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Abstract

This thesis revisits the problem of hydrodynamic forces on fixed space-frame struc-

tures in combined waves and an in-line steady current. Because of current blockage,

the actual drag force experienced by such structures is over-predicted by the stand-

ard Morison equation and the present industry standard practice. A set of analytical

models of current blockage is formulated based on the actuator disc theory and pro-

posed to represent the actual hydrodynamic drag force more accurately after taking

into account the current blockage effects. This thesis tests and verifies the adequacy

of the analytical model against series of experiments and full Computational Fluid

Dynamics (CFD) numerical simulations, as well as demonstrating the novel use of

a porous block as a simple representation for the complex geometry of real offshore

structures in the numerical simulations.

Much of this thesis are devoted to validation of the proposed full current blockage

model (FCB) for regular waves with an in-line current. For relatively small current

speed (uc) compared with wave velocity amplitude (uw) with oscillation phase angle

(ωt), the drag force time history on obstacle arrays with solid area (A) and projected

frontal area (Af ) can be expressed as:

Drag =
1

2
ρCdAu

2
w cosωt|cosωt|+π

4
ρAfu

2
c |cosωt|,

so there is no uw×uc cross term as commonly found in the Morison equation and the

present practice, and the current squared (u2c) term is phase-locked to the oscillatory

wave crests. The crest and trough peak values of the drag force is reduced to:

Fpeak = ±1

2
ρCdAu

2
w +

π

4
ρAfu

2
c .

The full model will be shown to fit the entire force time history as well as the peak force

for a wide range of experiments and numerical simulations, requiring only calibration

of the Morison type drag and inertia coefficients (Cd and Cm).

The FCB model and the use of a porous block model in numerical simulations

in general work very well for statically-responding structures in regular waves. The

drag force reduction is real and significant, and this has a direct implication and

application to new-builds and reassessment of space–frame offshore structures, such

as jackets and compliant towers.
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Chapter 1

Introduction

1.1 Background

The design of offshore structures for operation in harsh waters is largely governed by

the extreme storm environmental loading. The ability to predict and represent accur-

ately the extreme storm loading remains a crucial factor to ensure continuous safe and

economic recovery of the hydrocarbon reserves. The phenomena which cause envir-

onmental loading are complex, which demand a huge amount of research effort. Con-

tinuous numerous studies and researches have been spent to explain the observed phe-

nomena and to establish and refine appropriate models for predictive purposes. This

thesis is confined to a sub-class of offshore structures, namely statically-responding

fixed space-frame structures or jackets, which comprise slender members that do not

affect the characteristics of the incident wave (no wave diffraction). Hence, only

the fixed structures without any effects of flexibility or wake-induced oscillations are

considered. The majority of fixed offshore structures fall in this category.

The most important metocean parameters pertinent to evaluating the extreme

environmental loading are: significant wave height, mean zero crossing period, wind

speed averaged over a suitable time interval, current speed and profile, storm surge

and tidal range (Efthymiou and Graham, 1990). The accurate usage and represent-

ation of the actual current speed experienced by an offshore structure is thus one of

the crucial factors for the platform survival.

The first generation of fixed offshore structures for Gulf of Mexico (GOM), which

were designed in the 1950s, proved to have inadequate reliability mainly because

of the underestimation of the magnitude of the environmental loading. These early

designs were generally based on a wave height with return period of 25 years, Stokes V

wave theory, a drag coefficient of 0.5, no allowance for the presence and contribution

of currents nor for marine fouling of the members (Bea et al., 1988). Some of these
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structures collapsed during hurricanes. For this reason, the early practice was quickly

replaced.

Through the 1960s and 1970s, the magnitude of the design environmental loads

inclined to drift upwards. The environmental loads according to the present design

practice are found to be about 2.5 - 3 times higher than those used in the early

1950s for nominally identical structures in the same geographical area (Bea et al.,

1988). Prior to the 1960s, the first generation offshore structures must have been

under-designed, but after the 1960s, the ‘newer’ structures could have been (grossly)

over-designed instead. This thesis aims to provide a more accurate predictive model

of the extreme environmental loading after taking into account the effects of current

blockage.

Current blockage occurs when the velocity of an incident steady flow onto the

members of an obstacle array is reduced over the whole array due to the presence

of the obstacles. As the current flows past the obstacle array, it exerts a net drag

force on it. The fluid experiences an equal and opposite force acting to locally reduce

the speed of the flow. The flow field is complicated by the fact that each member

of the obstacle array generates its own wake and the structure as a whole generates

a less obvious global wake. This reduction in velocity translates into a reduction in

the global hydrodynamic force experienced by the structure. This blockage effect

is the result of fluid–structure interaction (confined to statically-responding fixed

structures), in which the total force on a cluster of slender members is smaller than

the sum of the individual forces on each member considered in isolation. Such an

effect is obviously important for the design of offshore jacket-type structures used for

oil and gas production, and more recently to support large wind turbines. A direct

analogy to describe the effect is described in the following quote:

“On a windy day the force on a single tree in a forest is much smaller than the

force on the same tree in isolation, and each tree bends rather than breaks”

The Morison equation (Morison et al., 1950) has been used for the last sixty years

to estimate the hydrodynamic loading of a space-frame structure, and the standard

practice had been to apply the formula on each individual member by taking the

current and wave velocities from the undisturbed flow field, and sum the forces up

individually as if the rest of the members were removed, thus neglecting any bulk

fluid–structure interaction effect. This is a reasonable approach for a wave-induced

motion. However, if the presence of the structure modifies the flow field, this approach

leads to over-estimation of the peak hydrodynamic loading. The actual current velo-

city is reduced due to the flow divergence as a result of the presence of the structure as
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(a) (b) (c)

Figure 1.1: Three different flow representations of average streamlines for flow past a
porous block: (a) standard Morison; (b) simple current blockage (SCB); (c) full current
blockage (FCB).

obstacles. This study of current blockage is aimed at improving the Morison equation

to better quantify the amount of loading experienced by statically-responding fixed

space-frame offshore structures.

An early study of current blockage was reported by Taylor (1991). This simple ap-

proach was devised for a structure subjected to a pure steady flow, and has been used

as a part of the standard design method after it was incorporated in the API design

guidelines in 1994 (American Petroleum Institute, 2000). Here this is termed ‘simple

current blockage’ or SCB, as it takes into account only current–structure interaction.

However, there is strong evidence showing a much larger blockage for a structure

subjected to combined waves and current, and a full current blockage model has been

proposed for this combined problem (see Taylor, Santo and Choo (2013)). The ‘full

current blockage model’, or FCB, accounts for wave–current–structure interaction, a

more complete fluid–structure interaction process (confined to statically-responding

fixed structures) which is responsible for the larger net flow and force reduction on

an offshore structure. This full model is presently suited for steady flow plus regular

waves.

Figure 1.1 illustrates the comparison of the three different flow representations of

averaged streamlines, obtained from full Computational Fluid Dynamics (CFD) nu-

merical simulation using OpenFOAMR⃝ (www.openfoam.org), of time-averaged mean

flow past a porous block: the standard Morison representation without any block-

age (Figure 1.1(a)), the simple current blockage model for steady current flow (Fig-

ure 1.1(b)), and the full current blockage model for oscillatory flow superimposed

on the steady current flow (Figure 1.1(c)). Clearly, the evidence for a much larger

blockage effect is reflected in the larger divergence experienced by the mean velocity

flow field.
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The amount of current blockage will depend on the number and size of members

with respect to the frontal area of the platform. A re-examination of relevant experi-

mental results (as described in Chapter 3) shows that the proposed blockage model is

sufficiently accurate. For typical fixed offshore platforms, the effective current speed

which flows through the platform is 10% - 25% lower than the free stream current

speed. Once a hydrodynamic model of an offshore structure is available, applica-

tion of this blockage model to establish the reduced current speed and the reduced

hydrodynamic (drag) force is relatively straightforward.

1.2 Objectives

The main objective of this study is to observe and quantify the effect of current

blockage on statically-responding fixed space-frame offshore structures such as jack-

ets subjected to a combination of waves plus current loading. Two specific objectives

are identified to satisfy the main objective. The first objective is to introduce an ana-

lytical model aimed to improve the Morison equation to better quantify the amount

of loading experienced by offshore structures. The second objective is to introduce

and demonstrate the novel use of a numerical porous block model as a simple rep-

resentation for the complex geometry of real space-frame structures. This current

blockage study is aimed at achieving a breakthrough and new insight into the dy-

namical physics of fluid loading on an obstacle array and delivering a state-of-the-art

engineering formulation and methodology which could be adopted into the standard

design guidelines for offshore structures such as API, DNV and ISO.

The motivation of this study arises partly due to the BP Macondo blow out, and

partly due to the strong evidence in the literature of full current blockage phenom-

ena. The Macondo blow out disaster was a result of human error in handling a subsea

wellhead (wet tree). Surface wellheads (dry trees) are generally easier to control and

thus safer. Subsea wellheads are mostly used on floating platforms, while surface well-

heads on fixed platforms. Thus, there is a possibility of growing industrial interests

on deepwater jackets and compliant towers in the near future.

One piece of strong evidence of full current blockage phenomenon was shown in

the Allender & Petrauskas experiment on a scaled jacket subjected to regular waves

and current loading discussed in Chapter 3.5 (Allender and Petrauskas, 1987). They

reported a great deal of current blockage occurred when waves are present, shown in

the following quote from their paper:
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“The drop in Cd between wave alone and wave plus current cases found here (from

a Cd of 1.3 - 1.6 for waves to a Cd of 0.7 - 0.8 for waves plus current) is much greater

than expected . . . ” (Allender and Petrauskas, 1987)

The reduction in hydrodynamic force for a new-built structure means smaller or

lighter members can be possibly used, which eventually leads to cost saving compared

to the conventional design method which overestimates the force. Current typical

jacket structures are over-designed, and conventional compliant towers are in fact

grossly over-designed. Steele (1986) reported the response from the Exxon Lena

guyed compliant tower to Loop Current eddies has been over-predicted by a factor of

five to six, and it is all because the net current velocity at the tower is estimated to

be only 40% of the far field velocity, a significant 60% flow reduction!

Apart from the advantage gained for new-built structures, the study of current

blockage can also be applied in the area of reassessment of existing offshore structures

and structural integrity management, particularly in life-extension of existing ageing

platforms. If the hydrodynamic loading on an old platform turns out to be lower than

the initial designed load, it is then possible to extend its design life after properly

incorporating the current blockage effect. This benefit is of direct relevance to oil and

gas operators. Energy companies, who own hundreds of old platforms all over the

world, often would like to add additional processing or Enhanced Oil Recovery (EOR)

modules as there are still much oil left to be recovered. Reduced environmental forces

may allow them to add this extra equipment without overloading the structure.

1.3 Structure of thesis

This study of current blockage combines analytical work with numerical simulation

(CFD) and experimental work. It starts from looking into the current blockage ef-

fect on planar flow for regular oscillations (waves) plus steady mean flow (current)

application, both numerically (Chapter 4) and experimentally (Chapter 5). It then

proceeds to account for wave kinematics depth-variation and free surface effects by

including 3D free surface flow and/or real wave action for regular waves plus current,

also numerically (Chapter 6) and experimentally (in-progress at the time of writing),

for more realistic engineering applications. Analytically, the full current blockage

model has been validated and can be applied to both planar and free surface flow for

regular waves plus current only (Chapter 3). Eventually, the study aims to extend the

full model to include random (irregular) waves plus current application (in-progress

at the time of writing).
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The layout of the thesis is arranged (not necessarily in chronological order) such

that the flow of information is smooth and coherent. Chapter 2 that comes right after

the introduction (Chapter 1) is the literature review on the previous study of current

blockage. There are not many studies conducted in recent times to look into the

blockage effect, mainly due to the shift of the industrial interest from fixed to floating

platform in the 1990s. However, as the reassessment of old platforms has become of

greater importance recently and there is still industrial interest in considering fixed

structures (jackets and compliant towers) for deep water, the current blockage issue

becomes a crucial design factor to account for.

Chapter 3 introduces the phenomenon of current blockage in offshore engineering.

Standard current blockage theory was first developed by Taylor (1991) and is suited

for grids of obstacles in steady flow when Morison drag is assumed locally. This is

confirmed by analysis of the published experimental data on drag forces for several

examples of multiple grids of obstacles in steady flow. A more complex analytical

model is derived and elaborated in this chapter to account for the considerable extra

blockage which occurs when a space-frame structure is exposed to regular waves and

an in-line current. This new model is shown to be in excellent agreement with the

experimental data of Allender and Petrauskas (1987) for steady current superimposed

with regular waves, both incident on a model of a Gulf of Mexico jacket. In contrast,

both the original unblocked version of the Morison equation and the Morison equation

assuming just steady current blockage (as in API RP2A) over-estimate the measured

forces. This chapter has been published in the journal Ocean Engineering as Taylor,

Santo and Choo (2013). The new model at this stage (the full current blockage model)

is only suited for regular waves plus current as the environment load. A complete full

model incorporating random waves plus current is still under development.

Chapter 4 provides numerical evidence for reduced fluid loading on space-frame

structures exposed to ocean waves and in-line current. Comparisons are made between

the current blockage model presented previously (Taylor, Santo and Choo, 2013),

Computational Fluid Dynamics (CFD) simulation and experimental data. Three

different flow models are considered: steady flow, time-averaged mean flow and fully

unsteady flow both for regular oscillations with an in-line steady flow. A porous block

is used to model an obstacle array of cylinders. This is appropriate because of the

global nature of current blockage, which has significant effects over distances of the

order of the frontal width of the obstacle array. Good agreement is obtained between

the numerical simulation, the experimental data and the previously published current

blockage model, which lends support to the validity and applicability of the theoretical
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model in predicting the blockage effects. This chapter also demonstrates that, in

general, the two-dimensional porous block model simulates the reduced flow better

than the simple one-dimensional analytical current blockage model. This chapter has

been submitted to the journal Ocean Engineering as Santo, Taylor, Bai and Choo

(2013a).

Chapter 5 experimentally revisits the problem of forces on obstacle arrays in com-

bined waves and an in-line steady current. A series of experiments are performed on

planar grids moved in both steady and oscillatory motion through otherwise station-

ary water. Detailed comparisons are made to a wave–current–structure interaction

model recently presented in Chapter 3 and Taylor et al. (2013). New features of the

analytical model are presented and tested against the experimental data. All of the

features are identified within the experimental data, and provide considerable support

for the new current blockage model. The new model is also shown to fit the entire

force time history well for a wide range of individual cases, with different blockage

ratio (A/Af ) and number of grids, requiring only calibration of the Morison-type

drag and inertia coefficients. In contrast, the industry-standard form of the Morison

equation can only be matched at a single instant of the oscillation cycle, so present

practice should be regarded as seriously inadequate for combined steady current and

oscillatory flow acting on obstacle arrays. This chapter has been published in the

Journal of Fluid Mechanics as Santo, Taylor, Williamson and Choo (2014b).

Chapter 6 introduces a new numerical approach for the estimation of the global

hydrodynamic loads on space-frame offshore structures exposed to combined waves

and current. This chapter provides numerical evidence for reduced fluid loading on

offshore structures – current blockage, which serves as an extension to the analyt-

ical, computational and experimental work of Taylor, Santo, and Choo (2013), Santo,

Taylor, Bai, and Choo (2013a) and Santo, Taylor, Williamson, and Choo (2014b) (as

presented in Chapter 3, 4 and 6). A full three-dimensional free-surface turbulent flow

is simulated for a porous tower in a numerical wave tank. This is intended to model

waves and current through a jacket or compliant tower, both space-frame structures.

Comparisons are made between the numerical simulations and experiments conducted

by Allender and Petrauskas (1987) on a scale-model jacket structure from the Gulf of

Mexico, and the current blockage model presented previously in Taylor et al. (2013).

Three different flows are simulated: steady current flow, regular waves with no current

and regular waves with an in-line current. Overall, good agreement in terms of peak

total forces is achieved, showing that the force reduction on such structures due to

current blockage effects is real and significant. Additional information on force time
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history and flow visualisation are presented from the numerical simulations. Flow

visualisation for waves and current reveals that the form of the global mean wake

is simple at the structure but becomes complex well downstream. The simple form

of the flow at the tower is responsible for the global force reduction being predict-

able using a modified version of the Morison equation (Morison et al., 1950). This

chapter also demonstrates the novel use of a porous tower as a simple representation

for the complex geometry of real space-frame structures when exposed to combined

large waves and significant in-line current, an approach which could be considered for

possible incorporation into offshore design practice. This chapter has been submitted

to the Journal of Fluids Mechanics as Santo, Taylor, Bai and Choo (2014a).

Chapter 7 ends with conclusions and recommendations for future work.

8



Chapter 2

Literature review

In the early 80s to 90s, the occurrence of current blockage was observed and investig-

ated in field measurements and laboratory experiments, due to the increasing interest

of the offshore industry towards deepwater drilling and production using deepwater

space-frame structures. The idea of replacing the conventional jacket with a compliant

tower was proposed if the water depth exceeds the operational limit of the jacket. If

the occurrence of current blockage is real, and a design guideline to properly account

for the blockage exists, then the benefit in terms of cost and/or material saving is

enormous, especially for complaint tower which has densely packed structural mem-

bers along the height of the tower. This motivation encouraged many researchers to

develop current blockage or shielding theory on a group of multiple cylinders, which

would lead to the development of analytical models on a whole structure to account

for the current blockage or wake shielding effect.

Forristall (1996) analysed and reported his measurements of current blockage in

the Bullwinkle platform in 1996 due to the Loop Current and the Hurricane Andrew.

His analysis revealed that the average current speed inside the platform was approx-

imately reduced by a factor of the order of 0.7 - 0.9, leading to a significant reduction

in the environmental loads. Steele (1986) studied and described the performance of

the Exxon Lena guyed tower in both waves and current in 1986, and concluded that

the current-induced loading was massively over-estimated by a factor of 5 - 6 times

without considering blockage effect. These field measurements confirmed that the

current blockage phenomenon is real.

Further carefully-controlled laboratory experiments involved measuring peak fluid

loading on scaled jacket models exposed to waves alone, current alone and combined

regular waves with an in-line current. Experiments conducted by Allender and Pet-

rauskas (1987), Finnigan (1992) and Mendes et al. (2000) generally reported bigger
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values of Cd for pure waves alone with no current, and smaller values of Cd for com-

bined waves and current, in order to fit the measured peak forces with the standard

Morison formulae. The same conclusion was also reached from the experiments on

conductor pipe groups performed by Reed et al. (1990). Sterndorff et al. (1990) in-

vestigated pure wake shielding effect due to waves alone with no current for different

conductor arrangements, and found that the shielding effects in waves are either small

or constant for the tested jacket configuration. These laboratory findings coupled with

the field measurement evidence demonstrated that the current blockage effect occurs

at both full-scale and lab-scale, and become significant when the current is present

on top of waves.

In 1991, Taylor (1991) derived a simple current blockage model based on the single

actuator disc theory of Glauert (1983). Instead of looking into details of each cylin-

der forming a member of a space-frame structure, Taylor (1991) approximated and

represented the global resistance of the entire structure as a single actuator disc, and

sought for the reduced flow velocity inside the structure due to the presence of the

structure as obstacles, by applying conservation of energy upstream and downstream

the disc and conservation of momentum across the disc. This simple approach was

devised for a structure subjected to a pure steady flow, and has been used as a part

of the standard design method after it was incorporated in the API design guidelines

in 1994 (American Petroleum Institute, 2000). The simple current blockage model

considers current–structure interaction only, and serves as a foundation for the de-

velopment of the more complex models, such as the multiple actuator disc model,

and the full current blockage model which takes into account wave–current–structure

interaction.

In 1992, Lambrakos and Beckmann (1992) presented an analytical model to ac-

count for shielding and blockage effect in steady flow. The model is not at all similar

to Taylor’s model as it is based on the idea of pure shielding - one cylinder is exactly

in line with a second. They treated a space-frame offshore structure as porous body of

variable porosity along the flow direction. Structural members are grouped together

to form individual screens, which is termed porous ’screens’. The correlation between

the screen drag coefficient, Cds, and the drag coefficient of an individual screen mem-

ber (i.e. cylinder), Cdo, in the free stream is adopted from an earlier paper by Lock

(1930):

Cds = Bw(1.0 + 0.25Bw + 0.82B2
s )

2
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where Bs is the solidity ratio, defined as the ratio of the solid cylinder drag area, Ad,

to the screen area, As, which is equivalent to the Taylor’s model of A/Af , and Bw is

the ’wake blockage ratio’, defined as Cdo ×Bs.

Despite the difference in the basic assumption of the analytical models, the Lam-

brakos and Beckmann model reduces and becomes identical to Taylor’s when the

blockage is small, only when both Bs and Bw are assumed to be small in the correl-

ation equation, which gives:

us
uc

=
1

1 + 0.25Bw

F =
1

2
ρCdoAdu

2
s

in which us and uc is the shielded and free stream velocity, respectively.

However, when it comes to the extend of multiple actuator disc or multiple screen

theory, Lambrakos and Beckmann adopted a further empirical factor to account for

flow divergence or leakage between two adjacent porous screens. As a result, after

the correction on the single porous screen model, Lambrakos and Beckmann model

contains two empirical factor: the drag coefficient Cdo for individual screen mem-

bers, and the new ’maximum’ coefficient Cdm, which is not conventional and can only

be obtained from model test data on groups of cylinders. Meanwhile, after the im-

provement on the single actuator disc model, Taylor’s model contains only a single

adjustable empirical parameter, i.e. the drag coefficient, Cd, for individual members

of the structure, which needs to be estimated anyway for a conventional analysis of

current loads (Standing and House, 1997). This shows how the Taylor’s model is very

attractive from a practical viewpoint.

In 1992, Finnigan (1992) presented comparison between analytical and experi-

mental results of model tests on a 1:47 scale jacket model under wave plus current

loadings. The development of the analytical model was motivated by the speculated

high hydrodynamic blockage and shielding found in the experiment by Allender and

Petrauskas in 1987, which led to a series of repeated tests in 1988. The paper pro-

posed an analytical method of estimating the flow reduction based on wake theory of

Schlichting (1979), and extended the method to develop their own current blockage

prediction on a complex jacket structure. Essentially, the proposed formula based on

member shielding was used to predict the amount of current blockage and shown to

be consistent with the experimental results.

The Schlichting model looks into detail of the wakes of a cylinder. Finnigan

then extended the model to multiple cylinders resembling a jacket structure. Thus,
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the drag force expression which takes into account the amount of blockage is shown

to be dependent upon jacket’s leg spacing, and the amount of member shielding,

which is a function of the number of jacket’s leg. The model also claimed that a

group of well conductors contribute to a major source of blockage. However, as their

proposed model takes into account the details of the wakes of each cylinder forming a

jacket type structure, these details can possibly add on to higher degree of complexity

encountered in real life jacket design application. We thus believe that a simpler yet

accurate analytical model to account for current blockage is preferable.

The numerical study of current blockage is performed using porous block and tower

to simulate the amount of current blockage experienced by a space-frame offshore

structure exposed to waves and current. Based on the same argument used in the

development of the analytical model of current blockage, we represent the bulk effect

of the structure as a porous block and do not model the details of the individual

cylinders: the dominant physical process we seek to model is the reduced mean flow

within and near the obstacle array over distances of the order of the width of the

obstacle array, not the individual cylinders within the array. Obviously modelling the

complete flow over complex array of cylinders in both 2D and eventually 3D is very

challenging and resource-expensive.

The numerical study is performed in OpenFOAMR⃝ (Open Field Operation and

Manipulation), a free open-source Computational Fluid Dynamics (CFD) software

package written in C++ which has gained popularity in recent years. It was originally

developed in the late 1980s by a research group headed by Henry Weller in Imperial

College, London. The objective was to develop a more powerful and flexible general

simulation platform than the de facto standard at the time, FORTRAN, which led

to the use of C++ due to its modularity and object-oriented programming features.

OpenFOAM R⃝ is now part of the ESI group (since 2012), and the continuous updates

and improvements of the source codes are distributed through the OpenFOAMR⃝

Foundation.

OpenFOAM R⃝ is basically a collection of C++ libraries which is used to create

two main parts of the application: solvers – to solve specific problems in continuum

mechanics, and utilities – to perform tasks that involve data manipulation. It has a

wide range of features to solve complex fluid flows ranging from chemical reactions,

turbulence and heat transfer, to solid dynamics and electromagnetics. It is essentially

designed as a programmable toolbox, nicknamed “MATLAB for CFD” (OpenCFD,

2011).
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Being an open source means users have complete freedom to create and/or modify

new solvers and utilities to better suit their own needs, with some pre-requisite

knowledge of the underlying method, physics and C++ programming technique.

OpenFOAM R⃝ features a highly modular code design in which collections of func-

tionality (for instance meshing, numerical methods, etc) are each compiled within

their own shared library. Thus, the ability to alter part of a solver or utility is a de-

sirable feature. Eventually, executable applications are created that are simply linked

to the library functionality.

OpenFOAM R⃝ is supplied with third-party post-processing tools. Some of the tools

are reader modules and data converters to interface with other third party products.

The most commonly used reader module for flow visualisation is ParaViewR⃝. It uses

the Visualisation Toolkit (VTK) format in processing data and rendering image and

can therefore read any data in VTK format. All of the flow visualisations presented

in this thesis are produced by ParaViewR⃝.

The porous media algorithms in OpenFOAMR⃝ were originally developed and in-

tended to model flow over reservoir or rock formation, and flow over breakwater and

other coastal defences, where the Darcy resistance term is more dominant than the

Forchheimer, as the nature of the flow velocity is slow in general. Hence, the idea and

numerical technique of using a porous block model as a representation for a complex

offshore structure to simulate the current blockage effects appear to be a genuinely

novel approach in offshore engineering.
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Chapter 3

Current blockage: Reduced
Morison forces on space frame
structures with high hydrodynamic
area, and in regular waves and
current

3.1 Introduction

Generally, the extreme environmental loading on the steel-frame offshore platforms is

dominated by fluid drag, due to waves and currents. Most of the loading estimations

on tubular structures are based on a Morison type force calculation (Morison et al.,

1950), which takes into account both waves and currents. The standard method

of estimating the total wave and current force is by summing up the load on each

individual member of the structure, as if the rest of the structure were not present.

Historically, the flow velocity used in the force estimation was generally taken to be

the free stream current measured or estimated for the open sea far away from the

platform. This is a reasonable approach for a wave-induced motion. However, if

the presence of the structure modifies the flow field, this estimation leads to over-

estimation of the peak loading. The actual current velocity is reduced due to the flow

divergence as a result of the presence of the structure as obstacles. This phenomenon

is described as current blockage.

With regular waves and a current incident onto a structure, there is additional

blockage produced by the mean force averaged over a wave cycle. This chapter

provides a model for this extra blockage and tests the model against the published

data.
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3.2 Actuator disc theory for current blockage - the

analytical model

3.2.1 Theory for flow through a single row of obstacles: a
single actuator disc

Taylor (1991) derived a simple current blockage model based on the single actuator

disc theory of Glauert (1983) for a space-frame structure subjected to steady flow.

The blocked current, us, can be expressed in terms of the product of the free stream

current, uc, and an offshore blockage factor. The blockage factor is expressed in terms

of the total hydrodynamic area, CdA, which we define as the product of the Morison

drag coefficient, Cd, and the solid drag area of the obstacles, A, and the total frontal

(projected) area of the obstacle array, Af as:

us = uc

 1

1 +
CdA

4Af

 (3.1)

This offshore blockage factor has already been incorporated into standard design

codes, such as API. The citation can be found in the API RP2A WSD 21st Edition

under Section 2.3 Design Loads, 2.3.1.b Static Wave Analysis point 4 (American

Petroleum Institute, 2000). This simple formulation is adequate for estimating the

total hydrodynamic loading on a typical offshore structure resulting from uniform

steady flow current only, but we shall demonstrate that it is unduly conservative for

waves + current.

Although the full derivation of the blockage factor can be found in Taylor (1991),

we provide a short derivation highlighting key equations. Consider a single obstacle

array in a flow with a steady current uc. Instead of analysing in details the local

flow around each obstacle, a global approximation is taken – the obstacle array is

replaced by a porous actuator disc, which produces the same overall modification to

the uniform current as the array, but without the local complications of real turbulent

flow very close to each obstacle within the array. Several assumptions on the flow

have been made. One dimensional streamtube idealisation is invoked and the flow is

assumed to be irrotational throughout the domain, except at the vortex sheets which

separate the wake from the external flow downstream. Figure 3.1 shows the schematic

diagram of the idealisation.

Describing the flow condition globally, the approaching steady free stream flow

velocity, uc, is reduced to a shielded flow velocity, us = uc − v, due to the presence
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Us = Uc – v Uc  Uc   
Us  Uwake = Uc – v1 Uc  

Figure 3.1: Representation of an obstacle array as an actuator disc in a free stream.

of the disc, or obstacles. v is defined as the flow velocity deficit at the upstream of

the disc. The flow pressure increases from the far-field value, pc, to p immediately in

front of the disc, before dropping to p − ∆p across the disc, which results in a net

drag force on the disc. Downstream of the disc, the flow velocity further drops to

uwake = uc − v1 in the far wake region, while the flow pressure slowly rises back to

the ambient pressure, pc. v1 is defined as the total flow velocity deficit across the

disc. Vortex sheets are present as a result of the velocity discontinuity between the

streamtube and the outer flow.

Referring to Figure 3.1, conservation of mass holds between far upstream and

far downstream of the disc. Thus, applying the Bernoulli equation from −∞ to

immediately upstream of the disc, and from downstream of the disc to +∞, and

subtracting these two equations, we obtain the pressure drop across the disc, ∆p.

Bernoulli’s equation is not to be applied across the disc as there is energy into the

wake downstream (implying the loss of energy is in the process of getting into the

wake, i.e. across the disc).
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Bernoulli’s equation to both upstream and downstream:

Upstream: pc +
1

2
ρu2c = p+

1

2
ρu2s

Downstream: pc +
1

2
ρu2wake = (p−∆p) +

1

2
ρu2s

The pressure drop across the disc can be expressed as:

∆p =
1

2
ρ(2ucv1 − v21)

Applying conservation of momentum: the rate of change in the axial momentum

between the incoming and the outgoing flow through the disc corresponds to the net

force on the flow, we obtain another equation for the pressure drop, ∆p, expressed

as:

Force = ρAf (uc − v)v1 = Af∆p (3.2)

where Af = frontal area of the disc, defined as the area normal to the direction of

flow enclosed by the cross-section of the structure.

Comparing these two expressions for ∆p gives:

v =
1

2
v1 and us =

1

2
(uc + uwake) (3.3)

This expression shows that half the total velocity deficit, v1, due to the force on the

flow occurs upstream of the disc and the remaining half occurs downstream.

Substituting the above expression into the net force on the disc derived from the

momentum conservation (Equation 3.2), and equating it to the local Morison drag

force, as expressed below:

F = ∆pAf = 2Afρus(uc − us)

=
1

2
ρCdAu

2
s (3.4)

Then Equation 3.1 follows, where the blockage factor can be obtained.

3.2.2 The requirement for a streamwise structure: multiple
actuator disc in-line

While a single actuator disc theory is sufficient for most calculations for the global

forces on structures in steady flow, there are three main limitations on collapsing a

whole structure into a single disc:

17



1. When the hydrodynamic loading on a structure is very high due to a compact

layout of many densely packed structural members, for instance in a compliant

tower,

2. When the structure has high aspect ratio; long in the streamwise direction yet

rather narrow across the flow direction, here the wake mixing is an important

factor which must be included,

3. When the structure is exposed to regular or random waves with a current,

where the time-averaged wave–current interaction plays an important role in

modifying the local flow field.

Of most importance to the second point, the simple single disc model does not

provide any information on the variation of current velocity in a real structure in

the streamwise direction. This additional limitation on a single disc model can be

tackled using multiple actuator disc in-line model. These three main limitations will

be addressed in this chapter.

The general expression for the wake velocity derived from a single actuator disc

theory (referring to Equation 3.1) can be expressed as:

uwake = 2us − uc

uwake = uc

(
1− CdA

4Af

)
(
1 +

CdA

4Af

) (3.5)

There are various type of flow fields which correspond to the different values of us

and uwake:

• Normal actuator disc flow, whereby us > uc/2 and uwake > 0

• Flow through heavily loaded actuator disc, whereby us = uc/2 and uwake = 0

• Flow with eddy motion behind a bluff body, whereby us < uc/2

• And flow with a bound vortex ring, whereby us < 0

It is worth stressing that not all types of flow field can be modelled using actuator

disc theory. For the actuator disc theory to be valid, the flow field in the streamtube

idealisation must remain approximately one dimensional. The limiting case for this
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is when the wake velocity is reduced to zero due to high hydrodynamic loading. This

corresponds to the highest drag force achievable on the disc.

The wake velocity is reduced to zero, uwake = 0, only when CdA = 4Af , which

corresponds to the condition us = uc/2. For a structure like a compliant tower with

a very high hydrodynamic loading, a single disc approach may be unsuitable.

3.2.2.1 A source/sink model for the flow around an actuator disc

In describing the velocity variation across the flow around an actuator disc in the

streamwise direction, potential flow theory is adopted. For a particle advected from

far upstream towards the actuator disc, it is pushed outwards (diverged away) from

the disc normal to the direction of the flow in the far field. This normal displacement

of streamlines is permanent, they do not return towards the disc axis. Hence, the disc

acts upstream as if it were a point source of fluid embedded in a steady uniform flow.

The strength of the source is related to the net force on the structure. In modelling

the actuator disc frontal area, the source of fluid may be assumed to be distributed

uniformly over the disc cross section.

