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SUMMARY 

Recommender Systems (RS) have become increasingly essential in many 

domains for alleviating the “information overload” problem, but existing 

recommendation techniques suffer from the sparsity problem due to insufficient 

input data.  

In this thesis, we aim at extracting and incorporating meta-data from free-

text User-Generated Content (UGC) to lessen the effects of sparsity and 

therefore improve the quality of recommendation. We achieve this goal by 

conducting three different studies, each of which proposes a recommendation 

solution that incorporates UGC from different perspectives, and addresses 

specific problems introduced by data sparsity in different contexts. 

In particular, in study one (Chapter 3), we show that adjective features 

embedded in user reviews are useful for characterizing movie features as well 

as user tastes. We extend the standard TF-IDF term weighting scheme by 

introducing Cluster Frequency (CLF) to automatically extract high quality 

adjective features from user reviews, and incorporate the extracted adjective 

features into a specific recommendation technique, i.e. Singular Value 

Decomposition (SVD) to show effectiveness.  

In study two (Chapter 4), we show that critic reviews of the items can be 

used to boost new item recommendation. We collect critic review articles for 
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corresponding items in recommender system, and employ topic model to 

quantify the textual content. We adapt Non-negative Matrix Factorization (NMF) 

to incorporate the topics inferred from the critic reviews for recommendation, 

aiming at addressing the new item recommendation problem. 

Study three (Chapter 5) focuses on extracting functional aspects from user 

reviews for mobile app recommendation. With the extracted functional aspects, 

we are able to analyze user requirements at the functional level. We propose a 

graph-based ranking algorithm to predict new functionalities for users, and 

devise a competition mechanism to filter redundant recommendations. Our 

proposed solution is effective in improving stability against data sparsity and 

increasing the accuracy and diversity of mobile app recommendation. 
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CHAPTER 1.  INTRODUCTION 

1.1. Overview of Recommender Systems 

Recommender systems (RS) are well-known artifacts in consumer marketing, 

having been utilized to great commercial success in iconic technological 

companies like Amazon, TiVo and Netflix. Commensurate with their market 

impact, RS technology has enjoyed (and continues to enjoy) much attention 

from scientists and researchers. Over the past decade, numerous papers have 

been published, systems have been released and entire top-rated conferences 

have been established, backed by leading scientific and technological 

associations, on RS research. Suffice to say, in the domain of data mining, 

knowledge discovery and information retrieval, recommender systems stand out 

as one of the most prominent examples of the real-life impact of academic 

research. 

Given the relatively long history of this field, many different paths have 

been followed to create a variety of RS, albeit with the same end-goal – 

recommending objects of interest to a user. At a high level, and based on the 

types of technique and data it uses to generate recommendations, RS may be 

classified into three main streams, i.e. Collaborative Filtering (CF), Content-

Based (CB) and Social-Network-Based (SNB).  

Among these recommendation techniques, CF is the most common form 
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of recommender system used in practice. The basic idea of CF is to recommend 

items, that similar users (i.e. “neighbors” of the target user) like, to the target 

user (Resnick et al. 1994; Sarwar et al. 2001). The success of CF is due to its 

compelling simplicity and high quality of recommendations.  

Differing from CF, another stream of recommendation algorithms, i.e. CB 

recommendation, aims to recommend items similar to what the target user has 

liked in the past, based on similarities in content(Lops et al. 2011; Pazzani and 

Billsus 2007).  

In recent developments, boosted by the popularity of social network, SNB 

recommendation has been proposed (Cai et al. 2011; Groh et al. 2012). The 

intention of SNB is to replace rating-similarity-based neighborhoods in CF with 

sub-graphs of the user’s social network, motivated by the fact that “people 

prefer recommendations from people they know” (Bonhard and Sasse 2006). 

1.2. Problem Description 

In spite of its popularity, RS still faces many challenges (Adomavicius and 

Tuzhilin 2005). Arguably, the most major and challenging weakness that 

permeates virtually every flavor of RS is the problem of sparsity. Sparsity refers 

to the insufficiency of input data into recommendation algorithms.  

The most common RS, Collaborative Filtering (CF) systems (powering 

virtually all commercial systems today), rely heavily on user ratings. 
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Unfortunately, in most domains studied (movies, books, restaurants etc.), a 

majority of items turn out to be unrated, resulting in sparse rating matrices 

(matrices with insufficient data), which adversely impact the quality of 

recommendations (Adomavicius and Tuzhilin 2005; Su and Khoshgoftaar 

2009). The sparsity problem assumes special significance in emerging, high-

impact product segments like mobile applications for smart devices, where the 

cardinality of the underlying domain is of a higher order of magnitude than 

movies, for example.  

The other broad class of RS, Content-Based (CB) systems, suffers not only 

from rating sparsity, but also from feature, or attribute, sparsity. In the example 

of movies, the idea is to translate a user’s rating into a set of feature preferences. 

For instance, if User A has rated the movie Argo highly, the system might 

assume that the user is expressing a preference for the director, genre and 

performers of Argo. Clearly, this suffers from the same issue of rating sparsity 

as in CF techniques, but in addition, it must restrict its judgment based on a 

small number of features typically selected for media objects (e.g., director, 

genre and performer for movies; singer, songwriter and composer for music; 

etc.). 

The sparsity problem is compounded for Social-Network-Based (SNB) 

systems, where the quality of SNB approaches is strongly affected by network 

density. A well-connected user network is vital and essential for such 
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approaches to ensure the quality of recommendations. However, in reality, user 

connections are usually very sparse, especially when the social network has 

been newly introduced into the system.  

As a fundamental problem, data sparsity not only lowers the accuracy of 

recommendations, but also brings up many other subsequent problems in RS 

such as low coverage, low transparency and low diversity (Adomavicius and 

Tuzhilin 2005). To address these problems, it is worthwhile to target this issue 

of data sparsity.  

To conclude, although existing recommendation algorithms have achieved 

some degree of success, there exist substantial opportunities for further 

improvements. One promising approach to improve existing methods is to 

alleviate data sparsity by exploring other valuable data. Therefore, the general 

research question of our studies is: What kind of external data can be used, and 

how to incorporate such supplementary data into RS, to ameliorate data sparsity? 

1.3. Motivation and Research Focus 

In this context, our goal is to create general recommendation solutions that 

would ameliorate problems introduced by data sparsity to improve the quality, 

including the accuracy, coverage, diversity and transparency of traditional 

recommendation algorithms.  

We embark on this journey motivated by a simple intuition – intelligently 
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incorporating informative content might allow for gauging the taste of a user, 

which in turn might allow us to make intelligent data-based estimations of the 

user’s preference for products, thereby reducing sparsity. We start off by 

exploring possible data to incorporate, and immediately notice an interesting 

phenomenon: a readily available source of information for many consumer 

products (movies, books, hotels, electronic products, mobile apps) is User-

Generated Content (UGC).  

UGC may appear in different forms on the Internet. Currently, there is no 

standardized definition of UGC. In our context, similar to (Clever et al. 2009), 

UGC refers mainly to textural content created and published by online users on 

the consuming end. More specifically, it can be in the form of customer reviews 

and feedback text, or critic reviews for consumer products.  

To achieve our goal, we conduct three different studies, each of which 

proposes a recommendation solution that incorporates UGC from different 

perspectives, and addresses specific problems introduced by data sparsity in 

different contexts. Specifically, the focus of each of the three studies is briefly 

described below. 

In study one, we intend to show that adjective features embedded in user 

reviews are useful for characterizing movie features as well as users’ taste, and 

can be employed by recommendation techniques to address sparsity and 
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transparency issues. We employ Part-of-Speech (POS) tagging and introduce 

Cluster Frequency (CLF) into the traditional TF-IDF term weighting scheme to 

extract adjective features from external user reviews, relieving the problem of 

diverse vocabulary, and balancing the representativeness and generalizability of 

the extracted features. We also incorporate the extracted adjective features into 

a specific recommendation technique, i.e. Singular Value Decomposition (SVD), 

to illustrate the effectiveness of using adjective features. 

In study two, we propose a novel content-based recommendation solution. 

A distinct feature of our method is that it incorporates the topics inferred from 

external critic reviews to boost recommendations for new items. We employ an 

advanced semi-supervised topic modeling approach, i.e. Partially Labeled 

Dirichlet Allocation (PLDA), which is able to uncover globally-shared latent 

topics, as well as topics under each well-structured item attribute, to learn and 

infer the topic distribution of critic reviews. We also adapt Non-negative Matrix 

Factorization (NMF) to our context by redefining the error function to fully 

utilize user ratings and the topic distribution of critic reviews. The topics 

inferred from critic reviews are better representations of the items, since they 

cover more characteristics of the items and reflect more aspects of user tastes. 

By fully utilizing user ratings and the inferred topics, our method alleviates the 

dependency on user ratings and enables high-quality recommendations, even in 

cold-start settings with new items. The adoption of NMF lowers the dimension 
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of the original rating matrix, which contributes to higher efficiency. 

In study three, we propose to analyze users’ requirements at the functional 

level, with the objectives of avoiding recommending redundant apps, and 

helping users find better apps that are not just similar in nature. A main feature 

of our approach is mining textual user reviews. We develop a crawler to collect 

user reviews of each app from App Stores, and propose aspect identification 

techniques to mine functionality-related aspects from these reviews. Moreover, 

we propose a two-stage graph-based ranking algorithm to predict new 

functionalities for users, and come up with a competition mechanism to 

intelligently filter out redundant apps. By using app functionality as the unit of 

analysis, we successfully improve system stability against data sparsity, and 

increase recommendation accuracy and diversity.  

1.4. Contribution 

Our research seeks to contribute to both academics and practitioners in the field 

of RS by addressing data sparsity. Specifically, by incorporating User-

Generated Content (UGC) from different perspectives, our studies address 

specific problems (i.e. accuracy, diversity, coverage, transparency) in different 

contexts. To summarize, the main contributions that make our studies important 

are as follows. 

Firstly, our studies prove that different kinds of meta-data from UGC can 
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be extracted and incorporated to facilitate recommendations. Although UGC is 

a promising and valuable source of information, the use of textual UGC in 

designing RS has received scant attention from scientists. There exist a few 

papers regarding the incorporation of free-text user reviews to perform 

recommendations. But while they focused on the sentiment of UGC, they 

ignored the meta-data embedded within. Our studies are among the first to 

consider extracting meta-data from UGC for the purposes of recommendation.  

Second, we propose to adapt feature extraction techniques to our context 

to extract high quality meta-data for the purposes of recommendation. For 

example, we introduce Cluster Frequency (CLF) into the traditional TF-IDF 

term weighting scheme, extracting not-too-general and not-too-special adjective 

features. We also adapt Partially Labeled Dirichlet Allocation (PLDA) to model 

critic reviews and represent movies at a higher and more abstract level. In 

addition, we propose an effective approach aimed at extracting functional 

aspects of mobile apps from user reviews. Our adaptions of feature extraction 

techniques have implications for both UGC and RS research.  

Third, we propose several approaches to incorporate UGC into RS by 

utilizing the extracted meta-data and user ratings. For example, we adapt 

Singular Value Decomposition (SVD) to represent user tastes and movie 

characteristics as feature vectors. We also adapt Non-negative Matrix 

Factorization (NMF) to model user topic preferences and movie topic 
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distributions. We come up with an effective approach, i.e. a two-stage graph-

based ranking method and a completion mechanism, to maximize the utility of 

functional aspects extracted from user reviews in mobile app recommendations. 

Our studies have implications for RS research attempting to incorporate textual 

content. We also aim to fill the gap between UGC and RS research.  

1.5. Organization of Thesis 

The opening chapter provides the context and motivation of our research, as 

well as a brief introduction to the three studies included in this thesis. Chapter 

2 reviews the literature on three main streams of RS and current trends of using 

UCG in RS. Chapter 3 describes the first study that uses adjective features from 

user reviews to address sparsity and transparency issues in RS. Chapter 4 

describes the second study that uses critic reviews to boost new item 

recommendations. Chapter 5 describes the third study that identifies functional 

aspects from user reviews for functionality-based mobile app recommendations. 

Finally, Chapter 6 summarizes the work in this thesis and outlines future 

directions. 
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CHAPTER 2.  LITERATURE REVIEW 

Substantial research has been conducted on recommendation algorithms, mostly 

belonging to three main streams, i.e. Collaborative Filtering (CF) approaches, 

Content-Based (CB) approaches and Social-Network-Based (SNB) approaches. 

Our studies belong to the family of CB approaches, as they incorporate extracted 

meta-data from User-Generated Content (UGC) into RS. We also borrow some 

advanced techniques from CF models to utilize user ratings as well as the 

extracted meta-data. In this chapter, we review the work on three main streams 

of RS research in general. A survey on recent RS research using UGC is also 

included. 

2.1. Collaborative Filtering (CF) Recommendation 

CF has been explored in-depth in the past ten years, and represents the most 

popular recommendation algorithm, owing to its compelling simplicity and 

excellent quality of recommendations. Typically, CF techniques can be 

classified into three categories: memory-based CF, model-based CF and graph-

based CF. 

2.1.1 Memory-Based CF 

The most common approaches to CF are memory-based, which means that the 

entire user-item rating matrix is used to generate predictions. User-based CF 

(Resnick et al. 1994) is one of the earliest methods of memory-based CF, where 
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the basic idea is to recommend items that similar users (i.e. “neighbors” of the 

target user) like, to the target user. This approach is simple and easy to 

implement, but it has difficulty in generating recommendations for new users. 

Another type of memory-based CF, Item-based CF (Sarwar et al. 2001), was 

later proposed. In contrast to User-based CF, Item-based CF recommends items 

highly correlated with those items liked by the target user. Item-based CF is able 

to address the problems associated with new users, and achieves higher 

scalability and accuracy. 

Memory-based CF can be implemented easily and new data can be added 

incrementally at little cost. However, memory-based CF has high space 

complexity, and it is unable to handle large datasets. These inadequacies can be 

addressed by model-based CF. 

2.1.2 Model-Based CF 

Compared to memory-based CF, model-based CF does not require the entire 

rating matrix, but learns to recognize complex patterns to train models based on 

training data (which is a small subset of the whole dataset), and then uses the 

trained models to make predictions for CF tasks with real-world data. 

Latent factor models, such as Probabilistic Matrix Factorization (PMF), 

comprise an alternative approach to CF, by transforming both items and users 

to the same latent factor space, which explains ratings by characterizing both 
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users and items on the factors that are automatically inferred from user feedback 

(Koren and Bell 2011). Examples include Neural Networks (Salakhutdinov et 

al. 2007), Probabilistic Latent Semantic Analysis (Hofmann 2004), Latent 

Dirichlet Allocation (Blei et al. 2003) and Singular Value Decomposition (SVD) 

(Paterek 2007). 

Memory-based CF and model-based CF tend to recommend well-known 

items and give less weight to the new items, which lowers the diversity of 

recommendations. This problem can be addressed by graph-based CF. 

2.1.3 Graph-Based CF 

Graph-based CF represents data as a graph, where users and items are 

represented as nodes and edges, capturing the interaction between users and 

items. Aggarwal et al. (1999) proposed a graph-theoretic CF approach in which 

the similarity between two users is computed based on their shortest distance in 

the graph. When predicting the rating of a user for a new item, the shortest 

directed paths from this user to other users who have also rated this item are 

obtained, and their ratings are used. Huang et al. (2004) used the number of 

paths between the user and the item to estimate the user’s preference on this 

item. Pucci et al. (2007) adapted Google’s PageRank algorithm for ranking 

searching results, and proposed the ItemRank approach that ranks a user’s 

preference towards items, by computing the probability that this user will visit 
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the item nodes in a random walk of the graph, where the edges between item 

nodes connect the items commonly rated by users. Proposed by Google and 

having been applied in the YouTube video suggestion engine, Baluja et al. (2008) 

also employed a random walk model on the video co-view graph to generate 

personalized video suggestions for users. 

Graph-based CF has the advantage of discovering new items, improving 

the novelty of recommendations, but it faces the problem of extremely high 

computational expenses. 

Despite its popularity, CF recommendation has many problems. The 

quality of CF largely relies on user ratings that are usually very sparse in reality. 

Moreover, CF usually works as a black box without offering much transparency, 

which may lower user trust. Lacking the ability to recommend new items is 

another well-known inadequacy of CF. CB recommendation is a different 

approach that is able to address the transparency issue and the problem of new 

items. 

2.2. Content-Based (CB) Recommendation 

CB recommendation aims at recommending items similar to what the target user 

has previously liked. A typical CB RS constructs a profile, which is a structured 

representation of interests for every user, by analyzing the description of items 

previously rated by this user. The recommendation process matches up the user 
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profile against the attributes of new items (Pazzani and Billsus 2007). The 

nature of the CB approach enables new item recommendations, since it does not 

require any user preference data of the new items. CB recommendation can also 

capture taste aspects of users and explain how the recommender system works, 

by explicitly listing content features or descriptions that cause an item to occur 

in the list of recommendations, while CF is unable to explore detailed aspects 

of users’ taste, since the data only comes from users’ ratings. 

