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SUMMARY 

With the changing environmental conditions experienced over the last decade, 

design against failures of offshore structures has becomes even more challenging.  

Complexities exist in various steps, from translating and modeling of the 

environmental data, appropriate structural analysis, reliability assessment, 

installation, operations and maintenance.  This is compounded by the presence of 

climatic influence which significantly affects the observed physical variables, 

leading to uncertainties in characterizing the system.  It is essential to quantify 

and model the uncertainties associated with the real data collected and consider 

them in the long term safety assessment of new and existing offshore structures.  

This thesis focuses on the characterization of the time varying 

characteristics of variables associated with the environmental loads, the 

dependencies between these variables, and investigating the impact of the 

uncertainties and dependencies on the long term assessment of a typical marine 

structure. The wave parameters which directly influence the loadings on offshore 

structures are studied in this work. 

Considering the long time life-span and the limited data normally 

available, extreme value (EV) statistical models have been commonly adopted to 

describe environmental loads.  Such class of models has assumptions that may not 

be fulfilled for some variables, such as independence between data points and the 

stationarity of the data.  As such, compound extreme value statistical models have 

also introduced, for example, the peak-over-threshold (POT) model.  Using the 
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same set of simulated data, both the EV and POT models are compared in this 

study, where the latter is found to be a more inclusive and better approach.  It is 

also found that the accuracy associated with each model is sensitive to the 

parameter estimate method used, especially if available data is limited.  To 

characterize the uncertainties associated with the parameters, namely, the 

threshold u and time span ∆t, a random set model is proposed in the context of the 

POT approach.  Such elaborate measure in the form of imprecise probabilities 

could reflect the intensities of uncertainty in the selection of parameters more 

realistically.  

By analyzing various segments of the collected data, stationarity of the 

parameters can be established.  If the non-stationary is slowly time varying, then a 

simple means to account for this is through appropriate division of the data into 

stationary segments.  A modified segmentation algorithm with specified fixed 

time interval is proposed to extract homogeneous data sets from non-stationary 

time series data.  To select the time interval, the data fitting is recursively 

performed until the sample data can satisfactorily fit the Poisson-Generalized 

Pareto Distribution (GPD) model.  Two-dimensional Fast Fourier transform is 

employed to characterize the variations of extreme values with time.  A collected 

group of data is selected to demonstrate that such a discretized model can provide 

a more reasonable and accurate characterization of each parameter of interest. 

This approach of incorporating the time varying effect is examined through the 

reliability analysis of an existing offshore platform.  The results show that 

incorporating the co-variate effects in the statistical model can better reflect the 
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underlying physical processes and help detect the most critical environmental 

conditions for the structure within a marine environment.  

In a multivariate environment, the dependencies between the load-related 

environmental parameters can be a major concern. Extending beyond the linear 

correlation coefficient, the concept of copula is introduced to improve the 

quantification of the dependencies between variables as how the pairs of data are 

spread is considered.  A further refinement is proposed through a discretized 

copula approach with a scheme to reduce the numerical efforts in deriving the 

long term response distribution of the offshore structure.  A numerical example is 

presented to demonstrate that the proposed method produces more accurate results 

as the most critical sea states are identified.  The newly developed method can be 

extended to a multivariate problem based on the copula model. 
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Chapter 1 Introduction  

 

1.1  Background 

Offshore structures facilitate the exploitation of the vast ocean resource which 

contributes significantly to technological and economic development.  Since the 

first oil platform started operating at the ocean of Couissana in 1947, thousands of 

marine structures have been built over the last six decades. Up to now, there are 

more than 4000 platforms operating at the Gulf of Mexico alone.  The evolution 

of marine technology is rapid and numerous kinds of structures are now available 

in the open sea, encompassing fixed structures (for example, jackets and jack-ups) 

in shallow waters and floating structures (for example, tension leg platforms and 

semi-submersibles) in deep waters, see Fig. 1.1.   

 

Figure 1.1 Different types of offshore structures (Roy 2013). 
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Compared with normal structures on land, offshore structures are bulky, 

expensive and in some cases have complex geometry.  The marine environment 

for offshore structures can be severe, adverse, varied and uncertain.  It covers a 

broad area of climatic factors which generally includes wind, waves, current, ice, 

tide and other catastrophe events such as earthquake, storm and tsunami.  Under 

such environment, many unfavorable phenomena like marine corrosion, marine 

growth, foundation scouring, material deterioration and fatigue damage will cause 

a weakening of the overall strength of the structure and thus lead to an unexpected 

accident.  Historical records depicted our inadequate understanding of the ocean 

environment leading to accidents with drastic consequences and huge economic 

loss.  Examples include the first UK-built semi-submersible rig Ocean Prince and 

the first rig to find oil in UK waters, which broke up off England's east coast 

during a storm in 1967 (Oo 1974).  Bohai No. 2 jack-up structure located in the 

Gulf of Bohai between China and Korea encountered a storm and sank on 25 

November 1979, resulting in the deaths of 72 out of the 74 personnel on board 

(Santos and Feijo 2010).  In 1980, the semi-submersible accommodation rig 

Alexander L. Kielland capsized during a storm after the brace supporting a leg 

failed in the Norwegian Continental Shelf (BMT 2006).  An example of recent 

failures is the Usumacinta jack-up in the Gulf of Mexico which was struck by a 

strong storm on 21 October 2007, resulting in a fatal blowout causing 21 reported 

deaths with one worker missing during the evacuation (OGP 2010), see Fig. 1.2.  

These painful lessons provide strong motivation to improve our knowledge of the 
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climate-dependent ocean and its effects so as to enhance the safe operation of 

offshore structures. 

 

Figure 1.2 Controlled burning in Usumacinta jack-up after its first fire (OGP 

2010). 

 

To enforce the safety requirements imposed by design codes (such as 

Ultimate Limit State (ULS) and Fatigue Limit State (FLS) criteria to achieve a 

target level of safety not exceeding more than once in 100 years (DNV 2007)) are 

followed, an assessment of the structure under consideration must be carried out.  

The objective is to ensure safe performance and limit fatalities as well as damages 

caused by the environment and operational loads during its service life.   

Various methods for safety assessment of existing offshore structures have 

been developed in relation to severe environmental loading such as hurricanes 

(Moan 2005).  The results from various methods are very much dependent on the 

validity of the assumptions imposed (Fitzwater and Winterstein 2001; Moriarty et 
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al. 2006; Saranyasoontorn and Manuel 2006; Naess et al. 2007).  The design code 

recommends several statistical models to represent physical variables such as 

wind and waves.  Due to the complexity of the environment, these models may 

not be able to capture the complete characteristics of the physical variables.  For 

example, the wave load which constitutes roughly 80% of the overall external 

load, is the major environmental loads.  The load is affected by factors such as its 

period, time and direction of loading, that a single statistical model could hardly 

be accurate in describing the randomness of the waves.  Obtaining an appropriate 

wave load model remains a challenge.  The model should be sufficiently robust to 

be able to represent the most critical situation and produce a good estimate of the 

reliability of the structure under investigation.  

 

1.1.1  Robust Extreme Models 

The traditional modeling based on probabilistic theory has been well established 

and used in the characterization of environmental factors in the offshore industry 

(Muir & El-Shaarawi 1986).  The parameters governing the models are estimated 

statistically using data collected from monitoring stations.  Often only the extreme 

values govern the design loads and the design life span becomes a primary 

determining variable.   

A commonly adopted approach is to use extreme value statistical models 

to arrive at a design value corresponding to the structure’s lifespan. The direct 

annual maximum method, which models the largest value from each year, is most 
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widely adopted (Gumbel 1958; Leadbetter et al. 1983). However, significant 

inaccuracies or misrepresentation may occur if only limited amount of data are 

available for constructing a statistical model. Usually, the length of field data is 

limited to several decades which are considered short in relation to the design life 

of the structure of interest. Consequently, other approaches have been proposed, 

such as the Peak-Over-Threshold (POT) method, which characterizes the 

exceedance over a high threshold, to utilize more data in forming the extreme 

value model.   

Even with such methods as POT, several important associated questions 

have not been addressed.  These include issues on the choice of the parameter 

estimation method, the applicability of the method for data sample size that is 

small, the effect of serial dependencies, the effect of noise in the observed time 

series data, and the quantification of uncertainties associated with the selected 

threshold and limited time span of the data.  Not all these issues have been 

adequately addressed in the literature (Næss 1998; Mackay et al. 2010; Jocković 

2013).      

 

1.1.2  Time Varying Environment 

Based on different channels of observations, it is increasingly evident that the 

effects of climate change, especially with regards to the ocean environment, 

cannot be ignored.  The contention is whether the assumption that the averages 

and extremes of sea states are stationary is valid (Vanem 2011).  If non-
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stationarity is assumed, a simple statistical model for the ocean parameter may not 

be appropriate in assessing the safety of a structure under such environment.  

Using the classical extreme statistics approach for climate-induced time varying 

phenomena may lead to bias estimations for the parameters of the extremal 

models and in turn, may have drastic consequences. It is important to derive a 

statistical model that could reflect the changes in the value with time to ensure 

that the reliability of the structure is estimated with minimal error.  Recent 

researches showed that a time-dependent version of extreme value model could 

help to capture this non-stationary characteristic in the ocean data (Méndez et al. 

2006; Marcos et al 2011). This has sparked interest in incorporating such model in 

the safety assessment of marine structure over its design life (Menendez et al. 

2009), in particular accounting for all the uncertainties associated with such an 

approach (Vanem and Bitner-Gregersen 2012). 

 

1.1.3  Multivariate Environment 

It is natural that the environment parameters, such as wave period, significant 

wave height and wind speed, are correlated.  To assume that they are independent 

may lead to unconservative results and hence is a potential cause for under-design 

leading to possible catastrophic consequences.  Multivariate statistical model 

would be an appropriate tool to handle such complications.  There exist practical 

guidelines on the choice of joint distribution models to characterize a multivariate 

environment (DNV 2007).  The issue is whether these models can be applied to 
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all the ocean sites.  The suitability of various computational methods to handle 

dependencies has yet to be completely answered.  It is therefore of interest to 

perform a comparative study highlighting the characteristics in each approach in 

modeling multivariate data.  

 

1.1.4  Efficient Methods for Multivariate Analysis 

To assess the long term performance of a structure within a multivariate 

environment associated with many environment conditions requires many 

numerical simulations and is computationally very expensive. The current 

practice is to divide the scatter diagram describing the environmental parameters 

into blocks and to calculate the response of the structure associated with for each 

block.  The results for all blocks are then combined to obtain the overall response 

distribution.  Such an approach involves numerous combinations even with a 

small number of environment conditions, not to say that the computation of the 

response for each combination can be computationally cumbersome.  A complete 

evaluation may demand hundreds of hours of CPU time on a personal computer 

(Agarwal and Manuel 2009).  Besides, it may not be easy to deduce from such 

computational results the critical environment conditions that contribute 

significantly to the overall long term performance of the structure (for example, 

floating structures could be quite sensitive to wave loading pertaining to certain 

critical wave periods and/or directions).  It is thus of interest to develop efficient 
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methods, including one that allows for quick sensitivity studies to deduce the 

significant parameters and their range of critical values.  

 

1.2  Objectives and Scope of Thesis  

As a further contribution towards a more realistic assessment of the reliability of 

offshore structures, the main objective of the proposed research is to develop an 

accurate statistical model and reliability computation procedure which will 

consider the time varying uncertain non-stationary characteristics of the wave 

loads, as well as the dependencies amongst the key parameters.  To achieve this 

objective, the main foci of the research are: 

1. To study the uncertainties related to an existing extreme value model. The aim 

is to have an improved understanding of the importance of the methods 

selected for the construction of an extreme value model. The performances of 

the methods are compared for different types of data groups.  In addition, the 

concept of random set to tackle the difficulties associated with parameter 

selections in the Peak-over-Threshold extreme method is presented. 

2. To manage the non-stationarity inherent in long term data by developing a 

discrete statistical model to represent the time varying effects in the ocean 

parameters and show the importance of this in a reliability analysis.  A 

segmentation approach is employed and 2-D Fourier transforms is used in 

conjunction with a probabilistic model to reflect the smooth transition in the 

parameters amongst the segments.  The estimated reliability associated with 
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each segment can be studied to ascertain whether effects such as seasonality 

and directionality are significant.  

3. To provide a better model for the multivariate environment beyond the linear 

correlation coefficient representation.  Specifically, the discretized copula 

approach is introduced and evaluated for it suitable application towards the 

structural reliability of offshore structures by comparing the results with other 

existing multivariate models.  The computational efficiency of the proposed 

technique is discussed.  

 

1.3  Limitations 

While this work endeavor to develop statistical procedures for accurate modeling 

of environmental effects for offshore design, many simplifications were made in 

the reliability analysis. The load model uncertainty, including the wave 

kinematics and hydrodynamic load, for a jacket structure are not considered. The 

current analysis only focus on the ultimate limit state of jacket structure and the 

complex behavior of individual elements in the structure will not be analyzed in 

detail. The soil foundation is simplified to act like a spring in the structural 

analysis. With regards to the environment loads, only wave loads are considered 

using an idealized random linear wave model. Besides, the effects of breaking 

wave, the coupling between the wave and structure, wave and current are not 

addressed in this study.  Rather, the key focus is on structural reliability analysis 

by considering environmental statistical model. The effects of corrosion, fatigue 
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damage and deterioration which are not likely to occur in a short time are 

neglected in the structural model. The developed procedures in handling the field 

data serves as a pre-cursor step to a full numerical analysis of an offshore 

engineering problem. The investigated statistical model in this thesis is only based 

on the collected data which is independent of the structural types. Therefore, other 

types of offshore structures can also be applied in this case. Lastly, the results and 

findings of this study is based on limited data from a given geological area. The 

models adopted in this study may not be the most appropriate ones in every case, 

especially if the field data is taking from one place that is different from the 

chosen site. 

The conclusions drawn from the thesis should be seen in the light of these 

limitations. The influence of these limitations to the reliability results may need 

further investigations in the future. 

 

1.4  Organization of Thesis 

This thesis is organized into six chapters as follows. 

Chapter 1 outlines the motivation for the research, leading to the proposed 

research objectives and methodology.  This chapter addresses several issues in 

performing the reliability analysis of offshore structures under it operational 

environment.  Three key topics associated with the long term safety assessment of 

offshore structures are highlighted and forms the research topics presented in the 

subsequent chapters. 



11 
 

Chapter 2 presents a concise literature review of the current state of 

knowledge for the reliability analysis of offshore structures.  The basic 

mathematical model of characterizing extreme values is presented. Several 

probabilistic analysis techniques and their applicability in offshore engineering 

are reviewed, with emphasize on impact of the environment. 

Chapter 3 discusses the performance of different extreme value 

approaches in establishing a robust statistical model.  The importance of 

parameter estimation method associated with the effects of distribution tail 

behavior, noise in the data and nature of dependency are investigated.  To address 

the difficulties in selecting the threshold and time span in POT approach, a 

random set based imprecise probability model is proposed to quantify this 

subjective uncertainty. 

Chapter 4 presents an improved method for the long term safety 

assessment of an existing structure where the time-varying characteristics of the 

environment are incorporated.  For this purpose, a segmentation algorithm is 

proposed to improve the quality of the extreme value model for the ocean 

parameters.  Comparison of the reliability analysis results from the proposed 

approach against those from the traditional approach is illustrated using a real 

structure. 

Chapter 5 discusses the probabilistic models for multivariate environment 

variables and the associated reliability estimation method proposed in this thesis. 
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The numerical procedure in evaluating the safety of the structure with 

environment factors having complex dependency is illustrated. 

This thesis concludes with Chapter 6 which summarizes the main findings. 

Recommendations of possible future works are provided. 
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Figure 1.3 Organization of the thesis. 
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Chapter 2 Literature Review 

 

This chapter presents a review of various techniques related to the reliability 

assessment of an offshore structure and also the available mathematical models 

for the ocean environment variables. For processing the available information 

through engineering computations, various aspects through the reliability analysis 

are discussed such as the required level of accuracy, the ease of handling as well 

as the computational efficiency. Particularly, the difficulties in assessing an 

offshore engineering reliability problem are emphasized in this chapter. The 

analysis of the influence of environment variability to the overall structural design 

is achieved by structural analysis. Moreover, if the long term performance of an 

offshore structure is a primary concern, the analysis could be realized by the 

probabilistic approach with the basic concept of extreme value modeling. The 

most key features relevant to the extreme value modeling are discussed in this 

chapter. 

 

2.1  Environment Modeling in Analysis of Offshore Structures 

The presence of uncertainties in engineering systems and models has been widely 

acknowledged (Ang and Tang, 1975; Hokstad et al. 1998; Straub and Faber 2005; 

Gao and Moan 2009; Lee and Song 2011; Agarwal and Manuel 2011). The 

uncertainties associated with offshore structural analysis lies in the structural 
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characteristics and associated environmental loadings. The former arises from the 

uncertainty in the response transfer function, the variability of the structure’s 

strength, geometry as a result of production and manufacturing, and deteriorations 

of the materials.  The latter results from the variability in the environmental 

factors, such as wind velocity, wave characteristics (magnitude, direction, height 

and period), and the uncertainty in characterizing the loads.   

An important task in the design and reliability assessment of an offshore 

structure is the modeling of the environmental parameters. A proper choice of the 

distribution type of the environmental dependent load parameter is very critical as 

the results of a reliability analysis may be very sensitive to the tail of the 

probability distribution. However, since there is no theoretical basis to support the 

choice of any particular model, there are many different methods and models 

applied to the ocean parameters by various authors. The most widely-used 

distribution for 10-min average wind speeds is the 2-parameter Weibull 

distribution (Manwell et al. 2002; Ramirez and Carta 2005; Morgan et al. 2011). 

Celik (2004) showed that the simple 1-parameter Rayleigh distribution sometimes 

offers a better fit to the sampled data. The Gumbel distribution is usually selected 

to model the current velocity (Pugh 1982; Robinson and Tawn 1997; Sauvaget et 

al. 2000). However, Mazumder and Mazumber (2006) argued that the model 

should take care of the directional effects. Jaspers (1956) was the first to propose 

a lognormal distribution model to represent the wave height. This was later 

discussed and compared with many other models, such as the Weibull distribution 

(Battjes 1972), the mixed Weibull-Lognormal distribution (Haver 1985), the 
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generalized Gamma distribution (Ochi 1992) and the Beta distribution (Ferreira 

and Guedes Soares 1999).  In addition, Nolte (1973) and Muir and El Shaarawi 

(1986) were among the earliest to apply the extreme value theory to the wave 

Table 2.1 Distribution models for selected ocean parameters (DNV 2007). 
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height modeling. These were further developed by Ferreira and Guedes Soares 

(1998; 2004) through the peak over threshold method and rth largest order 

statistic method. Recent works include using the regressive support vector 

machine (Mahjoobi et al. 2009), quantile functions (Muraleedharan et al. 2012) 

and the maximum entropy (Petrov et al. 2013) to derive the probabilistic model. 

Examples of models utilized in various design code and guidelines are 

summarized in Table 2.1. 

More importantly, among these works, the characterizing of 

environmental time varying effects in the statistical model has been realized to be 

quite critical (Vanem and Bitner-Gregersen 2012). Recent works have 

demonstrated several ways of employing time-dependent versions of statistical 

model to capture this non-stationary characteristic in the ocean data. Méndez et al. 

(2006) had used linear functions to model the increasing pattern over decades for 

the extreme value of wave height. Jonathan and Ewans (2011) adopted 

trigonometric function to characterize the wave value changes due to the 

seasonality. Vanem (2011) had applied the wavelet transformation technique to 

model the long term variations for the wave parameter. However, most of these 

works are utilizing a time dependent regression model which is depending on a 

defined regression function. The quality of these approaches would be highly 

affected by the nonstaionarity along the time series. For example, the 

nonstationarity among the time series may reach a certain extent that none of the 

defined regression function can be applied. Thus, from this point of view, the 

discrete statistical model is more preferred (Menéndez et al. 2009). Nevertheless, 
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most of the discrete model approach partitioned the data into different groups in a 

coarse manner. It lacks a clear and accurate way in guiding people how to 

perform the segmentation to the environmental data. This is going to be 

investigated more deeply in Chapter 4. 

Besides the modeling of an individual environmental parameter, the 

establishing of a reliable statistical model for multivariate data is more 

challenging. Quite a number of multivariate models for the ocean parameters have 

been discussed by the former researchers (Guedes Soares et al. 2001; Baarholm et 

al. 2010).  Detailed discussion of the these investigated multivariate models are 

provided in Section 5.2. However, the applicability of the traditional models may 

be quite weak especially when there are strong nonlinear relationships among the 

parameters. It lacks a clear criterion for selecting the appropriate model for 

different groups of data which may have their own characteristics. There is a need 

to conduct such a comparative study to highlight the characteristics in each 

approach in handling the multivariate data. Despite this, it should be recognized 

that the developed model should be applied in engineering practice. The 

processing of some newly developed model, for example the copula model, in the 

safety assessment of an offshore structure requires further development. More 

detailed discussion on this topic will be provided in Chapter 5.  

The use of statistical models is implicit in reliability analysis.  The 

selection of appropriate probability distributions and estimating the values of their 

parameters are key issues. In offshore applications, the environmental parameters 

are quite site specific.  For example, in the North Sea, the wave loading during 
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storms is much more important for the design of structures in deep water 

environment where wind loads only represent a contribution of less than 5% of 

the total environmental loads.  However, wind loads are of major concern in the 

Gulf of Mexico where the wind speed reaches 50 m/s during hurricanes. The 

design parameters used to describe the environmental condition is thus 

determined based on observations from the actual location as well as knowledge 

of the environmental conditions in the area.  The assessment of model uncertainty 

requires the comparison from field measurements against model predictions.  

 

2.2  Framework of Reliability Analysis 

The identification, modeling and quantification of uncertainties in engineering are 

initial steps towards incorporating them into practice in design.  The next step is 

to assess the risk associated with a particular design or system under the presence 

of such uncertainties.  Various approaches have been used, such as the use of 

probability concepts and fuzzy logic. Arising from the use of probability concepts, 

various reliability analysis and related computational techniques have been 

developed over the years (Baarholm and Moan 2002; Naess and Gaidai 2008; 

Naess et al. 2007, 2009).  The analysis yields the probability of non-performance 

for various critical states of interest providing a quantitative measure of structural 

safety.  It facilitates the sensitivity study of significant parameters in relation to 

non-performance.  In offshore engineering, the usefulness of reliability analysis 

has been demonstrated. The safety assessment of fixed structure has been studied 
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(DNV 1992; Onoufriou and Forbes 2001) including evaluation of fatigue 

reliability (Karadeniz 2001). These have been extended to floating structures such 

as tension leg platforms (DNV 1995) and ship/FPSO hull structures (Moan et al. 

2006).  Moan and Song (2000) and Onoufriou (1999) developed reliability-based 

techniques to optimize the plans with regards to the inspection, monitoring, 

maintenance and repair of various structures. Zhou (2013) studied the effects of 

ice loading on ice-breaking tanker both numerically and experimentally. Melchers 

(2006) incorporated the effects of corrosion in the safety assessment of the 

offshore structure. Wirsching (1984) discussed the reliability assessment of 

fatigue problems by means of a probabilistic approach. Low et al. (2011, 2012) 

has presented a novel approach from a frequency domain analysis to assess the 

long term cumulative fatigue damage for the riser and mooring system within the 

wave environment. The application of the upcrossing theory in the reliability 

assessment of the offshore engineering has also been studied by Naess (1998) and 

Zayed et al. (2013). Other techniques like characterizing the uncertainty in a form 

of interval (Zhang et al. 2010), fuzzy set (Tao et al. 2012; Zhang et al. 2012) and 

imprecise probability (Beer 2013) could also be found in the literature. 

Before continuing the discussions, a remark on the basic reliability theory 

is necessary. The following section gives a more detailed description of the 

fundamental law of assessing the performance of offshore structures. 
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2.2.1  Measures of Reliability   

A common way of assessing the safety level of an existing structure is to compare 

the estimated probability of failure Pf against a target level specified by a design 

code. For a basic structural reliability problem (Melchers 1999), Pf corresponds to 

the probability of limit state violation for a structural system, that is, its resistance 

R is less than the applied load S. The failure probability is thus related to the 

probabilistic descriptions of load effects S and resistance R as follows: 

 Pr ( , ) 0fP G R S R S        (2.1) 

where G(.) is called the limit state function or performance function dividing the 

load-resistance domain into a safe state (G(.)>0) and a failure state (G(.)<0) as 

shown in Fig. 2.1. 

 

Figure 2.1 Failure domain of performance function G(.) in the variable space. 

 

In most engineering problem, the resistance R and load S are vectors that 

contain several random variables, such as structural dimensions, material strength, 

S 

R 

Limit State, R=S 

fR,S(r,s) 

G(R,S)<0: failure region 

G(R,S)>0: safe region 
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wave period, and wave height in relation to offshore applications, which influence 

the behavior of a structure. In that case, the performance function G(x1,…,xn) 

would be written in an equation containing all the random variables {x1,…,xn} in 

the input parameters. Thus, the failure probability can be calculated as: 

   
1 ,..., 1 1

( , ) 0

Pr( ( , ) 0) ... ( ,... ) ...
nf x x n n

G R S

P G R S f x x dx dx


      (2.2) 

where f x1,…,xn (.) is the joint probability distribution function for all the variables. 

The above equation, which involves multi-dimensional integrals, is 

computationally feasible only for problems with few significant variables. 

However, not only are engineering problems governed by a sizeable number of 

variables, but their probability distributions may not be of the same family and the 

variables are not all independent of each other (Chakrabarti 1987).  Such diverse 

possibilities give rise to numerous techniques being developed to obtain good 

estimates of Eq. (2.2).  Broadly, the techniques can be categorized as simulation 

methods and transformation methods. 

 

2.2.2  Simulation Methods  

In simulation-based methods, samples of random input parameters X are 

generated from their underlying probability models and then each set are then 

used to assess whether the system survives or fails.  With sufficient number of 

sets in relation to the failure probability, the latter is estimated and should 

theoretically converge to the exact solution if the number of simulated data is very 
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large.  This corresponds to the so-called direct Monte Carlo Simulation (MCS) 

method, which is the simplest and convenient method.  Mathematically, the basic 

idea is to estimate an indicator function defined as 

     ( ) 0

1 ( ) 0

0
G

if G
I

otherwise



 


X

X
    (2.3) 

where it is directly related to the failure probability by: 

 
  1 ,..., 1 1( ) 0

Pr( ( , ) 0) ... ( ,... ) ...
nf x x n nG

P G R S I f x x dx dx


     X
  (2.4) 

It is easy to see that Pf is actually an estimated value of the indicator 

function such as E[I[G(X)<0]]. By applying the Central Limit Theorem, the failure 

probability can be approached by using the sample mean of a simulated data set 

that has a sample size N→∞, 

   (X) 0 (X) 0
1

1 N

f f G G
i

P P E I I
N

 


   
     (2.5) 

    is a general unbiased estimate of Pf, and the efficiency of the estimated results 

can be measured by the variance of the estimator as: 

 
 (X) 0

(X) 02
1

[ ]1
[ ] [ ]

N
G

f G
i

Var I
Var P Var I

N N






    (2.6) 

The advantage of applying the MCS method is its generality. The 

applicability and efficiency of MCS method will not be affected by the type of 

performance function, number of variables or dependencies among the random 

variables. 
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In estimating Pf, a response parameter is computed and then compared 

with the limit state value.  So in reality, we can plot a histogram of the computed 

response parameter (see Fig. 2.2).  As most well-designed structures have low Pf, 

only a small fraction of the computation shows exceedance of the limit state or 

failure.  Thus, to reduce the variability, very high number of simulations is needed, 

making the direct MCS method infeasible especially if the problem involves a 

large number of stochastic variables.  It thus becomes obvious that some strategy 

to reduce computational efforts especially for small Pf without loss of accuracy is 

necessary and can be realized by focusing on the relevant tail part of the 

histogram (that is, those sets which gives rise to failure).  Indeed this leads to the 

class of importance sampling techniques, which limits the simulation to some 

“importance region” of the random parameter space, namely, those that mainly 

contributes to the failure probability Pf, instead of spreading the samples over the 

entire domain of the variables.  The failure probability is evaluated as: 

 
1

1

1

,..., 1

,..., 1 1( ) 0

,..., 1

( ,... )
... ( ,... ) ...

( ,... )

n

n

n

x x n

f x x n nG X

x x n

f x x
P I g x x dx dx

g x x


     (2.7) 

where x1,…xn are simulated based on the probability density function g(.). The 

unbiased estimator would be simply approximated as: 

 
1

1

,..., 1

(X) 0
1 ,..., 1

( ,... )1

( ,... )

n

n

N
x x n

f G
i x x n

f x x
P I

N g x x




     (2.8) 

It can be easily seen from the above equation that the selection of an 

appropriate sampling function g(.) is quite important in the importance sampling 
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approach. A commonly used strategy is to establish g(.) based on the points that 

have the highest probability density among all other points and are located within 

the failure region (Papadimitriou et al.1997, Der Kiureghian and Dakessian 1998). 

Developments around this technique include for example, a kernel-based method 

introduced by Ang et al. (1992) for constructing the sampling function, directional 

sampling method (Melchers 1999) to efficiently find “important” points for 

nonlinear performance functions, Markov Chain Monte Carlo method to identify 

regions of interest (Au and Beck 1999), subset simulation (Au 2001) and line 

sampling (Pradlwarter et al. 2010) to efficiently estimate the results for a specific 

shape of performance function or group of variables.  It should be noted that 

importance sampling method is very sensitive to the sampling function but once 

the appropriate one is employed, it is extremely efficient for problems with low 

failure probability Pf which even with today’s computing power may not be 

feasible with the direct MCS method. 

 

Figure 2.2 Schematic showing of statistical response characterization in reliability 

analysis. 
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2.2.3 Transformation Techniques   

In classical structural reliability computation, the random variables are 

represented in the standard normal space such that the short distance from the 

origin to the limit state surface provides a measure of the reliability.  If the limit 

state surface is planar or linear, the distance can be used to compute the actual Pf.  

In view of this special property, the transformation approach has been developed 

to compute Pf by first transforming the performance function in the original space 

     to that in the standard normal space     ; that is, the transformation 

which maps the original joint probability density function to a multi-normal 

probability density function.  

The first of this class is the Hasofer-Lind transformation involving all 

components of   that are uncorrelated normal variables (Hasofer and Lind, 1974).  

In the case of correlated normal variables of  , orthogonal transformations are 

employed (Ang and Tang, 1984).  Rosenblatt transformation has also been 

advocated for cases where the joint probability distribution       are known 

whereas Nataf transformation is appropriate for the case that only partial 

information is known (Nataf 1962).  

A practical extension of the transformation methods is to obtain good 

approximate estimates of Pf for nonlinear limit states or performance functions. 

Well-developed methods include the First Order Reliability Method (FORM) and 

Second Order Reliability Method (SORM) based on the Taylor-series expansion 

of the limit state function (Ang and Tang 1984). FORM approximates the 
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performance function by a linear equation at the point giving the shortest distance 

from the limit state (G(.)=0) to the origin of the standard space. The location of 

this point in a multi-dimensional normal space is estimated by solving the 

optimization equation given by 

 
 

1

2min

subject to 0

TU U

G U

 



    (2.9) 

where G(.) is the performance function for the transformed random variables in 

the standard normal space. The optimal result of β is called the Hasofer-Lind 

reliability index and the point of interest is often known as “most probable failure 

point”.  Although FORM is able to give a quick assessment of the structure’s 

performance, the assumed idealized linear function gradually becomes inaccurate 

as the dimensionality increases (Pradlwarter and Schueller 2010).  To overcome 

this limitation, the response surface method was developed to provide an 

approximate relationship between the input variables and the response, especially 

near the most probable failure point.  To obtain the response surface, regression 

using a polynomial function to fit the response data is performed,  

  0

1 1 1

( )
n n n

i i ij i j

i i j

G Y C C x C x x
  

    X X   (2.10) 

where Y(X) is the fitted function, Ci and Cij are the coefficients of the polynomial 

expansion.  This response surface method is often employed together with the 

simulation method to predict the response characteristics based on the input 

variables. The general procedure is shown in Fig. 2.3.  
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Figure 2.3 Reliability analysis by using response surface method. 

 

Although the numerical effort is greatly reduced in the response surface 

method to approximate the system response function, its accuracy still remains an 

issue of contention.  Generally, the response surface method is a good approach in 

continuous slightly nonlinear systems since the polynomial function can easily 

and accurately models the relationship. But if the system is highly nonlinear or 

discontinuous, the response may not be simply represented by a polynomial 

function. The number and accuracy demanded in the response surface method 

have been investigated by researchers (Myers 1999; Franchin 2002). 

 

2.3 Long Term Assessment Criteria   

The objective for offshore structural design is to design and construct the structure 

that could fulfill all requirements with respect to functionality, safety and 

economy.  The current practice is to analyze the limit state or the maximum 
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capacity of the structure for a set of specified loads, such as that caused by the 

design wave. The structure, or structural element, is considered to satisfy the 

design requirement only if all the limit states are not exceeded. These are four 

limit states defined by the Norwegian Petroleum Directorate (NPD 1996) 

regulations: 

 Ultimate Limit State (ULS) is defined on the basis of danger of failure, large 

displacement or movement, free drifting, capsizing and sinking. 

 Fatigue Limit State (FLS) is defined on the basis of danger of fatigue due to 

cyclic loading. 

 Progressive Collapse Limit State (PLS) is defined on the basis of danger of 

failure, free drifting, capsizing or sinking of the structure when subjected to 

abnormal effects. 

 Serviceability Limit State (SLS) is defined on the basis of criteria applicable to 

functional capability, or durability properties under normal conditions. 

The offshore structure is designed to achieve the safety levels throughout 

the whole operation period by meeting the limit state criteria.  Associated with 

these criteria are implied target probability levels (Farnes and Moan 1994), 

examples of which are given in Table 2.2. 

Normally, the evaluation of the long term behavior of an offshore structure 

is determined by the probability of the load level which exceeds the capacity of 

the structure. This requires the long term probability distribution of the load 

which can be obtained numerically using direct integration.  That is the 
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exceedance probability PE corresponding to a load level l accounting for the 

variability of the load related parameters θ is:   

   (2.11) 

where f(θ) represents the joint distribution of the random variables associated with 

the load L represents the load.  In offshore engineering, the set of load related 

parameters are mostly related to environmental factors, such as the wave height 

and wind velocity.  

Table 2.2 Target reliability levels in design codes. 

Eurocode 1 

Limit State Annual Lifetime 

ULS 0.72×10
-4

 0.13×10
-5

 

FLS 0.67×10
-1

~0.72×10
-4

 - 

SLS 0.67×10
-4

 0.13×10
-2

 

Canadian Standards Association 

Safety Class Consequences of Failure Ptarget 

1 Great risk of life or high 

potential for environmental 

pollution or damage 

10
-5

 

2 Small risk to life and low 

potential for environmental 

pollution or damage 

10
-3

 

3 Impairment 

function/inserviceability 

10
-1

 

Det Norske Veritas 

 Consequences 

Class of Failure Less Serious Serious 

I – Redundant 10
-3

 10
-4

 

II – Non-redundant 

structure, significant 

warning before failure 

10
-4

 10
-5

 

III – Non-redundant - - 

 

 Pr[ ] Pr[ | ]EP L l L l f d


     
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 However, the change in the ocean characteristics is generally slow such 

that the concept of sea state, which represents a short term sea condition, can be 

applied. The environmental condition is assumed to be stationary within a short 

duration in the ocean (Goda 2000). For example, the sea surface is normally 

considered to be stationary for a period of time from 20 minutes to 3 hours, 

represented by the significant wave height Hs and the peak period Tp. The 

response caused by these sea loads within this short term could be considered to 

be described by a random process X(t). Then the evaluation of Eq. (2.11) 

corresponds to how likely the short term processes will exceed a load level.  If the 

input stochastic processes are Gaussian and the system is linear, the statistical 

information contained in X(t) can be easily computed.  For most offshore dynamic 

problems, the response process may be non-Gaussian especially when one deals 

with extremes. The nonlinearity of the structure in the transfer of environmental 

process to the load process may cause a change in the statistical property from the 

input to the output. Analytical solution may thus be formidable and hence 

approximate or numerical analysis is required for each of the given stochastic 

environmental conditions. The overall exceedance probability is given by 

    |EP Q X t l f d


        (2.12) 

where X(t) is the short term  response conditioned on the ocean state parameters θ, 

Q(.) is the short term exceedance probability for a response over a load level l.  To 

obtain the long term solution, assuming that the assumptions of stationary and 

independent and identical distribution (i.i.d.) are valid, the extreme value model 
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would be used for Q(.).  A prediction of long term design value would then be 

estimated by setting a low exceedance probability, for example, 0.01 is normally 

used for a return level of 100 years.  

 

2.4 Extreme Value Theory 

Structures are designed for a service life span, and depending on the application, 

it can be from less than 10 to more than 100 years.  It may not be possible to have 

100 years of data for assessing the structure’s performance over its design life.  If 

the data are assumed to be stationary and iid, then the short term data may be used 

in conjunction with extreme value statistical models for the long term assessment 

of offshore design and operations. As introduced in Section 2.3, the design of 

offshore structures hinges on employing a critical value which has a low 

probability of exceedance, usually associated with a return period (Galambos 

1994; Coles 2001; Castillo et al. 2004).  Extreme statistics has emerged an 

important tool for many real problems over the past few decades, such as in 

public economics (Webb and Zank 2011), hydraulic engineering (Leviandier 2010; 

Dourte et al. 2013), ocean engineering (Morgan et al. 2011; Hodapp et al. 2013), 

non-linear beam analysis (Markovic et al. 2013), climate change assessment 

(Kollat et al. 2012) and medical engineering (Mano 2012).  The basic properties 

of the extreme value model are presented in the following.  
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2.4.1 Asymptotic Model   

The classical extreme value theory is based on the statistical behavior of block 

maximas (Gumbel 1958): 

     1max ,...,n nM X X     (2.13) 

where X1,…,Xn is a collection of independent random variables having the same 

common distribution F.  The value of n could be taken as the number of a certain 

group of data to characterize the statistical properties of its extremes. Thus, the 

distribution of Mn is derived in relation to the original distribution F: 

          1 1Pr Pr ,..., Pr Pr
n

n n nM z X z X z X z X z F z          (2.14) 

The estimation of the maxima hinges on the distribution F.  Unfortunately, 

the distribution of the observed data is generally unknown in reality. One possible 

way is to use standard statistical techniques to estimate F from observed data, and 

then substitute into Eq. (2.14).  The error in F will propagate according to the 

power of n.  Moreover in reliability analysis, the tail probability is of interest and 

hence the error in this probability may be large even with small discrepancies in 

the estimated F.  

When the size of the block maxima approaches infinity, n→∞, Eq. (2.14) 

tends towards a stable function asymptotically if there exists sequences of 

constants {an>0} and {bn} such that:  

       Pr /n n nM b a z G z    as  n     (2.15) 
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where G is a non-degenerate distribution function.  Then G can be classified into 

one of the following types: 

  I : ( ) exp exp ,
z b

G z z
a

    
         

   
  (2.16) 

    

0, ,

II :
exp ,

z b

G z z b
z b

a






     
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       




   (2.18) 

where each type has parameters a and b as scale and location parameter, and α is 

the shape parameter in extreme types II and III. The three classes of distribution 

are termed the extreme value distribution with the widely known names of 

Gumbel, Fréchet and Weibull families, respectively. The three types of limit 

functions have distinct form of behavior, corresponding to the different forms of 

tail behavior of F rather than on the entire function F.  The density of G  is 

Weibull distributed if F has a bounded tail whereas it is Gumbel distributed if the 

tail of F decays exponentially and follows the Fréchet distribution if F has a 

polynomial decaying tail, see Figure 2.4.  The three distributions above can be 

collapsed into the Generalized Extreme Value (GEV) Distribution: 
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  (2.19) 

defined on the set {1+ξ((z-μ)/ζ)} >0, where the parameters satisfy -∞<μ<∞, ζ>0 

and -∞<ξ<∞. The types I, II and III classes correspond respectively to ξ =0, ξ >0 

or ξ<0.   

 

Figure 2.4 Illustration of different tail behavior in Type I (ξ =0, μ=0, ζ=1), Type II 

(ξ =0.5, μ=0, ζ=1) and Type III (ξ =-0.5, μ=0, ζ=1). 

 

2.4.2 Inference for the Extreme Value Distribution 

The estimates for long-term return value zp, corresponding to an average return of 

once in every 1/p times the reference period, can be obtained by evaluating the 

appropriate quantile value in the GEV by setting G(zp) = 1 – p.  By substituting 

the parameter values, the return value can be calculated as: 
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  (2.20) 

By applying the Central Limit Theorem or the delta method (Oehlert 

1992), the variance of zp can be obtained as: 

 Var T

p p pz z V z       (2.21) 

where V is the covariance matrix of (μ, ζ, ξ) and  
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  (2.22)  

The return level is an approximation if the distribution is not binomial or 

normal.  In cases where the distribution is significantly different from binomial or 

normal, then return level inferred may not be correct. 

 
2.4.2.1 Annual Maximum Method 

The annual maximum method, which has a block size of one year leading to the 

GEV distribution, is well-advocated by researchers (García-Ruiz et al. 2000; 

Winterstein et al. 2001, Morgan et al. 2011, Li et al. 2012).  The design value 

corresponding to a return value can be obtained through an extreme distribution 
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plot for the observed data. For example, the analytical distribution function for the 

Type I Gumbel distribution, as shown in Eq. (2.16), can be generally expressed as: 

  ( ) exp exp o oG z k z z        (2.23) 

Hence, theoretically, the value of z must have a linear relationship with –

ln[-ln(G(z))] such that: 

   ln[ ln ]o ok z z G z       (2.24) 

The coefficients ko and zo could then be determined from linear regression 

based on the realized extreme value data z and its corresponding empirical 

cumulative distribution function value G(z). The return level value would thus be 

simply estimated by the 1-p quantile from the regressed linear plot. 