Although the upstream external effect of the actuator disc can be modelled a

source, there is no injection of fluid at the disc: there is no discontinuity in the fluid

velocity across the disc. Therefore, a different model is required for the wake region

downstream of the flow. The main idea is that the mean approaching velocity in the

wake zone drops from the plane of the disc to a lower value far downstream, which

is denoted by the wake velocity, uwake. This reduction is similar to that occurring

upstream of the actuator disc. Hence, a reasonable model for the wake region is

to use a fluid sink. The strength of the sink is equal and opposite to that of the

source. The wake is assumed to be separated from the external irrotational flow by

a vortex sheet which corresponds to a velocity discontinuity. The structure of the

source/sink of the flow is shown in Figure 3.2. This source/sink model will be used

to describe the global flow around an actuator disc, which is the building block to

construct multiple source/sink models (to represent multiple actuator discs in-line)

to obtain information on the variation of flow velocity in a real obstacle array where

the flow structure changes in the streamwise direction. Note that in the modelling of

the flow velocity on the axis of the actuator disc to be described next, the pressure

boundary condition across the vortex sheet will be ignored. The analysis is then only

approximate, in keeping with the one-dimensional modelling inherent in actuator disc

theory.
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Figure 3.2: The source/sink model for the flow near an actuator disc in a free stream.

3.2.2.2 The flow velocity along the axis of an actuator disc in planar (2D)
flow

The velocity distribution on the disc axis upstream can be derived from a case of point

source embedded in a uniform stream in potential flow theory, see Milne-Thomson

(1968).

Consider a source of strength m at the origin embedded in a uniform stream

U = uc parallel to the x-axis illustrated in Fig 3.3. Combining the source with the

uniform stream, the complex potentials for each can be added by superposition:

w = ϕ+ iψ = −Uz −m ln z
dw

dz
= −u+ iv = −U − m

z

u can be obtained by taking the real part of
dw

dz
= −u+ iv:

u = Re
(
U +

m

z

)
; z = x+ iy

u(x) = Re

[
U +m

1

x+ iy

x− iy

x− iy

]
u(x) = U +m

x

x2 + y2

where x is measured from the origin which is at the point source, thus the velocity

expression on the upstream of the point source in a uniform stream is:

u(x) = uc −m
x

x2 + y2

Assuming the total rate of volume addition on the source disc is S = 2πm, and

the width of the disc is 2L which is also the frontal area Af , the lateral position, y,
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Figure 3.3: Representation of a point source in a uniform stream.

across the disc now ranges from −L to L. Thus, integrating the above expression,

and x is positive when measured downstream, yields:

u(x) = uc −
S

2πL
arctan

(
L

|x|

)
(3.6)

The source strength is obtained by equating the two expressions for the shielded

velocity at the disc (Equation 3.1 and Equation 3.6 with x = 0) as:

S

4L
= uc


CdA

4Af

1 +
CdA

4Af

 = us

(
CdA

4Af

)
(3.7)

The velocity of the wake drops from us at the disc to uwake far downstream. We

assume this decay is similar to that upstream of the disc; the wake velocity can then

be expressed as:

u(x) = uc −
S

2L
+

S

2πL
arctan

(
L

|x|

)
(3.8)

Note the factor of two applies for the strength of the source as there is also a fluid

sink inline with the source. These equations represent a double potential flow model

consistent with one-dimensional actuator disc theory. However, we now have an

estimate of the length scales over which the flow structure changes. Upstream of the

disc, the flow slows down and diverges according to Equation 3.8, inversely with the

distance (for x ≫ L). Downstream of the disc, the wake relaxes fairly quickly to

its far field state, uwake → uc − S/2L as x → ∞ from Equation 3.8. It should be

noted that this model ignores mixing out of the wake; the bounding vortex sheets are

assumed to persist far downstream.
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3.2.2.3 The flow velocity along the axis of an actuator disc in cylindrical
(3D) flow

The assumption of planar flow is more appropriate for structures where the flow field

divergence is constrained to occur on a plane, with no significant out-of-plane flow.

One example is when a uniform current from seabed to the surface approaching a

structure which is uniform in height. However, if the structural dimensions in both

the transverse directions are comparable, if not equal, the use of a circular flow model

using a circular actuator disc is more reasonable. With such circular flow model,

divergence can occur in both transverse directions at the same time. The potential

flow formulation in this case for both the external irrotational flow and the wake is

the same as the planar flow; the only difference is that wake relaxation is faster with

distance.

Consider a source disc of radius L which injects a total rate of volume addition

S, the velocity on the disc axis upstream is given by:

u(x) = uc −
S

2πL2

(
1− x√

x2 + L2

)
(3.9)

where x is the upstream distance from the disc. The source strength is again obtained

by equating the two expressions for the shielded velocity at the disc surface, which

total disc area A = πL2:

S

2πL2
= uc


CdA

4Af

1 +
CdA

4Af

 = us

(
CdA

4Af

)

In the limit x → ∞, the perturbation to the free–stream decays with the square

of the distance, as follows:

lim
x→∞

[
uc −

S

2πL2

(
1− x√

x2 + L2

)]
→ uc −

S

4πx2
,

so the upstream influence decays more rapidly in three-dimensional cylindrical flow

than in the two-dimensional planar flow. The three-dimensional potential flow model

for the wake equivalent to that of the two-dimensional plane follows directly. The

wake is assumed to relax very rapidly downstream of the disc as well.

Again, assuming that the decay of the downstream wake is similar to that up-

stream of the disc, the wake velocity can be written as:

u(x) = uc −
S

πL2
+

S

2πL2

(
1− x√

x2 + L2

)
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There are two situations where the three-dimensional model is useful, despite

the fact that the planar model is more appropriate for most of the current blockage

applications. First is the analysis of the compliant tower towed longitudinally, be

it a real structure or a tower model as discussed in Section 3.3.2. The second is in

the application of finite current layer depth flows past a very tall structure, where

the width of the structure and the depth of the current layer at the structure are

comparable.

3.2.2.4 A two-disc model for planar flow through an obstacle array

To construct a two-disc model, consider a flow through two in-line actuator discs,

which are separated by a distance D apart. Using the potential flow models derived

earlier, it is easy to write down the velocity at each disc by combination of the

perturbations to the mean flow introduced by each disc individually:

u1 = uc −
S1

4L
− S2

2πL
arctan

(
L

D

)

u2 = uc −
S1

2L
+

S1

2πL
arctan

(
L

D

)
− S2

4L
(3.10)

The velocity at the plane of the upstream disc, u1, is equal to the upstream

current, uc, reduced by two components: the first is due to the blockage at the first

disc itself, the second term is due to the upstream influence of the blockage at the

second disc. This upstream influence of the second disc is much weaker, decaying as

the streamwise separation distance of the two discs, D, is increased.

Likewise, the reduction in the velocity at the downstream disc comprises two

components: a self-induced blockage and the effect of the wake of the first disc. It

is worth noticing that the wake term in this equation rapidly rises to a limit when

the disc spacing is increased. So long as the global wake mixing effect with the

surrounding fluid is ignored, this downstream wake effect lasts for ever, while the

upstream flow divergence is a much localised effect in nature.

Substituting the expressions for the strength of sources into Equation 3.10, the

two-disc formulation of the actuator disc theory in planar flow becomes:

u1 = uc − u1

(
CdA1

4Af

)
− u2

(
CdA2

4Af

)
2

π
arctan

(
L

D

)

u2 = uc − u1

(
CdA1

4Af

)[
2− 2

π
arctan

(
L

D

)]
− u2

(
CdA2

4Af

)
(3.11)
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The only unknowns are u1 and u2. Consequently, the above formulation becomes a

pair of simultaneous equations for the velocities at each disc. Solving these equations,

the force on each disc can be obtained by the local Morison equation:

F1 =
1

2
ρCdA1u

2
1 and F2 =

1

2
ρCdA2u

2
2

In the event of analysing N number of discs, the above formulations become a set

of N ×N matrix of linear simultaneous equations. Unless wake mixing is important

to consider, only one or two discs are necessary if only the total force on an entire

structure is required.

3.2.2.5 A two-disc model for cylindrical flow through an obstacle array

Similar to the planar flow model, to construct a two-disc model, consider a flow

through two in-line actuator discs, which are separated by a distance D apart. The

velocity at each disc, as a combination of the perturbations to the mean flow intro-

duced by each disc individually, can be expressed as:

u1 = uc − u1

(
CdA1

4Af

)
− u2

(
CdA2

4Af

)(
1− D√

D2 + L2

)

u2 = uc − u1

(
CdA1

4Af

)(
1 +

D√
D2 + L2

)
− u2

(
CdA2

4Af

)

3.2.3 Improvements to the single actuator disc model

This section provides ways around the limitations encountered by a single actuator

disc theory. Due to the importance of the improvement on the third limitation,

i.e. steady flow in the presence of regular waves, it will be presented in a separate

stand-alone section instead.

3.2.3.1 A switching model for high hydrodynamic loading

As mentioned above in describing the first limitation encountered by the single ac-

tuator disc theory, when the hydrodynamic loading on a structure is very high:

CdA > 4Af , the simple current blockage theory becomes inconsistent. The total

drag formulation based on this theory predicts that the drag decreases (slowly) as the

loading is further increased, instead of the other way round. This slight inconsistency

can be observed from the formulation as such:

Drag on a single disc =
1

2
ρCdAu

2
c

(
1 +

CdA

4Af

)−2
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If
CdA

Af

> 4, the total force on the higher loaded disc is reduced for the single disc

model as the hydrodynamic loading CdA is increased - an implausible result.

However, it ought to be possible to model a structure as an infinite array of

infinitely sparse discs, considering an extreme case of a structure under very high

hydrodynamic loading.

The total drag formulation for many sparse discs can be formulated as (derivation

in Appendix A):

Drag on many sparse discs =
1

2
ρCd

A

N
u2c

N∑
n=1

u2n =
1

2
ρAfu

2
c

{
1− exp

[
−
(
CdA

Af

)]}
This formulation shows that the drag increases with the total hydrodynamic area

to an asymptotic value of the product of the frontal area of the array and the dynamic

head of the free stream flow.

This result should be compared to the previous expression which is for a single

disc with the same total hydrodynamic loading. The two expressions for the drag

look different. However, numerical calculations (see Figure 3.4) reveal that these two

expressions are virtually indistinguishable even for the loadings greater than the limit

for the single disc model, although the two expressions are apparently very different.
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Figure 3.4: The comparison of single disc, sparse array and switching model.

Thus, it can be safely concluded that the total drag on the array does not depend

significantly on the structural layout along the flow direction. This leads to the
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conclusion that the simplest actuator disc model valid for all sorts of hydrodynamic

values is actually the switching model:

For CdA < 4Af , a single disc model is used.

For CdA > 4Af , a two-disc model is used.

The assumption for a two-disc model is that, due to the nature of the high hy-

drodynamic loading, it is convenient mathematically to have the upstream disc carry

as much loading as possible for an isolated disc (uwake = 0). The downstream disc is

placed in the fully expanded wake region of the first disc where the wake flow velocity

is zero. Thus, it carries no load. This approach is consistently used in the improve-

ment made to tackle the third limitation, which will be presented in Section 3.4.2.

Most realistic examples of the current blockage in entirely steady flow do not

require the use of the switching model. Generally, a single disc model approach

suffices. However, the switching model becomes important for the assessment of

current blockage in the event of regular or random waves.

3.2.3.2 The inclusion of wake mixing

Previously, the actuator disc model for current blockage was derived assuming that

the wake is separated by the vortex sheets from the external irrotational flow. How-

ever, in reality, these vortex sheets are rather unstable and mixing between the free

stream and the wake occurs downstream of the structure. Yet, this process takes

place at approximately constant pressure and hence the actuator disc model remains

applicable. The main effect of this wake mixing is that the mean flow velocity on the

wake axis rises slowly back to the free stream current velocity as the width of the

wake increases as a result of the wake divergence.

Reference is made to Tennekes and Lumley (1972) in establishing the following

relationships on the simple decay rates for the mean velocity perturbations:

In 2D planar flow, mean velocity deficit ∝ (distance)−1/2

In 3D cylindrical flow, mean velocity deficit ∝ (distance)−2/3

These decay rates are established for the wakes far downstream of single obstacles. In

formulating the wake flow from obstacle arrays, it will be assumed that these decay

rates are applicable to the wakes of arrays at downstream distances greater than one

array width, because the length scale of the interaction between the global mean wake

and the obstacle arrays scales approximately as the frontal width of the arrays.

For planar wake flow:

u(x) = uc −
[
S

2L
− S

2πL
arctan

(
L

x

)]
·
√

2L

x
, for x > 2L
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where the width of the disc is Af = 2L.

For cylindrical wake flow:

u(x) = uc −
[
S

πL2
− S

2πL2

(
1− x√

x2 + L2

)]
× 3

√(
2L

x

)2

, for x > 2L

For some cases which require more than 2 actuator discs, there is a difficulty with

how to treat the effect of the second disc on the third disc due to the decay of the

wake of the first disc, as there would be additional interference. In this actuator disc

analysis, such interference effects are ignored. The decay of the wake of the first disc

up to the third disc is treated as though the second disc was absent.

3.3 Experimental evidence for current blockage in

steady flow

3.3.1 Lattice frames in turbulent flow

Georgiou and Vickery (1980) conducted experiments intended to measure the shield-

ing effects which are present for flows through configurations of multiple building

frames. Hence, they conducted experiments in a wind tunnel with multiple biplanar

lattice frames aligned in-line, by varying the direction of approaching wind flow, frame

solidity ratio, frame spacing, frame aspect ratio and the number of frames.

Among all the various different experiments, one experimental result is used to

compare with the load prediction based on the current blockage theory. The chosen

set has an aspect ratio (height, H / breadth, B) of 4.0, spacing, S / breadth, B ratio

of 0.186, breadth dimension, B, of 1.239 m (or 4.063 ft), and frame solidity ratio

of 0.136. The frame solidity ratio is defined as the effective solid area of a single

frame divided by the total area enclosed by a single frame, the A/Af ratio in the

current blockage theory. The loads were recorded by a rotatable strain-gauge plate

as shown in Figure 3.5. Wind tunnel blockage corrections were applied by repeating

another series of tests in a much bigger tunnel with presumed zero blockage effect.

The measured forces on the frames in the wind tunnel are estimated to be within

10% of the forces to be expected in unconstrained flow.

The experimental results are in the form Cd, which Georgiou and Vickery refer to

as a force coefficient on a group of N frames compared to the force predicted on a

single frame with the flow normally incident and Cd taken to be 1. These were plotted

for a combination of N = 2, 3, 4, 5 and 7 frames exposed to various angles of attack,

θ, ranging from 0 to 60◦. The total frontal (projected) area, Af , will inevitably be a

27



Mounting plate

Fastened to rotating strain-gauge balance

Supporting rig

Figure 3.5: The model test setup.

Table 3.1: Summary of the drag coefficient as a function of number of frames and angle of
attack.

Number of Angle between Frame Normal and Mean Flow (deg)
Frames 0 15 30 45 60

2 2.20 2.50 2.40 2.00 1.30
3 3.09 3.53 3.41 2.90 1.91
4 3.87 4.45 4.36 3.76 2.52
5 4.55 5.29 5.26 4.59 3.13
7 5.64 6.78 6.94 6.21 4.32

True Cd 1.30 1.52 1.46 1.21 0.76

function of θ, i.e. Af (θ) = [B cos(θ) + S sin(θ)] × H. In this comparison, the force

coefficient is treated much like an effective drag coefficient for a group of N frames.

Since the experiment did not provide information on the true drag coefficient,

Cd, the result for two frames is used as Cd calibration to obtain the true Cd. The

true drag coefficient is defined as the actual drag coefficient for flow velocity in the

event of zero blockage. Meanwhile, the effective drag coefficient is the drag coefficient

which has taken into account the reduced (correction) factor due to the shielded flow

velocity. Having found the true Cd for each angle of attack, the subsequent effective

drag coefficients for N = 3, 4, 5 and 7 frames are sought. The results are tabulated

in Table 3.1 and plotted in Figure 3.6.

In Figure 3.6, the measured data are the symbols, while the current blockage

results are plotted as solid curves. Generally, the agreement between the theory and

28



0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

Angle between Frame Normal and Mean Flow (deg)

E
ffe

ct
iv

e 
O

ve
ra

ll 
D

ra
g 

C
oe

ffi
ci

en
t

 

 

2 Frames

3 Frames

4 Frames

5 Frames

7 Frames

Figure 3.6: The effect of the number of frames and the flow approach angle - data points
from Georgiou and Vickery (1980).

the experiment is good.

3.3.2 Model tow test of an Exxon compliant tower design

Monopolis and Danaczko (1989) reported a series of scaled model tests and numerical

simulations of the transport of a hypothetical deepwater Gulf of Mexico compliant

tower. The in-water towing test results are analysed in terms of the current blockage

theory. The 1:48 scale compliant tower model was used in their experiment, with a

cross section at full scale of 61 m by 82 m (200 ft by 270 ft), and a height of 781

m (2560 ft). Supposedly, the assembly procedure requires the tower be constructed

in two separate sections, mated in shallow water and then towed into final position

with virtually the whole structure completely beneath the sea surface, before being

upended on the installation site. Since the aspect ratio (the length of the structure

over the maximum dimension across the flow) of the structure is 9.5, this comparison

serves as an extreme test of the current blockage theory.

Two sets of towing tests were conducted at speeds ranging from 0 to 2.5 m/s:

towing both the completely mated and, separately, the lower section of the scaled

model. The lower section represents the rear 4/7ths of the total length of the scaled

model (446 m or 1464 ft). Measurements were reported for the total drag on the
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whole tower and also the net force on the lower section of the whole tower, which is

shielded by the front section, as well as the total drag on the lower section tower only.

The results were plotted in terms of drag forces, as functions of the towing speed. In

this comparison, only the total drag and the drag on the lower section of the entire

tower are analysed.

The geometry is shown in Figure 3.7. The whole tower is divided into seven

actuator discs, and hence the total hydrodynamic area is distributed equally onto

each of them. Due to its extreme geometry, wake mixing must be considered. The

simple correction based on the decay of an axisymmetric wake is applied when the

aspect ratio (the length of the disc separation distance / half the width of the disc)

> 2. Note that this aspect ratio is defined in terms of the actuator disc geometry,

not to be confused with the aspect ratio defined in terms of the tower geometry.

Figure 3.7: Generic towed compliant tower modelled as a series of in-line actuator discs.

As there is no information on the value of the drag coefficient, a calibration is

performed on the drag value at the towing speed of 0.5 m/s by assuming a drag

coefficient of 1.2, in order to obtain the estimate of the drag area, A. Having found

the drag area, the drag estimate based on the current blockage theory can be obtained

for the subsequent towing speed, up to 2.5 m/s. Another comparison is also performed

using a drag coefficient of 0.9, with the same drag area. The ratio A/Af for the whole

tower is found to be 3.46. Thus, the hydrodynamic loading (CdA/Af ) for the whole

tower when Cd = 1.2 and 0.9 is 4.152 and 3.114, respectively.

The comparisons are shown in Figure 3.8, in which the drag for Cd = 1.2 is slightly

higher than for Cd = 0.9 for both mated and rear tower. The top lines represent the

drag on the complete mated tower, while the bottom curves are for the rear section
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Figure 3.8: Predicted and measured drag on the scaled compliant tower model under tow
- data points from Monopolis and Danaczko (1989).

only of the mated tower. This extreme case of comparison demonstrates one addi-

tional feature of the current blockage model predictions, that for high hydrodynamic

loading the total drag does not depend strongly on the structural layout along the

flow direction (in this case the value of the drag coefficient Cd keeping A/Af fixed),

as illustrated in Figure 3.4. Overall, the analytical results from the current blockage

theory agree reasonably with the experimental results.

3.4 Current blockage with regular waves

3.4.1 Background

So far, the theory of current blockage has been applied to steady flow problems

only. Comparisons made so far show generally good agreement between the theory

and experiments involving steady flow, the model towed at constant speed, and the

frames loaded at constant wind speed in a wind tunnel.

However, in reality, the environmental loading on a steel offshore platform can

be regarded as being dominated by the drag force which contains large unsteady

flow components: driven by either regular or random waves, and a generally smaller
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steady flow: the current. As presented below, the theory for steady current flow

over-predicts the offshore loading on a platform as a combination of both wave and

current forces. Physically, the time averaged mean force due to waves is larger than

that due to the current alone. This larger averaged mean force should be reflected in

a larger reduction in the current close to the platform. Such a greater force reduction

corresponds to a genuine physical difference in the local flows around the structure

resulting from the presence of waves. It is therefore highly desirable to obtain a

formulation which is applicable in the presence of regular waves, propagating on an

in-line current.

It should be stressed that the material in this chapter is aimed at the prediction

of peak loads in regular waves and a current. It is clear that an isolated large wave

(group) on a steady current, or a large wave within a random wave background on a

current, would require a different model. This is necessary because the wave–current–

structure interaction requires a large-scale wake, which is responsible for the global

blockage effect. With regular waves, this wake has reached a steady-state structure

downstream whereas for isolated wave packets it will not have reached steady-state

during the time taken for the packet to dynamically load the structure. An extension

of our formulation to account for the time-dependent evolution of this large-scale

wake in random waves is in development.

3.4.1.1 Analysis of Chevron model tests suggests the steady current block-
age model is inadequate

Comparison between the standard practice of peak force estimation, i.e. the stand-

ard Morison model and the Morison model with simple current blockage, and the

experimental measurements of the peak forces on a Chevron model in regular waves

with a current is shown in Figure 3.9. The experimental tests were conducted by

Allender and Petrauskas (1987) on a realistic scale model of a Gulf of Mexico offshore

platform. The aim was to examine the wave and current loading on the scaled jacket

in a wave tank using a range of wave heights and current speeds. The details of these

experiments will be discussed in the next section.

Figure 3.9 shows a comparison of the measured and predicted peak base shear

force on the model, for a 2.5 m/s current and a wide range of regular wave heights.

The point data are the measured forces scaled up to full scale, while the solid curves

are two models for the estimated peak forces. The top solid line represents the

standard Morison equation for estimating the environmental forces on a stick model,

without any allowance for blockage effects. As seen from the figure, the peak force
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Figure 3.9: Discrepancy between the predicted and measured forces on space-frame model
with waves and 2.5 m/s in-line current.

on the structure is massively overestimated. The lower line allows for simple current

blockage (refer to Equation 3.1), which reduces the mean current by the factor: 1

1 +
hydrodynamic area

4× frontal area


and corresponds to a reduction in terms of the peak force by order of 20%. It is ob-

served that the steady current blockage formula predicts the correct drag force regime

for zero and small waves. However, for large waves, the estimated peak forces on the

structure are apparently considerably overestimated. Therefore, an improvement to

the simple current blockage theory is desirable.

3.4.2 A theory for the peak force on a structure in regular
waves and a current

In describing the theory for full current blockage model for regular waves with in-line

current, an assumption of scale separation is made. The current blockage model is

formulated by assuming that the diameter of individual cylinders is very much smaller
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than the frontal width of an obstacle array, and that the sweep distance of the wave

oscillation is smaller than the frontal width of the array, and hence the sweep distance

is much larger than the individual cylinders. This gives the scale separation necessary

for the modelling to work. These assumptions hold for a typical big offshore jacket

exposed to waves in a severe storm. As such, wake shielding (or blockage from pure

wave oscillation with no current) is expected not to occur in this case, even though

in big waves with no current wake shielding is known to occur as there is a mean

force resulting from the average over a wave cycle (since the wave crest and trough

kinematics and free surface effects are different for crests vs. troughs for nonlinear

waves). For a structure such as an offshore jack-up leg, the leg width could be equal

to the wave sweep distance, so there would be some wake shielding – a problem left

for future work.

3.4.2.1 Why a one-actuator disc model fails in the presence of sufficiently
large waves

Consider a single obstacle disc in a flow with both a steady current ucs (the extra

subscript s denotes that this is the shielded current at the disc, not the free stream

current uc), and an oscillating component uw. We assume that the Morison equation

can be used to describe the force on the obstacles over the wave cycle and further

assume that there are no Keulegan-Carpenter number effects; the drag coefficient

is constant throughout. The averaged force over a complete flow oscillation can be

expressed as:

Fav

1

2
ρCdA

=
1

2π

2π∫
0

(uw cosϕ+ ucs) · |uw cosϕ+ ucs|dϕ (3.12)

where ϕ is the oscillation phase angle. Note that there is no contribution from the

inertia term in the Morison equation as it does no work on the flow over a complete

oscillation cycle. This integral has an exact solution as:

for (ucs > uw) :
Fav

1

2
ρCdA

=

(
u2cs +

1

2
u2w

)
(3.13)

for (uw > ucs) :
Fav

1

2
ρCdA

=

(
u2cs +

1

2
u2w

)
·
[
1− 2

π
arccos

(
ucs
uw

)]
+

3

π
ucsuw

√
1−

(
ucs
uw

)2

(3.14)
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In the limit when the current is small relative to the oscillation velocity amplitude,

the second expression for the averaged force can be reduced to:

Fav

1

2
ρCdA

→ 4

π
ucsuw for (uw >> ucs) (3.15)

Notice that this expression for the averaged force is defined in terms of the flow

velocity at the disc; the relationship is local in nature.

In order to relate these expressions to the global reduction in the free stream

current at the disc, the result from the actuator disc theory for the structure of the

time averaged mean flow is used. From the analysis of the mean flow external to the

disc, the net force on the disc can be written in terms of the free stream current uc,

and the mean shielded current at the disc, ucs, as:

Fav = 2Afρucs(uc − ucs) (3.16)

where Af is the frontal area of the disc. Note that the above actuator disc model is

for steady flow, yet it is applicable in this case since it is assumed that the structure

of the mean flow near the disc is dominated by the global wake. This global wake

consists of vorticity shed from the obstacles and advected downstream by the mean

flow. In the high frequency limit when the oscillation amplitude is small relative to

the disc geometry, the net vorticity in the wake reflects the averaged force on the disc.

Equating these last two expressions for the time averaged force on the actuator

disc, whereby one is local while the other is global in nature, the reduction in the free

stream current at the disc due to the upstream flow divergence can be written as:

(uc − ucs) =
CdA

4Af

4

π
uw valid in the limit (uw >> ucs) (3.17)

This expression shows how a single disc model actually fails. The expression predicts

strong blockage of the current at the structure in the absence of the free stream

current, and depends only on the strength of the oscillating flow term in the limit

of large regular waves. We compare this with the general blockage factor of a single

disc model under steady flow, which is dependent on the strength of the free stream

current:

(uc − ucs) = uc

[
1−

(
1 +

CdA

4Af

)−1
]

Of course, in the limit of zero or very small current, there is only one possible

solution, which is zero blockage. With no mean flow there is no net force on the

35



structure, with no net force on the structure there is no global wake, and with no

global wake there can be no blockage taking place.

This discrepancy can be actually related to the problem of a heavily loaded ac-

tuator disc in steady flow, and can be resolved in a similar manner. For the time

averaged actuator disc model to be self consistent, and the one-dimensional basis of

the analysis not to fail, the mean velocity of the flow in the fully expanded wake far

downstream must be greater than zero.

From the previous actuator disc analysis, the flowfield is found to have an im-

portant symmetry property: half the reduction in the mean flow velocity due to the

blockage occurs upstream of the disc and half downstream in the expansion of the

wake. If the wake velocity is to be greater than zero, the minimum value of the

shielded current at the disc is simply:

ucs ≥ uc/2

Substituting this limiting value into Equation 3.17, the maximum possible value

for the hydrodynamic loading on a single actuator disc model for the one dimensional

model to be valid:

CdA ≤ π

2

uc
uw
Af valid in the limit (uw >> ucs) (3.18)

This loading limit (denoted by CdAL) depends on the frontal area of the disc and

the ratio of the free stream current velocity to the oscillation velocity. If this limit

is satisfied, then the structure can be modelled by constraining it into a single ac-

tuator disc and the reduction of the free stream current can be obtained from the

Equations 3.13 or 3.14 and 3.16 in a straightforward manner.

If this limit is violated, then the single actuator disc model fails. As the space-

frame of a typical offshore structure is three dimensions, it is up to the analyst

to choose the number of in-line actuator discs to model the structure. From the

previous steady flow analysis, the predicted total force is only weakly dependent on

the arrangement and distribution of the discs, so long as the global wake spreading

is not significant. Hence, two discs are assumed to be sufficient to model structures

in a mean flow on top of an oscillation flow.

3.4.2.2 Force on a structure modelled as two actuator discs

Similar to the concept proposed for the switching model, the first disc is assumed to

be loaded as highly as possible. The loading of that upstream disc is thus limited to

CdAL, and the current at the disc is one half of that far upstream (ucs = uc/2).
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The hypothetical second disc is assumed to be located in the far wake of the first

disc, so that the mean current is reduced to zero, and the remainder of the total

hydrodynamic loading area Cd(A− AL) is attributed to this downstream disc.

This is a slightly modified switching model described earlier. Notice that the as-

sumption that the second disc is placed far downstream is made only for convenience.

In general, discs can be of any distance apart. There is always a downstream influ-

ence of the first disc on the second disc due to the wake of the first disc. However,

the influence of the second disc on the first disc due to the upstream divergence of

the flow as it approaches the second disc becomes negligible once the disc spacing is

increased.

Due to the wave horizontal velocity profile which decays hyperbolically from the

mean sea level towards the seabed, there exist three distinct regions for the variation

between the wave and the current velocities. These three regions are as follows.

Case (i): when uw > ucs and ucs ≤ uc/2

In general for larger values of the free stream current, the condition uw >> ucs is

no longer satisfied. Hence, the asymptotic expression for the averaged force (Equa-

tion 3.15) is no longer valid. Thus, the full solution (Equation 3.14) is required, and

the structure is modelled as two discs. The blocked current, ucs, is obtained by equat-

ing Equation 3.14 with 3.16, which is shown in Equation 3.19. Due to the degree of

complexity in Equation 3.14, a solution for ucs by trial and error is required.

2Afucs(uc − ucs)
1
2
CdA

=

(
u2cs +

1

2
u2w

)
·
[
1− 2

π
arccos

(
ucs
uw

)]
+

3

π
ucsuw

√
1−

(
ucs
uw

)2

(3.19)

Once ucs is obtained, a further check is necessary for ucs ≤ uc/2. If so, then we

may proceed with the two-disc model, with the allowable loading on the first disc

written as:

CdAL

Af

= u2c

{
1

4
(u2c + 2u2w)

[
1− 2

π
arccos

(
uc
2uw

)]
+

3

2π
ucuw

√
1−

(
uc
2uw

)2


−1

This expression is obtained by rearranging Equation 3.19, and the current at the first

disc is taken to be ucs = uc/2, as the limiting case.

The second actuator disc thus carries the remainder of the hydrodynamic loading

of the structure Cd(A−AL)/Af . The current at this second disc is taken to be zero,

ucs = 0.
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The peak force on the structure can then be written as:

Peak drag =
1

2
ρCdAL(uw +

1

2
uc)

2 +
1

2
ρCd(A− AL)u

2
w (3.20)

The first disc is loaded heavily by both the oscillation and the current flow. On

the other hand, the second disc is loaded only by the oscillatory flow. It is assumed

to be completely shielded from the mean flow.

Case (ii): when uw > ucs and ucs ≥ uc/2

If the current is sufficiently large, the flow oscillation is small, and the hydro-

dynamic loading of the entire structure, CdA/Af , is less than 4, then the peak loading

on the structure can be estimated by contracting the structure into a single actuator

disc. The blocked current, ucs, can be obtained in a similar fashion as in case (i)

Equation 3.19, but ucs is checked against uw and uc/2. If both these conditions are

satisfied, this case can be modelled by a single actuator disc.

The peak force on the structure can then be written as:

Peak drag =
1

2
ρCdA(uw + ucs)

2 (3.21)

Case (iii): when uw < ucs and ucs > uc/2

The blocked current, ucs, can be obtained by equating Equation 3.13 with 3.16,

which is shown below:

4Afucs(uc − ucs)

CdA
=

(
u2cs +

1

2
u2w

)
Rearranging in terms of ucs:(

1 +
CdA

4Af

)
u2cs − ucucs +

1

2

(
CdA

4Af

)
u2w = 0

Solving for ucs:

ucs =

uc ±

√
u2c − 4

(
1 +

CdA

4Af

)(
CdA

8Af

)
u2w

2

(
1 +

CdA

4Af

)
Further simplification leads to:

ucs =

uc +

√
u2c − 2

(
1 +

CdA

4Af

)(
CdA

4Af

)
u2w

2

(
1 +

CdA

4Af

) (3.22)

38



while the ± operator has been changed to +, since the ucs > uc/2 requirement is

imposed.

The peak force on the structure can then be written as:

Peak drag =
1

2
ρCdA(uw + ucs)

2 (3.23)

Although this procedure may seem to be rather convoluted, it reveals that there

is considerably more reduction in the current within a structure if the flowfield is

combined with a regular oscillatory flow, along the direction of the current. The

next section will show how this calculation method can be readily implemented for a

structure exposed to regular waves and current. The flowfield is cut into horizontal

slices, each slice represented by a disc. Within each slice, the free stream current

and the wave induced motion can be found. The peak drag for each slice through

the structure can then be calculated using the method presented in this section.

The total force on the structure is then obtained by summing up the forces on each

individual slice. Note that this procedure works best when the current profile is

uniform throughout the water depth. Otherwise, the downwards divergence of the

current layer should be considered.

For the sake of illustrating the behaviour of the analytical models of current block-

age with regular waves, the following diagrams from the Allender and Petrauskas case

(with the associated parameters) are presented. The three distinct regions (or sub-

models) can be summarised in a schematic diagram shown in Figure 3.10. The peak

drag is plotted as a solid line with data points for various wave velocities under a

constant current at 2.5 m/s. The three submodels switch very smoothly among each

other at two separate switching limits, as if the peak drag was obtained from a single

force expression.