CB RS, in the domain of consumer products (books, movies, mobile apps, 

etc.), usually uses well-structured attributes to represent items. For example, the 

genre, directors and actors of movies are commonly used in movie RS (Gantner 

et al. 2010; Maneeroj and Takasu 2009; Manzato 2012). Such systems have a 

natural limit on the number and type of features that are associated with the 

items recommended. Research has found that features assigned to items are 

insufficient to define distinguishing aspects of items that turn out to be 

necessary for the elicitation of user interests (Lops et al. 2011). 

In CB systems, the user profile learner is a core component. Many existing 

methods regard user preference as a binary attribute (i.e. like or dislike) and 

therefore, the recommendation problem can be treated as a problem of 

classification. A series of classification learners have been applied to learn user 

profiles, including Decision Tree(Bouza et al. 2008), Bayesian classifier (Gutta 

et al. 2000), SVM (Xu and Araki 2006), Neural Network (Christakou et al. 2007) 
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etc. These methods have been criticized due to their high complexity and poor 

interpretability. They also fail to utilize user ratings. 

To summarize, CB approaches show promise in addressing new item and 

transparency problems, but they are limited by inadequate item features and 

inefficiency in utilizing user ratings. Possible extensions to CB systems can seek 

other informative data to incorporate and propose effective methods to utilize 

such data, as well as user ratings, which our studies address. 

2.3. Social-Network-Based (SNB) Recommendation 

With the explosion of social network sites, e.g. Facebook and Twitter, another 

type of recommender systems, i.e. social recommender systems, has gained 

popularity. The basic idea of social recommender systems is to replace rating-

similarity-based neighborhoods in CF with sub-graphs of user’s social networks, 

motivated by the fact that “people prefer recommendations from people they 

know” (Bonhard and Sasse 2006).  

(Said et al. 2010) investigated a movie recommender system providing 

underlying social networks, and proved that the quality of recommendations 

could be improved by utilizing user-user relations. A trust-based network 

embedded in a social network offers an alternative approach to overcome the 

data sparsity problem in CF. Golbeck (2006) used a Probabilistic Matrix 

Factorization (PMF) framework that incorporates the user-rating matrix as well 
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as users’ social trust network to generate recommendations, which outperforms 

the CF approach, especially when the ratings are sparse. Jamali and Ester (2010) 

incorporated the trust propagation mechanism into the matrix factorization 

technique, leading to substantial increase in recommendation accuracy. Graph-

theoretic technology has also been applied to analyze social networks for 

recommendation. Wang et al. (2010) proposed to use a graph random walk 

model to capture users’ similarity in social influence, and applied Singular Value 

Decomposition (SVD) to predict users’ opinions.  

Social recommender systems are a new trend that deserves further 

exploration. However, similar to traditional recommender systems, SNB 

approaches also suffer from the sparsity problem. The quality of SNB 

recommendations is strongly affected by the network density, which is very 

sparse in reality.  

2.4. User-Generated-Content (UGC) in Recommendation 

To address the challenges of RS, an increasing amount of research has recently 

started to pay attention to UGC. UGC can be found in abundance on online 

review platforms and forums. Such content is valuable information that covers 

more item features and contains consumer opinions. 

Lately, there has been much recent interest in a specific kind of UGC, i.e. 

tags. Tags are generated by users who collaboratively annotate and categorize 
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resources of interest with freely chosen keywords (de Gemmis et al. 2008). 

Several methods have been proposed for incorporating tags within CB 

recommendations. Diederich and Iofciu (2006) represented the user profile in 

the form of a tag vector; each element indicates the number of times a tag has 

been assigned to a document by that user. Michlmayr (2007) proposed different 

strategies to build tag-based user profiles, which were used to produce music 

recommendations. Wei et al. (2011) proposed a unified framework for 

recommendations, by modeling the quaternary relationship among users, items, 

tags and ratings as a 4-order tensor and performed a multi-way latent semantic 

analysis.  

Compared to descriptive attributes typically used in CB RS, tags cover 

more features of items and are more comprehensible to users. This is also 

demonstrated in the results reported (Sen et al. 2009). However, since tags are 

voluntarily and freely provided by users, problems such as the unwillingness to 

tag and diverse vocabulary can easily arise (Lops et al. 2011). As discussed 

earlier, the sparsity of ratings is a challenge for rating-based recommendations; 

here the problem of sparsity is exacerbated in the tag space. 

There exists another stream of research that reports on the incorporation of 

free-text user reviews to perform recommendations, almost all of which employ 

opinion mining and sentiment analysis techniques to factorize user reviews and 

then infer user preferences. Aciar et al. (2006) defined an ontology to represent 
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user reviews, after which an overall rating was aggregated from opinion quality 

and product quality inferred from user reviews. Jakob et al. (2009) proposed to 

mine user opinions from free-text movie reviews as supplementary data to user 

ratings in CF recommendations. Through estimating the reviewer's weight 

preferences over features, Chen and Wang (2013) constructed an implicit 

preference network of users, and used this network to generate 

recommendations. Ganu et al. (2013) employed sentiment analysis to derive a 

text-based rating from the review body, aimed at improving the quality of 

restaurant recommendations.  

While existing works incorporating UGC in RS have shown promise in 

alleviating data sparsity problems, there exists substantial opportunities for 

future research. Our studies follow different routes by extracting and 

incorporating meta-data of UGC that has received scant attention from RS 

researchers.  
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CHAPTER 3.  STUDY ON ADDRESSING 

SPARSITY AND TRANSPARENCY ISSUES IN 

RECOMMENDER SYSTEMS BY USING 

ADJECTIVE FEATURES FROM USER REVIEWS 

3.1. Introduction 

In this study, we aim to create a general approach that would ameliorate the 

sparsity and transparency issues in RS. It is important to understand that our 

intent is not to create a completely new recommendation algorithm; rather, our 

goal is to explore new item features and corresponding techniques for obtaining 

and incorporating such features, alleviating the effect of rating sparsity and 

enhancing transparency to significantly improve existing methods.  

We are motivated by a simple intuition – representing user interests with 

plenty of item features might allow us to intelligently translate users’ sparse 

ratings at the item level into detailed feature preferences, thereby reducing the 

effect of rating sparsity. This may also allow us to explain the rationale of 

recommendations to users by explicitly listing out relevant item features. In the 

above example, even if Tom and Jerry have no co-rated movies, after translating 

their ratings into feature preferences, e.g., “romantic”, we can still recommend 

romantic movies to both of them with the explanation of “liking romantic 

movies” by relation. It is fair to note that some Content-Based (CB) RS have 
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the similar idea of using item attributes to represent user interests; however, 

these methods restrict their judgment based on a small number of structured 

attributes typically selected for the items (e.g., director, genre and performer for 

movies; singer, songwriter, composer for music; etc.). Obviously, users’ taste 

aspects extend beyond these limited number of item attributes (Lops et al. 2011), 

and many more item features are needed in order to comprehensively and 

accurately capture their taste aspects. 

We note that a wealth of information is available from reviews that could 

possibly be used to enhance the recommendation process. In this study, we focus 

on one specific kind of information from user reviews, namely, adjective 

features. While the intent is to incorporate various other types of data from 

reviews in future work, adjectives represent a particularly attractive feature used 

in recommendations. When asked to reveal why they like or dislike something, 

people often use adjectives to explain their preference. For instance, when asked 

why he/she likes the movie Titanic, a user’s answer often includes words such 

as “romantic”, “moving”, “astounding”, “beautiful” or “sad” – all being 

adjectives. These features truly reflect users’ perception and can be found in 

abundance in user reviews, but this aspect remains unexplored in 

recommendation research. 

Therefore, in this study, we incorporate adjective features extracted from 

external user reviews in addition to ratings, into the recommendation process to 
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generate more accurate and more explainable item recommendations, as well as 

user recommendations. To automatically extract adjective features from user 

reviews, we employ well-understood part-of-speech (POS) tagging methods. 

However, we quickly discover that many adjectives are not helpful in 

discriminating between tastes, i.e., some adjectives are too general to be 

adequately representative of users’ tastes (lack of representativeness e.g., 

“good”), while others are too specific to capture users’ general taste aspects 

(lack of generalizability e.g., “unsinkable” in the reviews of Titanic).  

We tried to search for existing solutions, but we noticed that existing works 

on adjective extraction and term weighting were restricted and could not be 

perfectly addressed. Therefore, we propose our own approach, by extending the 

traditional TF-IDF term weight (Cohen 1995) to TF-IDF-CLF by introducing 

another unsupervised term weight measure, Cluster Frequency (CLF). Unlike 

other supervised term weighing methods, e.g. (Lan et al. 2009), the newly 

introduced CLF measure is able to consider implicit item aspects not captured 

by pre-defined categories, and it also helps balance the representativeness and 

generalizability of the extracted features. 

Although adjective features can be utilized by different recommendation 

techniques, to make for easier illustration of the effectiveness of our idea, we 

incorporate the extracted adjective features into one specific recommendation 

technique, i.e. Singular Value Decomposition (SVD) (Paterek 2007), and then 
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construct item feature vectors and user feature vectors to generate more accurate 

rating predictions and explainable recommendations of higher quality by listing 

adjective features that correlate to the recommended item for the target user. We 

call this integrated method the Adjective Feature Vector (AFV) method. The 

result of our work makes substantial advances over extant recommendation 

techniques. In particular, our method reduces prediction errors from state-of-

the-art rating-based methods by 12.42%, in extreme rating-sparse settings. It 

also outperforms the tag-based method by reducing prediction errors by 11.27% 

in item recommendations, increasing its interest similarity by 7.14% in user 

recommendations, and retaining full item and user space coverage. The results 

also prove our method effective for providing recommendation explanations. 

The rest of this chapter is organized as follows: Firstly, we review works 

related to our study. Then we present the integrated recommendation 

architecture, including detailed descriptions of each component. The rest of this 

chapter presents the experiment and results. A summary of the study is given in 

the conclusion. 

3.2. Related Work 

Our proposed method extracts adjective features from user reviews for the 

purpose of both item and user recommendations by adapting keyword extraction 

techniques and Singular Value Decomposition. In the following, we review 
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works related to our proposed method. 

3.2.1. Adjective Extraction 

There are some prior works that extract and incorporate adjectives. For example, 

Harb et al. (2008) focused on extracting positive and negative adjectives for 

opinion mining by considering domain knowledge. Voll and Taboada (2007) 

proposed to determine the positive or negative polarity of text by assigning 

different weights to adjectives based on their relevance to the object being 

evaluated. Virtually all these works seek to select adjectives with clear positive 

or negative polarity (e.g. “good”, “excellent”, “bad”, “poor”) for sentiment 

analysis, but such general adjectives lack discriminating power and hence are 

not suitable for representing item features. Middleton et al. (2004) highlighted 

the importance of selecting representative terms that are “not too common and 

not too rare”, but did not propose effective solutions above those of removing 

term suffixes and filtering stop words. 

To automatically extract adjectives for our purpose, we need to estimate 

the weights of each candidate term in the text. There exist some approaches on 

supervised term weighting, e.g. (Lan et al. 2009), which was designed for text 

classification, i.e. to determine the likelihood of a term belonging to a pre-

defined category. Such methods rely on the limited number of pre-defined 

categories, but fail to consider terms that help discriminate other implicit item 
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aspects, and therefore may not be applicable in our context. Our method uses an 

unsupervised measure, i.e. CLF, which is able to give more weight to those 

adjectives that help discriminate self-formulated item clusters without being 

restricted by the limited number of pre-defined categories.  

Therefore, our method differentiates itself from existing methods by 

balancing the representativeness and generalizability of extracted features, and 

by finding terms that have better discriminating power in many implicit item 

aspects, rather than a small number of explicit categories. 

3.2.2. Singular Value Decomposition (SVD) 

SVD is well established for identifying latent semantic factors in the domain of 

natural language processing (Deerwester et al. 1990). SVD is also a well-known 

method for matrix factorization, that provides the best lower-ranked 

approximations of the original matrix. Models that induce SVD to reduce the 

dimensionality of sparse user-item rating matrices for collaborative filtering 

have gained popularity due to their accuracy and scalability. SVD models map 

both users and items to a joint latent factor space having f dimensions, and user-

item interactions are modeled as inner products in that space. Accordingly, each 

item i is represented as a vector qi ∈ Rf, in which the elements measure the 

extent to which an item i possesses those factors. Similarly, each user u is 

represented as a vector pu ∈ Rf and the value of each element measures the 
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extent to which the user u possesses those factors. 

Our proposed method adapts the original SVD to integrate the adjective 

features extracted from user reviews, with the purpose of addressing sparsity 

and transparency issues. 

3.3. Intuition and Overview 

While our approach is general and can be used to recommend any consumer 

item, we chose a specific domain for the purposes of illustration. Given that the 

most studied consumer domain, in the context of recommendations, is that of 

movies, we will henceforth use the movie domain to present our technique. In 

other words, we will present our method to recommend movies and users with 

similar interests to the target users. 

The general goal of the recommender system is to select the objects that 

may be of interest to a user. Based on the types of objects it recommends, our 

method is intended for two tasks: item recommendation and user 

recommendation. 

For item recommendation, we are interested in predicting ratings for 

movies new to users, and recommending the movies with the highest predicted 

ratings to them, together with reasonable and personalized explanations to 

improve the transparency of the logic in recommendations. Noting that the 

number of descriptive attributes that are commonly used in content-based movie 
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recommendation (e.g., actor, director) are limited and insufficient, we 

automatically extract adjective features from external user reviews (available in 

abundance in review systems like IMDb1, and Rotten Tomatoes2) to define 

distinguishing aspects of items and of users’ tastes, which are able to truly reflect 

the users’ perception towards movies on a higher and more abstract level. For 

example, the adjective features extracted from user reviews of Titanic can be 

“romantic”, “sad”, or “astounding”. We predicted the rating of Titanic for a user 

by estimating to what extent Titanic is romantic, sad or astounding, and how 

much the user likes romantic, sad or astounding movies.  

For user recommendations, we intend to identify users with common 

interests so that the connections among users can be expanded. By applying our 

method, this task can be performed by estimating the similarity between users 

in terms of each taste aspect characterized by adjective features, and 

recommending similar users to a given user, together with explanations. For the 

example mentioned above, for any two users, their similarity is calculated by 

estimating the extent to which they share the same interest in romantic, sad or 

astounding movies. 

Our method addresses the problem of rating sparsity by decomposing a 

singular user rating into multiple dimensions explicitly characterized by 

                                                 

1  http:// www.imdb.com 

2  http:// www.rottentomatoes.com 
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extracted adjectives, and then translating a small number of user ratings into a 

larger number of feature preferences, which allows us to better understand users’ 

interests, and to pick out their preferred items more accurately through each of 

their preferred features, therefore alleviating the problem of item-level rating 

sparsity. In addition, by explicitly listing adjective features that cause items to 

be recommended, we are able to explain the logic of recommendation intuitively 

to users, with the objective of addressing the transparency problem. 

3.4. Solution Details 
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Figure 3.1. Recommendation Architecture 

The overview of our movie recommendation architecture is shown in Figure 3.1, 

where the rectangles represent the components we have designed and 

implemented to realize our recommendation engine. There are six such 

components: review crawler, POS tagger, feature extractor, vector generator, 
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item recommender and user recommender. Specifically, we introduce Cluster 

Frequency (CLF) into the feature extractor, which is essential for extracting 

high-quality adjective features. We incorporate the extracted adjective features 

into a specific recommendation technique, the Singular Value Decomposition 

(SVD) (Paterek 2007), and apply stochastic gradient descent optimization to 

construct movie feature vectors and user feature vectors in the vector generator. 

We take into account the partial effects of the adjective features causing the item 

to be recommended in the recommender enabling us to offer explanations for 

recommendations. Applying this architecture, we incorporate adjective features 

extracted from IMDb user reviews, as well as user ratings, into the 

recommendation task, addressing sparsity and transparency issues. More details 

of each component will be introduced in the following sections of this chapter. 

3.4.1. Review Crawler 

We obtain user reviews of movies from a reputable external source, i.e. IMDb 

(the Internet Movie Database). IMDb is one of the most popular online 

databases for movie information, with over 100 million unique users each 

month. IMDb also offers a platform for users to review movies, and allows other 

users to indicate whether they found certain reviews useful. Figure 3.2 shows 

one user review of Titanic on the IMDb website.  
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Figure 3.2. IMDb User Review Page 

To obtain reviews for each movie, we use a web crawler to collect user 

reviews from the IMDb website. In order to get high-quality reviews, we choose 

the “Best” filter offered on this website, which ranks the reviews according to 

the number of users who found the review useful, in descending order. Then we 

crawl the first 4 pages of user reviews (10 reviews per page) for each movie, 

and extract the review content from the webpages. 

