between top and bottom plates of SAS and SWS 

tanks at their maximum bending resistances are compared in Fig. 4.39. It can be seen 

that the clear distance of 30 mm before test was maintained at the position of the 

stiffener and side plate for both the SAS and SWS tanks, while other points along the 

mid-span shows varying degree of reduction. It is noted from Fig. 4.39 that for both 

SAS and SWS tanks, the reduction degree of clear distance between stiffener and side 
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plate (150mm<x<450mm) is more significant than that between two stiffeners 

(0mm<x<150mm), although their spacing is same of 300 mm. This different reduction 

degree is attributed to the different boundary conditions. The rotation of top plate 

around span direction at stiffener can be treated to be fully constrained because of the 

symmetric load, while the rotation of top plate at side plate is not fully constrained 

because the load is unsymmetrical and the side plate cannot fully constrain the 

rotation of top plate. The current position of stiffener may not be optimal, since the 

reduction degree of clear distance at two sides of stiffener is different. The optimal 

position of stiffener is difficult to be directly determined and parametric studies by 

moving the stiffener is suggested. Fig. 4.40 shows the variation of maximum 

resistance of SAS tank with moving stiffener. The maximum resistance reaches the 

peak value when the spacing between side plate and stiffener is half of the spacing 

between stiffeners (x=225).  

 

In comparison, larger clear distance, which indicates smaller deformation of top plate 

as compared to bottom plate, was observed for the SWS tank. This indicates the 

contribution of water in transferring part of the load from top plate to bottom plate. 

Besides, the larger clear distance also results in higher section modulus of SWS tank, 

which increases the bending resistance. 

4.7.5.2 SCS Sandwich Panels 

The FE simulated load–displacement curves of the SCS sandwich panels are 

compared with test results in Fig. 4.41 and the FE models are capable of predicting 

the resistance of both panels with reasonable accuracy. As discussed earlier in this 

chapter, the plateau in the load–displacement curves from test was caused by the 
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debonding between steel plate and grout core. Due to the numerical difficulties in 

including this weak bond in the FE models, which has little effect on the maximum 

resistance of the SCS sandwich panels, only the friction was considered in the contact 

model between steel plate and grout core. The omission of the bond is reflected in the 

comparison where the stiffness of the FE simulated curve was smaller at initial stage 

and coincided with the test result after the debonding plateau. In addition, the FE 

models with full composite between the steel plate and grout core were also 

established and it is able to reasonably predict the initial stiffness of both panels as 

shown in Fig. 4.41. 

 

Fig. 4.42 shows the FE simulated shear failure mode of the SCS50 sandwich panel. 

The shear failure occurred in one side of the specimen as compared to symmetric 

failure in the simulation, which could be attributed to the geometric imperfection of 

the specimen and difficulty in achieving a perfectly symmetry uniform loading using 

the airbag in the test. The failure of weld observed in the test, which can be attributed 

to the lower strength and ductility of the weld as compared to the mild steel plate, was 

not captured in the FE model. 

 

The load transfer mechanism between steel plates and concrete core, which is required 

to evaluate the bending resistance of SCS sandwich panel as discussed earlier in 

Section 4.6.2, was simulated using the FE model. Fig. 4.43 shows the contours of 

axial stress in grout core and the compression zone can be clearly seen. The top layer 

and bottom layer of concrete core are under compression and tension at mid-span, 

which is consistent to the previous analysis. It can be seen from the contours of axial 

stress in Fig. 4.44 that the bottom plate is under tension and the axial stress at 
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mid-span has been yielded. Fig. 4.45 shows the contours of axial stress in top plate. It 

can be seen that the top plate near the side plate is under compression and the top 

plate with certain distance away from the side plate is under tension. Therefore, the 

load transfer mechanism between steel plates and concrete core discussed in the 

analytical model was demonstrated through FE simulation. 

4.7.5.3 Boundary Effects 

In the lateral pressure loading tests, the roller-supported boundary conditions were 

adopted as fully rigid support is usually difficult to be achieved and often resulted in 

semi-rigid condition, which would complicate the analysis. However, semi-rigid 

boundary conditions are common in actual structures and hence, the FE models that 

were experimentally verified were applied to investigate the response of the pin-pin 

supported tanks and panels with axially restrained boundary. One of the approaches to 

achieve axially restrained boundary is shown in Fig. 4.46. The end of SWS tank or 

SCS sandwich panel is connected to anchor bars to achieve axial restriction. The steel 

plates are used to connect the top and bottom anchor bars to ensure them deforming 

together and thus increasing the stiffness of axial restriction. Besides, the steel plates 

can also be used to cancel part of axial force from top and bottom SWS tanks or SCS 

sandwich panels if both of them are simultaneously subjected to blast loading.  

 

In this study, the same material models, element types and formulations as well as 

contact approaches discussed previously for the FE models were maintained while the 

lateral pressure load is now applied onto the full top face of the specimen. The pin-pin 

supported boundary was specified by restraining the displacement of the nodes along 

the two edges of both bottom and top plates in vertical and axial directions. This will 
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be compared to a pin-roller supported boundary whereby only the nodes along the two 

edges of bottom plate were restrained in vertical direction. 

 

The load–displacement curves of the SWS tank with pin-roller and pin-pin supported 

boundaries and SAS tank with pin-pin supported boundary are compared in Fig. 4.47. 

The maximum load and corresponding displacement of pin-roller supported SWS is 

also given in Fig. 4.47. The resistance of the SWS tank with pin-pin supported 

boundary is improved significantly compared with the pin-roller supported boundary, 

which can be attributed to the tensile membrane action. For a pin-pin supported 

structural member, the resistance in initial stage is primarily contributed by the 

bending action while the membrane action may have significant contribution to the 

resistance after development of membrane force (Cormie et al., 2009). The magnitude 

of improvement in resistance depends on the tensile strength of face plate. The similar 

load–displacement curves were observed for the SAS and SWS tanks with pin-pin 

supported boundary, which indicates that water has little effect on the resistance if the 

pin-pin supported boundary is adopted. For the pin-roller supported SWS tank, water 

helps to increase the resistance by maintaining the section modulus and delaying the 

occurrence of local buckling. However, for the pin-pin supported boundary, the local 

buckling of both SAS and SWS tanks is unlikely to occur and the resistance is mainly 

contributed by tensile membrane force, which is not affected by the section modulus. 

 

Fig. 4.48 compares the failure modes of SWS tank with pin-roller and pin-pin 

supported boundaries. In this analysis, the failure strain of stainless steel was 0.636 

based on the tensile coupon test results. The flexure failure mode is evident in the 

effective plastic strain contours of the pin-roller supported tank while the tensile 
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membrane failure mode is expected for the pin-pin supported SWS tank. Besides, the 

higher plastic strain appears at location of plastic hinge for the pin-roller supported 

SWS tank while the plastic strain at the end is relatively higher for the pin-pin 

supported SWS tank which may cause the tensile membrane failure start to occur at 

the end. 

 

The load–displacement curves of the SCS50 sandwich panel with pin-roller and 

pin-pin supported boundaries and the SCS75 sandwich panel with pin-pin supported 

boundary are compared in Fig. 4.49. The maximum loads and corresponding 

displacements are also marked. By comparing the load–displacement curves of the 

SCS50 sandwich panel with pin-roller and pin-pin supported boundaries, it can be 

seen that both are similar at initial stage. This indicates that the SCS50 sandwich 

panel mainly relies on the bending action to resist the lateral pressure load at initial 

stage. After the failure of grout core, the load was taken over by the tensile membrane 

behavior of the steel plates that were axially restrained while the pin-roller supported 

panel behaved shear failure. By comparing the load–displacement curves of the 

pin-pin supported SCS50 and SCS75 sandwich panels, the increase in grout core 

depth improved the resistance at initial stage but has little effect on the final resistance 

and ductility. This is because the grout core has no or minimal contribution to the 

resistance after severe cracking of grout. 

 

The scaled damage measure contours of the SCS50 sandwich panel with pin-roller 

and pin-pin supported boundaries are compared in Fig. 4.50. The scaled damage 

measure, which is a function of accumulated effective plastic strain parameter  , is 

defined in MAT_72R3 to evaluate the damage level of concrete. When it ranges from 
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0 to 1, the material transitions from the yield failure surface to the maximum failure 

surface and when it ranges from 1 to 2, the material transitions from the maximum 

failure surface to the residual failure surface (Hallquist, 2012). The grout core of both 

panels underwent severe damage after failure. Shear failure mode can be seen from 

the plot for the pin-roller supported SCS50 sandwich panel while the tensile 

membrane failure is shown in the plot for the pin-pin supported panel. The failure 

strain of mild steel defined in the FE model was 0.307 based on the tensile coupon 

test results. Due to the different failure modes, the resistance of pin-roller supported 

panel mainly determined by the shear strength of grout, while the failure strain of mild 

steel governs the resistance of pin-pin supported panel. 

4.8 Summary 

The lateral pressure load tests were conducted on four 900 mm (width) × 900 mm 

(clear span) specimens, which include the empty steel tank (SAS), water filled tank 

(SWS) and sandwich panels (SCS50 and SCS75). In addition, the analytical and 

numerical methods were adopted to predict the responses of specimens. The main 

findings and observations in this chapter are summarized as follow: 

i) The SAS and SWS tanks failed under ductile flexure mode and the resistance of 

the SWS tank was increased by 31% as compared to the SAS tank. This is 

because water helped to maintain the section modulus and delayed the 

occurrence of local buckling. 

ii) The SCS50 sandwich panel failed under brittle shear mode with failure of weld 

between side plate and bottom plate as well as spalling of the grout core. Such 

failure mode is undesirable and should be avoided by improving the shear 
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resistance within the high shear stress zone near the support. Based on the test 

results, it was deduced that the SCS sandwich panel with enhanced ductility 

could be applied as an add-on layer to improve the blast resistance of the SWS 

tank which has comparatively lower resistance but superior ductility.   

iii) The change in load distribution due to addition of water can be seen from the 

comparison of load–strain curves of the SWS and SAS tanks. The shear lag 

effects of strain between stiffener and side plate of the SWS tank was less 

obvious as compared to the SAS tank. In addition, the longitudinal strain 

readings at both quarter-spans of the SWS tank continued to increase after peak 

load while those in the SAS tank showed signs of unloading.  

iv) Unlike one-way supported beam, the deflection shapes of the four specimens 

were not exactly a polynomial function in elastic range or bi-linear after the 

formation of plastic hinge. This could be due to the influences of side 

plates/stiffeners and also contribution of shear deformation to the overall 

deflection shapes of the specimens. 

v) The consistency of the applied loading method was demonstrated by the similar 

contact area–load curves of the four specimens. 

vi) The analytical solutions can provide close predictions on the resistances of 

specimens except for the SWS tank, since there is no analytical solution to 

quantify the water effects in resisting the local buckling of compression plate 

and the quantification is out of the current research scope.  

vii) The analytical model to calculate the bending resistance of the SCS sandwich 

panel under lateral pressure load was developed and it was proven to be 

conservative by comparing with test results. 
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viii) The established FE models were reasonable in predicting the load–displacement 

responses and failure modes of water tanks and SCS sandwich panels under 

lateral pressure load. In addition, the role of water in maintaining the section 

modulus during the loading was demonstrated in the FE investigation. Therefore, 

it can increase the resistance of roller-supported SWS tank. However, the 

buckling of both SAS and SWS tanks is unlikely to occur for the pin-pin 

supported boundary and the resistance is mainly contributed by tensile 

membrane force, which is not affected by the section modulus. Hence, water has 

little effect on the lateral pressure resistance of SWS tank when the pin-pin 

supported boundary is adopted. 

ix) The lateral pressure resistance can be significantly improved when adopting the 

pin-pin supported boundary and the failure mode is changed from flexure or 

shear failure to tensile membrane failure. The magnitude of improvement in 

lateral pressure resistance depends on the tensile strength and ultimate strain of 

face plate. 

 

 

 

 

 

 

 

 

 

 



Chapter 4 Performance of Water Façade Systems under Lateral Pressure Load 

- 94 - 

Table 4.1 Material properties of stainless steel and mild steel 

Material 
Young’s 

modulus (GPa) 

Yield stress 

(MPa) 

Ultimate stress 

(MPa) 
Ultimate strain 

Stainless steel 197.5 260.9 603.0 0.636 

Mild steel 205.2 309.2 452.4 0.307 

 

Table 4.2 Material properties of cement grout 

Density 

(kg/m
3
) 

Young’s modulus 

(GPa) 

Compressive stress 

(MPa) 
Poisson’s ratio 

Tensile stress  

(MPa) 

2152 24.9 50.3 0.2 4.9 

 

Table 4.3 Details of static test specimens 

Label 
Material Dimension  

(mm) 

Thickness  

(mm) 

Schematic 

drawing Skin Core 

SAS Stainless steel - 1100 × 900 3-30-3 Fig. 4.9 

SWS Stainless steel Water 1100 × 900 3-30-3 Fig. 4.9 

SCS50 Mild steel Grout 1100 × 900 3-50-3 Fig. 4.10 

SCS75 Mild steel Grout 1100 × 900 3-75-3 Fig. 4.10 

 

Table 4.4 Lateral pressure test results 

Specimen Maximum resistance (kN) Failure mode 

SAS 80.3 Flexure 

SWS 105.4 Flexure 

SCS50 371.5 Shear 

SCS75 >508.0 No failure 

SCS75 (line load) 369.9 Flexure 

 

Table 4.5 Comparisons between experimental and analytical results 

Specimen 
Fexp (kN) 

(1) 

Fbend (kN) 

(2) 

Fshear (kN) 

(3) 

(1)/(2)  

((1)/(3)) 
Failure modes 

SAS 80.3 72.1 65.1 1.11 Flexure 

SWS 105.4 105.2 65.1 1.00 Flexure 

SCS50 371.5 337.1 365.5 (1.02) Shear 

SCS75 >508.0 543.5 503.9 (>1.01) No failure 
Note: Fexp = experimental load of specimen; Fbend = calculated bending resistance of specimen; 

Fshear = calculated shear resistance of specimen. 
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Fig. 4.1 Specification for tensile coupon test (in mm) 
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Fig. 4.2 Stress–strain curves of (a) stainless steel (b) mild steel 
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Fig. 4.3 Coupons after tensile test: (a) stainless steel (b) mild steel 

 

 

Fig. 4.4 Uniaxial compression test setup 

(a) (b) 
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Fig. 4.5 Uniaxial compression stress–strain curves of cement grout: (a) longitudinal 

direction (b) transverse direction 

 

Fig. 4.6 Diagram of splitting test 
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Fig. 4.7 Notation for SAS and SWS tanks 

 

 

Fig. 4.8 Notation for SCS sandwich panel 
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Fig. 4.9 Schematic of SAS and SWS tanks (in mm) 
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Fig. 4.10 Schematic of SCS sandwich panel (in mm) 
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Fig. 4.11 Static test setup 

 

 

 