A typical velocity and drag profile for a structure under waves and current loadings

is shown in Figure 3.11. Note that the free stream current is recorded at 2.5 m/s. The

extra blockage due to wave–current interaction is also reflected in the same figure. The

blocked current profile, ucs, slowly decays from approximately one-third of the water

depth up to the mean sea level (region where wave kinematics are more prominent)

as opposed to the steady flow case whereby the blocked current profile is uniform

throughout the water depth. Again, the peak drag profile plotted as a function of

water depth varies smoothly.
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Figure 3.11: The profile of waves and current velocity, and drag force for a structure under
waves and 2.5 m/s current loadings.

3.4.2.3 Asymptotic limit for regular waves and a small current

In a typical storm driven sea-state in the Gulf of Mexico or the northern North Sea,

the oscillating wave induced component close to the water surface is much stronger
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than the current. With a wave height of about 25 m and a wave period of 12.8 sec,

the surface wave induced flow speed is uw = 6 m/s, whereas a typical current speed

might be uc < 1 m/s. Thus, it is of some interest to derive an analytical form for the

drag force on a structure in the limit of large regular wave over small current.

From Equation 3.20, the two-disc model predicts the force per unit height of the

structure as:

Peak drag =
1

2
ρCdAL(±uw +

1

2
uc)|±uw +

1

2
uc|+

1

2
ρCd(A− AL)(±uw)|uw| (3.24)

where the loading on the front actuator disc is CdAL =
π

2

uc
uw
Af . The total structural

properties are CdA, the hydrodynamic area, and Af , the frontal area of the structure.

Invoking the limit uw >> ucs, the expression for the peak drag in regular waves can

be simplified into:

Peak drag =
1

2
ρ
π

2

uc
uw
Af (uwuc +

1

4
u2c) +

1

2
ρCdA(±uw)|uw|

Peak drag ∼= ±1

2
ρCdAu

2
w +

π

4
ρAfu

2
c (3.25)

Notice the absence of the wave × current term, (uwuc), in the approximate form.

The additional blockage in regular waves removes this term.

Figure 3.12 shows this expression integrated up to the full height of the structure

compared to the full numerical calculations for two different wave heights using the

three submodels discussed earlier (shown as the data points). The asymptotic form is

reasonable even for relatively high currents. Clearly in regular waves, the peak force

increases very slowly with current (only as current squared).

Likewise, Figure 3.10 shows a similar comparison between the asymptotic and the

full calculations for a constant current obtained by varying the wave velocity. Notice

that the asymptotic limit works very well even for the case of the local wave velocity

only slightly larger than the current.

In contrast, the equivalent expression for the simple current blockage is:

Peak drag =
1

2
ρCdA

uw +
uc(

1 +
CdA

4Af

)


2

The wave squared term is identical to the regular wave case but there is a sub-

stantial wave × blocked current term. This case is perhaps more appropriate to the

variation in the peak force on a structure with a mean current and a single large
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Figure 3.12: Asymptotic de-coupled form for peak drag on Chevron space-frame model in
regular waves with in-line current.

wave. The peak drag force (force increases linearly with current, see Figure 3.9) is

much larger than in regular waves.

3.5 Comparison with the forces measured by Al-

lender and Petrauskas

Allender and Petrauskas (1987) carried out a set of experiments for a 1:47 scale jacket

model of a Gulf of Mexico type for a 138 m (450 ft) water depth in the OTC wave

/ towing basin at Escondido, California. The scaled model as shown in Figure 3.13

was commissioned by Chevron, and therefore the model is described as the Chevron

model subsequently. The objective of the experiments was to evaluate the use of the

Morison equation in predicting the force in the presence of regular waves and current.

Hence, the results are reported in terms of total wave force and current (by towing)

for a wide range of environmental conditions; wave heights from 0 - 25 m (0 - 80 ft),

and current speeds from 0 - 2.5 m/s (0 - 5 knot), while the wave period is fixed at

12.8 sec.

Unfortunately, Allender and Petrauskas did not present sufficient information
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about their model to allow direct analysis of their measured forces in their OTC

paper. However, it is still possible to infer all the important parameters based on

what they published.

Figure 3.13: Layout of the scaled jacket model (adapted from Allender and Petrauskas
Figure 1 (1987)).

The only definitely known important parameters are the water depth - 138 m, and

the wave period fixed at 12.8 sec. The effective overall drag coefficient for tow tests

with no waves is given in the paper. From these tests, it is reported that the steady

state drag coefficient is 0.6 for the 2.5 m/s towing speed, and 0.7 for the 1.25 m/s

case. Each drag coefficient is associated with its own measured drag. This enables

direct comparison using the standard drag formula to extract information on the drag

area, A, and the actuator disc loading parameter CdA/Af from the simple current

blockage model for steady flow. Combined with the information on the towing speed

(free stream current) as well as the wave height and wave period, this is adequate to

predict the peak force on the structure as the wave crest passes by using the current

blockage model. The drag area, A, is found to be 7871.7 m2, and the frontal area, Af

is estimated to be 8115.2 m2, giving A/Af = 0.97.

Further we assume an individual value of the drag coefficient of Cd = 1.0. It is

reasonable given the size of the individual elements within the Chevron model. Note

that using this value of Cd, the area ratio of the drag area of the structure to its

frontal area is A/Af = 0.97 for the Chevron structure. This is smaller than that for

a typical northern North Sea jacket. This is expected as the Chevron platform is of

comparable size as one for the North Sea but made of smaller diameter members.
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Even though the dominant forces on any space frame structure, such as a conven-

tional jacket, are drag forces, the inertia force component of the Morison equation

can be quite significant for small waves. Hence, there is a need to approximate the

parameters involved in the inertia component, which is the estimate of the displaced

volume and the inertia coefficient. Given the drag area, A, obtained earlier, we as-

sume 1 m average as the best representation for the diameter of circular cylinder

members within the structure. With the knowledge of a typical diameter and the

drag area, an estimate of the displaced volume (V ) can further be made, which is

6170.87 m3. In terms of the inertia coefficient, a value of Cm = 2.0 is used throughout

the analysis in this section.

One last set of assumptions is regarding the flow kinematics at the wave crests.

It is worth mentioning that even though the experiment by Allender and Petrauskas

was conducted in regular waves in a wave tank, it is by no means clear whether the

Stokes wave model is appropriate for regular waves artificially created. To minim-

ise the degree of complexity in the implementation of the current blockage model,

simplifications have been made. Here, linear Airy wave theory is used to describe

the flow kinematics below mean sea level, while vertical extrapolation at the wave

crests (assuming the kinematics value to be the same as those at the mean sea level)

is utilised for the free surface kinematics. Although this procedure is crude, it gives

sensible values for the overall forces on the structure.

Figure 3.14: The layout of the stick model.
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The next step is to construct a stick model as representative of the Chevron

jacket model. We assume that the Chevron model is uniform along its height, so is

the stick model. The analysis is then carried out by slicing the model or structure

into N horizontal sections and the flow in each section is calculated using the various

versions of the actuator disc theory (in the presence of regular waves). This procedure

further assumes that the flowfield is planar (2D) and that each horizontal section is

independent. Figure 3.14 illustrates the layout of the stick model.

Since no information on the jacket height is provided, the height of the stick model

is assumed to be 152 m (500 ft). Thus, in calculating the wave forces on the stick

model using the current blockage formulation, the drag area, A, and the volume, V ,

are divided by the number of the horizontal sections, N = 20 in this case, assuming

uniform distribution along the height of the structure.

Three different formulations are compared with the experimental results from

Allender and Petrauskas, namely the standard Morison force equation, the Morison

model with the simple current blockage theory (steady flow), and the Morison model

with the full current blockage theory with regular waves. The comparisons are shown

in the following sections.

3.5.1 Forces on the Chevron structure with waves but no
current

Figure 3.15 shows a comparison of the peak horizontal force (base shear) predicted

in regular waves by the standard Morison equation and those measured by Allender

and Petrauskas. The top solid line is the total predicted Morison force, while the

bottom solid line is the Morison drag force only. For these zero current (towing)

tests, the comparison suggests that the peak forces are reasonably well predicted

using the Morison equation with a drag coefficient of Cd = 1.0 and inertia coefficient

of Cm = 2.0. These values have been retained for all the calculations in this section.

There is no account of any significant wake shielding (wave blockage) in these zero

current wave tests, nor are there any indications of Keulegan–Carpenter number ef-

fects for the peak force on the entire structure in the overall peak force measurements.

The good agreement between the predicted peak forces and the measurements for this

zero current case justifies the validity of the linear wave theory with the exponential

decay of the wave kinematics below mean sea level (MSL) and vertical extrapolation

above MSL to the wave crest.

It is worth noting that the gradient of the total force vs. the wave height is finite

for the small wave regime. This shows the importance of the inertia component in
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Figure 3.15: Comparison of the predicted and measured forces on space-frame model with
waves and zero current.

the Morison equation for small waves. The inertia term is proportional to the fluid

particle acceleration, and this acceleration is proportional to the wave height. For

bigger waves, the drag term dominates, being proportional to the square of the fluid

particle velocity, thus to the square of the wave height.

3.5.2 Forces on the Chevron structure for both waves and
current

Allender and Petrauskas recorded the measured peak forces in terms of an effective

drag coefficient, Cde. This Cde can be used as a direct representative of the drag force,

because when combined with the values of current and the wave induced velocities

together with the exposed area, it yields the measured force. Allender and Petrauskas

stated that:

”The drop in Cd between wave alone and wave plus current cases found here (from

a Cd of 1.3 - 1.6 for waves to a Cd of 0.7 - 0.8 for waves plus current) is much greater

than expected . . . ” (Allender and Petrauskas, 1987)

They speculated that significant flow blockage occurred in their tests but had no

theory to explain it. This section attempts to reproduce their force measurements
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with the new current blockage theory.

Figures 3.16 and 3.17 present the comparison of the peak forces (base shear) pre-

dicted in regular waves in two current (towing) speeds, i.e. 1.25 m/s and 2.5 m/s.

Three different methods of prediction are provided, namely the standard Morison

equation, the Morison model with the simple current blockage formulation, and the

Morison model with the current blockage with regular waves formulation. These fig-

ures show that the new theoretical model of the current blockage for regular waves

generally fits well to the measured forces for both values of the current. In each case,

the standard Morison equation, equivalent to ignoring any blockage effect, massively

overestimates the peak forces on the structure. Meanwhile, the simple current block-

age theory, suited for steady flow with a single large wave passing by, predicts the

peak forces well in the region of small waves. However, as the waves grow bigger,

the predictions from the simple current blockage theory deviate considerably from

the measurements. The model for regular waves predicts the peak forces significantly

lower than the rest, and the predictions from this model are in good agreement with

the measurements for both towing speeds, as well as for zero current (Figure 3.15).

Overall, it should be emphasised that the methods of estimating the peak forces

are solely based on the physics of the flowfield and contain no adjustable parameters.

It is only the drag coefficient, Cd, which needs to be estimated beforehand. This

comparison shows that the agreement between the theory for regular waves and the

model tests is good and no variation in the value of the drag coefficient, Cd, is needed

over the wide range of wave heights and current speeds.

3.5.3 The peak forces for small currents and regular big waves

An analytical expression for the force on a structure in the large regular waves and

small current limit was derived in Section 3.4. This section attempts to compare the

decoupled peak drag expression of the asymptotic limit with Allender and Petrauskas’

data.

In order to demonstrate clearly this extra reduction in the effective current within

a structure for regular waves, Allender and Petrauskas should have measured the peak

force on their model as a function of tow speed (current) for fixed large wave height

in regular waves. If the force increased quadratically, this regular wave model would

be validated qualitatively. Unfortunately, this was not done.

However, a crude comparison is possible using their data for 0, 1.25 and 2.5 m/s

currents and a wave height of 21 m. The measurements closest to 21 m wave height

have been used but some of the scatter represents the variation of wave height in
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Figure 3.16: Comparison of the predicted and measured forces on space-frame model with
waves and 2.5 m/s in-line current.
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Figure 3.17: Comparison of the predicted and measured forces on space-frame model with
waves and 1.25 m/s in-line current.
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Figure 3.18: Asymptotic peak drag profile with various current.

the available data - there is not enough information available for all the three tow

speeds for any other wave height. These experimental points are shown in Figure 3.18

together with a parabolic polynomial in current fitted to the measured peak forces.

This parabola fits the data well, and we note that the term in the force polynomial

proportional to the current (the wave × current coupling term) is insignificant.

Hence, the extensive force measurements by Allender and Petrauskas give consid-

erable support to the idea of the de-coupling of the wave and current contributions to

the peak load. This qualitative feature of the analysis is robust, being independent

on the assumptions made for the wave kinematics.

3.6 Chapter summary & conclusions

The simple current blockage model was first developed almost 20 years ago. It consists

of two parts, single and multiple actuator disc models, and both are valid for steady

flow. The single disc model yields the offshore blockage factor, which is presently

used as a standard method in estimating the amount of blockage induced by current–

structure interaction. In order to improve on the single disc model to account for high

hydrodynamic loading and wake mixing effects, the multiple actuator disc model

has been developed. The multiple disc model also gives some information on the
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distribution of blocked current velocity along the discs. This simple current blockage

model is valid for steady flow, and possibly for a single large wave superimposed on the

top of steady flow. As presented in Section 3.3, there is a considerable experimental

evidence for blockage in steady flow consistent with the simple model.

For flow of a current and regular waves, an improved version of the simple model,

termed the full current blockage model, is required to account for extra blockage

from wave–current interaction. The full model is more complex and it consists of

three submodels to account for different flow regimes. The transitions between the

three sub-models are smooth, depending on the magnitude of wave, free stream and

shielded current velocities. For the special case of large waves in a small current flow,

the full model reduces to an asymptotic expression for peak drag which contains no

wave × current term, unlike the standard Morison drag which has the coupling term

due to u|u|.
The new current blockage model accounting for wave–current effects is validated

against the experimental data from Allender and Petrauskas. Despite the fact that

there are several assumptions made about the model geometry, using a single Cd value

of 1.0 associated with A/Af ≈ 0.97 and Cm value of 2.0, we successfully match all of

their experimental results using the new current blockage theory, with and without

large waves, with and without current.

This chapter has been published in the journal Ocean Engineering as Taylor et al.

(2013).
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Chapter 4

Blockage effects in wave and
current: Two-dimensional planar
simulations of combined regular
oscillations and steady flow
through porous blocks

4.1 Introduction

The material in the previous chapter, and published as Taylor et al. (2013), reveal

strong evidence that a much larger blockage occurs for a structure subjected to com-

bined regular waves and current, and propose a full current blockage model for this

combined problem to improve the Morison equation (Morison et al., 1950) in quanti-

fying the loading experienced by fixed space-frame offshore structures. This chapter

serves as a follow-up study and provides direct comparison between Computational

Fluid Dynamics (CFD) simulation and the theoretical analysis; comparisons are also

made with the experimental data where this is available.

The first idea for investigating the effects of current blockage on an offshore struc-

ture numerically was to model a structure in the simulation as closely as possible

to an existing real-life structure. Thus, the closest possible structure is inevitably a

group of cylinders, positioned vertically, horizontally and diagonally, to represent the

geometric complexity encountered in the framing patterns of an actual jacket or a

compliant tower. Numerical simulation of flow over such complex multiple cylinders

would be very challenging. Recently, Nicolle and Eames (2011) have published a

study of two-dimensional flow through a complex array of cylinders, which resolved

individual elements. However, it may not be necessary to model the details of each
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cylinder. The dominant physical process we seek to model is the reduced mean flow

within and near the obstacle array over distances of the order of the width of the

obstacle array, not the local flow around individual cylinders within the array. To

approximate the bulk effect of the structure and the fluid–structure interaction as a

whole, a porous block can be used instead as a reasonable assumption when modelling

the flow around a jacket or compliant tower. Thus, flow through a porous block with

a specified level of resistance can be used to model the global flow reduction effect on

a typical offshore structure.

This chapter will present results based on modelling the complex geometry of a

space-frame offshore structure as a porous block, and analysing the effects of current

blockage on the overall hydrodynamic loading. The resistance can be calibrated from

the current blockage model in the form of drag coefficient, Cd, and drag area, A, while

maintaining the same frontal area, Af , of the obstacle array. The reduced velocity

and the corresponding reduced drag force on the array can then be approximately

obtained from the Navier–Stokes equations in a CFD simulation. This chapter will

demonstrate that, in general, the porous block model (which models the flow in

two- or three-dimensional space) is better than the current blockage model (which

models the flow in one-dimensional space), which was derived based on potential flow

approach (conservation of mass and momentum via actuator disc theory). Apart from

being able to model the simple case of flow over a compact porous block resembling a

space-frame structure in steady flow, the numerical porous block model does better in

modelling flow over series of blocks subjected to skewed incident angle, and also in a

long array of blocks where lateral mixing (side leakage) is important, as compared to

the current blockage model, all in steady flow as described in Section 4.3. The porous

block model also performs better in time-averaged mean flow and fully unsteady flow:

regular oscillations plus mean flow, where the flow is resolved on a planar level, and

it is able to model high hydrodynamic loading case, as demonstrated in Section 4.5.

The theoretical model, in contrast, requires an ad-hoc assumption of a hypothetical

split into two-disc model or more when the loading gets high as the one-disc model

would break down due to the limitation of a one-dimensional model. Moreover, the

porous block model is more generally applicable than the analytical current blockage

model: it can be applied to irregular (or random) oscillations, so the effects of current

blockage in random sea can be investigated. In contrast, the theoretical model (FCB)

is presently suited for regular waves only.

Although the analysis in this chapter is for two-dimensional planar flow, it provides

a building block towards a more complete CFD simulation where the porous block
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model can be extended to a porous tower, and the current blockage problem can be

investigated in a finite water depth with free surface effects of combined waves and in-

line current, all obtained by solving the Navier–Stokes equations in three-dimensional

space. In this way, more realistic water particle kinematics could be simulated, and

the integrated effect of current blockage across water depth could be analysed.

4.2 Numerical methods

In this section, we first present the numerical methods necessary to simulate ranges

of planar flow through a porous block.

4.2.1 Governing equations

To account for the effect of porous block in the numerical simulation, the conventional

Navier–Stokes equation needs to be modified by adding a momentum sink term, such

as:

∂

∂t
(ρu) + u

∂

∂x
(ρu) = −∂p

∂x
+ µ

∂τ

∂x
+ S (4.1)

where ρ is the fluid density, u = (u, v, w) is the fluid velocity field in Cartesian

coordinates, p is the fluid pressure, τ is the shear stress, µ is the dynamic viscosity,

and x = (x, y, z) is the local Cartesian coordinates. Here we account for momentum

lost from the flow via a sink term. The sink term, S, commonly consists of two parts,

a linear and a nonlinear drag loss term, which create pressure drops proportional to

the velocity and velocity squared respectively, so in the case of simple homogeneous

porous block:

S = −
(
µD +

1

2
ρ|u|F

)
u (4.2)

Equation 4.2 is known as the Darcy–Forchheimer equation, containing both Darcy

and Forchheimer pressure gradients, where D and F are the associated resistance

parameters. The original application of the equation is to model flow over reser-

voir or rock formation, where the Darcy resistance term is more important than the

Forchheimer term, as the velocity is slow. In this porous block simulation, only the

non-linear component proportional to u|u| is retained, as it is directly equivalent to

the drag component of the Morison equation. Thus, the coefficient D of the Darcy

linear term is set to be zero throughout the analysis.
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It is necessary to relate the F parameter of the Forchheimer non-linear term to

the CdA/Af from the actuator disc theory (Taylor et al., 2013). The relationship

can be shown as follows. Consider a steady flow through a porous block spanning a

channel. In this case, the Navier–Stokes equations reduce to pressure drop gradient

term + momentum sink term (see Equation 4.1).

Setting D = 0 at the sink term, S, the local pressure drop gradient is simplified

to:

∂p

∂x
=

1

2
ρF |u|u

Assuming the porous block has a finite length L in downstream direction, the

total pressure difference across the porous block is:

∆p =
1

2
ρFL|u|u

Assuming frontal area of Af for the block, the net drag on it is:

∆F = ∆p · Af =
1

2
ρAfFL|u|u

Meanwhile, the standard Morison drag term on an obstacle array can be written

as:

∆F =
1

2
ρCdA|u|u

where Cd is the drag coefficient on the obstacles within the grid and A is the total

solid area of these obstacles.

Thus, by matching (or calibrating):

CdA

Af

= FL (4.3)

F can be obtained. Hence, the porous block modelled numerically is directly compar-

able to the representation of simple current blockage model (SCB) from the actuator

disc theory.

The steady-state, incompressible equations of motion are solved with the finite

volume method using OpenFOAMR⃝ (www.openfoam.org). The pressure-velocity

coupling is solved with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-

tions) iterative algorithm (see Patankar (1980) & Patankar and Spalding (1972)). In

the fully unsteady flow simulation, an implicit Euler time stepping is used for the time

derivative term (Ferziger and Perić, 2002), but the whole scheme remains explicit due

to the treatment of the Forchheimer drag term. The results in the present work are

all obtained by using OpenFOAMR⃝ version 1.7.1.
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4.2.2 Turbulence models

Turbulence is generated by locally unsteady flow occurring at high Reynolds number,

characterised by a large range of eddy scales within the flow, with considerable wake

mixing taking place. The resulting bounding shear layers are unstable, marked by

eddy mixing with the outer flow which causes the mean wake velocity to slowly rise

back to the ambient velocity. Turbulent flow modelling is more realistic than laminar

flow modelling, and it becomes essential for this work when the structure is long in

the downstream direction, or when wake mixing is crucial.

4.2.2.1 k − ω turbulence model

The widely used turbulence model incorporated into this porous block flow simulation

is the two-equation: Wilcox’s k − ω model (Wilcox, 1988). The transport equations

for this two equation model for the turbulent kinetic energy, k, and specific dissipation

rate, ω, are as follows:

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui
∂xj

− β∗kω +
∂

∂xj

[
(ν + σ∗νT )

∂k

∂xj

]
(4.4)

∂ω

∂t
+ uj

∂ω

∂xj
= α

ω

k
τij
∂ui
∂xj

− βω2 +
∂

∂xj

[
(ν + σνT )

∂ω

∂xj

]
(4.5)

and the turbulent eddy viscosity is defined by:

νT =
k

ω

The closure coefficients and auxiliary relations are taken to be the standard values

of:

α = 0.52

β = 0.072

β∗ = 0.09

σ = 0.5

σ∗ = 0.5

Often, the initial values of both k and ω are needed for simulation with the

turbulent flow model. Their initial values in the simulation are usually specified in

free–stream boundary condition (inlet - outlet), and also in near-wall modelling. The
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following relationships provide the first estimates of the k and ω for the free–stream

boundary condition:

The turbulent kinetic energy, k, is computed as:

k =
3

2
(uI)2 (4.6)

in which u is the mean flow velocity and I is the turbulent intensity. This relationship

assumes that the initial turbulence is isotropic, i.e. the fluctuating components of the

velocity are equal in the x, y, and z directions.

The specific dissipation rate, ω, can be obtained as:

ω =

√
k

Lt

(4.7)

in which Lt is the turbulent mixing length scale. It describes the size of the largest

energy-containing eddies in a turbulent flow. In porous block flow simulation, Lt

governs the characteristics of the wake mixing scale. The bigger the specified Lt, the

faster the turbulence mixes out into the surrounding flow, and vice versa. It is nor-

mally taken to be a fraction of a typical dimension of the problem, e.g. characteristic

length. It should not be larger than the dimension of the problem, as the turbulent

eddies cannot be larger than the computational domain. In this work, I = 5% and

Lt = 0.07 × wf are chosen as the initial estimates, where wf is the frontal width of

an obstacle array.

4.2.2.2 Obstacle-induced turbulence model

To assess the effect of internal turbulent mixing representing wake interaction among

individual jacket members (legs and braces), additional turbulence is injected within

the porous block. An obstacle-induced turbulence model based on k − ϵ as intro-

duced by Nishino and Willden (2012) is adopted. Their application was to blade-

induced turbulence in the large scale simulation of marine current turbines. The

blade-induced turbulence characteristics used in their actuator disc simulation are

taken to be somewhat comparable to the obstacle wake-induced turbulence in the

porous block simulation of our problem.

To account for the effect of additional injection of turbulence, additional source

terms of k and ϵ are added to the right-hand side of the transport equations of

the standard two-equation k − ϵ turbulence model (not shown), respectively, at the

location of the porous block. Nishino and Willden introduce two model variables as

additional inputs for the simulation which directly represent physically meaningful
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quantities, namely the ratio of the energy dissipated to turbulence to the energy

removed from the mean flow at the porous block, β, and a representative length scale

for the equivalent of obstacle-induced turbulence, Lb, which in this case is at most the

length scale of internal structural member spacing or smaller. These two variables

are further assumed to be described by turbulent kinetic energy from the internal

members, kb, and dissipation rate, ϵb, expressed as:

kb = βK
1

2
u2d

ϵb =
C0.75

µ k1.5b

Lb

(4.8)

where ud is the local streamwise velocity at the disc plane and K is a momentum loss

factor (parameter to determine the load or thrust acting on the disc), which equals

to Cd.

Nishino and Willden further assume their blade-induced turbulence of kb and ϵb is

instantly mixed with the incoming ambient turbulence of ka and ϵa at the disk plane.

This results in the mixed turbulence being described by its turbulent kinetic energy,

km = ka + kb, its effective dissipation rate, ϵm = km/τm, and τm is the eddy turnover

time that may be determined from consideration of turbulence kinetic energy decay

over time. We simply adopt their additional source terms for k and ϵ:

Sk = ud(km − ka) = udkb

Sϵ = ud(ϵm − ϵa)

= ud

(
(ka + kb)

2

(k2a/ϵa) + (k2b + ϵb)
− ϵa

) (4.9)

4.3 Steady current flow

For steady flow, the simple current blockage model (SCB) with blocked current ve-

locity as described in Equation 3.1 is used, and comparisons between the analytical

results from the actuator disc theory and experiments have been previously described

in Taylor et al. (2013). This section provides further comparisons between the por-

ous block flow simulation results, the same theoretical analysis and the same set of

experiments.

It is worth emphasising that the porous block simulation and the actuator disc

theory are of entirely different flow representations, the former from the complex

Navier-Stokes equations and the latter from the conservation of mass and momentum

in simple quasi one-dimensional flow. Thus, there are major differences between
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the two flow representations, and the range of output information available from each

differs greatly. One major difference between the theory and the simulation is that the

simulation provides additional information on the lateral flow profile (divergence flow),

which the actuator disc theory cannot provide simply because it is a one-dimensional

model. One practical advantage of having such additional information is the ability to

model a non-spatially-uniform porosity distribution across the structural layout, one

that more closely resembles the positioning of clustered arrays of conductors usually

at one side of a real-life jacket-type offshore platform. At least a two-dimensional

model is necessary for that.

4.3.1 Comparison with the experiment by Georgiou and Vick-
ery

Georgiou and Vickery (1980) conducted experiments intended to measure the shield-

ing effects which are present for flows through configurations of multiple building

frames. Hence, they conducted experiments in a wind tunnel with multiple biplanar

lattice frames aligned in-line, by varying the direction of approaching wind flow,

frame solidity ratio, frame spacing, frame aspect ratio and the number of frames. A

summary of the details of the experiments and the comparison between the meas-

ured effective drag coefficient and the theoretical analysis is given in Chapter 3.3.1

and Taylor et al. (2013). The loads were recorded by a rotatable strain-gauge plate

with configuration as shown in Figure 3.5.

Among all the various different experiments, one experimental result was used to

compare with the load prediction based on the current blockage theory. The chosen

set had an aspect ratio (height to breadth ratio) of 4.0, spacing to breadth ratio of

0.186, breadth dimension of 1.239 m, and frame solidity ratio of 0.136. The frame

solidity ratio is defined as the effective solid area of a single frame divided by the

total area enclosed by a single frame, the A/Af ratio in the current blockage theory.

4.3.1.1 Computational domain layout

We now compare experimental results from Georgiou and Vickery, the theoretical

analysis and the numerical simulation, taking into account various incident flow angles

for N = 2 up to 7 multiple porous blocks, with each block represents a frame. To

simulate various incident flow angles, each porous block is rotated according to the

incident angle, and the grids are meshed accordingly.

The dimension of each porous block is designed in accordance with the actual size

of the frames. The frontal width (wf , or Af per unit depth) of each porous block is
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1.24 m, and the thickness (downstream width or L) of each is 0.1035 m. A single size

of computational domain is used throughout the simulation, with the number of cells

about 370,000. A typical layout for a 7 grid porous block configuration subjected to

0◦ incident angle is illustrated in Figure 4.1. The array of black strips represents the

array of porous blocks.                         

9.5��  �� 8��  Inlet Outlet 
Slip wall 
Slip wall 11�� 9.5��  

Figure 4.1: Arrangement and computational domain for a 7 porous block configuration, 0◦

incident angle.

4.3.1.2 Boundary and initial conditions

A steady fixed uniform velocity of 1 m/s is applied at the inlet with flow from left

to right, with outlet boundary condition (∂u/∂n = 0). A slip boundary condition is

applied to the two channel side walls. The pressure, p, is kept uniform at the outlet

and ∂p/∂n = 0 at the inlet. The initial and boundary conditions for k and ω are

similar to those of u, with a fixed uniform k value of 3.75 × 10−3m2/s2 at the inlet

assuming an initial turbulence intensity of 5%. No information on the exact turbulent

intensity was available from the Georgiou and Vickery test, but Sykes (1981) reported

similar wind tunnel measurements with turbulent intensity ranging from 3.9 to 13.6%,

so 5% is perhaps a customary turbulence level in large wind tunnels. A fixed uniform

ω value of 3.402 s−1 assuming the turbulent mixing length, Lt, of 0.07×wf = 0.0868

m. The obstacles were likely to be of the order of this scale, with ∼ 7 obstacles in

each Georgiou and Vickery’s lattice frame grid. We take the integral length scale to

be approximately one half of the gap spacing. Sensitivity test analysis on the choice
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of turbulent mixing length has been performed and it is found that the exact value

of the turbulent mixing length is not significant as the aspect ratio of the array of

porous blocks (or actual frames) is not high (ratio of the length of the structure along

the flow to the maximum dimension across the flow).

The experimental result for 2 frames is used as Cd calibration in actuator disc

theory to obtain the true (zero blockage) Cd for each incident angle, since there is

no information on the true Cd from the experiment. This estimate of the true Cd is

used here to calibrate the Forchheimer parameter, F , together with ratio of A/Af for

each incident angle. The frontal area, Af , takes into account the projection effect of

different incident angle, is expressed as a function of incident angle, θ, i.e. Af (θ) =

[B cos(θ) + S sin(θ)] × H. The resulting Forchheimer parameter, F , is tabulated in

Table 4.1.

Table 4.1: The calibrated F parameter for varying incident angle.

Field Incident Angle
Parameter 0◦ 15◦ 30◦ 45◦ 60◦

CdA/Af 0.18 0.20 0.21 0.20 0.16
F (m−1) 1.71 1.97 2.00 1.89 1.50
True Cd 1.30 1.52 1.46 1.21 0.76

4.3.1.3 Simulation results

Figure 4.2 provides the spatial structure of pressure, velocity and vorticity for flow

incident at 30◦. The porous blocks are represented by white-coloured cells. Clearly

the resulting flow field is not exactly symmetric about the centreline of the mean

flow. However, no significant lift forces are produced and the wake asymmetry will

eventually mix out. The simulation time for each case is about 8,000 sec (∼ 2 hours)

in serial mode on a Dell workstation.

The velocity distribution profiles on each porous block can be compared with the

theoretical analysis and experimental data, by taking the average of the horizontal

velocity profile across the width of the block (in transverse direction). Subsequently,

the effective overall drag coefficient obtained from flow past porous block simulation

can be computed in a similar manner as in the theoretical analysis. The results from

numerical simulation are shown in Figure 4.3 as solid lines, plotted against incident

angle, together with the theoretical predictions (dashed lines) and the experimental

data from Georgiou and Vickery (data points). The data points along the solid lines
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Figure 4.2: Turbulent flow results for the 30◦ incident angle. Clockwise from the top left
figure: pressure, longitudinal velocity, vorticity (magnitude), and lateral velocity distribu-
tion.

represent the cases simulated on each specific incident angle, and interpolation is

performed to connect the data points to form a solid line for each number of frame.

The agreement between the numerical simulation and the experimental data is

very good. It is clear that the numerical porous block model is able to simulate

the skewed flow in a better manner than the theoretical model. The difference is

likely to be due to the choice of the appropriate frontal area for the skew grids,

where the theoretical analysis simply used the maximum projected frontal area for

each incident angle, Af (θ), which underestimated the amount of blockage for a large

number of frames and large approach angles.

4.3.2 Comparison with the experiment by Monopolis and
Danaczko

Monopolis and Danaczko (1989) reported a series of scaled model tests and numer-

ical simulations of the wet tow before installation of a hypothetical deepwater Gulf

of Mexico compliant tower. A 1:48 scale compliant tower model was used in their

61



0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

Angle between Frame Normal and Mean Flow (deg)

E
ffe

ct
iv

e 
O

ve
ra

ll 
D

ra
g 

C
oe

ffi
ci

en
t

 

 

2 Frames

7 Frames

5 Frames

4 Frames

3 Frames

Figure 4.3: Comparison of the effective overall drag coefficient - data points from Georgiou
and Vickery (1980).

experiment, with a cross section at full scale of 61 m by 82 m (200 ft by 270 ft),

and a height of 781 m (2560 ft). The geometry is shown in Figure 3.7. Two sets of

towing tests were conducted at speeds ranging from 0 to 2.5 m/s: towing both the

completely mated tower and, separately, the lower section of the scaled model. The

lower section represents the rear 4/7ths of the total length of the scaled model (446

m or 1464 ft).

The in-water towing test results were analysed using the simple current blockage

model (SCB). The whole tower was divided into seven actuator discs in the theoretical

analysis, and hence the total hydrodynamic area was distributed equally onto each of

them. The comparison between their experimental results and the theoretical analysis

is given in Chapter 3.3.2 and Taylor et al. (2013).