3.4.2. POS Tagger 

After obtaining user reviews for each movie, we employ the Stanford POS 

tagger (Toutanova et al. 2003) to assign parts of speech to each word within the 

reviews, such as nouns, verbs, adjectives etc. Since we intend to extract 

adjective features, we keep only adjectives in the reviews. Taking the first 

paragraph of the review in Figure 2 as an example, after POS tagging, only the 
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following words remain: 

different good great boring cliché beautiful sad 

3.4.3. Feature Extractor 

This component extracts adjective features from tagged user reviews. Firstly, 

we assign a weight for each adjective term in the reviews. In the domain of 

information retrieval, the term weight is a measure of how important a word is 

in a document. TF-IDF is a very commonly used term weighting scheme. The 

term frequency tft,d of term t in document d is defined as the number of times t 

occurs in d. Document frequency dft is defined as the number of documents in 

the collection that contain a term t. The inverse document frequency idft of a 

term t, which indicates the term’s discrimination power, is defined as:  

 .log
d

N
id t

ft

f   

where N is the total number of documents. The TF-IDF term weight for term t 

in document d is given by:  

 .
, ,

-tf idf tf idf
t d t d t

   

We regard the collection of all reviews of a movie as a document. The TF-

IDF weight for every word in the reviews can be easily obtained. While features 

extracted by TF-IDF weight are representative of movie characteristics, they are 

often tainted by two issues: (a) they may be too specific and might not serve as 
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generalizable or common characteristics across similar movies, e.g. the word 

“unsinkable”, which has very high TF-IDF scores in the reviews for Titanic, is 

too specific, since we are unlikely to find other movies related to “unsinkable”, 

thus it is unsuitable for representing users’ tastes; and (b) they may fail to 

include some general features that are good for exposing user taste aspects, e.g. 

when extracting features from the reviews for Titanic, the word “sad” may have 

high TF scores but low IDF scores, therefore resulting in relatively low TF-IDF 

scores; however, “sad” is a good feature, since it accurately reflects a key user 

perception towards this movie. In addition to generality, as discussed above, the 

representativeness of the extracted features is also important, e.g. the word 

“good” is too general, such that we cannot use it to represent user preferences. 

In order to balance representativeness and generalizability, we introduce another 

term weight measure into TF-IDF, the Cluster Frequency (CLF), to measure 

how common a word occurs across a cluster of documents similar to a particular 

document. We get a cluster of similar movies for a given movie and accordingly, 

all movie reviews in the cluster will be used for calculating the CLF.  

For example, if we find a cluster of similar movies for Titanic, they may 

share some common characteristics of tragedy and the word “sad” would have 

a high frequency across the reviews. By introducing CLF, the term weighing of 

the word “sad” is higher, and therefore more likely to be extracted. Since we 

also give importance to the TF-IDF weight, those words that are too general (e.g. 
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“good”) will be filtered out.  

Next, we will describe how we identify these clusters of similar movies. 

The similarity between movies can be computed by either of the following two 

approaches. First, we can apply item-based CF (Sarwar et al. 2001) and use 

cosine similarity to compute the distance between two movies based on users’ 

co-rating patterns: 
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where Ui,j denotes the set of users rating both movie i and movie j; Ui denotes 

the set of users rating movie i; and Uj denotes the set of users rating movie j. 

For each movie i, we select the top M movies having the highest cosine 

similarity scores as a group of similar movies. We denote this approach as 

rating-based clustering. 

Second, noticing that the item-based CF approach heavily depends on user 

ratings and may not produce good results if ratings are sparse, we also employ 

the Topic Modeling approach, which is purely based on reviews and eliminates 

the dependency on user ratings. Latent Dirichlet Allocation (LDA) (Blei et al. 

2003) is a generative probabilistic model for collections of discrete data such as 

text corpora. Since we regard the collection of all reviews of a movie as a 

document, by applying LDA, each document corresponding to each movie can 
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be represented as a multinomial distribution over latent topics, where each topic 

is characterized by a distribution over words. We apply Kullback–Leibler (KL) 

divergence, which is a non-symmetric measure of the difference between two 

probability distributions, to calculate the divergence between movie i’s topic 

distribution, Pi, and movie j’s topic distribution, Pj: 

( )
( || ) ( ) ln  .

( )

i
KL i j il LatentTopics

j

P l
D P P P l

P l
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where Pi(l) denotes the probability that movie i belongs to the latent topic l. For 

each movie i, we select the top M movies having the smallest KL divergence, 

as a cluster of similar movies. We denote this approach as review-topic-based 

clustering. 

Unlike supervised term-weighting approaches, in our method, the clusters 

of similar movies are self-generated without having to rely on the limited 

number of pre-defined categories, therefore our method is better in discovering 

terms that have high discriminating power in implicit item aspects not captured 

by pre-defined categories. 

After getting the cluster of similar movies for a movie i, the CLF weight 

of the term t in the reviews of i can be computed, by counting the number of 

movies in the cluster whose reviews contain term t. Finally, the integrated TF-

IDF-CLF term weighting scheme is given by 
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where λ1 is a parameter indicating the weight which is put in the CLF. For each 

movie, the adjective features are extracted from reviews by selecting the top K 

adjectives having the highest TF-IDF-CLF weights, and then passed to the 

vector generator. 

3.4.4. Vector Generator 

Table 3.1. Movie and User Feature Vectors 

 romantic sad astounding spectacular scary 

Titanic 0.50 0.40 0.10 - - 

Spider-Man 0.20 - - 0.30 0.50 

User A 0.10 0.03 0.50 0.40 0.40 

User B -0.10 0.02 0.50 0.30 0.40 

After getting the extracted features of each movie, we represent each movie, as 

well as each user, in the form of feature vectors. Specifically, each movie i is 

represented as a vector Qi, in which each element is associated with one of its 

features. The values of the elements measure the extent to which the movie i 

possesses those features. Similarly, each user u is represented as a vector Pu, and 

the elements associated with the features of all movies. The values of the 

elements measure the extent to which user u likes those features. For example, 

let us assume that we have only two movies in the system, i.e. Titanic and 

Spider-Man, and for each movie, we extracted 3 features: from user reviews, 

the movie feature vectors and the user feature vectors. The results for two given 
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users are shown in Table 3.1. 

Similar to the latent factor model, we included the baseline predictors to 

estimate the non-interaction effects from users and movies respectively (i.e. 

udevu and idevi). A predicted rating of movie i for a user u is given by: 

, , ,
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where μ  denotes the overall average rating; udevu and idevi indicate the 

observed deviations of user u and item i respectively from μ; F(i) denotes the 

set of features belonging to the movie i; eu,f is the value of feature f in user u’s 

feature vector Pu; and ei,f is the value of feature f in movie i’s feature vector Qi.  

We employ a stochastic gradient descent optimization adapted from 

Regularized Singular Value Decomposition (RSVD), which was proposed by 

(Funk 2006) and has been successfully applied by many others (Koren 2008; 

Paterek 2007), to estimate the values of the elements for both movie feature 

vectors and user feature vectors, as well as the baseline predictors. For each item 

i we set the initial value: 
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And then for each user, u, we set the initial value: 
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(3.1) 
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where R(i) denotes the set of users who rated item i; R(u) denotes the set of 

items rated by a user u; μ is the overall average rating; and λ2 and λ3 are 

regularization parameters. For each element in movie feature vectors and user 

feature vectors, we assign an initial value s. For each given rating ru,i in the 

training set, a predicted rating r̂u,i is given by Equation 3.1, and the associated 

prediction error is defined as: 

, , ,
ˆ  .u i u i u ierr r r   

Then the model parameters are learnt by minimizing the regularized squared 

error: 
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where 
4  indicates the extent of penalizing the magnitudes of the parameters 

to avoid over-fitting. 

We employ gradient descendent as described in (Funk 2006) to update the 

baseline predictors and the values of feature vector elements, by moving in the 

opposite direction of the gradient. We iterate the updating process through the 

training dataset, until the prediction errors in the validation dataset stop 

decreasing. 
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3.4.5. Movie Recommender 

With the movie feature vectors and user feature vectors, we can easily predict a 

rating for a particular user for a given movie, using Equation 3.1. In order to 

recommend movies to a user, we can predict the ratings of all movies unknown 

to him, then rank these movies according to the predicted ratings, and 

recommend the top N movies with the highest predicted ratings. 

One of the key features of our method is that in addition to providing 

recommendations, we provide explanations as well. We do this by explicitly 

listing features that the user likes, and suggesting a movie in the list of 

recommendations. For each movie i in a user u’s recommended list, f ∈ F(i) is 

one feature in movie i’s feature vector, ei,f is the value of feature f in movie i’s 

feature vector, and eu,f is the value of feature f in user u’s feature vector. The 

product of these two values eu,f ∙ ei,f is the partial interaction effect regarding 

feature f, and measures the extent to which feature f contributes to recommend 

movie i to user u.  

Therefore, we rank all the features that the user likes, i.e. the features with 

positive values in the user vector and in F(i), according to the partial interaction 

effect, and provide the top K features having the highest products in addition to 

the recommended movie i, as an explanation for the recommendation. Using the 

aforementioned example, if the movie Spider-Man is recommended to user B, 
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we can then obtain the partial interaction effect regarding each feature of Spider-

Man, as shown in Table 3.2. If we only provide the top feature as the explanation 

to user B for recommending this movie, the feature “scary” is selected, which 

has a positive value in the user vector, and the highest partial interaction effect. 

Table 3.2. User-Item Partial Interaction Effect 

 romantic spectacular scary 

eB,f -0.1 0.3 0.4 

eSpider−Man,f 0.2 0.3 0.5 

eB,f × eSpider−Man,f -0.02 0.09 0.2 

Since the values of these features differ across different users’ feature 

vectors depending on their preference for these features, even if we recommend 

the same movie to two different users, the explanations would differ as well. 

Thus, our explanation of recommendation is personalized, and truly reflects the 

user’s tastes. 

3.4.6. User Recommender 

The main task of this component is to estimate the similarity between users in 

terms of their interest in movies using user feature vectors, and to recommend 

the most similar users to target users. Although the user feature vectors and the 

movie feature vectors have a similar structure, they are essentially different. The 

user feature vectors reflect the users’ preference for these features, while the 

movie feature vectors indicate the attributes of the movies. Movie 

recommendations find those movie vectors in which the attributes satisfy the 



 

39 

 

target user’s preference, by using the inner product of the user feature vector 

and the movie feature vector, to aggregate the ratings from each feature. But in 

user recommendations, we care more about the difference between two users’ 

preferences for each feature. If we still use the inner product of two vectors, less 

weight is given to the features that both users show weak preference for, even 

though the extent of preference for these features might be very close.  

Table 3.3. User-User Partial Interaction Effect 

 romantic sad astounding spectacular scary 

eA,f 0.10 0.03 0.50 0.40 0.40 

eB,f -0.10 0.02 0.50 0.30 0.40 

eA,f × eB,f -0.01 0.0006 0.25 0.12 0.16 

For example, in Table 3.3, both users show weak preference for the feature 

“sad”, so the product of the values of “sad” is only 0.0006, which is very small 

and has little contribution to the overall similarity if we use the inner product. 

However, since both users show little interest in sad movies, they should be 

similar in view of this feature. Therefore, we do not simply employ the same 

logic of movie recommendation. Instead of using Equation 3.1, we apply the 

cosine similarity, which accounts for the difference between users’ preferences 

on each feature, to estimate the similarity between user feature vectors, and to 

recommend users with highest similarities to the target user. 

As with movie recommendations, we also provide personalized 

explanations together with the recommended users for target users. When a 
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target user receives user recommendations, he would care more about what 

kinds of movies they commonly like (but not dislike). It is reasonable to list the 

features for which both of them show a strong interest. We rank the features 

with positive values in both users’ vectors according to the partial interaction 

effect, and select the top K features having the highest partial interaction effect 

as the explanation. For example, in Table 3.3, if user B is recommended to user 

A, and only one feature is required, then the feature “astounding” is used as the 

explanation, since it has positive values in both user A and user B’s vectors, and 

has the highest partial interaction effect. 

3.5. Experiment and Result 

In this section, we first introduce the evaluation metrics used to test the 

effectiveness of our proposed method. Then we compare our method with 

rating-based methods and investigate the impact of rating sparsity on different 

methods. Finally, we compare our method with the tag-based approach for both 

item recommendation and user recommendation. 

3.5.1. Evaluation Metrics 

In the experiment, we use the Mean Absolute Error (MAE) metric that is 

commonly used in recommendation research (Herlocker et al. 2004) to evaluate 

the accuracy of rating predictions of recommendation methods. MAE is defined 

as: 
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where ru,i is the rating given by user u to item i in the testing dataset; r̂u,i is the 

predicted rating; and |TestingSet| is the size of the testing dataset. 

While accurate prediction is crucial, it does not address one key goal of 

good recommender systems, which is to cover a wide range of items. 

Accordingly, we also measure the coverage of item recommendations by using 

the percentage of items in the testing set of which users’ preference can be 

predicted: 

100% .
#Predictable Items i

ICoverage
TestingSet

n TestingSet
   

In addition to item recommendations, our method also provides user 

recommendations. To assess the quality of user recommendations, we evaluate 

the similarity between the recommended users and the target user in terms of 

interest, and calculate the coverage of recommendations in the user space. Based 

on the assumption that users with common interests are more likely to tag and 

rate similar items, the quality of user recommendations can be assessed by 

measuring the similarity between the set of movies rated and tagged by the 

recommended users, and the set of movies rated and tagged by the target user. 

Following Wei et al. (2011), the similarity between two movies is calculated as 

the average of the cosine similarity of their rating vectors, and the cosine 
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similarity of their TF-IDF tag term vectors. Given a target user ut and the top N 

recommended users RU for user ut, the similarity of interest between the target 

user ut and the recommended users is defined as: 

,
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where Iut
 and  Ius

 are sets of movies rated and tagged by the target user and 

recommended user respectively, and sim(i,j) is the similarity between movie i 

and j from these two sets respectively. We use Interest Similarity as a measure 

of quality for user recommendation. 

Similar to item recommendation, the coverage of user recommendation is 

referred to as the percentage of users that can be recommended (Shani and 

Gunawardana 2011): 

#
100% .

#Users that can be recommened

Users
UCoverage    

In our experiment, in addition to testing the quality and coverage of our 

proposed method, we also provide the qualitative results of recommendation 

explanations. 

3.5.2. Experiment Results 

3.5.2.1. Comparison with Rating-based Methods  

To avoid losing generalizability, we use subsets of three publicly-available 
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rating datasets from different domains: Movielens in the movie domain, Netflix 

in the movie & video domain, and BookCrossing in the book domain. Table 3.4 

shows the statistics of the rating data used. 

Table 3.4. Statistics of Rating Data 

Rating Data Item Count User Count 
Rating 

Count 
Rating Scale 

Sparsity 

Level 

MovieLens 1682 943 100000 1 to 5 93.70% 

Netflix 1000 4427 56136 1 to 5 98.73% 

BookCrossing 1615 1619 35278 1 to 10 98.65% 

 

Table 3.5. Statistics of Review Data 

Rating Data 

(Review Source) 

Review 

Coverage 

Word Count 

per Item 

Adjective Count 

per Item 

Unique Adjective 

Count per Item 

MovieLens 

(IMDb) 
98.75% 1679 845 365 

Netflix 

(IMDb) 
80.80% 1325 595 276 

BookCrossing 

(GoodReads) 
99.94% 3296 1547 552 

We also crawl textual user reviews for each item in the rating datasets. 

Specifically, for Movielens and Netflix items, we obtain user reviews from 

IMDb, and the source of reviews for BookCrossing items is GoodReads. In 

order to get high-quality reviews, we rank the reviews according to the number 

of users who found the review useful in descending order, and select the top 40 

reviews for each item. Table 3.5 shows the statistics of the review data. 

We split each rating dataset into training set and test set. To further 

investigate the impact of rating sparsity on recommendations, we vary the 
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sparsity level of the training data, and compare the prediction accuracy of our 

proposed method with other state-of-the-art rating-based methods. We introduce 

a variable tp to indicate the percentage of rating data used as a test set. For 

example, tp=20% indicates 20% of the data being used as a test set, and the 

remaining 80% of the data used as the training set. Sparsity of a rating matrix is 

defined as 1 −
non−zero entires

total entries
. We vary the value of tp to obtain different levels 

of sparsity of the training data. The correlation between sparsity and tp is shown 

in Figure 3.3. It is clear that sparsity is positively correlated with tp. 

 

Figure 3.3. Correlation between Sparsity and tp 

We set tp=20%, and tune the parameters of our proposed method based on 

Movielens data. For the SVD-related parameters, we use the same values as 

reported in (Paterek 2007) that is, λ2=25, λ3=10 and λ4=0.02, since such a 

configuration also gives the best results in our context. For other parameters, we 

vary their values to find settings that would give the best results. This occurs 
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when cluster size M=20, CLF weight λ1=2 and feature size K=20. We use these 

particular settings for all the following experiments. 