Although the annual maximum method is convenient and easy to apply, 

the time series data collected at the field may not always be sufficient for the 

proper statistical analysis.  Moreover, useful information about the extremes are 

not used and are inherently discarded.  The DNV code (2007) has emphasized that 

at least 20 years of data must be available for this approach. 

2.4.2.2 rth Largest Order Statistics Model 

The rth largest order statistics model provides an alternative way to utilize more 

extremes within a block or reference period (e.g. one year) for constructing the 

GEV model (Guedes Soares and Scott 2004, An and Pandey 2007, Zhao and Gu 

2010).  The limiting distribution function is defined for the rth largest value in a 
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sequence of independent and identically distributed random variables. This can be 

presented as: 

 1rth largest of , , ,r

n nM X X    (2.25) 

Under the same asymptotic rule of extremes with the limit function as 

described in Eq. (2.15), the asymptotic function Gr(z) corresponding to the order 

statistics can be expressed as: 
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When applying the rth largest order statistic model to a long time series, 

the data are grouped into several blocks. Let n  denotes the number of blocks in 

the time series data with the largest r observations in each block, a total series of 

maximas can be obtained as  1, , , for 1, ,r r

i i iM z z i n   . The total likelihood 

of this model for all the series of data can then be expressed as 
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   (2.28) 

The parameters determined for rth largest order statistics are strictly linked 

to the extreme value models. The return period level and other inference can be 
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estimated from the parameters evaluated in Eq. (2.28). In the special case where 

r=1 for each year, the model corresponds to the annual maximum method as 

described earlier. 

The only difficulty in the application of the rth largest order statistic 

model is the selection of an appropriate value r.  The number of selected extremes 

in each block often comprises a bias-variance tradeoff; small values of r generate 

few data leading to high variance whereas large values of r will violate the 

asymptotic theory in the extreme value distributions.  Some of the previous works 

(Smith 2001) suggested a value of 5. 

 

2.5 Concluding Remarks 

Various available probabilistic models for the ocean environment parameters are 

discussed. Available numerical approaches in the structural probabilistic analysis 

have been summarized. Both simulation and transformation techniques used in 

the analysis of reliability problems are introduced. The simulation method is good 

at estimating the failure probability but however demands much efforts in the 

calculation. The transformation method could somehow require fewer 

calculations but may only give rough estimate of the failure probability. In the 

case of a complicated structural system, the approximation method like FORM 

and response surface method could be more suitable for engineering computations 

as it avoids much computations. 
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The long term performance of offshore structures and the assessment 

criteria is formulated based on the exceedance probability. Based on the results, a 

long term return value is usually employed in the structural design. 

Characterization of the long term structural response is realized by the extreme 

value theory when the maximum is of interest. A mathematical basis of the 

extreme values, regarding the method and inference, is shortly reviewed. Further 

applications and development will be investigated in Chapter 3.  
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Chapter 3  Establishing Robust Extreme Value Model 

 

In this chapter, the peak over threshold (POT) method is examined in terms of its 

practical usage in relation the analysis of offshore structure with specific 

considerations to extreme events.  The selection of the threshold and the issue of 

ensuring dependency between extreme events data points are discussed.  In 

particular, de-clustering, mean residual life plot, L-moment plot and dispersion 

index plot are presented.  A key element in the application of probability and 

statistical theory is the estimation of parameters. This chapter will compare the 

POT method with the other two approaches namely, annual maximum method 

and rth largest order statistic method for establishing an extreme statistical model. 

The performance of these methods are tested and compared through a numerical 

simulation study. The main focus of this chapter is to understand the performance 

and critical issues regarding applying the POT method as this method will be 

further utilized in the next chapters for assessing offshore structure’s long term 

performance. This is also the reason to choose review POT method in this chapter 

instead of the previous chapter. In view of the subjective nature of some of the 

uncertainties, a random set based model that can handle imprecise probability is 

proposed to model the uncertainties associated with the selection of the threshold 

and the time to separate extremes from the original time series data in the POT 

method.  It is shown that this utilization of Dempster-Shafer structure, or random 

set, in achieving a design value leads to improvements including a better 

understanding of imprecision in the observed data. The extended model is also 
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applied to different reference periods of the sampled data to evaluate the 

significance of the climatic conditions on the uncertainties of the parameters. 

 

3.1  Introduction  

Occurrences of extreme events have been known to be catalyst for the failure of 

constructed facilities.  Hence, the prediction of extreme values is an important 

component in the design of coastal and offshore structures. As described in 

Chapter 2, design codes or standards have specifications with regards to the 

design values that is consistent with the design life (long term), often extrapolated 

from short term values based on statistical concepts.  The theory of statistical 

extremes can be employed for this purpose but its underlying assumptions must 

be recognized and enforced.  Observation data collected from a particular locality 

and environment do have its peculiarity (Kyselý et al. 2010) and some 

environmental data may present high serial correlation and large variations in 

magnitude for different reference periods.  As such, the data are not independent 

and likely to be identically distributed, thus do not satisfy the assumption implied 

in statistical extreme theory (Menendez et al. 2008).Some form of data grouping 

may need to be done to ensure that each subgroup does fit the assumptions.  If 

there is no subgroup that can satisfy the assumptions, then the extreme value 

model cannot be applied. 

In practice, real data are used in establishing the model in relation to a 

specific application and without doubt uncertainties exist in various forms 
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depending on how sophisticated the model or analysis is. How these uncertainties 

are propagated to the end results, namely, establishing the return significant wave 

height level corresponding to a specified level of reliability over the design life of 

the offshore structure will be of primary interest.  This will also help establish the 

need to gather more accurate information so that a consistent, acceptable and 

optimal design value leading to a safe and economical structure can be realized. 

In this chapter, a numerical simulation based study is used to address the 

aforementioned concerns about establishing an extreme value model with regard 

to real practices in offshore engineering.  In particular, the quality and 

performance of different parameter estimators in establishing an extreme value 

model is discussed when limited data is used.  The issues of different kinds of 

data uncertainties including tail behavior, noise and range of dependencies in the 

time series will be investigated.  The effect of extrapolation in the construction of 

a statistical model will also be discussed. This study also proposes using a random 

set model to account for the subjectivity in the selection of the threshold and time 

span, leading to an imprecise probability based quantification. The results 

obtained from this study of uncertainty assessment of performing POT and 

extreme value approaches serve to provide the basic knowledge for the rest of this 

dissertation. 
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3.2  Peak-Over-Threshold (POT) Method 

Threshold exceedance model has been widely applied in the extreme value 

framework for environment parameters (Quek and Cheong 1992, Dukes and 

Palutikof 1995; Palutikof 1999 et al.; Smith 2001). The threshold approach is 

quite useful in treating and effectively utilizing time series data and has been 

widely employed in various applications (Ferreira and Guedes Soares 1998; 

Mackay et al. 2010; Teena et al. 2012; Petrov et al. 2013). It is suited for dealing 

with realizations of a stochastic process which is approximately stationary or can 

be split into stationary parts (Kyselý et al. 2010). It has this clear advantage over 

the other method, since it does not require the time series to be strictly stationary. 

Even time varying properties can be modeled in a POT approach, while the shape, 

scale parameters within the model can be treated as time varying functions 

(Kharin & Zwiers 2005; Parey et al. 2007). This will be addressed in Chapter 4 of 

this thesis.  

 

3.2.1  Pareto Family 

Consider a set of data extracted from an original set of data with probability 

distribution F such that their values are above a certain threshold value of u.   

Then the probability of a variable X exceeding a value z is given by the 

conditional probability (Pickhands 1975):  
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If F also obeys the asymptotic rules mentioned in Section 2.4.1 for large n, 

the cumulative probability function for the exceedance can be expressed as: 
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  (3.2) 

where ξ is the shape parameter, u is the threshold and    is the scale parameter 

which has a relationship with other parameters in the GEV model (e.g. Eq. (2.19)) 

as            . Equation (3.2) belongs to the family of the Generalized 

Pareto Distributions (GPD). The concept parallels the GEV in the modeling of 

maxima, including the classification of the distribution into types I, II or III. 

 

3.2.2  Poisson-GPD Model 

In practice, the peaks over a sufficiently high threshold of time series data of 

engineering interest are usually rare and memoryless events.  As such, their 

occurrences can be appropriately modeled as a Poisson process.  

A point process defines a stochastic rule for the occurrence and position of 

point events on a set T, where T could represent time, geographical space, or even 

more general spaces. This can be used to describe the occurrence of extremes 
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within a reference period. The statistical properties of a point process can be 

defined by a non-negative integer-valued random variable, N(A), for each A T , 

such that N(A) is the number of points in the set T. The probability distribution of 

each of the N(A) characterises the point process.  The expected number points in 

subset A T  is given by  

   A E N A         (3.3) 

and defines the intensity measure of the process.  Considering time series data, the 

extreme value may be written as set    1 1, , n

n nA x t x t    , and the intensity 

function of the process is given by  

 
 

1 n

A
x

x x




 

    (3.4)

 

 

provided the derivative function exists. 

3.2.2.1 Poisson Point Process 

The most classical point process is the Poisson process which has two underlying 

conditions: 

1. The number of occurrences N(A) within a time period 1 2[ , ]A t t T  follows 

a Poisson’s distribution: 

    2 1~ PoiN A t t     (3.5)
 

 

2. For all non-overlapping periods A and B, N(A) and N(B) are independent 

identical Poisson distributed random variables with mean value equals λ(t2-t1).  
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In other words, the number of occurrences for a given reference period of 

time is proportional to the increase of the time length. For Poisson process, the 

intensity function in Eq. (3.4) can be written as a time-dependent function λ(t).  

Considering a family of parametric models λ(:, θ), the expected intensity measure 

within a small time interval around the observation Ii=[xi, xi+δi] can be expressed 

as: 

     ;
i i
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x

i i i
x

I z dz x

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      (3.6)  

The probability function derived for a set of data exactly occurred at this 

set of observations Ii=[xi, xi+δi] for i=1,…,n, and no occurrence elsewhere, could 

be obtained in a likelihood function as: 
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 (3.7) 

where T is the set of total observations and 
1

T \
n

i

i

I


  . Maximization of the 

likelihood function can give the parameter estimations θ in the intensity function 

λ(:, θ). 

3.2.2.2 Combined Poisson-GPD Model 

An extension of the threshold model in Section 3.2.1 to characterize the extremes 

both in frequency and intensity can be obtained by a combination of the Poisson 

process and GPD model.  The Poisson property of exceedances (Leadbetter et al. 

1983) suggests the following model which is called the Poisson-GPD model: 
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 The number, N, of exceedances of the level u in any one block (e.g. one year) 

has a Poisson distribution with mean λ. 

 Conditional on N ≥ 1, the excess values Y1,…,Yi for i=1,…,N are identical 

independent distributed following the GPD. 

For x>u, the probability that the block maximum of the process just 

described is less than x is: 
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where 

 u      ,   
1/

1 /u


   


      (3.9)
 

Thus the concepts of GEV and GPD models could be combined together 

for modeling the values above the GPD threshold, and moreover, Eq. (3.9) shows 

exactly how the Poisson-GPD parameters vary with the threshold u. From a 

mathematical point of view, this is the basic properties of extremes in stationary 

processes, which shows that under very general conditions, the magnitude of the 

exceedances can be modeled in a Pareto distribution while the occurrence rate 

approximately follows the Poisson process.    

3.2.3  Declustering 

In the POT approach, the exceedances must be regarded as independent and 

identically distributed variables. For some real events, the extremes may have 
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some degree of clustering, leading to the issue of dependency between 

exceedances above the threshold.  To resolve this, declustering has been 

suggested, which is a process to filter the dependent values to obtain a set of 

threshold excesses that are approximately independent (Coles 2001). This is 

performed by the following steps:  

1. Using an empirical rule to define clusters of exceedances. 

2. Identifying the maximum exceedance within each cluster. 

3. Assuming cluster maxima to be independent, with conditional exceedance 

distribution given by the GPD. 

4. Fitting the GPD to the cluster maxima. 

The method is simple but has limitations. In particular, results can be 

sensitive to the arbitrary choices made in cluster determination and there is 

arguably a wastage of information in discarding all data except the cluster 

maxima.  

In the identification of maximum exceedance within each cluster, a 

possible way is to choose a time span ∆t (e.g. 1 day, 3 days or 1 week), such that 

the extreme events separated by less than this period of time are considered as one 

“event”, and the highest value is identified as this extreme (Corti et al. 1997; 

Morton et al. 1997; Chen & Yoon 2002). This is chosen in an optimal way which 

is a minimum value to guarantee a persistent Poisson process for the extremes in 

the time series. The appropriateness of this time span can be checked from the 

basic Poisson process model where the interarrival time between the exceedances 
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should follow an exponential distribution (Luceño 2006). The whole procedure of 

applying POT to a time series data can be seen from Figure 3.1. 

 

Figure 3.1 (a) Scatter plot of time series measurement (b) Clusters identification 

(c) Identified extreme values after declustering. 

 

(a) 

 

(b) 
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3.2.3.1 Model Check 

The accuracy of the results obtained from the POT model depends on the fit of the 

Pareto distribution.  The suitability of the chosen threshold needs to be checked 

using some criteria, such as through statistical checks of the fit to the GPD model. 

For example, the stability in the fitted distribution with slight changes in the 

threshold may be one factor to consider.  The most common means to check the 

POT models are mean residual life plot, L-moment plot and dispersion index plot. 

 Mean Residual Life Plot 

The appropriateness of a threshold can be verified by the stability of the 

parameters of the Pareto distribution.  One particular example is to use the mean 

residual life plot. The mean residual life plot, or sometimes called mean excess 

plot, is used to test the stability of the mean value of the exceedances with the 

change of threshold. Theoretically, the mean of a GPD can be estimated as: 

[ ] , 1
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E x


 


  


   (3.10)  

Since the estimated scale parameter is a linear function with the threshold, 

by substituting  u       in this function, the estimated mean function 

also becomes a linear one with a gradient of: 

1
k







    (3.11)

 

This consistent linear relationship between the mean excess and the 

threshold must be maintained for the possible thresholds.   
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 L-moment Plot 

The L-moment theory is established based on order statistics that could give a 

measure to the properties of a distribution such as skewness and kurtosis. It 

parallels the theory of conventional moment, but more robust in the inference 

when there are outliers. The adequacy of the GPD fit to a sample data may be 

assessed through comparing the L-moment ratio ( 4 3/  ) against the fitted model, 

where the theoretical L-moment ratio of the GPD is approximately (Hosking 

1990):  
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
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
   (3.12)

 

 

By increasing the threshold, the plot will show a trajectory around the 

theoretical curve. An appropriate threshold is selected when the value of the L-

moment ratio is close to the value given by Eq. (3.12).  

 Dispersion Index Plot 

The suitability of the threshold can also be tested by means of the dispersion 

index (DI) (Cunnane 1979): 

2

DI
s


     (3.13) 

where 2s  is the estimated variance of occurrence rate  for the extremes in each 

block. The Poisson hypothesis is not be rejected when the dispersion index lies in 
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the confidence interval 2 2

/2, 1 1 /2, 1/ ( 1), / ( 1)n nn n    
    for n blocks of sample 

data with a significance level of α.  

 

3.2.4  Parameter Estimate Method 

The importance of parameter estimation cannot be under-estimated as any error 

will be propagated in estimating the quantiles and long term design value.  There 

are numerous parameter estimation methods such as the likelihood-moment 

estimations (Zhang 2007), least-squares error method (Moharram et al. 1993), 

empirical percentile method (Castillo and Hadi 1997), robust method (Peng and 

Welsh 2001) as well as Bayesian method (Zhang and Stephen 2009).  However, 

most of these methods may not be easily implemented and some require intensive 

computations.  The difficulties and disadvantages of using these methods have 

been discussed in De Zea Bermudez and Kotz (2010). Some of the better known 

GPD model parameter estimation methods are briefly summarized herein. 

3.2.4.1 Method of Moments Method 

The simplest method in estimating the parameters in POT could be the method of 

moments (MOM). The basic idea is to equate the sample mean and variance to the 

theoretical population mean and variance.  For example, the theoretical 

expressions of the mean and variance for a random variable x following GPD(ξ, ζ) 

model, assuming the threshold is given, are:  
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Based on these relationships with the GPD parameters, the MOM 

estimates are given by: 
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where    and     stand for the sample mean and variance. Other alternative 

approaches, for example, by using the skewness or kurtosis in the sample estimate, 

can also be applied. However, the application of MOM requires a limiting value 

in the shape parameter, since a heavy tail GPD model may not have an estimate in 

the moment (the estimate of mean, variance, skewness and kurtosis will be 

infinity for shape parameter ξ larger than 1, 0.5, 1/3 and 1/4 respectively). 

Although the moments are easy to compute, the heavy tailed situation may 

increase the errors in the estimation. Such outliers existed in the data may cause 

certain distortions in the results. 

3.2.4.2 Probability Weighted Moments Method  

Based on a similar idea of the MOM, the probability weighted moments (PWM) 

method utilizes the sample PWM in estimating the parameters in the GPD. The 

PWM is defined as: 

     , , 1
q rp

p q rM E x F x F x  
 

   (3.16)  
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where the p, q and r are real numbers. With this basic formula, the parameters of 

many distributions can be expressed as functions of PWM, rather than the 

traditional moments. It is especially handy if the simple inverse CDF is available. 

For example, the most useful and special moments that is used in showing the 

characteristics of a distribution are the following two cases: 

  1,0, 1
r

r rM E x F x    
 

   (3.17) 

  1, ,0

q

q qM E x F x   
 

    (3.18) 

where q and r are non-negative integers. There is a close connection between 

these two PWM for any underlying distributions (Greenwood 1979). The number 

of PWM needed depends on the number of parameters of the distribution that 

needs to be estimated.  By substituting the Pareto distribution into Eqs. (3.17) and 

(3.18), the PWM can be expressed as: 
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 (3.19) 

By using the first two PWMs, the GPD parameters can be easily estimated 

as: 
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where α0 and α1 are the associated PWMs in Eq. (3.19). The values of these two 

quantities can be approximated by: 
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where pi:n is the plotting position which is general approximation to the value of 

1-F. An unbiased estimate is pi:n=(i-0.5)/n, while for other cases, various 

expressions are available.  For example, Hosking et al. (1985) suggested a biased 

estimate of pi:n=(i-0.35)/n.  

An advantage of using PWM and MOM is that they always exist and can 

be easily computed.  Compared to maximum likelihood method, PWM and MOM 

will not need to encounter difficulties that may arise in the optimization step. 

However, the limiting values imposed on the shape parameter required in PWM 

method reduce the attractiveness of PWM (for example, PWM cannot be 

performed for ξ > 1).   

3.2.4.3 Goodness-of-fit Method 

Other than utilizing the specific statistical properties in estimating the parameter 

values, the goodness-of-fit method estimates the statistical parameters in the most 

obvious way, from a plot of the data. The result of a fitted parametric model 

should give the least sum of squares and must be visually compared against the 

empirical data plot, for example, quantile-quantile (QQ) plot. In the test statistics, 

the null hypothesis is Ho: F(x) = Fo(x) where F is the empirical CDF and Fo is the 

distribution being tested. Two of these well known statistics are: 
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Kolmogoriv-Smirnov (K-S) statistic: 
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Anderson-Darling (A-D) statistic: 
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The K-S test measures the maximum discrepancy between the theoretical 

model and the empirical data whereas the A-D test places more weight or 

discriminating power on the tails of the distribution. The critical values of these 

statistics (e.g. Dn
α
) for a significance level α to accept a parametric model are 

tabulated in standard statistics textbooks, for example, Ang and Tang (1984). 

Theoretically, the smaller the statistic is, the better is the fit. Thus, the estimators 

for the Pareto model could be obtained by minimizing these statistics (Luceno 

2006).  Other similar approaches like minimizing the sum of square of the 

differences between empirical and theoretical CDF have also been proposed 

(Moharram et al. 1993), but optimization is involved which requires much more 

computational effort.    

 

3.3  Uncertainty Assessment of POT Method 

In selecting the POT method to model ocean data, numerous factors which affect 

the accuracy of the results of interest need to be considered, such as the length and 

number of data available, the criteria used to identify extremes, the choice of 
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threshold and dependency effects (Mackay et al. 2011). These issues in extreme 

value statistics applications have been addressed previously (Ashkar and 

Tatsambon 2007; Deidda and Puliga 2009; Ribereau et al. 2011).  However, these 

studies only examined comprehensively the uncertainty conditions; for example, 

many consider the effects of limited sample size but ignore other characteristics 

inherent in the collected data sample, such as serial correlations. The performance 

of POT method by using different parameters, like the estimator and threshold, is 

highly dependent on the collected data. 

The uncertainties associated with the POT method is quantified herein.  

The performance of the POT method is first examined using Monte Carlo 

simulations considering different parameter estimation methods, sample size, tail 

effects and noise.  The former include the method of moments (MOM), maximum 

likelihood method (MLE), unbiased probability weighted moments method 

(PWMU: pi:n=(i-0.5)/n in Eq. (3.21)), biased probability weighted moments 

method (PWMB: pi:n=(i-0.35)/n in Eq. (3.21)), A-D test based goodness-of-fit 

method (AD), and the K-S test based goodness-of-fit method (KS). The effect of 

sample size on the GPD model parameters are investigated using simulated data 

with sample sizes of n = 10, 20, 30, 50, 80, 100, 150 and 200.  For data sample 

size n, the simulation will be repeated 10,000 times and their average used as a 

means for comparison.  To investigate the tail and noise effects, the threshold is 

set to the location parameter in fitting the GPD model.  The importance of 

threshold selection will be discussed in Section 3.4.2.    
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The results of interest are the shape parameter, scale parameter and a high 

percentile value (for this purpose, a non-exceedance probability of 0.99 is used). 

The accuracy of the estimators are compared using a normalized measure of 

deviation from the theoretical value, herein denoted as the relative bias, as: 

ˆ
ˆRelativeBias

E  




  
   

 
  (3.24) 

where θ is the parameter of interest and    is the parameter estimator. Here, we set 

the value of the parameter for different case studies. That is, the exact “true” value 

of θ is known. And each estimate    from one set of simulations is considered as 

one realization. The average of all the estimates from the simulations is used to 

compare with the “true” value to determine how much bias is about this 

estimation according to different methods.  

The simulation is performed in R-programming with the help of open 

source code packages “fields”, “evd”, “evdbayes”, “ismev”, “SpatialExtremes” 

and “POT”. The detailed programming code and the verification of these 

packages have been documented by Ribatet (2009; 2010) and Stephenson (2002; 

2010a; 2010 b).  

 

3.3.1  Effects of Tail Behavior 

As shown in Chapter 2, the tail characteristics, or the value of ξ, of a GPD model 

can critically influence the parameter estimations, which in turn will affect the 
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expected return values.  Theoretically, the GPD is valid for any value of ξ.  

However, not all the estimation methods will yield estimates that can cover the 

entire range of possible values of ξ in a GPD model.  

To illustrate this, the simulated data based on a GPD model for ξ = -0.5, -

0.25, 0, 0.25 and 0.5 with ζ = 2 and u = 1 are used to compute the scale and shape 

parameters.  This range of values in              is commonly observed for 

environmental variables, such as the significant wave height (Beguería 2005).  

The relative bias in the shape and scale parameters with respect to sample sizes 

from n = 10 to 200 using various estimated methods are presented in Figs. 3.2 and 

3.3 respectively.  The relative bias in estimating the values corresponding to the 

99th percentile for n = 20 and 100 are tabulated in Table 3.1. The detailed results 

are recorded in Appendix B. 

The findings based on the simulated results can be summarized as follows: 

 Generally, the relative bias of each estimator decreases with increasing sample 

size.  However, for the heavy tails, the bias of KS and MOM in estimating the 

shape and scale parameters is still large even the sample size is increased to 

200.  

 The change of tail behavior from light tail (ξ <0) to heavy tail (ξ >0) will 

increase the relative bias in the shape parameter, scale parameter and 99th 

percentile estimations for all the estimators.  
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 Amongst the estimators, the MLE is most sensitive to sample size.  It 

produces the largest bias estimate for data that has a light tail, for all the 

sample sizes considered.   

 MOM estimator is the most sensitive to the tail behavior. For a heavy tail that 

has a value of ξ around 0.5, the MOM estimator is not suitable as the bias is 

about 30% and does not significantly improve by increasing the sample size. 

 PWMU and PWMB show consistent good parameter estimates for different 

tail behavior compared to the other estimators. However, compared to PWMB, 

PWMU is a slightly less sensitive to the effects of tail behavior and sample 

size. 

 AD gives a low bias in the estimated shape and scale parameters and is not 

sensitive to the change of tail behavior.  However, AD estimators are quite 

sensitive to the sample size effect. The bias can go up to 20% for a sample 

size around 10. 

 KS estimators give large bias in estimating the shape and scale parameters for 

ξ>0. But for ξ<0, the bias is relatively not significant. The performance of KS 

estimator is very poor in estimating the high percentile value for a data set that 

has a heavy tail or small sample size.  

Obviously, it is not easy to tell which estimator is the best one for all 

conditions as shown by the results.  However, for a data set with ξ<0, MOM, AD, 

PWMU and PWMB are reasonably good estimators for GPD model parameters 

and 99
th

 percentile for the problem of interest as the relative bias are fairly small 
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(<10%) even for a sample size of 20.  If the sample size is greater than 100, the 

MLE is a suitable alternative.   

 

 

Figure 3.2 Bias of estimated scale parameter for different tails.  

(a) ξ=-0.5 (b) ξ=-0.25 

(c) ξ=0 (d) ξ=0.25 

(e) ξ=0.5 
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Figure 3.3 Bias of estimated shape parameter for different tails. 

Table 3.1 Bias of estimated 99th percentile for different tails n=20, 100. 

 ξ=-0.5 ξ=-0.25 ξ=0 ξ=0.25 ξ=0.5 

n=20 

MOM 0.02% -1.95% -7.02% -15.51% -27.54% 

MLE -7.28% -8.07% -5.75% 70.54% 24.76% 

PWMU 4.41% 4.53% 2.90% 0.18% -12.29% 

PWMB 1.98% 0.90% -1.72% -4.42% -14.12% 

AD 2.87% 9.00% 20.86% 56.52% 79.08% 

KS 19.14% 25.76% 30.62% 55.23% 14.3% 

n=100 

MOM 0.01% -0.74% -1.49% -8.64% -16.79% 

MLE -2.05% -2.64% -1.89% -2.51% 6.69% 

PWMU 0.88% 0.62% 0.83% -2.28% -2.90% 

PWMB 0.46% -0.05% -0.11% -3.32% -3.58% 

AD 0.86% 1.77% 3.42% 4.25% 14.64% 

KS 4.11% 7.58% 5.18% -0.71% -11.07% 

(a) ξ=-0.5 (b) ξ=-0.25 

(c) ξ=0.25 (d) ξ=0.5 



64 
 

However if ξ > 0, both PWMB and PWMU stand out as the best 

estimation methods.  If n > 100, the AD and MLE estimators can be adopted in 

view of their small bias for a large size of data sample. The results obtained here 

can be generalized to other data analysis problems since this investigation is 

performed based on purely Monte Carlo simulations. 

 

3.3.2  Effects of Noise 

Another common uncertainty arises from noise in the collected data. For example, 

as most of the environmental data collected at a site is not enough, the data 

collected at a nearby site may also be utilized together for the statistical analysis. 

This is also called site averaging effect (Elsignhorst et al. 1998). However, this 

procedure introduces some non-stationary data into the data group for the analysis 

since these two sites may not be perfectly the same and discrepancies are 

expected. Then, it may cause some variations in the statistical parameters of the 

GPD when the POT method is employed (Jonathan and Ewans 2007). 

The effect of noise on the parameter estimates in the GPD is investigated 

in this study by polluting the simulated data with Gaussian noise.  Noise are 

added to the parameters of the GPD having ξ = -0.5, ζ = 2 and u = 1 before the 

data are simulated.  The following cases of noise are simulated: 

 Noise in location parameter:  u=1+N(0,ε
2
), ζ=2, ξ =-0.5  for ε=0.1, 0.3, 0.5 

 Noise in scale parameter:  u=1, ζ=2+N(0,ε
2
), ξ =-0.5 for ε=0.2, 0.6, 1.0 

 Noise in shape parameter:  u=1, ζ=2, ξ =-0.5+N(0,ε
2
) for ε=0.05, 0.15, 0.25 



65 
 

where N(0,ε
2
) is a value drawn from a standard Gaussian distributed random 

number generator having a mean of 0 and variance equals to ε
2
.  Three noise 

intensity ε
2
 are chosen, corresponding to coefficients of variation of 0.1, 0.3 and 

0.5. This considered range of the noise intensity in this study has been reported by 

Jonathan and Ewans (2006) for the ocean parameter such as wave height. 

The calculated bias estimates to the shape and scale parameters are 

presented in Figs. 3.4-3.6. The bias in the estimated 99th percentile for n = 20 and 

100 are shown in Table 3.2. The detailed results are given in Appendix B.  

Comparison of the results yields the following conclusions: 

 The noises in the location parameter yield the largest bias compared to the 

noises in the scale and shape parameters.  While the effect of the noises in 

scale and shape parameters can be reduced by increasing the sample size, the 

bias for large noises in the location parameter cannot be reduced, at least 

between n = 20 and 100. 

 All the parameters in the GPD experience increase in relative bias with 

increase in noise intensity irrespective of the parameter estimation methods, 

with the location parameter being the most affected.  The 99th percentile 

estimate is very sensitive to the noise especially from the shape parameter. 

 MLE gives the largest relative bias when noises are present in the scale and 

shape parameters.  However, MLE is relatively the best estimator when noise 

occurs in the location parameter.  It also produces good results for the 99th 

percentile as the bias for all the cases are less than 10% even for a small 
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sample size n=20. The quality of MLE method is highly sensitive to the 

sample size. 

 MOM, PWMU and PWMB produce similar results, giving large relative bias 

with noise in the location parameter but low bias with noises in the scale and 

shape parameters.  None of the parameter estimation methods are able to give 

reliable results when the noise in the location parameter is very high,  

 Among all the estimators, AD shows the best performance if there is noise in 

the location parameter and very good estimates if there are noises in the 

shape and scale parameters. However, for noises in the shape parameter, AD 

gives a large bias in the 99th percentile estimate.  

 KS method gives the largest relative bias in estimating 99th percentile for all 

the noise effects. It gives a negative bias in the shape parameter estimate for 

the noises in the scale and shape parameters. 

The effects of noise are clearly not insignificant and the parameter 

estimation method needs to be carefully selected.  For noise in the location 

parameter, AD would be the most suitable method in estimating the parameters in 

the GPD model.  If the intensity of noises in location parameter is high (ε > 0.5 in 

this study) and the sample size is not small (n > 100), the MLE method is another 

good choice.  However, one should note that the use of MLE and AD when the 

noise is large still give large relative bias (> 30%). For noises in the shape and 

scale parameters, MOM, PWMU, PWMB and AD are all applicable as long as 

sample size is not too small (n > 20).  However, if the noise in the shape 
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parameter is high (ε > 0.25 in this study), the estimated 99th percentile may still 

have a large bias (≈ 10%) even though the sample size is 200.   

 

Figure 3.4 Bias of estimated scale parameter ((a), (b) and (c)) and shape 

parameter ((d), (e) and (f)) with the noise effect in location parameter in GPD 

model. 

GPD: u=1+N(0,0.1
2
), ξ =-0.5, ζ=2 

GPD: u=1+N(0,0.3
2
), ξ =-0.5, ζ=2 

GPD: u=1+N(0,0.5
2
), ξ =-0.5, ζ=2 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 3.5 Bias of estimated scale parameter ((a), (b) and (c)) and shape 

parameter ((d), (e) and (f)) with the noise effect in scale parameter in GPD model. 

 

GPD: u=1, ξ =-0.5, ζ=2+N(0,0.2
2
) 

GPD: u=1, ξ =-0.5, ζ=2+N(0,0.6
2
) 

GPD: u=1, ξ =-0.5, ζ=2+N(0,1.0
2
) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 3.6 Bias of estimated scale parameter ((a), (b) and (c)) and shape 

parameter ((d), (e) and (f)) with the noise effect in shape parameter in GPD model. 

 

 

 

GPD: u=1, ξ =-0.5+N(0,0.05
2
), ζ=2 

GPD: u=1, ξ =-0.5+N(0,0.15
2
), ζ=2 

GPD: u=1, ξ =-0.5+N(0,0.25
2
), ζ=2 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Table 3.2 Bias of estimated 99th percentile for different noise condition n=20, 100. 

 Noise in u Noise in ζ Noise in ξ 

 ε=0.1 ε=0.5 ε=0.2 ε=1.0 ε=0.05 ε=0.25 

n=20  

MOM -2.09% -6.22% -0.22% 5.70% 0.48% 8.22% 

MLE -5.97% 0.19% -7.81% -2.28% -7.06% 2.21% 

PWMU 0.35% -5.55% 4.43% 10.47% 5.15% 14.13% 

PWMB -1.49% -6.13% 1.99% 7.85% 2.64% 11.03% 

AD 2.58% 5.14% 3.74% 9.89% 4.34% 16.85% 

KS 14.15% 18.56% 19.07% 36.80% 23.13% 35.43% 

n=100  

MOM -2.56% -6.92% -0.38% 0.50% 0.53% 10.14% 

MLE -0.53% 7.03% -2.21% -1.57% -1.46% 8.56% 

PWMU -3.11% -7.51% 0.40% 1.35% 1.36% 11.17% 

PWMB -3.41% -7.59% -0.01% 0.93% 0.93% 10.60% 

AD 1.41% 7.68% 0.62% 1.38% 1.44% 11.92% 

KS 0.25% 11.40% 3.09% 7.68% 4.16% 14.50% 

 

 

3.3.3  Effects of Range of Dependency 

The issue of dependency between points in time series data needs to be 

investigated.  A potential cause is when the time interval between points are close, 

in which case, either a correction is needed or the data used must be separated by 

specified interval to reduce the serial correlation.  Another cause is when an 

extreme event takes place and induces subsequent significant events.  

To understand the effects of dependency, an autoregressive model (AR) of 

order one is utilized to simulate a weakly stationary and dependent time series. It 

is basically a linear relationship between the current and the previous value in 

time t, given by:    

1t t tX c X        (3.25) 
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where φ is the parameter of the model, c is a constant and εt is the noise term.  For 

comparison purpose, the values of φ are set to 0.95 and 0 which correspond to a 

highly-correlated and an uncorrelated time series, respectively. Their difference is 

best depicted through their autocorrelation function (ACF) as plotted in Fig. 3.7. 

 

 
Figure 3.7 Plots of autocorrelation functions for two tested time series (a) Case 1: 

φ=0.95 (b) Case 2: φ=0. 

 

In this study, a value of 0 is given to c and εt is assumed to follow an 

exponential distribution which has a rate parameter equals to 1 (that is, εt ~ 

Exp(1)). Theoretically, the parameters of the extreme value model for these 

simulated time series have the corresponding values u=4.605, ζ=1 and ξ =0. For 

each simulated realization, a group consisting of 100 continuous time series data 

is defined as a block. The block is used here to represent a reference time unit (for 

example, the AMM will only utilize the maximum value within each block). In 

order to test the estimates for different lengths of time series, the data simulated 

will have lengths of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 blocks for 

comparison purpose. The results of interest here is to estimate the 99
th

 percentile 



72 
 

from each simulated time series. Each estimate is calculated based on an average 

of the results from 100 simulations.  

Data from the two φ cases of time series are employed to estimate the 99th 

percentile using the (a) Annual maximum method (AMM), (b) r largest order 

statistic method and (c) POT method are applied.  Within the r largest order 

statistic method, four values of r are considered, namely, r = 5, 10, 15 and 20. 

Within the POT method, four different values of threshold and time span are used, 

denoted as U3T0, U3T10, U5T0 and U5T10, where the notation UiTj refers to a 

threshold value of i in identifying the excess values, and j represents the value of 

time span (number of continuous time series data) used in de-clustering the 

extremes as discussed in Section 3.2.3. The results in terms of bias in estimating 

the 99th percentile for each time series are plotted in Figs. 3.8-3.9.  The findings 

based on the simulated results are summarized as follows:   

 Compared to POT and r largest order statistic methods, AMM is least 

affected by dependencies within the time series with regards to the 99
th 

percentile value, provided the sample size is larger than 20 blocks.  For 

example, for time series that only have 10 blocks, the bias of estimated 99
th

 

percentile is quite large (>20%).  This is because the AMM filters out only a 

small amount of data (only the maximum value within each block is filtered) 

in the time series.  When the number of blocks (for example, it could be units 

of years or months) is limited, the statistical uncertainty resulting from small 

sample size is high.  
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Figure 3.8 Biases of estimated 99th percentile in AMM and r largest order 

statistic method for two time series. (a) Case 1: φ=0.95 (b) Case 2: φ=0. 

 

(a) AMM 

(b) 5 largest (c) 10 largest 

(d) 15 largest (e) 20 largest 
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Figure 3.9 Biases of estimated 99th percentile in POT method for two time series 

(a) Case 1: φ=0.95 (b) Case 2: φ=0. 

 

 The r largest order statistic method filters out more data per block and hence 

the statistical uncertainty is smaller.  However, it is more sensitive to the 

dependency that may exist within the time series. This is particularly obvious 

when r is small where fewer data are filtered. For example, when r = 5 and 

only 10 blocks of data are available, the estimated biases in case 1 is much 

higher (7.3%) compared to case 2 (2.2%). These biases can be reduced by 

utilizing more data within the block. For instance, for r = 20, the bias 

estimate for case 1 is much less than for r = 5.  But it does not imply utilizing 

more data within the block is always helpful because the assumption of 

(a) U3T0 (b) U3T10 

(c) U5T0 (d) U5T10 
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asymptotic property in Eq. (2.26) is violated for large r.  For this reason, the 

results using the 20 largest order statistics is less accurate compared to the 10 

largest order statistics in the case of uncorrelated time series.  

 The performance of POT is quite dependent on the given values of threshold 

and time span. As shown in Fig. 3.9, U3T0 gives a large positive bias, while 

U3T10 gives a large negative bias. However, if the threshold changes to 5, 

the error associated with the estimations in U5T0 and U5T10 are very small 

(-2%~2%). This implies that the threshold value of 3 is too small and is not 

suitable value for use with the POT method. It is noted that sample size has 

lesser influence on the results from POT method, as it filters more data 

compared to AMM and r largest order statistic method. It can be seen from 

the comparison between (c) and (d) in Fig. 3.9, the use of time span in 

U5T10 leads to a smaller bias compared to U5T0. However, the dependency 

in the time series has very little influence to the accuracy in POT (the 

difference between case 1 and case 2 in Fig. 3.9 (c) and (d) are quite small) 

and only leads to a small positive bias in the estimate.  

The main conclusion from this exercise is that each method has its own 

advantages and disadvantages in establishing an extreme value model for the time 

series data. AMM has very good performance when there is a large amount of 

data and it is not affected by the dependency effect in the time series.  The r 

largest order statistic method does not need a large amount of data compared to 

AMM, but it is not suitable for highly correlated time series. POT gives the most 

desirable results even for time series that has high serial correlations. However, 
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the accuracy of performing POT method is quite sensitive to the selected values 

of threshold and time span.  

Unfortunately, the current available approaches can hardly find out the 

“most” appropriate values of threshold and time span from the sample data. The 

use of model check plot to find suitable threshold and time span values as 

described Section 3.2.3.1 may only give rough estimation. This is demonstrated in 

the following sections.  

 

 3.4 Effects of Nonstationarity through Random Set Approach  

As illustrated in the previous section, the POT method is quite efficient in 

utilizing data compared to other methods. However, the choice of both the 

threshold and the length of data (or time span of data) have a large impact on the 

quality of the exceedances as illustrated by the simulation study in Section 3.3.3.  

The uncertainties associated with the selected threshold and time span are 

important quantities that affected the robustness of the POT method.  As 

discussed in Section 3.2, most of the methods to select the threshold and time 

span are based on expert judgment, which can be highly subjective.  In fact, there 

may be no known true answers as any non-stationarity within the time series 

implies that the parameters are time-varying instead of constant. Therefore, this 

type of uncertainty cannot be eliminated and may perhaps not be appropriately 

treated in a traditional probabilistic way. A better alternative to model these 

uncertainties is proposed in this study, namely to use a random set based model.  

Random set model, which is developed from evidence theory (Shafer 1976), 
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provides a suitable basis for the consideration of imprecise observations with a 

random background.  

In this section, the basic theory of random set and evidence theory will be 

briefly introduced.  A wave data set taken from a U.S. project is then used to 

demonstrate a random set based extreme value model to obtain the long term 

design value.  To understand the influence of different climate conditions on the 

uncertainties, the results from various defined reference periods are compared. 

 

3.4.1  Review of Random Set and Dempster-Shafer Structure 

3.4.1.1 Random Set 

The basic probability theory states that, for discrete random variable xi in the 

space X, each observation is associated with a non-zero probability mass px(xi). 

Similarly under the Dempster-Shafer structure (Dempster 1967; Shafer 1976) in 

evidence theory, random sets are a collection of many imprecise observations Ai, 

i= 1, 2,…,n of a given fundamental set X, called the focal sets, with basic assigned 

probability weight mi = m(Ai), ∑m(Ai) = 1 as a measure of the degree of 

confidence.  This can be formally expressed as follows (Nguyen 2006): 

Let X denotes a non-empty set containing all the possible values of a 

variable. A finite random set on X can be defined as pairs  , m , where 

 : 1, ,iA i n  represents finite subsets, and m represents the mapping such 

that for all the sets belonging to the power set of X, there is a mass assignment:  
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 : 0,1m       (3.26) 

Because the subsets may overlap each other, the evidence theory does not 

comply with the traditional probability theory. However, the random set can be 

understood as a generalization of traditional probability theory when measures for 

the occurrence of an event E in the space of X are needed. This is derived from the 

Dempster-Shafer structure which allows the definition of a degree of belief and a 

degree of plausibility, respectively: 

   Bel
i

i

A E

E m A


      (3.27) 

   Pls
i

i

A E

E m A


     (3.28) 

An example demonstrates the use of random set is given in Appendix F. 