Fig. 4.12 Test control and data acquisition system 
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 (a)                               (b) 

 

  

 (c)                               (d) 

Fig. 4.13 Instrumentation layout (bottom view): (a) LVDTs on SAS and SWS (b) 

strain gauges on SAS and SWS (c) LVDTs on SCS50 and SCS75 (d) strain gauges on 

SCS50 and SCS75 (in mm) 
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Fig. 4.14 Load–midpoint displacement (LVDT D0) of SAS and SWS tanks under 

lateral pressure load 

 

 

 

Fig. 4.15 Flexural failure of SAS tank 
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Fig. 4.16 Buckling on top plate of SAS tank 

 

 

Fig. 4.17 Fracture of weld between bottom plate and stiffener of SWS tank 
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Fig. 4.18 Load–midpoint displacement of SCS50 and SCS75 panels under lateral 

pressure load 

 

 
 

 

Fig. 4.19 Deformation of SCS50: (a) before shear failure (b) after shear failure  
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Fig. 4.20 Load–midpoint displacement of re-tested SCS75 panel under line load 

 

 

 

Fig. 4.21 Flexure failure of SCS75 panel under line load 
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Fig. 4.22 Load–strain curves of SAS: Strain distribution (a) along span direction (b) 

along width direction (c) at midpoint 
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Fig. 4.23 Load–strain curves of SWS: Strain distribution (a) along span direction (b) 

along width direction (c) at midpoint 
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Fig. 4.24 Load–strain curves of SCS50: Strain distribution (a) along span direction (b) 

along width direction (c) in side plate 
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Fig. 4.25 Load–strain curves of SCS75: Strain distribution (a) along span direction (b) 

along width direction (c) in side plate
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Fig. 4.26 Deflection shape in span direction 
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Fig. 4.27 Deflection shapes in width direction
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Fig. 4.28 Contact area–load curves 

 

 

 

 

 

Fig. 4.29 Effective cross-section of SAS under bending (in mm) 
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Fig. 4.30 Deformation of SCS sandwich panel under lateral pressure load 

 

 

 

Fig. 4.31 Compression zone along the concrete core 
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Fig. 4.32 Cross-section of SCS sandwich panel at mid-span 

 

 

 

 

 

Fig. 4.33 Force distribution on each section 
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Fig. 4.34 Varying contact area in the FE model of SAS (quarter model)  

 

Fig. 4.35 Applied loading curves in FE model 
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(a) 

 

 

(b) 

Fig. 4.36 FE model of (a) water tank and (b) SCS sandwich panel in lateral pressure 

test (quarter model) 
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Fig. 4.37 Comparison of FE predicted load–midpoint displacement with test results: 

(a) SAS (b) SWS 
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(a) 

 

(b) 

 

(c) 

Fig. 4.38 Deformation of SAS in the FE analysis (top surface): (a) Plastic hinge at 

mid-span (b) Buckling in the top surface (c) Deformation of stiffener 



Chapter 4 Performance of Water Façade Systems under Lateral Pressure Load 

- 121 - 

 

 

Fig. 4.39 Comparison of face plate depth between SAS and SWS 

 

Fig. 4.40 Variation of the resistance of SAS with moving stiffener 
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(a)  

 

(b) 

Fig. 4.41 Comparison of FE predicted load–midpoint displacement with test results: 

(a) SCS50 (b) SCS75 
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Fig. 4.42 Shear failure of SCS50 

 

 

Fig. 4.43 Compression zone of the concrete core along span direction 
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Fig. 4.44 Axial stress distribution (Z-direction) in the bottom plate (quarter model) 

 

 

Fig. 4.45 Axial stress distribution (Z-direction) in top plate (quarter model) 
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Fig. 4.46 Installation of façade tanks to floor beam 
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Fig. 4.47 Load–displacement curves of SAS and SWS tanks 

 

 

Fig. 4.48 Failure modes of SWS: (a) pin-roller supported (b) pin-pin supported 
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Fig. 4.49 Load–displacement curves of SCS sandwich panels 

 

 

Fig. 4.50 Failure modes of SCS50: (a) pin-roller supported (b) pin-pin supported 
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Chapter 5 Performance of Water Façade Systems under 

Dynamic Pressure Load 

5.1 Introduction 

The structural responses of the water façade systems under dynamic pressure loading 

were experimentally, analytically and numerically studied in this chapter. The loading 

was applied using dropped projectile on an inflated high pressure airbag to assert 

dynamic pressure on the specimens in the experimental study. The measured 

deformation modes, impact force and air pressure as well as displacement and strain 

responses of the water tank and SCS panel specimens were analyzed to understand 

their behaviors under dynamic pressure loading. Equivalent SDOF method was 

adopted to predict the displacements of the test specimens under dynamic pressure 

loading. In addition, the FE models were also constructed to simulate the responses of 

the test specimens and the experimentally-verified FE models were applied to predict 

the performance of the specimens under blast loading. 

5.2 Preparation of Specimens 

An identical set of the four specimens described in Chapter 4 for the lateral pressure 

load test was tested against dynamic pressure loading. The dynamic pressure was 

generated through drop-weight impact on the same high pressure airbag that was used 

in the lateral pressure load test. The effects of water on the response of SWS tank and 
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core depth on the response of SCS panels under dynamic pressure loading were 

investigated. 

5.3 Test Setup and Instrumentation 

Impact test was carried out using an instrumented drop-weight impact test machine as 

shown in Fig. 5.1. A hydraulic controlled mechanical hoisting system is used to raise 

the projectile up to 4 m drop height. Once the winch brake is released, the projectile, 

which has an adjustable weight of 500 to 1200 kg, will slide freely along the vertical 

guide rails towards the specimen below it. Similar to the lateral pressure load test, the 

drop-weight test specimens were also roller-supported on two 80 mm (diameter) bars 

support with clear span of 900 mm as shown in Fig. 5.2. The inflated height of the 

high pressure airbag between the 30 mm thick impact plate and specimen was kept at 

160 mm by using two wood blocks. The blocks were inserted between the frame and 

impact plate and the airbag was charged with initial air pressure of 0.04 MPa for the 

SAS and SWS tanks and 0.1 MPa for the SCS50 and SCS75 sandwich panels. The 

initial inflated height and pressure of airbag were carefully selected to reduce 

variation in contact area between airbag and specimen and shorten the duration of 

pressure loading. Even though it was expected that the change in contact area would 

be less significant with increasing load or pressure based on the lateral pressure load 

test observations, the initial pressure was selected such that midpoint displacement of 

the specimen was minimal (less than 2 mm) and well within the elastic range. Since 

the contact area will be varying during test, the initial contact area was measured and 

wet paint was applied to the bottom surface of the inflated airbag which was not in 

contact with the specimen before test. The wet paint would leave a marking on the 
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specimen after impact to indicate the maximum contact area. Since the inflated airbag 

with lower compressibility, which can be defined as the ratio of compression distance 

of airbag, ΔH, to change of air pressure, ΔP, will generate dynamic pressure load 

with shorter duration, the inflated height was kept as small as possible and the current 

inflated height was selected based on trial tests. 

 

A digital circuit in combination with laser emitters and photodiodes was used to 

measure the velocity of projectile just before impact and also to trigger the data 

acquisition by the 16-channels Oscilloscope 1 with sampling rate setting of 1 MHz as  

shown in Fig. 5.3. The Dytran high frequency 2300V Low Impedance Voltage Mode 

(LIVM) pressure sensor was connected to the inlet pipe of airbag to capture the air 

pressure while three quartz force rings on the same plane with total capacity 1050 kN 

were attached to the projectile to record the impact force. The deformation and strain 

readings of specimen were respectively measured by using potentiometers and strain 

gauges at the positions shown in Fig. 5.4. In addition to these instruments, high speed 

camera images of the impact were also recorded during test. The signals from 

photodiodes, pressure sensor, quartz force rings and potentiometers were captured 

using Oscilloscope 1 while the strain gauge readings were recorded by the 16-channel 

Oscilloscope 2 with the same sampling rate setting of 1 MHz. The Oscilloscope 2 was 

triggered by strain gauge S0 at the mid-span. 

5.4 Discussion on Test Results 

The SAS and SWS tanks were at first tested under drop-weight impact by a 500 kg 

projectile that was dropped from 1.7 m height. However, the maximum displacement 
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was found to be relatively small and the test specimen survived after the impact with 

only small deformation. Hence, the tanks were re-subjected to second impact at higher 

drop height of 2.0 m in order to study their responses under larger deformation. On 

the other hand, the SCS50 and SCS75 sandwich panels were tested once with an 800 

kg projectile that was dropped from the height of 3.7 m. 

5.4.1 Deformation Modes 

5.4.1.1 SAS and SWS Tanks 

The impact plate and airbag were removed after each test to measure the permanent 

deformation of specimens. Fig. 5.5 compares the images of the SAS tank after the 

first and second impacts. It can be seen that the tank deformed in a flexural manner 

with plastic hinge at mid-span after the first impact and the plastic hinge was further 

developed in the second impact. A concave zone on the top steel plate between 

stiffeners and side plates was observed after both impacts and the image taken after 

the second impact is shown in Fig. 5.6. Buckling of side plate could be seen near the 

mid-span and the top plate buckled along the stiffeners at the weaker cut-out locations 

after the second impact. These deformation modes are similar to the observed 

responses in the lateral pressure load test, which indicates that the failure modes of 

SAS tank under dynamic pressure loading could be related to its response under 

lateral pressure loading. 

 

The deformed shapes of the SWS tank after the first and second impacts were also 

under flexural mode as shown in Fig. 5.7. It was noted that the concave zone on the 

top steel plate was reduced as compared to the SAS tank and was accompanied by a 

convex zone next to it as seen in Fig. 5.8. Since water is nearly incompressible, the 
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observed deformed shape can be explained by the change in volume of water from the 

concave zone to the convex zone in order to maintain a constant total volume of 

water. 

 

The side view of the SAS and SWS tanks after second impact are compared in Fig. 

5.9 and the effect of water in reducing the permanent deformation of the SWS tank 

can be clearly seen as compared to the empty SAS tank. Besides changes in the load 

distribution, the improved impact/dynamic pressure resistance could be attributable to 

the increase in overall mass of the SWS tank with addition of water. As shown in Eq. 

(5.1), the influence of mass on the response of elastic spring-mass system subjected to 

impulsive load has the same effect as the stiffness in reducing the maximum 

displacement:  

max 1

s

x

I k m
                             (5.1) 

where xmax is maximum displacement, I is impulse, ks is stiffness and m is mass. 

However, the effect of mass will be reduced with the increase in ratio of loading 

duration to natural period of specimen and will disappear when the specimen’s 

response is within quasi-static regime. Meanwhile, the effect of mass cannot be 

quantified in the dynamic response regime, which was the response regime of the 

SWS tank in current study. 

5.4.1.2 SCS50 and SCS75 Sandwich Panels 

The deformation mode of the SCS50 sandwich panel under dynamic pressure loading 

was a combination of flexure and shear deformation as shown in Fig. 5.10. Bulging 

near the support line was visible which could be due to the expansion of grout after 
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cracking under high shear force at the support. Comparison of the permanent 

deformation of SCS50 and SCS75 sandwich panels in Fig. 5.11 shows that the 

deformation was considerably reduced by increasing the core depth due to the 

increase in resistance and mass. However, according to design formulae in Eurocode 4 

(2004), the possibility of brittle shear failure may be increased with increasing core 

depth since the ratio of shear resistance to bending resistance will be reduced. 

Therefore, it is important to ensure that SCS sandwich panel with thicker core has 

sufficient shear resistance to avoid shear failure as discussed in Chapter 4. 

5.4.2 Impact Force and Air Pressure 

The recorded impact force–time histories between the projectile and impact plate are 

plotted in Fig. 5.12. Multiple contacts between projectile and impact plate with clear 

separation time can be seen from the plots for the SAS and SWS tanks in both tests 

while the multiple contacts for the SCS sandwich panels occurred much closer in time 

to each other. The reason for multiple contacts is that the mass of projectile is larger 

than impact plate and projectile still moved downward after the first contact with the 

impact plate. 

 

The pressure–time histories in the airbag, which represents the dynamic pressure 

loading acting on the specimen, are plotted in Fig. 5.13 for the SAS and SWS tanks. 

Multiple peak pressures were observed from the curves. From Fig. 5.14 showing the 

pressure–time history together with the impact force–time history for the SAS tank, it 

can be seen that the change in pressure was dependent on the contact between the 

projectile and impact plate. Each contact causes the sudden increase in pressure 

except for the last contact with smaller impact force. The loading duration on the SAS 
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tank in the first and second impacts from the pressure–time histories were 0.078 s and 

0.076 s, respectively, while the SWS tank was loaded for 0.066 s and 0.065 s in the 

first and second impacts. 

 

Fig. 5.15 shows the pressure–time histories for the two SCS sandwich panels and the 

pressure is also dependent on the contact between projectile and impact plate as 

plotted in Fig. 5.16 for the SCS50 sandwich panel. One notable difference between 

the impact force–time histories of the tanks and sandwich panels is the shorter time 

gap between the multiple contacts in each test. This resulted in shorter loading 

duration of 0.049 s and 0.042 s for the SCS50 and SCS75 sandwich panels, 

respectively. Besides this, there was less variation in the pressure–time histories as 

compared to the SAS and SWS tanks. 

 

The recorded impact velocity (V), maximum impact force (Fmax), impact impulse (I) 

and maximum air pressure (P) in each test on the four specimens are summarized in 

Table 5.1. The impact impulse was obtained by integrating the full impact force–time 

history, which was shown in Fig. 5.12. From Table 5.1, it appeared that specimens 

with higher resistance and mass absorbed higher impact impulse under the same 

impact condition. 

5.4.3 Displacement Response 

5.4.3.1 SAS and SWS Tanks 

The midpoint displacement–time histories of the SAS and SWS tanks from the first 

and second impact tests are plotted in Fig. 5.17. The maximum displacements 

occurred at the second peaks in all four tests and are consistent with the recorded 
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pressure–time histories as compared in Fig. 5.18 for the SWS tank. Both the SAS and 

SWS tanks experienced plastic deformation in the first and second impacts and their 

permanent deformations can be seen in Fig. 5.17 except for the SAS tank in the first 

impact. This is because the potentiometer at the midpoint of SAS tank was separated 

from the bottom plate halfway during test and hence the curve was abruptly 

terminated as shown in Fig. 5.17. However, the permanent deformations of all 

specimens were physically measured and are listed in Table 5.2. 

 

The maximum and permanent displacements of the SAS and SWS tanks are compared 

in Table 5.2. The SWS tank exhibited lower maximum and permanent displacement 

by 5.6 % and 14.9 %, respectively, as compared to the SAS tank in the first impact 

and the difference was further increased to 29.0 % and 38.5 % in the second impact. 