  

 

Figure 3.4. Impact of Sparsity 

Since we use two approaches to obtain the cluster of similar movies, our 

method has two variants: AFV using rating-based clustering (AFV-R) and AFV 

using review-topic-based clustering (AFV-T). Other rating-based methods for 

comparison are: User-based CF (UCF) (Resnick et al. 1994), Item-based CF 

(ICF) (Sarwar et al. 2001), Probabilistic Matrix Factorization (PMF) 
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(Salakhutdinov and Mnih 2008), Singular Value Decomposition (SVD) (Paterek 

2007) and Slope One (SO) (Lemire and Maclachlan 2005). These methods are 

commonly selected for comparison in recommendation research. Among them, 

UCF and ICF are the most commonly used techniques in practice, while PMF 

and SVD represent state-of-the-art rating-based approaches. The results for 

Movielens, Netflix and BookCrossing are shown in Figure 3.4 (a), (b) and (c) 

respectively. 

From the results, we can see that the prediction errors of our two proposed 

methods are very close, and they are consistently lower than other methods. The 

results also show that with the increase of tp (or the sparsity level), the 

prediction errors of all methods increase, but the rate of increase of our methods 

is slower compared to other methods; that is to say, our methods are less 

sensitive to data sparsity as compared to other methods. Specifically, at the most 

sparse settings (i.e. tp=90%), our methods reduce prediction errors of the second 

best method (PMF) by 12.42% on the Movielens dataset, 11.89% on the Netflix 

dataset and 10.90% on the BookCrossing dataset. The results prove that our 

methods are effective in alleviating the effect of rating sparsity, and the 

improvement derived from our method is more salient in extremely sparse 

settings. 



 

47 

 

3.5.2.2. Comparison with Tag-based Method  

In this experiment, we compare our method with a tag-based method, i.e. 

Quaternary Sematic Analysis (QSA) (Wei et al. 2011), which represents a state-

of-the-art tag-based approach, in both item recommendations and user 

recommendations. 

To compare with the tag-based method, we use the same tag-based dataset 

as the one used by the QSA method, and compare with the results reported in 

(Wei et al. 2011). The advantage of comparing with reported results is that the 

experimental results will not be biased by our own implementation of the 

existing approaches. 

The evaluation dataset is a densely-tagged subset of the Movielens 10M 

version dataset that consists of 10 million ratings and 95580 tags, applied to 

10681 movies by 71567 users. In the original dataset, only 4009 (5.60%) users 

provided tags for movies, and only 7601 (71.16%) movies received tags from 

users. In the selected densely-tagged subset, every user gave at least one tag to 

a movie, and every movie received at least one tag from users. Let 

<user,movie,tag,rating> denote a tuple; hence the subset comprises 1112 tuples 

with 201 users, 501 movies and 404 tags. For each item in the densely-tagged 

subset, we also crawl the top 40 user reviews from IMDb. All results reported 

below are given by 5-fold cross-validation. 
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Experiment on Item Recommendation. For item recommendations, we report 

the results for item rating prediction (i.e. MAE) and item space coverage. In 

addition to the QSA method, 3 other methods are also included as benchmarks: 

User-based CF (UCF), Item-based CF (ICF), and Probabilistic Matrix 

Factorization (PMF). 

 

Figure 3.5. Rating Prediction Accuracy 

(Lower MAE indicates higher accuracy) 

We first compare the performance in item rating predictions of our method 

with the QSA method. The results shown in Figure 3.5 indicate that both of our 

AFV-T and AFV-R methods have improved performance over existing methods 

in terms of accuracy of item rating predictions. Specifically, when compared to 

traditional CF algorithms, AFV-T reduces prediction errors of UCF and ICF by 

15.9% and 15.47% respectively, and AFV-T reduces prediction errors of these 

two CF algorithms by 17.29% and 17.67% respectively. In comparison with 

other state-of-the-art methods, AFV-T reduces prediction errors in the rating-
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based method (PMF) and tag-based method (QSA) by 8.90% and 6.33% 

respectively, and AFV-R reduces the prediction errors of these two methods by 

11.27% and 8.77% respectively. 

 

Figure 3.6. Item Space Coverage 

In addition to the accuracy of item rating predictions, we also compare the 

coverage of our methods with other methods. The results for the densely-tagged 

subset are shown in Figure 3.6. PMF, QSA, and AFV-T achieve 100% coverage, 

with the two traditional CF approaches also achieving high coverage. Since we 

apply ICF in AFV-R, the coverage of AFV-R is the same as ICF. Although the 

QSA method achieves 100% coverage, it is not the case in reality, since it 

requires every user to provide tags, and every movie to receive tags. In the 

original dataset, only 5.60% of users provided tags to movies, and only 71.16% 

of movies received tags from users. We also evaluate the coverage of different 

methods in the full dataset, and the results in Figure 3.6 show that QSA achieves 
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an extremely low coverage of only 9.07%. Since the proposed AFV-T and AFV-

R methods use external reviews and do not require any tags from the user, they 

achieve high coverage. Specifically, the coverage of AFV-R is 96.4% (being the 

same as ICF), and the coverage of AFV-T is independent of user ratings but is 

determined by the proportion of movies with user reviews, which is 99.4%. 

The transparency of the recommender system is often ignored by most CF 

approaches, whereas our method is able to provide explanations for 

recommendations given to system users. We will show the qualitative results of 

recommendation explanations using our method.  

Table 3.6. Explanation for Item Recommendation 

 My Neighbor Totoro Grave of the Fireflies 

User A 
curious, suitable, imaginative, warm, 

magical, friendly, sentimental, sweet 

magical, suitable, cold, gorgeous, 

sentimental, beautiful, happy, 

extraordinary 

User B 

endearing, suitable, imaginative, 

giant, cute, poetic, boundless, 

fantastical 

giant, astonished, live, engrossing, 

animated, suitable, poetic, gentle 

User C 

lovely, delightful, happy, gentle, 

spectacular, engaged, curious, 

magical 

lovely, gentle, happy, magical, afraid, 

heartfelt, cold, engrossing 

Applying the proposed AFV-R method, which has the highest accuracy in 

predictions, we recommend 5 movies to each user. We arbitrarily select three 

users, who have 2 movies in common in their recommendation list, to illustrate 

the qualitative results of recommendation explanations given by our method. 

The two movies in common are My Neighbor Totoro and Grave of the Fireflies. 



 

51 

 

Table 3.6 shows the 8 listed features for each movie as explanations for 

recommending the movie to each user. 

As shown by the results, the explanation for recommending the same 

movie is personalized for different users, taking movie features and users’ tastes 

on each feature into consideration. For example, we recommend the movie 

Grave of the Fireflies to user A, together with the explanation: “magical, suitable, 

cold, gorgeous, sentimental, beautiful and happy and extraordinary”; while the 

explanation for the same movie recommended to user B is: “giant, astonished, 

live, engrossing, animated, suitable, poetic and gentle”. In addition to providing 

the recommendation for a movie, the explanation gives the users more insight 

into the recommendation mechanism, therefore making the recommendation 

more trustworthy and acceptable. 

Experiment on User Recommendation. To evaluate the effectiveness of our 

proposed method in user recommendations, we compare our AFV-R and AFV-

T methods in terms of the average similarity of interest between target users and 

recommended users, as well as user space coverage, with the QSA method, 

representing a state-of-the-art tag-based user RS. We also include a random 

method (RAN) which randomly selects N users for recommendation, as a 

baseline method. 
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Figure 3.7. Average Interest Similarity 

(Higher InterestSim indicates higher accuracy) 

In this experiment, we recommend 3 users for every user in the tag-

densely-tagged dataset. Figure 3.7 shows the average similarity of interest 

between target users and recommended users, using different methods. From 

the results, we can see that both the QSA method and our AFV methods increase 

the similarity of interest between target users and recommended users. 

Furthermore, our AFV methods improves on the QSA method in terms of the 

similarity in interest between target users and recommended users. Specifically, 

the interest similarity values of AFV-T and AFV-R are 0.150 and 0.156 

respectively, whereas this value is 0.145 using QSA. That is, AFV-T and AFV-

R increase the interest similarity of QSA by 3.45% and 7.14% respectively. The 

results show that our proposed method is effective in selecting similar users and 

outperforms state-of-the-art tag-based method. 
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Figure 3.8. User Space Coverage 

Besides interest similarity, we also evaluate the effectiveness of our 

methods by comparing the coverage of recommendations in the user space. 

Similar to item recommendations, we first evaluate the coverage using the 

densely-tagged subset, and all methods achieve 100% coverage, since every 

user gave tags to movies, and every movie received tags from users in this subset. 

We then repeat the experiment using the full dataset, where the majority of users 

did not provide tags. From the results in Figure 3.8, we can see that the tag-

based QSA method achieves an extremely low coverage of only 5.60%, which 

is the same as the proportion of users who provided tags in the dataset; while 

our AFV methods, which use external user reviews and do not rely on tags, still 

achieve 100% coverage. The results indicate that our proposed AFV methods 

significantly outperform the state-of-the-art tag-based method (i.e. QSA) in user 

space coverage. 

Our proposed methods are able to provide explanations for not only item 
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recommendations, but also user recommendations. To illustrate the quality of 

the explanations for user recommendations, we apply the AFV-R method and 

recommend 5 users to every system user. For every recommended user, we 

provide 8 features indicating similar taste aspects to target users as the 

explanation. We arbitrarily select two users, and list the explanation for the two 

recommended users they receive in Table 3.7. 

Table 3.7. Explanation for User Recommendation  

 Recommended User 1 Recommended User 2 

User D 

comic, colorful, heroic, positive, 

controversial, theatrical, suspicious, 

gothic 

vocal, ludicrous, legendary, 

gorgeous, terrible, musical, colorful, 

creepy 

User E 

romantic, lovely, promising, 

emotional, comic, social, amusing, 

conventional 

smart, bright, fresh, ridiculous, 

tremendous, stylish, political, 

complex 

3.6. Conclusion 

In this work, we show that adjective features embedded in user reviews are 

useful for characterizing movie features as well as users’ tastes, and can be 

employed by recommendation techniques to address sparsity and transparency 

issues. We employ POS tagging and propose introducing Cluster Frequency 

(CLF) into the traditional TF-IDF term weighting scheme, to extract adjective 

features from external user reviews, highlighting terms that help discriminate 

between implicit item aspects, and balancing the representativeness and 

generalizability of the extracted features. We also incorporate the extracted 
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adjective features into a specific recommendation technique, i.e. Singular Value 

Decomposition (SVD), to illustrate the effectiveness of using adjective features. 

The experiment results show that the proposed AFV method makes a significant 

difference to the quality of the state-of-the-art rating-based method (i.e. 

reducing 12.42% prediction errors of PMF) in settings where ratings are 

extremely sparse, and outperforms state-of-the-art methods in item 

recommendations and user recommendations, in terms of both quality and 

coverage. Specifically, in item recommendations, our AFV method reduces the 

prediction errors of the state-of-the-art tag-based method by 11.27%, and in user 

recommendation, it increases the interest similarity of the state-of-the-art tag-

based method by 7.14%. Moreover, our AFV method always achieves high 

coverage of both item and user recommendations, while the coverage of tag-

based methods is extremely low when tags are sparse, which is always the case 

in reality. In addition to recommending items and users, the AFV method is also 

able to provide personalized explanations for recommendations to users, 

increasing trust in the recommendation. 

There are some limitations to our work. Firstly, we only considered the 

adjective features and ignored other descriptive attributes of items. Our method 

can be extended to incorporate other descriptive attributes, which may generate 

more accurate recommendations and higher-quality explanations. Secondly, we 

did not consider the semantic relationship between adjective features, which is 
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a potential direction for future work. 

Although our recommendation architecture was evaluated on single 

domains, it can easily be applied to cross domains. Since the extracted adjective 

features capture user tastes on a higher and more abstract level, it will be 

interesting to evaluate the application of our method in cross-domain 

recommendation in future work. 
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CHAPTER 4.  STUDY ON USING CRITIC 

REVIEWS TO BOOST NEW ITEM 

RECOMMENDATION 

4.1. Introduction 

Facilitated by the rapid development of technology, the barriers of entry for 

production of new items have lowered considerably. As a consequence, in most 

domains of consumer products studied, new items are being added regularly at 

a speed never seen before. For example, according to (Datta et al. 2012), 100 

new movies, 250 new books and up to 15,000 new mobile apps are released per 

week on average. The huge number of new items can hardly be accessed by 

consumers without a mechanism that effectively supports the discovery of new 

items.  

In a recent development, RS has shown promise to help consumers make 

good choices amidst an overwhelming number of alternative items, by 

providing personalized recommendations. However, as illustrated in the 

previous chapters, existing recommendation techniques suffer from data 

sparsity.  

Collaborative Filtering (CF) works only if the items are already well-

known (i.e. the items have been previously purchased or rated by many users), 

but it lacks the ability to discover and recommend new items since the user 
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ratings required by CF are extremely sparse, or totally unavailable, in the case 

of new items. The problem occurs when new items are continuously added but 

are unable to be recommended. This problem is also known as the new item 

problem or cold start item problem that has been identified as a major challenge 

of RS (Schein et al. 2002). An intuitive solution to the new item problem is to 

adopt Content-Based (CB) approaches that typically match user preference data 

with item attribute information, to help bridge the gap between existing and new 

items. However, such methods encounter the limitation of insufficient item 

attributes. Research has found that the limited number of descriptive attributes 

assigned to items is insufficient to determine distinguishing features of items, 

which might be necessary for the elicitation of users’ taste aspects (Lops et al. 

2011). For example, in the movie RS, a user may prefer dramas about school 

life but dislike dramas with racial discrimination. If genre is used as an indicator 

of users’ preferences, it will fail to differentiate between these two detailed 

aspects of user tastes within a single genre. A possible approach to address this 

limitation is to incorporate other item information into the RS, to represent item 

features and define user taste aspects. 

We started exploring external data that can possibly be incorporated, and 

noticed that when people were choosing a digital product to buy, a book to read 

or a movie to watch etc., they would first search for online review articles about 

these items, and then evaluate them based on their features described in such 
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articles. It motivated us to consider automating this process by incorporating 

external review articles in the RS. On one hand, online review articles are 

available in abundance, even for new items. In the movie domain, for example, 

we analyzed two famous online movie review aggregators, i.e. IMDb and 

Rotten Tomatoes, and found that on both platforms, 92% of new movies 3 

(movies still playing in theaters) have critic-reviewed articles. The average 

numbers of critic-reviewed articles per new movie on both platforms are 69 and 

17 respectively. However, if we use Wikipedia, as proposed by Katz et al. (2011), 

only 65% of new movies have corresponding content pages. Clearly, review 

articles have a dominant advantage in quantity and the coverage of new items, 

which enables us to address the new item problem with substantial 

supplementary information. On the other hand, compared to descriptive 

attributes, review articles cover more item features. For example, in critic 

reviews of the movie The Graduate, we are able to infer that the topic of this 

movie is about youth and love, as well as many other features unable to be 

captured by general descriptive attributes. In short, the nature of review articles 

makes it an ideal source of supplementary data for recommendation. In this 

study, we will address the new item problem of RS by incorporating online 

review articles. 

                                                 

3 Since IMDb and Rotten Tomatoes are English-oriented platforms, we only consider English movies. 
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Although online review articles show promise, from a technical 

perspective, there are two challenges to incorporating such data in the 

recommendation process. First, review articles are unstructured free-text. A 

proper text model is required to quantify the textural contents. Traditional RS 

dealing with textural contents usually represent item features and users’ taste 

aspects at the word level (Ahn et al. 2007; Katz et al. 2011; Spaeth and 

Desmarais 2013), which may result in the problem of over-specification. For 

example, a user may prefer family movies, in which the word “mother” may 

appear frequently in their textual descriptions, but this does not mean that this 

user must like all the movies whose textual descriptions contain “mother”. To 

address this problem, we propose to use an advanced topic modeling approach 

that models review articles at the topic level and represents items with topic 

distributions. Second, it is crucial to effectively integrate item features 

represented by topic distributions and user ratings in recommendation. We adapt 

Non-negative Matrix Factorization (NMF) to fully utilize the user ratings and 

item features, which would be helpful in improving the recommendation quality. 

We use the topics of the critic reviews from existing items to define the 

taste aspects of the users, and utilize the user ratings to estimate the extent to 

which a user likes a particular topic. When new items are added, we collect their 

critic reviews, and infer their topic distributions. Then the new item problem 

can be alleviated by matching the users’ topic preference with the topic 
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distributions of the new items. 