The plausibility and the belief are actually upper and lower probabilities of a 

certain set of probability distributions. The constructed random sets model which 

is bounded by u the upper and lower distribution functions is then called an 

imprecise probability model.  

3.4.1.2 Imprecise Probability 

Imprecise probability is characterized by a mixed case which specifies the bounds 

of probability for an uncertain quantity with underlying randomness that is not 

known in detail. Suppose F and F  are non-decreasing functions mapping the 

real line  onto [0,1] and    F x F x  for all x . Let         denote the set of 

all non-decreasing functions F from the reals into [0, 1] such that 
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     F x F x F x  . When the functions F  and F  circumscribe an 

imprecisely known probability distribution, the model of       , specified by the 

pair of functions, is called a “probability box” or imprecise probability (Ferson 

2002) for that distribution. This means that, if        is a “probability box” for a 

random variable X whose distribution F is unknown except that it is within the 

“probability box”, then  F x is a lower bound on F(x) which is the (imprecisely 

known) probability that the random variable X is smaller than x. Likewise,  F x  

is an upper bound on the same probability. From a lower probability measure P  

for a random variable X, one can compute upper and lower bounds on distribution 

functions using (Walley 1991):   

   1XF x P X x      (3.29)
 

 

   XF x P X x      (3.30)
 

 

As shown in Fig. 3.10, the left bound F is an upper bound on probabilities 

and a lower bound on quantiles (that is, the x-values). The right bound F is a 

lower bound on probabilities and an upper bound on quantiles. 

In the framework of imprecise probabilities, both the probabilistic 

uncertainty and non-probabilistic uncertainty can be considered simultaneously 

and transferred separately to the final results. This situation can occur when only 

certain statistical information is available but a pure probabilistic approach cannot 

be carried out due to a lack of pertinent information or irreducible uncertainty in 

the data (Fellin et al. 2005).  
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Figure 3.10 Imprecise probability. 

 

The random set based imprecise probability is an attractive model for the 

bounding of probabilities and there are attempts to incorporate this in engineering 

analysis. Oberguggenberger and Fellin (2008) applied it to a sheet pile wall 

analysis.  Rubio et al. (2004) applied the Dempster-Shafer concept to quantify the 

uncertainties in a slope stability problem.  Both studies are able to model variables 

with inconsistent probabilistic behaviors and produce bracketing probability 

estimates arising from different sources of uncertainties as well as for combining 

information of different type without a need of treatment before the combinations. 

 

3.4.2 Selection of Threshold and Time Span  

A set of wave data provided from Wave Information Studies (WIS), a sponsored 

project supported by US Army Corps of Engineers (USACE), is used in this study 

to demonstrate the application of random set based model to quantify the 

uncertainties associated with the threshold and duration used in POT method. The 
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buoy is located in the south coast of Alaska (56.5
o
N 203.25

o
E) at 124m depth and 

a data set containing 25 years of hourly wave records (1985/1/1 01:00 to 2010/1/1 

01:00) is filtered. The long term record of significant wave height (Hs), with an 

overall mean value of 1.897m, shows obvious variations in the mean with time. 

The highest monthly mean is 2.544m in January and lowest monthly mean is 

1.238m in July.  The pattern in extreme waves shows clearly that more severe 

conditions occur in winter, which is more likely to have storms, compared to 

summer.  The annual maximum Hs is observed to vary significantly between years, 

with a largest value of 12.32m and lowest of 6.65m.  Hence, such climatic 

variations may not support the assumption of independent and identically 

distributed. data in statistical analysis. However, as long as the data are relatively 

stationary and their dependency structure is weak during its reference period, the 

POT is appropriate for modeling the extremes (Coles 2001).  For illustration, the 

data which covers the January and February (two months) period are used as the 

sample data in the following POT approach. 

As discussed in Section 3.2.3.1, the choice of the threshold (u) and time 

span (∆t) is a trade-off between the quantity of filtered data and the dependency 

between data points.  Small values of u and ∆t lead to higher number of 

exceedances but the later will have dependency characteristics, and may violate 

the basis of the Poisson and GPD models.  Higher u and ∆t may result in few 

extreme data points which may lead to inaccuracy (or higher uncertainty) in the 

estimated GPD parameters.  Thus, the usual procedure is to derive a range of 

possible values for (u, ∆t) from the statistical fit of the exceedances, where large 
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deviations in the fit imply inappropriateness of the chosen (u, ∆t).  

Based on a range of assumed threshold values, the asymptotic stability of 

the GPD model in POT method are investigated using the mean residual plot, and 

the L-moment plot, as introduced in Section 3.2.3.  Figure 3.11 shows the mean 

exceedance plot for the 25 years of Hs data after applying POT with threshold 

ranging from 2.0 to 10.0. The time span used in the declustering step is ∆t = 24 

hours. For the GPD model to be valid, a linear trend is expected, see Eq. (3.10). 

Hence, the results show that the threshold should not be higher than 6.0 beyond 

which the sample size drops significantly to less than 100 (see Table C.4) causing 

large fluctuations in the predicted mean exceedances. This gives an initial sense of 

the range of appropriate threshold values. Note that a different choice of ∆t may 

result in a different set of filtered data for the same threshold and thus lead to a 

different range of appropriate threshold values.  

 

 

Figure 3.11 Mean residual plot with 95% confidence intervals (green line). 

 

Linear trend function:  

mean excess=-0.05∙threshold+1.59 
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Figure 3.12 L-moment plot for exceedances over selected threshold (from 2.0 to 

6.0 m) with theoretical GPD curve (grey line). 

 

Figure 3.12 shows the L-moment plot for the threshold ranging from 2.0 to 

6.0 with points corresponding to u = 5.5 to 6.0 connected by a curve.  Compared 

to the theoretical GPD L-moment line in the plot, the range of 2.0 < u < 5.6 

appears yield compatible L-moments, which is not too different from the 

inference by the mean exceedance plot.  

With regards to selecting an appropriate time interval ∆t, various values 

are tested here.  First the autocorrelation values in the HS time series can be 

computed and the plot of Fig. 3.13 shows that records separated by larger than 

about 140 hours gives virtually zero correlation.  The correlation is less than 0.4 

for lag greater than 15.  Thus, ∆t ranging from 12 hours to 144 hours (nearest 

multiples of 12 hours) are further studied. 
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Figure 3.13 Autocorrelation plot for the wave time series records (blue lines 

represent upper and lower confidence bounds for assuming a moving average 

process). 

 

Using these smaller ranges of u and ∆t, the K-S test is applied to check the 

quality of the Pareto distribution fit and the Poisson property of the exceedances 

for the data series at a significance level α of 0.05.  Figure 3.14 shows the 

“appropriate” region of (u, ∆t) marked by the combined left and right diagonal 

lines.  The detailed results for various values of (u, ∆t) are recorded in Appendix 

C.  Effectively, these two statistical tests have reduced the feasible domain from 

the earlier mean exceedance and L-moment plots.  

One could see the feasible region of (u, ∆t) for passing the K-S test in 

Poisson process model is smaller compared to Pareto model. It implies that the 

adequacy of Poisson process model is more sensitive to the selected value of (u, 

∆t) compared to the Pareto model. This can also be observed from Table C.1-C.2 

where the tested p-value for Poisson process model is lower than the Pareto model 

for each use of (u, ∆t). Other than this, it is expected that if the significance level 

is change to 0.01, the feasible region will be increased to include more 
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combinations of u and ∆t. The reason is because the criteria for rejecting the null 

hypothesis of following Poisson process or Pareto model becomes less stringent. 

Therefore, the exceedances filtered by the (u, ∆t) having p-values higher than 0.01 

in both tests are considered appropriate to be applied in a Poisson-GPD model. 

The allowable range of (u, ∆t) for passing the level of significance of 0.01 is 

illustrated in Fig. C.1. From the calculated results, it shows that a total number of 

48 (u, ∆t) are appropriate for the criteria of 0.01 in the significance level. 

 

Figure 3.14 Appropriate region for u and ∆t. 

 

3.4.3 Uncertainty Quantification 

As indicated above, the use of only one threshold and time span does not seem to 

be sufficient to ensure the statistical robustness in the prediction of long term 

value. In fact, the estimates for the 100-year return value deviate quite a lot from 

16.38m (u=6.0, ∆t=36hours) to 14.04m (u=4.0, ∆t=12hours) in the upper bound 

of the 0.95 confidence interval.  The details are provided in Appendix C.  It is 

Exceedances pass the 

K-S test for a Pareto 

distribution model for 

a significance level 

α=0.05 

Time span ∆t (hrs) 

Threshold u (m) 

Exceedances pass the 

K-S test for a Poisson 

process model for a 

significance level 

α=0.05 
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very difficult to predict the errors contained in the results since the estimated 

confidence interval may not be unique. The reason is because the statistical 

difference of the exceedances for using different values of threshold and time 

span are quite small which may not be easily differentiated. This high level of 

uncertainties seems to be inherent and is hard to remove by conventional 

statistical method since the traditional POT approach only adopts one threshold 

and time span. 

Here, the random set theory is employed to describe the uncertainties 

associated with the selection of u and ∆t. In this study, each combination of u and 

∆t within the feasible range shown in Fig. 3.14 is considered as an observation for 

the true value of (u, ∆t). For example, by taking a spacing of 0.4m for u and 12 

hours for ∆t within the allowable region (the number of the intersected shaded 

cells between Table C.1 and Table C.2 in Appendix C), combinations of u and ∆t 

are used in the POT to estimate the confidence intervals [x
i
100-year,l,x

i
100year,u]α=0.95 

(i=1,...,38) for the 100-year return value. Based on evidence theory, the interval 

[x
i
100-year,l,x

i
100year,u]α=0.95 is regarded as a focal subset Ai  with an associated 

probability pi. The available intervals are simply assumed to be independent and 

an unbiased averaging procedure is provided to assign each of these intervals an 

equal probability mass pi =1/38. Based on the pairs (Ai =[x
i
100-year,l,x

i
100year,u]α=0.95, 

pi), empirical distribution functions can be constructed for the bounds of the 

intervals. By using the Dempster-Shafer approach as described in Section 3.4.1, 

the estimations for the bounding functions F100-year(x)u and F100-year(x)l can be 

calculated as: 
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The constructed model is illustrated in Fig. 3.15. 

 

Figure 3.15 Constructed imprecise probability model for 100-year return value 

with mean value of all estimates (dotted line). 

 

The result shows obvious spread in both the upper and lower bound 

cumulative distribution functions. This shows the significance of uncertainties 

associated with the selection of u and ∆t to the estimated long term design value. 

In other words, the width of the bounded cumulative distribution function gives 

an indication of the sensitivity of the estimated 100-year return value with respect 

to the choice of u and ∆t.  The minimum of all the estimated lower bound and 

maximum of all the estimated upper bound give an approximate interval as an 

envelope for the 100-year return value.  This interval is believed to be more robust 

than the traditional confidence interval since it accounts for the uncertainties 

Maximum 

Minimum 

Spread of lower bound CDF 
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involved in the subjective selection of u and ∆t.  

To demonstrate how the imprecise probability model can be used to assess 

the uncertainties induced by different environmental conditions, the investigation 

is now extended to different data set.  Here, three specific reference periods are 

selected. These are 1 month (January), 3 months (January-March) and 6 months 

(January-June), which are picked out from the 25 years of time series data. The 

same procedure is applied to the data and Fig. 3.16 shows the corresponding 

random set approximations for the 100-year return value in selected cases.  It can 

be seen that the spread of lower bound cumulative distribution function is quite 

large for the case of 6 months (12.99~16.27m) compared to the others, such as the 

1 month data set (14.09~15.45m).  The reduction in the width of the imprecise 

probability could be viewed as a decrease in the uncertainties associated with the 

selection of parameters u and ∆t.  But this reduction does not imply a good model 

of the extremes, since the filtered data may lead to biased estimate.  For example, 

the case for considering only the data in January may tend to give large weight to 

the statistical characterization in winter.  Though the 1 month case is relatively 

stable and the wave record seems to be quite stationary, which results in low 

uncertainties, the results must be used with caution.  

This model provides an indication of the intensities of the imprecision in u 

and ∆t as indicated by the width of the imprecise probabilities (the spread of 

bound CDF as seen in Fig. 3.15).  In this manner, global sensitivities of the results 

such as failure probabilities with respect to the imprecision in u and ∆t can be 

revealed directly in one analysis. In such case, acceptable input imprecision 
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(acceptable intervals) can be determined based on specified constraints for the 

results such as an acceptable failure probability. This helps to decide whether 

further information should be gathered to reduce the uncertainty of the output. 

 

Figure 3.16 Constructed imprecise probability model for 100-year return value 

based on different sample set: (a) Jan (b) Jan-Mar (c) Jan-Jun. Dotted line 

represents mean of all estimates. 

 

3.5  Concluding Remarks 

In this chapter, several issues regarding the establishing of a robust extreme value 

model have been investigated, focusing primarily on the peak over threshold 

(a) Jan (b) Jan-Mar 

(c) Jan-Jun 
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method.  Simulation studies are conducted to test the robustness of the established 

extreme value model from various methods by comparing the difference between 

the theoretical value and the estimated value.  The methods are tested with 

simulated sample data that have different sample size, extreme tail behavior, 

random noise and serial correlation to see the overall performance in predicting 

the parameters in the extreme value model. Investigation of the POT method is 

also extended to an imprecise probability which is used to account for the 

subjectivity in the modeling. 

The key conclusions are summarized as follows:  

 Modeling the Pareto distribution using a limited number of data produces 

significant uncertainties in the shape, scale and high percentile estimates.  

Generally, the simulation studies show that MOM, PWMB and PWMU are 

the better parameter estimate methods.  Besides the sample size effect, the tail 

behavior can influence the accuracy of the estimated parameters significantly, 

especially for light tail in the extreme data.  

 The presence of random noise in the collected data increases the uncertainty in 

the parameter estimations.  Noise in the location parameter has the most 

influence and the bias of the estimate arising from this may not be reduced 

much with more data.   

 When limited time series data are available, the POT method may be the most 

appropriate compared to the annual maximum method and the r largest order 

statistics method.  In addition, serial correlation in the times series data have 

little impact on the results from the POT method.  From a practical point of 
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view, it implies that pretreatment of the data collected is minimal.  However, 

the performance of the POT method is largely dependent on the appropriate 

choice of time span and threshold. 

 A random set based imprecise probability model is proposed to describe the 

uncertainty associated with the selection of threshold and time span in the 

POT method.  As the feasible values of threshold and time span may cover a 

finite domain, the imprecise probability model provides a consistent means to 

present the uncertainties in a quantitative form.  The imprecise probabilities 

and bound for the results provide information as to whether further 

information to reduce the uncertainty is essential.  

The conclusions drawn from this chapter will be used as reference for 

choosing the most appropriate parameter estimation method for the research 

presented in the subsequent chapters. 
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Chapter 4 Modeling the Time Varying Environmental Condition 

for Offshore Structural Analysis  

 

The end of earlier chapter shows that the amount of non-stationarities contained in 

the environmental data is quite depending on the observed period. It generally 

implies that the environment is time varying and the associated established 

environmental statistical model should also be time dependent. This is particularly 

obvious for the ocean since the ocean climate may always exhibit phenomena of 

non-stationarity. Such change in the environmental characteristics may have 

significant effects on the load related factors and the irregular variations, if not 

accounted for in the statistical model, may lead to unreliable safety analysis of 

offshore structures. In this chapter, structural reliability analysis of offshore 

structures subjected to a time varying environment is investigated. An extreme 

value statistical model for the wave height is adopted as a basis for the 

performance assessment of a jacket structure. Two segmentation algorithms are 

proposed and applied to observation data to derive piecewise stationary processes 

for modeling the time varying effect. The results are compared with the traditional 

extreme values approach with regards to the accuracy and information content. 

The investigation also compares a case where the design of the structure ignores 

the time varying property. 
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4.1  Introduction 

The consideration of time varying environmental hazards in the design of offshore 

structures is essential to ensure safe operation over the planned life-span.  

Coupled with the presence of inherent, statistical and/or model uncertainties, 

appropriate stochastic models of the environmental parameters are needed for a 

realistic reliability assessment to produce a reliable design.  The focus should be 

on the identification and quantification of exceptional environmental conditions 

and associated uncertainties in view of the severe consequences of non-

performance.  The pre-requisite for this is adequacy and accuracy of recorded 

relevant environmental data, which can pose a challenge.   

The assessment of design or system in the context of exceptional loads has 

been reported, often through a probabilistic framework.  Examples include the 

stability analysis of slopes (Dijkstra & Dixon 2010), performance assessment of 

concrete structures (Biondini et al. 2006), as well as risk analysis considering 

climate change (Hughes et al. 2009).  Generally, a changing environment can 

have two classes of effects on the safety of an existing structure: (i) deterioration 

of the structure, such as corrosion, erosion and aging, and (ii) variations in the 

environmental loads, including seasonal changes and inter-decade changes, see 

Fig. 4.1. Their combined effects make the performance of an existing structure 

significantly environment-dependent and hence must be factored in the design. 
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Figure 4.1 Time varying effects on safety of structures. 

 

Generally, the design of structures requires long-term prediction of the 

environmental loads which is obtained through statistical extrapolation from field 

data.  For example, the long-term variation of wave climate in offshore 

engineering is described in terms of the generic distributions for the governing 

sea-state parameters such as significant wave height HS and zero-up crossing 

period TZ.  A long-term “safe” sea-state is usually estimated based on the 

observed data and used in the structural analysis to see whether the required 

safety level can be achieved. Such stochastic analysis poses several challenges. 

Firstly, the recorded environmental data are usually limited and may not be 

sufficient to predict the environmental conditions over the service life of the 

structure. A robust statistical method is needed to describe the resulting 

uncertainties and model the extremes where safety is an issue. Secondly, the 

collected field data are evidently time-varying.  The collected data for each 
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parameter may not be stationary depending on the time scale of interest, and the 

data may be auto-correlated.  In addition, the correlation between different 

parameters, for example, wind speed and wave height, needs to be considered in 

the stochastic model (Ditlevsen, 2002).  Several researchers have reported the 

importance of considering covariate effects in establishing a statistical model for 

offshore parameters (Coles and Walshaw 1994; Robinson and Tawn 1997; 

Davison et al. 2012), and neglecting such dependencies result in under-estimating 

the structural reliability (Anderson et al. 2001; Jonathan & Ewans 2007).   

This chapter introduces a procedure for the reliability assessment of 

offshore structure with the time varying effect.  The objective of this current study 

is to derive an improved model to characterize the environment effects 

experienced by offshore structures.  The scope is limited to the wave loading, 

where the primary concern is to construct a reliable statistical model of the wave 

height for use in the structural analysis. A non-stationary statistical model, which 

accounts for correlation between time and directionality, is introduced for the 

extreme significant wave height, HS. The Poisson-GPD model is used to fit a set 

of wave height records taken from the WIS project. The variation in the value of 

statistical model parameters with time and directionality is approximated through 

a Fourier series expansion. In addition, a segmentation algorithm is proposed to 

discretize the data set. The model is used to characterize the loads for the 

reliability analysis of a jacket structure. The dependency between the 

environmental loads and structural response, and the advantage of using this 

model is highlighted.  
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4.2  Field Data at Ocean Site 

For demonstration purpose, the same set of wave record data studied in Section 

3.4 is analyzed.  In addition to the magnitude of HS, the observed direction and 

time for the waves are analyzed.  For convenience, a parameter t representing the 

observed time for a particular HS is defined in an interval [0, 1 year), whereas the 

direction θ of HS is defined in an interval [0, 360 degrees), measured clockwise 

from North. The construction of a reliable statistical model for HS is first 

considered, followed by its time varying effect on the overall safety assessment of 

a real offshore structure. 

 

4.2.1  Seasonal Characteristics 

When establishing the probability distribution of the HS, one should understand 

the influence of the seasonal effects. As the data collected from the field 

measurement covers the varying seasons within a year, a summary of the 

statistical information for HS over quarterly periods is tabulated in Table 4.1 and 

depicted in the box plot as shown in Fig. 4.2.  The mean and quartile values are 

larger in the 1st and 4th (winter) season compared to the 2nd (summer) and 3rd 

season. The winter period produces more severe conditions as there are more 

storms occurring compared to summer. 

It is observed that the winter period has a relatively larger dispersion in the 

HS data (variance is 1.4886 for the 1st season and 1.5921 for the 4th season) 
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compared to the summer period (variance is 0.8008 for the 2nd season and 0.8000 

for the 3rd season). To better understand this, the histo gram which 

 

Table 4.1 Statistics of HS over four defined seasons. 

 
Min 1st Quartile Median Mean 3rd Quartile Max 

1st Season 0.19 1.56 2.19 2.437 3.09 10.49 

2nd Season 0.12 0.85 1.26 1.478 1.89 7.68 

3rd Season 0.09 0.71 1.1 1.319 1.68 12.32 

4th Season 0.17 1.46 2.13 2.362 2.99 9.75 

Notes: 1st Season: 1st Jan 00:00 ~ 31st Mar 23:00; 2nd Season: 1st Apr 00:00 ~ 30th Jun 23:00; 

3rd Season: 1st Jul 00:00 ~ 30th Sep 23:00; 4th Season: 1st Oct 00:00 ~ 31st Dec 23:00. 

 

 

Figure 4.2 Box plot of HS for four different defined seasons. 

 

compares the frequencies of HS values over these seasons is plotted in Fig. 4.3. It 

is easy to see that the histogram of HS shows a larger spreading in the values 

during the winter period compared to summer. This difference implies a more 
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severe season may increase the dispersion of the environment parameter. In fact, 

if the statistical differences of the data are too large, the data should not be 

grouped together for a single statistical analysis. The establishing of the statistical 

model for the environmental parameter should account for all these influences. 

 

Figure 4.3 Histograms of HS in four different defined seasons. 

 

4.2.2  Directional Characteristics 

The effect of seasonality in the wave data may not only exist in terms of the 

magnitude of wave height, but also in the direction from which the observed wave 

comes from.  In most oceanic regions, particularly for the storm dominated 

regions, the observed wave direction is quite dependent on the storm direction. 

The requirement to consider the directional effect in developing the ocean 

parameter statistical model has been well demonstrated. It has been discussed for 
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quite some time (e.g. Graham 1981) about dealing with covariate effects, but only 

realized and adopted in the met ocean design criteria recently (Jonathan et al. 

2011).  It has also been proven that ignoring the directional effect is not accurate 

because the design value of the wave height from the most severe directional 

sector can be higher than the normally used omni-directional value (Forristall 

2004; Jonathan and Ewans 2007).  

As the chosen site is an open sea but not sufficient far away from the coast, 

the occurrences of the wave direction tend to be higher in some particular 

direction sectors compared to other.  The general angular statistics of the 

occurrences of wave directions in each season is shown in Table 4.2.  There is a 

large spread of the wave direction for all the four seasons as the resultant vector 

length is quite small.  The skewness of the observed wave directions is quite small 

which indicates that the occurred wave directions are near symmetric.   

Table 4.2 Statistics of wave directions over four defined seasons. 

  

Mean 

(°) 

Resultant 

vector length 

Angular 

standard 

deviation 

Angular 

skewness 

Angular 

kurtosis 

1st Season 153.9 0.3644 1.1275 -0.1458 0.3798 

2nd Season 165.3 0.3402 1.1488 0.0398 0.3365 

3rd Season 191.3 0.3624 1.1293 0.0802 0.2901 

4th Season 176.6 0.2786 1.2012 0.0894 0.3178 

Notes: The values are calculated based on the directional statistics (Berens 2009): a direction α is 

first transformed to unit vectors: 
cos

sin
r





 
  
 

. Basic statistics: mean resultant vector: 
1

i

i

r r
N

  , 

mean resultant vector length: || ||R r  (a measure of concentration), standard deviation.: 

 2 1s R  , skewness: 
1

1
sin 2( )

N

i

i

b
N

 


   and kurtosis: 
1

1
cos 2( )

N

i

i

k
N

 


  . 

 



100 
 

 
Figure 4.4 Angular histograms of HS over four different defined seasons (red line 

represents the resultant vector length). 

 

 

Figure 4.4 shows the angular histograms summarizing the occurrences of 

wave directions for the different seasons. Clearly, it shows the wave directions are 

more likely to occur from the south-east direction. It is convenient to classify the 

data according to “geological directions” ― for example, direction from “sea to 

land” or “land to sea”. At this site, the wave direction between 90° and 240° 

belongs to the direction from “sea to land”, while wave direction between 270° to 

30° constitute the direction from “land to sea”. It is observed that the directions 

from the sea, especially for a value ranging from 120° to 210°, occur more 

frequently than the direction from “land to sea”.  For the directions between these 

(a) Jan-Mar (b)  Apr-Jun 

(c) Jul-Sep (d) Oct-Dec 
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two dominant directions, for example the northeast and southwest directions, the 

occurrences are relatively much lower.  

 

Figure 4.5 2D Kernel density plot of HS with directionality and seasonality. 

 

Detailed information on the distribution of the wave data with both the 

directional effect and the seasonal effect is illustrated by the kernel density plot in 

Fig. 4.5. It is observed that, for the wave directions around 150°~200°, the 

probability density function value is relatively much higher (the yellow region) 

consistently through the whole year. The seasonality, on the other hand, makes 

only small fluctuations in the density function values for HS which implies weak 

seasonal effect on directionality. This implies that the frequency of occurrences of 

waves at the chosen site is sensitive to the directionality but not the seasonality. 

Distribution of HS is more critical for the “sea to land” direction sector. However, 

though the waves are infrequent from some directions, extreme HS can still occur 

from those directions. Hence, these possible extremes should not be ignored. 
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Figure 4.6 Isoline plot of HS with directionality and seasonality. 

 

To understand the effect of seasonality and directionality on the magnitude 

of HS, Fig. 4.6 shows the isoline plot of HS with these two dimensions. Obviously, 

the seasonality gives the most significant influence to the values of HS as the 

figure shows significant changes along the seasonal (t) dimension. However, the 

change along the directional axis is less obvious. Generally, the wave record 

shows that the magnitude tends to be smaller in the middle period of the year, see 

Fig. 4.6.  Whilst a large value of HS is observed in December may imply a higher 

likelihood of various types of hurricanes in that month, a low value in July may 

indicate a relatively calm season. These observations serve to illustrate that one 

should recognize the importance of seasonal effect in modeling the magnitude of 

HS, while the directional effect should be recognized when the occurrences (or 

frequencies) is to be modeled. Consequently, the variations of magnitude of HS 

Time t 

Direction θ 
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with respect to both time and direction should be considered in establishing of a 

probability model.  

 

4.3  Test for Stationarity of Poisson-GPD model 

As the occurrence of extreme HS affects the performance of offshore structures, 

an appropriate statistical model is essential.  As discussed in Chapter 1, the Pareto 

distribution model is used to model the exceedances above a specific threshold 

and the Poisson process is used to model the occurrence times of these 

exceedances. Thus, the Poisson-GPD models both the intensity and frequency of 

extreme events.  As discussed in the preceding section, from the HS data, its 

occurrences is directional dependent whereas the intensity is seasonal dependent.  

Thus, the parameters in the Pareto distribution (that is,        ) are affected by 

seasonality, whereas the Poisson process parameter (that is,    ) is dependent on 

directionality. 

Unfortunately, using Eq. (3.8) in the Poisson-GPD model requires the data 

to be stationary.  The seasonal trend and directional pattern exhibited by the time 

series records of HS imply significant non-stationarity.  One way is to pre-treat the 

collected data so that the stationary stochastic model can be adapted for the 

current application, such as by segmenting the data into portions which are 

stationary.  Several segmentation algorithms are available and examples include 

the testing of unit root assuming that the time series follow a regression model 

(Enders 2004), a Bayesian approach assuming that the initial distribution model of 
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the time series is known (Yang & Kuo 2001), as well as detecting the change 

point in the time series based on simple statistical properties (Hawkins 2001). 

There is no unique method to segment the time series, and the selection of an 

appropriate method is highly dependent on data characteristics and the required 

homogeneity of data in each segment.   

Strictly speaking, an absolute stationary HS time series data can hardly be 

obtained. Within a reasonably long period, HS series always exhibit alternating 

occurrences of monotonically increasing and decreasing trends due to the 

influence of storms.  A long term statistical model is not meant to characterize a 

“developing” or “decaying” sea-state. If a segmentation strategy is to be adopted, 

the appropriate length of data in each segment is a primary consideration. The 

issue of separating into different “months”, “seasons” or “years” warrants careful 

consideration. From a statistical point of view, the derived piecewise random 

sequence must be sufficient long and stationary for probabilistic analysis. The 

next consideration is the starting position of a stationary segment. Normally, 

there is a transition period between two specific environments so that a specific 

point in time for the change is difficult to ascertain. Both issues to be considered 

in the segmentation of both direction θ and time t are discussed next. 

 

4.3.1  Segmentation Algorithm for Seasonality 

With regards to segmentation in time, the HS time series is recursively segmented 

in time until the optimum segmentation is obtained. Here, the mean value is used 

as a criterion for defining the homogeneity of HS within a time period. A 
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statistical measure based on t-test, which has been used in other segmentation 

procedures (Toth et al. 2010), is adopted.  The main task is to partition the time 

series into segments such that each segment has significant differences in the 

mean from the adjacent segments. However, the original algorithm is only applied 

to detect the instantaneous changes for a time series without consideration of the 

length of each discretized segments. For this example, it is necessary to use 

constant length of segments to discretize the time series in order to guarantee each 

established model covers the same length of period. The basic reason is to ensure 

each of the models is established based on the same amount of data. Based on this 

concern, some essential complementary procedures to identify the starting point 

of a segment have been added to the original method. The general algorithm is as 

follows: 

 A specified time interval ∆T is selected, for example “seasonal length”, and 

the corresponding cuts based on this time interval are made over the whole 

time series wave data based on their ti values. This lead to a total number of 

1/∆T segments in the time dimension. For example, if ∆T is set to 0.25, the 

whole year (unit one) will be divided into four different time sectors (e.g. like 

four seasons). Or if ∆T is set to 1/12, the whole year will be divided into 12 

time sectors (e.g. like 12 months). 

 Then the difference in the means across the subsets to the left and to the right 

at each cut are evaluated using the t-statistic: 

  /left right Dt s       (4.1) 

where 
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     
1/2 1/2

2 2 / 2 1/ 1/D left right left right left rights s s N N N N      
 

 (4.2) 

μleft, μright are the mean values, sleft, sright are the standard deviation and Nleft, 

Nright are the sample size in the left and right segment, respectively. The 

significance level for the cut at that position is calculated by (Toth et al. 

2010):  

 
 

 2/
1 I ,

v v t
P t v



 
 
 

 
   
 

   (4.3) 

where 4.19ln 11.54 N , 0.40 , 2 v N ,  

 , is theincompletebeta functionxI a b and  left rightN N N  

The significance level P(t) of a possible cutting point is defined as the 

probability of obtaining the value t-statistic or lower values within a random 

process. The adequacy of this measure has been proven and demonstrated in 

a simulation study by Bernaola-Galván et al. (2001).  The t-statistic is tested 

for each cut along the time series. The minimum statistical significance level 

calculated from these cuts Poverall must exceed the required significance level 

Po, usually taken as 0.95. If this is satisfied, the series is segmented at 

significance level Po. 

 The segmentation procedure in first and second step is repeated with various 

choices of the starting points in order to identify the maximum p-value Pbest 

over all segmentations. The associated segmentation is considered as the best 

segmentation for the series representing a segmentation at the significance 

level Pbest.  
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 min 1, ,  overall i oP P t P for i n    (4.4) 

 
11

max min



m n

best j i
ij

P P t     (4.5) 

where n is the number of cuts, m is the total number of changes of the 

starting points in the search for the best segmentation.  

The algorithm is applied to test the appropriateness of the number of 

segments at the same time. These are 2, 3, 4 and 5 segments in the example. Since 

this study concerns the yearly cyclic changes instead of short period variations, 

the weekly mean values are used in this test for identifying the seasonal changes 

within the time series. In order to search the optimum solution (corresponding to 

Pbest) in each of these segmentations, different cut starting positions are selected 

and compared. Here the first cut position is initially chosen at the starting point of 

the time series at t=0 and then slowly slide to the end of the year to test the 

performance for different cut scenarios among the year. A number of 100 

different starting positions are utilized in this searching (e.g. starting position are 

chosen at t = 0.01i for i = 1, …, 100). This is used to keep the search for the 

optimum point at a precision of 0.01 (year) for the time series. The results of this 

performed algorithm in each of these segmentations are illustrated in Fig. 4.7. 

Instead of the significance level value P(t), the values of t-statistic is used in the 

plotting. The reason is because most of the calculated P(t) are very close to 1 and 

are not easy to compare in the same figure.  
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Figure 4.7 Results of t-statistic for discretized time series (dotted line represents 

optimal segmentation points). 

 

Besides the mean in the defined segmented time series, another possible 

statistical property that should also be considered is the seasonal trend. The 

seasonal trend is a form of predictable pattern of variations in the time series data. 

Typically, the existence of the seasonal trend would make obvious changes in the 

statistical properties of the time series for different period which will make the 

(a) Discretization of two segments in the seasonality 

(b) Discretization of three segments in the seasonality 

(c) Discretization of four segments in seasonality 

(d) Discretization of five segments in seasonality 
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data non-random. However, the randomness is one of the key assumptions in 

establishing the statistical model based on the time series data. This requirement 

must be achieved to guarantee a constant location scale and shape parameter in 

the constructed GPD model. 

To deal with this issue, the runs test is applied here to detect the seasonal 

trends in the following analysis. The runs test (Bradley 1968) is a non-parametric 

procedure for the evaluation of statistical independence and underlying trends 

within a sequence of observed values. It can be used to decide if a data set is from 

a random process. A run is defined as a series of consecutive increasing or 

decreasing values. The number of increasing or decreasing values is the length of 

the run. For a random data set, the probability that the (i+1)th value is larger or 

smaller than the ith value follows a binomial distribution, which forms the basis 

of the runs test (Bendat and Piersol 1986).  

For the discretized segments, if the seasonal trend is not very obvious 

within the partitioned time series, the observed values are expected to have equal 

probabilities of larger or smaller than the sample median. So by coding values 

above the median as positive and values below the median as negative, if the 

number of runs is significantly higher or lower than expected, the hypothesis of 

statistical independence of the elements may be rejected (Mendenhall and 

Reinmuth 1982): 

H0: the sequence was produced in a random manner. 

H1: the sequence was not produced in a random manner. 
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The runs test is thus therefore tested by the statistic: 

R

R R
Z

s


      (4.6) 

where R is the observed number of runs,    is the expected number of runs, and sR 

is the standard deviation of the number of runs. The values of    and sR are 

computed as:  

1 2

1 2

2
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n n
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n n
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
    (4.7) 
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   (4.8) 

where n1 and n2 are the number of positive and negative values in the series. The 

runs test will reject the null hypothesis if            where the Z statistic 

follows a standard normal distribution. To ensure randomness within the 

segments, the runs test is also calculated for each of the segments for different 

scenarios from the segmentation algorithm. The tested results including both the t-

statistic and runs test are summarized in Table 4.3. 

 It can be seen from the table that the calculated t-statistic for four 

segmentations are all very large. Among these four different scenarios, the results 

show that 2 segments and 4 segments are better choices in the segmentations as 

the t-statistic are higher compared to the other two. However, the runs test shows 

that for the case of 2 segments, the p-value is quite small, even lower than a 

commonly required level (e.g. 0.05). This indicates that the seasonal trend effect 
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is very obvious within the segments such that the data within the segment is no 

longer stationary. Or in the other words, the length of the segment might be too 

large since a further discretization could help to reduce the trend effect, see Table 

4.3.  Compared to the 2-segments case, the calculated p-value in runs test for 4 

segments is quite large. This ensures the randomness within the segments if the 

time series is partitioned into four parts with the identified optimum cuts. 

Therefore, 4 segments is the optimum choice for the segmentation as the tests 

showed that each of the four segments has mean values that is significantly 

different from the adjacent ones and the seasonal trend effect is minimal. Thus, 

this is adopted in this example.  

Table 4.3 Summary of tested algorithms in different segmentations of HS with 

respect to time. 

No. of 

segments 

Discretized 

segment 

length ∆T 

Maximum t-

statistic 

Minimum p-value in runs test 

for all the segments with the 

optimum cut 

Cut starting 

position 

2 0.50 117.6776 0.0005 0.24 

3 0.33 35.0320 0.0059 0.23 

4 0.25 40.29127 0.0693 0.10 

5 0.20 19.35148 0.1797 0.11 

 

After the time sectors with reasonable stationary data sets are identified, 

the GPD model is next applied to the HS data in each of the sectors. Here, a 

varying threshold defined as 1.5 times the mean in each sector is used in the POT 

approach to accommodate seasonal heterogeneity. To reduce the serial 

correlations, de-clustering is performed to filter out the independent data. A 

minimum time interval of 12 hours (time span value) between extremes is 

considered. Small differences between the empirical and theoretical values in the 
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estimated L-moment and mean exceedances support the choice of the threshold 

and time interval. In order to justify the chosen threshold and time span are good 

enough, the suitability of several other values of threshold and time span are also 

compared in the model test. These include the consideration of threshold equals to 

0.5, 1.0 and 2.0 times the mean and time span equals to 24 and 36 hours. More 

detailed information of testing the suitability of these two values can be seen from 

Appendix D.  A typical empirical kernel density estimate for the filtered extremes 

is shown in Fig. 4.8.  

 

Figure 4.8 2D kernel density plot of extreme HS with directionality and time. 

 

The figure clearly shows that the frequency of the identified extreme HS 

varies with the direction as expected. This generally means that the occurrence 

rate of these exceedances (e.g. the Poisson rate λ in the Poisson-GPD model) will 

change due to different directions. Therefore, further partitioning is necessary 

with respect to direction.  
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4.3.2  Segmentation Algorithm for Directionality 

The proposed procedure for directional sector segmentation falls under the topic 

of change point detection in non-stationary Poisson processes.  Analogous to the 

occurrence times t1, …, tn of extreme HS, the directional parameter θ is subdivided 

into suitable intervals ∆θ as directional sectors, so that the extreme HS occurred at 

directions θ1, …, θn within each sector can be considered to have a constant 

Poisson rate λi. The quality of the segmentation is mainly assessed by testing 

whether each segmented sector has a specific constant Poisson rate for the 

directional extremes. That is, the presence of change points is tested. A simple 

cumulative sum statistical method (Galeano 2007) is adopted here for this 

purpose. For the observed directions θi for each of the identified extreme HS, the 

statistic Ci is used to detect the changes of Poisson rate for the occurrences within 

the discretized directional sector (e.g.          ), which is defined as 

, 1, , i iC D i n     (4.9) 

where 
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   (4.10) 

 

n is the number of observed direction values within the sector, θi is the ith largest 

observed direction value within the directional sector such that   θ1<θ2<…<θn 

  , and di is the differences in directions between two consecutive θi, defined as 

d1=θ1, di=θi-θi-1, for i=2, …, n. For a Poisson process, the d-statistic behaves 

asymptotically like a standard Brownian bridge on [0, 1], see Inclán and Tiao 
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(1994). The limiting distribution will give a critical estimate for the asymptotic Ci 

value in a homogeneous Poisson process (Galeano et al. 2007). A significant 

exceedance of the asymptotic value implies the need for finer segmentation.  

The steps in performing this test are similar to the time segmentation 

procedure. The directional segmentation is performed for the data in each time 

sector separately. Again, the procedure targets at both an optimal starting point for 

the segments and an optimal segment size. The largest Ci value is retained in each 

segmentation test as a reference to compare with the theoretical limiting value. 

The proposed algorithm, for the present case of sectors of equal sizes, is as 

follows:  

 Define a directional sector size ∆θ and define the directional sectors over the 

range of direction values from 0° to 360°.  

 Group the observed directions into different directional sectors according to 

its value. For each of the directional sector, sort the values of the directions θi 

in an ascending order (e.g. θ1<θ2<…<θn) and calculate the statistic Ci for 

each observed direction according to Eqs. (4.6)-(4.7). by comparing the 

maximum calculated Ci value against the critical value corresponding to a 

predefined significant level α, if all values are lower than the ciritical, it may 

be inferred that the Poisson rate is constant within each segmented 

directional sectors.  

 If all the directional sectors cannot achieve the requirement (e.g. maximum 

Ci is larger than the limiting value), the procedures in the previous two 

stepswill be repeated with various choices of starting points in the direction 
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values to determine the optimum segmentations. If the optimum case still 

cannot meet the requirement, the associated ∆θ is deemed too coarse, where 

the rate is not piecewise constant and a smaller ∆θ should be considered.  

Based on these, the directional segmentation procedure is applied to each 

of the time sectors. The directional segmentation variants with 2, 3, 4 and 5 

segments are tested and the results are summarized in Table 4.4. A critical value 

Ci,α=0.01=1.624 is used here at a significance level of α=0.01 for the detection of a 

change in λ within a segment. The segmentation procedures are applied to the 

data with shift in the starting point to search for the optimum solution in each of 

the cases. As shown in the table, the maximum Ci values for the segmentation 

variants with 2, 3 and 4 segments have exceeded the critical value which indicates 

the potential existence of a change point within segments, whereas the variant 

with 5 segments shows the best performance and satisfies the requirements. This 

can be illustrated by comparing the plot of Ci values for the tested segments in 

Fig. 4.9. It is seen that the computed Ci for all the segments are larger than the 

limit value even for the optimum discretization scenario. However, for division 

into 5 segments, if the starting point of the segmentation shifts to 62° (the 

optimum discretization), all the Ci drop to values lower than the limit value and 

thus satisfies the requirement. This also proves the importance of starting points 

in the segmentations which has been emphasized in third step of the algorithm. 

Therefore, 5 segments are chosen for modeling the stationary Poisson processes.   
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Figure 4.9 Comparison of Ci values between different segmentations for time 

sector [0.10, 0.35). (dotted lines are segmentation points and the red solid line 

represents limiting value for significant level α=0.01). 