This towed compliant tower model test serves as an extreme case for the lateral

turbulent wake mixing due to its high aspect ratio. This lateral wake mixing is

responsible for re-energising the longitudinal flow into the grids through the injection

of momentum from the external flow. More discussion on lateral wake mixing is

presented in Section 4.4.2.

Here, it is essential to have a three-dimensional computational domain, as flow

divergence can occur in any direction away from the flow direction and the estim-
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ate of the velocity profile by the actuator disc theory was obtained based on a

three-dimensional cylindrical flow model, with its assumed axisymmetric wake mix-

ing model. We follow this simplification by treating the grids as axisymmetric in the

numerical simulations.

4.3.2.1 Computational domain layout

Only one quadrant of the entire domain is needed as the flow has 2 planes of symmetry,

with symmetry boundary conditions invoked along the side walls. The layout of the

one quadrant of the three-dimensional computational domain is shown in Figure 4.4.

The porous block is attached on the smaller cylinder along the centreline of the whole

domain. A total of 7 porous blocks are formed, shown clearly by the finer mesh

grading along the whole domain. There are about 500,000 cells for the one quadrant

of the domain, and the simulation time is about 36,000 sec (10 hours) in serial mode

on a Dell workstation.                          
��2  9 ��2  Slip wall 

Slip wall Slip wall                          

20��2  
30��2  

Inlet 

Outlet 
Figure 4.4: Layout of the one quadrant of the entire three-dimensional computational
domain.

There is an interesting question as to whether the quarter model with two planes

of symmetry is adequate for the compliant tower simulation. Clearly for a single

solid obstacle such as a sphere in a flow, the large-scale features of the wake are not

axisymmetric, just as the wake of a cylinder across the flow does not have a single

plane of symmetry. In each case, the wake evolution downstream but close to the body

is not symmetric. However, this asymmetry can be pushed much further downstream
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by introducing ‘base bleed’ for a bluff body (Wood, 1964). We believe that the flow

through the grids will have the same bulk effect as base bleed, implying that locally

symmetric flow model will be adequate at least close to the structure.

The domain consists of a doubled-tower configuration, by reflecting the mirror

image of the original compliant tower over the undisturbed water surface, because in

reality the flow spreading is suppressed on the upper boundary due to the presence

of water free–surface. The resultant diameter, wf , of the axisymmetric porous block

(derived from 2Af as in Figure 4.4) is 113.06 m, and the diameter to spacing ratio

of the assumed seven grids is taken to be 1.016. The thickness (L) of each block is

14.13 m. The size of each axisymmetric porous block (Af ) is modelled with the same

physical dimension in the numerical simulation.

4.3.2.2 Boundary and initial conditions

The same set of boundary and initial conditions as in Section 4.3.1 are used. The only

difference lies on the choice of turbulent mixing length, which in this case becomes

more important. It is found that, Lt = 4.85 m (assuming average mixing length

∼ 0.04 × wf ) provides velocity distribution profiles on each porous block closest to

the theoretical prediction.

Calibration for the Forchheimer parameter, F , is made by equating CdA/Af =

FL, with CdA/Af = 0.59 for each disc for Cd = 1.2, and CdA/Af = 0.44 for each

disc for Cd = 0.9, and L = 14.13 m. Thus, F for each porous block is 0.0417 m−1

and 0.031 m−1, respectively.

4.3.2.3 Simulation results

Figure 4.5 provides the spatial distribution of the field parameters: velocity, vorticity,

k and ω.

The drag reduction factor, which yields the effective drag coefficient when multi-

plied by the free-field unblocked drag coefficient, can be obtained from the simulation

for both cases. The resultant drag forces for both the cases as a function of tow

speed are plotted in Figure 4.6. The simulations results are shown as lines: black

lines for Cd = 1.2, grey lines for Cd = 0.9, solid lines for the total tower configuration,

and dashed lines for the rear 4/7ths of the total tower. The experimental results of

Monopolis and Danaczko are shown as data points. The analytical prediction is not

shown for clarity but is similar (and given in Chapter 3.3.2 and Taylor et al. (2013)).

It is noted that for this extreme case with such a long aspect ratio, the turbulent

mixing length becomes an important parameter as it determines the rate of the lateral
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Figure 4.5: Three-dimensional turbulent flow results. Clockwise from the top left figure:
longitudinal velocity, vorticity (magnitude), specific dissipation rate and turbulent kinetic
energy distribution.

mixing. Different choices of mixing length will produce different velocity distribution

across each porous disc. Fortunately however, all of the practical important cases

of offshore installed structure will only have typical aspect ratios of at most 2.5:1

(jacket), or even 1:1 (compliant tower); none of the real life bottom-fixed offshore

structures once installed would have such an extreme aspect ratio as the Monopolis

and Danaczko tow case. Hence, the choice of turbulent mixing length in our sub-

sequent analysis is not critical.

Thus, we see reasonable agreement between the measurements from Monopolis

and Danaczko, the results from the numerical simulation and the theoretical analysis.

For very long arrays, the choice of the Cd coefficient, or equivalently the Forchheimer

F parameter, is less crucial.

For steady flow past a single cylinder, the Reynolds number plays an important

role in determining the drag force, as does the level of free-stream turbulence. Both

affect boundary layer separation. It seems likely that neither effect is as important

for current blockage as most of the cylinders within the array are exposed to the

wakes of other cylinders with the locally high levels of turbulence that this implies.
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Figure 4.6: Comparison of the drag forces as a function of tow speed - data points from
Monopolis and Danaczko (1989).

In the Monopolis and Danaczko compliant tower tests, the individual obstacles were

∼ 1 cm across and the flow speed was ∼ 1 m/s, giving a Reynolds number ∼ 10,000.

This is large enough to give significant vortex structures in the wakes and turbulence

incident on downstream cylinders.

4.4 Numerical study of steady flow

This section provides several key numerical studies for the steady flow analysis: grid

independence, lateral mixing and the importance of additional turbulence injection to

account for the local obstacle-induced turbulence not generated by standard porous

block simulations.

4.4.1 Grid independence

The grid independence study investigates the influence of the number of cells used to

form a porous block on the resultant field parameter, such as pressure gradient and

velocity profile. The aim is to achieve a grid independent solution, that is a consistent

solution which does not vary significantly when one alters the number of cells forming
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the porous block.

Three different levels of mesh forming the porous block are considered, shown in

Figure 4.7.  

                                  
Figure 4.7: Three different mesh resolutions: level 1, level 2 and level 3.

The velocity profile on the block of three different levels is provided in Table 4.2.

The velocity magnitude for each level is taken by averaging the velocity profile across

the height of the porous block. Richardson extrapolation indicates that the longitud-

inal velocity (ux) converges faster than quadratically as the mesh is refined.

Table 4.2: The velocity distribution profile for the three different levels of mesh.

Configuration Field Parameter (m/s)
Type ux uy
Level 1 0.712 0.072
Level 2 0.671 0.083
Level 3 0.669 0.085

The velocity distribution profiles of levels 2 and 3 are sufficiently close that both

choices of the finer levels are usable. Of course, to have a more precise solution, the

finest is recommended. For Georgiou and Vickery comparison in Section 4.3.1, level

2 meshes were used.

4.4.2 Lateral mixing

One substantial advantage of numerical simulation as compared to the actuator disc

theory is the ability to simulate proper lateral momentum exchange between the

inner blocked flow and the outer free-field flow. This lateral mixing (due to side

leakage) accelerates the blocked flow which results in slightly less blockage compared

to the actuator disc theory, thus higher overall drag force. The amount of lateral

mixing is dependent on the downstream spacing distance between two adjacent grids,
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Figure 4.8: Variation of drag (or blocked current) against aspect ratio.

and (possibly) also on the resistance level (or amount of blockage). The further the

downstream spacing distance and/or the higher the resistance, the more prominent

the lateral mixing effect.

For the extreme case of Monopolis and Danaczko towed compliant tower, the

numerical simulation results are generally slightly larger than the theoretical analysis,

in terms of drag or effective drag coefficient, but both the theoretical and numerical

simulation results match the experimental data well. The numerical simulation is able

to simulate the lateral mixing effect which in this case is governed by the downstream

spacing distance in a more robust manner, as compared to the theory which invokes

a very simple wake mixing model when the spacing is greater than the width of the

frontal grid (see Chapter 3.2.3.2 and Taylor et al. (2013)).

Figure 4.8 provides variation of normalised mean force as a function of aspect ratio:

length to width (L/wf ) on a porous block in two-dimensional (denoted as circles) and

three-dimensional steady flow simulations (denoted as crosses). The analysis uses the

same computational domain and boundary conditions as the Geogiou and Vickery

single grid under 0◦ incident angle test case for the two-dimensional simulation and the

Monopolis and Danaczko single block test case for the three-dimensional simulation.

Also included in the figure the analytical results from the actuator disc theory (shown

as a dashed line) without wake mixing model. All cases are run for CdA/Af = 0.97

and uc = 2.5 m/s.
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One can observe the slight effect of lateral mixing which re-energises the blocked

flow as the aspect ratio of the porous block gets larger. There is more distance for the

lateral momentum exchange to take place along the edges of the porous block, which

results in higher drag or blocked velocity (or lesser blockage). The three-dimensional

porous block simulation allows lateral mixing to occur in two-dimensional space (both

lateral and vertical), while the two-dimensional simulation only allows it to occur in

one-dimensional space (lateral), thus the lateral mixing effect is larger in the three-

dimensional case compared to the two-dimensional. Overall, the lateral mixing effect

is more prominent when the aspect ratio of the grid is roughly larger than 1:1, or

when L > wf , as observed in the Monopolis and Danaczko towed compliant tower

test.

4.4.3 Obstacle-induced turbulent injection

A test comparison between the standard k − ω and k − ϵ turbulence model for the

Georgiou and Vickery wind tunnel test of 7 frames under 0◦ incident angle has been

conducted previously to ensure no significant differences between the two models,

and it is indeed found that there is a very slight reduction in the averaged velocity

profile from k − ω to k − ϵ turbulence model, yet this variation is not significant.

We now proceed to investigate the effect of injecting additional turbulence, with the

obstacle-induced turbulence model based on k − ϵ formulation described previously

in Section 4.2.2.2. The same steady flow case of Georgiou and Vickery is chosen for

the turbulent injection study.

4.4.3.1 Comparison of k − ϵ with injected turbulence for fixed β

This subsection compares the standard k − ϵ with the obstacle-induced turbulent

model for fixed β which is taken to be 0.05 and for varying Lb from 0.025 to 0.1 ×wf .

The resultant averaged velocity ui measure and Σu2i are shown in Table 4.3.

Table 4.3: Comparison of ui and Σu2i between k − ϵ and injected turbulence for fixed β.

k − ϵ u1 u2 u3 u4 u5 u6 u7 Σu2i
Standard 0.885 0.851 0.815 0.781 0.749 0.720 0.696 4.344

Lb = 0.025wf 0.884 0.850 0.817 0.785 0.756 0.730 0.708 4.392
Lb = 0.05wf 0.888 0.857 0.826 0.799 0.776 0.757 0.743 4.571
Lb = 0.1wf 0.895 0.868 0.844 0.824 0.809 0.799 0.795 4.871
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Here we demonstrate that for reasonable values of Lb which represent the length

scale of internal structural member spacing (note the turbulent mixing length, Lt, is

taken to be 0.07 ×wf ), no significant variation is observed in terms of the average

velocity measure in each grid.

4.4.3.2 Comparison of k − ϵ with injected turbulence for fixed Lb

This subsection compares the standard k − ϵ with the obstacle-induced turbulent

model for fixed Lb which is taken to be 0.05×wf and for varying β from 0.025 to 0.1.

The resultant averaged velocity ui profile and Σu2i is shown in Table 4.4. The close

up views of the velocity distribution profile for each case is illustrated in Figure 4.9.

Table 4.4: Comparison of ui and Σu2i between k − ϵ and injected turbulence for fixed Lb.

k − ϵ u1 u2 u3 u4 u5 u6 u7 Σu2i
Standard 0.885 0.851 0.815 0.781 0.749 0.720 0.696 4.344
β = 0.025 0.886 0.853 0.820 0.790 0.763 0.740 0.721 4.461
β = 0.05 0.888 0.857 0.826 0.799 0.776 0.757 0.743 4.571
β = 0.1 0.891 0.862 0.835 0.813 0.796 0.783 0.775 4.742

Again, for reasonable values of β, no significant difference is observed between the

obstacle-injected turbulent and the standard turbulent results.

We conclude that the presence of additional injected turbulence does not signi-

ficantly affect the velocity and pressure distribution of the global blocked flow. The

injected turbulence eventually is averaged out when global blockage prevails, i.e. when

steady-state condition has been reached. Here we demonstrate that only the global

(bulk) effect of the wake mixing of the whole structure matters for current blockage,

and not the detailed (smaller scale) wake mixing of individual cylinders within the

structure.

4.5 Regular oscillations plus current flow

Here we are interested in modelling the combination of regular oscillations and steady

current flow past a porous block. With the extra loading contribution from waves

superimposed on top of the current, extra resistance thus extra blockage is expected.

A full current blockage model (FCB) has been introduced to account for the extra

blockage as described in Chapter 3 and published in Taylor et al. (2013). This model

70



Figure 4.9: Velocity distribution profile for standard k−ϵ, β = 0.025, β = 0.05 and β = 0.1
when Lb = 0.05× wf (clockwise from the top left figure).

is presently suited for regular waves plus current. Here the FCB model is summarised

briefly.

Consider a grid in a flow with both a steady blocked current ucs and a regular

oscillating wave component uw. Assuming that the Morison equation can be used to

describe the force on the obstacles over the wave cycle and there are no Keulegan-

Carpenter number effects, the averaged force over a complete flow oscillation, which

forms the underlying principle for the FCB model, can be expressed as:

Fav

1

2
ρCdA

=
1

2π

2π∫
0

(uwcosϕ+ ucs)|uwcosϕ+ ucs|dϕ (4.10)

where ϕ is the oscillation phase angle. The integral has two exact solutions for

ucs > uw and for ucs < uw, and a simple asymptotic form for uw >> ucs. Equating

each of the two exact solutions to the net force on the actuator disc for the grid of the

time averaged mean flow eventually yields three submodels depending on the relative
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magnitude of the wave and current velocities. Likewise, equating the asymptotic

solution to the same net force expression yields an asymptotic two disc model which

forms the main feature of the full model, expressed as (Taylor et al., 2013):

Peak drag ∼= ±1

2
ρCdAu

2
w +

π

4
ρAfu

2
c (4.11)

Notice the absence of the wave × current term, (uw × uc), in the approximate form.

The additional blockage in regular waves removes this term.

For the comparison with numerical simulation in terms of the peak drag values,

Equation 4.11 is used for the theoretical analysis (FCB). For the comparison in terms

of the complete drag force time history, the asymptotic drag force time history solution

described in Chapter 5 and Santo et al. (2014b) is used instead, which is expressed

as:

Drag =
1

2
ρCdA(uw cosϕ)|uw cosϕ|+π

4
ρAfu

2
c |cosϕ| (4.12)

We now compare the validity of the full analytical model with the numerical sim-

ulations in regular oscillations plus steady current flow. One available experimental

data set for the case of regular waves plus current is the Allender & Petrauskas ex-

periment analysed in Chapter 3 and Taylor et al. (2013). That study compares the

experiment data with the FCB model, and the agreement is shown to be very good.

It could also be compared with the numerical simulation when one moves from a

planar flow simulation to a three-dimensional porous tower with free surface effect

implemented (this is covered in Chapter 6 and in Santo et al. (2014a)). However,

as the present simulation only considers two-dimensional planar flow without a free

surface, a more appropriate comparison would be between the FCB model and the

numerical simulation by looking at a slice of a jacket or tower with varying relative

magnitude of wave oscillation to current velocity (uw/uc) and CdA/Af = 0.97. Thus,

the flow motion considered is regular oscillations plus steady flow (or current). This

is provided in Figure 3.10 (which is also Figure 8 of Taylor et al. (2013)).

We note that the same Cd value for steady flow (inferred from the steady tow tests

of Allender and Petrauskas (1987)) is used for unsteady flow simulation in Chapter 3

and Taylor et al. (2013) and in this study. We are neglecting Keulegan–Carpenter

number effects because the sweep of the oscillations is much bigger than the size of

the individual obstacles and the wave-induced oscillatory flow is assumed to be large

compared to the current. No large variation in Cd between steady and unsteady flow

is expected, because of the nature of obstacle array and large turbulent intensity

within the array. This will massively disrupt the coherent nature of the vortex wake
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behind a single cylinder in ‘clean’ flow. The disruption of the vortex induced local

reversed flow is likely to reduce or eliminate KC number effects.

Two different types of simulations are performed, namely time-averaged mean flow

and fully unsteady flow simulations.

4.5.1 Time-averaged mean flow modelling

Before proceeding to fully unsteady flow simulations, it is possible to account for

regular oscillation with current in a time-averaged manner in numerical simulation.

The time-averaged mean flow case still runs as a steady flow simulation, but with

enhanced mean resistance due to an externally embedded averaged Morison force

over a wave cycle. This accounts for additional blockage from the wave contribution,

which is the governing principal equation of the FCB model. The major assumption

in this case is that the extra resistance is assumed to behave as the mean Morison

force averaged over a cycle, which may not be realistic in the event of irregular waves.

Nevertheless, the time-averaged mean flow case provides an intermediate stage for

comparison with the analytical theory, as the rest of the blockage calculation can be

solved numerically using the now time-averaged Navier-Stokes equations.

The time-averaged mean flow simulation attempts to answer the question on how

well the one-dimensional FCB model would perform when an actual flow problem

cannot be reduced to a simple one-dimensional flow problem. With such simulation,

the difference between the one-dimensional analytical model and two-dimensional

numerical simulation model can be addressed, and any important features not able to

be captured in the one-dimensional model can be identified. Thus, the time-averaged

mean flow simulation serves as a bridge to link the gap from the one-dimensional

analytical model to the two-dimensional numerical porous block model.

4.5.1.1 Lateral resistance

The first requirement is to embed the local averaged one-dimensional Morison expres-

sion according to the closed-form solutions obtained from Equation 4.10. However, a

question arises on what to specify for the lateral resistance, as now we move from one-

dimensional analysis (actuator disc theory) to two-dimensional numerical simulation.

It is by no means clear what to prescribe laterally as the above expression and its

associated closed form solutions are purely in one-dimensional form. The solution is

to invoke a local averaged two-dimensional Morison force over a wave cycle, expressed
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as:  Fav

1

2
ρCdA


x

=
1

2π

2π∫
0

(uw cosϕ+ ucs) ·
[
(uw cosϕ+ ucs)

2 + v2
]1/2

dϕ (4.13)

 Fav

1

2
ρCdA


y

=
1

2π

2π∫
0

v ·
[
(uw cosϕ+ ucs)

2 + v2
]1/2

dϕ (4.14)

where v is now the lateral velocity flow component, uw is the amplitude of the wave

oscillation, and ucta is the ambient blocked current velocity component of the time-

averaged mean flow simulation. The key assumption here is that the current velocity

is reduced due to blockage but the wave velocity is unaltered. Equation 4.13 and 4.14

describe the porous block resistance in x - (along the mean flow) and y- (lateral)

direction, respectively. They are solved by numerical integration (trapezoidal rule),

as no closed form solutions are available.

The above averaged Morison relationship applies for two-dimensional case, but it

can also be extended to three-dimensional time-averaged mean flow when both v and

w (lateral velocity in z -direction) are assumed to be constant in time.

4.5.1.2 Comparison with the analytical model

The time-averaged mean flow simulation makes use of the same computational domain

as the Georgiou & Vickery wind tunnel simulation domain, same mesh grading, same

boundary and initial condition, and a 1:1 aspect ratio of a porous block representing

a slice of a typical compliant tower section. The simulation ranges for various relative

magnitude of horizontal wave oscillatory velocity to the free stream current velocity

(uw/uc), while uc is fixed at 2.5 m/s. The simulation time is about 7,500 sec (2 hours)

in serial mode on a Dell workstation.

A typical result from the time-averaged mean flow simulation of a free stream

current which flows through a porous block (from left to right) is plotted in Figure 4.10

in terms of the velocity streamline profile. Here the porous block is represented by

a black-coloured grid. The extra blockage is captured by the larger flow divergence

away from the core of the porous block and bigger flow reduction downstream of the

block.

The horizontal wave oscillatory velocity (uw) is internally imposed in the governing

equation of the enhanced resistance of the porous block in this time-averaged mean
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Figure 4.10: Typical velocity streamline profile of a time-averaged mean flow simulation.

flow simulation. Thus, the velocity that the porous block model solves for is the

blocked steady flow velocity (ucta). Here the advantage of the porous block model

being a two-dimensional model in this planar flow simulation over the FCB model

being a one-dimensional model is described.

The FCB model solves the predicted drag based on three submodels which switch

smoothly, and for the case of big oscillations and small steady flow (case (i) flow

regime in Taylor et al. (2013)), the model splits the loading into two discs with the

minimum blocked steady flow velocity, ucs = uc/2 at the front disc and zero at the

rear. The peak drag then follows Equation 4.11. This ad-hoc approach is imposed

due to the limitation of the theory being a one-dimensional model. In contrast,

the blocked steady flow velocity from the time-averaged mean flow simulation, ucta,

could be possibly less than uc/2 in the numerical porous block model as it is a two-

dimensional planar flow model (actually a three-dimensional model but out-of-plane

flow is not considered here).

The peak drag of the numerical simulation is expressed as 1/2ρCdA(uw + ucta)√
(uw + ucta)2 + v2, with ucta supplied directly from the time-averaged mean flow

simulation, and the drag formulation is consistent with Equation 4.13. It can be

normalised by dividing with 1/2ρCdAu
2
c , and plotted against uw/uc as shown in Fig-

ure 4.11.

The complete drag force time history of the time-averaged mean flow simulation

is expressed as 1/2ρCdA(uw cosϕ + ucta)
√
(uwcosϕ+ ucta)2 + v2. Figure 4.12 shows

the drag force time history for the extreme case of uw/uc = 4, i.e. when uw = 10 m/s
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Figure 4.11: Normalised peak drag comparison between time-averaged mean flow simula-
tion and theoretical analysis for ranges of uw/uc.

and uc = 2.5 m/s, plotted in terms of the velocity term ux|u|, where ux = uw + ucta

and u = uw + ucta + v (in vector form). To compare the drag force time history of

the numerical simulation with the theoretical analysis, the predicted velocity term

of the theory is required. Here we divide the asymptotic drag force time history

of the theoretical analysis (Equation 4.12) with 1/2ρCdA to obtain the equivalent

velocity term of the theory. The numerical result is plotted as solid grey line, and the

theoretical result as solid black line.

It is interesting to note the relatively good agreement between the theoretical

analysis and the numerical simulation for the case (i) flow regime, where the theory

arbitrarily splits the loading into two discs for mathematical convenience, while the

numerical simulation solves the case based on Navier-Stokes formulation which is

supposed to be more realistic. This indicates that the ad-hoc approach of the FCB

model works. The good agreement supports the theoretical prediction that there is

no uw × uc term.

The slight offset of the simulation result from the theoretical analysis in case (i)

flow regime is due to the difference in the governing equation of the two models. The

full current blockage model invokes a local averaged one-dimensional Morison force

over a wave cycle, and hence it is a one-dimensional model. In contrast, the porous

block model in time-averaged mean flow simulation is a two-dimensional model, which

takes into account the spatial variation (both longitudinal and lateral) of all the flow
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Figure 4.12: Reduced velocity time history comparison between time-averaged mean flow
simulation and theoretical analysis for uw/uc = 4.

components, and hence it is more complete and realistic than the one-dimensional

model.

Even though the numerical simulation predictions are a little higher than the

theoretical analysis, the difference is insignificant compared to the difference in the

peak drag between the FCB model and the SCB model (as well as the standard

Morison formulation). Note that Figure 4.11 shows a load reduction for a section of

a tower only - the reduction is more significant when it is integrated throughout the

entire tower. Note also that the choice of CdA/Af ∼ 1 is for a typical jacket type

structure. For a compliant tower, CdA/Af could be > 2, thus higher resistance (or

blockage factor) which contributes to even higher load reduction.

Cautious attention needs to be drawn for the asymptotic limit of uw >> uc of

Figure 4.11. The result is obtained from the local Morison force average by assuming

that a finite size of steady current, uc, is always present (uc ̸= 0). Thus, when

extrapolating the plot for the limit of uw/uc → ∞, there is always a force reduction

(blockage) compared to the other two methods. However, uw/uc → ∞ could also

mean uc → 0 i.e. the current is tiny compared to the wave oscillations, in which

we obtain a slight incompatibility from Figure 4.11. This will be the case of wave

oscillation with no steady mean flow, and there will be no blockage occurs - wave

(without current) blockage is assumed not to occur.

Hence, we conclude that the predicted drag of the time-averaged mean flow sim-

ulation agrees well with the full current blockage model (FCB). The two-dimensional

numerical porous block model, however, is more complete than the one-dimensional
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analytical model as it is able to model and resolve properly the reduced flow in all

directions when subjected to high hydrodynamic loading (high uw/uc or CdA/Af ),

without invoking further assumptions other than the Forchheimer resistance calibra-

tion and the turbulence model.

4.5.2 Fully unsteady flow modelling

A fully unsteady flow case simulates regular oscillations plus steady flow on a station-

ary porous block, in which the porous resistance is defined by the standard Darcy-

Forchheimer equation (refer to Equation 4.2). Thus, there is no additional resistance

embedded into the solver, unlike the case of time-averaged mean flow simulation. The

additional unsteady term accounts only for the inertia of the fluid undisturbed by the

presence of the obstacles. No allowance is incorporated in these calculations for the

Morison inertia term.

One obvious advantage of simulating a fully unsteady flow case is the ability to

simulate random oscillation (to mimic random waves) plus current and resolve the

time varying blocked current - a big leap ahead from the state-of-the-art FCB model

which at present is only suitable for regular waves plus current. This feature can be

used to provide essential information needed for the theory to account for the effect

of random waves analytically, for instance the time-dependent evolution of the the

global large-scale wake needed to build up to steady-state structure downstream in

random waves.

4.5.2.1 Computational domain layout

The layout of the computational domain of the fully unsteady flow simulation is sim-

ilar to that of time-averaged mean flow simulation, except the extent of the numerical

domain away from the porous block has been greatly reduced to limit the computa-

tional times. It is known that typical drag calculations (such as for steady/unsteady

flow around a cylinder) are generally very sensitive to the truncated domain distances

from inlet and outlet boundaries. Fortunately in this porous block simulation, the

drag calculation is less sensitive as fluid is allowed to flow through the porous body

with certain porosity, thus the effect of flow separation is reduced and vortex shedding

is suppressed, for most of the cases of interest. This flow condition is akin to high

base bleed for a single body (Bearman, 1967; Wood, 1967).

Numerical wind tunnel blockage effect is investigated for two different widths of

domain characterised by the distance of the slip wall to the porous block: 2.83wf
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and 4.5wf , and the resultant blocked velocity profiles are identical. Thus, all the

fully unsteady flow simulations are performed in 6.67wf domain width configuration,

with the mesh size of about 10,000 cells. The layout of the domain is illustrated in

Figure 4.13.
                          

2.83��  �� 2.83��  
2.83��  6.17��  Slip wall 

Slip wall Inlet Outlet ��  ��  
Figure 4.13: Layout of the computational domain for fully unsteady flow simulation.

The boundary condition for velocity at both inlet and outlet switches according to

the direction of the oscillating flow, which means that the inlet and outlet of u switch

to outlet and inlet whenever the oscillating flow reverses its direction and opposes

the steady flow which flows at a fixed direction. The outlet boundary condition

(∂p/∂n = 0) for pressure is applied to both inlet and outlet.

One advantage of using the SIMPLE algorithm is that the simulation remains

stable even for Courant number > 1, permitting the use of an implicit solver in time.

However, to produce smooth and clean oscillating flow, the simulation time step

must be kept sufficiently small. The fully unsteady flow simulation requires much

longer runs than the time-averaged mean flow simulation, because the Forchheimer

resistance term is treated explicitly in time. A typical simulation time required for

the fully unsteady flow simulation of 10 oscillation periods is about 360,000 sec (or

100 hours) in serial mode on a Dell workstation.

4.5.2.2 Comparison with the analytical model

Similar to Section 4.5.1.2, the fully unsteady flow simulation compares the theoretical

analysis and the simulation results based on a slice of a structure subjected to two-

dimensional planar regular oscillations plus steady flow (for a wide range of uw/uc).

In contrast to the time-averaged mean flow simulation where the horizontal wave

oscillatory velocity (uw) is externally imposed, the velocity that the porous block
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model solves in this fully unsteady flow simulation without enhanced resistance is

the total reduced velocity, which consists of the combination of the reduced velo-

city of current, regular wave oscillation and lateral flow, denoted simply as u. The

peak drag and the drag force time history of the fully unsteady flow simulation is

obtained directly by integrating the velocity components over the entire porous cells

as 1/2ρCdA/V
∫
ux|u|dV , where V is the volume of each porous cell.

A comparison of the drag force time history in terms of the velocity term between

the fully unsteady flow simulation and the theoretical analysis, similar to Figure 4.12,

is shown in Figure 4.14 for the extreme case of uw = 10 m/s, uc = 2.5 m/s (uw/uc = 4),

with regular oscillation period of 12 sec. The numerical result is plotted as solid grey

line, and the theoretical result as solid black line.
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Figure 4.14: Reduced velocity time history comparison between fully unsteady flow simu-
lation and theoretical analysis for uw/uc = 4.

It can be observed that the ux|u| term of the numerical simulation has converged

to the steady-state periodic condition after about 5 oscillation cycles. Even though

the porous block simulation does not resolve each individual wake from the internal

structural members of a grid, the build up effect of the global wake structure is clearly

represented. The ux|u| time history of the simulation at the steady-state has a slightly

higher mean force compared to the that of the FCB model, but the overall periodic

shape is similar. The slight difference in the peak crest and trough values follows

the same argument as in the time-averaged mean flow simulation. The agreement in

overall, however, is shown to be good.

Comparing Figure 4.12 and Figure 4.14, it is obvious that the time-averaged mean

flow simulation yields an identical result as the fully unsteady flow simulation, even
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though the two simulations are of different types. This good agreement justifies

the time-averaged two-dimensional Morison resistance approach presented in Sec-

tion 4.5.1, which is a convenient approximation for the case of regular oscillations

plus mean flow, as it runs much faster than a fully unsteady flow simulation.

To summarise the results so far, all the five hierarchy models are tabulated in

Table 4.5: standard Morison with no blockage, simple current blockage model (SCB),

full current blockage model (FCB), time-averaged mean flow simulation (TA) and full

unsteady flow simulation (FU).

Table 4.5: Hierarchy of current blockage models.

Morison
1

2
ρCdA(uw cosϕ+ uc)|uw cosϕ+ uc|

SCB
1

2
ρCdA(uw cosϕ+ ucs)|uw cosϕ+ ucs|

where ucs is obtained from Equation 3.1

FCB
1

2
ρCdA(uw cosϕ)|uw cosϕ|+π

4
ρAfu

2
c |cosϕ|

(Santo et al., 2014b)

TA
1

2
ρCdA(uw cosϕ+ ucta)

√
(uw cosϕ+ ucta)2 + v2

FU
1

2
ρCd

A

V

∫
ux|u|dV

The normalised force time history comparisons for all the five models are plotted

in Figure 4.15 for uw/uc = 4. The legend is sorted in decreasing force peaks, from

the standard Morison being the highest to the FCB being the smallest.

Overall, both the TA and FU numerical simulation agree well with the FCB model,

despite the very slight mean offset. Meanwhile, both the standard Morison and the

SCB model greatly over-estimate the drag force peaks and under-estimate the drag

force troughs, as there is no account made for any additional blockage effect, under

the same hydrodynamic input parameters such as CdA/Af , uw and uc. This numerical

evidence of load reduction in regular oscillations plus steady flow is consistent with

the extensive experimental evidence of current blockage described in Chapter 5 and

Santo et al. (2014b).
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Figure 4.15: Normalised force time history comparison between the theoretical analysis
and the numerical simulation for uw/uc = 4.

The good agreement demonstrates the viability of the novel use of a porous block in

representing the complex geometry of a section of a statically-responding fixed space-

frame offshore structure, where the drag resistance can be calibrated and modelled.

The two-dimensional numerical porous block model, apart from being able to model

and resolve high hydrodynamic loading case more properly than the one-dimensional

analytical model, is also able to simulate irregular oscillations to mimic random waves

for a more complete investigation of current blockage effects on offshore structures.

4.6 Chapter summary & conclusions

This chapter demonstrates that the use of CFD numerical simulation is a viable

approach for investigating current blockage effects, and that any array of obstacles or

grids can be replaced by Morison-type quadratic resistance porous blocks with a single

calibration on the Forchheimer resistance term. The effect of injecting additional

turbulence to produce smaller wake mixing effect compared to the dominant shear

layer mixing has been investigated, and the global flow results are not significantly

affected.

Good agreement is obtained between the flow simulation, the experimental data

points and the simple current blockage model (SCB), for the steady flow comparisons:
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the Georgiou & Vickery lattice frame test and the Monopolis & Danaczko compliant

tower tow test. Skewed grids of multiple frames in the Georgiou & Vickery test

case can be adequately modelled in the numerical simulation, and the exact value of

the assumed turbulent mixing length is not critical. For structures with very high

aspect ratio (very extended obstacle arrays in the downstream direction), considerable

wake mixing occurs through the lateral edges of the porous blocks, which mixes low

momentum flow within the array with higher momentum flow from outside and has

the effect of partially re-energising the flow through the blocks. This leads to a

more important role for the assumed turbulent mixing length, as demonstrated in the

Monopolis & Danaczko compliant tower tow test case.