The results of our experiment conducted in a real world data set show that 

our method is efficient and can not only generate high quality new item 

recommendations in cold start settings which are not supported by many state-

of-the-art methods, but also outperform the state-of-the-art methods when 

recommending existing items especially in rating-sparse settings. Specifically, 

our method reduces the prediction errors of the state-of-the-art method using 

item typology based on item keywords by 5.78% and improves the ranking 

accuracy of the state-of-the-art method by 12.91% in rating-sparse settings. 

The rest of the sections in this chapter are organized as follows. First we 

introduce the background to the research and review the related work. Then we 

present our proposed recommendation architecture including the intuition and 

the detail description of each component. The remainder of this chapter then 

presents the experiment and results, and finally, we conclude by summarizing 

this study. 

4.2. Related Work 

Our method is a Content-Based (CB) approach using the external critic reviews 

of items to address the cold start problem. We employ an advanced topic 

modeling approach, Partially Labeled Dirichlet Allocation (PLDA), to represent 

the critic reviews at the topic level.  We also adapt Non-negative Matrix 
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Factorization (NMF) to fully utilize the rating and content information. The 

related work will be introduced in the following. 

4.2.1. Partially Labeled Dirichlet Allocation 

Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is a generative probabilistic 

model that applies hierarchical Bayesian analysis to discover the semantic 

structure in a text corpus. The basic idea of LDA is to represent a document as 

a multinomial distribution over latent topics, each of which is characterized by 

a distribution over words. LDA is an unsupervised learning model. The 

generated unsupervised topics are powerful for exploring the underlying sub-

structure, but it may be difficult to interpret their meaning and they usually do 

not align with human provided labels. Labeled LDA (Ramage et al. 2009) is a 

supervised extension of LDA that requires the topics to align with the pre-

defined labels assigned to the documents, but it may fail to capture the broad 

patterns in the corpus.  

In a recent development, a semi-supervised model, i.e. Partially Labeled 

Dirichlet Allocation (PLDA) (Ramage et al. 2011), has been proposed. PLDA 

takes full advantage of both supervised and unsupervised approaches. It is able 

to discover any number of hidden topics under each pre-defined label, and it 

also has the ability to explore the latent topics across the whole corpus.  

There are a few existing works applying LDA in recommendation. For 
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example, a recent study (Cai et al. 2014) proposed a TyCo method which uses 

LDA to model keywords of movies and then construct item typicality for further 

recommendation. But no reported work using PLDA in recommendation has 

been found. The nature of PLDA makes it suitable for our purpose of uncovering 

topics in the critic reviews. The learned topics are then incorporated with user 

ratings by applying NMF in our method. 

4.2.2. Non-negative Matrix Factorization 

Non-negative Matrix Factorization (NMF) (Lee and Seung 1999) is a powerful 

dimension reduction tool for non-negative data and has been successfully 

adopted in many fields such as signal processing and text mining. Given a non-

negative matrix ,m nV  and a specified positive integer min( , )k m n , NMF seeks 

two non-negative matrices ,m kW  and ,k nH  so that their product WH 

approximates the original matrix V.  The intuition of NMF is to use a linear 

combination of the basis vectors (i.e. the rows in W) and the coefficient vectors 

(i.e. the columns in H) to approximate the input vectors (i.e. the rows in V). 

NMF can be solved as a problem of minimizing the error function, which is 

typically the square error or Kullback-Leibler divergence, and coordinate 

descent algorithms (Hsieh and Dhillon 2011; Seung and Lee 2001) are 

commonly used. In our method, we adapt NMF for our context by redefining 

the error function and using a simple and effective projected gradient descent 

approach (Lin 2007) to solve the optimization problem. 
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4.3. Intuition and Overview 

Similar to study one, although our proposed method is generally applicable for 

any domain of consumer products, we make it easier to explain our idea and to 

compare our work with existing ones by choosing a specific example domain. 

As movies are the most studied consumer domain in recommendation research, 

we present our work by using the domain of movies. That is to say, from this 

point forward, we will present our method as a technique of providing movie 

recommendations to users. 

The objective of our method is to predict the users’ preference for movies 

which are unknown to them, and to recommend movies with the highest 

predicted ratings to them. In order to predict the target user’s preference for a 

given movie, we need to know what kinds of movies he has liked in the past, 

and what kinds of movie the given movie belongs to. A common way to do this 

is to use the descriptive attributes of the movies, such as the genre and the 

director, to define the characteristics of the movie and the users’ taste aspects. 

For example, if this user has highly rated scientific movies directed by Spielberg, 

and the given movie happens to be scientific and directed by Spielberg, then the 

predicted rating would be higher. 

However, a user’s taste may be far beyond the aspects defined by the 

limited number of descriptive attributes. For example, a user may prefer 
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comedies about school life or dramas about racial discrimination. This leads us 

to contemplate whether there are other types of data that can be incorporated to 

cover more features of the movies to capture more aspects of users’ taste. We 

notice that a specific kind of movie information, i.e. critic reviews, can be found 

in many online systems like Rotten Tomatoes4, which is widely known as a 

movie review aggregator. Unlike other user generated content or user preference 

data that only can be found long after the movie is released to the public, critic 

review articles are available in abundance even before the release of the movie. 

For example, 22 high quality critic review articles of a recent movie Mud can 

be found in Rotten Tomatoes even one week before its release. The availability 

of expert critic reviews fulfills our requirement for information on new movies, 

and their contents may cover all possible aspects of the movies. Therefore, we 

incorporate external expert critic reviews to define movie features.  

Since expert critic reviews are presented in the form of free text, a proper 

text model should be used to represent movies with these text contents. We 

apply PLDA to the expert critic reviews to infer the topics of movies under their 

genres, as well as the topics that are shared by all the genres. For example, a 

topic under the genre “drama” may be related to “racial discrimination”, and a 

general topic may be related to “family”, since many movies in different genres 

                                                 

4 http://www.rottentomatoes.com 
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may involve talking about family related matters. The adaption of Non-negative 

Matrix Factorization (NMF) allows us to calculate users’ preference for each 

topic based on their rating data. Therefore, rating prediction becomes a problem 

of estimating to what extent the movie topic distribution matches the user topic 

preference. Given a new movie with a collection of expert critic reviews, we are 

able to tell to what extent this movie is associated with which topics, and new 

item recommendation can be performed by matching up the movie topic 

distribution with the user topic preference. 

Crawler

Topic Modeler

Profile Learner

Recommender

Movie Information

Critic Reviews

Topic Distribution

User Ratings

Movie Matrix

User Matrix

Rotten Tomatoes

Recommendations

OnlineOffline

 

Figure 4.1.  Proposed Architecture 

4.4. Solution Details 

The overview of our movie recommendation architecture is shown in Figure 4.1. 

We have designed and implemented four components in the architecture to 
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realize our recommendation engine. The four components are: Crawler, Topic 

Modeler, Profile Learner and Recommender. Among these components, 

Recommender is the only one running online, while the other three can run 

offline. Specifically, for existing movies, we use the Crawler to collect critic 

reviews from external websites. The contents of critic reviews are then analyzed 

by the Topic Modeler to uncover the underlying topics in the movies. The 

Profile Learner utilizes user ratings and the movie topic distributions to learn 

about the users’ preferences. Then, the Recommender generates personalized 

movie recommendations by matching up the user preference with the movie 

features. For new movies, their topic distribution is inferred from the topic 

model trained by the existing movies, and then are used together with the user 

profiles learned from existing movies to generate recommendations. The PLDA 

employed in the Topic Modeler and the adaption of NMF in the Profile Learner 

distinguishes our proposed method from other methods, which also contributes 

to generating more efficient and higher quality recommendations even with cold 

start settings. More details of each component will be introduced in the ensuing 

sections of the chapter. 

4.4.1. Crawler 

The main task of the Crawler is to collect critic reviews from external websites 

via Rotten Tomatoes. Rotten Tomatoes aggregates critic reviews from reliable 

sources with good reputation and compiles a list of their URLs. It also allows 
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users to select reviews from top critics. Using the titles and release years of 

movies to match the movie information in Rotten Tomatoes via its search API, 

we obtain a list of critic review URLs. For each movie, we crawl 20 webpages 

of critic reviews. To ensure quality, we primarily use reviews from top critics. 

If their number is less than 20, we also use reviews from other critics. Since the 

reviews are from different websites, the structures of the webpages containing 

the review contents are different. We need to use a content extractor 

(Kohlschütter et al. 2010) to extract the review contents from these webpages. 

We filter out reviews that are not written in English and those that are too short 

(less than 100 words). The extracted review contents are then passed to the 

Topic Modeler.  

4.4.2. Topic Modeler 

We use the Topic Modeler to represent the movies at the topic level, and a topic 

is a multinomial distribution over words. The Topic Modeler works by learning 

and inferring the topic distribution of movies from their critic reviews. We 

employ PLDA that allows us to use the well-structured attributes (i.e. genre, 

director, actor, etc.) of movies to supervise the topic learning process, which 

contributes to higher quality and more interpretable learned topics. The attribute 

we choose is genre, since genre has been proven to be a good indicator of users’ 

taste (Manzato 2012). PLDA regards genre as a high level category of movies, 

and learns the specified number of latent topics under each genre. It also 
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uncovers the global shared background topics that may not belong to a specific 

genre. Table 4.1 shows some example topics automatically learned from the 

critic reviews. Each topic is represented as a set of most common words in this 

topic.  As we can see, two global shared topics can be interpreted as “family” 

and “life” respectively, which means that movies in different genres may talk 

about the same topics. Global shared topics are important since they capture 

broad patterns across the whole corpus of critic reviews. 

Table 4.1. Examples of Topics 

(Global) 

Topic 1 
family, daughter, young, wife, marry, adaptation, century, miss, father, country, 

son, base 

Topic 2 young, sex, girl, feel, image, life, sense, begin, leave, relationship, death, child 

Drama 

Topic 1 
black, american, young, stone, drug, white, justice, president, kill, murder, 

violence, war 

Topic 2 
student, school, white, black, teacher, young, priest, town, south, class, dean, 

singleton 

Comedy 

Topic 1 player, funny, stern, fashion, altman, game, big, fan, wife, team, call, jake 

Topic 2 girl, gay, school, dance, lane, sex, drag, high, queen, goldberg, student, funny 

Specifically, we use G to denote a set of genres and Gi (1 i G  ) indicates 

the i th genre. For each genre Gi, we assign some number of topics 
iGT to it, 

where each topic 
,iG jT  ( 1

iGj T  ) is a representation of a multinomial 

distribution over all words in the vocabulary of the critic reviews. The number 

of topics for each genre can be different, which allows us to assign more topics 
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to those genres having a higher proportion of movies. In order to explore the 

global shared topics beyond the genres, a special label is used which can be 

interpreted as the “global” genre that is shared by all the movies, and some 

number of latent topics Tglobal are also assigned to it. PLDA is a generative model 

assuming that each word w in the critic reviews of a movie m belonging to a set 

of genres 
m  are generated as follows: first, a genre g in 

m is drawn from a 

multinomial distribution of size 
m , then a topic t in 

gT  is drawn from a 

multinomial distribution of size gT , and the word w is drawn from a 

multinomial distribution over the whole vocabulary in this topic. Intuitively, the 

probability that a word in the critic reviews of a movie is picked is in proportion 

to the aggregation of the following probabilities: (1) how likely this movie 

belongs to the genre g; (2) how likely genre g belongs to the topic t; and (3) how 

likely topic t has this word. Details of the algorithm for learning and inferring 

the model parameters can be found in (Asuncion et al. 2009).  

We can use the critic reviews from a subset of the existing movies to build 

the topic model by learning the topic distribution. When a new movie is added, 

its critic reviews can be used to infer its topic distribution based on the learned 

topic model. The output of the Topic Modeler is matrix P representing the topic 

distribution of the movies. Each column of P is a vector 
T

mP  that represents the 

multinomial distribution over all topics for a movie m, and each element 
,t mP  in 

this vector is the probability that movie m belongs to topic t. All elements in 
T

mP  
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sum up to 1, that is, for all m,  

, 1t mt
P  . 

Table 4.2 shows examples of distributions over the above-mentioned 

example topics for 3 movies. American History X is a drama, Van Wilder is a 

comedy and The Graduate is both drama and comedy. 

Table 4.2. Examples of Movie Topic Distribution 

 (Global) 

1 

(Global) 

2 

Drama 

1 

Drama 

2 

Comedy 

1 

Comedy 

2 

American History X 0.2 0.098 0.002 0.7 0 0 

Van Wilder 0.18 0.2 0 0 0.02 0.6 

The Graduate 0.103 0.116 0.001 0.4 0.3 0.08 

4.4.3. Profile Learner 

The Profile Learner is a core component in the recommendation engine. With 

the topic distribution of movies, Profile Learner utilizes the user ratings to learn 

user preferences by computing to what extent a given user likes a particular 

topic. Specifically, in order to isolate the users’ topic preference from other 

factors, we divide a user rating given to a movie into 4 parts: basis rating (i.e. 

overall average), user bias (i.e. some users may tend to rate higher or lower than 

other users), movie bias (i.e. some movies may tend to receive higher or lower 

ratings than other movies), and user topic preference. The original rating matrix 

X is approximated by: 

U IX S B B UI    . 
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where each element Xi,j  in the matrix X is the rating given by user i to movie  j; 

all elements in S are equal to the global average rating μ ; all elements in the i 

th row of matrix BU have the same value that is equal to the user rating bias 

ubiasi, and all elements in the j th column of matrix BI have the same value that 

is equal to the movie rating bias mbiasj. ,m kU  and ,k nI  , where m is the 

total number of users, n is the total number of movies, and k is the total number 

of topics. Ui,t  indicates the extent to which user i prefers topic t, and It,j indicates 

the extent to which movie j belongs to topic t.  

By adapting NMF, the Profile Learner decomposes the original user-rating 

matrix into two matrices U and I to represent users’ topic preferences and 

movies’ topics respectively. The decomposed matrices should satisfy two 

criteria: (a) the product of the user matrix U and movie matrix I should 

approximate the original matrix after adding the basis rating and rating bias; (b) 

the normalized movie matrix I  should approximate the topic distribution 

matrix P. The movie matrix I acts a bridge between two types of data, i.e. user 

ratings and movie critic reviews, by satisfying the above-mentioned criteria. 

The first criterion can be satisfied by solving the least square error problem, and 

the second criterion can be satisfied by minimizing the Kullaback-Leibler (KL) 

divergence (Kullback 1987) between the normalized movie matrix I  and the 

topic distribution matrix P. Since the elements in the column of P sum up to 1, 

we make a column-wise normalization for movie matrix I, that is, for all j: 
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According to the definition, the KL divergence between P and I  is: 
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Then the two criteria can be satisfied by solving the objective below: 
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where 
1  indicates the extent of penalizing the magnitudes of the parameters 

to avoid over fitting; and 
2 indicates the weight given to the topic distribution 

of critic reviews.  

The values of the elements in U and I are initiated by assigning a random 

value s (0<s<0.1) that follows a Gaussian distribution. The movie rating bias 

and user rating bias are initiated as the average deviation from the global 

average rating μ with regularization parameters 
3  and 

4  as follows: 
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To satisfy the non-negative constraint, we employ a project gradient 

method to update the parameters. Details of the algorithm can be found in (Lin 
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2007).  

4.4.4. Recommender 

The Recommender is the only component running online, while the other 

components can run offline. The objective of the Recommender is to match the 

user preference to the movie features in terms of topics and to generate movie 

recommendations for the users efficiently. For the existing movies, we can 

predict the users’ ratings by using the approximation:
U IS B B UI   . For the new 

movies, we don’t have the item matrix I or the movie rating bias BI since no 

user rating is available for them so that we cannot predict the users’ real ratings, 

but we can still estimate the users’ preference by using the topic matrix P instead 

of I. However, the scale of the predicted ratings given by UP for new movies is 

different from that given by 
U IS B B UI    for existing movies. In order to unify 

the scale of predicted ratings and to make the existing and new items 

comparable, we predict another rating for each existing movie using the product 

of the user matrix U and the normalized item matrix I , and recommendations 

are generated by selecting the items having the highest predicted ratings given 

by UP (for new movies) and UI (for existing movies). 

For example, if we want to predict the rating of movie j for user i, and the 

corresponding row or column in the matrix P, I, I and U are shown in Table 4.3, 

assuming that the overall average rating μ=2.5, user i tends to rate 0.5 higher 
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than other users, i.e. ubiasi=0.5 and movie j tends receive ratings that are 0.2 

lower than other movies, i.e. mbiasj=−0.2, then the user’s rating on this movie 

is predicted by: 
T

i j i jubias mbias U I     =2.95. In order to make movie j 

comparable with the new movies, another predicted rating is given by: 
T

jiU I

=0.313.  Suppose that movie j is a new movie and we don’t have the matrix I 

and mbiasj, the predicted rating is given by 
T

i jU P =0.318.  

