

USING META-DATA FROM FREE-TEXT USER-

GENERATED CONTENT TO IMPROVE

PERSONALIZED RECOMMENDATION BY

REDUCING SPARSITY

XU XIAOYING

(B.Eng. (Hons.), South China University of Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INFORMATION SYSTEMS

NATIONAL UNIVERSITY OF SINGAPORE

2015

I

DECLARATION

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

__

Xu Xiaoying

28 May 2015

II

ACKNOWLEDGEMENTS

My deepest gratitude goes first and foremost to Professor Anindya Datta, my

supervisor, for his constant guidance and encouragement. This thesis could not

have been accomplished without his illuminating instruction. The days working

with him have become a memorable journey in my life.

Second, I would like to express my heartfelt gratitude to my dear friends

and my fellow classmates in NUS who gave me the kindest help. I will never

forget the days spent with them.

Last I want to thank my beloved parents and girlfriend, for their loving

consideration and great patience in the past few years. I dedicate this thesis to

them.

III

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

1.1. Overview of Recommender Systems... 1

1.2. Problem Description .. 2

1.3. Motivation and Research Focuses ... 4

1.4. Contribution ... 7

1.5. Organization of Thesis ... 9

CHAPTER 2. LITERATURE REVIEW ... 10

2.1. Collaborative Filtering (CF) Recommendation 10

2.1.1 Memory-Based CF ... 10

2.1.2 Model-Based CF .. 11

2.1.3 Graph-Based CF .. 12

2.2. Content-Based (CB) Recommendation .. 13

2.3. Social-Network-Based (SNB) Recommendation 15

2.4. User-Generated-Content (UGC) in Recommendation 16

CHAPTER 3. STUDY ON ADDRESSING SPARSITY AND

TRANSPARENCY ISSUES IN RECOMMENDER SYSTEMS BY

USING ADJECTIVE FEATURES FROM USER REVIEWS 19

3.1. Introduction .. 19

3.2. Related Work .. 22

3.2.1. Adjective Extraction ... 23

3.2.2. Singular Value Decomposition ... 24

3.3. Intuition and Overview .. 25

3.4. Solution Details .. 27

3.4.1. Review Crawler .. 28

3.4.2. POS Tagger .. 29

IV

3.4.3. Feature Extractor ... 30

3.4.4. Vector Generator .. 34

3.4.5. Movie Recommender .. 37

3.4.6. User Recommender .. 38

3.5. Experiment and Result ... 40

3.5.1. Evaluation Metrics ... 40

3.5.2. Experiment Results... 42

3.6. Conclusion ... 54

CHAPTER 4. STUDY ON USING CRITIC REVIEWS TO BOOST

NEW ITEM RECOMMENDATION ... 57

4.1. Introduction .. 57

4.2. Related Work .. 61

4.2.1. Partially Labeled Dirichlet Allocation 62

4.2.2. Non-negative Matrix Factorization 63

4.3. Intuition and Overview .. 64

4.4. Solution Details .. 66

4.4.1. Crawler .. 67

4.4.2. Topic Modeler .. 68

4.4.3. Profile Learner ... 71

4.4.4. Recommender ... 74

4.5. Experiment and Results.. 75

4.5.1. Evaluation Metrics ... 76

4.5.2. Experiment Setup ... 77

4.5.3. Experimental Results ... 78

4.6. Conclusion ... 86

CHAPTER 5. STUDY ON FUNCTIONALITY-BASED MOBILE APP

RECOMMENDATION BY IDENTIFYING FUNCTIONAL ASPECTS

FROM USER REVIEWS .. 89

V

5.1. Introduction .. 89

5.2. Related Work .. 94

5.2.1. Mobile App Recommendation .. 94

5.2.2. PageRank-Based Methods ... 96

5.3. Intuition and Overview .. 97

5.4. Solution Details .. 99

5.4.1. App Data Crawler .. 101

5.4.2. Functionality Extractor .. 101

5.4.3. App Recommender ... 103

5.5. Experiment and Results.. 108

5.5.1. Evaluation Metrics ... 108

5.5.2. Experiment Setup ... 110

5.5.3. Experiment Results... 111

5.6. Conclusion ... 118

CHAPTER 6. CONCLUSION ... 120

BIBLIOGRAPHY .. 122

VI

SUMMARY

Recommender Systems (RS) have become increasingly essential in many

domains for alleviating the “information overload” problem, but existing

recommendation techniques suffer from the sparsity problem due to insufficient

input data.

In this thesis, we aim at extracting and incorporating meta-data from free-

text User-Generated Content (UGC) to lessen the effects of sparsity and

therefore improve the quality of recommendation. We achieve this goal by

conducting three different studies, each of which proposes a recommendation

solution that incorporates UGC from different perspectives, and addresses

specific problems introduced by data sparsity in different contexts.

In particular, in study one (Chapter 3), we show that adjective features

embedded in user reviews are useful for characterizing movie features as well

as user tastes. We extend the standard TF-IDF term weighting scheme by

introducing Cluster Frequency (CLF) to automatically extract high quality

adjective features from user reviews, and incorporate the extracted adjective

features into a specific recommendation technique, i.e. Singular Value

Decomposition (SVD) to show effectiveness.

In study two (Chapter 4), we show that critic reviews of the items can be

used to boost new item recommendation. We collect critic review articles for

VII

corresponding items in recommender system, and employ topic model to

quantify the textual content. We adapt Non-negative Matrix Factorization (NMF)

to incorporate the topics inferred from the critic reviews for recommendation,

aiming at addressing the new item recommendation problem.

Study three (Chapter 5) focuses on extracting functional aspects from user

reviews for mobile app recommendation. With the extracted functional aspects,

we are able to analyze user requirements at the functional level. We propose a

graph-based ranking algorithm to predict new functionalities for users, and

devise a competition mechanism to filter redundant recommendations. Our

proposed solution is effective in improving stability against data sparsity and

increasing the accuracy and diversity of mobile app recommendation.

VIII

LIST OF TABLES

Table 3.1. Movie and User Feature Vectors…………………...….………….34

Table 3.2. User-Item Partial Interaction Effect…....………………………….38

Table 3.3. User-User Partial Interaction Effect………………………………39

Table 3.4. Statistics of Rating Data..43

Table 3.5. Statistics of Review Data...43

Table 3.6. Explanation for Item Recommendation...50

Table 3.7. Explanation for User Recommendation..54

Table 4.1. Examples of Topics...69

Table 4.2. Examples of Movie Topic Distribution...71

Table 4.3. Examples of Vectors..75

Table 4.4. Comparison of Prediction Errors (MAE)..83

Table 4.5. Comparison of Ranking Accuracy (NDCG@k)..............................84

Table 4.6. Comparison of New Item Recommendation (NDCG@k)..............86

Table 5.1. Extracted Functionalities...111

IX

LIST OF FIGURES

Figure 3.1. Recommendation Architecture...27

Figure 3.2. IMDb User Review Page...29

Figure 3.3. Correlation between Sparsity and tp..44

Figure 3.4. Impact of Sparsity..45

Figure 3.5. Rating Prediction Accuracy..48

Figure 3.6. Item Space Coverage...49

Figure 3.7. Average Interest Similarity...52

Figure 3.8. User Space Coverage...53

Figure 4.1. Proposed Architecture..66

Figure 4.2. Comparison of MAE..80

Figure 4.3. Comparison of Efficiency..81

Figure 5.1. App Recommendation Architecture...99

Figure 5.2. User Reviews in Apple App Store...100

Figure 5.3. App Category Distribution...111

Figure 5.4. Comparison of Recall@100 with Different tp.............................113

Figure 5.5. Comparison of Recall@N..114

Figure 5.6. Comparison of NDCG...115

Figure 5.7. Comparison of Diversity..116

Figure 5.8. Comparison of Recall@100 for Free and Paid Subsets...............117

1

CHAPTER 1. INTRODUCTION

1.1. Overview of Recommender Systems

Recommender systems (RS) are well-known artifacts in consumer marketing,

having been utilized to great commercial success in iconic technological

companies like Amazon, TiVo and Netflix. Commensurate with their market

impact, RS technology has enjoyed (and continues to enjoy) much attention

from scientists and researchers. Over the past decade, numerous papers have

been published, systems have been released and entire top-rated conferences

have been established, backed by leading scientific and technological

associations, on RS research. Suffice to say, in the domain of data mining,

knowledge discovery and information retrieval, recommender systems stand out

as one of the most prominent examples of the real-life impact of academic

research.

Given the relatively long history of this field, many different paths have

been followed to create a variety of RS, albeit with the same end-goal –

recommending objects of interest to a user. At a high level, and based on the

types of technique and data it uses to generate recommendations, RS may be

classified into three main streams, i.e. Collaborative Filtering (CF), Content-

Based (CB) and Social-Network-Based (SNB).

Among these recommendation techniques, CF is the most common form

2

of recommender system used in practice. The basic idea of CF is to recommend

items, that similar users (i.e. “neighbors” of the target user) like, to the target

user (Resnick et al. 1994; Sarwar et al. 2001). The success of CF is due to its

compelling simplicity and high quality of recommendations.

Differing from CF, another stream of recommendation algorithms, i.e. CB

recommendation, aims to recommend items similar to what the target user has

liked in the past, based on similarities in content(Lops et al. 2011; Pazzani and

Billsus 2007).

In recent developments, boosted by the popularity of social network, SNB

recommendation has been proposed (Cai et al. 2011; Groh et al. 2012). The

intention of SNB is to replace rating-similarity-based neighborhoods in CF with

sub-graphs of the user’s social network, motivated by the fact that “people

prefer recommendations from people they know” (Bonhard and Sasse 2006).

1.2. Problem Description

In spite of its popularity, RS still faces many challenges (Adomavicius and

Tuzhilin 2005). Arguably, the most major and challenging weakness that

permeates virtually every flavor of RS is the problem of sparsity. Sparsity refers

to the insufficiency of input data into recommendation algorithms.

The most common RS, Collaborative Filtering (CF) systems (powering

virtually all commercial systems today), rely heavily on user ratings.

3

Unfortunately, in most domains studied (movies, books, restaurants etc.), a

majority of items turn out to be unrated, resulting in sparse rating matrices

(matrices with insufficient data), which adversely impact the quality of

recommendations (Adomavicius and Tuzhilin 2005; Su and Khoshgoftaar

2009). The sparsity problem assumes special significance in emerging, high-

impact product segments like mobile applications for smart devices, where the

cardinality of the underlying domain is of a higher order of magnitude than

movies, for example.

The other broad class of RS, Content-Based (CB) systems, suffers not only

from rating sparsity, but also from feature, or attribute, sparsity. In the example

of movies, the idea is to translate a user’s rating into a set of feature preferences.

For instance, if User A has rated the movie Argo highly, the system might

assume that the user is expressing a preference for the director, genre and

performers of Argo. Clearly, this suffers from the same issue of rating sparsity

as in CF techniques, but in addition, it must restrict its judgment based on a

small number of features typically selected for media objects (e.g., director,

genre and performer for movies; singer, songwriter and composer for music;

etc.).

The sparsity problem is compounded for Social-Network-Based (SNB)

systems, where the quality of SNB approaches is strongly affected by network

density. A well-connected user network is vital and essential for such

4

approaches to ensure the quality of recommendations. However, in reality, user

connections are usually very sparse, especially when the social network has

been newly introduced into the system.

As a fundamental problem, data sparsity not only lowers the accuracy of

recommendations, but also brings up many other subsequent problems in RS

such as low coverage, low transparency and low diversity (Adomavicius and

Tuzhilin 2005). To address these problems, it is worthwhile to target this issue

of data sparsity.

To conclude, although existing recommendation algorithms have achieved

some degree of success, there exist substantial opportunities for further

improvements. One promising approach to improve existing methods is to

alleviate data sparsity by exploring other valuable data. Therefore, the general

research question of our studies is: What kind of external data can be used, and

how to incorporate such supplementary data into RS, to ameliorate data sparsity?

1.3. Motivation and Research Focus

In this context, our goal is to create general recommendation solutions that

would ameliorate problems introduced by data sparsity to improve the quality,

including the accuracy, coverage, diversity and transparency of traditional

recommendation algorithms.

We embark on this journey motivated by a simple intuition – intelligently

5

incorporating informative content might allow for gauging the taste of a user,

which in turn might allow us to make intelligent data-based estimations of the

user’s preference for products, thereby reducing sparsity. We start off by

exploring possible data to incorporate, and immediately notice an interesting

phenomenon: a readily available source of information for many consumer

products (movies, books, hotels, electronic products, mobile apps) is User-

Generated Content (UGC).

UGC may appear in different forms on the Internet. Currently, there is no

standardized definition of UGC. In our context, similar to (Clever et al. 2009),

UGC refers mainly to textural content created and published by online users on

the consuming end. More specifically, it can be in the form of customer reviews

and feedback text, or critic reviews for consumer products.

To achieve our goal, we conduct three different studies, each of which

proposes a recommendation solution that incorporates UGC from different

perspectives, and addresses specific problems introduced by data sparsity in

different contexts. Specifically, the focus of each of the three studies is briefly

described below.

In study one, we intend to show that adjective features embedded in user

reviews are useful for characterizing movie features as well as users’ taste, and

can be employed by recommendation techniques to address sparsity and

6

transparency issues. We employ Part-of-Speech (POS) tagging and introduce

Cluster Frequency (CLF) into the traditional TF-IDF term weighting scheme to

extract adjective features from external user reviews, relieving the problem of

diverse vocabulary, and balancing the representativeness and generalizability of

the extracted features. We also incorporate the extracted adjective features into

a specific recommendation technique, i.e. Singular Value Decomposition (SVD),

to illustrate the effectiveness of using adjective features.

In study two, we propose a novel content-based recommendation solution.

A distinct feature of our method is that it incorporates the topics inferred from

external critic reviews to boost recommendations for new items. We employ an

advanced semi-supervised topic modeling approach, i.e. Partially Labeled

Dirichlet Allocation (PLDA), which is able to uncover globally-shared latent

topics, as well as topics under each well-structured item attribute, to learn and

infer the topic distribution of critic reviews. We also adapt Non-negative Matrix

Factorization (NMF) to our context by redefining the error function to fully

utilize user ratings and the topic distribution of critic reviews. The topics

inferred from critic reviews are better representations of the items, since they

cover more characteristics of the items and reflect more aspects of user tastes.

By fully utilizing user ratings and the inferred topics, our method alleviates the

dependency on user ratings and enables high-quality recommendations, even in

cold-start settings with new items. The adoption of NMF lowers the dimension

7

of the original rating matrix, which contributes to higher efficiency.

In study three, we propose to analyze users’ requirements at the functional

level, with the objectives of avoiding recommending redundant apps, and

helping users find better apps that are not just similar in nature. A main feature

of our approach is mining textual user reviews. We develop a crawler to collect

user reviews of each app from App Stores, and propose aspect identification

techniques to mine functionality-related aspects from these reviews. Moreover,

we propose a two-stage graph-based ranking algorithm to predict new

functionalities for users, and come up with a competition mechanism to

intelligently filter out redundant apps. By using app functionality as the unit of

analysis, we successfully improve system stability against data sparsity, and

increase recommendation accuracy and diversity.

1.4. Contribution

Our research seeks to contribute to both academics and practitioners in the field

of RS by addressing data sparsity. Specifically, by incorporating User-

Generated Content (UGC) from different perspectives, our studies address

specific problems (i.e. accuracy, diversity, coverage, transparency) in different

contexts. To summarize, the main contributions that make our studies important

are as follows.

Firstly, our studies prove that different kinds of meta-data from UGC can

8

be extracted and incorporated to facilitate recommendations. Although UGC is

a promising and valuable source of information, the use of textual UGC in

designing RS has received scant attention from scientists. There exist a few

papers regarding the incorporation of free-text user reviews to perform

recommendations. But while they focused on the sentiment of UGC, they

ignored the meta-data embedded within. Our studies are among the first to

consider extracting meta-data from UGC for the purposes of recommendation.

Second, we propose to adapt feature extraction techniques to our context

to extract high quality meta-data for the purposes of recommendation. For

example, we introduce Cluster Frequency (CLF) into the traditional TF-IDF

term weighting scheme, extracting not-too-general and not-too-special adjective

features. We also adapt Partially Labeled Dirichlet Allocation (PLDA) to model

critic reviews and represent movies at a higher and more abstract level. In

addition, we propose an effective approach aimed at extracting functional

aspects of mobile apps from user reviews. Our adaptions of feature extraction

techniques have implications for both UGC and RS research.

Third, we propose several approaches to incorporate UGC into RS by

utilizing the extracted meta-data and user ratings. For example, we adapt

Singular Value Decomposition (SVD) to represent user tastes and movie

characteristics as feature vectors. We also adapt Non-negative Matrix

Factorization (NMF) to model user topic preferences and movie topic

9

distributions. We come up with an effective approach, i.e. a two-stage graph-

based ranking method and a completion mechanism, to maximize the utility of

functional aspects extracted from user reviews in mobile app recommendations.

Our studies have implications for RS research attempting to incorporate textual

content. We also aim to fill the gap between UGC and RS research.

1.5. Organization of Thesis

The opening chapter provides the context and motivation of our research, as

well as a brief introduction to the three studies included in this thesis. Chapter

2 reviews the literature on three main streams of RS and current trends of using

UCG in RS. Chapter 3 describes the first study that uses adjective features from

user reviews to address sparsity and transparency issues in RS. Chapter 4

describes the second study that uses critic reviews to boost new item

recommendations. Chapter 5 describes the third study that identifies functional

aspects from user reviews for functionality-based mobile app recommendations.

Finally, Chapter 6 summarizes the work in this thesis and outlines future

directions.

10

CHAPTER 2. LITERATURE REVIEW

Substantial research has been conducted on recommendation algorithms, mostly

belonging to three main streams, i.e. Collaborative Filtering (CF) approaches,

Content-Based (CB) approaches and Social-Network-Based (SNB) approaches.

Our studies belong to the family of CB approaches, as they incorporate extracted

meta-data from User-Generated Content (UGC) into RS. We also borrow some

advanced techniques from CF models to utilize user ratings as well as the

extracted meta-data. In this chapter, we review the work on three main streams

of RS research in general. A survey on recent RS research using UGC is also

included.

2.1. Collaborative Filtering (CF) Recommendation

CF has been explored in-depth in the past ten years, and represents the most

popular recommendation algorithm, owing to its compelling simplicity and

excellent quality of recommendations. Typically, CF techniques can be

classified into three categories: memory-based CF, model-based CF and graph-

based CF.

2.1.1 Memory-Based CF

The most common approaches to CF are memory-based, which means that the

entire user-item rating matrix is used to generate predictions. User-based CF

(Resnick et al. 1994) is one of the earliest methods of memory-based CF, where

11

the basic idea is to recommend items that similar users (i.e. “neighbors” of the

target user) like, to the target user. This approach is simple and easy to

implement, but it has difficulty in generating recommendations for new users.

Another type of memory-based CF, Item-based CF (Sarwar et al. 2001), was

later proposed. In contrast to User-based CF, Item-based CF recommends items

highly correlated with those items liked by the target user. Item-based CF is able

to address the problems associated with new users, and achieves higher

scalability and accuracy.

Memory-based CF can be implemented easily and new data can be added

incrementally at little cost. However, memory-based CF has high space

complexity, and it is unable to handle large datasets. These inadequacies can be

addressed by model-based CF.

2.1.2 Model-Based CF

Compared to memory-based CF, model-based CF does not require the entire

rating matrix, but learns to recognize complex patterns to train models based on

training data (which is a small subset of the whole dataset), and then uses the

trained models to make predictions for CF tasks with real-world data.