This demonstrates the better performance of SWS tank against dynamic pressure 

loading as compared to the SAS tank. The maximum displacements of the two tanks 

are tracked along their respective resistance–deflection curves, which was obtained in 

the lateral pressure load test as shown in Fig. 5.19. It can be seen that the maximum 

displacements of SAS and SWS tanks in the first impact occurred at load hardening 

stage. In the second impact, the maximum displacement of the SAS tank fell in the 

load softening stage while the SWS tank was still within load hardening stage. This 

could explain the larger deformation of SAS tank in the second impact as it needed to 

deform more to absorb the impact energy as compared to the SWS tank. 

5.4.3.2 SCS50 and SCS75 Sandwich Panels 

Fig. 5.20 compares the midpoint displacement–time histories of the SCS50 and 

SCS75 sandwich panels and the maximum displacement of the SCS50 sandwich 
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panel is about 3.5 times higher than the SCS75 sandwich panel. The maximum 

displacements occurred at the first peak in the curves, which are consistent with the 

recorded pressure–time histories of the panels. As compared in Table 5.3, the 

permanent midpoint displacement of the SCS75 sandwich panel was significantly less 

than that of the SCS50 sandwich panel. 

5.4.4 Strain Response 

5.4.4.1 SAS and SWS Tanks 

The mid-span longitudinal strain reading (S0) of the SAS tank was larger than the 

quarter-span strain readings (S1 and S2) throughout the impact as shown in Fig. 

5.21(a). This is because the moment at mid-span is larger than the quarter-spans under 

pressure loading. The non-uniformity of strain readings at quarter-spans was observed 

under the dynamic pressure loading, which is likely due to the geometric imperfection 

of the specimen. Since the specimen was one-way supported, the transverse strain 

reading at mid-span (S3) was smaller than the longitudinal strain reading (S0). Fig. 

5.21(b) compares the strains along the width direction and the strain readings of S0 at 

mid-span and S5 between side plate and stiffener were smaller than the strain readings 

near side plate (S6) and stiffener (S4), which can be attributed to the shear lag effect.  

 

The mid-span longitudinal strain reading (S0) of the SWS tank was also larger than 

those at quarter-spans as shown in Fig. 5.22(a). Unlike the SAS tank, the mid-span 

transverse strain gauge S3 recorded significant strain, which indicates that the bottom 

plate was subjected to stress in both direction at mid-span with the addition of water. 

The strain distribution along the width direction was also changed due to addition of 
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water, as seen from the comparison of Fig. 5.21(b) and Fig. 5.22(b). For the SAS tank, 

load distribution through stiffener and side plate was evident whereas the load was 

more globally transferred for the SWS tank. The variation of strain readings at the 

bottom plate of SWS tank was less pronounced as compared to the SAS tank, which 

could be related to the change in load distribution through water. 

5.4.4.2 SCS50 and SCS75 Sandwich Panels  

Fig. 5.23 compares the longitudinal strain distribution (S0, S4 and S5) along the width 

direction of SCS50 sandwich panel. It can be seen that these three strain readings 

were similar at the beginning of loading. As the load increases, the strain S5 near the 

side plate continued to increase while there were no significant changes to the S0 and 

S4 readings after a sudden drop in strain at 0.187 s. The difference in the strain 

development between the three strain gauges and the sudden drop was likely due to 

the weakened composite action after debonding between the grout core and bottom 

plate. Another sudden drop was also observed at 0.190 s which indicates the 

progressive debonding between the grout core and bottom plate under impact. 

Similarly for the SCS75 sandwich panel, the strain reading of S5 near side plate 

continued to rise at higher rate than those of S0 and S4 after the sudden drop caused 

by debonding as shown in Fig. 5.24. As for the strain distribution along the span 

direction, the peak and residual mid-span strain readings of S0 were smaller than the 

quarter-span strains of S1 and S2 for both SCS50 and SCS75 sandwich panels after 

the sudden drop. This indicates that the debonding between grout core and bottom 

plate could affect the strain development at the bottom plate of SCS panel. 
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5.5 Analysis of Specimens under Dynamic Pressure Load 

The equivalent SDOF method proposed by Biggs (1964) is usually adopted by the 

design guidelines (UFC, 2008; ASCE, 2010; ASCE 2011) as a simple method to 

predict the displacement of structural member against blast load and was adopted in 

the current study to analyze the responses of the specimens under dynamic pressure 

loading. Only one primary deflection mode can be represented in the SDOF system, 

which is established based on the conservation of energy, i.e. the internal energy, 

kinetic energy and work done between the actual structure and SDOF system being 

the same. The strain rate effect on the material strength can be taken into account in 

the SDOF model by scaling up the resistance. The resistance–deflection and 

deflection shape functions of water tanks and SCS sandwich panels, which are 

necessary to establish the SDOF system, were obtained from the lateral pressure load 

test in Chapter 4. 

5.5.1 SDOF System Establishment 

The equation of motion for the SDOF system is given as 

( ) ( )e e eM z R z F t                        (5.2) 

where eM , eR  and eF  are the equivalent mass, resistance and force and can be 

obtained from Eqs. (5.3) to (5.5) by equating the kinetic energy, internal energy and 

work done between the SDOF system and actual structure. Since the specimens and 

load are symmetric, only quarter model is considered when constructing the SDOF 

system. 

     
2 2 2

1 2 1 2 1 2
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(5.3) 

where am  is the mass per unit area and represents the uniform distributed mass on 

the surface, i.e. top/bottom plate, water and concrete; xim  and 
yim  are the mass per 

unit length in x (span) and y (width) direction and represents the distributed mass 

along the line, i.e. stiffener and side plate along x direction and end plate along y 

direction; 1( )x  and 2 ( )y  are the deflection shape along x and y direction, 

respectively. 

( ) ( )

1 2
0 0

( ) ( ) ( ) ( )
l z w z

eR z r z x y dxdy                 (5.4) 

where ( )r z  is pressure–deflection function, which was calculated by dividing the 

resistance by contact area; ( )l z  and ( )w z , which are the functions of midpoint 

displacement z, are the half length of contact area in span and width direction. 

( ) ( )

1 2
0 0

( ) ( ) ( ) ( )
l t w t

eF t p t x y dxdy                 (5.5) 

where p(t) is the applied pressure–time history; l(t) and w(t), which are the functions 

of time t, are the half length of applied pressure in span and width direction. 

5.5.2 Parameters Calculation 

To establish the equivalent mass, resistance and force, the required 

parameters/functions listed in Eqs. (5.3) to (5.5) are discussed in the followings.  

 

Deflection shape functions in span direction 1( )x  and width direction 2 ( )y  are 

necessary to establish the equivalent mass, resistance and force. As suggested by 

Biggs (1964), the deflection shape function is usually obtained by analyzing the 

structural member under lateral pressure loading. Therefore, the deflection shape 
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obtained from the lateral pressure load test was adopted as the deflection shape for the 

SDOF system. As discussed in Chapter 4, the deflection shape was varying with the 

pressure load. Hence, the adopted deflection shape function was obtained by 

averaging the deflection shapes at the selected load levels. Then, the equivalent mass 

can be obtained by Eq. (5.3). 

 

As shown in Eq. (5.4), the resistance–deflection and deflection shape functions as 

well as the length and width of contact area in terms of midpoint displacement are 

necessary to determine the equivalent resistance and these parameters/functions were 

obtained from the lateral pressure load test. The DIF is also included in the SDOF 

system to capture the increased material strength behavior under high strain rates. The 

DIF depends on the strain rate of the element and increases with increasing strain rate. 

Hence, the design values of DIF given by design guidelines (UFC, 2008; ASCE, 2010) 

are varying not only for the design ranges and type of material but also with the state 

of stress (bending, diagonal tension, direction shear, bond and compression) in the 

material. The adopted values of DIF for stainless steel, mild steel and concrete are 

1.18, 1.1 and 1.19 (ASCE, 2010). It is noted that the SCS sandwich panels include 

two materials (mild steel and concrete) and the lower DIF value of the two materials 

(1.1) is adopted for the conservative concern. 

 

The applied pressure–time history, deflection shape function and the length and width 

of applied pressure are necessary to determine the equivalent force as shown in Eq. 

(5.5). The applied pressure–time history was obtained in the dynamic pressure test by 

recording the variation of air pressure. The applied pressure area was changing during 

test and only the initial and maximum length and width of applied pressure were 
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measured. The linear relationship between the applied pressure area and applied 

pressure was assumed to approximate the varying applied pressure area in the test and 

the validity of this assumption will be discussed in Section 5.6.3. Since the applied 

pressure–time history is known, the length and width of applied pressure in terms of 

time can be determined. Then, the equivalent force is determined. 

5.5.3 Comparison with Test Results 

The displacement–time histories of SAS and SWS tanks, and SCS50 and SCS75 

sandwich panels obtained from test and SDOF analysis are compared in Fig. 5.25 and 

reasonable agreement can be observed. The higher magnitude of fluctuating is 

observed for the displacement–time curves from SDOF analysis, which may be 

caused by the omission of damping in the SDOF system. Damping was not taken into 

consideration as it has no significant effect on the maximum displacement and 

therefore is usually neglected in the blast resistant design. Table 5.4 compares the 

maximum displacements between the test and SDOF analysis. All the maximum 

displacements from the SDOF analysis are generally larger than the test results and 

the maximum difference for the four specimens is 16.0%. This difference may be 

caused by the limitation of the SDOF analysis, i.e. the constant deflection shape and 

DIF value being considered. Based on above discussion, the SDOF method is a 

simply alternative which can be used to predict the displacements of the specimens 

under dynamic pressure loading and the results are acceptable. 
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5.6 Finite Element Analysis of Specimens under Dynamic Pressure 

Load 

5.6.1 Material Models 

5.6.1.1 Concrete Material Model 

The Karagozian & Case concrete model (MAT_72R3 in LS-DYNA) was adopted to 

simulate the behaviors of concrete and the failure surfaces, damage features and 

equation of state of this material model were discussed in Section 4.7.1.1. The strain 

rate effects have also been discussed and the DIF–strain rate in Eq. (5.6) (Grote et al., 

2001) was adopted in this analysis for grout in compression. 

   
3 2

0.0235log 1.07 ( 250)

0.882 log 4.48 log 7.22log 2.64 ( 250)
DIF

 

   

 
 

   

     (5.6) 

and DIF–strain rate in Eq. (5.7) by fitting the experimental data from Ross et al., 

(1989) was adopted in this analysis for grout in tension. The fitted curve is compared 

with the experimental data in Fig. 5.26. 

  1.35
exp 0.0513* log( )sDIF                      (5.7) 

where s =1E-7. 

5.6.1.2 Steel Material Model 

The Piecewise_Linear_Plasticity material model (Mat_24) was adopted to simulate 

the stainless steel and mild steel in the dynamic pressure test. As mentioned in Section 

4.7.1.2, the Cowper-Symonds model is utilized to consider the strain rate effects. 

Jones (1988) obtained the values of D and q of 40.4 and 5 for mild steel by fitting the 

experimental data assembled by Symonds (1967). However, the experimental data 
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have considerable scatter, which may be related to the different mild steels used in the 

experiments. Using these values may, undoubtedly, overestimate the strain rate effects 

of some mild steels. More recently, the values of D and q of 802 and 3.585 were 

determined by Abramowicz and Jones (1986) from dynamic uniaxial tensile 

experiments. Hence, the values of D and q given by Abramowicz and Jones (1986) 

were adopted for mild steel in this study to reduce the possibility of overestimating 

the strain rate effects due to the lack of dynamic experimental data for the current 

mild steel. The values of D and q of 240 and 4.74 for stainless steel 316 suggested by 

Boh et al., (2004) were applied in this study. 

5.6.1.3 Water Material Model 

The material model MAT_NULL (MAT_9) together with the Gruneisen equation of 

state (EOS_GRUNEISEN) with cubic shock velocity–particle velocity (Vs–Ps) in 

LS-DYNA (Hallquist, 2012) was adopted for modeling water. The MAT_NULL is 

used to describe the deviatoric response of water, in which a deviatoric (viscous) 

stress is given as 

 ' '2ij ij                            (5.8) 

where   is the dynamic viscosity. The Gruneisen EOS, which is used to simulate 

the volumetric response of water, is written as follow                           
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         (5.9) 

for compressed material and is given by Eq. (5.10) for expanded materials  

2

0 0( )p C a E                          (5.10) 

where C is the intercept of the Vs–Ps curve; S1, S2, and S3 are the coefficients of the 
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slope of the Vs–Ps curve; 0  is the Gruneisen gamma; a is the first order volume 

correction to 0 ; and 0 1    . The parameters of C, S1, S2, S3 and 0  defined 

here are 1.647E6, 1.921, -0.096, 0.0 and 0.35 (Hertel, 1992), respectively. Fig. 5.27 

compares the pressure–relative volume curve obtained by the parameters from Hertel 

(1992) with the experimental data. The present curve matches well with the 

experimental data and lies between the experimental data of 20 
o
C and 40 

o
C. The 

water temperature in this test is within this range. Hence, the selected parameters for 

Gruneisen equation of state are reasonable. 

5.6.2 Element Type and Formulation 

The S/R Hughes-Liu shell element (Hallquist, 2012) was employed for the face plates 

of water tank and SCS sandwich panel, and water and cement grout core were both 

meshed using eight-point solid element with reduced integration. The Lagrangian 

formulation was adopted for the stainless steel, mild steel and cement grout. The 

Eulerian formulation, which is ideal for modeling fluid flow problems, was adopted 

for water in dynamic pressure test and the penalty Fluid-Structure coupling method in 

LS-DYNA was utilized to model the interaction between face plates and water. 

5.6.3 Contact and Loading Approach 

Similar to the FE analysis on specimens under lateral pressure load, the penalty-based 

approach was adopted for the contact between face plate and support and the soft 

constraint-based approach was employed for the contact between face plate and 

cement grout. 

 

Since the airbag was not fully inflated during the dynamic pressure test, the contact 



Chapter 5 Performance of Water Façade Systems under Dynamic Pressure Load 

- 146 - 

area between airbag and specimen would vary continuously due to the varying air 

pressure inside the airbag. The contact areas corresponding to initial pressure and 

maximum pressure were recorded in the test to capture the varying contact area. The 

ratios of maximum contact area to initial contact area ranged from 1.52 to 1.62 for all 

the four specimens and the variation of the contact area is not significant. Hence, a 

linear relationship between the contact area and air pressure from initial to maximum 

value and from maximum to residual value is assumed to approximate the varying 

contact area in the test and the error of this approximation is acceptable in the 

preliminary FE studies, which are described in Appendix B. The applied force–time 

history was then obtained by multiplying the air pressure with contact area. Similar to 

the FE model in the lateral pressure load test, four contact areas were also adopted to 

represent the varying contact area in the FE model of dynamic pressure test. The 

pressure–time history applied on each loading area was obtained by ensuring that the 

applied force–time history in the FE model was identical to that obtained using linear 

approximation between contact area and air pressure. Taking the SAS tank for 

instance, the applied pressure–time history on each loading area is given in Fig. 5.28. 