 

 

(a) Optimum discretization of two segments in the directionality 

with shift 

(b) Optimum discretization of three segments in the directionality 

(c) Optimum discretization of four segments in the directionality  

(d) Discretization of five segments in the directionality without shift  

(e) Optimum discretization of five segments in the directionality  
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Table 4.4 Summary of tested statistics for different segmentations of extreme HS 

with respect to directionality. 

Number of 

segments 
Maximum Ci ∆θ Starting point 

2 2.0949 180° 120° 

3 1.9227 120° 27° 

4 3.0697 90° 30° 

5 1.5737 72° 62° 

 

Hence, the resulting discretized model involves 20 sectors, namely, 4 time 

sectors × 5 directional sectors.  The extreme HS within each sector form a specific 

GPD model.  To determine the parametric values of the GPD model in these 

sectors, the probability weighted moments (PWM) estimation method is adopted 

herein since it can estimate the values of the statistical parameters well even for 

small sample size, as concluded in Chapter 3. The results of the determined model 

parameters are shown in Tables 4.5 and 4.6. 

Table 4.5 Estimated shape parameter ξ in each discretized sector. 

 Time t 

 

 
(0.10-0.35] (0.35-0.60] (0.60-0.80] 

(0.85-1.0] & 

(0-0.10] 

Directionality 

θ 

(-10
o
~62

o
] -0.9514 -0.4736 -0.6944 -1.0260 

(62
o
~134

o
] -0.8823 -0.4055 -0.4449 -0.8829 

(134
o
~206

o
] -0.9538 -0.8313 -0.5716 -1.1393 

(206
o
~278

o
] -0.7682 -0.6712 -0.7738 -0.3506 

(278
o
~350

o
] -1.0520 -0.5246 -0.6808 -0.4538 

Table 4.6 Estimated scale parameter ζ in each discretized sector. 

 Time t 

 

 
(0.10-0.35] (0.35-0.60] (0.60-0.80] 

(0.85-1.0] & 

(0-1.0] 

Directionality 

θ 

(-10
o
~62

o
] 2.9467 1.8014 1.9605 2.7212 

(62
o
~134

o
] 3.7969 2.0682 2.0823 4.0230 

(134
o
~206

o
] 3.3720 2.3465 2.6957 3.9907 

(206
o
~278

o
] 3.0608 2.1123 2.3260 2.1463 

(278
o
~350

o
] 3.4300 1.4980 2.0324 2.3934 
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It could be observed that the differences in parameter values between the 

sectors are quite obvious which implies large statistical differences between the 

discretized sectors. This is consistent with the former inference that the seasonal 

and directional effects can significantly affect the wave height values. 

 

4.4  Time Varying Modeling 

The preceding section shows a discrete representation of the time varying effects 

in the collected wave height data, where the main focus is given to the 

dependencies with the seasonality and directionality. In this section, it is intended 

to further improve this discrete model by not having abrupt value changes in the 

parameters of the GPD model between adjacent sectors.  

 

4.4.1 2D Fourier Series Characterization  

For a time varying natural process, it is likely that the statistics of a continuous 

natural phenomenon will not have abrupt variation.  Given the discretized model 

as discussed in the former section, there will be abrupt variations, hence lacking 

in continuity along the directionality and seasonality dimensions. Instead of a 

sudden change between adjacent sectors, it may be more realistic representation 

of natural process, given the presence of uncertainties, if the changes in the model 

parameter between adjacent sectors transit smoothly with respect to direction and 

time.  
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There were numerous work done on the characterization for extreme HS. 

These studies provided a wide range of techniques to characterize the variability 

of HS with respect to time and directionality (Méndez et al. 2006; Menendez et al.  

2009; Mackay et al. 2010). The straight forward approach is to model each of the 

GPD model parameters as a smooth time varying function, using maximum 

likelihood estimation in conjunction with a suitable smooth basis function.  For 

example, a Fourier series (Jonathan and Ewans 2011) and spline (Green and 

Silverman 1994) bases have been proven to be appropriate. Other alternatives, 

like Legendre polynomials (Northrop and Jonathan 2011), random fields (Rue and 

Held, 2005) or spatial splines (Ramsay 2002; Ruppert et al. 2003) are also 

approaches to model the statistical dependency amongst the model parameters and 

other factors. Some approaches have been extended to include multiple or 

multivariate covariates in the modeling (e.g. Marx and Eilers 1998).  

Similar to the proposed idea in Jonathan and Ewans (2011), a 2-D Fourier 

series expansion is introduced herein to model the time and directional 

dependencies for the shape and scale parameters. Firstly, the estimated parameters 

within each sector are actually values at discrete points equally-spaced over a 2-D 

space. For example, the estimated parameters in the sectors (Tables 4.5 and 4.6) 

are treated as a two-dimensional signals in a 4×5 grid as {ξ(n, m), ζ(n, m)} 

n=0,1,2,3; m=0,1,2,3,4. Then, 2-D discrete Fourier transformation (DFT) is 

applied to these points to obtain the discrete frequencies along the two directions 

(m represents the directionality and n represents the time). Here, the number of 

pairs of frequencies used in the 2-D Fourier expansion is 20, which is the same as 
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the number of sectors.  The value of the discrete spectrum for frequency at 

                     k=1,…,4; l=1,…,5 can then be calculated by (Rahman 

2011): 
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Next, the discrete spectrum is converted into continuous “signals” in the 

original space by using the inverse discrete Fourier transformation (IDFT). The 

shape or scale parameter for a specific time t and direction θ can then be 

computed as: 
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Note that the domain has been changed from [0, 1] to [0, 4] for the time t 

and [0, 360] to [0, 5] for the direction value θ in the initial Fourier transformation, 

hence, t and θ must also be changed according to the scale.  Figure 4.10 illustrates 

the computed values of the discrete spectrum. The characterization of the shape 

and scale parameters is also illustrated in Fig. 4.11. The cumulative distribution 

function can be calculated by summing all the information within the sector of 

interest.  
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Figure 4.10 Discrete spectrum for shape and scale parameters after DFT. 

 

 

Figure 4.11 2D Fourier characterizations of shape and scale parameter changes 

along the time and direction axes. 

 

To evaluate the performance resulting from this pair of transformation, the 

goodness-of-fit to the observed data for both the original discrete model and the 

smooth transition model are compared through the value of likelihood function. 

One should note the calculation of the likelihood function requires a slight 

modification in the probability density function for the derived model. If the 

varying properties of the parameters are taken into account, the probability 

(a) Shape parameter (b) Scale parameter 

(a) Shape parameter (b) Scale parameter 
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density function for each of the observed exceedances        

 
following a Pareto 

distribution is expressed as: 
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where tj and θj are the seasonality and direction of the observed exceedance xj; 

and ζ(.) and ξ(.) are the scale and shape parameters for the exceedance which can 

be calculated through the Fourier characterization depending on the observed 

values of tj and θj. Hence, the likelihood function for the whole set of observed 

exceedances can be expressed as: 
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  (4.16) 

For ease of calculation, instead of the likelihood function          

 
   , 

the log-likelihood function             

 
    is used for the comparison. The 

computed log-likelihood function of the constant discrete model has a value of -

1589.5 whereas with smooth characterization, the computed value is -1509.9. 

Thus there is improvement to the model when smooth characterization is 

employed. 
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4.4.2 Model Validation  

With a modification of the basic Poisson-GPD model equation (e.g. Eq. (3.8)), the 

improved cumulative distribution functions for sector Si with ni exceedances, can 

be derived as: 

   
 

 
1

,

1

exp 1 ,
,

j j ji

i

i i
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s
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     
 

  (4.17)               

where    
and    

 are the threshold and Poisson rate for the exceedances in the ith 

sector. ξ(tj, θj) and ζ(tj, θj) are the shape and scale parameters of the jth 

exceedances in the sector, both of which are functions of time and direction.  Note 

that ni is number of exceedances observed from the collected data which covers 

the period of 25 years, and λSi is the expected number of exceedances in a 

reference period P(years) which can be simply implemented as λSi =niP/25.  

Once the cumulative distribution functions    
 for the sectors are obtained, 

the overall cumulative distribution function         , which is        , can be 

calculated as the product of    
 by assuming independence between sectors.  That 

is,                 

  
      .  

The cumulative distribution functions are the basis for estimating the 

design values.  Therefore, it is necessary to prove that the proposed model is 

suitable for use in structural reliability analysis. For this purpose, the cumulative 

distribution function of the developed model is compared with the empirical 

cumulative distribution function of the original data. The comparison is 

performed through a simulation study. For each of the time and directional sector, 
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a group of data is generated based on the GPD model as constructed in Section 

4.3. Each data group is simulated for a period of 25 years (corresponding to the 

length of the collected data) based on its own Poisson rate. The comparison of the 

cumulative distribution functions between these simulated data and the original 

data for all the discretized sectors are shown in Figs. 4.12-4.16. The p-values of 

the KS test computed for each of the figure are also given. The results show that 

the cumulative distribution function of the simulated data agrees well with the 

original data since all the p-values are large (e.g. larger than the critical value at 

α=0.05). 

 

Figure 4.12 CDF of original data and simulated data for θ   (-10
o
~62

o
]. 

(a) t  (0.10, 0.25] (b) t   (0.35, 0.60] 

 

(c) t   (0.60, 0.85] (d) t   (0.85, 1.0] & (0, 0.10] 
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Figure 4.13 CDF of original data and simulated data for θ   (62
o
~134

o
]. 

 

Figure 4.14 CDF of original data and simulated data for θ   (134
o
~206

o
]. 

(b) t   (0.35, 0.60] 

 

(c) t   (0.60, 0.85] (d) t   (0.85, 1.0] & (0, 0.10] 

(a) t  (0.10, 0.25] 

(a) t  (0.10, 0.25] (b) t   (0.35, 0.60] 

 

(c) t   (0.60, 0.85] (d) t   (0.85, 1.0] & (0, 0.10] 



126 
 

 

Figure 4.15 CDF of original data and simulated data for θ   (206
o
~278

o
]. 

 

Figure 4.16 CDF of original data and simulated data for θ   (278
o
~350

o
]. 

(c) t   (0.60, 0.85] (d) t   (0.85, 1.0] & (0, 0.10] 

(a) t  (0.10, 0.25] (b) t   (0.35, 0.60] 

 

(c) t   (0.60, 0.85] (d) t   (0.85, 1.0] & (0, 0.10] 

(a) t  (0.10, 0.25] (b) t   (0.35, 0.60] 
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One may notice that there are some deviations in the fittings to the original 

data for particular sectors (for example, the time sectors in Fig. 4.16). This is 

actually mainly because of the Fourier transform which tries to take care of the 

overall accuracy (by smoothing the sudden change in the parameters) instead of 

the accuracy of the individual sectors. It is a balance between accuracy in fitting 

the individual sectors and the overall fit.  As such, the fitting in a sector’s model is 

not so good, but from an overall design point of view, it may be more important 

as the return value is derived from the total exceedance probability. The 

individual is also important but when compared with the overall design criterion 

(e.g.                 

  
      ), the importance is diminished. So from 

consistency point of view, the design and overall performance of the structure 

from a long term point of view is considered.  However, if the interest is within 

particular directions or period (e.g. such as temporary operations or installation), 

then this fitting within that small sectors should be the focus and the analysis 

adjusted accordingly.  

For further validation, the value of time and direction in the simulated data 

are compared against the original data.  As shown in Fig. 4.17, the fluctuation of 

the mean with time of the simulated data follows similar pattern and magnitude as 

that of the original data in Fig. 4.17.  The seasonal effect is clearly shown in the 

plot as large values are observed during winter and small values are observed 

during summer. As expected, the simulated data are quite close to the original 

data.  
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The directions are also compared to ascertain the quality of the proposed 

model. Figure 4.18 compares the cumulative distribution function for the 

simulated wave direction and the original wave data. A p-value of 0.5548 is 

computed in a two sample K-S test which implies adequacy of the developed 

model in characterizing the direction.  It may be concluded from this simulation 

study that the developed model are both realistic and accurate. 

 

Figure 4.17 Comparison of simulated and original mean of HS with time. 

 

 

Figure 4.18 Comparison of simulated and original observed wave directions. 
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4.5  Static Push-Over Analysis 

To demonstrate the performance of the proposed model for environmental loads 

in offshore structural reliability assessment, a fixed jacket structure taken from 

USFOS (2007) is examined in the following study.   

 

Figure 4.19 Jacket structure framing (circled elements are key structural elements 

in reliability analysis). 

 

4.5.1  Structural Model Description 

The jacket is designed for a water depth of 110 m with 8-legs arranged in a two 

by four rectangular grid, with the main loads coming from the north (laid 
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direction). The overall dimensions are 27 m × 54 m at the top and 56 m × 70 m at 

the bottom and the total height is 142 m. Horizontal bracings are installed at 5 

levels. The jacket is resting on four corner clusters with eight skirt piles in each 

group and no leg piles are used. The longitudinal jacket frames are diagonal-

braced, with X-braces between central and corner legs at the bottom bay. 

Transverse frames are K-braced, with the bottom K inverted to form a double X 

as shown in Fig. 4.19. 

In the structural model, only bearing structure of the jacket is included in 

the analysis. The topside and the risers are not accounted for directly. The 

permanent loads and live loads are incorporated through nodal loads at the top 

level of the structure. Soil-structure interaction is simply modeled as linear 

springs. The detailed structural properties can be found from the example files in 

USFOS (2007).  The detailed input files for constructing this model are given in 

Appendix E. 

The proposed stochastic model in the preceding section is used to 

characterize the extreme wave height with the approximation Hmax=1.9HS (DNV 

2007). The reliability analysis is performed for the maximum wave height within 

100 years, H100max. That is, P=4 in the calculation of extreme frequency in each 

sector, and λSi =niP/25 in Eq. (4.8). The current is assumed to have a velocity of 

2m/s along with the same direction as the wave. The present study will not 

consider any long term climate change effects in the associated environment. That 

is, the statistical model of the environment parameter is assumed to remain the 

same within the 100 years considered in this study. 
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Figure 4.20 Plasticity utilization plot. 

 

Besides the consideration of the wave characteristics, several uncertainties 

associated with the key structure’s mechanical properties are also considered 

herein. An initial push-over analysis is conducted on the structure for a 

longitudinal direction wave loading. Based on the ultimate strength analysis of the 

platform, it is found that the diagonal members below the sea level showed high 

degree of plasticity utilization before the base shear of the jacket failed, as shown 

in Fig. 4.20.  It indicates the importance of the diagonal members over other 

members in contributing to the ultimate strength of the whole structure. Thus in 

this study, only the key elements of the jacket structure (marked with circles in 

Fig. 19) are selected where the uncertainties associated with manufacturing and 

corrosion effect (reduction in thickness) are studied.  The yield strength of the 

steel, BS 968 for high strength tubes, is described by a lognormal distribution 
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with a suggested coefficient of variation of 0.05~0.08 (Baker 1969). The 

uncertainty in the thickness associated with corrosion effect is modeled as 

normally distributed with a coefficient of variation of 0.17 (Zhang 2010). The 

statistics of the random variables are given in Table 4.7. 

Table 4.7 Random variables in reliability analysis.  

Variables Distribution Mean c.o.v. 

Fy (MPa) Lognormal 360 0.05 

T(mm) Normal 48 0.17 

 

 

4.5.2  Reliability Analysis with Importance Sampling 

With the uncertainties mentioned in the preceding section, the reliability against 

total collapse of a jacket structure is analyzed.  The performance function 

associated with the ultimate limit state can be written as 

100maxultimate
G R L      (4.18) 

where the ultimate strength of the structure Rultimate and the 100 year maximum 

load L100max can be computed from the push-over analysis via USFOS.  The 

analysis gives the probability of failure for the jacket in resisting a large wave 

height that may, on average, be observed once in 100 years. However, the 

performance function G is not known explicitly and as such, analytical solutions 

become formidable. It may only be determined point-wise when a push-over 

analysis is performed using the finite element model.  Depending on the number 

of structural analysis required to evaluate the failure probability, the 
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computational cost may be exorbitant, especially if direct Monte Carlo simulation 

is employed.  To improve numerical efficiency, the response surface method 

which utilizes a second-order polynomial to approximate the limit state function 

from a limit number of discrete numerical analysis is applied to construct an 

approximate performance function.   

In analyzing Rultimate of the jacket structure, all the key tubular structural 

members beneath the seawater surface are assumed to have the same uncertainties 

in the thickness (e.g. T) and the yield strength (e.g. Fy). Thus, the equation 

associated with the ultimate limit state of this jacket can be expressed as: 

2 2

0 1 2 3 4
i i i i i

ultimate y yR a a F a T a F a T
    

       (4.19) 

where Rultimate is in [MN], T is in [mm] and Fy is in [MPa]. The coefficients 

   
     

     
     

     
    are determined through regression using data generated from 

Monte Carlo simulation. Note that the values of the coefficients 

   
     

     
     

     
    may change with the direction θi. These are evaluated in 

each of the five directional sectors with respect to the structure, while assuming 

the performance function within the same directional sector does not change. 

Based on 100 simulated results, the values of the calculated coefficients for each 

directional sector are obtained and presented in Table 4.8. 

Similarly, the response surface method can be applied to construct the 

function of the environmental loading L on the jacket in terms of the 

environmental parameters. For simplification, only the wave height H and the 
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current speed u are considered to be the random variables for predicting the total 

loading.  L is evaluated at a set of discrete values of H and u using the push-over 

Table 4.8 Determined coefficients of Eq. (4.19) for different directions.  

 a0 a1 a2 a3 a4 

-10°~62° -297.7612 63.4862 142.1718 -2.5144 -11.5600 

62°~134° -381.5760 69.2461 170.6110 -2.8295 -14.0079 

134°~206° -448.2937 73.4087 194.1363 -2.9642 -16.1396 

206°~278° -427.7499 70.7961 188.4236 -2.6406 -15.7409 

278°~350° -350.4651 81.9595 154.5041 -5.1180 -13.0788 

 

analysis and approximated as an equation using the following simple form 

(Heideman 1980): 

  2

1 3

c
L c H c u      (4.20) 

where u is the speed of the current in [m/s] and c1, c2 and c3 are constants. As the 

speed of current is assumed not changing (e.g. 2m/s), the factors related to the 

current speed can be considered as constants. The determination of these 

constants can be obtained from curve fitting, see Fig. 4.21. This gives the 

approximated equation for the response base shear as:  
 

 
2.1058

0.0315 8.2630L H     (4.21) 

where L is the response base shear in MN, and H is the wave height in meters. 

The wave period is taken to be 16 seconds in the analysis. The estimating of 

L100max will simply take the 100 year maximum wave height value H100max.  



135 
 

 

Figure 4.21 Comparison between calculated base shear and curve fit. 

 

Hence, the performance function in Eq. (4.18) can be expressed in terms 

of Fy, T and H100max as: 

 
2.10582 2

0 1 2 3 4 100max0.0315 8.2630i i i i i

y yG a a F a T a F a T H
    

        (4.22) 

In order to calculate Pf efficiently, importance sampling is introduced and 

implemented in the numerical procedure as presented in Chapter 2. For this 

example, the three random variables in Table 4.7, denoted by x1=Fy, x2=T and 

x3=H100max, are assumed to be independent.  A sample size NPf =10000 is used. 

The design point is determined by FORM (Ang and Tang 1984) where the 

independent random variables X=(x1, x2, x3) are transformed to the equivalent 

standardized normally distributed random variables U=(u1, u2, u3) using the 

transformation techniques as discussed in Section 2.2.3. The failure probability 

would then be calculated in the standard Gaussian space with a shift to the design 

point (u*1, u*2, u*3) as: 
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where      is the standard normal probability density function. The results for 

different time and direction sectors are summarized in Table 4.9. The result 

associated with the traditional extreme model which does not consider any of the 

seasonal and directional effects is also included.  

The reason to compare the traditional approach and the current model is to 

show the importance of the proposed procedures in the safety assessment. 

However, it should be recognized that there may not be an “absolute” correct 

answer for the failure probability. It is not possible to find a large number of real 

structures in reality and use the records of failure to confirm the correctness of the 

results. The study and comparison performed here is only used to demonstrate the 

difference between the results if the seasonality and directionality are ignored in 

the wave height model.  

Table 4.9 Failure probability of jacket structure for different time and directional 

sector of wave model. 

 ti Total Pf  

(10
-6

) 

(0.10, 0.35] (0.35, 0.60] (0.60, 0.85] (0.85, 1.0] & 

(0, 0.10] 

 

θi 

(-10
o
, 62

o
] 1.41 1.41 0.567 0.714 4.10 

(62
o
, 134

o
] 4.72 4.21 3.43 4.16 16.5 

(134
o
, 206

o
] 13.5 11.4 11.3 12.3 48.4 

(206
o
, 278

o
] 9.72 8.10 7.78 8.71 34.3 

(278
o
, 350

o
] 1.30 1.02 0.928 1.27 4.52 

Total Pf (10
-6

) 30.7 26.1 24.0 27.1  

Overall= 107.9 

Traditional Extreme Model= 36.8 
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The calculated overall failure probability using the derived model is higher 

than that from the traditional model. In addition, the influence of the seasonal and 

directional effects is clearly shown. The first time sector has the largest failure 

probability of Pf=3.07×10
-5

 and the third time sector has the lowest failure 

probability of Pf=2.40×10
-5

. This difference between the time sectors is smaller 

compared to the differences between the directional sectors with the largest 

Pf=4.84×10
-5 

at (134
o
, 206

o
] and lowest Pf=4.10×10

-6 
at (-10

o
, 62

o
]. The influence 

of the environmental loads on the structural reliability is not only associated with 

the load intensity but also with the frequency of occurrences. For example, the 

time segment (0.35, 0.60] has a lower extreme wave height than the time segment 

(0.85, 1.0] and (0, 0.10], whereas the higher frequency of occurrence in 

directional sector (62
o
, 134

o
] within the time segment (0.35, 0.60] leads to a larger 

failure probability compared to time sector (0.85, 1.0] and (0, 0.10]. This effect is 

primarily due to the frequency of occurrence of the extremes. 

An extension to the above analysis is to investigate the influence of the 

assumed direction of the loads on the structural reliability and ultimately the 

design.  For example, assume the main loads are coming from the transverse 

direction of the structure. In other words, instead of putting the structure along the 

north direction, the laid direction is now changed to along the east direction. This 

leads to a change in the performance function for the structural strength in 

different directions. Similarly, the coefficients    
     

     
     

     
    in Eq. (4.19) 

are determined from regression analysis and the results recorded in Table 4.10. 
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Table 4.10 Determined coefficients of Eq. (4.19) for rotated structure. 

 a0 a1 a2 a3 a4 

-10°~62° -369.7863 79.1633 162.9958 -4.4986 -13.7395 

62°~134° -310.8566 68.2146 145.1774 -3.1826 -11.9147 

134°~206° -348.4256 65.4774 159.8829 -2.4828 -13.0418 

206°~278° -449.0569 75.1380 193.3730 -3.2631 -16.0473 

278°~350° -446.0514 68.2682 196.3785 -2.0717 -16.36398 

 

Repetition of the analysis with the same environmental loads and 

structural specification leads to the results shown in Table 4.11. As expected, the 

most critical direction sector has changed from (134
o
, 278

o
] to (206

o
, 350

o
]. The 

overall failure probabilities for all the time segments has increased which is 

expected since the structure is weaker in direction where the main loads are 

acting. The rotated structure exposes the direction with its smallest resistance to 

the most adverse environment. In the example, although the overall failure 

probability of the rotated structure (Pf=1.18×10
-4

) differs only slightly from that 

of the original structure (Pf=1.08×10
-4

), the difference may be larger for a 

different structure. This indicates that the performance of the jacket structure 

within this environment is sensitive with respect to its “laid direction” when the 

directional wave load is the major concern.  

The conclusions regarding the time and directional effects of the wave on 

the safety of the platform analyzed may not be generalized to other structures and 

ocean site. But the proposed method provides a general basis for the safety 

assessment of any newly designed or existing platforms with respect to the 

considered environment.   
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Table 4.11 Failure probability of rotated jacket structure with respect to wave 

model.  

 ti Total Pf  

(10
-6

) 
(0.10, 0.35] (0.35, 0.60] (0.60, 0.85] (0.85, 1.0] 

& (0, 0.10] 
 

θi 

(-10
o
, 62

o
] 3.76 1.86 1.71 2.08 9.41 

(62
o
, 134

o
] 0.853 0.748 0.581 0.731 2.91 

(134
o
, 206

o
] 2.81 2.27 2.25 2.49 9.82 

(206
o
, 278

o
] 12.8 10.8 10.4 11.6 45.6 

(278
o
, 350

o
] 15.0 12.3 11.5 11.6 50.5 

Total Pf (10
-6

) 35.3 28.0 26.4 28.5  
Overall= 118.2 

   

To sum up, the above analysis shows the needs to account for time and 

direction in the statistical modeling of the wave loads for a more complete 

reliability assessment of the structure. The influence of the time varying 

environment on the performance of the fixed jacket structure is more 

comprehensively reflected using the proposed approach.  

 

4.6  Concluding Remarks 

The effect of time and spatial variant characteristics of the significant wave height 

on the reliability of an offshore structure is studied.  A stochastic model to 

account for both time and directional effects of wave loads is proposed, where a 

segmentation algorithm is used to treat the data to ensure that each segment 

satisfies the weak stationarity requirement of both the intensity and frequency of 

extreme waves.  To model the parameters as not abruptly changing between the 

divided segments, 2-D Fourier transform is employed.  The advantage of the 

proposed technique is demonstrated through the reliability analysis of an offshore 
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platform subjected to such time-variant environment and compared with that 

using the traditional reliability method.  Based on the example analysis, the 

conclusions are summarized as follows: 

 The characteristics of the wave, in terms of the magnitude and direction, were 

markedly different for different time periods. Issues related to the modeling of 

the occurrence rate and magnitude of extreme wave height from a stationary 

time series data have been addressed for using the Poisson-GPD model. It was 

found that the occurrence rate of the extremes is highly affected by the 

directional effect whereas the magnitude of the extremes is quite dependent on 

seasonal effect.  

 The statistical analysis of time varying environment data requires a prior step 

of data grouping to approximately satisfy the assumption of stationarity of the 

data before it can be assessed. The use of discrete statistical model for the 

modeling of time varying extreme wave height has been examined using 

actual data. It was found that by incorporating such segmentation steps in the 

statistical model can help to model the underlying physical variable more 

accurately. The dependencies between the wave height and the time or 

direction can be largely reduced by the discretization step.  

 The influence of modeling the seasonal effect is examined in a reliability 

analysis for an offshore platform. It was found that by incorporating such 

seasonal and directional effects in the statistical model can more adequately 

reflect the underlying physical processes and will help to detect the most 

critical environmental conditions for engineering structures in a marine 
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environment. This offers the engineer the opportunity to design structures via 

a full consideration of varying marine load. 

It is important to note that all of these conclusions were drawn from the 

use of the WIS wave data and the structural analysis for the example jacket 

structure. It may be possible in other studies that the structure may not exhibit a 

significant time varying characteristic. However, the developed new ideas in the 

current work serves to aid the practicing engineers to assess the performance of an 

offshore structure within a time varying environment. The procedures in 

establishing a robust extreme model for the load related environment parameter 

remains the same.    
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Chapter 5 Modeling the Multivariate Environmental Condition 

for the Offshore Structural Analysis  

 

In this chapter, the long term performance of offshore structures under 

multivariate environmental conditions is investigated.  The study focuses on the 

modeling of multivariate random variables associated with ocean climate 

conditions experienced by offshore structures.  The traditional joint distribution 

model may only be applicable to the multivariate problem to a certain extent.  To 

extend to slightly more complex relationship such as non-constant correlation 

between pairs of random variables, the copula model is introduced. A 

comparative study will be done between the copula and some other available 

approaches in solving the same problem. Based on the constructed statistical 

model, a discretized copula method is proposed and demonstrated through 

determining the long term load associated with a specific level of reliability for a  

jacket structure problem. The accuracy and efficiency of this approach problem is 

also discussed at the end of this chapter. 

 

5.1  Introduction  

While addressing different load cases for the offshore structures, designers are 

usually required to estimate the environmental conditions at the ocean site, and 

usually a multivariate analysis is performed.  The safety of the structure must be 
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ensured at least over the design life of the structure, which can amount to many 

years of exposure. Normally, the design of offshore structure employs a 50 or 100 

years return value for the environmental parameter (DNV 2006). The long term 

assessment of offshore structure considering the dependency of wave height with 

the time and directionality has been discussed in Chapter 4. However, the 

stochastic nature of the environmental loads encountered by the structure can be 

complicated.  The current practice in analyzing the seasonal and directional 

effects of wave load is limited to structures whose safety is most affected by the 

significant wave height HS.  For structures that are sensitive to more ocean 

parameters, for example wind speed or wave period, the static push-over approach 

may no longer be accurate enough to predict the response of the structure.  In the 

actual situation, the number of significant parameters may be more and the 

influence of various multivariate models in predicting the long term performance 

of structures under such complex environment is of interest.  

Besides the marginal distribution of the individual parameters, such as 

wave heights and wave periods, the dependency structure between various ocean 

parameters also affects the estimates of the response statistics and eventually the 

structural reliability.  If the actual dependency is nonlinear, then the models 

currently used may be inadequate, as revealed by several researchers (Guedes 

Soares et al. 2001; IPCC 2007; Vanem 2011).  A number of approaches have been 

developed in the context of multivariate analysis in wave climate studies and 

other areas, as will be presented in the following section.  Despite this, it is 

recognized that they are not widely applied in engineering practice.  This could be 
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due to lack of clear criteria for selecting the appropriate models compounded by 

the fact that different groups of data may have their own characteristics. A second 

challenge is that the processing of the established environment parameter model 

in the long term assessment requires an effective technique in the direct 

integration method, as shown in Eq. (2.2).  As the stochastic analysis for the 

offshore structure within a given environment condition is very time consuming, 

the direct integration based on environmental parameters simulated from the 

constructed multivariate model is cumbersome and impractical. Several recent 

works have emphasized the complexity of these issues in offshore environment 

and have addressed comparison of alternative numerical methods and model test 

(Cheng et al. 2003; Agarwal and Manuel 2009; Baarholm et al. 2010), the 

possible reduction in simulation efforts by selecting the critical sea states (Norton 

2004), the use of environmental contour and inverse first order reliability method 

(IFORM) (Saranyasoontorn and Manuel 2005), and the suitable use of bootstrap 

method in deriving the confidence interval from the structural analysis (Efron and 

Tibshirani 1993).   

This chapter aims to answer two questions. Among the available 

multivariate models, which of these give the best performance in modeling the 

ocean parameters; and how to implement the multivariate models into the 

structural analysis in order to assess the long term safety of the offshore structures. 

To address these issues, this chapter will adapt the copula approach in 

constructing a multivariate statistical model using measured data taken from a 
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buoy at the southern coast of Alaska.  The basic time domain wave simulations 

form the basis for the structural statistical analysis in this study.  

 

5.2  Bivariate Models for Sea State Parameters 

5.2.1  Conditional Joint Distribution Model 

Among the probabilistic models available in the literature, the most commonly 

recommended model adopted by the design code is the conditional joint 

distribution model which is widely applied to a variety of problems (Burton et al. 

2001; Jonathan and Ewns et al. 2011; Ernst and Seume 2012). The joint 

distribution model that is most pertinent in marine engineering is the distribution 

of significant wave height (HS) and peak period (TP) which characterizes the 

occurrences of sea states. Ochi (1992) introduced a bivariate log-normal 

distribution in modeling the behavior of sea states (HS, TP).  Haver (1985), 

Guedes Soares et al. (1988), and Bitner-Gregersen and Haver (1989) have applied 

a joint environmental model to different engineering calculations based on the 

combination of marginal distribution of HS and various conditional distributions 

of TP.  The basic reason of such conditional distribution model is generally 

because HS is the parameter that affects most design conditions of ocean 

structures while TP has less influence. According to the practice design code 

(DNV 2012), the conditional bivariate distribution model generally assumes HS 

follows a Weibull distribution while TP follows a lognormal distribution whose 

model parameters are conditional on HS which can be expressed by:   
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  (5.1)   

where t and h are variables representing the peak period and significant wave 

height, and parameters μ and ζ are functions of h.  

  3

1 2ln
a

PE T a a h       (5.2) 

2 3
1 2[ln ]P

b h
Var T b b e       (5.3)  

and a1, a2, a3, b1, b2, b3 are coefficients which could be determined from the 

fitting of the parametric model to the data through the regression analysis. 

 

Figure 5.1 Sketch of several conditional probability density curves of TP at 

various values of HS. 

 

This concept of conditional distribution models can also be found for the 

other ocean parameters from the design code (DNV 2012).  The conditional 
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distributions for selected significiant load governing parameters are listed in Table 

5.1. 

Table 5.1 Conditional joint distribution models for selected stochastic ocean 

parameters (DNV 2012). 

Parameter Description Distribution 

| sH HF  Wave height distribution 

in a stationary sea state 

(storm) 

Conditional Weibull Distribution  

 | | 1 exp
sH H S

S

h
F h h

h




   

    
   

 

α=2.13 δ=2.26 

max | sH HF  Largest wave height in a 

stationary sea state 

   
max | max | max

max

| |

exp exp

wave

s s

N

H H S H H S

wave

S

F h h F h h

h
N

h





   

    
     
     

 

|w sV HF  1-hour mean wind speed Conditional Normal Distribution 

μ=5.5+1.8hS ζ=4.9-0.26hS 

|C sV HF  Current speed at mean sea 

level 

Conditional Normal Distribution 

μ=0.2+0.04hS ζ=0.1 

 

Other than these pioneering research works, many of the current studies 

demonstrate several points that could be further developed.  Prince-Wright (1995) 

showed that a maximum likelihood model using the Box and Cox (1964) 

transformation of joint sea state parameter data to a Gaussian model can model 

the collected data well, especially under the presence of non-stationarities. This 

has been proven through a comparative study, in which the analysis has been 
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applied to both wave and wind data, by Bitner-Gregersen et al. (1998). A similar 

approach can also be seen in the work by Ferreira and Guedes Soares (2002) 

where the transformation technique is well applied.  When considering the ocean 

characteristics, Bitner-Gregersen (2005) investigated the probabilistic description 

of the sea states for including a wind and a swell component which could give a 

more realistic characterization.  Repko et al. (2004) developed a bivariate model 

of significant wave height and peak period based on a given independent value of 

wave steepness. A comparison of several of these approaches with a bivariate 

maximum entropy distribution, including clarifying the differences and 

performance in estimating a return value, by utilizing a specific data set can also 

be found in (Dong et al. 2013). Generally, under certain conditions each of the 

provided model has their own advantages. 

 

5.2.2  Nataf Model 

If limited information are available, such as insufficient collected data, the 

establishing of joint probabilistic model using the Nataf approach attracts 

considerable attention in engineering.  In applying Nataf method, the data are 

transformed from the original space to mutually independent standard normal 

variates. The joint density probability distribution for the multiple variables can 

be expressed as a function of the marginal distributions and the correlation 

coefficients amongst all pairs of variables (Kiureghian & Liu 1986): 
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where Fi(.) is the marginal distribution of the ith variable, Φ(.) and φ(.) are the 

cumulative and density functions of standard normal variables. Each coefficient 

ρ
ij

θ in the correlation matrix ρθ can be determined by evaluating the integral: 
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where ρij is the correlation coefficient between ith variable and jth variable in the 

original sample set. The Nataf approach is most appropriate for dealing with 

problems where only partial information is available, for example, only marginal 

distribution and correlation coefficients are known. It only requires the first two 

statistical moments and the marginal distributions of each of the marginal 

variables in the joint distribution as well as the correlation between the variables.  

Unlike the rigid conditional bivariate distribution model as described in Section 

5.2.1, Nataf model can also be easily extended to multivariate models.  

The Nataf approach has been successfully applied to model the ocean 

parameters. Wist et al. (2004) used the Nataf model for characterizing successive 

wave heights and successive wave periods. A more complicated methodology has 

been presented by Sagrilo et al. (2011) for creating a Nataf model which includes 
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the wave, wind and current parameters. It is also applied in a structural reliability 

analysis while an environmental contour is estimated from the Nataf model 

(Silva-González et al. 2013). The feature of the approximation for the distribution 

of the physical variables depends on whether the vector of the transformed 

standard normal variables is close to being multi-normal. 

 

5.3  Copula Theory 

Copula is another alternative tool for dealing with multivariate data problems, and 

has become very popular in the past two decades, where broad applications 

emerged in economics (Patton 2002), science (Embrechts 2009), hydrology 

(Zhang and Singh 2005; Genest and Favre 2007; Salvadori et al. 2007), finance 

(Cherubini et al., 2004; Genest et al. 2009) etc. The word copula originates from 

Latin, meaning “tie, connection or link”. Hence, from this basic meaning behind 

this word, one can know that copula is a model that is able to “couple” univariate 

marginal distributions to a multivariate distribution.  In practice, the copula model 

is used to construct a multivariate distribution function by combining the marginal 

distributions and specific dependence structures between the variables. 

 

5.3.1  Definition and Basic Properties 

The original definition of copula is introduced by Sklar (1959).  However, a later 

work done by Nelson (2006) gives a more detailed and easier to understand 
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introduction to the basic theories of copula. The basic definition of two 

dimensional copula is given by the following: 

Definition of copula: A 2-dimensional copula is a function C: [0, 1]
2
→[0, 1] with 

the following properties: 

1. For every u in [0, 1], 

   ,0 0, 0C u C u      (5.7) 

and 

   ,1 1,C u C u u      (5.8) 

2. For every u1, u2, v1, v2 in [0, 1] with u1≤v1 and u2≤v2,  

2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) 0C u v C u v C u v C u v      (5.9) 

These properties are the basic requirements for a copula function which 

actually parallels the essential important properties of multivariate distribution 

model. One may interpret property 1 as the grounded property of copula and 

property 2 as the non-deceasing feature of the copula function. The extension to a 

multivariate case is theoretically straightforward and convenient while the domain 

is changed to higher dimensions. Hence, an n-dimensional copula function, or 

simply n-copula, has the domain and the range values as:     

   : 0,1 0,1
n

C      (5.10) 

The constructed n-copula must also obey the rules in the basic definition. For 

example, the marginal uniformity implies that: 



152 
 

(1, ,1, ,1, ,1) 1, ,i iC u u i n     (5.11)  

With these formal definition and properties of copula, a multivariate 

distribution with specified marginal distributions can be constructed according to 

Sklar’s theorem: 

Sklar’s Theorem: Let F be an n-dimensional distribution function with marginal 

distributions F1, …, Fn.  There exists an n-dimensional copula C such that for all 

      

      1 1 1, , , ,n n nF x x C F x F x   (5.12) 

If F1, …, Fn are all continuous, then C is unique. Otherwise, C is uniquely 

determined on Ran(F1) × …× Ran(Fn), where Ran(Fi) is the range of the function 

Fi.  Conversely, if C is a copula and F1, …, Fn are distribution functions, then the 

function defined in Eq. (5.12) is a multivariate distribution function with marginal 

distributions F1, …, Fn. 

On account of Sklar’s theorem, one could see that the copula does not 

cater to the individual behavior in the multivariate problem. Compared to the 

traditional joint model, the main advantages of copula approach is that the 

selection of an appropriate model for the dependence among the variables can 

proceed independently from the choice of the marginal distribution.  
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5.3.2  Examples of Copula 

Various kinds of copula families and classes are available in the literature (Nelson 

2006). Each family or class of copula has its own characteristics that could show 

its advantages for certain types of data. Most of these copulas are built for a 

bivariate case which may be expanded to a multivariate model quite easily for the 

same copula family or class. In this section, the Gaussian copula and the 

Archimedean copula, which are frequently used in practice, are discussed.  

5.3.2.1 Gaussian Copula 

Gaussian copula appears quite often in risk analysis solutions where a 

transformation step for the original variables is needed. The dependence structure 

could generally be written in a function with multivariate normality. For a 

bivariate case, it is expressed as: 

 
 

  1 1 2 2
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21
, , exp

2 12 1

u v
uv
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
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 

  

 

  
 
 
 

   (5.13)  

where ρuv is the parameter for the bi-dimensional normal vector. The Gaussian 

copula is a member of the elliptical copula family which is of elliptical contour 

distributions. The dependence is modeled by using a symmetric and positive 

definite matrix which describes the dependence between pairs of variables. 

Because of its tractability, it is widely applied to different risk analysis problems 

(Renard and Lang 2007). A shortcoming of Gaussian copula is that all the data 

within the domain shares the same linear dependency. If the dependence structure 

is not consistent over the entire domain of the variables, it may not be possible to 
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accurately characterize the data.  More comprehensive reviews of Gaussian 

copula can be seen in Lebrun and Dutfoy (2009).  

5.3.2.2 Archimedean Copula 

The Gaussian copula mentioned above belongs to the family of elliptical copulas 

which only have limited features of symmetric dependence. However, in 

modeling the ocean parameters, it is usually common to observe large 

dependencies in the extreme values. For example, a hurricane or storm may 

induce both large values in wave height and wind speed. Under this situation, the 

Archimedean copulas could be introduced to model such asymmetries in the 

ocean data. The Archimedean copula is easy to construct and is established based 

on an algebraic method using a generating function φ(.): 

      1,ArchimedeanC u v u v       (5.14)  

where φ: (0, 1]→[0,∞) is a strictly decreasing convex function with φ(1)=0, and it 

is assumed that φ
-1

(t) = 0 for all             . Several well known copula 

families belong to the Archimedean copulas, and have been applied widely in the 

literature (Vandenberghe et al. 2011; Ariff et al. 2012; Corbella and Stretch 2013). 

The formulas of the most applicable one parameter Archimedean copulas such as 

Gumbel, Frank, Clayton and Ali-Mikhail-Haq are listed in Table 5.2. 

 

 



155 
 

Table 5.2 Examples of Archimedean Copulas (Frees and Valdez 1999; Cherubini 

et al., 2004; Nelson 2006).  