Latent factor models, such as Probabilistic Matrix Factorization (PMF),

comprise an alternative approach to CF, by transforming both items and users

to the same latent factor space, which explains ratings by characterizing both

12

users and items on the factors that are automatically inferred from user feedback

(Koren and Bell 2011). Examples include Neural Networks (Salakhutdinov et

al. 2007), Probabilistic Latent Semantic Analysis (Hofmann 2004), Latent

Dirichlet Allocation (Blei et al. 2003) and Singular Value Decomposition (SVD)

(Paterek 2007).

Memory-based CF and model-based CF tend to recommend well-known

items and give less weight to the new items, which lowers the diversity of

recommendations. This problem can be addressed by graph-based CF.

2.1.3 Graph-Based CF

Graph-based CF represents data as a graph, where users and items are

represented as nodes and edges, capturing the interaction between users and

items. Aggarwal et al. (1999) proposed a graph-theoretic CF approach in which

the similarity between two users is computed based on their shortest distance in

the graph. When predicting the rating of a user for a new item, the shortest

directed paths from this user to other users who have also rated this item are

obtained, and their ratings are used. Huang et al. (2004) used the number of

paths between the user and the item to estimate the user’s preference on this

item. Pucci et al. (2007) adapted Google’s PageRank algorithm for ranking

searching results, and proposed the ItemRank approach that ranks a user’s

preference towards items, by computing the probability that this user will visit

13

the item nodes in a random walk of the graph, where the edges between item

nodes connect the items commonly rated by users. Proposed by Google and

having been applied in the YouTube video suggestion engine, Baluja et al. (2008)

also employed a random walk model on the video co-view graph to generate

personalized video suggestions for users.

Graph-based CF has the advantage of discovering new items, improving

the novelty of recommendations, but it faces the problem of extremely high

computational expenses.

Despite its popularity, CF recommendation has many problems. The

quality of CF largely relies on user ratings that are usually very sparse in reality.

Moreover, CF usually works as a black box without offering much transparency,

which may lower user trust. Lacking the ability to recommend new items is

another well-known inadequacy of CF. CB recommendation is a different

approach that is able to address the transparency issue and the problem of new

items.

2.2. Content-Based (CB) Recommendation

CB recommendation aims at recommending items similar to what the target user

has previously liked. A typical CB RS constructs a profile, which is a structured

representation of interests for every user, by analyzing the description of items

previously rated by this user. The recommendation process matches up the user

14

profile against the attributes of new items (Pazzani and Billsus 2007). The

nature of the CB approach enables new item recommendations, since it does not

require any user preference data of the new items. CB recommendation can also

capture taste aspects of users and explain how the recommender system works,

by explicitly listing content features or descriptions that cause an item to occur

in the list of recommendations, while CF is unable to explore detailed aspects

of users’ taste, since the data only comes from users’ ratings.

CB RS, in the domain of consumer products (books, movies, mobile apps,

etc.), usually uses well-structured attributes to represent items. For example, the

genre, directors and actors of movies are commonly used in movie RS (Gantner

et al. 2010; Maneeroj and Takasu 2009; Manzato 2012). Such systems have a

natural limit on the number and type of features that are associated with the

items recommended. Research has found that features assigned to items are

insufficient to define distinguishing aspects of items that turn out to be

necessary for the elicitation of user interests (Lops et al. 2011).

In CB systems, the user profile learner is a core component. Many existing

methods regard user preference as a binary attribute (i.e. like or dislike) and

therefore, the recommendation problem can be treated as a problem of

classification. A series of classification learners have been applied to learn user

profiles, including Decision Tree(Bouza et al. 2008), Bayesian classifier (Gutta

et al. 2000), SVM (Xu and Araki 2006), Neural Network (Christakou et al. 2007)

15

etc. These methods have been criticized due to their high complexity and poor

interpretability. They also fail to utilize user ratings.

To summarize, CB approaches show promise in addressing new item and

transparency problems, but they are limited by inadequate item features and

inefficiency in utilizing user ratings. Possible extensions to CB systems can seek

other informative data to incorporate and propose effective methods to utilize

such data, as well as user ratings, which our studies address.

2.3. Social-Network-Based (SNB) Recommendation

With the explosion of social network sites, e.g. Facebook and Twitter, another

type of recommender systems, i.e. social recommender systems, has gained

popularity. The basic idea of social recommender systems is to replace rating-

similarity-based neighborhoods in CF with sub-graphs of user’s social networks,

motivated by the fact that “people prefer recommendations from people they

know” (Bonhard and Sasse 2006).

(Said et al. 2010) investigated a movie recommender system providing

underlying social networks, and proved that the quality of recommendations

could be improved by utilizing user-user relations. A trust-based network

embedded in a social network offers an alternative approach to overcome the

data sparsity problem in CF. Golbeck (2006) used a Probabilistic Matrix

Factorization (PMF) framework that incorporates the user-rating matrix as well

16

as users’ social trust network to generate recommendations, which outperforms

the CF approach, especially when the ratings are sparse. Jamali and Ester (2010)

incorporated the trust propagation mechanism into the matrix factorization

technique, leading to substantial increase in recommendation accuracy. Graph-

theoretic technology has also been applied to analyze social networks for

recommendation. Wang et al. (2010) proposed to use a graph random walk

model to capture users’ similarity in social influence, and applied Singular Value

Decomposition (SVD) to predict users’ opinions.

Social recommender systems are a new trend that deserves further

exploration. However, similar to traditional recommender systems, SNB

approaches also suffer from the sparsity problem. The quality of SNB

recommendations is strongly affected by the network density, which is very

sparse in reality.

2.4. User-Generated-Content (UGC) in Recommendation

To address the challenges of RS, an increasing amount of research has recently

started to pay attention to UGC. UGC can be found in abundance on online

review platforms and forums. Such content is valuable information that covers

more item features and contains consumer opinions.

Lately, there has been much recent interest in a specific kind of UGC, i.e.

tags. Tags are generated by users who collaboratively annotate and categorize

17

resources of interest with freely chosen keywords (de Gemmis et al. 2008).

Several methods have been proposed for incorporating tags within CB

recommendations. Diederich and Iofciu (2006) represented the user profile in

the form of a tag vector; each element indicates the number of times a tag has

been assigned to a document by that user. Michlmayr (2007) proposed different

strategies to build tag-based user profiles, which were used to produce music

recommendations. Wei et al. (2011) proposed a unified framework for

recommendations, by modeling the quaternary relationship among users, items,

tags and ratings as a 4-order tensor and performed a multi-way latent semantic

analysis.

Compared to descriptive attributes typically used in CB RS, tags cover

more features of items and are more comprehensible to users. This is also

demonstrated in the results reported (Sen et al. 2009). However, since tags are

voluntarily and freely provided by users, problems such as the unwillingness to

tag and diverse vocabulary can easily arise (Lops et al. 2011). As discussed

earlier, the sparsity of ratings is a challenge for rating-based recommendations;

here the problem of sparsity is exacerbated in the tag space.

There exists another stream of research that reports on the incorporation of

free-text user reviews to perform recommendations, almost all of which employ

opinion mining and sentiment analysis techniques to factorize user reviews and

then infer user preferences. Aciar et al. (2006) defined an ontology to represent

18

user reviews, after which an overall rating was aggregated from opinion quality

and product quality inferred from user reviews. Jakob et al. (2009) proposed to

mine user opinions from free-text movie reviews as supplementary data to user

ratings in CF recommendations. Through estimating the reviewer's weight

preferences over features, Chen and Wang (2013) constructed an implicit

preference network of users, and used this network to generate

recommendations. Ganu et al. (2013) employed sentiment analysis to derive a

text-based rating from the review body, aimed at improving the quality of

restaurant recommendations.

While existing works incorporating UGC in RS have shown promise in

alleviating data sparsity problems, there exists substantial opportunities for

future research. Our studies follow different routes by extracting and

incorporating meta-data of UGC that has received scant attention from RS

researchers.

19

CHAPTER 3. STUDY ON ADDRESSING

SPARSITY AND TRANSPARENCY ISSUES IN

RECOMMENDER SYSTEMS BY USING

ADJECTIVE FEATURES FROM USER REVIEWS

3.1. Introduction

In this study, we aim to create a general approach that would ameliorate the

sparsity and transparency issues in RS. It is important to understand that our

intent is not to create a completely new recommendation algorithm; rather, our

goal is to explore new item features and corresponding techniques for obtaining

and incorporating such features, alleviating the effect of rating sparsity and

enhancing transparency to significantly improve existing methods.

We are motivated by a simple intuition – representing user interests with

plenty of item features might allow us to intelligently translate users’ sparse

ratings at the item level into detailed feature preferences, thereby reducing the

effect of rating sparsity. This may also allow us to explain the rationale of

recommendations to users by explicitly listing out relevant item features. In the

above example, even if Tom and Jerry have no co-rated movies, after translating

their ratings into feature preferences, e.g., “romantic”, we can still recommend

romantic movies to both of them with the explanation of “liking romantic

movies” by relation. It is fair to note that some Content-Based (CB) RS have

20

the similar idea of using item attributes to represent user interests; however,

these methods restrict their judgment based on a small number of structured

attributes typically selected for the items (e.g., director, genre and performer for

movies; singer, songwriter, composer for music; etc.). Obviously, users’ taste

aspects extend beyond these limited number of item attributes (Lops et al. 2011),

and many more item features are needed in order to comprehensively and

accurately capture their taste aspects.

We note that a wealth of information is available from reviews that could

possibly be used to enhance the recommendation process. In this study, we focus

on one specific kind of information from user reviews, namely, adjective

features. While the intent is to incorporate various other types of data from

reviews in future work, adjectives represent a particularly attractive feature used

in recommendations. When asked to reveal why they like or dislike something,

people often use adjectives to explain their preference. For instance, when asked

why he/she likes the movie Titanic, a user’s answer often includes words such

as “romantic”, “moving”, “astounding”, “beautiful” or “sad” – all being

adjectives. These features truly reflect users’ perception and can be found in

abundance in user reviews, but this aspect remains unexplored in

recommendation research.

Therefore, in this study, we incorporate adjective features extracted from

external user reviews in addition to ratings, into the recommendation process to

21

generate more accurate and more explainable item recommendations, as well as

user recommendations. To automatically extract adjective features from user

reviews, we employ well-understood part-of-speech (POS) tagging methods.

However, we quickly discover that many adjectives are not helpful in

discriminating between tastes, i.e., some adjectives are too general to be

adequately representative of users’ tastes (lack of representativeness e.g.,

“good”), while others are too specific to capture users’ general taste aspects

(lack of generalizability e.g., “unsinkable” in the reviews of Titanic).

We tried to search for existing solutions, but we noticed that existing works

on adjective extraction and term weighting were restricted and could not be

perfectly addressed. Therefore, we propose our own approach, by extending the

traditional TF-IDF term weight (Cohen 1995) to TF-IDF-CLF by introducing

another unsupervised term weight measure, Cluster Frequency (CLF). Unlike

other supervised term weighing methods, e.g. (Lan et al. 2009), the newly

introduced CLF measure is able to consider implicit item aspects not captured

by pre-defined categories, and it also helps balance the representativeness and

generalizability of the extracted features.

Although adjective features can be utilized by different recommendation

techniques, to make for easier illustration of the effectiveness of our idea, we

incorporate the extracted adjective features into one specific recommendation

technique, i.e. Singular Value Decomposition (SVD) (Paterek 2007), and then

22

construct item feature vectors and user feature vectors to generate more accurate

rating predictions and explainable recommendations of higher quality by listing

adjective features that correlate to the recommended item for the target user. We

call this integrated method the Adjective Feature Vector (AFV) method. The

result of our work makes substantial advances over extant recommendation

techniques. In particular, our method reduces prediction errors from state-of-

the-art rating-based methods by 12.42%, in extreme rating-sparse settings. It

also outperforms the tag-based method by reducing prediction errors by 11.27%

in item recommendations, increasing its interest similarity by 7.14% in user

recommendations, and retaining full item and user space coverage. The results

also prove our method effective for providing recommendation explanations.

The rest of this chapter is organized as follows: Firstly, we review works

related to our study. Then we present the integrated recommendation

architecture, including detailed descriptions of each component. The rest of this

chapter presents the experiment and results. A summary of the study is given in

the conclusion.

3.2. Related Work

Our proposed method extracts adjective features from user reviews for the

purpose of both item and user recommendations by adapting keyword extraction

techniques and Singular Value Decomposition. In the following, we review

23

works related to our proposed method.

3.2.1. Adjective Extraction

There are some prior works that extract and incorporate adjectives. For example,

Harb et al. (2008) focused on extracting positive and negative adjectives for

opinion mining by considering domain knowledge. Voll and Taboada (2007)

proposed to determine the positive or negative polarity of text by assigning

different weights to adjectives based on their relevance to the object being

evaluated. Virtually all these works seek to select adjectives with clear positive

or negative polarity (e.g. “good”, “excellent”, “bad”, “poor”) for sentiment

analysis, but such general adjectives lack discriminating power and hence are

not suitable for representing item features. Middleton et al. (2004) highlighted

the importance of selecting representative terms that are “not too common and

not too rare”, but did not propose effective solutions above those of removing

term suffixes and filtering stop words.

To automatically extract adjectives for our purpose, we need to estimate

the weights of each candidate term in the text. There exist some approaches on

supervised term weighting, e.g. (Lan et al. 2009), which was designed for text

classification, i.e. to determine the likelihood of a term belonging to a pre-

defined category. Such methods rely on the limited number of pre-defined

categories, but fail to consider terms that help discriminate other implicit item

24

aspects, and therefore may not be applicable in our context. Our method uses an

unsupervised measure, i.e. CLF, which is able to give more weight to those

adjectives that help discriminate self-formulated item clusters without being

restricted by the limited number of pre-defined categories.

Therefore, our method differentiates itself from existing methods by

balancing the representativeness and generalizability of extracted features, and

by finding terms that have better discriminating power in many implicit item

aspects, rather than a small number of explicit categories.

3.2.2. Singular Value Decomposition (SVD)

SVD is well established for identifying latent semantic factors in the domain of

natural language processing (Deerwester et al. 1990). SVD is also a well-known

method for matrix factorization, that provides the best lower-ranked

approximations of the original matrix. Models that induce SVD to reduce the

dimensionality of sparse user-item rating matrices for collaborative filtering

have gained popularity due to their accuracy and scalability. SVD models map

both users and items to a joint latent factor space having f dimensions, and user-

item interactions are modeled as inner products in that space. Accordingly, each

item i is represented as a vector qi ∈ Rf, in which the elements measure the

extent to which an item i possesses those factors. Similarly, each user u is

represented as a vector pu ∈ Rf and the value of each element measures the

25

extent to which the user u possesses those factors.

Our proposed method adapts the original SVD to integrate the adjective

features extracted from user reviews, with the purpose of addressing sparsity

and transparency issues.

3.3. Intuition and Overview

While our approach is general and can be used to recommend any consumer

item, we chose a specific domain for the purposes of illustration. Given that the

most studied consumer domain, in the context of recommendations, is that of

movies, we will henceforth use the movie domain to present our technique. In

other words, we will present our method to recommend movies and users with

similar interests to the target users.

The general goal of the recommender system is to select the objects that

may be of interest to a user. Based on the types of objects it recommends, our

method is intended for two tasks: item recommendation and user

recommendation.

For item recommendation, we are interested in predicting ratings for

movies new to users, and recommending the movies with the highest predicted

ratings to them, together with reasonable and personalized explanations to

improve the transparency of the logic in recommendations. Noting that the

number of descriptive attributes that are commonly used in content-based movie

26

recommendation (e.g., actor, director) are limited and insufficient, we

automatically extract adjective features from external user reviews (available in

abundance in review systems like IMDb1, and Rotten Tomatoes2) to define

distinguishing aspects of items and of users’ tastes, which are able to truly reflect

the users’ perception towards movies on a higher and more abstract level. For

example, the adjective features extracted from user reviews of Titanic can be

“romantic”, “sad”, or “astounding”. We predicted the rating of Titanic for a user

by estimating to what extent Titanic is romantic, sad or astounding, and how

much the user likes romantic, sad or astounding movies.

For user recommendations, we intend to identify users with common

interests so that the connections among users can be expanded. By applying our

method, this task can be performed by estimating the similarity between users

in terms of each taste aspect characterized by adjective features, and

recommending similar users to a given user, together with explanations. For the

example mentioned above, for any two users, their similarity is calculated by

estimating the extent to which they share the same interest in romantic, sad or

astounding movies.

Our method addresses the problem of rating sparsity by decomposing a

singular user rating into multiple dimensions explicitly characterized by

1 http:// www.imdb.com

2 http:// www.rottentomatoes.com

27

extracted adjectives, and then translating a small number of user ratings into a

larger number of feature preferences, which allows us to better understand users’

interests, and to pick out their preferred items more accurately through each of

their preferred features, therefore alleviating the problem of item-level rating

sparsity. In addition, by explicitly listing adjective features that cause items to

be recommended, we are able to explain the logic of recommendation intuitively

to users, with the objective of addressing the transparency problem.

3.4. Solution Details

IMDB

Website

Review

Crawler

Movie

Reviews POS Tagger
Tagged

Reviews
Feature

Extractor

Adjective

Features
Vector

Generator
User Ratings

User Feature

Vectors

Movie Feature

Vectors
Movie

Recommender

User

Recommender

Explanation for

User

Recommendation

User

Recommendation

Explanation for

Movie

Recommendation

Movie

Recommendation

Figure 3.1. Recommendation Architecture

The overview of our movie recommendation architecture is shown in Figure 3.1,

where the rectangles represent the components we have designed and

implemented to realize our recommendation engine. There are six such

components: review crawler, POS tagger, feature extractor, vector generator,

28

item recommender and user recommender. Specifically, we introduce Cluster

Frequency (CLF) into the feature extractor, which is essential for extracting

high-quality adjective features. We incorporate the extracted adjective features

into a specific recommendation technique, the Singular Value Decomposition

(SVD) (Paterek 2007), and apply stochastic gradient descent optimization to

construct movie feature vectors and user feature vectors in the vector generator.

We take into account the partial effects of the adjective features causing the item

to be recommended in the recommender enabling us to offer explanations for

recommendations. Applying this architecture, we incorporate adjective features

extracted from IMDb user reviews, as well as user ratings, into the

recommendation task, addressing sparsity and transparency issues. More details

of each component will be introduced in the following sections of this chapter.

3.4.1. Review Crawler

We obtain user reviews of movies from a reputable external source, i.e. IMDb

(the Internet Movie Database). IMDb is one of the most popular online

databases for movie information, with over 100 million unique users each

month. IMDb also offers a platform for users to review movies, and allows other

users to indicate whether they found certain reviews useful. Figure 3.2 shows

one user review of Titanic on the IMDb website.

29

Figure 3.2. IMDb User Review Page

To obtain reviews for each movie, we use a web crawler to collect user

reviews from the IMDb website. In order to get high-quality reviews, we choose

the “Best” filter offered on this website, which ranks the reviews according to

the number of users who found the review useful, in descending order. Then we

crawl the first 4 pages of user reviews (10 reviews per page) for each movie,

and extract the review content from the webpages.