The pressure–time curve for load area 1 is same with the air pressure–time history 

obtained from the test since the load area 1 is always within the contact area during 

the test. The pressure–time curves for other three load areas are all increasing from 

zero to maintain the increasing applied load. The explicit solver in LS-DYNA 

(Hallquist, 2006) was adopted to simulate the specimens under dynamic pressure load 

and dynamic relaxation approach was utilized to simulate the specimens under initial 

static pressure load before impact test. 
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5.6.4 Finite Element Model 

Due to symmetry, quarter FE model of the specimen and round bars as the support 

was established as shown in Fig. 5.29. The nodes along the bottom of the round bars 

support were restricted from translation and rotation in the FE model to simulate the 

fixed round bars support. Similar to the FE models for lateral pressure load test, the 

airbag was not explicitly modeled. However, the mass of airbag skin that was in 

contact with the specimen in the dynamic pressure test should be included in the FE 

model to accurately simulate the test, because the bottom airbag skin that moved 

together with the specimen increases the total mass and mass affects the structural 

response under dynamic loading. This was done by increasing the density of the 

highlighted elements of top plate in Fig. 5.29 with additional mass.  

5.6.5 Discussion on Finite Element Results 

5.6.5.1 Empty Steel Tank and Water Filled Tank 

The midpoint displacement–time histories of SAS and SWS tanks from FE analyses 

are compared with test results in Fig. 5.30 and reasonable agreement can be seen from 

the comparison. The initial disparity between FE and test for SWS tank may due to 

the geometric imperfection of the specimen. Since water has negligible resistance 

against deviatoric response but has strong resistance against volumetric response, the 

external work released by water as internal energy is negligible as compared to the 

stainless steel plate as plotted in Fig. 5.31. Although confined water has little 

contribution to the energy absorbing, it provides the tank with additional mass besides 

reducing the deformation of water tank by increasing the resistance. 



Chapter 5 Performance of Water Façade Systems under Dynamic Pressure Load 

- 148 - 

5.6.5.2 SCS Sandwich Panels 

The FE simulated midpoint displacement–time histories of the SCS50 and SCS75 

sandwich panels are compared to test results in Fig. 5.32. The FE model can predict 

the displacement–time history of the SCS50 sandwich panel reasonably well. 

Although the FE model overestimates the maximum displacement of SCS75 by 

26.7%, the simulated residual displacement matches closely with test result. The over 

predictions by FE analyses may be due to the adopted conservative strain rate 

parameters for mild steel. The midpoint displacements of both SCS50 and SCS75 

sandwich panels in the tests continuously increase to their maximum values, while 

displacement–time histories given by FE analyses show some fluctuating before 

reaching the maximum values. The reason is that the damping, which may eliminate 

the fluctuating of specimen in the test, was not incorporated into the FE model. This 

can also explain the higher magnitude of fluctuating of FE simulated curves as 

compared to test after the maximum displacement. The internal energies of steel and 

grout in the SCS50 sandwich panel and their ratios are compared in Fig. 5.33. It can 

be seen that the internal energies of steel and grout are initially comparable and 

subsequently more internal energy is taken by steel. This is because steel has much 

higher strength and ductility as compared to the grout. Although the energy absorbing 

capacity of grout is much lower as compared to steel, it helps to resist the buckling of 

steel plate and increase the total mass. 

5.6.5.3 Boundary Effects 

In the dynamic pressure test, the load durations ranged from 0.042 s to 0.078 s for the 

four specimens. This load duration is longer compared with typical blast loading. For 

instance, the load duration of 100 kg TNT charge detonated at 10 m away is 0.0097 s. 
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The experimentally-verified FE models for the dynamic pressure test were utilized to 

investigate the performance of the tanks and sandwich panels under blast loading. The 

same quarter FE model discussed earlier were used in the analysis. The applied 

loading was modified to blast pressure loading and applied onto the whole top face of 

the specimen. The adopted blast pressure–time history has an exponential decay from 

peak pressure Pr to ambient pressure at time td. Negative pressure was omitted as it 

has little effects on the structural response and is normally omitted in the blast 

resistant design (UFC, 2008; ASCE, 2010; ASCE 2011). The positive phase can be 

described by the modified Friedlander equation (Baker, 1973) as given in Eq. (2.1). In 

this analysis, 100 kg TNT charge detonated at 10 m away was adopted and the peak 

pressure Pr, load duration td and decay coefficient   were obtained as 845.5 kPa, 

9.7 ms and 2.4 by using the blast loading predictive tool ConWep (Hyde, 1991).  

 

Both pin-roller and pin-pin supported boundaries, as described in Section 4.7.5.3, 

were compared in this analysis. Fig. 5.34 shows the simulated midpoint 

displacement–time histories of SWS tank with pin-roller and pin-pin supported 

boundaries and SAS tank with pin-pin supported boundary. It can be seen that the 

maximum displacement of the pin-pin supported SWS tank is reduced by 59% as 

compared to the pin-roller supported SWS tank due to the increase in resistance by 

developing tensile membrane force. As shown in Fig. 4.47, the pin-roller supported 

SWS tank reaches the maximum resistance of 100.4 kN at displacement of 28.4 mm, 

while the resistance of pin-pin supported SWS tank is 320.8 kN at the same 

displacement and still shows significant increase thereafter. It appears in Fig. 5.34 that 

water has little effect in reducing the deformation of SWS tank with pin-pin supported 

boundary. This is because water can only increase the total mass of SWS tank but 
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cannot increase the resistance when the pin-pin supported boundary is adopted. 

 

The midpoint displacement–time histories of the SCS50 sandwich panel with 

pin-roller and pin-pin supported boundaries and SCS75 sandwich panel with pin-pin 

supported boundary are compared in Fig. 5.35. It can be seen that the maximum 

displacement of the pin-pin supported SCS50 sandwich panel is reduced by 27% as 

compared to the pin-roller supported panel. This can be attributed to the increase in 

resistance and ductility when the pin-pin supported boundary is adopted. As 

demonstrated in Fig. 4.49, the maximum resistance and corresponding displacement 

of pin-pin supported SCS50 sandwich panel respectively increase 268.0 % and 93.9 % 

as compared to the pin-roller supported panel. By comparing both SCS50 and SCS75 

sandwich panels with pin-pin supported boundary, it is observed that the deformation 

of the SCS75 sandwich panel can be reduced by 37% through increasing the grout 

core depth due to the increase in resistance (as shown in Fig. 4.49) and total mass.  

 

From above analysis, the tank filled with water or SCS sandwich panel with thicker 

core can reduce the deflection under dynamic loading and the reduction in deflection 

is caused by higher resistance and mass. Unlike the structure under static loading 

whose deflection is determined by the resistance–deflection curve, both mass and 

resistance–deflection curve affect the structural response under dynamic loading. The 

effects of mass and resistance–deflection curve on the structural response under 

dynamic loading can be understood by analyzing a spring-mass system. When the 

system is subjected to dynamic loading, the external work done by dynamic loading 

will transfer to the internal and kinetic energy of the system. The internal energy and 

kinetic energy can be transferred between each other during the motion and the 
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maximum displacement is reached when all the kinetic energy transfers to the internal 

energy. Hence, the external work done equals to the maximum internal energy. Both 

increase in mass and resistance can reduce the external work done by dynamic loading. 

Taking the FE analysis on pin-pin supported SCS75 and SCS50 sandwich panels for 

instance, the external work of SCS75 sandwich panel is reduced by 47% compared 

with the SCS50 sandwich panel due to higher mass and resistance. However, the 

maximum displacement that is needed to store the external work as internal energy is 

only determined by the resistance–deflection curve. Hence, mass has effect on 

external work while resistance–deflection curve has effect on both external work and 

maximum displacement. As discussed earlier in this chapter, mass effect disappears in 

the quasi-static response regime, while the resistance–deflection curve has no effect 

on the external work in the impulsive response regime since the energy transfer from 

external work to kinetic energy finishes before the system developing internal energy. 

Based on above discussion, mass only has effect on structural response in the 

impulsive and dynamic response regimens while resistance–deflection curve has 

effect in all response regimes. 

5.7 Summary 

Drop-weight impact tests via high pressure airbag have been carried out on the 900 

mm (width) × 900 mm (clear span) empty steel tank (SAS), water filled tank (SWS) 

and sandwich panels (SCS50 and SCS75). In addition, the SDOF and FE methods 

were adopted to predict the responses of the test specimens. The main findings and 

key observations from the tests, SDOF and FE analysis are summarized as follow: 
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i) Both the SAS and SWS tanks deformed in a flexural manner under the dynamic 

pressure loading while a combination of shear and flexure deformation was 

observed for the SCS50 sandwich panel. The deformation of the SCS75 

sandwich panel was minimal without any significant permanent deformation. 

ii) The addition of water was shown to improve the performance of SWS tank 

under dynamic pressure loading in terms of less deformation and more globally 

distributed loading, especially under higher impact load in the second impact. In 

comparison, load concentration near stiffeners and side plates was observed for 

the SAS tank under the same impact loading.  

iii) For the SCS sandwich panels, the maximum and permanent displacement of the 

SCS75 sandwich panel with thicker core was significantly reduced as compared 

to SCS50 sandwich panel due to higher resistance and mass.  

iv) The debonding between grout core and steel plate could be identified from the 

sudden drops in the strain–time histories of the SCS sandwich panels. It was 

shown that after the observed drops, the load was distributed away from the 

mid-span, which indicates that the debonding occurred near mid-span. Load 

concentration near side plate was observed after the debonding for both panels, 

which indicates the role of side plate in taking the impact force after the 

weakening of composite action due to debonding. 

v) The SDOF method could provide acceptable predictions on the displacements of 

specimens under dynamic pressure loading and the differences between the test 

and SDOF results in terms of maximum displacement were within 16.0%. 

vi) The established FE models were reasonable in predicting the displacement–time 

responses of water tanks and SCS sandwich panels under dynamic pressure 

loading. It was observed from the FE investigations that the deformation of 
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specimens under blast loading could be significantly reduced when the pin-pin 

supported boundary was adopted due to increased resistance. 
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Table 5.1 Summary of impact test results 

Water 

tanks 

1
st
 impact (500kg, 1.7 m) 2

nd
 impact (500kg, 2.0 m) 

V 

(mm/s) 

Fmax 

(kN) 

I 

(Ns) 

P 

(kPa) 

V 

(mm/s) 

Fmax 

(kN) 

I 

(Ns) 

P 

(kPa) 

SAS 5363 497 4588 175 5820 731 5258 178 

SWS 5410 484 4958 192 5762 807 5460 211 

Sandwich 

panels 

1
st
 impact (800kg, 3.7 m) 

V 

(mm/s) 

Fmax 

(kN) 

I 

(Ns) 

P 

(kPa) 

SCS50 8147 895 12837 617 

SCS75 8070 1012 15703 829 

 

Table 5.2 Midpoint displacement of SAS and SWS tanks (mm) 

Specimen SAS 1
st
 SAS 2

nd
 SWS 1

st
 SWS 2

nd
 

Maximum displacement 30.6 51.2 28.9 36.3 

Permanent displacement 16.8 35.8 14.3 22.0 

 

Table 5.3 Midpoint displacement of SCS50 and SCS75 sandwich panels (mm) 

Specimen SCS50 SCS75 

Maximum displacement 34.7 9.8 

Permanent displacement 20.4 3.9 

 

Table 5.4 Comparison of maximum displacements between test and SDOF (mm) 

Specimen SAS SWS SCS50 SCS75 

Test (1) 30.6 28.9 34.7 9.8 

SDOF (2) 35.5 28.8 37.3 10.8 

Difference [(2)-(1)]/(1)×100% 16.0% 0.3% 7.5% 10.2% 
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Fig. 5.1 Drop-weight impact test machine 

 

Fig. 5.2 Drop-weight impact test setup 
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Fig. 5.3 Overview of data acquisition system: (a) photo (b) schematic drawing 

Laser

light
Photodiode

Pressure
sensor

Quartz force rings

Projectile weight

Projectile

Strain gauges Potentiometers

High speed
camera

Specimen

Support

Support

Oscilloscope 2 Oscilloscope 1

Impact plate

Airbag

High speed 

camera 

Oscilloscope 1 

Laser emitter 

Oscilloscope 2 

Photodiode Pressure 

sensor 

(a) 

(b) 



Chapter 5 Performance of Water Façade Systems under Dynamic Pressure Load 

- 157 - 

  

 (a)                               (b) 

 

  

 (c)                               (d) 

Fig. 5.4 Instrumentation layout: (a) LVDTs on SAS and SWS (b) strain gauges on 

SAS and SWS (c) LVDTs on SCS50 and SCS75 (d) strain gauges on SCS50 and 

SCS75 (in mm) 
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Fig. 5.5 Deformed shape of SAS tank: (a) after 1
st
 impact (b) after 2

nd
 impact 

 

Fig. 5.6 Buckling on top surface of SAS tank after 2
nd

 impact 

(a) 

(b) 
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Fig. 5.7 Deformed shape of SWS: (a) after 1
st
 impact (b) after 2

nd
 impact 

 

Fig. 5.8 Top surface of SWS after 2
nd

 impact 

(a) 

(b) 

Concave 

Convex 

Convex 
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Fig. 5.9 Permanent deformation of SAS and SWS after 2
nd

 test 

 

 

Fig. 5.10 Deformed shape of SCS50 panel after impact 

 

 

Fig. 5.11 Deformed shape of SCS50 and SCS75 panels after impact 
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Fig. 5.12 Impact force–time history of (a) SAS (b) SWS (c) SCS sandwich panel 
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Fig. 5.13 Air pressure–time history of (a) SAS and (b) SWS tanks 

 

Fig. 5.14 Air pressure and impact force–time history of SAS under first impact 
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Fig. 5.15 Air pressure–time history of SCS sandwich panel 

 

Fig. 5.16 Air pressure and impact force–time history of SCS50 panel 

 

Fig. 5.17 Displacement–time histories of SAS and SWS tanks 
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Fig. 5.18 Displacement–time and air pressure–time histories of SWS tank under first 

impact 

 

Fig. 5.19 Comparison of maximum displacements of SAS and SWS tanks in the 

load–deflection curves 

 

Fig. 5.20 Displacement–time histories of SCS50 and SCS75 sandwich panels 
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(a) 

 

(b) 

Fig. 5.21 Strain–time histories of SAS tank under first impact: (a) along span 

direction (b) along width direction 
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(a) 

 

(b) 

Fig. 5.22 Strain–time histories of SWS tank under first impact: (a) along span 

direction (b) along width direction 
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Fig. 5.23 Longitudinal strain–time history of SCS50 under impact 

 

 

Fig. 5.24 Longitudinal strain–time history of SCS75 under impact 
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(a) SAS and SWS 

 

(b) SCS50 and SCS75 

Fig. 5.25 Comparison of displacement–time histories between test and SDOF 

 

Fig. 5.26 Strain rate effects of mortar under tension 
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Fig. 5.27 Relationship between pressure and relative volume for water 

 

 

Fig. 5.28 Applied pressure–time history of SAS 
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(a) 

 

(b) 

Fig. 5.29 FE model of (a) SWS and (b) SCS sandwich panel in dynamic pressure test 
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Fig. 5.30 Comparison of FE predicted displacement–time histories with test 

 

Fig. 5.31 Internal energy of water and stainless steel in FE analysis 
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Fig. 5.32 Comparison of FE predicted displacement–time histories with test 

 

Fig. 5.33 Internal energy of steel and core material of SCS50 
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Fig. 5.34 Midpoint displacement–time histories of SAS and SWS 

  

 

Fig. 5.35 Midpoint displacement–time histories of SCS sandwich panels 
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Chapter 6 Analytical Methods for Predicting Deformation of 

Water Façade Systems under Blast Loading 

6.1 Introduction 

It was demonstrated in Chapter 5 that the blast resistance of water façade systems 

with pin-pin supported boundary was significantly higher than those with pin-roller 

supported boundary. Hence, the analytical methods for predicting the deformation of 

pin-pin supported water façade systems, including SWS and SWS-SCS, under blast 

loading were developed in this chapter in order to facilitate the blast resistant design 

of such façade systems. 