Copula Bivariate Formula 

Cθ(u, v) 

Generating 

Function φθ(t) 
   

Gumbel 

   
1

exp ln lnu v
  

        
  

 
 ln t


  [1,+∞) 

Frank   1 11
ln 1

1

u ve e

e

 



  
 
 
 

 
1

ln
1

te

e








 

(-∞, +∞) 

Clayton 
 

1

1u v  


    
1t    (1, +∞) 

Ali-Mikhail-Haq 

  1 1 1

uv

u v  
 

 1 1
ln

t

t

 
 

[-1, 1) 

 

An illustration of the differences in the characteristics of these famous 

copulas can be seen in the scatter plot shown in Fig. 5.2 where all of them have 

the same marginal distributions.  Compared with Gaussian copula, one could 

easily see that the Gumbel copula is more appropriate for data which has stronger 

correlations at high values (less spread) but less correlated at low values while the 

Clayton copula better describes data exhibiting strong left tail dependence.  The 

Frank copula is most appropriate for data that have relatively weaker 

dependencies at the tails. In practice, the change in dependencies with the values 

in the collected ocean data is quite common and hence a suitable model should be 

used to capture such characteristics shown in the observed data. More 

comprehensive reviews regarding Archimedean copula and Gaussian copula can 

be found in Genest and MacKay (1986) and Nelson (2006). 
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Figure 5.2 Comparison of different bivariate copulas for marginal distributions 

following standard normal distributions for correlation coefficient equals to 0.8. 

 

5.3.2.3 Copula Parameter Estimation    

The above well-developed copulas belong to the parametric copula multivariate 

models. In estimating the parameters in the copula, the asymptotic maximum 

likelihood estimation (MLE) may be employed.  Based on Sklar’s theorem, the 

density of the multivariate distribution function can be obtained as: 

Gumbel Copula Frank Copula 

Clayton Copula Gaussian Copula 
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where fi(xi) is the marginal probability density function of the ith variable, c(.) is 

the density function of the copula which can be derived as the nth partial 

derivative of copula function C: 
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This canonical representation of the multivariate probability density 

function generally separates the likelihood function into two parts and the 

statistical fitting of a copula model is decomposed into two steps: 

 Fitting the marginal distributions to each of the variable. 

 Fitting a copula function for the transformed multivariate data. 

Therefore, let the observed data set to be               
 , the expression 

for the log-likelihood function can be written as: 

        1 1

1 1 1

ln , , ln
m m n

j n nj i ij

j j i

l c F x F x f x
  

      (5.17) 

where   includes all the parameters in both marginal distribution and copula 

function. The maximization of this equation would give the estimated values for 

all the parameters. However, in most of the cases, the number of parameters is 

quite large, which may lead to difficulties in obtaining the solutions.  It is thus 

more common to estimate the parameters separately based on the maximization of 

the marginal distribution likelihood function and copula likelihood function: 
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where θ1 are the parameters in the copula function and θ2 are the parameters in the 

marginal distribution function. Such an adaptation of the original approach is 

called the maximum pseudo-likelihood method which is widely used (Genest and 

Favre 2007).  

 

5.3.3  Dependence Concepts 

To highlight the significance of the copula approach, a detailed interpretation of 

dependence concepts is given in the following. The easiest to comprehend and 

convenient concept of dependency is Pearson’s correlation coefficient ρ, which is 

a measure of linear dependence between random variables and is defined as: 

 
 

1 2

1 2

1 2

cov ,
,

X X

X X
X X

 
    (5.19) 

where cov(X1, X2)=E(X1, X2)-E(X1)E(X2) is the covariance between X1 and X2, E(.) 

is the expectation function and ζx, ζy  are the standard deviations of X1 and X2. 

The correlation coefficient is adopted in most of the multivariate analysis because 

it is a very common statistics that can be straightforwardly estimated from the 

data. However, several shortcomings are associated with this definition: 
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1. The correlation coefficient basically reflects the linear relationship between 

the coupled variables. In the case of perfect linear dependence where ρ = 1, 

the dependency is well represented.  In the case of imperfect linear 

dependence where -1<ρ<1, the correlation coefficient is at best a “first-order” 

representation of the dependency. 

2. The linear correlation coefficient is invariant with respect to linear 

transformations of the variables.  However, it is not invariant to strictly 

increasing nonlinear transformations.  The property of linear dependency may 

not be preserved through such transformations. 

3. Moreover, the correlation coefficient is not scale invariant. For example, if X1 

have relatively much larger values compared to X2, X1 would have larger 

influence on the value of ρ(X1, X2).  

In view of these limitations, the rank correlation coefficient corresponding 

to the measure of rankings between two variables may be more appropriate. The 

two most well-established concordant measures of such rankings are Kendall’s ηk 

and Spearman’s ρs.  Both coefficients will give value of 1 for variables that have 

perfect monotonic relationship and -1 for variables that have perfect counter 

monotonic relationship. For any bivariate copula, these two coefficients can be 

directly linked to the copula function as (Nelson 2006):  

   
1 1

0 0
, 4 ,k u v C u v dC        (5.20) 

   
1 1

0 0
, 12 , 3s u v C u v dC       (5.21) 
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The most proper copula should give the best characterization in the 

dependence between the ocean parameters. And by combining with the marginal 

distribution, the parametric model should give the best fit to the observed data.  

 

5.4  Comparative Study in Multivariate Modeling 

In this study, the investigation of the long term performance of offshore structure 

will primarily rely on the statistical models that have been built for the ocean 

parameters.  In order to have a proper perspective of the versatility of copula 

approach, it is useful to compare the performances of the available approaches in 

modeling the same multivariate ocean data. Therefore, for the comparison 

purpose, this section will go through the construction of bivariate model by using 

the aforementioned approaches, namely, (a) conditional joint distribution model, 

(b) Nataf model, and (c) copula model.  The analysis of interest concerns the 

modeling of wave height and wave period which will be further utilized in the 

structural dynamic analysis to obtain the conditional response distribution. 

 

5.4.1  Data Pre-treatment  

The collected data set chosen for this analysis is also taken from the Wave 

Information Studies (WIS 2012) as mentioned in the Chapter 3 and 4. The 

location of the collected data is at the south coast of Alaska (52.00°N, 172.00°E; 

Buoy No. 82442) and the water depth at the location is 150m.  The data set spans 
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26 years (1985/1/1 01:00 -2011/1/1 01:00) of hourly records.  Several ocean 

parameters are contained in this data set. These include: significant wave height 

HS(m), peak wave period TP(s), wave direction θS(
o
), wind speed VW(m/s) and 

wind direction θW(
o
).  Values of θS and θW (angle in degrees) refer to the direction 

measured clockwise from the North.  The long term record shows variations in 

both the magnitude and direction of wave and wind at this location. A clear 

seasonal change pattern could be observed from the mean HS and VW in Fig. 5.3, 

which indicate more severe condition in winter compared with summer.   

 

Figure 5.3 Box plot of HS and VW over different months.  
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As discussed in Chapter 4, the time varying effect may induce large 

uncertainties in the parameter estimates. Thus, it is not possible to apply the 

statistical analysis directly to the multivariate data sample. In general, a 

pretreatment based on statistical criteria is needed to separate out different groups 

of data for the analysis.  For such a multivariate ocean data set, this procedure 

even needs more efforts. Several criteria for defining a “good” multivariate data 

set include:  

(1) Stable values of individual statistical parameters of interest (e.g. the mean, 

variance of HS, TP or VW). 

(2) Constant likelihood of occurrence of the physical variables (e.g. occurrences 

rate of θS and θW).  

(3) Stable relationship between the parameters. 

It is observed that besides property 1, which has been highlighted in Fig 

5.3, the other two properties also have time-varying features.  Figure 5.4 shows 

the observed values of (HS, TP) for two different months.  The scatter diagram 

illustrates that there is greater dependence during November than during August.  

This may be explained by the fact that severe season would lead to more extreme 

events such that large values in the ocean parameters will tend to occur 

simultaneously. This is also reflected in the respective directions of the wave and 

the wind speed, see Fig. 5.5. In the present study, interest is paid to the evaluation 

of structural response associated with the critical environmental conditions during 

operation, and such low values in the wave height or wind speed will be of less 
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concern. Therefore in the following study, a specific group of data covering the 

most severe period of four months (Nov-Feb) is chosen for analysis. The 

variations of the mean and standard deviation of HS, TP and VW over these months 

are relatively small, as illustrated in Fig. 5.3, and can be accounted within the 

same statistical model. Of course the data for the period selected may not be 

perfectly homogeneous, but the time varying nature especially for the two major 

load governing factors HS and VW has been removed to a sufficient extent to 

improve the accuracy for further statistical modeling.  

As discussed in Chapter 4, another important issue regarding the 

directional effects must be considered.  It is necessary to divide the data according 

to different occurrences along the directional sectors.  Figure 5.6 shows a rose 

plot summarizing the wave height magnitude HS and its direction θS for the 

selected period of data.  Wave directions between 180
o
 and 270

o
 occur more often 

than the others, and a relative greater frequency of occurrence of large wave 

height is also associated with this wave directional sector.   It is therefore 

important to focus on constructing a good probabilistic model to describe the 

wave behavior within a directional sector               .  For the wind 

loading, since it is relatively much less important compared to wave loading, the 

direction θW will also be studied for this directional sector.  To check the 

dependency between θS and θW, the histogram of the difference (θS - θW) within 

this direction sector is plotted in Figure 5.7.  The angular statistical results show a 

small deviation between θS and θW.  For simplicity, the wind and the waves may 
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Figure 5.4 Comparison of dependencies between HS and TP for two different 

months (ρ is linear correlation coefficient).  

 

 

(b) November 

ρ=0.2921 

ρ=0.4997 

(a) August 
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Figure 5.5 Comparison of dependence between θS and θW over two different 

months (ρθ is angular correlation coefficient). 

 

 

 

(b) November 

ρθ=0.3183 

ρθ=0.5827 

(a) August 
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be assumed to have a coinciding direction given such a small difference in (θS - 

θW) as suggested in the design code (DNV 2007).  As a result, the data set (HS, TP, 

VW, θS, θW) covering the period of November to February and with value θS lies in 

the interval [180
o
, 270

o
] will be extracted for subsequent statistical analysis.  

 

Figure 5.6 Rose plot of wave direction in Nov-Feb.  

 

Figure 5.7 Histogram of difference between wind direction and wave direction (θS 

- θW). 
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5.4.2  Application of Bivariate Models 

Based on the extracted data set, the three different bivariate modeling approaches 

as introduced in Section 5.2 are applied. However, in implementing three 

statistical models, the steps in estimating the model parameters are different. For 

the conditional joint distribution model, the maximum likelihood method may not 

be practical.  For example, in constructing the bivariate model (HS, TP), there are 

6 parameters in the conditional lognormal distribution model for TP as given in Eq. 

(5.1). Together with the marginal distribution parameters of HS, the likelihood 

function, formulated by using the conditional probability density function in Eq. 

(5.1)-(5.3), turns out to be quite complicated as there are too many parameters to 

estimate.  The maximization of the likelihood function in determining the model 

parameters is not easy requiring an efficient algorithm in view of the numerous 

parameters to be determined.  Moreover, if the available data sample size is large, 

the computation becomes very cumbersome as the likelihood function value tends 

to be quite large.     

For this reason, a regression analysis is employed as an easy 

approximation of the parameter values in the conditional joint distribution model. 

The basic assumption is that, by dividing the domain of HS into small intervals 

from the smallest value to the largest valuem the conditional lognormal 

parameters of TP are nearly constant for the “local” HS within the same interval. 

The conditional parameters could then be determined by applying the nonlinear fit 

to the observed data according to Eq. (5.1)-(5.3).  Figure 5.8 shows a general 

nonlinear fit for the lognormal parameters of TP conditional on HS.  Each point in  
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Figure 5.8 Nonlinear fit of (a) μ[ln(TP)] vs HS and (b) ζ
2
[ln(TP)] vs HS based on 

Eq. (5.1) and Eq. (5.3) for points representing HS within interval values of 0.5. 

 

Table 5.3 Regression results for points representing HS within interval values of 

0.5. 

Regression fitting equation: Regression fitting equation: 

       μ[ln(TP)] = a1+a2× HS 
a3

        ζ
2
[ln(TP)] = b1+b2×exp(b3×HS) 

Coefficients (with 95% confidence 

bounds): 

Coefficients (with 95% confidence 

bounds): 

       a1 = 1.319 (0.250, 2.387)        b1 = 0.233 (-1.129, 1.596) 

       a2 = 0.945 (-0.096, 1.986)        b2 = -0.191 (-1.547, 1.166) 

       a3 = 0.183 (0.027, 0.338)        b3 = 0.013 (-0.071, 0.098) 

    

Goodness of fit: Goodness of fit: 

  SSE: 0.030   SSE: 0.001 

  R-square: 0.971   R-square: 0.830 

  Adjusted R-square: 0.969   Adjusted R-square: 0.819 

  RMSE: 0.032   RMSE: 0.006 

 

Fig 5.8 is the mid-point over an interval of 0.5m, and the points range from 1.0m 

to 16.5m in the domain of HS.  The results of the fitted values and the associated 

marginal distribution model of HS are also presented in Table 5.3.  Overall, the 

deviation from the fitted line is small. Only some “jumps” are observed at the tails 

ζ2[ln(TP)] μ[ln(TP)] 

(a) (b) 
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of the curve. One should note that the number of points (every point represent a 

local “HS” in the divided interval) used in the fit can affect the estimates of the 

model parameters.  This is an issue of trade-off between accuracy in the 

regression and accuracy in the statistical parameters such as mean and standard 

deviation associated with each interval.  To overcome this requires a reasonable 

amount of data. 

To demonstrate the importance of this point, another regression model, 

which divides the domain of HS into intervals of 0.10m ranging from 0.7m to 

16.2m, is applied here. The results in terms of the regression parameter estimate 

are given in Table 5.4 and illustrated in Fig. 5.9.  The regression becomes poorer 

compared with the former case as shown in the goodness-of-fit values.  The 

estimated parameter values {a1, a2, a3, b1, b2, b3} deviate quite significantly, 

especially for ζ
2
[ln(TP)].  The reason is because the divided intervals of HS are too 

small such that the value of μ[ln(TP)] and ζ
2
[ln(TP)] calculated over each point 

contains significant uncertainties due to the limited data set. This causes 

significant errors in the modeling of the conditional relationship between HS and 

TP which directly affects the quality of the established bivariate model. It is found 

that by using this set of parameters, when the conditional model is combined with 

a marginal lognormal distribution model of HS, the value of the log-likelihood 

function is decreased from previous case of -3019300 to -3666500. Based on 

these comparisons, the results obtained in Table 5.3 are adopted in the following 

multivariate model. 
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Figure 5.9 Nonlinear fit of (a) μ[ln(TP)] vs HS and (b) ζ
2
[ln(TP)] vs HS based on 

Eq. (5.1) and Eq. (5.3) for points representing HS within interval values of 0.1. 

 

Table 5.4 Regression results for points representing HS within interval values of 

0.1. 

Regression fitting equation: Regression fitting equation: 

       μ[ln(TP)] = a1+a2× HS 
a3

        ζ
2
[ln(TP)] = b1+b2×exp(b3×HS) 

Coefficients (with 95% confidence 

bounds): 

Coefficients (with 95% confidence 

bounds): 

       a1 = 1.039 (-0.162, 2.240)        b1 = 0.1282 (-0.086, 0.342) 

       a2 = 1.210 (0.032, 2.388)        b2 = -0.0867 (-0.297, 0.124) 

       a3 = 0.152 (0.033, 0.271)        b3 = 0.02653 (-0.026, 0.079) 

    

Goodness of fit: Goodness of fit: 

  SSE: 0.348   SSE: 0.010 

  R-square: 0.925   R-square: 0.709 

  Adjusted R-square: 0.924   Adjusted R-square: 0.705 

  RMSE: 0.049   RMSE: 0.008 

 

The bivariate conditional joint modeling of (HS, VW) is approached in  

quite a similar way. Several former research works related to this can be found in 

(Dong et al., 2004; Dong, 2007; Dong et al., 2008; Liu et al. 2002). Compared 

with the bivariate model of (HS, TP), a slight change in the model structure, as 

ζ2[ln(TP)] μ[ln(TP)] 

(a) (b) 
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suggested in prior works (Ditlevsen 2002), is made to Eqs. (5.1)-(5.3). The model 

of VW for a given HS is modeled by a 2-parameter Weibull distribution:  

 
1

| | exp
W S

k k

W W
V H W S

V Vk
f V H

  

     
     

     

   (5.22)  

where the shape parameter k and scale parameter λ are approximated by a 

nonlinear relationship with the given HS: 

3

1 2

c

sk c c h       (5.23) 

    6

4 5

c

sc c h        (5.24) 

The fitted results to the original data (HS, VW) can be illustrated in Fig. 

5.10 and shown in Table 5.5.  

 

Figure 5.10 Nonlinear fit of (a) k vs HS and (b) λ vs HS based on Eqs. (5.23) & 

(5.24). 

 

 

 

Scale parameter λ Shape parameter k 

(a) (b) 
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Table 5.5 Regression results for k vs HS and λ vs HS.  

Regression fitting equation: Regression fitting equation: 

       k = c1+c2× HS 
c3

        λ= c4+c5× HS 
c6

 

Coefficients (with 95% confidence 

bounds): 

Coefficients (with 95% confidence 

bounds): 

       c1 = 4.145 (1.454, 6.836)        c4 = 4.284 (2.109, 6.459) 

       c2 = 4.364×10
-8

 (-3.833×10
-7

, 

4.706×10
-7

)        c5 = 2.220 (1.073, 3.367) 

       c3 = 7.458 (3.869, 11.050)        c6 = 0.889 (0.7234, 1.054) 

    

Goodness of fit: Goodness of fit: 

  SSE: 883   SSE: 31.4 

  R-square: 0.7511   R-square: 0.982 

  Adjusted R-square: 0.733   Adjusted R-square: 0.981 

  RMSE: 5.619   RMSE: 1.041 

 

Compared with the conditional joint distribution model, the procedures of 

the Nataf and copula approaches require the determination of marginal 

distributions for the variables.  In seeking the best representation of the data, three 

theoretically available marginal distribution models are adopted for HS, TP and VW. 

These are Weibull, Gamma and Lognormal distribution models, which are most 

frequently used models in prior studies (Jaspers 1956, Battjes 1972, Ochi 2011). 

The model which gives the maximum likelihood function value for the data is 

considered as the best parametric model.  Table 5.6 summarizes the results of 

each model for HS, TP and VW, according to the maximum likelihood method. A 

general view of the quality of fit for the one-dimensional marginal density can 

also be seen in Fig. 5.11. The quality of the selected marginal distribution model 

can also be observed in the fitting of the tail values as shown in Fig. 5.12. The 

best models based on the results are Lognormal, Gamma and Weibull for HS, TP 
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and VW respectively. These are adopted when performing the multivariate fit in 

both the Nataf and copula approach.   

When constructing the copula model, a group of well known families of 

one parameter copulas, featuring a wide range of dependence, are considered in 

this study (Nelson 2006). These are the Gumbel, Gaussian, Frank, Clayton, 

Plackett and Ali-Mikhail-Haq families. The corresponding parameter value in 

each copula model is estimated by maximizing the pseudo-likelihood function 

value according to Eq. (5.18).  In the Nataf approach, the parameter is evaluated 

using numerical integration according to Eq. (5.6). The fitted results for both (HS, 

TP) and (HS, VW) are given in Table 5.7. 

 
Figure 5.11 Marginal parametric model fit for (a) HS, (b) TP, and (c) VW.  

(a) (b) 

(c) 



174 
 

 
Figure 5.12 Tail fittings of marginal parametric model for (a) HS, (b) TP, and (c) 

VW.  

 

Table 5.6 Results of marginal distribution model parameter estimates (with 

estimated standard error in bracket). 

 Significant wave 

height (HS) 

Peak period 

 (TP) 

Wind velocity 

(VW) 

Lognormal Model 

PDF: f(x|μ,ζ)= 

 
2

2

1 ln
exp

22

x

x



 



 
  
 

 

μ=1.336 (0.002) 

ζ=0.405 (0.002) 

Loglikelihood 

= -59897 * 

μ=2.519 (0.001) 

ζ=0.202 (0.001) 

Loglikelihood 

=  -75650 

μ=2.288 (0.003) 

ζ=0.450 (0.002) 

Loglikelihood 

=  -94095 

Gamma Model 

PDF: f(x|a,b)= 

 
11

exp
a

a

x
x

b a b






 
 
 

 

a=6.192 (0.047) 

b=0.668 (0.005) 

Loglikelihood 

= -60502 

a=25.069 (0.196) 

b=0.505 (0.004) 

Loglikelihood 

= -75501 * 

a=5.590 (0.043) 

b=1.930 (0.015) 

Loglikelihood 

= -93023 

Weibull Model 

PDF: f(x|k,λ)= 
1

exp

k k
k x x

  




    
    

     

 

k=2.428 (0.010) 

λ=4.666 (0.011) 

Loglikelihood 

= -62907 

k=5.121 (0.020) 

λ=13.715 (0.016) 

Loglikelihood 

= -77447 

k=2.632 (0.011) 

λ=12.166 (0.027) 

Loglikelihood 

= -93017 * 

Notes: * maximum loglikelihood value indicates the best model.  

(a) (b) 

(c) 
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In testing the quality of the three potential bivariate models, which consist 

different formulations and number of parameters, the standard Akaike 

Information Criteria (AIC) is adopted, given by (Akaike 1973):  

 2 2AIC l p p         (5.25)  

where p is the number of parameters used in each model, and l(p) is the maximum 

log-likelihood resulting from each model.  The AIC takes into account the 

simplicity of the model and the goodness-of-fit, and a smaller AIC value indicates 

a better model.  

 

5.4.3  Results and Discussions 

The parameter estimates, AIC statistics and log-likelihood function values for 

each of the models are presented in Table 5.7.  The results show that the 

conditional joint distribution approach gives an undesirable model, as it gives the 

largest AIC value in both (HS, TP) and (HS, VW). The basic reason is that the 

uncertainty contained in the conditional joint distribution model does not only 

cover the uncertainty in the parameter estimates of the marginal distribution (for 

example, μ and ζ for the marginal lognormal distribution of HS) but also the 

uncertainty in determining the values of {a1, a2, a3, b1, b2, b3} through regression 

analyses, see Table 5.7. Clearly, the statistical uncertainty is much larger 

compared to the other two approaches as could be observed in the comparison of 

the estimated standard errors with the associated parameters, see Table 5.7. 
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Another major reason is that the form of the function describing the relationship 

between the variables is fixed in the conditional joint distribution approach. 

Table 5.7 Comparison of parameter estimates and goodness-of-fit to the data for 

the 3 approaches (with estimated standard error in bracket). 

  Parameter  

Estimate 

Total Log-

likelihood 

No. of 

Parameters 

AIC 

(Hs, Tp)      

 Copula families:     

 Gumbel θ=1.396 (0.0062) -131741 5 263493 

 Gaussian θ= 0.467 (0.004) -131428 5 262867* 

 Frank θ= 3.076 (0.039) -131655 5 263320 

 Clayton θ= 0.537 (0.008) -132949 5 265907 

 Plackett θ= 4.070 (0.067) -131666 5 263342 

 Ali-Mikhail-Haq θ= 0.834 (0.006) -132265 5 264541 

 Conditional joint 

distribution 

model: 

a1= 1.039 (0.613) 

a2= 1.210 (0.601) 

a3= 0.152 (0.061) 

b1= 0.128 (0.109) 

b2=-0.087 (0.107) 

b3= 0.027 (0.027) 

-3019300 8 6038616 

 Nataf model: ρθ = 0.487 -131442 5 262895 

(HS, VW)      

 Copula families:     

 Gumbel θ= 1.809 (0.010) -143340 5 286690* 

 Gaussian θ= 0.622 (0.003) -145034 5 290079 

 Frank θ= 4.809 (0.042) -145226 5 290463 

 Clayton θ= 0.780 (0.007) -148841 5 297692 

 Plackett θ= 8.367 (0.132) -144818 5 289647 

 Ali-Mikhail-Haq θ= 0.970 (N.A.) -148180 5 296371 

 Conditional joint 

distribution 

model: 

c1= 4.145 (1.373) 

c2= 4.364×10
-8 

(2.178×10
-7

) 

c3=7.458 (1.832) 

c4=4.284 (1.110) 

c5= 2.221 (0.585) 

c6=0.889 (0.084) 

-2061200

  

8 4122416

  

 Nataf model: ρθ = 0.687 -145354 5 290719 
Notes: the lowest AIC value indicates the best model.  
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On the other hand, both the Nataf and copula approaches show their 

suitability in fitting the bivariate data and are even easier to apply as fewer 

parameters need to be estimated, incurring less uncertainty associated with the 

estimated parameters.  The copula approach shows that it is less restrictive by 

accommodating various structure of dependence, where the Gaussian copula 

family gives the best fit to (HS, TP), while the Gumbel family shows its best 

performance for (HS, VW).  The Nataf model implicitly assumes the Gaussian 

family copula which is one form of dependence structure in the copula approach.    

In this sense, the copula approach can give more desirable results compared to 

Nataf approach.  For example, the Gumbel copula family characterizes data that 

have more correlations at the two extremes of the dependent distributions but has 

its highest correlation in the maximas.  As mentioned earlier, the ocean storm 

could induce large wave height HS and wind speed VW.  Hence, a higher 

dependency between HS and VW could be observed for large values in (HS, VW).  

However, there are also limitations in some families of copula in modeling data.  

For instance, the Ali-Mikhail-Haq family can only model a weak dependency 

structure in bivariate data for which has a correlation coefficient covers a value 

range from -2/9 to 2/9. This largely reduces the flexibility in the copula approach 

and may give difficulties in the parameter estimate since the maximum likelihood 

method may not converge easily.  

 A general illustration of the suitability in each approach can be seen from 

the probably contour plots comparing the fitted models against the empirical data 

for (HS, TP) in Fig. 5.12.  The near-perfect agreement in the contour line in the 
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copula model supports its suitability in fitting the available data. Similar results 

are also obtained for (HS, VW) in Fig. 5.13.  However, there still exists weakness in 

all the 3 approaches.  For example, a large value of HS is unlikely to be 

accompanied with a small TP because of breaking wave limit. This implicit 

physical phenomenon is not easy to incorporate in the joint statistical model in a 

natural manner, although Repko (2004) has shown that the model can be 

improved by introducing the wave steepness parameter.  In real practical 

applications, like the long term dynamic assessment of structures, the physical 

aspects of the environmental parameters should be paid attention to.  

 

Figure 5.13 Comparison of contour plot between original data and (a) copula 

approach, (b) Nataf model, (c) conditional joint model for HS and TP. 

(a) (b) 

(c) 
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Figure 5.14 Comparison of contour plot between the original data and (a) copula 

approach (b) Nataf model (c) conditional joint model for HS and VW. 

 

The results presented here could also help to explain the difference 

between the Gaussian copula and Nataf approaches. As aforementioned, although 

the Nataf assumes a Gaussian copula to describe the dependency structure 

(Lebrun and Dutfoy 2009), there are several points of deviation in the two 

approaches.  First, the parameter estimation from Nataf model is different from 

Gaussian copula. The Nataf model estimates the parameter in the Gaussian 

function, as shown in Eq. (5.6), by preserving the value of correlation coefficient 

in the original data. This is different from the Gaussian copula applied here where 

the parameter estimate is based on maximizing the likelihood. The use of 

correlation coefficient in representing the dependencies between the variables 

may not be accurate in some cases. The value of ρ could be quite sensitive to 

(a) (b) 

(c) 
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extraordinary large values in the data sample. For example, if there is a presence 

of outliers in the data, the value of ρ could be greatly affected (Li et al. 2012).  In 

addition, the correlation coefficient ρ is only a measure of linear dependence 

between random variables (Joe 1997). The initial assumption of linear 

relationship may not be applicable as the dependency between the variables may 

not be perfectly linear. Especially in the copula model, there is a transformation of 

variables from marginal distribution to standard uniform distribution. The 

dependency could be quite different between the transformed and non-

transformed variables. Another minor difference is the uncertainty with the 

associated estimated parameter. In Gaussian copula, the standard error is 

estimated based on Fisher’s information matrix which is determined from the 

maximum likelihood function. But the parameter estimated in Nataf is from an 

integration function which may not give a standard error directly.  

 

5.5  Time Domain Structural Analysis 

There are two approaches to perform dynamic structural analysis, namely through 

analytical solution, or numerical time marching computation.   

The analytical solution approach (such as through frequency domain 

analysis) is only applicable for very simple offshore structures.  Complexities 

such as the effect of nonlinearities in the loading and/or structural elements, and 

their interactions, are difficult to handle or interpret.  For example, the nonlinear 

soil-spudcan interaction and inter-element joint connections may result in large 
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amplification of the transfer function in the upper and lower frequency range (Lu 

et al. 2002). Although it is still possible to perform the analysis in the frequency 

domain, like using a linearized transfer function, the accuracy of the results may 

need to be further investigated, especially for a non-Gaussian response.  

The alternative numerical time marching approach is only feasible to 

perform over a limited time span in practice.  The results from the short duration 

analysis can only at best be projected to long duration (such as the design life) 

response statistics through the asymptotic theory of statistical extremes, assuming 

certain conditions are fulfilled as discussed in Chapter 2.  However, complexities 

including nonlinear effects can be incorporated, the limitation being availability 

of fast computing power.  

In this work, the time marching approach is adopted in the calculation of 

the long term load for the example structure. The present study considers the 

wave loading as the major loading on the offshore structure. Therefore, the 

emphasis in the current work is given to the analysis of structural response for 

considering the joint model of (HS, TP). Before the dynamic analysis is to be 

conducted, one important issue is to ensure an accurate simulation of the wave 

stochastic process (e.g. the random wave simulation) which is required in the 

calculation of the conditional response distribution Q(X(t)|θ) in Eq. (2.12). 

Realizing this, the fundamental knowledge regarding the basic linear wave theory 

and wave characterizations is given in Appendix G. 
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5.5.1  Proposed Discretized Copula Approach 

While the joint distribution provides the basic information for characterizing the 

environmental load, its implementation into the structural analysis still needs 

further work.  As discussed in Chapter 2, the direct integration in Eq. (2.12) is 

cumbersome and impractical. To achieve an efficient way of calculating it, 

several approaches have been investigated in the literature (Baarholm 2010, 

Cheng et al. 2003). Most works followed two commonly used approaches:   

 Sea state block method 

 Environmental contour method  

In the environmental contour approach, a contour line in the parameter 

space is found from an inverse first order reliability method (IFORM) to represent 

an extreme sea state condition. The estimate for the long term load is then 

obtained by searching along the contour for the parameters giving the maximum 

characteristic extreme response. The advantage of applying this concept is that the 

calculations are largely reduced (e.g. the structural analysis is only performed 

along the contour line) compared to the direct integration method (e.g. the 

computation will cover the whole domain instead of only the contour). But the 

predictions through the IFORM are only based on limited consideration of the 

variability of the given environmental parameters, the contour line, and can be 

inaccurate and unconservative.  

For this reason, the sea state block method which utilizes the property of 

scatter diagram is preferred. As the number of bins in a scatter diagram is 
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typically excessive, the sea state block approach is to condense the data into a 

smaller quantity of representative blocks that are manageable.  The structural 

analysis in each of these blocks is then performed to determine an overall long 

term load based on the integration according to Eq. (2.2). This does not need a 

numerical integration as required in the direct integration and considers the 

variability of the environmental parameters over its domain (e.g. the evaluation of 

the response distribution Q(.) conditional on the given environmental state).   

However, the sea state block method is still quite tedious as the 

conditional response distribution in Eq. (2.12) needs structural analysis to be 

repeatedly conducted in each of the blocks in the scatter diagram to consider all 

the possible environmental conditions.  For some of the sea state blocks, they may 

have important contributions to the integration in Eq. (2.2). Inaccurate 

calculations in these blocks may lead to large errors in the estimated long term 

value as it may be quite sensitive to these blocks. This is particular important for 

floating structures which may be quite sensitive to some specific sea state 

parameter, for example, the wave period (Kawano & Venkataramana 1999). An 

alternative way of improving this approach is to increase the number of blocks in 

order to reduce the importance of the critical blocks. But it becomes impractical to 

perform computationally expensive simulations for all these created blocks since 

the number of blocks may be too large. As a result, it is thus of interest to explore 

another efficient alternative approach in handling this problem.  

In this work, the analysis incorporates the copula model in describing the 

environmental parameters.  This implies that in determining the long term load, 
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the calculations in Eq. (2.2) needs to be modified slightly. Instead of the direct 

integration in the parameter space, the integration domain would be changed to 

the copula domain in the computation which is expressed as: 

    
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where Fi(.) is the marginal distribution functions of the ith environmental 

parameter θi, and c(.) is the copula density function. Since the computation is 

taken over the range of the cumulative distribution functions Fi(θi) instead of the 

original parameter space, the integration becomes much easier as the domain is 

reduced from [0, +∞)
n
 to [0,1]

n
. However, to obtain the conditional extreme 

response distribution Q(X(t)|θ1,…,θn) still demands large amount of calculations 

and simulations. This is also the key drawback of the sea state block approach 

which cannot identify the critical sea state conditions from the parameter space, 

and thus leads to unnecessary computations for the unimportant environmental 

condition parameters. To overcome this major difficulty, a concept of discretized 

subcopula based method is proposed in this investigation.  

The concept of a subcopula function C’ is a subset of the copula function 

C where the domain of each marginal variable is bounded.  By satisfying the basic 

properties of copula, the subcopula also follows the mapping of marginal 

variables to the joint function value: 
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           1 1 1 1' : 0, 1 and , , ' , ,n n n nC S S H x x C F x F x     (5.27)  

where Si are subsets of [0, 1] which is a subdomain of the original variable. 

Therefore, a copula could be discretized into many subcopulas that have the same 

function value mapping as shown in the above equation.  By adopting this concept, 

the computation of the integration equation in Eq. (5.26) can be approximated by 

a summation equation which transforms the copula into discretized subcopulas: 
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 (5.28)  

where    
    

           
      

           
          

    is the exceedance 

probability in each subcopula such that        
 ,        represents the 

conditional response distribution for the environmental parameter values in the ith 

subcopula which could be determined by assuming an average environmental 

condition within the subcopula. A simple way is to use the environmental 

parameter values at the center point in the discretized subcopula for the evaluation 

of the structural analysis which is similar with the sea state block method.  ∆Ci is 

the probability of the ith subcopula which can be deduced from the copula 

function by using the ith order difference. For example, for a bivariate copula, ∆C 

for a subcopula lying in a subdomain [x1, x2]×[y1, y2] can be calculated by using 

the copula function C(.) as follow:  

             
1 2 1 2

2 2

1 1 2 2 2 1 1 2 1 1, ,
, , , , ,

x x y y

y x
y xC C x y C x y C x y C x y C x y


         (5.29) 



186 
 

Therefore, with these applied procedures, one could process the 

calculations in the integrations with much easier steps.  The simulation and 

structural analysis required will depend on the number of subcopulas needed in 

the integration of the copula domain. Thus, in order to improve the efficiency in 

the calculation, one possible way is to use less subcopulas for the integration in 

Eq. (5.28).  To achieve this, a procedure which only discretizes the “important” 

subcopulas that contribute most to the integration in Eq. (5.28) is proposed in the 

computation.  For example, the exceedance probability ∆P
i
E within each 

subcopula is an indicator of its contribution to the overall exceedance probability. 

The accuracy of the determined long term value is highly depending on the 

calculations within the subcopulas that have large ∆P
i
E.  However, as shown in Eq. 

(5.28), the approximation of ∆P
i
E within these subcopulas uses an average 

environmental condition which may not be accurate enough. It is therefore 

necessary to split these subcopulas into smaller subcopulas to account for the 

changes in the environmental parameters within the subcopula. This makes the 

integration relying on finer subdomains and helps to obtain more reliable results. 

Adopting this concept and using the above equations, the general algorithm in 

calculating the long term load can be described as follows: 

I. Make an initial discretization of the whole copula domain and estimate the 

long term load according to Eq. (5.28).  Based on the estimated load value l, 

calculate the individual exceedance probability ∆P
i
E for each of the subcopula 

as: 

       1 1 1| , , , ,i i i i i

E n i n ni
P Q X t l C F F          (5.30) 
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where i = 1, …, k denotes the numbering of the discretized subcopulas.  

 

Figure 5.15 Schematic showing of proposed discretization procedure. 

 

II. For the subcopula exceedance probability that is higher than a required level 

∆Prequired (e.g. ∆P
i
E>∆Prequired), the subcopula will be further discretized into 

finer subcopulas by dividing each subcopula dimensions’ domain into two 

equal subdomains. Based on these new discretized subcopulas, calculate the 

long term load and ∆P
i
E for all the created subcopulas. 

III. The discretization procedure in step (II) is repeated until all the ∆P
i
E 

calculated for the subcopula is smaller than the required ∆Prequired. Then the 

long term load can be calculated by using the discretized subcopulas based on 

Eq. (5.28). 

To demonstrate the proposed method, an offshore structure is assessed for 

its long term performance in the next section.  

5.5.2  Structural Analysis of a Fixed Offshore Platform 

5.5.2.1 Example 

To demonstrate the performance of the proposed approach, the fixed jacket 

structure introduced in Chapter 4 is used. The base shear corresponding to a long 
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term (be specific how long) exceedance probability PE of 0.01 will be investigated, 

considering only the wave and current load.  The two-dimensional Gaussian 

copula of (HS, TP) which has been constructed in Section 5.4 is applied to model 

the irregular random waves.  The JONSWAP spectrum is utilized for 

characterizing the sea state condition for a given wave condition of (HS, TP).  For 

simplicity, the current is assumed to have a constant velocity of 1.5m/s along with 

the wave in the same longitudinal direction. The simplest linear random wave 

model which has been discussed in Appendix G is used to model the random 

waves in this work. The random waves are first simulated and then converted to 

sea load in the dynamic analysis for the fixed structure through USFOS.  

5.5.2.2 Simulation requirements 

In directly applying the time domain analysis, the application of the standard 

simulation of stochastic process in representing a random wave condition in the 

offshore structural dynamic analysis requires several considerations.  Foremost is 

that every sea state or condition can be described by a specific energy spectrum, 

such as the JONSWAP wave spectrum which is defined for specific value of (HS, 

TP).  The energy dispersion and centralization are quite dependent on these values, 

as illustrated in Fig. 5.16.  The stochastic random waves to be generated must be 

sufficiently representative to capture the probabilistic characteristics of the 

corresponding sea state, from a calm to severe environment condition.  
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Figure 5.16 Illustration of JONSWAP spectrum for different sea states. 

 

Due to the change of parameter values in the spectrum, the statistical 

properties of the time series and the validity of the simulation scheme must be 

ascertained. This requires several changes in the simulation procedures for the 

method presented in the previous section.  Specifically, the following factors 

should be considered (Yamazaki and Shinozuka 1988):  

 Cut-off frequency ωcut: the maximum frequency beyond which the spectral 

density function S(ω) may be assumed to be zero for either mathematical or 

physical reasons.  

 Number of simulated frequencies N: the least number of simulated waves in 

representing a stochastic process which has a Gaussian characteristic. 

 Length of simulated time T: the minimum simulation time needed in 

establishing an accurate probabilistic model for the corresponding wave 

spectrum. 

ω 

S(ω) 
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 Time step ∆ttime_step: a value used in separating the generated value from Eq. 

(G.10) in order to avoid aliasing according to the sampling theorem 

(Bracewell 1986). 

Depending on the situations and accuracy requirement, the above 

parameters should take different values (Shinozuka 1987). As can be seen in Fig. 

5.12, the sea state parameters HS and TP as provided in the established statistical 

model covers a wide range of values. This implies that the constructed wave 

spectra would be quite different amongst one other, especially those with (HS, TP) 

values far apart.   

 
Figure 5.17 Illustration of JONSWAP spectrum for different peak shape 

parameters. 

 

In the simulation of the stationary process for the water elevation η(x, t), 

the cut off frequency ωcut denotes the largest frequency that is used in the random 

wave representation.  The value of ωcut should not be too small as some structures 
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are quite sensitive to high frequency loadings.  A low value of ωcut may also not 

represent the bulk of the wave energy for a sea state (as given by the area under 

the spectrum function).  The following criterion is usually used to estimate the 

value of ωcut (Deodatis and Shinozuka 1989): 

     
0 0

1
cut

S d S d


    


         (5.31) 

where ε<<1 (e.g. 0.01 or 0.001) depending on the accuracy required.  The chosen 

ωcut is highly dependent on the value of Tp which generally shows where the 

energy (the spectral value) is concentrated.  Another parameter that could govern 

the decision in choosing the ωcut is the peak shape parameter γ according to Eq. 

(G.9). A lower value of γ would mean a large spread of energy in the frequency 

domain, see Fig. 5.17.  

A proper value of ωcut could be determined by using the peak shape 

parameter and the required ε from the ratio of ωcut/ωp (ωp = 2π/TP), see Fig. 5.18. 

The figure shows that for the same accuracy (ε) in the simulated process, a 

smaller peak shape parameter would require a larger ωcut. As the peak shape 

parameter has a value only between 1 and 5, Fig. 5.18 is sufficient for estimating 

the minimum ωcut needed for simulating different sea state conditions.  A value of 

4 for the ratio ωcut/ωp may be adequate for most simulations (Deodatis and 

Shinozuka 1989) and adopted for the subsequent analysis to achieve an accuracy 

of ε < 0.01.  
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Figure 5.18 Cut off frequency ωcut for different peak shape parameters. 

 

According to Eq. (G.10), when ωcut is fixed, the larger the number of 

simulated waves N, or equivalently the smaller the ∆ω, the longer will be the 

period of the simulated process.  The simulated process from Eq. (G.10) would 

have a period TO: 

      
2

OT






       (5.32) 

As such, the value of N, or ∆ω, is determined according to the required 

longest period.  Utilizing the relationship N∆ω=ωcut, the above equation could be 

directly written into a function of TO and ωcut for N: 

2

O cutT
N




        (5.33) 
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In simulating the irregular random waves, since the collected wave data is 

hourly records, the simulated period TO =1 hour is adopted.  