3.4.2. POS Tagger

After obtaining user reviews for each movie, we employ the Stanford POS

tagger (Toutanova et al. 2003) to assign parts of speech to each word within the

reviews, such as nouns, verbs, adjectives etc. Since we intend to extract

adjective features, we keep only adjectives in the reviews. Taking the first

paragraph of the review in Figure 2 as an example, after POS tagging, only the

30

following words remain:

different good great boring cliché beautiful sad

3.4.3. Feature Extractor

This component extracts adjective features from tagged user reviews. Firstly,

we assign a weight for each adjective term in the reviews. In the domain of

information retrieval, the term weight is a measure of how important a word is

in a document. TF-IDF is a very commonly used term weighting scheme. The

term frequency tft,d of term t in document d is defined as the number of times t

occurs in d. Document frequency dft is defined as the number of documents in

the collection that contain a term t. The inverse document frequency idft of a

term t, which indicates the term’s discrimination power, is defined as:

 .log
d

N
id t

ft

f 

where N is the total number of documents. The TF-IDF term weight for term t

in document d is given by:

 .
, ,

-tf idf tf idf
t d t d t

 

We regard the collection of all reviews of a movie as a document. The TF-

IDF weight for every word in the reviews can be easily obtained. While features

extracted by TF-IDF weight are representative of movie characteristics, they are

often tainted by two issues: (a) they may be too specific and might not serve as

31

generalizable or common characteristics across similar movies, e.g. the word

“unsinkable”, which has very high TF-IDF scores in the reviews for Titanic, is

too specific, since we are unlikely to find other movies related to “unsinkable”,

thus it is unsuitable for representing users’ tastes; and (b) they may fail to

include some general features that are good for exposing user taste aspects, e.g.

when extracting features from the reviews for Titanic, the word “sad” may have

high TF scores but low IDF scores, therefore resulting in relatively low TF-IDF

scores; however, “sad” is a good feature, since it accurately reflects a key user

perception towards this movie. In addition to generality, as discussed above, the

representativeness of the extracted features is also important, e.g. the word

“good” is too general, such that we cannot use it to represent user preferences.

In order to balance representativeness and generalizability, we introduce another

term weight measure into TF-IDF, the Cluster Frequency (CLF), to measure

how common a word occurs across a cluster of documents similar to a particular

document. We get a cluster of similar movies for a given movie and accordingly,

all movie reviews in the cluster will be used for calculating the CLF.

For example, if we find a cluster of similar movies for Titanic, they may

share some common characteristics of tragedy and the word “sad” would have

a high frequency across the reviews. By introducing CLF, the term weighing of

the word “sad” is higher, and therefore more likely to be extracted. Since we

also give importance to the TF-IDF weight, those words that are too general (e.g.

32

“good”) will be filtered out.

Next, we will describe how we identify these clusters of similar movies.

The similarity between movies can be computed by either of the following two

approaches. First, we can apply item-based CF (Sarwar et al. 2001) and use

cosine similarity to compute the distance between two movies based on users’

co-rating patterns:

,
, ,

2 2

, ,

cos(,) .
i j

i j

u i u ju Ui j

i j

i j u i v ju U v U

r rr r
r r

r r r r



 


 



 

where Ui,j denotes the set of users rating both movie i and movie j; Ui denotes

the set of users rating movie i; and Uj denotes the set of users rating movie j.

For each movie i, we select the top M movies having the highest cosine

similarity scores as a group of similar movies. We denote this approach as

rating-based clustering.

Second, noticing that the item-based CF approach heavily depends on user

ratings and may not produce good results if ratings are sparse, we also employ

the Topic Modeling approach, which is purely based on reviews and eliminates

the dependency on user ratings. Latent Dirichlet Allocation (LDA) (Blei et al.

2003) is a generative probabilistic model for collections of discrete data such as

text corpora. Since we regard the collection of all reviews of a movie as a

document, by applying LDA, each document corresponding to each movie can

33

be represented as a multinomial distribution over latent topics, where each topic

is characterized by a distribution over words. We apply Kullback–Leibler (KL)

divergence, which is a non-symmetric measure of the difference between two

probability distributions, to calculate the divergence between movie i’s topic

distribution, Pi, and movie j’s topic distribution, Pj:

()
(||) () ln .

()

i
KL i j il LatentTopics

j

P l
D P P P l

P l


where Pi(l) denotes the probability that movie i belongs to the latent topic l. For

each movie i, we select the top M movies having the smallest KL divergence,

as a cluster of similar movies. We denote this approach as review-topic-based

clustering.

Unlike supervised term-weighting approaches, in our method, the clusters

of similar movies are self-generated without having to rely on the limited

number of pre-defined categories, therefore our method is better in discovering

terms that have high discriminating power in implicit item aspects not captured

by pre-defined categories.

After getting the cluster of similar movies for a movie i, the CLF weight

of the term t in the reviews of i can be computed, by counting the number of

movies in the cluster whose reviews contain term t. Finally, the integrated TF-

IDF-CLF term weighting scheme is given by

34

1

, , ,- .- t i t i t t itf idf clf tf idf clf


  

where λ1 is a parameter indicating the weight which is put in the CLF. For each

movie, the adjective features are extracted from reviews by selecting the top K

adjectives having the highest TF-IDF-CLF weights, and then passed to the

vector generator.

3.4.4. Vector Generator

Table 3.1. Movie and User Feature Vectors

 romantic sad astounding spectacular scary

Titanic 0.50 0.40 0.10 - -

Spider-Man 0.20 - - 0.30 0.50

User A 0.10 0.03 0.50 0.40 0.40

User B -0.10 0.02 0.50 0.30 0.40

After getting the extracted features of each movie, we represent each movie, as

well as each user, in the form of feature vectors. Specifically, each movie i is

represented as a vector Qi, in which each element is associated with one of its

features. The values of the elements measure the extent to which the movie i

possesses those features. Similarly, each user u is represented as a vector Pu, and

the elements associated with the features of all movies. The values of the

elements measure the extent to which user u likes those features. For example,

let us assume that we have only two movies in the system, i.e. Titanic and

Spider-Man, and for each movie, we extracted 3 features: from user reviews,

the movie feature vectors and the user feature vectors. The results for two given

35

users are shown in Table 3.1.

Similar to the latent factor model, we included the baseline predictors to

estimate the non-interaction effects from users and movies respectively (i.e.

udevu and idevi). A predicted rating of movie i for a user u is given by:

, , ,

()

ˆ .u i u i u f i f

f F i

r udev idev e e


    

where μ denotes the overall average rating; udevu and idevi indicate the

observed deviations of user u and item i respectively from μ; F(i) denotes the

set of features belonging to the movie i; eu,f is the value of feature f in user u’s

feature vector Pu; and ei,f is the value of feature f in movie i’s feature vector Qi.

We employ a stochastic gradient descent optimization adapted from

Regularized Singular Value Decomposition (RSVD), which was proposed by

(Funk 2006) and has been successfully applied by many others (Koren 2008;

Paterek 2007), to estimate the values of the elements for both movie feature

vectors and user feature vectors, as well as the baseline predictors. For each item

i we set the initial value:

,()

2

()
 .

()

u iu R i

iidev
r

R i













And then for each user, u, we set the initial value:

,()

3

()
 .

()

u i ii R u

u

r idev
u v

R
de

u






 






(3.1)

36

where R(i) denotes the set of users who rated item i; R(u) denotes the set of

items rated by a user u; μ is the overall average rating; and λ2 and λ3 are

regularization parameters. For each element in movie feature vectors and user

feature vectors, we assign an initial value s. For each given rating ru,i in the

training set, a predicted rating r̂u,i is given by Equation 3.1, and the associated

prediction error is defined as:

, , ,
ˆ .u i u i u ierr r r 

Then the model parameters are learnt by minimizing the regularized squared

error:

, ,
, ,

, , ,

2 2 2 2 2

, 4 , ,, ()

min (, , ,)

{ [()]}.

u i u f i f
u i u f i f

udev idev e e

u i u i u f i fu U i I f F i

H udev idev e e

err udev idev e e
  



    

where
4 indicates the extent of penalizing the magnitudes of the parameters

to avoid over-fitting.

We employ gradient descendent as described in (Funk 2006) to update the

baseline predictors and the values of feature vector elements, by moving in the

opposite direction of the gradient. We iterate the updating process through the

training dataset, until the prediction errors in the validation dataset stop

decreasing.

37

3.4.5. Movie Recommender

With the movie feature vectors and user feature vectors, we can easily predict a

rating for a particular user for a given movie, using Equation 3.1. In order to

recommend movies to a user, we can predict the ratings of all movies unknown

to him, then rank these movies according to the predicted ratings, and

recommend the top N movies with the highest predicted ratings.

One of the key features of our method is that in addition to providing

recommendations, we provide explanations as well. We do this by explicitly

listing features that the user likes, and suggesting a movie in the list of

recommendations. For each movie i in a user u’s recommended list, f ∈ F(i) is

one feature in movie i’s feature vector, ei,f is the value of feature f in movie i’s

feature vector, and eu,f is the value of feature f in user u’s feature vector. The

product of these two values eu,f ∙ ei,f is the partial interaction effect regarding

feature f, and measures the extent to which feature f contributes to recommend

movie i to user u.

Therefore, we rank all the features that the user likes, i.e. the features with

positive values in the user vector and in F(i), according to the partial interaction

effect, and provide the top K features having the highest products in addition to

the recommended movie i, as an explanation for the recommendation. Using the

aforementioned example, if the movie Spider-Man is recommended to user B,

38

we can then obtain the partial interaction effect regarding each feature of Spider-

Man, as shown in Table 3.2. If we only provide the top feature as the explanation

to user B for recommending this movie, the feature “scary” is selected, which

has a positive value in the user vector, and the highest partial interaction effect.

Table 3.2. User-Item Partial Interaction Effect

 romantic spectacular scary

eB,f -0.1 0.3 0.4

eSpider−Man,f 0.2 0.3 0.5

eB,f × eSpider−Man,f -0.02 0.09 0.2

Since the values of these features differ across different users’ feature

vectors depending on their preference for these features, even if we recommend

the same movie to two different users, the explanations would differ as well.

Thus, our explanation of recommendation is personalized, and truly reflects the

user’s tastes.

3.4.6. User Recommender

The main task of this component is to estimate the similarity between users in

terms of their interest in movies using user feature vectors, and to recommend

the most similar users to target users. Although the user feature vectors and the

movie feature vectors have a similar structure, they are essentially different. The

user feature vectors reflect the users’ preference for these features, while the

movie feature vectors indicate the attributes of the movies. Movie

recommendations find those movie vectors in which the attributes satisfy the

39

target user’s preference, by using the inner product of the user feature vector

and the movie feature vector, to aggregate the ratings from each feature. But in

user recommendations, we care more about the difference between two users’

preferences for each feature. If we still use the inner product of two vectors, less

weight is given to the features that both users show weak preference for, even

though the extent of preference for these features might be very close.

Table 3.3. User-User Partial Interaction Effect

 romantic sad astounding spectacular scary

eA,f 0.10 0.03 0.50 0.40 0.40

eB,f -0.10 0.02 0.50 0.30 0.40

eA,f × eB,f -0.01 0.0006 0.25 0.12 0.16

For example, in Table 3.3, both users show weak preference for the feature

“sad”, so the product of the values of “sad” is only 0.0006, which is very small

and has little contribution to the overall similarity if we use the inner product.

However, since both users show little interest in sad movies, they should be

similar in view of this feature. Therefore, we do not simply employ the same

logic of movie recommendation. Instead of using Equation 3.1, we apply the

cosine similarity, which accounts for the difference between users’ preferences

on each feature, to estimate the similarity between user feature vectors, and to

recommend users with highest similarities to the target user.

As with movie recommendations, we also provide personalized

explanations together with the recommended users for target users. When a

40

target user receives user recommendations, he would care more about what

kinds of movies they commonly like (but not dislike). It is reasonable to list the

features for which both of them show a strong interest. We rank the features

with positive values in both users’ vectors according to the partial interaction

effect, and select the top K features having the highest partial interaction effect

as the explanation. For example, in Table 3.3, if user B is recommended to user

A, and only one feature is required, then the feature “astounding” is used as the

explanation, since it has positive values in both user A and user B’s vectors, and

has the highest partial interaction effect.

3.5. Experiment and Result

In this section, we first introduce the evaluation metrics used to test the

effectiveness of our proposed method. Then we compare our method with

rating-based methods and investigate the impact of rating sparsity on different

methods. Finally, we compare our method with the tag-based approach for both

item recommendation and user recommendation.

3.5.1. Evaluation Metrics

In the experiment, we use the Mean Absolute Error (MAE) metric that is

commonly used in recommendation research (Herlocker et al. 2004) to evaluate

the accuracy of rating predictions of recommendation methods. MAE is defined

as:

41

,
, ,

 .
ˆ

u i
ur i u iTestingSet

r r
MAE

TestingSet







where ru,i is the rating given by user u to item i in the testing dataset; r̂u,i is the

predicted rating; and |TestingSet| is the size of the testing dataset.

While accurate prediction is crucial, it does not address one key goal of

good recommender systems, which is to cover a wide range of items.

Accordingly, we also measure the coverage of item recommendations by using

the percentage of items in the testing set of which users’ preference can be

predicted:

100% .
#Predictable Items i

ICoverage
TestingSet

n TestingSet
 

In addition to item recommendations, our method also provides user

recommendations. To assess the quality of user recommendations, we evaluate

the similarity between the recommended users and the target user in terms of

interest, and calculate the coverage of recommendations in the user space. Based

on the assumption that users with common interests are more likely to tag and

rate similar items, the quality of user recommendations can be assessed by

measuring the similarity between the set of movies rated and tagged by the

recommended users, and the set of movies rated and tagged by the target user.

Following Wei et al. (2011), the similarity between two movies is calculated as

the average of the cosine similarity of their rating vectors, and the cosine

42

similarity of their TF-IDF tag term vectors. Given a target user ut and the top N

recommended users RU for user ut, the similarity of interest between the target

user ut and the recommended users is defined as:

,
(,)

() .
s u ut s

t ss

u RU i I j I

t

u uu RU

sim i j
InterestSim u

I I

  




 



where Iut
 and Ius

 are sets of movies rated and tagged by the target user and

recommended user respectively, and sim(i,j) is the similarity between movie i

and j from these two sets respectively. We use Interest Similarity as a measure

of quality for user recommendation.

Similar to item recommendation, the coverage of user recommendation is

referred to as the percentage of users that can be recommended (Shani and

Gunawardana 2011):

#
100% .

#Users that can be recommened

Users
UCoverage  

In our experiment, in addition to testing the quality and coverage of our

proposed method, we also provide the qualitative results of recommendation

explanations.

3.5.2. Experiment Results

3.5.2.1. Comparison with Rating-based Methods

To avoid losing generalizability, we use subsets of three publicly-available

43

rating datasets from different domains: Movielens in the movie domain, Netflix

in the movie & video domain, and BookCrossing in the book domain. Table 3.4

shows the statistics of the rating data used.

Table 3.4. Statistics of Rating Data

Rating Data Item Count User Count
Rating

Count
Rating Scale

Sparsity

Level

MovieLens 1682 943 100000 1 to 5 93.70%

Netflix 1000 4427 56136 1 to 5 98.73%

BookCrossing 1615 1619 35278 1 to 10 98.65%

Table 3.5. Statistics of Review Data

Rating Data

(Review Source)

Review

Coverage

Word Count

per Item

Adjective Count

per Item

Unique Adjective

Count per Item

MovieLens

(IMDb)
98.75% 1679 845 365

Netflix

(IMDb)
80.80% 1325 595 276

BookCrossing

(GoodReads)
99.94% 3296 1547 552

We also crawl textual user reviews for each item in the rating datasets.

Specifically, for Movielens and Netflix items, we obtain user reviews from

IMDb, and the source of reviews for BookCrossing items is GoodReads. In

order to get high-quality reviews, we rank the reviews according to the number

of users who found the review useful in descending order, and select the top 40

reviews for each item. Table 3.5 shows the statistics of the review data.

We split each rating dataset into training set and test set. To further

investigate the impact of rating sparsity on recommendations, we vary the

44

sparsity level of the training data, and compare the prediction accuracy of our

proposed method with other state-of-the-art rating-based methods. We introduce

a variable tp to indicate the percentage of rating data used as a test set. For

example, tp=20% indicates 20% of the data being used as a test set, and the

remaining 80% of the data used as the training set. Sparsity of a rating matrix is

defined as 1 −
non−zero entires

total entries
. We vary the value of tp to obtain different levels

of sparsity of the training data. The correlation between sparsity and tp is shown

in Figure 3.3. It is clear that sparsity is positively correlated with tp.

Figure 3.3. Correlation between Sparsity and tp

We set tp=20%, and tune the parameters of our proposed method based on

Movielens data. For the SVD-related parameters, we use the same values as

reported in (Paterek 2007) that is, λ2=25, λ3=10 and λ4=0.02, since such a

configuration also gives the best results in our context. For other parameters, we

vary their values to find settings that would give the best results. This occurs

94%

95%

96%

97%

98%

99%

100%

10% 30% 50% 70% 90%

S
p

a
rs

it
y

tp

Movielens Netflix BookCrossing

45

when cluster size M=20, CLF weight λ1=2 and feature size K=20. We use these

particular settings for all the following experiments.

Figure 3.4. Impact of Sparsity

Since we use two approaches to obtain the cluster of similar movies, our

method has two variants: AFV using rating-based clustering (AFV-R) and AFV

using review-topic-based clustering (AFV-T). Other rating-based methods for

comparison are: User-based CF (UCF) (Resnick et al. 1994), Item-based CF

(ICF) (Sarwar et al. 2001), Probabilistic Matrix Factorization (PMF)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

10% 30% 50% 70% 90%

M
A

E

tp

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

10% 30% 50% 70% 90%

M
A

E
tp

0.70

1.20

1.70

2.20

2.70

3.20

10% 30% 50% 70% 90%

M
A

E

tp

UCF ICF SVD PMF SO AFV-R AFV-T

(a) Movielens (b) Netflix

(c) BookCrossing

46

(Salakhutdinov and Mnih 2008), Singular Value Decomposition (SVD) (Paterek

2007) and Slope One (SO) (Lemire and Maclachlan 2005). These methods are

commonly selected for comparison in recommendation research. Among them,

UCF and ICF are the most commonly used techniques in practice, while PMF

and SVD represent state-of-the-art rating-based approaches. The results for

Movielens, Netflix and BookCrossing are shown in Figure 3.4 (a), (b) and (c)

respectively.

From the results, we can see that the prediction errors of our two proposed

methods are very close, and they are consistently lower than other methods. The

results also show that with the increase of tp (or the sparsity level), the

prediction errors of all methods increase, but the rate of increase of our methods

is slower compared to other methods; that is to say, our methods are less

sensitive to data sparsity as compared to other methods. Specifically, at the most

sparse settings (i.e. tp=90%), our methods reduce prediction errors of the second

best method (PMF) by 12.42% on the Movielens dataset, 11.89% on the Netflix

dataset and 10.90% on the BookCrossing dataset. The results prove that our

methods are effective in alleviating the effect of rating sparsity, and the

improvement derived from our method is more salient in extremely sparse

settings.

47

3.5.2.2. Comparison with Tag-based Method

In this experiment, we compare our method with a tag-based method, i.e.

Quaternary Sematic Analysis (QSA) (Wei et al. 2011), which represents a state-

of-the-art tag-based approach, in both item recommendations and user

recommendations.

To compare with the tag-based method, we use the same tag-based dataset

as the one used by the QSA method, and compare with the results reported in

(Wei et al. 2011). The advantage of comparing with reported results is that the

experimental results will not be biased by our own implementation of the

existing approaches.

The evaluation dataset is a densely-tagged subset of the Movielens 10M

version dataset that consists of 10 million ratings and 95580 tags, applied to

10681 movies by 71567 users. In the original dataset, only 4009 (5.60%) users

provided tags for movies, and only 7601 (71.16%) movies received tags from

users. In the selected densely-tagged subset, every user gave at least one tag to

a movie, and every movie received at least one tag from users. Let

<user,movie,tag,rating> denote a tuple; hence the subset comprises 1112 tuples

with 201 users, 501 movies and 404 tags. For each item in the densely-tagged

subset, we also crawl the top 40 user reviews from IMDb. All results reported

below are given by 5-fold cross-validation.

48

Experiment on Item Recommendation. For item recommendations, we report

the results for item rating prediction (i.e. MAE) and item space coverage. In

addition to the QSA method, 3 other methods are also included as benchmarks:

User-based CF (UCF), Item-based CF (ICF), and Probabilistic Matrix

Factorization (PMF).