Time-averaged mean flow simulation internally imposes enhanced resistance on a

porous block under the same underlying governing assumptions as the full current

blockage model (FCB), i.e. the local Morison average over a wave cycle for regular

waves. The time-averaged mean flow simulation agrees well with the FCB model,

particularly in the region of large regular oscillations and small steady flow, and it is

a convenient approximation for the case of regular oscillations plus steady flow as it

runs much faster than a fully unsteady flow simulation.

Fully unsteady flow simulation models regular oscillating flows superimposed with

a steady flow on a porous block without any enhanced resistance in contrast to the

time-averaged mean flow simulation. The fully unsteady flow simulation agrees well

with the FCB model and the time-averaged flow simulation. Also, it is a more general

approach compared to the others as it is also capable of modelling irregular oscillation

plus steady flow.

The good agreement between the two different flow representations (one by the ac-

tuator disc theory, the other by the Navier-Stokes equations) justifies the validity and

applicability of the FCB model in predicting the amount of blockage experienced by

a structure in the event of regular wave oscillations plus steady flow. Particularly for

the case of big wave oscillations in a small steady flow, the good agreement between

the theory and the numerical simulation lends support to the FCB prediction that

uw × uc contribution to the force peaks vanishes due to the extra blockage contribu-

tion from waves. This chapter provides numerical evidence that there is more load

reduction to be gained by accounting for wave–current–structure interaction for the

case of steady current in regular oscillations, an essential feature that the standard

Morison and the present offshore industry guideline (SCB) do not capture.

This chapter also demonstrates that the two-dimensional numerical porous block

model is more general and complete than the one-dimensional analytical model for
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both steady and oscillatory flow applications to simulate steady current and waves.

The two-dimensional numerical porous block model has been shown to better model

array of obstacles under skewed incident angle, with lateral mixing, high hydro-

dynamic loading and a non-spatially-uniform porosity distribution across a struc-

tural layout. All the velocity components longer than individual obstacle scale can

be properly resolved by solving the Navier–Stokes equations without invoking any

assumptions other than the Forchheimer resistance calibration and the turbulence

model. The numerical porous block model serves as a starting point for a more com-

plete CFD investigation of current blockage effects: a three-dimensional porous tower

model in a finite water depth with free surface effects of combined waves and in-line

current.

This chapter has been submitted to the journal Ocean Engineering as Santo et al.

(2013a).
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Chapter 5

Current blockage experiments:
Force time histories on obstacle
arrays in combined steady and
oscillatory motion

5.1 Introduction

This chapter attempts to test the validity and applicability of the full current blockage

model, by looking into the complete total force time history and drawing comparisons

from a series of experiments conducted at Cornell University. The motions performed

in the experiments are for steady flow and steady flow plus regular oscillation to mimic

motion of current alone and current plus regular waves acting on simple grids. We

contrast the full time history of the drag loading, studied experimentally in this

chapter, to the peak forces analysed by Taylor et al. (2013) and in Chapter 3. In this

earlier analysis, only values for the peak forces were available from the experiments

on a model structure in regular waves and current by Allender and Petrauskas (1987),

not the entire time history of the force.

The experiments look at the fundamentals of current blockage by moving a series

of perforated flat plates with square holes along a towing tank. The grid configur-

ation is chosen to be simple to better understand the physics of the complete flow

and the resulting blockage effects. Thus, rectangular bars instead of cylinders are

used to force the flow separation to occur right at the edges, square holes instead of

long slits are used to produce more efficient three-dimensional vortex shedding and

mixing downstream of the grid. The grids are moved through otherwise stationary

water to minimise variation of the flow and wake structure with depth below the free
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surface which would occur if real water waves were produced. In summary, this exper-

iment is intended to be a novel and particularly clean investigation of fluid-structure

interaction producing blockage.

The measured forces are first analysed in terms of the full blockage model (FCB)

based on the Morison equation. The peaks and troughs of the force time history are

well captured by the full model, but we note that the shoulders (inflexion regions) of

the Morison-based equation, where the velocity crosses through zero, are too distinct.

We then characterise the shape of the oscillation-generated component of the drag

force as a Fourier series and show that this is preserved as an offsetting mean current is

introduced. Also, as well as a mean force arising from the current, there is a coupling

of the oscillation to the current component in that the drag term proportional to the

square of the current shows oscillations in phase with the unsteady motion.

A common feature to all laboratory scale experimental studies is that the real

world applications of Reynolds number cannot possibly be matched. In these ex-

periments, we are short by a factor of ∼ 104. Thus, the Reynolds number of these

experiments is much lower than full scale offshore flow structures, and various issues

which characterise wave-driven flows are not fully represented, which warrant further

investigation. However, the present experiments are intended to constitute a basis

for reference.

5.2 The complete time-dependent form of the full

current blockage model

Here we are interested in exploring the validity of the asymptotic two-disc time-

dependent drag force of the full current blockage model (FCB), in which previously the

asymptotic drag force is expressed only in terms of peak drag (refer to Equation 3.25

in Section 3.4.2.3) and has been shown to contain clear separation of the wave ×
current term, (uw × uc), in the approximate form.

The full time-dependent asymptotic two-disc drag force expression can be obtained

from a complete two-disc drag force of Equation 3.20 in time-dependent form as shown

below:

Drag =
1

2
ρCdAL(uw cosωt+

1

2
uc)|uw cosωt+

1

2
uc|

+
1

2
ρCd(A− AL)u

2
w cosωt|cosωt| (5.1)
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by expanding the modulus term of (uw cosωt+ uc/2) and cosωt, which gives:

Drag =
1

2
ρCdAu

2
w cosωt|cosωt|+π

4
ρAfu

2
c |cosωt| (5.2)

Note that the current term contains a time-dependent |cosωt|, which is in phase

with the wave velocity field yet it scales with the current velocity squared.

Equation 5.2 becomes the prediction from a Morison-type model for the time-

dependent drag loading on the entire structure. This model of the force time history

makes very specific predictions on both the magnitude and time history of components

within the total force, which are tested experimentally.

The asymptotic effect of the current is to produce a shift in the peak wave crest

and trough forces by an equal amount of π/4ρAfu
2
c . In contrast, the mean (cycle-

averaged) drag force is predicted to be smaller:

Mean drag =
1

2
ρAfu

2
c (5.3)

for high hydrodynamic loading when the two-disc switching model is required. If only

a single disc is needed, the mean force is:

Mean drag = 2ρAfucs(uc − ucs) (5.4)

where ucs is the current at the plane of the single disc, and ucs > uc/2, so the mean

drag is smaller than for the highly loaded disc.

5.3 Experimental setup

The experiments involve towing grids of perforated plates with four different values of

the blockage ratio (A/Af ). These were conducted in a large computer-controlled XY

towing tank in Cornell University. The towing tank has a length of about 6 m, with

limit switches near both ends to stop the carriage from moving too far. Allowing for

a safety margin, the maximum distance of motion for the carriage is 4 m. The width

of the tank is 1 m, and the water depth is 0.5 m. Previous forced motion and force

measurements on a single cylinder using this setup were conducted by Stallard et al.

(2009).

The experimental arrangement is illustrated in Figure 5.1. It consists of grids

of perforated thin plates (three are shown) mounted on a force transducer which is

aligned in the x -direction. These are then supported on a stiff plate and mounted on a
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      Figure 5.1: Schematic diagram of the XY towing tank, shown in plan and elevation view.

carriage. The support plate and the carriage are mounted within a triangulated cross-

beam which is moved on rails by a motion-controlled tension cable in the x -direction.

The speed of the carriage is limited to 20 cm/s.

A waiting time of 20 minutes between each test was chosen to allow settling of

the water in the tank as the vorticity field generated by the previous test dissipated.

Motion of the grids was coordinated from a LabView interface installed on a PC. The

input data permit the input of a programmable velocity - time history. The interface

sends a voltage signal to each motor to produce the required carriage motion. Both the

commanded velocity and resulting load signals measured from the force transducer

were recorded on the same interface, and the voltage signal was converted to an

actual measured force in Newtons. This requires an in situ calibration of the force

transducer in the x -direction by recording the voltage corresponding to a range of

applied forces. When the recorded voltage was plotted against the applied forces, the

slope corresponds the conversion factor from Newtons to voltage, and the inverse of

that factor is the conversion factor from voltage to Newtons.

The grid layouts are shown in Figure 5.2. Up to three grids could be installed in

a total of four configurations as shown in Figure 5.2(a). The geometric details of the

grids are shown in Figure 5.2(b) and Table 5.1. Blockage ratios from 0.15 to 0.60 were

tested. We present results across the entire range of the blockage but concentrate our

analysis on blockage ratios from 0.15 up to 0.45. The grids were carefully designed

and mounted in such a way that there was no horizontal bar at the still water level
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(SWL), so that wave generation in the tank caused by grid motion was minimised.

         

30 cm 

30 cm 

(a)

(b)

Figure 5.2: Layouts of the grids of perforated plates. (a) Plan view of the grids showing
the four grid configurations. (b) Elevation view of the grids showing the four blockage ratio
analysed.

The sampling rate of the force data is 1000 Hz. Thus, the raw data recorded

through the force transducer and transmitted to the computer contains some elec-

tronic interference at frequencies well above those in the measured force signal. The

records were low-pass filtered to cut off the irrelevant portion of the raw data to

produce a clean and smooth filtered dataset.

The cut-off frequency was chosen to be 12 times the period of the oscillation, with

a smooth ramp down to zero of the frequency component at the top end of the band

pass range. For steady flow, the cut-off frequency is kept at 12 × 0.278 Hz (matching

the 3.6 sec oscillation period of the base case of unsteady flow). A smooth ramp down

is used instead of a sudden discontinuity at the cut-off frequency. We checked that

different cut-off frequencies (6, 12 and 18 times) and number of Fourier components
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Table 5.1: Grid dimensions for 4 different blockage ratios.

Parameter Grid Type
I II III IV

Width of the vertical strips (cm) 0.4677 0.887 1.354 1.891
Width of the horizontal strips (cm) 0.3613 0.864 1.425 2.069
Width of the square holes (cm) 5.439 4.936 4.375 3.731
Solid area, A (each, cm2) 130.5 261 391.5 522
Frontal area, Af (cm2) 870 870 870 870
Plate thickness (cm) 0.16 0.16 0.16 0.16
Blockage ratio (A/Af ) 0.15 0.30 0.45 0.60
Porosity ratio (1− A/Af ) 0.85 0.70 0.55 0.40

(interval width), which defines the frequency band of the ramp down (e.g. for 12 ×
0.278 Hz cut-off frequency: 3.29 - 3.39 Hz, 3.24 - 3.45 Hz and 3.12 - 3.56 Hz), did not

affect the results. All the filtering was done as post-processing in MATLAB. In the

electronics in the measurement system, no filters were incorporated.

5.4 Steady flow blockage

Steady flow blockage is observed by towing grids of perforated plates along the tank

at a constant velocity (uc) with smoothed ramp up-and-down motions incorporated

at the start and the end of the towing, respectively. Preliminary observations of types

of grids of perforated flat plates similar to those used here revealed that a Reynolds-

number-independent flow regime can be achieved from uc = 10 cm/s upwards as

shown in Figure 5.3(a), in which the inferred drag coefficient (Cd) is observed to be

constant from there on. Thus, uc = 10 cm/s is set to be the base case of the steady

flow for all types of grids with different A/Af ratio. For a velocity of 10 cm/s and a

typical strip width of 0.9 cm, the Reynolds number is ∼ 900.

Figure 5.3(b) demonstrates Reynolds number independence for unsteady flow

through 3 grids with A/Af = 0.45. Four different combinations of [uw , uc] for

the same oscillation amplitude were tested (with uw and uc in cm/s), and the meas-

ured drag forces were plotted on top of each other with a normalised time axis and

normalised drag. It is obvious that the [6 , 3] case is the sole outlier, implying that

the requirement of Reynolds number independence for the unsteady flow is that the

net forward velocity should be greater than 10 cm/s. Here, uw = 10 cm/s plus the
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Figure 5.3: Plot of test for Reynolds number independence for (a) steady flow of 3 grids,
and (b) oscillatory plus steady flow [uw , uc] of 1 grid, A/Af = 0.45; uw and uc in cm/s.

mean current uc = 5 cm/s is set to be the base case of the unsteady flow. More

discussion on the unsteady flow is provided in Section 5.5.

A typical force time history profile of steady flow is shown in Figure 5.4 for the

1, 2A, 2B and 3 grid configurations with uc = 10 cm/s. The acceleration transient of

the towing motion contributes to the initial sharp peak in the measured load. This

is subsequently followed by steady decline to a constant drag condition from 10 sec

onwards until the end of the steady flow phase at ∼ 36 sec. The effect of steady flow

blockage is obvious: from 1 grid to 2A/2B and 3 grid configurations, the measured

drag force does not increase by a simple multiplication of 2 and 3 – the increase

is much smaller. This simple observation demonstrates the occurrence of current

blockage in steady flow.

The effect of the downstream spacing of the grids is clearly visible: the measured

drag of the 2B grid is slightly larger than that of the 2A grid. Side leakage enhances

lateral mixing between the blocked flow after the first grid and the outer faster flow.

This mixing results in an increase in the blocked flow velocity reaching the second

grid, thus causing a slight increase in the associated measured drag. The spacing

between the grids in the 2B configuration is twice that in the 2A configuration.

The large initial transient peak illustrates the build-up of current blockage as well

as the inertial transients. Blockage occurs when the mean flow interacts strongly

with each individual member and its wake containing vortices, and achieves the full

saturation only when the steady-state wake condition has been reached. The larger
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Figure 5.4: Plot of force time history of steady flow of uc = 10 cm/s for A/Af = 0.45.

the hydrodynamic area (CdA), the higher the initial transients and the more blockage

that ultimately results.

On the right hand side of Figure 5.4, the small horizontal bars show the predictions

for the 2 and 3 grid tests based on the drag measured with only one grid present. The

simple current blockage steady-flow model is used (see Equation 5.5 and Taylor et al.

(2013)). The load on the 3 grid case is underpredicted, because leakage between

the grids is not properly accounted for. In contrast, full CFD simulations using

OpenFOAM R⃝ properly account for leakage and accurately predict the forces in 2 and

3 grids given the drag on a single grid. The grids are modelled as porous blocks, there

is no attempt to resolve flow around individual structural elements within each grid.

We note in passing that the CFD results clearly show the differences between 1, 2

and 3 grids. However, they are unable to distinguish the 2A & 2B cases with the grid

resolution used.

Figure 5.5 summarises the measured drags for all four different A/Af and grid

configurations as data points, plotted in terms of normalised drag against hydro-

dynamic loading, (CdA/Af ). The drag coefficients, Cd, for each A/Af are obtained

by calibrating the measured drag results of the 1 grid configuration with the simple

current blockage model. The Cd values are provided in table B.1 in the Appendix B.

The solid and dot-dashed lines are obtained from the drag on the switching model of

current blockage theory based on Af . The simple current blockage model predicts the

total drag force on an obstacle array of frontal area (Af ) in terms of the hydrodynamic
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area (CdA) of all the obstacles as:

F =
1

2
ρu2c

CdA(
1 +

CdA

4Af

)2 (5.5)

This assumes that the velocity of the wake downstream is greater than zero, which

requires CdA/(4Af ) ≤ 1. If the hydrodynamic area is larger, the idea of the switching

model is that the hydrodynamic area is split into two discs [CdA = CdAL+Cd(A−AL)],

the first disc with as large an area as possible, CdAL = 4Af , and the second disc

containing the remainder of the area in the far wake where the velocity is zero,

Cd(A− AL) = 0. The total maximum force then becomes:

Fmax =
1

2
ρu2c

CdAL(
1 +

CdAL

4Af

)2 =
1

2
ρAfu

2
c (5.6)

Although this split of the hydrodynamic area is somewhat ad hoc, the idea underlies

the analysis of the loading on obstacles from combined current and regular waves.

For further details, see Taylor et al. (2013).
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Figure 5.5: Asymptotic relationship of drag with hydrodynamic loading. The data points
are the measured drag for four different A/Af and grid configurations; the lines are the
predictions.

For a grid with a continuous solid plate, the definition of Af is obvious. However,

each bar within the grid can be regarded as associated with part of a hole. Should
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this also be true for a bar on the perimeter? Is the ‘effective’ frontal area slightly

larger? We test this hypothesis in Figure 5.5 with two versions of the switching

model using the ‘effective’ frontal area Af and 1.2 × Af , plotted as solid and dot-

dotted lines, respectively. We return to this increase in the effective frontal area in

Section 5.5.7, 5.5.8 and 5.5.11, where we consider the current-induced component of

drag in oscillatory plus steady motion.

The switching model of the theory postulates that the total drag on the array of

grids does not depend significantly on the structural layout or the details of the distri-

bution of hydrodynamic area (CdA) along the flow direction, demonstrated from the

two lines which behave asymptotically (flat) as the hydrodynamic loading (CdA/Af )

increases. Whether or not the theory works can be observed from the same fig-

ure. The data points clearly show asymptotic behaviour as hydrodynamic loading

increases. The majority of the data points lie close to the theoretical solid line.

However, there is some offset particularly for A/Af = 0.6, due to the leakage effect.

Higher A/Af values lead to more severe side leakage. This comparison shows rough

agreement between the measured drag behaviour and the theoretical prediction, that

the total drag experienced by an array of grids is independent of the hydrodynamic

loading for the case of high CdA/Af .

5.5 Unsteady flow blockage

5.5.1 Choice of parameters

In order to obtain somewhat comparable flow regimes to those encountered in actual

offshore conditions, separation of flow length scale effects need to be taken into ac-

count carefully. There are three different length scales involved: width of the vertical

strips, d (related to the diameter of a jacket leg, e.g. 1 - 2 m), oscillation amplitude

of waves, a (large waves could have a motion amplitude of 12 m near to the crest

level), and the frontal width of the grid (or frontal width of a typical offshore jacket,

e.g. a 60 m x 60 m platform has a width of 60 m). Table 5.2 shows the comparison

of the scale parameters.

It is important to carefully match the relative magnitude of oscillation amplitude

to the frontal width of the grids to closely resemble the flow regime in offshore condi-

tions, simply because if the oscillation amplitude is too large everything will become

blocked, and this will not be a good representation of the actual offshore conditions.

We consider this length scale as important as the Keulegan–Carpenter (KC = 2πa/d)

number scaling on individual elements (each plate), as the presence of steady flow
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Table 5.2: Comparison of scale parameters between experiment and actual.

Parameter Experiment Actual
Physical dimension 30 cm × 30 cm 60 m × 60 m
Oscillation amplitude (a) 5.7 cm ∼ 12 m
Width of vertical strips (d) 1 cm 2 m
Peak oscillation velocity 12 cm/s 6 m/s
Oscillation period (T ) 3 sec 12 sec

will transport the vortices and wakes generated by the sharp corners of the plates in

the downstream direction. Of course, this length scale can be regarded as giving a

KC-type scaling on the entire grid. Obviously KC number effects may be expected

to become more important for individual grid elements in the case of pure oscillation

(uc/uw = 0) as there will be stronger wake encounter as a result, and the effect is

well known to produce variation in the value of the Morison drag coefficient, Cd, on

cylinders.

However, in sizing the width of the vertical strips, we choose the amplitude of

oscillation and strip width to give a KC value in the range of 10 - 40, as would occur

for the main structural components of an offshore platform in large waves.

Based on preliminary observations, we define a criterion above which we hope to

achieve some degree of Reynolds number independence for the unsteady flow corres-

ponding to the requirement that the net forward velocity is greater than 10 cm/s. We

pick the magnitude of the oscillation velocity, uw, as 10 cm/s and the mean current,

uc, as 5 cm/s as the base case to be modified to achieve different uc/uw values.

Table 5.3 lists the values of uc/uw used in the experiments. Moving vertically

up and down the uc/uw columns within the table has the same effect as moving up

and down through the water column in regular waves in which the kinematics vary

hyperbolically with water depth. On the other hand, moving across the same uc/uw

horizontally across the table has an effect of increasing the Reynolds number, but

as the parameters have been shown to lie in the Reynolds-number-independent flow

regime, the horizontal shift across the table is required to keep the maximum speed in

the tank at or below 20 cm/s. The oscillation amplitude is kept constant by varying

the oscillation period. As a result, two additional sets of regular waves and constant

current are introduced to capture a wide range of uc/uw. There are two comparable

cases for uc/uw of 1 and 3 of which the results can be used as a conformity check when
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one changes the Reynolds number of the flow (horizontal movement across columns

of the same row).

Table 5.3: Experimental parameters (a = oscillation amplitude, T = oscillation period)
with range of uc/uw; uw and uc in cm/s.

uc/uw (a, T ) [uw , uc] (a, T ) [uw , uc]
1/4 (11.5 cm, 4.5 sec) [16 , 4]
1/3 (8.6 cm, 3.6 sec) [15 , 5] (8.6 cm, 4.5 sec) [12 , 4]
1/2 (5.7 cm, 3.6 sec) [10 , 5]
1 (2.9 cm, 3.6 sec) [5 , 5] (2.9 cm, 1.8 sec) [10 , 10]
2 (1.4 cm, 1.8 sec) [5 , 10]
∞ - [0 , 10]

All uc/uw cases are measured for four grid configurations: 1, 2A, 2B and 3. Ad-

ditional pure oscillations (uc/uw = 0) are conducted for each uc/uw case but only for

the 2B grid configuration.

5.5.2 Data analysis method

For unsteady flow, the measured force from each individual test is the total hydro-

dynamic force on the grids, which needs to be decomposed into drag and inertia

components. Obviously, for steady flow there is only drag, no inertia loading. Here

we present a simple technique to decompose the total force into drag and inertia.

This requires knowledge of the input velocity profile to the carriage.

The total measured force, F (t), is extracted after the starting transients, when

the motion is sinusoidal with a mean component, and the total force is periodic -

repeating every wave cycle. We choose a record of length 4 - 5 wave cycles and

shift the time so that the input velocity is maximum at the zero time. The force

record is then time-reversed to produce a reflected total measured force, FR(t), with

FR(t) = F (−t). The two profiles are then combined, and both the drag and the

inertia components can be extracted by the following relationship:

Inertia =
1

2
[F (t)− FR(t)] assumed to be ρCmV u̇

(5.7)

Drag =
1

2
[F (t) + FR(t)] assumed to be

1

2
ρCdAu|u|

Whether this clearly extracts these two Morison-type load components is demon-

strated next. A plot of the decomposition result is shown in Figure 5.6. The input
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velocity profile is included for reference. The extracted drag and inertia are shown to

be smooth, except when the velocity is close to zero (also the drag force) when the

inertia component is dominant.
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Figure 5.6: Plot of total force decomposition result. Top figure shows total force in dot-
dashed grey line, drag in solid black line and inertia in solid grey line. Bottom figure shows
input velocity profile.

This simple relationship (Equation 5.7) shows that it is possible to extract from the

total force drag (which is assumed to be in phase with the velocity profile) and inertia

(which is out of phase by 90◦ from the drag). Note that there are no assumptions

in the decomposition process that the drag term is actually proportional to cos|cos|
and the inertia term to − sin according to the Morison equation (Morison et al.,

1950). The simple decomposition method works well. The secondary wiggle at the

peak crests and troughs of the assumed inertia term probably arises from the lack

of perfect symmetry of the drag term. We explore this later in Section 5.5.11. We

assume symmetry around the velocity peak because this is consistent with a Morison

formulation - our new model for blockage is still based on the assumption of a Morison-

type model for drag on the actuator discs.

5.5.3 Forms of the drag plots and the effect of blockage ratio,
A/Af

The measured drag forces are now compared with the new blockage theory for regular

waves and current. In order to obtain the Cd coefficient for each case, mean square
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error minimisation by curve fitting is performed on each measured drag - time history,

assuming the full current blockage model is correct. Since the measured drag contains

much less of a shoulder at the zero crossing as compared to the full Morison-based

theory, a weighting function of cos10(ωt) is introduced to force the minimisation to

occur only at both crests and troughs. The Cd coefficient can then be inferred for

each case from this minimisation exercise.

A range of different cases is shown in Figure 5.7. In all cases, the grid layout 2B

is used, with the downstream spacing equal to the grid width. The left side of each

sub-plot shows the separated drag and inertia time histories for each experimental

case. The right side shows the equivalent best fit with constant in time Cd and Cm

coefficients based on the full wave–current–structure blockage model. For each case,

the only adjustable parameters are the ‘bare’ unblocked Cd value and the inertia

coefficient, Cm. The estimated Cd value for each experimental drag force time history

is used to give the model prediction of the drag time history on the right hand side

of each sub-plot. Moving vertically down the figure, the blockage ratio (A/Af ) of

each of the two grids increases from 0.15, to 0.30 and 0.45 at the bottom. The left

column is for a larger current to wave ratio (uc/uw = 1/2), and the right column is

for uc/uw = 1/4.

Overall, we conclude that the full blockage model works well in reproducing much

of the structure of the oscillating motion experiments both with (black) and without

(grey) an imposed mean current. The equivalent assumed inertia load contributions

are denoted by the dashed lines. The legend in each sub-plot shows [uw , uc] for

each case, the velocities in cm/s. The relative importance of the current reduces as

the blockage ratio (A/Af ) is increased. The only case for which the model fit is less

good is shown at bottom right of Figure 5.7. This corresponds to uw = 16 cm/s,

uc = 4 cm/s, and 2 grids of blockage ratio 0.45. Here, on the left, the peak crest

and trough values in the measured time histories with and without the small current

are virtually indistinguishable. There is, however, a difference in the shapes of the

crests and troughs experimentally, with the crests being slightly broader in time. In

contrast, there is a shift for the crest and trough peak values in the model but the

local shapes are virtually identical.

A mean square error minimisation is also performed to fit the measured drag peaks

with the standard Morison force formulation with no allowance for blockage. Here

the weighting function is also cos10(ωt), but it is applied to crests only. Comparisons

between the measured drag, the standard Morison formulation for the drag term and

the full model (FCB) are illustrated in Figure 5.8(a) and Figure 5.8(b).
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Figure 5.8: Comparisons of the measured drag (solid grey lines) to predictions from the
new full current blockage model (FCB, solid black lines) and the original Morison equation
(fitted to the peak crests only, dashed (red) lines), 3 grids, A/Af = 0.30, for uc/uw = 1 and
1/4.

Figure 5.8(a) shows a drag comparison for the case of [10 , 10]. In the standard

Morison force formulation with no current blockage, there is a positive crest force

(associated with the peak velocity of 20 cm/s) and a flat plateau (or zero trough).

However, there is actually a significant negative trough force due to the physical

blockage effects, and this effect is well captured by the full current blockage model.

Figure 5.8(b) demonstrates a drag comparison for a large oscillation in a small current,

[16 , 4], and the agreement between the measured drag and the new model is shown

to be very good, except at the zero crossing where the measured drag exhibits no

shoulder. The resulting force profile is very close to a pure wave oscillation (without
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any imposed mean current) with a slight vertical offset of the peaks contributed from

the mean current contribution. This is discussed in detail later but provides the first

indication that the asymptotic two-disc expression of the full current blockage model

which contains no uw × uc term is working well.

It is obvious that neither the original form of the Morison equation for the drag

force with no blockage nor the modified form described in the API design guidelines

(which accounts for the reduction in the effective mean current within the structure

but ignores wave–current–structure effects) can be matched to the whole force time

history with a single constant Cd coefficient. In contrast, the new blockage model will

be shown to be able to reproduce the whole measured drag force - time history well

for all flow regimes. Although the peak force is usually one of the most important

structural design parameters, a correct representation of the entire force - time history

is essential for dynamically responding structures.

5.5.4 Inertia curve fit

A similar mean square error minimisation by curve fitting is also performed for the

inertia component for each case, but now the weighting function is purely sinusoidal:

− sin(ωt). The associated Cm coefficients can then be inferred. Note that the inertia

component considered is the fluid inertia loading component only, the structural in-

ertia contribution of the grids and support frame has been removed. It is interesting

to note that there are wiggles found at the peaks of the measured inertia component

whenever the towing motion reverses its direction, as shown in Figure 5.7. These are

discussed in Section 5.5.9.

5.5.5 The effects of uc/uw and demonstration of no uw × uc
contribution to drag

We examine the effect of introducing a current into a regular oscillation for a fixed

grid geometry, the 2B configuration for two grids, each with a blockage ratio (A/Af )

= 0.30. Figure 5.9 shows the experimentally measured drag and inertia force time

histories (left) and the new current blockage predictions (right), within each sub-plot,

for four different current to oscillation velocity ratios. As in Figure 5.7, the solid grey

curve is for regular oscillation, the solid black for oscillation and current. The legend

within each sub-plot shows the relevant uc and uw values (in cm/s). The important

uc/uw ratios reduce from 1 (top left), clockwise to 1/2, 1/3 and 1/4 (bottom left).
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Figure 5.10: Plot of peak crest and trough ratios of drag forces for the 2B grid, A/Af =
0.30. (a) Comparison between measured crest and trough ratios (data points) and the full
theory (solid lines). (b) Comparison between the blockage theories: FCB = full current
blockage model (grey band), SCB = simple current blockage model (black band), and the
standard Morison (solid line).

Apart from some discrepancy for the Morison ‘shoulder’ as the drag force crosses

through zero, the full current blockage model works remarkably well for all cases.

One of the striking predictions of the full theory is that the predicted drag force

time history and the associated peak crest and trough values contain no uw × uc

component, when the magnitude of the regular oscillation (uw) is large compared to

the mean current (uc). Figure 5.10(a) shows the peak crest and trough force values

from the data in Figure 5.9, plotted as the strength of the current is varied so −1 ≤
uc/uw ≤ 1. The magnitude of the peak forces with current are non-dimensionalised

by the peak forces in the same oscillation without current.

The data points on the right-hand half of Figure 5.10(a) correspond to the force

peaks for the oscillation and current velocities being in the same direction, the data

points on the left correspond to the force troughs for the oscillation and current

velocities being opposed. The two solid lines in Figure 5.10(a) correspond to the full

current blockage theory for two values of Cd. These values correspond to the two

extremes of the averaged Cd values from the fits to each of the force time histories.
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Averaged Cd values are used to account for the slight difference in the inferred Cd

values between regular oscillations with and without current. The individual Cd value

can be inferred from Table B.3 for regular oscillations with steady flow and Table B.5

for pure regular oscillations without steady flow, both in the Appendix B. The solid

lines for the full current blockage theory are expressed as:

Peak Force with Current

Peak Force without Current
= 1± πAf

2CdA

(
uc
uw

)2

Both the experimental data and the full theory show an inflexion in the force ratio

(with and without current) as the current passes through zero.

The major qualitative feature of this absence of any uw × uc contribution to the

magnitude of the crest and trough forces is illustrated in Figure 5.10(b). The grey

band shows the behaviour of the full current blockage theory for a range of values of

the hydrodynamic loading, CdA/Af (the range 1 - 2 captures the effects of waves and

in-line current on a typical deep water offshore jacket structure).

In all cases, the full theory shows an inflexion. In contrast, the black band corres-

ponds to a Morison force prediction for the same range of hydrodynamic loading when

only the current is blocked – ‘simple blockage’ or SCB as in the present API design

guidelines (American Petroleum Institute, 2000). The single line shows the Morison

prediction with no account taken for blockage. Neither the black band (‘simple block-

age’) or the Morison without blockage show the inflexion which is consistent with the

experimental data for low (uc/uw) ratio. This can be observed from the force ratio

expression of the Morison without blockage:

Peak Force with Current

Peak Force without Current
=

(uw ± uc)
2

u2w
= 1± 2

(
uc
uw

)
+

(
uc
uw

)2

while the force ratio expression of the simple current blockage model can be obtained

by simply substituting uc with ucs = uc/[1 + CdA/(4Af )]. Both expressions yield a

finite gradient as the current passes through zero, unlike the experimental data and

the full current blockage model.

The theoretical prediction of the absence of any uw×uc term within the prediction

of peak crests and troughs is then a major piece of evidence in support of the new

full blockage model, irrespective of the calibration of drag coefficients, Cd. When the

Cd values are calibrated for each case, a good representation of the entire drag time

history over the oscillation cycle is achieved.
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5.5.6 The effects of hydrodynamic loading (CdA/Af) on drag
time history

Having examined the effect of varying the current relative to the oscillation for fixed

grid geometry, we now fix the flow regime (uw = 15 cm/s, uc = 5 cm/s, so uc/uw =

1/3), and investigate the effects of changing the number and spacing of the grids,

each with blockage ratio A/Af = 0.30. This is shown in Figure 5.11.

The same structure for the composite sub-plots is used: the left side of each shows

processed measured forces (drag - continuous line, inertia - dashed line), on the right

the full blockage model best fit with Cd and Cm coefficients. Moving clockwise from

top left we start with the 1 grid, then the two grids in the closer spacing (the 2A

configuration), bottom right is the the two grid case with doubled downstream spacing

(the 2B configuration), and finally the bottom left is the 3 grid configurations. As

previously, we see immediately that the full current blockage model does an excellent

job at reproducing the measured drag time histories. Also shown in each sub-plot is

the inferred inertia contribution.

According to the asymptotic model, the shift (offset) component of the unsteady

drag peaks and troughs (the current component) is independent of CdA, and simply

proportional to the frontal area, Af . This concept is consistent with the switching

model in Section 5.4: as CdA/Af increases, the peak steady force is independent of

the details of the hydrodynamic area, CdA, and only the frontal area, Af , matters. As

more blockage develops, the rear disc is assumed to be effectively within the stationary

wake from the front disc and the fluid is forced to diverge out of the frontal area of

the obstacle array, hence the associated drag force is dependent on the geometry of

the frontal area only.