 

The SDOF system of the SWS was established, based on which, the shock spectrum 

and dimensionless P–I diagram were constructed. They can be directly used to gauge 

the damage level of SWS under given blast load. As for the SWS-SCS, the SDOF 

system was also established. In contrast, a similar dimensionless P–I diagram was not 

available for the SWS-SCS, since the relationship between dimensionless pressure 

and impulse was not established due to the complex material behavior of concrete. 

Due to the deficiencies of SDOF method, which cannot capture the varying DIF and 

deflection shape, The Lagrange Equation method with combined deflection shape 

function and varying DIF was proposed as an improved alternative for predicting the 

deformation of water façade systems under blast loading 
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6.2 Analytical Method for Water Filled Tank 

6.2.1 SDOF System 

For the pin-roller supported SWS tank, the side plates and stiffeners are critical in 

resisting pressure load. In case where the tank is further axially restrained with pin-pin 

supported boundary, the top and bottom plates are the key elements to resist pressure 

load by developing tensile membrane force. Since the deviatoric strength of water is 

negligible, it is thought to have no contribution to the resistance of SWS under 

pressure load. Therefore, the SWS tank with pin-pin supported boundary can be 

simplified as two pin-pin supported steel plates (top and bottom plates) that deform 

together, as shown in Fig. 6.1. This simplification is conservative and also has wide 

application since it neglects the side plates and stiffeners and therefore can be 

applicable for the SWS with different types of stiffeners or connectors between top 

and bottom plates. 

 

The pin-pin supported SWS tank can be transformed into an equivalent SDOF system 

by load-mass factor (Biggs, 1964) and the equation of motion of the equivalent SDOF 

system is given as 

( ) ( )LMK my R y F t                       (6.1) 

where LMK  is the load-mass factor, which can be determined by given deflection 

shape function. The resistance–deflection and deflection shape functions, which are 

needed to establish the equation of motion of the equivalent SDOF system in Eq. (6.1), 

will be discussed in followings. 
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Since the top/bottom steel plate of SWS is relatively thin and the pressure load is 

mainly resisted by the tensile membrane force, only axial tension force, T, is 

considered while bending, shear and compression are negligible, as shown in Fig. 6.2. 

To satisfy the force equilibrium in y direction, the following equation can be 

established 

( )
dy d

T T y dy Pdx
dx dx

                    (6.2) 

where T  is the tension force per unit width (N/m) and P is pressure (N/m
2
). It 

should be noted that Eq. (6.2) is derived based on the assumption that sinϑ=tanϑ. 

Hence, the support rotation at boundary, ϑ, must be less than 17.75
o
 to ensure that the 

error introduced by aforementioned assumption is less than 5%. This rotation 

limitation is only slightly smaller than the maximum allowed support rotation of 20
o
 

with lowest protection level (ASCE, 2011). Besides, the error corresponding to 

support rotation of 20
o
 is 6.42%, which is also acceptable for blast resistant design. 

The solution of Eq. (6.2) can be obtained as follow by considering the pin-pin 

supported boundary. 

2( )
2

P
y Lx x

T
                          (6.3) 

where L is the span. The deflection shape function can then be defined by dividing y 

by mid-span displacement ym as  

2

2

m

( ) 4
( ) ( )

y x
x Lx x

y L
                      (6.4) 

Then, the load-mass factor can be obtained as 0.8. By equating the resistance R(y) 

with P in Eq. (6.3) and setting x=L/2, the relationship between resistance and 

mid-span displacement can be obtained as 
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  2

8 m
m

Ty
R y

L
                            (6.5) 

The tension force per unit width T  can be defined as 

( )

y

y y y

Et
T

Et Et

  

     


 

  
              (6.6) 

where E is Young’s modulus, t is plate thickness,   is strain, 
y is yield strain and α 

is the hardening coefficient of the elastic-plastic-hardening constitutive model which 

is adopted in this study to define the stress–strain relationship of stainless steel 

beyond elastic range. The strain   in Eq. (6.6) can be calculated as 

2

2 2

2

1 1 ( 4 )1 8
( ) 4 ln 1 2.638( )

4 16 1 1 ( 4 )

mm
m

m m

L yL Ly
y L

LL y L y


  
      
    

  (6.7) 

Therefore, Eq. (6.7) can be adopted to construct the resistance–deflection function as 

follow: 

 

3

4

3

2 4

21.104

2.638

8 (1 ) 21.104

2.638

ym
m

m

y m ym
m

Ety
y L

L
R y

Et y Ety
y L

L L



  





 


 



          (6.8) 

By substituting Eq. (6.8) and load-mass factor into Eq. (6.1), the equation of motion 

for the equivalent SDOF system is thus obtained. 

 

Since only tension force is considered in establishing the equilibrium equation in Eq. 

(6.2) for the steel plate, an energy criterion is adopted to limit its application range. 

The criterion is that the internal energy per unit width by tension force, as defined in 

Eq. (6.9), must be more than 95 % of the total internal energy per unit width.  

2

2 '

0 2

1

2

tL

T T

t

E E dt dx


                        (6.9) 
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Substituting the tension strain in Eq. (6.7) into Eq. (6.9) leads to 

22 4
2 '

3

0 2

1
[2.638 ] 3.48

2

tL

m m
T

t

y y
E E dt dx Et

L L


 
  

 
                (6.10) 

Meanwhile, the total internal energy per unit width due to tension and bending is 

given by 

2

2 '

0 2

1

2

tL

T B T B

t

E E dt dx 



                      (6.11) 

and the total strain T B   is obtained by summing the tension and bending strain. The 

bending strain can be calculated as follow 

   

''

' '

3 2 3 2
2'2

2

2

1
1 2

4

B

y P T
t t

Py
L x

T

  
 
  

 

            (6.12) 

where P T  is obtained from Eq. (6.5) as follow 

28 mP T y L                         (6.13) 

Substituting Eq. (6.13) into Eq. (6.12) and then substituting Eq. (6.12) and Eq. (6.7) 

into Eq. (6.11) leads to 

4 3 2

3 3

8
3.48 ( )

3

m m m
T B

y Et y y
E Et F

L L L
                     (6.14) 

where 

2

4 2

4
96 10 3arctan

328 512 16

m m

m

m
m m

y y

y L L
F

yL y y
LL L

   
   

       
     

    
   

         (6.15) 

Finally, Eq. (6.10) and Eq. (6.14) are substituted into the aforementioned energy 

criterion limit defined in Eq. (6.16) to obtain the application range in terms of ym in 

Eq. (6.17).  



Chapter 6 Analytical Methods for Predicting Deformation of Water Façade Systems under Blast Load 

- 179 - 

0.95T

B T

E

E 

                         (6.16) 

 3.82m my t F y L                       (6.17) 

As mentioned previously, the support rotation should be less than 17.75
o
, which is 

equivalent to the ratio of mid-span displacement to span ym/L being less than 0.08. It 

is noted that  mF y L  ranges from 1 to 0.95 for ym/L between 0 and 0.08. The 

variation is not significant and the maximum value can be applied conservatively in 

Eq. (6.17) to determine the lower bound application range. Hence, the application 

range for the constructed SDOF system can be defined as follow: 

3.82 0.08mt y L                       (6.18) 

It should be mentioned that the lower bound in Eq. (6.18) is derived based on elastic 

material, while it is proven to be conservative for material in the plastic range. Hence, 

the application range in Eq. (6.18) can apply for both elastic and elastic-plastic 

materials. It is noted that when the ratio of plate thickness to span t/L is larger than 

0.021, the proposed SDOF system cannot be used. Hence, other approach, like FE 

analysis, may be needed to solve this kind of problem. However, for practical blast 

resistance façade panels, the ratio of plate thickness to span is often smaller than 

0.021. 

 

The FE model of pin-pin supported SWS tank under lateral pressure load described in 

Chapter 4 was adopted to verify the resistance–deflection and deflection shape 

functions derived in this section. Since the analytical model ignored the stiffeners, the 

FE model of SWS tank without stiffeners was also compared. The comparisons of 

pressure–mid-span displacement curves are shown in Fig. 6.3. It can be seen that the 
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analytical method slightly overestimates the deflection of SWS tank with stiffeners 

due to the exclusion of stiffeners in the analytical model. The discrepancy of 

pressure–deflection response for small displacement is caused by the bending effects 

of stiffeners and face plates (top and bottom plates). Herein the stiffeners are the key 

elements that cause the discrepancy. Because the height of stiffeners (36 mm) is much 

higher than the thickness of top and bottom plates (3 mm) and therefore larger 

displacement ( 3.82my t ) is needed for the stiffener to eliminate its bending effect. 

This is also evident from the better agreement between the analytical prediction and 

FE model without stiffeners. Based on above analysis, the analytical model agrees 

well with the FE model without stiffeners and provides a conservative prediction for 

the FE model with stiffeners. The discrepancy is not significant and can be acceptable 

within its application range (3.82 0.08mt y L  ). Therefore the analytical model can 

be used to obtain the resistance–deflection function of SWS tank. The application 

range in Eq. (6.18) is calculated as 11.46 mm my  88 mm for the SWS tank in this 

analysis. It is noted from Fig. 6.3 that the analytical model can give a close prediction 

even with the displacement greater than 88 mm. 

 

The deflection shapes from analytical model and FE analysis are compared in Fig. 6.4. 

It can be seen that the deflection shapes from FE analyses agree well with the 

analytical prediction when the mid-span displacement equals to 50 and 90 mm. 

However, when the mid-span displacement equals to 10 mm, the slight disparity of 

deflection shape is observed. This is because the flexural deformation still has effects 

on the deflection shape when the mid-span displacement is small (less than 3.82t). 

From above comparisons, the analytical model can provide a reasonable prediction on 

the resistance–deflection and deflection shape functions of the pin-pin supported SWS 
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tank under pressure loading. 

6.2.2 Free Vibration Analysis 

Maximum displacement is usually the parameter of concern and is often adopted as 

the damage level indicator for the structural member. In view of this, the dynamic 

response of the constructed SDOF system for SWS tank is thus characterized by its 

free vibration period and maximum displacement. In the elastic range, the equation of 

motion for the equivalent SDOF system is given by 

3 ( )e e em k P t                          (6.19) 

where 2

e LMm K tL , my L  , 21.104ek Et  and ( ) ( )eP t P t L . In order to 

determine the free vibration period, the SDOF system is analyzed under free vibration 

where ( )eP t  and initial displacement were taken as 0 and initial velocity = v0. With 

these, the equation of motion in Eq. (6.19) can be rewritten as 

3

0 0 00 ( 0; )e em k v                      (6.20) 

By equating the kinetic energy to internal energy, the maximum displacement of Eq. 

(6.20) can be obtained as 

4
max 0 2 e ev m k                        (6.21) 

Since the exact solution of Eq. (6.20) cannot be obtained, fourth-order Runge-Kutta 

time stepping procedure was adopted to determine the displacement–time history and 

the free vibration period. It is noted that circular frequency is proportional to initial 

velocity and inverse proportional to maximum displacement. Hence, the circular 

frequency can be established by introducing a constant value as 

4
0 max 0 e ev v k m                       (6.22) 

The value of   is determined by averaging the numerically obtained values as 
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shown in Fig. 6.5 where   ranges from 1.0045 to 1.008 with average value of 1.007. 

Using this average value, the circular frequency and free vibration period are obtained 

as 

4
0

4
0

2
1.007 ;

1.007
e e

e e

v k m T
v k m


                (6.23) 

Eq. (6.23) shows that the free vibration period of the constructed SDOF system is 

governed by equivalent mass, stiffness and initial velocity, unlike the free vibration 

period of elastic SDOF system with linearly proportional resistance which depends on 

only mass and stiffness. This difference is attributed to the different 

resistance–deflection functions between the two. The resistance in the constructed 

SDOF system is a three order polynomial of displacement, whereas the resistance in 

the elastic SDOF system is linear with displacement. 

6.2.3 Shock Spectrum 

The shock spectrum defines the relationship between the dimensionless maximum 

displacement and the ratio of blast loading duration to free vibration period of the 

structure. Following the usual blast resistant design practice, a triangular blast 

pressure profile with zero rise time is adopted in this paper. Plastic deformation is 

usually allowed for the blast resistant design. Hence, the shock spectrum of SWS tank 

with plastic deformation is established in this section. 

 

The equation of motion for the SDOF system under triangular pressure load can be 

written as 

( ) (1 )

( ) 0

e em d d

e d

m R P t t t t

m R t t

 

 

   

  
                (6.24) 
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where emP  is the initial maximum pressure × span, td is the loading duration and 

( )R   is the resistance. Since it is difficult to find the exact solution for Eq. (6.24), 

fourth-order Runge-Kutta time stepping procedure was also adopted to obtain the 

displacement–time history.  

 

For the elastic SDOF system subjected to triangular pressure load, it has been proven 

that the dimensionless maximum displacement is a function of loading duration to 

free vibration period ratio (Mays and Smith, 1995). Based on this, it was first assumed 

that the shock spectrum for the SWS tank considered in this study can also be 

constructed by adopting a dimensionless maximum displacement of 

3

max

em epP k


as a 

function of td/Te. The td/Te ratio can be derived as 

0.254
0

0.7542 2 2

d ep d em d epd

e e e

t v k t P t kt

T m m

 

 
                 (6.25) 

In Eq. (6.25), 0 0.5 em d ev P t m  is calculated from conservation of momentum. Te is 

the equivalent free vibration period for the SWS in the plastic range and can be 

defined by replacing ke with kep in Eq. (6.23). kep is the equivalent plastic stiffness and 

can be calculated by equating the internal energy and maximum displacement as 

follow: 

max max3 3

0 0
( ) { 21.104 [8 (1 ) 21.104 ] }

y

y
yR d Et d d

  


             

max 3

0
epk d



                                          (6.26) 

According to Eq. (6.7), the yield strain can be obtained as 22.638y y  . By 

substituting this into Eq. (6.26), the equivalent plastic stiffness can be expressed as a 

function of the ratio of yield displacement to maximum displacement and hardening 
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coefficient, , as follow: 

4 2

max max

[21.104( 1)( ) 42.208(1 )( ) 21.104 ]
y y

epk Et
 

  
 

           (6.27) 

When dt T , the load can be considered to act in a quasi-static manner since the 

structure will reach its maximum displacement long before the load has diminished. 