Figure 3.5. Rating Prediction Accuracy

(Lower MAE indicates higher accuracy)

We first compare the performance in item rating predictions of our method

with the QSA method. The results shown in Figure 3.5 indicate that both of our

AFV-T and AFV-R methods have improved performance over existing methods

in terms of accuracy of item rating predictions. Specifically, when compared to

traditional CF algorithms, AFV-T reduces prediction errors of UCF and ICF by

15.9% and 15.47% respectively, and AFV-T reduces prediction errors of these

two CF algorithms by 17.29% and 17.67% respectively. In comparison with

other state-of-the-art methods, AFV-T reduces prediction errors in the rating-

0.5

0.55

0.6

0.65

0.7

0.75

0.8

M
A

E

49

based method (PMF) and tag-based method (QSA) by 8.90% and 6.33%

respectively, and AFV-R reduces the prediction errors of these two methods by

11.27% and 8.77% respectively.

Figure 3.6. Item Space Coverage

In addition to the accuracy of item rating predictions, we also compare the

coverage of our methods with other methods. The results for the densely-tagged

subset are shown in Figure 3.6. PMF, QSA, and AFV-T achieve 100% coverage,

with the two traditional CF approaches also achieving high coverage. Since we

apply ICF in AFV-R, the coverage of AFV-R is the same as ICF. Although the

QSA method achieves 100% coverage, it is not the case in reality, since it

requires every user to provide tags, and every movie to receive tags. In the

original dataset, only 5.60% of users provided tags to movies, and only 71.16%

of movies received tags from users. We also evaluate the coverage of different

methods in the full dataset, and the results in Figure 3.6 show that QSA achieves

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UCF ICF PMF QSA AFV-R AFV-T

C
o

v
er

a
g

e

Whole Dataset Tag-dense Subset

50

an extremely low coverage of only 9.07%. Since the proposed AFV-T and AFV-

R methods use external reviews and do not require any tags from the user, they

achieve high coverage. Specifically, the coverage of AFV-R is 96.4% (being the

same as ICF), and the coverage of AFV-T is independent of user ratings but is

determined by the proportion of movies with user reviews, which is 99.4%.

The transparency of the recommender system is often ignored by most CF

approaches, whereas our method is able to provide explanations for

recommendations given to system users. We will show the qualitative results of

recommendation explanations using our method.

Table 3.6. Explanation for Item Recommendation

 My Neighbor Totoro Grave of the Fireflies

User A
curious, suitable, imaginative, warm,

magical, friendly, sentimental, sweet

magical, suitable, cold, gorgeous,

sentimental, beautiful, happy,

extraordinary

User B

endearing, suitable, imaginative,

giant, cute, poetic, boundless,

fantastical

giant, astonished, live, engrossing,

animated, suitable, poetic, gentle

User C

lovely, delightful, happy, gentle,

spectacular, engaged, curious,

magical

lovely, gentle, happy, magical, afraid,

heartfelt, cold, engrossing

Applying the proposed AFV-R method, which has the highest accuracy in

predictions, we recommend 5 movies to each user. We arbitrarily select three

users, who have 2 movies in common in their recommendation list, to illustrate

the qualitative results of recommendation explanations given by our method.

The two movies in common are My Neighbor Totoro and Grave of the Fireflies.

51

Table 3.6 shows the 8 listed features for each movie as explanations for

recommending the movie to each user.

As shown by the results, the explanation for recommending the same

movie is personalized for different users, taking movie features and users’ tastes

on each feature into consideration. For example, we recommend the movie

Grave of the Fireflies to user A, together with the explanation: “magical, suitable,

cold, gorgeous, sentimental, beautiful and happy and extraordinary”; while the

explanation for the same movie recommended to user B is: “giant, astonished,

live, engrossing, animated, suitable, poetic and gentle”. In addition to providing

the recommendation for a movie, the explanation gives the users more insight

into the recommendation mechanism, therefore making the recommendation

more trustworthy and acceptable.

Experiment on User Recommendation. To evaluate the effectiveness of our

proposed method in user recommendations, we compare our AFV-R and AFV-

T methods in terms of the average similarity of interest between target users and

recommended users, as well as user space coverage, with the QSA method,

representing a state-of-the-art tag-based user RS. We also include a random

method (RAN) which randomly selects N users for recommendation, as a

baseline method.

52

Figure 3.7. Average Interest Similarity

(Higher InterestSim indicates higher accuracy)

In this experiment, we recommend 3 users for every user in the tag-

densely-tagged dataset. Figure 3.7 shows the average similarity of interest

between target users and recommended users, using different methods. From

the results, we can see that both the QSA method and our AFV methods increase

the similarity of interest between target users and recommended users.

Furthermore, our AFV methods improves on the QSA method in terms of the

similarity in interest between target users and recommended users. Specifically,

the interest similarity values of AFV-T and AFV-R are 0.150 and 0.156

respectively, whereas this value is 0.145 using QSA. That is, AFV-T and AFV-

R increase the interest similarity of QSA by 3.45% and 7.14% respectively. The

results show that our proposed method is effective in selecting similar users and

outperforms state-of-the-art tag-based method.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

RAN QSA AFV-T AFV-R

In
te

re
st

S
im

53

Figure 3.8. User Space Coverage

Besides interest similarity, we also evaluate the effectiveness of our

methods by comparing the coverage of recommendations in the user space.

Similar to item recommendations, we first evaluate the coverage using the

densely-tagged subset, and all methods achieve 100% coverage, since every

user gave tags to movies, and every movie received tags from users in this subset.

We then repeat the experiment using the full dataset, where the majority of users

did not provide tags. From the results in Figure 3.8, we can see that the tag-

based QSA method achieves an extremely low coverage of only 5.60%, which

is the same as the proportion of users who provided tags in the dataset; while

our AFV methods, which use external user reviews and do not rely on tags, still

achieve 100% coverage. The results indicate that our proposed AFV methods

significantly outperform the state-of-the-art tag-based method (i.e. QSA) in user

space coverage.

Our proposed methods are able to provide explanations for not only item

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

RAN QSA AFV-T AFV-R

C
o

v
er

a
g

e

54

recommendations, but also user recommendations. To illustrate the quality of

the explanations for user recommendations, we apply the AFV-R method and

recommend 5 users to every system user. For every recommended user, we

provide 8 features indicating similar taste aspects to target users as the

explanation. We arbitrarily select two users, and list the explanation for the two

recommended users they receive in Table 3.7.

Table 3.7. Explanation for User Recommendation

 Recommended User 1 Recommended User 2

User D

comic, colorful, heroic, positive,

controversial, theatrical, suspicious,

gothic

vocal, ludicrous, legendary,

gorgeous, terrible, musical, colorful,

creepy

User E

romantic, lovely, promising,

emotional, comic, social, amusing,

conventional

smart, bright, fresh, ridiculous,

tremendous, stylish, political,

complex

3.6. Conclusion

In this work, we show that adjective features embedded in user reviews are

useful for characterizing movie features as well as users’ tastes, and can be

employed by recommendation techniques to address sparsity and transparency

issues. We employ POS tagging and propose introducing Cluster Frequency

(CLF) into the traditional TF-IDF term weighting scheme, to extract adjective

features from external user reviews, highlighting terms that help discriminate

between implicit item aspects, and balancing the representativeness and

generalizability of the extracted features. We also incorporate the extracted

55

adjective features into a specific recommendation technique, i.e. Singular Value

Decomposition (SVD), to illustrate the effectiveness of using adjective features.

The experiment results show that the proposed AFV method makes a significant

difference to the quality of the state-of-the-art rating-based method (i.e.

reducing 12.42% prediction errors of PMF) in settings where ratings are

extremely sparse, and outperforms state-of-the-art methods in item

recommendations and user recommendations, in terms of both quality and

coverage. Specifically, in item recommendations, our AFV method reduces the

prediction errors of the state-of-the-art tag-based method by 11.27%, and in user

recommendation, it increases the interest similarity of the state-of-the-art tag-

based method by 7.14%. Moreover, our AFV method always achieves high

coverage of both item and user recommendations, while the coverage of tag-

based methods is extremely low when tags are sparse, which is always the case

in reality. In addition to recommending items and users, the AFV method is also

able to provide personalized explanations for recommendations to users,

increasing trust in the recommendation.

There are some limitations to our work. Firstly, we only considered the

adjective features and ignored other descriptive attributes of items. Our method

can be extended to incorporate other descriptive attributes, which may generate

more accurate recommendations and higher-quality explanations. Secondly, we

did not consider the semantic relationship between adjective features, which is

56

a potential direction for future work.

Although our recommendation architecture was evaluated on single

domains, it can easily be applied to cross domains. Since the extracted adjective

features capture user tastes on a higher and more abstract level, it will be

interesting to evaluate the application of our method in cross-domain

recommendation in future work.

57

CHAPTER 4. STUDY ON USING CRITIC

REVIEWS TO BOOST NEW ITEM

RECOMMENDATION

4.1. Introduction

Facilitated by the rapid development of technology, the barriers of entry for

production of new items have lowered considerably. As a consequence, in most

domains of consumer products studied, new items are being added regularly at

a speed never seen before. For example, according to (Datta et al. 2012), 100

new movies, 250 new books and up to 15,000 new mobile apps are released per

week on average. The huge number of new items can hardly be accessed by

consumers without a mechanism that effectively supports the discovery of new

items.

In a recent development, RS has shown promise to help consumers make

good choices amidst an overwhelming number of alternative items, by

providing personalized recommendations. However, as illustrated in the

previous chapters, existing recommendation techniques suffer from data

sparsity.

Collaborative Filtering (CF) works only if the items are already well-

known (i.e. the items have been previously purchased or rated by many users),

but it lacks the ability to discover and recommend new items since the user

58

ratings required by CF are extremely sparse, or totally unavailable, in the case

of new items. The problem occurs when new items are continuously added but

are unable to be recommended. This problem is also known as the new item

problem or cold start item problem that has been identified as a major challenge

of RS (Schein et al. 2002). An intuitive solution to the new item problem is to

adopt Content-Based (CB) approaches that typically match user preference data

with item attribute information, to help bridge the gap between existing and new

items. However, such methods encounter the limitation of insufficient item

attributes. Research has found that the limited number of descriptive attributes

assigned to items is insufficient to determine distinguishing features of items,

which might be necessary for the elicitation of users’ taste aspects (Lops et al.

2011). For example, in the movie RS, a user may prefer dramas about school

life but dislike dramas with racial discrimination. If genre is used as an indicator

of users’ preferences, it will fail to differentiate between these two detailed

aspects of user tastes within a single genre. A possible approach to address this

limitation is to incorporate other item information into the RS, to represent item

features and define user taste aspects.

We started exploring external data that can possibly be incorporated, and

noticed that when people were choosing a digital product to buy, a book to read

or a movie to watch etc., they would first search for online review articles about

these items, and then evaluate them based on their features described in such

59

articles. It motivated us to consider automating this process by incorporating

external review articles in the RS. On one hand, online review articles are

available in abundance, even for new items. In the movie domain, for example,

we analyzed two famous online movie review aggregators, i.e. IMDb and

Rotten Tomatoes, and found that on both platforms, 92% of new movies 3

(movies still playing in theaters) have critic-reviewed articles. The average

numbers of critic-reviewed articles per new movie on both platforms are 69 and

17 respectively. However, if we use Wikipedia, as proposed by Katz et al. (2011),

only 65% of new movies have corresponding content pages. Clearly, review

articles have a dominant advantage in quantity and the coverage of new items,

which enables us to address the new item problem with substantial

supplementary information. On the other hand, compared to descriptive

attributes, review articles cover more item features. For example, in critic

reviews of the movie The Graduate, we are able to infer that the topic of this

movie is about youth and love, as well as many other features unable to be

captured by general descriptive attributes. In short, the nature of review articles

makes it an ideal source of supplementary data for recommendation. In this

study, we will address the new item problem of RS by incorporating online

review articles.

3 Since IMDb and Rotten Tomatoes are English-oriented platforms, we only consider English movies.

60

Although online review articles show promise, from a technical

perspective, there are two challenges to incorporating such data in the

recommendation process. First, review articles are unstructured free-text. A

proper text model is required to quantify the textural contents. Traditional RS

dealing with textural contents usually represent item features and users’ taste

aspects at the word level (Ahn et al. 2007; Katz et al. 2011; Spaeth and

Desmarais 2013), which may result in the problem of over-specification. For

example, a user may prefer family movies, in which the word “mother” may

appear frequently in their textual descriptions, but this does not mean that this

user must like all the movies whose textual descriptions contain “mother”. To

address this problem, we propose to use an advanced topic modeling approach

that models review articles at the topic level and represents items with topic

distributions. Second, it is crucial to effectively integrate item features

represented by topic distributions and user ratings in recommendation. We adapt

Non-negative Matrix Factorization (NMF) to fully utilize the user ratings and

item features, which would be helpful in improving the recommendation quality.

We use the topics of the critic reviews from existing items to define the

taste aspects of the users, and utilize the user ratings to estimate the extent to

which a user likes a particular topic. When new items are added, we collect their

critic reviews, and infer their topic distributions. Then the new item problem

can be alleviated by matching the users’ topic preference with the topic

61

distributions of the new items.

The results of our experiment conducted in a real world data set show that

our method is efficient and can not only generate high quality new item

recommendations in cold start settings which are not supported by many state-

of-the-art methods, but also outperform the state-of-the-art methods when

recommending existing items especially in rating-sparse settings. Specifically,

our method reduces the prediction errors of the state-of-the-art method using

item typology based on item keywords by 5.78% and improves the ranking

accuracy of the state-of-the-art method by 12.91% in rating-sparse settings.

The rest of the sections in this chapter are organized as follows. First we

introduce the background to the research and review the related work. Then we

present our proposed recommendation architecture including the intuition and

the detail description of each component. The remainder of this chapter then

presents the experiment and results, and finally, we conclude by summarizing

this study.

4.2. Related Work

Our method is a Content-Based (CB) approach using the external critic reviews

of items to address the cold start problem. We employ an advanced topic

modeling approach, Partially Labeled Dirichlet Allocation (PLDA), to represent

the critic reviews at the topic level. We also adapt Non-negative Matrix

62

Factorization (NMF) to fully utilize the rating and content information. The

related work will be introduced in the following.

4.2.1. Partially Labeled Dirichlet Allocation

Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is a generative probabilistic

model that applies hierarchical Bayesian analysis to discover the semantic

structure in a text corpus. The basic idea of LDA is to represent a document as

a multinomial distribution over latent topics, each of which is characterized by

a distribution over words. LDA is an unsupervised learning model. The

generated unsupervised topics are powerful for exploring the underlying sub-

structure, but it may be difficult to interpret their meaning and they usually do

not align with human provided labels. Labeled LDA (Ramage et al. 2009) is a

supervised extension of LDA that requires the topics to align with the pre-

defined labels assigned to the documents, but it may fail to capture the broad

patterns in the corpus.

In a recent development, a semi-supervised model, i.e. Partially Labeled

Dirichlet Allocation (PLDA) (Ramage et al. 2011), has been proposed. PLDA

takes full advantage of both supervised and unsupervised approaches. It is able

to discover any number of hidden topics under each pre-defined label, and it

also has the ability to explore the latent topics across the whole corpus.

There are a few existing works applying LDA in recommendation. For

63

example, a recent study (Cai et al. 2014) proposed a TyCo method which uses

LDA to model keywords of movies and then construct item typicality for further

recommendation. But no reported work using PLDA in recommendation has

been found. The nature of PLDA makes it suitable for our purpose of uncovering

topics in the critic reviews. The learned topics are then incorporated with user

ratings by applying NMF in our method.

4.2.2. Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) (Lee and Seung 1999) is a powerful

dimension reduction tool for non-negative data and has been successfully

adopted in many fields such as signal processing and text mining. Given a non-

negative matrix ,m nV  and a specified positive integer min(,)k m n , NMF seeks

two non-negative matrices ,m kW  and ,k nH  so that their product WH

approximates the original matrix V. The intuition of NMF is to use a linear

combination of the basis vectors (i.e. the rows in W) and the coefficient vectors

(i.e. the columns in H) to approximate the input vectors (i.e. the rows in V).

NMF can be solved as a problem of minimizing the error function, which is

typically the square error or Kullback-Leibler divergence, and coordinate

descent algorithms (Hsieh and Dhillon 2011; Seung and Lee 2001) are

commonly used. In our method, we adapt NMF for our context by redefining

the error function and using a simple and effective projected gradient descent

approach (Lin 2007) to solve the optimization problem.

64

4.3. Intuition and Overview

Similar to study one, although our proposed method is generally applicable for

any domain of consumer products, we make it easier to explain our idea and to

compare our work with existing ones by choosing a specific example domain.

As movies are the most studied consumer domain in recommendation research,

we present our work by using the domain of movies. That is to say, from this

point forward, we will present our method as a technique of providing movie

recommendations to users.

The objective of our method is to predict the users’ preference for movies

which are unknown to them, and to recommend movies with the highest

predicted ratings to them. In order to predict the target user’s preference for a

given movie, we need to know what kinds of movies he has liked in the past,

and what kinds of movie the given movie belongs to. A common way to do this

is to use the descriptive attributes of the movies, such as the genre and the

director, to define the characteristics of the movie and the users’ taste aspects.

For example, if this user has highly rated scientific movies directed by Spielberg,

and the given movie happens to be scientific and directed by Spielberg, then the

predicted rating would be higher.

However, a user’s taste may be far beyond the aspects defined by the

limited number of descriptive attributes. For example, a user may prefer

65

comedies about school life or dramas about racial discrimination. This leads us

to contemplate whether there are other types of data that can be incorporated to

cover more features of the movies to capture more aspects of users’ taste. We

notice that a specific kind of movie information, i.e. critic reviews, can be found

in many online systems like Rotten Tomatoes4, which is widely known as a

movie review aggregator. Unlike other user generated content or user preference

data that only can be found long after the movie is released to the public, critic

review articles are available in abundance even before the release of the movie.

For example, 22 high quality critic review articles of a recent movie Mud can

be found in Rotten Tomatoes even one week before its release. The availability

of expert critic reviews fulfills our requirement for information on new movies,

and their contents may cover all possible aspects of the movies. Therefore, we

incorporate external expert critic reviews to define movie features.

Since expert critic reviews are presented in the form of free text, a proper

text model should be used to represent movies with these text contents. We

apply PLDA to the expert critic reviews to infer the topics of movies under their

genres, as well as the topics that are shared by all the genres. For example, a

topic under the genre “drama” may be related to “racial discrimination”, and a

general topic may be related to “family”, since many movies in different genres

4 http://www.rottentomatoes.com

66

may involve talking about family related matters. The adaption of Non-negative

Matrix Factorization (NMF) allows us to calculate users’ preference for each

topic based on their rating data. Therefore, rating prediction becomes a problem

of estimating to what extent the movie topic distribution matches the user topic

preference. Given a new movie with a collection of expert critic reviews, we are

able to tell to what extent this movie is associated with which topics, and new

item recommendation can be performed by matching up the movie topic

distribution with the user topic preference.

Crawler

Topic Modeler

Profile Learner

Recommender

Movie Information

Critic Reviews

Topic Distribution

User Ratings

Movie Matrix

User Matrix

Rotten Tomatoes

Recommendations

OnlineOffline

Figure 4.1. Proposed Architecture

4.4. Solution Details

The overview of our movie recommendation architecture is shown in Figure 4.1.

We have designed and implemented four components in the architecture to

67

realize our recommendation engine. The four components are: Crawler, Topic

Modeler, Profile Learner and Recommender. Among these components,

Recommender is the only one running online, while the other three can run

offline. Specifically, for existing movies, we use the Crawler to collect critic

reviews from external websites. The contents of critic reviews are then analyzed

by the Topic Modeler to uncover the underlying topics in the movies. The

Profile Learner utilizes user ratings and the movie topic distributions to learn

about the users’ preferences. Then, the Recommender generates personalized

movie recommendations by matching up the user preference with the movie

features. For new movies, their topic distribution is inferred from the topic

model trained by the existing movies, and then are used together with the user

profiles learned from existing movies to generate recommendations. The PLDA

employed in the Topic Modeler and the adaption of NMF in the Profile Learner

distinguishes our proposed method from other methods, which also contributes

to generating more efficient and higher quality recommendations even with cold

start settings. More details of each component will be introduced in the ensuing

sections of the chapter.