Table 4.3. Example of Vectors 

 Latent 1 Latent 2 Drama 1 Drama 2 Comedy 1 Comedy 2 

  0.180 0.200 0.000 0.000 0.020 0.600 

T

jI  0.100 0.100 0.002 0.001 0.010 0.280 

T

jI  0.203 0.203 0.004 0.002 0.020 0.568 

iU  0.300 0.100 0.150 0.020 0.200 0.400 

Since the dimension of the original rating matrix is reduced, the rating 

prediction process in this online component can be efficient. 

4.5. Experiment and Results 

In this section, we describe the experiment and the results to show the 

effectiveness of our proposed method. We start from the evaluation metrics, and 

then proceed to introduce the data set used, the configuration and the 

environment of the experiment, followed by the results of the experiment. We 

show the impact of data sparsity, test the efficiency, compare the prediction 

errors and ranking accuracy with state-of-the-art methods in recommending 

T

jP
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existing items, and evaluate the recommendation quality in new item 

recommendation.  

4.5.1. Evaluation Metrics 

The accuracy of rating prediction is the most discussed property in 

recommendation research. Most research in recommender systems relies on the 

basic assumption that a recommender system providing “accurate predictions” 

would be preferred by users (Shani and Gunawardana 2011), and seeks 

algorithms that provide more accurate rating predictions. In line with this, we 

choose a commonly used metric in recommendation research, i.e. Mean 

Absolute Error (MAE) (Herlocker et al. 2004), to evaluate the accuracy of rating 

prediction. MAE is defined as: 

,
, ,

 .
ˆ

u i
ur i u iTestingSet

r r
MAE

TestingSet







 

where ru,i is the rating given by user u to item i in the testing dataset; 
,û ir  is the 

predicted rating; and TestingSet  is the size of testing dataset. 

Although accurate prediction is crucial, in most cases, the 

recommendations are presented to the users as a list of items, and the order of 

items in the list is also important. Some research found that accurate prediction 

does not guarantee the correct order of the recommendations (McNee et al. 

2006). A good RS should not only provide accurate rating predictions, but also 
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should rank the recommended items correctly. In our experiment, we use the 

NDCG@k (Järvelin and Kekäläinen 2002) that is also a commonly used metric 

in recommendation to measure the ranking accuracy. NDCG@k is defined as: 

,

1

1 2 1
@ .

log(1 )

u pr
k

uu U p
NDCG k Z

U p 





   

where U is the set of users; Zu is a normalization factor to guarantee that for the 

perfect ranking, the NDCG value is 1; p is the position of the recommended 

item in the list; and ru,p is the rating given by the user u to the item at position p. 

4.5.2. Experiment Setup 

In order to compare our method with other methods in the experiment, we use 

the MovieLens dataset that is publicly available and is widely used in other 

research. The dataset consists of 100,000 ratings given by 943 users to 1682 

movies. The user ratings are on a scale of 1 to 5, with 1 being bad and 5 being 

excellent. The percentage of missing ratings in the dataset (aka. sparsity level) 

is 
100000

(1 ) 100% 93.69%
1682 943

  


. The dataset also provides some movie 

information such as the title, release year and genre. We use the title and release 

year to get the URLs of critic reviews via the API provided by Rotten Tomatoes, 

and crawl the corresponding critic reviews from external websites. 98.81% of 

the movies in the dataset have critic reviews in Rotten Tomatoes. 

Before conducting the experiment, we need to assign the number of topics 
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to each genre, and determine the values of some parameters in the Profile 

Learner. We assign 4 topics as the global shared latent topics, and for other 

genres, the number of topics is in proportion to the number of movies in this 

genre. For example, we assign 4 topics to the genre “children” that has 119 

movies, and assign 2 topics to the genre “musical” that has 56 movies. There 

are 17 genres and the total number of topics is 68. We vary the parameters to 

find the settings giving the best results. This occurs when
1 0.02  ,

2 0.5  ,

3 25   and 
4 10  . We use the same configuration in all the following 

experiments. 

All experiments are conducted using a PC with Intel Core™2 Quad 

Processor Q9300 CPU (2.50 GHz), 4GB RAM, Windows 7 Professional 

Operating System and J2SE 7 platform. 

4.5.3. Experimental Results 

In the experiment, we implement two most widely used approaches, i.e. User-

Based and Item-Based Collaborative Filtering (CF) as the baseline method to 

illustrate the effectiveness of our proposed method in recommending existing 

items. We also notice that in the field of RS, many state-of-the-art approaches 

have been proposed in recent years. It is fair to compare our work with these 

methods, but the complexity and unclear description in the original publications 

of these methods make it difficult to re-implement all of them. A better way to 
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do the comparison is to conduct the experiment with our method under the same 

settings used by the other methods, and compare our results against the reported 

results using these other methods. Although most methods report results in only 

one dimension of evaluation, it is reasonable to make such comparisons since 

we believe that in the evaluation dimension reported, these methods have the 

best results. 

Impact of Sparsity. To investigate the impact of data sparsity, we first compare 

the prediction accuracy of our method with the two most widely used methods 

in practice, i.e. User-Based CF (UCF) (Resnick et al. 1994) and Item-Based CF 

(ICF) (Sarwar et al. 2001), using training data at different levels of sparsity. We 

randomly select a certain percentage of ratings as the testing set, and the 

remaining ratings serve as the training set. We introduce a variable tp to indicate 

what percentage of rating data is used as the test set. For example, tp=10% 

indicates 10% of the data is used as the test set, and the remaining 90% of the 

data is used as the training set. A higher value of tp indicates a higher sparsity 

level of the training set. We refer to our method of using critic review topics as 

the CRT method.  

Figure 4.2 shows the MAE of the three methods using different tp values. 

The results show that as the percentage of data in the testing set increases, the 

prediction errors of all the three methods increase, but our CRT method always 

has a lower prediction error than the other two methods. Specifically, using 10% 
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of the data as the testing set, our CRT method reduces the errors of UCF and 

ICF by 7.93% and 3.27% respectively, while using 90% of data as testing set, 

the reduction in error becomes 9.02% and 9.31% respectively. That is to say, 

our CRT method is less affected by the data sparsity, and its strength in 

prediction accuracy is more salient in rating-sparse settings. Our method has 

lower prediction errors even in sparse settings, since it uses the additional topic 

information from critic reviews to eliminate the dependency on user ratings and 

it fully utilizes sparse ratings. 

 

Figure 4.2.  Comparison of MAE 

Comparison of Efficiency. Our proposed method is efficient since it reduces 

the dimension of the original matrix, and the main process of every rating 

prediction is to compute the dot product of two vectors in n dimensions (in our 
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experiment n=68). To show the efficiency of our CRT method, we compare the 

time cost of the three methods in the above experiment. Since the efficiency of 

the online component is much more important than the offline procedures, we 

only consider the time cost of the online component (i.e. the Recommender) of 

our method in predicting the ratings in the testing set. For UCF and ICF, we also 

assume that the user similarities and item similarities can be computed offline 

and only account for the time cost by predicting the ratings in the testing set.  

 

Figure 4.3. Comparison of Efficiency 

The results are shown in Figure 4.3. From the results, we can see that as 

the size of testing set increases, the time cost of UCF and ICF increases rapidly, 

while our method still remains efficient for large testing sets. When run on 

testing set with 90% of data, our method costs only 10.32% of the time used by 

ICF, and 16.96% of that of UCF. 
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Comparison of Prediction Errors. In this experiment, we compare the 

prediction errors of our CRT method with other state-of-the-art methods that 

have been reported to have good results in rating prediction. These methods for 

comparison are: 

 CBS (Xue et al. 2005): This is a cluster-based smoothing method. It 

fills in the missing values by using other users’ ratings in the same user 

cluster. 

 WLR (Srebro and Jaakkola 2003): This method uses weighted low-

rank approximation to fill in the missing values. 

 CBT (Li et al. 2009): This method expands the codebook to 

reconstruct the rating matrix that is used to fill in the missing values. 

 SVD++ (Koren 2008): This method reduces the dimension of the 

original matrix through Singular Value Decomposition. It also 

integrates user feedback. 

 TyCo (Cai et al. 2014): This method applies LDA to model keywords 

of movies and then constructs item typicality for further 

recommendation. 

To make our result comparable, similar as for (Cai et al. 2014) and (Li et 

al. 2009), we randomly select 500 users from the dataset, then use the first 100, 

200 and 300 of them to form the training sets, named ML100U, ML200U and 
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ML300U respectively. The last 200 users are used as testing set. For every user 

in the testing set, we keep 5, 10 and 15 ratings given by him in the training set, 

named as G5, G10 and G15 respectively. The training sets that have fewer users 

and fewer ratings from the test users are sparser. E.g. ML100U-G5 has the 

highest sparsity and ML300U-G15 has the lowest sparsity.  

Table 4.4. Comparison of Prediction Errors (MAE) 

 ML100U ML200U ML300U 

G5 G10 G15 G5 G10 G15 G5 G10 G15 

CBS 0.874 0.845 0.839 0.871 0.833 0.828 0.870 0.834 0.819 

WLR 0.915 0.875 0.89 0.941 0.903 0.883 1.018 0.962 0.938 

CBT 0.840 0.802 0.786 0.839 0.800 0.784 0.840 0.801 0.785 

SVD++ 0.925 0.911 0.916 0.881 0.815 0.812 0.885 0.815 0.802 

TyCo 0.830 0.799 0.777 0.830 0.775 0.775 0.814 0.762 0.760 

CRT 0.788 0.783 0.774 0.782 0.775 0.768 0.774 0.767 0.760 

Table 4.4 shows the comparison of our CRT method with the state-of-the-

art methods on MAE. The results of other methods are reported in (Cai et al. 

2014) and (Li et al. 2009). The results show that in most settings, our method 

has lower prediction errors than other methods. Excluding our method, the TyCo 

method has the best results among the others. In rating-dense settings, e.g. 

ML300U-G10 and ML300U-G15, the prediction errors of our CRT method are 

very close to those of TyCo, while in rating-sparse settings, e.g. all ML100U 

and all G5, our method outperforms TyCo. The results are consistent with our 

findings in the previous experiment that our method has strength in sparse 

settings. Specifically, our CRT method reduces the prediction errors of TyCo 
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using ML100U-G5, ML200U-G5 and ML300U-G5 by 5.06%, 5.78% and 4.91% 

respectively. 

Comparison of Ranking Accuracy. In this experiment, we test the ranking 

accuracy of our CRT method, and compare the results with those reported by 

state-of-the-art methods that have proven to have good performance in ranking 

the recommended items. The methods to be compared with are: 

 ASSOC (Deshpande and Karypis 2004): This method uses the 

association among items to perform the top N recommendations. 

 FREQ (Sueiras et al. 2007): This method builds a model based on the 

hitting-frequency to predict the user preference. 

 PMF (Salakhutdinov and Mnih 2008): This method employs 

Probabilistic Matrix Factorization to utilize the relationship among 

users, items and ratings. 

Table 4.5. Comparison of Ranking Accuracy (NDCG@k) 

 G5 G10 G15 

NDCG 

@1 

NDCG 

@3 

NDCG 

@5 

NDCG 

@1 

NDCG 

@3 

NDCG 

@5 

NDCG 

@1 

NDCG 

@3 

NDCG 

@5 

ASSOC 0.529 0.542 0.560 0.597 0.593 0.595 0.615 0.610 0.627 

FREQ 0.642 0.600 0.596 0.636 0.607 0.610 0.638 0.618 0.632 

PMF 0.635 0.612 0.623 0.644 0.646 0.654 0.696 0.689 0.698 

CRT 0.710 0.691 0.681 0.709 0.694 0.679 0.712 0.692 0.673 

Following the experiment in (Xin et al. 2011), we randomly choose 600 
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users to form the training set and the remaining 343 users are put in the testing 

set. For every user in the testing set, 5, 10 and 15 ratings from him are given in 

the training set, named as G5, G10 and G15 respectively. The fewer the ratings 

given to the training set, the sparser it is.  

The results of NDCG@1，NDCG@3 and NDCG@5 using different 

training and testing sets are shown in Table 4.5. The results of other methods 

are reported in (Xin et al. 2011). The results show that in all settings except 

G15-NDCG@5, our CRT method has better results, especially in the sparse 

settings like G5. The results are in line with our previous findings that the 

advantage of our CRT method is more salient in sparse settings. Our CRT 

method increases the NDCG@1, NDCG@3 and NDCG@5 of PMF using the 

sparsest training set (i.e. G5) by 11.81%, 12.91% and 9.31% respectively. 

Comparison of New Item Recommendation. One of the key features of our 

method is that it supports new item recommendation, while all the above-

mentioned state-of-the-art methods cannot work under cold start settings with 

new items. To illustrate the effectiveness of our CRT method in recommending 

new movies, we compare with another method, TSCF (Spaeth and Desmarais 

2013), that computes the text similarity between the item profiles (here we use 

the movie plot summaries in IMDB5), and then performs CF recommendation. 

                                                 

5 http://www.imdb.com 
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In order to simulate the new movies, we randomly select 200, 400 and 600 

movies as new movies for testing, named as ML200M, ML400M and ML600M 

respectively, and the remaining movies are used as existing movies for training. 

For movies in the testing set, none of their ratings are given in the training set. 

Since the scale of the predicted ratings for new movies given by our method is 

different from that of the users’ real ratings, we do not compare the prediction 

errors here and only report the results of NDCG@k that are shown in Table 4.6. 

The results indicate that as the proportion of new movies increases, the ranking 

accuracy of both methods decreases, but our CRT method always performs 

better than the TSCF method. The results prove that our CRT method is effective 

in new item recommendation. 

Table 4.6. Comparison of New Item Recommendation (NDCG@k) 

 ML200M ML400M ML600M 

NDCG 

@1 

NDCG 

@3 

NDCG 

@5 

NDCG 

@1 

NDCG 

@3 

NDCG 

@5 

NDCG 

@1 

NDCG 

@3 

NDCG 

@5 

TSCF 0.477 0.470 0.467 0.465 0.468 0.460 0.458 0.459 0.457 

CRT 0.501 0.510 0.505 0.487 0.494 0.495 0.480 0.485 0.489 

4.6. Conclusion 

In this study, we propose a novel content-based recommendation framework. A 

distinct feature of our method is that it incorporates the topics inferred from the 

external critic reviews of items to boost the cold start recommendation. We 

employ an advanced semi-supervised topic modeling approach, i.e. PLDA, 
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which is able to uncover the global shared latent topics as well as the topics 

under each well-structured item attribute, to learn and infer the topic distribution 

of the critic reviews. We also adapt NMF to our context by redefining the error 

function to fully utilize the user ratings and topic distribution of critic reviews. 

The topics inferred from is critic reviews are better representations of the items 

since it covers more characteristics of the items and reflect more aspects of user 

tastes. By fully utilizing the user ratings and the inferred topics, our method 

alleviates the dependency on user ratings and enables high quality 

recommendations even under cold start settings with new items. The adaption 

of NMF lowers the dimension of the original rating matrix, which contributes 

to high efficiency. The results of the experiment show that our proposed method 

is scalable and outperforms the current state-of-the-art methods in terms of 

prediction accuracy and ranking accuracy, and the advantage of our method is 

more salient in rating-sparse settings. Our method also generates high quality 

new item recommendations which is not supported by many current state-of-

the-art methods.  

There are some limitations of our work. First, some off-line processing 

procedures (e.g. topic learning) are time consuming. In future work, a parallel 

computation framework (e.g. MapReduce) can be adopted to accelerate the 

computation for large scale applications. Second, we only use one kind of 

attribute (i.e. the genre of movie) to supervise the topic learning and inferring. 
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Future work could use more attributes and explore how to integrate topics under 

different attributes.  

Although we have focused on the domain of movies in this study, our 

method is generally applicable to any other domain of consumer products where 

critic reviews are available. One possible extension to our work is to see whether 

our method can be applied in cross-domain recommendation. 
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CHAPTER 5.  STUDY ON FUNCTIONALITY-

BASED MOBILE APP RECOMMENDATION BY 

IDENTIFYING FUNCTIONAL ASPECTS FROM 

USER REVIEWS 

5.1. Introduction 

Accelerated by the popularity of smart phones, the mobile application (or app 

for short) market is growing explosively. For instance, the Apple App Store 

provides more than one million apps in 24 categories for users in 155 countries 

around the world6. On one hand, tens of thousands of new apps are continuously 

being released in app stores, but most of them can hardly be reached by users 

via keyword searches; on the other hand, it has been a significant challenge for 

users to find the apps they need in such crowded app stores. Therefore, it is 

necessary to have effective mechanisms to help users discover relevant apps 

among the overwhelming number of alternatives. 

To alleviate the new item discovery problem, many industry solutions, 

such as the personalized recommender systems (RS), for other consumer 

product domains, e.g. books, movies, music etc., have been proposed. These 

solutions mostly deal with the new item problem by recommending items that 

are similar to those the user has selected (Celma et al. 2005; Rafailidis et al. 