Equating the external work done by load with the internal energy of the structure 

leads to 

3

max 4
em epP k


                           (6.28) 

When dt T , the load can be considered to act in an impulsive manner since the 

displacement will reach its maximum value only after the impulse has passed. 

Equating the kinetic energy due to impulse with the internal energy of the structure 

gives the lower bound of the SDOF displacement response as follow: 

0.253
0.75max

0.75
2

(2 )

d em d ep d

e e e e

t P t k t

P k m T





                    (6.29) 

Eqs. (6.28) and (6.29) describes the quasi-static and impulsive asymptotes, 

respectively, for the constructed SDOF system under triangular pressure load. 

 

Since the dimensionless maximum displacement of elastic SDOF system can be 

expressed as a function of td/T, its shock spectrum can be directly generated by 

plotting the function. For the SDOF system constructed for the SWS, the exact 

solution for its dimensionless maximum displacement cannot be obtained. Hence, the 

dimensionless maximum displacement 

3

max

em epP k


and td/Te for varying equivalent peak 

overpressure, Pem, loading duration, td, equivalent mass, me and equivalent stiffness, 
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kep, were calculated and plotted in Fig. 6.6. It can be seen that the calculated values 

fall in a smooth curve and therefore the assumption that the dimensionless maximum 

displacement of the SWS is also a function of td/Te is reasonable. 

6.2.4 Generation of P–I Diagram 

The P–I diagram can be constructed by re-plotting the shock spectrum as a function of 

dimensionless pressure and impulse. Multiplying the quasi-static asymptote given by 

Eq. (6.28) by the inverse of the response ratio gives a modified quasi-static asymptote 

of 3

max4 1em epP k P    and P  can be treated as the dimensionless pressure. 

Similarly, Eq. (6.29) can be rewritten as  
0.75

0.75 3/2 3

max2 1ep eI k m I   , where 

0.5 em dI P t  and  I  can be treated as the dimensionless impulse. These two 

dimensionless values define the boundaries for the P–I diagram and the dimensionless 

pressure and impulse asymptotes are both unity. The pressure and impulse asymptotes 

can also be written as 

3

max

0
4

ep

e

k
P


  ; 

 
0.75

3

max3/2

0 0.752

ep ek m
I


                (6.30) 

The dimensionless P–I diagram of the constructed SDOF system can be obtained by 

transferring the shock spectrum, which was defined earlier in Section 6.2.3, as shown 

in Fig. 6.7. 

 

The ln( 1)I   and ln( 1)P  , which are approximately linear relationship, were 

adopted to generate the formula for the dimensionless P–I diagram in Fig. 6.7. The 

linear and quadratic polynomial fitted formulae are given as follow: 

ln( 1) 0.59ln( 1) 1.07 0P I      or   
0.59

1 1 0.34P I         (6.31) 



Chapter 6 Analytical Methods for Predicting Deformation of Water Façade Systems under Blast Load 

- 186 - 

2ln( 1) 0.026ln ( 1) 0.59ln( 1) 0.97 0P I I                  (6.32) 

Fig. 6.7 shows that both linear and quadratic polynomial fittings agree well with 

SDOF results and the quadratic polynomial fittings are slightly better. 

 

Both the constructed shock spectrum and P–I diagram can be utilized to assess the 

damage level of the SWS tank under triangular pressure load. The parameters 

relationship is directly shown by these equations, which is versatile and convenient 

for blast resistant design.  

 

The FE model of pin-pin supported SWS tank under dynamic pressure loading in 

Chapter 5 was adopted to verify the generated dimensionless P–I diagram. Since the 

strain rate effect was not considered when constructing the P–I diagram, the strain rate 

effect was also neglected in the FE model for consistency. The generated P–I diagram 

from FE analysis is compared with the analytical prediction in Fig. 6.8. The prediction 

is conservative in the quasi-static response regime, because the analytical model 

overestimates the deflection as shown in Fig. 6.3. However, the prediction is not 

conservative in the impulsive response regime. This is because the deflection shape 

function obtained by analyzing the member under lateral pressure loading is more 

applicable for the member under quasi-static response regime (Baker, 1983). Although 

difference is observed between the FE result and analytical prediction, the constructed 

dimensionless P–I diagram can be used to preliminarily predict the damage level of 

SWS tank under given blast load. 

6.2.5 Lagrange Equation Method 

Since the equivalent SDOF system cannot capture the varying deflection shape, FE 
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method is increasingly used to predict the responses of structures under blast loading. 

However, the FE method is more complex and time-consuming and the established 

FE model must be verified by test results to prove its accuracy. Hence, the Lagrange 

Equation method with combined deflection shape function was developed in this 

section to predict the deflection of SWS tank under blast loading. It is more accurate 

than equivalent SDOF method, since it is allowed to define more than one deflection 

functions to capture the varying deflection shape and the varying DIF in terms of 

transient strain rate was also considered to capture the strain rate effects. This method 

is easier and needs significantly less computing time than the FE analysis. 

6.2.5.1 Equation of Motion 

In the Lagrange Equation method, the equations of motion can be formulated as 

follow: 

 
0, 1,2,..., .

i i

U Vd K
i n

dt C C

  
   

  
            (6.33) 

where K is kinetic energy, U is strain energy, V is potential energy of loading and Ci is 

generalized displacement. The fourth-order Runge-Kutta time stepping procedure can 

be utilized to solve the equations of motion.  

 

For the pin-pin supported SWS tank considering only tensile membrane force to resist 

blast loading, K, U and V in Eq. (6.33) can be formulated in Eq. (6.34), Eq. (6.36) and 

Eq. (6.38), respectively. 

 

For kinetic energy, 

2

0

1

2

L

K Ay dx                         (6.34) 
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where L is span,   is density,  A is cross-section area and y  is velocity. The 

deformation, y, with n generalized displacements and deflection shape functions are 

given by  

     
1

,
n

i i

i

y x t C t x


                    (6.35) 

 

Similar to resistance ( )R   in the SDOF method, the strain energy U varies with 

different loading stages and is defined as follow 

2

2 2

1
,

2

2(1 ) ( 1) ,
2

y

y y y

L
EA L L

LU
EA

L L L L L L
L
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 
  

 
             

       (6.36) 

where L  is the difference between the developed length and original length of the 

top/bottom steel plate, which can be approximated using Eq. (6.37). 

2

0

1

2

L dy
L dx

dx

 
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 
                        (6.37) 

 

For potential energy, 

   
0

, ,
L

V p x t y x t dx                      (6.38) 

 

The FE model of pin-pin supported SWS tank used in Section 6.2.4 was also adopted 

here to compare with the Lagrange Equation method. In the Lagrange Equation 

method, the displacement is defined in Eq. (6.39) by combining three different 

deflection shape functions. 

1 2 3

3 5
( )sin ( )sin ( )siny C t x C t x C t x

L L L

  
               (6.39) 
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Fig. 6.9 compares the maximum displacements obtained from FE, SDOF and 

Lagrange Equation methods. The SDOF method overestimates the maximum 

displacements in the dynamic and quasi-static response regimes and underestimates 

the maximum displacement in the impulsive response regime. This indicates that 

utilizing SDOF method may results in unsafe design for SWS tank in the impulsive 

response regime. However, the Lagrange Equation method overestimates the 

maximum displacements in all response regimes. The over prediction is reasonable, 

since the stiffeners are not included in the Lagrange Equation model. From above 

comparison, it is demonstrated that by capturing the varying deflection shape during 

motion, the Lagrange Equation method is able to provide better predictions than the 

SDOF method in terms of providing conservative predictions in all response regimes. 

6.2.5.2 Dynamic Increase Factor 

It has been widely accepted that strain rate effects on material strength can be 

considered in the blast resistant design. The effect is normally included by means of 

the material strength’s DIF, which can be defined as a function of strain rate. In the FE 

method, the DIF–strain rate relationship can be directly specified in the constitutive 

model and varying values of DIF depending on strain rate can be applied in the FE 

calculation (Hallquist, 2006). For the SDOF method, a constant DIF value is usually 

adopted to scale either the yield strength, ultimate strength or both of them depending 

on the mode of deformation (UFC, 2008). It has been argued that a single DIF value 

may not accurately capture the strain rate effect for highly varying strain rates. 

Therefore, varying DIF in terms of strain rate is included into the Lagrange Equation 

method to better capture the strain rate effect. Since strain rate has little effect on the 

Young’s modulus of stainless steel, it can be kept unchanged during calculation while 
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both yield stress and strain vary with the strain rate. 

 

The energy principle is utilized to introduce the varying DIF into the Lagrange 

Equation method. By applying the differential operator on internal energy with and 

without consideration of strain rate effect, that is U and UD, respectively, for the 

pin-pin supported top/bottom steel plate, the following equations are obtained 

V

dU d dV V d                          (6.40) 

( ) ( )D p pdU Vf d f dU                        (6.41) 

where V  is the volume of the top/bottom steel plate. Eq. (6.41) can be rewritten as 

1

( ) 0
n

D
p i

i i i

U U
f dC

C C




  
  

  
                   (6.42) 

Setting ( )D
p

i i

U U
f

C C


 


 
 (i=1, 2, …, n) satisfies Eq. (6.42) and substituting them in 

Eq. (6.33) gives the Lagrange Equation with varying DIF consideration. 

 

Since the elongation of the top/bottom steel plate ∆L is a function of C1, C2, …, Cn, 

i.e. 

  1 2( , ,..., )nL g C C C                        (6.43) 

the plastic strain rate can be derived as 

  1 2

1 2

1
( ... )p n

n

L g g g
C C C

L L C C C


   
    

  
            (6.44) 

By adopting the Cowper-Symonds model (Jones, 1988) to establish the relationship 

between strain rate and DIF, the following equation is obtained  
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1

1

q

pD

i i

U U

C D C

   
   

    

                      (6.45) 

 

The FE model of pin-pin supported SWS tank was used to evaluate the accuracy of 

the proposed varying DIF in Lagrange Equation method. The Cowper-Symonds 

model with D = 240 and q = 4.74 (Boh et al., 2004) was adopted to scale the yield 

stress. The ratios of the maximum displacements with and without DIF obtained from 

FE and Lagrange Equation models are compared in Fig. 6.10. It can be seen that the 

predictions using the Lagrange Equation method with varying DIF are in good 

agreement with the FE results and the predictions are little conservative. This 

discrepancy could be attributed to the omission of stiffener and assumption of uniform 

stress along the span in the Lagrange Equation model. 

6.3 Analytical Method for Water Filled Tank-Sandwich Panel 

6.3.1 SDOF System 

Similar to the pin-pin supported SWS tank, the face plates of SWS-SCS are the key 

elements to resist pressure load by developing tensile membrane force. Hence, the 

SWS-SCS with pin-pin supported boundary can be simplified as four pin-pin 

supported steel plates and a concrete core as shown in Fig. 6.11. Similar to the pin-pin 

supported SWS tank, this simplification is also conservative and has wide application 

for the SWS-SCS with different types of stiffeners or connectors. 

  

The deflection shape and resistance–deflection function, which are necessary to 

establish the SDOF system, are usually derived by solving the differential equations 
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established based on force equilibriums. However, for the SWS-SCS, it is difficult to 

establish the force equilibrium equations due to the undetermined composite action 

between steel plate and concrete core and the complex stress–strain relationship of 

concrete. Hence, the resistance–deflection function of SWS-SCS is divided into two 

parts, i.e. steel plates and concrete core. The deflection shape and 

resistance–deflection function of pin-pin supported steel plate considering tensile 

membrane action have been derived by utilizing force equilibrium equations which 

are given in Eqs. (6.4) and (6.8), respectively. 

 

The deflection shape function of the steel plate in Eq. (6.4) is also adopted as the 

deflection shape function for SWS-SCS. This is because the deflection shape function 

has little effect on the structure’s response (Baker et al., 1983) and the steel plates in 

the SWS-SCS absorb most of the blast energy under large deformation due to its high 

ductility. Another reason is that the constant curvature along the span can be derived 

based on this deflection shape function, which will significantly simplify the 

calculation. 

 

The energy principle is adopted to derive the resistance–deflection function 

contributed by concrete core. The procedure is: a) obtain the strain distribution of 

concrete core and establish the relationship between strain and mid-span displacement; 

b) derive the relationship between the internal energy of concrete core and mid-span 

displacement; c) differentiate the internal energy with mid-span displacement and 

divided by load factor KL to obtain the resistance–deflection function of concrete core 
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6.3.1.1 Resistance–Deflection Function by Concrete Core 

To simplify the derivation of resistance–deflection function contributed by concrete 

core, the following assumptions are made. 

a) The tensile strength of concrete is ignored. 

b) The confinement effect given by face plates on the compressive strength of 

concrete is ignored. 

c) The bond and friction between steel plates and concrete core is ignored. 

 

The force distribution on the concrete core and the compression zone along the span 

are shown in the Fig. 6.12, together with the neutral axis along the span. According to 

the force equilibrium in horizontal direction, the compression force given by the end 

plate equals to the compression force at mid-span, i.e. 

end cF F                            (6.46) 

Therefore, it is reasonable to assume that the compression depth (the distance between 

maximum compression layer and neutral axis) at the end and mid-span is the same. 

Fig. 6.13 shows the deformation profile across the concrete depth and the 

compression depth at mid-span t2 equals to t1 at the end. t1 is determined by ensuring 

that the extension of concrete core within t1 zone is larger than that of the steel plates 

so that it can be compressed by the end plate. Meanwhile, the following relationship is 

established. 

1 2

S C

n

L L

t t t

 



                        (6.47) 

where SL is the difference between developed length and original length of steel 

plate and CL  is the difference between compressed length and original length of 
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concrete in the top layer. By adopting the deflection shape function in Eq. (6.4), the 

curvature of concrete core can be calculated as 

 
 
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3 2 3 2
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y y L
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L x
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              (6.48) 

When ym/L is small, Eq. (6.48) can be simplified as 

28c mK y L                          (6.49) 

Therefore, CL  can be obtained as 

  22 tanC c cL K L t t                        (6.50) 

And the elongation of steel plate SL  can be obtained as 
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L
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ydy
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 
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 
                     (6.51) 

From above equations, the neutral axis is determined as 

2 6

c m
n

t y
t


                            (6.52) 

where  2 tancL L t   . The θ normally ranges from 26.6
o
 to 45

o
. In this study, 

θ is taken as 26.6
o
 in accordance with Eurocode 2 (2004). Therefore, the strain 

expression above the neutral axis is derived as 

 
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2
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2 6

c m
n m

t y
K t t t y
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


  
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  
               (6.53) 

 

Since it is complex to derive the internal energy of concrete core based on current 

neutral axis which varies with the mid-span displacement, the unchanging neutral axis 

is proposed, based on which, the equivalent curvature is then derived. If the internal 

energy of concrete core keeps increasing with the mid-span displacement rising from 
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0 to ym,n, the neutral axis tn in Eq. (6.52) ranges from 2ct  to ,2 6c m nt y  . 