4.4.1. Crawler

The main task of the Crawler is to collect critic reviews from external websites

via Rotten Tomatoes. Rotten Tomatoes aggregates critic reviews from reliable

sources with good reputation and compiles a list of their URLs. It also allows

68

users to select reviews from top critics. Using the titles and release years of

movies to match the movie information in Rotten Tomatoes via its search API,

we obtain a list of critic review URLs. For each movie, we crawl 20 webpages

of critic reviews. To ensure quality, we primarily use reviews from top critics.

If their number is less than 20, we also use reviews from other critics. Since the

reviews are from different websites, the structures of the webpages containing

the review contents are different. We need to use a content extractor

(Kohlschütter et al. 2010) to extract the review contents from these webpages.

We filter out reviews that are not written in English and those that are too short

(less than 100 words). The extracted review contents are then passed to the

Topic Modeler.

4.4.2. Topic Modeler

We use the Topic Modeler to represent the movies at the topic level, and a topic

is a multinomial distribution over words. The Topic Modeler works by learning

and inferring the topic distribution of movies from their critic reviews. We

employ PLDA that allows us to use the well-structured attributes (i.e. genre,

director, actor, etc.) of movies to supervise the topic learning process, which

contributes to higher quality and more interpretable learned topics. The attribute

we choose is genre, since genre has been proven to be a good indicator of users’

taste (Manzato 2012). PLDA regards genre as a high level category of movies,

and learns the specified number of latent topics under each genre. It also

69

uncovers the global shared background topics that may not belong to a specific

genre. Table 4.1 shows some example topics automatically learned from the

critic reviews. Each topic is represented as a set of most common words in this

topic. As we can see, two global shared topics can be interpreted as “family”

and “life” respectively, which means that movies in different genres may talk

about the same topics. Global shared topics are important since they capture

broad patterns across the whole corpus of critic reviews.

Table 4.1. Examples of Topics

(Global)

Topic 1
family, daughter, young, wife, marry, adaptation, century, miss, father, country,

son, base

Topic 2 young, sex, girl, feel, image, life, sense, begin, leave, relationship, death, child

Drama

Topic 1
black, american, young, stone, drug, white, justice, president, kill, murder,

violence, war

Topic 2
student, school, white, black, teacher, young, priest, town, south, class, dean,

singleton

Comedy

Topic 1 player, funny, stern, fashion, altman, game, big, fan, wife, team, call, jake

Topic 2 girl, gay, school, dance, lane, sex, drag, high, queen, goldberg, student, funny

Specifically, we use G to denote a set of genres and Gi (1 i G ) indicates

the i th genre. For each genre Gi, we assign some number of topics
iGT to it,

where each topic
,iG jT (1

iGj T ) is a representation of a multinomial

distribution over all words in the vocabulary of the critic reviews. The number

of topics for each genre can be different, which allows us to assign more topics

70

to those genres having a higher proportion of movies. In order to explore the

global shared topics beyond the genres, a special label is used which can be

interpreted as the “global” genre that is shared by all the movies, and some

number of latent topics Tglobal are also assigned to it. PLDA is a generative model

assuming that each word w in the critic reviews of a movie m belonging to a set

of genres
m are generated as follows: first, a genre g in

m is drawn from a

multinomial distribution of size
m , then a topic t in

gT is drawn from a

multinomial distribution of size gT , and the word w is drawn from a

multinomial distribution over the whole vocabulary in this topic. Intuitively, the

probability that a word in the critic reviews of a movie is picked is in proportion

to the aggregation of the following probabilities: (1) how likely this movie

belongs to the genre g; (2) how likely genre g belongs to the topic t; and (3) how

likely topic t has this word. Details of the algorithm for learning and inferring

the model parameters can be found in (Asuncion et al. 2009).

We can use the critic reviews from a subset of the existing movies to build

the topic model by learning the topic distribution. When a new movie is added,

its critic reviews can be used to infer its topic distribution based on the learned

topic model. The output of the Topic Modeler is matrix P representing the topic

distribution of the movies. Each column of P is a vector
T

mP that represents the

multinomial distribution over all topics for a movie m, and each element
,t mP in

this vector is the probability that movie m belongs to topic t. All elements in
T

mP

71

sum up to 1, that is, for all m,

, 1t mt
P  .

Table 4.2 shows examples of distributions over the above-mentioned

example topics for 3 movies. American History X is a drama, Van Wilder is a

comedy and The Graduate is both drama and comedy.

Table 4.2. Examples of Movie Topic Distribution

 (Global)

1

(Global)

2

Drama

1

Drama

2

Comedy

1

Comedy

2

American History X 0.2 0.098 0.002 0.7 0 0

Van Wilder 0.18 0.2 0 0 0.02 0.6

The Graduate 0.103 0.116 0.001 0.4 0.3 0.08

4.4.3. Profile Learner

The Profile Learner is a core component in the recommendation engine. With

the topic distribution of movies, Profile Learner utilizes the user ratings to learn

user preferences by computing to what extent a given user likes a particular

topic. Specifically, in order to isolate the users’ topic preference from other

factors, we divide a user rating given to a movie into 4 parts: basis rating (i.e.

overall average), user bias (i.e. some users may tend to rate higher or lower than

other users), movie bias (i.e. some movies may tend to receive higher or lower

ratings than other movies), and user topic preference. The original rating matrix

X is approximated by:

U IX S B B UI    .

72

where each element Xi,j in the matrix X is the rating given by user i to movie j;

all elements in S are equal to the global average rating μ ; all elements in the i

th row of matrix BU have the same value that is equal to the user rating bias

ubiasi, and all elements in the j th column of matrix BI have the same value that

is equal to the movie rating bias mbiasj. ,m kU  and ,k nI  , where m is the

total number of users, n is the total number of movies, and k is the total number

of topics. Ui,t indicates the extent to which user i prefers topic t, and It,j indicates

the extent to which movie j belongs to topic t.

By adapting NMF, the Profile Learner decomposes the original user-rating

matrix into two matrices U and I to represent users’ topic preferences and

movies’ topics respectively. The decomposed matrices should satisfy two

criteria: (a) the product of the user matrix U and movie matrix I should

approximate the original matrix after adding the basis rating and rating bias; (b)

the normalized movie matrix I should approximate the topic distribution

matrix P. The movie matrix I acts a bridge between two types of data, i.e. user

ratings and movie critic reviews, by satisfying the above-mentioned criteria.

The first criterion can be satisfied by solving the least square error problem, and

the second criterion can be satisfied by minimizing the Kullaback-Leibler (KL)

divergence (Kullback 1987) between the normalized movie matrix I and the

topic distribution matrix P. Since the elements in the column of P sum up to 1,

we make a column-wise normalization for movie matrix I, that is, for all j:

73

,

,

,1

.
t j

t j k

t jt

I
I

I






According to the definition, the KL divergence between P and I is:

, ,

, , ,1 1 1 1 1 1
, ,

(||) log log log .
k n k n k nt j t j

KL t j t j t jt j t j t j
t j t j

P P
D P I P P I

I I     
       

Then the two criteria can be satisfied by solving the objective below:

, , ,

2 2 2 2 2

, , , , , 1 , , , , 21 1 1

, ,

min (, , ,)

{[()] [()]} (||).

 subject to 0, 0, , , .

U I
U I

B B U I

m n k

i j i j Ui j Ii j i j Ui j Ii j i t t j KLi j t

i t t j

f B B U I

X S B B UI B B U I D P I

U I i j t

 
  



        

  

  

where
1 indicates the extent of penalizing the magnitudes of the parameters

to avoid over fitting; and
2 indicates the weight given to the topic distribution

of critic reviews.

The values of the elements in U and I are initiated by assigning a random

value s (0<s<0.1) that follows a Gaussian distribution. The movie rating bias

and user rating bias are initiated as the average deviation from the global

average rating μ with regularization parameters
3 and

4 as follows:

, ,1

3

(), 0
.

#non-zero elements in

m

i j i ji

j
T

j

X if X
mbias

X






 






, ,1

4

(), 0
.

#non-zero elements in

n

i j j i jj

i

i

X mbias if X
ubias

X






  






To satisfy the non-negative constraint, we employ a project gradient

method to update the parameters. Details of the algorithm can be found in (Lin

74

2007).

4.4.4. Recommender

The Recommender is the only component running online, while the other

components can run offline. The objective of the Recommender is to match the

user preference to the movie features in terms of topics and to generate movie

recommendations for the users efficiently. For the existing movies, we can

predict the users’ ratings by using the approximation:
U IS B B UI   . For the new

movies, we don’t have the item matrix I or the movie rating bias BI since no

user rating is available for them so that we cannot predict the users’ real ratings,

but we can still estimate the users’ preference by using the topic matrix P instead

of I. However, the scale of the predicted ratings given by UP for new movies is

different from that given by
U IS B B UI   for existing movies. In order to unify

the scale of predicted ratings and to make the existing and new items

comparable, we predict another rating for each existing movie using the product

of the user matrix U and the normalized item matrix I , and recommendations

are generated by selecting the items having the highest predicted ratings given

by UP (for new movies) and UI (for existing movies).

For example, if we want to predict the rating of movie j for user i, and the

corresponding row or column in the matrix P, I, I and U are shown in Table 4.3,

assuming that the overall average rating μ=2.5, user i tends to rate 0.5 higher

75

than other users, i.e. ubiasi=0.5 and movie j tends receive ratings that are 0.2

lower than other movies, i.e. mbiasj=−0.2, then the user’s rating on this movie

is predicted by:
T

i j i jubias mbias U I     =2.95. In order to make movie j

comparable with the new movies, another predicted rating is given by:
T

jiU I

=0.313. Suppose that movie j is a new movie and we don’t have the matrix I

and mbiasj, the predicted rating is given by
T

i jU P =0.318.

Table 4.3. Example of Vectors

 Latent 1 Latent 2 Drama 1 Drama 2 Comedy 1 Comedy 2

 0.180 0.200 0.000 0.000 0.020 0.600

T

jI 0.100 0.100 0.002 0.001 0.010 0.280

T

jI 0.203 0.203 0.004 0.002 0.020 0.568

iU 0.300 0.100 0.150 0.020 0.200 0.400

Since the dimension of the original rating matrix is reduced, the rating

prediction process in this online component can be efficient.

4.5. Experiment and Results

In this section, we describe the experiment and the results to show the

effectiveness of our proposed method. We start from the evaluation metrics, and

then proceed to introduce the data set used, the configuration and the

environment of the experiment, followed by the results of the experiment. We

show the impact of data sparsity, test the efficiency, compare the prediction

errors and ranking accuracy with state-of-the-art methods in recommending

T

jP

76

existing items, and evaluate the recommendation quality in new item

recommendation.

4.5.1. Evaluation Metrics

The accuracy of rating prediction is the most discussed property in

recommendation research. Most research in recommender systems relies on the

basic assumption that a recommender system providing “accurate predictions”

would be preferred by users (Shani and Gunawardana 2011), and seeks

algorithms that provide more accurate rating predictions. In line with this, we

choose a commonly used metric in recommendation research, i.e. Mean

Absolute Error (MAE) (Herlocker et al. 2004), to evaluate the accuracy of rating

prediction. MAE is defined as:

,
, ,

 .
ˆ

u i
ur i u iTestingSet

r r
MAE

TestingSet







where ru,i is the rating given by user u to item i in the testing dataset;
,û ir is the

predicted rating; and TestingSet is the size of testing dataset.

Although accurate prediction is crucial, in most cases, the

recommendations are presented to the users as a list of items, and the order of

items in the list is also important. Some research found that accurate prediction

does not guarantee the correct order of the recommendations (McNee et al.

2006). A good RS should not only provide accurate rating predictions, but also

77

should rank the recommended items correctly. In our experiment, we use the

NDCG@k (Järvelin and Kekäläinen 2002) that is also a commonly used metric

in recommendation to measure the ranking accuracy. NDCG@k is defined as:

,

1

1 2 1
@ .

log(1)

u pr
k

uu U p
NDCG k Z

U p 





 

where U is the set of users; Zu is a normalization factor to guarantee that for the

perfect ranking, the NDCG value is 1; p is the position of the recommended

item in the list; and ru,p is the rating given by the user u to the item at position p.

4.5.2. Experiment Setup

In order to compare our method with other methods in the experiment, we use

the MovieLens dataset that is publicly available and is widely used in other

research. The dataset consists of 100,000 ratings given by 943 users to 1682

movies. The user ratings are on a scale of 1 to 5, with 1 being bad and 5 being

excellent. The percentage of missing ratings in the dataset (aka. sparsity level)

is
100000

(1) 100% 93.69%
1682 943

  


. The dataset also provides some movie

information such as the title, release year and genre. We use the title and release

year to get the URLs of critic reviews via the API provided by Rotten Tomatoes,

and crawl the corresponding critic reviews from external websites. 98.81% of

the movies in the dataset have critic reviews in Rotten Tomatoes.

Before conducting the experiment, we need to assign the number of topics

78

to each genre, and determine the values of some parameters in the Profile

Learner. We assign 4 topics as the global shared latent topics, and for other

genres, the number of topics is in proportion to the number of movies in this

genre. For example, we assign 4 topics to the genre “children” that has 119

movies, and assign 2 topics to the genre “musical” that has 56 movies. There

are 17 genres and the total number of topics is 68. We vary the parameters to

find the settings giving the best results. This occurs when
1 0.02  ,

2 0.5  ,

3 25  and
4 10  . We use the same configuration in all the following

experiments.

All experiments are conducted using a PC with Intel Core™2 Quad

Processor Q9300 CPU (2.50 GHz), 4GB RAM, Windows 7 Professional

Operating System and J2SE 7 platform.

4.5.3. Experimental Results

In the experiment, we implement two most widely used approaches, i.e. User-

Based and Item-Based Collaborative Filtering (CF) as the baseline method to

illustrate the effectiveness of our proposed method in recommending existing

items. We also notice that in the field of RS, many state-of-the-art approaches

have been proposed in recent years. It is fair to compare our work with these

methods, but the complexity and unclear description in the original publications

of these methods make it difficult to re-implement all of them. A better way to

79

do the comparison is to conduct the experiment with our method under the same

settings used by the other methods, and compare our results against the reported

results using these other methods. Although most methods report results in only

one dimension of evaluation, it is reasonable to make such comparisons since

we believe that in the evaluation dimension reported, these methods have the

best results.

Impact of Sparsity. To investigate the impact of data sparsity, we first compare

the prediction accuracy of our method with the two most widely used methods

in practice, i.e. User-Based CF (UCF) (Resnick et al. 1994) and Item-Based CF

(ICF) (Sarwar et al. 2001), using training data at different levels of sparsity. We

randomly select a certain percentage of ratings as the testing set, and the

remaining ratings serve as the training set. We introduce a variable tp to indicate

what percentage of rating data is used as the test set. For example, tp=10%

indicates 10% of the data is used as the test set, and the remaining 90% of the

data is used as the training set. A higher value of tp indicates a higher sparsity

level of the training set. We refer to our method of using critic review topics as

the CRT method.

Figure 4.2 shows the MAE of the three methods using different tp values.

The results show that as the percentage of data in the testing set increases, the

prediction errors of all the three methods increase, but our CRT method always

has a lower prediction error than the other two methods. Specifically, using 10%

80

of the data as the testing set, our CRT method reduces the errors of UCF and

ICF by 7.93% and 3.27% respectively, while using 90% of data as testing set,

the reduction in error becomes 9.02% and 9.31% respectively. That is to say,

our CRT method is less affected by the data sparsity, and its strength in

prediction accuracy is more salient in rating-sparse settings. Our method has

lower prediction errors even in sparse settings, since it uses the additional topic

information from critic reviews to eliminate the dependency on user ratings and

it fully utilizes sparse ratings.

Figure 4.2. Comparison of MAE

Comparison of Efficiency. Our proposed method is efficient since it reduces

the dimension of the original matrix, and the main process of every rating

prediction is to compute the dot product of two vectors in n dimensions (in our

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

10% 30% 50% 70% 90%

M
A

E

tp

UCF ICF CRT

81

experiment n=68). To show the efficiency of our CRT method, we compare the

time cost of the three methods in the above experiment. Since the efficiency of

the online component is much more important than the offline procedures, we

only consider the time cost of the online component (i.e. the Recommender) of

our method in predicting the ratings in the testing set. For UCF and ICF, we also

assume that the user similarities and item similarities can be computed offline

and only account for the time cost by predicting the ratings in the testing set.

Figure 4.3. Comparison of Efficiency

The results are shown in Figure 4.3. From the results, we can see that as

the size of testing set increases, the time cost of UCF and ICF increases rapidly,

while our method still remains efficient for large testing sets. When run on

testing set with 90% of data, our method costs only 10.32% of the time used by

ICF, and 16.96% of that of UCF.

0

200

400

600

800

1000

1200

1400

1600

10% 30% 50% 70% 90%

T
im

e
(m

s)

tp

UCF ICF CRT

82

Comparison of Prediction Errors. In this experiment, we compare the

prediction errors of our CRT method with other state-of-the-art methods that

have been reported to have good results in rating prediction. These methods for

comparison are:

 CBS (Xue et al. 2005): This is a cluster-based smoothing method. It

fills in the missing values by using other users’ ratings in the same user

cluster.

 WLR (Srebro and Jaakkola 2003): This method uses weighted low-

rank approximation to fill in the missing values.

 CBT (Li et al. 2009): This method expands the codebook to

reconstruct the rating matrix that is used to fill in the missing values.

 SVD++ (Koren 2008): This method reduces the dimension of the

original matrix through Singular Value Decomposition. It also

integrates user feedback.

 TyCo (Cai et al. 2014): This method applies LDA to model keywords

of movies and then constructs item typicality for further

recommendation.

To make our result comparable, similar as for (Cai et al. 2014) and (Li et

al. 2009), we randomly select 500 users from the dataset, then use the first 100,

200 and 300 of them to form the training sets, named ML100U, ML200U and

83

ML300U respectively. The last 200 users are used as testing set. For every user

in the testing set, we keep 5, 10 and 15 ratings given by him in the training set,

named as G5, G10 and G15 respectively. The training sets that have fewer users

and fewer ratings from the test users are sparser. E.g. ML100U-G5 has the

highest sparsity and ML300U-G15 has the lowest sparsity.

Table 4.4. Comparison of Prediction Errors (MAE)

 ML100U ML200U ML300U

G5 G10 G15 G5 G10 G15 G5 G10 G15

CBS 0.874 0.845 0.839 0.871 0.833 0.828 0.870 0.834 0.819

WLR 0.915 0.875 0.89 0.941 0.903 0.883 1.018 0.962 0.938

CBT 0.840 0.802 0.786 0.839 0.800 0.784 0.840 0.801 0.785

SVD++ 0.925 0.911 0.916 0.881 0.815 0.812 0.885 0.815 0.802

TyCo 0.830 0.799 0.777 0.830 0.775 0.775 0.814 0.762 0.760

CRT 0.788 0.783 0.774 0.782 0.775 0.768 0.774 0.767 0.760

Table 4.4 shows the comparison of our CRT method with the state-of-the-

art methods on MAE. The results of other methods are reported in (Cai et al.

2014) and (Li et al. 2009). The results show that in most settings, our method

has lower prediction errors than other methods. Excluding our method, the TyCo

method has the best results among the others. In rating-dense settings, e.g.