                                                 

6 http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html 
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2014; Schwab et al. 2001; Semeraro et al. 2009). While the general goal of 

mobile app recommendation is similar to those in traditional domains – to guide 

users to items that are relevant to their interests, there are unique features of 

mobile apps that make the solutions in traditional domains less effective in the 

app domain.  

One of the most important characteristics of mobile app selection is that it 

is based more on the apps’ functionalities than the users’ taste. For instance, a 

user who likes the movie Titanic may be glad to watch another romantic movie 

similar to Titanic; however, if a user has installed an app providing particular 

functionality, e.g. whether forecast, he/she needs no more similar apps with the 

same functionality of whether forecast, unless they provide additional 

functionalities. If existing recommendation techniques are directly applied in 

the app domain, users may be end up receiving a mass of redundant app 

recommendations providing similar functionalities.  

Moreover, the most widely used recommendation techniques, i.e. 

Collaborative Filtering (CF) (Sarwar et al. 2001) and Content-based Filtering 

(CB) (Pazzani and Billsus 2007), usually generate recommendations based on 

user ratings. In the app domain however, rating values indicate more about users’ 

evaluation of the non-functional aspects (ease of use, UI design, power 

consumption etc.) of the app, but can hardly reflect the users’ functional 

requirements. For example, even if a user gives a very low rating to an app 
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providing weather forecast, we can only say the user is not satisfied with this 

app (maybe because it is power consuming), but we cannot deny the fact that 

this user needs the functionality of weather forecast, since he has been attracted 

by the described functionalities of this app and has decided to install it. 

Therefore, when applied in the app domain, traditional techniques fail to reveal 

the detailed functionalities inside apps, and lack the ability to capture users’ 

functional requirements, which may worsen the quality of recommendations. 

Recently, an increasing amount of research has paid attention to mobile app 

recommendation. These works have enjoyed varying degrees of success by 

either adapting traditional recommendation techniques to the app domain 

(Bhandari et al. 2013; Lin et al. 2013; Yan and Chen 2011) , or considering 

additional dimensions of apps (e.g. context information) (Böhmer et al. 2010; 

Karatzoglou et al. 2012; Shi et al. 2012). However, the redundancy problem in 

app recommendation has received scant attention from researchers, and there 

has been no reported work on app recommendations that considers user 

requirements at the functionality level. 

To bridge this gap, in this study, we propose a functionality-based 

recommendation solution that is able to provide more accurate and more diverse 

app recommendations by drilling down into users’ functional requirements. In 

our proposed solution, a mobile app is modelled as a collection of different 

functionalities, and user requirements are modelled at the functionality level. 
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We first predict what new functionalities a given user most likely needs based 

on other users’ usage patterns, and select a collection of apps containing these 

new functionalities as recommendations. If there are similar apps providing 

overlapping functionalities in this collection, we only recommend the top app 

that has the best quality, therefore truly capturing users’ functional requirements 

and avoiding redundant recommendations.  

We achieve our goal by solving three important problems. First, given an 

app, we need to know what functionalities it has. Although some functionalities 

are explicitly stated in the apps’ descriptions, they are embedded in short text 

blocks and are hard to be identified from the descriptions alone. We note 

however, that the functionalities of an app may be repeatedly mentioned in the 

app’s user reviews. In addition, user reviews may also contain other implicit 

functional aspects that are not stated in the descriptions but are useful for 

modeling user requirements. Therefore, one main feature of our solution is to 

obtain functionalities of apps by mining textual user reviews. To accurately 

extract both explicit and implicit functional aspects of apps from noisy review 

content, we propose a simple but effective approach by combining app 

descriptions and user reviews. 

Second, user requirements should be properly modelled. We propose a 

graph-based approach called AppRank to utilize the propagation of user 

requirements at the functional level, and employ a two-stage random walk 
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process to predict new functionalities for the users.  

Third, we need to rank and select good apps from similar candidates 

providing overlapping functionalities to avoid redundancy. Our AppRank 

method introduces a competition mechanism to distribute weights among 

similar apps, which gives priority to apps of higher quality. 

To the best of our knowledge, this is the first work to consider users’ 

functional requirements in mobile app recommendation. We prove the 

possibility of extracting app functionalities from textual user reviews, and we 

also propose an effective solution that enables functionality-based app 

recommendation. The results of experiments conducted on a real-world mobile 

app dataset show that our proposed method outperforms baseline methods in 

terms of stability against data sparsity, ranking accuracy in top N 

recommendations, overall ranking correctness and recommendation diversity. 

The remainder of this chapter is organized as follows: first we review 

related works in literature. Next we describe the intuition behind our proposed 

solution and first provide an overview, followed by a more detailed elaboration. 

Then we evaluate our solution and present the results of our evaluation. Finally, 

we discuss the contribution of our work to the field and possibilities for further 

work. 
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5.2. Related Work 

Recently, researchers have started paying attention to mobile app 

recommendation, and an increasing amount of research on app recommendation 

is being done. In the following, we will review related work on mobile app 

recommendation, and discuss related work on page-rank based methods which 

will be adapted in our method to discover new functionalities for users.  

5.2.1. Mobile App Recommendation  

A few studies propose to extend traditional recommendation algorithms and to 

adapt them into the app domain. For example, AppJoy (Yan and Chen 2011) 

replaces the user ratings in traditional RS with usage scores composed by 

recency, frequency and duration, and then performs item-based CF 

recommendation. Bhandari et al. (2013) adapt graph-based recommendation for 

app discovery, aiming at improving novelty. Lin et al. (2013) propose to extend 

model-based RS by constructing latent user models from apps’ twitter followers, 

addressing the cold-start problem of app recommendation. Hybrid methods are 

also existing. For example, Xia et al. (2014) report a multi-object approach to 

evolve existing mobile app RSs. Although these solutions have proven to be 

effective to some extent in recommending apps, they do not consider much 

about the unique characteristics of apps.  

Noticing this limitation, some researchers have shifted their focus to a 
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unique characteristic of mobile apps – context, and a few context-aware systems 

have been proposed in the app domain. Such systems record users’ context 

information, e.g. physical location, at a particular time and then enhance app 

recommendation by exploiting the collected context information (Liu et al. 

2013). For example, Böhmer et al. (2010) explored the design space for context-

aware app recommendation, and developed a prototype app RS on Android 

platform called Appazaar. The Djinn model introduced by Karatzoglou et al. 

(2012) utilizes the user-app-context relationship using tensor factorization, 

providing a new context-aware CF approach for app recommendation. Shi et al. 

(2012) also apply tensor factorization to integrate implicit feedback data with 

contextual information, and they propose to generate app recommendations by 

optimizing the ranking (i.e. MAP). Context-aware app RSs are highlighted since 

they take into account one important feature of mobile app, i.e. context 

information. Such systems show better performance than traditional methods in 

recommending apps. However, context information is very difficult to collect, 

due to privacy concerns and other constraints. It has been a significant limitation 

of context-aware systems. 

To conclude, existing works on mobile app recommendation do consider 

some unique features in the app domain; however, no reported work has been 

found to recommend apps at the functionality level and to avoid redundant 

recommendations. These gaps will be addressed with our proposed method. 
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5.2.2. PageRank-Based Methods 

PageRank (Page et al. 1999) is a graph-based ranking algorithm proposed by 

Google, and has been successfully applied in analyzing the link-structure of the 

World Wide Web. The objective of PageRank is to determine the importance of 

a given webpage on the web hyperlink structure. The basic assumption of 

PageRank is that a web page is more likely to be authoritative if it is linked to 

by many other authoritative pages. The implementation of PageRank is based 

on a “voting” mechanism. If a webpage links to another page, it denotes a vote 

to that target page. Moreover, the weight of the vote is determined by the 

importance of the webpage which gives the vote. Finally, the greater the weight 

of the vote a webpage receives, the more important it is. The final weight, i.e. 

the PageRank score, of a webpage is determined by a random walk process 

which iterates the voting process throughout each node in the graph until it 

converges.  

Based on PageRank, many variants in different domains have been 

proposed. For example, Mihalcea and Tarau (2004) propose a graph-based 

ranking model called TextRank for keyword and sentence extraction in the 

domain of natural language processing. In the TextRank model, each word is 

modelled as a vertex, and the edges in graph represent the concurrence of words 

in the document. Jeh and Widom (2003) introduce the personalized PageRank 

vector into the original model and propose a personalized version of PageRank, 
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which is able to capture user preference. FolkRank, proposed by Hotho et al. 

(2006), is an adaption of the PageRank algorithm for folksonomy ranking and 

searching. FolkRank employs a differential approach to compute FolkRank 

score by taking the difference between the personalized PageRank score and the 

original PageRank score. 

Our proposed method combines and adapts TextRank and FolkRank in the 

context of mobile app functionality prediction, and we call it AppRank. The 

details of our adaption will be provided in the ensuing sections. 

5.3. Intuition and Overview 

We are interested in helping mobile app users discover new functionalities they 

may need, and recommending apps that can truly meet their requirements. Our 

proposed method is motivated by users’ real-life behavior of selecting mobile 

apps. When choosing an app to install, a user usually first considers whether the 

app provides the functionalities he/she needs by reading the app’s description. 

If there are many alternatives providing similar functionalities, the user may try 

each of them and evaluate them on other non-functional aspects (e.g. UI design, 

ease of use, power consumption), and then select the most preferred one to use. 

At a high level, our method automates this process through three main steps: (1) 

knowing all the functionalities provided by the apps that a user has been using; 

(2) predicting what other functionalities this user may need; and (3) helping the 



 

98 

 

user select better apps providing these desired functionalities. 

For example, let’s assume that the target user has installed an app providing 

weather forecast and airline information in his/her mobile phone. By analyzing 

other users’ usage patterns, we find that users who use apps providing weather 

forecast or airline information may also use apps providing navigation that the 

target user has not installed. We then select a set of apps providing navigation 

as recommendation candidates. To avoid generating redundant 

recommendations, we rank the candidate apps providing similar functionalities 

and only select the top one that has the best quality as recommendation.  

One of the most outstanding features that differentiate our method from 

existing works is that we generate recommendations at the functionality level, 

truly capturing users’ functional requirements. To achieve our goal, the most 

important problem we need to solve is obtaining the functionalities of each app. 

An intuitive solution is to extract app functionalities from their textual 

descriptions. But we quickly realize that descriptions are short texts wherein 

functionalities may not be repeatedly stated. Most of the traditional keyword 

extraction techniques (usually based on term frequency) are designed for long 

articles, which may not be effective when applied to app descriptions. 

Fortunately, researchers have found that item features are frequently mentioned 

in customer reviews (Hu and Liu 2004). This motivates us to obtain app 

functionalities from user reviews. However, it is common to have user reviews 
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containing a lot of noisy content that is not relevant to the app functionalities. 

In order to filter out noisy content, we propose to use the apps’ description 

content as a reference to construct a vocabulary, and perform frequency analysis 

on the user reviews, which helps to extracting high quality feature words and 

phrases related to the app functionalities. Next, after acquiring the app 

functionalities, we propose a graph-based ranking method to discover new 

functionalities for the users by propagating their requirements in a functionality 

co-occurrence graph. We also intelligently filter out apps with overlapping 

functionalities, therefore capturing user requirements and addressing the 

redundancy problem. The details of our proposed solution will be introduced in 

the following section. 

5.4. Solution Details 

App Data Crawler
Functionality 

Extractor
App Recommender

Web Crawling

Content Extration

Vocabulary 
Construction

Frequency 
Analysis

Text 
Preprocessing

Graph 
Construction

Functionality 
Prediction

Candidate Set 
Ranking 

App Store

 

Figure 5.1.  App Recommendation Architecture 

In this section, we will first show the architecture of our proposed solution, 

followed by the details of each component in the architecture. 
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Our proposed app recommendation architecture is shown in Figure 5.1. 

There are three main components in the architecture: App Data Crawler, 

Functionality Extractor and App Recommender. We use the App Data Crawler 

to collect app descriptions and corresponding user reviews. From the collected 

data, app functionalities are then extracted by the Functionality Extractor. 

Finally, the App Recommender predicts new functionalities for the user, selects 

candidate apps to recommend, and intelligently filters out apps with overlapping 

functionalities. More details of each component will be given in the ensuing 

sections. 

 

Figure 5.2.  User Reviews in Apple App Store 
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5.4.1. App Data Crawler 

The main task of the crawler is to collect web pages containing app descriptions 

and user reviews from the app store. Figure 5.2 shows one of the app web pages. 

Since the needed content is embedded in HTML files, we develop an extractor 

to extract the textual content of app descriptions and user reviews. User ratings 

associated with reviews are also isolated. 

5.4.2. Functionality Extractor 

Text Preprocessing. The inputs of the Functionality Extractor are the textual 

content of each app’s descriptions and user reviews. We use the Stanford Core 

Natural Language Processing toolkit7 to perform text preprocessing, including 

tokenization (breaking up text into words), Part-of-Speech (POS) tagging (e.g., 

noun, verb, adjective), lemmatization (converting words to their based forms, 

e.g. “emails” and “emailing” are converted to “email”), and removing stop 

words (i.e. non-content words that appear too frequently in all apps, like “a”, 

“the”). 

Vocabulary Construction.  In order to get rid of noisy content that is irrelevant 

to app functionalities in user reviews, we need to control the size of the 

vocabulary. Although app descriptions may be too short for functionality 

extraction, the vocabulary used in app description is more formal and more 

                                                 

7 http://nlp.stanford.edu/software/corenlp.shtml 
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relevant to app functionality. It turns out that the app description can be a good 

source for constructing a vocabulary. After looking at the data, we notice that, 

most app functionalities are in the form of single nouns (e.g. navigation), noun 

phrases (e.g. flight information) and verb-object phrases (e.g. read book). We 

then aggregate all app descriptions from which we only keep the single nouns, 

two-gram nouns and two-gram verb-object phrases in the vocabulary. We refer 

to a single word or a 2-gram phrase in the vocabulary as a functional aspect. We 

also remove those aspects that are too rare, i.e. appearing less than 10 times, 

from the vocabulary. We believe the constructed vocabulary is able to cover 

most functional aspects of apps. 

Frequency Analysis. In this step, we perform frequency analysis on the app 

descriptions and user reviews, and extract the most frequently mentioned 

functionalities for each app. We denote the vocabulary as V. For each aspect

w V , we calculate its weight that indicates its representativeness of app a as: 

, , ,( l) og .w a w a w a

w

N
Weight m dsf rvf

af
   

where dsfw,a is the frequency of aspect w in app a’s description; and rvfw,a is the 

number of app a’s user reviews that mention aspect w. log
w

N

af
 is the inverse 

app frequency that indicates the aspect’s discriminating power, where N is the 

total number of apps, and afw is the number of apps that contain aspect w.  
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The proposed aspect weighting scheme uses a linear combination of the 

description frequency dsf and the review frequency rvf, and multiplies dsf by m 

to emphasize those aspects appearing in the description. Actually we can regard 

the app description as an important piece of review. If an aspect is mentioned 

one time in the description, it is as important as being mentioned by m users. 

We use the number of reviews that contain the aspect instead of using the 

frequency of the aspect in all reviews, because we believe an aspect mentioned 

by 10 users is more important than an aspect mentioned 10 times by one user. 

The proposed weighting scheme is able to consider the situation where the user 

reviews are not sufficient. When the number of reviews is less than m, dsf 

dominates the aspect weight, therefore avoiding bias caused by a small number 

of reviews. Similarly, if an app’s description is extremely short and does not 

contain informative content, rvf allows us to find out frequently mentioned 

functional aspects that are not explicitly stated in the description (i.e. dsf is zero). 

After frequency analysis, we are able to obtain the functional aspects for 

each app by selecting the top 50 aspects having the highest weights. 

5.4.3. App Recommender 

Graph Construction. One of the main tasks of the recommender is to predict 

new functionalities for the target user. We employ a graph-based ranking 

approach which is able to propagate users’ functional requirements in the 
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functionality graph. The first step is to construct the functionality graph that 

captures the co-occurrence of functionalities based on global usage patterns 

from all users.   

Let G=(V, E) be a directed graph with a set of vertex V and a set of edges 

E. A vertex Vw denotes a functionality w, and an edge Ei,j from vertex i to j denote 

an association from functionality i to functionality j, which means if i appears, 

j usually appears as well. We use a directed graph instead of an undirected one 

because association between two functionalities is asymmetric. For example, 

users who need navigation may also need weather forecast, but users who need 

weather forecast may not need navigation.  

We use the well-known constraints in association rule mining, i.e. support 

and confidence, to determine whether to add an edge into the graph or not. 

Support is a measure of usefulness of the association. An association having too 

low support may happen just by chance. In our context, support of an association 

i j  is defined as: 

( , )
( ) .