We investigate the adequacy of Equation 5.2 for the case of regular oscillations in

steady flow as the number and spacing of the grids is changed. First we remove the

shift from the measured and fitted drag force peaks so that the peak values are equal

in magnitude but opposite in sign. Next we divide by the total blockage ratio for all

the grids in the flow (ΣA/Af ), the summation being over the number of grids. The

resulting measured and modelled drag force time histories are shown in Figure 5.12, in

which the top part of this figure shows the measured drag in black and the modelled

drag in grey. The resulting fluctuating parts of the measured records are shown to be

virtually identical and independent of the number of grids, and shown to match well

with the predicted forms. This is reinforced in the lower plots in the figure: on the

left the four measured shifted and grid area-scaled drag histories are plotted together,

and on the right the four corresponding predictions from the full blockage model. It
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Figure 5.12: Oscillatory part of the drag force for the various grid arrangements, all for
[15 , 5], A/Af = 0.30. Top figure shows the experimental drag in black and the fitted drag
in grey. Bottom figure shows the top four subplots plotted together as experimental vs.
fitted drag.

should be noted that the full current blockage model fitted Cd values across the

different grids vary by < 2% for the [15 , 5] flow case, so it is unnecessary to allow for

Cd variation as the number of grids is changed (see Table B.3 in the Appendix B).

Overall, this collapse for the four different grid geometries is remarkably good for

the oscillating part of the total drag force on the complete obstacle array. The sole

outlier on the right hand lower plot occurs because the flow regime for the single grid

is not quite asymptotic (which requires CdA/Af large and uc/uw small). Although

the shifted peak values of the forces scale, the shape of the Morison-derived drag

force waveform is slightly different, with the Morison ‘shoulders’ shifted downwards

slightly compared to the asymptotic result.
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5.5.7 The shift of force crests and troughs of the drag time
history

The asymptotic form of the two-disc model (Equation 3.25) has a shift for the force

crests and troughs of:

Fshift = π/4ρAfu
2
c

Thus, it is predicted to scale with the frontal area but is independent of the

number of grids, the blockage ratio of each grid (A/Af ), the drag coefficient (Cd) and

the oscillatory motion (uw).

In contrast, the crest / trough shift for the original Morison equation in a combined

oscillation and steady current is:

Fshift = 1/2ρCdA(2uwuc)

This scales with the hydrodynamic area, CdA and the product of the amplitude

of the wave oscillation velocity and the steady current - a completely different form.
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Figure 5.13: Plot of (a) shift of peak crest and trough of drag forces, (b) time-averaged
mean drag force, as the total hydrodynamic loading (CdA/Af ) is altered.

Figure 5.13(a) shows the experimentally derived shift of peak forces as a function

of the hydrodynamic loading (CdA/Af ) for a wide range of grids and [uw , uc] combin-

ations. There is some scatter but there is no significant variation with CdA/Af or with
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the magnitude of the oscillation velocity, uw. The mean of the ratio, Fshift/(ρAfu
2
c),

is slightly greater than the theoretical numerical coefficient π/4 ∼ 0.785. As for the

steady flow asymptotic result (Section 5.4), a slightly increased frontal area may be

appropriate, hence 1.1×Af could be used and this is shown in the figure as the solid

horizontal line.

5.5.8 The mean (time-averaged) force in regular oscillations
and mean flow

The net retardation of the approach current depends on the mean force acting on

the fluid over the oscillation cycle, and this controls the total blockage. The deriv-

ation of the two-disc model makes use of this mean force in apportioning the total

hydrodynamic area across the two discs. Thus, it is of some interest to compare the

measured and predicted mean forces.

Once the two-disc model is appropriate (for small uc/uw and at least moderate

hydrodynamic loading CdA/Af ), the asymptotic form of the mean force is predicted

by:

Fmean = 1/2ρAfu
2
c

which is independent of the oscillation magnitude, uw, and the hydrodynamic area,

CdA. Note the different numerical coefficient compared to the shift of the peak forces

(1/2 compared to π/4).

Figure 5.13(b) shows the good collapse of a range of experimental cases to the

theoretical mean drag force. Again, the magnitude of the appropriate frontal area

appears to be slightly larger than the actual frontal cross-sectional area of the grids

(Af ), here a factor of ∼ 1.4× seems appropriate. However, given that the data

for both the shift (a) and the mean (b) are small fractions of the magnitude of the

peak forces within the wave cycle, we view this level of consistency with theoretical

predictions based on the full wave–current–structure blockage model as satisfactory.

5.5.9 Discussion of the inferred Cd and Cm coefficients

Table B.2, B.3 and B.4 in the Appendix B list the Cd and Cm coefficients inferred

from curve fit minimisation of the full current blockage model for each uc/uw case

and each grid configuration. A column containing the averaged Cd value is provided

for each table of Cd by taking the average Cd value across the number of grids for

each uc/uw. Since the Morison coefficients Cd and Cm are usually defined for an
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obstacle in isolation in a mean flow, we could correct for the presence of all the other

obstacles within the same grid by multiplying the drag coefficient, Cd, by (1−A/Af )
2

and the inertia coefficient, Cm, by (1 − A/Af ). This accounts for the reduction in

the open area for the flows at the plane of the grid due to the presence of all the

obstacle bars and the local speed up of the flow. This yields modified Cd values more

in keeping with what might be expected for single rectangular bars in a uniform mean

flow (Cd ∼ 1− 2) for the grids with higher blockage ratio (A/Af ).

It can be observed that the Cd coefficients of the full model are quite consistent

across a varying number of grids of the same blockage ratio (A/Af ). There are,

however, some discrepancies in the observed pattern, which are largely attributed to

some residual effects. The Cd and Cm coefficients are observed to vary with varying

blockage ratio (A/Af ) probably due to KC number effects on each individual flat

bar.

The Cm coefficients are found to be very large for obstacles in the form of a

perforated thin plate. There are significant variations of the Cm coefficients across

different numbers of grids of the same blockage ratio (A/Af ). We are currently seeking

an explanation for the high Cm values. It is likely that each grid itself should have a

contribution to the inertial loading due to large-scale modification of the flow field,

as well as the local modifications over length-scales comparable to each bar within

each grid.

Our method of separating drag and inertia relies on the drag term being in phase

with and symmetric about the velocity peaks. Although this is consistent with the

basic form of the Morison equation with u|u| being in phase with u and u̇ being

in quadrature, there is some evidence that the separation process applied to the

measured force records is not perfect.

Figure 5.14 shows the inferred measured inertia time history for [16 , 4] of 3 grids of

A/Af = 0.30 and the sinusoidal fitted form, both skew in time relative to the velocity

peaks. There is a notable third harmonic present in the measured signal (although

the drag peak force is ∼ 2.4 N, the linear inertia fit ∼ 0.6 N and the residual 3rd

harmonic ∼ 0.2 N). We believe this may arise from the ‘shoulders’ on the quadratic

drag term. Although these are much less marked in the measured data than in the

Morison-based fits, they are still present. If the timing of the shoulders is slightly

different depending on whether the velocity increases towards the maximum (crest)

or decreases towards the minimum (trough), this would account for a small degree of

leakage from the drag term into what we expect to be the linear inertia term. Since
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Figure 5.14: Plot of skew-in time force components including linear inertia for [16 , 4], 3
grid, A/Af = 0.30. The measured data in solid grey line, the fitted data in dashed (red)
line, and the difference between the measured and the fitted data in solid black line.

much of the focus in this work is on force peaks and troughs, a small degree of leakage

as the drag force goes through zero up- and down-crossing is acceptable.

5.5.10 Reconstruction of complete force time history using
the Morison-based FCB formulation

With the inferred Cd and Cm coefficients from the mean square error minimisation

exercise, a reconstruction of a complete total force time history is made possible.

Figure 5.15 provides at the top a comparison between the measured total force (grey

line) and the reconstructed total force (black line), together with the fitted drag and

inertia terms in the centre and the difference between the measured and the Morison-

based FCB reconstructed total force at the bottom, for the case of [16 , 4] of the 3

grid configuration with 0.30 blockage ratio.

It is clear that the reconstructed total force closely resembles the measured total

force, with small differences attributed to a third harmonic contribution and the fact

that the measured force contains less distinct shoulders at the zero crossings than

any Morison-based FCB model. In general, the root-mean-square (rms) error on the

force time histories is about 20%. However, the values of peaks and troughs are much

better modelled, with an rms error of 6%.

Having presented the amplitude prediction of total force, in the next subsection

we use Fourier series to characterise the shape of the total force in time.
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Figure 5.15: Plot of Morison-based FCB reconstruction of total force time history for uw
= 16 cm/s, uc = 4 cm/s, 3 grid, A/Af = 0.30. Top figure shows the measured total force
in grey line and the fitted force in black line, middle figure shows the fitted drag in black
line and inertia in grey line, bottom figure shows the difference between the measured and
fitted total force in black line.

5.5.11 Total force decomposition using Fourier representa-
tions

Here we investigate the shape of the force components relative to the imposed ve-

locity peaks by using a Fourier representation fitted to experimental data over 6 -

8 oscillation periods. We present decomposition results including components up to

the fifth harmonic of the sinusoidal component of grid motion.

We observe that the time dependence of the asymptotic force (uw >> uc) derived

using the Morison-based FCB equation can be broken down into three types of term,

i.e.:

cosωt|cosωt| = () cos(ωt) + () cos(3ωt) + . . . odd harmonics

|cosωt| = () + () cos(2ωt) + () cos(4ωt) + . . . even harmonics

Morison inertia =−() sin(ωt) linear

The Morison-based FCB total force can then be further regrouped into odd and

even frequency harmonic contributions with the odd harmonics originating from the

u2w term and the even harmonics from the time-varying u2c term.
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Motivated by the form of the Fourier series from the model, we perform Fourier

fits to the experimental data sets [uw , uc] = [16 , 4], [12 , 4], [15 , 5] and the 3

grid configuration with A/Af = 0.30, and also [15 , 5] and the 2A and 2B grid

configurations with A/Af = 0.30. We also present Fourier fits for the pure oscillation

[16 , 0], [12 , 0], [15 , 0] and the 2B grid configuration for comparison to the loading for

oscillations plus mean motion. The results of Fourier fits to the first five harmonics

are shown in Table 5.4.

We find that there is little variation in the mean and standard deviation of each

coefficient across the five cases considered. In table 5.4, the upper figure within each

set of brackets is the mean value of the fitted coefficient, and the lower figure is the

standard deviation. The same format is used for the small shifts in phase used for the

each super-harmonic. No phase shift is included within the cos term corresponding

to the first term in the expansion of the Morison-based FCB drag, as we consider

that the sin term component should more properly be treated as part of the Morison

inertia coefficient.

It is observed that the theoretical total Morison-based FCB drag associated with

the oscillating motion (i.e. total odd harmonics with the fundamental sin term re-

moved) results in a shift of the shoulders. We group the higher harmonic odd sin

components with the drag term as they scale with u2w, rather than uw. The com-

parison of the shape in time of the odd harmonic Fourier representation and the

theoretical Morison-based FCB term is provided in Figure 5.16.

Figure 5.17 shows that the fits of the time drag signals [uw , uc] and [uw , 0]

are very similar, with very similar shifts of shoulders and strength of the harmonics.

Removal of the extra linear component, believed to be residual linear Morison inertia

and taken to be a sin form leads to a virtually perfect match for with and without

current time histories.

We now turn to the even harmonic contribution of the total force, and compare

the shape with the theoretical Morison-based FCB formulation. The comparison of

the shape in time of the mean (zero) and even harmonic force components (after

an increase of Af by 20%) and the theoretical Morison-based FCB term (|cosωt|) is
provided in Figure 5.18, each up to the fifth harmonic.

It is clear that the oscillations in ‘current’ loading are driven by the waves, with the

force phase locked to oscillating velocity crests. However, the magnitude scales as u2c ,

so this is a current term. For the zeroth (steady) and second harmonic (and others),

we find that the theoretical Morison-based FCB model fits better if the frontal area,
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Figure 5.16: Shape comparison of the odd harmonic components of the wave-induced drag
in time between the Morison-based FCB term (grey line) and the Fourier representation of
the experimental data (black line).
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Figure 5.17: Shape comparison of the odd harmonic components of the wave-induced drag
in time between [uw , uc] (black line) and [uw , 0] (grey line).

Af , is replaced by 1.2×Af . The cusps in |cosωt| are notably observed in the exper-

imental data though their amplitudes are smaller than those in the theoretical form.

Also observed in the data is a higher-frequency oscillating component which occurs

as the motion of the grids passes through zero. This is out of phase with the velocity
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Figure 5.18: Shape comparison of the even harmonic components of the current-induced
drag in time between the Morison-based FCB term (solid grey line) and the Fourier repres-
entation (solid black line). The cos and sin terms of the total even harmonic contribution
are shown by the dashed (blue) line and the dot-dashed (red) line, respectively.

field.

We note that this decomposition method using Fourier representations strongly

supports the generic split of total hydrodynamic force into drag and inertia, as well as

the idea of an asymptotic split of drag force into separate components driven by the

wave kinematics and the current individually, rather than in a complex combination.

The observed shapes in terms of Fourier harmonics are close to but do not exactly

match those of the Morison-based full current blockage model: there are interesting

phase shifts for both odd and even harmonics.

5.5.12 Reconstruction of complete force time history using
the Fourier representations

The reconstruction of the complete force time history using the Fourier representa-

tions is provided in Figure 5.19. The top part of the figure shows the measured total

force in grey and the fitted force using the best Fourier representation in black (us-

ing the mean coefficients given in Table 5.4), the bottom part shows the comparison

of the theoretical Morison-based residual (rms 20%) and the Fourier-based residual

(rms 5%), with respect to the measured total force. It is clear that the agreement

between the measured total force and the fitted force is much better using the Fourier

representation of the shape of the force time history.
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Figure 5.19: Plot of reconstruction of total force time history for uw = 16 cm/s, uc = 4
cm/s, 3 grid, A/Af = 0.30. Top figure shows the measured total force in grey line and
the fitted force using the best Fourier representation in black line, bottom figure shows
the comparison of the theoretical Morison-based residual (grey line) and the Fourier-based
residual (black line), with respect to the measured total force.

5.5.13 Possible applications of the revised force prediction
methodology to offshore engineering

Implementation of the proposed force equation of the Morison-based full current

blockage model:

F (t) =
1

2
ρCdAu

2
w cos(ωt)|cos(ωt)|+π

4
ρAfu

2
c |cos(ωt)|

or its Fourier-based representation would require a major revision in the design

guidelines for offshore platforms, and large changes in the design software used at

present, such as USFOS R⃝ (www.usfos.no). In contrast, a cruder version with the

correct force peaks and troughs:

Fdesign ≈ 1

2
ρCdAu

2
w cos(ωt)|cos(ωt)|+π

4
ρAfu

2
c

would be simple - being the addition of the time history for pure waves but no in-line

current with a steady mean force arising from a mean flow. The total current loading

would be apportioned over the actual structural elements. Whether this would be an

adequate representation would depend on the type of structure: statically responding

jacket, dynamically responding jacket, compliant tower, etc.

117



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

Time (sec)

F
or

ce
 / 

1/
2 

ρ 
C

d A
 u

w2

 

 

Pure Waves + Modulated Current (FCB)
Pure Waves + Constant Current
Simple Current Blockage (SCB)

Figure 5.20: Shape comparison of three possible models in time: the full current blockage
model (pure waves + modulated current) in black solid line, the Fdesign model (pure waves
+ constant current) in solid grey line and the simple current blockage model in dashed line.

Figure 5.20 shows the shape comparison of all the possible models: the full current

blockage model shown by the solid black line, the Fdesign model by the solid grey

line and the simple current blockage model by the dashed (red) line. It can be

observed that the Fdesign model does match at drag force crests and troughs of the

full model, but the shoulders would be wrong. Whether such an approximation would

be sufficiently accurate to be useful in design would depend on the application.

5.6 Chapter summary & conclusions

In this extensive set of experiments, blockage effects have been investigated for 2D

planar steady and steady plus regular oscillatory flows on grids of perforated flat

plates. Comparisons between the measured forces and the new full current blockage

theory have been made to test the validity of the theory.

In steady flow, the measured drag forces exhibit close to asymptotic behaviour as

the hydrodynamic loading (CdA/Af ) is increased. This is consistent with the switch-

ing model behaviour assumed by the theory: that for sufficiently high loading the drag

force is independent of the structural layout and the details of the hydrodynamic area

(CdA) along the flow direction. This reasonable level of agreement lends support to

the fundamental concept of a switching model used in the derivation of the full current

blockage theory.
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For the analysis of unsteady but periodic drag forces produced by regular oscilla-

tions with a steady current, the full current blockage model has been shown to repro-

duce the measured drag time histories well for all cases. In particular, the asymptotic

two-disc model works well, from uw > uc (fully blocked) to uw = uc (lightly loaded),

with a single adjustable parameter Cd. The good agreement also demonstrates the

absence of any uw × uc term as would be predicted using the industry-standard form

of the Morison equation: the total blockage effect simply removes such a term. The

mean force in large-amplitude oscillatory plus steady flow has been demonstrated to

depend only on the frontal area, Af , and not on the hydrodynamic area, CdA, again

in direct contrast to the standard Morison expression. For high loading cases, the

hypothetical front grid is assumed to take all the current loading and the fluid is

forced to diverge out of the frontal area of the grids, hence only the frontal area is

important. The standard Morison form is inappropriate in reproducing the drag force

- time history.

The proposed method of separating drag and inertia terms from the measured

total force has been shown to be simple and robust. The method only requires the

information on the undisturbed incoming flow velocity. There is no assumption in the

whole decomposition process that the drag term is proportional to a cosωt |cosωt|
and the inertia term to sinωt according to the standard Morison equation. The

inferred inertia term is found to contain a third harmonic (3× frequency) component,

which we believe actually arises from asymmetry in the drag term as the fluctuating

velocity passed through zero.

With the full current blockage model, the residual Cd variations required to fit a

range of experimental cases are relatively small as the number of grids is varied as

compared to the standard Morison equation. The reconstructed total force based on

the full model has been demonstrated to resemble closely the measured total force,

with small differences due to the third harmonic effect, consistent with the observed

weak shoulders as the measured force crosses zero.

As well as a simple decomposition of force components symmetric and skew in

time about the velocity peaks and troughs, a full Fourier representation of the forces

is presented. With up to the fifth harmonic of the oscillating motion included, we

demonstrate that the wave-induced force component is unaltered by the addition of

a current to the oscillation, and that the shoulders of the time history are slightly

skew and much weaker than the Morison form. The other contribution to the drag

force scales with the square of the current and the experiments confirm that this is
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a rectified signal close to in phase with the motion crests, and containing harmonics

similar to but less pronounced than the theoretical |cosωt|.
There are two main contributions of this chapter. Firstly, the previously published

theoretical model (Taylor et al., 2013) is extended to predict the complete time history

of the drag force on an obstacle array with very high fluid loading in oscillations and

mean flow. This result for the total force over the oscillation cycle is entirely new.

Secondly, we present detailed comparisons over the complete oscillation cycle between

this new theoretical model and extensive laboratory experiments on moving grids.

The model also predicts the total force time histories well, including the peak

drag crest and trough values and the time-averaged drag, after calibration of the

Morison coefficients Cd and Cm. Neither the original Morison form (with no account

made for blockage) nor the simple blockage model in the API design guidelines (where

only the steady current is reduced by blockage) can reproduce realistic (drag) force

time histories, so the present practice should be regarded as seriously inadequate for

combined waves and steady current acting on obstacle arrays.

Overall, we conclude that this systematic and wide ranging series of tests on

the unsteady drag forces arising on obstacle arrays in combined steady and sinusoidal

approach flows provides strong support for the full wave–current–structure interaction

blockage model.

This chapter has been published in the Journal of Fluid Mechanics as Santo et al.

(2014b).
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Chapter 6

Current blockage in a numerical
wave tank: Three-dimensional
simulations of regular waves and
current through a porous tower

6.1 Introduction

This chapter further investigates the effect of current blockage on a typical space-

frame offshore structure by simulating three-dimensional regular wave flow through

a porous tower in a numerical wave tank via CFD simulations. In this way, more

realistic water particle kinematics could be included, and the integrated effect of cur-

rent blockage through the water column could be analysed. The aim is to test the

modelled global forces on space-frame structures by reproduction of Allender and Pet-

rauskas experimental results (Allender and Petrauskas, 1987). With the extra loading

contribution from the waves superimposed on top of the steady current flow over a

structure, extra resistance thus extra blockage is expected. Allender and Petrauskas

observed significant flow blockage occurred in their tests, which they reported “re-

quiring the use of a lower Cd of 0.7 to 0.8 for waves plus current from a Cd of 1.3

to 1.6 for waves alone to fit the peak forces of the standard Morison theory with

the measured results” (Allender and Petrauskas, 1987). Unfortunately, they did not

publish any plots of force time histories for the experimental model, only the peak

values.

This chapter will attempt to reproduce their reported peak forces with a single

and consistent set of Morison coefficient Cd = 0.9 for drag and Cm = 2.0 for inertia for

regular waves with and without current over a wide range of wave heights and current

speeds. We also provide additional information on the force time histories and the
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visualisation of the flows. Direct comparisons between the numerical simulation and

the measured peak forces will be made, as well as between the numerical simulation

and the FCB model presented previously in Chapter 3 and by Taylor et al. (2013) for

peak force. We will demonstrate that good agreement can be achieved between the

numerical simulations and the measured data.

One novel part of this chapter is the demonstration of the use of a quadratic res-

istance porous tower (or block) as a simple model for the complex geometry of a real

space-frame offshore structure, where the drag resistance and the inertia contribution

could be calibrated and modelled. Even though the local flow structures are not mod-

elled at the scale of the individual structural elements within a jacket-type platform,

the global flow behaviour is reasonably well represented. This technique could poten-

tially be incorporated into a standard offshore design practice to investigate current

blockage effects.

Real world applications have very high Reynolds number; none of the laboratory

scale experimental studies can match that important non-dimensional parameter. The

Reynolds number effects can only be investigated from full-scale field measurement,

which can then be compared with numerical simulation. The issue of what Cd to

choose is perhaps more relevant, which needs to account for the effects of surface

roughness and marine growth, and fully submerged drag area vs. area fluctuations

in the wave trough/crest zone. We believe that the complications mentioned above

warrant further investigation. Here, a single value of Cd = 0.9 is applied uniformly

over a porous tower across the water depth as a first approximation to constitute a

basis for reference.

6.2 Numerical methods

In this section, we first present the numerical methods necessary to simulate ranges

of three-dimensional regular wave flow through a porous tower in a numerical wave

tank.

6.2.1 Governing equations

The governing equations for the two-phase combined flow of water and air are the

Reynolds-averaged Navier–Stokes equations coupled with the continuity equation for

incompressible flows, with an additional momentum sink term to account for the

effect of the porous tower in the numerical simulation:

∇ · u = 0 (6.1)

122



∂ρu

∂t
+∇ · [ρuuT ] =−∇p∗ +∇ · [µ∇u+ ρτ ]− S

+ [−(g · x)∇ρ+ σTκγ∇γ]
(6.2)

where ρ is the fluid density, g is the acceleration due to gravity, u = (u, v, w) is the

fluid velocity field in Cartesian coordinates, p∗ is the pressure in excess of hydrostatic

pressure, µ is the dynamic viscosity, x = (x, y, z) is the local Cartesian coordinates,

and τ is the specific Reynolds stress tensor.

Here, momentum lost from the flow is accounted for via a sink term, which is

proportional to a nonlinear drag loss term (a Morison-type quadratic resistance with

the u|u| form, so that the flow can be in any direction) and a bulk inertia term which

models the local Morison inertia contribution due to potential flow-type distortions

over scales of the order of the width of the individual cylinders in a real space-frame

offshore structure. Hence, in the case of a simple homogeneous porous tower:

S =
1

2
ρFu|u|+C ′

m

∂ρu

∂t
(6.3)

where F is the Forchheimer resistance parameter and C ′
m is the equivalent of the

standard Morison inertia coefficient, Cm, but here defined in the porous tower con-

text. The nonlinear drag loss term is treated explicitly as an additional sink term in

the momentum equation, while the bulk inertia term is grouped together with the

unsteady term and solved implicitly in time.

Both F and C ′
m can be calibrated by matching

∫
S dVP with the vector form of

the Morison force equation:

F (t) =
1

2
ρCdAu|u|+CmV

∂ρu

∂t
(6.4)

where Cd is the Morison drag coefficient, A is the solid drag area of the components

comprising space-frame offshore structure (jacket or compliant tower), V is the volume

of the structural components within the structure, and VP = Af ×L is the volume of

the modelled porous tower, where Af is the frontal area of the structure represented

in the porous tower and L is the width of the porous tower in downstream direction.

Thus, F can be calibrated by matching CdA/Af = FL, where CdA/Af is termed

the hydrodynamic loading in the actuator disc theory (Taylor et al., 2013). Note that

the theoretical model is concentrated in a disc, while the numerical porous model is

distributed over a volume. See Chapter 3 and Taylor et al. (2013) for the details of

the actuator disc theory and Chapter 4 and Santo et al. (2013a) for the F parameter

calibration. C ′
m can be calibrated by equating C ′

mVP = CmV , giving C ′
m << Cm as

VP >> V . In this porous tower approximation, the total volume of an actual structure
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is distributed across a number of cells while maintaining the same cross-sectional area

and height, forming a three-dimensional porous block, or a porous tower.

The last two terms in Equation 6.2 in square brackets are for numerical conveni-

ence for volume of fluid (VOF) method, and only active in the region where cell is

partially filled with air, elsewhere these terms are zero. The σTκγ∇γ term describes

the surface tension effect using the CSF (Continuum Surface Force) model of Brack-

bill et al. (1992), where σT is the surface tension coefficient, and κγ is the surface

curvature. γ is a scalar field used to represent the fraction of a cell volume filled with

water, with 0 ≤ γ ≤ 1; 0 for air, and 1 for water.

The equations are solved simultaneously for the two immiscible fluids together

with the transport equation used to track the fluids. The transport equation is sim-

ilar to the volume of fluid (VOF) method of Hirt and Nichols (1981), but with an

additional compression technique to limit the numerical diffusion of the interface pro-

file. The compression technique is developed by OpenCFD R⃝, and the documentation

can be found in Berberović et al. (2009).

The unsteady, incompressible and three-dimensional two-phase flow equations

of motion are solved with the finite volume method (Ferziger and Perić, 2002) us-

ing the open-source code OpenFOAMR⃝ (http://www.openfoam.com). This study

uses the numerical wave tank developed and released by Jacobsen et al. (2012).

The momentum–pressure coupling is solved with the PISO (Pressure-implicit Split-

Operator) iterative algorithm (Issa, 1986).

This study uses an LES (Large Eddy Simulation) k-equation eddy-viscosity tur-

bulence model. The one-equation eddy viscosity subgrid scale (SGS) model for in-

compressible flows using a modelled balance equation to simulate the behaviour of k

is based on Fureby et al. (1997), but with modification to the dimensionless model

coefficients. The dimensionless model coefficients are given the default OpenFOAM R⃝

values ck = 0.094 and cϵ = 1.048.

The drag and inertia force in the porous tower is obtained by integration over the

volume of the tower (a post-processing technique), with a cutoff γ value of 0.5 and

greater to be treated as the water phase. The drag contribution in the mean flow

direction is summed up by taking all three velocity flow components for the modulus

term at each wetted cell, according to a full (three-dimensional) Morison force formu-

lation: 1/2ρAfFLux
√

(u2x + u2y + u2z), and the inertia contribution by ρC ′
mVP∂ux/∂t,

both over the tower volume. ux and uy are the longitudinal and lateral velocity com-

ponents, respectively, in a horizontal plane, and uz is the vertical velocity component,

according to the computational domain layout described in Section 6.2.2.
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6.2.2 Computational domain layout

The simulation case is set up to replicate as closely as possible the experimental wave

tests conducted by Allender and Petrauskas (1987) in OTRC, Escondido, California.

They conducted a series of experiments in which they measured the total fluid loading

on a 1:47 scaled model of a Gulf of Mexico jacket structure exposed to regular waves

of various sizes with no current, then with the same set of waves with two values of

in-line current. Figure 6.1 shows the layout of their scaled jacket model. The taper on

the structure is exaggerated by refraction at the water surface in the original photo.

Figure 6.1: Layout of the scaled jacket model (adapted from Allender and Petrauskas
(1987) Figure 1).

Figure 6.2 shows the layout of the three-dimensional numerical wave tank with

a porous tower. The length of the domain is set at 2000 m at full-scale or ∼ 7.1λ,

where λ is the wavelength taken to be about 280 m, the maximum wavelength to

be simulated in Section 6.4, with regular waves of 12.8 sec period and 25 m wave

height in 135 m water depth. The tower is placed at 500 m downstream from the

inlet. Two relaxation zones are created: one at the inlet for wave generation (∼ 1λ)

and the other at the outlet for wave absorption (∼ 2λ). Hence, the central zone

of most interest is of length ∼ 4λ. From the inlet to the middle of the tank (∼
3λ), a uniform mesh distribution is used. Mesh coarsening is introduced gradually

from there in the downstream direction to reduce computational effort. Also shown

are the boundary conditions associated with each patch of the wave tank. The x

coordinate runs horizontally in the direction of wave propagation, the y coordinate
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Figure 6.2: Layout of the computational domain. The location of a porous tower is in-
dicated as a black rectangular block. A regular wave is shown propagating from the inlet
to the outlet. Red colour represents wave crests, blue colour represents wave troughs, and
green colour represents water surface close to mean sea level. Also shown is the key physical
dimensions and the boundary conditions of the tank.

runs horizontally in the orthogonal direction of wave propagation (or laterally) and

the z coordinate runs vertically (+ve upwards).

The wave elevation profile is coloured in such a way that red colour represents

wave crests, blue colour represents wave troughs and green colour represents water

surface close to mean sea level. It is apparent from the figure that there is a decay of

the simulated regular wave height in space in the downstream direction towards the

outlet due to numerical diffusion. Thus it is important to position the porous tower

nearer to the inlet and to specify the wave amplitude at the model structure.

The detailed dimensions of the wave tank and the porous tower are provided in

Table 6.1. The key dimensions of the numerical wave tank are modelled at full-scale

according to the actual depth of the full-size jacket corresponding to the Allender

and Petrauskas model. The porous tower is modelled as square in cross-section in

this case – symmetric in broadside and end-on, with no taper. Hence, it differs from

the actual Allender and Petrauskas model which had a (plan) aspect ratio of ∼ 2:1

and typical taper when viewed from end-on. Unfortunately, there is no geometric

information reported in Allender and Petrauskas (1987) other than the water depth,

so a 60 m × 60 m plan cross-section is simply used to represent the structure. Our

aim is to examine the loads from waves and waves with various in-line currents in the

light of their experimental results.
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Table 6.1: Physical dimension of the wave tank and the porous tower.

Parameter Value
Tank: Length 2000 m

Width 480 m
Height 185 m

Tower: Length (L) 60 m
Width (wf ) 60 m
Height 155 m

Relaxation Zone: Inlet Length 300 m
Relaxation Zone: Outlet Length 600 m
Mean sea level: Water depth (h) 135 m

6.2.3 Boundary and initial conditions

For regular waves, waves are generated at the inlet and absorbed at the outlet, both

by a relaxation technique implemented in relaxation zones (Jacobsen et al., 2012).

The waves are generated according to the specified wave theory, which updates the

corresponding velocity (u), surface elevation and pressure (p) initial and boundary

conditions at the inlet. Linear wave theory (Airy wave) is fed into the inlet, and the

generated waves remain 1st order as imposed by (and along) the relaxation zone at

the inlet. Once the waves propagate out of the relaxation zone into the main domain

of interest, the waves become non linear (well modelled using Stokes 3rd order theory)

after solving for the complete Navier–Stokes equations. Likewise for pure current, a

steady fixed uniform current velocity is applied at the inlet, and the same magnitude

of velocity is applied at the outlet to ensure mass continuity, and both are specified

by theory and imposed in the relaxation zones.

A slip boundary condition is applied at the bottom and the two side walls. An

atmospheric boundary condition is introduced at the top boundary, in which water

and air are allowed to flow out but only air is allowed to flow in. As suggested by

Jacobsen et al. (2012), the top lid of the domain has to be an adequate distance from

the water crest level to avoid loss of water during the simulation. In this simulation,

a clearance of 50 m from the mean sea level to the top lid of the domain is provided,

and this is adequate because the largest scaled wave height tested by Allender and

Petrauskas (1987) is about 25 m. For pressure, p, a total pressure boundary condition

is imposed at the top boundary.

The boundary and initial conditions for turbulent kinetic energy, k, is specified
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as ∂k/∂n = 0 at both inlet and outlet, and on the slip planes at the bottom and

side walls. At the top boundary, an inlet-outlet boundary condition is applied, which

acts as an inlet if the velocity vector points into the domain and as an outlet if the

velocity vector points out of the domain. The initial value of k is taken to be a

fixed uniform 3.75 × 10−3m2/s2 assuming an initial turbulence intensity of 5% and

root-mean-square velocity of 1 m/s. We note that this is quite large relative to the

current, but of course not compared to the surface wave kinematics.

Calibration of the Forchheimer resistance parameter, F , is made by equating

CdA/Af = FL, with A = 7871.7 m2, Af = 8115.2 m2 and hence CdA/Af = 0.9 ×
0.97 = 0.873 for the full-size jacket corresponding to the Allender and Petrauskas

model. Thus, with L = 60 m, F parameter for the modelled porous tower is 0.01455

m−1, assuming isotropy in all x, y and z flow directions for the Morison drag term.

We base this estimate of the hydrodynamic area on the constant current, no wave

cases were reported by Allender and Petrauskas (1987). It is noted that the Cd value

of 1.0 previously used in the 1D analytical stick model in Chapter 3 and Taylor et al.

(2013) was obtained by assigning the areas and the volume of the stick model (A, Af

and V ) up the peak wave crest level, while the correct distribution should be up to the

still water line, since the areas and the volume of the stick model were inferred from

their steady towing tests with no wave. The suitable Cd value after minor correction

to the stick model is 0.9.