ML300U-G10 and ML300U-G15, the prediction errors of our CRT method are

very close to those of TyCo, while in rating-sparse settings, e.g. all ML100U

and all G5, our method outperforms TyCo. The results are consistent with our

findings in the previous experiment that our method has strength in sparse

settings. Specifically, our CRT method reduces the prediction errors of TyCo

84

using ML100U-G5, ML200U-G5 and ML300U-G5 by 5.06%, 5.78% and 4.91%

respectively.

Comparison of Ranking Accuracy. In this experiment, we test the ranking

accuracy of our CRT method, and compare the results with those reported by

state-of-the-art methods that have proven to have good performance in ranking

the recommended items. The methods to be compared with are:

 ASSOC (Deshpande and Karypis 2004): This method uses the

association among items to perform the top N recommendations.

 FREQ (Sueiras et al. 2007): This method builds a model based on the

hitting-frequency to predict the user preference.

 PMF (Salakhutdinov and Mnih 2008): This method employs

Probabilistic Matrix Factorization to utilize the relationship among

users, items and ratings.

Table 4.5. Comparison of Ranking Accuracy (NDCG@k)

 G5 G10 G15

NDCG

@1

NDCG

@3

NDCG

@5

NDCG

@1

NDCG

@3

NDCG

@5

NDCG

@1

NDCG

@3

NDCG

@5

ASSOC 0.529 0.542 0.560 0.597 0.593 0.595 0.615 0.610 0.627

FREQ 0.642 0.600 0.596 0.636 0.607 0.610 0.638 0.618 0.632

PMF 0.635 0.612 0.623 0.644 0.646 0.654 0.696 0.689 0.698

CRT 0.710 0.691 0.681 0.709 0.694 0.679 0.712 0.692 0.673

Following the experiment in (Xin et al. 2011), we randomly choose 600

85

users to form the training set and the remaining 343 users are put in the testing

set. For every user in the testing set, 5, 10 and 15 ratings from him are given in

the training set, named as G5, G10 and G15 respectively. The fewer the ratings

given to the training set, the sparser it is.

The results of NDCG@1，NDCG@3 and NDCG@5 using different

training and testing sets are shown in Table 4.5. The results of other methods

are reported in (Xin et al. 2011). The results show that in all settings except

G15-NDCG@5, our CRT method has better results, especially in the sparse

settings like G5. The results are in line with our previous findings that the

advantage of our CRT method is more salient in sparse settings. Our CRT

method increases the NDCG@1, NDCG@3 and NDCG@5 of PMF using the

sparsest training set (i.e. G5) by 11.81%, 12.91% and 9.31% respectively.

Comparison of New Item Recommendation. One of the key features of our

method is that it supports new item recommendation, while all the above-

mentioned state-of-the-art methods cannot work under cold start settings with

new items. To illustrate the effectiveness of our CRT method in recommending

new movies, we compare with another method, TSCF (Spaeth and Desmarais

2013), that computes the text similarity between the item profiles (here we use

the movie plot summaries in IMDB5), and then performs CF recommendation.

5 http://www.imdb.com

86

In order to simulate the new movies, we randomly select 200, 400 and 600

movies as new movies for testing, named as ML200M, ML400M and ML600M

respectively, and the remaining movies are used as existing movies for training.

For movies in the testing set, none of their ratings are given in the training set.

Since the scale of the predicted ratings for new movies given by our method is

different from that of the users’ real ratings, we do not compare the prediction

errors here and only report the results of NDCG@k that are shown in Table 4.6.

The results indicate that as the proportion of new movies increases, the ranking

accuracy of both methods decreases, but our CRT method always performs

better than the TSCF method. The results prove that our CRT method is effective

in new item recommendation.

Table 4.6. Comparison of New Item Recommendation (NDCG@k)

 ML200M ML400M ML600M

NDCG

@1

NDCG

@3

NDCG

@5

NDCG

@1

NDCG

@3

NDCG

@5

NDCG

@1

NDCG

@3

NDCG

@5

TSCF 0.477 0.470 0.467 0.465 0.468 0.460 0.458 0.459 0.457

CRT 0.501 0.510 0.505 0.487 0.494 0.495 0.480 0.485 0.489

4.6. Conclusion

In this study, we propose a novel content-based recommendation framework. A

distinct feature of our method is that it incorporates the topics inferred from the

external critic reviews of items to boost the cold start recommendation. We

employ an advanced semi-supervised topic modeling approach, i.e. PLDA,

87

which is able to uncover the global shared latent topics as well as the topics

under each well-structured item attribute, to learn and infer the topic distribution

of the critic reviews. We also adapt NMF to our context by redefining the error

function to fully utilize the user ratings and topic distribution of critic reviews.

The topics inferred from is critic reviews are better representations of the items

since it covers more characteristics of the items and reflect more aspects of user

tastes. By fully utilizing the user ratings and the inferred topics, our method

alleviates the dependency on user ratings and enables high quality

recommendations even under cold start settings with new items. The adaption

of NMF lowers the dimension of the original rating matrix, which contributes

to high efficiency. The results of the experiment show that our proposed method

is scalable and outperforms the current state-of-the-art methods in terms of

prediction accuracy and ranking accuracy, and the advantage of our method is

more salient in rating-sparse settings. Our method also generates high quality

new item recommendations which is not supported by many current state-of-

the-art methods.

There are some limitations of our work. First, some off-line processing

procedures (e.g. topic learning) are time consuming. In future work, a parallel

computation framework (e.g. MapReduce) can be adopted to accelerate the

computation for large scale applications. Second, we only use one kind of

attribute (i.e. the genre of movie) to supervise the topic learning and inferring.

88

Future work could use more attributes and explore how to integrate topics under

different attributes.

Although we have focused on the domain of movies in this study, our

method is generally applicable to any other domain of consumer products where

critic reviews are available. One possible extension to our work is to see whether

our method can be applied in cross-domain recommendation.

89

CHAPTER 5. STUDY ON FUNCTIONALITY-

BASED MOBILE APP RECOMMENDATION BY

IDENTIFYING FUNCTIONAL ASPECTS FROM

USER REVIEWS

5.1. Introduction

Accelerated by the popularity of smart phones, the mobile application (or app

for short) market is growing explosively. For instance, the Apple App Store

provides more than one million apps in 24 categories for users in 155 countries

around the world6. On one hand, tens of thousands of new apps are continuously

being released in app stores, but most of them can hardly be reached by users

via keyword searches; on the other hand, it has been a significant challenge for

users to find the apps they need in such crowded app stores. Therefore, it is

necessary to have effective mechanisms to help users discover relevant apps

among the overwhelming number of alternatives.

To alleviate the new item discovery problem, many industry solutions,

such as the personalized recommender systems (RS), for other consumer

product domains, e.g. books, movies, music etc., have been proposed. These

solutions mostly deal with the new item problem by recommending items that

are similar to those the user has selected (Celma et al. 2005; Rafailidis et al.

6 http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html

90

2014; Schwab et al. 2001; Semeraro et al. 2009). While the general goal of

mobile app recommendation is similar to those in traditional domains – to guide

users to items that are relevant to their interests, there are unique features of

mobile apps that make the solutions in traditional domains less effective in the

app domain.

One of the most important characteristics of mobile app selection is that it

is based more on the apps’ functionalities than the users’ taste. For instance, a

user who likes the movie Titanic may be glad to watch another romantic movie

similar to Titanic; however, if a user has installed an app providing particular

functionality, e.g. whether forecast, he/she needs no more similar apps with the

same functionality of whether forecast, unless they provide additional

functionalities. If existing recommendation techniques are directly applied in

the app domain, users may be end up receiving a mass of redundant app

recommendations providing similar functionalities.

Moreover, the most widely used recommendation techniques, i.e.

Collaborative Filtering (CF) (Sarwar et al. 2001) and Content-based Filtering

(CB) (Pazzani and Billsus 2007), usually generate recommendations based on

user ratings. In the app domain however, rating values indicate more about users’

evaluation of the non-functional aspects (ease of use, UI design, power

consumption etc.) of the app, but can hardly reflect the users’ functional

requirements. For example, even if a user gives a very low rating to an app

91

providing weather forecast, we can only say the user is not satisfied with this

app (maybe because it is power consuming), but we cannot deny the fact that

this user needs the functionality of weather forecast, since he has been attracted

by the described functionalities of this app and has decided to install it.

Therefore, when applied in the app domain, traditional techniques fail to reveal

the detailed functionalities inside apps, and lack the ability to capture users’

functional requirements, which may worsen the quality of recommendations.

Recently, an increasing amount of research has paid attention to mobile app

recommendation. These works have enjoyed varying degrees of success by

either adapting traditional recommendation techniques to the app domain

(Bhandari et al. 2013; Lin et al. 2013; Yan and Chen 2011) , or considering

additional dimensions of apps (e.g. context information) (Böhmer et al. 2010;

Karatzoglou et al. 2012; Shi et al. 2012). However, the redundancy problem in

app recommendation has received scant attention from researchers, and there

has been no reported work on app recommendations that considers user

requirements at the functionality level.

To bridge this gap, in this study, we propose a functionality-based

recommendation solution that is able to provide more accurate and more diverse

app recommendations by drilling down into users’ functional requirements. In

our proposed solution, a mobile app is modelled as a collection of different

functionalities, and user requirements are modelled at the functionality level.

92

We first predict what new functionalities a given user most likely needs based

on other users’ usage patterns, and select a collection of apps containing these

new functionalities as recommendations. If there are similar apps providing

overlapping functionalities in this collection, we only recommend the top app

that has the best quality, therefore truly capturing users’ functional requirements

and avoiding redundant recommendations.

We achieve our goal by solving three important problems. First, given an

app, we need to know what functionalities it has. Although some functionalities

are explicitly stated in the apps’ descriptions, they are embedded in short text

blocks and are hard to be identified from the descriptions alone. We note

however, that the functionalities of an app may be repeatedly mentioned in the

app’s user reviews. In addition, user reviews may also contain other implicit

functional aspects that are not stated in the descriptions but are useful for

modeling user requirements. Therefore, one main feature of our solution is to

obtain functionalities of apps by mining textual user reviews. To accurately

extract both explicit and implicit functional aspects of apps from noisy review

content, we propose a simple but effective approach by combining app

descriptions and user reviews.

Second, user requirements should be properly modelled. We propose a

graph-based approach called AppRank to utilize the propagation of user

requirements at the functional level, and employ a two-stage random walk

93

process to predict new functionalities for the users.

Third, we need to rank and select good apps from similar candidates

providing overlapping functionalities to avoid redundancy. Our AppRank

method introduces a competition mechanism to distribute weights among

similar apps, which gives priority to apps of higher quality.

To the best of our knowledge, this is the first work to consider users’

functional requirements in mobile app recommendation. We prove the

possibility of extracting app functionalities from textual user reviews, and we

also propose an effective solution that enables functionality-based app

recommendation. The results of experiments conducted on a real-world mobile

app dataset show that our proposed method outperforms baseline methods in

terms of stability against data sparsity, ranking accuracy in top N

recommendations, overall ranking correctness and recommendation diversity.

The remainder of this chapter is organized as follows: first we review

related works in literature. Next we describe the intuition behind our proposed

solution and first provide an overview, followed by a more detailed elaboration.

Then we evaluate our solution and present the results of our evaluation. Finally,

we discuss the contribution of our work to the field and possibilities for further

work.

94

5.2. Related Work

Recently, researchers have started paying attention to mobile app

recommendation, and an increasing amount of research on app recommendation

is being done. In the following, we will review related work on mobile app

recommendation, and discuss related work on page-rank based methods which

will be adapted in our method to discover new functionalities for users.

5.2.1. Mobile App Recommendation

A few studies propose to extend traditional recommendation algorithms and to

adapt them into the app domain. For example, AppJoy (Yan and Chen 2011)

replaces the user ratings in traditional RS with usage scores composed by

recency, frequency and duration, and then performs item-based CF

recommendation. Bhandari et al. (2013) adapt graph-based recommendation for

app discovery, aiming at improving novelty. Lin et al. (2013) propose to extend

model-based RS by constructing latent user models from apps’ twitter followers,

addressing the cold-start problem of app recommendation. Hybrid methods are

also existing. For example, Xia et al. (2014) report a multi-object approach to

evolve existing mobile app RSs. Although these solutions have proven to be

effective to some extent in recommending apps, they do not consider much

about the unique characteristics of apps.

Noticing this limitation, some researchers have shifted their focus to a

95

unique characteristic of mobile apps – context, and a few context-aware systems

have been proposed in the app domain. Such systems record users’ context

information, e.g. physical location, at a particular time and then enhance app

recommendation by exploiting the collected context information (Liu et al.

2013). For example, Böhmer et al. (2010) explored the design space for context-

aware app recommendation, and developed a prototype app RS on Android

platform called Appazaar. The Djinn model introduced by Karatzoglou et al.

(2012) utilizes the user-app-context relationship using tensor factorization,

providing a new context-aware CF approach for app recommendation. Shi et al.

(2012) also apply tensor factorization to integrate implicit feedback data with

contextual information, and they propose to generate app recommendations by

optimizing the ranking (i.e. MAP). Context-aware app RSs are highlighted since

they take into account one important feature of mobile app, i.e. context

information. Such systems show better performance than traditional methods in

recommending apps. However, context information is very difficult to collect,

due to privacy concerns and other constraints. It has been a significant limitation

of context-aware systems.

To conclude, existing works on mobile app recommendation do consider

some unique features in the app domain; however, no reported work has been

found to recommend apps at the functionality level and to avoid redundant

recommendations. These gaps will be addressed with our proposed method.

96

5.2.2. PageRank-Based Methods

PageRank (Page et al. 1999) is a graph-based ranking algorithm proposed by

Google, and has been successfully applied in analyzing the link-structure of the

World Wide Web. The objective of PageRank is to determine the importance of

a given webpage on the web hyperlink structure. The basic assumption of

PageRank is that a web page is more likely to be authoritative if it is linked to

by many other authoritative pages. The implementation of PageRank is based

on a “voting” mechanism. If a webpage links to another page, it denotes a vote

to that target page. Moreover, the weight of the vote is determined by the

importance of the webpage which gives the vote. Finally, the greater the weight

of the vote a webpage receives, the more important it is. The final weight, i.e.

the PageRank score, of a webpage is determined by a random walk process

which iterates the voting process throughout each node in the graph until it

converges.

Based on PageRank, many variants in different domains have been

proposed. For example, Mihalcea and Tarau (2004) propose a graph-based

ranking model called TextRank for keyword and sentence extraction in the

domain of natural language processing. In the TextRank model, each word is

modelled as a vertex, and the edges in graph represent the concurrence of words

in the document. Jeh and Widom (2003) introduce the personalized PageRank

vector into the original model and propose a personalized version of PageRank,

97

which is able to capture user preference. FolkRank, proposed by Hotho et al.

(2006), is an adaption of the PageRank algorithm for folksonomy ranking and

searching. FolkRank employs a differential approach to compute FolkRank

score by taking the difference between the personalized PageRank score and the

original PageRank score.

Our proposed method combines and adapts TextRank and FolkRank in the

context of mobile app functionality prediction, and we call it AppRank. The

details of our adaption will be provided in the ensuing sections.

5.3. Intuition and Overview

We are interested in helping mobile app users discover new functionalities they

may need, and recommending apps that can truly meet their requirements. Our

proposed method is motivated by users’ real-life behavior of selecting mobile

apps. When choosing an app to install, a user usually first considers whether the

app provides the functionalities he/she needs by reading the app’s description.

If there are many alternatives providing similar functionalities, the user may try

each of them and evaluate them on other non-functional aspects (e.g. UI design,

ease of use, power consumption), and then select the most preferred one to use.

At a high level, our method automates this process through three main steps: (1)

knowing all the functionalities provided by the apps that a user has been using;

(2) predicting what other functionalities this user may need; and (3) helping the

98

user select better apps providing these desired functionalities.

For example, let’s assume that the target user has installed an app providing

weather forecast and airline information in his/her mobile phone. By analyzing

other users’ usage patterns, we find that users who use apps providing weather

forecast or airline information may also use apps providing navigation that the

target user has not installed. We then select a set of apps providing navigation

as recommendation candidates. To avoid generating redundant

recommendations, we rank the candidate apps providing similar functionalities

and only select the top one that has the best quality as recommendation.

One of the most outstanding features that differentiate our method from

existing works is that we generate recommendations at the functionality level,

truly capturing users’ functional requirements. To achieve our goal, the most

important problem we need to solve is obtaining the functionalities of each app.

An intuitive solution is to extract app functionalities from their textual

descriptions. But we quickly realize that descriptions are short texts wherein

functionalities may not be repeatedly stated. Most of the traditional keyword

extraction techniques (usually based on term frequency) are designed for long

articles, which may not be effective when applied to app descriptions.

Fortunately, researchers have found that item features are frequently mentioned

in customer reviews (Hu and Liu 2004). This motivates us to obtain app

functionalities from user reviews. However, it is common to have user reviews

99

containing a lot of noisy content that is not relevant to the app functionalities.

In order to filter out noisy content, we propose to use the apps’ description

content as a reference to construct a vocabulary, and perform frequency analysis

on the user reviews, which helps to extracting high quality feature words and

phrases related to the app functionalities. Next, after acquiring the app

functionalities, we propose a graph-based ranking method to discover new

functionalities for the users by propagating their requirements in a functionality

co-occurrence graph. We also intelligently filter out apps with overlapping

functionalities, therefore capturing user requirements and addressing the

redundancy problem. The details of our proposed solution will be introduced in

the following section.

5.4. Solution Details

App Data Crawler
Functionality

Extractor
App Recommender

Web Crawling

Content Extration

Vocabulary
Construction

Frequency
Analysis

Text
Preprocessing

Graph
Construction

Functionality
Prediction

Candidate Set
Ranking

App Store

Figure 5.1. App Recommendation Architecture

In this section, we will first show the architecture of our proposed solution,

followed by the details of each component in the architecture.

100

Our proposed app recommendation architecture is shown in Figure 5.1.

There are three main components in the architecture: App Data Crawler,

Functionality Extractor and App Recommender. We use the App Data Crawler

to collect app descriptions and corresponding user reviews. From the collected

data, app functionalities are then extracted by the Functionality Extractor.

Finally, the App Recommender predicts new functionalities for the user, selects

candidate apps to recommend, and intelligently filters out apps with overlapping

functionalities. More details of each component will be given in the ensuing

sections.

Figure 5.2. User Reviews in Apple App Store

101

5.4.1. App Data Crawler

The main task of the crawler is to collect web pages containing app descriptions

and user reviews from the app store. Figure 5.2 shows one of the app web pages.

Since the needed content is embedded in HTML files, we develop an extractor

to extract the textual content of app descriptions and user reviews. User ratings

associated with reviews are also isolated.

5.4.2. Functionality Extractor

Text Preprocessing. The inputs of the Functionality Extractor are the textual

content of each app’s descriptions and user reviews. We use the Stanford Core

Natural Language Processing toolkit7 to perform text preprocessing, including

tokenization (breaking up text into words), Part-of-Speech (POS) tagging (e.g.,

noun, verb, adjective), lemmatization (converting words to their based forms,

e.g. “emails” and “emailing” are converted to “email”), and removing stop

words (i.e. non-content words that appear too frequently in all apps, like “a”,

“the”).

Vocabulary Construction. In order to get rid of noisy content that is irrelevant

to app functionalities in user reviews, we need to control the size of the

vocabulary. Although app descriptions may be too short for functionality

extraction, the vocabulary used in app description is more formal and more

7 http://nlp.stanford.edu/software/corenlp.shtml

102

relevant to app functionality. It turns out that the app description can be a good

source for constructing a vocabulary. After looking at the data, we notice that,

most app functionalities are in the form of single nouns (e.g. navigation), noun

phrases (e.g. flight information) and verb-object phrases (e.g. read book). We

then aggregate all app descriptions from which we only keep the single nouns,

two-gram nouns and two-gram verb-object phrases in the vocabulary. We refer

to a single word or a 2-gram phrase in the vocabulary as a functional aspect. We

also remove those aspects that are too rare, i.e. appearing less than 10 times,

from the vocabulary. We believe the constructed vocabulary is able to cover

most functional aspects of apps.