U i j
Support i j

U
   

where |U(i,j)| is the number of users who install apps with functionality i and 

apps with functionality j, |U| is the total number of users. We are interested in 

the association of functionalities in different apps but not in the same app. If a 

user installs only one app with both functionality i and j, he will not be included 
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in U(i,j). A support value of 0.4 means that 40% of the users have both 

functionality i and j in their mobile devices. 

Confidence is a measure of certainty of the association. Confidence of the 

association i j  can be regarded as the conditional probability of P( j | i ). 

In our context, it is defined as: 

( , )
( ) .

( )

U i j
Confidence i j

U i
   

where |U(i,j)| is the number of users who install apps with functionality i and 

apps with functionality j, |Ui| is the number of users who install apps with 

functionality i. A confidence value of 0.4 means that among the users who have 

functionality i in their mobile devices, 40% of them also have functionality j in 

their mobile devices. 

An edge Ei,j is added into the graph if the association i j  satisfies both 

a minimum support threshold and a minimum confidence threshold, which is 

0.1 and 0.4 respectively in our implementation. 

Functionality Prediction. With the constructed functionality graph, we are able 

to make predictions of new functionalities for a given user. Similar to Jeh and 

Widom (2003), we follow a two-stage random walk process to propagate user 

requirements to new functionalities. At the first stage, we run the original 

PageRank random walk model on the functionality graph. Let In(Vj) be the set 
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of vertexes pointing to Vj, and Out(Vi) denote the set of vertexes pointed by Vi. 

The score of each vertex j at the first stage is given by: 

( )

( )
( ) (1 ) ( ) .

( )
i j

i
j j

V In V i

PR V
PR V d p V d

Out V

       

where a user follows the association to install a functionality with probability d, 

and jumps to a completely new functionality with probability 1-d. In our 

implementation, we use the same value of d as the original model, which is 0.85. 

p(Vj) indicates the user’s preference for functionality Vj. At the first stage, we 

run the non-personalized PageRank, so p(Vj) is set to 1 for every vertex. We 

iterate the computation of PR score for each vertex until it converges.  

The PR scores given at the first stage indicate how often each functionality 

co-occurs with other functionalities. However, what we want to know is how 

the user requirements may flow to other vertex along the edges of the graph. 

Therefore, at the second stage, we run the personalized PageRank, in which p(Vj) 

is given a large value (we set it as |V|) if the functionality Vj has been used by a 

user. Similarly, we iterate the computation of the personalized score PR’ (Vj) for 

each vertex Vj until it converges. Then we employ a differential approach to 

obtain PR : 

( ) ' .jPR V PR PR    

 PR  indicates the weights propagated from the functionalities that have 
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been used by the user. It can be regarded as a measure of how likely the user 

needs the new functionalities. In next section, we will introduce how to utilize 

PR  in app recommendation. 

Candidate Set Ranking. With PR , we are able to predict new functionalities 

for a given user, and then retrieve candidate apps that contain these new 

functionalities. However, the candidate set generated in this way may contain 

many apps with overlapping functionalities. To avoid redundant 

recommendations, we need to rank apps from the candidate set, with two 

objectives: (a) to promote apps with better quality; (b) to promote apps 

providing more functionalities needed by the user.  

To achieve these objectives, we come up with a competition mechanism to 

distribute PR of all functionalities to the apps that provide these functionalities. 

First, for each functionality, we search for all apps that provide this functionality. 

Second, we rank these app based on the number of users who have installed 

them, and only the one that has the highest ranking can be awarded the PR  of 

the functionality. Here our assumption is, if two apps provide similar 

functionalities, the one installed by more users usually has better quality. Finally, 

for each app, we aggregate the PR  it wins from all functionalities it provides, 

to obtain the AppRank Score, that is: 

( ) ( ).
i a

a i

V Win

AppRank App PR V


   
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where Wina is the set of functionalities for which Appa ranks higher than other 

apps.  

We select the top K apps that have the highest AppRank scores as 

recommendations. Our completion mechanism allows only one app to obtain 

the PR for each new functionality, therefore avoiding redundant 

recommendations. The AppRank score uses the summation of PR  from 

different new functionalities, which gives priority to the apps that provide more 

needed functionalities. 

5.5. Experiment and Results 

In this section, we describe the experiment we conducted to evaluate the 

effectiveness of our proposed solution. First, we introduce the evaluation 

metrics used in the experiment. Then we describe the experiment setup. Finally, 

we will report the results, including functionality extraction, impact of sparsity, 

ranking accuracy, and recommendation diversity. 

5.5.1. Evaluation Metrics 

To evaluate our proposed method, we compare our method with other state-of-

the-art recommendation techniques on several evaluation metrics. Specifically, 

we will evaluate the ranking accuracy and recommendation diversity. For 

ranking accuracy, we use two metrics. The first one is Recall@k, which is 

defined as: 
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#liked items in top  recomendations
@ .

#liked items

k
Recall k   

For ranking accuracy, recall is usually measured with another metric – 

precision, which indicates what proportion of recommended items are liked by 

the users. However, since most items are unrated, it is hard to say whether the 

users dislike the unrated items, or they just do not know these items. Therefore, 

we only use the recall which we think is more pertinent, since it only considers 

the liked items. 

In addition to Recall@k that measures the ranking accuracy for the top N 

recommendations, we use another measure — NDCG (Herlocker et al. 2004) to 

evaluate the overall ranking accuracy. NDCG is defined as: 

,

1

1 2 1

log(1 )

u pr
m

uu U p
NDCG Z

U p 





  . 

where U is the set of users; Zu is a normalization factor to guarantee that for 

perfect ranking the NDCG value is 1; p is the position of the recommended item 

in the list; m is the size of candidate items; and ru,p is the rating given by the 

user u to the item at position p. 

Recommendation diversity is measured as 1 minus Intra-List Similarity 

(Järvelin and Kekäläinen 2002) that is defined as: 

,
( , )

.
2

i a i b i b a
a bRec Rec r Rec r Rec r r

Sim r r
ILS

Rec

   

  
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where Rec is the set of recommended items to all users; Reci is the list 

recommended items for user i; ra and rb are two different items in user i’s 

recommendation list; and Sim(ra, rb) measures the content similarity between 

item ra and rb, which is the proportion of overlapping functional aspects of two 

apps in our implementation. 

5.5.2. Experiment Setup 

The data we use in the experiment is crawled from the Apple App Store (U.S.)8. 

We construct the vocabulary based on the textual descriptions of 10530 popular 

apps evenly distributed in 22 categories. The constructed vocabulary contains 

20690 words and phrases. Our constructed dataset for evaluation contains 

66543 ratings on a scale of 1-5 given by 1879 users to 2213 apps. The sparsity 

level (i.e. the percentage of empty entries in the user-app rating matrix) of the 

dataset is 98.39%. 1202 of the apps in the dataset are free, and the remaining 

1101 apps are paid. The distribution of app categories in our dataset is shown in 

Figure 5.3. In the dataset, each user has rated at least 5 free apps and 5 paid apps. 

On average, each user has rated 20 free apps and 15 paid apps. For each app in 

the dataset, we collected a maximum of 500 user reviews. On average, each app 

had 442 reviews. 

                                                 

8 https://itunes.apple.com/us/genre/mobile-software-applications/id36?mt=8 
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Figure 5.3. App Category Distribution 

5.5.3. Experiment Results 

Table 5.1. Extracted Functionalities 

App Name Functionalities 

Dropbox 
doc, file, space, photo, video, computer iphone, access file, share link, 

access photo, video device, share photo, attachment 

WhatsApp 
message, massager, chat, group, contact, friend, address book, chat history, 

friend world, send message, group chat, voice note 

Kindle 
book, newspaper, textbook, magazine, reader, bookmark, reading, reading 

experience, book mark, read book, pdf, dictionary 

Gmail 
mail, google, conversation, inbox, receive email, account support, 

attachment, get notification, account, mail app, contact, send email 

YouTube 
video, playlist, google, video playlist, list search, watch video, watch list, 

share video, channel, search video, share friend, entertainment 

Qualitative Results for Functionality Extraction. To investigate the 

effectiveness of our method for extracting app functionalities, we select 5 

popular apps and for each app, we only list the top 12 extracted functionalities 

using our method. The qualitative results are shown in Table 5.1.  
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From the results, we can see that most of the extracted functionalities are 

meaningful and reasonable. The quality of the extracted functionalities plays an 

important role in the whole solution, since the functionalities are the basis of 

further analysis for recommendation. The results show that our proposed 

method is effective in extracting app functionalities of good quality from user 

reviews, which guarantees the effectiveness of the whole solution. 

Impact of Sparsity. In this experiment, we compare our method with other 

baseline methods for generating the top N recommendations using different 

training-test ratios. The baseline methods we compare with are: User-Based CF 

(UCF) (Resnick et al. 1994), Item-Based CF (ICF) (Sarwar et al. 2001), 

Content-based Filtering (CB), Non-negative Matrix Factorization (NMF) (Lee 

and Seung 1999), Regularized Singular Value Decomposition (RSVD) and its 

variant SVD++ (Paterek 2007). These methods are commonly selected for 

comparison in recommendation research.  

We introduce a variable tp to indicate what percentage of the rating data is 

used as test set. For example, tp=10% indicates 10% of the data is used as test 

set, and the remaining 90% of the data is used as training set. A rating in the test 

set is converted into “like” if its value is larger than 3. We fix N=100, and vary 

the percentage of the test data tp=10%, 20%, …, 90%. The corresponding recall 

values are shown in Figure 5.4.  
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Figure 5.4. Comparison of Recall@100 with Different tp  

(Higher recall indicates higher accuracy) 

From the results, we find that the recall of all methods is generally low.  

One possible explanation for the low recall is that we tend to select active users 

when we construct the dataset, since we need a relatively dense dataset for 

evaluation, otherwise the results are very unstable. Some of these active users 

are app players, i.e. people who would like to try different kinds of apps for no 

particular reason, and therefore it is very difficult to predict their interests and 

requirements. In spite of the low recall, the results are still valid for showing the 

effectiveness of our proposed method when we look at the relative values. 

The results show that our proposed AppRank method is less sensitive to 

training-test ratio compared to other methods, and it always outperforms other 
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methods on all tp values. As tp increases, less data is used for training, which 

means the sparsity level of the training set increases as well. Therefore, the 

results also show that our method is less sensitive to data sparsity, and its 

improvement is more salient in extremely sparse settings. Specifically, when 

tp=90%, our AppRank method increases the recall of the second best method, 

i.e. CB, from 0.12 to 0.23. The results prove the effectiveness of our AppRank 

method in alleviating data sparsity. 

 

Figure 5.5. Comparison of Recall@N  

(Higher recall indicates higher accuracy) 

Comparison of Top N Recommendations. In this experiment, we fix the tp to 

60%, where most methods have high recall, and vary the number of 

recommended apps N=10, 20, …, 100 to compare the recall of different 

methods for the top N recommendations. The results of the comparison in Figure 
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5.5 show that the recalls of all methods increase along with the N, and the recall 

of our method outperforms all other methods for different N. The results prove 

that our AppRank method has significant improvement on ranking accuracy for 

the top N recommendations.  

Comparison of Overall Ranking. In this experiment, we still fix the tp to 60% 

and compare the NDCG values of different methods to investigate the 

correctness of overall rankings for all candidate items. From the results shown 

in Figure 5.6, we can see that our proposed AppRank method has the highest 

NDCG value, and it increases the NDCG value of the second best method, i.e. 

RSVD, by 14.27%. The results prove that our method is effective in improving 

the correctness of the overall ranking for all candidate apps.  

 

Figure 5.6. Comparison of NDCG  

(Higher NDCG indicates higher accuracy) 
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Comparison of Recommendation Diversity. We find that at less sparse settings, 

generally all methods are able to generate diverse recommendations. However, 

when the training data becomes sparse, the diversity of some methods drops 

down. We set tp=90%, and compare the diversity of the top 5 and top 10 

recommended apps of different methods. The results are shown in Figure 5.7. 

From the results, we can see that the diversity of the top 5 and top 10 

recommended apps generated by our method remains high, which is 0.9913 and 

0.9916 respectively. However, for UCF, ICF and CB, the diversity is 

significantly lower. For instance, the diversity of the top 5 and top 10 

recommended apps generated by UCF is only 0.8715 and 0.9164 respectively. 

The results prove that our method is less sensitive to data sparsity in terms of 

recommendation diversity. 

 

Figure 5.7. Comparison of Diversity 

（Higher Diversity indicates better result） 
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Comparison between Free and Paid Apps. In this experiment, we split the 

dataset into two subsets. One subset only contains free apps and another only 

contains paid apps. We set tp=60% and compare Recall@100 of different 

methods on these two subsets as well as the whole dataset respectively. The 

results are shown in Figure 5.8. From the results, we find that for all methods, 

the recall values for both free app and paid app subsets are higher than for the 

whole dataset. This implies that users’ interests and requirements are easier to 

predict within free apps and paid apps. Moreover, the recall values for the paid 

app subset are higher than for the free app subset. This is reasonable since users 

will consider more about what they need when they are installing paid apps, 

therefore it is easier to capture their requirements. On either the free app or paid 

app subset, our proposed AppRank method outperforms all the other methods. 

 

Figure 5.8. Comparison of Recall@100 for Free and Paid Subsets 

(Higher Diversity indicates better result) 
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5.6. Conclusion 

In this study, we propose a functionality-based mobile app recommendation 

architecture. Our method recommends apps by revealing the detailed 

functionalities of apps and truly capturing users’ functional requirements, which 

have not been considered by existing works. Furthermore, we prove that user 

reviews can be used to enrich item information and can be incorporated to 

enhance recommendation. The experiment conducted on a real-world dataset 

shows that our proposed AppRank method is effective in alleviating the data 

sparsity problem, and it is able to significantly improve recommendation 

accuracy and diversity. 

Our work not only provides theoretical contributions to recommendation 

literature, but has practical implications as well. The proposed solution can be 

implemented as an effective real-world app recommender system helping users 

to discover apps that meet their requirements. The recommended apps would be 

more accurate, more diverse, and have less overlapping functionalities. 

Our solution has some limitations. First, when ranking the candidate apps 

with similar functionalities, we simply use the apps’ rating counts. In future 

work, it is possible to extract other non-functional aspects from user reviews, 

which can be incorporated in the ranking process to enable a personalized 

ranking approach. Second, as the rating data were collected from active users in 
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the evaluation, it may have some selection bias. This can be addressed in future 

work by collecting users’ real usage data. Third, our method focuses more on 

the apps providing functionalities for users. However, there are also apps that 

may not be functionality-oriented, e.g. games. In future work, we will 

investigate the impact of product category on user requirement modeling, and 

extend our work by coming up with strategies to capture user requirements by 

differencing utilitarian and hedonic products. 
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CHAPTER 6.  CONCLUSION 

This thesis aims at addressing the data sparsity problem, which is one of the 

hardest problems affecting virtually all kinds of recommender systems. To 

achieve this goal, we propose to extract and incorporate meta-data from free-

text User-Generated Content (UGC) into the recommendation process, seeking 

to make a difference to the quality, including accuracy, coverage, diversity and 

transparency of traditional recommendation algorithms.  

This thesis consists of three different studies, each of which proposes a 

recommendation solution that incorporates UGC from different perspectives, 

and addresses specific problems introduced by data sparsity in different contexts.  

In particular, in study one, we show that adjective features embedded in user 

reviews are useful for characterizing item features as well as user tastes. In study 

two, we propose to model critic review articles at the topic level and use the 

inferred topics to represent item features and user interests. In study three, by 

extracting aspects from user reviews, we aim at building a mobile app 

recommendation solution that is able to model apps at the functional level and 

to recommend diverse mobile apps without redundancy. 

There are several important contributions made by this thesis. First, it is 

proven in this thesis that UGC is a promising source for improving 

recommendation. Second, the adaptions of feature extraction techniques in this 
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thesis have implications for both UGC and RS research. Third, this thesis comes 

up with novel techniques to utilize textual content in the recommendation 

process, which fills the gap between UGC research and RS research. 

This thesis also motivates several promising directions for future research. 

First, UGC is a valuable source for recommendation as well as many other 

applications. Beside the aspects used in this thesis, there are many types of 

information embedded in UGC that can be further explored. It is worthwhile to 

continue mining the value of UGC in future work. Second, cross-domain 

recommendation is still a challenging task in the present day. With the rapid 

growth of online review platforms, UGC is becoming increasingly available for 

most consumer products. It is interesting to see if UGC can act as a bridge to 

link different domains where no overlaps can be found in other dimensions, 

making cross-domain recommendation possible. Third, though it may appear 

that different strategies should be applied when recommending utilitarian versus 

hedonic products; however, in real-life systems, it is common that the same 

strategy is used in recommending the two types of products, because existing 

work might have difficulty in differentiating between them. In future work, it 

will be meaningful to explore how UGC can help to reveal the utilitarian and 

hedonic characteristics of products. 
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