Therefore, it is rational to take the average neutral axis ,2 12c m nt y   as 

unchanging neutral axis. ym,n is the minimum of the maximum mid-span displacement 

ym,max and ym,m, where ym,m is a value of the mid-span displacement. When the 

mid-span displacement exceeds ym,m, the equivalent curvature starts to decrease with 

increasing of mid-span displacement. ym,m will be given later after deriving the 

equivalent curvature. 

 

The equivalent curvature Ke is derived based on the criteria that the internal energy of 

concrete core calculated by using original and equivalent strain expression is the same 

in elastic material range. The internal energy of concrete core per unit area is given as 

2 2 3

0

1 1

2 6

m

mu E d EK


                      (6.54) 

where   is the distance between compressive layer and the neutral axis, and 

,2 12m m nT y   . 

Then, the equivalent curvature is obtained as 
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and the strain can be expressed as 
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,

2

,

8 1 3
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m nm m c c
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L y t
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        (6.56) 

Differentiating the equivalent curvature Ke with mid-span displacement ym and setting 

it to zero leads to 
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         (6.57) 

The solution of mid-span displacement , 6 5m m cy t   from Eq. (6.57) indicates that 

when the mid-span displacement is larger than ym,m, the equivalent curvature Ke starts 

to decrease with increasing mid-span displacement. In other words, the internal 

energy of concrete core stops increasing when the mid-span displacement is larger 

than ym,m. 

 

The stress–strain curve of concrete under uniaxial compression is given by Eurocode 

2 (2004) as 

 
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c                 (6.58) 

where k, fcm, o  and c  can be found in Eurocode 2 (2004). 

 

When all the compression strains above the neutral axis are smaller than the crush 

strain of concrete c , the stress–strain relationship given in Eq. (6.58) can be used for 

all the compression concrete above the neutral axis. Hence, the internal energy of 

concrete core per unit volume can be calculated as 
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where 
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. 

Provided that the internal energy per unit cross-section of concrete core along the 

compressive zone is the same, the internal energy of concrete core is calculated as 
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where B is the width of concrete core, Le is the length of compression zone and can be 

calculated as  2 1 sin 1 tane cL L t     , 
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Thus, differentiating the internal energy of concrete core with mid-span displacement 

leads to 
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                         (6.61) 

where 
' e
e

m

dK
K

dy
 . 

The resistance–deflection function of concrete core without crushing can be obtained 

as 

 1

1
u

c
c m

m L

dU
R y

dy BLK
                      (6.62) 

where KL is the load factor and can be calculated based on the given deflection shape 

function in Eq. (6.4). 

 

When some parts of the compression strains exceed crush strain of concrete c , the 

internal energy of concrete core can be divided into two parts, i.e. concrete with 

crushing and concrete without crushing. The internal energy of concrete core without 
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crushing can be calculated as 
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where 
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, which is calculated by setting strain expression in 

Eq. (6.56) to crush strain c . The internal energy of concrete core with crushing can 

be calculated as 

 ,2 0 1( )c
c e m o cm

o

U L B f g


  


                  (6.64) 

Hence, the total internal energy of concrete core after crushing is given by 

,1 ,2

c

c c cU U U                         (6.65) 

Similarly, differentiating the internal energy of concrete core with mid-span 

displacement leads to 

2
' '

2 1 02
( ) ( )

c

c e o cm c c
e e o cm

m e o o

dU L B f
K g L B f g

dy K

  
 

 
             (6.66) 
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In the same way, the resistance–deflection function of concrete core after crushing can 

be obtained as 

2

1
( )

c
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dU
R y
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                      (6.67) 

 

The procedure of calculating the resistance–deflection function of concrete core is 

summarized as follow: 

a) Calculating the maximum strain of concrete core by using Eq. (6.68). 
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b) For max c  , there is no concrete crushing. Then, resistance–deflection function 

is given as 
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c) For max c  , calculating yo by solving the Eq. (6.70). 
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Then, the resistance–deflection function is given as 
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The total resistance of SWS-SCS is obtained by summing the resistance of steel plates 

and concrete core. Fig. 6.14 compares the analytical pressure–mid-span displacement 

of SWS-SCS with that obtained from FE analysis. The FE model used here was the 

combined FE models of pin-pin supported SWS and SCS50 in Section 4.7.5.3. It 

should be mentioned that the side plates of SCS50 was removed from the FE model to 

be consistent with the analytical model. It can be seen from the comparison that the 

analytical model agrees well with the FE model with slightly over predicted deflection. 

The deflection shapes obtained from analytical model and FE analysis are compared 

in Fig. 6.15. It can be seen that the deflection shapes from analytical model is also in 

good agreement with the FE results and their differences reduce with increasing 

displacement. This is likely due to the increasing damage of concrete under large 

deformation, which reduces its contribution to the deflection shape. 
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6.3.1.2 Dynamic Increase Factor 

Steel Plates 

The varying DIF can be taken into consideration during transformation of actual 

structural member to its equivalent SDOF system through energy conservation. The 

variation for internal energy of a pin-pin supported steel plate and its equivalent 

SDOF system at arbitrary moment is given by Eqs. (6.72) and (6.73), respectively. 

   
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a p mdU f y Ad dx                        (6.72) 

 
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where KR is the resistance factor. By assuming that the internal energy along the span 

is constant and equating the above two equations leads to 
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                       (6.74) 

The configuration of infinitesimal element dx is shown in Fig. 6.16 at t and t+∆t. The 

variation of plastic strain can be derived as 
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When 0t  , 0my t  , thus 
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Eq. (6.76) defines the plastic strain rate in terms of shape function, generalized 

displacement and velocity. For steel material, the following Eq. (6.77) can be obtained 

by using the Cowper-Symonds model (Jones, 1988) to define the DIF as a function of 

plastic strain rate 
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where D and q are the Cowper-Symonds parameters. Substituting Eq. (6.76) and 

shape function in Eq. (6.4) into Eq. (6.74), the DIF can be calculated as follow 
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where my L   is the mid-span displacement to span ratio. 

Concrete Core 

The variation for the internal energy of concrete core without considering strain rate 

effect is given as 
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Then, we have 
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The variation of the internal energy of concrete core considering strain rate effect is 

given as 
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Therefore, the dynamic increased resistance for concrete core is obtained as 
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The Eq. (6.83) is only used to scale up the Rc1, the DIF for scaling up Rc2 is given in 

Eq. (6.84). 
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In above equations, ( )cD   defines the relationship between DIF and strain rate of 

concrete core.  

6.3.1.3 Equation of Motion 

Since there is no connection between SWS and SCS, the separation may occur during 

the calculation. The same situation may also applicable for the top steel plate of SCS 

and concrete core. Therefore, the SWS-SCS can be divided into three components, i.e. 

SWS (A), top plate of SCS (B), concrete core + bottom plate of SCS (C). These three 

components may separate from each other during the calculation. Hence, the flow 

chart of determining the equation of motion is given in Fig. 6.17, in which the three 

equations of motion (EOM1, EOM2 and EOM3) are given in Eqs. (6.85) to (6.87) and 

they are representing no separation, component C separating from component B and 

A , and component A separating from component B and C, respectively. 

   1 2 3 4 1 2 ( )LM ss s s w w ms s s c c m ss s s cK t t t t t t y R R R R P t                 (6.85) 

 4 2 0LM ms s c c m s cK t t y R R                      (6.86) 

 3 4 1 2 0LM ms s s c c m s s cK t t t y R R R                     (6.87) 
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where ss , ms and c  are densities of stainless steel, mild steel and concrete; 1st , 

2st , 3st , 4st , wt  and ct  are thicknesses of top plate of SWS, bottom plate of SWS, 

top plate of SCS, bottom plate of SCS, water layer and concrete core; ssR , 1sR , 2sR  

and cR  are the resistances of SWS, top plate, bottom plate and concrete core; ( )P t  

is pressure–time history of blast loading. 

6.3.2 Lagrange Equation Method 

In the Lagrange Equation method, the equations of motion has been given in Eq. (6.33) 

and the kinetic energy, internal energy and potential energy of face plates have been 

discussed in Section 6.2.5. It should be noted that the separation may occur for the 

SWS-SCS under blast loading. Therefore, the separating components must be 

removed during the calculation. Similar to the SDOF method, the criterion that 

determines the separation in SDOF method is also adopted for the Lagrange Equation 

method. 

 

For the concrete core in the SWS-SCS, the calculation of kinetic energy T and 

potential energy V is same with face plates. However, the derivation of the internal 

energy of concrete core Uc and its differential with generalized displacements are 

complex. Hence, the simplified method is adopted and illustrated as follow. To avoid 

recalculating the internal energy of concrete core, it is assumed that the combined 

deflection shape function in Lagrange Equation method is same with that in SDOF 

method. In reality, the combined deflection shape function in the Lagrange Equation 

method is varying during calculation. However, this assumption is reasonable for the 

pin-pin supported SWS-SCS under blast loading, since the internal energy of concrete 
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core is relatively small as compared to the face plates, especially under large 

deformation. Therefore, the mid-span displacement of SWS-SCS is calculated as 

1

( ) ( 2)
n

m i i

i

y C t L


                       (6.88) 

Hence, the differential of the internal energy of concrete core Uc with generalized 

displacement iC  is derived as 

c c m

i m i

U U y

C y C

  


  
                       (6.89) 

The DIF for concrete core in Lagrange Equation method is the same as that in SDOF 

method, since the same deflection shape function is assumed in the calculation of the 

internal energy of concrete core. The DIF for face plates in the Lagrange Equation 

method has been derived in Section 6.2.5.2. 

6.3.3 Comparison with Finite Element Results 

Table 6.1 compares the maximum displacements obtained from FE, SDOF and 

Lagrange Equation models. The combined deflection shape function in Eq. (6.39) was 

adopted for the Lagrange Equation model. The FE model used here was the combined 

FE model of pin-pin supported SWS and SCS50 in Section 5.6.5.3. Similar to the FE 

model in Section 6.3.1.1 for the resistance–deflection comparison, the side plates of 

SCS50 were also removed from the FE model. It can be seen from the comparison 

that both SDOF and Lagrange Equation model can predict the maximum 

displacements of SWS-SCS with reasonable accuracy and the maximum difference is 

less than 12%. Both the two models overestimate the displacement of SWS-SCS 

except for the SDOF model under impulsive response regime. The overestimation is 

expected, since the analytical resistance–deflection curve is slightly conservative as 
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discussed in Section 6.3.1.1. Similar to the SDOF model for the SWS tank under 

impulsive loading, the underestimation of deformation under impulsive loading is 

because the deflection shape function obtained by analyzing the member under lateral 

pressure loading is not applicable for the SWS-SCS in impulsive response regime. 

However, the Lagrange Equation model, which can capture the varying deflection 

shape, is able to provide better predictions than SDOF method and the predictions are 

conservative for all the response regimes. 

6.4 Design implications 

The Lagrange Equation method with combined deflection shape and varying DIF is 

adopted in this section to develop the design table for the SWS and SWS-SCS façade 

systems under blast loading. The design table provides the minimum plate thicknesses 

of the SWS and SWS-SWS façade systems needed to resist given blast load and the 

preferred façade type is also discussed.  

 

The water façade systems were meant to be installed on the outer skin of the building 

to achieve both energy saving and blast resistance functions. Attaching the façade to 

the existing edge beams would be a convenient way of installation. One proposed 

method to install the façade system has been discussed in Chapter 4 and the assembly 

was also given in Fig. 4.46. Hence, the span of the façade system is equal to the floor 

height. In this analysis, the floor height was assumed to be 3 m and the water and 

concrete core depth was assumed to be 100 mm. The adopted materials that include 

stainless steel, mild steel and concrete, were same with those in the lateral and 

dynamic pressure tests and the properties have been given in Chapter 4. Two TNT 
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explosive weights were adopted, i.e. 100 kg and 250 kg, and six standoff distances of 

detonation were analyzed, including 5 m, 10 m, 15 m, 20 m, 25 m and 30 m. The 

parameters, including reflected peak pressure, Pr, and reflected impulse, ir, were 

obtained using the blast loading predictive tool ConWep (Hyde, 1991). The triangle 

pressure profile with zero rise time was adopted, in which the reflected peak pressure 

was maintained and the load duration td was obtained as 

2 r
d

r

i
t

P
                             (6.90) 

 

There are four levels of protection (LOP) for buildings against blast attack, i.e. LOP I 

(Very Low), LOP II (Low), LOP III (Medium) and LOP IV (High) from low to high 

level of protection. For LOP I, only collapse of building is prevented and for LOP II, 

life safety is promised and surviving occupants will likely be able to evacuate and 

then return only temporarily (ASCE, 2011). Since the façade systems are designed to 

protect the buildings against blast attack and the damage of façade systems after blast 

load is permitted, the lower two levels of protection, including LOP I and LOP II, 

were adopted in this analysis. Since the façade systems are nonstructural elements, 

they were permitted to undergo hazardous and heavy damage for LOP I and LOP II, 

respectively. Hazardous damage means the element is likely to fail and produce debris 

and heavy damage means the element is unlikely to fail but will likely have some 

permanent deflection (ASCE, 2011). The allowed support rotations for one-way 

supported façade systems with full tension membrane are 12
o
 for hazardous damage 

and 6
o
 for heavy damage (ASCE, 2011).   

 

In this analysis, the thickness of all the face plates of SWS and SCS is the same and 
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the values given in Table 2 are the minimum thicknesses of face plates needed to 

achieve the target levels of protection. It can be seen that thicker face plate is needed 

to be survived under close in blast load or higher level of protection. Therefore, the 

thick face plate is observed for the SWS façade with close in blast attack. For 

practicality of application and economical reason, face plate thickness higher than 20 

mm was not considered to achieve the required protection level. In such cases, the 

SWS-SCS façade is shown to be feasible, including 100 kg @ 5 m with LOP II, 250 

kg @ 5 m with LOP I and LOP II, and 250 kg @ 10 m with LOP II. Meanwhile for far 

range blast load or lower level of protection, the SWS façade could be applied to 

achieve the required protection level. 