Frequency Analysis. In this step, we perform frequency analysis on the app

descriptions and user reviews, and extract the most frequently mentioned

functionalities for each app. We denote the vocabulary as V. For each aspect

w V , we calculate its weight that indicates its representativeness of app a as:

, , ,(l) og .w a w a w a

w

N
Weight m dsf rvf

af
 

where dsfw,a is the frequency of aspect w in app a’s description; and rvfw,a is the

number of app a’s user reviews that mention aspect w. log
w

N

af
 is the inverse

app frequency that indicates the aspect’s discriminating power, where N is the

total number of apps, and afw is the number of apps that contain aspect w.

103

The proposed aspect weighting scheme uses a linear combination of the

description frequency dsf and the review frequency rvf, and multiplies dsf by m

to emphasize those aspects appearing in the description. Actually we can regard

the app description as an important piece of review. If an aspect is mentioned

one time in the description, it is as important as being mentioned by m users.

We use the number of reviews that contain the aspect instead of using the

frequency of the aspect in all reviews, because we believe an aspect mentioned

by 10 users is more important than an aspect mentioned 10 times by one user.

The proposed weighting scheme is able to consider the situation where the user

reviews are not sufficient. When the number of reviews is less than m, dsf

dominates the aspect weight, therefore avoiding bias caused by a small number

of reviews. Similarly, if an app’s description is extremely short and does not

contain informative content, rvf allows us to find out frequently mentioned

functional aspects that are not explicitly stated in the description (i.e. dsf is zero).

After frequency analysis, we are able to obtain the functional aspects for

each app by selecting the top 50 aspects having the highest weights.

5.4.3. App Recommender

Graph Construction. One of the main tasks of the recommender is to predict

new functionalities for the target user. We employ a graph-based ranking

approach which is able to propagate users’ functional requirements in the

104

functionality graph. The first step is to construct the functionality graph that

captures the co-occurrence of functionalities based on global usage patterns

from all users.

Let G=(V, E) be a directed graph with a set of vertex V and a set of edges

E. A vertex Vw denotes a functionality w, and an edge Ei,j from vertex i to j denote

an association from functionality i to functionality j, which means if i appears,

j usually appears as well. We use a directed graph instead of an undirected one

because association between two functionalities is asymmetric. For example,

users who need navigation may also need weather forecast, but users who need

weather forecast may not need navigation.

We use the well-known constraints in association rule mining, i.e. support

and confidence, to determine whether to add an edge into the graph or not.

Support is a measure of usefulness of the association. An association having too

low support may happen just by chance. In our context, support of an association

i j is defined as:

(,)
() .

U i j
Support i j

U
 

where |U(i,j)| is the number of users who install apps with functionality i and

apps with functionality j, |U| is the total number of users. We are interested in

the association of functionalities in different apps but not in the same app. If a

user installs only one app with both functionality i and j, he will not be included

105

in U(i,j). A support value of 0.4 means that 40% of the users have both

functionality i and j in their mobile devices.

Confidence is a measure of certainty of the association. Confidence of the

association i j can be regarded as the conditional probability of P(j | i).

In our context, it is defined as:

(,)
() .

()

U i j
Confidence i j

U i
 

where |U(i,j)| is the number of users who install apps with functionality i and

apps with functionality j, |Ui| is the number of users who install apps with

functionality i. A confidence value of 0.4 means that among the users who have

functionality i in their mobile devices, 40% of them also have functionality j in

their mobile devices.

An edge Ei,j is added into the graph if the association i j satisfies both

a minimum support threshold and a minimum confidence threshold, which is

0.1 and 0.4 respectively in our implementation.

Functionality Prediction. With the constructed functionality graph, we are able

to make predictions of new functionalities for a given user. Similar to Jeh and

Widom (2003), we follow a two-stage random walk process to propagate user

requirements to new functionalities. At the first stage, we run the original

PageRank random walk model on the functionality graph. Let In(Vj) be the set

106

of vertexes pointing to Vj, and Out(Vi) denote the set of vertexes pointed by Vi.

The score of each vertex j at the first stage is given by:

()

()
() (1) () .

()
i j

i
j j

V In V i

PR V
PR V d p V d

Out V

     

where a user follows the association to install a functionality with probability d,

and jumps to a completely new functionality with probability 1-d. In our

implementation, we use the same value of d as the original model, which is 0.85.

p(Vj) indicates the user’s preference for functionality Vj. At the first stage, we

run the non-personalized PageRank, so p(Vj) is set to 1 for every vertex. We

iterate the computation of PR score for each vertex until it converges.

The PR scores given at the first stage indicate how often each functionality

co-occurs with other functionalities. However, what we want to know is how

the user requirements may flow to other vertex along the edges of the graph.

Therefore, at the second stage, we run the personalized PageRank, in which p(Vj)

is given a large value (we set it as |V|) if the functionality Vj has been used by a

user. Similarly, we iterate the computation of the personalized score PR’ (Vj) for

each vertex Vj until it converges. Then we employ a differential approach to

obtain PR :

() ' .jPR V PR PR  

 PR indicates the weights propagated from the functionalities that have

107

been used by the user. It can be regarded as a measure of how likely the user

needs the new functionalities. In next section, we will introduce how to utilize

PR in app recommendation.

Candidate Set Ranking. With PR , we are able to predict new functionalities

for a given user, and then retrieve candidate apps that contain these new

functionalities. However, the candidate set generated in this way may contain

many apps with overlapping functionalities. To avoid redundant

recommendations, we need to rank apps from the candidate set, with two

objectives: (a) to promote apps with better quality; (b) to promote apps

providing more functionalities needed by the user.

To achieve these objectives, we come up with a competition mechanism to

distribute PR of all functionalities to the apps that provide these functionalities.

First, for each functionality, we search for all apps that provide this functionality.

Second, we rank these app based on the number of users who have installed

them, and only the one that has the highest ranking can be awarded the PR of

the functionality. Here our assumption is, if two apps provide similar

functionalities, the one installed by more users usually has better quality. Finally,

for each app, we aggregate the PR it wins from all functionalities it provides,

to obtain the AppRank Score, that is:

() ().
i a

a i

V Win

AppRank App PR V


 

108

where Wina is the set of functionalities for which Appa ranks higher than other

apps.

We select the top K apps that have the highest AppRank scores as

recommendations. Our completion mechanism allows only one app to obtain

the PR for each new functionality, therefore avoiding redundant

recommendations. The AppRank score uses the summation of PR from

different new functionalities, which gives priority to the apps that provide more

needed functionalities.

5.5. Experiment and Results

In this section, we describe the experiment we conducted to evaluate the

effectiveness of our proposed solution. First, we introduce the evaluation

metrics used in the experiment. Then we describe the experiment setup. Finally,

we will report the results, including functionality extraction, impact of sparsity,

ranking accuracy, and recommendation diversity.

5.5.1. Evaluation Metrics

To evaluate our proposed method, we compare our method with other state-of-

the-art recommendation techniques on several evaluation metrics. Specifically,

we will evaluate the ranking accuracy and recommendation diversity. For

ranking accuracy, we use two metrics. The first one is Recall@k, which is

defined as:

109

#liked items in top recomendations
@ .

#liked items

k
Recall k 

For ranking accuracy, recall is usually measured with another metric –

precision, which indicates what proportion of recommended items are liked by

the users. However, since most items are unrated, it is hard to say whether the

users dislike the unrated items, or they just do not know these items. Therefore,

we only use the recall which we think is more pertinent, since it only considers

the liked items.

In addition to Recall@k that measures the ranking accuracy for the top N

recommendations, we use another measure — NDCG (Herlocker et al. 2004) to

evaluate the overall ranking accuracy. NDCG is defined as:

,

1

1 2 1

log(1)

u pr
m

uu U p
NDCG Z

U p 





  .

where U is the set of users; Zu is a normalization factor to guarantee that for

perfect ranking the NDCG value is 1; p is the position of the recommended item

in the list; m is the size of candidate items; and ru,p is the rating given by the

user u to the item at position p.

Recommendation diversity is measured as 1 minus Intra-List Similarity

(Järvelin and Kekäläinen 2002) that is defined as:

,
(,)

.
2

i a i b i b a
a bRec Rec r Rec r Rec r r

Sim r r
ILS

Rec

   

  

110

where Rec is the set of recommended items to all users; Reci is the list

recommended items for user i; ra and rb are two different items in user i’s

recommendation list; and Sim(ra, rb) measures the content similarity between

item ra and rb, which is the proportion of overlapping functional aspects of two

apps in our implementation.

5.5.2. Experiment Setup

The data we use in the experiment is crawled from the Apple App Store (U.S.)8.

We construct the vocabulary based on the textual descriptions of 10530 popular

apps evenly distributed in 22 categories. The constructed vocabulary contains

20690 words and phrases. Our constructed dataset for evaluation contains

66543 ratings on a scale of 1-5 given by 1879 users to 2213 apps. The sparsity

level (i.e. the percentage of empty entries in the user-app rating matrix) of the

dataset is 98.39%. 1202 of the apps in the dataset are free, and the remaining

1101 apps are paid. The distribution of app categories in our dataset is shown in

Figure 5.3. In the dataset, each user has rated at least 5 free apps and 5 paid apps.

On average, each user has rated 20 free apps and 15 paid apps. For each app in

the dataset, we collected a maximum of 500 user reviews. On average, each app

had 442 reviews.

8 https://itunes.apple.com/us/genre/mobile-software-applications/id36?mt=8

111

Figure 5.3. App Category Distribution

5.5.3. Experiment Results

Table 5.1. Extracted Functionalities

App Name Functionalities

Dropbox
doc, file, space, photo, video, computer iphone, access file, share link,

access photo, video device, share photo, attachment

WhatsApp
message, massager, chat, group, contact, friend, address book, chat history,

friend world, send message, group chat, voice note

Kindle
book, newspaper, textbook, magazine, reader, bookmark, reading, reading

experience, book mark, read book, pdf, dictionary

Gmail
mail, google, conversation, inbox, receive email, account support,

attachment, get notification, account, mail app, contact, send email

YouTube
video, playlist, google, video playlist, list search, watch video, watch list,

share video, channel, search video, share friend, entertainment

Qualitative Results for Functionality Extraction. To investigate the

effectiveness of our method for extracting app functionalities, we select 5

popular apps and for each app, we only list the top 12 extracted functionalities

using our method. The qualitative results are shown in Table 5.1.

0

50

100

150

200

250

300

N
u

m
b

er
 o

f
A

p
p

s

Free Paid

112

From the results, we can see that most of the extracted functionalities are

meaningful and reasonable. The quality of the extracted functionalities plays an

important role in the whole solution, since the functionalities are the basis of

further analysis for recommendation. The results show that our proposed

method is effective in extracting app functionalities of good quality from user

reviews, which guarantees the effectiveness of the whole solution.

Impact of Sparsity. In this experiment, we compare our method with other

baseline methods for generating the top N recommendations using different

training-test ratios. The baseline methods we compare with are: User-Based CF

(UCF) (Resnick et al. 1994), Item-Based CF (ICF) (Sarwar et al. 2001),

Content-based Filtering (CB), Non-negative Matrix Factorization (NMF) (Lee

and Seung 1999), Regularized Singular Value Decomposition (RSVD) and its

variant SVD++ (Paterek 2007). These methods are commonly selected for

comparison in recommendation research.

We introduce a variable tp to indicate what percentage of the rating data is

used as test set. For example, tp=10% indicates 10% of the data is used as test

set, and the remaining 90% of the data is used as training set. A rating in the test

set is converted into “like” if its value is larger than 3. We fix N=100, and vary

the percentage of the test data tp=10%, 20%, …, 90%. The corresponding recall

values are shown in Figure 5.4.

113

Figure 5.4. Comparison of Recall@100 with Different tp

(Higher recall indicates higher accuracy)

From the results, we find that the recall of all methods is generally low.

One possible explanation for the low recall is that we tend to select active users

when we construct the dataset, since we need a relatively dense dataset for

evaluation, otherwise the results are very unstable. Some of these active users

are app players, i.e. people who would like to try different kinds of apps for no

particular reason, and therefore it is very difficult to predict their interests and

requirements. In spite of the low recall, the results are still valid for showing the

effectiveness of our proposed method when we look at the relative values.

The results show that our proposed AppRank method is less sensitive to

training-test ratio compared to other methods, and it always outperforms other

0.00

0.05

0.10

0.15

0.20

0.25

10% 20% 30% 40% 50% 60% 70% 80% 90%

R
ec

a
ll

@
1

0
0

tp

UCF ICF RSVD SVD++

CB NMF AppRank

114

methods on all tp values. As tp increases, less data is used for training, which

means the sparsity level of the training set increases as well. Therefore, the

results also show that our method is less sensitive to data sparsity, and its

improvement is more salient in extremely sparse settings. Specifically, when

tp=90%, our AppRank method increases the recall of the second best method,

i.e. CB, from 0.12 to 0.23. The results prove the effectiveness of our AppRank

method in alleviating data sparsity.

Figure 5.5. Comparison of Recall@N

(Higher recall indicates higher accuracy)

Comparison of Top N Recommendations. In this experiment, we fix the tp to

60%, where most methods have high recall, and vary the number of

recommended apps N=10, 20, …, 100 to compare the recall of different

methods for the top N recommendations. The results of the comparison in Figure

0.00

0.05

0.10

0.15

0.20

0.25

20 40 60 80 100

R
ec

a
ll

@
N

N

UCF ICF RSVD SVD++

CB NMF AppRank

115

5.5 show that the recalls of all methods increase along with the N, and the recall

of our method outperforms all other methods for different N. The results prove

that our AppRank method has significant improvement on ranking accuracy for

the top N recommendations.

Comparison of Overall Ranking. In this experiment, we still fix the tp to 60%

and compare the NDCG values of different methods to investigate the

correctness of overall rankings for all candidate items. From the results shown

in Figure 5.6, we can see that our proposed AppRank method has the highest

NDCG value, and it increases the NDCG value of the second best method, i.e.

RSVD, by 14.27%. The results prove that our method is effective in improving

the correctness of the overall ranking for all candidate apps.

Figure 5.6. Comparison of NDCG

(Higher NDCG indicates higher accuracy)

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

N
D

C
G

116

Comparison of Recommendation Diversity. We find that at less sparse settings,

generally all methods are able to generate diverse recommendations. However,

when the training data becomes sparse, the diversity of some methods drops

down. We set tp=90%, and compare the diversity of the top 5 and top 10

recommended apps of different methods. The results are shown in Figure 5.7.

From the results, we can see that the diversity of the top 5 and top 10

recommended apps generated by our method remains high, which is 0.9913 and

0.9916 respectively. However, for UCF, ICF and CB, the diversity is

significantly lower. For instance, the diversity of the top 5 and top 10

recommended apps generated by UCF is only 0.8715 and 0.9164 respectively.

The results prove that our method is less sensitive to data sparsity in terms of

recommendation diversity.

Figure 5.7. Comparison of Diversity

（Higher Diversity indicates better result）

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

D
iv

er
si

ty

N=5 N=10

117

Comparison between Free and Paid Apps. In this experiment, we split the

dataset into two subsets. One subset only contains free apps and another only

contains paid apps. We set tp=60% and compare Recall@100 of different

methods on these two subsets as well as the whole dataset respectively. The

results are shown in Figure 5.8. From the results, we find that for all methods,

the recall values for both free app and paid app subsets are higher than for the

whole dataset. This implies that users’ interests and requirements are easier to

predict within free apps and paid apps. Moreover, the recall values for the paid

app subset are higher than for the free app subset. This is reasonable since users

will consider more about what they need when they are installing paid apps,

therefore it is easier to capture their requirements. On either the free app or paid

app subset, our proposed AppRank method outperforms all the other methods.

Figure 5.8. Comparison of Recall@100 for Free and Paid Subsets

(Higher Diversity indicates better result)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
ec

a
ll

@
1

0
0

Free Paid All

118

5.6. Conclusion

In this study, we propose a functionality-based mobile app recommendation

architecture. Our method recommends apps by revealing the detailed

functionalities of apps and truly capturing users’ functional requirements, which

have not been considered by existing works. Furthermore, we prove that user

reviews can be used to enrich item information and can be incorporated to

enhance recommendation. The experiment conducted on a real-world dataset

shows that our proposed AppRank method is effective in alleviating the data

sparsity problem, and it is able to significantly improve recommendation

accuracy and diversity.

Our work not only provides theoretical contributions to recommendation

literature, but has practical implications as well. The proposed solution can be

implemented as an effective real-world app recommender system helping users

to discover apps that meet their requirements. The recommended apps would be

more accurate, more diverse, and have less overlapping functionalities.

Our solution has some limitations. First, when ranking the candidate apps

with similar functionalities, we simply use the apps’ rating counts. In future

work, it is possible to extract other non-functional aspects from user reviews,

which can be incorporated in the ranking process to enable a personalized

ranking approach. Second, as the rating data were collected from active users in

119

the evaluation, it may have some selection bias. This can be addressed in future

work by collecting users’ real usage data. Third, our method focuses more on

the apps providing functionalities for users. However, there are also apps that

may not be functionality-oriented, e.g. games. In future work, we will

investigate the impact of product category on user requirement modeling, and

extend our work by coming up with strategies to capture user requirements by

differencing utilitarian and hedonic products.

120

CHAPTER 6. CONCLUSION

This thesis aims at addressing the data sparsity problem, which is one of the

hardest problems affecting virtually all kinds of recommender systems. To

achieve this goal, we propose to extract and incorporate meta-data from free-

text User-Generated Content (UGC) into the recommendation process, seeking

to make a difference to the quality, including accuracy, coverage, diversity and

transparency of traditional recommendation algorithms.

This thesis consists of three different studies, each of which proposes a

recommendation solution that incorporates UGC from different perspectives,

and addresses specific problems introduced by data sparsity in different contexts.

In particular, in study one, we show that adjective features embedded in user

reviews are useful for characterizing item features as well as user tastes. In study

two, we propose to model critic review articles at the topic level and use the

inferred topics to represent item features and user interests. In study three, by

extracting aspects from user reviews, we aim at building a mobile app

recommendation solution that is able to model apps at the functional level and

to recommend diverse mobile apps without redundancy.

There are several important contributions made by this thesis. First, it is

proven in this thesis that UGC is a promising source for improving

recommendation. Second, the adaptions of feature extraction techniques in this

121

thesis have implications for both UGC and RS research. Third, this thesis comes

up with novel techniques to utilize textual content in the recommendation

process, which fills the gap between UGC research and RS research.

This thesis also motivates several promising directions for future research.

First, UGC is a valuable source for recommendation as well as many other

applications. Beside the aspects used in this thesis, there are many types of

information embedded in UGC that can be further explored. It is worthwhile to

continue mining the value of UGC in future work. Second, cross-domain

recommendation is still a challenging task in the present day. With the rapid

growth of online review platforms, UGC is becoming increasingly available for

most consumer products. It is interesting to see if UGC can act as a bridge to

link different domains where no overlaps can be found in other dimensions,

making cross-domain recommendation possible. Third, though it may appear

that different strategies should be applied when recommending utilitarian versus

hedonic products; however, in real-life systems, it is common that the same

strategy is used in recommending the two types of products, because existing

work might have difficulty in differentiating between them. In future work, it

will be meaningful to explore how UGC can help to reveal the utilitarian and

hedonic characteristics of products.

122

BIBLIOGRAPHY

Aciar, S., Zhang, D., Simoff, S., and Debenham, J. 2006. "Recommender

System Based on Consumer Product Reviews," Proceedings of the 2006

IEEE/WIC/ACM International Conference on Web Intelligence: IEEE

Computer Society, pp. 719-723.