According to the sampling theorem to avoid aliasing (Bracewell 1986): 

_

2

2
time step

cut

t



     (5.34) 

 
Figure 5.19 Determination of number of frequencies N for a given peak period. 

 

 

Figure 5.20 Determination of time interval ∆ttime_step for a given peak period. 
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Therefore, by using the general value 4 for ωcut/ωp and Eq. (5.32)-(5.34), 

the number of frequencies and the required time interval can be determined from 

the plotted curves as shown in Figs. 5.19 and 5.20.  

The accuracy inherent from the above relationships is investigated.  Four 

combinations of (HS, TP) in Table 5.8 are chosen, where the HS and TP values 

correspond to the 95 percentile and 5 percentile from its empirical quantile 

function.  The tested critical sea states include a short period with: large wave 

height and wave period; large wave height and small wave period; small wave 

height and large wave period; small wave height and small wave period. Other sea 

states would mostly have the values in between these four cases. The values of the 

parameters based on the relationships to be adopted for the simulations are 

provided in the table.  General illustrations of the simulated wave process, 

according to Eq. (G.10), are presented in Fig. 5.21.   

The graphs reflect the characteristics of different wave states where 

spectrum centralizes in the high frequency regions (small TP) gives fast 

oscillations in the elevation and large wave spectrum energy (large HS) would 

lead to big amplitude in the wave height. The recorded simulated time series data 

are compared with a Gaussian distribution (e.g. the simulated stochastic process 

should have a zero mean and standard deviation equals to HS/4) through a two 

sample K-S test. A large p-value in the Gaussian test has also proved the 

correctness of the entire process for each of the case. Hence, the above procedures 

are adequate enough to be applied for all the structural analysis.  
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The generalized extreme value model is used to fit the maximum response 

base shear       from the simulation. Ten stochastic processes are simulated and 

used as the realizations for the construction of each conditional response 

distribution model      . 

 

Figure 5.21 Typical simulated wave elevations. 

 

Gaussian K-S test p value: 0.13 

Gaussian K-S test p value: 0.22 

Gaussian K-S test p value: 0.17 

Gaussian K-S test p value: 0.29 
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Table 5.8 Sea states and values of simulation parameters for the same accuracy.  

  ωcut TO (s) N ∆ttime_step 

(HS=2m TP=7s) 3.5904 3600 2057 0.875 

(HS=2m TP=17s) 1.4784 3600 847 2.125 

(HS=8m TP=7s) 3.5904 3600 2057 0.875 

(HS=8m TP=17s) 1.4784 3600 847 2.125 

 

 

5.5.3  Results and Discussions  

The accuracy of the proposed approach against the number of discretization steps 

applied to the copula is examined. The base shear is estimated by taking an 

overall exceedance probability of 0.01 according to Eq. (5.28). Following the 

procedures stated in Section 5.5.1, the method is initially performed with a 

discretization of 16 subcopulas. Both HS and Tp in the copula space are equally 

divided into four subdomains, each covering one quartile of the associated 

variable.  The structural analysis is then performed in each subcopula by using the 

sea state value (HS, TP) at the center point, as shown in Fig. 5.22.  Based on 

structural analysis, the conditional extreme response probabilistic model       is 

constructed for each of the subcopula. Here, three values of ∆Prequired are chosen 

and used in the discretization steps to compare the results. These are 0.005, 0.003 

and 0.0015 which correspond to 50%, 30% and 15% of the total exceedance 

probability of 0.01. For the subcopulas’s ∆PE, if it is larger than ∆Prequired, a 

further discretization will be carried out. This is performed by dividing both 

dimensions of the subcopula domain into four equal size subcopulas. Then the 

long term base shear is computed based on the discretized model. After the results 

are obtained, the individual long term exceedance probability ∆PE in each 
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subcopula is calculated. The whole calculation is repeated until all the ∆PE in the 

subcopula is smaller than ∆Prequired. The detailed steps can be seen from Fig. 5.22.  

 

Figure 5.22 Schematic showing of discretization steps (u=F1(HS), v=F2(TP)) and 

evaluation points (red dots).  

 

As shown in Table 5.9, there are totally four discretization steps 

performed in the calculation with a final result for the determined long term base 

shear of 1.1∙10
7
N.  For the tested ∆Prequired of 0.005, the computation stops at the 

third step, whereas for ∆Prequired = 0.003 and ∆Prequired = 0.0015, the computation 

stops at the fourth step. The number of subcopulas is increased from 16 to 31 

through the four discretization steps. The value of the maximum ∆PE of all the 

subcopulas within each step has decreased from 0.0081 to 0.0014 from the first 

step to the fourth step. Apparently, with the applied discretization, it is expected 

1st Discretization 2nd Discretization 

3rd Discretization 4th Discretization 
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that the accuracy of the estimated long term value is improved as more discretized 

blocks are created. This can be seen from the value of the exceedance probability 

in each subcopula’s conditional extreme response distribution         

        . It is observed that                  is increasing as the 

discretization increases from 0.0701 to 0.8235. This generally implies that the sea 

state values (HS, TP) which may result in the most significant characteristic 

extreme response of the structure are identified in the copula space. As more 

blocks around these identified regions are created through the discretization steps, 

the estimated long term value becomes more accurate since the integration of Eq. 

(2.12) is quite sensitive to these sea state values.  In addition the accuracy of the 

result could also be inspected from the change of the determined long term value 

in each step.  The change of the estimated long term value at each discretization 

step diminishes from the second discretization step (+10.6%) to the fourth 

(+1.6%), see Table 5.9.  This can also be observed from the value of the 

maximum subcopula ∆PE which does not change too much from the third 

discretization step to the fourth (-17.6%).  It gives an indication that a further 

discretization step may seem unnecessary as this may not cause much change to 

the results for the determined long term value.  In fact, the long term value 

determined by any further discretization may tend to vary only slightly and 

converge to the exact solution.  

Generally, the proposed approach is able to reflect the importance of the 

environmental parameter values to the determined long term value. This can be 

observed by the ∆PE of each subcopula.  For example, as given in Appendix A, at 
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Table 5.9 Results of proposed approach in determining long term base shear for 

PE=0.01 (change of estimated long term value is given in bracket). 

 No. of 

Subcopul

as 

Estimated Long 

Term Base Shear 

(N) 

Maximum 

∆PE of 

Subcopulas 

Maximum 

      of 

Subcopulas 

1st Discretization 16 8937629 0.0081 0.0701 

2nd Discretization 19 9886673 (+10.6%) 0.0054 0.2116 

3rd Discretization 25 10806707 (+9.3%) 0.0044 0.4688 

4th Discretization 31 10976878 (+1.6%) 0.0014 0.8235 

Notes:                       represents value of long term exceedance probability in 

subcopulas, total exceedance probability is calculated by sum of ∆PE in each subcopula as 

       . 

 

the 4th discretization step, the values of ∆PE for subcopulas No. 30, 32, 34 and 36 

are 0.0012, 0.0014, 0.0014 and 0.0013, which are much larger compared to the 

other subcopulas. This means that in other subcopulas, either the conditional 

response distribution gives a small exceedance probability (e.g.         

         is quite small) or the probability of having that sea state values are 

small (e.g.    is quite small). The discretization to these subcopulas is thus less 

important as the values of ∆PE are even smaller if it is discretized into finer 

subdomains. Additionally, with these procedures in identifying the critical sea 

states, the numerical efforts have been largely saved. The number of simulations 

needed are only 360 (each subcopula requires 10 realizations) in the derived 

model which is far less compared to 2560 (based on 10 realizations for each 

smallest subcopula 16 x 16 x 10=2560) in the sea state block method. As each 

simulation requires one hour’s time (duration for a stationary sea state), the 

proposed procedure could save 85.9% computational time compared to the sea 

state block method. Moreover, if any further accuracy level is required (e.g. a 
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precision of 0.0001 is required), the results can be achieved by performing 

repeated discretization steps in the copula space by using the current approach 

(e.g. the computation can be performed until the change of the estimated long 

term value between two discretization steps is less than 0.0001). This has been 

demonstrated in the example where the result of determined long term value is 

more accurate for using ∆Prequired = 0.0015 compared to ∆Prequired = 0.005. 

However, the accuracy can hardly be controlled in the sea state block method.  

 

5.6  Concluding Remarks 

The copula approach has been introduced to model the ocean parameters in a 

multivariate setting.  The conditional probability distribution approach and the 

Nataf approach in solving multivariate statistical problems are compared with the 

copula approach, specifically for bivariate data (HS, TP) and (HS, VW).  

Considering that the collected data possesses certain degree of non-stationarity, 

some segmentations of the data are performed to obtain homogeneous subsets.  A 

discretized subcopula approach is proposed for the long term performance 

analysis. This technique is demonstrated through the dynamic analysis of a jacket 

structure using the desired constructed copula model of (HS, TP).  The 

performance of each discretization step in determining the calculated long term 

value is checked by looking at the convergence rate in the results. This is used to 

decide whether a further discretization is needed or not. It is concluded from the 

current study that: 
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 The copula model can more accurately describe the statistical relationship 

between the ocean parameters. This is clearly shown in the comparative study 

where copula gives the most desirable model in characterizing the bivariate 

data (HS, TP) and (HS, VW). The reason lies in the fact that copula is more 

flexible in modeling the dependency between the physical parameters 

compared to traditional approaches.  

 The proposed discretized copula approach can be implemented in the 

calculations for estimating the long term value. The derived procedure in 

discretizing the copula domain into subcopulas based on the exceedance 

probability is proven to be quite effective in the calculation compared to the 

sea state block method. This reduces the number of simulations in the 

computation. The convergence rate in the results regarding to each 

discretization step provides the information about whether the required level 

of accuracy is achieved. This provides a numerically efficient and accurate 

way for the practical long term assessment of an offshore structure within a 

multivariate environment.  
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Chapter 6 Conclusions 

 

6.1  Summary of Thesis  

The main objective of this study is to propose a framework for the reliability 

assessment of fixed jacket offshore structures under the wave loading arising from 

a time varying or multivariate environment. This study focused on establishing a 

robust and accurate statistical model for the wave height in order to minimize the 

risks that may be involved during the analysis of an existing fixed jacket structure. 

Selected ocean data from Wave Information Studies (WIS) data base are used in 

the study to demonstrate the suitability of the proposed procedures in handling the 

offshore reliability problems associated with time varying and multivariate 

environment. 

From the studies carried out in this work, the conclusions can be 

summarized in the following: 

 Establishing a Robust Extreme Value Model ― In establishing a robust 

extreme model for the assessment of structure’s long term performance, 

the selection of an appropriate method should be carefully considered. 

Based on the limited amount of data used, the MOM, PWMB and PWMU 

proved to be the better parameter estimate methods compared to MLE, 

ADR and KS.  Given the presence of random noise, the constructed 

extreme model may be unreliable and may need to be improved.  Thus, 

data pretreatment may be required to remove the non-stationarity inherent 
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in the raw data before it can be used in a statistical analysis.  For collected 

time series data that contains high serial correlations, the POT method is 

found to be the most appropriate method compared to the annual 

maximum method and the r largest order statistic method. It is also a 

better choice if a limited time series data is available. However, the 

performance of the POT method is largely dependent on the appropriate 

choice of time span and threshold. It is found that a random set based 

imprecise probability model is a feasible approach that is able to describe 

the uncertainties associated with the selection of threshold and time span 

in the POT method. As such, the bounds in the imprecise probability 

model can provide a consistent means to present the uncertainties in a 

quantitative form.   

 Reliability Analysis of Offshore Structures within a Time Varying 

Environment ― Based on the analysis of the selected ocean data, it was 

found that the seasonality has great influence to the observed wave height 

magnitude whereas the wave occurrence rate is largely affected by the 

directionality. The proposed segmentation algorithm is able to divide the 

data into appropriate sets for constructing the Poisson-GPD model. The 

use of discrete statistical model together with the Fourier characterization 

in representing the time varying effect in the extreme wave height was 

found particularly effective and accurate. The discrete model provides the 

information of failure probability for an offshore structure within different 

periods in a reliability analysis.  By incorporating such covariate effect in 
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the statistical model can more adequately reflect the underlying physical 

processes and help to identify the most critical environmental conditions 

for engineering structures under the varying environment.  

 Reliability Analysis of Offshore Structures within a Multivariate 

Environment ― In the modeling of multiple variables, the copula model 

was shown to be more comprehensive than the traditional conditional joint 

model and Nataf model. This is due to the fact in the copula model, fewer 

coefficients are used and a number of copula functions are available to 

characterize the nonlinear statistical dependencies between the variables. 

The implementation of the copula model in the calculation of long term 

value of an offshore structure is conducted. A discretized copula approach 

has been proposed in the calculation to estimate the long term value. It 

was found such development reduces the number of computations in the 

structural analysis for considering all the multivariate environmental 

conditions in deriving the long term response distribution. 

 

6.2  Recommendation of Future Works  

The illustrated methodology for solving the time varying reliability problem may 

be used to include more factors in the long term reliability analysis.  In particular, 

the effect of deterioration on a structure (for example, a decrease in the structure’s 

strength caused by the corrosion) may be included in the investigation.  An 

algorithm may be developed to discretize the process of deterioration into 

different time intervals and assess the reliability for the whole operation period of 
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the structure from each piecewise evaluation.  The modeling of the deterioration 

must be carefully studied.  It may also be necessary to develop an efficient 

technique to accurately estimate the failure probability with these issues.  Another 

important issue is to study the effect of climatic change.  The present study 

analyzed the reliability of the offshore structure based on a wave model which 

assumes that the environment does not change significantly over the period of 

interest.  There may be a need to carry out a sensitivity analysis based on an 

appropriate climate numerical model on the predicted design value.    

For the multivariate reliability analysis, the copula-based approach is easy 

to generalize to a multi-dimensional setting. The procedures in calculating the 

exceedance probability PE in Eq. (5.41) would not be different except for the 

higher dimension.  For example, if the environmental condition concerns a 

trivariate case (HS, TP, VW), the proposed discretization steps remain the same. 

The only difference is that the short term structural analysis is performed with a 

discretized hypercubic subcopula in three-dimensional space.  The probability ∆C 

within each subcopula should be calculated based on the third-order difference 

from the three-dimensional copula function. The results in terms of accuracy and 

numerical efforts can be controlled through finer discretizations in selected sub-

domains as described in the two-dimensional case in Chapter 5.  Figure 6.1 gives 

a general schematic showing this computation process.  The structural analysis 

would become more tedious due to the greater number of sub-domains.   
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Figure 6.1 Schematic showing of discretization procedures for three-dimensional 

copula model. 

 

Key to this extension is establishing a three-dimensional copula model.  

There are various ways of constructing a trivariate copula (Salvadori & De 

Michele 2004, Cherubini et al. 2004, Agha Kouchak et al. 2010). Generally, it is 

most convenient to adopt the concepts of nested copula approach and vine copula 

approach in the construction of multivariate copula.  

The nested copula is built by using bivariate copulas as the basis and 

linked them together to form the multivariate copula.  For instance, the 

construction of a trivariate copula for (HS, TP, VW) is given by 

              1 2 3 2 1 1 2 3, , , ,S P W S P WC F H F T F V C C F H F T F V  (6.1) 

where the C1 and C2 are bivariate copulas that are nested to construct a trivariate 

copula.  From Eq. (6.1), one can argue that alternative combinations of variables 

can be employed.  In addition, different copula functions can be applied.  For 

instance, the two-dimensional copula can first be constructed between TP and VW 

F1(HS) 

F3(VW) 

F2(TP) 

Further discretization if 

∆PE satisfy the 

discretization criteria 

Calculate subcopula ∆PE  

  | , ,
E S P W

P Q X t l H T V C     

∆F1(HS) 
∆F3(VW) 

∆F2(TP) 

Domain of trivariate copula 

C(F1(HS), F2(TP), F3(VW)) 

F1(.),F2(.),F3(.): cumulative marginal distribution 

functions of HS, TP and VW 
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instead of HS and TP. An important aspect of this approach is that the C2 is 

constructed considering the dependency between F3(VW) and C1 instead of F1(HS) 

or F2(TP).   

The vine copula approach on the other hand utilizes the conditional 

distribution models (Kurowicka & Joe 2010). The basic idea is to decompose the 

multivariate copulas into a cascade of bivariate copulas. For example, if the 

conditional cumulative marginal distribution functions, FHs|Vw(HS|VW) and 

FTp|Vw(TP|VW), of HS and TP for a given value of VW are known, the trivariate 

copula can be constructed through the following: 

             1 2 3 3 | | 3
0

, , | , |
W

S W P W

V

S P W H V S T V PC F H F T F V C F H t F T t F t dt   (6.2) 

where the C3 is the bivariate copula for the conditional cumulative distribution 

functions. The conditional distribution function FHs|Vw(HS|VW) and FTp|Vw(TP|VW) 

can be further expressed in terms of partial derivatives of copulas as:  

 
    4 1 3

|

,
|

S W

S

H V S

W

C F H F t
F H t

V





   (6.3) 

 
    5 2 3

|

,
|

P W

P

T V P

W

C F T F t
F T t

V





   (6.4) 

where C4 and C5 are the bivariate copulas for (HS, VW) and (TP, VW). As a result, 

the dependencies between each pair of the three parameters have been 

characterized through a copula.  Therefore, it may be more physically appealing 

as more copulas are included compared with the nested approach.  Another 

advantage is that the conditional distribution functions are sometimes 
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theoretically available which could make the construction of copula much easier, 

such as Eqs. (6.3)-(6.4) obtained from the literature (DNV 2006). The method of 

constructing the copula for HS, TP and VW can also be extended to model an 

environmental condition that has more than three parameters. This is achieved by 

extending recursively the approach outlined above.   

Although the copula based multivariate analysis appears conceptually 

simple, there are certain considerations which need to be taken care of.  

Compatibility problems may arise (Nelson 2006) when establishing Eq. (6.1), 

which necessitates further study to develop a way of constructing a reliable copula 

model.  In addition, there is a need to reduce the discretization steps in the 

proposed approach to make the solution tractable.  The accuracy of the final 

results is largely dependent on the discretized sector.  It becomes inevitable that 

there is a need to develop efficient discretization and computation algorithms for 

higher dimension copulas. 
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Appendix A. Detailed Information of Four Discretization 

Steps 

 

The detailed information of the discretization steps for the bivariate copula (HS, 

TP) are given herein.  Figures A.1-A.4 show the subdomains of the copula which 

are discretized in each step. The structural analysis results for each of the 

discretized subcopulas are recorded in Table A.1.  

 

Figure A.1 Numbering of subcopulas in first discretization (u=F1(HS), v=F2(TP)). 
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Figure A.2 Numbering of subcopulas in second discretization (u=F1(HS), 

v=F2(TP)). 

 

Figure A.3 Numbering of subcopulas in third discretization (u=F1(HS), v=F2(TP)). 
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Figure A.4 Numbering of subcopulas in fourth discretization (u=F1(HS), 

v=F2(TP)). 

 

Comparison of base shear response under different sea states is shown in 

Fig. A.5 which demonstrates the importance of critical sea states in the 

multivariate analysis.  From the results in Table A.1, it can be seen that the 

significance of HS is relatively larger than Tp since large magnitude in the 

response is associated with large wave height for this particular selected example. 
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now relies on finer and finer subdomains of the copula through the discretization 

steps.  
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Table A.1 Results of structural analysis in each subcopula. 

No

. 

    1
st
 Discretization 2

nd
 Discretization 3

rd
 Discretization 4

th
 Discretization 

    Long Term Load Long Term Load Long Term Load Long Term Load 

HS 

(m) 

TP  

(s) 

8937629 N 9886673 N 10806707 N 10976878 N 

∆PE ∆C ∆PE ∆C ∆PE ∆C ∆PE ∆C 

1  2.39 15.62  0.0000 0.0205 0.0000 0.0205 0.0000 0.0205 0.0000 0.0205 

2  2.39 13.32 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 

3  2.39 11.72  0.0000 0.0695 0.0000 0.0695 0.0000 0.0695 0.0000 0.0695 

4  2.39  9.83 0.0000 0.1158 0.0000 0.1158 0.0000 0.1158 0.0000 0.1158 

5  3.34 15.62 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 

6  3.34 13.32  0.0000 0.0640 0.0000 0.0640 0.0000 0.0640 0.0000 0.0640 

7  3.34 11.72 0.0000 0.0724 0.0000 0.0724 0.0000 0.0724 0.0000 0.0724 

8  3.34 9.83  0.0000 0.0695 0.0000 0.0695 0.0000 0.0695 0.0000 0.0695 

9  4.33 15.62 0.0003 0.0695 0.0001 0.0695 0.0001 0.0695 0.0000 0.0695 

10  4.33 13.32  0.0000 0.0724 0.0000 0.0724 0.0000 0.0724 0.0000 0.0724 

11  4.33 11.72 0.0009 0.0640 0.0005 0.0640 0.0005 0.0640 0.0003 0.0640 

12  4.33  9.83 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 

13  6.06 15.62 0.0081 0.1158 - - - - - - 

14  6.06 13.32 0.0004 0.0695 0.0000 0.0695 0.0000 0.0695 0.0000 0.0695 

15  6.06 11.72 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 0.0000 0.0441 

16  6.06 9.83 0.0002 0.0205 0.0000 0.0205 0.0000 0.0205 0.0000 0.0205 

17  5.45 16.76   

 

0.0000 0.0255 0.0000 0.0255 0.0000 0.0255 

18  7.08 16.76   

 

0.0054 0.0420  - - - - 

19  5.48 14.86    

 

0.0000 0.0227 0.0000 0.0227 0.0000 0.0227 

20  7.08 14.86   

 

0.0039 0.0255  - - - - 

21  6.49 17.78    

   

0.0004 0.0094 0.0002 0.0094 

22  8.09 17.78   

   

0.0004 0.0154 0.0004 0.0154 

23  6.49 16.11   

   

0.0000 0.0077 0.0000 0.0077 

24  8.09 16.11   

   

0.0044 0.0094  - - 

25  6.49 15.21   

   

0.0000 0.0067 0.0000 0.0067 

26  8.09 15.21   

   

0.0031 0.0072  - - 

27  6.49 14.55   

   

0.0005 0.0059 0.0004 0.0059 

28  8.09 14.55   

   

0.0000 0.0058 0.0000 0.0058 

29  7.50 16.41    

   

  

 

0.0009 0.0023 

30  9.11 16.41   

   

  

 

0.0012 0.0027 

31  7.50 15.85   

   

  

 

0.0000 0.0021 

32  9.11 15.85   

   

  

 

0.0014 0.0023 

33  7.50 15.41   

   

  

 

0.0000 0.0019 

34  9.11 15.41   

   

  

 

0.0014 0.0019 

35  7.50 15.03   

   

  

 

0.0000 0.0017 

36  9.11 15.03             0.0013 0.0017 
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Figure A.5 Comparison of structural base shear for different sea states.  
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Appendix B. Uncertainty Assessment in POT Method 

 

To study the effects of tail behavior, noise and dependency in the time series on 

the POT method, numerical simulations are performed.  The overall results were 

plotted in Section 3.3.  First, the performance of each estimator is tested via 

Monte Carlo simulation with different data sample sizes, namely, n = 10, 20, 30, 

50, 80, 100, 150 and 200.  In studying the effects of tail behavior, the shape 

parameter are examined for values of ξ = -0.5, -0.25, 0, 0.25 and 0.5, with the 

threshold and scale parameter fixed at u = 1 and ζ = 2, respectively.  For each 

value of ξ and n, the results are calculated based on the mean of 10,000 

simulations to ensure the conclusions made are meaningful.  The parameters 

studied include the estimated shape parameter, scale parameter and the 99-

percentile values.  Detailed results in terms of the bias percentage are presented in 

Tables B.1 to B.5.  The abbreviations in the table stand for different estimators. 

MOM: method of moments; MLE: maximum likelihood method; PWMU: 

unbiased probability weighted moments method (pi:n=(i-0.5)/n in Eq. 3.21); 

PWMB: biased probability weighted moments method (pi:n=(i-0.35)/n in Eq. 

3.21); AD: A-D test based goodness-of-fit method; KS: K-S test based goodness-

of-fit method. 
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Table B.1 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1, ξ =-0.5, ζ=2). 

 ζ ξ 99th 

percentile 

 ζ ξ 99th 

percentile 

n=10 n=20 

MOM 16.39% 34.52% -0.22% MOM 7.78% 14.06% 0.02% 

MLE 33.91% 76.42% -11.43% MLE 21.19% 46.09% -7.28% 

PWMU 9.25% 13.62% 9.05% PWMU 4.84% 5.00% 4.41% 

PWMB 12.32% 23.60% 3.40% PWMB 6.66% 10.80% 1.98% 

AD 13.70% 23.00% 18.28% AD 4.92% 7.39% 2.87% 

KS 4.60% -14.30% 64.80% KS 4.14% -5.59% 19.14% 

n=30 n=50 

MOM 4.40% 7.66% -0.32% MOM 2.53% 3.71% -0.41% 

MLE 15.51% 30.68% -5.24% MLE 8.62% 17.34% -3.78% 

PWMU 2.56% 2.24% 2.38% PWMU 1.44% 0.21% 1.18% 

PWMB 3.85% 6.23% 0.89% PWMB 2.25% 2.66% 0.31% 

AD 1.88% 1.38% 3.21% AD 0.87% -1.56% 1.17% 

KS 3.05% -5.57% 12.90% KS 1.61% -5.98% 7.89% 

n=80 n=100 

MOM 1.79% 2.63% -0.07% MOM 1.55% 2.48% 0.01% 

MLE 5.58% 12.08% -2.53% MLE 4.16% 9.65% -2.05% 

PWMU 1.06% 0.45% 0.90% PWMU 1.11% 0.89% 0.88% 

PWMB 1.57% 2.00% 0.37% PWMB 1.51% 2.12% 0.46% 

AD 0.40% -1.29% 0.92% AD 0.11% -1.29% 0.86% 

KS 0.90% -1.94% 5.67% KS 1.01% -2.33% 4.11% 

n=150 n=200 

MOM 1.99% 0.43% 0.34% MOM 0.36% 0.63% 0.02% 

MLE 3.76% 5.89% -1.15% MLE 2.13% 4.74% -1.12% 

PWMU 1.70% -0.80% 0.94% PWMU 0.10% -0.42% 0.46% 

PWMB 1.98% 0.03% 0.66% PWMB 0.31% 0.20% 0.25% 

AD 0.76% -1.88% 1.06% AD -0.44% -1.33% 0.53% 

KS 1.73% -2.25% 3.05% KS -0.02% -2.22% 1.94% 
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Table B.2 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1, ξ =-0.25, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 15.27% 66.85% -4.41% MOM 6.82% 30.08% -1.95% 

MLE 42.82% 171.40% -12.47% MLE 22.24% 81.30% -8.07% 

PWMU 6.85% 23.52% 8.17% PWMU 3.01% 11.84% 4.53% 

PWMB 12.00% 49.77% 0.57% PWMB 5.81% 25.87% 0.90% 

AD 14.14% 42.77% 35.59% AD 5.41% 7.85% 9.00% 

KS 15.85% -13.89% 108.20% KS 5.39% -4.29% 25.76% 

n=30 n=50 

MOM 5.11% 17.65% -1.83% MOM 2.78% 11.03% -1.45% 

MLE 13.06% 52.27% -6.81% MLE 7.57% 29.03% -4.64% 

PWMU 2.98% 4.69% 2.24% PWMU 1.37% 4.04% 0.98% 

PWMB 4.87% 14.24% -0.08% PWMB 2.52% 9.81% -0.37% 

AD 2.72% 1.28% 4.80% AD 0.93% -1.40% 2.68% 

KS 4.27% -3.22% 18.14% KS 1.92% -5.58% 12.06% 

n=80 n=100 

MOM 1.68% 9.36% -0.85% MOM 1.64% 7.83% -0.74% 

MLE 4.68% 20.31% -3.10% MLE 4.08% 16.15% -2.64% 

PWMU 0.68% 5.53% 0.70% PWMU 0.90% 5.17% 0.62% 

PWMB 1.41% 9.14% -0.14% PWMB 1.48% 8.06% -0.05% 

AD 0.42% -0.19% 2.00% AD 0.47% 0.25% 1.77% 

KS 0.79% -3.17% 8.70% KS 0.86% 0.19% 7.58% 

n=150 n=200 

MOM 1.12% 4.26% -0.21% MOM 0.62% 1.52% -0.16% 

MLE 2.53% 9.61% -1.65% MLE 1.76% 7.36% -1.34% 

PWMU 0.62% 2.63% 0.63% PWMU 0.40% -0.28% 0.49% 

PWMB 1.00% 4.56% 0.19% PWMB 0.69% 1.18% 0.15% 

AD 0.31% -1.29% 1.33% AD -0.15% -2.84% 0.88% 

KS 0.27% -0.82% 5.83% KS -0.02% -5.45% 4.33% 
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Table B.3 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1, ξ =0, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 19.65% - -11.06% MOM 11.15% - -7.02% 

MLE 47.72% - 46.72% MLE 21.25% - -5.75% 

PWMU 6.32% - 6.42% PWMU 3.66% - 2.90% 

PWMB 13.93% - -2.72% PWMB 7.59% - -1.72% 

AD 15.44% - 80.84% AD 6.53% - 20.86% 

KS 9.55% - 212.21% KS 6.70% - 30.62% 

n=30 n=50 

MOM 7.61% - -5.44% MOM 3.89% - -3.16% 

MLE 11.97% - -5.89% MLE 5.82% - -3.56% 

PWMU 2.88% - 1.46% PWMU 0.76% - 1.34% 

PWMB 5.52% - -1.62% PWMB 2.35% - -0.54% 

AD 3.65% - 10.89% AD 1.00% - 7.00% 

KS 6.23% - 21.92% KS 3.10% - 12.94% 

n=80 n=100 

MOM 2.47% - -2.06% MOM 2.05% - -1.49% 

MLE 3.31% - -2.33% MLE 2.75% - -1.89% 

PWMU 0.12% - 0.68% PWMU 0.34% - 0.83% 

PWMB 1.12% - -0.49% PWMB 1.14% - -0.11% 

AD 0.25% - 4.39% AD 0.27% - 3.42% 

KS 1.20% - 6.17% KS 1.14% - 5.18% 

n=150 n=200 

MOM 1.85% - -1.06% MOM 1.37% - -0.30% 

MLE 2.32% - -1.06% MLE 1.71% - -0.35% 

PWMU 0.75% - 0.76% PWMU 0.46% - 1.22% 

PWMB 1.28% - 0.12% PWMB 0.86% - 0.74% 

AD 0.72% - 2.97% AD 0.36% - 2.94% 

KS 1.40% - 3.49% KS 0.90% - 4.36% 
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Table B.4 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1, ξ =0.25, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 34.09% -117.85% -22.10% MOM 21.50% -74.00% -15.51% 

MLE 52.55% -145.17% 38.50% MLE 18.42% -58.31% 70.54% 

PWMU 10.36% -49.17% -1.75% PWMU 4.82% -26.82% 0.18% 

PWMB 21.11% -81.45% -9.53% PWMB 10.27% -43.33% -4.42% 

AD 19.56% -25.33% 171.32% AD 6.35% -1.86% 56.52% 

KS 22.08% -77.51% 242.08% KS 14.77% -58.19% 55.23% 

n=30 n=50 

MOM 17.43% -58.71% -13.20% MOM 12.37% -38.29% -10.28% 

MLE 10.37% -37.89% 1.99% MLE 5.83% -15.05% 1.35% 

PWMU 3.68% -21.51% -0.42% PWMU 2.07% -8.11% 0.23% 

PWMB 7.37% -32.51% -3.59% PWMB 4.30% -14.74% -1.82% 

AD 3.48% -2.06% 26.45% AD 2.14% 6.31% 16.75% 

KS 10.84% -49.11% 24.06% KS 6.68% -36.11% 14.84% 

n=80 n=100 

MOM 9.40% -29.87% -7.30% MOM 8.14% -29.22% -8.64% 

MLE 3.43% -11.27% 0.02% MLE 2.97% -11.72% -2.51% 

PWMU 1.40% -6.66% 0.23% PWMU 1.43% -8.06% -2.28% 

PWMB 2.78% -10.81% -1.08% PWMB 2.54% -11.38% -3.32% 

AD 1.50% 1.51% 7.67% AD 1.34% 0.68% 4.25% 

KS 4.68% -28.53% 5.40% KS 4.24% -25.03% -0.71% 

n=150 n=200 

MOM 6.52% -21.54% -6.22% MOM 5.33% -18.35% -3.87% 

MLE 2.07% -6.97% -0.81% MLE 1.28% -4.87% 0.90% 

PWMU 1.06% -4.62% -0.69% PWMU 0.49% -3.75% 0.84% 

PWMB 1.80% -6.83% -1.40% PWMB 1.04% -5.42% 0.29% 

AD 1.59% 0.03% 3.57% AD 1.12% 0.48% 3.89% 

KS 3.43% -19.20% -0.55% KS 2.34% -14.83% 0.27% 
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Table B.5 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1, ξ =0.5, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 66.32% -87.64% -31.29% MOM 49.75% -64.03% -27.54% 

MLE 52.77% -71.08% 821.61% MLE 16.95% -27.03% 24.76% 

PWMU 16.35% -44.05% -18.23% PWMU 7.39% -27.53% -12.29% 

PWMB 32.41% -60.57% -18.44% PWMB 15.44% -35.86% -14.12% 

AD 23.93% -14.51% 370.10% AD 11.58% -2.82% 79.08% 

KS 62.00% -111.96% 102.37% KS 50.71% -108.77% 14.3% 

n=30 n=50 

MOM 43.19% -53.49% -25.70% MOM 38.62% -43.62% -22.45% 

MLE 9.00% -2.70% 13.05% MLE 5.75% -7.37% 5.54% 

PWMU 5.42% -20.62% -10.68% PWMU 5.17% -13.33% -9.14% 

PWMB 10.85% -26.16% -12.42% PWMB 8.44% -16.65% -10.16% 

AD 4.59% 0.31% 45.66% AD 3.41% 1.71% 23.43% 

KS 42.97% -99.27% -6.42% KS 37.32% -79.31% -8.24% 

n=80 n=100 

MOM 35.13% -36.96% -18.71% MOM 32.58% -35.47% -16.79% 

MLE 3.18% -4.28% 6.82% MLE 2.87% -3.78% 6.69% 

PWMU 3.17% -8.69% -4.73% PWMU 3.02% -8.68% -2.90% 

PWMB 5.25% -10.76% -5.53% PWMB 4.67% -10.34% -3.58% 

AD 3.30% -1.98% 16.98% AD 2.87% -2.50% 14.64% 

KS 31.93% -66.87% -7.89% KS 28.04% -63.81% -11.07% 

n=150 n=200 

MOM 28.73% -31.51% -16.63% MOM 27.22% -29.89% -14.94% 

MLE 1.81% -2.07% 3.19% MLE 0.96% -1.27% 1.28% 

PWMU 2.24% -6.05% -3.31% PWMU 1.58% -5.39% -2.89% 

PWMB 3.33% -7.15% -3.81% PWMB 2.40% -6.21% -3.25% 

AD 1.08% -7.18% 4.81% AD 0.81% -9.25% -0.08% 

KS 20.12% -51.73% -12.89% KS 19.08% -45.70% -12.92% 

 

The effect of noise is studied in the same manner with respect to the 

threshold u, shape parameter ξ and scale parameter ζ.  The noise, as described in 

Session 3.3, is assumed to be Gaussian with zero mean and coefficient of 
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variation of 0.1, 0.3 and 0.5. The procedures in assessing the relative bias follow 

the same way as described above and the results are summarized in Tables B.6 to 

B.14. 