The local Morison inertia coefficient for porous tower, C ′
m, is calibrated by equat-

ing C ′
m = CmV/VP . The Cm coefficient used in the one-dimensional analytical stick

model to reproduce the experimental results in Taylor et al. (2013) is the potential

flow-based value of 2.0 for cylinders. The inferred total volume of the full-size jacket

model up to the still water line (V ) is 6170.87 m3, and the wetted volume of the

porous tower up to the still water line (VP ) is 60 m × 60 m × 135 m = 4.86 × 105

m3. Thus, the C ′
m coefficient is 0.0254, with the assumption that the porous tower

is to be built entirely of 1 m diameter cylinders arranged within the tower evenly

and isotropically to give a total length of this equivalent pipe of 7871.7 m. For a

1970s type Gulf of Mexico space-frame structure such as that tested by Allender and

Petrauskas, the choice of an average member diameter of 1 m is reasonable.

The calibration of F and C ′
m parameters assumes that the density of the drag

(area) and inertia (volume) effects are uniformly distributed over the porous tower

and that there is no change in properties above mean sea level (as there typically

would be in a real design of a space-frame offshore structure, where the amount of

metal exposed to the most severe wave crests is reduced). Both F = 0.01455 m−1
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and C ′
m = 0.0254 are used throughout the simulations, which correspond to standard

Morison values of Cd = 0.9 and Cm = 2.0.

6.3 Numerical study

In this section, various numerical studies are conducted to ensure that the numerical

wave tank with the free-surface capturing VOF technique and the relaxation zone

technique works adequately.

6.3.1 Length of the tank domain

The optimal length of the numerical wave tank domain is investigated next in order

to minimise interference due to any potential reflections from the inlet and also from

the downstream outlet. The total wavelength (Nλ) is used to describe the length of

the domain as it directly relates to the number of waves propagating along the tank

at an instant. Three different lengths of tank are considered: 1000 m (∼ 3.5λ), 2000

m (∼ 7.1λ) and 3000 m (∼ 10.7λ), where λ is about 280 m, the maximum wavelength

to be simulated in Section 6.4 which is for 25 m regular waves with 12.8 sec period

in 135 m water depth. Table 6.2 outlines the distribution of the zone of interest, the

inlet and the outlet relaxation zones for each tank. Two variations of the length of

the outlet relaxation zone are considered for the 7.1λ length of tank.

Table 6.2: The distribution of the zone of interest, inlet and outlet relaxation zones for
three different lengths of tank.

Length of Length of (λ)
tank (λ) Inlet relaxation zone Zone of interest Outlet relaxation zone

3.5 1 1 1
7.1 1 5 1
7.1 1 4 2
10.7 1 8 1

All simulations are run on mesh with resolution 2 m horizontal size × 2 m vertical

size at free-surface zone to capture the wave fluctuations effectively (termed Mesh

2 in Section 6.3.2), with subsequent mesh coarsening introduced from the middle of

the tank towards the outlet to reduce the computational requirements. A regular

wave of height 15 m with 12.8 sec period in 135 m water depth is simulated for

all cases, and the comparison is made based on the depth-averaged wave horizontal
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Figure 6.3: Comparison of different lengths of the tank domain for 15 m regular waves with
12.8 sec period in 135 m water depth in terms of depth-averaged wave horizontal velocity
time history over a tower volume. The result for 1000 m (∼ 3.5λ) long domain is shown as
dashed grey line, the 2000 m (∼ 7.1λ) long domain with 1λ length of the outlet relaxation
zone as dashed black line, the same 2000 m long domain but with 2λ length of the outlet
relaxation zone as solid black line, and the 3000 m (∼ 10.7λ) long domain as solid grey line.

velocity time history over the tower volume, without the presence of the porous tower.

This is shown in Figure 6.3. The 3.5λ long domain (dashed grey line) suffers from

a reflection effect from the outlet: it is different from the rest of the domains. The

simulated wave velocity time histories for the two types of 7.1λ long domains (dashed

and solid black lines) and the 10.7λ long domain (solid grey line) are very close to

each other, but better agreement with the 10.7λ long domain can be obtained for the

7.1λ long domain with 2λ length of the outlet relaxation zone.

In this study, a 7.1λ long wave tank with 2λ length of outlet relaxation zone is

used throughout. The lateral width is kept at eight times the frontal width of the

tower (8 × wf ), following the previous fully unsteady planar oscillation plus mean

flow simulations in Section 4.5.2.1 and Santo et al. (2013a). Having determined the

optimal length of the domain, the next stage is to check that the results are properly

resolved, that is they are independent of the mesh size used.

6.3.2 Grid independence

The grid independence study investigates the influence of the number of cells of a

computational domain to simulate free-surface fluctuations. The aim is to achieve a
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Figure 6.4: Grid independence study in terms of the surface elevation-time history for
regular waves of 20 m height with period of 12.8 sec in 135 m water depth. The result of
the theoretical 3rd order Stokes wave is plotted as dot-dashed (red) line, the result of Mesh
1 as dashed grey line, the result of Mesh 2 as solid black line, and the result of Mesh 3 as
solid grey line.

grid independent solution which does not vary significantly when one alters the num-

ber of cells and also agrees well with the theoretical wave formulation. Comparable

wave kinematics such as water particle velocity and dynamic pressure can then be

obtained between the theory and the numerical simulation.

Figure 6.4 shows the grid independence study of three different mesh sizes in terms

of surface elevation in time, benchmarked with the theoretical 3rd order Stokes wave

(dot-dashed (red) line). The three mesh sizes are Mesh 1 (dashed grey line) of about

740,000 cells with minimum 3 m × 3 m mesh resolution at the free-surface zone to

capture the wave fluctuation horizontally and vertically, Mesh 2 (solid black line) of

about 2.6 million cells with 2 m × 2 m resolution, and Mesh 3 (solid grey line) of

about 20 million cells with 1 m × 1 m resolution. For all mesh sizes, mesh coarsening

in the horizontal direction has to be introduced gradually from the middle of the

tank towards outlet to minimise excessive computational effort required, especially

for Mesh 3.

Regular waves of 20 m height with period of 12.8 seconds in 135 m water depth

are generated at the inlet, and the surface elevation is probed at the tower location. It

is apparent that the surface elevation profile of Mesh 2 is closer to that of Mesh 3, as

compared to from Mesh 1 to Mesh 2. Due to numerical diffusion, perfect agreement
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Figure 6.5: Grid independence study in terms of depth-averaged velocity uw time history
for regular waves of 20 m height with period of 12.8 sec in 135 m water depth. The result
of the theoretical 3rd order Stokes wave kinematics is plotted as dot-dashed (red) line, the
result of Mesh 1 as dashed grey line, the result of Mesh 2 as solid black line, and the result
of Mesh 3 as solid grey line.

between the simulated surface elevation and the theoretical 3rd order Stokes wave

cannot be achieved.

Figure 6.5 shows a similar study but now in terms of the velocity (uw) time

history. The velocity time history is depth-averaged over the tower volume at the

tower location, without the presence of the porous tower, i.e. the drag and inertia

coefficients (F and C ′
m) are set to zero to yield an undisturbed wave field. This

depth-resolved velocity will be substituted into the porous tower force model and then

volume integrated to obtain the simulated Morison drag and inertia type of result for

comparison. The same three mesh sizes are compared: Mesh 1 (dashed black line),

Mesh 2 (solid black line) and Mesh 3 (solid grey line). Also, the one-dimensional model

based on 3rd order Stokes wave kinematics is provided as a benchmark (dot-dashed

(red) line). The theoretical model takes into account the horizontal and vertical

profile of the wave velocity kinematics over the tower volume. Similar to Figure 6.5,

Figure 6.6 shows the depth-integrated velocity in terms of velocity term uw|uw| time

history, which is directly proportional to the undisturbed drag force contribution on

the tower.

From both Figures 6.5 and 6.6, it is apparent that the velocity time history of

Mesh 2 is closer to that of Mesh 3, as compared to from Mesh 1 to Mesh 2. Here, the

grid convergence is more satisfactorily demonstrated for Meshes 2 and 3, which agree
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Figure 6.6: Grid independence study in terms of velocity term uw|uw| time history for
regular waves of 20 m height with period of 12.8 sec in 135 m water depth. The result of
the theoretical 3rd order Stokes wave kinematics is plotted as dot-dashed (red) line, the
result of Mesh 1 as dashed grey line, the result of Mesh 2 as solid black line, and the result
of Mesh 3 as solid grey line.

with the Stokes kinematics better than Mesh 1. The slight discrepancy in the peaks

of the uw|uw| time history in Figure 6.6 between the numerical and the theoretical

results is probably due to the treatment of the wave kinematics above mean sea level,

where the theoretical model uses a vertical extrapolation approximation.

Mesh 2 is used in the subsequent simulations, but now with uniform mesh distri-

bution in the dominant flow direction (x-axis) to minimise numerical diffusion which

arises due to the mesh coarsening along the main flow direction and has an effect of

reducing the flow velocity in steady current flow simulation. As a result, the mesh

size is increased from 2.6 million to 5.3 million cells. The aspect ratio (defined as

∆x/∆z) of the numerical cell in the region around mean sea level which contains

most of the wave action is kept at 1.0, and the resolution of both ∆x and ∆z in that

region is 2 m. The resolution of ∆y is kept at 4 m in the lateral direction along the

tower frontal area (Af ), and mesh coarsening is introduced gradually away from the

frontal area towards the two side boundaries.

It is worth stressing that given the mesh resolution of 2 m by 2 m at the wave

action zone, the simulation is running in unresolved LES or perhaps in the RANS

model by transporting the averaged turbulent kinetic energy (the energy containing

large eddies are not captured in the inertial range). However, in this free-surface flow
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over porous tower simulation, no violent flow perturbations are observed, so we hope

that there is no requirement to resolve fine-scale flow structures.

6.3.3 The use of the Morison form

Here, a comparison between a two-dimensional Morison drag form and a full three-

dimensional form is investigated. The Morison drag resistance is integrated over the

volume of the porous tower to obtain the total drag force contribution on the tower

exposed to combination of waves and current.

The original implementation of the porous resistance is based on the full Morison

drag form, i.e. u|u| (see Equation 6.3), which is the general form where the reduced

three-dimensional flow is free to diverge in three directions, and the obstacles (or

cylinders) are distributed horizontally, vertically and diagonally also in three direc-

tions, so the porous tower is not just a representation of a single stick model. The

drag force in the direction of wave propagation is obtained by integrating 1/2ρAfFL

ux
√
u2x + u2y + u2z over the tower volume.

The two-dimensional Morison drag form, however, assumes that the obstacles all

run vertically, and that the cross-flow principle holds: that the axial (or vertical) flow

components have negligible effect, as described by Garrison (1985). For comparison,

the original resistance implementation is modified to (ux, uy, 0)
√
u2x + u2y, where the

modulus term of the resistance is now acting based on cross-flow or planar flow

(horizontal longitudinal and lateral flow only). The two-dimensional Morison drag

force is subsequently obtained by integrating 1/2ρAfFL ux
√
u2x + u2y over the tower

volume.

Figure 6.7 shows the comparison of the two different Morison force formulations

for a porous tower in 15 m height of regular waves with 12.8 sec period in 135 m

water depth. It can be observed that because of the additional vertical velocity

flow component in the full Morison drag formulation, the tower experiences slightly

larger drag forces in terms of the force peaks and troughs, as compared to the two-

dimensional Morison drag formulation. Also, because of the same reason, the Morison

‘shoulder’ is observed to be less distinct in the full Morison drag form than the two-

dimensional form. This slight discrepancy is reasonable, as the axial (vertical) flow

component within the tower is expected to be less important than the cross-flow

velocity components. The full Morison isotropic drag formulation is used throughout

the subsequent simulations.

The maximum simulation time is about 520,000 sec (144 hours or 6 days), which

is for the largest wave height (25 m) case. All simulations are run in parallel mode
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Figure 6.7: Comparison between two-dimensional (solid grey line) and three-dimensional
(solid black line) Morison drag formulation for 15 m regular waves in terms of drag force
time history on a porous tower.

on 8 processors at the High Performance Computing (HPC) facilities of the National

University of Singapore.

6.4 Simulations of regular waves

In this section, simulation results for regular waves with and without current are

presented and compared with the experimental peak forces measured by Allender

and Petrauskas. Previously in Chapter 3 and Taylor et al. (2013), the hydrodynamic

properties of the scaled jacket such as drag area (A), frontal area (Af ), volume (V ),

and drag and inertia coefficients (Cd and Cm) were inferred from the experiments.

These inferred properties are then used to calibrate the properties of the porous tower

in this numerical simulations. We will demonstrate that a single value of Cd = 0.9

and Cm = 2.0 can be used consistently to reproduce the measured peak forces for

regular waves with and without current over a wide range of wave heights and current

speeds, as well as to provide the additional complete force time histories and the flow

visualisation. We will also demonstrate that good agreement can be achieved between

the numerical simulations and the measured data.

The force over the tower volume obtained by integrating the undisturbed wave

field is denoted as Fund, i.e. when the porous tower is absent. This is equivalent to

a standard Morison formulation, where the presence of the structure is assumed not
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to modify the undisturbed wave kinematics. On the other hand, the same Morison

integral over the tower volume with the resistance switched on, i.e. using the disturbed

kinematics within the flow, is denoted as Fdist, i.e. when the porous tower is present.

6.4.1 Steady current flow

Here, a steady uniform current through a porous tower is simulated and compared in

terms of the probed velocity profile (uc) between the numerical simulation and the

simple current blockage model (SCB). The steady flow case serves as the first compar-

ative test as it has uniform velocity across water depth and involves little free-surface

fluctuation, hence the comparison between the two different flow representations is

clear and straightforward. It is important to obtain good agreement in this steady flow

case to justify the compatibility of the two flow representations (one by the actuator

disc theory, the other by numerical approximation of the Navier–Stokes equations),

in that they can be calibrated in terms of the hydrodynamic loading, CdA/Af and

the quadratic porous resistance, FL.

For steady flow case, the SCB model is used. The blocked current, us, can be

expressed in terms of the free stream current, uc, the total hydrodynamic area, CdA,

which we define as the product of the Morison drag coefficient, Cd, and the solid drag

area of the scaled jacket, A, and the total frontal area of the jacket, Af , as:

us = uc/

(
1 +

CdA

4Af

)
(6.5)

The description and derivation of the model is provided in Chapter 3.2, Taylor (1991)

and Taylor et al. (2013). For the purpose of comparison with the Allender and

Petrauskas experimental data points, two steady current flow cases are simulated: uc

= 1.25 and 2.5 m/s.

Table 6.3 summarises the results for the two steady flow cases, presented in terms

of the average current within the tower volume. The simulation result without the

porous tower present (Fund) is to be compared with the input velocity profile at

the inlet, while the simulation result with the porous tower present (Fdist) is to be

compared with the SCB model. Good agreement is achieved between the Fund results

and the input velocity, and a slight increase is observed in the Fdist results as compared

to the SCB results. This slight increase could be due to side leakage through the

lateral faces of the porous tower, which enhances the lateral mixing between the

inner blocked flow and the outer free-field flow, as described in Santo et al. (2013a).

The CFD simulation uses a 60 m × 60 m block whereas the analytical one-dimensional
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stick model uses a single disc of 60 m × 0 m, so a slightly higher effective current

for the simulation result is expected. Thus, as previously demonstrated in the planar

flow through a porous block simulation in Chapter 4 and Santo et al. (2013a), these

two different flow representations are compatible with each other.

Table 6.3: Simulation results in terms of effective current velocity at the tower location for
1.25 m/s and 2.5 m/s steady flow cases.

Input current SCB result Effective average current at the tower position (m/s)
(m/s) (m/s) – tower absent – tower in place

1.25 1.03 1.24 1.05
2.5 2.05 2.48 2.09

The results in terms of peak drag forces for the simulated two steady current cases

provide the points on the extreme left of Figures 6.17 and 6.18 for zero wave height in

regular waves plus current flow simulations described in Section 6.4.3. The agreement

between the numerical simulations and the measured peak forces is shown to be good.

Figure 6.8 shows three-dimensional flow visualisation at a vertical cut across the

wake, and the surface flow beyond, looking upstream towards the porous tower for

the case of 1.25 m/s steady current. The tower is indicated as white colour grid.

The longitudinal flow is expressed as the difference between the disturbed velocity

with the tower in-place minus that for the same current on the same computational

grid but with the tower absent (udist−uund). White colour corresponds to a fast flow

perturbation of 0.1 m/s out of the page in a downstream direction, black to a reduced

flow perturbation of −0.3 m/s into the page. A net flow retardation (black colour)

in the form of steady wake region is clearly visible at immediate downstream of the

tower, accompanied by faster flow divergence and shear layers along the edge of the

tower (white colour). There is an expansion of the retarded flow region before it slowly

diffuses out and recovers to close to the undisturbed flow at ∼ 250 m downstream

the tower. Also shown is the vertical cut at 250 m downstream of the centre of the

tower, which demonstrates relatively little vertical mixing between the blocked flow

and the undisturbed flow as there are no significant free-surface effects occurring in

this steady current simulation case. This flow retardation process reflects a current–

structure interaction, which gives rise to simple current blockage.
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Figure 6.8: Three-dimensional flow visualisation at a vertical cut across the wake, and
the surface flow beyond, looking upstream towards a porous tower for the case of 1.25 m/s
steady current through the tower. The colour code follows UdiffX colour legend, which is
the difference between the disturbed and the undisturbed velocity, for the longitudinal flow
towards the observer in the positive x-direction. White colour corresponds to a fast flow
perturbation of 0.1 m/s out of the page in a downstream direction, black to a reduced flow
perturbation of −0.3 m/s into the page. The same grey scale is used both for longitudinal
flow in and out of the vertical slice and also for the horizontal downstream component of
the velocity on the free-surface.

6.4.2 Regular waves

The case of regular waves with no current is simulated as the next comparative test

between the numerical simulations and the physical experiments. It is important

to obtain qualitatively and quantitatively good agreement in this case to justify the

validity and feasibility of the assumptions undertaken in the simulations, as we move

on to attempt to reproduce the experimental results for regular waves plus current.

It is worth mentioning that in this regular wave case without the presence of

steady current, there is assumed to be no build up of a global mean wake effect,

thus there is no occurrence of current blockage, and as a result the standard Morison

theory with no blockage is applicable for comparison between the theory and the

numerical simulations, apart from possible issues associated with Stokes drift and

Keulegan–Carpenter (KC) number effects.

Table 6.4 provides the properties of all the regular waves simulated in this work.

The associated wave numbers are obtained based on Stokes 3rd order deepwater wave
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dispersion theory (adequate because kh ≥ π):

ω2 = gk[1 + (ka)2] (6.6)

where ω = 2π/T is the wave angular frequency, T is the wave period, k = 2π/λ is

the wave number, λ is the wavelength, and a is the linear wave amplitude. The water

depth, h, is 135 m.

Table 6.4: Wave properties for regular wave simulations.

Wave height, H (m) 5 10 15 20 25

Wave number, k (m−1) 0.02449 0.02423 0.02383 0.02332 0.02275
Wave period, T (sec) 12.8 12.8 12.8 12.8 12.8

Each regular wave simulation is run for about 15 wave periods in order to reach

a sufficiently periodic steady-state condition.

We note that the presence of the porous tower causes a slight phase-delay and

smearing effect to the free-surface profile when compared with the free-field profile.

Nevertheless, the observed effect is local. The presence of the porous tower introduces

little disruption to the free-surface globally, which is consistent with the underlying

assumption that the presence of cylinders in an array or group (or in a space-frame

offshore structure) has little effect on the global surface elevation flow-field (little wave

field distortion in terms of diffraction and reflection). A small surface disturbance on

the wave crest is visible immediately downstream of the tower in Figure 6.2. In fact,

much of the disruption occurs below free-surface level in terms of the mean vorticity

of the wake, as visible from the flow visualisation in Section 6.5.

Full-scale drag (solid lines) and inertia (dashed lines) force time histories are

illustrated in Figure 6.9 for 15 m regular waves with (Fdist, shown as black lines) and

without (Fund, shown as grey lines) the porous tower present, which shows a force

reduction in the drag term and negligible effect in the inertia term. There is a small

effect of extra submergence of the porous tower (extra 15 m submerged at crest). It is

obvious that the force reduction is larger at the force crests than at the force troughs.

This force reduction might be attributed to a blockage effect perhaps due to Stokes

drift downstream, particularly at the surface, and this drift will be blocked to some

extent. Hence, the crest results are markedly different, while the trough results are

close.

Table 6.5 shows the variation of peak drag forces for varying regular wave height

(from 5 to 25 m). Generally, the relative reduction of the peak crest of the drag force
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Figure 6.9: Force time histories for 15 m regular waves with (Fdist, shown as black lines)
and without (Fund, shown as grey lines) the porous tower present. Drag forces are shown
as solid lines, and inertia forces as dashed lines.

is close to independent of the wave height, so it is not related to Stokes drift. The

average reduction over the entire simulated regular wave cases is about 12%. Overall,

it can be observed that the peak drag force scales well with the wave height squared

(H2) as is to be expected.

Table 6.5: The variation of peak drag forces with and without the porous tower present
due to various regular wave heights.

Wave Peak drag force
height (m) Fund (MN) Fdist (MN) Reduction (%)

5 1.05 0.95 10
10 4.52 4.00 12
15 10.66 9.20 14
20 19.18 17.02 11
25 34.64 30.03 13

Average 12

Figure 6.10 summarises the key results from the simulations in terms of peak drag

and peak total force (data points with solid trend lines) as a function of wave height,

plotted on top of Allender and Petrauskas experimental data points as well as the

analytical one-dimensional stick model based on the standard Morison (dashed black
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line), which have been shown previously in Figure 3.15 in Chapter 3 (or in Figure

13 in Taylor et al. (2013)). It is noted that good agreement is obtained between

the simulations and the physical experiments, which provides some support for the

assumptions used in the numerical simulations, as well as in the theory.
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Figure 6.10: Comparison of the simulated and the measured peak drag and peak total
forces on space-frame model with waves and zero current. The simulated peak drag forces
is shown as solid (blue) line with hollow squares, the simulated peak total forces as solid
(red) line with hollow circles, the measured forces from Allender and Petrauskas (1987) as
solid black circles, and the standard Morison as dashed black line.

6.4.3 Regular waves plus current flow

Next, we are interested in modelling combined regular waves with an in-line current

flow through a porous tower. This section attempts to reproduce the measured peak

forces by Allender and Petrauskas with the same and consistent Cd and Cm values used

previously for steady current and pure regular waves (with no current) simulations,

but now with the force time histories as well as the peak values.

A full current blockage model has been introduced to account for the extra block-

age resulting from the complete wave–current–structure interaction as described in

Chapter 3 and Taylor et al. (2013) for peak force and Chapter 5 and Santo et al.

(2014b) for force time history.
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In the physical experiments, the scaled jacket model was towed by a carriage in

the opposite direction to the wave propagation to simulate a uniform current profile

on top of regular wave flow. The regular wave and its kinematics remain the same,

with the period fixed at 12.8 sec. Thus, the scaled jacket model which moved with the

current (or the carriage) would encounter the waves at a different frequency compared

to when the model was stationary. This exact condition is reproduced in the numerical

wave tank.

Instead of moving the porous tower as in the physical experiments, a uniform

current profile is fluxed at the inlet boundary together with regular waves to produce

regular waves with an in-line current. For regular waves with no current, the spa-

tial surface elevation at the inlet (as well as at the tank when the waves propagate

downstream) is η = a cos[ωt − kx], where η is the surface elevation, a is the linear

wave amplitude, t is the temporal and x is the spatial variable. With the presence

of a uniform current uc, the fixed space coordinate x of the waves viewed in a frame

of reference which moves with the current is replaced by x′ = x − uct. The spatial

surface elevation can then be re-written as η = a cos[ωt− k(x− uct)], so the effective

frequency is now ω′ = ω + uck, which defines the encounter frequency of the waves

with the model which moves together with the current. Hence, relative to the porous

tower, the wave induced fluid velocity at the wave crest is in the same direction as

the waves are advancing and so is the current, but the encounter frequency of the

waves with the tower is increased to ω′. Meanwhile, the standard wave dispersion

relationship still holds for this case of waves and in-line current as a frame of reference

which moves with the current uc is adopted here.

The same set of regular waves is simulated, with two different current velocities,

uc = 1.25 and 2.5 m/s. Each regular wave plus current simulation is run for about

15 wave periods in order to reach a sufficiently steady-state condition.

Figures 6.11 and 6.12 show full-scale force time histories for 20 m regular waves

of 12.8 sec period with 1.25 m/s and 2.5 m/s current in 135 m water depth with

the tower present, whereby both the drag (solid black line) and the inertia (dashed

black line) forces are obtained directly from the simulation and the total force (solid

grey line) is the superposition of these two forces. A very slight above linear increase

is observed in the simulated inertia force when current increases from 1.25 m/s to

2.5 m/s despite the same C ′
m input. Nevertheless, the increase is rather small (∼

5% difference), and this may result from the time derivative term ((1 + C ′
m)∂ρu/∂t)

which is slightly modified due to the change in the encounter frequency.
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Figure 6.11: Full-scale total force, drag and inertia force time histories for 20 m regular
waves of 12.8 sec period with an in-line 1.25 m/s current in 135 m water depth. The total
force is shown as solid grey line, the drag force as solid black line, and the inertia force as
dashed black line.
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Figure 6.12: Full-scale total force, drag and inertia force time histories for 20 m regular
waves of 12.8 sec period with an in-line 2.5 m/s current in 135 m water depth. The total
force is shown as solid grey line, the drag force as solid black line, and the inertia force as
dashed black line.

Figures 6.13 and 6.14 show the comparison of drag force time histories with (solid

black lines - Fdist) and without (solid grey lines - Fund) the tower present for the

same 20 m regular waves with 1.25 m/s and 2.5 m/s current. A significant reduction
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Figure 6.13: Comparison of drag force time histories with (Fdist, shown as solid black line)
and without (Fund, shown as solid grey line) tower present for 20 m regular waves of 12.8
sec period with an in-line 1.25 m/s current in 135 m water depth. Also shown is the drag
force reduction (∆Drag) plotted as dashed black line.
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Figure 6.14: Comparison of drag force time histories with (Fdist, shown as solid black line)
and without (Fund, shown as solid grey line) tower present for 20 m regular waves of 12.8
sec period with an in-line 2.5 m/s current in 135 m water depth. Also shown is the drag
force reduction (∆Drag) plotted as dashed black line.

in the drag force due to current blockage is observed, obtained by subtracting the

drag force of Fdist from Fund. The amount of the drag force reduction is plotted as
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dashed black line and shown as ∆Drag, which shows that most of the reduction occur

in phase with the wave crest (when the wave kinematics are in the same direction

with the in-line current). The inertia term (not shown) is observed to be virtually

completely unaffected by the presence of the porous tower, which is consistent with

the formulation of the current blockage theory in which only the drag term is affected.

Figures 6.15 and 6.16 show the drag force reduction time histories for the simulated

wave heights of 5 m, 10 m and 20 m, with 1.25 m/s and 2.5 m/s current, respectively.

All the drag force reductions are smoothed by averaging cycle-by-cycle (in total five

cycles) when the drag forces have reached sufficiently steady-state periodic conditions.

It is noted that the amount of force reduction for both 5 m regular waves with

1.25 m/s and 2.5 m/s current is comparable to the reduction due to simple current

blockage model (SCB) as well as the full model (FCB), since the current velocity

is of comparable magnitude with the wave kinematics. Beyond 5 m regular waves,

all the reductions are due to the full current blockage effect (wave–current–structure

interaction), which are considerably larger than the simple current blockage effect

(current–structure interaction). The crest of the drag reduction occurs in phase with

the passage of the wave crest for all wave heights, and it increases as the wave height

increases. The trough of the reduction, on the other hand, generally exhibits a flat

plateau during the passage of the wave trough (when the wave kinematics are in the

opposite direction with the in-line current) except for the 20 m wave height (and 25 m

wave height – not shown) with 1.25 m/s current where there is some force reduction

at the force trough which increases as the wave height increases. This is presumably

associated with energised reverse (backward) flow which occurs during the passage

of wave trough. For regular waves with 2.5 m/s current, the flat plateau at the

trough of the force reduction is found to be independent of the wave height, as the

occurrence of the energised backward flow seems to be well counter-balanced by the

stronger current. The magnitude of the trough of the reduction roughly quadruples

from about 1 MN to 4 MN when the current velocity doubles from 1.25 m/s to 2.5

m/s.

All the simulation results can be summarised in terms of the peak total force as a

function of wave height, and these are shown in Figure 6.17 for regular waves with 1.25

m/s current and Figure 6.18 for regular waves with 2.5 m/s current corresponding to

Figures 3.16 and 3.17 in Chapter 3 (or Figures 15 and 14 in Taylor et al. (2013)). The

simulations results are plotted as solid lines with square and circle data points, the

experimental results as solid data points, while the analytical one-dimensional stick

model results based on the full current blockage model (FCB) as dashed black lines.
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Figure 6.15: Summary of the drag force reduction time histories obtained from Fund - Fdist

for ranges of regular waves with 1.25 m/s current. The drag force reduction for 20 m regular
waves is shown as dashed black line, for 10 m regular waves as solid grey line, and for 5 m
regular waves as solid black line.
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Figure 6.16: Summary of the drag force reduction time histories obtained from Fund - Fdist

for ranges of regular waves with 2.5 m/s current. The drag force reduction for 20 m regular
waves is shown as dashed black line, for 10 m regular waves as solid grey line, and for 5 m
regular waves as solid black line.

It can be assumed that the discrepancy between the numerical results and the

analytical results is largely attributed to the finite size effect of the volume averaging
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Figure 6.17: Comparison of the simulated and the measured forces on space-frame model
with waves and 1.25 m/s in-line current. The simulated peak forces with the tower absent
(Fund) is shown as solid (blue) line with hollow circles, the simulated peak forces with
the tower present (Fdist) as solid (red) line with hollow squares, the measured forces from
Allender and Petrauskas (1987) as solid black circles, and the full current blockage results
as dashed black line.
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Figure 6.18: Comparison of the simulated and the measured forces on space-frame model
with waves and 2.5 m/s in-line current. The caption follows that of Figure 6.17.
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of the porous drag and inertia force components, and the effects of the lateral mixing.

For both numerical results, the deviation from the analytical results whenH > 20 m is

probably due to the non-linear effects of the Stokes waves simulated in the numerical

wave tank which increase with wave height - the analytical results were plotted based

on Airy (linear) wave theory, with a rather crude approximation for the free-surface

correction based on linear kinematics at mean sea level. The slight over-estimation of

the peak forces for the largest waves may arise from the assumption in the numerical

and analytical modelling that the volume distribution of the porous tower is spatially

uniform. It is likely that for the Allender and Petrauskas model structure there were

fewer structural elements (less resistance) in the wave action zone, particular at and

above mean sea level, than below, as can be seen in Figure 6.1. Unfortunately, no

detailed information on this issue was available to guide the modelling work.

Overall, it can be concluded that the simulation results match well with the peak

forces measured by Allender and Petrauskas; all of these simulations for current only,

waves only, and waves with in-line current are using identical Cd and Cm values. The

results also match the FCB model. The good agreement between the simulation and

the FCB model provides further support for the validity of the current blockage theory

in representing the actual fluid loading after taking into account the full blockage

effects for regular waves with an in-line current. The previous validation work was

only applicable to regular planar oscillations with an in-line steady flow (see Chapter 4

and 5, or Santo et al. (2013a) and Santo et al. (2014b)).

6.5 Flow visualisation

Now, flow visualisations on the dynamical behaviour of the flow structures are presen-

ted. These comprise shielded flow through the porous tower, shear layer separations

at the edge of the tower and jet flows emerging out from the tower towards the outer

faster flow (side flow leakage which enhances lateral mixing).

6.5.1 General remarks on the nature of the flow field

Figures 6.19(a, b) show the longitudinal velocity flow field at a horizontal cut at

−30 m below mean sea level within the central portion of the whole computational

domain for 20 m regular waves with 1.25 m/s current with the tower in-place. The

colour reflects the strength of the longitudinal flow through the tower, in which the

dominant flow is from left (upstream) to right (downstream). Figure 6.19(a) shows

an instant when a wave crest is at the centre of the tower, which clearly demonstrates
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flow distortion downstream of the tower as a mean wake at that particular slice. Red

colour corresponds to instantaneous forward velocity of 4 m/s, blue to instantaneous

reverse velocity of −2 m/s. Figure 6.19(b) shows a time-averaged longitudinal flow

map over a complete wave cycle at the same slice, which demonstrates a global mean

wake immediately downstream the tower as a result of the complete wave–current–

structure interaction. The net flow and force reduction due to the combined waves

and current is larger than due to the current alone. This can be observed from the

width and strength of the mean wake, which are both much larger than that shown

in Figure 6.8 for just steady current through the tower. This dramatic increase in the

global mean wake is the motivation for the development of the full current blockage

model (FCB) (Taylor et al., 2013).

General observations on the nature of the flow structures:

• The flow field is highly unsteady at the top of the porous tower, with the

magnitude of the oscillatory in-line wave kinematics ∼ 4× the mean current

speed. Nevertheless, the bulk features of the flow field are apparently adequately

resolved by the CFD simulations.

• Within and initially downstream of the porous tower, the flow structure is very

‘blocky’, with more mean flow reduction at the top of the tower and less further

down the water depth, where simple blockage of the current dominates. This

occurs despite the large oscillations in the flow velocity as the waves propagate

through the tower in addition to the mean current.

• There is little disturbance to the position of the wave crests downstream of the

tower, and what there is is complex, changing form with position downstream

(as can be seen from Figure 6.2).