6.5 Summary 

The analytical methods for predicting the deformation of pin-pin supported water 

façade systems under blast loading were developed in this chapter and the main 

conclusions are drawn as follow: 

i) The constructed dimensionless P–I diagram was verified with the FE results and 

can be used to preliminarily predict the damage level of SWS under given blast 

load. Whereas, a similar dimensionless P–I diagram was not available for the 

SWS-SCS, since the relationship between dimensionless pressure and impulse 

was not established due to the complex material behavior of concrete. 

ii) The Lagrange Equation method with combined deflection shape function was 

developed as an improved alternative to the SDOF method. It was shown that 

the Lagrange Equation method consistently predicted the displacement 

conservatively for all response regimes as compared to the FE analysis results. 
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iii) The varying DIF was included in the Lagrange Equation method, which was 

shown to reasonably capture the strain rate effects by comparing with FE 

analysis results.  

iv) The Lagrange Equation method with combined deflection shape functions and 

varying DIF was adopted to develop the design table for the water façade 

systems against blast loading. It was found that the SWS façade was shown to 

be suitable for protections against far range blast loads and low level of 

protection whereas the SWS-SCS façade would be necessary for protections 

against close in blast loads and high level of protection.  
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Table 6.1 Maximum displacement comparison 

Pmax (MPa) td (ms) Response regime 
Max Displacement (mm) Difference (%) 

FE SDOF LEM SDOF LEM 

0.9 5000 Quasi-static 64.1 71.7 67.8 11.9 5.8 

1.2 12 Dynamic 66.4 69.4 73.6 4.6 10.9 

3.5 2 Impulsive 75.0 69.5 77.1 -7.3 2.8 

Note: Pmax – Peak overpressure, td – load duration. 

 

Table 6.2 Minimum plate thickness of façade systems under blast load 

100 kg TNT SWS tplate (mm) SWS-SCS tplate (mm) 

Standoff distance (m) LOP I (12
o
) LOP II (6

o
) LOP I (12

o
) LOP II (6

o
) 

5 9.5 27.0 4.0 9.0 

10 3.0 10.0 0.4 2.0 

15 1.5 5.5 N.A. N.A. 

20 0.7 3.5 N.A. N.A. 

25 0.5 2.5 N.A. N.A. 

30 0.3 2.0 N.A. N.A. 

250 kg TNT     

Standoff distance (m)     

5 22.0 N.A. 10.5 21.0 

10 7.5 22.0 3.0 6.5 

15 4.0 12.0 1.0 2.5 

20 2.5 8.0 N.A. N.A. 

25 1.5 5.5 N.A. N.A. 

30 1.0 4.5 N.A. N.A. 
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Fig. 6.1 Simplified half model for pin-pin supported SWS tank 

 

Fig. 6.2 Details of membrane action 

 

Fig. 6.3 Comparison of pressure–mid-span displacement response 
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Fig. 6.4 Comparison of deflection shape of SWS tank 

 

Fig. 6.5 Numerical generated constant value κ 

 

Fig. 6.6 Shock spectrum for SWS tank 
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Fig. 6.7 Dimensionless P–I diagram for SWS tank 

 

Fig. 6.8 Comparison of dimensionless P–I diagram 

 

Fig. 6.9 Comparison of maximum displacement 
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Fig. 6.10 Comparison of strain rate effect 

 

 

Fig. 6.11 Simplified half model for pin-pin supported SWS-SCS panel 
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Fig. 6.12 Force distribution and neutral axis on the concrete core 

 

Fig. 6.13 Deformation profile across the concrete core depth 

 

Fig. 6.14 Comparison of pressure–mid-span displacement curves between analytical 

method and FE analysis 

Fend

Fc
Compression strut route

Neutral axis

Symmetric C

T

C

T

T

C

a b
c

Neutral axis

t1

t2

tc

tn
t

0

1

2

3

0 20 40 60 80 100 120

P
re

ss
u

re
 P

 (
M

P
a

) 

Mid-span displacement ym (mm) 

SWS-SCS (FE)

SWS-SCS (Prediction)

P

ym

θ 

ΔLc 

ΔLs 

(FEA) 

(Analytical method) 

Compression zone 



Chapter 6 Analytical Methods for Predicting Deformation of Water Façade Systems under Blast Load 

- 215 - 

 

Fig. 6.15 Comparison of deflection shapes of SWS-SCS panel 

 

 

Fig. 6.16 Configuration of infinitesimal element along span 
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Fig. 6.17 Flow chart for determining equation of motion 
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Chapter 7 Conclusions and Recommendations 

7.1 Review on Completed Research Work 

A multi-functional water façade system has been developed to harness the solar 

energy, reduce solar heat penetration into building and at the same time acts as a 

protective envelope against blast loading. Experimental and/or numerical 

investigations were carried out to evaluate the energy savings potential and blast 

resistant performance of the water facade. 

 

In the first part of this research, mock-ups of the proposed water façade system were 

designed and fabricated for field monitoring study to determine their thermal 

efficiency and space cooling load reduction by shielding the building from solar heat 

penetration. The first mock-up, which was a stainless steel water filled tank, was 

installed on the west wall of one of two identical rooms of a monitoring station at 

Tuas, Singapore. The thermal efficiency and space cooling load reduction of the water 

filled tank mock-up was evaluated in comparison to the control bare wall of the other 

identical room. After completing the monitoring of the water filled tank mock-up in 

reference to the bare wall, a second mock-up, denoted as water filled tank-sandwich 

panel with an additional layer of Steel-Concrete-Steel sandwich panel behind the 

water filled tank, was installed on the bare wall to compare the energy efficiency of 

the two mock-ups in terms of thermal efficiency and space cooling load. 
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The structural responses of the water façade systems under lateral pressure loading 

were experimentally, analytically and numerically investigated in the second part of 

this research. The resistance–deflection functions, deflection shapes and failure modes 

of empty steel tank and water filled tank as well as Steel-Concrete-Steel panels were 

determined in the test, which were then applied to develop the analytical models for 

the water façade systems under dynamic pressure loading. The combined 

configuration of the water filled tank-sandwich panel was not tested due to the limited 

lifting capacity of airbag, which was used to generate the pressure loading in the 

experimental study. Based on the test results, Finite Element models of the water 

tanks and Steel-Concrete-Steel panels under lateral pressure loading were established. 

The experimentally-verified Finite Element models were applied to investigate the 

effect of water on the static response of water filled tank and the load transfer 

mechanism between face plate and concrete core of Steel-Concrete-Steel panel. 

 

The responses of the water façade systems under dynamic pressure loading were also 

experimentally, analytically and numerically studied in the third part of this research. 

Drop-weight projectile was dropped from a height onto the inflated high pressure 

airbag to generate the dynamic pressure loading. The measured deformation modes, 

impact force– and air pressure–time histories as well as displacement and strain 

responses of the water tank and Steel-Concrete-Steel panel specimens were analyzed 

to understand their behaviors under dynamic pressure loading. Equivalent SDOF 

method was adopted to predict the responses of the specimens. Besides this, the Finite 

Element models were also constructed to simulate the responses of the test specimens 

and the experimentally-verified Finite Element models were applied to predict the 

performance of the specimens under blast loading. 
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In the last part of this research, analytical methods for pin-pin supported water façade 

systems against blast loading were developed to facilitate the blast resistant design of 

such structures. The dimensionless P–I diagram was established for the water filled 

tank, which can be directly used to gauge the damage level under given blast load. 

Whereas, a similar dimensionless P–I diagram was not available for the water filled 

tank-sandwich panel, since the relationship between dimensionless pressure and 

impulse was not established due to the complex material behavior of concrete. Due to 

the deficiencies of SDOF method, which cannot capture the varying Dynamic 

Increase Factor and deflection shape, Lagrange Equation method with combined 

deflection shape function and varying Dynamic Increase Factor was proposed as an 

improved alternative for predicting the responses of water façade systems under blast 

loading. 

7.2 Conclusions 

Within the scopes of the experimental, numerical and analytical investigations 

reported in this thesis on the proposed water façade systems, the key conclusions are 

drawn as follow: 

i) Automated circulation of warm water at target temperature of 38 
o
C from the 

mock-ups of the water façade to storage followed by immediate replacement 

with cold water was demonstrated in the field monitoring study. The water filled 

tank-sandwich panel mock-up with additional Steel-Concrete-Steel layer was 

shown to be more effective in storing the solar energy as compared to the water 

filled tank mock-up due to the thermal mass of the Steel-Concrete-Steel layer. 
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The thermal efficiency of the two mock-ups were found to range from 12.87% 

to 40.62% for the selected two months of monitoring data with water filled 

tank-sandwich panel being higher under the same weather condition. Generally, 

the thermal efficiency increases with increasing solar energy. 

ii) The temperature of external west wall behind the water filled tank mock-up was 

reduced significantly as compared to the control bare wall, which indicates that 

the proposed water façade system is effective in minimizing solar heat 

penetration into the building to reduce the space cooling load. However, the 

shielded wall cooled down at a slower rate at night due to the heat barrier effect of 

the mock-up, and this adversely affected the total space cooling load reduction. In 

comparison, the water filled tank-sandwich panel mock-up with additional 

Steel-Concrete-Steel layer performed better than the water filled tank mock-up in 

reducing the space cooling load. 

iii) In the lateral pressure test, both of the empty steel tank and water filled tank failed 

under ductile flexure mode and the resistance of the water filled tank was 31% 

higher than the empty steel tank due to the effect of water in maintaining the 

section modulus and delaying the local buckling of the tank. It was also observed 

that the shear lag of strain in between the stiffener and side plate of the water 

filled tank was less obvious as compared to the empty steel tank due to addition of 

water.  

iv) The 50 mm thick Steel-Concrete-Steel panel failed in brittle shear mode with 

tearing of side and top plates as well as spalling of the grout core under the lateral 

lateral pressure loading. Such failure mode is undesirable and should be avoided 

by improving the shear resistance within the high shear stress zone near the 
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support before the Steel-Concrete-Steel panel could be applied as an add-on layer 

layer to improve the blast resistance of the water filled tank. 

v) The lateral pressure resistance of all specimens was closely predicted by the 

analytical solution except for the water filled tank, since water effects in resisting 

local buckling of compression plate was not quantified. This quantification is out 

of the current research scope because there is no compression plate for the water 

filled tank with pin-pin supported boundary and this boundary was suggested for 

actual connections to improve its resistance by developing tensile membrane 

force. The analytical method to calculate the bending resistance of 

Steel-Concrete-Steel sandwich panel under lateral pressure load was proposed 

and the prediction was conservative in comparison to the test results. 

vi) Finite Element models for the specimens subjected to lateral pressure load were 

established and verified against the test data. With the verified Finite Element 

models, it was shown that water helped to transfer the lateral pressure loading 

from the top to the bottom plates of the water filled tank and maintain its section 

modulus. This led to the higher resistance of the water filled tank. It was also 

found that the lateral pressure resistance of the tanks and Steel-Concrete-Steel 

panels could be significantly increased by changing the boundary from pin-roller 

supported to pin-pin supported. Flexure or shear failure mode was observed for 

the pin-roller supported specimens, while tensile membrane failure was evident in 

the pin-pin supported specimens. The magnitude of improvement in lateral 

pressure resistance depended on the tensile strength of the face plate. 

vii) Both of the empty steel tank and water filled tank deformed in a flexural manner 

under the dynamic pressure loading. The pressure load was more globally 
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distributed in the water filled tank while load concentration near stiffeners and 

side plates were observed for the empty steel tank under the same impact. This 

and the mass effect could be attributed to the improved resistance of the water 

filled tank, which deformed less as compared to the empty tank, especially under 

under higher impact load. As for the 50 mm thick Steel-Concrete-Steel panel, a 

combination of shear and flexure deformation was observed under the dynamic 

pressure loading while the 75 mm thick Steel-Concrete-Steel panel displayed 

significantly less maximum and permanent displacements due to its larger 

resistance and mass. 

viii) The maximum displacements of the specimens under dynamic pressure loading 

were reasonably approximated using the SDOF method, with differences within 

16.0%. Other than this, Finite Element models of the test specimens were also 

established and verified against the test results. The verified models were used to 

investigate the performance of the same specimens under blast loading. It was 

shown that the deformation of the specimens was reduced with pin-pin supported 

boundary as compared to the pin-roller supported specimens. This is because of 

the mobilization of tensile membrane action which gives higher resistance to blast 

loading.  

ix) The dimensionless P–I diagram was established for predicting the damage level 

of the water filled tank under given blast loading. The diagram was built based on 

the SDOF method and its accuracy was verified with the Finite Element results. 

x) The Lagrange Equation method with combined deflection shape function and 

varying Dynamic Increase Factor was developed as a simplified analysis tool to 

predict the blast response of the water façade system under all response regimes. 
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The proposed method was shown to provide better predictions than the SDOF 

method. 

 

Since the probability of blast threat on buildings is usually very low, it is of 

significance advantage to carry out the investigation on the multi-functional water 

façade system in order to maximize the benefits of adopting a blast-mitigating design 

while improving the building performance in terms of energy usage. Through this 

research, the energy efficiency and blast response of the proposed water façade 

systems have been investigated and discussed. The findings of this research would 

serve as a strong foundation to further develop and/or optimize the proposed water 

façade system for actual applications in the foreseeable future. 

7.3 Recommendations for Future Studies 

In order to attain a better insight into the proposed multi-functional blast resistant 

water façade systems, further studies are recommended in the following areas: 

i) Field temperature monitoring on the mock-ups of the water façade systems has 

been conducted to evaluate the energy efficiency of the proposed systems. 

Numerical analysis is thus recommended to further complement the test findings 

and parametric studies using experimentally-verified numerical models should 

be carried out to investigate the effects of absorptivity, plate thickness, 

frequency of draining, etc. in order to optimize the current design. 

ii) Since the analytical solution for predicting the effect of water on the resistance 

the SWS tank is yet available, studies on this aspect could be attempted to 

quantify the increase in resistance of SWS tank by water. 
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iii) Actual field blast test would be a very valuable addition to existing research 

works that have been carried out on the proposed water façade system, 

particularly because similar test on confined water is not found in the literature. 

iv) For ease of maintenance of the water façade tanks, further research could be 

carried out to develop feasible and yet robust connection methods between the 

façade and supporting structures. 
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Appendix A: Figures of Mock-ups for Monitoring Test 

 
Fig. A.1 SWS tank, in mm 
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Fig. A.2 SWS-SCS, in mm  
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Appendix B: Contact Area Approximation  

To verify the linear approximation between air pressure and contact area in the 

drop-weight impact test, the FE model including the SES tank, airbag, force transfer 

plate and projectile is established, as shown in Fig. B.1. The mass and impact velocity 

of projectile are 550 kg and 5.5 m/s. The initial air pressure before impact is 0.04 MPa, 

which is same with the test.  

 

The actual applied force and the calculated applied force by multiplying the air 

pressure and contact area is compared in Fig. B.2. The actual applied force is the 

contact force between the airbag and specimen in the FE model. The contact area is 

obtained by linearly interpolated with air pressure (the same method used in the test as 

Section 5.6.3). It can be seen that the load–time history by multiplying the linearly 

interpolated contact area with air pressure is very close to the actual applied force, 

which verify the accuracy of using linearly interpolation between air pressure and 

contact area to obtain the contact area–time history in the test. 
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Fig. B.1 FE model of drop-weight impact test 

 

 

Fig. B.2 Comparison of applied force–time history 
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