Table B.6 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1+N(0,0.1), ξ =-0.5, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 33.27% 59.41% -1.88% MOM 23.55% 36.38% -2.09% 

MLE 41.45% 83.50% -11.82% MLE 31.41% 53.43% -5.97% 

PWMU 26.33% 40.68% 4.68% PWMU 21.74% 31.00% 0.35% 

PWMB 28.72% 48.88% 0.17% PWMB 23.36% 35.98% -1.49% 

AD 22.76% 35.95% 8.43% AD 14.61% 15.04% 2.58% 

KS 17.98% 10.29% 41.87% KS 17.92% 20.91% 14.15% 

n=30 n=50 

MOM 21.45% 32.92% -2.06% MOM 17.94% 28.33% -2.07% 

MLE 25.54% 37.58% -3.68% MLE 17.01% 24.89% -1.92% 

PWMU 21.10% 30.86% -1.10% PWMU 18.54% 29.39% -1.94% 

PWMB 22.23% 35.26% -2.21% PWMB 19.26% 31.50% -2.58% 

AD 11.67% 11.03% 1.84% AD 9.18% 8.30% 1.80% 

KS 17.11% 22.46% 9.97% KS 15.60% 22.63% 3.78% 

n=80 n=100 

MOM 17.16% 27.97% -2.38% MOM 16.90% 26.84% -2.56% 

MLE 14.04% 16.91% -0.70% MLE 12.45% 16.08% -0.53% 

PWMU 18.08% 30.86% -2.67% PWMU 17.99% 29.87% -3.11% 

PWMB 18.55% 32.18% -3.06% PWMB 18.36% 30.94% -3.41% 

AD 8.80% 7.24% 1.64% AD 8.23% 7.10% 1.41% 

KS 15.74% 23.07% 1.71% KS 16.05% 23.96% 0.25% 

n=150 n=200 

MOM 16.55% 26.41% -2.83% MOM 15.88% 24.70% -2.54% 

MLE 10.79% 12.45% 0.36% MLE 9.67% 10.69% 0.53% 

PWMU 17.88% 30.12% -3.58% PWMU 17.35% 28.55% -3.39% 

PWMB 18.13% 30.83% -3.78% PWMB 17.54% 29.09% -3.54% 

AD 8.19% 6.94% 1.33% AD 7.64% 6.39% 1.39% 

KS 16.79% 24.89% -1.04% KS 15.88% 25.21% -0.95% 
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Table B.7 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1+N(0,0.3), ξ =-0.5, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 76.99% 133.14% -5.26% MOM 64.66% 101.35% -5.30% 

MLE 57.75% 97.24% -8.17% MLE 49.01% 67.34% -3.22% 

PWMU 66.45% 109.78% -1.79% PWMU 62.39% 97.81% -4.63% 

PWMB 66.68% 111.72% -4.40% PWMB 63.06% 100.08% -5.63% 

AD 45.01% 65.34% 12.20% AD 33.41% 39.21% 2.55% 

KS 45.02% 58.33% 33.61% KS 49.50% 66.87% 11.40% 

n=30 n=50 

MOM 62.70% 91.51% -4.80% MOM 57.47% 85.74% -4.88% 

MLE 46.75% 58.32% -0.54% MLE 34.25% 39.35% 1.38% 

PWMU 62.13% 91.94% -4.70% PWMU 58.65% 88.97% -5.44% 

PWMB 62.65% 93.78% -5.37% PWMB 59.02% 90.13% -5.82% 

AD 30.62% 31.58% 3.55% AD 27.02% 25.45% 3.90% 

KS 49.78% 70.95% 7.12% KS 48.93% 72.19% 1.93% 

n=80 n=100 

MOM 56.35% 87.21% -5.48% MOM 53.21% 85.41% -5.52% 

MLE 28.30% 31.53% 2.64% MLE 26.76% 28.59% 3.43% 

PWMU 58.24% 91.91% -6.42% PWMU 55.53% 90.95% -6.40% 

PWMB 58.48% 92.63% -6.64% PWMB 55.74% 91.54% -6.57% 

AD 24.36% 24.39% 3.98% AD 23.55% 23.08% 4.38% 

KS 49.22% 72.08% 1.80% KS 48.55% 70.74% 4.71% 

n=150 n=200 

MOM 54.39% 82.49% -5.55% MOM 55.29% 82.93% -5.66% 

MLE 25.91% 24.72% 3.93% MLE 24.37% 21.47% 4.48% 

PWMU 56.89% 89.09% -6.72% PWMU 57.96% 89.66% -6.86% 

PWMB 57.02% 89.50% -6.83% PWMB 58.06% 89.96% -6.94% 

AD 23.24% 21.41% 4.45% AD 23.15% 19.40% 4.65% 

KS 48.65% 71.41% 3.27% KS 48.50% 69.93% 3.54% 
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Table B.8 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1+N(0,0.5), ξ =-0.5, ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 134.38% 217.49% -6.63% MOM 114.80% 165.00% -6.22% 

MLE 71.64% 104.70% -6.06% MLE 61.98% 74.05% 0.19% 

PWMU 113.95% 178.41% -3.88% PWMU 107.75% 159.61% -5.55% 

PWMB 110.32% 172.23% -5.50% PWMB 103.92% 156.81% -6.13% 

AD 64.53% 84.94% 3.67% AD 50.69% 51.19% 5.14% 

KS 71.94% 96.34% 34.85% KS 74.36% 103.51% 18.56% 

n=30 n=50 

MOM 112.19% 160.74% -6.44% MOM 111.10% 151.33% -6.76% 

MLE 62.99% 59.92% 2.71% MLE 50.75% 48.94% 4.51% 

PWMU 106.57% 153.41% -6.31% PWMU 106.04% 147.64% -7.06% 

PWMB 103.99% 152.99% -6.67% PWMB 103.68% 147.54% -7.26% 

AD 47.30% 45.51% 5.92% AD 45.50% 39.33% 6.25% 

KS 79.05% 100.66% 14.59% KS 80.87% 99.55% 13.18% 

n=80 n=100 

MOM 106.53% 149.66% -6.87% MOM 106.75% 147.90% -6.92% 

MLE 42.82% 41.53% 6.43% MLE 41.89% 36.10% 7.03% 

PWMU 104.08% 144.43% -7.44% PWMU 104.95% 145.49% -7.51% 

PWMB 103.90% 144.44% -7.55% PWMB 104.82% 145.42% -7.59% 

AD 40.55% 33.78% 7.32% AD 40.19% 34.48% 7.68% 

KS 78.11% 99.06% 10.80% KS 78.44% 101.21% 11.40% 

n=150 n=200 

MOM 106.33% 146.63% -6.80% MOM 106.82% 147.30% -6.91% 

MLE 40.50% 33.17% 7.86% MLE 37.84% 30.05% 8.02% 

PWMU 102.69% 146.02% -7.55% PWMU 102.42% 151.96% -7.68% 

PWMB 102.62% 146.01% -7.60% PWMB 102.35% 151.93% -7.72% 

AD 38.62% 30.46% 8.08% AD 37.71% 28.83% 8.10% 

KS 80.34% 99.27% 13.85% KS 79.34% 104.86% 12.23% 
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Table B.9 Bias of estimated results (shape parameter ξ, scale parameter ζ and 99th 

percentile) based on simulations from GPD model (u=1, ξ =-0.5, ζ=2+N(0,0.2)). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 16.81% 31.82% -0.15% MOM 4.77% 13.47% -0.22% 

MLE 32.64% 78.13% -10.42% MLE 20.16% 45.03% -7.81% 

PWMU 9.76% 10.51% 9.26% PWMU 1.72% 4.43% 4.43% 

PWMB 12.72% 20.75% 3.62% PWMB 3.64% 10.22% 1.99% 

AD 13.70% 21.97% 25.45% AD 3.01% 7.02% 3.74% 

KS 4.37% -16.65% 70.08% KS 1.20% -5.33% 19.07% 

n=30 n=50 

MOM 3.81% 9.75% 0.40% MOM 2.65% 4.16% -0.11% 

MLE 15.91% 34.65% -5.15% MLE 8.85% 18.03% -3.84% 

PWMU 1.79% 4.00% 3.37% PWMU 1.52% 0.82% 1.70% 

PWMB 3.11% 7.96% 1.81% PWMB 2.32% 3.27% 0.83% 

AD 2.18% 4.21% 2.19% AD 0.89% -0.59% 1.27% 

KS 1.37% -2.82% 15.26% KS 1.24% -4.46% 9.60% 

n=80 n=100 

MOM 1.95% 1.74% 0.20% MOM 1.85% 2.30% -0.38% 

MLE 5.87% 11.67% -2.49% MLE 4.43% 8.79% -2.21% 

PWMU 1.25% -0.77% 1.36% PWMU 1.44% 0.71% 0.40% 

PWMB 1.76% 0.78% 0.83% PWMB 1.85% 1.94% -0.01% 

AD 0.63% -1.08% 0.99% AD 0.24% -1.71% 0.62% 

KS 1.00% -4.97% 5.32% KS 1.30% -3.99% 3.09% 

n=150 n=200 

MOM 0.49% -0.32% 0.21% MOM 0.31% 1.38% 0.17% 

MLE 2.98% 5.99% -1.25% MLE 1.93% 4.83% -1.21% 

PWMU 0.13% -1.72% 0.79% PWMU 0.07% 0.75% 0.65% 

PWMB 0.40% -0.89% 0.51% PWMB 0.27% 1.37% 0.44% 

AD -0.34% -2.06% 0.82% AD -0.49% -1.44% 0.64% 

KS -0.31% -4.46% 3.00% KS -0.12% -1.03% 1.93% 
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Table B.10 Bias of estimated results (shape parameter ξ, scale parameter ζ and 

99th percentile) based on simulations from GPD model (u=1, ξ =-0.5, 

ζ=2+N(0,0.6)). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 16.56% 37.06% -13.39% MOM 6.11% 9.37% -0.31% 

MLE 33.08% 75.38% -22.49% MLE 20.49% 41.96% -7.65% 

PWMU 9.52% 15.95% -5.08% PWMU 3.22% 0.19% 3.92% 

PWMB 12.52% 25.72% -9.97% PWMB 5.08% 6.01% 1.54% 

ADR 13.82% 22.11% 2.18% AD 3.84% 2.40% 2.60% 

KS 2.02% -18.39% 57.28% KS 1.35% -14.24% 26.83% 

n=30 n=50 

MOM 4.47% 8.73%  -0.35% MOM 2.57% 5.56% 0.66% 

MLE 16.05% 31.05%  -5.66% MLE 8.65% 19.00% -3.15% 

PWMU 2.63% 3.10%  2.56% PWMU 1.51% 2.77% 2.49% 

PWMB 3.93% 7.06%  1.04% PWMB 2.31% 5.19% 1.59% 

ADR 2.54% 0.03%  2.24% ADR 0.53% 0.06% 1.98% 

KS 1.20% -10.34%  18.10% KS 0.57% -6.21%  11.62% 

n=80 n=100 

MOM 1.21% 3.88% 2.00% MOM 1.37% 1.64% -0.20% 

MLE 5.04% 12.62% -0.44% MLE 4.51% 8.60% -2.37% 

PWMU 0.57% 1.85% 3.09% PWMU 0.84% -0.01% 0.69% 

PWMB 1.07% 3.38% 2.54% PWMB 1.25% 1.23% 0.27% 

ADR -0.23% -0.13% 2.98% ADR 0.17% -2.13% 0.64% 

KS -0.35% -5.97% 9.11% KS 0.04% -5.43% 5.48% 

n=150 n=200 

MOM 1.09% 2.70% 1.30% MOM -0.87% 0.39% 0.69% 

MLE 3.47% 7.09% -0.06% MLE 0.75% 4.29% -0.40% 

PWMU 0.74% 1.83% 1.84% PWMU -1.08% -0.46% 1.07% 

PWMB 1.01% 2.65% 1.56% PWMB -0.87% 0.16% 0.87% 

ADR 0.15% -0.65% 1.96% ADR -1.82% -2.13% 1.37% 

KS 0.32% -1.55% 5.21% KS -1.57% -3.76% 3.11% 
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Table B.11 Bias of estimated results (shape parameter ξ, scale parameter ζ and 

99th percentile) based on simulations from GPD model (u=1, ξ =-0.5, 

ζ=2+N(0,1.0)). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 16.74% 31.67% 2.71% MOM 10.82% 11.00% 5.70% 

MLE 34.36% 72.70% -5.21% MLE 25.79% 45.26% -2.28% 

PWMU 9.41% 10.17% 12.44% PWMU 7.77% 1.44% 10.47% 

PWMB 12.56% 20.33% 6.51% PWMB 9.68% 7.31% 7.85% 

ADR 14.20% 20.62% 16.75% ADR 8.26% 4.06% 9.89% 

KS 6.03% -34.09% 78.84% KS 3.84% -20.36% 36.80% 

n=30 n=50 

MOM 6.74% 5.18% 4.15% MOM 5.41% 4.78% 4.06% 

MLE 18.40% 31.01% -1.78% MLE 11.63% 17.53% 0.41% 

PWMU 4.85% -0.99% 7.20% PWMU 4.35% 1.32% 5.91% 

PWMB 6.17% 3.07% 5.56% PWMB 5.18% 3.76% 5.00% 

ADR 4.60% 0.66% 6.45% ADR 3.52% -0.93% 5.50% 

KS 1.74% -19.61% 25.09% KS 2.14% -9.56% 19.16% 

n=80 n=100 

MOM 4.99% 2.11% 1.19% MOM 5.64% 2.44% 0.50% 

MLE 8.07% 11.19% -1.63% MLE 9.15% 9.44% -1.57% 

PWMU 4.44% -0.19% 2.37% PWMU 5.04% 0.70% 1.35% 

PWMB 4.96% 1.36% 1.82% PWMB 5.47% 1.93% 0.93% 

ADR 3.02% -1.60% 1.98% ADR 4.65% -0.92% 1.38% 

KS 2.29% -9.00% 10.16% KS 3.11% -7.86% 7.68% 

n=150 n=200 

MOM 5.69% 2.03% 2.15% MOM 4.38% 1.14% 1.40% 

MLE 8.38% 6.94% 0.72% MLE 5.97% 5.05% 0.13% 

PWMU 5.33% 1.05% 2.68% PWMU 4.13% 0.30% 1.88% 

PWMB 5.62% 1.88% 2.40% PWMB 4.34% 0.92% 1.67% 

ADR 4.80% -1.07% 2.86% ADR 3.53% -1.05% 1.89% 

KS 3.56% -7.47% 6.89% KS 2.96% -6.25% 5.51% 
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Table B.12 Bias of estimated results (shape parameter ξ, scale parameter ζ and 

99th percentile) based on simulations from GPD model (u=1, ξ =-0.5+N(0,0.05), 

ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 15.12% 37.78% -0.02% MOM 6.62% 12.27% 0.48% 

MLE 32.61% 78.36% -11.79% MLE 20.04% 42.25% -7.06% 

PWMU 7.40% 16.16% 9.42% PWMU 3.97% 3.33% 5.15% 

PWMB 10.47% 25.87% 3.72% PWMB 5.83% 9.12% 2.64% 

ADR 12.40% 24.22% 13.04% ADR 3.54% 3.31% 4.34% 

KS 3.27% -11.52% 60.91% KS 3.85% -7.96% 23.13% 

n=30 n=50 

MOM 3.06% 5.75% 0.12% MOM 1.32% 2.24% -0.21% 

MLE 14.39% 30.52% -4.70% MLE 7.71% 17.22% -3.32% 

PWMU 1.20% -0.22% 2.83% PWMU 0.14% -1.34% 1.35% 

PWMB 2.51% 3.81% 1.31% PWMB 0.95% 1.13% 0.49% 

ADR 1.16% 1.27% 2.80% ADR 0.09% -2.17% 1.57% 

KS 0.24% -7.23% 14.71% KS -0.26% -6.91% 8.88% 

n=80 n=100 

MOM 1.81% 4.47% 0.73% MOM 2.44% 1.69% 0.53% 

MLE 5.95% 13.22% -2.17% MLE 5.32% 9.63% -1.46% 

PWMU 1.14% 2.33% 1.96% PWMU 1.97% -0.06% 1.36% 

PWMB 1.65% 3.86% 1.41% PWMB 2.38% 1.18% 0.93% 

ADR 0.42% -0.20% 1.48% ADR 0.94% -1.41% 1.44% 

KS 1.20% -1.53% 7.57% KS 1.53% -3.49% 4.16% 

n=150 n=200 

MOM 0.64% 1.21% 0.17% MOM 0.57% 1.15% 0.70% 

MLE 3.07% 6.99% -1.17% MLE 2.37% 5.25% -0.63% 

PWMU 0.29% -0.01% 0.66% PWMU 0.34% 0.24% 1.13% 

PWMB 0.56% 0.82% 0.39% PWMB 0.55% 0.86% 0.91% 

ADR -0.30% -0.90% 0.83% ADR -0.28% -0.90% 1.23% 

KS 0.06% -1.76% 2.97% KS 0.04% -1.22% 2.51% 
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Table B.13 Bias of estimated results (shape parameter ξ, scale parameter ζ and 

99th percentile) based on simulations from GPD model (u=1, ξ =-0.5+N(0,0.15), 

ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 15.69% 32.98% 2.73% MOM 9.49% 10.48% 4.06% 

MLE 32.24% 73.18% -7.98% MLE 20.97% 39.42% -3.35% 

PWMU 8.21% 11.56% 13.02% PWMU 6.67% 1.02% 9.38% 

PWMB 11.32% 21.56% 6.85% PWMB 8.53% 6.83% 6.57% 

ADR 12.80% 21.89% 19.81% ADR 5.94% 3.28% 10.41% 

KS 7.02% -18.85% 67.65% KS 4.67% -11.1% 32.01% 

n=30 n=50 

MOM 4.84% 7.70% 4.47% MOM 2.32% 3.68% 3.46% 

MLE 14.75% 29.85% -1.23% MLE 7.56% 16.41% -0.18% 

PWMU 2.84% 2.06% 7.82% PWMU 1.29% 0.35% 5.39% 

PWMB 4.13% 6.02% 6.06% PWMB 2.09% 2.78% 4.41% 

ADR 2.17% 0.82% 7.80% ADR 0.45% -1.74% 5.41% 

KS 2.23% -4.84% 19.27% KS 1.03% -4.61% 14.62% 

n=80 n=100 

MOM 1.54% 3.07% 3.37% MOM 0.64% 2.39% 2.78% 

MLE 4.91% 10.61% 1.10% MLE 3.81% 10.06% 0.77% 

PWMU 0.86% 1.02% 4.50% PWMU 0.09% 0.58% 3.68% 

PWMB 1.38% 2.54% 3.91% PWMB 0.51% 1.80% 3.22% 

ADR 0.28% -1.19% 4.83% ADR -0.38% -0.71% 3.92% 

KS 0.61% -1.88% 8.84% KS -0.18% -2.64% 7.34% 

n=150 n=200 

MOM 0.33% 1.52% 3.09% MOM 0.22% 0.69% 2.86% 

MLE 3.19% 7.20% 1.94% MLE 1.85% 6.55% 2.01% 

PWMU -0.07% 0.44% 3.59% PWMU -0.06% 2.90% 3.20% 

PWMB 0.21% 1.26% 3.29% PWMB 0.15% 3.50% 2.98% 

ADR -0.60% -1.21% 3.98% ADR -0.68% 1.36% 3.61% 

KS -0.47% -2.10% 5.60% KS -0.21% -1.58% 4.75% 
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Table B.14 Bias of estimated results (shape parameter ξ, scale parameter ζ and 

99th percentile) based on simulations from GPD model (u=1, ξ =-0.5+N(0,0.25), 

ζ=2). 

  ζ ξ 99th 

percentile 

  ζ ξ 99th 

percentile 

n=10 n=20 

MOM 18.88% 38.32% 8.66% MOM 6.06% 13.26% 8.22% 

MLE 31.49% 69.17% 14.81% MLE 16.81% 33.45% 2.21% 

PWMU 10.85% 15.16% 21.27% PWMU 2.85% 3.39% 14.13% 

PWMB 13.94% 24.50% 14.14% PWMB 4.77% 8.96% 11.03% 

ADR 14.49% 22.94% 43.13% ADR 3.42% 1.38% 16.85% 

KS 5.36% -14.28% 124.32% KS 2.33% -5.67% 35.43% 

n=30 n=50 

MOM 3.73% 6.32% 9.18% MOM 1.83% 2.25% 9.52% 

MLE 12.76% 26.12% 4.87% MLE 7.07% 12.80% 6.20% 

PWMU 1.72% -0.15% 13.49% PWMU 0.42% -1.23% 11.51% 

PWMB 3.06% 3.74% 11.44% PWMB 1.25% 1.17% 10.37% 

ADR 1.82% 1.45% 16.05% ADR 0.49% -4.01% 12.09% 

KS 1.36% -2.68% 30.21% KS -0.11% -5.41% 17.56% 

n=80 n=100 

MOM 2.52% 3.04% 9.53% MOM 1.09% 0.52% 10.14% 

MLE 4.80% 8.60% 7.51% MLE 3.23% 5.67% 8.56% 

PWMU 1.63% 0.57% 11.24% PWMU 0.42% -1.54% 11.17% 

PWMB 2.16% 2.06% 10.52% PWMB 0.85% -0.33% 10.60% 

ADR 0.70% -1.56% 12.06% ADR -0.23% -3.53% 11.92% 

KS 1.58% -2.22% 16.59% KS 0.37% -4.26% 14.50% 

n=150 n=200 

MOM 0.67% 0.44% 8.46% MOM 0.22% -0.05% 8.93% 

MLE 2.42% 4.28% 7.11% MLE 0.92% 1.64% 7.73% 

PWMU 0.20% -0.86% 9.28% PWMU -0.16% -1.21% 9.59% 

PWMB 0.49% -0.05% 8.92% PWMB 0.06% -0.60% 9.32% 

ADR -0.37% -3.02% 9.62% ADR -0.62% -2.45% 9.95% 

KS 0.01% -2.87% 12.08% KS -0.37% -3.43% 12.45% 
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Appendix C. Selection of Threshold and Time Span in POT 

Method 

 

As discussed in Chapter 3, the applicability of the POT method implies that the 

exceedances fit well to a Pareto distribution and the occurrence of the 

exceedances follow the Poisson process.  Thus, any pair of threshold u and time 

interval ∆t which leads to both conditions being satisfied is a feasible solution. 

For the set of data used in Section 3.4.2, the K-S test is performed for both 

the Pareto distribution and the Poisson model.  The computed p-values are shown 

in Tables C.1 and C.2. The estimated 0.95 confidence interval for the 100 year 

return value are also presented in Tables C.3 and C.4.  

Table C.1 P-value of K-S test for exceedances following GPD with different 

values of (u, ∆t). 

 u(m) 

2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 

∆t 

(hrs) 

12 0.300 0.830 0.911 0.675 0.971 0.633 0.798 0.948 0.861 0.576 0.189 

24 0.322 0.824 0.916 0.891 0.742 0.549 0.825 0.971 0.881 0.617 0.245 

36 0.206 0.554 0.721 0.654 0.514 0.665 0.834 0.967 0.898 0.683 0.219 

48 0.028 0.275 0.600 0.593 0.607 0.809 0.840 0.964 0.907 0.761 0.367 

60 0.004 0.118 0.481 0.501 0.352 0.872 0.962 0.986 0.947 0.761 0.439 

72 0.001 0.023 0.468 0.391 0.375 0.922 0.811 0.986 0.973 0.796 0.502 

84 0.001 0.034 0.194 0.181 0.256 0.930 0.697 0.970 0.936 0.772 0.515 

96 0.001 0.022 0.116 0.111 0.178 0.963 0.541 0.945 0.927 0.830 0.503 

108 0.001 0.018 0.136 0.141 0.152 0.973 0.687 0.965 0.943 0.767 0.365 

120 0.000 0.015 0.192 0.289 0.236 0.902 0.771 0.957 0.931 0.831 0.365 

132 0.000 0.023 0.176 0.277 0.252 0.900 0.745 0.900 0.877 0.808 0.387 

144 0.000 0.010 0.042 0.089 0.138 0.901 0.850 0.978 0.922 0.849 0.543 
Notes: For p-value smaller than 0.05, hypothesis of exceedances following Pareto distribution will 

be rejected at significance level α=0.05.  
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Table C.2 P-value of K-S test for occurrences of exceedances following Poisson 

process with different values of (u, ∆t). 

  u(m) 

2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 

∆t 

(hrs) 

12 0.000 0.000 0.000 0.000 0.022 0.102 0.174 0.120 0.430 0.462 0.598 

24 0.000 0.000 0.000 0.000 0.001 0.009 0.082 0.074 0.426 0.405 0.508 

36 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.046 0.357 0.505 0.449 

48 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.024 0.225 0.411 0.459 

60 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.039 0.391 0.492 0.712 

72 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.018 0.240 0.402 0.612 

84 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.009 0.260 0.290 0.486 

96 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.177 0.213 0.398 

108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.139 0.163 0.322 

120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.066 0.114 0.268 

132 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.026 0.067 0.213 

144 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.043 0.150 
Notes: For p-value smaller than 0.05, hypothesis of exceedances following Poisson process will be 

rejected at significance level α=0.05.  

As described in Chapter 3, the feasible region for significance level of 

0.01 is larger than that for 0.05. This can be observed from the following figure. 

 

Figure C.1 Appropriate region for u and ∆t for significance level equals to 0.01. 

Exceedances pass the 

K-S test for a Pareto 

distribution model for 

a significance level 

α=0.01 

Time span ∆t (hrs) 

Threshold u (m) 

Exceedances pass the 

K-S test for a Poisson 

process model for a 

significance level 

α=0.01 
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To show the significance of the selected values of (u, ∆t), the estimated 

scale parameter, shape parameter and 100-year return value for different values of 

are shown in Fig. C.2. The plotted region is for               and              . 

As shown in the figure, the estimated parameter values are very sensitive to the 

selected values of (u, ∆t). One could observe this from Fig. C.2 (c) where the 

estimated 100 year return value deviates quite a lot from each other. A high 

threshold leads to a higher estimate in the return value, whereas a larger value of 

time span leads to a lower value in the estimate. 

 

Table C.3 Estimated lower bound of 0.95 confidence interval for 100 year design 

value with different values of (u, ∆t). 

 

 

u(m) 

   2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 

∆t 

(hrs) 
12 11.652 11.707 11.676 11.802 11.370 11.305 11.283 11.303 11.265 11.220 11.285 

24 11.059 11.119 11.318 11.364 11.166 11.193 11.203 11.252 11.205 11.196 11.301 

36 10.950 10.969 11.077 11.176 11.109 11.173 11.176 11.201 11.182 11.186 11.316 

48 10.936 10.938 11.023 11.100 11.090 11.156 11.148 11.169 11.168 11.171 11.259 

60 10.986 10.951 11.002 11.067 11.070 11.161 11.169 11.182 11.186 11.179 11.224 

72 11.064 10.992 11.003 11.037 11.051 11.126 11.135 11.168 11.190 11.177 11.210 

84 11.120 11.053 11.021 11.031 11.049 11.132 11.133 11.176 11.196 11.192 11.212 

96 11.172 11.095 11.050 11.053 11.058 11.130 11.109 11.159 11.195 11.186 11.224 

108 11.215 11.135 11.076 11.079 11.077 11.146 11.122 11.160 11.195 11.182 11.240 

120 11.283 11.164 11.098 11.097 11.096 11.132 11.127 11.160 11.169 11.168 11.240 

132 11.190 11.193 11.128 11.117 11.114 11.141 11.140 11.160 11.171 11.163 11.228 

144 11.402 11.035 11.155 11.124 11.115 11.149 11.152 11.173 11.176 11.166 11.221 
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Table C.4 Estimated upper bound of 0.95 confidence interval for 100 year design 

value with different values of (u, ∆t). 

  u(m) 

2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 

∆t 

(hrs) 
12 13.723 13.819 13.910 14.277 13.877 14.039 14.246 14.643 14.870 15.054 16.088 

24 12.871 13.059 13.468 13.716 13.515 13.766 14.026 14.487 14.623 14.919 16.223 

36 12.599 12.716 13.074 13.423 13.376 13.740 13.961 14.314 14.511 14.864 16.381 

48 12.445 12.582 12.948 13.264 13.342 13.710 13.870 14.180 14.429 14.741 15.931 

60 12.300 12.518 12.872 13.168 13.284 13.761 13.978 14.259 14.542 14.802 15.643 

72 12.260 12.391 12.831 13.046 13.184 13.626 13.827 14.192 14.572 14.784 15.499 

84 12.252 12.379 12.767 12.938 13.149 13.666 13.832 14.253 14.626 14.905 15.527 

96 12.265 12.403 12.772 12.939 13.133 13.655 13.683 14.150 14.620 14.854 15.656 

108 12.299 12.419 12.795 13.006 13.148 13.731 13.728 14.139 14.629 14.800 15.849 

120 12.307 12.433 12.833 13.085 13.151 13.610 13.695 14.107 14.395 14.630 15.849 

132 12.342 12.471 12.784 13.076 13.191 13.630 13.721 14.053 14.356 14.455 15.711 

144 12.325 12.432 12.726 13.047 13.190 13.715 13.864 14.192 14.395 14.480 15.660 
 

 

 

Figure C.2 Influence of u and ∆t to (a) scale parameter, (b) shape parameter and 

(c) 100 year return value.  

(a) scale parameter (b) shape parameter 

(c) 100 year return value 
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Table C.5 Number of exceedances above the threshold after applying the POT 

method with different values of (u, ∆t). 

  u(m) 

2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 

∆t 

(hrs) 
12 1606 1344 1104 857 666 497 371 271 197 145 99 

24 1485 1259 1028 802 626 470 354 258 192 144 97 

36 1327 1151 950 751 587 447 336 249 187 142 96 

48 1202 1033 860 696 557 424 324 244 184 139 96 

60 1077 953 798 644 522 402 307 234 177 133 95 

72 972 875 743 612 501 391 303 232 176 132 94 

84 878 794 682 574 479 373 294 226 173 129 92 

96 813 737 636 543 461 362 286 222 169 128 91 

108 759 698 604 510 441 348 276 217 165 127 89 

120 718 661 581 483 413 330 265 210 162 127 89 

132 674 621 549 463 397 316 255 203 156 125 89 

144 635 590 525 447 386 310 249 194 151 122 87 
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Appendix D. Testing Values of Threshold and Time Span in 

POT Approach for Each Identified Time Sectors 

 

To check the adequacy of the Poisson-GPD model for HS in different time sectors 

as prescribed in Section 4.3, the exceedances are here tested in both the Pareto 

model and Poisson process model with reference to the appropriate threshold and 

minimum time difference to reduce serial correlation. 

As discussed in Chapter 3, this model assumes the occurrence rate to 

follow a Poisson distribution.  An easy test can be performed by transforming the 

random variable  1, ,it i n , which is the exact occurrence time of the extremes, 

to a uniformly distributed random variable  1, ,iy i n based on the property of 

Poisson process (Luceño 2006): 

 
11

ti

ti

t dt

iy e





     (D.1) 

where λ(t) is the intensity function mentioned in Eq. (3.6).  In this study, this 

refers to the average occurrence rate for the extremes within a reference time 

period. 

Therefore, by checking the quantile-quantile plot (which compares the 

empirical value yi and the theoretical value ri=(i-1/2)/n), a suitable t can be 

selected in the POT method. Here, t  is tested at a value of 12 hours for the 

applied data. The threshold selected here is taken as 1.5 times the mean value for 
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each season which is a reasonable selection from a practical point of view 

(Boccotti 2000). However, in order to justify the chosen threshold and time span 

are good enough, the suitability of several other values of threshold and time span 

are compared in the following. Figure D.1 illustrates the comparison between yi 

and ri in each of the identified four time sectors for using the time span at 12, 24 

and 36 hours. The figure shows that the Poisson process model for adopting time 

span at 12 hours is most adequate as the maximum difference between the 

empirical CDF and the theoretical CDF is the smallest one among the tested three. 

This supports the adequate use of t . 

 

Figure D.1 Test of Poisson process in each identified time sector.  

(a) Time Sector 1  (b) Time Sector 2  

(c) Time Sector 3  (d) Time Sector 4  

Max. difference: 

Time span = 12hrs: 0.116 

Time span = 24hrs: 0.179 

Time span = 36hrs: 0.208 

Max. difference: 

Time span = 12hrs: 0.125 

Time span = 24hrs: 0.169 

Time span = 36hrs: 0.209 

Max. difference: 

Time span = 12hrs: 0.133 

Time span = 24hrs: 0.151 

Time span = 36hrs: 0.211 

Max. difference: 

Time span = 12hrs: 0.129 

Time span = 24hrs: 0.171 

Time span = 36hrs: 0.202 
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The appropriateness of the threshold is also tested by using the mean 

residual plot and the L-moment plot which have been discussed in Chapter 3. The 

mean residual plots for all the identified four time sectors are shown in Fig. D.2. It 

is seen that the selected threshold is within the region that has a linear trend  

 

Figure D.2 Test of threshold (vertical dotted line) by mean residual plot with 95% 

confident intervals (green line) for all four time sectors. 

(a) Time Sector 1  

(b) Time Sector 2  

(c) Time Sector 3  

(d) Time Sector 4  

Linear trend function:  

mean excess=-0.89∙threshold+3.48 

Linear trend function:  

mean excess=-0.06∙threshold+0.96 

Linear trend function:  

mean excess=0.07∙threshold+0.72 

Linear trend function:  

mean excess=-0.04∙threshold+1.22 
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drawn on the figures. This supports the hypothesis of GPD model for the data 

above the chosen threshold. 

Figure D.3 shows the L-moment plot comparing the ratio of L-skewness 

and L-kurtosis between the empirical value and the theoretical value. In order to 

compare with other choices of thresholds, the figure also plots out the result for 

using threshold equals to 0.5, 1.0 and 2.0 times of sample mean. The selected 

threshold appears to be the most compatible with the GPD model since it  

 

Figure D.3 L-moment plot for exceedances over the selected threshold (circle dot) 

with the theoretical GPD curve (grey line) for all four time sectors. 

(c) Time Sector 3  (d) Time Sector 4  

Deviations for threshold at: 

0.5∙mean:    0.028, 1.0∙mean:   0.012 

1.5∙mean:   0.005, 2.0∙mean:   0.008 

Deviations for threshold at 

0.5∙mean:    0.014, 1.0∙mean:   0.002 

1.5∙mean:   0.004, 2.0∙mean:   0.008 

Deviations for threshold at 

0.5∙mean:    0.021, 1.0∙mean:  0.011 

1.5∙mean:   0.011, 2.0∙mean:  0.023 

Deviations for threshold at: 

0.5∙mean:    0.035, 1.0∙mean:   0.003 

1.5∙mean:   0.002, 2.0∙mean:   0.019 

(a) Time Sector 1  (b) Time Sector 2  
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generally gives the overall least deviations from the theoretical line for all the four 

seasons. This confirms that a threshold of 1.5 times the mean is suitable and it 

agrees well with the previous inference. 
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Appendix E. USFOS Program Input for the Example 

Structure 

 

The following code is used to construct the structural model in USFOS program 

for the example analysis in Chapter 4. 

 

HEAD                      Dynamic Pushover 

           Progressive Collapse Analysis  / JACKET model 

                            SINTEF  1997 

' 

'            Node ID            X              Y              Z    Boundary code 

 NODE             51        -27.000        -13.500         25.000 

 NODE             52         27.000        -13.500         25.000 

 NODE             53         27.000         13.500         25.000 

 NODE             54        -27.000         13.500         25.000 

 NODE             57        -10.000        -13.500         25.000 

 NODE             58         10.000        -13.500         25.000 

 NODE             59        -10.000         13.500         25.000 

 NODE             60         10.000         13.500         25.000 

 NODE             61        -18.500           .000         25.000 

 NODE             62           .000           .000         25.000 

 NODE             63         18.500           .000         25.000 

 NODE            101        -27.000        -13.500         34.750 

 NODE            102         27.000        -13.500         34.750 

 NODE            103         27.000         13.500         34.750 

 NODE            104        -27.000         13.500         34.750 

 NODE            107        -10.000        -13.500         34.750 

 NODE            108         10.000        -13.500         34.750 

 NODE            109        -10.000         13.500         34.750 

 NODE            110         10.000         13.500         34.750 

 NODE            111        -27.000           .000         34.750 

 NODE            112        -10.000           .000         34.750 

 NODE            113         10.000           .000         34.750 

 NODE            114         27.000           .000         34.750 

 NODE            115        -18.500        -13.500         34.750 

 NODE            116           .000        -13.500         34.750 

 NODE            117         18.500        -13.500         34.750 



265 
 

 NODE            118        -18.500         13.500         34.750 

 NODE            119           .000         13.500         34.750 

 NODE            120         18.500         13.500         34.750 

 NODE            121        -27.000         -6.750         34.750 

 NODE            122        -27.000          6.750         34.750 

 NODE            123        -10.000         -6.750         34.750 

 NODE            124        -10.000          6.750         34.750 

 NODE            125         10.000         -6.750         34.750 

 NODE            126         10.000          6.750         34.750 

 NODE            127         27.000         -6.750         34.750 

 NODE            128         27.000          6.750         34.750 

 NODE            130        -39.000        -13.500         34.750 

 NODE            131        -34.000        -13.500         34.750 

 NODE            132        -39.000         13.500         34.750 

 NODE            133        -34.000         13.500         34.750 

 NODE            134         34.000        -13.500         34.750 

 NODE            135         34.000         13.500         34.750 

 NODE            136        -34.000        -13.500         25.000 

 NODE            137        -34.000         13.500         25.000 

 NODE            138         34.000        -13.500         25.000 

 NODE            139         34.000         13.500         25.000 

 NODE            140        -27.000           .000         25.000 

 NODE            141        -10.000           .000         25.000 

 NODE            142         10.000           .000         25.000 

 NODE            143         27.000           .000         25.000 

 NODE            144        -18.500           .000         34.750 

 NODE            145           .000           .000         34.750 

 NODE            146         18.500           .000         34.750 

 NODE            201        -27.000        -13.500         12.000 

 NODE            202         27.000        -13.500         12.000 

 NODE            203         27.000         13.500         12.000 

 NODE            204        -27.000         13.500         12.000 

 NODE            205           .000        -13.500         12.000 

 NODE            206           .000         13.500         12.000 

 NODE            207        -10.000        -13.500         12.000 

 NODE            208         10.000        -13.500         12.000 

 NODE            209        -10.000         13.500         12.000 

 NODE            210         10.000         13.500         12.000 

 NODE            211         13.500           .000         12.000 

 NODE            212        -10.000           .000         12.000 

 NODE            213        -27.000           .000         12.000 

 NODE            214           .000           .000         12.000 

 NODE            215         10.000          3.500         12.000 

 NODE            216         10.000         -3.500         12.000 

 NODE            217         19.320         -8.290         12.000 

 NODE            218         19.320          8.290         12.000 
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 NODE            219         20.904         -7.404         12.000 

 NODE            220         20.904          7.404         12.000 

 NODE            301        -28.650        -16.580        -14.000 

 NODE            302         28.650        -16.580        -14.000 

 NODE            303         28.650         16.580        -14.000 

 NODE            304        -28.650         16.580        -14.000 

 NODE            305        -10.000        -16.580        -14.000 

 NODE            306         10.000        -16.580        -14.000 

 NODE            307         10.000         16.580        -14.000 

 NODE            308        -10.000         16.580        -14.000 

 NODE            311        -28.650           .000        -14.000 

 NODE            312        -10.000           .000        -14.000 

 NODE            313         10.000           .000        -14.000 

 NODE            314         19.320         -8.290        -14.000 

 NODE            315         19.320          8.290        -14.000 

 NODE            316         28.650           .000        -14.000 

 NODE            351        -27.825        -15.040         -1.000 

 NODE            352         27.825        -15.040         -1.000 

 NODE            353         27.825         15.040         -1.000 

 NODE            354        -27.825         15.040         -1.000 

 NODE            355        -10.000        -15.040         -1.000 

 NODE            356         10.000        -15.040         -1.000 

 NODE            357         10.000         15.040         -1.000 

 NODE            358        -10.000         15.040         -1.000 

 NODE            361        -18.500         15.040         -1.000 

 NODE            362           .000         15.040         -1.000 

 NODE            363         18.500         15.040         -1.000 

 NODE            364        -18.500        -15.040         -1.000 

 NODE            365           .000        -15.040         -1.000 

 NODE            366         18.500        -15.040         -1.000 

 NODE            367        -27.825         -6.750         -1.000 

 NODE            368        -27.825          6.750         -1.000 

 NODE            369        -10.000         -6.750         -1.000 

 NODE            370        -10.000          6.750         -1.000 

 NODE            371         10.000         -6.750         -1.000 

 NODE            372         10.000          6.750         -1.000 

 NODE            373         27.825         -6.750         -1.000 

 NODE            374         27.825          6.750         -1.000 

 NODE            401        -30.480        -20.020        -43.000 

 NODE            402         30.480        -20.020        -43.000 

 NODE            403         30.480         20.020        -43.000 

 NODE            404        -30.480         20.020        -43.000 

 NODE            405        -10.000        -20.020        -43.000 

 NODE            406         10.000        -20.020        -43.000 

 NODE            407         10.000         20.020        -43.000 

 NODE            408        -10.000         20.020        -43.000 
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 NODE            411        -30.480           .000        -43.000 

 NODE            412        -10.000           .000        -43.000 

 NODE            413         10.000           .000        -43.000 

 NODE            414         20.240        -10.010        -43.000 

 NODE            415         20.240         10.010        -43.000 

 NODE            416         30.480           .000        -43.000 

 NODE            501        -32.440        -23.700        -74.000 

 NODE            502         32.440        -23.700        -74.000 

 NODE            503         32.440         23.700        -74.000 

 NODE            504        -32.440         23.700        -74.000 

 NODE            505        -10.000        -23.700        -74.000 

 NODE            506         10.000        -23.700        -74.000 

 NODE            507         10.000         23.700        -74.000 

 NODE            508        -10.000         23.700        -74.000 

 NODE            511        -32.440           .000        -74.000 

 NODE            512        -10.000           .000        -74.000 

 NODE            513         10.000           .000        -74.000 

 NODE            514         21.220        -11.850        -74.000 

 NODE            515         21.220         11.850        -74.000 

 NODE            516         32.440           .000        -74.000 

 NODE            601        -34.340        -27.260       -104.000 

 NODE            602         34.340        -27.260       -104.000 

 NODE            603         34.340         27.260       -104.000 

 NODE            604        -34.340         27.260       -104.000 

 NODE            605        -10.000        -27.260       -104.000 

 NODE            606         10.000        -27.260       -104.000 

 NODE            607         10.000         27.260       -104.000 

 NODE            608        -10.000         27.260       -104.000 

 NODE            611        -34.340           .000       -104.000 

 NODE            612        -10.000           .000       -104.000 

 NODE            613          6.100           .000       -104.000 

 NODE            614         34.340           .000       -104.000 

 NODE            651        -21.676         25.408        -88.391 

 NODE            652         21.676         25.408        -88.391 

 NODE            653        -21.676        -25.408        -88.391 

 NODE            654         21.676        -25.408        -88.391 

 NODE            655         33.324         12.678        -87.952 

 NODE            656         33.324        -12.678        -87.952 

 NODE            701        -34.670        -27.890       -109.300  1 1 1 

 NODE            702         34.670        -27.890       -109.300  1 1 1 

 NODE            703         34.670         27.890       -109.300  1 1 1 

 NODE            704        -34.670         27.890       -109.300  1 1 1 

 NODE           1001        -37.823        -33.802       -159.300 

 NODE           1002         37.823        -33.802       -159.300 

 NODE           1003         37.823         33.802       -159.300 

 NODE           1004        -37.823         33.802       -159.300 
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 NODE           2001        -40.976        -39.759       -209.300 

 NODE           2002         40.976        -39.759       -209.300 

 NODE           2003         40.976         39.759       -209.300 

 NODE           2004        -40.976         39.759       -209.300 

' 

'            Elem ID     np1      np2   material   geom    lcoor    ecc1    ecc2 

 BEAM           201      201      207        2       48      21 

 BEAM           202      205      208        2       48      10 

 BEAM           203      201      213        2       48      23 

 BEAM           206      205      214        2       55      23 

 BEAM           207      205      216        2       59      27 

 BEAM           208      202      219        2       59      28 

 BEAM           209      206      215        2       59      29 

 BEAM           210      203      220        2       59      30 

 BEAM           211      202      203        2       48      23 

 BEAM           212      204      209        2       48      21 

 BEAM           213      206      210        2       48      10 

 BEAM           214      207      214        2       58       1 

 BEAM           215      207      213        2       54       1 

 BEAM           216      209      213        2       54       1 

 BEAM           217      209      214        2       58       1 

 BEAM           218      207      212        2       62       1 

 BEAM           219      209      212        2       62       1 

 BEAM           220      212      213        2       61       1 

 BEAM           221      212      214        2       61       1 

 BEAM           222      208      216        2       62       1 

 BEAM           223      215      216        2       62       1 

 BEAM           224      210      215        2       62       1 

 BEAM           225      211      216        2       63       1 

 BEAM           226      211      215        2       63       1 

 BEAM           227      205      207        2       48       1 

 BEAM           228      206      209        2       48       1 

 BEAM           229      202      208        2       48       1 

 BEAM           230      203      210        2       48       1 

 BEAM           231      211      219        2       63       1 

 BEAM           232      211      220        2       63       1 

 BEAM           233      208      217        2      119       1 

 BEAM           234      202      217        2      120       1 

 BEAM           235      216      217        2      120       1 

 BEAM           236      217      219        2      119       1 

 BEAM           237      203      218        2      120       1 

 BEAM           238      210      218        2      119       1 

 BEAM           239      215      218        2      120       1 

 BEAM           240      218      220        2      119       1 

 BEAM           241      219      220        2      121       1 

 BEAM           242      204      213        2       48       1 
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 BEAM           243      206      214        2       55       1 

 BEAM           251      308      361        2       43     414 

 BEAM           252      361      204        2       43     414 

 BEAM           253      308      362        3       41     418 

 BEAM           254      362      210        3       41     418 

 BEAM           255      307      363        3       41     420 

 BEAM           256      363      203        3       41     420 

 BEAM           257      305      364        2       43     422 

 BEAM           258      364      201        2       43     422 

 BEAM           259      305      365        3       41     424 

 BEAM           260      365      208        3       41     424 

 BEAM           261      306      366        3       41     426 

 BEAM           262      366      202        3       41     426 

 BEAM           263      311      367        2       42     428 

 BEAM           264      367      201        2       42     428 

 BEAM           265      311      368        2       42     430 

 BEAM           266      368      204        2       42     430 

 BEAM           267      312      369        3       41     432 

 BEAM           268      369      207        3       41     432 

 BEAM           269      312      370        3       41     434 

 BEAM           270      370      209        3       41     434 

 BEAM           271      313      371        2       42     432 

 BEAM           272      371      208        2       42     432 

 BEAM           273      313      372        2       42     434 

 BEAM           274      372      210        2       42     434 

 BEAM           275      316      373        3       41     440 

 BEAM           276      373      202        3       41     440 

 BEAM           277      316      374        3       41     442 

 BEAM           278      374      203        3       41     442 

 BEAM           301      301      305        1       52      21 

 BEAM           302      305      306        2       50      21 

 BEAM           303      302      306        2       37      10 

 BEAM           304      301      311        2       40      23 

 BEAM           305      304      311        2       40      38 

 BEAM           306      305      311        2       39      39 

 BEAM           307      308      311        2       39      40 

 BEAM           308      305      312        2       39      23 

 BEAM           309      308      312        3       28      38 

 BEAM           310      306      312        2       45      43 

 BEAM           311      307      312        2       38      44 

 BEAM           312      306      313        2       39      23 

 BEAM           313      307      313        2       30      38 

 BEAM           314      306      314       11       58      47 

 BEAM           315      302      314       11       58      48 

 BEAM           316      313      314       11       58      49 

 BEAM           317      314      316       11       58      50 
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 BEAM           318      313      316        2       53      21 