• Although the wake is fully three-dimensional and there is considerable wake

structure well downstream of the tower, the wake remains very close to com-

pletely symmetric about the centre-plane in the downstream direction. As can

be seen from Figure 6.19(c), there is considerable rearrangement of the wake

structure, including apparent vortex ‘breakdown’ and rearrangement, but this

occurs at least one surface wavelength downstream of the tower. The figure

shows instantaneous streamtubes all originating in the top half of the water

column from a vertical plane at 145 m downstream of the centre of the tower

within the central portion of the whole computational domain. The streamtube
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(a) (b)

(c)

Figure 6.19: Three-dimensional flow visualisation of the longitudinal flow structures within
the central portion of the whole computational domain for the case of 20 m regular waves
with 1.25 m/s current through a porous tower. Figures(a, b) show longitudinal velocity
flow field at a horizontal cut at −30 m below mean sea level in which the dominant flow
is from left (upstream) to right (downstream). Figure(a) shows a snapshot when a wave
crest is at the centre of the tower, in which the colour reflects the instantaneous strength of
the longitudinal velocity flow. Figure(b) shows a time-averaged longitudinal flow map over
a complete wave cycle, in which the colour reflects the strength of the mean longitudinal
velocity flow. Figure(c) shows instantaneous streamtubes all originating in the top half of
the water column from a vertical plane at 145 m downstream of the centre of the tower,
expressed as the difference between the disturbed velocity with the tower in-place and
the undisturbed velocity with the tower absent (udist − uund). The colour reflects the
instantaneous strength difference in the longitudinal velocity flow component.
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is drawn for the flow field corresponding to the difference between the disturbed

velocity with the tower in-place and the undisturbed velocity with the tower ab-

sent (udist −uund), and coloured as the instantaneous strength difference in the

longitudinal velocity component. There is an extra (red) downstream velocity

component evident from leakage through the sides of the tower and a retarded

(blue) blocky wake just downstream of the tower. On the edges of the tower

there are vortices at both sides, and when the vortices reach the next crest line,

there is a vortex re-arrangement but prior to this there is a tightly wound core

with fast axial flow (red). Downstream of the crest line after the re-arrangement,

the axial cores are spreading further out but still localised. There is consider-

able vertical motion as well as complex horizontal flow structures evident in the

figure.

• The flow structure through the porous block can be interpreted as ‘base bleed’,

somewhat akin to the injection of fluid into the near wake immediately down-

stream of a bluff body in order to reduce the drag force (Bearman, 1967; Wood,

1967). The downstream displacement of the complex wake region for our wave–

current–structure interaction is sufficient for close to completely symmetric flow

close to the tower. In the far field we would might expect global wake instabil-

ity to result in the characteristic side-to-side Karman street oscillation of the

wake, but we see no evidence for this in the (admittedly) spatially compact flow

domain.

• In the near field downstream of the tower, there is considerable axial flow along

what are vortices either side of the central block of retarded flow. This flow is

significant, remaining submerged below the free-surface and the shape of the

vortices changes with downstream distance. But the presence of such vortices

does act to constrain the wake flow and to modify the depth profile. On the

free-surface behind the tower, we have regions of accelerated and decelerated

flow as patches along the downstream direction. These are associated with the

crest and trough phases of the flow through the tower being swept downstream

by the combined effects of the mean current and Stokes drift in the wave, in the

examples shown these mean flows are of comparable magnitude.

• One wavelength downstream of the tower, with a wave crest within the tower,

the axial vortices seem to undergo a vortex ‘breakdown’ associated with the

spread of a jet type axial flow pulse across the whole width of the wake, giving
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at the surface retarded flow, then the jet flow, and beneath both retarded flow

with the remnants of the simple current blockage wake close to the bed. For

a trough at the tower, this vortex ‘breakdown’ occurs an additional one half

wavelengths downstream, showing that this is a highly mobile phenomenon

consistent with the position of the wave crests.

• Although the simulations have been performed with a VOF-type code, where

the free-surface is smeared out using cells where the averaged fluid density de-

creases dramatically in a relatively short distance vertically, the region where

the average fluid density is 50% - 95% of that of water is well above the accel-

erated wake jet pulse as vortex ‘bursting’ starts, so we believe that this feature

is unlikely to be a variable density artifact.

6.5.2 Commentary of the local structure of the flow field on
a sequence of planes downstream of the porous tower

Now we examine the structure of the flows on vertical slices across the wake, com-

paring and contrasting these cross-sectional flow features when a regular wave crest

(left) and trough (right) is located at the centre of the porous tower, as shown in

Figure 6.20 for the case of 20 regular waves with 1.25 m/s in-line current. This shows

a series of cuts across the wake, and the surface flow beyond, looking upstream to-

wards the porous tower, visible in the centre of each image. Figures 6.20(a, b), (c,

d), (e, f ), (g, h), and (i, j ) show cuts at 50 m, 150 m, 200 m, 250 m and 350 m

downstream of the centre of the porous tower, respectively. The colours reflect the

strength of the longitudinal flow towards the observer in the positive x-direction. This

is expressed as the difference between the disturbed velocity with the tower in-place

minus that for the same waves on the same computational grid but with the tower

absent (udist − uund). Red colour corresponds to a fast flow perturbation of 1.5 m/s

out of the page in a downstream direction, blue to flow perturbations into the page

of −2.5 m/s. The same colours are used both for longitudinal flow in and out of the

vertical slice and also for the horizontal downstream component of the velocity on

the free-surface. Further detailed description of the local flow structures is presented

in Table 6.6.
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Figure 6.20: Three-dimensional flow visualisation of the flow structures for the case of 20
m regular waves with 1.25 m/s current through a porous tower. Left hand figures show a
snapshot when a wave crest is at the centre of the tower, right hand figures when a wave
trough is at the centre of the tower half a wave cycle later. Figures(a, b), (c, d), (e, f ), (g,
h), and (i, j ) show a series of cuts at 50 m, 150 m, 200 m, 250 m and 350 m downstream
of the centre of the porous tower, respectively. The colour code follows UdiffX colour
legend, which is the difference between the disturbed and the undisturbed velocity, for the
longitudinal flow towards the observer in the positive x-direction. Red colour corresponds
to a fast flow perturbation of 1.5 m/s out of the page in a downstream direction, blue to flow
perturbations into the page of −2.5 m/s. The same colours are used both for longitudinal
flow in and out of the vertical slice and also for the horizontal downstream component of
the velocity on the free-surface.
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Table 6.6: Description of the local structure of the flow field on a sequence of planes
downstream of the porous tower.

Downstream distance Crest Trough
from the centre of
the porous tower

50 m - axial flow is weak in cores
downstream of the tower,
and highly retarded within
and across the tower at the
free-surface,
- vertical gradient is smooth
down the tower.

- axial core flow is stronger
downstream compared to
the crest at the tower case,
- vortices are much more
visible,
- there is slightly more neck-
ing of the simple sheared
wake profile,
- surface layer is weakly re-
tarded at the tower, and
the axial flow velocity is in-
creased the deeper the pos-
ition.

150 m - roll-up of the vortices is
now starting, inwards at the
bottom,
- there is a slight pinching of
central wake deficit region.

- there is more roll-up and
stretching,
- axial flow increment is still
slightly larger, as is pinch-
ing, but the basic structure
is very similar.

200 m - we are now approaching
the next crest line across the
flow,
- there is a rather sudden
spread and magnification of
axial flow increase across
the whole wake below the
surface, giving in the ver-
tical direction weak retard-
ation of the axial flow on
the surface, then accelera-
tion in a layer with relat-
ively undisturbed retarda-
tion beneath.

- axial flows in cores is now
weaker, with no spreading
across the main wake, which
is very different from the
crest at the tower case case.
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250 m - axial flows are re-
established in two cores,
- layered jet in the centre of
the wake is weaker but still
clear,
- this re-arrangement of
the axial flow structure
is associated with passing
through the wave crest one
wavelength downstream of
the tower.

- edge core flows are still
much weaker,
- patterns of flow perturb-
ation on the free-surface
downstream of the tower are
clear.

350 m - some uneven axial flow
retardation is still visible
below the surface on the
centre-line,
- still two core flows at
either side cut are weaken-
ing downstream as we ap-
proach the next trough,
- the deep blockage current
wake is no longer visible,
- much stronger free-surface
pattern is visible on the
free-surface upstream of the
vertical cut, a reflection of
the vortex ‘burst’ at ∼ 250
m.

- there is an intensification
of the axial flow cores as
we are approaching the next
wave crest,
- there is a generation of a
submerged downstream jet,
which is a somewhat sim-
ilar flow structure to crest
case at 200 m, and as-
sociated with the start of
a vortex ‘burst’, but now
at an additional one half
surface wavelength down-
stream compared to the
crest at the tower case.

In summary, the wake flow behind the porous tower is strongly unsteady as it

reflects the modulation by the waves. The wake itself remains well separated and

distinct from the surrounding bypass flow. There is interesting and significant un-

steady fully three-dimensional wake dynamics, but all of this appears to occur well

downstream. The flow within the tower is relatively simple, and as a consequence,

the Morison-type forces are also relatively simple in form.

In short, the flow visualisation has been helpful in providing insights into the

global flow behaviour. It is worth noting that the flow visualisation has been per-

formed assuming uniform resistance in all flow direction as a first approximation to

the Allender and Petrauskas type of jacket model, while the actual structure could

155



possibly have a non-uniformly distributed resistance and this might affect local and/or

global flow structures – a problem left for future work. It is also worth mentioning

that no visualisation of the local flow disruption within the porous tower of the order

of the width of individual cylinders is attempted as the local flow structure modelling

is not accounted for in such porous tower simulations. The observed flow structures

from this flow visualisation are the global flow structures (in the form of the mean

vorticity of the wakes), which are mostly due to shear flow separation, and to some

extent side flow leakage. These global mean wakes are the product of the complete

fluid–structure interaction process, and they are responsible for the global flow and

force reduction on statically-responding fixed space-frame offshore structures.

6.6 Chapter summary & conclusions

This chapter demonstrates that the use of a porous tower in a full CFD numerical

simulation as a model for an offshore jacket structure is a viable approach for Morison-

type loading in general, and for investigating the current blockage effects in particular.

The Morison drag and inertia contributions are treated directly by inserting resistance

elements into the Navier–Stokes equations, and this process only requires calibration

of the resistance parameters as the effective Morison Cd and Cm coefficients.

Little wave reflection is observed from the downstream wave absorption zone show-

ing that the numerical wave tank is working well. There is little wave diffraction from

the porous tower, as shown by the localised distortions of the crest lines downstream

of the tower. Various numerical studies have been conducted to investigate the length

of the tank domain, to achieve grid independent simulation results, and to assess the

two different Morison drag formulations. In general, the numerical wave tank with

the free-surface capturing VOF technique works reasonably well in simulating regular

waves with no current, steady current and combined regular waves with an in-line

current.

This chapter proceeds with numerical reproduction of the Allender and Petrauskas

experimental peak forces: all cases are well predicted using the same values of Cd and

Cm. And of course the numerical simulations provide predictions of the complete

force time history as well as the peak values reported by Allender and Petrauskas.

The forces from the simulated steady current flow compare well with the simple

current blockage model (SCB), with a slight increase in the net shielded current

and the corresponding drag force due to side leakage which is consistent with the

findings from the planar flow simulation presented in Chapter 4 and Santo et al.
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(2013a). The forces from the simulated regular waves agree well with the peak force

measurements by Allender and Petrauskas as well as the standard Morison theory

with no blockage. For the case of regular waves plus current, the simulated forces

also compare reasonably well with their measurements as well as the full current

blockage model (FCB) presented in Chapter 3 and Taylor et al. (2013). It has been

demonstrated numerically that the force reduction on space-frame structures due to

current blockage effect is real and significant.

Apart from the additional information on force time history, flow visualisation is

also attainable numerically. Flow visualisation is helpful in providing insights into

the flow behaviour of the global mean wake, which is responsible for the global flow

and force reduction. The wake flow behind the porous tower is strongly unsteady

as it is modulated by the waves, and remains well separated and distinct from the

surrounding bypass flow. There is interesting and significant unsteady fully three-

dimensional wake dynamics, but all of this appears to occur well downstream. Thus,

the flow within the tower is relatively simple, and as a consequence, the Morison-type

forces are also relatively simple in form.

This chapter provides further evidence for the validity of the full current blockage

model (FCB). It also demonstrates the novel use of the porous block as a simple

representation for the complex geometry of real jacket structures when exposed to

combined large waves and significant in-line current, which could be of significance

for possible incorporation into a standard offshore design practice. Given the present

state of development, both the analytical and the numerical models of current block-

age are valid for statically-responding space-frame offshore structures, such as jackets,

in regular wave applications.

This chapter has been submitted to the Journal of Fluids Mechanics as Santo

et al. (2014a).
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Chapter 7

Conclusions and recommendations
for future work

7.1 Conclusions

• The analytical model of current blockage is derived from actuator disc theory,

and is suitable for steady current (for simple current blockage or SCB) and

regular waves with an in-line current (for full current blockage or FCB).

• The SCB model has been used as a part of the standard design method after

it was incorporated in the API design guidelines in 1994 (American Petroleum

Institute, 2000), but it only takes into account current–structure interaction.

• As there is strong evidence showing a much larger blockage for a structure sub-

jected to combined waves and current, the FCB model has been developed, and

this model takes into account a complete wave–current–structure interaction.

• The asymptotic limit of the FCB reveals clear separation in the drag compon-

ents, i.e. no wave times current coupled term. This is in direct contrast to the

standard Morison and the present API practice (or SCB), which demonstrates

the fundamental difference in the governing principles and the underlying as-

sumptions.

• The FCB model agrees well with a range of the published experimental data on

drag forces on a model jacket, both for steady flow and for regular wave with

an in-line steady flow, with fixed Morison coefficients (Cd).

• The FCB model also agrees well with a range of CFD numerical simulations

in planar flow through grids, where individual cylinders are not modelled, but
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the global drag resistance is represented by Morison-type quadratic resistance

porous block, with a single calibration on Cd value. The replacement of a full

and complex geometry by a calibrated porous block is itself a novel and useful

development.

• The FCB model is further developed to include a full time–dependent force

time history, and it is demonstrated to agree well with a series of experiments

performed at Cornell University for regular oscillations plus mean flow both

in terms of the peak values as well as the shape in force time history. The

asymptotic limit of the complete FCB model is shown to consist of a summation

of the wave drag and the current drag components. The shape of the wave

drag component is proportional to cosωt|cosωt|, while that of the current drag
component to |cosωt|, i.e. it is phase-locked to the oscillatory wave crests.

• The FCB model agrees well with a range of numerical simulations in 3D flow of

regular waves and current, where Morison-type inertia is now incorporated dir-

ectly into the simulation, with calibration on both Cd and Cm coefficients. The

numerical results also match well with the Allender & Petrauskas experimental

data with a single value of Cd and Cm coefficients. And of course the numerical

simulations provide additional predictions of the complete force time history

and the flow visualisation as well as the peak values reported by Allender &

Petrauskas.

• The use of a porous block in CFD numerical simulations to simulate full jacket

models under combined waves and current is a genuine approach in offshore en-

gineering and of significance to a possible incorporation into a standard offshore

design practice.

• The FCB model and the novel use of porous block in CFD numerical simulations

to account for the complete current blockage effect in general work very well

for regular waves. The force reduction is real and significant. This thesis has

a direct implication and application to new-builds and reassessment of space–

frame offshore structures. The present offshore design guidelines (API, DNV

and ISO) should be regarded as seriously inadequate for combined regular waves

and an in-line steady current acting on offshore structures.

• Overall, this thesis demonstrates that the analytical and numerical current

blockage models work remarkably well for statically-responding fixed space–

frame structures (such as jackets) in regular waves application.
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7.2 Recommendations for future work

• To formulate a complete current blockage model for regular waves taking into

account free surface effects and the nonlinear wave kinematics above mean sea

level, as the previous proposed form described in Chapter 5 is valid for planar

oscillations only. A preliminary form for a more complete current blockage

model is presented in Appendix D.

• To further investigate current blockage in random waves by both experiments

and numerical simulations, by use of focused wave (NewWave) and embed-

ded focused wave in a regular wave background. Previous studies have shown

and confirmed that NewWave is a good representation of the largest waves

both in extra-tropical (winter) and tropical storms, see Jonathan and Taylor

(1997), Taylor and Williams (2004) and Santo, Taylor, Eatock Taylor, and

Choo (2013b). An academic collaboration with the University of Strathclyde

to conduct experiments is being carried out at the time of writing, and the first

series of test in a large towing tank in the Kelvin Hydrodynamics Laboratory

in Glasgow has been conducted for a jacket model subjected to regular waves.

The second series of test is being planned which will involve focussed waves.

The jacket model is shown in Figure 7.1.

• To formulate an extended analytical model of current blockage suited for random

waves for offshore engineering application. The extended full model ought to

incorporate the time–distance scales needed for global wake and mean vorticity

to build up to produce complete blockage effects and then the subsequent decay

as an extreme event encounters and passes by a space-frame offshore structure.

• To assess variations in waves and current. The effects of wave spreading, shal-

low water waves, non-aligned waves and currents (in contrast to the present

modelling of waves with an in-line current), sheared current, current over a fi-

nite portion of the water depth, etc. would also be valuable to investigate for a

range of realistic structures.

• To account for a tapered porous tower to represent a typically-tapered jacket,

and also non-spatially-uniform and anisotropic drag resistance, for instance

where a higher resistance is skewed to one side of a structure to account for

a closely spaced group of conductors commonly found in a real jacket.
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• To investigate the current blockage effects in dynamically-responding structures,

such as jackets and compliant towers in deep water, and jack-up legs in shallow

water. The relative velocity formulation is not as straightforward as the stand-

ard design practice due to the complexity of the current drag component which

is phase-locked to the oscillatory wave crests (as predicted by the FCB model).

More experiments and numerical simulations (by dynamic or moving mesh) are

required.

• To obtain and analyse, if possible, field measurement data in the future in the

form of joint industry project (JIP) with industry collaborators. The effects of

Reynolds number, and turbulence in the open sea in a storm (presumably high

towards the free-surface), are definitely areas worth investigating if suitable field

data were to be available.

• To investigate the possibility of having a relatively straightforward methodo-

logy to implement the full blockage recipe into the present industry design prac-

tice such as the offshore blockage factor (from simple current blockage model)

presently being adopted by the API, DNV and ISO. Some discussions with Prof.

Peter Marshall reveal that one possibility for the practical application of this

study is to have a reduced global load factor after accounting for full blockage,

which will be fed into the USFOS R⃝-type of software as part of the standard

procedure to assess structural reliability, of which the local stress and strength

design of the local structural members can be performed and checked.

• To investigate how best to implement the improved understanding of current

blockage into commercial offshore analysis softwares, such as MicroSASR⃝ and

USFOSR⃝. If it is found that only porous block-type simulations by OpenFOAMR⃝

or others can accurately capture the details of the reduced fluid loading on

space-frame structures, it will be necessary to tightly couple the flow simulation

software with structural analysis packages.
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Figure 7.1: From left to right: Prof. Choo, Prof. Taylor, the NUS jacket model, and the
author.
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Appendix A

Derivation for the total drag
formulation for many sparse discs

For the case of a switching model for high hydrodynamic loading, consider a long array

of obstacle discs aligned inline with a uniform flow. Assume that the spacing between

any two discs is sparse enough so that the upstream discs affect those downstream

but those downstream discs do not affect the upstream ones, in terms of reduced flow

velocity. Further assume that the mixing out of the wakes downstream of each disc

can be neglected. Taking the free stream velocity uc = 1, and the hydrodynamic

loading on each disc as ϕ =
CdA

4Af

, the mean flow velocity profile at each disc can be

written as:

u1 = 1− ϕu1

u2 = 1− 2ϕu1 − ϕu2

u3 = 1− 2ϕu1 − 2ϕu2 − ϕu3

un = 1− 2ϕu1 − ...− 2ϕun−1 − ϕun

Again, the flow velocity at the first disc is only affected by its own upstream

divergence (no effect from the downstream). The second disc is immersed in the fully

expanded wake region of the first disc together with its own upstream divergence.

The third disc is immersed in the fully expanded wake region of the two upstream

discs, and so on.

After some algebraic manipulation, the above simple relations between the mean

velocities at successive discs can be simplified to an expression valid for each disc:

un =
1

(1 + ϕ)

(
1− ϕ

1 + ϕ

)n−1
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The total drag on the whole array of N discs requires taking a sum of the velocities

squared:

N∑
n=1

u2n = u21 + u22 + u23 + ...+ u2N

=
1

(1 + ϕ)2
+

1

(1 + ϕ)2

(
1− ϕ

1 + ϕ

)2

+
1

(1 + ϕ)2
·(

1− ϕ

1 + ϕ

)4

+ ...+
1

(1 + ϕ)2

(
1− ϕ

1 + ϕ

)2N−2

The expression above is a geometric series which can be further simplified into:

N∑
n=1

u2n =
1

4ϕ

[
1−

(
1− ϕ

1 + ϕ

)2N
]

Further assume the number of discs to be large (N → ∞), and the loading on

each disc becomes small (ϕ→ 0), yet their products Nϕ remains finite, which is one

quarter for the total hydrodynamic loading of the whole array:

Nϕ =
CdA

4Af

The summation can now be expressed exactly in terms of a simple exponential,

applying the binomial series theorem:

lim
N→∞,ϕ→0

N∑
n=1

u2n = lim
N→∞,ϕ→0

1

4ϕ

[
1−

(
1− ϕ

1 + ϕ

)2N
]

= 1− exp

[
−
(
CdA

Af

)]
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Appendix B

Table of inferred Cd and Cm

Table B.1: Calibrated Cd coefficients for 1 grid steady flow case.

Blockage Ratio, A/Af Cd

0.15 1.80
0.30 2.00
0.45 2.85
0.60 6.70

Table B.2: Inferred Morison coefficients for A/Af = 0.15.

Cd

uc/uw [uw, uc] 1 2A 2B 3 Average
2 [5 , 10] 1.75 1.66 1.59 1.64 1.66
1 [10 , 10] 1.86 1.86 1.82 1.94 1.87
1 [5 , 5] 1.94 1.82 1.79 2.04 1.90
1/2 [10 , 5] 1.92 1.92 1.91 1.98 1.93
1/3 [15 , 5] 1.87 1.91 1.92 1.90 1.90
1/3 [12 , 4] 1.85 1.86 1.87 1.85 1.86
1/4 [16 , 4] 1.83 1.82 1.83 1.79 1.82

Cm

1 2A 2B 3
24.03 13.42 13.65 9.76
25.11 13.34 14.14 10.68
24.30 13.09 13.93 10.54
27.07 15.86 16.57 12.74
26.69 17.08 16.61 14.35
26.57 17.39 17.34 14.65
26.99 17.74 18.40 15.73
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Table B.3: Inferred Morison coefficients for A/Af = 0.30.

Cd

uc/uw [uw, uc] 1 2A 2B 3 Average
2 [5 , 10] 2.55 2.76 2.82 3.56 2.92
1 [10 , 10] 2.74 3.64 3.64 3.63 3.41
1 [5 , 5] 2.78 3.32 3.29 3.36 3.19
1/2 [10 , 5] 2.89 2.76 2.78 2.71 2.79
1/3 [15 , 5] 2.54 2.49 2.52 2.46 2.50
1/3 [12 , 4] 2.50 2.44 2.47 2.39 2.45
1/4 [16 , 4] 2.37 2.31 2.37 2.26 2.33

Cm

1 2A 2B 3
16.60 12.41 10.83 10.17
17.58 12.84 12.29 11.18
19.93 14.09 13.61 12.86
21.33 17.24 16.97 15.99
22.54 20.19 19.30 19.50
23.48 20.63 19.90 20.07
24.90 24.09 21.81 24.27

Table B.4: Inferred Morison coefficients for A/Af = 0.45.

Cd

uc/uw [uw, uc] 1 2A 2B 3 Average
2 [5 , 10] 4.02 5.61 5.90 5.97 5.38
1 [10 , 10] 5.00 5.04 5.13 4.98 5.04
1 [5 , 5] 4.56 4.51 4.59 4.44 4.53
1/2 [10 , 5] 3.95 3.77 3.87 3.71 3.83
1/3 [15 , 5] 3.68 3.49 3.63 3.39 3.55
1/3 [12 , 4] 3.54 3.33 3.48 3.21 3.39
1/4 [16 , 4] 3.34 3.08 3.29 2.92 3.16

Cm

1 2A 2B 3
13.96 12.36 12.03 11.75
13.62 13.21 12.48 13.88
18.29 16.77 16.22 16.71
21.78 22.34 21.71 23.21
27.11 30.86 28.13 31.77
28.18 32.57 29.81 33.39
36.42 42.46 37.84 44.20

Table B.5: Inferred Morison coefficients for uc/uw = 0, 2B grid configuration.

Cd

[uw, uc] T (sec) 0.15 0.30 0.45
[10 , 0] 1.8 2.29 3.27 5.18
[10 , 0] 3.6 1.95 2.63 3.87
[15 , 0] 3.6 1.87 2.51 3.63
[16 , 0] 4.5 1.77 2.37 3.27

Cm

0.15 0.30 0.45
15.98 14.32 17.37
18.36 19.55 27.26
19.75 23.92 35.38
21.39 27.29 43.50

170



Appendix C

C++ source code excerpts for
OpenFOAM R⃝

Code modification at porousZoneTemplates.C to account for 2D Morison in quasi-

steady flow in regular oscillations plus current:

template<class RhoFieldType>

void Foam::porousZone::addViscousInertialResistance

(

scalarField& Udiag,

vectorField& Usource,

const labelList& cells,

const scalarField& V,

const RhoFieldType& rho,

const scalarField& mu,

const vectorField& U

) const

{

const tensor& D = D_.value();

const tensor& F = F_.value();

const scalar Uw = Uw_;

forAll (cells, i)

{

label N = 20; // Number of grid points

scalar PHI[N-1];

scalar Ucs = U[cells[i]].x();

scalar Uv = U[cells[i]].y();

for (label j=0; j<= N-1; j++)

{

PHI[j] = (j*((3.142857)/(N-1)));

}

scalar sumX = 0;
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scalar sumY = 0;

sumX = (Uw*cos(PHI[0]) + Ucs)*sqrt(sqr(Uw*cos(PHI[0])+Ucs) + sqr(Uv))

+ (Uw*cos(PHI[N-1]) + Ucs)*sqrt(sqr(Uw*cos(PHI[N-1])+Ucs) + sqr(Uv));

sumY = (Uv)*sqrt(sqr(Uw*cos(PHI[0])+Ucs) + sqr(Uv))

+ (Uv)*sqrt(sqr(Uw*cos(PHI[N-1])+Ucs) + sqr(Uv));

for (label j=1; j< N-1; j++)

{

sumX = sumX + 2*(Uw*cos(PHI[j]) + Ucs)*sqrt(sqr(Uw*cos(PHI[j])+Ucs) + sqr(Uv));

sumY = sumY + 2*(Uv)*sqrt(sqr(Uw*cos(PHI[j])+Ucs) + sqr(Uv));

}

sumX = sumX/(2*(N-1));

sumY = sumY/(2*(N-1));

vector axis(1, 0, 0);

vector axis1(0, 1, 0);

Usource[cells[i]] -= (((V[cells[i]]*rho[cells[i]])*sumX*F) & axis);

Usource[cells[i]] -= (((V[cells[i]]*rho[cells[i]])*sumY*F) & axis1);

}

}
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Code wavePorousFoam.C to account for 3D Morison porous resistance (drag and

inertia) for free-surface two-phase flow:

#include "fvCFD.H"

#include "MULES.H"

#include "subCycle.H"

#include "interfaceProperties.H"

#include "twoPhaseMixture.H"

#include "turbulenceModel.H"

#include "interpolationTable.H"

#include "relaxationZone.H"

#include "porousZones.H"

#include "OFstream.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "readPISOControls.H"

#include "initContinuityErrs.H"

#include "readGravitationalAcceleration.H"

#include "readWaveProperties.H"

#include "createFields.H"

#include "readTimeControls.H"

#include "correctPhi.H"

#include "CourantNo.H"

#include "setInitialDeltaT.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

label masterIndex = 0;

scalar Ubarx[9999], UmodUbarx[9999], timeName[9999], ddtbarx[9999];

while (runTime.run())

{

#include "readPISOControls.H"

#include "readTimeControls.H"

#include "CourantNo.H"

#include "alphaCourantNo.H"

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

twoPhaseProperties.correct();

#include "alphaEqnSubCycle.H"
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relaxing.correct();

#include "UEqn.H"

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)

{

#include "pEqn.H"

}

turbulence->correct();

runTime.write();

if ( runTime.value() >= scalar(0.2*(masterIndex + 1)) )

{

label zoneId = mesh.cellZones().findZoneID("porosity1");

scalar sumUx = 0; scalar sumSqUx = 0; scalar sumDdt = 0;

scalar sumVolume = 0; scalar counter = 0; Ubarx[masterIndex] = 0;

UmodUbarx[masterIndex] = 0; timeName[masterIndex] = 0;

if (zoneId != -1)

{

const labelList& cellIds = mesh.cellZones()[zoneId];

forAll (cellIds, i)

{

if ( alpha1[cellIds[i]] >= scalar(0.5) )

{

sumUx = sumUx + U[cellIds[i]].x() * mesh.V()[cellIds[i]];

sumSqUx = sumSqUx + U[cellIds[i]].x() * mag(U[cellIds[i]])

* mesh.V()[cellIds[i]];

sumDdt = sumDdt + ddt[cellIds[i]].x() * mesh.V()[cellIds[i]];

sumVolume = sumVolume + mesh.V()[cellIds[i]];

counter = counter+1;

}

}

if (Pstream::parRun())

{

reduce(sumUx, sumOp<scalar>());

reduce(sumSqUx, sumOp<scalar>());

reduce(sumVolume, sumOp<scalar>());

reduce(sumDdt, sumOp<scalar>());

reduce(counter, sumOp<scalar>());

}

Ubarx[masterIndex] = sumUx/sumVolume;

UmodUbarx[masterIndex] = sumSqUx/sumVolume;

ddtbarx[masterIndex] = sumDdt/sumVolume;

timeName[masterIndex] = runTime.value();
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}

masterIndex = masterIndex + 1;

}

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

OFstream dataOutput("sumDragAndInertia.dat");

for (label i=0; i<masterIndex; i++)

{

dataOutput << timeName[i] << " " << Ubarx[i] << " "

<< UmodUbarx[i] << " " << ddtbarx[i] << endl;

}

dataOutput();

Info<< "End\n" << endl;

return 0;

}
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Choice of numerical schemes and solution solver for three-dimensional free-surface

two-phase flow simulation.

Each simulation is run with an adjustable time step, in which the minimum time

interval (deltaT ) is kept at 0.001 sec. The Courant number (maxCo) is kept at

maximum of 0.5, and the interface Courant number (maxAlphaCo) is limited to 0.25.

Some of the key numerical schemes listed in fvSchemes used for the simulation

are as follows:

gradSchemes

{

default cellLimited leastSquares 1.0;

}

divSchemes

{

div(rho*phi,U) Gauss limitedLinearV 1;

div(phi,alpha) Gauss MUSCL;

div((nuEff*dev(grad(U).T()))) Gauss linear;

div(phi,k) Gauss limitedLinear 1;

}

laplacianSchemes

{

default Gauss linear corrected;

}

The algebraic equation solver used for pressure, p, is GAMG DICGaussSeidel,

while for velocity, u, and kinetic energy, k, is smoothSolver DILUGaussSeidel. The

entry for the PISO dictionary in fvSolution is as follows:

PISO

{

pdRefCell 0;

pdRefValue 0;

momentumPredictor yes;

nOuterCorrectors 2;

nCorrectors 3;
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nNonOrthogonalCorrectors 1;

nAlphaCorr 1;

nAlphaSubCycles 1;

cAlpha 1;

}
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Appendix D

Proposed full current blockage
model for regular waves

Previously in Chapter 5, the drag–time history of the asymptotic model of the full

current blockage model for regular waves with an in-line current has been validated,

with the form reproduced as follows:

Drag =
1

2
ρCdAu

2
w cosωt|cosωt|+π

4
ρAfu

2
c |cosωt| (D.1)

The proposed form of the asymptotic model is simple and thus easy to implement

in commercial software codes, such as USFOS R⃝ (www.usfos.no) and MicroSAS R⃝
(www.mcdermott.com). However, the form is valid for planar oscillations assuming

the wave kinematics are exactly sinusoidal with steady flow, when uw > uc. When

the depth-variation of the wave kinematics is taken into account in real ocean waves,

and in the numerical study presented previously in Chapter 6, there are regions

where uw < uc which pose incompatibility to the proposed planar model. Thus, a

switching model, which takes into account the wave kinematics depth-variation and

switches between the full asymptotic model and a submodel depending on the relative

magnitude of the wave kinematics to the current velocity, is proposed as follows:

if (uw > ucs)

Drag =
1

2
ρCdAu

2
w cosωt|cosωt|+π

4
ρAfu

2
c |cosωt|

else (D.2)

Drag =
1

2
ρCdA(uw cosωt+ ucs)|uw cosωt+ ucs|

where ucs is the blocked current velocity from Equation 3.22 in Chapter 3 for case
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(iii) and it is reproduced below:

ucs =

uc +

√
u2c − 2

(
1 +

CdA

4Af

)(
CdA

4Af

)
u2w

2

(
1 +

CdA

4Af

) (D.3)

with an imposed requirement that ucs > uc/2. It is worth noting that the value of

ucs here is always smaller than the ucs obtained from the current API practice (the

simple current blockage model, SCB). This switching model becomes the complete

proposed full current blockage model for regular waves plus current.

A comparison of the full model, the asymptotic model, and the numerical result

for 25 m regular waves in 1.25 m/s current is illustrated in Figure D.1.
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Figure D.1: Comparison of the full current blockage model, the proposed switching asymp-
totic model and the numerical result for H = 25 m regular waves with uc = 1.25 m/s.
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