Adomavicius, G., and Tuzhilin, A. 2005. "Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions," IEEE Transactions on Knowledge and Data Engineering

(17:6), pp. 734-749.

Aggarwal, C.C., Wolf, J.L., Wu, K., and Yu, P.S. 1999. "Horting Hatches an Egg:

A New Graph-Theoretic Approach to Collaborative Filtering," Proceedings

of the Fifth International Conference on Knowledge Discovery and Data

Mining: ACM, pp. 201-212.

Ahn, J.-w., Brusilovsky, P., Grady, J., He, D., and Syn, S.Y. 2007. "Open User

Profiles for Adaptive News Systems: Help or Harm?," Proceedings of the

16th International Conference on World Wide Web: ACM, pp. 11-20.

Asuncion, A., Welling, M., Smyth, P., and Teh, Y.W. 2009. "On Smoothing and

Inference for Topic Models," Proceedings of the Twenty-Fifth Conference

on Uncertainty in Artificial Intelligence: AUAI Press, pp. 27-34.

Böhmer, M., Bauer, G., and Krüger, A. 2010. "Exploring the Design Space of

Context-Aware Recommender Systems That Suggest Mobile

Applications," 2nd Workshop on Context-Aware Recommender Systems.

Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S.,

Ravichandran, D., and Aly, M. 2008. "Video Suggestion and Discovery for

Youtube: Taking Random Walks through the View Graph," in: Proceedings

of the 17th International Conference on World Wide Web. Beijing, China:

ACM, pp. 895-904.

Bhandari, U., Sugiyama, K., Datta, A., and Jindal, R. 2013. "Serendipitous

Recommendation for Mobile Apps Using Item-Item Similarity Graph," in

Information Retrieval Technology. Springer, pp. 440-451.

Blei, D., Ng, A., and Jordan, M. 2003. "Latent Dirichlet Allocation," Journal of

Machine Learning Research (3), pp. 993-1022.

Bonhard, P., and Sasse, M. 2006. "’Knowing Me, Knowing You’—Using

Profiles and Social Networking to Improve Recommender Systems," BT

Technology Journal (24:3), pp. 84-98.

123

Bouza, A., Reif, G., Bernstein, A., and Gall, H. 2008. "Semtree: Ontology-

Based Decision Tree Algorithm for Recommender Systems," International

Semantic Web Conference.

Cai, X., Bain, M., Krzywicki, A., Wobcke, W., Kim, Y., Compton, P., and

Mahidadia, A. 2011. "Collaborative Filtering for People to People

Recommendation in Social Networks " in Ai 2010: Advances in Artificial

Intelligence, J. Li (ed.). Springer Berlin / Heidelberg, pp. 476-485.

Cai, Y., Leung, H.-f., Li, Q., Min, H., Tang, J., and Li, J. 2014. "Typicality-

Based Collaborative Filtering Recommendation," IEEE Transactions on

Knowledge and Data Engineering (26:3), pp. 766-779.

Celma, O., Ramírez, M., and Herrera, P. 2005. "Foafing the Music: A Music

Recommendation System Based on Rss Feeds and User Preferences," in

ISMIR: Citeseer.

Chen, L., and Wang, F. 2013. "Preference-Based Clustering Reviews for

Augmenting E-Commerce Recommendation," Knowledge-Based Systems

(50), Sep, pp. 44-59.

Christakou, C., Vrettos, S., and Stafylopatis, A. 2007. "A Hybrid Movie

Recommender System Based on Neural Networks," International Journal

on Artificial Intelligence Tools (16:05), pp. 771-792.

Clever, N., Kirchner, A., Schray, D., and Schulte, M. 2009. "User-Generated

Content," in: Essay, Institut für Wirtschaftsinformatik. Westfälische

Wilhelms-universität, Münster. pp. 1-3.

Cohen, J. 1995. "Highlights: Language- and Domain-Independent Automatic

Indexing Terms for Abstracting," Journal of the American Society for

Information Science (46:3), pp. 162-174.

Datta, A., Dutta, K., Kajanan, S., and Pervin, N. 2012. "Mobilewalla: A Mobile

Application Search Engine," in Mobile Computing, Applications, and

Services. Springer, pp. 172-187.

de Gemmis, M., Lops, P., Semeraro, G., and Basile, P. 2008. "Integrating Tags

in a Semantic Content-Based Recommender," Proceedings of the 2008

ACM conference on Recommender systems, Lausanne, Switzerland: ACM,

pp. 163-170.

Deerwester, S., Dumais, S., Landauer, T., Furnas, G., and Harshman, R. 1990.

"Indexing by Latent Semantic Analysis," Journal of the American Society

of Information Science (41:6), pp. 391-407.

Deshpande, M., and Karypis, G. 2004. "Item-Based Top-N Recommendation

Algorithms," ACM Transactions on Information Systems (TOIS) (22:1), pp.

124

143-177.

Diederich, J., and Iofciu, T. 2006. "Finding Communities of Practice from User

Profiles Based on Folksonomies," Innovative Approaches for Learning and

Knowledge Sharing, EC-TEL Workshop Proc, pp. 288-297.

Funk, S. 2006. "Netflix Update: Try This at Home." from

http://sifter.org/simon/journal/20061211.html

Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., and Schmidt-Thieme,

L. 2010. "Learning Attribute-to-Feature Mappings for Cold-Start

Recommendations," Data Mining (ICDM), 2010 IEEE 10th International

Conference on: IEEE, pp. 176-185.

Ganu, G., Kakodkar, Y., and Marian, A. 2013. "Improving the Quality of

Predictions Using Textual Information in Online User Reviews,"

Information Systems (38:1), pp. 1-15.

Golbeck, J. 2006. "Generating Predictive Movie Recommendations from Trust

in Social Networks," in: Trust Management. Springer, pp. 93-104.

Groh, G., Birnkammerer, S., and Köllhofer, V. 2012. "Social Recommender

Systems," in Recommender Systems for the Social Web. Springer Berlin

Heidelberg, pp. 3-42.

Gutta, S., Kurapati, K., Lee, K., Martino, J., Milanski, J., Schaffer, J.D., and

Zimmerman, J. 2000. "Tv Content Recommender System," Proceedings of

the National Conference on Artificial Intelligence: Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, pp. 1121-1122.

Harb, A., Plantié, M., Dray, G., Roche, M., Trousset, F., and Poncelet, P. 2008.

"Web Opinion Mining: How to Extract Opinions from Blogs?,"

Proceedings of the 5th International Conference on Soft Computing as

Transdisciplinary Science and Technology: ACM, pp. 211-217.

Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, J.T. 2004. "Evaluating

Collaborative Filtering Recommender Systems," ACM Transactions on

Information Systems (TOIS) (22:1), pp. 5-53.

Hofmann, T. 2004. "Latent Semantic Models for Collaborative Filtering," ACM

Transactions on Information System (22:1), pp. 89-115.

Hotho, A., Jäschke, R., Schmitz, C., Stumme, G., and Althoff, K.-D. 2006.

"Folkrank: A Ranking Algorithm for Folksonomies," LWA, pp. 111-114.

Hsieh, C.-J., and Dhillon, I.S. 2011. "Fast Coordinate Descent Methods with

Variable Selection for Non-Negative Matrix Factorization," Proceedings of

the 17th ACM SIGKDD International Conference on Knowledge Discovery

http://sifter.org/simon/journal/20061211.html

125

and Data Mining: ACM, pp. 1064-1072.

Huang, Z., Chen, H., and Zeng, D. 2004. "Applying Associative Retrieval

Techniques to Alleviate the Sparsity Problem in Collaborative Filtering,"

ACM Transactions on Information Systems (TOIS) (22:1), pp. 116-142.

Järvelin, K., and Kekäläinen, J. 2002. "Cumulated Gain-Based Evaluation of Ir

Techniques," ACM Transactions on Information Systems (TOIS) (20:4), pp.

422-446.

Jakob, N., Weber, S.H., M, M.C., and Gurevych, I. 2009. "Beyond the Stars:

Exploiting Free-Text User Reviews to Improve the Accuracy of Movie

Recommendations," in: Proceedings of the 1st International CIKM

Workshop on Topic-sentiment Analysis for Mass Opinion. Hong Kong,

China: ACM, pp. 57-64.

Jamali, M., and Ester, M. 2010. "A Matrix Factorization Technique with Trust

Propagation for Recommendation in Social Networks," in: Proceedings of

the Fourth ACM Conference on Recommender Systems. Barcelona, Spain:

ACM, pp. 135-142.

Jeh, G., and Widom, J. 2003. "Scaling Personalized Web Search," Proceedings

of the 12th International Conference on World Wide Web: ACM, pp. 271-

279.

Karatzoglou, A., Baltrunas, L., Church, K., and Böhmer, M. 2012. "Climbing

the App Wall: Enabling Mobile App Discovery through Context-Aware

Recommendations," Proceedings of the 21st ACM International

Conference on Information and Knowledge Management: ACM, pp. 2527-

2530.

Katz, G., Ofek, N., Shapira, B., Rokach, L., and Shani, G. 2011. "Using

Wikipedia to Boost Collaborative Filtering Techniques," Proceedings of the

Fifth ACM Conference on Recommender Systems: ACM, pp. 285-288.

Kohlschütter, C., Fankhauser, P., and Nejdl, W. 2010. "Boilerplate Detection

Using Shallow Text Features," Proceedings of the Third ACM International

Conference on Web Search and Data Mining: ACM, pp. 441-450.

Koren, Y. 2008. "Factorization Meets the Neighborhood: A Multifaceted

Collaborative Filtering Model," Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Las

Vegas, Nevada, USA: ACM, pp. 426-434.

Koren, Y., and Bell, R. 2011. "Advances in Collaborative Filtering," in

Recommender Systems Handbook, F. Ricci, L. Rokach and B. Shapira (eds.).

Springer, pp. 145-186.

126

Kullback, S. 1987. "The Kullback-Leibler Distance," The American Statistician

(41:4), pp. 340-341.

Lan, M., Tan, C.L., Su, J., and Lu, Y. 2009. "Supervised and Traditional Term

Weighting Methods for Automatic Text Categorization," IEEE

Transactions on Pattern Analysis and Machine Intelligence (31:4), pp. 721-

735.

Lee, D.D., and Seung, H.S. 1999. "Learning the Parts of Objects by Non-

Negative Matrix Factorization," Nature (401:6755), pp. 788-791.

Lemire, D., and Maclachlan, A. 2005. "Slope One Predictors for Online Rating-

Based Collaborative Filtering," SDM: SIAM, pp. 1-5.

Li, B., Yang, Q., and Xue, X. 2009. "Can Movies and Books Collaborate? Cross-

Domain Collaborative Filtering for Sparsity Reduction," Proceedings of the

21st International Jont Conference on Artifical Intelligence: Morgan

Kaufmann Publishers Inc., pp. 2052-2057.

Lin, C.-J. 2007. "Projected Gradient Methods for Nonnegative Matrix

Factorization," Neural Computation (19:10), pp. 2756-2779.

Lin, J., Sugiyama, K., Kan, M.-Y., and Chua, T.-S. 2013. "Addressing Cold-

Start in App Recommendation: Latent User Models Constructed from

Twitter Followers," Proceedings of the 36th International ACM SIGIR

Conference on Research and Development in Information Retrieval: ACM,

pp. 283-292.

Liu, Q., Ma, H., Chen, E., and Xiong, H. 2013. "A Survey of Context-Aware

Mobile Recommendations," International Journal of Information

Technology & Decision Making (12:01), pp. 139-172.

Lops, P., Gemmis, M., and Semeraro, G. 2011. "Content-Based Recommender

Systems: State of the Art and Trends," in Recommender Systems Handbook,

F. Ricci, L. Rokach and B. Shapira (eds.). Springer, pp. 73-105.

Maneeroj, S., and Takasu, A. 2009. "Hybrid Recommender System Using

Latent Features," International Conference on Advanced Information

Networking and Applications Workshops: IEEE, pp. 661-666.

Manzato, M.G. 2012. "Discovering Latent Factors from Movies Genres for

Enhanced Recommendation," Proceedings of the Sixth ACM Conference on

Recommender Systems: ACM, pp. 249-252.

McNee, S.M., Riedl, J., and Konstan, J.A. 2006. "Being Accurate Is Not Enough:

How Accuracy Metrics Have Hurt Recommender Systems," CHI'06

Extended Bbstracts on Human Factors in Computing Systems: ACM, pp.

1097-1101.

127

Michlmayr, E. 2007. "Learning User Profiles from Tagging Data and

Leveraging Them for Personal(Ized) Information Access," In Proceedings

of the Workshop on Tagging and Metadata for Social Information

Organization, 16th International World Wide Web Conference.

Middleton, S.E., Shadbolt, N.R., and De Roure, D.C. 2004. "Ontological User

Profiling in Recommender Systems," ACM Transactions on Information

Systems (TOIS) (22:1), pp. 54-88.

Mihalcea, R., and Tarau, P. 2004. "Textrank: Bringing Order into Texts,"

Conference on Empirical Methods in Natural Language Processing

Page, L., Brin, S., Motwani, R., and Winograd, T. 1999. "The Pagerank Citation

Ranking: Bringing Order to the Web," Stanford Digital Library

Technologies Project).

Paterek, A. 2007. "Improving Regularized Singular Value Decomposition for

Collaborative Filtering," Proceedings of KDD Cup and Workshop, pp. 5-8.

Pazzani, M.J., and Billsus, D. 2007. "Content-Based Recommendation

Systems," in The Adaptive Web. Springer, pp. 325-341.

Pucci, A., Gori, M., and Maggini, M. 2007. "A Random-Walk Based Scoring

Algorithm Applied to Recommender Engines," in Advances in Web Mining

and Web Usage Analysis. Philadelphia, PA, USA: Springer Berlin

Heidelberg, pp. 127-146.

Rafailidis, D., Axenopoulos, A., Etzold, J., Manolopoulou, S., and Daras, P.

2014. "Content-Based Tag Propagation and Tensor Factorization for

Personalized Item Recommendation Based on Social Tagging," ACM

Transactions on Interactive Intelligent Systems (TiiS) (3:4), p. 26.

Ramage, D., Hall, D., Nallapati, R., and Manning, C.D. 2009. "Labeled Lda: A

Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora,"

Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 1-Volume 1: Association for Computational

Linguistics, pp. 248-256.

Ramage, D., Manning, C.D., and Dumais, S. 2011. "Partially Labeled Topic

Models for Interpretable Text Mining," Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining: ACM, pp. 457-465.

Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., and Riedl, J. 1994.

"Grouplens: An Open Architecture for Collaborative Filtering of Netnews,"

Proceedings of ACM 1994 Conference on Computer Supported

Cooperative Work: ACM, pp. 175-186.

128

Said, A., De Luca, E.W., and Albayrak, S. 2010. "How Social Relationships

Affect User Similarities," Proceedings of the Workshop on Social

Recommender Systems.

Salakhutdinov, R., and Mnih, A. 2008. "Probabilistic Matrix Factorization,"

Advances in Neural Information Processing Systems (20), pp. 1257-1264.

Salakhutdinov, R., Mnih, A., and Hinton, G. 2007. "Restricted Boltzmann

Machines for Collaborative Filtering," Proceedings of the 24th

International Conference on Machine Learning, Corvalis, Oregon: ACM,

pp. 791-798.

Sarwar, B., Karypis, G., Konstan, J., and Reidl, J. 2001. "Item-Based

Collaborative Filtering Recommendation Algorithms," Proceedings of the

10th International Conference on World Wide Web, pp. 285-295.

Schein, A.I., Popescul, A., Ungar, L.H., and Pennock, D.M. 2002. "Methods

and Metrics for Cold-Start Recommendations," Proceedings of the 25th

Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval: ACM, pp. 253-260.

Schwab, I., Kobsa, A., and Koychev, I. 2001. "Learning User Interests through

Positive Examples Using Content Analysis and Collaborative Filtering,"

Internal Memo, GMD, St. Augustin, Germany).

Semeraro, G., Basile, P., de Gemmis, M., and Lops, P. 2009. "User Profiles for

Personalizing Digital Libraries."

Sen, S., Vig, J., and Riedl, J. 2009. "Tagommenders: Connecting Users to Items

through Tags," in: Proceedings of the 18th International Conference on

World wide web. Madrid, Spain: ACM, pp. 671-680.

Seung, D., and Lee, L. 2001. "Algorithms for Non-Negative Matrix

Factorization," Advances in Neural Information Processing Systems (13),

pp. 556-562.

Shani, G., and Gunawardana, A. 2011. "Evaluating Recommendation Systems,"

in Recommender Systems Handbook, F. Ricci, L. Rokach and B. Shapira

(eds.). Springer, pp. 73-105.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., and Oliver, N.

2012. "Tfmap: Optimizing Map for Top-N Context-Aware

Recommendation," Proceedings of the 35th International ACM SIGIR

Conference on Research and Development in Information Retrieval: ACM,

pp. 155-164.

Spaeth, A., and Desmarais, M.C. 2013. "Combining Collaborative Filtering and

Text Similarity for Expert Profile Recommendations in Social Websites,"

129

Proceedings of The 21st Conference on User Modeling, Adaptation and

Personalization, Rome, Italy.

Srebro, N., and Jaakkola, T. 2003. "Weighted Low-Rank Approximations,"

Proceedings of the 20th International Conference on Machine Learning, pp.

720-727.

Su, X., and Khoshgoftaar, T.M. 2009. "A Survey of Collaborative Filtering

Techniques," Advances in Artificial Intelligence (2009), p. 4.

Sueiras, J., Salafranca, A., and Florez, J.L. 2007. "A Classical Predictive

Modeling Approach for Task Who Rated What? Of the Kdd Cup 2007,"

ACM SIGKDD Explorations Newsletter (9:2), pp. 57-61.

Toutanova, K., Klein, D., Manning, C.D., and Singer, Y. 2003. "Feature-Rich

Part-of-Speech Tagging with a Cyclic Dependency Network," in:

Proceedings of the 2003 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language

Technology - Volume 1. Edmonton, Canada: Association for Computational

Linguistics, pp. 173-180.

Voll, K., and Taboada, M. 2007. "Not All Words Are Created Equal: Extracting

Semantic Orientation as a Function of Adjective Relevance," in Ai 2007:

Advances in Artificial Intelligence. Springer, pp. 337-346.

Wang, Z., Tan, Y., and Zhang, M. 2010. "Graph-Based Recommendation on

Social Networks," in: Proceedings of the 2010 12th International Asia-

Pacific Web Conference. IEEE Computer Society, pp. 116-122.

Wei, C., Hsu, W., and Lee, M. 2011. "A Unified Framework for

Recommendations Based on Quaternary Semantic Analysis," Proceedings

of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval, Beijing, China: ACM, pp. 1023-

1032.

Xia, X., Wang, X., Zhou, X., and Zhu, T. 2014. "Collaborative Recommendation

of Mobile Apps: A Swarm Intelligence Method," in Mobile, Ubiquitous,

and Intelligent Computing. Springer, pp. 405-412.

Xin, X., Lyu, M.R., and King, I. 2011. "Cmap: Effective Fusion of Quality and

Relevance for Multi-Criteria Recommendation," Proceedings of the Fourth

ACM International Conference on Web Search and Data Mining: ACM, pp.

455-464.

Xu, J.A., and Araki, K. 2006. "A Svm-Based Personal Recommendation System

for Tv Programs," Proceedings of the 12th International Multi-Media

Modelling Conference: IEEE, p. 4 pp.

130

Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., and Chen, Z. 2005.

"Scalable Collaborative Filtering Using Cluster-Based Smoothing,"

Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval: ACM, pp. 114-121.

Yan, B., and Chen, G. 2011. "Appjoy: Personalized Mobile Application

Discovery," Proceedings of the 9th International Conference on Mobile

Systems, Applications, and Services: ACM, pp. 113-126.