 BEAM           319      313      315       11       58      47 

 BEAM           320      315      316       11       58      53 

 BEAM           321      307      315       11       58      49 

 BEAM           322      303      315       11       58      55 

 BEAM           323      302      316        2       40      23 

 BEAM           324      303      316        2       40      38 

 BEAM           325      304      308        1       52      21 

 BEAM           326      307      308        2       50      10 

 BEAM           327      303      307        1       37      10 

 BEAM           351      305      401        2       25     161 

 BEAM           352      306      405        2       25     162 

 BEAM           353      306      402        3       21     163 

 BEAM           354      308      404        2       25     164 

 BEAM           355      307      408        2       25     165 

 BEAM           356      307      403        3       21     166 

 BEAM           357      304      411        2       39     167 

 BEAM           358      301      411        2       39     168 

 BEAM           359      308      412        2       33     169 

 BEAM           360      305      412        2       32     170 

 BEAM           361      307      413        2       33     169 

 BEAM           362      306      413        2       30     170 

 BEAM           363      303      416        2       30     173 

 BEAM           364      302      416        2       30     174 

 BEAM           401      401      405        1       47      21 

 BEAM           402      405      406        1       47      21 

 BEAM           403      402      406        2       39      10 

 BEAM           404      401      411        2       27      23 

 BEAM           405      404      411        2       27      38 

 BEAM           406      405      411        1       52      66 

 BEAM           407      408      411        2       51      67 

 BEAM           408      405      412        2       50      23 

 BEAM           409      408      412        2       39      38 

 BEAM           410      406      412        2       51      28 

 BEAM           411      407      412        2       45      30 

 BEAM           412      406      413        2       39      23 

 BEAM           413      407      413        2       36      38 

 BEAM           414      406      414       12       55      74 

 BEAM           415      402      414       12       60      66 

 BEAM           416      413      414       12       63      76 

 BEAM           417      414      416       12       55      74 

 BEAM           418      413      416        2       53      21 

 BEAM           419      413      415       12       63      74 

 BEAM           420      415      416       12       55      76 

 BEAM           421      407      415       12       55      76 

 BEAM           422      403      415       12       60      67 
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 BEAM           423      402      416        2       38      23 

 BEAM           424      403      416        2       38      38 

 BEAM           425      404      408        1       47      21 

 BEAM           426      407      408        1       47      10 

 BEAM           427      403      407        2       40      10 

 BEAM           451      405      501        2       17     175 

 BEAM           452      406      505        2       25     176 

 BEAM           453      406      502        3       12     177 

 BEAM           454      408      504        2       17     178 

 BEAM           455      407      508        2       25     179 

 BEAM           456      407      503        3       12     180 

 BEAM           457      404      511        2       19     181 

 BEAM           458      401      511        2       19     182 

 BEAM           459      408      512        2       25     183 

 BEAM           460      405      512        2       38     184 

 BEAM           461      407      513        2       24     183 

 BEAM           462      406      513        2       32     184 

 BEAM           463      403      516        2       17     187 

 BEAM           464      402      516        2       17     188 

 BEAM           465      412      512        2       51      10 

 BEAM           466      413      513        2       51      10 

 BEAM           501      501      505        2       46      21 

 BEAM           502      505      506        2       51      21 

 BEAM           503      502      506        2       39      10 

 BEAM           504      501      511        2       50      23 

 BEAM           505      504      511        2       50      38 

 BEAM           506      505      511        2       51      93 

 BEAM           507      508      511        2       50      94 

 BEAM           508      505      512        2       51      23 

 BEAM           509      508      512        2       39      38 

 BEAM           510      506      512        2       51      97 

 BEAM           511      507      512        2       45      98 

 BEAM           512      506      513        2       50      23 

 BEAM           513      507      513        2       38      38 

 BEAM           514      506      514       13       54     101 

 BEAM           515      502      514       13       60      93 

 BEAM           516      513      514       13       60     103 

 BEAM           517      514      516       13       54     101 

 BEAM           518      513      516        2       55      21 

 BEAM           519      513      515       13       60     101 

 BEAM           520      515      516       13       54     103 

 BEAM           521      507      515       13       54     103 

 BEAM           522      503      515       13       60      94 

 BEAM           523      502      516        2       40      23 

 BEAM           524      503      516        2       40      38 

 BEAM           525      504      508        2       46      21 
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 BEAM           526      507      508        2       51      10 

 BEAM           527      503      507        2       38      10 

 BEAM           551      501      653        2       20     191 

 BEAM           552      505      653        2       17     192 

 BEAM           553      506      605        2       27     193 

 BEAM           554      506      654        2       17     278 

 BEAM           555      502      654        2       20     194 

 BEAM           556      504      651        2       20     195 

 BEAM           557      508      651        2       17     196 

 BEAM           558      507      608        2       27     197 

 BEAM           559      507      652        2       17     198 

 BEAM           560      503      652        2       20     199 

 BEAM           561      511      604        2       18     200 

 BEAM           562      511      611        1       64      10 

 BEAM           563      511      601        2       18     202 

 BEAM           564      512      608        2       38     203 

 BEAM           565      512      612        1       64      10 

 BEAM           566      512      605        2       40     205 

 BEAM           567      513      607        2       38     203 

 BEAM           568      513      613        1       64      10 

 BEAM           569      513      606        2       40     205 

 BEAM           570      503      655        2       34     209 

 BEAM           571      516      655        3       15     210 

 BEAM           572      516      656        3       15     279 

 BEAM           573      502      656        2       34     211 

 BEAM           574      604      651        2       17     364 

 BEAM           575      608      651        2       20     365 

 BEAM           576      607      652        2       20     366 

 BEAM           577      603      652        2       17     367 

 BEAM           578      601      653        2       17     368 

 BEAM           579      605      653        2       20     369 

 BEAM           580      606      654        2       20     370 

 BEAM           581      602      654        2       17     371 

 BEAM           582      603      655        2       15     254 

 BEAM           583      614      655        2       34     253 

 BEAM           584      614      656        2       34     252 

 BEAM           585      602      656        2       15     251 

 BEAM           601      601      605        1       52      21 

 BEAM           602      605      606        1       35      21 

 BEAM           603      602      606        1       52      10 

 BEAM           604      601      611        1       56      23 

 BEAM           605      604      611        1       56      38 

 BEAM           606      605      611        2       51     119 

 BEAM           607      608      611        2       50     120 

 BEAM           608      605      612        2       51      23 

 BEAM           609      608      612        2       50      38 
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 BEAM           610      606      612        1       52     123 

 BEAM           611      607      612        2       50     124 

 BEAM           612      606      613       13       42     125 

 BEAM           613      607      613       13       42     126 

 BEAM           614      606      614       13       50     127 

 BEAM           615      613      614        3       12      21 

 BEAM           616      607      614       13       45     129 

 BEAM           617      602      614        2       51      23 

 BEAM           618      603      614        2       51      38 

 BEAM           619      604      608        1       52      21 

 BEAM           620      607      608        1       35      10 

 BEAM           621      603      607        1       52      10 

 BEAM           622      612      613        1       57      21 

 BEAM           711      351      201        3        7     448 

 BEAM           712      301      351        3        7     448 

 BEAM           713      301      401        3        8     214 

 BEAM           714      401      501        3       69     214 

 BEAM           715      501      601        8       70     214 

 BEAM           716      601      701        2       70     217 

 BEAM           721      352      202        3        8     450 

 BEAM           722      302      352        3        8     450 

 BEAM           723      302      402        3        9     219 

 BEAM           724      402      502        3       68     219 

 BEAM           725      502      602        8       70     219 

 BEAM           726      602      702        2       70     281 

 BEAM           731      353      203        3        8     446 

 BEAM           732      303      353        3        8     446 

 BEAM           733      303      403        3       10     223 

 BEAM           734      403      503        3       69     223 

 BEAM           735      503      603        8       70     223 

 BEAM           736      603      703        2       70     226 

 BEAM           741      354      204        3        7     412 

 BEAM           742      304      354        3        7     412 

 BEAM           743      304      404        3        9     229 

 BEAM           744      404      504        3       69     229 

 BEAM           745      504      604        8       70     229 

 BEAM           746      604      704        2       70     232 

 BEAM           751      355      207        3       13     452 

 BEAM           752      305      355        3       13     452 

 BEAM           753      305      405        2        9      38 

 BEAM           754      405      505        2        9      38 

 BEAM           755      505      605        1        9      38 

 BEAM           761      356      208        3       13     452 

 BEAM           762      306      356        3       13     452 

 BEAM           763      306      406        2        9      38 

 BEAM           764      406      506        2        9      38 
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 BEAM           765      506      606        1        9      38 

 BEAM           771      357      210        3       13     416 

 BEAM           772      307      357        3       13     416 

 BEAM           773      307      407        9        9      38 

 BEAM           774      407      507        9        9      38 

 BEAM           775      507      607        9        9      38 

 BEAM           781      358      209        3       13     416 

 BEAM           782      308      358        3       13     416 

 BEAM           783      308      408        9        9      38 

 BEAM           784      408      508        9        9      38 

 BEAM           785      508      608        9        9      38 

 BEAM           801      217      313       14       83     372 

 BEAM           802      217      314       14       83      10 

 BEAM           803      218      315       14       83      10 

 BEAM           804      218      316       14       83     233 

 BEAM           805      313      413       14       83      38 

 BEAM           806      314      414       14       83     256 

 BEAM           807      315      415       14       83     257 

 BEAM           808      316      416       14       83     258 

 BEAM           809      413      513       14       83      38 

 BEAM           810      414      514       14       83     260 

 BEAM           811      415      515       14       83     261 

 BEAM           812      416      516       14       83     258 

 BEAM           813      513      613       14       83     263 

 BEAM           814      514      613       14       83     264 

 BEAM           815      514      614       14       83     265 

 BEAM           816      515      613       14       83     266 

 BEAM           817      515      614       14       83     267 

 BEAM           818      516      614       14       83     258 

 BEAM           819      513      613        4       70     263 

 BEAM           820      516      614        3       71     258 

 BEAM         51057       51       57       16       55       1 

 BEAM         51061       51       61       16       55       1 

 BEAM         51101       51      101       16       15      10 

 BEAM         51115       51      115       16       43     140 

 BEAM         51121       51      121       16       43      14 

 BEAM         51131       51      131       16       43      24 

 BEAM         51136       51      136       16       55       1 

 BEAM         51140       51      140       16       55       1 

 BEAM         52058       52       58       16       55       1 

 BEAM         52063       52       63       16       55       1 

 BEAM         52102       52      102       16       15      10 

 BEAM         52117       52      117       16       43      25 

 BEAM         52127       52      127       16       43      14 

 BEAM         52134       52      134       16       43     159 

 BEAM         52138       52      138       16       55       1 
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 BEAM         52143       52      143       16       55       1 

 BEAM         53060       53       60       16       55       1 

 BEAM         53063       53       63       16       55       1 

 BEAM         53103       53      103       16       15      10 

 BEAM         53120       53      120       16       43      25 

 BEAM         53128       53      128       16       43      12 

 BEAM         53135       53      135       16       43     159 

 BEAM         53139       53      139       16       55       1 

 BEAM         53143       53      143       16       55       1 

 BEAM         54059       54       59       16       55       1 

 BEAM         54061       54       61       16       55       1 

 BEAM         54104       54      104       16       15      10 

 BEAM         54118       54      118       16       43     140 

 BEAM         54122       54      122       16       43      12 

 BEAM         54133       54      133       16       43      24 

 BEAM         54137       54      137       16       55       1 

 BEAM         54140       54      140       16       55       1 

 BEAM         57058       57       58       16       55       1 

 BEAM         57061       57       61       16       55       1 

 BEAM         57062       57       62       16       55       1 

 BEAM         57107       57      107       16       15      10 

 BEAM         57115       57      115       16       43      25 

 BEAM         57116       57      116       16       43      11 

 BEAM         57123       57      123       16       43      14 

 BEAM         57141       57      141       16       55       1 

 BEAM         58062       58       62       16       55       1 

 BEAM         58063       58       63       16       55       1 

 BEAM         58108       58      108       16       15      10 

 BEAM         58116       58      116       16       43     136 

 BEAM         58117       58      117       16       43     140 

 BEAM         58125       58      125       16       43      14 

 BEAM         58142       58      142       16       55       1 

 BEAM         59060       59       60       16       55       1 

 BEAM         59061       59       61       16       55       1 

 BEAM         59062       59       62       16       55       1 

 BEAM         59109       59      109       16       15      10 

 BEAM         59118       59      118       16       43      25 

 BEAM         59119       59      119       16       43      11 

 BEAM         59124       59      124       16       43      12 

 BEAM         59141       59      141       16       55       1 

 BEAM         60062       60       62       16       55       1 

 BEAM         60063       60       63       16       55       1 

 BEAM         60110       60      110       16       15      10 

 BEAM         60119       60      119       16       43     136 

 BEAM         60120       60      120       16       43     140 

 BEAM         60126       60      126       16       43      12 



276 
 

 BEAM         60142       60      142       16       55       1 

 BEAM        101115      101      115       16       55       1 

 BEAM        101121      101      121       16       55       1 

 BEAM        101131      101      131       16       55       1 

 BEAM        101144      101      144       16       55       1 

 BEAM        102117      102      117       16       55       1 

 BEAM        102127      102      127       16       55       1 

 BEAM        102134      102      134       16       55       1 

 BEAM        102146      102      146       16       55       1 

 BEAM        103120      103      120       16       55       1 

 BEAM        103128      103      128       16       55       1 

 BEAM        103135      103      135       16       55       1 

 BEAM        103146      103      146       16       55       1 

 BEAM        104118      104      118       16       55       1 

 BEAM        104122      104      122       16       55       1 

 BEAM        104133      104      133       16       55       1 

 BEAM        104144      104      144       16       55       1 

 BEAM        107115      107      115       16       55       1 

 BEAM        107116      107      116       16       55       1 

 BEAM        107123      107      123       16       55       1 

 BEAM        107144      107      144       16       55       1 

 BEAM        107145      107      145       16       55       1 

 BEAM        108116      108      116       16       55       1 

 BEAM        108117      108      117       16       55       1 

 BEAM        108125      108      125       16       55       1 

 BEAM        108145      108      145       16       55       1 

 BEAM        108146      108      146       16       55       1 

 BEAM        109118      109      118       16       55       1 

 BEAM        109119      109      119       16       55       1 

 BEAM        109124      109      124       16       55       1 

 BEAM        109144      109      144       16       55       1 

 BEAM        109145      109      145       16       55       1 

 BEAM        110119      110      109       16       55       1 

 BEAM        110120      110      120       16       55       1 

 BEAM        110126      110      126       16       55       1 

 BEAM        110145      110      145       16       55       1 

 BEAM        110146      110      146       16       55       1 

 BEAM        111121      111      121       16       55       1 

 BEAM        111122      111      122       16       55       1 

 BEAM        111130      111      130       16       55       1 

 BEAM        111132      111      132       16       55       1 

 BEAM        112123      112      123       16       55       1 

 BEAM        112124      112      124       16       55       1 

 BEAM        113125      113      125       16       55       1 

 BEAM        113126      113      126       16       55       1 

 BEAM        114127      114      127       16       55       1 
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 BEAM        114128      114      128       16       55       1 

 BEAM        114134      114      134       16       55       1 

 BEAM        114135      114      135       16       55       1 

 BEAM        130131      130      131       16       55       1 

 BEAM        130132      130      132       16       55       1 

 BEAM        132133      132      133       16       55       1 

 BEAM        134135      134      135       16       55       1 

 BEAM        136130      136      130       16       43     143 

 BEAM        136131      136      131       16       43      10 

 BEAM        136137      136      137       16       55       1 

 BEAM        137132      137      132       16       43     143 

 BEAM        137133      137      133       16       43      10 

 BEAM        138134      138      134       16       43      10 

 BEAM        138139      138      139       16       55       1 

 BEAM        139135      139      135       16       43      10 

 BEAM        140111      140      111       16       43      10 

 BEAM        140121      140      121       16       43      12 

 BEAM        140122      140      122       16       43      14 

 BEAM        141112      141      112       16       43      10 

 BEAM        141123      141      123       16       43      12 

 BEAM        141124      141      124       16       43      14 

 BEAM        142113      142      113       16       43      10 

 BEAM        142125      142      125       16       43      12 

 BEAM        142126      142      126       16       43      14 

 BEAM        143114      143      114       16       43      10 

 BEAM        143127      143      127       16       43      12 

 BEAM        143128      143      128       16       43      14 

 BEAM        201051      201       51       17       15      10 

 BEAM        201140      201      140       16       43     154 

 BEAM        202052      202       52       17       15      10 

 BEAM        202143      202      143       16       43     154 

 BEAM        203053      203       53       17       15      10 

 BEAM        203143      203      143       16       43     153 

 BEAM        204054      204       54       17       15      10 

 BEAM        204140      204      140       16       43     153 

 BEAM        207057      207       57       17       15      10 

 BEAM        207141      207      141       16       43     154 

 BEAM        208058      208       58       17       15      10 

 BEAM        208142      208      142       16       43     154 

 BEAM        209059      209       59       17       15      10 

 BEAM        209141      209      141       16       43     153 

 BEAM        210060      210       60       17       15      10 

 BEAM        210142      210      142       16       43     153 

' 

'            Elem ID     np1   material    lcoor   ecc1 

 SPRNG2GR       901      701       19 
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 SPRNG2GR       902      702       19 

 SPRNG2GR       903      703       19 

 SPRNG2GR       904      704       19 

' 

'            Geom ID       Do         Thick    Shear_y   Shear_z 

 PIPE             7       1.800        .075 

 PIPE             8       1.800        .070 

 PIPE             9       1.800        .067 

 PIPE            10       1.800        .062 

 PIPE            12       1.650        .060 

 PIPE            13       1.600        .075 

 PIPE            15       1.600        .060 

 PIPE            17       1.600        .050 

 PIPE            18       1.600        .045 

 PIPE            19       1.500        .045 

 PIPE            20       1.500        .040 

 PIPE            21       1.400        .060 

 PIPE            24       1.400        .045 

 PIPE            25       1.400        .040 

 PIPE            27       1.400        .030 

 PIPE            28       1.300        .060 

 PIPE            30       1.300        .050 

 PIPE            32       1.300        .040 

 PIPE            33       1.300        .035 

 PIPE            34       1.300        .030 

 PIPE            35       1.300        .025 

 PIPE            36       1.200        .050 

 PIPE            37       1.200        .025 

 PIPE            38       1.200        .040 

 PIPE            39       1.200        .035 

 PIPE            40       1.200        .030 

 PIPE            41       1.100        .055 

 PIPE            42       1.100        .050 

 PIPE            43       1.100        .045 

 PIPE            45       1.100        .035 

 PIPE            46       1.100        .030 

 PIPE            47       1.100        .025 

 PIPE            48       1.000        .045 

 PIPE            50       1.000        .035 

 PIPE            51       1.000        .030 

 PIPE            52       1.000        .025 

 PIPE            53        .900        .040 

 PIPE            54        .900        .035 

 PIPE            55        .900        .030 

 PIPE            56        .900        .025 

 PIPE            57        .900        .020 
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 PIPE            58        .800        .040 

 PIPE            59        .800        .035 

 PIPE            60        .800        .030 

 PIPE            61        .800        .025 

 PIPE            62        .700        .020 

 PIPE            63        .650        .030 

 PIPE            64        .600        .020 

 PIPE            68       3.000        .069 

 PIPE            69       3.000        .060 

 PIPE            70       3.250        .125 

 PIPE            71       2.000        .070 

 PIPE            83        .55000      .00100 

 PIPE           119        .700        .050 

 PIPE           120        .500        .055 

 PIPE           121        .700        .045 

 

 

'            Mat  ID     E-mod       Poiss     Yield      Density     Thermal 

 MISOIEP          1   2.100E+11   3.000E-01   3.550E+08   7.850E+03    .000E+00 

 MISOIEP          2   2.100E+11   3.000E-01   3.400E+08   7.850E+03    .000E+00 

 MISOIEP          3   2.100E+11   3.000E-01   3.200E+08   7.850E+03    .000E+00 

 MISOIEP          4   2.100E+11   3.000E-01   3.100E+08   7.850E+03    .000E+00 

 MISOIEP          8   2.100E+11   3.000E-01   3.100E+08   4.830E+03    .000E+00 

 MISOIEP          9   2.100E+11   3.000E-01   3.400E+08   1.480E+04    .000E+00 

 MISOIEP         11   2.100E+11   3.000E-01   3.400E+08   1.470E+04    .000E+00 

 MISOIEP         12   2.100E+11   3.000E-01   3.400E+08   1.260E+04    .000E+00 

 MISOIEP         13   2.100E+11   3.000E-01   3.400E+08   1.170E+04    .000E+00 

 MISOIEP         14   2.100E+09   3.000E-01   1.000E+20    .000E+00    .000E+00 

 MISOIEP         16   2.100E+11   3.000E-01   1.000E+15    .000E+00    .000E+00 

 MISOIEP         17   2.100E+11   3.000E-01   3.100E+08    .000E+00    .000E+00 

 

' 

'            Loc-Coo           dx             dy             dz 

 UNITVEC           1           .000           .000          1.000 

 UNITVEC          10           .000          1.000           .000 

 UNITVEC          11          -.698           .000           .716 

 UNITVEC          12           .000           .822           .569 

 UNITVEC          14           .000          -.822           .569 

 UNITVEC          21           .000         -1.000           .000 

 UNITVEC          23          1.000           .000           .000 

 UNITVEC          24           .812           .000           .583 

 UNITVEC          25           .754           .000           .657 

 UNITVEC          27           .707          -.707           .000 

 UNITVEC          28           .707           .707           .000 

 UNITVEC          29          -.707          -.707           .000 

 UNITVEC          30          -.707           .707           .000 
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 UNITVEC          38         -1.000           .000           .000 

 UNITVEC          39           .664           .747           .000 

 UNITVEC          40          -.664           .747           .000 

 UNITVEC          43           .638           .770           .000 

 UNITVEC          44          -.638           .770           .000 

 UNITVEC          47           .665          -.747           .000 

 UNITVEC          48           .664           .748           .000 

 UNITVEC          49          -.665          -.747           .000 

 UNITVEC          50           .664          -.748           .000 

 UNITVEC          53          -.664          -.748           .000 

 UNITVEC          55          -.664           .748           .000 

 UNITVEC          66           .699           .715           .000 

 UNITVEC          67          -.699           .715           .000 

 UNITVEC          74           .699          -.715           .000 

 UNITVEC          76          -.699          -.715           .000 

 UNITVEC          93           .726           .688           .000 

 UNITVEC          94          -.726           .688           .000 

 UNITVEC          97           .764           .645           .000 

 UNITVEC          98          -.764           .645           .000 

 UNITVEC         101           .726          -.688           .000 

 UNITVEC         103          -.726          -.688           .000 

 UNITVEC         119           .746           .666           .000 

 UNITVEC         120          -.746           .666           .000 

 UNITVEC         123           .806           .592           .000 

 UNITVEC         124          -.806           .592           .000 

 UNITVEC         125           .990           .142           .000 

 UNITVEC         126          -.990           .142           .000 

 UNITVEC         127           .746          -.666           .000 

 UNITVEC         129          -.746          -.666           .000 

 UNITVEC         136           .698           .000           .716 

 UNITVEC         140          -.754           .000           .657 

 UNITVEC         143           .890           .000           .456 

 UNITVEC         153           .000           .694           .720 

 UNITVEC         154           .000          -.694           .720 

 UNITVEC         159          -.812           .000           .583 

 UNITVEC         161          -.819           .068           .570 

 UNITVEC         162          -.825           .067           .561 

 UNITVEC         163          -.819          -.068          -.570 

 UNITVEC         164          -.819          -.068           .570 

 UNITVEC         165          -.825          -.067           .561 

 UNITVEC         166          -.819           .068          -.570 

 UNITVEC         167          -.031           .869          -.495 

 UNITVEC         168           .031           .869           .495 

 UNITVEC         169           .000           .868          -.496 

 UNITVEC         170           .000           .868           .496 

 UNITVEC         173           .031           .869          -.495 
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 UNITVEC         174          -.031           .869           .495 

 UNITVEC         175          -.812           .069           .580 

 UNITVEC         176          -.842           .064           .536 

 UNITVEC         177          -.812          -.069          -.580 

 UNITVEC         178          -.812          -.069           .580 

 UNITVEC         179          -.842          -.064           .536 

 UNITVEC         180          -.812           .069          -.580 

 UNITVEC         181          -.034           .841          -.541 

 UNITVEC         182           .034           .841           .541 

 UNITVEC         183           .000           .840          -.543 

 UNITVEC         184           .000           .840           .543 

 UNITVEC         187           .034           .841          -.541 

 UNITVEC         188          -.034           .841           .541 

 UNITVEC         191          -.803          -.070          -.592 

 UNITVEC         192          -.779           .074           .623 

 UNITVEC         193          -.834           .065           .548 

 UNITVEC         194          -.803           .070           .592 

 UNITVEC         195          -.803           .070          -.592 

 UNITVEC         196          -.779          -.074           .623 

 UNITVEC         197          -.834          -.065           .548 

 UNITVEC         198          -.779           .074          -.623 

 UNITVEC         199          -.803          -.070           .592 

 UNITVEC         200           .042           .741           .670 

 UNITVEC         202          -.042           .741          -.670 

 UNITVEC         203           .000           .740           .673 

 UNITVEC         205           .000           .740          -.673 

 UNITVEC         209           .039           .785          -.618 

 UNITVEC         210          -.042           .741           .670 

 UNITVEC         211          -.039           .785           .618 

 UNITVEC         214          -.998           .007           .062 

 UNITVEC         217          -.998           .007           .061 

 UNITVEC         219          -.998          -.007          -.062 

 UNITVEC         223          -.998           .007          -.062 

 UNITVEC         226          -.998           .007          -.061 

 UNITVEC         229          -.998          -.007           .062 

 UNITVEC         232          -.998          -.007           .061 

 UNITVEC         233           .674          -.599           .433 

 UNITVEC         251           .051          -.737           .673 

 UNITVEC         252           .063           .781           .621 

 UNITVEC         253           .063          -.781           .621 

 UNITVEC         254           .051           .737           .673 

 UNITVEC         256          -.999          -.002          -.032 

 UNITVEC         257          -.999           .002          -.032 

 UNITVEC         258          -.998           .000          -.063 

 UNITVEC         260         -1.000          -.002          -.031 

 UNITVEC         261         -1.000           .002          -.031 
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 UNITVEC         263          -.992           .000           .129 

 UNITVEC         264          -.905          -.156           .395 

 UNITVEC         265          -.926           .138          -.350 

 UNITVEC         266          -.905           .156           .395 

 UNITVEC         267          -.926          -.138          -.350 

 UNITVEC         278          -.779          -.074          -.623 

 UNITVEC         279           .042           .741          -.670 

 UNITVEC         281          -.998          -.007          -.061 

 UNITVEC         364          -.765           .112           .634 

 UNITVEC         365           .787           .125           .604 

 UNITVEC         366          -.787           .125           .604 

 UNITVEC         367           .765           .112           .634 

 UNITVEC         368          -.765          -.112           .634 

 UNITVEC         369           .787          -.125           .604 

 UNITVEC         370          -.787          -.125           .604 

 UNITVEC         371           .765          -.112           .634 

 UNITVEC         372          -.674           .599           .433 

 UNITVEC         412          -.468           .874           .133 

 UNITVEC         414           .820           .148           .553 

 UNITVEC         416           .000           .993           .118 

 UNITVEC         418          -.780           .120           .614 

 UNITVEC         420          -.820           .148           .553 

 UNITVEC         422           .820          -.148           .553 

 UNITVEC         424          -.780          -.120           .614 

 UNITVEC         426          -.820          -.148           .553 

 UNITVEC         428          -.108           .880           .464 

 UNITVEC         430          -.108          -.880           .464 

 UNITVEC         432           .000           .887           .461 

 UNITVEC         434           .000          -.887           .461 

 UNITVEC         440           .108           .880           .464 

 UNITVEC         442           .108          -.880           .464 

 UNITVEC         446           .468           .874           .133 

 UNITVEC         448          -.468          -.874           .133 

 UNITVEC         450           .468          -.874           .133 

 UNITVEC         452           .000          -.993           .118 

' 

'            Ecc-ID             Ex             Ey             Ez 

' 

' 

'            Mat  ID          S P R I N G    C H A R. 

 SPRIDIAG        19    6.72000E+09    6.72000E+09    2.07600E+10 

                       5.42000E+11    5.42000E+11    2.02000E+11 

' 

'            Load Case  Node ID        L O A D   I N T E N S I T Y 

 NODELOAD          1       101     .00000E+00     .00000E+00   -1.94880E+07 

 NODELOAD          1       102     .00000E+00     .00000E+00   -1.59120E+07 
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 NODELOAD          1       103     .00000E+00     .00000E+00   -1.59120E+07 

 NODELOAD          1       104     .00000E+00     .00000E+00   -1.94880E+07 

 NODELOAD          1       107     .00000E+00     .00000E+00   -1.50000E+07 

 NODELOAD          1       108     .00000E+00     .00000E+00   -1.50000E+07 

 NODELOAD          1       109     .00000E+00     .00000E+00   -1.50000E+07 

 NODELOAD          1       110     .00000E+00     .00000E+00   -1.50000E+07 

 NODELOAD          1       111     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       112     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       113     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       114     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       115     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       116     .00000E+00     .00000E+00   -1.29000E+07 

 NODELOAD          1       117     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       118     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       119     .00000E+00     .00000E+00   -1.29000E+07 

 NODELOAD          1       120     .00000E+00     .00000E+00   -7.50000E+06 

 NODELOAD          1       130     .00000E+00     .00000E+00   -1.70000E+06 

 NODELOAD          1       132     .00000E+00     .00000E+00   -1.70000E+06 

 NODELOAD          1       134     .00000E+00     .00000E+00   -1.70000E+06 

 NODELOAD          1       135     .00000E+00     .00000E+00   -1.70000E+06 

 NODELOAD          1       201     .00000E+00     .00000E+00   -2.76000E+05 

 NODELOAD          1       202     .00000E+00     .00000E+00   -1.48000E+05 

 NODELOAD          1       203     .00000E+00     .00000E+00   -1.48000E+05 

 NODELOAD          1       204     .00000E+00     .00000E+00   -4.17000E+05 

 NODELOAD          1       205     .00000E+00     .00000E+00   -8.07000E+05 

 NODELOAD          1       206     .00000E+00     .00000E+00   -2.93000E+05 

 NODELOAD          1       301     .00000E+00     .00000E+00   -2.10000E+05 

 NODELOAD          1       302     .00000E+00     .00000E+00   -2.10000E+05 

 NODELOAD          1       303     .00000E+00     .00000E+00   -2.10000E+05 

 NODELOAD          1       304     .00000E+00     .00000E+00   -2.10000E+05 

 NODELOAD          1       305     .00000E+00     .00000E+00   -7.04000E+05 

 NODELOAD          1       306     .00000E+00     .00000E+00   -1.85000E+05 

 NODELOAD          1       307     .00000E+00     .00000E+00   -3.46000E+05 

 NODELOAD          1       308     .00000E+00     .00000E+00   -3.70000E+05 

 NODELOAD          1       311     .00000E+00     .00000E+00   -8.79000E+05 

 NODELOAD          1       312     .00000E+00     .00000E+00   -8.72000E+05 

 NODELOAD          1       401     .00000E+00     .00000E+00   -1.27500E+06 

 NODELOAD          1       402     .00000E+00     .00000E+00   -1.27500E+06 

 NODELOAD          1       403     .00000E+00     .00000E+00   -1.27500E+06 

 NODELOAD          1       404     .00000E+00     .00000E+00   -1.27500E+06 

 NODELOAD          1       405     .00000E+00     .00000E+00   -6.84000E+05 

 NODELOAD          1       406     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       407     .00000E+00     .00000E+00   -4.37000E+05 

 NODELOAD          1       408     .00000E+00     .00000E+00   -3.76000E+05 

 NODELOAD          1       411     .00000E+00     .00000E+00   -4.82000E+05 

 NODELOAD          1       412     .00000E+00     .00000E+00   -7.84000E+05 
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 NODELOAD          1       501     .00000E+00     .00000E+00   -1.35600E+06 

 NODELOAD          1       502     .00000E+00     .00000E+00   -1.35600E+06 

 NODELOAD          1       503     .00000E+00     .00000E+00   -1.35600E+06 

 NODELOAD          1       504     .00000E+00     .00000E+00   -1.35600E+06 

 NODELOAD          1       505     .00000E+00     .00000E+00   -7.10000E+05 

 NODELOAD          1       506     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       507     .00000E+00     .00000E+00   -4.27000E+05 

 NODELOAD          1       508     .00000E+00     .00000E+00   -3.75000E+05 

 NODELOAD          1       511     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       512     .00000E+00     .00000E+00   -8.74000E+05 

 NODELOAD          1       513     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       516     .00000E+00     .00000E+00   -7.35000E+05 

 NODELOAD          1       601     .00000E+00     .00000E+00   -5.29200E+06 

 NODELOAD          1       602     .00000E+00     .00000E+00   -5.29200E+06 

 NODELOAD          1       603     .00000E+00     .00000E+00   -5.29200E+06 

 NODELOAD          1       604     .00000E+00     .00000E+00   -5.29200E+06 

 NODELOAD          1       605     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       606     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       607     .00000E+00     .00000E+00   -2.61000E+05 

 NODELOAD          1       608     .00000E+00     .00000E+00   -1.98000E+05 

 NODELOAD          1       611     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       612     .00000E+00     .00000E+00   -4.68000E+05 

 NODELOAD          1       613     .00000E+00     .00000E+00   -1.15000E+05 

 NODELOAD          1       614     .00000E+00     .00000E+00   -3.92000E+05 

 NODELOAD          1       701     .00000E+00     .00000E+00   -1.17620E+07 

 NODELOAD          1       702     .00000E+00     .00000E+00   -1.17620E+07 

 NODELOAD          1       703     .00000E+00     .00000E+00   -1.17620E+07 

 NODELOAD          1       704     .00000E+00     .00000E+00   -1.17620E+07 

' 

'            Load Case  Elem ID        L O A D   I N T E N S I T Y 

' 

'            Load Case  Elem ID    Press1      Press2      Press3      Press4 

' 

'            Load Case   Acc_X       Acc_Y       Acc_Z 

 GRAVITY           1   .0000E+00   .0000E+00 -9.8100E+00 
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Appendix F. Example of Constructing a Random Set Model 

 

As described in Chapter 3, the random set which is also sometimes referred to as a 

Dempster-Shafer structure consists of a finite number of focal sets. For example, 

for discrete random variable xi in the space X. Random sets are a collection of 

many imprecise observations  : 1, ,iA i n  of the given fundamental set X 

and its probability weight mapping function: 

 : 0,1m       (F.1) 

where mi = m(Ai) ∑m(Ai) = 1. This gives a measure of the degree of confidence 

for the observations of X. For the occurrence event E in the space of X, the 

plausibility measure of     is defined by: 

   Pls
i

i

A E

E m A


     (F.2) 

and the belief function is given by: 

   Bel
i

i

A E

E m A


      (F.3) 

These plausibility and the belief functions can be interpreted as a 

prescription of a set of probability function. Or in other words, it gives the upper 

and lower probabilities of a certain set of probability distributions. For 

demonstration purpose, the following shows an example of how to construct the 

random set model. 
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Random Set Example 

The uncertainty of X is represented by three random focal sets as: 

 1 2,4A  ,  2 3,8A  ,  3 1,5A   

and associated weights are given by: 

 1 0.2m A  ,  2 0.3m A  ,  3 0.5m A   

These are presented in Fig. F.1 (a) and the probability weights which are 

represented by the three bins are also illustrated in this figure, see Fig. F.1 (b). 

 

Figure F.1 Random set (a) and its assigned probability weight (b).  

The imprecise probability (probability box) used to represent the random 

set is illustrated in Fig. F.2 (a) where the focal sets are plotted as a stack and the 

height of the lines is determined by the cumulative sum of weights (illustrated by 

the dotted line). The random set can also be visualized by its contour function 

which assigns each singleton x its plausibility Pls(x). The value is obtained by 

 1 1,A m

 

 1 1, m

 

 2 2,A m  

 3 3,A m  
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adding all the probability m(Ai)  of those focal sets Ai to which x belongs. This is 

illustrated in Fig. F.2 (b). 

 

Figure F.2 Probability box (a) and contour function (b).  
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Appendix G. Information of Selected Wave Data and Basic 

Linear Wave Theory 

 

G.1  Wave Information Studies 

The wave data used in this thesis are taken from the Wave Information Studies 

(WIS) which is a US Army Corps of Engineers (USACE) sponsored project that 

generates consistent, hourly, long-term (20+ years) wave climatologies along all 

US coastlines, including the Great Lakes and US island territories.  The WIS 

program originated in the Great Lakes in the mid 1970s and migrated to the 

Atlantic, Gulf of Mexico and Pacific Oceans.  The currently available domains are 

depicted in Fig. G.1. The official website of WIS is at http://wis.usace.army.mil/. 

 

Figure G.1 WIS data domain.  
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This site provides access to the database of wave information for a 

densely-spaced series of wave gauges in water depths of 15-20 m and for a less-

dense series in deeper water (100 m or more). Data available from each site 

include hourly wind speed, wind direction, and bulk wave parameters (significant 

wave height, period, and direction). Discrete directional wave spectra at 1 to 3-

hour intervals are also available. A suite of tabular and graphic products for each 

location is also provided in the website. 

 

Figure G.2 Geological location of the selected buoy. 

In this thesis, the set of data is taken from a buoy (No. 82283) locating in 

the south coast of Alaska (56.5
o
N 203.25

o
E), see Fig. G.2. The water depth at this 

location is 124m. The selected data set containing 25 years of hourly wave 

records (1985/1/1 01:00 to 2010/1/1 01:00) is filtered. In Chapter 3, the 

significant wave height HS time series data are utilized. In Chapter 4, the record of 

significant wave height HS, wave observation time t and wave directions θS are 

been used. In Chapter 5, a set of ocean parameters are been used, these include 

significant wave height HS, peak wave period TP, wave direction θS, wind speed 

VW and wind direction θW.   
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G.2  Linear Wave Theory 

The basic wave theory for analyzing an offshore structure relevant to the current 

study is presented. Detailed information could be found from the design codes 

(DNV 2007) and books (Sarpkaya and Isaacson 1981).  

 

Figure G.3 Regular wave propagation properties (Sarpkaya and Isaacson 1981). 

 

The linear wave theory is the most common way of representing the 

properties of a wave particle.  The theory generally states that when the wave 

height H is much smaller compared to the wave length λ and still water depth d, 

the Airy wave theory may be adopted to give a linearised description of the 

propagation of gravity waves on the surface of a homogeneous fluid layer.  The 

surface elevation of a wave, denoted as η(x, t), can be expressed in terms of the 

Water depth d 

Wave particle velocity 

and acceleration 

        ,            

  z+d 
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Direction of wave  
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amplitude a=H/2, time t and spatial location x in the direction of wave 

propagation by: 

   (G.1) 

where κ=2π/λ is the wave number and ω=2π/T is the angular frequency of the 

wave, in which T is the wave period. Based on the solution of the Laplace 

equation in terms of the velocity potential and the use of linearized boundary 

condition, the horizontal water particle velocity          and acceleration 

          at depth z (for z≤0) measured from the mean sea level can be obtained 

by the derivative to the potential function which are expressed as: 

   (G.2) 

  (G.3)  

In deep water, when κd>π, the above formulae can be approximated by: 

   (G.4)   

   (G.5) 

Usually, the ocean data are collected based on measurements at regular 

intervals (e.g. hourly record). The random behavior of ocean waves can be 

described by a statistical model. The variation of the physical variable within the 

time interval is assumed to be stationary and can be described by a stochastic 
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process. Based on the property of a zero-mean stationary process, the property of 

a sea state within such a short period can be conveniently represented in the 

frequency domain by the wave spectrum S(ω). Several well-established wave 

spectra are available in the literature. The most commonly applied wave 

spectrums are the Pierson-Moskowitz (P-M) spectrum and the JONSWAP 

spectrum (DNV 2007). The Pierson-Moskowitz (P-M) spectrum is given by: 

   (G.6) 

where HS is the significant wave height, TP is the peak period, ωP=2π/T is the 

angular spectral peak frequency. JONSWAP spectrum SJ(ω) is formulated as a 

modification to P-M spectrum with the consideration of a developing sea state in 

a fetch limited situation: 

   (G.7)  

where ζ is the spectral width parameter evaluated on the values of ω and ωP: 

   (G.8) 

Aγ=1-0.287ln(γ) is the normalizing factor, γ is the non-dimensional peak shape 

parameter and the following value can be applied: 
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  (G.9) 

Once the wave spectrum is established, the irregular random waves in the 

short term stationary sea state can be easily represented by a summation of 

sinusoidal wave components. The simulation of the surface elevation in time 

domain could be obtained by a superposition of large number of independent 

linear waves corresponding to different amplitudes, frequencies and arbitrary 

phase angles.  The series representation of the elevation corresponding to a wave 

spectrum is given by: 

   (G.10)  

where κi and ωi are the wave number and discrete frequency which have the same 

meaning as in Eq. (5.26).  θi are random phases, uniformly distributed between 0 

and 2π, mutually independent of each other and of the amplitude ai. The 

amplitude ai of the ith component, which is Rayleigh distributed, is given by 

    (G.11)  

where S(ωi) is the value of the ith component in the established wave spectrum 

and             is the difference between successive frequencies. To 

simulate the random waves accurately, the simulation must contain enough 

5 3.6

exp 5.75 1.15 3.6 5

1 5

P

S

P P

S S

P

S

T
for

H

T T
for

H H

T
for

H







  

      
  

 


   
1

, cos
N

i i i i

i

x t a x t   


  

 2i i ia S   



294 
 

number of wave components. Or in other words, the value of ∆ωi needs to be 

small. The linear wave representation also allows the superposition of the water 

particle velocity and acceleration components. The water horizontal velocity and 

acceleration for this simulated sea state is given by: 

 (G.12)   

 (G.13) 

which is employed as the basic simulation technique in the calculation of random 

wave loading to be used to compute the hydrodynamic response of offshore 

structures. 
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